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Abstract

Drying is an old traditional method of removing liquid from inside material, such

as wood, food, paper, ceramics, building materials, textiles, granular products, phar-

maceutical and electronic devices. The kinetics of this liquid removal depends on the

material properties of the solid phase as well as on cellular structure.

The aim of this project is to understand the effect of complex interaction of heat,

moisture and shrinkage to create a detailed mathematical modelling to quantify the

drying of a food product and tropical fruits in particular, which typically have high

water content. To this purpose, in first part of the thesis, an initial simple coupled

diffusion model with Fickian moisture transfer and Fourier heat transfer by Wang

and Brenann [122] has been extended. A one-dimensional model is applied with the

effect of shrinkage for a prediction of moisture and temperature distribution during

drying. Constant physical and thermal properties are used relevant to tropical fruits.

A numerical solution technique, based on the method of lines, is used with local

finite difference methods approximation to the drying. The results match well with

published food drying simulation studies and the anticipated final state of shrinkage

in particular.

To obtain a detailed understanding of simultaneous heat and liquid transfer during

drying of fruits, the internal structure has to be modelled. In fruit tissue, intercel-

lular space existing within a highly complicated network of gaseous channels can be

considered as a porous medium. Guided by this, an extended model of drying, in-

corporating the heterogeneous properties of the tissues and their cellular structure,

is recognized and simplified to represent the physical model. In this model, a dis-

tinction is made between the different classes of water present in the material (free

water, bound water and water vapour) and the conversion between them. Evaluation

is applied to the range of one-dimensional structures of increasing complexity: the

first is an isothermal model without consideration of heat effects; the remaining have

heat effects but differ in the correlated spatial arrangement of micro and macro pores.

All results are given as drying curves and phase distributions during drying.

ii



Acknowledgements

I would like to thank my principal supervisor, Associated Professor Dr Stephen

Hibberd, for his expert guidance, invaluable advice, supervision and patient encour-

agement throughout this research which has enabled me to complete this thesis suc-

cessfully. He has never been lacking in kindness and support.

Moreover, I appreciate the excellent support, helpful comments, guidance and

advice given by my co-supervisor, Professor Dr Sandra Hill. I am also grateful for

the advise of Dr Pragnesh Gajjar and Dr Norma Alias. I would also like to thank Dr

Greg Tucker for the advice about food structure properties.

I gratefully acknowledge that this research is jointly funded by Universiti Teknologi

MARA, Malaysia and the Ministry of Higher Education, Government of Malaysia.

Thanks go to them for giving me the opportunity to help them to achieve their vision

and mission whilst giving me the chance to realise my dream.

I cannot express how much I would like to say thank you to my husband, Khair-

ulanwar, who has supported me from day one and my children Khairi, Aidah, Laila,

Imran and Hafizul. They have always been there for me, no matter what the situation,

and I am forever in their debt.

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables ix

List of Figures xi

1 Introduction to the Modelling of Drying Fruits 1

1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Major approaches to quantifying the drying process in foods . . . . . 3

1.3 Drying models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Experimental based modelling (Empirical model) . . . . . . . 7

1.3.2 Single phase model of heat and mass transfer . . . . . . . . . 9

1.3.3 Multiphase model using a porous media approach . . . . . . . 15

1.4 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Single phase moisture and heat model of drying food 26

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Mathematical formulation of one-dimensional

moisture and heat models . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 One-dimensional model: case study . . . . . . . . . . . . . . . . . . . 29

2.3.1 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Isothermal solution . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



2.3.4 Non-isothermal solution . . . . . . . . . . . . . . . . . . . . . 40

2.3.5 Effect of diffusivity . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.6 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Two-dimensional models . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Isothermal solution . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Non-isothermal solution . . . . . . . . . . . . . . . . . . . . . 51

2.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Shrinkage models of drying fruit 55

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Review of shrinkage models . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Mathematical formulation of a one-dimensional

shrinkage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Constant diffusivity . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Diffusivity dependent on temperature . . . . . . . . . . . . . . 63

3.3.3 Diffusivity dependent on moisture and temperature . . . . . . 64

3.4 Shrinkage condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Computational formulation . . . . . . . . . . . . . . . . . . . 67

3.5.2 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Results of drying of tropical fruits . . . . . . . . . . . . . . . . . . . . 69

3.6.1 Constant diffusivity D = D0 . . . . . . . . . . . . . . . . . . . 69

3.6.2 Diffusivity dependent on moisture and temperature

D = D(T ) and D = D̃(T,M) . . . . . . . . . . . . . . . . . . 75

3.7 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7.1 Time step and numerical accuracy . . . . . . . . . . . . . . . . 82

3.7.2 Comparison with the literature data . . . . . . . . . . . . . . 83

3.8 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 86

4 A Multiphase Model for Drying Tropical Fruits 90

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Cell Level Structure of Tropical Fruits . . . . . . . . . . . . . . . . . 91

4.3 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

v



4.3.1 Three Compartments Representative of Macroscopic Volume . 98

4.3.2 Mass transfer in drying fruit . . . . . . . . . . . . . . . . . . . 102

4.3.3 Heat transfer in drying fruit . . . . . . . . . . . . . . . . . . . 109

4.3.4 Initial and boundary conditions . . . . . . . . . . . . . . . . . 111

4.4 Non-dimensional formulation . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Equation of state and phenomenological relations . . . . . . . . . . . 116

4.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Multiphase one-dimensional isothermal conditions: case study of

mango fruit 121

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Drying through intercellular space dominance . . . . . . . . . . . . . 124

5.3.1 Negligible diffusion and convective flow inside the intercellular

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 With diffusion and convective flow inside the intercellular space

Di and k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Isothermal two-phase model . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.1 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.2 Analysis of isothermal two-phase model . . . . . . . . . . . . . 137

5.5 Parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5.1 Permeability and diffusivity of intercellular vapour density . . 142

5.5.2 Diffusivity of free water moisture . . . . . . . . . . . . . . . . 143

5.5.3 Convective mass transfer . . . . . . . . . . . . . . . . . . . . . 145

5.6 Effect of cell pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7 Isothermal three-phase model . . . . . . . . . . . . . . . . . . . . . . 149

5.7.1 Analysis of the three-phase model . . . . . . . . . . . . . . . . 150

5.8 The special case of the one-phase model . . . . . . . . . . . . . . . . 153

5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Multiphase one-dimensional non-isothermal conditions: case study

of mango fruit 157

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

vi



6.2 Mathematical formulation for a non-isothermal one-dimensional drying

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Two-phase non-isothermal model . . . . . . . . . . . . . . . . . . . . 161

6.3.1 Analysis of two-phase non-isothermal model . . . . . . . . . . 164

6.3.2 Study of movement of water and vapour . . . . . . . . . . . . 170

6.4 Effect of pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Drying through intercellular space dominant fruit . . . . . . . . . . . 177

6.6 Three-phase non-isothermal model . . . . . . . . . . . . . . . . . . . 180

6.6.1 Analysis of non-isothermal three-phase model . . . . . . . . . 180

6.7 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.7.1 Time step and convergence . . . . . . . . . . . . . . . . . . . . 183

6.7.2 Comparison with the literature data . . . . . . . . . . . . . . 183

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7 Two-dimensional Multiphase drying model 187

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 187

7.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.3.1 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . 191

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 Future work and Recommendation 199

8.1 Summary of the models . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.1.1 Continuum model . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.1.2 Continuum model with shrinkage effect . . . . . . . . . . . . . 202

8.1.3 Multiphase model . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.2 Further work and conclusion . . . . . . . . . . . . . . . . . . . . . . . 205

Bibliography 208

A Numerical solution using Comsol - one-dimension 223

B Numerical solution using Comsol - two-dimension 225

vii



C Numerical solution using Comsol for multiphase model - Two di-

mension 227

viii



List of Tables

1.1 Average Moisture Diffusivity at 60oC of fruits reported by different

authors. Source Pavon et al.[90] . . . . . . . . . . . . . . . . . . . . . 11

1.2 Average conductivity (k) and specific heat (Cp) and thermal conduc-

tivity α for foodstuffs reported by different authors. . . . . . . . . . . 12

2.1 Input parameters used in the simulations of drying of tropical fruits. . 33

2.2 Drying conditions and product properties used in the simulation. . . . 34

2.3 Input data for parameter analysis. . . . . . . . . . . . . . . . . . . . . 43

2.4 Input data for parameter analysis. . . . . . . . . . . . . . . . . . . . . 45

3.1 Drying conditions and product properties used in the simulation. . . . 69

5.1 Equation generated for intercellular vapour density. . . . . . . . . . . 134

5.2 Equation generated for free water moisture. . . . . . . . . . . . . . . 134

5.3 Input parameter values used in the simulation of mango drying. . . . 135

5.4 Non-dimensional parameter values. . . . . . . . . . . . . . . . . . . . 135

5.5 Different values of n1 and n2 and their ratios . . . . . . . . . . . . . . 152

6.1 Equation generated for intercellular space temperature. . . . . . . . . 162

6.2 Equation generated for intracellular cell temperature. . . . . . . . . . 162

6.3 Input parameter values used in simulation of mango drying. . . . . . 163

6.4 Non-dimensional parameter values. . . . . . . . . . . . . . . . . . . . 163

A.1 Equation generated for moisture. . . . . . . . . . . . . . . . . . . . . 224

A.2 Equation generated for temperature. . . . . . . . . . . . . . . . . . . 224

B.1 Equation generated for moisture. . . . . . . . . . . . . . . . . . . . . 226

ix



B.2 Equation generated for temperature. . . . . . . . . . . . . . . . . . . 226

C.1 Equation generated for intercellular vapour density. . . . . . . . . . . 227

C.2 Equation generated for free water moisture. . . . . . . . . . . . . . . 228

C.3 Equation generated for bound water moisture. . . . . . . . . . . . . . 228

C.4 Equation generated for intercellular space temperature . . . . . . . . . 228

C.5 Equation generated for intracellular cell temperature. . . . . . . . . . 228

x



List of Figures

1.1 Empirical process modelling. . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 A schematic overview of the thesis. . . . . . . . . . . . . . . . . . . . 24

2.1 Schematic of one-dimensional model of food drying process . . . . . . 27

2.2 Profile of (a) moisture through the sample, with elapsed time τ=0-2 in

step of 0.25 (b) Moisture profile at the surface and centre. Parameter

value Sh=10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Profile of moisture at time τ=0.5,1 and 1.5 for different values of Sh

and a fixed value of ζ = 2.38. . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Amount of moisture loss by evaporation at the surface with different

values of Sh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Moisture at ξ = 1 against time for different values of T . Fixed value

of ζ = 2.38 and Sh = 20. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Moisture at ξ = 1 against time for different values of ζ and fixed value

of Sh = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Profile of (a) moisture through the sample, with elapsed time τ=0-3

in step of 0.25 (b) Moisture and temperature profile at the surface and

compared with the isothermal case. Parameter values Sh=10, Nu=0.3

and λ=0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Profile of moisture and temperature at the centre for different values

of diffusivity. Parameter values Sh=10, Nu=0.3 and λ=0.5. . . . . . 43

2.9 Temperature and moisture at surface ξ = 1 against time for different

values of Sh. Parameter values Le = 5, Nu=0.3, λ=0.5). . . . . . . . 44

2.10 Temperature and moisture at ξ = 1 against time for different values of

Le. Parameter values Sh = 20, Nu=0.3, λ=0.5). . . . . . . . . . . . . 45

xi



2.11 Temperature at ξ = 1 against time for different values of λ (Nu = 0.3). 46

2.12 Moisture at ξ = 1 against time for different values of Nu (Fixed λ = 0.5). 47

2.13 Schematic of two-dimensional model food drying process. . . . . . . . 48

2.14 (a) Surface plot of residual free water moisture field at time τ=0.5 (b)

Moisture across a line passing through the surface(line C) (c) Moisture

across a line passing through the centre (line D) with increasing time

τ=0-1(in step of 0.01) (d) moisture decreasing at selected points A and

B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.15 (a) Surface plot of moisture (b) temperature at time=0.5 (c) surface

and centre moisture (d) surface and centre temperature for one and

two-dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Non-dimension moisture content profile inside the food slab with in-

creasing τ . Parameter values given by Sh = 20, Le = 5, Nu=0.3,

λ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Non-dimension moisture content profile inside the food slab with in-

creasing τ in terms of physical Cartesian distance x. Parameter values

the same as Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Evolution of non-dimension moisture content profile inside the food

slab with increasing τ in term of physical Cartesian distance x for

(a) early times:τ=0-0.135 with little shrinkage and (b) longer times:

τ=1.38-1.5 (in step τ=0.03) with nearly full shrinkage. Parameter

values the same as Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Non-dimension temperature profile inside the food slab with increasing

τ . Parameter values the same as Figure 3.1. . . . . . . . . . . . . . . 73

3.5 Contour profile of temperature for non-dimensional time τ and surface

position x. Parameter values the same as Figure 3.1. . . . . . . . . . 73

3.6 Position of food surface with different initial moisture content. . . . . 74

3.7 Profile of temperature and moisture at the centre of the food, with and

without shrinkage effect. The non-shrinkage model refers to equations

(2.17)-(2.20). Parameter values the same as Figure 3.1. . . . . . . . 75

3.8 Diffusivity plot of D(T ) and D̃(T ,M). . . . . . . . . . . . . . . . . . 77

xii



3.9 Moisture and temperature in the centre of the fruits with different

diffusivity. Non-dimension parameter values given by Sh = 20, Le = 5,

Nu=0.3, λ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.10 Diffusivity plot dependent on temperature and moisture using logistic

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.11 Profile of moisture inside the food slab with elapsed time τ=0-1 in step

of 0.1 with effect of glass transition. . . . . . . . . . . . . . . . . . . . 80

3.12 Contour plot of the region showing the rubbery and glassy states. . . 81

3.13 Convergence checks for different numbers of nodes and mesh refine-

ment. (a) Evolution of moisture and temperature at the surface posi-

tion (b) a magnified region to show the detail more clearly. . . . . . . 82

3.14 Convergence checks for different numbers of time steps. Non-dimension

moisture content and temperature profile inside the food slab with

increasing τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.15 Comparison between numerical solutions for average moisture with ex-

perimental data from the literature by Pavón et al. [90] and Velic et al.

[118]. Dimensional parameter values for our model given by Sh = 20,

Le = 5, Nu=0.3, λ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 84

3.16 Comparison between numerical solutions for surface temperature with

experimental data from the literature by Pavón-Melendez et al. [90].

Non-dimension parameter values for our model are given by Sh = 20,

Le = 5, Nu=0.5, λ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 85

3.17 Simulated moisture content profiles versus x of the 1D moisture trans-

port problem. (a) Chemkhi et al. [20], (b) Crapiste et al.[29], (c) this

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Structure of Plant Cell [114]. . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Mass transport pathways in the cellular structure of plant cells [114]. 95

4.3 Drying process: from cellular level to macroscopic level [92]. . . . . . 95

4.4 Macroscopic volume representation of three compartment model. . . . 99

5.1 Schematic representation of food drying process . . . . . . . . . . . . 122

5.2 No diffusion and convection inside the intercellular space. . . . . . . . 126

xiii



5.3 A plot of vapour density, ρ at τ=0-1, in steps of τ=0.01. Parameter

values: Di=1, k=1, Sh=5, C=0.01. . . . . . . . . . . . . . . . . . . . 127

5.4 A plot of vapour density,ρ at τ=0-1, in steps of τ=0.01. Parameter

values: Di=1, k=0, Sh=5, C=0.01. . . . . . . . . . . . . . . . . . . . 129

5.5 Centre profile plot of intercellular space density (Di ̸= 0 and k = 0) . 129

5.6 A plot of vapour density, ρ at τ=0-1, in steps of τ=0.01. Parameter

values: Di=0, k=1, Sh=5, C=0.01. . . . . . . . . . . . . . . . . . . . 130

5.7 Centre profile plot of intercellular space density (Di = 0 and k ̸= 0). . 131

5.8 (a) Contour profile of free water moisture through the sample, with

elapsed time τ=0-3 in step of 0.5 (b) Profile of free water moisture

at the surface and centre. Dimensionless parameter values given by

Shf = 20, Shi=5, Df=1, Di=1 k=1, kp=0.01, and kw=0.01. . . . . . 137

5.9 (a) Contour profile of intercellular vapour density, with elapsed time

τ = 0 − 0.5 in step of 0.05. (b) Profile of intercellular vapour density

at the centre and surface. Parameter values as given in Figure 5.8. . . 139

5.10 Profile at the surface of (a) intercellular vapour density (b) free water

moisture with kp and kw=0 compared with other values of kp and kw. 139

5.11 Effect of kp into (a) intercellular vapour density (b) free water moisture

at the centre. Parameter values as given in Figure 5.8. . . . . . . . . 141

5.12 Effect of kw (a) intercellular vapour density (b) free water moisture at

the centre. Parameter values as given in Figure 5.8. . . . . . . . . . . 141

5.13 Profile of intercellular vapour density as permeability k changes. k=0.5

(solid line), k=1 (dotted dashed line), k=2 (dashed line). Parameter

values: Shf = 20, Shi=5, Df=1, Di=1, kp=0.01, and kw=0.01. . . . 143

5.14 Profile of intercellular vapour density through food at τ=0.05, 0.1,

0.125 for values Di=0.5 (solid line), Di=1 (dotted dashed line), Di=2

(dashed line). Parameter values the same as Figure 5.13 . . . . . . . 144

5.15 Profile of free water moisture at time τ=0.01, 1.5 and 2.5 with changes

in diffusivity Df . Line plotted for Di=0.5 (solid line), Di=1 (dotted

dashed line), Di=2 (dashed line). Parameter values the same as Figure

5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiv



5.16 Plot showing free water moisture at time τ=0.5,1.5 and 2.5 with changes

in Shf . Line plotted for Shf=50 (solid line), Shf=10 (dotted dashed

line), Shf=1 (dashed line). Parameter values the same as Figure 5.13. 145

5.17 Comparison between constant with variable pressure formulation to

intercellular vapour density and free water moisture at the centreline.

Non-dimension parameter values given by Shf = 20, Shi=5, Df=1,

Di=1 k=1, kp=0.1, and kw=0.1. . . . . . . . . . . . . . . . . . . . . . 147

5.18 Effect of changing the value of elastic modulus ς to intercellular vapour

density and free water moisture. Parameter values as given in Figure

5.17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.19 Effect of changing the value of initial pressure δ to intercellular space

water vapour density and free water content. Parameter values as given

in Figure 5.17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.20 Moisture profile in free water moisture and bound water moisture at the

centreline, x=0.8 and surface. The value of n1 = 3.46 and n2 = 0.062.

Other parameter values Shf = 20, Shi=5, Df=1, Di=1 k=1, kp=0.01,

and kw=0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.21 Moisture profile of the free water region in the three-phase and two-

phase at the surface. The value of n1 = 3.46 and n2 = 0.062. Parame-

ter values as given in Figure 5.20. . . . . . . . . . . . . . . . . . . . . 151

5.22 Bound water profile with different values of n1 and n2 at the surface.

Parameter values the same as Figure 5.20 . . . . . . . . . . . . . . . . 152

5.23 Moisture profile in the free water region in single-phase, two-phase and

three-phase models at the centre. The value of n1 = 3.46 and n2 =

0.062. Dimensionless parameter values given by Shf = 20, Shi=5,

Df=1, Di=1 k=1, kp=0.1, and kw=0.1. . . . . . . . . . . . . . . . . . 154

6.1 Profile of (a) free water moisture Mf (b) cell temperature T c at the

surface and the centre. Dimensionless parameter values given by Shf =

20, Shi=5, Df=1, Di=1 k=1, kp=0.01, and kw=0.01, Nui=5, Nuc=5,

κc= 5, κv= 5 λ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xv



6.2 Evolution of (a) Cell temperature (T c ) at time 0-3 (in step 0.01) (b)

free water moisture (Mf ) at time =0-3 (in step 0.1). Parameter values

as Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Evolution of (a) intracellular space temperature T i at time 0-3 (in step

0.01) (b)intercellular vapour density (ρ) at time =0-3 (in step 0.01).

Parameter values as Figure 6.1. . . . . . . . . . . . . . . . . . . . . . 167

6.4 Profile of (a) intercellular vapour density ρ (b) intercellular tempera-

ture T i at the surface and the centreline. Parameter values as in Figure

6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 The profile of intracellular cell temperature and intercellular space tem-

perature at the surface and the centre. Parameter values as Figure 6.1. 169

6.6 Profile of (a) free water moisture (b) intercellular vapour density (c)

cell temperature (d) intercellular space temperature at the surface. Pa-

rameter values given by Shf = 20, Shi=5, Df=1, Di=1 k=1, kw=0.1,

Nui=5, Nuc=5, κc= 5, κv= 5, λ = 0.1 and kp=0.001, 0.01, 0.1, 0.2,

0.3, 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.7 Profile of (a) free water moisture (b) intercellular vapour density (c)

cell temperature (d) intercellular space temperature at the surface.

Parameter values the same as Figure 6.6. kw=0.001, 0.01, 0.1, 0.2, 0.3,

0.5 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.8 Profile of (a) free water moisture (b) intercellular vapour density (c)

intracellular cell temperature at the surface (d) intercellular space tem-

perature the centreline. Parameter values given by Shf = 20, Shi=5,

Df=1, Di=1 k=1, kw=0.01,kp=0.01 Nui=5, Nuc=5, κc= 5, κv= 5

and λ = 0− 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.9 Profile of intercellular space temperature, vapour density, intracellular

cell temperature and free water moisture at the centreline. Dimension-

less parameter values given by Shf = 20, Shi=5, Df=1, Di=1 k=1,

kw=0.01, kp=0.01, Nui=5, Nuc=5, κc= 5, κv= 5 and λ = 0.5 . . . . 176

6.10 Density/temperature of water vapour in intercellular space at the sur-

face. Parameter values hi=1 C=0.1 λ=1. . . . . . . . . . . . . . . . . 178

xvi



6.11 Density/temperature of water vapour in intercellular space at the sur-

face with different values of λ. Parameter values hi=1 C=0.1. . . . . 179

6.12 Density/temperature of water vapour in intercellular space at the sur-

face with different values of C. Parameter values hi=1 λ=1. . . . . . 179

6.13 Profile of intercellular vapour density, free water moisture and bound

water moisture for isothermal and non-isothermal three-phase at the

surface. Dimensionless parameter values given by Shf = 20, Shi=5,

Df=1, Di=1 k=1, kp=0.01, kw=0.01, Nui=5, Nuc=5, κc= 5, κv= 5

and λ=0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.14 Profile of free water moisture, intercellular vapour density, cell tem-

perature and intercellular temperature for two-phase and three-phase

non-isothermal case at the surface. Parameter values the same as Fig-

ure 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.15 Convergence checks for different numbers of time steps. (a) Evolution

of free water and cell temperature at the surface position.(b) a magni-

fied region to show the detail more clearly. Parameter values the same

as section §6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.16 Comparison between numerical solutions for average moisture with ex-

periment data from the literature by Dissa et al. [40] and Velic et al.

[118]. Dimensionless parameter values the same as §6.6 . . . . . . . . 185

7.1 Schematic of two-dimension slab. . . . . . . . . . . . . . . . . . . . . 188

7.2 Surface plot of residual free water moisture field at different time τ =

0.5, τ = 1 and τ = 1.3. Parameter values given by Shf = 20, Shi=5,

Df=1, Di=1 k=1, kp=0.01, and kw=0.01, Nui=5, Nuc=5, κc= 5, κv=

5 and λ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.3 Surface plot of intercellular vapour density field at different time τ =

0.02, τ = 1 and τ = 1.3. Parameter values the same as Figure 7.2. . . 192

7.4 Profile of (a) Mf (in step of 0.1) (b) Tc, (c) ρ and (d) Ti cross the

section line through the centre of thickness x (Line D) with increasing

time τ=0-1.5 (in step of 0.01). Parameter values the same as Figure 7.2.193

xvii



7.5 Change in (a) Tc (b) Mf , (c) Ti and (d) ρ at selected point and com-

pared with one-dimension model at the surface. Parameter values the

same as Figure 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.6 Surface plot of residual bound water moisture at different time τ = 0.5,

τ = 1 and τ = 1.5. Parameter values the same as Figure 7.2. . . . . . 195

7.7 Moisture profile (a) free water moisture (b) bound water moisture (c)

intercellular density at selected points A , B and C compared with one

dimensional model at surface. Parameter values the same as Figure 7.2. 195

7.8 Comparison between moisture profiles of bound water moisture, free

water moisture and intercellular vapour density at selected points A ,

B and C for constant pressure (above) and variable pressure (below)

inside cell structure. Parameter values the same as Figure 7.2. . . . . 196

7.9 Effect of aspect ratio on (a) Mf (b) ρ (c) Tc and (d) Ti at the surface

top edge corner. Parameter values the same as Figure 7.2. . . . . . . 197

xviii



Chapter 1

Introduction to the Modelling of

Drying Fruits

1.1 Introduction and Motivation

Drying is described as the reduction of product moisture to the required dryness

values as a definite process [18]. Solid drying is of interest in different fields, such

as food processing, building materials (such as brick [138, 6] and wood [116, 110]),

pharmaceutical products, paper and ceramic etc. This thesis centres on the drying

of food products, especially the drying of tropical fruits, which is characterized by a

cellular internal structure and high levels of initial moisture. Over the years, research

on drying common fruits has been extensively carried out, for example, apples, grapes,

berries, bananas, pears, potatoes etc. However, reports on other fruits especially

tropical fruits are rather scarce [45].

Fresh fruit waste and the increasing demand for dry fruits have given a new

initiative for food manufactures to produce dried fruit products [36]. Furthermore,

an estimated 30%-40% damage and wastage of seasonal fruits in many countries is

attributed to a lack of proper processing [65]. The drying applied to fruits serves a

number of aims, the most important of which is the reduction of moisture content to

a required level to prevent growth of mould and microbes, allowing safe storage and

preventing microbial development or other harmful reactions. In the food industry,

drying of food is an important aspect of the production of various types of food.
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This process can be very challenging: using a mathematical model, a new dryer can

be developed, the appearance of the product can be enhanced, the original flavour

encapsulated and nutritional value maintained [22].

Currently, most dehydrated fruits are produced by the technique of hot air drying,

which is the simplest and most economical of the various methods [45]. Several other

drying techniques have been proposed, such as a combination of osmotic dehydration

with hot air drying or a combination of freeze drying followed by air drying, super-

heated steam etc. However, for modelling purposes, in this study, conventional hot

air drying is assumed to be applied to the surface. The main feature of such a system

is its ability to predict moisture and temperature inside the product, which is a very

important way of providing structural knowledge of the quality of the new product.

A mathematical modelling approach is suggested as an approach that is comple-

mentary to existing laboratory experiments. To reflect the diversity of the applica-

tions and to maximize the potential use of a drying model, several important aspects

are considered in its development, such as the simplification of problem formulation

applicability to various food processes and the inclusion of dominant internal pro-

cess in a mathematical representation [34]. The goal is to keep as many details of

the process as possible, without creating unnecessary computational complexity or

time commitment [34]. Comprehensiveness also has long been an issue in develop-

ing drying models in food. However, many modelling approaches that claim to be

comprehensive are limited in practical applications due to models that contain large

numbers of parameters. These not only make the models less interpretable but also

make the numerical process slower. One of the common solutions to the above issue

is to build either observation based models, which are able to induce more compre-

hensive models, or so-called empirical models, which are capable of producing high

performance for limited data sets.

In this thesis, we aim to increase the understanding of the movement of water

and heat during the drying of tropical fruits. In this chapter we give a brief overview

of drying method applicable to drying tropical fruits and identify the underlying

physical processes. This chapter is organized as follows: section 1.2 discusses the

major approach to quantifying drying process in fruits in order to give some basis

to this project. Section 1.3 discusses the development of some mathematical drying
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models for food; their applications and restrictions are reviewed with examples of

some of the models presented. Finally, methods and results of some research groups

involved in the drying of food by various methods will be described.

1.2 Major approaches to quantifying the drying

process in foods

Modelling of the drying processes can be formally characterized by two different

approaches: physical based modelling and empirical modelling. Physical based mod-

elling is mathematically formulated from the basic physical principles of the drying

process. However, evaluation of some of the detailed physical properties and complex

processes are very difficult to quantify and the relevance of these models is typically

limited by the approximation made. According to Datta [34], in a comprehensive

review of food science and food safety, observation based models provide a starting

point but they are primarily empirical in nature. In contrast, a physical based model

should describe the presumed physical phenomena, even in the absence of experimen-

tal data [34]. Early physical based diffusion modelling in drying, together with an

analytical solution, is associated with the work of Crank [27].

The existing models of thermal processes in food can be broadly divided into four

groups. The first group consists of totally lumped models for heat and mass transport

that do not include any important physics. Such models are based entirely on empir-

ical data, are suited for a specified product and processing conditions, and, therefore,

cannot be applied to a general class of food processes or even a slightly different

situation (for example [118, 68, 122]). The development of empirical models includes

lumped parameter models, generally predicting only average moisture content as a

function of drying time.

The second group consists of slightly improved models that assume conductive

heat transfer for energy and diffusive transport for moisture, solving a transient dif-

fusion equation using experimentally determined effective diffusivity. Evaporation

was included using a surface boundary condition in the heat equation. Evapora-

tion inside the food domain is ignored, even though the temperature inside the food
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reaches 80oC. Lumping together all modes of water transport within the product as

diffusion cannot be justified in all situations, especially when other phenomena, such

as pressure-driven flow due to intensive heating or transport due to physicochemical

changes in the porous medium, become important [51]. Also, the use of effective diffu-

sivity does not yield insights into the prevalent transport mechanisms. These models

might provide good matches with trial experimental results, but they cannot be gen-

eralized to other conditions. These types of models typically predict moisture content

that varies with time and space and describe the physical transport of moisture within

the material, giving results of more fundamental value than purely empirical models.

However, for practical purposes, empirical models are simpler to develop than the

diffusion models and, because of this they are comprehensively applied to the study

of food drying [7].

Diffusion of liquid may not be the only mechanism responsible for moisture migra-

tion inside the food. It is evident that, during drying, significant water evaporation

takes place inside the material as well as on the external surface of food [111, 125, 23].

The comparisons between the experiment and predicted water content show that, in

some instances, an evaporation front in the drying model is valid to describe the diffu-

sion mechanism, such as in bread [111] and bananas [125]. This third group of models,

with a significantly improved formulation, compared with those of simple diffusion

models, assumes a sharp moving boundary separating the dry and wet regions (e.g.,

deep-fat frying models [43]). This assumption is analogous to that made in freezing

and thawing models of a pure material, where a sharp front separates the frozen and

unfrozen regions. Such models have separated regions, such as core and crust with a

moving boundary.

In contrast to sharp boundary models, distributed evaporation models assume that

evaporation occurs over a zone rather than at an interface (for example see [84, 131,

135]). In a given situation, it is possible that the real evaporation zone is very narrow,

closer to the sharp interface, and that a distributed evaporation formulation will in

fact predict such a narrow evaporation zone. At a high rate of internal evaporation,

significant pressure driven flow can be present for all phases and throughout the

material. In this group, evaporation of water is considered as an intensive heating food

process, such as deep-fat frying and drying, and has usually been modelled using an
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equilibrium formulation, wherein liquid water present in the food is always assumed

to be in equilibrium with water vapour present in the pore space ([84, 131, 135]).

This is may not always be true, since water vapour is not always in equilibrium with

liquid water. To overcome this problem, (for example [88, 53, 51]) an approach has

recently been developed that uses an explicit formulation of the evaporation rate,

known as a ’non-equilibrium’ approach to frying and baking, based on the expression

developed by Fang and Ward [42]. A non-equilibrium formulation that can also be

used to enforce equilibrium constitutes a more general approach and appears to be

the obvious alternative.

This study includes the development of a coupled transport mathematical model

that is relevant to tropical fruits, in which all the parameters are based on existing

data within the open literature. As with other research, the development of a compre-

hensive governing equation for drying has been hindered by the lack of accurate data

for thermal and transport properties such as permeability, effective moisture diffusiv-

ity, bound water diffusivity and thermal conductivity. In this study, consideration is

more restricted to that of tropical fruits and the available data. A direct compari-

son of predicted values with dedicated experiments is not possible at this time; the

process of validation is based on literature data.

Close similarities between drying fruits and porous media has led us to a multi-

disciplinary cooperation in order to describe a physically based model of transport

phenomena. Such a model takes into account the basic transport phenomena on the

pore scale, where Darcy’s Law for liquid transport is introduced alongside Fick’s Law

of moisture diffusion. Most fruit cells are dominated by a vacuole containing large

amounts of dissolved sugars and organic acids, in addition to smaller amounts of other

constituents, such as phenolic [86]. In plant tissue there is an extracellular space of

gas canals for the transport of respiratory gases. Factors such as cell size and shape,

the vacuolar composition, the size and shape of the extracellular gas space, as well

as the properties of the cell wall and the cell membranes, probably have a bearing

on the drying behavior. This is not reflected in the existing mathematical models of

fruit drying, which are mainly based on a physical approach. However, an exception

is an attempt to model the drying behavior of plant tissue considering four different

compartments: vacuole, cytoplasm, cell wall, and extracellular space (Crapiste et al.
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[28]). The latter authors developed a model in which the material is treated as cel-

lular, incorporating knowledge of tissue structure. The model, which is based on a

physical and chemical approach, is restricted to isothermal drying under conditions

where cellular structure prevails. Several studies (e.g. [57, 114, 92]) represent the

structure of fruit tissue using ellipse tessellation in developing a model to represent

the liquid transport mechanism.

Previous studies using modelling approach of a food product provide a basic ap-

proach for this research. The model of Wang and Brenann [124] will be used initially

in the model developed for heat and mass transfer that includes the shrinkage effect

of liquid removal. This insight into the heat and mass transfer principle can then be

used to develop more detailed models. The model was further developed by using

Crapiste et al. [28] approach. The principle of transport of liquid water divides into

two paths: through the cell or through the pores, where the food is now treated as

porous media. In the cellular region, the assumption is made that separate consid-

eration is needed for bound and free water. This distinction is clearly demonstrated

in other material such as brick and wood [138, 6, 116, 110]. For this section of the

study we restrict our model to non-shrinkage foods.

1.3 Drying models

In this section we identify different mathematical modelling techniques for the drying

of food and we assess their merit. Initially we look at the movement of water. In

many drying cases, heat also has a major effect in the movement of water and this is

considered in details in later chapters.

Representative mathematical models of drying are identified, such as experiment

based models (Empirical drying rate models )(e.g. [7, 106, 19, 120, 2]), models based

on heat and mass transfer ([123, 8, 68, 59, 60, 141, 49, 65, 119, 61] ), models based on

porous media theory with an equilibrium approach ([28, 35, 131, 85, 23, 44, 39]) or

a model based on a non-equilibrium approach ([53, 51, 88]. We will discuss different

types of this mathematical modelling.
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1.3.1 Experimental based modelling (Empirical model)

Generally, the development of experiment based models is mathematically and com-

putationally easier. Simple empirical process modelling involves the varying of spe-

cific input setup parameters, such as temperature, relative humidity and air velocity

provided to the experiment apparatus, and the measuring of output quantities by a

data logging system (see illustration Figure 1.1). Correlations are derived to provide

predictive capabilities; such an approach, however, makes this model system specific

([77, 106]). Appropriate statistically designed experiments offer a valid basis for de-

veloping an empirical model which can be used to derive correlations to approximate

unknown functions from numerical data. Thus, the empirical models only consider

average conditions of moisture content and temperature, which restricts their use for

general predictions.

Figure 1.1: Empirical process modelling.

Experiment observations have become important for drying models in the food

science literature. In this type of approach, an experiment is done in the laboratory

to find a mathematical function to represent the data observed, based on different

temperature and air velocity conditions. The limitations of this approach are as fol-
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lows: the process of obtaining data from experiment is time consuming, it is difficult

to obtain accurate measurements, different experiments may derive different equa-

tions, which makes the system too specific and only average moisture content can be

measured using the experiment data [7, 106].

Numerous experimental studies have been carried out on the determination of

drying kinetics for various food products [19, 120, 2, 118, 106]. In these cases, a set

of measured experimental values are used directly to infer drying behaviour under

specific conditions. Experimental studies relevant to the drying of fruits have been

conducted on various food products such as avocado and banana [19], red chilli pep-

pers, lemon grass and leech lemon leaves [120], potato slices [2], apple [118] and kiwi

[106]. A large number of empirical and semi-empirical models have been introduced

for specific foods such as Page, Newton (exponential) and Lewis model. Other mod-

els include Wang and Singh, Logarithmic, parabolic model as well as Henderson and

Pabis, two-term exponential and modified Page. Details of these are provided by [2].

On measuring the drying moisture content M(t) with time t, the drying curve

of each experiment is obtained by plotting the decay of dimensionless moisture in

the sample with the drying time, where M0 is the initial moisture content and k is

drying rate constant. The basic decay equation that is normally used is an assumed

exponential model for the moisture ratio,

MR =
M −Me

M0 −Me

= exp(−kt). (1.1)

The basic exponential model (equation (1.1)) is commonly based on the assumption

of Fickian moisture migration, negligible shrinkage, constant diffusion coefficients and

isothermal conditions.

Drying kinetic models have gained wide acceptance in the design of a new or sim-

ulate of an existing system and in describing the drying behavior of food materials

[19, 2, 62]. However, these models although useful for individual practical proposes,

fail to identify the general complexity of the drying processes. A more robust math-

ematical model for drying kinetics is normally based on physical mechanisms such

as the effect of air temperature, air humidity and air velocity and characteristics

of sample size (i.e multi-dimensional parameter space). For example, the empirical

model found by Ceylan et al. [19], showed that the empirical drying model can give

8



good agreement of drying kinetics with different ranges of application, depending on

the model selected. However, the drying kinetics discussed only take the average

moisture content as a function of drying time. During the drying process, gradi-

ents of moisture content and temperature arise inside the material. Correspondingly,

variations in moisture content as a function of both time and space exist within the

drying material, but this is not included in empirical models, which may limit their

application to drying. Furthermore, not only the average temperature and moisture

content, but their distributions of temperature and moisture characterize the quality

indicator during drying. For instance, in the case of food preservation, the growth

of micro-organisms that can give rise to food poisoning needs to be prevented. This

can only be achieved by studying safe moisture content on every location in the ma-

terial and by using a mathematical modelling that involves simultaneous moisture

and heat transfer under transient conditions, with variations in moisture content for

both time and space. In the next section, we discuss and review some of single phase

mathematical models that have been used in drying.

1.3.2 Single phase model of heat and mass transfer

Single phase heat and mass models have been widely used to describe the movement of

water and heat during drying. The food is often modelled as a homogeneous medium.

Lewis and Sherwood are known as pioneers in the development of mathematical drying

models by the application of the Fourier equation of heat conduction to the drying of

solids, using Fick’s Law. Moisture transport involves two dependent processes: the

evaporation of moisture at the solid surface that needs heat from the air and the

internal diffusion of liquid to the surface.

The governing physical equations for simultaneous transfer of moisture M(t) and

temperature T (t) in an isotropic food with no internal sources of moisture are given

by the coupled pdes,
∂M

∂t
= ∇.(D∇M), (1.2)

ρcp
∂T

∂t
= ∇.(k∇T ). (1.3)

whereD is diffusion coefficient, ρ is density, cp is specific heat capacity and k is thermal

conductivity. In the above, temperature is given from a standard heat conduction
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formulation (see Carslaw and Jaeger [17]), where the conductive temperature flux

q = −k∇T . Equation (1.2) represents the moisture movement in the interior of the

product during drying and equation (1.3) represents the temperature evolution in the

interior of the product. In general, equations (1.2) and (1.3) may be limited by drying

conditions at the surface of the food or internally: D = D(M,T ) and k = k(M), such

food proceeds through a glass transition phase. Glass transition temperature (Tg), can

be defined as the temperature at which an amorphous system changes from a glassy

to a rubbery state. At the beginning of drying, Tg is high because moisture content is

high. During hot drying, moisture content decreases, leading to an increased in glass

transition temperature. This phenomenon could be considered as directly related

to the drying temperature during the process and particulary affected the diffusion

coefficient of the food.

For a one-dimensional geometry with constant diffusivitiesDeff and constant ther-

mal diffusivity α, the simultaneous heat and moisture transfer problem with effective

diffusion Deff and conductivity k simplify to become

∂M

∂t
= Deff

∂2M

∂x2
, (1.4)

∂T

∂t
= α

∂2T

∂x2
. (1.5)

where α = k/ρcp. A one-dimensional slab is defined by taking a region −L(t) < x <

L(t). Initial constant conditions are given by

M =M0 and T = T0 at t = 0. (1.6)

A symmetry boundary condition is applied at the centre for equal drying from both

slab surfaces:
∂M

∂x
= 0 and

∂T

∂x
= 0 at x = 0. (1.7)

Dependent on the drying conditions applied to the surface, two types of boundary

conditions are typically used: equilibrium boundary conditions or flux boundary con-

ditions. Equilibrium boundary conditions are given by

M =Me and T = Te at x = L(t). (1.8)

withMe and Te are equilibrium moisture and temperature respectively. This is equiv-

alent to the specific moisture and temperature applied at the surface.
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Table 1.1: Average Moisture Diffusivity at 60oC of fruits reported by different authors.

