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Abstract

In recent years the pharmaceutical industry has seen a rise in the number of drug

compounds with low aqueous solubility, and consequently poor oral bioavailablility. One

potential solution to this problem is to formulate such compounds as solid dispersions,

whereby the drug is dispersed in a carrier matrix in the solid state.

In this thesis, the hypothesis that a number of drug-drug and drug-polymer in-

termolecular interactions influence the physical stability and dissolution performance of

solid dispersions is considered. The aim is to use correlations between drug molecu-

lar structure and solid dispersion performance to develop a platform to rapidly assess

whether drug compounds will have favourable properties when formulated as a solid

dispersion.

Amorphous felodipine/copovidone solid dispersions are used as a model system

to develop a suitable testing regime with regards to physical stability and dissolution

performance. A laser light scattering technique developed in this work shows that mor-

phological changes in felodipine/copovidone films exposed to water are due to polymer

swelling. A combination of dissolution testing methodologies is also used to suggest a

mechanism for the dissolution of bulk solid dispersion samples.

Contributions of individual functional groups in the felodipine analogues to the

physical stability and dissolution performance of their amorphous solid dispersions are

assessed. Blocking of the felodipine amine hydrogen-bond-donor with an N-methyl, and

the removal of chlorine substituents are both shown to reduce the physical stability of

the solid dispersions.

Correlations between molecular descriptors and data from the above experiments

show that drug compounds are more likely to crystallise from solid dispersions with

copovidone if they have a low log P, low relative molecular mass and low polarizability.

Such correlations can form the basis of a screening method for the molecular design

of analogous drug compounds likely to form high-performance solid dispersions with

copovidone.
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Abbreviations

IUPAC notation is used for chemical compounds.

The standard symbols for SI units and their scaling prefixes are used throughout

this thesis, except where stated otherwise, in which case the abbreviations are defined

below.

AFM Atomic Force Microscopy

API Active Pharmaceutical Ingredient

AUC Area Under the Curve

BCS Biopharmaceutics Classification System

CAN Ceric Ammonium Nitrate

d doublet

DHP Dihydropyridine

DSC Differential Scanning Calorimetry

DVS Dynamic Vapour Sorption

FasSIF Fasted-State Simulated Intestinal Fluid
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FDA United States Food and Drug Administration

Fel Felodipine

FT-IR Fourier Transform Infrared Spectroscopy

HLB Hydrophile Lipophile Balance

HPLC High Performance Liquid Chromatography

HPMC Hydroxypropylmethylcellulose

HPMCAS Hydroxypropylmethylcellulose Acetate Succinate

log P Octanol/Water Partition Coefficient

m multiplet

MRI Magnetic Resonance Imaging

MS Mass Spectrometry

MW Molecular Weight

NMR Nuclear Magnetic Resonance

PDF Pairwise Distribution Function

PEG Polyethylene Glycol

PLM Polarised Light Microscopy

PVP Poly(vinylpyrrolidone)

PVP-CL Cross-Linked Poly(vinylpyrrolidone), Crospovidone

PVP/VA Poly(vinylpyrrolidone vinyl acetate) copolymer, Copovidone
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q quartet

Rf Retention Factor

RH Relative Humidity

s singlet

SEDDS Self-Emulsifying Drug Delivery System

SEM Scanning Electron Microscopy

SMEDDS Self-Microemulsifying Drug Delivery System

t triplet

Tg Glass Transition Temperature

Tm Melting Point

TFA Tetrafluoroacetic Acid

TLC Thin Layer Chromatography

USP United States Pharmacopoeia

UV/Vis Ultraviolet/Visible Spectroscopy

WHO World Health Organisation

XRPD X-ray Powder Diffraction
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Summary of Analogues

Below is a summary of the chemical structures of the molecular analogues synthesised

in chapter 3 and used in experiments detailed in the following chapters.
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Chapter 1

Introduction

1.1 The Problem of Poorly Soluble Drugs

The majority of drugs on the market are designed for administration via the oral route,

as this is the most convenient method of drug delivery. Typically, compounds delivered

via this route will be absorbed into the systemmic circulation by transport across the

epithelial cells of the small intestine [7]. However, in order for permeation of the drug

accross the epithelial membrane to occur, the compound must first be presented to the

absorbing surface in solution. As the the fluids in the body, and more specifically the

gastrointestinal tract are aqueous, this goes some way to explaining why the solubility

of drug compounds in water is such an important issue in drug development.

In order to better predict the intestinal absorption of drug compounds, the Bio-

pharmaceutics Classification System (BCS) was implemented by the U.S. Food and

Drug Administration (FDA) [8]. In this framework, drugs are categorised according to

their intestinal permeability, aqueous solubility, and aqueous dissolution [9]. The class

boundaries for this classification system are defined as follows:

1. A drug is classed as poorly soluble if the highest dose strength of the immediate

release product is not soluble in 250 mL or less aqueous media over the pH range

of 1 to 7.5.
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2. A drug is classed as having low intestinal permeability when the extent of absorp-

tion in humans is less than 90% of the administered dose based on a mass-balance

determination or in comparison to an intravenous dose.

3. A drug is classed as rapidly dissolving if ≥ 85% of the immediate release dose

dissolves within 30 minutes using either USP dissolution apparatus I at 100 rpm

or USP dissolution apparatus II at 50 rpm in ≤ 900 mL of:

0.1 N HCl or simulated gastric fluid or pH 4.5 buffer

and pH 6.8 buffer or simulated intestinal fluid.

Drugs which have good solubility and permeability within this framework fall into Class

I: those with poor solubility, but good permeability are Class II: Class III compounds

are those that have good solubility but poor permeability: and drugs that are both

poorly soluble and have low permeability are classified as BCS IV (see Figure 1.1).

The GI absorption in-vivo of a drug depends on its solubility, as the compound cannot

pass through the intestinal membrane if it is not first presented to that membrane as

individual molecules [10]. Therefore, if a drug has poor oral bioavailability, methods to

improve its solubility are often considered first in an attempt to move compounds from

BCS classes II and IV into BCS classes I and III, respectively .

Figure 1.1: The Biopharmaceutics Classification System.

In a 2006 study of the top 200 oral drug products in the United States, Great

Britain, Spain and Japan, 30-40% were found to be practically insoluble, and 45% were
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shown to be BCS class II or IV, or unclassified [11]. The same study also suggested that

27% more practically insoluble compounds appearing on lists from the above countries,

compared to a list from the World Health Organisation (WHO) indicates a trend towards

the discovery and development of potent highly lipophillic compounds in developed

countries. It has also been shown that whilst most drug compounds under scrutiny in

the 1970s and 80s due to bioavailability concerns had aqueous solubility ranging from

20 mg/mL to 100 mg/mL, it is far more common these days to encounter compounds

exhibiting intrinsic solubilities lower than 1 mg/mL [12].

1.2 Methods of Improving Drug Bioavailability

As a result of the rise in the number of poorly soluble compounds being identified for

pharmaceutical development, the industry has a strong desire to develop strategies to

address this problem. A company that is successful in developing such strategies could

potentially reduce the rate of attrition of drug candidates, better target research efforts

and spending leading to a net reduction in costs, and ultimately produce more effective

products [13].

There are a number of strategies to improve drug bioavailability that are currently

in use or under consideration, as summarised below.

1.2.1 Pro-drugs

The pro-drug approach is one in which an inactive substance on administration to the

patient is metabolised in-vivo to produce the active drug compound. By functionalising

the API with hydrophilic moieties, this strategy can be used to boost the solubility and

absorption of drug compounds. For example, coupling phosphate ester groups to a drug

compound has been shown to improve solubility of poorly water-soluble parent drug

molecules [14]. This approach to improving drug bioavailability has been in use over

many years, and this is evident from the number of commercially available products

[15]. Whilst the pro-drug approach is clearly a tried-and-tested method, there are two
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main requirements that must be fulfilled in order for this approach to work. Firstly,

the compound in question should have suitable functional group(s) to make a pro-

drug. Secondly, it is necessary for the body to have the required enzyme or other

mechanistic pathway present to enable the compound to be rendered to its active form

after administration [16]. If one or both of these requirements can not be met, then

formulation of a pro-drug is not a viable option. Two additional drawbacks of this

approach are a more complex biopharmaceutical profile, and in some cases, poor stability

as a result of the chemistry of the pro-drug [14].

1.2.2 Salts

It was demonstrated by Nelson et al in the 1950s that salt formation can lead to im-

provements in the dissolution of solid oral dosage forms compared to the free acid or

base under the pH conditions of the gastrointestinal tract [17, 18]. This improvement

was due to the higher solubility of the free drug in the pH microclimate generated in

the aqueous diffusion layer surrounding the solid by the counterion. Since the time of

this study, salt formation has been of significant interest to the pharmaceutical industry

as a method for improving drug dissolution and solubility, and has become the most

commonly used technique to achieve this because it is often the most cost-effective

approach [19].

Despite the apparant simplicity of this approach to improve the dissolution rate

and solubility of a drug compound, there are limitations. The main consideration is

that in order to form a salt, the drug compound must have a group that is ionizable.

Furthermore, in order for a stable salt to be formed, it is important that a single ionisation

state is formed, and therefore, it is generally recommended that the ionizable group on

the drug compound and the salt counter-ion have a difference in pKa values of at least

three units in order to prevent dissociation [20]. Because there are a number of cases in

which these two requirements cannot be fulfilled (eg. for neutral or very weakly acidic

or basic compounds), it can be seen that the technique of salt formation cannot be used
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as a panacea for formulating poorly soluble compounds. Also, even if formation of a

salt is possible for a drug, it may not deliver the required performance enhancement.

For example, during aqueous dissolution there may be rapid conversion to the free form,

which can manifest as gelling.

1.2.3 Co-crystals

When the active pharmaceutical ingredient (API) does not have any suitable ionizable

groups for salt selection to be a viable option for improving drug solubility, it may be

possible to form co-crystals. The definition of a co-crystal is still a subject of debate in

the literature [21, 22, 23, 24], but in general they are crystals which contain more than

one molecular moiety in the crystal lattice. According to some definitions, the term

co-crystal encompasses salts, however, the molecular components of a co-crystal are

not necessarily ionically bonded together (there is no proton transfer), but instead may

interact in the crystal lattice largely through hydrogen bonds and other non-covalent

interactions such as π-π stacking [21, 23].

Whilst co-crystallisation appears to present the opportunity for a salt-like formu-

lation of neutral and weakly acidic or basic compounds, it is clear from the lack of any

co-crystallised drugs on the market [24] that this approach has some drawbacks. One

difficulty in producing co-crystals of an API lies in the unpredictability of whether the

drug compound and a co-crystal former will successfully crystallise together, even when

the compounds have compatible functional groups for the intermolecular interactions

required [21]. A further key issue, is that in many cases co-crystals do not offer the

required solubility or dissolution advantage [24].

1.2.4 Modification of the Crystal Form

It is widely known that many drug compounds can exist in several different solid forms

ranging from disordered amorphous material to highly ordered crystalline material. Ad-

ditionally, a drug may exist in two or more crystalline forms, in which the drug molecule
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is differently packed in each - a phenomenon termed ’polymorphism’. The subject of

polymorphism is of significant interest in the pharmaceutical industry, as different poly-

morphs have significantly different physical properties of the drug compound, including

(but not limited to) solubility, physical stability, and compactability [25]. Because of the

effect that the solid-state of a compound has on its properties, much time and money

is invested by pharmaceutical companies into determining the polymorph stability hier-

archy.

Most commercially available drugs are marketed in the (likely1) lowest energy

crystalline form, as this is the most thermodynamically stable form. This is of particular

importance when considering the large-scale manufacture, and potential long-term stor-

age of both the bulk drug compound and the final product, because it is important to be

able to guarantee that the perfomance of the drug is unaffected after such treatment.

Crystalline material is also desirable from a quality control standpoint, as it is easier

to quantify and monitor the crystallinity of a material, than to determine if one batch

of amorphous material is the same as another batch, as highlighted by recent concerns

over the issue of polyamorphism [27].

Despite the convention for using the likely stable crystalline drug form, there

are occasions where the formulation of other polymorphs or amorphous material is an

attractive option; not least of all, to improve solubility (as will be discussed later).

However, there are clearly a number of challenges associated with the formulation of

amorphous drugs. For example, the amorphous form of a drug may be more hygroscopic

than the thermodynamically stable crystalline form [28, 29], and the main concern with

amorphous material, as has already been alluded to, is physical instability with respect

to a lower energy crystalline state may lead to the solubility advantage of amorphous

material being compromised after long-term storage. This is a topic that will be returned

1It seems appropriate here to quote Walter McCrone, who famously said that “every compound has
different polymorphic forms, and that, in general, the number of forms known for a given compound
is proportional to the time and money spent in research on that compound” [26]. In particular, this
quote aptly describes how polymorphs have been known to unexpectedly appear or disappear [25], even
after lengthy polymorph screening regimes, therefore indicating that it is never possible to say with all
certainty that the lowest energy crystalline form of a compound has been identified
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to in Chapter 5. As a result of these concerns, very few amorphous drug products reach

the market.

1.2.5 Lipidic Formulations

Self-Emulsifying Drug Delivery Systems (SEDDS) and Self-Microemulsifying Drug De-

livery Systems (SMEDDS) are examples of formulation strategies in which liquid or

semi-solid lipids and/or surfactants are used to enhance the bioavailability of the API.