Source Pavon et al.[90]

Product Moisture Diffusivity (m2/s) References

Carrot 7.517× 10−10 Mulet [80]

Potato 2.553× 10−10 Mulet [80]

Grape 2.22× 10−10 Simal et al. [107]

Mango 8.56× 10−10 Hernandez et al. [56]

Cassava 4.93× 10−10 Hernandez et al. [56]

Apple 8.121× 10−9 Zogzas and Maroulis [142]

Flux boundary conditions are relevant in the absence of any moisture or temperature

surface layer and correspond to transfer of external air flow, given by

Deff
∂M

∂x
= −hm(Csur − Cair) at x = L(t), (1.9)

and k
∂T

∂x
− λDeff

∂M

∂x
= −h(Tsur − Tair) at x = L(t). (1.10)

In the above, hm is moisture transfer coefficient, h a temperature transfer coefficient,

Csur is concentration of water at the surface, Cair is air concentration and λ latent heat

of evaporation. All of these conditions are based on a bulk transfer model between

the values at the surface of the food and external conditions. The external moisture

and temperature are taken as M and T .

The effective diffusion coefficient Deff is normally determined experimentally by

the ’method of slope’ approach that is widely used to estimate the effective diffusion

coefficient. For example, this method was used by [106, 62, 70, 15, 82, 119, 61].

Experimental data of the effective diffusion coefficient (moisture diffusivity) of selected

fruit are collated in Table 1.1 for later modelling purposes. The magnitude of the

moisture diffusivity of food material is considerable and ranges from 10−13 to 10−7

m2/s.

Experimental data of the average thermal conductivity (k) and specific heat (Cp)

of selected fruits are collated in Table 1.2 below for later modelling purposes. It

is assumed that the diffusivity is constant over the whole drying period. However,
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Table 1.2: Average conductivity (k) and specific heat (Cp) and thermal conductivity

α for foodstuffs reported by different authors.

Product k (W/m K) Cp(KJ/kg K) α(m2/s) References

Carrot 0.530 3.81-3.935 Singh [108]

Potato 0.554 3.517 1.70× 10−5 Singh [108]

Banana 0.475 1.18× 10−5 Singh [108]

Mango pulp 0.562 3.621 1.49× 10−4 Bon, et al.

[13]

Apple 0.567 1.926-3.683 Feng et al.[44]

experimental studies also suggest that the physical processes are sometimes nonlinear

and the transport properties inside the food are dependent on moisture content and

temperature. Based on collected experiment data, it is suggested that the effective

diffusion coefficient Deff should be taken as varying with moisture, Deff = D(M),

varying with temperature Deff = D(T ) or varying with temperature and moisture

Deff = D(T,M) during drying and leading to a more general model (see Crank [26]).

Moisture diffusivity is widely considered as a function of temperature, usually of

an Arrehenius type dependence, which is reasonable on account of the increase in the

molecular kinetic energy when temperature rises. Typically, the effective diffusivity,

in this sense, is given by

D(T ) = D0 exp(
−ET

RT
). (1.11)

In the above, D0=Arrhenius factor (m2s−1), ET=Activation energy (kJmol−1),

T=Temperature (in Kelvin) and R=Gas constant (kJmol−1). Values D0 and ET are

usually estimated from experiment data (see for example [105, 70, 119, 61]). Example

value of ET is 39.4 kJmol−1 for potato, 23.6 kJmol1 for kiwi [105]. An example of

this function was given by Simal et al. [106] as

D(T ) = 1.476× 10−5 exp(
−26950

RT
), (1.12)

with activation energy 26.950 KJ/mol.

A more extensive dependence on diffusivity is required to produce effects, such as

glass transition, where diffusivity changes with local values of moisture and tempera-
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ture. More generally, the effective diffusion coefficient may be taken as a function of

process and involves a dependence on both material temperature and moisture con-

tent [55, 71, 20, 49]. The effective moisture diffusivity will be treated as a function

of material moisture content and temperature, as suggested by Kiranoudis [71] and

given by the following expression

D̃(T,M) = K exp(
−ET

RT
) exp(

−EM

M
), (1.13)

with EM is parameter of the Arrhenius-type equation for moisture diffusivity express-

ing material moisture content dependence.

For example, based on the formula given by equation (1.13), Kiranoudis [71] de-

veloped a model for diffusivity (D = D̃(T,M)) using optimal Bayesian estimation for

potato given by

D̃(T,M) = 1.29× 10−6 exp(
−2044

T
) exp(

−0.0725

M
). (1.14)

The most common single phase modelling in foods involves one-dimensional heat and

moisture transfer, equation (1.4) and (1.5) with empirical values of effective diffusivity

such as that given by equation (1.11) or (1.13).

This method has been used by Hussain and Dincer [59], Kaya et al. [68], Zhou

et al. [141], Wang and Brenann [123], Balaban and Pigott [8], Villa-Corrales et al.

[119], Janjai et al.[61]. The use of finite-difference approach [59, 60, 68, 119] or finite

element approach [141, 61] to compute the behaviour of the distribution of heat and

mass transfer is widely adopted to solve the resulting equations. Difference between

models depends mainly upon the assumptions about the surface, such as the use of

equilibrium boundary conditions at the surface [106, 74, 94] or convective boundary

conditions [59, 68].

Hussain and Dincer [59, 60] analyse two-dimensional heat and moisture transfer

with convective boundary conditions at the surface. In this model, latent heat is not

considered and gives an uncoupled model at the surface for isothermal conditions.

The temperature increases rapidly compared to the change in moisture, which is

not always the case: in the experiment findings by Pavon et al. [90] the surface food

temperature of mango and cassava did not reach the air temperature instantaneously.

An additional result obtained by Kaya et al. [68], suggests the use of a variable

convective heat (h) and mass transfer coefficient (hm) during the drying period. Their
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results show that the temperature gradient along the surface of the product is non-

uniform because the heat transfer coefficient along the surface is non-uniform. They

also found that moisture and temperature distribution inside the object are non-

symmetrical compared to those observed for the constant convective heat and mass

transfer coefficient. An interesting contribution of this paper is the local distribution

of the convective mass transfer coefficient through the analogy between the thermal

and concentration boundary layer numerically predicted using Fluent CFD package.

However, the applicability of this model is restricted to that model and use of variable

convective heat and mass transfer coefficients makes the model significantly more

complex.

A more intensive and complex model is presented by Curcio et al. [31] and Curcio

and Aversa [30], who analyse the simultaneous heat and mass transfer in both air and

food for single food particles and one-dimensional, hot dry air flow. They state that

the heat and mass transfer rate depends not only on temperature and concentration

difference but also on the air velocity field, which strongly influences the transfer

rate at the food-air interface. This gives the coupled boundary condition at the

surface between the temperature and air velocity as well as concentration with air

velocity. The model for food is the same as that used by Hussain and Dincer [59, 60]

and includes latent heat effects at the surface; the model for overlying air has been

modelled by the well-known k − ε model. The model is solved by finite element

method using COMSOL Multiphysics. It is observed that the air characteristics such

as relative humidity and inlet velocity, influence drying performance. However, this

model is very computationally intensive and some of the parameters involved need

semi empirical transport equations, such as k−ε turbulent kinetic energy and energy

dissipation rate.

Overall, there are many advantages to using a single phase mass and heat model

to capture the behaviour of heat and mass during drying for use in the development

of enhanced food processing. Firstly, they are generally fairly simple and contain

few parameters. It is also relatively straightforward to include changes in shape and

size as a result of water removal and internal collapse during the drying process. In

light of these benefits, we employ a mass and heat model assuming diffusion and

conduction of moisture and temperature during drying in chapter 2 and extend the
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model to include the effect of shrinkage in chapter 3. However, there are several

disadvantages to this approach. Foods are not treated as distinct entities; foods

with porous internal structure and those from more solid structures can differ. This

causes difficulties when one attempts to incorporate sub-cellular features, such as the

different pathways for the transport of water during drying: cell to cell and cell to

intercellular space (void). Furthermore, single phase liquid diffusion may not be the

only relevant mechanism inside the food during drying so, in the next section we look

at other relevant mechanisms of transport used in drying.

1.3.3 Multiphase model using a porous media approach

In modelling the coupled heat and moisture transfer, internal water evaporation dur-

ing drying may be significant and therefore simultaneous heat, water and vapour

diffusion should be considered when simulating the drying processes [111]. Compar-

isons between experiment and predicted water content in the drying model in foods

such as bread [111] and bananas [125] show the formation of an evaporation front.

Other mechanisms for the transport of water during drying, such as pressure driven

flow and capillary flow, link to the mechanism of drying with a porous media ap-

proach. The transport mechanisms of drying of porous media have been investigated

by many research groups using experiments or simulations in a wide variety of physical

applications.

The development of a mathematical model capable of predicting transport through

porous media structure dates to 1856, when Darcy proposed a direct relationship

between flow rate and applied pressure difference as

u i = −k
µ
∇P. (1.15)

with k is permeability of the medium, µ is viscocity of the medium and ∇P pressure

gradient vector. This has been widely adapted, together with modifications e.g. for

unsteady flow in porous food (see Datta [34]). Fick’s law of diffusion is used, along

with Darcy’s law, in the description of moisture movement in drying. Darcy’s law, in

its simplest form, expresses the proportionality between the average velocity of fluid

flow and flow potential, comprising the pressure gradient through porous media [67].
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In recent years, more comprehensive theories have been developed to describe the

simultaneous heat and mass transfer processes on a microscopic scale, on the basis of

diffusion theory, capillary flow theory, and evaporation condensation theory. In par-

ticular, increasing attention on heat and mass transfer in porous media has resulted in

many experimental and theoretical investigations for different applications. Examples

include approaches developed by Luikov [75] and Whittaker [126]. Luikov used ther-

modynamic theory of irreversible processes to describe the temperature, moisture,

and pressure distribution within porous media during drying in a phenomenological

manner. These studies have typically used mass and energy conservation equations

with phenomenological relationships to describe water and vapour mass fluxes and

heat flux within porous media. Whitaker introduced a volume averaging technique

to formulate fluid flow and heat transfer in porous media as a continuum. Whittaker

[126] presented a set of equations to describe the simultaneous heat, mass and momen-

tum transfer of porous media. Based on traditional conservation laws, an important

milestone in the development of drying theory, they incorporated all mechanisms for

heat and mass transfer. The mechanisms were as follows: liquid flow due to capil-

lary forces, vapour and gas flow due to convection and diffusion, internal evaporation

of moisture and heat transfer by convection, diffusion and conduction. By using a

formal volume averaging method, the microscopic differential equations were defined

in terms of average field quantities. The rigorous study of the transition from an

individual phase at the microscopic level to representative average volume at the

macroscopic level provides a fundamental and convincing basis [32]. The advantage

of Whitaker’s model is that it offers a clear representation of the physical phenomena

occurring in porous media during drying. However the problem encountered with the

use of Whitaker’s model is difficulty in determining parameters within a transport

equation, such as effective diffusivity and permeability, which depend strongly on the

material properties and structure. The volume averaging method has become a pop-

ular approach for theoretically modelling the drying of porous media, for example,

Plumb [91], Colomba [37], Constant et al. [25], Nasrallah and Perre, [81], Quintard

and Whitaker [93].

Luikov’s equation and Whitaker’s approach are usually used for non-hydroscopic

material, such as sand, polymer particles and ceramics where the transport of material
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does not cause additional complications and the phases are clearly separated. For food

material, which is hydroscopic porous media, an equivalent porosity and equivalent

water saturation have been introduced by researchers such as Yamsaengsung and

Moreira [131], for frying of potato chips, Feng et al. [44] for drying of apple, Ni et al.

[85], Datta and Ni [35] for microwave drying, Ousegui et al. [88], Zhang and Datta

[134], Zhang et al. [135] and Dincov et al. [39] for bread baking.

The formulation of equations for hygroscopic porous media analogous to those

equations well-established for non-hygroscopic porous media was developed in terms of

drying of food using either Luikov or Whitaker’s approach. Analogous to Whitaker’s

approach, the mass conservation equations for water vapour, liquid water, air and

energy relevant to the drying of food based of porous media are presented in general

terms of the mass conservation of three phases- vapour, water and air - as

∂cv
∂t

+∇.(nv) = İ , (1.16)

∂cw
∂t

+∇.(nw) = −İ , (1.17)

∂ca
∂t

+∇.(na) = 0, (1.18)

and overall conservation of energy as

∂

∂t
(cvhv + cwhwcshs) +∇.(nvhv + nwhw + naha) = ∇.(keff∇T )− λİ + q. (1.19)

nv, nw, na represent the vapour, liquid water and air flux based on assumptions made

by the researcher, cv, cw, ca are concentrations of each phase that are transformed

in terms of porosity and saturation, İ is the rate of evaporation which represents

the mass of liquid water that becomes vapour per unit volume, λ is latent heat and

q is heat source. Fluid velocities in a multiphase porous medium are given by a

generalized Darcy’s law as

uw = −kw
µw

∇(P − pc), (1.20)

ug = −kg
µg

∇P, (1.21)

kw and kg is permeability of the liquid phase and gas phase respectively, µw and µg

is the viscosity of the liquid phase and gas phase respectively, P − pc is the differ-

ence between gas pressure and capillary pressure. Diffusive flux of vapour and air is
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governed by Fick’s Law as

jv = ρgDv∇cv = ja. (1.22)

Total liquid water flux results from convective flow, due to the gradient in total gas

pressure, and capillary flow, due to the gradient of capillary force, such as

nw = −ρwuw = −ρw
kw
µw

∇P − ρw
kw
µw

∇pc. (1.23)

Total flux of vapour nv and air na are composed of convective flow and diffusion flux,

such as

nv = ρvuv + jv = −ρv
kg
µg

∇P − ρvDv∇cv, (1.24)

na = ρaua + ja = −ρa
kg
µg

∇P − ρaDa∇ca. (1.25)

The formulation above covers the vast majority of food processing situations when

interest is focussed on transport within the food tissues or the structure of food

material. These formulations are generally quite similar to each other such as used

by Yamsaengsung and Moreira [131], Ni et al. [85], Datta and Ni [35] for drying and

frying. Nevertheless most of the drying models that describe the drying of foodstuffs

are constructed on the basics of theories commonly used with conventional porous

materials and without acknowledging the features that makes this particular problem

unusual [28]. An assumption made of most multiphase porous media, between all of

the phases at any location, concerns thermal equilibrium, with only one temperature

for any given location. Furthermore, transport mechanisms such as the effect of

temperature on the diffusion coefficient, are generally considered small, and seldom

used and shrinkage is generally ignored.

Perhaps the earliest model in food that utilized Darcy’s flow was that of Farkas

et al. [43], which included pressure driven flow. A two region detailed model was

developed - core and crust - providing different sets of equations for these two regions,

separated by a moving boundary and showing differences in temperature between

them. The physical assumption was made that water flow took place within the

core region and that water vapor movement was pressure-driven only in the crust

region. Diffusion flow in the crust region and pressure driven flow in the core region

were ignored, which is a limitation of the model. Halder et al. [52], reviewing the

hypothesis of this model, stated that, by neglecting the vapor flux in the core and

18



the liquid flux in the crust, mathematical complications were reduced but important

physics sacrificed. A limitation of the sharp boundary model is that it ignores the

presence of air/pores inside the food domain. As we can see from food structure,

the cell is surrounded by intercellular space (air). It is assumed that vapour pressure

drives the flow of vapour towards the surface so that the crust region develops and

the moving boundary separates these two regions. But, as evaporation takes place,

the vapour was produced then expels the air and occupies its space. Although Farkas’

model was able to include the structure of the food, it failed to model or capture the

interaction between the two-phase regions, only the moving boundary that separated

the two-regions.

Ni and Datta [84] extend the model by Farkas by adding the oil phase conser-

vation equation, with the introduction of equivalent porosity and equivalent water

saturation. They added capillary flow in liquid water transport and diffusive flow in

vapour transport, which are not considered in Farkas’ model. They considered only

one region with three-phases in continuum: the liquid phase combination of equation

of vapour and water in term of one equation of the liquid phase, the air phase and

the oil phase. The conservation equations for vapour, liquid water, air and energy are

written as above (equation (1.16) - (1.19)), and the conservation equation is trans-

formed into variable saturation Sw, temperature T and pressure P as in the Luikov

approach. Because the evaporation rate is unknown, equations (1.16) and (1.17) are

combined to form a total moisture equation. Subsequently, this model was used by

Ni et al. [85] for intensive microwave heating, using a one region model with two

phase in continuum: a liquid phase (water and vapour) and an air phase. Others who

followed the same approach but made different assumptions include Yamsaengsung

and Moreira [131] who included shrinkage, Feng et al. [44] who introduced the mi-

gration of bound water, Chua et al. [23], Zhang and Datta [134], Zhang et al.[135]

and Dincov et al. [39].

The main advantage of the model discussed above is that, compared to the em-

pirical and single phase models, they can include precise modelling of the different

phases. However, further investigation using the initial form of the model report

serious numerical difficulties, such as converging to the solution. According to exper-

iments by Halder et al. [50], using porosimetry and bioimpedance analyses of potato
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tissue, most water is not in the pores but in the cell, so the use of equivalent water

saturation analogous to porous media is not appropriate.

Furthermore, they assumed that liquid water and water vapour is in equilibrium.

This is because the evaporation rate is unknown; Measurement of the evaporation rate

is difficult and the parameters are not available from experiment. The assumption

that the evaporation rate is unknown leads to İ being eliminated in the governing

equation, based on a combination of liquid water and water vapour equations, to

form one liquid phase equation. The evaporation rate in the energy equation used the

equilibrium formulation of evaporation common in the literature pv = pequi, where

vapour is always in equilibrium with water. The use of evaporation rate İ maybe

inappropriate, as this term is eliminated in the governing equation of liquid phase. It

is more relevant to divide the region into the liquid phase (containing free water and

bound water) and the air phase (containing water vapour and air) and then to derive

an equation similar to the evaporation rate relevant to the experiment findings (e.g.

see [57, 50]), involving cell to cell transport because of pressure difference ([86]), and

cell to pore transport.

Thus, an improved model was suggested that would replace the instantaneous

phase change of liquid to vapour by introducing an evaporation rate term equation

and using non-equilibrium approach derive from an expression by Fang and Ward

[42]. Since water vapour is not always in equilibrium with liquid water, Ousegui et

al. [88] and Halder et al. [53, 54, 51], developed a multiphase model using a non-

equilibrium formulation for evaporation, which is the latest mathematical modelling

for drying and frying. The non-equilibrium approach leads to an explicit formulation

of İ, such as [53],

İ = K.(ρv,equi − ρv), (1.26)

K is a parameter signifying the constant rate of evaporation, ρv is a vapour density

at the location and ρv,equi is the equilibrium vapour pressure of pure water. In recent

years, Ousegui et al. [88] have simulated the baking process of bread using this

formulation and Halder et al. [51] have applied this model to the drying of more

general of hydroscopic food material.

All the models discussed above developed a formulation analogous to those equa-

tions well-established for non-hygroscopic porous media but do not reflect the com-
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plexity of cellular structure in their modelling. Structure heterogeneity of biological

material, such as fruit, brings additional complexity to the water migration in a

porous solid system. The cellular fruit tissues are multiphase systems and water can

migrate out of the cell in three possible ways: transmembrane transport, symplastic

transport and apoplastic transport.

Wood et al. [127] identify a multiscale model to include mass transfer in cellular

systems by a complex multiphase process involving diffusion within the cell and diffu-

sion across cell wall/ cell membranes. In a series of publications, Wood and Whittaker

[128], study cellular scale structure equations describing transport and phase concen-

tration in an extracellular phase and intercellular phase, including enzyme mediated

intercellular reaction.

An interesting study regarding cellular material is made by Crapiste et al. [28]. In

this work, the author applied Whitaker’s model to investigate the drying of cellular

materials for isothermal drying with the influence of shrinkage. They recognize the

complex cellular structure and consider four phases: vacuole, cytoplasm, cell wall

and intercellular space and develop a model of multiphase systems that considers

the different mechanisms of water transport. It was shown that the water transport

during drying occurs by the contribution of three main fluxes: diffusive water vapour

flow through the intercellular air space (intercellular space), capillary flux of water

through cell walls (wall to wall), and flux of liquid water through the vacuoles, the

cytoplasm and the cell membranes (cell to cell). It was shown that water transport

during drying occurs by the contribution of these three fluxes, and an equation for

the fluxes was developed. The initial ’conceptual’ model lead to a volume average

equation comprising coupled diffusion and reaction equation containing effective pa-

rameters quantifying the sub-cellular geometries, kinematic reaction parameters and

diffusivity. This will be more relevant than the development of a formulation anal-

ogous to those equations well-established for non-hygroscopic porous media such as

discussed in Whitaker’s approach. However, taking a microscale continuum equa-

tion to the macroscale is a formidable task. The approach taken to date proposes a

macroscale continuum approach.

As discussed above, for accurate prediction of temperature and moisture content

in cellular tissue during drying, it is important to understand the various pathways
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along which water can move during drying, which are characterized by the structure

of cellular tissue. Halder et al. [50], in a recent experimental study, investigated the

water transport of cellular tissue and stated that the pathways for water transport

during drying are extracellular pathways (pores) and intercellular pathways (cell).

When drying at lower temperatures, the pathways of moisture transport are through

intracellular cells but if drying at higher temperature, pathways of water are through

intercellular pores. This study concluded that the different pathways for the transport

of water during drying exist.

An understanding of cell structure to describe material behaviour helps to under-

stand the physics for the purpose of modelling. The relationship between macroscopic

representative properties and microscopic features is important for the development

of the representative continuum model approach. The structure of many hydroscopic

materials, such as food products, is basically an array of cells (Chen and Pei [21]).

It is recognized that, although the cell structure maybe very similar in nature, the

composite tissue may differ widely in porosity. The intercellular space, like void space

in a porous material, is interconnected and filled with air and free water; the cells

themselves also contain bound water. Xiong et al. [129] define bound water as water

molecules that are strongly connected to the material molecules and free water as

loosely connected to the material molecules. The conversion between these two forms

of water molecule, modelled as a reversible reaction may be an important part of

modelling, particularly within the later stage of drying.

The multiphase approach offers an advantage over the traditional single phase ap-

proach when a number of different interacting fluid phases are present. A multiphase

formulation naturally lends itself to modelling of the drying process and has been

used by many authors. The approach detailed in this section will be developed for a

drying model and presented in Chapter 4.

1.4 Thesis Objectives

The objectives of this research are

(1) To investigate transport phenomena during the thermal processing of slab fruit

products, considering fruit to be a homogenous mixture. The effect of thickness
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change is also investigated. This objective will be accomplished by develop-

ing a one-dimensional mathematical model and associated numerical scheme.

The computer simulation will be based on a process model that takes into ac-

count the food values relevant to tropical fruits. Comparison will be made with

existing macro-scale models and available experimental studies.

(2) Based on a process model, to develop an enhanced model between the macro-

structure of porous material and microscopic drying behaviour by using the cell

level structure of fruits. The transport phenomena will be developed that are

based on the heterogenous properties of tropical fruits for both isothermal and

non-isothermal conditions. Numerical solutions and cases will be considered

using COMSOL.

(3) To investigation the influence of material properties, such as permeability and

diffusivity on the drying process on a macroscopic scale by varying their values

numerically.

(4) Comparing the drying simulation with data reported from the literature.

1.5 Thesis outline

This chapter explains the reason for conducting this research, the main characteristics

of the drying model and gives examples of the major approaches to drying. It also

describes several important aspects in the development of the drying model and states

the aim of this research, which is to developed a new approach. It concludes with a

brief description of the thesis results and their significance.

This thesis has four main parts: an introduction to modelling food drying of fruits

and a literature review about drying; the development of a homogeneous model on

a process level, using heat and mass transfer; the development of a more physical

based model, using a porous media approach and the presentation and discussion of

the results, including validation of the model. Figure 1.2 shows a schematic overview

of the thesis.
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Figure 1.2: A schematic overview of the thesis.

• Chapter one explains the current approach to developing a drying model in

which more attention is given to fruit drying. It begins with a description

of the general approach used in designing a drying model and is followed by

a discussion of the physical process employed in designing the drying model.

The important part of this chapter is a review of the historical development

of drying models and their application. Examples of several drying models for
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approximate distribution of moisture and temperature are also presented. The

discussion of the results on drying from past research groups is reviewed.

• The homogenous model in this project is based on the work of Wang and Bre-

nann [122], as discussed in chapters two and three. A heat and mass transfer

model, including the effect of shrinkage for homogenous food, is derived. The

shrinkage effect is derived and solved numerically by transforming the governing

equation of heat and mass transfer to a changing coordinate system. Outcomes

of this model include analysis and comparison with existing data.

• The development of a multiphase model is discussed in chapter four. This chap-

ter consists of two sections. The first part of this chapter briefly reviews the

properties of food structure. In the second part, the mathematical formulation

of the drying processes of fruit incorporates the heterogeneous properties of

tissues and complex cellular structure is recognized and simplified to a repre-

sentative physical model. Based on these basic concepts of cellular structure,

a representative macrostructure model for the multiphase transport of water

relevant to tropical fruits is developed. This model takes into account diffusion

through cellular membranes and diffusion and convection through intercellular

spaces, based on the microstructural properties of the fruit tissue.

• The results of the numerical simulation for multiphase drying are presented

in chapters five and chapter six. The results are divided into a correspond-

ing isothermal model and non-isothermal model. For each model, the influence

of bound water is evaluated in order to establish its influence on drying be-

haviour. Comparison is made between these two models. A parametric study is

conducted to verify the models’ properties, using data from the open literature.

• In chapter seven, the two-dimensional multiphase model for drying under non-

isothermal conditions is presented, corresponding to the model developed in

chapter four.

• In chapter eight, the final conclusions and recommendations for further research

are presented.
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Chapter 2

Single phase moisture and heat

model of drying food

2.1 Overview

We formulate and analyse a mathematical model applicable to tropical fruits and the

system introduced in section §1.3.2. As a first approximation, we employ a simple

one-dimensional and two-dimensional model of heat and mass transfer that assumes

fruits as a homogenous structure, as discussed by Wang and Brenann [123], Balaban

and Pigoet [8]. In this model, we do not consider changes in dimension, such as

changes of thickness, length and width.

The model combines the principle of mass balance with heat balance for movement

of moisture and heat. We use this model to study two different situations. In the

first model, we consider an isothermal condition with negligible latent heat, which

gives uncoupled boundary condition to the governing equation at the surface. In

this situation, the temperature of fruit increases rapidly compared to the change in

moisture, so the equation for moisture was solved without the heat equation. In

the second model, we considered the effect of latent heat term λ which is especially

important at the fruit-air interface, where evaporation occurs. Numerical solutions

are presented corresponding to one-dimensional and two-dimensional fruit tissues with

constant diffusivity and diffusivity dependent on temperature and moisture.
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2.2 Mathematical formulation of one-dimensional

moisture and heat models

In this section we formulate the general heat and mass transfer formulation to develop

a simple model of distribution of moisture and heat during the drying of fruits. The

physical problem involves a single slice of food of thickness 2L, initially at a uniform

temperature T0 and a uniform moisture content M0. Drying is taken as effective only

at the surfaces x = ±L. The surface of the drying body is in contact with drying air,

providing a convective boundary condition for moisture content M , and constant air

temperature Tair. The problem considered is symmetric relative to the midplane of

the food slice, as shown in Figure 2.1.

T air

x 2L
x=L

x=0

Figure 2.1: Schematic of one-dimensional model of food drying process

During drying, heat is transferred mainly by convection from air to the product

surface and by conduction from the surface towards the product centre. Meanwhile,

moisture diffuses outwards towards the surface and is vaporized into the air. Such a

coupled mechanism provides the basis for a simultaneous heat and moisture transfer

model. In the case of a slab of infinite length, the moisture content M(x, t) across

the slab and unsteady temperature T (x, t) are expressed by the well known system

of partial differential equations (PDEs) for moisture and energy transport [124],

ρs
∂M

∂t
=

∂

∂x
(Dρs

∂M

∂x
) ; 0 < x < L(t), (2.1)

ρsCp
∂T

∂t
=

∂

∂x
(k
∂T

∂x
) ; 0 < x < L(t). (2.2)

with D is diffusion coefficient, ρs is solid density, cp is specific heat capacity and k is

thermal conductivity. Due to symmetry, the solution is sought from the centre line

at x = 0 to the surface x = L(t). Taking constant thermal diffusivity α =
k

ρsCp

and
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constant diffusion coefficient D = D0, equations (2.1) and (2.2) gives

∂M

∂t
= D0

∂2M

∂x2
; 0 < x < L(t), (2.3)

∂T

∂t
= α

∂2T

∂x2
; 0 < x < L(t). (2.4)

A generalization of the above general approach is to take diffusivity dependent on

temperature [123, 8]. Taking diffusivity dependent on temperature D = D(T ) equa-

tion (2.1) becomes
∂M

∂t
= D

∂2M

∂x2
+
∂M

∂x

∂T

∂x
D

′
, (2.5)

where D
′
=
dD

dT
.

Taking Diffusivity dependent on moisture and temperature D = D̃(T,M) equation

(2.1) becomes

∂M

∂t
= D̃

∂2M

∂x2
+ D̃′

T

∂M

∂x

∂T

∂x
+ D̃′

M(
∂M

∂x
)2, (2.6)

where D̃
′

T =
∂D̃

∂T
and D̃

′

M =
∂D̃

∂M
.

The values of diffusivity D(T ) and D̃(T,M) are discussed in section §1.3.2. At the

onset of the drying process, the moisture content, temperature and the thickness of

the product are taken as uniform; initial conditions are thus

M =M0, T = T0, L = L0 at t = 0. (2.7)

Imposing symmetry, there are no temperature and moisture concentration gradients

at the centre of the product, and so the following conditions hold:

∂M

∂x
= 0 and

∂T

∂x
= 0, at x = 0. (2.8)

Heat transfer at the surface boundary occurs by convection to the dry overlying air,

typically modelled through the use of a heat transfer coefficient h. Some heat is

also absorbed by the moisture in transferring to a vapour phase, and the boundary

condition at the surface is given by,

k
∂T

∂x
− λD0 ρs

∂M

∂x
= −h(Tsur − Tair) at x = L(t). (2.9)

where λ is the heat of vaporization (latent heat).
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In developing a drying boundary condition for moisture at the surface, we need to

consider a driving gradient from the surface to the air that involves partial pressure

and temperature at the surface. The driving force for the flux water vapour from the

wetted surface to the air is the difference between the moisture content in the air,

Cair and the water content in the form of liquid water film at the surface Csur [41].

In this case, the boundary condition at the surface becomes

−D0ρs
∂M

∂x
= hm(Csur − Cair), at x = L(t). (2.10)

2.3 One-dimensional model: case study

The fruit sample is a hygroscopic porous media, yet it is assumed to be a fictitious

continuum. Weak internal evaporation and transport of vapour within the dehy-

drated fruits towards the external food surface have not being considered. In the first

instance, we consider models with no shrinkage (x = L0) associated with isothermal

diffusion and constant moisture diffusivity (D = D0) and heat diffusivity k = k0 with

constant initial moisture level M = M0 and T = T0. In this simplest case we solve

equations (2.3) and (2.4), together with boundary conditions (2.7) - (2.10). In this

model the moisture is removed from the fruit when the air temperature Tair > T0

gives a surface temperature of food Tsur to generate a moisture gradient from the

evaporation of moisture at the external surface. Governing equations become

∂M

∂t
= D0

∂2M

∂x2
; 0 < x < L0, (2.11)

∂T

∂t
= α0

∂2T

∂x2
; 0 < x < L0. (2.12)

Boundary conditions are

∂M

∂x
= 0 and

∂T

∂x
= 0, at x = 0. (2.13)

and −D0ρs
∂M

∂x
= hm(Csur − Cair), at x = L0, (2.14)

k
∂T

∂x
− λρsD0

∂M

∂x
= −h(Tsur − Tair), at x = L0, (2.15)

where λ is the heat of vaporization.

Taking non-dimensional variables

M =
M

M0

, T =
T − T0
Tair − T0

, τ =
D0t

L2
0

and ξ =
x

L0

, (2.16)
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we obtain governing diffusion and heat equations as

∂M

∂τ
=
∂2M

∂ξ2
, and

∂T

∂τ
= Le

∂2T

∂ξ2
. (2.17)

Initial conditions become M = 1, and T = 0, at τ = 0 and boundary conditions

ξ = 0 :

(
∂T

∂ξ

)
= 0, and

(
∂M

∂ξ

)
= 0, (2.18)

and at ξ=1:
∂M

∂ξ
= −Sh

(
Csur − 1

)
, (2.19)

∂T

∂ξ
= −Nu

(
T sur − 1

)
+ λ

1

Le

∂M

∂ξ
. (2.20)

Several non-dimensional groups are defined as:

Sh =
hmL0

D0M0

Cair

ρs
, Csur =

Csur

Cair

, Nu =
hL0

k
, Le =

α

D0

, and λ =
λ

Cp

M0

(Tair − T0)
.

Condition (2.19) links the surface condition directly to the surface temperature and

incorporates surface water concentrations under local psychrometric conditions. In

dynamic studies of water movement through porous materials, researchers custom-

arily use the partial water vapour pressure, measured in Pascal, as a concentration.

The relationship between vapour pressure and concentrations of water vapour in the

air is defined in any gas as

Cair = 2.1667× 10−3 × Pν(Tair)

Tair + 273.16
. (2.21)

During drying, the temperature of drying air is typically constant and the relative

humidity (RH) of drying air is fixed. Practically, the partial pressure of air is un-

changed so the concentration of drying air is unchanged throughout drying. Thus the

Cair is given by

Cair = 2.1667× 10−3 × RH

100
× Pνs(Tair)

Tair + 273.16
. (2.22)

The relation Pνs(Tair) is defined by [89] as

Pνs(Tair) = 610.78 exp
(
17.2694Tair
Tair + 238.3

)
. (2.23)

For example, water vapour concentration in air with temperature 60oC and RH=20%,

using the definition above, Cair=0.025169 kg/m3.
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Thermodynamic equilibrium relationship between water concentrations in the air

and water concentrations on the external surface of food has been used to calculate

Csur. The relationship between water vapour pressure and concentrations of water

vapour at the surface, involving the surface concentration Csur and surface tempera-

ture Tsur(in
o Kelvin) are linked (see Wang and Brenann [124]). We take

Csur = 2.1667
Pν(Tsur)

Tsur
. (2.24)

Partial pressure of water vapour Pν is determined using the water activity relationship

aw =
Pν

Pνs

. (2.25)

A relationship between aw and the moisture contentM is given by Wang and Brenann

[123] as

M = 0.062
(

aw
1− aw

)0.42

. (2.26)

This gives,
Csur

Cair

= f(M)× Pνs(Tsur)

Tsur
, (2.27)

with

f(M) = σ
M2.38

0.0622.38 +M2.38
, (2.28)

with σ =
2.1667

Cair

.

Water activity is a distinctive parameter for each type of food that, as a function

of its own structure, determines the strength of the bond between food and water.

According to the literature, the mathematical representation of these isotherms could

be considered using numerous relationships, as outlined by Mujumdar [79]. To es-

timate the relationship between aw with moisture at the surface known as moisture

isotherm, more equations experimentally obtained from the literature (for example

[105, 8, 56]) can be used. Unfortunately, time constraints prevented us from using

these other equations. Further, Pνs can be expressed as a function of the surface

temperature Tsur (in
oKelvin) [16], and used by [8, 124] and given by

Pνs(Tsur) = exp
(
A− B

Tsur
− C lnTsur

)
. (2.29)

31



Experimental results suggest typical dimensional values for A = 53.33, B = 6834.27

and C = 5.169 [123]. These values A,B and C are in dimensional form. In non-

dimensional form

β(T sur) =
Pνs(Tsur)

Tsur
= A T

2

sur +B T sur + C, (2.30)

with A = 0.0364, B = 0.0108 and C = 0.0119 for initial temperature T0 = 25 and air

temperature Tair = 60oC. The values of A, B and C will depend on the values of the

initial temperature and the air temperature.

Surface boundary condition, equation (2.19) becomes

∂M

∂ξ
= −Sh

(
β(T sur) f(M)− 1

)
, (2.31)

β(T sur) defined by equation (2.30) and f(M) is defined by

f(M) =
σM

ζ

φζ +M
ζ . (2.32)

The value of σ =
2.1667

Cair

, φ =
0.062

M0

and ζ = 2.38. The value of Cair will depend

on the temperature of air and given by equation (2.22). For the temperature of air

Tair = 60oC and RH=20%, σ= 84.55.

2.3.1 Numerical solution

The COMSOL Multiphysics program is used to stimulate the dehydration process

in the drying system, which corresponds to the numerical solution of these model

equations. The above system of non linear partial differential equations, together with

the described set of initial and boundary conditions, has been solved by Finite Element

Method implementation by COMSOL Multiphysics 3.4. We fix the geometry of the

model, fix the boundary setting, the mesh parameters and compute the final solution.

The domains in the food were discretized into a total number of 320 elements. The

time-dependent problem was solved by an implicit time-stepping scheme, leading

to a non linear system equation for each time step. Newton’s method was used

to solve each non-linear system of equations, whereas a direct linear system solver

(UMFPACK) was adopted to solve the resulting systems of linear equations. The

relative and absolute tolerance were set to 0.001 and 0.0001, respectively. Equations

32



(2.17) were input into COMSOL Multiphysics (PDE) solver with the general form

for moisture content and temperature. The details of the numerical procedure can be

found in Appendix A.

2.3.2 Input Parameters

The input parameters used in this drying simulation is given by Table 2.1 for the

generic drying conditions for tropical food.

Table 2.1: Input parameters used in the simulations of drying of tropical fruits.

Parameter and Symbol Range of value Units and sources

Density of water (ρw) 1000 kg/m3

Density of solid (ρs) 1080 kg/m3

Diffusivity (D0) 8.56 × 10−10 −
8.121× 10−9

m/s [56]

Length (L0) 10−3 − 10−4 m

Mass transfer coefficient

(hm)

8×10−3−4×10−4 m/s [10]

Heat transfer coefficient

(h)

20-250 W/m2 K [59]

Thermal conductivity (k) 0.475-0.567 W/m K (Table

1.2)

Thermal diffusivity (α) 1.31× 10−7 m2/s [59]

Heat capacity (Cp) 1.9-3.683 kJ/kg K [44]

Latent heat evaporation

(λ)

2.345× 103 kJ/kg [33]

Based on input parameter above, the following reference non-dimension parameter

was obtained, given by Table 2.2.
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Table 2.2: Drying conditions and product properties used in the simulation.

Parameter Properties

Cair 0.025625 kg/m3 based on

Tair=60oC and RH=20%

M0 0.8 kg water/kg moist sample

Sh 20

Le 5

Nu 0.3

λ 0.5

2.3.3 Isothermal solution

Negligible latent heat (λ = 0)

We pause to remark here that, in view of non-dimensionalisation τ =
D0t

L2
0

, the timescale

of interest is the time taken for moisture to be diffused to the surface along the thick-

ness of the fruits. The diffusion coefficient of moistureD0 is given for the fruits around

10−9 m/s and for fruits with thickness of 5-10 mm (0.005-0.01 m). If the drying time

to obtain equilibrium is taken as 15000-36000 seconds [40] for the drying of a mango

slice is given a time scale of approximation 0.36-1.44. We also take the same timescale

for temperature, but equation (2.33) shows that heat transfer by conduction is Le

times the mass transfer by diffusion. From the values in Table 2.1, the the value for

Le is around 10-100. This is very short compared with the timescale for moisture,

which means that the air drying temperature is 10-100 times faster than the time

needed to reach the equilibrium moisture.

In this section, the formulation presented in section §2.3 is simplified by assuming

that temperature increases rapidly compared to the changes in moisture. For cases,

in which λ is small, then the governing equation for temperature is uncoupled with

the governing equation for moisture to give

∂T

∂τ
= Le

∂2T

∂ξ2
, 0 < ξ < 1, (2.33)

∂T

∂ξ
= 0, at ξ = 0, (2.34)
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and
∂T

∂ξ
= Nu(T − 1), at ξ = 1. (2.35)

with initial T = 0.

Solutions can be readily obtained analytically as analogous to classic diffusion

with surface evaporation ( see Crank page 60 [26] and Carslaw and Jaeger page 122

[17]). The solution can be written as an infinite series as

T =
T − T0
Tair − T0

= 1−
∞∑
n=1

2Nu× cos(βnξ) exp(−βn2τ)
(β2

n + Nu2 + Nu) cos(βn)
. (2.36)

where the βns are the positive roots of β tan β = Nu and Nu =
hL0

D0

a non-dimension

parameter.

The steady state temperature corresponds to
∂T

∂τ
−→ 0, giving

∂T

∂τ
= 0 and T −→ 1.

The total amount of heat of drying is given by

Ttotal =
∫ τ

0

∂T

∂τ
dτ. (2.37)

This is equivalent to Crank ([26] page 60 equation 4.53). The time scale for tem-

perature changes is by O(τ
1
2 ) and hence τ >> 1 then T −→ 1 rapidly compared to

change in moisture. In this limit, the boundary conditions for the moisture can be

approximated by β(T ) = β(T = 1) = β1 and the moisture obtained from the simple

equation
∂M

∂τ
=
∂2M

∂ξ2
, 0 < ξ < 1. (2.38)(

∂M

∂ξ

)
= 0, at ξ = 0. (2.39)

∂M

∂ξ
= −Sh× Cair

(
β1 f(M)− 1

)
at ξ = 1. (2.40)

Residual steady state moisture M∞ is given by

β1f(M∞) = 1 i.e M∞ =

(
φζ

σ − 1

) 1
ζ

. The value of ζ by experiment suggested by

Wang et al. [123] is 2.38, with σ=84.55, φ =
0.062

M0

for drying of air temperature 60oC

and RH=20%.

Theoretical studies on drying of foodstuffs based on isothermal mass transfer, ne-

glect the heat transfer and its effect on drying; in this case moisture transfer occurs

by simple diffusion and capillary action [65]. For drying processes with small Nu
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Figure 2.2: Profile of (a) moisture through the sample, with elapsed time τ=0-2 in

step of 0.25 (b) Moisture profile at the surface and centre. Parameter value Sh=10.

number, a uniform temperature profile in the food can be assumed in the simulation

and a single mass transfer model thus can be used to describe the drying process

[125]. In this case, when temperature is uniform and increases rapidly compared to

the loss of moisture, identified as an isothermal condition, the diffusion equations

(equation (2.38)-(2.40)) can be solved without consideration of a heat equation and

boundary condition approximated by β(T ) = β(T = 1) = β1. Figure 2.2 shows mois-

ture distribution as a function of time and space during drying. Each curve represents

the gradient of moisture at different times. Figure 2.2 shows that, as time increases,

moisture at each location decreases with time. The moisture gradient between centre

and the surface decreases with drying time. Experiment findings that use drying

kinetics (for example [106, 94]) show a similar profile of moisture to that in Figure

2.2(b).

The only parameter that gives effects in this case is Sh. Sh number represents

the surface convection mass transfer with respect to the diffusivity of water. Figure

2.3 shows the behaviour of moisture M profile, varying the parameter Sh. From

Figure 2.3, we see that Sh has a great impact. If Sh = 1, the results suggest that, at

any time during the transient process, it is reasonable to assume a uniform moisture

distribution across the food. This is not the case for drying, where the moisture
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Figure 2.3: Profile of moisture at time τ=0.5,1 and 1.5 for different values of Sh and

a fixed value of ζ = 2.38.

gradient within the foods is significant (consistent with the experiment findings for

banana [74] and mango [119]). For example, the mass transfer coefficient hm for fruits

is 10−3 to 10−6, thickness of 0.005-0.01 m with D0 = 10−10(for eg. [10]), which gives

the value of Sh as more then 10. This gives resistance to diffusion within the food as

much more than the resistance to convection across the fluid boundary layer, where

the Sh > 1, and therefore this phenomenon is diffusion control. For drying with

diffusion control, the value of Sh is more than 20 for fruit and under these conditions,

air velocity or air moisture has no effect on drying. In experiments by [90], when Sh

number is bigger than 30 and change of air velocity was made, the drying curve of

moisture is practically overlapped, which shows that drying is by diffusion control. In

the simulation, we also observed that an increase in Sh causes a much faster decrease

in moisture and the moisture gradient between the surface and centre is much bigger.

Figure 2.4 shows a plot amount of moisture loss by evaporation with different

values of Sh, and consistent with the graph showing
Mt

M∞
given by Newman (in

Crank [26]) showing residual moisture left at the surface with time; the bigger the

Sh number, the faster the moisture equilibrium with drying air.
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Figure 2.4: Amount of moisture loss by evaporation at the surface with different

values of Sh.

To show the effect of temperature during drying, we put the boundary conditions

for the moisture at the surface β(T ), with different values of temperature T , compared

with T = 1. Figure 2.5 gives significant difference effect in the drying rate where

moisture decreases more slowly if the temperature is lower. Experimental finding by

[124, 58, 56, 8, 119] show that a different drying temperature gives different drying

curve. From these two phenomena, we conclude that temperature affects drying, so

neglecting the heat transfer during drying is not significant.

The other parameter that may affect the transfer of moisture is the value of ζ,

in equation (2.32). The value of ζ represents the relationship between the aw with

moisture at the surface. Fig 2.6 shows the behaviour of M as a function of time,

varying the parameter ζ, for Sh = 20. We observe that an increase in ζ causes a

more rapid decrease in moisture. As ζ behaves like Figure 2.6, we will set ζ=2.38.

Ideally we would create or use many more equations from the literature (for example

[105, 8, 56]) to estimate the relationship between aw with moisture at the surface.

Unfortunately, time constraints prevented us from using these other equations.
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Figure 2.5: Moisture at ξ = 1 against time for different values of T . Fixed value of

ζ = 2.38 and Sh = 20.

Figure 2.6: Moisture at ξ = 1 against time for different values of ζ and fixed value of

Sh = 20.
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From these Figures (2.3)-(2.6), we have verified numerically that in the isothermal

solution case, where the increase in temperature rapidly creates flux at the surface

much more quickly. This is dependent on the number of Sh. The bigger the number

of Sh, the faster the drying rate and the faster the diffusion. We also conclude

that temperature affect drying, so neglected the heat transfer during drying is not

significant.

2.3.4 Non-isothermal solution

Drying is a fundamental problem involving simultaneous heat and mass transfer under

transient conditions. Where the Nu number is large, coupled heat and mass transfer

should be taken into account in the simulation. The modification of the isothermal

model is to solve the heat equation together with the diffusion equation. For this

non-isothermal situations, temperature profiles will develop inside the material during

drying [66] and a differential energy balance is used to determine these temperature

profiles.

More generally, latent heat is an important consideration, and moisture and tem-

perature equations must be solved simultaneously. In food-air interfaces, some heat is

used for water evaporation (see equation(2.20)). This gives a coupled governing equa-

tion for heat and mass transfer at the surface. From these equations, it is deduced

that the heat transferred to the interior of the food, and therefore the food temper-

ature, depends upon the relation between Nu and λ. Non-isothermal equations for

heat and mass transfer (equation (2.17)), together with the boundary condition at

the surface (equations (2.20) and (2.31)), were solved together. For this simulation,

we fix the temperature of air Tair = 60oC.

Figure 2.7(a) shows the moisture profile through the sample of the fruit with in-

creasing time. Moisture decreased but this was a little slower compared to isothermal

case. Figure 2.7(b) shows temperature and moisture profiles at the surface. The small

value of Nu number, Nu=0.3 gives a slower increase in temperature and this affects

the moisture profile, which decreased more slowly than in isothermal case.
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Figure 2.7: Profile of (a) moisture through the sample, with elapsed time τ=0-3 in

step of 0.25 (b) Moisture and temperature profile at the surface and compared with

the isothermal case. Parameter values Sh=10, Nu=0.3 and λ=0.5.

2.3.5 Effect of diffusivity

To put the effect diffusivity into the model, equation (2.5), diffusivity dependent on

temperature, and equation (2.6), diffusivity dependent on moisture and temperature,

were used and applying the same non-dimensional scale variable as equation (2.16),

these equations become

∂M

∂τ
= D

∂2M

∂ξ2
+D

′ ∂M

∂ξ

∂T

∂ξ
, (2.41)

∂M

∂τ
= D̃

∂2M

∂ξ2
+
∂M

∂ξ

∂T

∂ξ
D̃′

T
+
∂M

∂ξ

∂M

∂ξ
D̃′

M
. (2.42)

with

D =
D

D0

, D
′
=
dD

dT
. D̃ =

D̃

D0

, D̃′
M

=
∂D̃

∂M
and D̃′

T
=
∂D̃

∂T
.

The equation for heat that is the same as equation (2.12), is

∂T

∂τ
= Le

∂2T

∂ξ2
. (2.43)

Taking symmetry boundary conditions in the mid-plane of the drying slice, gives

ξ = 0 :

(
∂T

∂ξ

)
= 0, and

(
∂M

∂ξ

)
= 0. (2.44)
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At the surface, moisture and temperature boundary conditions of the drying body in

contact with drying air become

∂M

∂ξ
=
Sh

D

(
β(T sur)f(M)− 1

)
, (2.45)

∂T

∂ξ
= −Nu

(
T sur − 1

)
+Dλ

1

Le

∂M

∂ξ
. (2.46)

with D=D for diffusivity dependent on temperature and D=D̃ for diffusivity depen-

dent on temperature and moisture.

Figure 2.8 shows the moisture decrease and temperature increase profile at the

centre of the fruit with different values of diffusivity. It can be seen that moisture

decreased more quickly for diffusivity dependent on temperature D(T ) compared to

D constant and D̃(T,M). This is because a temperature increase gives an increase in

diffusivity during drying. When we takeD as constant, the value of diffusivity remains

one during drying. When we take diffusivity dependent on temperature and moisture

during drying, as the temperature increases at the beginning diffusivity increases

significantly but when the moisture become low, diffusivity starts to decrease until

the end of drying. These two effects of temperature and moisture to diffusivity give

different profiles of decreases in moisture. As a result, there are the same decreases

of moisture at the beginning for D(T ) and D̃(T,M), but at the end, the moisture

decreases more quickly for diffusivity dependent on temperature D(T ).

2.3.6 Sensitivity analysis

The development of a non-isothermal model involves a number of parameters and,

for realistic models, the choice of suitable values for the parameter is very important.

Detailed material properties are generally unavailable and variability in these prop-

erties can significantly affect the final result. Based on the values of thermo-physical

properties reported in the literature [99], the non-dimension value was around 0.5 for

λ and 0.2-1 for Nu. For this sensitivity study, we fixed these values as 0.5 for λ and

0.3 for Nu. Sensitivity analysis was carried out by varying another two parameter

properties in the model, Sh and Le.

The properties used as for references correspond to case 0 in Table 2.3. The prop-

erties’ values for other cases (i.e. case 1-2) were obtained by varying each parameter,
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Figure 2.8: Profile of moisture and temperature at the centre for different values of

diffusivity. Parameter values Sh=10, Nu=0.3 and λ=0.5.

whilst keeping the other values constant. Each parameter value was varied; the first

variation denoted the lower limit while the second variation denoted the upper limit

of the parameter considered. Simulations were conducted and the moisture and tem-

perature distribution for the values of the properties corresponding to each of the

cases given in Table 2.3 was predicted. Figure 2.9(a) shows the temperature evolu-

Table 2.3: Input data for parameter analysis.

Case Sh Le

0 20 5

1 10-200 5

2 20 5-100

tion at the surface with fixed value of Le=5 and variable values of Sh. With larger

values of Sh, the temperature increased slowly while the process developed. This

trend shows that the temperature would not reach the air drying temperature. This
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is consistent with experimental data for mango and cassava [90]; in these experiments

mango temperature did not reach the air temperature during 10 hours of drying. This

phenomenon has also been observed by other researchers (Hussain and Dincer [60],

Wang and Brenann [123]). Figure 2.9(b) shows moisture at the surface of a typical

fruit with a fixed value of Le and variable values of Sh. It can be concluded the larger

the value of Sh, the faster the drying. According to Pavon et al. [90], if the value of

Sh is greater than 30, drying is diffusion controlled.

Figure 2.9: Temperature and moisture at surface ξ = 1 against time for different

values of Sh. Parameter values Le = 5, Nu=0.3, λ=0.5).

Figure 2.10(a) shows the temperature evolution. With increased value of Le,

the temperature evolution increases. The larger the value of Le, the temperature

increases more quickly. Based on the literature [90], the suitable value of Le is more

than 100, which gives an interior temperature that is approximately equal to the

surface temperature. Figure 2.10(b) shows the moisture at the surface with fixed a

value of Sh and variable values of Le. An increased value of Le has the impact of

moisture decrease. Moisture evolution at the surface decreased more quickly for a

larger value of Le. From Figures 2.9 and 2.10, we concluded that Le and Sh has an

effect on drying: the larger these values, the faster of drying.

To see the effect the value of λ and Nu, we fixed the value of Le=5 and Sh = 20

and a parametric study was conducted by varying another two parameter properties
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Figure 2.10: Temperature and moisture at ξ = 1 against time for different values of

Le. Parameter values Sh = 20, Nu=0.3, λ=0.5).

in the model λ and Nu. The properties, used as references, correspond to case 0 in

Table 2.4. The properties’ values for the cases (i.e. case 1-2) were obtained by varying

each parameter whilst keeping the other values constant. Each parameter value was

varied; the first variation denoted the lower limit while the second variation denoted

the upper limit of the parameter considered. Simulations were conducted and the

moisture and temperature distribution for the values of the properties corresponding

to each of the cases given in Table 2.4 were predicted.

Table 2.4: Input data for parameter analysis.

Case λ Nu

0 0.5 0.3

1 0-10 0.3

2 0.5 0.1-50

Figure 2.11 shows the temperature evaluation at the surface with a fixed value of

Nu = 0.3 and variable value of λ. From the Figure, when the value of λ increased to

5 to 10, the temperature increased very slowly and was relatively flat at time τ = 0.2

and τ = 0.3. This is not the case for drying, where the temperature usually increases

to nearly the same as the air temperature. Thus, from this we can conclude with
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the Nu = 0.3, the approximation of the value of λ will be between 0.1 − 1. This is

consistent with finding by Pavon-Melendez [90] that the value of λ is around 0.5 for

fruits.

Figure 2.11: Temperature at ξ = 1 against time for different values of λ (Nu = 0.3).

Based on Figure 2.11, we have now fixed the value of λ = 0.5. We change the

value of Nu, based on case 2. Figure 2.12(a) and Figure 2.12(b) show the profile of

temperature and moisture with different values of Nu. Increasing the value of Nu,

the temperature increases rapidly and moisture decreases rapidly. When Nu > 1

convection heat transfer offers little resistance to heat transfer and the temperature

increases rapidly, but for Nu < 1, the conduction heat transfer gives little resistance

and leads to a slow increase in temperature.

Based on parametric study, the choice of parameters Sh, Nu, Le and λ depends

on the type of fruit and the drying temperature. Different types of fruit give different

values of these numbers. For example, in the study of diffusivity by Villa et al. [119],

the heat transfer coefficient and the mass transfer coefficient of Mango Ataulfo con-

trasted with that of other authors, as different varieties of mango may have different

physical and chemical characteristics.
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Figure 2.12: Moisture at ξ = 1 against time for different values of Nu (Fixed λ = 0.5).

2.4 Two-dimensional models

In the one-dimensional model, we assume fruits of infinite length with moisture and

temperature given across the thickness of the fruit. We now consider drying a slice

of food with the cross-section area of a rectangle −Lx < x < Lx, −Ly < y < Ly with

surface x = ±Lx, y = ±Ly.

Two-dimensional isotropic foodstuff, for symmetric drying conditions as illustrated

in Figure 2.13.

ρs
∂M

∂t
=

∂

∂x
(Dρs

∂M

∂x
) +

∂

∂y
(Dρs

∂M

∂y
), (2.47)

ρsCp
∂T

∂t
=

∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
), 0 < x < Lx, 0 < y < Ly. (2.48)

Due to symmetry, the solution is sought from the centre line. Taking α =
k

ρsCp

and constant diffusion coefficient D = D0, equations (2.47) and (2.48) give

∂M

∂t
= D0

(
∂2M

∂x2
+
∂2M

∂y2

)
, (2.49)

∂T

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
. (2.50)

Initial conditions are taken as

M =M0, T = T0, at t = 0. (2.51)
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Figure 2.13: Schematic of two-dimensional model food drying process.

Imposing symmetry, there are no temperature and moisture concentration gradients

at the centre of the product (dΩ1 and dΩ2), and so the following conditions hold:

∂M

∂x
= 0 and

∂T

∂x
= 0, at x = 0, (2.52)

∂M

∂y
= 0 and

∂T

∂y
= 0, at y = 0. (2.53)

At the surface, boundary conditions (dΩ3 and dΩ4) become

k
∂T

∂x
−λD0

∂M

∂x
= −h(Tsur−Tair), and D0

∂M

∂x
= −hm(Csur−Cair) =, at x = Lx,

(2.54)

k
∂T

∂y
−λD0

∂M

∂y
= −h(Tsur−Tair), and D0

∂M

∂y
= −hm(Csur−Cair), at y = Ly.

(2.55)

Taking
Lx

Ly

= 1, in non-dimension form equation (2.49-2.55) become

∂M

∂τ
=
∂2M

∂ξ21
+
∂2M

∂ξ22
and

∂T

∂τ
= Le

(
∂2T

∂ξ21
+
∂2T

∂ξ22

)
. (2.56)

with initial conditions M = 1, and T = 0, at τ = 0 and boundary conditions

ξ1 = 0 :

(
∂T

∂ξ1

)
= 0, and

(
∂M

∂ξ1

)
= 0, (2.57)
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ξ2 = 0 :

(
∂T

∂ξ2

)
= 0, and

(
∂M

∂ξ2

)
= 0. (2.58)

At ξ1 = 1
∂M

∂ξ1
= −Sh

(
β(T sur) f(M)− 1

)
, (2.59)

and Le
∂T

∂ξ1
= −NuLe

(
T sur − 1

)
+ λ

∂M

∂ξ1
. (2.60)

At ξ2 = 1
∂M

∂ξ2
= −Sh

(
β(T sur) f(M)− 1

)
, (2.61)

and Le
∂T

∂ξ2
= −NuLe

(
T sur − 1

)
+ λ

∂M

∂ξ2
, (2.62)

with

β(T sur) = 0.0364 T
2
sur + 0.0108 T sur + 0.0119, (2.63)

f(M) =
σM

ζ

φζ +M
ζ . (2.64)

The value of σ=84.55, φ =
0.062

M0

and ζ = 2.38.

The COMSOL Multiphysics program is used to simulate the dehydration process

in a drying system that corresponds to the numerical solution of these model equa-

tions as seen in the one-dimensional problem in section §2.3.1 . The above system

of non linear partial differential equations, together with the described set of initial

and boundary conditions, has been solved by Finite Element Method implementation

by COMSOL Multiphysics 3.4. Equations (2.56) were input into COMSOL Multi-

physics using a partial differential equation (PDE) solver with the general form for

moisture content and temperature. Details of the numerical procedure can be found

in Appendix B.

2.4.1 Isothermal solution

Simulation for isothermal conditions are carried inside the rectangular moist product,

such as mango (Sh=20). For this case, the latent heat term λ was not considered.

Because of the rapid temperature change compared to the change of moisture (without

latent heat term), the equation for β(T sur) for the moisture boundary condition at

the surface will be approximate as β1.
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Figure 2.14: (a) Surface plot of residual free water moisture field at time τ=0.5 (b)

Moisture across a line passing through the surface(line C) (c) Moisture across a line

passing through the centre (line D) with increasing time τ=0-1(in step of 0.01) (d)

moisture decreasing at selected points A and B.
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As an example case, Figure 2.14(a) illustrates the moisture contour field inside the

object at time τ=0.5. As seen from the distribution, the moisture gradient obtained

at the surface (dΩ3 and dΩ4) is higher than inside the fruits (dΩ1 and dΩ2). At

time=0.5, moisture at the surface is 0.06, whereas the centre moisture is still higher

at 0.22. In order to have a better view of the decreasing moisture inside the object,

variations of non-dimension moisture across a line passing the surface (line C) and

centre (line D) are shown in Figure 2.14(b)and (c) and moisture decreases at points A

and B, shown in Figure 2.14(d). It can be seen that the moisture across a line passing

the surface (line C) is decreasing faster than the moisture across a line passing the

centre (line D) of the product.

2.4.2 Non-isothermal solution

For non-isothermal conditions, equations (2.56)-(2.64) were solved for comparison

with isothermal conditions with non-dimensional values Sh = 20, Le = 5, Nu = 0.3

and latent heat value λ = 0.5.

Figure 2.15: (a) Surface plot of moisture (b) temperature at time=0.5 (c) surface and

centre moisture (d) surface and centre temperature for one and two-dimensions.
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The temperature distribution in Figure 2.15(b), on the two exposed side bound-

aries (dΩ3 and dΩ3), found that the corner of the food is at much higher temperature.

The temperature is found to be more 0.05 warmer on the surface leading edge (A)

compared to the symmetry leading edge (B). The lowest temperature is detected at

bottom edge of the (B). As we can see from Figure 2.15(a), moisture at the surface

corner is 0.1 compared the bottom edge at 0.6. The moisture profiles are in agree-

ment with drying phenomena where the moisture at the centre of the fruit is much

higher at the edge, with the difference being more predominant during the initial

drying. The evaporation and depletion of water is more effective at the leading edge,

where the temperature is highest. Based on this two-dimensional model, we can de-

scribe temperature and spatial moisture distribution on fruit at any time. This is

highly relevant from a food safety point of view, which allows detection of the regions

within the food core where high values of moisture content might determine micro-

bial spoilage. Figures 2.15(c) and (d) show the moisture and temperature profile for

one-dimensional and two-dimensional models at the surface (A) and centre (B). As

we can see from the profile, moisture is decreasing and temperature increasing much

faster in the two-dimensional model than the one-dimensional model because of the

effect of the surface area.

2.5 Discussion and conclusion

In this chapter, we have employed simple one-dimensional and two-dimensional mod-

els of heat and mass transfer that assume fruit as a homogenous structure, as discussed

by Wang and Brenann [123], Balaban and Pigoet [8]. We have applied this framework

to one-dimensional and two-dimensional diffusion models to represent the movement

of water. Using numerical simulation, the behaviour of moisture and temperature

subject to underlying air flow was calculated for constant diffusivity and diffusivity

dependent on temperature and moisture content. First, we studied cases in which

diffusion process occurs only as an isothermal model. An assumption that a uniform

temperature profile exists inside the fruit gives the single mass transfer model which

can thus be used to describe the drying process. The results reveal that, with the

use of the diffusion process alone, the movement of moisture can simulate the drying
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process. The results presented in this chapter provide information about moisture

reduction during drying. Motivated by parameter estimation, we employed the sim-

plifying limit of the drying process as diffusion control. Taking the Sh number as 20,

we may describe the resistance to diffusion within the food as much more than the

resistance to convection across the fluid boundary layer. This is consistent with ex-

perimental findings by [3] which indicate that the rate of water loss from the samples

appears to be limited by the diffusion of water through the sample but not the rate

of evaporation from the surface.

However, for typical drying process, it was found that temperature is an impor-

tant consideration, taking into account a couple of heat and mass transfers in the

simulation. This situation applies to the non-isothermal model. The numerical solu-

tion for the unsteady-state heat and mass balance equations was performed by finite

element method using Comsol Multiphysic. Our analysis indicates that an increase

in temperature and decrease in moisture during drying depend on the value of the

parameters at the surface boundary Sh, Nu and latent heat λ. By changing these

parameter values, we can control the drying process, depending on the type of food.

If the mass transfer is diffusion controlled, the Sh numbers should be more than 20. If

the Nu > 1, convection offer little resistance to heat transfer, this leads to the surface

temperature instantaneously reaching air temperature. This is usually controlled by

the velocity of the drying air: the higher the velocity, the bigger the Nu number.

This phenomenon is represented by the boundary condition (2.20). Therefore, food

temperature evolution depends upon the relationship between Nu and λ numbers. If

Nu is similar or in the same order of magnitude as λ, the food temperature increases

slowly while the process develops. If Nu >> λ, the surface temperature does not

reach the air temperature instantaneously. Pavon-Melendez et al. [90] reported that

the λ value obtained was around 0.5 for fruit when the air temperature is 60oC. On

the other hand, there is a great dispersion in the heat transfer coefficient values re-

ported for foods, and therefore the estimation of food Nu number values are in the

range 0.2-1 [90]. Therefore, in the drying of fruit, with properties similar to those

mentioned by [90], the surface temperature does not instantaneously reach the air

temperature .

Experiment results in [105, 122, 119] indicate that diffusivity depends on temper-
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ature; changing the temperature leads to increases in diffusivity. This will affect the

rate of moisture removal, due to high level of moisture at the beginning [97, 71]. Our

simulation result is consistent with these findings. If the temperature is increased,

the diffusivity will increase, which leads to a faster decrease in moisture during dry-

ing. The majority of models reported in the literature suggest that effective mass

diffusivity increases with the material moisture content up to a certain level, which is

regarded as a function of the material temperature [71]. The form of the mass diffu-

sivity shape suggests that water molecules have to overcome a certain energy barrier

as the material moisture content decreases, and, therefore, mass transfer slows in the

last stages of drying [71]. Indeed, guided by our simulation, we predict slower mois-

ture removal at the end of drying due to a low level of moisture, modelled through

diffusivity that is dependent on moisture and temperature.

In a one-dimensional model, the effect of thickness is considered only in cases in

which the fruit is assumed to be a thin infinite slab. To include the effect of length in

the modelling, a two-dimensional model was developed. Using a numerical solution in

the two-dimensional model, the behaviour of moisture and temperature predicted by

the model was observed. It was observed that the temperature is higher at the surface

corner of the leading edge and lower at the symmetry leading edge. The depletion

of water is more effective at the higher temperature of the surface, where the surface

moisture is less than that at the surface corner. The detection of this region is a very

important aspect in terms of food safety.

Sensitivity analysis has been carried out for certain parameters to show their

relative influence on drying. The sensitivity analysis should also guide us into selecting

properties that are involved in drying. The simple heat and mass model is capable

of describing the transport of both water and heat within the fruit. It is flexible and

can be easily adapted to any drying conditions but it also has plenty of limitations

based on the assumptions made. An additional limitation of this simple heat and

mass transfer model is that, since change of volume is not considered, we are unable

to model any change of shape in the system. In the chapters that follow, we develop

mathematical models to account for fruit sample shrinkage during drying.
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Chapter 3

Shrinkage models of drying fruit

3.1 Overview

The model presented in chapter 2 is now extended to include the effect of shrinkage

in the drying model discussed in section §2.2. As a first approximation, we present a

simple one-dimensional time varying model of heat and mass transfer that assumes

food to have a homogenous structure. The development of this model is based on

work of Wang and Brenann [124] and Balaban and Pigott [8]. A diffusion model is

developed to describe the drying process, which includes a shrinkage condition and

maintains a direct conservation requirement into the governing equation. Previous

models, such as those presented by [124] [8], are too dependent on data from exper-

iments with regard to the process of estimating the shrinkage effect. In this model,

simultaneous moisture and heat transfer together with boundary conditions are used

to estimate the heat and moisture transport rates, without resorting to any externally

imposed empirical correlation. A convected coordinate system is introduced in order

to fix the surface interfaces within the numerical computations. The shrinkage condi-

tion was developed on the basis of a simple mechanism of volume of evaporated water

that takes place during drying. Finally, the complete model will be implemented

in a computer program (MATLAB) and applied to typical tropical fruit data and

comparison made with existing work.
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3.2 Review of shrinkage models

In the case of food products with high moisture content, the presence of significant

shrinkage during drying has been reported [107]. This may arise from a moisture

gradient within the particle that induces microstructure stresses, leading to shrinkage

[76]. Further, shrinkage will decrease the diffusion path of heat transfer processes

and is extremely important in drying because it produces a variation in the distance

required for the movement of water molecules [56]. Mayor and Sereno [76] reviewed

a number of shrinkage models for food material with different geometries (cylinder,

sphere, ellipsoid, slab, and cube) and different reduced dimensions (volume, radius,

thickness, width, length, diameter, and surface area). Empirical models (linear and

nonlinear) and fundamental models (linear, deviations of linear behavior, and explicit

variation of porosity) were discussed in this review. These models usually present a

good fit with experimental data, but their wider predictive use is limited because of

their dependence on the drying conditions and material characteristics.

Wang and Bremann [124] have proposed a mathematical model of simultaneous

moisture and heat transfer with the effect of shrinkage for the prediction of moisture

and temperature distributions during drying in a slab shape solid of potato. These

authors take the governing equations for heat and moisture as

ρs
∂M

∂t
=

∂

∂x
(Dρs

∂M

∂x
) ; 0 < x < L(t),

and ρsCp
∂T

∂t
=

∂

∂x
(k
∂T

∂x
) ; 0 < x < L(t).

and convective surface boundary conditions to include a latent heat effect for the

evaporation of moisture at the surface as

−Dρw
∂M

∂x
= hm(Csur − Cair),

and − k
∂T

∂x
= h(Tair − Tsur) + λDρw

∂M

∂x
.

Shrinkage is one of major changes taking place during the drying process. During

drying, the shape and size of the food particles are constantly changing as a result of

water removal and internal collapse. These dimensional changes are variable during

drying: some change is observed in dimension or shape and occasional cracking of the

56



product may take place. Reduction in diameter and length of dried fruits reduces the

volume itself. Normally, an empirical fitting through experimental test is used to find

an equation for shrinkage ([94, 123, 7, 20, 107, 74]). In order to quantify the effect

of shrinkage, Wang et al. [123] fitted the thickness, length and width, correlated by

a linear relationship with moisture as

L = A+B.M, (3.1)

in which L is the thickness of the sample, A and B are taken as constants and the

equation (3.1) is fitted with the experiment data. This method was also used by

Quiroz et al. [94], who developed a shrinkage equation by fitting the mean radius r

of banana and the moisture content from an initial radius ro by a linear regression,

as
r

ro
= A+B.M ; (3.2)

Subsequent computation gave A = 0.4721 and B = 0.1819.

On the other hand, Lima et al. [74], for the drying of banana, and Simal et al.

[107], for the drying of kiwi, included shrinkage into the model using a correlation

that relates volume and average moisture content M(t) as

Vt
Vo

= β1 + β2M, (3.3)

where β1 and β2 are shrinkage coefficients obtained by fitting the equation (3.3) with

the experiment result. Baini and Langrish [7] included shrinkage as

r

ro
= (

V

Vo
)1/2 = (0.6

M

Mo

+ 0.4)1/2. (3.4)

Typically, empirical fitting through experiment is used to find shrinkage equations

(3.2-3.4), such as those used by the authors above. Using these conditions, the thick-

ness or radius of the sample is adjusted at each time step during the calculation of the

governing equations for heat and mass. This numerical approximation is one of the

limitations used; detailed experimental results on specific tropical fruits were used to

find the empirical shrinkage equation before mathematical modelling is solved.

In the early stage of drying, the properties of material surface layer do not differ

much from the centre [123]. As drying proceeds, the surface deforms due to vis-

coelastic behaviour of the solid food particles. When water is removed from the solid
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material, a pressure imbalance is produced between the inner and the external pres-

sure, generating contracting stresses that can lead to material shrinkage or collapse.

The tissues in the food are unable to hold their structure when the space taken by

the water is continuously removed. Shrinkage reduces the path length of the material

through which diffusion occurs. This phenomenon may also reduce the surface area

for heat and mass transfer, which may also affect the overall drying rate. Chemkhi

et al. [20] developed the shrinkage phenomena due to the stress and deformation

of strained solids during drying based on the viscoelastic behaviour of the material.

The displacement of the solid phase (strain) during drying is a function of moisture

content of the product, known as solid velocity u, represented as,

u =
ρb

1 + βM.
(3.5)

The shrinkage coefficient (β), is known as the contraction coefficient of the material,

and is found by an ideal deformation ratio
ρs
ρs0

. The corresponding stress and strain

relation is developed. A model of simultaneous heat and moisture transfer of potato

was coupled with a model of stress and strain and solved numerically using the finite

difference method. An approach used by Hassini et al. [55] used strain as above

but did not consider the model of stress in the coupled of heat and moisture. The

simulation results produced by [20] for this model, were applied to the shrinkage of a

highly deformable products such as potato, which shrinks from an initial 10 mm to a

final thickness of 1.5mm after approximately three and a half hours of drying. This

shrinkage value was consistent with findings by Hassini et al. [55] that the potato

shrank by about 77% of its initial volume. The displacement of the solid needs to be

found experimentally, limiting the usage of this model.

A slightly different approach is used by Hadrich and Kechaou [49], Guiné et al.

[48] and Balaban and Pigot [8] employing density values to account for volumetric

shrinkage. This is similar to the suggestion by [76] that porosity formation occurs

during the drying process, which can be produced either by the inclusion of the density

or through the ratio of air volume in the sample to the total volume. Guiné et al.

[48] include the shrinkage effect by using dry solid concentration ρs which relates the

mass of dry solid to the total volume that varies in the drying of pears. The dry

solid concentration equation is a function of bulk density ρb and moisture content
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determined by experiments as

ρs = ρb

(
1

1 +M

)
. (3.6)

Hadrich and Kechaou [49] also use product density ratio
ρs
ρb

as a linear function

of moisture content, which varies during the drying of potato in their model as

ρs = ρb (1 + 1.4855M) . (3.7)

These shrinkage equations (3.6 and 3.7), were put into a governing equation of mass

and heat transfer, which varies with drying. As before, the need for detailed experi-

ment results to find an empirical equation of density ratio limits the use of the model.

Furthermore, these models usually present a good fit with the experiment data, but

their use is limited because of their dependence on drying conditions and material

characteristics.

Karim and Hawladar [65, 64] consider that material surface shrinks at a velocity

u(x) toward the material sample. In that case, the shrinkage effect appears explicitly

in terms of convective velocity in the heat and mass transfer equations as

∂T

∂t
+ u

∂T

∂x
= α

∂2T

∂2x
, (3.8)

∂M

∂t
+ u

∂M

∂x
= α

∂2M

∂2x
. (3.9)

To determine shrinkage velocity in order to solve governing equations, they state

that shrinkage velocity cannot be predicted and experimental determination is also

difficult. They make the assumption that linear shrinkage velocity can be expressed

as

u(x) = u(L)
x

L
.

This is one of the limitations of this model.

The rate of water removal will also influence shrinkage. A slow drying product

shrinks nearly uniformly into a solid core as the magnitude of internal stress is low.

During rapid drying, the surface is much drier than the interior, resulting in better

preservation of the original shape at the surface, with cracks and voids forming in-

side while the interior shrinks [103]. Khraisheh et al. [70] found that the degree of
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shrinkage of potato during low temperature drying was greater than with high tem-

perature drying, due to high internal pore development and surface case hardening

at high temperature. Karathanos et al. [63] attributed the structured collapse to

the high mobility of the matrix composed of water and soluble solids within the cell

wall polymer, when the temperature was above glass transition temperature. This

suggests that products, for instance with higher sugar, would exhibit a continous

collapse phenomenon due to their low glass transition temperature.

Several different types of shrinkage behaviour have been identified: ideal, elastic,

and viscoelastic. Mayor and Sereno [76] found that factors affecting the magnitude

of shrinkage included the volume removal of water, the mobility of solid matrix, the

drying rate and other processing conditions. Shrinkage has been included in studies

in order to improve the physical representation of the process and also to increase

confidence in the drying parameters obtained. However, in most cases, the shrinkage

models used adjust the thickness of the sample at each time step through an external

(often empirical) algorithm and do not include a direct conservation requirement into

the governing model formulation.

3.3 Mathematical formulation of a one-dimensional

shrinkage model

During drying, heat is transferred mainly by convection from air to the product surface

and by conduction from the surface towards the product centre. Meanwhile, moisture

diffuses outwards towards the surface and gets vaporized into the air. Such a coupled

mechanism provides the basis for a simultaneous heat and moisture transfer model. In

the case of an infinite slab of finite thickness L(t), the moisture contentM(x, t) across

the slab and temperature T (x, t) are expressed by the well known system of partial

differential equations (PDEs) for moisture and energy transport [124] (discussed in

chapter 2) as,

ρs
∂M

∂t
=

∂

∂x
(Dρs

∂M

∂x
) ; 0 < x < L(t), (3.10)

ρsCp
∂T

∂t
=

∂

∂x
(k
∂T

∂x
) ; 0 < x < L(t). (3.11)
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At the onset of the drying process, the moisture content, temperature and the thick-

ness of the product are taken as uniform; initial conditions are thus

M =M0, T = T0, L = L0 at t = 0. (3.12)

Imposing symmetry, there are no temperature and moisture concentration gradients

at the centre of the product, and so the following conditions hold:

∂M

∂x
= 0 and

∂T

∂x
= 0, at x = 0. (3.13)

Heat transfer at the surface boundary occurs by convection to the overlying air,

typically modelled through the use of a heat transfer coefficient h. Some heat is

also absorbed by the moisture in the transfer to a vapour phase, and the boundary

condition at the surface is given by,

k
∂T

∂x
− λDρs

∂M

∂x
= −h(Tsur − Tair) at x = L(t), (3.14)

where λ is the heat of vaporization. The moisture boundary condition at the surface

becomes

Dρs
∂M

∂x
= −hm(Csur − Cair), at x = L(t). (3.15)

3.3.1 Constant diffusivity

The one-dimensional mathematical model discussed in chapter 2 section §2.2 will be

used with a shrinkage condition associated with constant diffusion D0 and heat diffu-

sivity k. The equations are represented by equations (3.10) and (3.11), together with

boundary conditions equations (3.12) - (3.15). A complicating factor for the solution

is the changing region of the sample, with interface x = L(t) decreasing with drying.

To track the interface position, it is convenient to fix its location within a changing

coordinate grid [26]. Using the transformation ξ =
x

L(t)
, the surface interface corre-

sponds to a fixed value ξ=1, a revised formulation for equations (3.10) and (3.11), in

the form of independent state variables (ξ, t), replacing (x, t), become,

∂M

∂t
=

D0

L2(t)

∂2M

∂ξ2
+

ξ

L(t)

dL

dt

∂M

∂ξ
, (3.16)

∂T

∂t
=

α

L2(t)

∂2T

∂ξ2
+

ξ

L(t)

dL

dt

∂T

∂ξ
. (3.17)

61



Non-dimensional scaled variables are used: a representative diffusion timescale

τ , interface position s(τ), scaled moisture content M , and scaled temperature T are

defined by

τ =
D0t

L2
0

, s(τ) =
L(t)

L0

,

M =
M

M0

, and T =
T − T0
Tair − T0

.

In a non-dimensional formulation, the interface x = L(t) decreases with drying

from x = 1 to an irreducible final state x = xf , corresponding to the foodstuff reaching

a dry state. The resulting system for the moisture and temperature is

∂M

∂τ
=

1

s2(τ)

∂2M

∂ξ2
+ ξ

1

s(τ)

ds

dτ

∂M

∂ξ
, (3.18)

∂T

∂τ
= Le

1

s2(τ)

∂2T

∂ξ2
+ ξ

1

s(τ)

ds

dτ

∂T

∂ξ
. (3.19)

Initial conditions associated with constant conditions are

τ = 0 : T (ξ, 0) = 0, M(ξ, 0) = 1, s(0) = 1. (3.20)

Taking symmetry boundary conditions in the mid-plane of the drying slice gives

ξ = 0 :

(
∂T

∂ξ

)
= 0, and

(
∂M

∂ξ

)
= 0. (3.21)

At the surface, moisture and temperature boundary conditions of the drying body in

contact with drying air become

∂M

∂ξ
= −s(τ)Sh

(
β(T sur)f(M)− 1

)
, (3.22)

∂T

∂ξ
= −s(τ)Nu

(
T sur − 1

)
+ λ

1

Le

∂M

∂ξ
. (3.23)

Using the relationship given by Wang and Brenann [123] which links the surface con-

centration Csur and surface temperature Tsur, the non-dimensional form of equation

f(M) and β(T sur) discussed in chapter 2 for air temperature Tair = 60oC, is given by,

f(M) = 84.55
M

2.38

(
0.062

Mo

)2.38 +M
2.38

, (3.24)

and β(T sur) = 0.0364 T
2

sur + 0.0108 T sur + 0.0119, (3.25)
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In the above, several non-dimensional controlling parameters are defined by,

Sh =
hm L0Cair

D0M0 ρs
, Nu =

hL0

k
,

Le =
α

D0

and λ =
λM0

Cp (Tair − T0)
.

3.3.2 Diffusivity dependent on temperature

Taking diffusivity as dependent on temperature D(T ), equation (3.10) becomes

∂M

∂t
=

ξ

L(t)

dL(t)

dt

∂M

∂ξ
+

D

L2(t)

∂2M

∂ξ2

+
1

L2(t)

∂M

∂ξ

∂T

∂ξ
D

′
(T ). (3.26)

Using the same non-dimensional scale variable as above, equation (3.26) becomes,

∂M

∂τ
=

1

s2(τ)
D
∂2M

∂ξ2
+ ξ

1

s(τ)

ds(τ)

dτ

∂M

∂ξ

+
1

s2(τ)
D

′ ∂M

∂ξ

∂T

∂ξ
, (3.27)

with D =
D

D0

, D
′
=
dD

dT
.

The equation for heat, the same as equation (3.19), is

∂T

∂τ
= Le

1

s2(τ)

∂2T

∂ξ2
+ ξ

ds

dτ

∂T

∂ξ
. (3.28)

Initial conditions associated with constant conditions are

τ = 0 : T (ξ, 0) = 0, M(ξ, 0) = 1, s(0) = 1. (3.29)

Taking symmetry boundary conditions in the mid-plane of the drying slice, gives

ξ = 0 :

(
∂T

∂ξ

)
= 0, and

(
∂M

∂ξ

)
= 0. (3.30)

At the surface, moisture and temperature boundary conditions of the drying body in

contact with drying air become

∂M

∂ξ
= −s(τ) Sh

D

(
β(T sur)f(M)− 1

)
, (3.31)

∂T

∂ξ
= −s(τ)Nu

(
T sur − 1

)
+Dλ

1

Le

∂M

∂ξ
. (3.32)
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3.3.3 Diffusivity dependent on moisture and temperature

Taking diffusivity dependent on moisture and temperature D̃(T,M), equation (3.10)

becomes

∂M

∂t
=

ξ

L(t)

dL(t)

dt

∂M

∂ξ
+

D̃

L2(t)

∂2M

∂ξ2

+
1

L(t)2
∂M

∂ξ

∂T

∂ξ
D̃T

+
1

L(t)2
∂M

∂ξ

∂M

∂ξ
D̃M . (3.33)

Using the same non-dimensional scale variable as mentioned above, equation (3.33)

gives

∂M

∂τ
=

1

s2(τ)
D̃
∂2M

∂ξ2
+ ξ

1

s(τ)

ds(τ)

dτ

∂M

∂ξ

+
1

s2(τ)

∂M

∂ξ

∂T

∂ξ
D̃′

T

+
1

s2(τ)

∂M

∂ξ

∂M

∂ξ
D̃′

M
. (3.34)

with D̃ =
D̃

D0

, D̃′
M

=
∂D̃

∂M
and D̃′

T
=
∂D̃

∂T
.