A self-emulsifying drug delivery system is an isotropically clear dispersion of oil and

non-ionic surfactant. When SEDDS are added to aqueous media and gently agitated

(for example, on in-vivo administration) they form a fine, thermodynamically stable

oil-in-water microemulsion [30], and hence provide a useful method for the delivery of

lipophilic drugs to the gastrointestinal tract in a solubilised state [31]. A well-known

example where SEDDS were shown to improve drug bioavailability is cyclosporine A,

which had a two-fold improvement in bioavailability and decreased variability due to

food effects when formulated in this way, compared to another solubilized formulation

from which the drug precipitated out in the GI tract [31, 32].

Despite this success, there are only a limited number of commercially available

drug products which are formulated in this way, and this may be due to several challenges

to the development of lipid-based drug delivery systems. The main hurdle to the wider

use of SEDDS in the delivery of an API is that it needs to be soluble in a suitable

oil. As many poorly-soluble compounds are considered to be lipophillic, they are often

assumed to be soluble in lipids, but it is often found to be the case that solubility of the

drug in the oil is too low to make development of a lipidic oral dosage form practical

[31]. Additionally, most lipid-based drug delivery systems are liquid, and therefore require

administration either as bulk oral solution (which are often inconvenient and unpalatable

to the patient) or as liquid-filled soft-gelatin capsules (which require specialist equipment

to produce) [31]. Another drawback with lipid formulations is that there are often

concerns about the stability (both physical and chemical) of these systems [31].
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1.2.6 Particle Size Reduction

The Noyes-Whitney equation:

dW

dt
=
DA(Cs − C)

L
(1.1)

was derived in 1897, and indicates that the rate of dissolution (dW
dt ) of a solid is directly

proportional to the surface area (A) of the solid, where D is the diffusion coefficient,

C is the concentration of solid in the bulk dissolution medium, Cs is the concentration

of the solid in the diffusion layer surrounding the solid, and L is the thickness of the

diffusion layer [33]. Therefore, it follows that the dissolution rate of a solid dosage

form can be improved by increasing its surface area through particle size reduction using

methods such as milling and micronisation.

Unfortunately, there are a number of disadvantages associated with particle size

reduction that means that it is not always a viable option. Firstly, the energy input into

the material during the size reduction process may induce a change in the solid-form

of the material [34]. Additionally, the handling of sub-micron sized particles is difficult,

and the chances of airborne contamination and toxicity by inhalation are very high [16],

unless techniques such as wet milling are used to minimise such risks. One of the biggest

limitations of crystalline nanoparticles is that there is no solubility improvement and so

the potential for increased bioavailability is limited. Therefore, whilst this strategy is

often used in early development to identify if the dissolution of a drug compound is

the cause of its poor bioavailability, it is not always a viable option for the commercial

manufacture of an oral dosage form.

1.2.7 Solid Dispersions

Another method for improving the bioavailiability of an oral dosage form is to formulate

it as a solid dispersion, which, is formed by the dispersion of the drug compound in a

carrier matrix in the solid state. This approach has been shown to improve the dissolution

profile of a drug substance in some cases, and has therefore been of increasing interest
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to the pharmaceutical industry.

In the remainder of this chapter, the topic of solid dispersions will be explored,

and the scientific literature surrounding this strategy will be examined in closer detail.

Firstly, the types of solid dispersions in terms of physical structure will be discussed, and

then the advantages of using this method of formulation and its use in improving drug

bioavailability will be considered. Finally, the challenges associated with solid dispersions

will be reviewed, as well as the progress made to date in addressing these issues, as well

as the questions that remain to be answered with regards to this formulation method

before it can be considered for routine use in drug development. Following a review of

the literature, the motivation for the work in this thesis will be discussed, and the aims

of the experimental work detailed in subsequent chapters will be outlined.

1.3 Review of Solid Dispersion Literature

1.3.1 Solid Dispersion Classification

In a pharmaceutical context the term ‘solid dispersion’ is one that is widely used to

describe a system in which drug particles are homogeneously dispersed in a carrier matrix

[1, 35]. However, closer scrutiny of such materials indicates that not all are structured

in the same way, and there are a range of materials that are grouped under the umbrella

term ‘solid dispersions’.

Simple Eutectic Mixtures The idea of dispersing a drug compound within a matrix

material is widely credited to Sekiguchi and Obi, who showed that eutectics of sulfathi-

azole with urea dissolved to produce a microcrystalline suspension of the drug in water,

and improved the absorption in human compared with crystalline free drug [36]. A eu-

tectic is a two-component material that displays a single solid-to-liquid phase transition

as shown in Figure 1.2 [1, 2, 36]. A eutectic is formed when the two components are

rapidly solidified from a fused liquid system with a specific composition, and is con-

sidered to be an intimate mixture of microcrystals of two crystalline components (see
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Figure 1.3). Dissolution enhancement of a compound formulated as a simple eutectic is

thought to occur as a result of the increased surface area of the released drug particles

[36, 37]. Despite a number of studies investigating the use of eutectics in dissolution

enhancement, it appears that the formation of genuine eutectics is rare [3, 38]. This can

partially be attributed to the accuracy required in obtaining the eutectic composition,

as a small deviation from this composition will result in the independant solidification

of one component until the remaining liquor, which is richer in the other component,

reaches the eutectic point and solidifies as a dispersion (see Figure 1.2) [3].

Solid Solutions Regardless of the number of components, solid solutions consist of

just one homogeneous phase. As such, they can be considered to be comparable to

liquid solutions, with the difference being that both the solute and solvent are solid

[1, 2]. The drug in a solid solution is dispersed in the carrier at the molecular level,

and therefore, during dissolution the drug will be released as individual molecules; hence

the particle size of the drug has been reduced to its minimum [39]. Solid solutions can

be classified in one of two ways: either in terms of the level of miscibility between the

two components (continuous or discontinuous solid solutions), or with reference to the

crystalline structure of the solid solution (substitutional crystalline, interstitial crystalline

or amorphous solid solutions) [1].

A continuous solid solution is one in which the components are miscible in all

proportions, and for this to occur, the free energy of mixing must be favourable at

all drug loadings. The Gibbs free energy of mixing, Gmix is determined as shown in

Equation (1.2), where Hmix is the enthalpy of mixing, T is the temperature and Smix

is the entropy of mixing.

Gmix = Hmix − TSmix (1.2)

As the entropy of mixing is always favourable, this implies that the intermolecular bond-

ing must be stronger between the two components than between molecules of each

individual component [1].
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Figure 1.2: Phase diagram for a binary eutectic mixture, with the eutectic composition
labelled ‘E’. The effect of cooling at the eutectic composition (A to B) results in only the
eutectic solidifying, whereas cooling at from a different composition (C to D) results in
the solidification of component X, leaving the remaining liquid solution rich in component
Y until the eutectic is reached. Reproduced with modifications from [1, 2, 3].

Figure 1.3: Schematic showing how a eutectic is an intimately blended physical mixture
of the two crystalline components, shown as circles and rectangles.
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Discontinuous solid solutions differ from continuous solid dispersions in that the

solubility of one component in the other is limited to particular compositions. A typical

phase diagram for this type of system is shown in Figure 1.4, whereby the compositions

at which true solid solutions exist are represented by regions α and β [1].

In practice, it can be expected that all two-component systems demonstrate

some degree of solid-state solubility, though this level is often so low that for practical

reasons Goldberg et al suggested that the term solid solution should only be applied

when solubility of 5% of one component in the other is achieved [39]. However, this

measure alone is not always enough to indicate whether a solid solution is suitable for

pharmaceutical development. The intended dose of the drug must also be considered.

This is because the upper limit for the mass of a tablet or capsule is ∼1 g, and therefore

with only 5% solubility of drug in carrier, doses greater than 50 mg would not be possible

[1]. The miscibility of two-component systems will be discussed in more detail below.

Figure 1.4: Phase diagram for a discontinuous crystalline solid solution, whereby region
α represents a solid solution of Y in X, and region β represents a solid solution of X in
Y. Reproduced with modifications from [1, 2, 3].

Substitutional solid solutions are those in which the solute molecules are substi-

tuted for solvent molecules in the crystal lattice (see Figure 1.5a). In order for this to
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occur, the molecules of the two components must be very similar in size. In general

terms, the size of the solute molecules should differ by no more than 15% of the solvent

molecule [2].

In interstitial solid solutions the solute molecules lie in the interstitial spaces

between the solvent molecules in the crystal lattice (Figure 1.5b). As with substitutional

crystalline solid solutions, the molecular size of the solute in relation to that of the solvent

is of importance. With respect to this, the volume of the solute molecules should be

less than 20% of the solvent, and the molecular diameter should not exceed 0.59 of the

solvent molecule’s diameter [1]. Large crystalline polymers such as polyethylene glycols

tend to favour this type of solid solutions formation [38].

(a) (b)

Figure 1.5: Schematics of a) a substitutional crystalline solid solution and b) an inter-
stitial crystalline solid solution. Solvent molecules are represented with open circles, and
filled circles indicate solute molecules. Reproduced from [1, 2].

Amorphous Solid Solutions are those in which the solute molecules are molec-

ularly dispersed irregularly within the amorphous solvent (Figure 1.6) [1]. Such solid

dispersions are particularly desirable with respect to the formulation of poorly water-

soluble drugs, due to the enhanced solubility of amorphous materials compared to their

crystalline counterparts (as will be discussed later). Polymer carriers are often used in

the formulation of amorphous solid solutions, as they themselves often take an amor-

phous form. Additionally, the solute molecules often act as a plasticizer, leading to
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reduction of the glass transition temperature of the drug.

(a) (b)

Figure 1.6: Schematics of a) an amorphous solid solution whereby the both the solvent
(open ellipses) and solute (filled ellipses) are small molecules and b) an amorphous
solid solution in which the drug molecules (filled circles) are dispersed in an amorphous
polymer.

Solid Suspensions As we have already seen, the term ‘solid solution’ describes sys-

tems in which one component (usually the drug) is molecularly dispersed in another

component. However, there are examples where dispersion of the drug at a molecular

level cannot be achieved. The term ‘suspension’ describes a state in which the particles

of a substance are mixed with a fluid but are undissolved. If the word ‘fluid’ in this

definition is substituted with ‘solid’, we reach a phrase which better describes the type

of system we will discuss here, whereby the drug exists as particles within the carrier

material.

It is possible for the drug and carrier components of solid suspensions to exist in

different physical forms, and this leads to materials with a diverse physical structures.

As discussed previously, a carrier can exist as a crystalline, semi-crystalline or amorphous

solid, but as the drug is present as particles, rather than individual molecules, it too can

exist in either the amorphous or crystalline state (see Figure 1.7).

Combinations Rather than a solid dispersion belonging entirely to any one of the

classes detailed above, it is possible that it may contain combinations of the different
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(a) (b) (c)

Figure 1.7: Schematics showing examples of solid suspensions whereby: a) amorphous
material (ellipses) is suspended in a crystalline material (circles); b) drug microcrystals
(circles) are suspended in an amorphous polymer (strands); and c) amorphous drug
(ellipses) is suspended in an amorphous polymer (strands).

groups [2]. For example, it may be that a drug is dispersed within a carrier both

as microcrystalline particles and individual molecules. Determining how the drug is

dispersed throughout the carrier for a particular solid dispersion can prove problematic,

and this will be discussed in more detail below and in subsequent chapters.

Solid Dispersion Matrices

In the time that solid dispersions have been actively researched, a range of materials

have been proposed for use as the carrier matrix. Regardless of the type of material

chosen for use as the carrier component in a solid dispersion, it is important that it ful-

fills a several requirements before it can be considered for use [38]. Arguably the most

important criteria is that it is non-toxic, as well as pharmacologically inactive. In the

USA, the GRAS (generally regarded as safe) status is assigned by the Food and Drug

Administration (FDA) to food additives and processing aids that are considered safe for

use in products for human consumption (including oral dosage forms), and the use of

such substances in formulation is less likely to be challenged by regulatory authorities

[40]. The method used to prepare the solid dispersion is an essential consideration when

selecting a carrier, as the carrier should be stable to the conditions the components

are exposed to during manufacture. For example, if preparation is via melt fusion it is
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unacceptable for the carrier to be thermally instable under the required processing con-

ditions. Alternatively, if manufacture is via solvent processes such as spray drying, both

the drug and carrier should be be able to achieve sufficient solubility in organic solvents

for this route to be viable, particularly at large scale. Additionally it is undesirable for

the drug to chemically react with the carrier during processing via either a solvent or

fusion processes. Finally it is desirable that the carrier is freely water soluble, although

there are some examples of solid dispersions formulated with water insoluble matrices.

In Sekiguchi and Obi’s initial work producing eutectics containing sulfathiazole,

other small molecules, such as nicotinamide, were used as the secondary component

[36]. A more recent study by Langer et al in 2003 continues this theme by investigating

the use of a sugar alcohol, isomalt, as a carrier material [41]. However, despite several

studies using these small molecules as solid dispersion carriers, it is far more widespread

in current literature for polymers to be used as carrier matrices in solid dispersions. This

is because in genral they have less (or no) tendency to crystallise, and can act as better

inhibitors of drug crystallisation.