The equation for heat, the same as equation (3.19), is

∂T

∂τ
= Le

1

s2(τ)

∂2T

∂ξ2
+ ξ

ds

dτ

∂T

∂ξ
. (3.35)

Initial conditions associated with constant conditions are

τ = 0 : T (ξ, 0) = 0, M(ξ, 0) = 1, s(0) = 1. (3.36)

Taking symmetry boundary conditions in the mid-plane of the drying slice, gives

ξ = 0 :

(
∂T

∂ξ

)
= 0, and

(
∂M

∂ξ

)
= 0. (3.37)

At the surface, moisture and temperature boundary conditions of the drying body in

contact with drying air become

∂M

∂ξ
= −s(τ) Sh

D̃

(
β(T sur)f(M)− 1

)
, (3.38)

∂T

∂ξ
= −s(τ)Nu

(
T sur − 1

)
+ D̃λ

1

Le

∂M

∂ξ
. (3.39)
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3.4 Shrinkage condition

For foodstuffs with high moisture content, shrinkage is one of the major changes to

take place during the drying process. This complex phenomenon reduces the thickness

of the sample and so affects the transfer of heat to the medium and the transfer of

moisture to the surface. In this section, a simple mechanism is developed to highlight

the effect of shrinkage on drying solutions. Initially it is assumed that no gas phase

(air or vapour) is present and that the material consists only of solid and liquid phases.

An equation for the shrinkage is obtained from the overall mass conservation balance

of liquid in the food, in the absence of any void creation.

Consider that the semi-thickness region of non-porous food is time varying with

L = L(t) and given by an integration of the local moisture level and the food solid

density value. Taking initially a Cartesian framework with the medium of fixed unit

area A and thickness L(t) which comprise liquid and solid compositions, the semi-

thickness is given by,

A . L(t) =
∫
Vm(t)

dV,

where Vm(t) is material region of the foodstuff.

The time rate of change of the liquid property is defined by

dL

dt
=

1

A

d

dt

∫
Vm(t)

dV. (3.40)

From the Reynolds transport theorem(see Slattery [109] and Nhan [83]), the general

quantity ψ(x, t) is defined as

d

dt

∫
Vm(t)

ψ(x, t) dV =
∫
Vm(t)

∂ψ

∂t
dV

+
∫
Sm(t)

ψ v.n dS, (3.41)

where Sm(t) is the enclosing surface area, n is a unit normal to the surface and v is

surface velocity. The first term on the right hand side of equation (3.41) is the rate

of change of volume within Vm(t), and the second term is the rate of liquid being

transported through the surface. Within this shrinkage model, the flux of liquid that

is being transported through the surface is given by

v.n = volume of flux leaving the surface/unit area,
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v.n =
mass flux of liquid leaving the surface

density of liquid
.

Using the underlying assumption of Fick’s Law, and assuming all liquid is evapo-

rated to the air flow at the surface,

v.n =
ρsD

∂M

∂x
ρw

. (3.42)

Taking (3.41), and using (3.42), and a fixed unit area A = 1, the mass balance of

liquid in the surface is then given by,

dL

dt
=

d

dt

∫
Vm(t)

dV =
∫
Sm(t)

ρs
ρw
D
∂M

∂x
dS. (3.43)

For the one-dimensional case, a shrinkage condition is defined by the thickness of the

slice (0 < x < L). In this instance, shrinkage is in the cross-sectional direction and is

given by

dL

dt
=

[
ρs
ρw
D
∂M

∂x

]x=L

x=0

. (3.44)

Noting that
∂M

∂x
= 0 at x=0, this gives the shrinkage condition to be applied at

x = L as,
dL

dt
=
ρs
ρw
D
∂M

∂x

)
x=L

. (3.45)

Thus, equation (3.45) provides a conservation requirement for the shrinkage of

volume arising from a volumetric loss of moisture, and the numerical solution pro-

cedure directly involves the governing equation. This additional shrinkage condition

is required to determine the position of the food interface. In transformed and non-

dimensional variables the shrinkage condition (3.45),

ds

dτ
= D

ρs
ρw

M0

s(τ)

∂M

∂ξ
, at ξ = 1. (3.46)

where D = 1 if D = D0 or D = D if D = D(T ) or D = D̃ if D = D̃(T,M).

The speed at which the surface interface reduces is directly dependent on the initial

density ratio
ρs
ρw

and the initial moisture content M0.
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3.5 Numerical solutions

3.5.1 Computational formulation

A numerical solution, such as discussed by Crank [27] for the case of Stefan problem

(in which the interface condition is associated with melting at a moving interface),

was obtained using the method of lines [102, 4]. Discretizing the fixed integration

region 0 ≤ ξ ≤ 1 into N sub-intervals, gives a system of 2N+3 ordinary differential

equations for M j(τ), T j(τ), and shrinkage s(τ). This system of equations was then

solved numerically using MATLAB ODE45 solver, which is based on an order-5 Runge

Kutta-Fehlberg Method (RK45).

We consider a special case of D = D0, and using a spatial discretized with N grid

point ξj = j∆ξ with ∆ξ = 1/N .

Discretising equation (3.18) with a central difference approximation becomes

dM j

dτ
=

1

s(τ)2
M j−1 − 2M j +M j+1

(∆ξ)2
+ ξj

1

s(τ)

ds

dτ

M j+1 −M j−1

2∆ξ
, (3.47)

at general index point j with M j =M(ξj) for j=1,...,N-1.

To apply the symmetry condition a fictitious grid point at ξ−1 is involved and equation

(3.47) evaluated at ξ0 and the value of M−1 eliminated using the central difference

approximation of equation (3.21) as

M1 −M−1

2∆ξ
= 0.

This gives the condition,

dM o

dτ
=

1

s2(τ)

(2M1 − 2M o)

(∆ξ)2
. (3.48)

Applying the surface condition equation (3.22) by introducing a fictitious grid point

at ξN+1 gives

MN+1 −MN−1 = −2∆ξ × Sh× s(τ)(β(T sur)f(M)− 1).

Applying a discretization of equation (3.18) at ξN and using the above to eliminate

MN+1 in (3.22) gives

dMN

dτ
=

1

s2(τ)

(2MN−1 − 2MN − 2∆ξSh× s(τ)(β(T sur)f(M)− 1)

∆ξ2

+
ξ

s(τ)

ds

dτ
(
3MN − 4MN−1 +MN−2

2∆ξ
). (3.49)
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A higher order discretization of the gradient term at the boundary is taken inline

with the recommendation for the analogous Stefan problem by Furzeland (in Crank

[27]). Discretization of the shrinkage condition in equation (3.46) is given by

ds

dτ
=
ρs
ρw

1

s(τ)
Mo

(3MN − 4MN−1 +MN−2)

2∆ξ
. (3.50)

Discretising Equation (3.19) with a central difference approximation becomes

dT j

dτ
= Le

1

s2(τ)

T j−1 − 2T j + T j+1

(∆ξ)2
+ ξj

1

s(τ)

ds

dτ

T j+1 − T j−1

2∆ξ
, (3.51)

at a general index point j with T j = T (ξj)for j=1,...,n-1 and Le =
α

D
.

To apply the symmetry conditions, a fictitious grid point at ξ−1 is involved and

equation (3.51) evaluated at ξ0 and the value of M−1 eliminated using the central

difference approximation of equation (3.21) as

T 1 − T−1

2∆ξ
= 0.

This leads to the condition,

dT o

dτ
= Le

1

s2(τ)

(2T 1 − 2T o)

(∆ξ)2
. (3.52)

Applying the surface condition equation (3.23) by introducing a fictitious grid point

at ξN+1 gives

TN+1 − TN−1 = −2∆ξ ×Nu× s(τ)(T sur − 1) + λ
1

Le
(3MN − 4MN−1 +MN−2).

Applying a discretization of equation (3.18) at ξN and using the above to eliminate

MN+1 in (3.23) gives

dTN

dτ
=

Le

s2(τ)

[
2TN−1 − 2TN − 2∆ξNu× s(τ)(T sur − 1) + λ 1

Le
(3MN − 4MN−1 +MN−2)

∆ξ2

]

+
ξ

s(τ)

ds

dτ
(
3TN − 4TN−1 + TN−2

2∆ξ
). (3.53)

3.5.2 Input parameters

The non-dimension parameters used in the equations for the generic drying condition

for tropical foods are listed in Table 3.1 and these correspond to the typical values of

tropical fruits, as discussed in chapter 2 (section §2.3 for a non shrinkage model).
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Table 3.1: Drying conditions and product properties used in the simulation.

Product Properties

Cair 0.025625 kg/m3 based on T=60oC

and RH=20%

M0 0.8 kg water/kg moist sample

Sh number 20

Le number 5

Nu number 0.3

λ 0.5

3.6 Results of drying of tropical fruits

The analysis of transport phenomenon presented here is based on the time evolution of

variables, i.e. the non-dimension moisture content and temperature at each exposed

surface. As an example, we undertake the simulation study for moisture transfer

during drying of a moist slab of tropical fruits to predict the moisture profile inside the

food. The simulations are divided into two parts. In the first simulation, a constant

value of effective diffusivity was taken. Simulation at different values of diffusivity,

D(T ) and D̃(T,M) were used to show how diffusivity influences the drying process

and, in particular, the drying rate.

3.6.1 Constant diffusivity D = D0

In this part, simulation of a system of equations (3.18)-(3.23) and (3.46) with a value

of diffusivity is taken as constant D = D0. The present model was used to predict

the moisture distribution inside the solid. Moisture within the food is initially scaled

to unity and a final steady state close to zero is eventually reached. Figure 3.1 shows

the moisture distribution as a function of both position ξ and drying time τ , during

drying. The drying air temperature is used in the non-dimensional model through Cair

as given by [47], and depends on the air temperature and partial pressure. Simulation

results show the highest moisture content in the centre of the product, decreasing

monotonically to the lowest level at the surface of the product. The reduction rate of
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Figure 3.1: Non-dimension moisture content profile inside the food slab with increas-

ing τ . Parameter values given by Sh = 20, Le = 5, Nu=0.3, λ = 0.5.
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Figure 3.2: Non-dimension moisture content profile inside the food slab with increas-

ing τ in terms of physical Cartesian distance x. Parameter values the same as Figure

3.1.
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moisture in the region near the surface is higher than the interior of the object because

of the high initial moisture gradient in this region, which drives diffusion from the

inside to the surface. Moreover, in the early drying period (τ < 1.2), the moisture

content reduces rapidly. Due to the diffusion limitation of the drying process, the

surface moisture content reaches the equilibrium value almost immediately and, as

the drying period progresses (1.2 < τ < 1.5), the rate of reduction of moisture content

becomes almost steady before settling slowly to show release of residual moisture.

Figure 3.2 shows the corresponding moisture distribution prediction in terms of

physical Cartesian distance x and includes the location of the free surface during

shrinkage. These profiles identify that the surface quickly reaches equilibrium when

a moisture gradient is developed between the surface and the rest of the sample. The

shrinkage of the product is shown by the change in the thickness of the sample. In

the early drying period (τ < 0.15), the moisture content reduces rapidly near the

surface and establishes a gradient through out the slab and shrinkage is relatively

small. For the period 0.15 < τ < 1.2, the rate increases rapidly, moisture content

reduces steadily throughout and shrinkage moves to a period of almost constant rate

before finishing at the expected end position. The final value of shrinkage in this

model can be determined readily as only solid mass is left at the end of drying. This

situation corresponds to ideal shrinkage, where the decrease of material volume is

equal to the volume of water removed. In the case of a real food system, not all liquid

is removed and the calculations are terminated when an irreducible value of moisture

content inside the food is reached (e.g. see [48]).

The evolution of moisture content at early times and longer times is given in

Figure 3.3. At early times, the decrease in moisture is influenced by wet moisture at

the surface and a small decrease in size (length) of the body. At later times, when

the moisture content is very low, the decrease in moisture is influenced by drying air

and a very small decrease in size can also be observed.

Simultaneously, calculation of food temperature is made within the varying food

regions. Temperature is initially constant, scaled to zero and reaches a final steady

value of T = 1. Figure 3.4 shows temperature profile in the food as function of

both position and time, during drying. Temperatures at each location increase with

drying time, which is due to the higher drying air temperature. The temperature
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Figure 3.3: Evolution of non-dimension moisture content profile inside the food slab

with increasing τ in term of physical Cartesian distance x for (a) early times:τ=0-

0.135 with little shrinkage and (b) longer times: τ=1.38-1.5 (in step τ=0.03) with

nearly full shrinkage. Parameter values the same as Figure 3.1.

gradient between the centre and the surface decreases with drying time. It was found

that the temperature profile rises rapidly in the early period of heating (τ < 0.5)

due to the difference between air temperature and food temperature. As the heating

period progresses 0.5 < τ < 1, the rise in temperature attains an almost uniform

profile. This arises because the surface has high moisture and most of the heat is

used for evaporation near the surface. This behaviour is controlled by the value of

λ: the bigger the value of λ, the slower the increase in temperature. After some

time (τ > 1.2), when the surface moisture becomes low, the increase in temperature

become faster. Subsequently, only a small quantity of heat is used for evaporation

and the increase in heat flux raises the food temperature.

The temperature profiles in the sample at a Cartesian distance x including shrink-

age are presented in Figure 3.5 and identify further that the temperature rises rapidly

in the early period of heating (τ < 0.5). As heating progresses and the shrinkage re-

duces the distance between the surface and the centre, the rise in temperature is rel-

atively slow and almost uniform. At the end of drying, the temperature rises rapidly

throughout the food as only small quantities of heat are needed for evaporation.

Figure 3.6 compares the position of the food surface with different initial moisture

contents. The shrinkage equation (3.46) arising from volumetric loss of moisture,
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Figure 3.4: Non-dimension temperature profile inside the food slab with increasing

τ . Parameter values the same as Figure 3.1.
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∂ξ
and reduced of interfaces is directly dependent on initial density ratio

ρs
ρw

and initial moisture content M0. It can be observed that the shrinkage profiles

are self-similar and a constant rate of shrinkage can be observed before finishing at

the expected end position.
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Figure 3.6: Position of food surface with different initial moisture content.

Figure 3.7 represents the comparison of moisture and temperature gradients at

the centre of the fruits, with and without shrinkage effect. It can be seen that the

temperature without shrinkage predicts a higher temperature at a specific time com-

pared to that with shrinkage especially at the beginning of drying. Figure 3.7 also

shows that the predicted moisture content was lower when the shrinkage effect was

included in the model. Therefore, the model with shrinkage needs a shorter time

for drying. Physically, the thickness of the sample decreases due to shrinkage and,

correspondingly, the moisture has less distance to cover and hence reaches the surface

faster, before it can diffuse to the air. This is consistent with findings reported by

Wang and Brenann [124] of the shrinkage effect on drying behavior.
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Figure 3.7: Profile of temperature and moisture at the centre of the food, with and

without shrinkage effect. The non-shrinkage model refers to equations (2.17)-(2.20).

Parameter values the same as Figure 3.1.

3.6.2 Diffusivity dependent on moisture and temperature

D = D(T ) and D = D̃(T,M)

There is experimental evidence that the shrinkage extent during drying is strongly

related to drying conditions [76]. These relations are expressed in the form of the

glass transition temperature theory ([96, 67]). The glass transition theory is one of

the concepts proposed to explain the process of shrinkage and collapse during drying.

According to the concept, there is negligible collapse (of pores) in material below

the glass transition temperature, and the higher the difference between the process

temperature (air temperature) and the glass temperature, the higher the degree of

collapse. In this way, the material may undergo transition from the glassy to the

rubbery state; the lower the drying temperature, the quicker this transition occurs.

As this transition restricts the volume reduction (shrinkage), lower drying temper-

atures lead to lower shrinkage extent values and, as a consequence, higher material

porosities. This theory gives only the effect of the temperature of the material during

the drying. However, as water possesses a plasticizing effect in amorphous materials,

the higher moisture content may lower the glass transition temperature of the solid
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[96]. Furthermore, during drying, moisture content will decrease, leading to an in-

creased glass transition temperature [96]. This is due to the strong plasticizing effect

of water; the material undergoes this transition only towards the end of drying [67].

Bodhrioua et al. [14] reported a glass transition temperature for dried Cavendish sp.

bananas of approximately 40oC. Thus, the samples dried above this temperature be-

come malleable at low moisture content and undergo unrestricted shrinking. Samples

dried below this temperature become rigid, as moisture content approaches to zero

and, therefore, have lower volume reduction (less shrinkage) [67]. For example, at

30oC, the material undergoes a glass transition for all the conditions and, therefore,

it presents lower volume reduction(less shrinkage). At 40oC, the transition probably

occurs at a later instant, in a way that the material shrinks more before becoming

glassy. At 50oC, the material does not undergo transition and shrinks during the

entire process.

This phenomenon could be considered to be directly related to the drying temper-

ature during the process and affected, in particular by the diffusion coefficient of the

food. An experimental study by Rahman et al. [97] stated that, in the glass transition

region, an increase in effective diffusivity was detected and, in the rubbery region,

diffusivity remained nearly constant. Diffusivity in the rubbery region is higher than

that in the glassy region. In this section, a simulation was performed to learn more

about the theory of glass transition. Different values of diffusivity were put into the

model to evaluate the effect of glass transition. The variation in effective diffusivity

as a function of temperature D(T ), and a function of material moisture content and

temperature D̃(T,M), is given in section §1.3.2, by

D̃(T,M) = 1.29× 10−6 exp(
−2044

T
) exp(

−0.0725

M
). (3.54)

In a non-dimension form

D̃(T ,M) =
D̃(T,M)

D̃(T0,M0)

= 934.13 exp(
−0.090625

M
) exp(

−2044

30T + 303
) (3.55)

To put only effect of temperature to diffusivity, we assume moisture treated as con-

stant M = M0 = 0.8 (initial moisture content), the diffusivity is dependent only on
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the value of temperature D = D(T ) given by,

D(T ) = 1.178× 10−6 exp(
−2044

T
). (3.56)

In a non-dimension form,

D(T ) =
D(T )

D(T0)

= exp(
202.38T

30T + 303
) (3.57)

In this part, the simulation will be based on the system of equations (3.27)-(3.32) and

(3.46) for diffusivity dependent on temperature and equations (3.34)-(3.39) and (3.46)

for diffusivity dependent on temperature and moisture with the value of diffusivity

above: (3.55) and (3.57). The overbar notation in the graph is dropped as clarity.
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Figure 3.8: Diffusivity plot of D(T ) and D̃(T ,M).

Dependency of the diffusion coefficient on local moisture content and temperature

brings physical changes to the food, which arise from heating. This phenomenon could

be considered as directly related to the drying temperature during the process and

affects in particular the diffusion coefficient of the material. A profile of diffusivity

with different local moisture and temperature is shown in Figure 3.8. Figure 3.8(a)

shows that increased temperature gives increased diffusivity D(T ). An experimental

77



study also suggests that samples drying below 60oC are in the glassy state and drying

above 80oC, in the rubbery state [3]. In the glassy sate, the diffusivity increases

significantly (for example see [97, 95]) and is consistent with Figure 3.8(a).

Figure 3.8(b) shows the influence of moisture and temperature on diffusivity. At

the beginning, as moisture M = 1 and the temperature T = 0, the diffusivity is

scaled to D̃(T ,M)=1. As time increases, the temperature increases and moisture

decreases, which leads to increases in diffusivity until a certain time. Furthermore,

as the moisture continues to decrease, the diffusivity starts to decrease and is then

constant at the end of drying. A present result similar to that of Rahman et al. [97],

comes to the conclusion that diffusivity increases significantly at the beginning of

drying and is constant during the end of drying.
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Figure 3.9: Moisture and temperature in the centre of the fruits with different diffu-

sivity. Non-dimension parameter values given by Sh = 20, Le = 5, Nu=0.3, λ = 0.5.

A profile of the moisture content and temperature at the centre of the fruit is

presented in Figure 3.9. It can be observed that the moisture content shows a rapid

decrease when diffusivity is dependent on temperature and diffusivity is dependent

on moisture and temperature were taken in the model. This profile identifies that the
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variation in moisture and temperature inside the product influences liquid diffusivity

movement to the surface, which affects the rate of moisture diffusion in the food

and is consistent with experiment findings [3]. From Figure 3.9, at the beginning of

drying process (0 < τ < 1), the temperature of the food increases slowly; at this

time, most of the heat is used to evaporate water at the surface. About 70% of the

water has evaporated. For a fruit such as mango, with high sugar, the glass transition

temperature Tg is very low [9], at the beginning when the temperature is at Tg, the

food is in the glassy state. At this Tg, diffusivity increases significantly (Figure 3.8).

This increase allows the movement of water molecules to increase more freely, hence

the moisture content reduces rapidly within this period. At the end of drying, when

moisture becomes low, most of the heat is used to raise the temperature of the fruit,

hence temperature rises rapidly (1.3 < τ < 2). At this stage, the fruit is in the

rubbery state, and molecule movement is low at this high viscosity [1]. This leads to

a slow reduction in moisture at the end of drying.

In order to understand the glass transition phenomena, we used the diffusivity

D̃(T ,M) in the model. We have little direct evidence of the biological mechanisms

of drying behavior unless a morphological study is done. However, conclusions from

the physical data can be drawn in the light of existing knowledge in biology. For

example, cases based on a value of glass transition beginning at temperature 25oC

with moisture content 25% are given by [96], so we change the diffusivity D̃(T ,M)

using a logistic function for a smooth approximation to a step function, with the value

of K=0.5. The transition occurring at 25% moisture, gives

D̃(M,T ) = D1 +D2Tanh(K × (M − 0.25)), (3.58)

with D1 = 667.067 exp(
−0.090625

M
) exp(

−2044

30T + 303
)

and D2 = 267.065 exp(
−0.090625

M
) exp(

−2044

30T + 303
)

Based on values of glass transition that begins at temperature 25oC with moisture

content 25% [96], the value of diffusivity against moisture and temperature is given

by Figure 3.10. From the figure it can be observed that diffusivity is increased when

the temperature exceeds the glass transition and continues to increase with a rise in

temperature. It is noted that, at certain levels of moisture content, diffusivity starts

to slow down because movement of water molecules is decreased.
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The region of moisture at around 25% where the glass transition is evident is

given by Figure 3.11. From Figure 3.11, it can be observed that moisture drops

rapidly (point A) near the surface when the glass transition happens at time τ = 0.8.

This is consistent with the experiment finding [67] that glass transition occurs at the

end of drying. The contour plot of the region where the rubbery and glassy state
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Figure 3.12: Contour plot of the region showing the rubbery and glassy states.

is given by Figure 3.12. At the centre the transition from rubbery to glassy state

happen at time (τ = 0.81) but at the surface this transition at time τ = 0.65. From

the plot it can be seen that the transition from rubbery to glassy occurs at the end

of drying.

3.7 Model validation

Closely coupled with an accurate formulation of the problem is validation of the model

computations. This can comprise a mesh convergence study, checking for mistakes,

checking if the results can be explained using common-sense physics and comparing

the results with experimental data.
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3.7.1 Time step and numerical accuracy

In simulations, convergence of the numerical results was verified through mesh con-

vergence, going up to 500 nodes in the 1 non-dimensional thickness to achieve a sta-

tistically accurate and converged solution. The input parameters used in this study

are shown in Table 3.1. The number of nodes analysed include 50 and 500. The time

step used in the simulation is 0.03 in terms of non-dimension time steps. Simulation

of system (equations (3.18)-(3.23) and (3.46)) were used for constant diffusivity and

results obtained using ODE45. Figure 3.13 illustrates the effects of changing the

number of nodes on moisture and temperature distribution. The effects of changing

the numbers of mesh on moisture and temperature gives an absolute error of 10−3.

From this plot, the results for various numbers of nodes agree well.
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Figure 3.13: Convergence checks for different numbers of nodes and mesh refinement.

(a) Evolution of moisture and temperature at the surface position (b) a magnified

region to show the detail more clearly.

The numerical test was also conducted using different time steps: fixing the value

of the node as 500, with time steps of change from 50 to 100. Figure 3.14 illustrates

the effects of changing the number of time steps on moisture and temperature. The

effects of changing the number of time steps on moisture and temperature gives an
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absolute error of 10−6. From this plot, the results from different numbers of time

steps agree well.
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3.7.2 Comparison with the literature data

Many authors report results from drying experiments; these differ in terms of food

types, geometrical shape and range of air temperature, air humidity and air velocity.

In this section, as well as the numerical simulation carried out, a comparison is

undertaken with the specific aim of verifying the model. This was attained by checking

the agreement between the model’s theoretical prediction and a set of experiment data

found in the open literature for the drying of fruits and vegetables.

In synthesis, the non-dimension equations (3.18)-(3.23), together with equation

(3.46) for constant diffusivity, represent a general description of food drying be-

haviour. The non-dimension numbers included in this equation Sh, Le, Nu and

λ used in numerical solution to predict heat and mass during food drying, as given

in the Table 3.1. Comparison was made with Pavón et al. [90], who conducted a

non dimensional analysis for drying heat and mass transfer during the drying of food,
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Figure 3.15: Comparison between numerical solutions for average moisture with ex-

perimental data from the literature by Pavón et al. [90] and Velic et al. [118].

Dimensional parameter values for our model given by Sh = 20, Le = 5, Nu=0.3,

λ = 0.5.
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along with Velic et al. [118]. An experiment test was performed on mango slices to

find the average moisture and temperature evolution during drying, with air temper-

atures 70oC and 50oC, slab thickness 0.75 and air velocity 1.75 m/s, and by Velic et

al. [118] for drying apple slices with air velocity=1 m/s, temperature=60oC, Relative

humidity, RH=9%, length=5mm. Their results were compared with our numerical

solution. Figure 3.15 shows the comparison between the experiment results of av-

erage moisture and model prediction without any parameter adjustment. There is

remarkable agreement at the beginning, especially with Velic et al. during the first

non dimensional time 0.4 when experimental data and theoretical predictions overlap.

Later on, a slight deviation with Velic et al. can be observed but there is an overlap

with Pavon et al..
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Figure 3.16: Comparison between numerical solutions for surface temperature with

experimental data from the literature by Pavón-Melendez et al. [90]. Non-dimension

parameter values for our model are given by Sh = 20, Le = 5, Nu=0.5, λ = 0.5.

Figure 3.16 shows the comparison for surface temperature experiment data (Pavon

et al. 70oC and 50oC, thickness=0.5cm air velocity=1.75m/s) with model prediction

at the surface. Good agreement is observed at the beginning, but deviating for the
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middle non-dimension time before the trends becoming similar at the end. From

this Figure, some difference can be observed at the end of drying where our model

predicts a slightly higher temperature, but the difference is in the magnitude of the

experiment dispersion. A slight deviation can therefore describe the effect of shrinkage

in our model at the end of drying.

In order to make more comparison with the other shrinkage model, the numerical

results of predicted moisture profile during the drying of apple, based on Crapiste et al.

[29] in terms of reduced coordinates following shrinkage, are shown in Figure 3.17(b).

The moisture profiles are shown versus the non-dimension spatial coordinate x =
ξ

Lo

.

The numerical solutions are provided by Chemkhi et al. [20] for the drying of potato

(Figure 3.17(a)). The numerical solution of this model is shows in 3.17(c). From

Figure 3.17, we can conclude that the shrinkage conditions show a similar pattern but

the models differ from each other. Chemkhi et al. consider elastic deformation, and

Crapiste et al. consider employing density values to account for shrinkage velocity as

a function of moisture content. It is noted that Crapiste et al. consider an isothermal

model, i.e. without the effect of temperature.

3.8 Summary and conclusions

We have developed a mathematical model describing simultaneous heat and mass

transfer processes with the effect of shrinkage during the drying of food products with

high moisture content. The shrinkage condition was developed on the basis of a simple

mechanism of volume of evaporated water that takes place during drying. In this

model, the shrinkage effects were put into models of heat and mass transfer without

resorting to any externally imposed empirical correlation. A numerical solution of

the model equation was produced and temperature and moisture distribution with

the embedded effect of shrinkage using direct conservation were predicted.

First, we studied the case for diffusivity as constant. Using a numerical solution,

the behaviour of moisture and temperature subject to shrinkage was predicted for

constant diffusivity. We show that moisture content decreased more quickly than in

the non shrinkage model (chapter 2), which concludes that the model with shrinkage

effect needs a shorter time for drying and is consistent with experiment findings
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Figure 3.17: Simulated moisture content profiles versus x of the 1D moisture transport

problem. (a) Chemkhi et al. [20], (b) Crapiste et al.[29], (c) this model.
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[122, 107]. An example results in giving the shrinkage values from 1.0 to 0.28 for

the initial moisture content M0 = 0.8. In an extreme case, in which all liquid in

the product is removed, shrinkage is about 72% of initial volume. Our model is

consistent with the experiment findings by Yan et al. [132], which show that a mango

slice shrank during drying to 17% wet base (83% of initial volume), and a banana [55]

shrank to 77% of its initial volume. Results show that the model incorporating the

effect of shrinkage is capable of describing the behaviour of moisture and temperature

in the food during drying.

Experiment results from [97, 95, 71] indicate that diffusivity increases with a

higher drying temperature, which speeds up the drying rate [95, 67]. Reduced mois-

ture content will increase the glass transition temperature [97] and decrease the drying

rate. Based on the experiment results, the model formulation was further extended

to account for differences in diffusivity. This was achieved by replacing the constant

diffusivity (D0) with an appropriate functional form. Modification of diffusivity was

put into the model and we studied cases in which diffusivity was dependent on tem-

perature and cases in which diffusivity dependent on moisture and temperature. Sim-

ulations were presented, showing that the moisture decrease is profoundly altered by

these effects, reducing much faster than constant diffusivity. This is consistent with

the findings in our heat and mass transfer without shrinkage (detailed in §2.3.5),
that moisture decreases much more quickly, compared to constant diffusivity. These

simulations clearly demonstrate the important of considering the effect of diffusivity

within drying.

The shrinkage effect was developed, on the basis of a simple mechanism of volume

of evaporated water that takes place during drying and is not dependent on data from

experiment. This is one of the strengths of the model and comparison with experiment

findings shows a good correlation in term of moisture and temperature. A further

strength of our model is that we are able to describe shrinkage phenomena with

relatively few parameters. However, there are some weaknesses. Our model makes

no distinction between the region inside the tissues, which is present as cellulose

capsules that contain the cell wall, cell membrane and vacuole: these phenomena are

combined in a single lumped parameter. It would be interesting to see, by modelling

the effects separately, which of these enable the interaction between the regions to be

88



captured. During drying of heat and moisture sensitive products, the model has to

consider external and internal limitations to mass and heat transfer on material level.

This could be addressed by developing a new continuum model where each effect is

modelled separately by recognising the heterogeneous properties of the tissues. This

could then be compared to our continuum single phase model.

In spite of its weaknesses, the model will be improved on the basis of more so-

phisticated mathematical modelling to incorporate the two-phase (or porous) nature

of the food-stuff with water and temperature simultaneously moving through both,

solid food-stuff and void space (water vapour). Such a formulation may give insight

into the limitations and applicability of homogeneous single phase models.
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Chapter 4

A Multiphase Model for Drying

Tropical Fruits

4.1 Introduction

In chapter 2, we describe how a homogenous model can be used to study the movement

of water and temperature within a slab during drying and, in chapter 3, we include

the effect of shrinkage into the model. The model is useful for describing certain

aspects of the movement of water but there are several weaknesses that need to be

addressed. One of the main problems with the homogenous model is that we cannot

easily include detailed information relevant to the ongoing interaction between each

of the phases. In the homogenous model, a single aggregate phase was considered.

It is known that fruit contains water, air spaces and, under drying, the movement of

water is not just in terms of the liquid phase but also in the vapour phase. Additional

transfer mechanisms other than diffusion may be required to describe the movement

of liquid water within general tropical fruit.

Possible modelling of these processes includes the use of a multiphase model frame-

work. In this chapter we develop a model to investigate the mass and heat transfer

phenomena during drying of fruits by developing a representative model relevant to

tropical fruit based on their cellular structure. By initially investigating between

individual cells, we can assign specific properties to each phase, and incorporate sub-

cellular features within a multi-phase model. This allows the study of water movement
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in several phases, for example, a liquid phase and a vapour phase; these will form the

basis of a multiscale model of movement of water during drying. We seek a continu-

ous representative model for drying fruit based on the transfer of water between the

main constituents when viewed at the microscopic scale. The macroscopic properties

of the fruit will depend on the various microscopic histological and cellular features

[78]. Each material constituent is considered as a distinct phase within the multiphase

material with attendant constitutive laws describing its material properties and its

interaction with the neighbouring phase. Interaction between neighbouring phases,

can be incorporated by introducing an appropriate source/sink term into the appro-

priate mass balance equations. Fruits in general have a micro-porous structure; in

this chapter we adapt a porous media approach to describe the movement of water

vapour within the air spaces, together with diffusion processes to describe movement

in a liquid water phase.

This chapter consists of two sections. The first part of this chapter briefly reviews

the properties of food structure. In the second part of this chapter, the mathemat-

ical formulation of the drying processes of fruits, incorporating the heterogeneous

properties of the tissues and complex cellular structure, is recognized and simplified

to a representative physical model. Based on these basic concepts of cellular struc-

ture, a representative macrostructure model for the multi-phase transport of water

relevant to tropical fruits is developed. This model takes into account mass transfer

through cellular membranes and diffusion through intercellular spaces, based on the

microstructural properties of the fruit tissue.

4.2 Cell Level Structure of Tropical Fruits

There are two basic scale level approaches to the modelling of dehydration processes:

a macroscopic approach and a microscopic approach. For a macroscopic approach we

assume the product is homogenous and isotropic on the macro scale. This modelling

is carried out when water diffusivity Deff is taken as a single average of material

property. On the other hand the microscopic approach recognizes the heterogeneous

properties of the tissues and complex cellular structure, a framework that is then

simplified to provide the basis of a representative model. The alternative approach is
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concerned with the structure of food material at the microscopic level as deformable

cellular vegetable/fruit tissue. The microscopic plant cell will be considered as a

parenchymatic cell (vacuole and cytoplasm) and intercellular space (void), separated

by cell membranes and cell walls.

In this section, we give a short description of this cellular system and the properties

of its main components. It is important to identify the main modelling components.

The tissue is viewed as a random aggregate of parenchymatic cells and intercellular

spaces, with the following characteristics. A representative cell of this type is like

a cellulose capsule filled with liquid. A thin cell wall composed of cellulose and

other polysaccharides envelops the cell. The porosity of such cell walls is high, and

correspondingly has high permeability to water, so that water retention occurs mainly

by surface tension effects. Inside the cell wall and enclosing the cytoplasm there is

also a semi-permeable membrane, called the plasma lemma. Within each cell, the

cytoplasm contains a variety of organelles related to the metabolic activity of the

cell, such as the nucleus, mitochondria and others; it is internally bounded by a

membrane known as a tonoplast. Inside the tonoplast there is the vacuole, which has

the highest water content of the cell phases described, reaching levels of about 98%,

together with sugars, organic acids, salts and colloidal materials. The membranes

are semi-permeable and with the vacuolar solution solute concentration, this results

in an osmotic effect. The water chemical potential external to the vacuole generates

hydrostatic pressure, which maintains the protoplast firmly pressed against the cell

wall and hence keeps the tissue firm. This means that, loss of water is accompanied by

a loss of internal pressure, with the tissue becoming flaccid. This pressure is known as

turgor pressure and plays an important role in the rheology and texture of the tissue

[87]. The shape of vegetal cells is polyhedral [73] with a variable number of faces

ranging from 9 to 20 averaging 13.8, and high number of five-edged faces, as shown in

Figure 4.1. In addition, there are protoplasmic connections or plasmodesmata that

connect the protoplasm of joining cells.

Surrounding the cells are intercellular spaces (pores) that are randomly distributed

among the cells. Their size and number depend upon the product considered; in

apple tissue the pores are large and interconnected, while in potato they are tiny and

isolated ([98]). Most fruits have void spaces that range between 2 to 10% but some
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Figure 4.1: Structure of Plant Cell [114].

fruits such as apples and pears, have up to 25% void spaces [101].

A consideration of cell structure is a prerequisite to an understanding of the trans-

port mechanism for modelling. The structure of many hydroscopic materials such as

food products is basically an array of cells (Chen and Pei [21]). Although individual

cells are very similar in nature, the tissues may differ widely in terms of porosity and

water content. The intercellular spaces between the tissues may be interconnected

and filled with air. A further model relevant for fruit is that provided by Ho et al. [57],

who studied microscale modelling in pear tissue. This model represents the structure

of fruit tissues using Ellipse tessellation before modelling the gas transport in pear

tissues. Gas transport is modelled by a diffusion equation incorporating gas trans-

port via pore, cell or cell wall processes and interior cell reaction processes. They

found that filled intercellular spaces are thought to be the main pathways the gas

transport (CO2 and O2) that plant organs need for respiration. They also found that

gas is transported within the liquid phase by transfer from cell to cell. Following this

mechanism, we consider the transport of water (liquid and vapour) and will examine

the two different pathways: intercellular space in term of vapour transport and, from

cell to cell, in terms of liquid transport.

The application of the multiphase model using porous media models of drying of

food has become important. These models have been successfully been utilized in

analyzing heat and mass transport problems during drying, and important findings

have been obtained. Thus, to reach our goal of understanding water transport during
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the drying of tropical fruits, we start to consider the tissues as a porous medium

and look into how cellular structure affects such transport. Following all the studies

in literature, and including cellular features, in the next section we develop a model

based on this multiphase model.

4.3 Model Development

The work contained in this chapter uses models developed from a multiphase ap-

proach; each material constituent is considered as a distinct phase within the multi-

phase structure with constitutive laws describing the material properties and its inter-

actions with neighboring phases. Formal averaging techniques were not used in this

thesis as we formulate the process in macroscopic quantities, from the precise details

at the microscopic level, based on information from previous work ([28, 43, 85, 86]).

The drying process is taken as simultaneous transport of heat, momentum and mass

through a two phase porous medium exposed to convective heating at its surface.

A slab of tropical fruit is modelled as a matrix of cells and a void volume, formed

by pores. The basic two-phase transport of water vapour, as a mixture of air and

water vapour through the pores is considered as flow through a porous structure, that

interacts with the cell structure.

Structural heterogeneity of fruit tissues brings additional complexity to water mi-

gration in a porous solid system. Cellular fruit tissues are taken as a combination of

cell body, cell wall and membrane and intercellular space as shown in Figure 4.2 and

as given by [114]. Water can migrate out of the cell in three possible ways: transmem-

brane transport through tonoplast and plasmalemma membrana boundaries, sympa-

lstic transport involving transport of water from one cell directly into another by

means of small channels (plasmodesmata) and apoplastic, which is defined as move-

ment of water into the cell wall and the intercellular free space. According to Nobel

[86], the symplastic flow may be generated from deeper cells towards the surface of

the tissues by differences in cellular pressure. The analysis is confined to that part

of the drying process in which most of the cell membranes remain intact and the

structure prevails.

The motion of liquid water and water vapour through the cellular structure is
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Figure 4.2: Mass transport pathways in the cellular structure of plant cells [114].

Figure 4.3: Drying process: from cellular level to macroscopic level [92].
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shown in Figure 4.3, to illustrate how the macroscopic behavior of the drying process

is related to cellular scale phenomena. During active drying processes, the principle

transport of water in pores is through water vapour and this is taken to be the mecha-

nism. Information on water transport within a detailed cellular structure description

will ultimately be helpful in understanding the processes of drying at the macroscale

level. We construct the theory of previous study of food structure, starting from a re-

alistic picture of cellular tissue. A sketch of the macrostructure of an unconsolidated

porous medium is shown in Figure 4.3 to distinguish the pores (intercellular space)

and the cell. In this network, each pore is connected with its neighboring pores. The

drying transport parameters can be identified and obtained as macroscopic proper-

ties by experiments. However, the physical effects of drying are on the microscopic

level and modelling can be applied to help predict this physical effect, either directly

or indirectly. Due to the difficulty of observing these phenomena by experiment at

the pore scale, modelling of drying is also needed to provide the link to macroscopic

drying behaviour, which is accessible experimentally.

Moisture in the drying of fruits is taken to exist in three categories: water vapour

in the pores, free liquid water inside the individual cells and bound water held within

the solid cell structures. The main assumptions for the model are based on the most

physically significant aspects under drying conditions from experimental studies.

(a) Tropical fruits have an initially high moisture content which reduces significantly

during the drying process.

(b) The drying process is maintained with moderate and sustained heating, typi-

cally for several hours.

(c) The internal structure of the food is cellular with its integrity maintained by

internal cell walls/cell membranes and internal cell pressure(turgor). Turgor

pressure is the main pressure on the cell contents determined by the water

content in the vacuole and resulting from osmotic pressure(hydraulic pressure)

(d) Shrinkage can be considerable in some fruits as a result of drying that reduces

the volume of water within the fruits. This is moderated by retention of water

within some internal elements (bound water) and cell structure. Shrinkage is

neglected in this model in the first instance.
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(e) Bound water will be maintained by strong enzyme/chemical or biological bonds

associated with internal structures within the cell. Water content, such as

that contained within cell cytoplasm, that is relatively mobile is taken as ’free

water’. Free water exists within the structures of the vacuole and is available

for transport through the cell wall by the diffusion process or through cell pores.

Bound water may diffuse into the structures holding free water at significantly

low values of free water concentration.

(f) As a result of turgor pressure, a differential of pressure will exist between the

cells with the intercellular space.

(g) Cell structure incorporates interconnected pathways of intercellular space con-

taining water vapour.

(h) The local differential in temperature may exist between the intercellular water

vapour and the cell during active drying from latent heat effects and from water

evaporation.

(i) Intercellular water content during drying is dominated by water vapour; satu-

rated water and associated capillary effects are negligible [37].

The macroscale representation of the physical structure associated with general

foodstuffs and tissues for multicomponent systems have been addressed by numer-

ous authors (e.g. Wood et al. [127], Whitaker [126], Datta [32]). In these papers,

the processes of averaging or homogenisation from the cell or microscale processes

to obtain macroscopic representations of processes are considered. Typically, mi-

croscale processes give rise to suitability modified diffusion, convective or sources or

sink mechanisms on a macroscale, involving internal structurally related ’effective

parameters’.

Following the basic concepts, we identify a representative macrostructure model

for the multiphase transport of water relevant to tropical fruits in a typical drying

phase. Key characteristics of the macroscopic models are noted.

(1) In the first instance the microstructure of the cellular and membranes are taken

to provide sufficient support for shrinkage to the macrostructure to be negligible

during drying.
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(2) Intercellular space is sufficiently interconnected to provide a porous structure

characterized by the porosity ϕi and an effective permeability ki.

(3) Water transport in the intercellular spaces is as water vapour in a gas phase.

Water in a saturated phase and associated capillary pressures are taken as

negligible. The macroscopic representation of the internal cell structure is taken

to comprise water, solid cell tissues and air. Compared with the water and solid

phases, the air mass is taken as negligible (
ρa
ρw

<< 1). The moisture levels within

the cell are recognised as attributable to water content within the internal cell

structure and the distinctions between free water and bound water are identified.

Internal water mass transfer mechanisms (Kiranoudis et al. [71]) recognize that

the availability of water within cell tissues on a macroscale can be associated

with free and bound water phases. Within the initial phases of drying it is

anticipated that transfer of moisture within the cell walls will be dominated

by the diffusion of free water. At a lower moisture level, following significant

drying, the more tightly bound water within the cell tissues must be converted

to free water before further diffusion of water can occur. These processes would

be important in the later, and much longer stages of drying to reduce residual

levels of moisture.

(4) Transport of simultaneous heat and mass transfer in general food processes,

where the food matrix is taken as a porous media, has been reviewed by Datta

[32]. Models range in physical complexity from an elaborate multiphase porous

medium that includes evaporation down to simple single phase isothermal mod-

els. Application of simple models to a range of experimental cases identifies the

possibility of improving our fundamental understanding of food processes but

depends on key effective parameters, optimised for the underlying process and

which restricts their general applicability.

4.3.1 Three Compartments Representative of Macroscopic

Volume

We identify a macroscopic model for the liquid content within the representative

volume that falls into three categories shown schematically in Figure 4.4 as a three
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compartment model. The component parts are identified as:

Figure 4.4: Macroscopic volume representation of three compartment model.

(a) Water vapour in the intercellular space that is transported by convective (pres-

sure driven) and diffusive mechanisms.

(b) Bound water within the intracellular structure that is strongly linked to the

internal cell structure but may be released by a local diffusion processes to the

free water component.

(c) Free water retained within the intracellular structure that is readily available to

be transported by cell to cell diffusion. In addition, water will be transferred to

the intercellular space by diffusion through the wall of the space and membrane

or from release by pore cells (plasmodesmata).

In a macroscopic representation, any typical volume is taken to comprise an inter-

cellular space and an intracellular cell associated with free and bound water regions.

Volume fractions for these three compartments are denoted by:

εi=Volume fraction of intercellular space;
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εf=Volume fraction of the free water region within intracellular cell-comprising

air, dry cell tissues and free water;

εb=Volume fraction of the bound water region within the intracellular cell-

comprising bound water, dry cell tissue and air.

The total volume fractions provide a restriction

εi + εf + εb = 1.

In a non-shrinkage model, these are each taken as constant, although the individual

composition of air and water within components will vary through the drying process.

For a tropical fruit, typical values are εi=0.15-0.33, εf=0.6-0.9, and εb=0.1-0.2 (see

[72]). These values are often characterized by the type of fruit and the ripeness stage

of the fruit [72, 133]. Within the intracellular cell/tissue we separately identify com-

ponents of dry solid, water and air but recognise the difference in internal structures

where the availability of water for transport is given in terms of free water and bound

water regions [44]. Hence we identify sub-regions as indicated in Figure 4.4, for model

development.

Free water regions:

εfw=Volume fraction of water/unit volume within the free water region;

εfs=Volume fraction of solid/unit volume within the free water region;

εfa=Volume fraction of air/unit volume within the free water region.

A volume constraint is

εf = εfa + εfw + εfs.

Similarly within the bound water region:

εbw=Volume fraction of water/unit volume within the bound water region;

εbs=Volume fraction of solid/unit volume within the bound water region;

εba=Volume fraction of air/unit volume within the bound water region.
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A constraint is

εb = εba + εbw + εbs.

We consider intercellular space as an interconnected porous media containing wa-

ter vapour with density ρi varying within the foodstuff. Low velocity of air flow is

anticipated and, correspondingly compressibility effects are negligible. For a non-

shrinkage model, the porosity of the intercellular space is taken as constant εi = ϕi.

Within the drying process, we anticipate ρa << ρw and the air phase within the

intracellular cell/tissue provide only minor dynamical or thermal impact and they

are neglected where possible. The range of temperature will provide minor changes

in density of liquid water and tissue but, compared with other changes, these are

consistent with those of other authors [44, 111], taking ρw and ρs as constant.

Moisture content is defined as the quantity of water present in the moist sample.

Two common ways are used to express the moisture content of a material in food

science literature, dry-basis moisture content and wet-basis moisture content. The

wet-basis moisture content expresses the ratio of water mass to the total mass of

the food and the dry-basis moisture content expresses the ratio of the water mass

present in the material to the mass of the dry matter. Useful related dependent

variables enable comparison with previous one component models in food systems

and introduce the non-dimensional moisture content (dry basis), gives

Mf =
εfwρw
εfsρs

, (4.1)

Mb =
εbwρw
εbsρs

, (4.2)

Mi = ρiϕi. (4.3)

An overall average moisture content (dry basis) is given by a composite moisture

value

M =
ρiϕi + ρw(εfwεf + εbwεb)

ρs(εfsεf + εbsεb)
.

This can be usually written as

M = αiρi + αfMf + αsMb, (4.4)

with

αi =
ϕi

ρs(εbsεb + εfsεf )
, αf =

1

1 +
εbsεb
εfsεf

, and αs =

εbsεb
εfsεf

1 +
εbsεb
εfsεf

. Limiting cases, of the
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above identified for later comparison with simpler models, will be discussed later in

chapter 5.

(a) Taking the case of negligible intercellular space, ϕi → 0, gives αi → 0 and gives

two interacting diffusion processes within free and bound water. Thus, a global

moisture content becomes

M = αfMf + αsMb.

(b) For a case of negligible bound water state, then εb → 0 so αs → 0. This gives

αf = 1, and a global moisture content based on water vapour and cell water

content by

M = αiρi +Mf .

(c) For the limit of a single composite food comprising free water, solid and air

only, such that no pore space is presented and only free water exists εb → 0 so

ϕi → 0, gives a global moisture variable

M =
ρw
ρs

εfw
εfs

=Mf .

4.3.2 Mass transfer in drying fruit

We will consider modelling the individual transport mechanism within the food. Dur-

ing drying, water vapour is taken to collect within the intercellular network of spaces

and to be convected to the food surface by a gradient of intercellular pressure Pi.

Transfer of water between cells is ongoing but is anticipated to be less important dur-

ing active drying processes as the flux of water vapour transport through the porous

structure will be more significant.

Water vapour density ρi and pressure Pi are affected predominately by the following:

(a) Water is released from cells through membranes from intracellular cells to the

intercellular phase regions. The release of water locally at cell level will depend

on a local cell pressure difference Pc − Pi, where Pc is the cell turgor pressure.

(b) Water is released across the cell membranes bounding the intercellular space,

arising from local diffusion processes through the membrane and dependent on

the difference in local moisture levels.
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Global models for transport of fluid (liquid and gas) through a porous food structure,

for low Reynold number flow, have been well documented in terms of a Darcy Law

[32]. For the structure of typical fruits, it will be assumed that the intercellular space

comprises interconnected pores characterized by a porosity ϕi and permeability to

gas flow k. Fluid flow within the intercellular space is assumed to be in a gas (water

vapour form), with negligible unsaturated water; corresponding capillary forces and

hydrostatic pressure are negligible.

Mass conservation for water vapour in the intercellular space is given by a general

mass conservation equation [85] for a porous medium as

∂(ϕiρi)

∂t
+∇.n i = jip + jic, (4.5)

where ϕiρi is local mass flux of water vapour in the intercellular space and n i is a

mass flux defined by

n i = ρiu i + J i, (4.6)

where u i is convective flow of water vapour and J i is diffusive flow of water vapour.

The source terms in equation (4.5) comprise:

jip=mass flux of water vapour/unit volume, release into intercellular space due

to release of water through cell membrane and cell wall pores, arising from

internal cell pressure,

jic=mass flux of water vapour/unit volume, released through the wall/membrane

of intracellular space by diffusion.

According to Ho et al. [57], the intercellular space existing within a highly complicated

network of pore channels can be considered as such porous media. The convective

flow of water vapour ui within the intercellular space is anticipated as driven by an

internal pressure gradient and resisted by viscous resistance from local viscous shear

forces arising from the internal connective geometry. With negligible shrinkage and

negligible surface tension force, as supported by Datta [32] for the drying of wet food,

capillary pressure is very small and consistent with the model developed. Appropriate

transport of water vapour in porous material is due to pressure and provided by a

Darcy Law relation

u i = −ki
µi

∇Pi, (4.7)
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where ki is the permeability of the food in the intercellular space and µ ia the viscosity

of intercellular space.

A further mechanism of mass of flux of water vapour arises from any moisture

gradient and will add to the convective flux. In this case, Bird et al. [11] modelled

flux of water vapour that can be approximated by Fick’s Law of diffusion as

J i = −Di∇ρi, (4.8)

where Di is intercellular space diffusivity. Such an approach follows the approach

of Crank [26] for a vapour diffusion equation through fabrics. A composite mass

conservation equation for vapour becomes

∂(ϕiρi)

∂t
= ∇.(kiρi

µi

∇Pi) +∇.(Di∇ρi) + jip + jic. (4.9)

We note, according to Datta [33], if the pores are not large enough, the diffusion of

water vapour in pores can be neglected. Curcio et al. [31] neglected diffusion of water

vapour within dehydrated material where the void fraction value was less then 0.3.

a. Bound water

Within the cell structure, a small proportion of the water is identified as con-

strained by strong bonds to the cell structure and not freely available for transport

by the more dominant diffusion mechanisms until water content is relatively low. Few

studies have considered the migration of bound water, even though the transport char-

acteristics are different from free water migration. Typically this bound water can be

considered mobile only after conversion to the free water state and prior to removal

processes that are active from that state (Kiranoudis et al. [71]). A common assump-

tion is that the decrease in the drying rate at low moisture content is caused by the

decreasing availability of free water molecules (Xiong et al. [129]; Kiranoudis et al.,

[71]). Hence, the reduced drying rate results from a decreasing driving force, rather

than from a decreasing diffusion coefficient is generally assumed. Many researchers

have also tried to explain the reduced diffusion at low moisture content as due to the

increase in energy requirement as drying progresses. As moisture content drops, such

as through drying, the water molecules are more firmly bound to the material and

more energy is required to remove the absorbed water molecules. This is illustrated,

for example, by McMinn and Magee [77], Wang and Brennan [124], Xiong et al. [129]
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where the effective diffusion coefficient remains constant with moisture until critical

moisture content is reached. Below this critical moisture concentration, the diffusion

coefficient shows a sharp decrease with decreasing water concentration. Following the

model, the portion of free moisture content is initially very large. The free moisture

molecules diffuse through the bulk and evaporate at the boundary of the material.

The assumption is that only free water molecules are diffusing, see (Wang and Bren-

nan [124], Xiong et al. [129]). As drying continues, the bound moisture molecules

are in the majority. Then the conversion between bound and free water controls the

overall mass transfer phenomenon, leading to the decreased drying rate.

The interaction of bound water within the macroscopic multiphase model is taken as

∂Mb

∂t
= −rb = −(n1Mb − n2Mf ). (4.10)

In (4.10), Mb is the moisture level in the bound state and rb is a corresponding

conversion rate. n1 and n2 are kinetic constant define by Kiranoudis et al. [71], a

model that depends on local moisture levels for free and bound water content is given

by a weighted balance between the local levels of bound and free water.

The difference between the two rates equals the decrease in bound water and the

increase in free water inside the particle. This model recognizes that bound water

within the cell structure will be controlled by biological (e.g. enzyme) systems. This

binding of water to the cell structure is responsible for the high residual water content,

even after significant drying and is responsible for maintaining much of the structural

integrity of the food in the later stages of drying. Correspondingly the level of air/

shrinkage associated with the bound water region is anticipated to be negligible, other

than in the final drying state. Therefore mass conservation of water in the bound

phase is taken from equation (4.10). Equilibrium is given by relative moisture levels

Mb = (
n2

n1

)Mf . If the value of the kinetic constant of bound water n1 is large, little

bound water is present.

b. Free water

A relevant transfer of water within the intercellular cell structure is given by con-

sidering the more freely available water within the cell and the different transport

mechanisms. It is assumed that only free water molecules are diffusing (Wang and
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Brennan [122]). The driving force for diffusion thus is the gradient in free mois-

ture content. In this setting, it is no longer necessary to assume that the diffusion

coefficient itself depends upon the moisture content.

A cell level model for the localised transport of water within the free water region

is characterized by the following internal mechanisms:

(a) Transport of water through the cell walls and membranes into the intercellular

space. The two main mechanisms for free water transfer are:

i) diffusion across membranes of the intercellular space from relevant cells;

ii) local release of water across membranes because of pressure difference.

(b) Transport of free water from cell to cell through

i) diffusion within the cell matrix;

ii) release of water between cells from local pores within the cell structure.

(c) Interchange of water from the bound state to the free state within individual cells,

which is anticipated to be of smaller magnitude during active drying periods.

The above mechanisms are operational at the microscale and, for the current mod-

elling, must be represented by appropriate models within the macroscale equations.

Formulation of such macroscopic equations for water transport in porous media has

been conducted in detail by Whittaker [126], Slattery [109] and has been used in

macroscopic model development for the water transport relevant to the free water

region.

A mass conservation equation for free water is taken as

ρs
∂Mf

∂t
= −∇.Jc − jip − jic + ρsrb, (4.11)

with

Jc = J α + J β

where J α is the flux of water due to the differential gradient of free moisture level in

the cells, and J β is the flux of water due to differential gradient pressure in cells. jip

and jip are mass flux that release into intercellular space and rb is a corresponding

conversion rate.

In equation (4.11), a model for moisture transfer at the deeper cell to cell level

has been formulated and represented by a macroscopic diffusion equation in terms

of a suitable effective diffusivity. This transport is the transfer of water from one
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cell to another, which requires molecules to cross both the cell membrane and the

cell wall. This transport was included in the effective diffusion coefficient of water,

characterizing the overall cell diffusion process. Correspondingly, the flux of free

water forms a possible gradient of the free moisture level in the cells, and is given by

J α = −ρsDf∇Mf . (4.12)

where Df is effective diffusivity of free water.

A complementary flux of free water through cell wall pores (plasmodesmata) can

be generated by the differential gradient of internal pressure. These give rise to a

mass flux

J β = −DpρsMf∇Pc, (4.13)

which is dependent on the local level of free water(Mf ) and the gradient of cell

pressure Pc. Dp is effective diffusivity of plasmodesmata. Most of this transport is

facilitated by small channels, known as the symplastic pathway [46]. The free water

will be driven from the deeper cell through plasmodesmata (pores) by local pressure

differences between the cells [86]. This assumption was used by Shi and Maguer

[104] and Floury et al. [46] in the modelling of osmotic treatment of cellular porous

material.

According to Nobel [86], the flux of water through the cell membrane under a

chemical potential difference can be modelled using irreversible thermodynamics and

this can be considered to depend on water activity and differences in pressure inside

the cell and the intercellular space. Following this, we assumed that the release of

free water from the cell into the intercellular space arises from differences between

local pressure and moisture level and cumulatively occurs along the interconnected

spaces. Thus, the mass flux of free water is associated with the differential pressure

between the local cell and intercellular space and is taken as

jip = kp(Pc − Pi). (4.14)

In (4.14), kp is a transfer coefficient and a measure of local cell pore permeability,

number density and size.

The local transport of free water from cells across the cell membranes to the

intercellular space will be dependent on the differential moisture levels across the
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membrane. According to Toupin and Marcotte [114], transmembrane transport, de-

fined as exchanges between the cell interior (cytoplasm and vacuole) and the cell

exterior (cell wall and intercellular space) across the cell membrane, occurs in some

instances. Correspondingly a macroscopic average of this cell transfer is taken to be

in the form of a difference in volumetric densities, i.e.

jic = kw(Cfw − Ci), (4.15)

with Cfw as a concentration of water in cell (free water) and Ci as a concentration of

water in intercellular space.

The concentration of water in the intercellular space is given by

Ci = ξρw,

where the density of intercellular space water vapour is given from the two-phase

partition

ρi = ξρw + (1− ξ)ρa.

where ξ is the level of liquid water within the intercellular space.

This gives

Ci =
(
ρi − ρa
ρw − ρa

)
ρw. (4.16)

Concentration of water in the intracellular cell (free water region) is given by

Cfw =
εfwρw

εfs + εfw
.

In terms of free water moisture, gives

Cfw =
Mf

ρw
ρs

+Mf

ρw. (4.17)

A corresponding macroscopic average of this cell transfer is taken

jic = kwρw(η − ξ), (4.18)

where η is the level of free water within the cell, and ξ is the level of the water within

intercellular space and given by η =
Mf

ρw
ρs

+Mf

and ξ =
ρi − ρa
ρw − ρa

.

A composite mass conservation equation for the free water from equations (4.12),

(4.13), (4.14), (4.18) and (4.10) is taken as

ρs
∂Mf

∂t
= ∇.(Dfρs∇Mf )+∇.(DpρsMf∇Pc)−kp(Pc−Pi)−kwρw(η−ξ)+ρsrb. (4.19)
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4.3.3 Heat transfer in drying fruit

On a microscopic scale, heat transfer within the drying of fruit is complex due to si-

multaneous transfer of mass and the multi-component nature of the cellular structure.

Mechanisms that must be considered include:

(a) Convection of heat within water vapour present within the intercellular space,

(b) Conduction of heat within each phase, intercellular space and intracellular cell,

(c) Conversion to water vapour from water within the transfer to intercellular space

through cell walls, cell membranes and cell pores,

(d) Heat transfer between intercellular space and intracellular cell.

Formal development processes for a microscopic model from local cell scale is given

consideration by Whittaker [126] and Slattery [109]. These give relevant theoretical

understanding to the governing balances of energy from a microscale to macroscale

representation and form the basis of the energy equations. Most models of heat

transfer on porous structures in food with interconnected pores assume the liquid

and vapour phases remain in thermodynamic equilibrium at the local temperature

[85, 35, 131, 44] but we note that Dincov [39] used two energy equations in the mod-

elling of microwave heating: one for the liquid and solid phase and a second for the

gas phase. Farkas et al. [43] also used two energy equations, core and crust and the

findings showed that the temperature between these two regions was different. In this

study, the formulation of an energy balance included the possibility that two repre-

sentative temperatures are relevant: a representative temperature Ti of water vapour

in the intercellular space may differ from a representative temperature Tc within the

intracellular cell structure. This will utilize the principle of local non-equilibrium

between the cell and the intercellular space at a given location.

a. Intercellular space energy equation

Within the intercellular space, heat is convected with the Darcy velocity within the

intercellular space and also conducted within the vapour phase. Additional sources

or sinks of heat are identified as
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i) Heat transfer from the intracellular cell [32], and flux given by

qc = hiAspec(Tc − Ti), (4.20)

where hi is an appropriate heat transfer coefficient, which will involve a measure of

the interface area Aspec associated with the porous structure. Inflow of heat is due to

the difference between the temperatures in the intercellular space and the intracellular

tissue structure of the cell.

ii) Heat transfer from water released into the intercellular space from the cell is taken

to be given by a flux

qp = (jic + jip)cpw(Tc − Ti), (4.21)

where cpw is the heat capacity of water. Heat is transported from the intracellular

cell into the intercellular space due to water release from the cell wall pores and cell

membrane.

iii) Evaporation from water to water vapour requires an amount of heat for the phase

transition with a flux

qL = −λ(jic + jip), (4.22)

where λ is the latent heat.

A composite energy equation for the intercellular space is given by a conservation

balance, e.g. see [11], of the form

ϕiρicpw(
∂Ti
∂t

+
ni

ρi
· ∇Ti) = ∇.(ϕiκv∇Ti) + qc + qp + qL. (4.23)

Substituting for the source and sink terms gives an equation (4.20) to (4.22), which

gives

ϕiρici(
∂Ti
∂t

+
ni

ρi
·∇Ti) = ∇.(ϕiκv∇Ti)+hiAspec(Tc−Ti)+(jip+jic)ci(Tc−Ti)−λ(jip+jip).

(4.24)

where ci is the heat capacity of water vapour and will be taken to be the same as the

effective heat capacity of the cell cpw and ni is a mass flux within intercellular space

defined in equation (4.6).

b. Intracellular cell energy equation

Within the cellular tissues, the predominant heat transfer mechanism within the

cells will arise from local conduction within the intracellular cell phase and heat
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transfer within the intercellular space phase. A common temperature associated with

the intracellular cell phase is taken as Tc, arising from the relatively high conductivity

of water and solid tissues. The heat capacity of any air within the cell structure is

taken as negligible.

A corresponding form for the energy equation for the intracellular cell phase, (see [11]

[32] [69]), is given by

(1− ϕi)ρccpw
∂Tc
∂t

= (1− ϕi)∇.(κc∇Tc)− (qc + qp), (4.25)

where cpw is the effective heat capacity of the cell structure and κc is the effective

conductivity. Substituting from (4.20) and (4.21) gives the energy balance equation

(1−ϕi)ρccpw
∂Tc
∂t

= (1−ϕi)∇.(κc∇Tc)−hiAspec(Tc−Ti)−(jip+jic)cpw(Tc−Ti). (4.26)

4.3.4 Initial and boundary conditions

Five second order of differential equations have been derived to describe the heat and

mass transfer in the intercellular space and the intracellular cell. Initially, the food

material is at ambient pressure and temperature conditions, given by Pi(t = 0) =

Patm, Ti(t = 0) = Ti0 and Tc(t = 0) = Tc0.

Depending on the composition of food material, the initial phase of the free water,

bound water and water vapour is estimated. Initially, intercellular space contains air

as given by ρi(t = 0) = ρa. Free water and bound water initial conditions are given

by, Mf (t = 0) =Mf0 and Mb(t = 0) =Mb0.

For each phase in the cellular system, equation (4.9), (4.10), (4.19), (4.24), (4.26)

must be solved, along with the boundary conditions for the spatial distribution. In

order to complete the set of equation listed above, the boundary conditions that

connect the transport equations for three separated phases need to be specified. It is

considered that between these two regions, the intercellular space and the intracellular

cell, there is a transport of water with transmembrane flux transport, such as discussed

in section §4.3. Boundary conditions on the closed boundary at x=0 for intercellular

space and intracellular cell, assuming symmetry condition, the mass and heat flux

are given below,

n.(∇Ti) = 0, n.(∇Tc) = 0, n.(∇Mf ) = 0, n.(∇Mb) = 0, and n.(∇ρi) = 0.
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At the surface, there is an exchange of heat, liquid water, vapour and air. Moisture is

transported to the air from the food surface in either liquid or vapour form, depending

upon the intensity of drying. In the intercellular space, it is reasonable to assume

that the moisture migrates to the interface in term of vapour form, and carried away

by the hot air stream. Following Ousegui et al. [88], the boundary conditions for the

intercellular space at the surface are obtained from flux balances and given by

−hm,v(ρi,sur − Cair) =
kiρi
µi

∇Pi +Di∇ρi, (4.27)

In the intracellular cell, the boundary conditions applied to the external surface of

the food express the balance between the diffusive flux of liquid water coming from the

core of the food and the flux of vapour leaving the food surface that is transferred to

the drying air. The driving force for mass transfer at the interface of the food and the

processing air is given by the difference in the moisture concentration at the surface

and water concentration in the processing air. Assuming that processing air behaves

like an ideal gas, this concentration difference can be expressed by vapour pressure

difference. Correspondingly, the mass transfer boundary condition from intracellular

cell tissues at the surface is given by

−hm,f (Cfw,sur − Cair) = Dfρs∇Mf +DpMfρs∇Pc. (4.28)

Cfw,sur is the relationship between water vapour pressure and concentration of water

vapour in the surface, such as Csur, in chapter 2. The quantities hm,v and hm,f are

associated with the mass transfer coefficient of vapour and the free water phase. The

concentration of bound water only changes due to the conversion between free and

bound water and, with this in mind, only the concentration of free water Cfw is

considered at the surface of the intracellular cell.

An energy balance over the interface, the heat flux arriving at the surface from

the interior of the materials equals the heat flux leaving the interface by convection.

In the intercellular space, the boundary condition becomes

−ϕihi(Tisur − Tair) = ϕiκv∇Ti. (4.29)

If mass is transferred from the food surface to the processing air, heat is needed to

evaporate the moisture at the product surface. It is supplied by processing air so that
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the intracellular cell boundary condition becomes

−(1− ϕi)hc(Tcsur − Tair) = (1− ϕi)κc∇Tc − λ
(
Dfρs∇Mf +DpMfρs∇Pc

)
. (4.30)

The quantities hi and hc are associated with the heat transfer coefficient of the inter-

cellular space and the intracellular cell.

4.4 Non-dimensional formulation

The system of equations that governs the drying process is given in equations (4.9),

(4.10), (4.19), (4.24) and equation (4.26). Free waterMf , bound waterMb, intercellu-

lar space density ρi, intracellular cell temperature Tc and intercellular space tempera-

ture Ti are dependent variables. To simplify the equations for numerical analysis, the

following scaling groups are used, where the overbar corresponds to a non-dimensional

variable,

x =
x

L0

, ∇̄ = L0∇ τ =
D0t

L2
0

,

ρ =
ρi
ρa
, P i =

Pi

Patm

, P c =
Pc

Patm

ρc =
ρc
ρa
, ρs =

ρs
ρa
.

Di =
Di

D0

, k =
kiPatm

µD0

,

T i =
Ti − T0
Tair − T0

, T c =
Tc − T0
Tair − T0

.

In the above L0 is taken as characteristic dimension of the food and D0 a suitable dif-

fusion coefficient scaling. Other source or sink terms associated with the formulation

are

jip =
L2

0

D0ρa
jip, jic =

L2
0

D0ρa
jic,

n1 = n1
L2
0

D0

, n2 = n2
L2

0

D0

(i) Intercellular space-water vapour mass conservation

Substituting these dimensional quantities into the equation (4.9), gives

ϕi
∂ρ

∂τ
= ∇̄.(kρ∇̄P i) + ∇̄.(Di∇̄ρ) + jip + jic. (4.31)
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Choice of a scaling D0 is informed by the drying process to be modelled. If the drying

process is dominated by porous diffusivity(permeability) within the pore space, then

a suitable value is D0 =
kiPatm

µ
, then k = 1 and Di =

Di

D0

=
Diµ

kiPatm

<< 1. If the

drying process dominated by diffusion within pore space, then a suitable values is

D0 = Di, so Di = 1 and k =
kiPatm

µD0

<< 1 . This latter equation is consistent with

the case considered in chapter 2.

(ii) Bound water mass conservation

Substituting dimension quantities into equation (4.10) gives

∂Mb

∂τ
= −n1Mb + n2Mf . (4.32)

(iii) Free water mass conservation

Substituting the dimension quantities into equation (4.13) gives

ρs
∂Mf

∂τ
= ∇̄.(ρsDf∇̄Mf ) + ∇̄.(ρsDpMf∇̄P c)− jip − jic + ρsrb, (4.33)

taking

Df =
Df

D0

, Dp =
DpPa

D0

, and rb =
rbL

2
0

D0

.

The expressions for the transfer fluxes (4.14) and (4.18) become

jip = kp(P c − P i), (4.34)

jic = kw(η − ξ), (4.35)

where

kp =
kpPaL

2
0

D0ρa
and kw =

kwL
2
0ρw

D0ρa
, η =

Mf
ρw
ρs

+Mf

and ξ =
ρ− 1
ρw
ρa

− 1
.

(iv) Intercellular space energy equation

Substituting for the dimension quantities into the intercellular energy equation (4.24)

gives the non-dimensional form

ϕiρ
[
∂T i

∂τ
+

n i

ρ
∇̄T i

]
= ∇̄.(ϕiκv∇̄T i) + hi(T c − T i) + (jip + jic)(T c − T i)− λ(jip + jic),

(4.36)
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where,

κv =
κv

D0cpwρa
, hi =

hiL
2
0Aspec

cpwD0ρa
, λ =

λ

cpw(Tair − T0)
and n i =

n iL0

ρaD0

.

(v) Intracellular cell energy equation

Substituting the dimension quantities into an intracellular energy equation (4.26)

gives the non-dimensional form

(1− ϕi)ρc
∂Tc
∂τ

= (1− ϕi)∇̄.(κc∇̄T c)− hi(T c − T i)− (jip + jic)(T c − T i), (4.37)

with κc =
κc

D0cpwρa
.

(vi) Initial and boundary conditions

P i = 1, ρ = 1, T i = 0, T c = 0, Mf =Mf0, Mb =Mb0.

Boundary conditions on the closed boundary at x=0, assuming symmetry condition,

the mass and heat flux are zero.

n.∇̄T i = 0, n.∇̄T c = 0, n.∇̄Mf = 0, n.∇̄Mb = 0, n.∇̄ρ = 0.

Non-dimensional mass transfer boundary conditions at the surface for free water and

intercellular space, at x = 1, are given by

ρsDf∇̄Mf + ρsDpMf∇̄P c = −Shf (Cfw,sur − 1). (4.38)

and ρk∇̄P i +Di∇̄ρ = −Shi(
ρ

Cair

− 1), (4.39)

with Cfw,sur as discussed in chapter 2 gives

Cfw,sur = f(Mf )β(T sur). (4.40)

Non-dimensional surface convection mass transfer with respect to diffusivity in inter-

cellular space and intracellular cell is estimated by the Sherwood number, given by

Shf =
hm,fL0

D0

Cair

ρa
, Shi =

hm,vL0

D0

Cair

ρa
.

Non-dimensional energy balance at the surface for intercellular space and intercel-

lular cell boundary, is given by

ϕiκv∇̄T i = −ϕiNuiκv(T isur − 1). (4.41)
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and (1− ϕi)κc∇̄T c − λ (Dfρs∇̄Mf +DpMfρs∇P c) = −(1− ϕi)κcNuc(T csur − 1).

(4.42)

Non-dimensional thermal diffusivity evolution with respect to water/vapour diffusiv-

ity evolution in the intercellular space and intracellular cell respectively is given by

κc =
κc

ρacpwD0

, and κv =
κv

ρacpwD0

.

Convection at the surface with respect to conduction evolution for intercellular space

and intracellular cell is given by the Nusset number as

Nui =
hiL0

κv
and Nuc =

hcL0

κc
.

Non dimensional latent heat given by λ =
λ

cpw(Tair − T0)
.

The magnitude of each group was assessed by using literature values of physical,

thermal and transport parameters in the capacity and kinetic coefficient. Information

obtained from dimensionless equations is useful to predict the quantitative behaviour

of temperature and moisture evaluation during food drying. From the dimensionless

analysis some characteristic numbers were deduced. Using the magnitude of these

numbers, it is possible predict the most significant transfer mechanisms that control

food temperature and moisture evolution during drying.

4.5 Equation of state and phenomenological rela-

tions

To supplement the simultaneous heat and mass equations, closure of the system

requires an equation of state and phenomenological physical relationships for the

exchange processes between the intracellular cell and intercellular space.

(i) Equation of state of water vapour.

Water vapour released within the intercellular space phase is of sufficiency low density

such that the water vapour is governed by the perfect gas law, hence

Pi = ρiRTi. (4.43)

116



Substituting a non-dimensional parameter in the perfect gas law gives

P i = ρ
[
1 +

(Tair − T0)

T0
T i

]
. (4.44)

(ii) Phase change.

Evaporation of water into water vapour during frying and drying processes has been

implemented using an equilibrium formulation, whereby water in solid matrix is as-

sumed to be in equilibrium with water vapour in the surrounding air at the surface.

The relationship of vapour pressure and moisture content at equilibrium to temper-

ature is given by a moisture isotherm and can be calculated using the water activity

ratio such as discuss in chapter 2 and defined by

aw =
Pv

Pvs

. (4.45)

Many empirical equations have been developed (see for example [124, 8]) to express

this relationship. Evaporation inside the food domain was ignored in that study

([124, 8]). However, in a recent work by Zhang and Datta [137], the actual vapour

pressure in a fairly rapid process is seen to be lower than that given by equation (4.45).

In most drying and frying processes, evaporation distributed inside the food domain

exists, such as discussed by Zhang and Datta [137] and Halder et al. [53, 54, 51].

This suggests that the measure of vapour pressure and water activity may not be

appropriate in modelling of fast transport processes of water vapour due to the time

taken to reach equilibrium. Zhang and Datta [137], discuss the evaporation rate

using a non-equilibrium approach that has been used in porous media models ([12])

to calculate the evaporation rate as given by

İ = K(Pv,equi − Pv), (4.46)

where K is an empirical constant and Pv,equi is the equilibrium vapour pressure. In a

further investigation by Halder et al. ([52]), it was stated that the most appropriate

value for K to best fit between experiment and simulation is 100s−1(0.01) but Ousegi

et al. suggest that this value is 1s−1. In our modelling, this formulation is appears in

equations (4.14) and (4.18) and is related to the current formulation by

İ = jic + jip. (4.47)
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(iii) Internal pressure Pc

The mechanical and hydraulic properties of plant cells are critically important in

determining both the physiological behaviour of plants and their behaviour in food

processing [121]. The cell hydrostatic (turgor) pressure in intact plants cells was

measured during experiments such as in work by [121, 112]. Most plant physiologists

express hydrostatic pressure values (turgor) as above that of the atmosphere. Values

of turgor in giant algal cells range from 0.1 to 0.6 MPa (100kPa-600kPa) [112]. Turgor

pressure of 0.159 MPa (159 kPa) was measured for kiwi fruit tissue and 0.231 MPa

(231kPa) for melon [100]. In this first instance the turgor pressure Pc remains constant

and above the atmospheric pressure, that is Pc > Patm and given by,

Pc = B. (4.48)

The value for the constant B=0.159 MPa and, in non-dimensional form P c is taken

as

P c =
0.159

Patm

= 1.59. (4.49)

On the other hand, in a simulation study by Ni et al. [84] for high-moisture

material in microwave drying, the pressure increased rapidly during 3 minutes of

drying at about 32kPa but the pressure eventually dropped as moisture was depleted

by the end of drying. Following this, further models relevant to change of pressure

related to the change of cellular volume, such as those discussed in Toupin et al. [114]

and Zhiming and Le Maguer [140], were used. The difference in pressure is evaluated

in relation to the change of cellular volume through a measure of the reversible elastic

properties of the cell walls in the form of an empirical modulus ς ([86]) given by

dPc = ς
dMf

Mf

, (4.50)

where Pc is the osmotic pressure in the cellular cell above atmospheric pressure.

As discussed by Dianty [38], the empirical modulus, ς, is, in general, strongly

affected by the internal pressure. Hence, integrating equation (4.50) yields

Pc = ς ln
Mf

Mf0

+ Pc0. (4.51)

Zhiming and Marc Le Maguer [140], stated at the incipient plasmolysis point where

the turgor pressure is equal to the environment pressure, is given by non-dimensional
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ς=3.5. The value of Pc0=159 kPa, as discussed in the case of constant internal pressure

above. In non-dimensional form, equation (4.51) becomes

P c = 1.59 + 3.5 ln
Mf

Mf0

. (4.52)

An internal pressure Pc will correspond to the osmotic pressure and will reduce as the

water content of cell is replaced by an air phase. On the other hand, the intercellular

space pressure Pi will increase as evaporation takes place in this region.

4.6 Summary and conclusion

In this chapter, we have developed a multi-phase model for the movement of water

and temperature by developing a representative model relevant to tropical fruits that

is based on their cellular structure. We construct the theory of previous study of food

structure, starting from a realistic picture of cellular tissue and the macrostructure of

an unconsolidated porous medium to distinguish the pores (intercellular space) and

the cell. Based on this cellular features, the model was derived using multiphase ap-

proach; each material constituent is taken as a distinct phase within the multiphase

and with the constitutive law describing the material properties and its interaction

with the neighbouring phase. To include interaction between neighbouring phases,

we incorporate source terms jip and jic into the appropriate mass balance equations.

Transfer fluxes jip and jic relates moisture transfer from intracellular cell into inter-

cellular space lies at the heart of this new drying model. This is more relevant than

the development of a formulation analogous to those equations well established for

non-hydroscopic porous media such as discuss in section §1.3.3.
We identify the microscopic model for liquid content within the representative

volume that falls into three categories: intercellular space, free water and bound

water. We have considered the transport of water vapour in the intercellular space

that is transported by convective (pressure driven) and diffusive mechanisms by con-

sidering the existence of intercellular space within a highly complicated network of

pore channels, which can be considered as a porous medium. Free water, which is

retained within the intracellular cell structure, is readily available to be transported

by cell to cell diffusion. The model formulation was further extended to account for
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bound water within the intracellular cell structure. This is strongly linked to the

internal cell structure but may be released by local diffusion processes to the free

water component.

In addition, the free water will also be transferred from cell to the intercellular

space by diffusion through the wall of the space. In principle, this mechanism can be

representation of the physical problem of phase changes between water and vapour

inside the material during the drying process. The advantage of this multiphase

model is that the movement of water can be modelled in greater detail than in single

phase models, as we can track each phase. The ability to view each phase, we hope,

will provide a more realistic interaction between phases as we can track each of them.

Furthermore, we have considered the formulation of an energy equation, with

local moisture equilibrium on the cell scale, but within a macroscopic formulation

that includes the representative temperature within the intercellular space Ti (water

vapour) differing from a representative temperature Tc within the intracellular cell

structure (free water). This will utilize the principle of local non-equilibrium between

the cell and the intercellular space at a given location.

In the chapters that follow, we summarize the mathematical models we have devel-

oped and run a simulation for individual phase variables and consider the interaction

between the intracellular cells with the intercellular space, as well as the effect of

bound water within this cell.
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Chapter 5

Multiphase one-dimensional

isothermal conditions: case study

of mango fruit

5.1 Introduction

The drying of foodstuffs is driven by moisture gradients within the cell matrix from

drying conditions imposed at the surface. This is significantly enhanced by the addi-

tion of heat that also establishes thermal gradients and energy for conversion of water

vapour to increase the drying rate. In this chapter, the multiphase model for dry-

ing under isothermal conditions is presented corresponding to the model developed

in chapter 4. We analyse a mathematical model in order to identify the conditions

under which the movement of water is not influenced by a thermal condition. Our

model simulates the movement of water in terms of both a liquid phase and a vapour

phase within a one-dimensional slab.

In this chapter, two sub-models are evaluated: firstly a simpler two-phase isother-

mal case, where bound water transfer is neglected. The modifying effect of including

bound water transfer within the cellular structure is provided within a three-phase

model. To enable closer identification of the transport mechanism, a one-dimensional

geometry is taken, and this also provides an opportunity for comparison with previous

simple models described in chapter 2.
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5.2 Mathematical formulation

In this section, the formulation presented in chapter 4 is simplified by assuming

that the sample undergoes one-dimensional movement parallel to the x-axis. A one-

dimensional model is employed in the analysis since the sample approximates an

infinite slab of thickness 2L with both ends insulated such as illustrated in Figure

5.1. The food is exposed to an air flow at the surface, for which the temperature is

Tair with relevant relative humidity. Assuming symmetry at x = 0, only half of the

domain requires computation i.e. 0 < x < L and symmetry conditions imposed at

x = 0.

T air

x 2L
x=L

x=0

Figure 5.1: Schematic representation of food drying process

The corresponding set of governing equations for density of vapour ρ in the in-

tercellular space, free water moisture Mf and bound water moisture Mb are given

by equations (5.1)-(5.3) together with equations of transfer flux (equation (5.4) and

(5.5)), in non-dimensional form. There are derived in chapter 4, given from (4.31),

(4.32) and (4.33) together with the equations of transfer flux (4.34) and (4.35).

The mass conservation equation for a fixed intercellular space water vapour becomes

ϕi
∂ρ

∂τ
=

∂

∂x

[
ρ k

∂P i

∂x
+Di

∂ρ

∂x

]
+ jip + jic. (5.1)

The conservation equation of bound water phase moisture is given by,

∂Mb

∂τ
= −n1Mb + n2Mf = −rb. (5.2)

The conservation of free water moisture is given by

ρs
∂Mf

∂τ
=

∂

∂x

[
Dfρs

∂Mf

∂x
+DpMf ρs

∂P c

∂x

]
− jip − jic + rb ρs. (5.3)
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The equation for mass flux of free water is associated with the differential pressure

and concentration between the local cell and intercellular space, which is given by

jip = kp(P c − P i), (5.4)

and jic = kw(η − ξ). (5.5)

In order to complete the set of equations listed above, the boundary conditions that

connect the transport equations for two separated phases need to specified. The

initial conditions are taken as uniform, i.e. ρ = 1, Mf =Mf0, Mb =Mb0.