There are a number of polymers that are already widely used in the pharmaceu-

tical industry as excipients in the formulation of oral dosage forms, (for example as a

binder, or for coating tablets), and the safety of such materials for use in humans is well-

established. A wide range of pharmaceutically relevant polymers are available, which

have various properties resulting from their chemical and physical diversity, and this

makes them ideal candidates for use as solid dispersion carriers. Previous reviews have

provided an excellent summary of the types of polymers that have commonly been used

as carrier matrices in studies of solid dispersions, and the advantages and disadvantages

of their use [1]. The most commonly used polymers for forming solid dispersions as high-

lighted by Leuner and Dressman are: polyethylene glycols (PEG); polyvinylpyrrolidone

(PVP) and associated polymers such as polyvinylalcohol (PVA), crospovidone (PVP-CL)

and polyvinylpyrrolidone/vinylacetate copolymer (PVP/VA). Also cellulose derivatives

such as hydroxypropylmethylcellulose (HPMC); and polyacrylates and polymethacry-
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lates. It is known that the selection of polymer carrier has a direct influence on the

dissolution profile of the dispersed drug, and hence the choice of a water-soluble poly-

mer will result in faster release of the drug than if a poorly soluble polymer is selected

[2]. There are also examples in the literature where a combination of polymeric carriers

are used in order to tailor the performance of the solid dispersion in terms of dissolution

and physical stability properties [42, 43].

As well as using polymers as the carrier matrix in solid dispersions, many studies

have included a surfactant in the solid dispersion. The addition of the surfactant is

known to enhance the release of the drug from the solid dispersion through improved

wetting and solubilisation of the drug [1]. A study by Janssens, Van Humbeeck and

Van den Mooter showed that this was indeed the case when Inutec SP1, a poorly

water soluble polymeric surfactant derived from Inulin, was added to solid dispersions

of itraconazole in PVP/VA [44]. However, Ghebremeskel, Vemavarapu and Lodaya

had mixed results with regards to dissolution improvement in their studies in which

surfactants were incorporated into solid dispersions using various polymers as the carrier

[45], which they suggested was as a result of the sample preparation method. They

attempted to relate the dissolution with the hydrophile lipophile balance (HLB) value

of the surfactant, but could not establish a link.

1.3.2 The Advantages of Solid Dispersions

There are a number of aspects of solid dispersion formulation that make this approach

particularly attractive to the pharmaceutical industry as a strategy for improving oral

bioavailability. It could be seen that solid dispersion formulations incorporate a number

of the advantages demonstrated by the other solubility-enhancing strategies described

above. For example, it is known that the amorphous form of a drug is more soluble

than its crystalline counterpart, but that physical instability of the amorphous state with

respect to crystallisation is often a barrier to formulating amorphous oral dosage forms.

Therefore, in an amorphous solid dispersion the solubility advantage can be realised,
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whilst the amorphous form is stabilised by the carrier. If the drug in this amorphous

solid dispersion was shown to be molecularly dispersed, this would further enhance

the apparant solubility, as this is effectively the highest level of particle size reduction

possible [39]. The intermolecular interactions that have been shown to exist between

drug molecules and the polymeric carrier are similar to those observed in co-crystals, and

finally, the addition of a surfactant to an amorphous solid solution provides similarities

with lipidic formulations.

Despite the advantages of producing solid dispersion (particularly with regards to

dissolution enhancement), relatively few drugs have been marketed as solid dispersions

considering Sekiguchi and Obi’s first suggestion of using eutectics was made in 1961.

As of February 2010, there were only six solid dispersion products on the market [46],

and the reason that there are not more marketed solid dispersions is likely to be due to

a number of challenges associated with this method of formulation that still remain to

be overcome.

1.3.3 The Challenges Associated With Using Solid Dispersions

Methods of Preparation and Scale-up for Manufacture

Numerous methods have been reported for the preparation of solid dispersion samples

for use in small-scale experiments. However, an initial challenge associated with the

formulation of solid dispersions was the large-scale manufacture of solid dispersions. This

is particularly so as the scale-up of many of the processes used to produce laboratory-

scale batches would prove to be inefficient and costly.

There are two main routes to producing solid dispersions, which are from the

melt (fusion method) or from solution with solvent evaporation. Below we explain how

these methods are used to produce small batches of material for laboratory experiments,

the potential problems that may be encountered in scaling up these methods, and the

manufacturing-scale solutions to these challenges.
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Melt Fusion The first pharmaceutical eutectics produced by Sekiguchi and Obi were

prepared using the fusion method. The methodology consisted of the two components

being accurately weighed in the eutectic composition into a platinum crucible, mixed

thoroughly, and heated to just above the eutectic point in a furnace. The molten mixture

was then rapidly cooled in an ice bath with vigorous stirring until the material solidified.

The resultant solid was then crushed with a mortar and pestle prior to their use [36].

For lab-scale production of solid dispersions via melting, this method is still widely used

[47, 48].

A more appropriate method for producing bulk material on a manufacturing-

scale by melt fusion is hot-melt extrusion (HME). The technical details of hot-melt

extrusion are beyond the scope of this thesis, but a brief overview of the technique will

be outlined here. Further information about this method can be found in several review

articles [49, 50, 51, 52, 53].

Melt extrusion consists of four steps as shown in Figure 1.8 [49]:

1. Feeding the extruder

2. Conveying of mass (melting, mixing and reduction of paricle size)

3. Flow through the die

4. Exit from the die (and down-stream processing).

Feeding the extruder generally occurs from a hopper which is loaded with the material

to be melt extruded. Movement of material through the extruder often occurs via the

use of either one or two rotating screws located inside a stationary cylindrical barrel.

The extruder can be sub-divided into three sections: The feed zone, where material

enters the extruder from the hopper; the compression zone, where the material is melted,

homogenised and compressed; and the metering zone, in which the flow of the extrudate

is stabilised to ensure uniform thickness of the product (see Figure 1.8). The function of

each of the three zones is determined by the geometry of the screw(s) in that section, the

temperature, and the screw speed. In a number of extruders the barrel is manufactured
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as interchangeable sections that can be assembled in different configurations to allow

control of the conditions in each zone. Upon the exit of the molten material from the

screw section, it is passed through the die plate, which determines the shape of the

product. After the extruded product has cooled following exit from the die, it may be

that further processing of the extrudate (e.g. milling) is required [49, 52].

Figure 1.8: Schematic of a hot-melt extruder. Numbered labels indicate: 1) Feeding
the extruder from a hopper; 2) Movement of the material through the extruder; 3) Flow
of material through the die; and 4) Exit of extrudate from the die and down-stream
processing.

The use of hot-melt extrusion in increasing numbers of literature studies indicates

that this method is gaining prominence in the field of solid dispersions [42, 54, 55]. An

advantage of this method, that may explain its increased use, is that the relatively

compact equipment can be used throughout the drug development process, from the

lab to the pilot plant and then onwards to manufacture. Processes, such as spray

drying, which require the use of solvents are often time-consuming, costly, and there are

environmental concerns surrounding their use [35]. On the other hand, extrusion is a

solvent-free process, and therefore avoids these issues. Extrusion is also well-suited to
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scale up for use on a manufacturing plant, because it is a continuous process. Because

the material can be subject to continuous throughput, the product is likely to be more

uniform because all the material experiences the same processing conditions.

Despite these advantages, there are also issues with hot-melt extrusion that

means that it is not always a suitable method for production of particular solid disper-

sions. The main is that the use of high temperatures to melt the drug and polymer

may lead to the thermal degradation of some compounds and excipients. The potential

for thermal degradation may be mitigated by the use of additives as plasticizers which

reduce the glass transition temperature of the polymer and the melting point of the

drug, enabling lower processing temperatures to be used. However, even with the use of

plasticizing additives, this manufacturing approach is not suitable for all formulations as

the processing conditions may cause degradation of the components. Additionally, the

number of different variables in the melt extrusion process, such as the feed rate, screw

speed and extrusion temperature, means that method optimisation may be a lengthy

process.

Solvent Evaporation An alternative to forming solid dispersions by melting is sol-

vent evaporation. In this method, the drug and carrier compounds are both completely

dissolved at the desired ratio in a common organic solvent, which is subsequently evapo-

rated [35]. Several methods exist for the preparation of samples for small-scale feasibility

studies on a microgram to tens of grams scale . At the smallest scale, thin film sam-

ples for microscopy and spectroscopy studies can be produced by spin-coating, whereby

the solution containing drug and carrier is deposited onto a spinning substrate (e.g.

a microscope slide). The solution is spread thinly across the substrate by centrifugal

force, and the solvent evaporates simultaneously, leaving behind a thin solid dispersion

film [56, 57]. Solid dispersions can also be film cast on static substrates [58], but this

method results in thicker films. In cases where an amorphous solid dispersion is desired

it is important to be aware that crystallisation of the drug may occur as a result of

slower solvent evaporation, and this could lead to false negative results.
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For lab-scale batches of powder, many studies use rotary evoporation to remove

the solvent (e.g. [29, 59, 60]). However, other commonly used methods include spray

drying and freeze drying (lyophilisation). Spray drying is an attractive option to the

pharmaceutical industry for a number of reasons, including: low thermal stress, particle

engineering for specific applications, rapid evaporation of the solvent preventing drug

crystallization, and expanded process capability during scale-up [61]. During the spray

drying process, the feedstock solution is passed through a spray nozzle, which atomises

it, into a hot gas (typically nitrogen due to the use of flammable organic solvents).

Because of the small droplet size, the solvent rapidly evaporates from the droplets, to

precipitate solid particles, which pass through a cyclone to the collection chamber (see

diagram in Figure 1.9).

Spray drying offers the advantage of producing material with a consistent particle

size distribution. Also, the temperatures used during spray drying are generally lower

than during hot-melt extrusion, so this method can therefore be used to produce solid

dispersions of thermally-sensitive drug compounds. Despite the disadvantages of the

organic solvent use associated with spray drying, this method is considered to be one

of the more proven solvent-based methods for use in large scale manufacturing, as it

is less costly and more scalable than freeze drying, and produces free-flowing powder.

However, total recovery of the solid dispersion powder from the spray drier may be

difficult due to material collecting elsewhere around the spray drier other than in the

collecting vessel, and issues arising from the static nature of the product.

The important factors for consideration when using any of the above solvent

evaporation methods is that firstly both components must be fully dissolved in the

solvent prior to evaporation, and secondly, that the selected solvent is volatile enough

to evaporate rapidly. The complete dissolution of both components is important as any

undissolved particles may act as seeds for the crystallisation of the drug. It is important

that the solvent evaporates rapidly, as slow evaporation might lead to the crystallisation

of the drug in the case of an amorphous solid dispersion, or the evolution of a different
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Figure 1.9: Schematic diagram of a typical spray dryer (adapted from [4]). Numbered
labels indicate: 1) feed solution; 2) pump; 3) air/N2 inlet; 4) electric heater; 5) spray
nozzle; 6) concentric inlet of the hot air around the spray nozzle; 7) spray cylinder; 8)
thermometer for measuring outlet temperature; 9) cyclone to separate particles from
gas stream; 10) collecting vessel for dried product; 11) outlet filter; 12) aspirator to
pump air through the system. The arrows indicate the flow direction of the hot air (and
the sprayed product)

polymorphic form in the case of crystalline solid dispersions. Residual solvent in the

resultant solid could also serve to alter the physical properties of the solid dispersion

(e.g. by acting as a plasticiser).

Other Methods In addition to melt and solvent evaporation methods of solid disper-

sion formation, there are several other methods that have been reported in the literature,

such as compression moulding [62], co-grinding [63], solvent wetting [64] and microwave

irradiation [65]. These methods will not be described in any further detail here, and the
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reader is directed towards the references for further explanation of the specifics of the

techniques.

Solid State Analysis of Solid Dispersions

Earlier in this chapter it was discussed how a solid dispersion may exist in one (or several)

of many physical states, and it remains difficult in many cases to determine how the

drug is dispersed in the carrier. Both, the physical stability of a solid dispersion and the

dissolution properties of a solid dispersion, have been shown to be strongly influenced by

the solid state structure, and hence the elucidation of physical structure is of particular

importance. Here the general uses and limitations of different analytical techniques will

be discussed, with specific reference to the determination of the physical structure of

solid dispersions. The particular analytical techniques used in the work reported in the

subsequent chapters of this thesis will be described in more detail in Chapter 2.

Traditionally, methods such as X-ray powder diffraction (XRPD), differential

scanning calorimetry (DSC) and hot-stage microscopy have provided the principal means

of probing the structure of a solid dispersion. In the first instance, XRPD can be used

to determine if the solid dispersion is crystalline or amorphous within a specific level of

detection. If the material is shown to be crystalline, characteristic peaks in the diffrac-

togram can be attributed to either the drug or carrier components through comparison

with diffractograms of the crystalline free form drug and carrier, thus indicating that

perhaps a eutectic or solid suspension has been formed. If the particles are very small,

this may be manifest in the XRPD diffractogram through peak broadening. This is

demonstrated by Kanaze et al, who used the identification of characteristic peaks in

XRPD diffractograms to show that the the flavonoid drugs were present as microcrys-

tallites when formulated as solid dispersions with either amorphous PVP or crystalline

PEG [66]. In the case that the solid dispersion is shown to be completely amorphous

by XRPD, it is not possible simply from looking at the diffractogram to determine if

the drug is molecularly dispersed in the polymer or if a solid suspension has formed.
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DSC analysis will also be able to identify if the material is crystalline, amorphous or a

mixture by the identification of melting and glass transition temperatures (denoted Tm

and Tg respectively) for each of the components. It is also widely accepted that in the

case of amorphous solid dispersions, the appearance in the thermogram of a single Tg

that is intermediate to the Tgs of the individual amorphous components indicates that a

molecular dispersion has been formed [67]. However, DSC may not be sensitive enough

in most cases to accurately differentiate between a nanosuspension and a solid solution

[68] (see Chapter 2). Hot-stage microscopy provides complimentary information to the

data from XRPD and DSC, in that the melting or crystallisation temperatures of solid

dispersions can be observed with this technique. Nevertheless, molecular resolution can-

not be obtained with optical microscopy, and so the existence of a solid solution cannot

be absolutely confirmed using this technique.

Spectroscopic methods such as Fourier-transform infrared spectroscopy (FTIR)

and Raman mapping can be used to provide more information about drug-drug and

drug-polymer intermolecular bonding in solid dispersions, and aid in elucidating whether

the material is a solid solution or solid suspension. An example of how FTIR can be used

to supplement the information obtained from XRPD and DSC is Lin et al’s study of a

theophylline-Eudragit L system, in which the collection of FTIR spectra over a range of

temperatures shows how intermolecular bonding patterns change with temperature [58].

Karavas et al were able to show with Raman mapping that in higher drug-loaded solid

dispersions of felodipine in PVP, the drug was not molecularly dispersed throughout the

polymer matrix, but was instead present as microparticles [69].

More recently analysis of XRPD data using the Pairwise Distribution Function

(PDF) method has enabled a more detailed understanding of the distribution of com-

ponents within a solid dispersion material. For example, Bates et al showed that this

technique could be used to distinguish different types of structuring within amorphous

samples of the same compound [6]. Also, Newman et al showed that the PDFs of dex-

tran/PVP and trehalose/dextran solid dispersions from XRPD data could be predicted
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using combinations of the PDFs of the individual components, thus indicating that they

were likely to be solid suspensions. Conversely, the PDF of indomethacin/PVP solid

dispersions did not match the prediction, suggesting that for this sample it was more

likely that the indomethacin was molecularly dispersed in the polymer carrier [68].

What is apparent, is that no single technique can provide all of the answers

with regards to the solid-state structure of a solid dispersion. Instead, a combination of

analytical methods should be used to probe the physical structure of solid dispersion,

and hence enable a better understanding of the associated physical properties. The

challenge is to develop a solid-state testing protocol that can be used implemented as

early as possible, within the context of a wider pharmaceutical development strategy in

which there may be limited amounts of drug compound available.

Physical Stability

The most important challenge to overcome with regards to solid dispersions is the

issue of their physical stability, as this directly links to product shelf-life and in vivo

performance. Solid dispersions can be prone to phase separation, whereby the two

components do not remain intimately mixed and migrate into discrete domains. The

thermodynamic instability of many amorphous solid dispersions means that there is also

a particular risk that the drug or carrier may crystallise out. In some cases it has been

shown that it is possible for an amorphous polymer carrier to crystallise [35].

In order to prevent the crystallisation of a drug from the amorphous state, the

drug compound should not be able to form in concentrated pockets, as crystals would

be more likely to nucleate and grow from such regions. However, the production of a

molecularly dispersed system, in which the grouping of drug molecules can be interupted

by polymer chains, may be less likely to lead to the nucleation and growth of drug

crystals. This is because the polymer chains would lead to the disruption of any potential

crystal lattice, and hence provide both a steric and energetic barrier to crystallisation.

Having stated the importance of producing a molecular dispersion, rather than
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a system that is phase separated, it is also important to understand that the production

of a molecularly dispersed system depends on the miscibility of the drug and polymer

compounds, which itself is dependant on the molecular structure of the drug and polymer

compounds. As shown by the Gibbs equation (Equation (1.2)), the miscibility of a

system is due to the balance between energy and entropy [70, 71, 72]. The mixing

of two similarly-sized components, A and B, is represented in Figure 1.10a, and the

free energy of mixing (Fmix) for such a system is given by Equation (1.3), where Φ

is the volume fraction of the component, k is the Boltzmann constant, and T is the

temperature [71]. χ is a dimensionless parameter that characterises the strength of the

energetic interaction between the molecules A and B relative to their self-interactions

[70, 71].
Fmix

kBT
= ΦA ln ΦA + ΦB ln ΦB + χΦAΦB (1.3)

As shown in Figure 1.10b, Equation (1.3) can be plotted using different values for χ.

In Figure 1.10b it can be seen that when χ ≤ 2, the two components are miscible

at all proportions. However, when χ > 2, a ‘miscibility gap’ appears, in which phase

separation will occur (for χ = 3, this is when ΦA > 0.1 and < 0.9). Therefore, it can

be said that the critical value of χ, (χcrit), = 2.

Many solid dispersions consist of a small molecule drug (B) dispersed in a poly-

meric carrier (A), and in these cases the entropic gain that arises from mixing of the

components is less than when both components have a similar volume, due to the re-

duced number of configurations of the two components [72]. This is illustrated in the

schematic shown in Figure 1.11a. In such cases the expression for calculating the free

energy of mixing must be modified accordingly, as shown in Equation (1.4), where N is

the number of monomeric units in the polymer [73].

Fmix

kBT
=

ΦA

N
ln ΦA + ΦB ln ΦB + χΦAΦB (1.4)

The plots of χ shown in Figure 1.11b are for a system in which N →∞. It can be seen

that in this case χcrit ∼ 0.5, and for systems with higher values of χ miscibility can only
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be achieved at low drug drug loadings. For systems with other values of N, it can more

generally be said that χcrit ≈ 1
2 + 1√

N
.

Some studies have sought to predict the miscibility of solid dispersions, using

solubility parameters or experimentally derived thermal properties of the drug compound

[72, 74, 75, 76], but these have only had limited success. In other work, rather than

seeking to predict miscibility, the focus has been to identify the storage conditions that

induce phase separation and crystallisation from a particular miscible system [29, 56, 60].

Or an alternative approach is to look to identify by experimental means an amorphous

polymer that inhibits the crystallisation of a particular drug [56]. There are studies that

have investigated the interactions that a series of drugs has with a particular polymer

[48, 59, 77], but the drug compounds used in these studies are not always analogous.

Or, if they are, they may differ by several functional groups from the other compounds

in the series, making it difficult to identify the contribution that each functional group

has on drug/polymer miscibility. Despite the vast number of studies in the literature

investigating physical stability in solid dispersions, it still remains difficult to predict

when drugs will crystallise, even after phase separation has been detected.

Understanding the Mechanisms of Dissolution Enhancement

It is well known that the amorphous form of a compound has a higher solubility than

its crystalline counterpart [28, 78], and this is largely because the lattice enthalpy does

not have to be overcome in the dissolution of amorphous materials. This solubility

advantage and the associated dissolution enhancement is often the main reason that

solid dispersions are developed. However, the mechanism by which this dissolution

enhancement occurs is still not fully understood. This issue was addressed by Craig

in his 2002 review article [3], where his survey of the different results reported in the

literature highlighted the ongoing debate about whether the dissolution properties of

solid dispersions are drug- or carrier-mediated.

It was shown, with the aid of examples of work by Corrigan [79, 80] Dubois and
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(a) (b)

Figure 1.10: a) Schematic to show the miscibility of small molecules A and B, and
b) a graph showing how the free energy of mixing (Fmix) of the system changes with
composition (Φ) and dependent on the χ parameter of the system. Plots represent
systems with χ parameters of -1 (dark blue), 0.5 (purple), 1 (red), 2 (light blue), 3
(green) and 4 (black).

(a) (b)

Figure 1.11: a) Schematic to show the miscibility of a polymer, A, with a small molecule
drug, B, whereby the polymer has a chain length of N monomers. b) a graph showing
how the free energy of mixing (Fmix) of the system changes with composition (Φ)and
dependent on the χ parameter of the system, when N = ∞. Plots represent systems
with χ parameters of -1 (dark blue), 0.5 (purple), 1 (red), 2 (light blue), 3 (green) and
4 (black).
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Ford [47], and Craig and Newton [81], that when the dissolution rate of the drug in

the polymer carrier, and the dissolution rate of the polymer alone are equivalent, then

the dissolution of the solid dispersion can be deemed to be carrier-controlled. However,

this is not the case for all solid dispersions, as illustrated by Craig with an example by

Sjökvist-Saers and Craig [82] who observed a linear relationship between the intrinsic

dissolution rate and drug solubility of solid dispersions based on a homologous series

of drug molecules. This provided evidence that for some systems, dissolution is drug-

controlled (rather than carrier-controlled).

There have been a number of studies since the publication of Craig’s review

which measure the dissolution of solid dispersions with ranges of drug loadings. How-

ever, these mostly focus on solid dispersions with drug loadings below 30%, and/or are

focussed on producing controlled release dosage forms. Kanaze et al [66] investigated

the dissolution enhancement of poorly water-soluble flavonoids when formulated as solid

dispersions, and found that there was a clear improvement in the dissolution of them in

a concentration dependant manner. However, the flavonoids were found to remain crys-

talline in the solid dispersion formulations, and hence the dissolution advantage of using

amorphous material was not able to be realised in this study. Similarly, Okonogi and

Puttipipatkhchorn [83] investigated the dissolution of high drug-loaded systems (above

50% w/w drug) of ofloxacin in PEG, both with and without the addition of surfactant,

and found that all solid dispersions demonstrated improved dissolution over the crys-

talline drug, in a concentration dependant manner. However, these solid dispersions

were also shown to be crystalline.

In Vitro/In Vivo Correlation

Even if an improvement in the solubility profile of a drug formulated as a solid dispersion

can be shown, it is not clear that this always correlates with improved bioavailability of

the API in vivo. In cases where the in vivo performance is not improved, despite en-

hancement of the dissolution profile, it could be that the intrinsic intestinal permeability
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of the drug is low. Several studies have carried out investigations to determine if in vitro

and in vivo performance are correlated for solid dispersion systems [84, 85, 86].

1.4 Aims of the PhD

1.4.1 Motivation and Aims of this Research

A number of studies in the literature have suggested that intermolecular interactions

between the drug and polymer components lie at the heart of understanding the per-

formance and stability of solid dispersions. However, most of these studies seem only

to have identified the dominant intermolecular bonding motif in a particular system,

and investigated this with reference to a particular property. By contrast, it appears

that there are few reports in which a broader series of drug molecules has been used

as a means to identify and further understand the contributions of all intermolecular

interactions on the stability and performance of a solid dispersion system. All of the

aforementioned challenges associated with the development solid dispersions could be

addressed with a more fundamental understanding of the ways in which the drug and

polymer components of a solid dispersion interact. Therefore, the research detailed in

this thesis aims to address, in part, this gap in the knowledge, by seeking to identify

if any trends exist between the physicochemical properties of solid dispersions and the

molecular structure of the drug compound used in the solid dispersion. The identifi-

cation of correlations between drug descriptors and solid dispersion performance could

then be used as a screening tool to assess the suitability of new pharmaceutical drug

compounds for formulation as solid dispersions.

The main solid dispersion system under investigation in this work is that of

felodipine in copovidone. Studies of the very similar felodipine/PVP system indicate

that a hydrogen bonding interaction between the drug and polymer components is

dominant in this particular system, which lends physical stability to the drug [87], and

enables enhanced dissolution of the drug [88]. It is expected that the same hydrogen-
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bonding motif will be present in the felodipine/copovidone system. Other drug-polymer

interactions have not been investigated in other studies, and it is the impact of the

molecular structure of felodipine and its derivatives on the physicochemical properties

of the solid dispersion that are investigated in this work. In order to do this, a series of

structural analogues of felodipine were synthesised (Chapter 3), and the properties of

solid dispersions containing these analogues were measured, and directly compared with

the results of the felodipine system. Thus the contribution of each functional group

could be assessed.

If successful, this approach could be used to better enable formulators to recog-

nise the potential risks or benefits of producing a solid dispersion of a particular drug

compound. It may also aid in the design of more effective solid dispersion screening

protocols. Furthermore, if information about the ability of specific functional groups

to impact in either a positive or a negative way on solid dispersion formation could be

determined, this could be used as a high-throughput screening tool to direct discovery

chemists towards synthesising compounds that can be more successfully formulated (as a

copovidone solid dispersion in this case, but the principle could be applied more widely).

The secondary aim of this work is to investigate the potential of emerging ana-

lytical methods and techniques for characterising solid dispersion systems. It is hoped

that such systems might either be more effective than existing methods, or provide

information about the system that cannot be easily determined via other means. In

Chapter 5 the use of a laser light scattering technique to provide information about

morphological changes in solid dispersion systems will be explored, with the view that

this method could potentially be developed as a screening tool. In Chapter 6 magnetic

resonance imaging (MRI) with integrated ultraviolet (UV) detection system will be used

to further understand the dissolution mechanism of a spray dried felodipine/copovidone

solid dispersion system.
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1.4.2 Overview of the thesis

A number of the experimental techniques that can be used to investigate the physical and

chemical properties of solid dispersions have already been alluded to in this introductory

chapter. In the next chapter, the techniques used during the course of this work to

analyse solid dispersions will be described in more detail. The theory and rationale for

the use of these techniques will be outlined.

The synthesis of the felodipine analogues used for the studies reported in Chap-

ters 4, 5, 6 and 7 is described in Chapter 3. In this chapter the rationale for the selection

of synthetic target analogues will first be discussed, and then the synthetic methods will

be described in more detail. For those compounds that were successfully synthesised, the

total amounts of material yielded will be detailed, as this will prove to be a fundamental

issue in the planning of experiments in the following chapters.