Assuming the symmetry condition, boundary conditions at the centreline x = 0

become
∂Mf

∂x
= 0,

∂Mb

∂x
= 0, and

∂ρ

∂x
= 0. (5.6)

The surface mass transfer intracellular cell/tissues boundary condition is given by

Dfρs
∂Mf

∂x
+DpMfρs

∂P c

∂x
= −Shf (Cfw,sur − 1). (5.7)

In equation (5.7), the term Cfw,sur = β(T sur)f(Mf ) is the relationship between water

vapour pressure and concentration of water vapour at the surface. β(T sur) is experi-

mentally based relationship involving surface temperature as discussed in chapter 2,

and given below,

β(T sur) =
Pνs(T sur)

T sur

= A T
2
sur +B T sur + C, (5.8)

The values of A, B and C will depend on air temperatures that are imposed during

drying. Typical values for fruit are A = 0.0364, B = 0.0108 and C = 0.0119 for air

temperature drying at 600C. Equation f(Mf ) using the relationship between water

activity and moisture content M is given below,

and f(Mf ) =
σM2.38

f

0.0622.38 +M2.38
f

. (5.9)

The value of σ =
84.55

Cair

, depends on the air temperature.

Corresponding mass transfer surface conditions for intercellular space at the surface

are obtained from flux balances and given by

ρk
∂P i

∂x
+Di

∂ρ

∂x
= −Shi(

ρ

Cair

− 1). (5.10)
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In summary, our model comprises equations (5.1)-(5.3) with transfer fluxes, equa-

tions (5.4) and (5.5) together with boundary conditions given by equations (5.6) -

(5.10). In the following sections, we present solutions to the model equations within

various limits. In section §5.3 we consider the limit at which the intercellular space is

large; in §5.3.1, analytical solutions are presented in the case for negligible diffusion

and convection inside the intercellular space; in §5.3.2, numerical solutions are pre-

sented for the case with diffusion and convection inside intercellular space. In section

§5.4 the corresponding two-phase model is presented, in which the drying processes

are driven specifically by gradients in moisture content between intercellular space

and the intracellular cell. The numerical solution results are presented in §5.4.2 and

a parametric study is conducted in §5.5. The effect of pressure is considered in §5.6,
which allows the effect of variable pressure to be included in the movement of free

water. In §5.7, the model is further extended to include a third phase to incorporate

the effect of bound water.

5.3 Drying through intercellular space dominance

From chapter 4, it will be assumed that the intercellular space comprises intercon-

nected pores characterized by a porosity, ϕi. We consider the limit in which the

intercellular space is large i.e ϕi=1 and derive appropriate equations and boundary

conditions. Mass conservation for water vapour in the intercellular space is taken as

∂(ϕiρi)

∂t
+∇.n i = jip + jic, (5.11)

with

n i = ρiu i + J i, (5.12)

Assuming constant temperature and using the perfect gas law of vapour, gives P i =

γρ. Using ρ =
ρi
ρa

, in non-dimension form the mass conservation for water vapour is

given by

ϕi
∂ρ

∂τ
= kργ[

∂2ρ

∂x2
] +Di

∂2ρ

∂x2
+ jip + jic, (5.13)

The source of water into the intercellular space is provided by two mechanisms:

1. Transfer associated with the differential pressure between the local cell and inter-
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cellular space and is taken as

jip = kp(P c − P i). (5.14)

Taking a constant pressure P c = ρc, then

jip = kp(ρc − γρ). (5.15)

This value of jip will link water transfer between the intracellular cell with intercel-

lular space.

2. Transfer dependent on the differential moisture levels across the membranes,

jic = kw(Cfw − Ci). (5.16)

Rewriting equation (5.16) gives jic = kw(η − ξ),

with η =
Mf

ρw
ρs

+Mf

and ξ =
ρ− 1
ρw
ρa

− 1
, and equation (5.16) will become

jic = kw(ρc − ρ), (5.17)

with ρc =
Mfρs + 1

1 +
ρs
ρw
Mf

. This value of ρc will link the intracellular cell water Mf with

intercellular space ρ.

In the case of intercellular space dominated drying, jip and jic are not strongly

correlated with the free waterMf . We consider the dominant source of vapour release

into intercellular space is given by

j = C(ρc − ρ).

with C is constant. These choices correspond with the assumption that the cell

and intercellular space comprise of essentially the same matter i.e water vapour; the

difference in vapour in the cell with intercellular space is therefore attributed to the

flow of vapour. Model equation (5.13) is reduced to the form

ϕi
∂ρ

∂τ
= kγρ[

∂2ρ

∂x2
] +Di

∂2ρ

∂x2
+ C(ρc − ρ). (5.18)
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5.3.1 Negligible diffusion and convective flow inside the in-

tercellular space

In this case we consider the system with the limit in which the intercellular space is

large i.e ϕi=1, where local values of vapour density ρ is determined from cells. The

model equation will be in the form of

∂ρ

∂τ
= C(ρc − ρ), (5.19)

and the resulting equation becomes

ρ = ρc + A exp−Cρτ (5.20)

Using initial condition ρ = 1, equation (5.20) becomes

ρ = ρc + (1− ρc) exp
−Cρτ . (5.21)

Figure 5.2 shows the Figure of simplified case, τ=0 gives ρ = 1 and if τ → ∞,

Figure 5.2: No diffusion and convection inside the intercellular space.

gives ρ = ρc. If C is bigger, the time taken to reach equilibrium of vapour is shorter,
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given by Figure 5.2, where the bigger the value of C, the more quickly equilibrium is

achieved. Value for parameter C, is not readily available in the literature since they

will depend upon the characteristics of the cell membrane. We choose C=0.1 simply

to illustrate the behaviour that can arise.

5.3.2 With diffusion and convective flow inside the intercel-

lular space Di and k

In this simple case, we want to look at a system where the local value of vapour

density is determined from the cell, is transferred into intercellular space and from

intercellular space into the underlying air. Assuming uniform temperature and using

non-dimension ρ =
ρi
ρc
, in non-dimension form the mass conservation for water vapour

is given by
∂ρ

∂τ
=

∂

∂x

[
(kγρ+Di)

]
∂ρ

∂x
+ j, (5.22)

with j = C(1− ρ).

Initially, vapour density inside intercellular space is equal to the vapour density

Figure 5.3: A plot of vapour density, ρ at τ=0-1, in steps of τ=0.01. Parameter

values: Di=1, k=1, Sh=5, C=0.01.
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inside the cell, and is given by ρi(t = 0) = ρc. In non-dimension form it gives ρ = 1.

The non-dimensional surface boundary at the intercellular space becomes[
(ρ kγ +Di)

]
∂ρ

∂x
= −Shi(

ρ

Cair

− 1), (5.23)

with Cair =
Cair

ρc
Equation (5.22) with initial and boundary conditions is solved numerically using

initial value problem solver, pdepe in Matlab. The evolution of vapour density ρ, is

shown in Figure 5.3; arrows indicate the direction of increasing time. Figure 5.3 shows

how the intercellular vapour density decreases because of diffusive and convective of

vapour flow.

Case k=0

In the case of k=0, the resulting equation becomes

∂ρ

∂τ
= Di

∂2ρ

∂x2
+ j, (5.24)

with j = C(1−ρ). In this case, the drying process dominated by diffusion within the

pore space k << 1.

Equation (5.24) with initial and boundary conditions was solved numerically and

the effect of each varying parameter diffusivity Di and transfer flux coefficient C

was investigated. The evolution of vapour density ρ, is shown in Figure 5.4: arrows

indicate the direction of increasing time.

Figure 5.5(a), where fixed value of diffusivity Di = 1 and changes the value

of transfer flux coefficient C from 0.001-1. From the graph, an increased value of

the transfer flux coefficient C leads to a slow decrease in vapour density. Figure

5.5(b), where fixed value of transfer flux coefficient C = 0.01, changes the value of

diffusivity Di from 1-1000. From the graph, the increasing value of diffusion Di leads

to decreasing density of the intercellular space more quickly.

Case Di = 0

In the case of diffusivity Di = 0, the resulting equation becomes

∂ρ

∂τ
= kγρ

∂2ρ

∂x2
+ j, (5.25)

with j = C(1−ρ). In this case, the drying process is dominated by porous diffusivity

(permeability) within the pore space, Di << 1.
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Figure 5.4: A plot of vapour density,ρ at τ=0-1, in steps of τ=0.01. Parameter values:

Di=1, k=0, Sh=5, C=0.01.

Figure 5.5: Centre profile plot of intercellular space density (Di ̸= 0 and k = 0) .
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Simulations were conducted for equation (5.25) with initial and boundary condi-

tions and the effect of varying parameter permeability k and transfer flux coefficient

C were investigated. Figure 5.6 shows the evolution of vapour density decreasing with

time. Vapour decreases much faster, especially at the surface and tends to become

very slow at the end. Comparison of Figure 5.4 and 5.6 shows the different profiles

of decreasing vapour density .

Figure 5.6: A plot of vapour density, ρ at τ=0-1, in steps of τ=0.01. Parameter

values: Di=0, k=1, Sh=5, C=0.01.

Figure 5.7(a) shows that, when we increase the value of C, there is more transfer

of vapour into intercellular space, leading to a slow decrease of intercellular space

vapour density. Figure 5.7(b) shows the increasing value of permeability k leading to

decreasing density of vapour inside the intercellular space more qiuckly.

In this subsection, we have analysed the effect of vapour flow on a one-dimensional

slab during drying, where the cell and intercellular space comprise of essentially the

same matter i.e water vapour. A numerical solution was constructed at the limit of

an asymptotically large intercellular space, for which diffusive and convective flow

of vapour occurs. We have shown that diffusive flow of vapour has been captured,
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Figure 5.7: Centre profile plot of intercellular space density (Di = 0 and k ̸= 0).

showing the same behaviour as the flow of water in the cell as in chapter 2, but a

different profile of the convective flow (permeability) of vapour has been detected.

The result also tend to show the response of the intercellular water vapour is more

sensitive to diffusive flow compared to permeability flow of water vapour.

5.4 Isothermal two-phase model

Solution for the isothermal model is given by solving the two coupled pdes (5.1) and

(5.3). Analysis of this simplified case will enable insight into the drying processes,

driven specifically by gradients in moisture content between intercellular space and

intracellular cell components. Simplification is sought in the first instance by noting

that the transfer of bound water is anticipated to be small i.e n1, n2 << 1 and its

contribution to drying is negligible, other than in the final drying state; this gives

the value rb = 0. A further simplification is taken that the value of internal turgor

pressure P c remains constant and above atmospheric pressure Patm during the main

drying stage. Initially, we take this value as P c=1.59, a value of turgor pressure for

kiwi fruit tissue [100]; the effect of changing P c will be analysed in later study.

For isothermal conditions, the drying is driven by moisture gradients with the

temperature of the food remaining constant during drying and latent heat effects
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taken as negligible. As discussed in chapter 2, the temperature increases rapidly to

air temperature. Using the equation of state (4.44) gives P i = ργ, where the value

of γ corresponds to the value of Tair. For a special case of drying simulation, the air

temperature is taken as 600C, and γ = 1.09. Simplification of equations (5.1)-(5.3)

reduces to a system of two pdes,

ϕi
∂ρ

∂τ
=

∂

∂x

[
(ρ k γ +Di)

∂ρ

∂x

]
+ jip + jic, (5.26)

and ρs
∂Mf

∂τ
=

∂

∂x

[
Dfρs

∂Mf

∂x

]
− jip − jic. (5.27)

Transfer fluxes are given by

jip = kp(P c − γρ), (5.28)

jic = kw(η − ξ), (5.29)

where η is the level of free moisture within the cell and ξ is the level of the water

within the intercellular space, as discussed in chapter 4.

A set of initial conditions, typically prevailing in the drying process is necessary to

perform the numerical simulations. In order to apply the model, a porous structure

is supposed for a mango. A special case of drying simulation of a references food

system based on mango with porosity ϕi=0.2 (see [72]). This will give the volume

fraction of intracellular cell region as εf = 0.8. In the non-shrinkage model, these

values are taken to be constant. It is also assumed that the volume fraction of free

water in the intracellular cell region εfw = 0.8. The density of water and solid is fixed

at 1000 kg/m3 and 1080 kg/m3 respectively. Using definitions of (4.1) and (4.3), gives

associated initial conditions as Mf=3.70, and ρ=1.

Boundary conditions on the symmetry boundary at x = 0 are given by
∂Mf

∂x
= 0,

∂ρ

∂x
= 0.

Boundary conditions on the surface, at x = 1, are given by

Dfρs
∂Mf

∂x
= −Shf (Cfw,sur − 1). (5.30)

and
[
(ρ kγ +Di)

]
∂ρ

∂x
= −Shi(

ρ

Cair

− 1). (5.31)

with Cfw,sur = β(T sur)f(Mf ).

β(T sur) = 0.0364 T
2
sur + 0.0108 T sur + 0.0119, β1 for isothermal case and

f(Mf ) =
84.55M ζ

f

φζ +M ζ
f

, with φ = 0.062 and ζ = 2.38.
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5.4.1 Numerical Solution

These equations were solved using COMSOL Multiphysics. COMSOL is a PDE-

based multiphysics tool that makes use of finite element modeling (FEM). In FEM,

a domain defining a continuum is discretized into simple geometric shapes called

elements. Properties and the governing relationships are assumed over these elements

and expressed mathematically in terms of unknown values at specific points (a odes)

in the elements called nodes. The elements in the domain are linked by an assembly

process. Solution of the governing equations of the phenomenon, initial conditions

and boundary conditions in the domain give the approximate prediction of the results.

A mesh consisting of 2400 quadrilateral elements was constructed and the equation

for moisture was solved using UMFPACK solver. Equations (5.26) and (5.27) were

input into COMSOL Multiphysics (PDE) solver with the general form for intercellular

density of vapour and free water moisture. In the general equation system forms, the

PDEs and boundary conditions are written in the following functional form (see [24]):
ea
∂2u

∂t2
+ da

∂u

∂t
+∇.Γ = F in Ω,

−n.Γ = G− hTµ on ∂Ω,

0 = R on ∂Ω.

Moreover, the transfer flux (5.28) and (5.29) gives the coupling effects for both the

intercellular space and intercellular cell free water moisture.

In Comsol the isothermal two-phase, one-dimensional drying model, two depen-

dent variables ρ and Mf are formulated

ϕi
∂ρ

∂τ
+

∂

∂x

[
− (ρ kγ +Di)

∂ρ

∂x

]
= jip + jic, (5.32)

and ρs
∂Mf

∂τ
+

∂

∂x

[
−Dfρs

∂Mf

∂x

]
= −jip − jic. (5.33)

Identifying the general form with equations (5.32) and (5.33), the following settings

generate the equation (Table 5.1 and Table 5.2):

Two boundary conditions, boundary condition at the centreline x = 0 will give

Neumann type boundary condition with G = 0 and influx boundary condition at the

surface x = 1 will give Neumann type boundary condition withG = −Shf (Cfw,sur−1)

and G = −Shi( ρ

Cair
− 1) respectively.
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Table 5.1: Equation generated for intercellular vapour density.

Coefficient Value Expression

ea 0

da ϕi

Γ(flux vector) −(ρ kγ +Di)
∂ρ
∂x

F (source term) jip + jic

Table 5.2: Equation generated for free water moisture.

Coefficient Value Expression

ea 0

da ρs

Γ(flux vector) −Dfρs
∂Mf

∂x

F (source term) −jip − jic

The food domain was discretized into a total number of 320 elements. The time

dependent problem was solved by an implicit time-stepping scheme, leading to non

linear system of equations for each time step. Newton’s method was used to solve each

non-linear system of equations, whereas a direct linear system solver was adopted to

solve the resulting systems of linear equations. The relative and absolute tolerance

were set to 10−4 and 10−5, respectively. The drying process is considered to be

completed when the moisture content in the sample is asymptotic to a residual level.

We remark here that, due to the absence of experimental data on which to base

our model parameter values and the fast timescale chosen, in all subsequent numerical

simulations, the parameter values are selected from the literature data to illustrate

the behaviour of the model under a particular movement regime. In the first instance,

generic values of non-dimensional parameters are given as a constant value given from

Table 5.3 and a range of non-dimension physically relevant values are shown in Table

5.4 below.

Non-dimensional parameters are

Shf =
hm,fL0

D0

Cair

ρa
, Shi =

hm,vL0

D0

Cair

ρa
, Di =

Di

D0

, Df =
Df

D0

,
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Table 5.3: Input parameter values used in the simulation of mango drying.

Parameter Value Units and Source.

Gas and vapour intrinsic per-

meability (ki)

10−14 m2 [85]

Viscosity of vapour in intercel-

lular space (µi)

1.8× 10−5 Pa s[39]

Constant diffusivity (D0) 8.56×10−10−8.121×
10−9

m2 (refer chapter 2)

Vapour diffusivity in air (Di) 2.6× 10−5 m2 [131]

Effective diffusivity of cell (Df ) 8.56×10−10−8.121×
10−9

m2 (refer chapter 2)

Ambient Pressure (Patm) 101325 Pa

Density of water (ρw) 1000 kg m−3

Density of Vapour (ρv) 0.825 kg m−3

Density of solid (ρs) 1080 kg m−3

Density of air (ρi) 1.029 kg m−3

Mass transfer coefficient of wa-

ter vapour (hm,v)

8× 10−3 − 4× 10−4 m/s [131]

Mass transfer coefficient of wa-

ter (hm,f )

0.0001− 0.00031 m/s (Refer chapter

2)

Gas Constant (R) 8.314 KJ mol−1K−1

Table 5.4: Non-dimensional parameter values.

Non-dimensional parameter Value Range of value.

Shi 5 1-20

Shf 20 0.1-20

Df 1 0-2

Di 1 1-104

k 1 1-104

kp 10−3 0-1

kw 10−3 0-1
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k =
kiPatm

µD0

, kp =
kpPaL

2
0

D0ρa
and kw =

kwL
2
0ρw

D0ρa
.

The value for kp is a measure of local cell pore permeability, number density and

size but this value is not available in the case of drying. However, in an experimental

study in the osmotic dehydration process, the permeability of the plasmodesmata,

was taken as 1.14 x 10−10 kg mol N−1s−1 [113]. A similar analysis was reported Tyree

[117], who showed that the permeability of the plasmodesmata to water was at least

two orders of magnitude greater than that of the plasmalemma. Using this condition

gives the non-dimension value of kp=10−3.

Similarly, little is currently known about the value of kw. As discussed by Halder

et al. [50] in the case of flux of water inside the cell to the outside into intercellular

space, the cell membrane exhibits three order of magnitude lower permeability. It is

likely that this is the controlling limiting parameter of the transport of water. Based

on their discussion, using potato membrane permeability, this value is computed to

be order 10−11 m2/s. This value gives the non-dimension value of kw=10−3.

We pause to remark here that, in view of non-dimensionalisation τ =
D0t

L2
0

, the

timescale of interest is the time taken for moisture to be diffused to the surface along

the thickness of the fruits. The diffusion coefficient of free water Df is given for

the fruits around 10−9 m/s and the thickness of fruits of 5-10 mm (0.005-0.01 m).

The time for drying to reach equilibrium was taken as 15000-36000 seconds [40] for

drying of a mango slice, given a time scale of approximation 0.36-1.44. Using the

same timescale for water vapour to transfer to the surface through the thickness, the

diffusion coefficient of vapourDi is 10
−5, which gives the time scale for vapour transfer

approximately 103 faster than the timescale for water diffusion. We note that this

is very short in comparison with the time for drying to reach equilibrium moisture.

We therefore expect the ratio of the vapour timescale to flow of water timescale to

be very large; however in this chapter (and the preceeding chapter of this thesis), we

consider the ratio to be O(1), employing slow timescale rates for vapour to illustrate

features of the system.
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5.4.2 Analysis of isothermal two-phase model

In this section, the results of drying simulation with isothermal conditions for two-

phase models are presented for the generic conditions given in section §5.4.1. The

overbar notation in the graph is dropped as clarity. The time evolution of the free

water moisture and intercellular vapour density is shown in Figure 5.8 and Figure 5.9.

The arrows indicate the direction of increasing time. The corresponding free water

moisture and intercellular vapour density at the surface and centreline are also shown

in these figures. The effect of transfer fluxes to free water moisture and intercellular

vapour density is shown in Figures 5.10, 5.11 and 5.12.

Figure 5.8: (a) Contour profile of free water moisture through the sample, with

elapsed time τ=0-3 in step of 0.5 (b) Profile of free water moisture at the surface

and centre. Dimensionless parameter values given by Shf = 20, Shi=5, Df=1, Di=1

k=1, kp=0.01, and kw=0.01.

Figure 5.8(a) shows the contour profile of free water moisture(Mf ) in the in-

tracellular cell. The moisture profiles are plotted at points that correspond to the

non-dimensional drying time of 0, 0.5, 1, 1.5, 2, 2.5 and 3. In the very initial stages

of drying (time τ=0-1.5), there is a rapid decreased in moisture at the surface while

the removal of moisture is slower at the centre of the product. The rapid surface
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moisture removal, due to the large moisture gradient at the surface, prevents surface

moisture from accumulating. After time τ=2, the removal of moisture becomes slower

and relatively flat at the end of drying. In fact, at the beginning of the process, the

profiles appear very well separated, while they tend to overlap as soon as drying rate

decreases. This is similar to the results obtained in chapter 2, in which there was

only a single phase of transfer of moisture.

Figure 5.8(b) shows the moisture profile of the free water moisture at the cen-

ter and the surface of the product. It can be seen that the surface directly ex-

posed to the drying air approaches the equilibrium moisture content faster (τ=2)

and changes in the deeper layer are slow (τ=2.5). At the surface, moisture removal

takes place straight after the start of drying but, in the centre, moisture is uniform

at the beginning(τ=0-0.2) but as time increases, the moisture is no longer confined

to the centre as water flows from the intracellular cell to the intercellular space and

from the intracellular cell to the surface. As time increases, the rate of reduction of

moisture becomes less, i.e., it reduces almost steadily with the progressing heating

period. Starting from uniform initial moisture content, after a short warm up period,

the free moisture content is reduced at a constant rate. At this stage, free water is

bought to the surface by diffusion and by transfer fluxes to intercellular space. As the

drying continues, the free water moisture is relatively flat and this will be investigated

in the three-phase model where the bound water will take effect at this stage. It can

be seen that moisture on the surface decreases rapidly compared to the centre of the

fruit.

Figure 5.9 shows how the intercellular space is influenced by the present of source

terms in the equations. The source of vapour from water inside intracellular cells is

given by the transfer fluxes jip and jic in equations (5.28) and (5.29). The vapour

density profile of intercellular space refers to water vapour flow through the inter-

cellular air space of the tissues. The density of vapour profiles in the food during

the period of drying decreases rapidly in the initial stage and becomes relatively flat

at the end. Intercellular water vapour density profiles start decreasing due to the

flow of water vapour from the fruit, is caused by convective flow and diffusive flow of

water vapour. Vapour near the surface decreases rapidly compared to the centre of

the fruit.
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Figure 5.9: (a) Contour profile of intercellular vapour density, with elapsed time

τ = 0 − 0.5 in step of 0.05. (b) Profile of intercellular vapour density at the centre

and surface. Parameter values as given in Figure 5.8.

Figure 5.10: Profile at the surface of (a) intercellular vapour density (b) free water

moisture with kp and kw=0 compared with other values of kp and kw.
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The source and sink transfer fluxes will give a link between intracellular cell water

and intercellular space. By putting this effect into drying, we have assumed that the

water flux across the cell membrane and cell pores from cell to intercellular space can

be expressed as jip and jic. To see the effect of transfer flux, first we consider no

transfer flux between intercellular space with intracellular cell (jic=0 and jip=0), in

this case, for instance by putting the value of kp=0 and kw=0 and comparing it with

the other values of kp and kw. Figure 5.10(a) shows the intercellular vapour density

and 5.10(b) shows the decrease in free water moisture in the cell with different values

of kp and kw. It was observed that, with no transfer flux kp=0 and kw=0, there

is no water vapour in the intercellular space and the liquid water decreases more

slowly. In this case, there is no exchange between liquid water to water vapour inside

the fruit, evaporation occurs only at the external surface of cells leading to a slower

decrease in free water moisture. The values of kp=0.1 and kw=0.1, show effects of

transfer flux because of the pressure difference and concentration difference in which

the intercellular vapour density increases but the convective and diffusive flow of

vapour brings the vapour to the surface and leads to decrease vapour. Figure 5.10(b)

shows that free water is transferred from the cell into vapour in the intercellular space

that leads to a greater decrease in free water moisture in the cell. It was also observed

that kw term gives more effect compared to kp term as the free water decreases rapidly

when kw=0.1 compared to kp=0.1.

Specific values for the parameters, kp and kw are not readily available in the

literature, since they will depend upon the characteristics of the selected fruits. Figure

5.11(a) shows the profile of the intercellular vapour density and of the free water

moisture with the change in kp from 0.001, 0.01, 0.1 and 0.5. As the value of kp, rises,

the decrease in intercellular vapour density becomes slower. As shown by Figure

5.11, a slight increase in intercellular vapour density in the centreline was observed,

due to the small values of Di and k in the simulation. Figure 5.11(b) shows that,

as the value of kp increases, more vapour enters the intercellular space, leading to

initial vapour build-up inside intercellular space. This also was observed by Halder

and Datta [52] in their simulation based on a non equilibrium approach; more vapour

rapidly accumulates during the first minute of frying and, with time, the vapour goes

down steadily . We remark that the small value of diffusion Di and permeability k
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Figure 5.11: Effect of kp into (a) intercellular vapour density (b) free water moisture

at the centre. Parameter values as given in Figure 5.8.

has been chosen to be artificially small for illustrative purpose; the vapour build up,

due to deviation of kp and kw represented by these solutions, would be small.

Figure 5.12: Effect of kw (a) intercellular vapour density (b) free water moisture at

the centre. Parameter values as given in Figure 5.8.

Figure 5.12 shows the effect of typical values of kw as the value changes from 0.001,
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0.01, 0.1, and 0.5. As we can see from Figure 5.12(a), we observe that a higher value of

kw leads to slow decrease in intercellular vapour density. The reason for the behaviour

is explained as follows. The value of kw is a measure of the membrane permeability

of a cell, as discussed by Halder et al.[50], to provide controlling resistance of water

to the intercellular space. As the value kw increases, the resistance of the membrane

becomes low, which will enable more water to push into intracellular space, resulting

in pressure difference between these two regions. This leads to higher density of water

vapour inside intercellular space. The transfer magnitude decreases with drying time,

since the water vapour density decreases with the moisture content of free water. We

also observed slightly increased vapour density at the beginning at the centreline

arising from a small value of diffusion Di and permeability k of vapour inside the

intercellular space. Figure 5.12(b) shows the effect of kw on the free water moisture.

Higher values of kw, increase the transfer of free water into intercellular space, leading

to a more rapid decrease in free water moisture.

5.5 Parametric study

For detailed modelling of tropical fruits, appropriate values remain uncertain. The

aim of this section is to study the sensitivity of drying behaviour with respect to

key model parameters, such as permeability and diffusivity of the intercellular space,

diffusivity of free water moisture and parameters for convective mass transfer at the

surface. The equations (5.26-5.31) for a two-phase model were solved and investiga-

tion carried out by varying this parameter numerically and comparing the numerical

result with the reference case analysed in section §5.4.2 above.

5.5.1 Permeability and diffusivity of intercellular vapour den-

sity

By varying material properties, such as permeability and diffusivity, we investigate

the transport of water influence of the drying process within the numerical solution

developed in this section. The investigation is carried out by varying these parameters

numerically. For the first instance, a fixed value of Di = 1 and varying values of
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Figure 5.13: Profile of intercellular vapour density as permeability k changes. k=0.5

(solid line), k=1 (dotted dashed line), k=2 (dashed line). Parameter values: Shf =

20, Shi=5, Df=1, Di=1, kp=0.01, and kw=0.01.

permeability k are used. As shown in Figure 5.13, the decrease in intercellular space

density of water vapour becomes slower when smaller permeability was put into the

model. The value of permeability depends on the pore structure of the material and

the interaction within the solid.

Figure 5.14 shows simulations for a fixed value of permeability k and varying

values of diffusivity in the intercellular space Di. When the value of diffusion of the

vapour phase Di is small (Di = 0.5), the vapour moves slowly towards the surface.

Compared with the result in 5.13 with 5.14, this shows that the response of the

intercellular space water vapour is more sensitive to change of diffusivity than the

permeability.

5.5.2 Diffusivity of free water moisture

A profile of free water moisture within the cell can be seen in Figure 5.15. Varying the

value of water diffusivity (Df ) makes an impact on the transport of free water mois-

ture. Increased diffusivity within the cell makes the diffusion of free water increase,

leading to enhanced diffusion so that the total drying process is therefore shorter.
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Figure 5.14: Profile of intercellular vapour density through food at τ=0.05, 0.1, 0.125

for values Di=0.5 (solid line), Di=1 (dotted dashed line), Di=2 (dashed line). Pa-

rameter values the same as Figure 5.13

Figure 5.15: Profile of free water moisture at time τ=0.01, 1.5 and 2.5 with changes

in diffusivity Df . Line plotted for Di=0.5 (solid line), Di=1 (dotted dashed line),

Di=2 (dashed line). Parameter values the same as Figure 5.13
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Figure 5.15 shows the contour profile of free water with different values of Df . It

is apparent from the profile of free water that the diffusion coefficient is the guiding

factor for diffusion of water during drying. If the value is higher, the water diffuses

quickly to create the system equilibrium within the fruit earlier. When increasing the

value of the diffusion coefficient Df , the flow of water will be moving faster toward

the surface and the gradient between the surface and the centre of the fruit becomes

small. As a result, more water will be removed from the surface in term of vapour.

5.5.3 Convective mass transfer

Figure 5.16: Plot showing free water moisture at time τ=0.5,1.5 and 2.5 with changes

in Shf . Line plotted for Shf=50 (solid line), Shf=10 (dotted dashed line), Shf=1

(dashed line). Parameter values the same as Figure 5.13.

Figure 5.16 presents a decrease of free water moisture corresponding to the vari-

ation of Shf . Shf represents the surface convection mass transfer with respect to

the diffusivity of water. Higher values of Shf correspond to more effective convective

mass transfer at the surface relative to the diffusion of water inside the fruit. When

Shf=1, there is a balance between convection mass transfer and diffusion leading to

no gradient of free water moisture between the surface and centreline. Increasing Shf ,
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the gradient between the surface and the centreline becomes larger, which means that

the convective mass transfer at the surface is more effective than diffusion of water

from the inside to the surface. When this phenomenon happens, diffusion will be en-

hanced because the concentration gradient becomes large, having a significant effect

on the movement of water and giving a shorter drying time.

5.6 Effect of cell pressure

As discussed in chapter 4, the cell pressure decreases due to loss of moisture; in this

section we investigate the effect of changing cell pressure P c. The equation for cell

pressure is given by,

P c = δ + ς ln
Mf

Mf0

, (5.34)

where δ is a turgor pressure of tissue at the beginning of drying, ς is an elastic

modulus, which is given by incipient plasmolysis where the turgor pressure is equal

to atmospheric pressure. Values of turgor pressure are typically in the range from

0.1 to 0.6 MPa (100kPa-600kPa) [112]. An experiment by Sajnin et al. [100] stated

that turgor pressure of 0.159 MPa (159kPa) was measured for kiwi fruit tissue and

0.231 MPa(231kPa) for melon fruits. The elastic modulus ς value was given as 3.5

(non dimensional) by Zhiming and Le Maguer [140], 3.0 by Toupin et al. [113]. In

this modelling, the value of δ=1.59 and ς=3.5.

When P c is dependent on free water inside the intracellular cell, the equation

(5.27) becomes

ρs
∂Mf

∂τ
=

∂

∂x

[
(Dfρs +Dp ρs ς Mf0)

∂Mf

∂x

]
− jip − jic. (5.35)

In this section we investigated the effect of pressure on free water moisture and

intercellular vapour density. We consider a constant pressure or pressure dependent on

volume of water loss in cell. Figure 5.17 shows the free water moisture and intercellular

vapour density, using different formulations of the cell pressure P c. In the case of

constant pressure, only one method of transport of water is used i.e. release of water

from the cell to the intercellular space by transfer fluxes jip and jic. Using constant

pressure in the transfer flux formulation, the free water moisture decreases more

slowly compared with the use of variable pressure (Figure 5.17(a)). In the case of
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Figure 5.17: Comparison between constant with variable pressure formulation to

intercellular vapour density and free water moisture at the centreline. Non-dimension

parameter values given by Shf = 20, Shi=5, Df=1, Di=1 k=1, kp=0.1, and kw=0.1.

variable pressure, there are two methods of transporting water: release of free water

from the cell into intercellular space and the flux of free water through cell wall pores

(plasmodesmata) generated by differential gradient of internal cell pressure. As a

result of these two transport methods, free water moisture and intercellular vapour

density will decrease more quickly compared to constant pressure.

In this section we also investigate the effect of values δ and ς by changing these

parameters with time. Figure 5.18 shows the intercellular vapour density and free

water moisture when we fix the value of initial pressure δ=1.59 and increase the value

of the elastic modulus from ς=0.01 to ς=3.5. As we can see from Figure 5.18(a),

increasing the value of ς gives a more rapid decrease in intercellular vapour density.

This happens when bigger values of ς cause a faster drop of P c. This gives the transfer

of water from intracellular cell to intercellular space from the pressure gradient, which

becomes less and leads to free water decreasing more slowly (Figure 5.18(b)).

Figure 5.19 shows the intercellular vapour density and free water moisture when

we fix the value of the elastic modulus ς=3.5 and change the value of the initial

cell pressure δ from 1 (same as atmospheric pressure) to 5. From Figure 5.19(a),

increasing values of δ causes more rapid decrease in intercellular vapour density. At

atmospheric pressure δ=1 initially, no water will be transferred to the intercellular

space because the pressure inside the intercellular space is much larger than from
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Figure 5.18: Effect of changing the value of elastic modulus ς to intercellular vapour

density and free water moisture. Parameter values as given in Figure 5.17.

intracellular cell, so transfer flux is only from the concentration gradient. When the

value of δ increases, the cell pressure P c is more than intercellular space pressure P i,

which leads to more vapour transfer from the cells to the intercellular space (Figure

5.19(a)) and a slow decrease in vapour. As the time increases, pressure inside cells

will decrease and lead to a reduction of water vapour. Larger values of δ, lead to a

faster decrease in free water moisture inside the cell (Figure 5.19(b)).

Figure 5.19: Effect of changing the value of initial pressure δ to intercellular space

water vapour density and free water content. Parameter values as given in Figure

5.17.
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5.7 Isothermal three-phase model

The model presented in section §5.4 is now extended to include a third phase to

incorporate the effect of bound water. The modifying effect of including transfer

inside the intracellular cells between the free water and bound water states is given

from solving the three couple pdes (5.1)-(5.3). In this case, the intracellular cell

comprises two-components i.e bound and free water, and the component exchanges

from one phase to another. The previous simplification case is adapted so that the

value of P c remains constant and above atmospheric pressure during the main drying

stage. For isothermal conditions, the temperature of the food remains constant during

drying and P i = ργ. Equations for intercellular space stay the same as equation (5.26)

and the equations for free water and bound water are

ρs
∂Mf

∂τ
=

∂

∂x

[
Dfρs

∂Mf

∂x

]
− jip − jic + rb ρs. (5.36)

and
∂Mb

∂τ
= −rb. (5.37)

The constitutive equation for rb is taken as

rb = n1Mb − n2Mf . (5.38)

A set of initial conditions, typically prevailing in the drying process, are defined to

perform the numerical simulations. In order to apply the model, a porous structure is

supposed for mango. A special case of drying simulation of a reference food system,

for example mango with porosity ϕi=0.2, is taken. With the assumption of the volume

fraction of free water in the intracellular cell, εf = 0.7 and a small volume fraction

of bound water in the intracellular cell, εb = 0.1 is considered. In the non shrinkage

model, these values are taken as constant. It is also assumed that the volume fraction

of free water in the free water region εfw = 0.8 and the volume fraction of bound

water in the bound water region εbw = 0.3. The definitions of (4.1),(4.2) and (4.3) in

chapter 4, give associated initial conditions as Mf=3.70,Mb=0.39 and ρ=1.

Boundary conditions at the symmetry and surface are same as in two-phase models

(section §5.4) together with flux conditions on the bound water as,

∂Mb

∂x
= 0, at x = 0 and x = 1. (5.39)
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5.7.1 Analysis of the three-phase model

Figure 5.20: Moisture profile in free water moisture and bound water moisture at

the centreline, x=0.8 and surface. The value of n1 = 3.46 and n2 = 0.062. Other

parameter values Shf = 20, Shi=5, Df=1, Di=1 k=1, kp=0.01, and kw=0.01.

Using the same parameter values as in section 5.4 for comparison, a simulation

was run with the value of n1 = 3.46 and n2 = 0.062 (as discussed in [71]) to identify

the effect of bound water. Figure 5.20 shows the profile of free water Mf and bound

water Mb in the cell at selected points. This transfer corresponds to the transfer

of bound water moisture to free water moisture, with movement to the intracellular

cell component before it can transfer to the air. This profile shows that bound water

decreases from the initial value of 0.39 to 0.01 at the later stage of drying, τ=1.8 at the
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surface, τ=2 at x=0.8 and τ=2.4 at the centreline. Within the initial phases of drying

it is anticipated that the transfer of moisture within cell walls will be dominated by

the diffusion of free water. At a lower moisture level, following significant drying,

the more tightly bound water within the cell tissue must be converted to free water

before further diffusion can occur. These processes would be important in the later

stage when Mf < Mb and the much longer stages of drying to reduce residual level

of moisture.

To show the effect of free water moisture increase when Mf < Mb, the profile

of free water in the three-phase model is compared with the profile of the two-phase

model. This profile can be seen in Figure 5.21, where the profile of free water moisture

is increasing at τ=1.8 when bound water is considered. This happens because of the

change of bound water to free water at the later stage of drying. A similar profile was

observed by Kiranoudis et al. [71] in a sensitivity test on the effect of bound water

in their model.

Figure 5.21: Moisture profile of the free water region in the three-phase and two-phase

at the surface. The value of n1 = 3.46 and n2 = 0.062. Parameter values as given in

Figure 5.20.
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To help evaluate the kinetic constant n1 and n2, we investigate the situation with

the values given in Table 5.5. For equilibrium then n1Mb = n2Mf , and for physically

valid conditions
n1

n2

>
Mf

Mb

. Figure 5.22 shows the moisture content of bound water

Table 5.5: Different values of n1 and n2 and their ratios

n1 3.46 2.5 4.8

n2 0.062 0.062 0.1

Ratio 55.8 40.32 48

with drying time for three drying ratios. As we can see from the graph, profile shows

that bound water start to decrease from the initial value of 0.39 at same time at

τ=1.8 for each of the ratio. The larger the ratio of n1 with n2, the faster the decrease

of bound water to free water moisture associated with the difference in level of bound

water and free water in the intracellular cell.

Figure 5.22: Bound water profile with different values of n1 and n2 at the surface.

Parameter values the same as Figure 5.20
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5.8 The special case of the one-phase model

As described earlier, much of the modelling for the drying of foodstuffs is restricted

to a one-phase model. In this section we consider the approximation required to

generate such a one-phase (composite) model from a multiphase model. Average

moisture content (dry basis) is given by a composite moisture value (see section

§4.3.1), given by

M = αiρi + αfMf + αsMb. (5.40)

The equation of this three-phase model and simulation is given and discussed in

section §5.7 and the two-phase model is discussed in section §5.4.
We investigate the limits of a single composite food, comprising free water, solid

and air only; i.e. the case with no intercellular space, ϕi → 0, and so αi → 0.

Correspondingly the water content is taken as

M = αfMf + αsMb, (5.41)

With no intercellular space, there is no transfer flux jip and jic between these phases,

the equation form reduces to

∂Mf

∂τ
=

∂

∂x

(
Df

∂Mf

∂x

)
+ rb, (5.42)

and
∂Mb

∂τ
= −n1Mb + n2Mf . (5.43)

In the limit that only free water exists εb → 0 so αs = 0 and αf = 1 and

M =
ρw
ρs

εfw
εfs

=Mf .

The three-phase model reduces to the one-phase diffusion model

∂Mf

∂τ
=

∂

∂x

(
Df

∂Mf

∂x

)
. (5.44)

In this part, we made a comparison between the two-phase and three-phase models

discussed in sections §5.4 and §5.7, with the case of no intercellular space. In the

case of no intercellular space, the first case is with bound water and free water and a

simplified case where only free water exists. A comparison is provided with a single

phase result discussed in chapter 2. Figure 5.23 shows that the profile of free water
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Figure 5.23: Moisture profile in the free water region in single-phase, two-phase and

three-phase models at the centre. The value of n1 = 3.46 and n2 = 0.062. Dimen-

sionless parameter values given by Shf = 20, Shi=5, Df=1, Di=1 k=1, kp=0.1, and

kw=0.1.

moisture in a three-phase and a two-phase model at the surface provides a similar

trend but it is displaced from the one-phase model. From the graph, the profile of

the single-phase shows the need for more drying time compared to the three-phase

and two-phase models, as based on transfer of flux values kp=0.1 and kw=0.1. The

small difference can be seen at the end of drying in the three-phase model, where the

change from bound water to free water gives more free water at the end of drying.

5.9 Discussion

The general theory of mass transfer during the drying of cellular material, as devel-

oped in chapter four, has been applied to model the drying of mango tissue. In this

chapter, we have presented a one-dimensional, time-dependent numerical solution

of a two-phase and three-phase model with parameter values corresponding to the

drying of fruit which shows the effect of a transfer flux between free water moisture

with intercellular vapour density and the effect of bound water in the model. The
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intercellular cell and intercellular space were modelled within a rigid slab.

An isothermal multiphase model was used to predict moisture in the food during

drying. The model considers the transport of free water and water vapour separately.