Chapter 4 summarises the attempts to produce solid dispersions of these ma-

terials, and their initial analyses. This chapter will focus on the solid state analysis

using x-ray powder diffraction, pair-distribution function analysis and differential scan-

ning calorimetry.

The physical stability of felodipine and its analogues in solid dispersions with

copovidone is reported in Chapter 5. Firstly, experiments using a novel laser light

scattering method to investigate morphological changes in felodipine/copovidone films

will be detailed. In the second part of this chapter polarised light microscopy was used

to assess the ability of copovidone to inhibit the crystallisation of felodipine and its

analogues in a series of well-plate experiments.

In Chapter 6 the dissolution performance of felodipine and its analogues on

felodipine/copovidone solid dispersions producedusing spray drying, using an MRI flow-

cell technique with an in-line UV/Vis detector is reported. The studies in which the

spray dried material was used, attempt to shed light on the mechanisms by which the

dissolution of poorly soluble compounds is improved when formulated as solid disper-

sions. To do this, two very different dissolution methods were employed: One is a
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‘micro-dissolution’ method in which very small samples can be assessed using fibre-optic

ultraviolet (UV/Vis) measurement; the other uses magnetic resonance imaging of a bulk

sample in a dissolution flowcell in combination with an in-line UV spectrophotometer.

Following on from this initial study, a series of experiments were carried out using micro-

dissolution to compare the performance of film-cast solid dispersion samples containing

the analogue compounds with crystalline and amorphous drug, and physical mixtures,

and these experiments are also detailed in Chapter 6.

In Chapter 7, we attempt to correlate the data from the well-plate crystallisation

experiments conducted in Chapter 5 and the dissolution experiments on the analogue

compounds carried out in Chapter 6 with molecular descriptors and physical properties.

Finally, in Chapter 8 the conclusions from each chapter will be drawn together,

and the overall conclusions of the thesis will be laid out. Avenues for future work will

also be explored.
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Chapter 2

Materials and Experimental

Methods

This chapter serves to provide an overview of the materials and techniques used through-

out this thesis for the analysis of solid dispersion samples. Here, the general theories

behind the techniques and how they work will be presented, and the reasoning behind

their use will be discussed. The full details of the experimental parameters used will not

be addressed in this chapter, as these will be given as the experiments are encountered

in subsequent chapters.

2.1 Materials

2.1.1 Felodipine

Felodipine (O5-ethyl O3-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-

3,5-dicarboxylate) is a calcium-channel blocker, which is prescribed predominantly for

use as a treatment of hypertension [89]. It is widely documented as a BCS class II

compound, and has been the subject of a number of studies which investigate improv-

ing the bioavailability of this drug by formulation as a solid dispersion [55, 56, 57, 60,

69, 72, 75, 87, 88, 90, 91, 92, 93, 94]. The glassy state of felodipine has also been
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the subject of several studies [95, 96, 97]. The information available about felodipine

from these previous studies, made this drug ideal for use as a model compound in the

following experiments, and provided a structural basis for design of analogue compounds

for synthesis and testing.

Felodipine Analogues

The experiments in this thesis aimed to investigate the impact of drug molecular struc-

ture on the formation of soluble and physically stable solid dispersions with a polymer.

Therefore, a series of compounds which are structural analogues of felodipine were syn-

thesised and used directly in the following work. The rationale for which analogues were

synthesised, as well as their chemical structures and methods of synthesis are detailed

in Chapter 3.

2.1.2 Copovidone

(a) copovidone (b) PVP

Figure 2.1: Molecular structures of copovidone (a) and the chemically similar polymer,
pvp (b).

Copovidone (poly vinylpyrrolidone-vinyl acetate co-polymer - see Figure 2.1a) is

a water-soluble polymer, commonly used as a dry binder excipient, granulating agent or

retarding and film forming agent in pharmaceutical tablet manufacture processes [98].

Copovidone is chemically similar to polyvinylpyrolidone (PVP - see Figure 2.1b) which

is also a polymer commonly used as an excipient in pharmaceutical tablet manufacture,

and has been used in solid dispersion formation in a number of previous studies [66,
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99, 100, 101, 102, 103], several of which use felodipine as the API of interest [56,

57, 72, 75, 87, 88, 91, 92, 93, 94]. In these studies, PVP was shown to both inhibit

the crystallisation, and enhance the dissolution performance of the drug compounds

when used in solid dispersion formation, and it seems logical to suggest that due to

their similarities in molecular structure and physical properties, copovidone may provide

another suitable option for solid dispersion formulation.

The good aqueous solubility of copovidone may prove to be an advantage over

less soluble polymers if dissolution of the drug in solid dispersions is carrier-controlled.

Although copovidone is less soluble than PVP, it is also less hygroscopic [98], and hence

may prove to be a more attractive option for this reason.

2.2 Methods

2.2.1 Structure Determination

Successful synthesis of the felodipine analogues as detailed in chapter 3 was largely

confirmed with the use of three analytical techniques: mass spectrometry (MS), nuclear

magnetic resonance (NMR) and Fourier transform infrared spectrophotometry (FTIR).

These methods are commonly used for structure determination in synthetic chemistry,

and a full description of these methods is both beyond the scope of this work, and more

effectively covered in a number of organic and analytical chemistry textbooks. In short:

• MS is used to determine the molecular mass of the compound under testing;

• NMR is used to determine the connectivity of the atoms in the molecule - exper-

iments based on Hydrogen and Carbon atoms are carried out in this work;

• FTIR enables the identification of functional groups present in the molecule.

37



2.2.2 X-ray Powder Diffraction (XRPD)

X-ray powder diffraction (XRPD) is probably the most useful technique for determining

the level of crystallinity (or lack thereof) in a sample, and due to the relative ease with

which samples can be analysed using this method, it forms the basis of most solid-state

testing regimens in the pharmaceutical industry.

In XRPD analysis, a micro-crystalline powder sample if correctly prepared, should

present a random selection of crystal orientations at the powder interface. The radiation

of this surface with monochromatic x-ray radiation should hence provide information on

all the possible atomic spacings in the crystal lattice [104]. The sample is slowly rotated

and the scattering angle θ is determined by one of two methods: either the scintillation

counter measures the angle of diffracted x-rays with respect to the angle of the incident

beam; or the detector is moved around the sample, to determine the angle of the

diffracted x-rays, whilst the angle between the sample and x-ray source is kept constant.

Figure 2.2: Diagram showing Bragg reflection from a set of crystal planes with a spacing
d (adapted from [5]).

Smart and Moore explain that the constructive and destructive intereferences of

Bragg reflections from the sample gives rise to the powder diffraction pattern produced,

as demonstrated in figure 2.2 [5]. In this figure the lines of black dots represent the
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parallel planes of a crystal lattice which have spacing d. During analysis, the crystal

is irradiated with a parallel beam of monochromatic x-rays represented by the red lines

A, D and I, at an incident angle θ with respect to the crystal planes. The atom at

position B causes ray A to be scattered, and similarly, ray D is scattered at atom F.

The reflected beams must arrive at the detector in phase with each other in order for

them to register with a sufficient intensity, and therefore the pathlengths of the beams

must differ by an integer number of wavelengths in order for constructive interference

to occur. By drawing lines perpendicular to the incident and reflected x-rays at BE and

BG, it is possible to determine the difference in path length between the two beams, as:

difference in path length = EF + FG

We can also see from figure 2.2 that

EF = FG = d sin θ

and therefore

difference in path length = 2d sin θ

As the difference in path length must be equal to an integer number, n, of wavelengths for

constructive interference to occur (and hence for a peak to register in the diffractogram),

it can be seen that if the wavelength of the x-rays is λ, then

nλ = 2d sin θ (2.1)

Following this, it can be seen that for a crystalline powder sample, the x-ray pow-

der diffractogram will contain a series of peaks at characteristic scattering angles, unique

to the crystallography of that material. Hence, polymorphs of the same compound will

have distinctly different diffractograms. Conversely, if the sample is completely amor-

phous we can see that there will be no Bragg peaks featured in the diffractogram, and

instead an amorphous halo will be seen. For semi-crystalline samples, the Bragg peaks

will be broader than for fully crystalline samples, and they will be superimposed on an

amorphous halo.
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For a more detailed description of XRPD and the practicalities of this technique,

the reader is directed to the books by Klug and Alexander [105] and Dinnebier and

Billinge [106], which both provide more comprehensive explanations of this technique.

Pair Distribution Function (PDF)

Looking at a powder diffractogram for an amorphous two-component system cannot

directly give information about whether those components are fully miscible or not; it

can only tell us that both components are mostly amorphous. Whilst other techniques

such as differential scanning calorimetry can be used to determine this information,

there are limitations as to the resolution of such techniques (as discussed below). The

pair distribution function (PDF) is a method by which XRPD data of an amorphous

material is used to produce a plot showing the interatomic distances that define a solid

form [107]. Therefore, this technique can be used to better understand the solid state

structure of a solid dispersion, and has already been used in several studies for this

purpose [55, 57, 68].

Billinge and Kanatzidis [108] define the atomic PDF G(r), as

G(r) = 4πr[ρ(r)− ρ0] (2.2)

where ρ0 is the average atomic number density, ρ(r) is the atomic pair density and r

represents radial distance. Hence, the function G(r) indicates the number of atoms in a

spherical shell of a unit thickness at a distance r from the reference atom as represented

in the schematic in figure 2.3. In order to obtain the PDF of an XRPD diffractogram,

the measured scattering intensities must first be corrected for background and other

experimental effects, and then normalised by the flux and number of atoms in the

sample, to give Icoh(Q). This can then be used to determine the total scattering

structure function S(Q) using equation (2.3)

S(Q) =
Icoh(Q)− Σci|fi(Q)|2

|Σcifi(Q)|2
+ 1 (2.3)

40



Figure 2.3: Schematic showing the nearest neighbour coordination observed using pair
distribution functions (adapted from [6]).

where Ci and fi are the atomic concentration and x-ray atomic form factor respectively

for the atomic species of type i. A sine Fourier transform can then be applied to S(Q)

in order to obtain the PDF of the data as shown in equation 2.4

G(r) = (2/π)

Qmax∫
Q=0

Q[S(Q)− 1] sin(Qr)dQ (2.4)

The plotted PDF essentially indicates the probability of there being two atoms separated

by distance r, whereby the peaks correspond to commonly occuring interatomic distances

[6, 109].

It is important to note that calculating the PDF G(r) does not produce data,
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but simply provides another way to represent the diffraction data. Nevertheless, this

presentation of the XRPD data in real space has particular advantages in aiding the

understanding of structurally disordered materials. This is because whilst the PDF

reflects the long-range order of crystalline materials manifest in the diffractogram as

Bragg peaks, it can also pick out the diffuse components of the diffraction pattern due

to local structural imperfections. This is because, as shown in equations (2.3) and (2.4)

the total scattering contributes to the PDF. Additionally, analysis of the data using this

method does not presume periodicity, which therefore makes it useful for characterising

disordered materials [108].

2.2.3 Differential Scanning Calorimetry (DSC)

Of all thermal analysis techniques performed in pharmaceutical research, differential

scanning calorimetry (DSC) is probably the most common, due to its ease of use and wide

range of applications. In the field of solid dispersions, DSC is most useful for identifying

if a material is crystalline or amorphous (and the temperature ranges over which the

associated phase transitions occur) and more importantly, whether the components of

the solid dispersion are miscible.

To perform differential scanning calorimetry (DSC) on a sample, 1-7mg of ma-

terial is prepared in a suitable sample pan. An identical pan, which does not contain

any sample is also prepared for use as a reference. The sample and reference pans are

placed in a furnace on individual heating stages linked with measurement thermocouples

(Figure 2.4). The sample and reference pans are heated (or cooled) at the same rates,

and the heat flow required to maintain the sample at the required temperature relative

to the reference is measured [104]. Flow of a suitable gas through the furnace cell en-

sures the atmosphere is inert, and any volatiles produced during the process are purged,

as well as assisting in heat transfer. Phase transitions of the material under testing can

be identified from the thermogram as endotherms (for melting or solvent loss events),

exotherms (for crystallisation events) and glass transitions (Figure 2.5).
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Figure 2.4: A schematic of a Differential Scanning Calorimeter (DSC). Numbered labels
indicate: 1) furnace; 2) sample pan; 3) reference pan; 4) heat flux plate; 5) heating
stage thermocouples; 6) purge gas inlet; 7) purge gas vent; 8) temperature and heat
flow data is sent to a computer for recording.

It is well-known that if a 2-component system is fully miscible it will exhibit a

single glass transition temperature Tg, which is intermediate to the Tgs of the individual

components. However, if the blend is immiscible, then two separate Tgs will be observed

- one for each component. Assuming that the free volumes of the components are

additive, the Tg of a miscible drug/polymer blends can be predicted using the Gordon-

Taylor equation (2.5):

Tg =
w1Tg1 +Kw2Tg2

w1 +Kw2
(2.5)

where wi are the weight fractions and Tgi are the glass transition temperatures of the

individual components. The subscript 2 refers to the component with the higher Tg.

The constant K is calculated as shown in Equation (2.6), where ρi are the densities of

the pure amorphous components [87, 110].

K =
ρ1Tg1

ρ2Tg2
(2.6)

The Couchman-Karasz model can also be used to predict the Tg of a miscible 2-

component system, and this equation takes the same form as Equation (2.5), but instead

K is calculated as shown in Equation (2.7), where ∆CP is the change in specific heat
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Figure 2.5: Schematic showing how the glass transition temperature Tg, melting point
Tm, and recrystallisation temperature Tc are shown in a thermogram produced by DSC.
In this example, exothermic peaks point upwards.

capacity at the Tg of each compound [87, 111].

K =
∆CP1

∆CP2
(2.7)

A key limitation of DSC for determining the miscibility of amorphous solid dis-

persions is the detection limits associated measuring glass transition temperatures (Tg).

As discussed above, it is generally accepted that the presence of a single Tg for a

2-component system indicates that it is fully miscible. However, if the Tgs of the 2

components are less than 10◦C apart, and the phase separated domains are not large

enough (typically less than ∼30nm) to be detected by the thermal changes measured

by DSC, this 2-component system may appear to be fully miscible [68]. An additional

drawback of DSC is that due to the numerous types of events that can be detected

using this technique, many of which are shown as either endotherms or exotherms, in-

terpretation of the thermograms can often prove challenging, and correct interpretation

often depends on the knowledge and experience of the researcher [112]. These issues

indicate that despite the potential of DSC to provide the answers to a number of ques-

tions about a sample, it is important to use this technique in combination with others

before drawing any firm conclusions.
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2.2.4 Optical Microscopy

Optical microscopy is arguably one of the techniques most widely employed by scientists

from a range of disciplines due to its versatility. Optical microscopes are available

in a range of designs, but in general a microscope consists of a stand which holds a

sample stage perpendicular to the optical axis, a tube which contains the objectives and

eyepieces, and an system to illuminate the sample that usually involves use of a lamp

and condenser [113]. The reader is directed to Bradbury’s clear and informative book

for further details and a practical guide of optical microscopy [113].

In terms of providing a further understanding solid dispersion systems, optical

microscopy can be used to view the morphology of solid dispersion particles and films

(Chapter 4). However, it is particularly useful in observing changes that can occur

to the materials upon exposure to different environmental conditions, especially with

regards to both phase separation and crystallisation, as has been shown extensively in

the literature, and will be demonstrated in Chapter 5.

Polarised Light Microscopy

When detection and observations of crystal growth are required, the use of plane-

polarised light can provide a considerable advantage over brightfield microscopy, as

most crystals are birefringent. In this form of optical microscopy, polarising filters are

positioned above and below the sample stage. The light incident to the sample is con-

strained by the first polariser to vibrate in one plane only, and the polariser positioned

after the sample (termed the analyser) is rotated to a 90◦ angle with respect to the

first polariser; an arrangement in which the polarisers are said to be ‘crossed’. In this

way, only light that is rotated by the sample is transmitted to the eyepiece [114]. When

amorphous solid dispersions are viewed through cross-polarisers, the field of view will

be dark. However, if the drug crystallises from the solid dispersion, the anisotropy of

the crystals will cause the refraction of light in two slightly different directions to form

two rays, and the crystals will be more easily viewed than with standard brightfield
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microscopy.

2.2.5 Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) is a technique in which the sample is scanned

using a high-energy beam of electrons, to produce images at much higher levels of

magnification than is possible with optical microscopy.

Sample preparation for pharmaceutical materials involves fixing the material to

a specimen stub, and coating the surface of the material in an ultrathin layer of gold.

This is because in order for a sample to be imaged by SEM, the surface of the sample

must be electrically conductive, and electrically grounded to prevent the accumulation

of electrostatic charge on the sample. A high-energy beam of electrons (typically 0.5 to

40 eV) is emitted from an electron gun at the top of the vacuum column (see Figure

2.6). This beam of electrons is focussed through a series of magnetic condensing lenses

to a spot which is in the range of 0.4 to 5 nm in diameter. Lower down the vacuum

column, a set of scanning coils moves the focussed beam line by line across the sample,

and as this occurs, secondary elecrons are emitted from the sample surface through

inelastic scattering. These secondary electrons are detected and amplified to produce

an image which is essentially a map of the emitted signal intensities from the sample.

The following references provide examples where SEM has been used to investi-

gate the solid state and physical morphology of solid dispersions [54, 115, 116, 117].

2.2.6 Atomic Force Microscopy (AFM)

Atomic Force Microscopy (AFM) is a type of scanning probe microscopy. In AFM, a

cantilever with a sharp tip at the end is used to probe the surface of the sample as

it is moved back and forth (see Figure 2.7). The radius of the tip is in the order of

nanometers, which can lead to the production of images with atomic resolution. When

the tip is brought close to the sample surface, forces between the sample and the tip

lead to the deflection of the cantilever according to Hooke’s law. The deflection of the
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Figure 2.6: A schematic of a Scanning Electron Microscope (SEM).

cantilever is measured through the reflection of a laser spot from the top of the cantilever

to a position sensitive photodetector. In order to prevent the tip from crashing into the

sample surface, a feedback loop from the photodiode detector to the cantilever and

piezoscanner is used to adjust the tip-to-sample distance. The AFM has several modes

of operation, which can be divided into static (or contact) modes, and dynamic (or non-

contact) modes in which the cantilever is vibrated. In this thesis, samples were analysed

using tapping mode, and this will be described below. For information regarding other

AFM imaging modes, the reader is directed to the following reference [118].

In tapping mode AFM, the cantilever is oscillated at its resonant frequency with

an amplitude of typically 100 to 200 nm. This is done by a piezoelectric element

mounted on the AFM tip holder. The amplitude of the cantilever oscillations decreases

when the tip approaches the sample surface as a result of forces such as Van der Waals

forces, dipole-dipole interactions and electrostatic forces etc. acting on the tip. The

height of the cantilever above the sample is adjusted to maintain the amplitude by

the piezoelectric actuator controlled by an electronic servo. In tapping mode AFM, the

image is formed by imaging the forces experienced by the tip when it makes intermittent
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Figure 2.7: Schematic of an AFM instrument. Numbered labels indicate: 1) piezoscan-
ner; 2) sample; 3) cantilever; 4) tip; 5) laser; 6) position sensitive detector; and 7)
feedback of signal from photodiode to piezoscanner and cantilever.

contact with the sample [119, 120].

With tapping mode AFM, as well as measuring the topography of a sample

surface, it is also possible to observe differences in the material properties of the sample.

This is because there is a phase difference between the drive and the response of the

cantilever oscillations. In air, the phase difference between the cantilever drive and

response oscillations is 90◦, but when the tip comes into contact with the sample, this

phase difference changes as a result of the different material properties in the samples.

Monitoring of the signal phase during tapping mode AFM is called ’phase imaging’ [118].

This technique is particularly relevant to analysis of solid dispersions, as it can be used

to give an indication of how well mixed two components are.

AFM has several advantages over SEM for imaging samples. Firstly, samples

analysed by AFM do not require any special preparations prior to imaging, which could

change or damage the sample. Also, AFM provides a three-dimensional surface profile

of the surface, whereas electron microscopes only provides a two-dimensional projection
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or image of the sample.

2.2.7 Dissolution Testing

There are a wide range of dissolution testing methodologies that are used in during the

drug development process, and the selection of a suitable dissolution method depends

on a number of factors, including the stage the compound has reached in the drug

development process, the delivery route of the drug, and the type of dosage form under

testing [121]. In-vitro dissolution testing methodologies can be used to determine the

key factors that influence the performance of a drug (both alone and when formulated

as a dosage form) in-vivo.

All dissolution tests involve submerging the drug material or dosage form in a

suitable medium which is kept moving at a constant speed. From these tests, the rate

at which the drug is released and dissolved into the medium from the dosage form is

measured using appropriate sampling and analysis techniques (typically the concentra-

tion of drug is measured at regular timepoints using UV analysis) [122]. The methods

by which the dosage form is presented to the medium, and the medium is kept in mo-

tion, differ between dissolution apparatus [121, 123], and these differences, as well as

differences in the geometries of the dissolution vessels, can influence the hydrodynamics

of the system, and hence impact upon the dissolution rates. Also, the experimental

parameters, such as temperature and pH of the dissolution media etc, can effect the

dissolution rate. Therefore, as dissolution testing is considered so important in for-

mulation selection, monitoring and quality control, standard methods are published by

the United States Pharmacopeia (USP), the European Pharmacopoeia (EP), and the

Japanese Pharmacopoeia (JP) [121, 122].

In chapter 6 two methods of dissolution testing are used, neither of which are

pharmacopoeial techniques. The techniques used are micro-dissolution, and an MRI

flow-cell method, both of which are described in full in chapter 6. The micro-dissolution

method is used for the main reason that very little sample is required, and this was a
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key consideration for the testing of the felodipine analogue compounds as only limited

amounts of material were available. The MRI flow-cell system was used to provide

additional mechnistic information about the dissolution process. All of the dissolution

tests detailed in this thesis were carried out at a temperature of 37◦C, and in media with

a pH of 6.5 as these conditions are biologically relevant when considering dissolution

and absorption in the small intestine.
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Chapter 3

Synthesis of Felodipine Analogues

3.1 Introduction

3.1.1 Rationale for the synthesis of felodipine analogues

The main hypothesis under test in this thesis is that the properties and performance

of a solid dispersion are directly affected by the intermolecular interactions between the

drug and polymer molecules. It is also well-documented that increasing numbers of the

compounds synthesised showing promising results in terms of their drug properties, are

difficult to formulate into oral solid dosage forms. Combining these two points, it is

clear that it would be desirable to be able to provide guidance to medicinal chemists

about which molecules from an analogue series of drug candidates might be easier to

develop as solid dispersions, if it is known that this formulation route might ultimately be

used. Additionally, the ability to be able to distinguish molecules that are more likely to

produce ‘good’ solid dispersions, from ones that are harder to effectively formulate in this

way, may enable formulation scientists to target their resources more effectively towards

drug compounds that are more likely to successfully be formulated as solid dispersions.

Consequently, attrition of poorly soluble compounds from the drug development process

may be reduced.

In many of the experiments detailed in this thesis, felodipine (see figure 3.1a)
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Figure 3.1: Molecular structures of a) felodipine and b) copovidone.

was initially used as a model compound. Felodipine is a calcium channel blocker, used to

control hypertension, that is well-known to be poorly water-soluble. As a result of this,

felodipine is a BCS Class II drug. Felodipine is a well-documented example of a drug

that may benefit from formulation as a solid dispersion, which made this compound a

good starting point for use in the experiments detailed later in this work. Therefore, to

in order to investigate the effect of drug structure on the properties of solid dispersions,

analogues of felodipine were synthesised.

Two main considerations for the structural modification of felodipine were consid-

ered. Firstly, potential sites of intermolecular bonding between the drug and copovidone

polymer were identified, and modifications that would either enhance or disrupt these

interactions were sought. The most obvious candidate group for modification in this

way, was the nitrogen of the dihydropyrindine ring, which is well known to engage in

hydrogen bonding with the carbonyl group in the pyrrolidone ring of PVP, a polymer

structurally similar to copovidone (see figure 3.1b) [69, 87, 88]. Secondly, modifica-

tions that might typically be carried out by a medicinal chemist to adapt a compound

structure in the lead optimisation process were considered.
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3.1.2 Target Compound Design and Retrosynthetic Analysis

Taking the above factors into account, a list of synthetic targets was identified, which

included N-methyl, aromatised, diethyl ester, des-chloro and nitrile analogues (see figure

3.2 for full list of synthetic targets). The first compound to be identified for synthesis

was the aromatised analogue, in which the dihydropyridine was oxidised to pyridine, and

this choice arose from a desire to investigate the impact of removing the -NH hydrogen

bond donor which has been shown in the literature to interact with the carbonyl group

of pyrrolidone in PVP [87] - a group which is also present in copovidone. There are

a number of methods described in the literature that would enable the oxidation of

felodipine, the most common of which involves heating with nitric acid [124, 125].

However, a more effective method that was used in this work was oxidation with ceric

ammonium nitrate (CAN), which was shown to be a simple and high-yielding reaction

[126]. It was also shown that the CAN oxidation can be carried out catalytically with

sodium bromate in acetonitrile to give two oxidation byproducts in low yield. The

bromate ion acts to reoxidise the reduced form of the cerium (see figure 3.4) [127, 128].

The addition of an extra -OH group in one of these products may provide additional

hydrogen bonding capability with copovidone in a solid dispersion, and was therefore of

particular interest. The other oxidation byproduct containing a lactone ring was also of

value as it provided further diversity in the chemical structures of the analogues. As a

result, these two compounds were added to the list of synthetic targets.

The synthesis of the N-methyl analogue would be another method of blocking

the hydrogen-bonding capability of felodipine, and is hence another target compound.

The synthesis of this molecule could be undertaken through N-alkylation using methyl

iodide and potassium hydroxide in DMSO, as shown in the literature for a closely related

compound [129].

Felodipine is an asymmetrical compound as the ester alkyl portions are of dif-

ferent lengths, with one being a methyl group, and the other an ethyl. Therefore, it

followed that one of the analogues should be symmetrical, with the two side-chains of
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equal length, thus leading to the diethyl ester compound becoming one of the synthetic

targets. Hydrolysis to the acid of a diester similar to felodipine, followed by conversion

to the salt and re-esterification with DMF/MeI to a diester has been previously described

[130], and could be a valid pathway from felodipine. However, a cheaper, faster and

more straightforward method was identified in the one-step total synthesis from ethyl

acetoacetate, 2,3-dichlorobenzaldehyde and ammonium acetate, following the Hantzsch

dihydropyridine synthesis [131, 132]. The Hantzsch dihydropyridine synthesis proceeds

via a series of steps (see figure 3.3), the first typically being a Knoevenagel condensa-

tion reaction between a suitable aldehyde (in this case 2,3-dichlorobenzaldehyde) and

a keto-ester to produce an unsaturated carbonyl compound. The enone formed in the

previous step then undegergoes a Michael addition with a second enolate molecule, and

then addition of ammonia to one of the ketones occurs. Synthesis of the dihydropyridine

is completed when cyclization of the imine or enamine on to the other ketone occurs

[133]. Use of phenylboronic acid (which is cheap and widely available) as a catalyst,

effectively reduces reaction times and increases yields, and can also be recovered from

the reaction for re-use if required [134]. It is this methodology which has been used in

this work. The des-chloro diethyl ester was also identified as a synthetic target in order

to assess the influence of the electronegative chlorine atoms on the intermolecular inter-

action with copovidone, and synthesis of this compound could also be undertaken using

the phenylboronic acid catalysed Hantzsch dihydropyridine method detailed above.