Water vapour, as a mixture of air and water, is considered as flow through a porous

structure that interacts with the cell structure. The numerical solutions which solve

the coupled mass equation for liquid water and water vapour movement through food

material has been presented. The transfer fluxes jip and jic, transfer quantities of

moisture from the intracellular cell to intercellular space because of pressure difference

and concentration gradient, which is an important consideration in this model. This

transfer fluxes gives link between intracellular cell with intercellular space and the

result shows that jic gives more effect compared to jip. During active drying processes,

transfer of free water moisture between cells is ongoing but the flux of water vapour

transport through the porous structure will be more significant. Thus, higher values

of transfer fluxes, the more faster the transfer of free water into intercellular space,

the more significant of vapour transport through porous structure.

The effect of internal cell pressure was included in the model through constant

pressure and pressure decreases due to lost of moisture. To include the transport of

water from one cell to another cell through cell walls pores (plasmodesmata), variable

pressure was put into the models. For this case, free water will be driven from deeper

cells to the surface, by differential gradient of internal pressure. Simulations were

presented showing that the flow of water in intracellular cell is faster for variable

pressure compared to constant pressure.

Food material is typically hygroscopic, with some water tightly bound to the solid

[131]. Within the initial phases of drying it is anticipated that transfer of moisture

within cell will be dominated by the diffusion of free water. At lower moisture level,

following significant drying the more tightly bound water within the cell tissues must

be converted to free water before further diffusion of water can occur. To address

this issue, consideration of bound water, particularly in the final drying state, is

important. Thus, the modifying effect of including the transfer of intracellular cell

compartments between the free and bound water are presented in the three-phase

model. The inclusion of a third phase of bound water held within the cell structure

allows consideration of the mechanism of a weighted balance between free and bound
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water, associated with cell structure. This model addresses the existence of different

classes of water in food products and the conversion between them. Simulations were

presented, showing that the flow of moisture in the intracellular cell is profoundly

altered by this effect, especially in the later stage of drying. This simulation demon-

strates the importance of considering the effect of bound water within drying to low

levels of moisture retention. We conclude that with the adding of bound water in

the model gives influence in drying especially at the later stage of drying to reduce

residual level of moisture.

In the system in which the intercellular space is large i.e. ϕ=1, numerical solutions

were constructed whereby local values of vapour density were determined from cells

transferred into intercellular space and from intercellular space into the underlying

air. The result of vapour behaviour is similar to the results in the two-phase and

three-phase models. This analysis indicated that we have confidence in the behaviour

of vapour inside the intercellular space in the numerical simulation.

Comparison of a single phase model as a special case of the three-phase model

identified the difference in the predictions in the profile of the moisture content; the

single phase model under predicts the drying time during the main drying period,

with inadequate details for long time taken to dry to low moisture concentrations.

It was proved that the theory reduces to a simple case one equation diffusion model

and that the model provides acceptable predictions. Previous efforts in developing a

comprehensive governing equation for drying have often been hindered by lack of data

for thermal and transport properties, such as relative permeability, effective moisture

diffusivity and thermal conductivity. These parameters are essential to a realistic

simulation of processes of practical problems. Unfortunately, for hygroscopic porous

materials, data for these properties are often not available, especially for foods and

agriculture. In order to overcome the difficulties, either constant values or a range

of values were used in the drying simulation, thus weakening the reliability of the

conclusions.
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Chapter 6

Multiphase one-dimensional

non-isothermal conditions: case

study of mango fruit

6.1 Introduction

In chapter 5 we describe drying under isothermal conditions, where mass transfer

within fruits is driven from prevailing concentration gradients of free water moisture

and water vapour. Drying is typically a non-isothermal process and heat transfer

can substantially affect drying behaviour through increasing concentration gradients

and transfer of water between liquid and vapour phases. As drying is eminently a

conjugate phenomenon. The transfer of mass and heat is solved simultaneously in

both intercellular space and fluid phases, and strongly coupled through evaporation

and variation of properties associated with moisture and temperature. In this chapter,

the basic drying model has been extended to account for the availability of latent

heat of evaporation. In the presence of thermal gradients, evaporation occurs in

the partially saturated pore region and subsequent transfer of heat by vapor flow

and conduction through the cells. Convection and moisture removal is evaluated

within an extended model substrate, as reported in figure 5.1. During the drying

process in fruit, heat is transferred mainly by convection from air to the product’s

exposed surface. Further, heat is transferred by conduction from the surface toward

157



the substrate interior. Meanwhile, moisture diffuses outwards to the surface, where

it vaporizes. Liquid water inside food may also be converted into vapour, depending

on the local thermal and liquid phase conditions.

In this chapter, a multiphase model for drying under thermal condition is pre-

sented corresponding to the model developed in chapter 4. Possible transfer of heat

in a cell scale is put into the modelling, with the assumption that the representative

temperature within the water vapour presented in the intercellular space T i may dif-

fer from a representative temperature T c within the intracellular cell structure. This

will utilize the principle of local non-equilibrium between the cell and the intercellular

space at any given location.

Two sub-models are evaluated, as identified in chapter 5: the two-phase and the

three-phase model. We again distinguish between two types of mobility of water: free

water is more readily available for transfer within cells and intercellular space and also

introduces bound water into the cell region. Bound water can only be transferred if

the free water concentration is low enough and is particularly relevant to final drying

state.

6.2 Mathematical formulation for a non-isothermal

one-dimensional drying model

The formulation presented in chapter 4 is simplified by assuming that the sample

undergoes one-dimensional movement parallel to the x-axis, interacting with tem-

perature between phases. As in chapter 5, there are two main phases: free water

moisture and intercellular vapour density. The mechanism in the intercellular space

is characterized by vapour through a porous food structure and inside the cell is based

on diffusion and local pore (plasmodesmata) transport. In this study, we include the

possibility of two representative temperatures, which are intercellular space temper-

ature T i and intracellular cell temperature T c. We now specify how our multiphase

systems interact. The flow of water vapour from the fruit is caused by diffusive flow

and permeability of gas flow. Thus, the mass conservation equation for vapour in the
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intercellular space is given by

ϕi
∂ρ

∂τ
=

∂

∂x

[
(ρkγ +Di)

∂ρ

∂x

]
+ jip + jic. (6.1)

The chemical potential gradient of water in cell tissues can be considered to depend on

water activity and pressure difference between the intercellular space and the intracel-

lular cells (see Nobel [86], Shi and Le Maguer [104]). The key part of the formulation

concerns transfer fluxes jip and jic, where the intracellular cell moisture and energy

equations interact with the intercellular space vapour and energy equations. To put

this effect into the drying model, we assumed that the water flux across the cell mem-

brane from cell to intracellular space can be expressed as jic and jip. The formulation

for water from intracellular cell across the cell membranes to the intercellular space

will be dependent on the differential moisture levels across the membranes given by

jic = kw(η − ξ), (6.2)

where η and ξ are the measures of difference of level of water.

The release of free water from cells into the intercellular space arises from dif-

ferences in local pressure that occurs along the interconnected spaces. According to

Floury et al. [46], hydrostatic pressure is related to the unknown change of cellular

volume difference between the two regions. Thus, the mass flux of free water is asso-

ciated with the differential pressure between the local cell and intercellular space and

is taken as

jip = kp(P c − P i), (6.3)

where P c and P i measure the difference in pressure between the cell with the inter-

cellular space.

The sources of water in the intercellular space comes from the free water inside

the intracellular cell. The interaction between the free water moisture inside the cell

with the vapour density inside the intercellular space is given by transfer fluxes jip

and jic. Transfer of free water inside the cells to the intercellular space takes place

and the conservation equation of free water moisture given by

ρs
∂Mf

∂τ
=

∂

∂x

[
Dfρs

∂Mf

∂x
+DpMf ρs

∂P c

∂x

]
− jip − jic + rb ρs. (6.4)

A further transfer mechanism comprises bound water transfer inside the cell. Where

the bound water is not freely available for transport it can be converted to form free
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water, when the availability of free water molecules becomes very low. The interaction

of bound water to the free water state is given by,

∂Mb

∂τ
= −n1Mb + n2Mf . (6.5)

The initial effect of temperature in drying comes in the governing equation of free

water moisture through boundary conditions at the surface, x = 1 and is given by[
Dfρs

∂Mf

∂x
+DpMf ρs

∂P c

∂x

]
= −Shf (Cfw,sur − 1). (6.6)

The term Cfw,sur = β(T sur)f(Mf ), defined at the surface, links surface conditions

directly to surface temperature, as discussed in chapter 2 and is given by experiment

correlation as,

β(T sur) = A T
2
sur +B T sur + C,

Typical values for fruit are A = 0.0364, B = 0.0108 and C = 0.0119 for air temper-

ature drying at 600C, in which the interaction of temperature comes to free water

moisture. In isothermal case, when temperature is not considered, this is taken as β1.

A relationship between water activity and moisture content M is given by Wang and

Brenann [123] as

f(Mf ) =
σM2.38

f

0.0622.38 +M2.38
f

.

The value of σ =
2.1667

Cair

, which depends on the air temperature.

The effect of temperature on intercellular vapour density also comes through bound-

ary condition at the surface x = 1 given by[
(ρkγ +Di)

]
∂ρ

∂x
= −Shi(

ρ

Cair

− 1). (6.7)

Since non-thermal equilibrium is assumed to exist between the intercellular phase with

the cell, the transfer fluxes jip and jic from intracellular cell structure to intercellular

space, that occur by pressure difference and diffusion across cell membranes to give an

interaction between cell temperature with intercellular space temperature. The first

that is associated with transfer fluxes is flux of water release, which carries heat into

intercellular space. This flux (in terms of water) also needs to turn to water vapour

before it can flow to the external surface and is given by λ(jip + jic). Furthermore,

inflow of heat is also due to the difference between the temperatures at the intercellular
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space and the intracellular cell structure. Thus, a representative intercellular space

temperature equation is therefore given by,

ϕiρ
[
∂T i

∂τ
+

ni

ρ
· ∂T i

∂x

]
=

∂

∂x

[
ϕiκv

∂T i

∂x

]
+hi(T c−T i)+(jip+ jic)(T c−T i)−λ(jip+ jic).

(6.8)

Furthermore, a representative intracellular cell structure temperature equation be-

comes

(1− ϕi)ρc
∂T c

∂τ
=

∂

∂x

[
(1− ϕi)κc

∂T c

∂x

]
− hi(T c − T i)− (jip + jic)(T c − T i). (6.9)

At the surface x = 1 of intercellular space, heat flux arrives at the interface by

convection balance with the conduction from surface to the interior of the fruit is

given by

−ϕiNuiκv(Tisur − 1) = ϕiκv
∂T i

∂x
. (6.10)

At local intracellular cell boundaries, free water moisture is transferred to the food

surface and needs to convert to vapour before it can be released to the overlying air.

Heat is supplied by the drying air and characterized by latent heat of evaporation of

water λ. The model boundary condition is given by

−(1−ϕi)κcNuc(Tcsur−1) = (1−ϕi)κc
∂T c

∂x
−λ

[
Dfρs

∂Mf

∂x
+DpMf ρs

∂P c

∂x

]
. (6.11)

Associated initial conditions (consistent with chapter 5) are taken as

Mf=3.7, Mb=0.39, ρ = 1, T i=0 and T c=0.

Symmetry boundary conditions at x = 0 are given by
∂Mf

∂x
= 0,

∂Mb

∂x
= 0,

∂ρ

∂x
= 0,

∂T i

∂x
= 0, and

∂T c

∂x
= 0.

6.3 Two-phase non-isothermal model

Solution to the two-phase non-isothermal model is obtained from solving four coupled

pdes, corresponding to mass equations (6.1) and (6.4) and temperature equations (6.8)

and (6.9), together with equation of transfer flux (6.2) and (6.3). As in chapter 5,

the effect of pressure is assumed to take a constant value, P c=1.59. This will give

the term DpMf ρs
∂P c

∂x
= 0 in equation (6.4), (6.6) and (6.11). In this non-isothermal

model, the effect will be investigated later in section §6.4.
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Numerical solutions were sought for the four dependent variables ρ, Mf , T i and

T c. These equations are solved using COMSOL Multiphysics. Numerical formulation

for ρ and Mf is explained in §5.4.1. Intercellular and cell temperature T i and T c are

formulated as PDEs within the general format required for COMSOL.

Identifying the general form with equation (6.8) and equation (6.9), the following

settings generate the equation (Table 6.1 and Table 6.2) :

Two boundary conditions, intracellular cell component and intercellular space are

Table 6.1: Equation generated for intercellular space temperature.

Coefficient Value Expression

ea 0

da ϕi ∗ ρ

Γ(flux vector) −ϕiκv
∂T i

∂x

F (source term) (jip + jic)(T c − T i)− λ(jip + jic) + hi(T c − T i)−
ϕini

∂T i

∂x

Table 6.2: Equation generated for intracellular cell temperature.

Coefficient Value Expression

ea 0

da (1− ϕi) ∗ ρc
Γ(flux vector) −(1− ϕi)κc

∂T c

∂x

F (source term) −(jip + jic) ∗ (T c − T i)− hi(T c − T i)

given as in section §5.4.1. The temperature boundary condition at the centreline

x = 0 will give Neumann type boundary condition with G = 0 and influx boundary

condition at the surface x = 1 will give Neumann type boundary condition with

G = −ϕiNuiκv ∗ (Tisur − 1),

and G = −(1− ϕi)κcNuc(Tcsur − 1) + λDf ρs
∂Mf

∂x
.

The generic values of non-dimensional parameters for moisture are given as constant
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values shown previously in Tables 5.3 and 5.4. Dimensional parameters associated

with temperature formulations given as constant values are shown in Table 6.3 and a

range of non-dimension physical relevant values are shown in Table 6.4 below. Initial

conditions for a free water moisture and vapour density is given as in section §5.4.1.
Initial condition for intercellular space temperature and intracellular cell temperature

are given as T i = 0 and T c = 0.

Table 6.3: Input parameter values used in simulation of mango drying.

Parameter Value Unit and Source.

Heat transfer coefficient of cell water

(hc)

20− 250 W/m2K [85]

Heat transfer coefficient of intercellular

space vapour (hi)

25− 100 W/m2K [39]

Latent heat of evaporation (λ) 2.345× 103 KJ/kg [84]

Specific heat capacity of water (cpw) 1.9− 3.683 KJ/kg

Specific heat for vapour (cpv) 1.84− 1.9 KJ/kg

Thermal conductivity of water (κc) 0.475− 0.567 W/m K (refer chap-

ter 2)

Thermal conductivity of intercellular

space vapour (κv)

0.026 W/m K

Thermal diffusivity of water (αw) 1.4× 10−7 m2/s

Thermal diffusivity of vapour (αv) 2.33× 10−5 m2/s

Table 6.4: Non-dimensional parameter values.

Non-dimensional parameter Value Range of values

Nui 5 0-20

Nuc 5 0-20

κv 10 0.1-100

κc 10 0.1-100

λ 0.5 0-1
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6.3.1 Analysis of two-phase non-isothermal model

In chapter 5, an isothermal model was evaluated with the assumption that the temper-

ature of the food remains uniform during drying and latent heat is taken as negligible.

In this section, the effect of temperature is included and compared with the numerical

results given in chapter 5. We first focus on the effects of temperature during drying,

which are characterized by the inclusion of a latent heat of evaporation (λ). Evapo-

ration is identified as transfer of liquid water to vapour within intercellular space and

also from the external surface of the fruit. The intercellular space temperature equa-

tion (6.8) includes the evaporation of liquid water inside the intercellular space. The

surface boundary condition for intracellular cell equation (6.11) includes evaporation

of liquid water near the external surface.

In summary, the system comprises four equations (6.1), (6.4), (6.8) and (6.9) which

are solved subject to (6.6), (6.7), (6.10), and (6.11) at the surface and symmetry

boundary conditions at the centreline. The above systems were solved numerically

using COMSOL. The time dependent problem was solved by an implicit time-stepping

scheme, leading to a non-linear system of equations for each time step. Newton’s

method was used to solve each non-linear system of equations, whereas a direct linear

system solver was adopted to solve the resulting systems of linear equations. The

relative and absolute tolerance were set to 10−4 and 10−5, respectively. The drying

process is considered to be complete when the moisture content in the sample is

asymptotic to a residual level.

In the following simulation, the dimensionless parameters for transfer flux are

taken as kp=0.01 and kw=0.01. The parameters for conduction of heat κc= 5, κv=

5; this characterizes how quickly heat is conducted within the fruit. The convection

heat transfer is given by Nui=5, Nuc=5, which shows how convection takes place

at the surface with respect to conduction evolution for both cell structure and the

intercellular phase. Other parameter values for moisture transfer are the same as those

defined in section §5.4. The overbar notation in the graph is dropped for clarity.

Profiles of local cell temperature, intercellular space temperature, free water mois-

ture and intercellular density at the surface and centre are given by Figures 6.1 and

6.4. The time evolution of free water moisture, intercellular vapour density and tem-

perature is shown in Figures 6.2 and 6.3; the arrows indicate the direction of increasing
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time.

Figure 6.1: Profile of (a) free water moistureMf (b) cell temperature T c at the surface

and the centre. Dimensionless parameter values given by Shf = 20, Shi=5, Df=1,

Di=1 k=1, kp=0.01, and kw=0.01, Nui=5, Nuc=5, κc= 5, κv= 5 λ = 0.1.

Figure 6.1 shows the typical trends of the cell temperature and free water moisture

at the surface and centre of the fruit during drying. From the cell temperature profile

(figure 6.1(b)), three different stages can be defined: the initial steep temperature rise

is the result of heat transfer, dependent on convection due to temperature difference

between air and food; the temperature increases to a new constant and remains

stationary while latent heat prevents a temperature rise and then there is a further rise

to its maximum steady state temperature. A similar result for the drying of mango is

reported by Tour and Kibangu-Nkembo [115], who studied the solar drying of mangos

in a hurdle-dryer with a wire net bottom, observing that, during the constant rate

period, the product temperature was lower than the ambient air temperature with an

average difference of 2.3oC and remaining at a constant temperature until a certain

value of moisture. Figure 6.1(a) shows that, initially, when the process is controlled

by external heat transfer and water leaving the surface was not bound to the food

structure, the drying rate attained a maximum value (τ=0-0.3). Afterwards, when the

process was controlled by mass transfer and the water leaving the surface was bound
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to the food structure, a progressive decrease in the drying curve was observed (τ=0.3-

1.8). As the free water moisture became very low at time τ = 2, the latent heat λ at

the boundary condition at the surface (equation (6.11)) was no longer effective and

this led to a final decrease in moisture and a final increase in temperature at the end

of drying. With respect to most work published in the literature, this typical trend

of free water moisture shown in our simulations was observed in experimental drying,

such as the drying of carrot [5], banana [67] and kiwi [107]. This will be investigated

in more detail later in section §6.3.2.

Figure 6.2: Evolution of (a) Cell temperature (T c ) at time 0-3 (in step 0.01) (b) free

water moisture (Mf ) at time =0-3 (in step 0.1). Parameter values as Figure 6.1.

Figure 6.2 illustrates the time evolution of intracellular cell temperature T c and

free water moisture Mf , giving a detailed microscopic description of the process.

Temperature in the fruit is initially constant, non-dimensionalised to zero, and reaches

a final scaled steady value of T c = 1. As shown, cell temperature T c rises sharply at

the heating surface because of the large temperature difference between the surface

and the drying air. At the beginning, the temperature difference between the surface

and drying air is large; some heat is used for evaporation of water near the surface

and some is conducted to the centre. At this time, the centre of the fruit is still
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cooler than the outside. When time increases, the inside temperature starts to rise

until equilibrium is attained between surface and centre. This is shown very clearly

in the above mentioned variation of the drying rate; at the beginning of the process,

the profile appears very well separated, whilst they tend to overlap as soon as the

drying rate decreases. Figure 6.2(b) shows free water moisture decreasing as time

initially increases; moisture reduces rapidly near the surface and establishes a gradient

through-out the sample. The moisture gradient between the centre and the surface

decreases as time increases.

Figure 6.3: Evolution of (a) intracellular space temperature T i at time 0-3 (in step

0.01) (b)intercellular vapour density (ρ) at time =0-3 (in step 0.01). Parameter values

as Figure 6.1.

Figure 6.3 illustrates time evolution of representative intercellular temperature T i

and intercellular vapour density during drying. The increase in intercellular space

temperature T i (Figure 6.3(a)) is faster at the surface due to the heat transferred,

mainly by convection, from air to the exposed surface, indicating that the process

is controlled by external heat transfer. As time increases, the gradient along the

moist regions is negligible and the temperature increases uniformly with time. It was

also observed that the temperature profile increases rapidly during early heating; the

source of heat from air drying is very effective at the beginning. As heating progresses,

the rise in temperature attains an almost uniform profile indicating that the process
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has basically approached a steady state. Figure 6.3(b) shows intercellular vapour

density decreasing with time. The sources of vapour inside the intercellular space

are from the transfer fluxes. As a result of water advected to the pores (intercellular

space), the water inside the intercellular space increases. Then the thermal process

occurs, which induces strong water evaporation in this area. As a result, more vapour

is produced inside the pores. Intercellular vapour density decreases due to the flow

of vapour from the surface due to permeability and diffusive flow. Some studies (for

example see [37]) have stated that a decrease in the local density of vapour causes

the water to evaporate at a lower temperature, depend on permeability to gas flow

and water vapour diffusion.

Figure 6.4: Profile of (a) intercellular vapour density ρ (b) intercellular temperature

T i at the surface and the centreline. Parameter values as in Figure 6.1.

Figure 6.4 represents the intercellular temperature and intercellular vapour density

at the centre and surface of the fruit. The temperature is higher at the surface and

intercellular vapour density decreases much faster at the surface. Comparing 6.1 with

6.4, the time taken for free water to reach equilibrium at the surface is τ = 2 but, for

vapour, the time taken is τ = 0.4, and consistent with other study [37] that shows

the rate of water vapour transfer to the sample surface to be much faster than the

free water transport to the drying front by several orders of magnitude. We observed
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that the intercellular space temperature T i is not in equilibrium to 1 compared to the

intercellular cell. This will be investigated later in section §6.5.

Figure 6.5: The profile of intracellular cell temperature and intercellular space tem-

perature at the surface and the centre. Parameter values as Figure 6.1.

Figure 6.5 shows a comparison between the intercellular space temperatureT i

with intracellular cell temperature T c. Intercellular space temperature T i rises more

rapidly compared to intercellular cell temperature T c. By inspection equation (6.8),

heat was used for internal evaporation inside the intercellular space for water evapo-

ration but the source of heat for the intercellular space comes from convection from

overlying air and transfer fluxes from the cell. This leads to a higher increase in

temperature inside intercellular space. Similar conclusions have been drawn by other

study: for instance, Farkas et al. [43] have shown temperature is higher inside the

crust region, which is characterized by vapour flow, compared to the core region,

which is dominated by the liquid phase. Different increasing profiles of cell tem-

perature T c compared to intercellular space temperature T i were observed. At the

beginning, intercellular cell temperature (T c) surface and centre temperature increase.

The difference between the surface and centre is large, but after τ = 0.6, the same
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temperature was observed between the surface and the centre. Representative in-

tercellular space temperature, T i, also shows rise in temperature at the beginning

before a uniform profile was observed, but the same temperature is not observed at

the centre and the surface.

6.3.2 Study of movement of water and vapour

We now present at a detailed study of the behaviour of the solution of the two-phase

non-isothermal model. Using numerical simulation, we illustrate the effect of varying

the parameters that are associated with transfer flux and evaporation. In order to

provide insight into the factors that affect the behaviour of the intracellular cell and

intercellular space moisture and temperature, solutions are presented for a variety

of parameter values that highlight how the interaction influences behaviour during

drying.

Transfer flux

The model parameters pertinent to the study of movement of water from cell struc-

ture into intercellular space at cell scale are kp and kw. The effect of varying each

parameter is investigated below, exploiting the numerical scheme developed in this

section. Figure 6.6 shows how the movement of water from intracellular cell into

intercellular space is affected by increasing the value of the transfer flux coefficient

rate kp. We observed that increasing kp, increases the rate of transfer of liquid water

when liquid free water is advected into the intercellular space, leading to the for-

mation of more water inside the intercellular space. Increasing kp, gives decreased

values of free water Mf (figure a) and also affects the intracellular cell temperature

T c. The intracellular cell temperature T c decreases as kp is increased (figure c): when

the liquid water is advected into intercellular space, it brings associated heat with

it. This gives a lower cell temperature T c when larger values of kp are used in the

model. Increasing kp gives more liquid water inside the intercellular space so that

more heat is required to evaporate liquid water into water vapour. Intercellular space

temperature T i decreases when kp is increased (figure d).

Figure 6.7 shows how the movement of water from cell into intercellular space is

affected by increasing the value of transfer flux coefficient kw. Similar behaviour is

observed, such as kp, and this transfer is more important than kp. The parameter
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Figure 6.6: Profile of (a) free water moisture (b) intercellular vapour density (c) cell

temperature (d) intercellular space temperature at the surface. Parameter values

given by Shf = 20, Shi=5, Df=1, Di=1 k=1, kw=0.1, Nui=5, Nuc=5, κc= 5, κv=

5, λ = 0.1 and kp=0.001, 0.01, 0.1, 0.2, 0.3, 0.5
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Figure 6.7: Profile of (a) free water moisture (b) intercellular vapour density (c) cell

temperature (d) intercellular space temperature at the surface. Parameter values the

same as Figure 6.6. kw=0.001, 0.01, 0.1, 0.2, 0.3, 0.5 and 1
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kw quantifies the resistance of cell membranes to the flow of water from cell to pores

because of concentration difference. The cell membrane is considered to be ’semi-

permeable’ and allows water to pass through. This behaviour has been reported

by, for instance, Zhiming and Maguer [139], Toupin and Marcotte [114] in osmosis

dehydration. An increase in kw therefore represents the increased rate of water to

be pumped through cell membranes. As the rate increases, resulting in increasing

advection, equations (6.8) and (6.9), show that temperature is also affected by this

advection.

For a lower value of kp and kw, the representative cell temperature T c increases

more quickly, due particularly to the low value of (jip + jic)(Tc − Ti) in the intracel-

lular cell temperature equation (6.9). Representative intercellular space temperature

T i also increases more quickly for a lower value of kp and kw, due particularly to the

low value of λ(jip + jic) in the intercellular space temperature equation (6.8). For

higher values of kp and kw, this term is more important and therefore more energy is

devoted to evaporation.

Latent Heat

We now consider the effect of varying the latent heat λ to the temperature of intracel-

lular cell structure and intercellular space. Figure 6.8(c) shows the effect of increasing

the latent heat λ at the intracellular cell surface (x=1). With negligible latent heat

(λ=0), at the surface, temperature T c (figure (c)) increases rapidly, as most heat

conducted to the fruit (the time scale for temperature changes rapidly compared to

the change in moisture discussed in chapter 5 for isothermal case). In this case, it

was found that the temperature profile rises rapidly in the early period of heating

(0 < τ < 0.3) and, as the heating period progresses, the rise in temperature is almost

uniform. Thus, after the initial transient period, which is relatively short compared

to the total drying time, the food remains nearly uniform during the entire drying

period. The numerical solution shows that increasing values of λ cause a slower rise

in surface temperature T c (figure (c)). This effect is due to the heat required to evap-

orate water near the surface. For high values of λ, the temperature rise at the surface

is slower because most energy is used up as latent heat of evaporation. Comparing

figure 6.8(a) with 6.8(c), the behaviour of cell temperature T c shows the increasing

profile at the end of drying due to low level of free water, giving the term λρsDf
∂Mf

∂x
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Figure 6.8: Profile of (a) free water moisture (b) intercellular vapour density (c)

intracellular cell temperature at the surface (d) intercellular space temperature

the centreline. Parameter values given by Shf = 20, Shi=5, Df=1, Di=1 k=1,

kw=0.01,kp=0.01 Nui=5, Nuc=5, κc= 5, κv= 5 and λ = 0− 5
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in equation (6.11) is smaller. This leads to faster increased of cell temperature T c.

Figure 6.8(d) shows the effect of increasing the latent heat λ at the intercellular

space centreline (x = 0). With negligible latent heat (λ=0), at the centre, inter-

cellular space temperature T i (figure (d)) increases rapidly. Similar in behavior to

cell temperature, the temperature profile rises rapidly in the early period of heating

(0 < τ < 0.3) and as the heating period progresses, the rise in temperature attains

an almost uniform level. Increasing values of λ cause a slower increase of intercellular

space temperature T i at the centreline (figure (d)). Inspection of equation (6.8) in-

dicates that λ, enters the model in the combination of transfer flux λ(jip + jic) inside

the intercellular space. Increasing this value gives a slower increase in temperature

inside the intercellular space.

Our simulations clearly demonstrate the importance of putting the evaporation

term (λ) into the model at the surface of the intercellular cell energy equation and

inside the intercellular space energy equation. By doing this, evaporation can take

place at the external surface and can also be distributed inside the intercellular space.

A more realistic model can be drawn, which is of crucial importance especially in the

drying of fruits that have high moisture content. Similar trends have been drawn by

other studies; for instance, Ni and Datta [84], Yamsaengsung and Moreira [130] have

shown evaporation to be distributed over the zone of the model.

6.4 Effect of pressure

In section §5.6, the modifying effect of pressure due to the loss of water was put into

the model equation (6.4) and through the boundary condition, such as equation (6.6).

In this section we investigate the effect of pressure inside the cell through pressure

dependent on the volume of water loss. Figure 6.9 shows how the centreline free

water moisture and intercellular vapour density, representative cell temperature and

intercellular space temperature profile are created by the modifying effect of pressure.

As in the two-fluid model, under constant pressure, free water flow will be driven by

pressure to the intercellular phase, but there is no pressure driven from the deeper

cell through plasmodesmata and so DpMf ρs
∂P c

∂x
= 0. This leads to a slower decrease

of free water Mf (figure (a)). High pressure water driven into the intercellular space,
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Figure 6.9: Profile of intercellular space temperature, vapour density, intracellular

cell temperature and free water moisture at the centreline. Dimensionless parameter

values given by Shf = 20, Shi=5, Df=1, Di=1 k=1, kw=0.01, kp=0.01, Nui=5,

Nuc=5, κc= 5, κv= 5 and λ = 0.5
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brings heat with it, leading to a slow increase in cell temperature T c (figure (c)).

The intercellular vapour density will decrease more slowly due to higher pressure

driven water to flow from the cell structure (figure (b)). With increased water in

the intercellular space, more heat is needed for water evaporation, leading to a lower

intercellular space temperature (figure (d)).

For variable pressure, there is a convective flow because pressure is driven from

deeper cells to the surface, in addition to transfer flux because of pressure driven

flow into intercellular space. These two flows will give faster transfer of free water

compared to constant pressure (figure (a)). Due to the balance between pressure

mechanisms, the flow will be distributed within transfer flux to the intercellular space

and convective driven flow to the external surface, so that the intercellular vapour

density produced will be lower (figure (b)). This leads to a higher intercellular space

temperature T i because less heat is needed for evaporation (figure (d)). At the same

time, because of the balance between pressure mechanisms, cell temperature T c will

also be higher in the case of variable pressure.

6.5 Drying through intercellular space dominant

fruit

To validate the numerical solution for the non-isothermal model, we consider the limit

in which the intercellular space is asymptotically large, as discussed in section §5.3.
In this case, water is transferred from the cell into the intercellular space and from

the intercellular space into the drying air. At the same time, heat is also transferred

from the cell to the intercellular space. The source of heat from the cell into the

intercellular space as discussed in chapter 4 i.e. water is released into the intercellular

space from the cell and inflow of heat due to the difference in temperatures between

intercellular space and intracellular cell. The sink of heat will be from latent heat to

evaporate water to water vapour. The non-dimensional model equation becomes

ρ
[
∂T i

∂τ
+
ni

ρ
· ∂T i

∂x

]
=

∂

∂x

[
ϕiκv

∂T i

∂x

]
+hi(1−T i)+C(1−ρ)(1−T i)−λ(C(1−ρ)). (6.12)

Initially, temperature of the intercellular space is T i=0. To simplify the model for

temperature, we consider the limit in which the interface between the intercellular
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space with drying air is insulated and we impose a no-flux boundary condition on

both boundaries given by
∂T i

∂x
= 0. (6.13)

Simulation was conducted for equations (5.22) and (6.12) with boundary condi-

Figure 6.10: Density/temperature of water vapour in intercellular space at the surface.

Parameter values hi=1 C=0.1 λ=1.

tions, equations (5.23) and (6.13). Figure 6.10 shows the profile of intercellular space

density and temperature at the surface of the intercellular space. The equilibrium

temperature will be attained with the limit that the flow of heat from the cell will be

larger from the heat required for evaporation, given by

hi(1− T i) + C(1− ρ)(1− T i) > λ(C(1− ρ)).

Rearranging

T i < 1− λ[C(1− ρ)]

hi + C(1− ρ)
.

The behaviour of intercellular temperature for changing parameter values is shown in

Figures 6.11 and 6.12. Figure 6.11 shows how the increasing the evaporation term, λ

results in temperature decrease. The same behaviour has been seen in Figure 6.8(d)

in section §6.3.2
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Figure 6.11: Density/temperature of water vapour in intercellular space at the surface

with different values of λ. Parameter values hi=1 C=0.1.

Figure 6.12: Density/temperature of water vapour in intercellular space at the surface

with different values of C. Parameter values hi=1 λ=1.
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The effect of increasing the flux parameter C is shown in Figure 6.12. As this

parameter is increased, the long time residual temperature decreases. The same

behaviour has been seen in Figure 6.6(d) in section §6.3.2.
Values for parameter λ, hi are associated with fruits are not readily available in the

literature, since they will depend upon the characteristics of the intercellular space.

In the following, we take representative values λ=0.5, hi=1, these parameter values

being chosen to illustrate the type of behaviour that can arise.

6.6 Three-phase non-isothermal model

The modifying effect of transfer inside the intracellular cell structure between free

water and bound water is included in this three-phase model for the five dependent

variables ρ, Mf , Mb, T i and T c. A solution for the three-phase non-isothermal model

is given by solving five coupled pde, three for mass equations (6.1), (6.4) and (6.5),

two for energy equations (6.8) and (6.9), together with equations of transfer flux (6.3)

and (6.2). These equations were solved using COMSOL Multiphysics as discussed in

chapter 5. ρ and Mf are formulated as in section §5.4.1. T i and T c are formulated as

in section §6.3. Generic values of non-dimensional parameters are given as constant,

as discussed in section §5.4.1 and §6.3

6.6.1 Analysis of non-isothermal three-phase model

Figure 6.13 shows comparison profiles of free water moisture, bound water moisture,

intercellular vapour density at the surface for the three-phase isothermal (Chapter

5) and three-phase non-isothermal model. Variable cell pressure was put into the

modelling for each case. Results shown in Figure 6.13 show that free water moisture

for the isothermal case decreases more quickly than the non-isothermal case. In the

case of isothermal, we assume that the temperature increases rapidly and gives the

value of Tsur = 1 and the solution is based on uncoupled behaviour between moisture

and temperature. When the free water moisture is in a relatively small quantity,

change of the bound water moisture to the free water moisture happens especially at

later stages of drying. The transfer between the bound water moisture to the free

water moisture increases the level of free water, which happens at time τ=2.2 for

180



Figure 6.13: Profile of intercellular vapour density, free water moisture and bound

water moisture for isothermal and non-isothermal three-phase at the surface. Dimen-

sionless parameter values given by Shf = 20, Shi=5, Df=1, Di=1 k=1, kp=0.01,

kw=0.01, Nui=5, Nuc=5, κc= 5, κv= 5 and λ=0.5
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isothermal condition and time τ=2.3 for non-isothermal condition.

Figure 6.14: Profile of free water moisture, intercellular vapour density, cell tempera-

ture and intercellular temperature for two-phase and three-phase non-isothermal case

at the surface. Parameter values the same as Figure 6.13.

Figure 6.14 shows a profile of free water moisture, intercellular vapour density,

cell temperature and intercellular space temperature for two-phase and three-phase

non isothermal cases at the centre. Comparison of the two-phase and the three-phase

models shows the decrease in free water as nearly the same, but at a later stage

in the three-phase model, the transfer of bound water to free water increases the

level of free water moisture in cell (refer Figure 6.13) leads to increasing transfer flux

into intercellular space. This happens in the later stage (τ = 2.3) when Mf < Mb.

This gives the intercellular vapour density to be higher at the end of drying. A

similar profile was also found in the isothermal case (Chapter 5). Figures 6.14(c) and

6.14(d) show a profile of temperature at the surface of the intercellular space and the

intracellular cell. The temperature of three-phase model is little bit lower at τ=2.3,

which happens as the transfer of bound water to free water leads to increased of free

water moisture levels. This water is advected to the intercellular space, particularly
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increasing the intercellular vapour density. This gives the increase in cell temperature

T c and intercellular space temperature T i at a later stage in the three-phase model,

which is slower than the two-phase model.

6.7 Model validation

Closely coupled with an accurate formulation of the problem is validation of the model

and accuracy of the computations.

6.7.1 Time step and convergence

In simulations, convergence of the numerical results was verified through mesh con-

vergence, going up to 800 nodes in the 1 non-dimensionless thickness to achieve a

numerically accurate and converged solution. The time step used in the simulation

is 0.01 in terms of non-dimensionless time steps. The effects of changing the number

of nodes on moisture and temperature distribution gives an absolute error of 10−5 .

Tests with finer meshes were made but no influence on the results was observed. The

input parameters used in this study are shown in Table 5.4.

The numerical test was also conducted using different time steps. The mesh value

was fixed at 800 , with time steps of change from 300 to 3000. The effect of changing

the number of time steps on moisture and temperature gives absolute error of 10−6.

From Figure 6.15, the results from different numbers of time step agree well.

6.7.2 Comparison with the literature data

A direct comparison of predicted values with the experiments is not possible at this

time due to limitations of the parameter estimations. There is only limited experi-

mental transport data for cellular tissues available in the literature. Most data are

expressed as diffusion coefficients and are obtained from solution of the diffusion

coefficient along with the experiment drying curve on the basis of physical models

unlike those presented in this work. Alternatively, prediction used in the theoretical

model result can be compared on the basis of some assumptions in the literature

data. Comparison was made with the work of Dissa et al. [40], who investigated
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Figure 6.15: Convergence checks for different numbers of time steps. (a) Evolution

of free water and cell temperature at the surface position.(b) a magnified region to

show the detail more clearly. Parameter values the same as section §6.6.

the convective drying of mango with the effects of shrinkage and that of Velic et al.

[118] for apple drying. Figure 6.16 shows the variation in average moisture content by

drying time for air velocity=0.8 m/s, RH=15%, temperature=70oC and length=5mm

for mango drying and velocity=1 m/s, temperature=60oC, RH=9%, length=5mm for

apple drying. As seen, the comparison between experiment results of average mois-

ture and model prediction matches closely with the results of Dissa et al. [40] and

Velic et al. [118]. At the beginning, there is close agreement between experiment data

simulation at high moisture content; at low moisture contents, the predicted value

begins to separate from experiment data. This departure is to be expected because

the model is built on the assumption that cellular structure remains functional. This

is less and less realistic as moisture content decreases, because of an increasing por-

tion of tissue becoming non functional. This similar behaviour was also observed by

Crapiste et al.[28] when they compared experiment data with their simulation. As

our model considers vapour transport to be distributed across the cell structure at

the later stage of drying; this transport leads to a faster decrease at the end of drying

compared to their model. Such close agreement between experiment measurements
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and model prediction confirms the effectiveness of the model and serves to validate

it.
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Figure 6.16: Comparison between numerical solutions for average moisture with ex-

periment data from the literature by Dissa et al. [40] and Velic et al. [118]. Dimen-

sionless parameter values the same as §6.6

6.8 Conclusion

In this chapter we have presented a one-dimensional two-phase model and a three-

phase model in which the effect of heat was put into the more relevant the model.

Numerical solutions of the model equations are presented using constant value of

parameters.

In chapter 5, only mass transfer has been assumed in the model. However, drying

is a non-isothermal process and heat transfer can substantially affect drying behavior.

Therefore, drying model has been extended to account for the latent heat of evap-

oration and the temperature dependencies of saturation vapor pressure β(Tsur). In

the presence of thermal gradients, evaporation occur in the partially saturated pore
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region. Most studies in the literature include only surface evaporation as a boundary

condition for the energy equation, and equate the rate of surface evaporation to the

rate of diffusive moisture loss at the surface. Thus, evaporation has been excluded

inside the food even though temperatures inside reached higher than 100oC. Recent

studies ([42] and [135]) have shown that evaporation is not instantaneous and non-

equilibrium exists during rapid evaporation between water and vapour in the gas

phase. As evaporation takes place, the vapour produced expels the air and occu-

pies its space, resulting in increased of vapour. Furthermore, if evaporation occurs,

pressure will produce a significant convective flow (Darcy) in the intercellular space,

leading to decrease in vapour, which leaves the surface. We remark that, as we have

modelled this phase as a rigid porous material and have divided our system into two

different phases, water phase in the intracellular cell and vapour phase in the inter-

cellular space and different temperatures are observed between this regions. Moisture

in the water vapour phase inside intercellular space is at a higher temperature than

the moisture in the liquid phase inside intracellular cell.

Our model reveals that temperature gives significant effects in both intercellular

space and intracellular cells. This prediction has important implications for food

engineering applications, suggesting that a uniform temperature is crucial, as tem-

perature is the main source of drying. This is characterized by Nui and Nuc, the

bigger these values, the more non-uniform the temperature inside the fruit.

The separated modelling of the intercellular space and intracellular cell has re-

vealed an important facet of the system. Furthermore, such a model provides a

means to investigate the interplay between the liquid phase and the water vapour

phase on the movement of water during drying. It has been shown that water trans-

port during drying occurs by the contribution of two mains fluxes: cell to cell and

through intercellular spaces.
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Chapter 7

Two-dimensional Multiphase

drying model

7.1 Introduction

In chapters 5 and 6, numerical solution for the one-dimension multiphase model was

performed using the COMSOL solver. In this chapter, we want to extend the model

developed in chapter 4 to a two-dimensional multiphase model. Modelling of overall

food behaviour is important and local and transient features can help to establish

firmer knowledge for modelling applications. Modelling can provide insight into fun-

damental and critical processing variables to improve product quality and safety. In

this respect, the simple model discussed in chapter 4 for drying of food using cel-

lular features will be further analysed for two-dimensional drying, integrated with

evaporation and transfer flux.