A further potential analogue to be identified was the nitrile ester, as the replace-

ment of ester groups with the strongly electron-withdrawing nitrile group would both

increase the polarity of the compound. Additionally, the nitrile has only one lone pair

available to accept a hydrogen bond, which is arranged linearly along the axis of the triple

bond, compared to the ester which has four hydrogen bond acceptor sites at different

orientations. In their paper, Ohsumi et. al. showed the synthesis of a dimethoxy phenyl

substituted nitrile ester also using a one-pot, three-component Hantzsch dihydropyridine

method [135], which could also be applied to the dichloro phenyl target identified here.
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Figure 3.2: Molecular structure of felodipine (centre) surrounded with the molecular
structures of the target analogues. Clockwise from top: aromatised analogue, 2 oxidation
byproducts, diethyl ester, des-chloro diethyl ester, and nitrile ester.
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Figure 3.3: General reaction scheme for the Hantzsch Dihydropyridine Synthesis.
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Figure 3.4: Scheme to show the regeneration of the cerium(IV) reagent by reoxidisation
by the bromate ion.
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3.2 Materials

All reagents were used as supplied by Sigma Aldrich and all solvents were used as supplied

by Fisher Scientific. The petroleum ether used in this work was the 40-60◦C fraction.

3.3 Chromatographic Methods

Thin layer chromatography (TLC) was carried out on aluminium sheets coated with

TLC Silica 60 F254. Spots were visualised with UV light.

Flash column chromatography was carried out for purification of some com-

pounds [136] using silica gel (40-63u 60A).

3.4 Melting Point Determination

The melting points of the synthesised compounds were determined by DSC. Material

for testing (1.5-7 mg) was weighed directly into a 50 µL aluminium sample pan and

hermetically sealed. The sample was then analysed using a PerkinElmer Jade DSC

(PerkinElmer, Massachusetts, USA). An Indium sample was used to calibrate both the

temperature and heat flow of the instrument prior to analysis of each set of samples.

The sample chamber was purged with nitrogen gas flowing at 50 mL/min. Samples

were analysed in standard DSC mode. Each sample was heated from 25◦C to 300◦C

at 10◦C/min and then cooled back to 25◦C at the same rate. This cycle was repeated

three times for each sample. Data analyis was performed using Pyris Thermal Analysis

software v8.0 (PerkinElmer, Massachusetts, USA). The onset and peak of the melting

endotherm are given.

3.5 Spectroscopic Methods

A variety of spectroscopic methods were used to confirm that compounds had been

successfully synthesised.
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3.5.1 Nuclear Magnetic Resonance (NMR)

NMR spectroscopy was performed using a 400 MHz Bruker instrument. Samples were

prepared in 5 mm NMR tubes in a suitable deuterated solvent. Analysis of NMR spectra

was aided by reference to work by Jung et al on assigning the 1H and 13C NMR spectra

of felodipine [137]. Chemical shifts are expressed as ppm with reference to residual

undeuterated solvent (CHCl3 or DMSO). Peaks are assigned as singlets (s), doublets

(d), triplets (t), quartets (q) or multiplets (m), or a combination thereof, and J coupling

values for the splitting patterns are given (in Hz).

3.5.2 Mass Spectrometry (MS)

An LCT Micromass Mass Spectrometer with electrospray ionisation was used to perform

mass spectrometry. Less than 1 mg of the compound to be tested is dissolved in a

suitable solvent. For positive ion work, 10 µL of the sample solution is added to a

mixture of 200 µL of acetonitrile with 0.1% formic acid and 200 µL of water containing

0.1% formic acid. For negative ion work, sample preparation is the same, except that

the acetonitrile and water do not contain formic acid.

3.5.3 FTIR

FTIR analysis was performed on all synthesised material using a Nicolet 6700 instrument

with golden gate diamond ATR crystal. A background scan was performed prior to each

sample analysis with no sample in the instrument, and this was subtratcted from the

sample data. Powdered samples were placed directly onto the diamond crystal, and

the anvil lowered to ensure the sample was in full contact with the diamond. For each

sample 32 scans were recorded, with a resolution of 2 cm−1.
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3.6 Synthetic Methods

3.6.1 ZAL 001 – O3-ethyl O5-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-

pyridine-3,5-dicarboxylate

Figure 3.5: Reaction scheme for ZAL 001

To a solution of felodipine (97 mg, 0.25 mmol) in acetone (15 mL) was added

a solution of (NH4)2Ce(NO3)6 (307 mg, 0.56 mmol) in H2O (3.5 mL) fairly rapidly,

dropwise from a hand-held pipette at room temperature. The mixture was left to

stir for 30 min, after which time the orange colour of the reagent had disappeared

and the mixture was colourless. Upon further addition of CAN the reaction no longer

turned colourless, indicating completion of the reaction. The resulting solution was

concentrated to a small volume under reduced pressure. H2O (∼ 20 mL) is added and

the mixture was extracted with DCM (2 × ∼ 30 mL). The organic phase was washed

with brine (∼ 20 mL), dried (Na2SO4) and evaporated under reduced pressure. A yellow

oil was obtained (93%). TLC Rf (30% acetone/70% pet. ether) = 0.45.

1H NMR (400 MHz, CDCl3): δ 0.95 (t, 3H, J=7.2, COOCH2CH3),

2.65 (d, 6H, J=5.6, RC(CH3)NC(CH3)R), 3.56 (s, 3H, COOCH3), 4.02 (dq,

2H, JA=7.2, JB=1.6, COOCH2CH3), 7.07 (dd, 1H, JA=7.6, JB=1.6, -

CC(Cl)C(Cl)CHCHCH-), 7.21 (t, 1H, J=7.8, -CC(Cl)C(Cl)CHCHCH-), 7.47 (dd,

1H, JA=8.0, JB=1.6, -CC(Cl)C(Cl)CHCHCH-). 13C NMR (100 MHz, d6-DMSO):

δ 13.14 (-OCH2CH3), 22.92 and 22.99 (RC(CH3)NC(CH3)R), 52.26 (COOCH3),
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61.05 (COOCH2CH3), 125.61 and 125.67 (-CCClCClCHCHCH-), 127.82, 128.72

and 130.21 (-CCClCClCHCHCH-), 131.61 and 131.69 (RC(CH3)NC(CH3)R),

137.07 (-CCClCClCHCHCH-), 143.43 (C2H5OCOC(R)CH(R’)C(R)COOCH3),

156.06 and 156.23 (C2H5OCOC(R)CH(R’)C(R)COOCH3), 165.90 and 166.51

(C2H5OCOC(R)CH(R’)C(R)COOCH3). HRMS (ESI+): m/z [M + H]+ calcd for

C18H18Cl2NO4 382.0613, found 381.8327

3.6.2 ZAL 005 – diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-

dicarboxylate

Figure 3.6: Reaction scheme for ZAL 005

A mixture of benzaldehyde (85 mg, 82 µL, 8 mmol), ethyl acetoacetate (208

mg, 202 µL, 16 mmol), (NH)4OAc (123 mg, 16 mmol) and PhB(OH)2 (11 mg, 0.8

mmol, 10 mol%) were refluxed in EtOH (10 mL) overnight. The reaction mixture was

cooled and the solvent was removed by rotary evaporation. The reaction mixture was

then dissolved in EtOAc (∼ 10 mL) and poured into cold water (∼ 5 mL). The product

was extracted with EtOAc (2 × ∼ 15 mL). The organic extract was washed with brine

and dried (Na2SO4), before being filtered and concentrated by rotary evaporation. The

product was recrystallised from EtOH and washed with cold EtOH, before being dried

in vacuo. A yellow solid was yielded (27.4%) with melting point onset at 101.5◦C and

peak at 107.2◦C. TLC Rf (50% EtOAc/50% pet. ether) = 0.54.

1H NMR (400 MHz, d6-DMSO): δ 1.13 (t, 6H, J=7.2, COOCH2CH3), 2.25
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(s, 6H, RCC(H3)NHCC(H3)R), 3.98 (tt, 4H, JA=13.8, JB=3.6 2× COOCH2CH3),

4.85 (s, 1H, CHCCOOCH2CH3), 7.09 (tt, 1H, JA=7.2, JB=1.2, -CCHCHCHCHCH-

), 7.15 (d, 2H, J=6.8, -CCHCHCHCHCH-), 7.18 (d, 2H, J=7.2, -CCHCHCHCHCH-),

8.78 (s, 1H, NH). 13C NMR (100 MHz, d6-DMSO): δ 14.13 (2 × COOCH2CH3),

18.17 (RC(CH3)NHC(CH3)R), 38.83 (ROC=OC(R)CH(Ph)C(R)C=OOR), 58.93 (2 ×

COOCH2CH3), 101.82 (RC(CH3)NHC(CH3)R), 125.82, 127.29 and 127.80 (aromatic

CH), 145.27 (quaternary C of Ph), 148.12 (ROC=OC(R)CH(Ph)C(R)C=OOR), 166.91

(ROC=OC(R)CH(Ph)C(R)C=OOR). m/z (+ve ES-MS) 284.0565 and 285.0565 (M-

C2H5O).

3.6.3 ZAL 006 – ethyl 5-cyano-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-

dihydropyridine-3-carboxylate

Figure 3.7: Reaction scheme for ZAL 006

A mixture of 2,3-dichlorobenzaldehyde (525 mg, 3 mmol), ethyl acetoacetate

(390 mg, 380 µL, 3 mmol) and 3-aminocrotonitrile (246 mg, 3 mmol) was refluxed in

ethanol (30 mL) for 12 hours. The reaction mixture was cooled and the solvent removed

by rotary evaporation. The reaction mixture was then dissolved in ∼ 20 mL EtOAc, and

poured into cold water (∼ 25 mL). The product was extracted with a further 2 portions

of EtOAc (∼ 20 mL each). The organic extract was then washed with brine and dried

(Na2SO4). The solution was filtered, and concentrated by rotary evaporation. The

product was recrystallised from EtOAc and the crystals were washed with cold EtOAc,
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and dried in vacuo. A very pale yellow coloured solid was yielded (41%) with melting

point onset at 165.3◦C and peak at 168.3◦C. TLC Rf (50% EtOAc/50% pet. ether) =

0.26.

1H NMR (400 MHz, d6-DMSO): δ 0.94 (t, 3H, J=7.2, COOCH2CH3), 1.99

(s, 3H, NHC(CH3)CCN), 2.29 (s, 3H, NHC(CH3)CCOOCH2CH3), 3.85 (m, 2H,

COOCH2CH3), 5.15 (s, 1H, C(COOCH2CH3)CH(R)C(CN)), 7.28 (dd, 1H, JA=6.4,

JB=1.6, -CC(Cl)C(Cl)CHCHCH-), 7.35 (t, 1H, J=7.6, -CC(Cl)C(Cl)CHCHCH-), 7.50

(dd, 1H, JA=8.0, JB=1.6, -CC(Cl)C(Cl)CHCHCH-), 9.25 (s, 1H, NH). 13C NMR (100

MHz, d6-DMSO): δ 13.70 (COOCH2CH3), 17.37 and 18.20 (RC(CH3)NHC(CH3)R),

59.08 (COOCH2CH3), 99.23 and 99.50 (RC(CH3)NHC(CH3)R), 128.68,128.75 and

128.90 (-CC(Cl)C(Cl)CHCHCH-), 129.08 and 131.47 (-CCClCClCHCHCH-), 146.74

(RCN), 146.83 (RC(CN)R’), 146.88 (-CCClCClCHCHCH-), 147.23 (CC=OOC2H5),

165.97 (CC=OOC2H5). HRMS (ESI+): m/z [M+H]+ calcd for C17H16Cl2N2O2

351.0667, found 350.8992.

3.6.4 ZAL 007 – diethyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-

3,5-dicarboxylate

Figure 3.8: Reaction scheme for ZAL 007

2,3-Dichlorobenzaldehyde (525 mg, 3 mmol), ethyl acetoacetate (781 mg, 759

µL, 6 mmol), ammonium acetate (462 mg, 6 mmol) and PhB(OH)2 (36 mg, 0.3 mmol,

10 mol%) were refluxed in EtOH (30 mL) for 12 hours. The reaction mixture was cooled
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and the solvent removed by rotary evaporation. The product was dissolved in ethyl

acetate (∼ 20 mL) and poured into cold water (∼ 20 mL). The product was extracted

with further portions of EtOAc (2 × ∼ 20 mL). The organic extract was washed with

brine, dried (Na2SO4) and filtered. The solvent was removed from the product by

rotary evaporation and a recrystallisation from EtOH was attempted. However, this was

unsuccessful as a viscous yellow oil was obtained that was found to be a mixture of

products by TLC with Rf values of 0.46 and 0.66 (50% EtOAc/50% pet. ether). NMR

and MS also confirmed that the oil was a mixture of compounds.