A two-dimensional model for drying under thermal conditions is evaluated using

COMSOL and the results will be presented and compared with the results found in

earlier chapters for one-dimensional model.

7.2 Mathematical formulation

In this chapter, the two-dimensional multiphase model for drying under non-isothermal

conditions is presented, corresponding to the model developed in chapter 4. To rep-
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resent the moisture/temperature distribution system, we choose a (dimensionless)

Cartesian coordinate system u=(x, y). A two-dimensional model is employed in the

analysis using slab of thickness a and length b, as shown in Figure 7.1. The food

is exposed to an air flow at the surface (dΩ3 and dΩ4) for which the temperature

Tair = 60oC, the relative humidity(RH)=20%; this will give the concentration of air

as constant Cair=0.025. Due to the geometric symmetry and suitable initial and

boundary condition (dΩ1 and dΩ2), only a quarter of the product requires compu-

tation (0 < x < a and 0 < y < b). On the same figure, three characteristic points

inside the fruit were selected: point A-located at the top surface; Point B-located in

the middle of the fruit; point C- is located in the symmetry point of the fruit. One

line across the thickness was also selected (line D).

Figure 7.1: Schematic of two-dimension slab.

The corresponding set of governing equations in non-dimensional form as derived

in chapter 4, is given from (4.31), (4.32), (4.33), (4.36) and (4.37), together with the

equation of transfer flux (4.34) and (4.35). The overbar notation is dropped for clarity.

The conservation equations for intercellular vapour density for a fixed intercellular
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space become

ϕi
∂ρ

∂τ
+

∂

∂x

[
− (ρkγ +Di)

∂ρ

∂x

]
+

∂

∂y

[
− (ρkγ +Di)

∂ρ

∂y

]
= jip + jic. (7.1)

The conservation of free water moisture is given by,

ρs
∂Mf

∂τ
+

∂

∂x

[
− (Dfρs +DpMf0 ρs ς)

∂Mf

∂x

]
+

∂

∂y

[
− (Dfρs +DpMf0 ρs ς)

∂Mf

∂y

]
= −jip − jic + ρsrb. (7.2)

The conservation equation of bound water moisture is given by,

∂Mb

∂τ
= −n1Mb + n2Mf = −rb. (7.3)

The equation for mass flux of free water is associated with differential pressure be-

tween the local cell and the intercellular space given by

jip = kp(Pc − Pi), and jic = kw(η − ξ). (7.4)

Intercellular space temperature equation becomes

ϕi

[
ρ
∂Ti
∂τ

− ∂

∂x

(
κv
∂Ti
∂x

)
− ∂

∂y

(
κv
∂Ti
∂y

)]
= hi(Tc − Ti) + (jip + jic)(Tc − Ti − λ)

− ϕini ·
∂Ti
∂x

− ϕini ·
∂Ti
∂y

. (7.5)

Intracellular cell temperature equation becomes

(1− ϕi)
[
ρc
∂Tc
∂τ

− ∂

∂x

(
κc
∂Tc
∂x

)
− ∂

∂y

(
κc
∂Tc
∂y

)]
= −hi(Tc − Ti)

− (jip + jic)(Tc − Ti). (7.6)

Associated initial conditions are taken as

Mf=3.7, Mb=0.39, ρ = 1, Ti=0 and Tc=0.

Boundary condition on the symmetry boundary (boundary dΩ1) at y = 0 and

0 < x < b is given by
∂Mb

∂y
= 0,

∂ρ

∂y
= 0

∂Ti
∂y

= 0 and
∂Tc
∂y

= 0.

Boundary condition on the axi symmetry boundary (boundary dΩ2) at x = 0 and

0 < y < a is given by
∂Mf

∂x
= 0,

∂Mb

∂x
= 0,

∂ρ

∂x
= 0

∂Ti
∂x

= 0 and
∂Tc
∂x

= 0
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Boundary condition at the surface (boundary dΩ3), at x = a and 0 < y < b is

given by [
(Dfρs +DpMf0ρs ς )

]
∂Mf

∂x
= −Shf (Cfw,sur − 1), (7.7)[

(ρkγ +Di)
]
∂ρ

∂x
= −Shi(

ρ

Cair

− 1), (7.8)

ϕiκv
∂Ti
∂x

= −ϕiNuiκv(Tisur − 1), (7.9)

and (1− ϕi)κc
∂Tc
∂x

= −(1− ϕi)κcNuc(T csur − 1) + λDf
∂Mf

∂x
. (7.10)

Boundary condition at the surface (boundary dΩ4), at y = b and 0 < x < a is given

by [
(Dfρs +DpMf0ρs ς )

]
∂Mf

∂y
= −Shf (Cfw,sur − 1), (7.11)

[
(ρkγ +Di)

]
∂ρ

∂y
= −Shi(

ρ

Cair

− 1), (7.12)

ϕiκv
∂Ti
∂y

= −ϕiNuiκv(Tisur − 1), (7.13)

and = (1− ϕi)κc
∂Tc
∂y

= −(1− ϕi)κcNuc(Tcsur − 1) + λDf
∂Mf

∂y
. (7.14)

7.3 Numerical solution

The COMSOL Multiphysics program is used to simulate the dehydration process in a

drying system that corresponds to the numerical solution of these model equations as

seen in the one-dimensional problem in section §2.3.1 . The above system of non linear

partial differential equations, together with the described set of initial and boundary

conditions, has been solved by Finite Element Method implementation by COMSOL

Multiphysics 3.4.

The coefficients of the equations were formulated such that the equations led to

constitutive equations for intercellular vapour density and free water moisture and

bound water moisture, intercellular space temperature and intracellular cell temper-

ature i.e., equations (7.1), (7.2), (7.3), (7.5) and (7.6). Moreover, the transfer fluxes

(7.4) were included in the equations to give the coupling effects for both the inter-

cellular vapour density and free water moisture. All the equations were input into

COMSOL Multiphysics using a partial differential equation (PDE) solver with the

190



general form for moisture content and temperature. Details of the numerical proce-

dure can be found in Appendix C.

7.3.1 Results and analysis

In this section, the results of drying simulation with two-dimensional non-isothermal

conditions for the three-phase model are presented for generic conditions given in

section §5.4.1 and §6.3. For the non-isothermal three-phase two-dimensional drying

model, five dependent variables ρ, Mf , Mb, Ti and Tc were used to describe the

characteristics of drying models. For the first simulation, the thickness and length

is taken as aspect ratio (AR) b/a = 1. The simulation is then repeated with aspect

ratios, b/a = 2 and b/a = 0.5 and compared with b/a = 1. The thickness of the

food is maintained at constant value a = 1 and the length of the food is changed

according to the corresponding aspect ratio (AR). Simulation result are presented in

the form of free water moisture, intercellular vapour density, cell temperature Tc and

intercellular space temperature Ti.

Figure 7.2: Surface plot of residual free water moisture field at different time τ = 0.5,

τ = 1 and τ = 1.3. Parameter values given by Shf = 20, Shi=5, Df=1, Di=1 k=1,

kp=0.01, and kw=0.01, Nui=5, Nuc=5, κc= 5, κv= 5 and λ = 0.1.

A surface plot of residual free water moisture is given in Figure 7.2, which shows

the free water moisture residual inside the fruit as the time period increases as a result

of drying. Fruit loses a significant amount of water during the initial phase of drying,

free water moisture decreases from its initial value of 3.7 kg/kg to 1.4 kg/kg after

τ=0.5 at the surface. A different region of moisture forms almost immediately after
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just τ=0.5 of drying, while the central portion retains a high moisture content. After

τ=1, a distinct layer has been formed, with a considerable amount of water within the

centre of the fruit. After τ=1.3, most of the free water moisture is eliminated from

the fruit and a small amount of residual moisture is still left. Thus, the moisture loss

is highest at the top edge, lowest in the centre. After heating of about τ=1, almost

92% of the moisture is lost near the top edge. Hence, the 2-D model is able to present

the transient change of moisture and its steady movement towards the centre of the

fruit.

Figure 7.3: Surface plot of intercellular vapour density field at different time τ = 0.02,

τ = 1 and τ = 1.3. Parameter values the same as Figure 7.2.

Figure 7.3 shows a surface plot of residual intercellular vapour density at different

times. From the figure, the intercellular vapour density reduces as the time increases.

As drying proceeds, when nearly all free water moisture is eliminated, the intercellular

vapour density decreases.

Figure 7.4 shows the profile of free water moisture, cell temperature, intercellu-

lar vapour density and intercellular space temperature drawn across the section line

passing through the centre of thickness (line D). The figure shows that the free wa-

ter moisture and intercellular vapour density continues to decrease with time and

cell temperature and intercellular space temperature increase with time. A similar

profile is also seen in one-dimensional drying. The temperature at all points across

the thickness approaches a level close to the temperature of the air; however, the

temperature in the middle increases more slowly than at other points. The moisture

gradient in the fruit drives the flow of free water moisture upstream through the sur-
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Figure 7.4: Profile of (a) Mf (in step of 0.1) (b) Tc, (c) ρ and (d) Ti cross the section

line through the centre of thickness x (Line D) with increasing time τ=0-1.5 (in step

of 0.01). Parameter values the same as Figure 7.2.

face, which gradually decreases as the moisture equalizes with the exterior moisture

(air moisture).

Changes in local values of free water moisture, intercellular vapour density, in-

tercellular temperature and cell temperature inside the fruit at several points and

also compared with moisture and temperature profiles of a one-dimension model are

shown in Figure 7.5. It can be seen that the free water moisture at the surface of the

slab (point A) achieves its equilibrium faster (Figure 7.5(b)). On the same figure we

can observe that the higher the distance of the point analysed from the centre, the

lower the free water moisture at that point. This also happens in a one-dimensional

model but it takes longer than in the two-phase model because of the smaller sur-

face area in the one-dimension model. This same behaviour is also observed from

intercellular vapour density (Figure 7.5(d)). Changes in cell temperature at selected

points are also shown in Figure 7.5. Cell temperatures at all points were raised to a

level close to temperature of air (Figure 7.5(a)). It can be observed that cell temper-

ature at the middle point (C and B) is lower that the temperature of surface point

(A). The increase in cell temperature at the surface occurs rapidly at the beginning
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Figure 7.5: Change in (a) Tc (b) Mf , (c) Ti and (d) ρ at selected point and compared

with one-dimension model at the surface. Parameter values the same as Figure 7.2.

until there is no significant change in temperature, suggesting that the system has

reached very close to equilibrium with drying air. Cell temperature at the surface

of the one-dimension model increases more slowly compared to the two-dimension

model. As expected, the cell temperature increases faster at the surface because the

air temperature starts at the surface, especially in the two-phase model, where the

surface area is larger. The same behaviour is also observed for intercellular space

temperature (Figure 7.5(c)).

A surface plot of residual bound water moisture at different times is given by

Figure 7.6. Initially, when Mf > Mb, at any location inside the fruit, there will be no

change of bound water to free water. At τ=0.5, bound water moisture still contains

0.39 kg/kg, there is no change of bound water to free water at this stage asMf > Mb.

At τ=1, there are some areas near the surface corner (point A), where the transfer

of bound water to free water leads to decreased bound water moisture.

Figure 7.7 shows profile of free water, bound water and intercellular vapour density

at selected points. This profile shows that bound water decreases from the initial value

of 0.39 to 0.01 at the later stage of drying, started at time τ=0.8 at A, τ=1 at B

and τ=1.1 at C and τ=2.6 for one-dimensional model. Change of bound water to
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Figure 7.6: Surface plot of residual bound water moisture at different time τ = 0.5,

τ = 1 and τ = 1.5. Parameter values the same as Figure 7.2.

Figure 7.7: Moisture profile (a) free water moisture (b) bound water moisture (c)

intercellular density at selected points A , B and C compared with one dimensional

model at surface. Parameter values the same as Figure 7.2.
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free water is faster at the surface and slower at the centre. As discussed in chapter 5,

when the free water moisture is in a relatively small quantity, change of bound water

to free water happens. These processes would be important in the later stage when

Mf < Mb and much longer stages of drying to reduce residual levels of moisture. For a

one-dimensional model, free water decreases more slowly than in the two-dimensional

model. The slower decrease of free water in the one-dimensional model leads to time

taken for bound water to start decreasing at the surface at time τ=2.6.

Figure 7.8: Comparison between moisture profiles of bound water moisture, free water

moisture and intercellular vapour density at selected points A , B and C for constant

pressure (above) and variable pressure (below) inside cell structure. Parameter values

the same as Figure 7.2.

Figure 7.8 shows a comparison of bound water moisture, free water moisture and

intercellular vapour density between the models using constant pressure and variable

pressure inside the cell structure. When using constant pressure, the gradient between

the surface and centreline of free water moisture and bound water moisture is much

bigger. The drying curves of free water moisture and bound water moisture at selected

points practically overlap when using variable pressure in the model. This happens

because the constant rate of water is advected to intercellular space for constant
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pressure but this rate increases with variable pressure.

Figure 7.9: Effect of aspect ratio on (a) Mf (b) ρ (c) Tc and (d) Ti at the surface top

edge corner. Parameter values the same as Figure 7.2.

Variation of moisture and temperature inside the fruit with different aspect ratio

(AR) products is shown in Figure 7.9. Results for free water moisture, intercellu-

lar vapour density, cell temperature and intercellular space temperature at the top

edge point (A) are shown. Free water moisture reduces more quickly for smaller

aspect ratio (Figure 7.9(a)) and cell temperature increase more quickly for smaller

aspect ratio (Figure 7.9(c)). Intercellular vapour density decreases more quickly for

smaller aspect ratio but intercellular temperature increases slowly for smaller aspect

ratio. When drying is accompanied with evaporation inside the fruit, the energy con-

sumption necessary for intensive vaporization of moisture inside the fruit. This gives

the intercellular temperature a slower for smaller aspect ratio. It was observed that

smaller aspect ratios provide shorter drying times than higher aspect ratios, which is

consistent with findings by Kaya et al. [68]. Dissa et al. [40] and Villa et al. [119]

found that the drying rate decreases 4.5% with 1mm increase in mango thickness

because the diffusion path of moisture to reach the drying surface increases.
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7.4 Conclusion

The full two-dimensional system was investigated in this chapter allowing the effect

of geometry to be included. Numerical simulations were used to show that the effect

of temperature on the movement of water during drying. It was again found that

the moisture maximum is near the centre and the minimum at the surface. The

temperature is higher at the surface but lower at the centre, similar to the behaviour

observed in a one-dimension model. We remark that the movement of temperature

is faster than the movement of moisture. The proposed model was able to provide

information about water and temperature profiles at all times, thus allowing detection

of the regions within the fruit, where high moisture content promote microbial growth.

Hence the 2-D model is able to present a transient change in the temperature and

moisture of the fruit and its steady movement toward the centre of the product.

The aspect ratio of a slab directly influences the drying process, and this is directly

related to the area/volume ratio, i.e., the lower the area/volume ratio, the faster the

drying. During the drying process the smallest moisture gradients are found close

to the center and the highest are found close to the surface. The moisture content

depends on thickness and length coordinates. The closer to the surface of the slab,

the lower the moisture content will be.

As covered in chapter 2, it has been postulated that temperature is higher at the

surface corner of leading edge and lower at the symmetry leading edge. The results in

this chapter suggest that variable pressure inside the cell is likely to lead to uniform

temperature and moisture and, hence, may allow for the formation of isothermal

processes during drying.
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Chapter 8

Future work and Recommendation

In this thesis we have used two different approaches to model the drying process in

foods: a continuum single phase homogenous model (chapter 2), and a continuum

multiphase model based on a cellular feature framework (chapter 4), suitable for a

macroscale modelling of drying. The significant achievements that can be observed in

this thesis are the successful development of the continuum model with embedded of

shrinkage and multiphase model based on cellular features. In this chapter we assess

the relative merits of each modelling framework and discuss their suitability for use

in the drying of fruits. We consider a tropical fruit of fixed size (mango) and run a

test problem using each approach. We also discuss insights gained from each model

and consider how well they agree with experimental findings.

Following many studies of drying models which exploit single phase continuum

formulation, discussed in chapter 2, we initially restricted attention to the flow of

water due to the concentration gradient based on diffusion theory and flow of heat,

which enhances the diffusion process by, heat conduction transfer. Motivated by the

range of experimental studies, we isolated two crucial factors of key importance in the

drying of tropical fruits and arising from cellular structure: (i) the interaction between

adjacent cells and between cell-airspace, and (ii) the impact of mechanisms (that is,

the process by which water is converted to water vapour inside the pores influencing,

for example, temperature, moisture and pressure) on drying. The emphasis of this

thesis was on these factors. The formulation employed was necessarily simple, but

the relevance of the model, by including more detailed physics, provides insight into
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the physical processes in a more precise and reliable manner.

This chapter is structured in the following way: summaries of each model is pre-

sented in §8.1 before further work and conclusions are discussed in §8.2.

8.1 Summary of the models

A simulation model of heat and mass transfer during drying of tropical fruits was de-

veloped. Each model exhibits features of temperature and moisture that are observed

experimentally in the drying model. Experimental results by Wang and Brenann [122]

suggest that, during drying, there exist temperature differences in the vertical direc-

tion (thickness), i.e. from the surface to the bottom of the sample but there are

no significant differences between temperatures in the horizontal direction (length).

This suggests that a one dimensional model can be used in the modelling of food dry-

ing. Further experimental [136] evidence has shown that evaporation occurs inside

the food. Non-equilibrium conditions may exist during rapid evaporation between

water-vapour in gas phase but consideration of water in pores [50] is justified and our

modelling incorporates this in terms of suitable transfer fluxes.

8.1.1 Continuum model

In chapter 2, we developed a continuum model to describe the movement of water

inside a fruit. Following Wang and Brenann [123], Balaban and Pigoet [8], water

movement was modelled using Fick’s Law of diffusion which is characterized by a

diffusion coefficient. Two distinct forms of diffusion coefficients were considered:

constant and dependent on temperature and moisture. The transfer of water through

food is a slow process characterized by the diffusion coefficient; the movement of

heat was modelled by the Fourier equation of heat conduction. In drying, two linked

processes are considered: the evaporation of water at the solid surface and the internal

diffusion of water to the surface. The internal diffusion of water to the surface is given

by a diffusion equation and the evaporation of water at the solid surface is given by

convective boundary condition. At the surface, overlying hot air was assumed to

evaporate water and gives a latent heat effect at the surface. Internally, heat was

used to evaporate water near the surface and some of the heat was conducted to
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the inside, characterized by Fourier’s law of heat conduction. These processes occur

simultaneously.

In general two stages can be identified during the drying process. Initially the

drying is determined by the external conditions, i.e., the moisture transport in the

material is faster than the mass transfer out of the material by the underlying air

flow. As a result, the moisture profiles in the material will be rather flat and uniform.

However, as soon as the surface becomes dry a drying front will enter the material.

Now it is the internal moisture transport that limits the drying rate of the material.

During this stage, the moisture profiles, which exhibit a moving drying front, are

determined by the material properties such as moisture diffusivity. In general from

drying experiment, this can be considered as isothermal. However, for typical drying

process, it was found that temperature is an important aspect, this gives a coupled

heat and mass transfer have to be taken into account in the simulation. This situation

is given in case of non-isothermal model.

The main finding of the model was the ability of the equations to represent the

movement of moisture and temperature inside the fruit with high moisture content

and, consistent with experiment findings, results providing physical contents were as-

signed appropriate numerical values. In both mass and heat transfer, two resistances

towards transfer play a role. The two relevant mass transfer phenomena are diffu-

sion and convection. Diffusion controls the transfer of moisture inside the material.

Convection controls the transfer of moisture from the surface of the material to the

air. For heat transfer, conduction controls the heat transfer within the material and

convection control the transfer from the air to the foods surface. The ratio between

the intensities to internal and external transfer determines whether distributions of

either mass or energy arise in the food. For example: when the controlling resistance

for drying is the internal mass transfer resistance, the transfer of water from the inside

of the food to the surface is much slower than the transport from the surface to the

air. Therefore, the moisture content at the surface will be much lower than its con-

centration in the centre. Clearly, a distribution of water arises inside the food. The

ratio between the internal and external resistances is evaluated with the correspond-

ing Sherwood (Sh) numbers. They depend on drying parameters as well as material

properties. The controlling of heat transfer is deduced by Nu and λ. If this number
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is similar and of the same order of magnitude, the fruit temperatures increase slowly

while the process develops. In general, all these numbers depend upon the type of

fruit under study and such consideration remains valid with validation of experiment

results.

8.1.2 Continuum model with shrinkage effect

Chapter 3, developed a model that extended the heat and mass transfer model to

include shrinkage. In previous models, shrinkage effects are very dependent on data

from experiment, where the adjustment of shrinkage is done at each time step, us-

ing equations derived from experimental measurement. Chapter 3 focussed on the

continuum model that based the effect of shrinkage on changes of volume rate from

the volumetric reduction of water during drying. The equation for the shrinkage was

derived from overall mass conservation balance of liquid water in the fruits in the

absence of any void creation.

Model simulation yielded behaviour similar to the non-shrinkage heat and mass

transfer model. The comparison between this shrinkage model and the non shrinkage

model shows that with shrinkage, the time for drying is much shorter. Physically, the

thickness of the sample decreases due to the shrinkage, the moisture has less distance

to cover and hence reaches the surface faster, before it can diffuse to the air. This is

consistent with experimental findings reported in [122, 107, 40].

A detailed investigated into the effect of diffusivity on drying behaviour is provided

by consideration of temperature and moisture dependency; simulation revealed that

the temperature has more effect than moisture on the diffusion coefficient. Physically,

a combination of these two effects makes changes to fruit, known as glass transition.

8.1.3 Multiphase model

A homogeneous model does not allow us to incorporate more detailed ongoing pro-

cesses inside the cell/tissues within the single cell as a continuum. Chapter 4 focussed

on the heterogenous properties of tissue and detailed cellular structures that can bet-

ter represent the physical model. An aim is to include subcellular models to develop

an enhanced macrostructure model for the multiphase transport of water.
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In most multiphase models in the literature, food is considered as a porous

medium. The mass transfer equations are solved for the components inside the food

whose mass is changing significantly. These components are identified as phases and

all the balance equations (mass, momentum and energy) for each of the phases are

solved. Phases identified are solid, liquid water, and gas (mixture of vapour and air).

The solid phase plays an important role in energy conservation. For fluid phases, all

three balance equations are solved within a porous structure. Darcy’s law is assumed

to be valid. The basic physics of heat and mass transfer remains but is adapted to

simulate different processes in this category with appropriate changes in boundary

conditions or with the addition/removal of a phase.

In our model, the cells are treated as cellulose capsules filled with liquid. Surround-

ing the cell are intercellular spaces (pores) that are separated by cell membranes and

cell walls. Plasmodesmata connect a cell to the neighbouring cell. Based on these

features at cell level, we consider two different regions: an intracellular cell and inter-

cellular spaces (pores). Basic transport of moisture during drying is taken to exist in

three categories: water vapour transport in the pores (intercellular spaces), transport

of liquid free water inside the individual cell and transport of bound water that is

held within the solid cell structure. The model was derived using a multiphase ap-

proach; each material constituent is taken as a distinct phase within the multiphase

and with the constitutive law describing the material properties and its interaction

with the neighbouring phase. To include interaction between neighbouring phases,

we incorporate source terms jip and jic into the appropriate mass balance equations.

Formal averaging techniques were not used as we describe the process in macroscopic

property but the precise details at the microscopic level.

Simulations of the model were based on isothermal and non-isothermal conditions

for a two-phase model. The modifying effect of including bound water within the

cellular structure is provided within a three-phase model. Model simulation results

show the behaviour changes in liquid water and water vapour during drying. Model

simulations yielded behaviour of liquid water transport similar to that seen in the

single phase model. The multi-phase model also generates results not evident in the

homogenous model, such as the bahaviour of water vapour inside the intercellular

space. The additional effect of heat considers the principal of local non-equilibrium
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between the cell and intercellular space at given locations. This given by representa-

tive temperature in the intercellular space T i which is different from representative

temperature within the intracellular cell T c. This could not be seen in the single phase

model, which assumed heat transfer remains in equilibrium at the local temperature.

In further chapters we investigated the key parameters in the multiphase model.

In chapter 5, an isothermal model evaluates the effect of transfer fluxes. Simulations

reveal that, the transfer fluxes jip and jic relates moisture transfer from intracellu-

lar cell into intercellular space is important. In Zhang and Datta [134], the use of

non-equilibrium approach was discussed along with a more realistic representation of

the physical problem. Discussion in Halder et al. [52], the use of non-equilibrium

formulation in frying, stated that the assumption of equilibrium between liquid water

and water vapour might not always be true and, based on this, the evaporation rate

is estimated using the Hertz-Knudsen Law. From our simulation, it is realistically

possible to include interaction between water and water vapour inside the material by

using the transfer flux equations. Transfer fluxes jip and jic relates moisture trans-

fer from intracellular cell into intercellular space lies at the heart of this new drying

model. Currently, modelling studies are limited by the knowledge of phase changes

between water and vapour inside the material during the drying process.

A multi-phase model allowed us to incorporate the movement of vapour inside

the intercellular space. This enabled evaluation that cell-pores have an effect on

drying behaviour. The effect of changes in permeability influence behaviour inside

the intercellular space more than diffusivity. Convective transport near the surface

also influences drying less than diffusion inside the intracellular cell.

In this thesis, we have laid the foundations for mathematical investigation into

the mechanisms by which movement of water and movement of heat occur simulta-

neously. This work has yielded a number of interesting results, many of which merit

further investigation. We have shown how homogenous models and multiphase mod-

els can replicate experimental findings and give new insight into the study of drying

methods. We hope this body of work will prove useful to mathematics in industry and

experimental industries with an interest in the development of new drying methods
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8.2 Further work and conclusion

Although we have been able to show the main physical features in the models, further

work is needed to gain a comprehensive understanding. The models analysed within

this thesis were necessarily complex since they attempted to capture the complex

interplay between a number of phases within a biologically relevant framework. We

have therefore employed reasonable simplifying limits such as internal turgor pressure

Pc, which remains constant during the main drying stage, but may need modifying

in later studies. Furthermore, due to lack of experimental data in term of dimension-

less parameters, we have made a number of biologically-motivated constitutive and

modelling choices and estimated many of the parameter values. These approxima-

tions point the way to a myriad of interesting and challenging extensions. Starting

with the available data, we have obtained the desired output for a range of data.

The enhanced models provided in this study will show important trends and promote

understanding of food drying systems, even when precise data are not available. A

simple way to increase the realism of the models developed in this thesis would be

to work more closely with industries and biologists to obtain better estimates of the

parameters for specific food applications. Furthermore, such collaboration would al-

low the estimation of more accurate functional forms for our constitutive modelling

choices, such as consideration of the effect of internal turgor pressure Pc.

In developing the three-phase model that included the effect of bound water,

we have exploited the model by Kiranoudis et al. [71] which details the conversion

between two forms of water molecules as a reversible reaction, relevant to the later

stage of drying. The interaction between water and solid is modelled through the

adsorption of free water to become bound water and the desorption of bound water

to become free water. This needs further investigation. Mayor and Sereno [76] have

stated that loss of water and heating cause stresses in the cellular structure of the

food, leading to change in shape and reduction in size. This suggests that cellular

structure collapse during drying is associated with the removal of bound water at

a later stage of drying, due to microstructure stresses. This thesis provides a first

opportunity to thoroughly investigate the effect of bound water and to include the

shrinkage effect in the model.
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An important advantage of the fully predictive theory, suggested here, is to pro-

vide considerable insight into the mechanisms that influence water transport. Care

should be taken in the estimation of transport parameters and cell properties and

additional work is recommended in this area. It has been shown that water transport

during drying occurs by the contribution of two main fluxes: cell to cell and cell to

intercellular space. All these mechanisms are relevant and their contribution to the

total moisture transport, changes significantly as drying proceeds. Even though the

study was restricted to a particular case of mass transport during drying, the theo-

retical approach presented in this work should have wide application in the analysis

of a variety of transport problems involving cellular materials.

Within this thesis, we have demonstrated the benefits of different theoretical

frameworks for studying the movement of moisture and temperature within a fruit

slab. We have shown how a multiphase model and a singlephase model can replicate

experiment findings and give insight into moisture and temperature movement during

drying. Although we have generated some interesting results, there are many model

extensions we could consider. These include simulating the models in a more realistic

geometry or applying the model to include more subcellular effects. It would also be

interesting to create a fully three-dimensional model for drying, modelled as three-

dimensional shapes. With a three-dimensional model, we would be able to model the

movement of water more accurately as we could calculate the contact area between

cells, rather than assuming that all the cells are of the same size. The results could

be compared with those from a homogenous model.

Our models incorporated moisture isotherm using Wang and Brenann’s [122]

model of potato. As mentioned in chapter 1, several other isotherm models could

be considered, using the numerous relationships outlined by Mujumdar [79]. It would

be interesting to study the effect on our system if other moisture isotherm model were

used.

The most detailed of the physically based models have been solved by specialist

codes. These codes are often unavailable to the public or difficult to use by anyone

other than author. As a result, the food industry and academia are unable to use

such simulations for the design of products [52]. To overcome this problem, imple-

menting in commercial software, is a good option and work is needed to organize the
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information and integrate it into a user friendly package known as Graphical User

Interface.

Towards the end of our project, Halder et al. [50], in their experiment, identified

how cellular structure influences the transport of water during the drying of porous

media. They found that the transport of water depends on its pathways, either in-

tercellular pathways (from cell to cell) or extracellular (from cell to pores) pathways

depending on temperature. They also found that ≈ 95% of water is in the intracel-

lular cell at lower temperature and this water becomes intercellular space water at

temperatures above 52oC. Consequently, cell membranes are not damaged when dry-

ing at low temperature and cell membranes rupture at higher temperature. Taking

this effect into our transfer fluxes and incorporating it into our model would certainly

result in a more detailed model.

To be able to model the drying behaviour of living plant foods, such as fruit and

vegetables, in detail we suggest that not only physical and chemical mechanisms but

also biological mechanisms such as pore size distribution and capillary pressure (inter-

cellular space) should be included. The example of biological mechanism experiments,

such as classical pressure plate experiments and liquid extrusion porosimetry to mea-

sure the flow of water at an applied pressure, and bioelectrical impedance analysis

(BIA) could be performed to determine the fraction of water in a tissue/cell. Biolog-

ical mechanisms could be important for water release during a significant part of the

drying time during convective drying. A direct investigation of the ultrastructural

changes could be used to better describe biological mechanisms such as experimental

study by Halder et al. [50].
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[25] T. Constant, C. Moyne, and P. Perré. Drying with internal heat generation:

Theoretical aspect and application to microwave heating. AIChE Journal,

42:359–368, 1996.

[26] J. Crank. The Mathematics of Diffusion. Oxford Sciences Publication, 1975.

[27] J. Crank. Free and moving boundary problems. Clarendon Press - Oxford

Sciences Publication, 1984.

[28] G. H. Crapiste, S. Whitaker, and E. Rotstein. Drying of cellular structure-i. a

mass transfer theory. Chemical Engineering Science, 43:2919–2928, 1988.

[29] G. H. Crapiste, S. Whitaker, and E. Rotstein. Drying of cellular structure-ii.

experiment and numerical results. Chemical Engineering Science, 43:2929–2936,

1988.

[30] S. Curcio and M. Aversa. Transport phenomena and shrinkage modelling during

convective drying of vegetable. In Proceedings of COMSOL Conferences 2009

Milan, 2009.

210



[31] S. Curcio, M. Aversa, V. Calabro, and G. Iorio. Simulation of food drying: Fem

analysis and experimental validation. Journal of Food Engineering, 87:541553,

2008.

[32] A. Datta. Porous media approaches to studying simultaneous heat and mass

transfer in food processes i:problem formulation. Journal of Food Engineering,

80:80–95, 2007.

[33] A. K. Datta. Porous media approaches to studying simultaneous heat and mass

transfer in food processes ii:property data and representative results. Journal

of Food Engineering, 80:96–110, 2007.

[34] A. K. Datta. Status of physics-based models in the design of food products,

processes, and equiptment. Comprehensive Review In Food Science and Food

Safety, 7:121–129, 2008.

[35] A. K. Datta and H. Ni. Infrared and hot-air-assisted microwave heating of foods

for control of surface moisture. Journal of Food Engineering, 51:355–364, 2002.

[36] H. Desmorieux, C. Diallo, and Y. Coulibaly. Operation simulation of a convec-

tive and semiindustrial mango dryer. Journal of Food Engineering., 89:119–127,

2008.

[37] C. Di Blasi. Multi-phase moisture transfer in high-temperature drying of wood

particles. Chemical Engineering Sciences, 53:353–366, 1997.

[38] J. Dianty. Water relations of plant cells. In U. Luttge and M. G. Pitman, editors,

Transport in plants II. Part A., pages 279–326. New York, USA: Academic

Press, Springer-Verlag., 1976.

[39] D. D. Dincov, K. A. Parrott, and K. A. Pericleous. Heat and mass transfer in

in two phase porous materials under intensive microwave heating. Journal of

Food Engineering, 65:403–412, 2004.

[40] A. O. Dissa, H. Desmorieux, J. Bathiebo, and J. Koulidiati. Convective drying

characteristics of amelie mango(mangifera indica l. cv. amelie) with correction

for shrinkage. Journal of Food Engineering, 88:429–437, 2008.

211



[41] G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane. A mathe-

matical model of the evaporation of a thin sessile liquid droplet: Comparison

between experiment and theory. Colloids and Surface A: Physicochemical and

Engineering Aspects, 323:50–55, 2008.

[42] G. Fang, , and C. Ward. Examination of the statistical rate theory expres-

sion for liquid evaporation rates: statistical physics, plasma fluids and related

interdisciplinary topics. Physics Review, 59:441–453, 1999.

[43] B. Farkas, R. Singh, and T. Rumsey. Modeling heat and mass transfer in

immersion frying. i, model development. Journal of Food Engineering, 29:211–

226, 1996.

[44] H. Feng, J. Tang, R. P. Cavalieri, and O. A. Plumb. Heat and mass transport

in microwave drying of porous materials in a spouted bed. AIChE Journal,

47:1499–1512, 2001.

[45] F. A. N. Fernandes, S. Rodrigues, C. L. Law, and A. S. Mujumdar. Drying

of exotic tropical fruits: A comprehensive review. Food Bioprocess Technology,

4:163–185, 2009.

[46] A. L. Floury, J.and Bail and Q. Pham. A three-dimensional numerical simu-

lation of the osmotic dehydration of mango and effect of freezing on the mass

transfer rates. Journal of Food Engineering, 85:1–11, 2008.

[47] J. Frauhammer, H. Klein, G. Eigenberger, and U. Nowak. Solving moving

boundary problems with an adaptive moving grid method: Rotary heat ex-

changers with condensation and evaporation. Chemical Engineering Science,

53(19):3393–3411, 1998.
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Appendix A

Numerical solution using Comsol -

one-dimension

In the general equation system forms, the PDEs and boundary conditions are written

in the following form: 
ea
∂2u

∂t2
+ da

∂u

∂t
+∇.Γ = F in Ω,

−n.Γ = G− hTµ on ∂Ω,

0 = R on ∂Ω.

For non-isothermal one-dimensional drying model, two dependent variableM and

T is formulated such as a PDEs general form below

∂M

∂τ
− ∂

∂ξ
(
∂M

∂ξ
) = 0. (A.1)

∂T

∂τ
− ∂

∂ξ
(Le

∂T

∂ξ
) = 0. (A.2)

The space coordinate in the model is ξ. Identifying the general form with equations

A.1 and A.2, the following settings generate the equation (Table A.1, Table A.2) :

Two boundary conditions, boundary condition at the centreline ξ = 0 will give

Neumann type boundary condition with G = 0 and influx boundary condition at the

surface ξ will give Neumann type boundary condition with G = −Sh(Cf,sur − 1) and

G = LeNuc(T csur − 1) + λ∂M
∂x

respectively.

The food domain was discretized into a total number of 320 elements. The time

dependent problem was solved by an implicit time-stepping scheme, leading to non
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Table A.1: Equation generated for moisture.

Coefficient Value Expression

ea 0

da 1

Γ(flux vector) −∂M
∂ξ

F (source term) 0

Table A.2: Equation generated for temperature.

Coefficient Value Expression

ea 0

da 1

Γ(flux vector) −Le ∂T
∂ξ

F (source term) 0

linear system of equations for each time step. Newton’s method was used to solve each

non-linear system of equations, whereas a direct linear system solver was adopted to

solve the resulting systems of linear equations. The relative and absolute tolerance

were set to 10−4 and 10−5, respectively. The drying process is considered to be

completed when the moisture content in the sample is asymptotic to a residual level.
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Appendix B

Numerical solution using Comsol -

two-dimension

In the general equation system forms, the PDEs and boundary conditions are written

in the following form: 
ea
∂2u

∂t2
+ da

∂u

∂t
+∇.Γ = F in Ω,

−n.Γ = G− hTµ on ∂Ω,

0 = R on ∂Ω.

For non-isothermal two-dimensional drying model, two dependent variableM and

T is formulated such as a PDEs general form below

∂M

∂τ
=
∂2M

∂ξ21
+
∂2M

∂ξ22
, (B.1)

∂T

∂τ
= Le

[
∂2T

∂ξ21
+
∂2T

∂ξ22

]
. (B.2)

The space coordinate in the model is ξ1 and ξ2. Identifying the general form with

equation B.1 and B.2, the following settings generate the equation (Table B.1, Table

B.2):

Four boundary conditions, boundary conditions at the centreline ξ1=0 and ξ2=0

will give Neumann type boundary condition with G = 0 and influx boundary condi-

tions at the surface ξ1 = 1 will give Neumann type boundary conditions with G =

−Sh(Cf,sur−1) and G = LeNuc(T csur−1)+λ∂M
∂ξ1

respectively. For ξ2=1 will give Neu-

mann type boundary condition G = −Sh(Cf,sur−1) and G = LeNuc(T csur−1)+λ∂M
∂ξ2

respectively.
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Table B.1: Equation generated for moisture.

ea 0

da 1

Γ(flux vector) −∂M
∂ξ1

−∂M
∂ξ2

F (source term) 0

Table B.2: Equation generated for temperature.

ea 0

da 1

Γ(flux vector) −Le ∂T
∂ξ1

−Le ∂T
∂ξ2

F (source term) 0

The food domain was discretized into a total number of 320 elements. The time

dependent problem was solved by an implicit time-stepping scheme, leading to non

linear system of equations for each time step. Newton’s method was used to solve each

non-linear system of equations, whereas a direct linear system solver was adopted to

solve the resulting systems of linear equations. The relative and absolute tolerance

were set to 10−4 and 10−5, respectively. The drying process is considered to be

completed when the moisture content in the sample is asymptotic to a residual level.

226



Appendix C

Numerical solution using Comsol

for multiphase model - Two

dimension

In the general equation system forms, the PDEs and boundary conditions are written

in the following form: 
ea
∂2u

∂t2
+ da

∂u

∂t
+∇.Γ = F in Ω,

−n.Γ = G− hTµ on ∂Ω,

0 = R on ∂Ω.

Identifying the general form with equations (7.1), (7.2), (7.3), (7.5) and (7.6) in

a framework to use COMSOL solver, the following settings generate the equations

(Table C.1, Table C.2, Table C.3, Table C.4, Table C.5) :

Table C.1: Equation generated for intercellular vapour density.

Coefficient Value Expression

ea 0

da ϕi

Γ(flux vector) −(ρkγ +Di)
∂ρ
∂x

−(ρkγ +Di)
∂ρ
∂y

F (source term) jip + jic
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Table C.2: Equation generated for free water moisture.

Coefficient Value Expression

ea 0

da ρs

Γ(flux vector) −(Dfρs +DpMf0 ρs ς)
∂Mf

∂x
−(Dfρs +DpMf0 ρs ς)

∂Mf

∂y

F (source term) −(jip + jic) + ρsrb

Table C.3: Equation generated for bound water moisture.

Coefficient Value Expression

ea 0

da 1

Γ(flux vector) 0 0

F (source term) −rb

Table C.4: Equation generated for intercellular space temperature .

Coefficient Value Expression

ea 0

da ϕi ∗ ρ

Γ(flux vector) −ϕiκv
∂Ti

∂x
−ϕiκv

∂Ti

∂y

F (source term) (jip + jic)(Tc − Ti − λ) + hi(Tc − Ti)− ϕini · ∂Ti

∂x
-ϕini · ∂Ti

∂y

Table C.5: Equation generated for intracellular cell temperature.

Coefficient Value Expression

ea 0

da (1− ϕi) ∗ ρc
Γ(flux vector) −(1− ϕi)κc

∂Tc

∂x
−(1− ϕi)κc

∂Tc

∂y

F (source term) −(jip + jic)(Tc − Ti)− hi(Tc − Ti)
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Boundary condition at the centreline y = 0 and 0 < x < b, x = 0 and 0 <

y < a will give Neumann type boundary condition with G = 0 and influx boundary

condition at the surface x = 1 and y = 1 will give Neumann type boundary condition

with G = −Shf (Cfw,sur − 1) , G = −Shi(
ρ

Cair

− 1), G = −ϕiNuiκv(Tisur − 1) and

G = −(1− ϕi)κcNuc(Tcsur − 1) + λDf
∂Mf

∂x
respectively.
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