The mixture was separated by flash column chromatography. The column was

primed with 100% pet. ether., and then eluted sequentially with 450 mL 10% (v/v)

ethyl acetate in pet. ether, 20 mL 20% (v/v) ethyl acetate in pet. ether, and 100 mL

50% (v/v) ethyl acetate in pet. ether. A total of 33 fractions were isolated; fractions

1-8 containing the product with TLC Rf of 0.66 were combined (A), fractions 9-13

contained a mixture of products, and fractions 14-33 containing the product with TLC

Rf of 0.46 were combined (C). Fractions A and C were dried in vacuo and samples

analysed by NMR and MS. Fraction C was shown to be the desired product which had

been successfully purified to yield a light-yellow solid (53%) with melting point onset at

123.2◦C and peak at 127.2◦C.

1H NMR (400 MHz, d6-DMSO): δ 1.07 (t, 6H, J=7.0, 2× COOCH2CH3), 2.23

(s, 6H, C(CH3)NHC(CH3)), 3.95 (qd, 4H, JA=7.0, JB=3.2, 2 × COOCH2CH3),

5.31 (s, 1H, C(COOCH2CH3)CH(R)C(COOH2CH3)), 7.23 (t, 1H, J=7.8, -

CCClCClCHCHCH-), 7.30 (dd, 1H, JA=7.8, JB=1.8, -CCClCClCHCHCH-), 7.37

(dd, 1H, JA=7.8, JB=1.8, -CCClCClCHCHCH-), 8.86 (s, 1H, NH). 13C NMR (100

MHz, d6-DMSO): δ 14.08 (2 × COOCH2CH3), 18.11 (RC(CH3)NHC(CH3)R),

38.04 (ROC=OC(R’)C(R”)C(R’)C=OOR), 58.93 (COOCH2CH3), 101.53

(RC(CH3)NHC(CH3)R), 127.91, 128.03 and 129.46 (-CCClCClCHCHCH-), 129.71 and

131.31 (-CCClCClCHCHCH-), 145.62 (-CCClCClCHCHCH-), 148.93 (2 × CC=OOR),

166.68 (2 × CC=OOR). HRMS (ESI+): m/z [M+H]+ calcd for C19H21Cl2NO4
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396.0769, found 397.8366.

3.6.5 ZAL 008 – 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-

3,5-dicarbonitrile

Figure 3.9: Reaction scheme for ZAL 008

A mixture of 2,3-dichlorobenzaldehyde (525 mg, 3 mmol) and 3-aminocrotonitrile

(781 mg, 6 mmol) were refluxed in ethanol (30 mL) for 12 hrs. TLC in 50% pet. ether:

50% ethyl acetate was used to monitor the reaction progress.

The reaction mixture was cooled and the solvent removed by rotary evaporation

to obtain a solid. This was dissolved in ∼ 30 mL ethyl acetate, and poured into cold

water (∼ 30 mL), prior to extraction via separation. Extraction was completed with a

further 2 portions of EtOAc (∼ 30 mL each). The combined organic extracts (which

contained solid material) was then washed with brine. Further EtOAc (∼ 25 mL) and

DCM (∼ 10 mL) was added to the organic extracts in an attempt to dissolve any

remaining solids. TLC was carried out to confirm that the product was present in the

organic phase, as there were still some solids present in the combined extracts. The

solution was then dried over Na2SO4 and then filtered, before being concentrated by

rotary evaporation to yield a solid residue.

The product was suspended in 50% EtOAc: 50% pet. ether (∼30 mL with

gentle heating and sonication), and the suspension was left to settle for several hours.

The supernatant was then removed, and the resultant solid was washed with EtOAc.
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The product was then dried in vacuo. A white solid precipitate was yielded (59.7%)

with melting point onset at 251.7◦C and peak at 255.4◦C.

1H NMR (400 MHz, d6-DMSO): δ 2.03 (s, 6H, 2× CH3), 5.05 (s, 1H,

C(CN)CHC(CN)), 7.45 (m, 2H, -CCClCClCHCHCH-), 7.64 (dd, 1H, JA=6.8, JB=2.8,

-CC(Cl)C(Cl)CHCHCH-), 9.66 (s, 1H, NH). 13C NMR (100 MHz, d6-DMSO):

δ 17.69 (2 × CH3), 21.53 (2 × CCH3), 81.11 (NCC(R)C(Ph)C(R)CN), 118.69

(NCC(R)C(Ph)C(R)CN), 128.99, 129.81 and 130.04 (Aromatic CH), 132.22 (Aromatic

CCl), 143.081H (-CCClCClCHCHCH-), 147.76 (NCC(R)C(Ph)C(R)CN). m/z (+ve ES-

MS) 320.9346 and 322.9304 (M+H2O).

3.6.6 ZAL 009 – ethyl 5-cyano-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-

3-carboxylate

Figure 3.10: Reaction scheme for ZAL 009

Benzaldehyde (212 mg, 204 µL, 6 mmol), ethyl acetoacetate (781 mg, 759 µL,

6 mmol) and 3-aminocrotonitrile (493 mg, 6 mmol) were refluxed in ethanol (45 mL) for

12 hours. The reaction mixture was cooled and concentrated in vacuo. The product was

dissolved in ethyl acetate (∼30 mL) and poured into cold water (∼25 mL). The product

was extracted with further portions of ethyl acetate (2 × ∼30 mL). The organic extracts

were washed with brine, dried (Na2SO4) and filtered. TLC (50% EtOAc/50% pet.

ether) showed that the organic extracts contained a mixture of compounds. Therefore,

the material was purified using flash column chromatography. The fractions containing
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the product were identified, and once they were combined, the solvent was removed by

rotary evaporation, and the resultant light-yellow solid was dried in vacuo. Yield = 8%;

melting point onset at 166.0◦C and peak at 169.4◦C.

1H NMR (400 MHz, d6-DMSO): δ 1.03 (t, 3H, J=7.0, COOCH2CH3), 2.02

(s, 3H, NHC(CH3)CCOOHCH2CH3), 2.27 (s, 3H, NHC(CH3)C(CN)), 3.91 (qd, 2H,

JA=7.0, JB=2.8, COOCH2CH3), 4.45 (s, 1H, C(COOCH2CH3)CH(R)C(CN)), 7.16 (d,

2H, J=7.6, -CCHCHCHCHCH-), 7.21 (dt, 1H, JA=7.6, JB=1.4, -CCHCHCHCHCH-

), 7.30 (t, 2H, J=7.4, -CCHCHCHCHCH-), 9.15 (s, 1H, NH). 13C NMR (100

MHz, d6-DMSO): δ 13.91 (COOCH2CH3), 17.41 (ROC=OC(R’)C(CH3)NH), 18.28

(NC(R’)C(CH3)NH), 40.75 (ROC=OC(R’)C(Ph)C(R”)CN), 59.07 (COOCH2CH3),

99.82 (C(CH3)NHC(CH3)), 126.68, 127.10 and 128.37 (Aromatic CH), 145.37

(C(R)CN), 146.30 (C(R)CN), 146.39 (-CCHCHCHCHCH-), 147.45 (CCOOC2H5),

166.48 (CCOOC2H5). m/z (+ve ES-MS) 239.0427, 241.0355 and 242.0631 (M-

C2H5O).

3.6.7 ZAL 010 – 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarbonitrile

Figure 3.11: Reaction scheme for ZAL 010

Benzaldehyde (212 mg, 204 µL, 6 mmol) and 3-aminocrotonitrile (985 mg, 12

mmol) were refluxed in ethanol (45 mL) for 12 hours. The reaction mixture was cooled

and concentrated in vacuo. The product was dissolved in ethyl acetate (∼ 30 mL) and

poured into cold water (∼ 25 mL). The product was extracted with further portions
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of ethyl acetate (2 × ∼ 30 mL). The organic extracts were washed with brine, dried

(Na2SO4) and filtered. TLC (50% EtOAc/50% pet. ether) showed that the organic

extracts contained a mixture of compounds. Therefore, the material was purified using

flash column chromatography. The fractions containing the product were identified,

and once they were combined, the solvent was removed by rotary evaporation, and the

resultant white solid was dried in vacuo. Yield = 12%; melting point onset at 95.9◦C

and peak at 104.4◦C.

1H NMR (400 MHz, d6-DMSO): δ 2.04 (s, 6H, 2× CH3), 3.90 (s, 1H, NH),

4.39 (s, 1H, C(CN)CHC(CN)), 7.28 (d, 2H, J=7.6, -CCHCHCHCHCH-), 7.32 (d,

1H, J=7.2, -CCHCHCHCHCH-), 7.40 (t, 2H, J=7.4, -CCHCHCHCHCH-). 13C NMR

(100 MHz, d6-DMSO): δ 17.72 (C(CH3)NHC(CH3)), 18.85 (C(CH3)NHC(CH3)), 40.96

(NCC(R)C(Ph)C(R’)CN), 119.21 (NCC(R)C(Ph)C(R)CN), 127.58, 127.61 and 128.77

(Aromatic CH), 146.67 (NCC(R)C(Ph)C(R)CN), 163.14 (-CCHCHCHCHCH-). HRMS

(ESI+): m/z [M+H]+ calcd for C15H13N3 236.1188, found 236.1055.

3.6.8 ZAL 011 – diethyl 4-(2,3-dichlorophenyl)-1,2,6-trimethyl-4H-pyridine-

3,5-dicarboxylate

Figure 3.12: Reaction scheme for ZAL 011
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Synthesis of (E)-ethyl 3-(methylimino)butanoate Intermediate

Ethyl acetoacetate (3.120 g, 3033 µL, 24 mmol) and N-methylamine (2.150 g, 4976 µL

of 40% aqueous solution, 58 mmol) were stirred together in ethanol (45 mL) at room

temperature for 30 minutes. The reaction mixture was concentrated in vacuo, and the

product was then dissolved in ethyl acetate (∼ 30 mL) before it was poured into cold

water (∼ 25 mL). The product was extracted with further portions of ethyl acetate (2

× ∼ 30 mL). The organic extracts were washed with brine, dried (Na2SO4) and filtered

to yield the intermediate was yielded (2.72 g, 79.1%).

Product Synthesis

Without catalyst: The intermediate (ethyl 3-(methylimino)butanoate, 1.385 g, 9.7

mmol), 2,3-dichlorobenzaldehyde (1.705 g, 9.7 mmol) and ethyl acetoacetate (1.265 g,

1229 µL, 9.7 mmol) were refluxed in ethanol (100 mL) overnight. The reaction mixture

was cooled to room temperature and concentrated in vacuo.

The residue was partitioned between EtOAc (30 mL) and cold H2O (25 mL).

The phases were separated and the aqueous phase was extracted twice with EtOAc (2

x 30 mL). The combined organic fractions were washed with brine, dried over Na2SO4

and filtered. TLC (50% EtOAc/50% pet. ether) showed that the organic extracts

contained a mixture of compounds. Therefore, the material was purified using flash

column chromatography. The fractions containing the product were identified, and once

they were combined, the solvent was removed by rotary evaporation, and the resultant

yellow crystalline solid (0.50 g, 14.7%), with melting point onset at 101.5◦C and peak

at 108.0◦C, was dried in vacuo.

With catalyst: The intermediate (ethyl 3-(methylimino)butanoate, 1.193 g, 8.3 mmol),

2,3-dichlorobenzaldehyde (1.459 g, 8.3 mmol), ethyl acetoacetate (1.080 g, 1049 µL,

8.3 mmol) and PhB(OH)2 catalyst (103 mg, 0.83 mmol, 0.10 mol%) were refluxed in

ethanol (100 mL) overnight. The reaction mixture was cooled to room temperature
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and the work-up was the same as for the uncatalysed reaction detailed above (1.25 g,

31.1%).

1H NMR (400 MHz, d6-DMSO): δ 1.23 (t, 6H, J=7.2, 2 × COOCH2CH3), 2.42

(s, 6H, C(CH3)N(Me)C(CH3)), 3.23 (s, 3H, NCH3), 4.12 (tt, 4H, JA=12.8, JB=3.6, 2

× COOCH2CH3), 5.58 (s, 1H, C2H5OC=OC(R)CH(R’)C(R)C=OOC2H5), 7.05 (m, 2H,

-CCHCHCHCClCCl-), 7.24 (dd, 1H, JA=7.4, JB=2.2, -CCHCHCHCClCCl-). 13C NMR

(100 MHz, d6-DMSO): δ 14.08 (2 × COOCH2CH3), 16.07 (C(CH3)NHC(CH3)), 33.73

(NCH3), 37.52 (C2H5OC=OC(R)CH(R’)C(R)C=OOC2H5), 59.44 (2 × COOCH2CH3),

104.25 (C(CH3)NHC(CH3)), 128.26, 128.38 and 129.09 (Aromatic CH), 131.49

(-CCHCHCHCClCCl-), 138.45 (-CCHCHCHCClCCl-), 146.62 (-CCHCHCHCClCCl-),

148.85 (2 × C(R)C=OOC2H5), 167.15 (2 × C(R)C=OOC2H5). HRMS (ESI+): m/z

[M+H]+ calcd for C20H23Cl2NO4 412.1082, found 411.7990.

3.7 Results and Discussion

By comparing the results of the syntheses detailed above with the original list of analogue

targets, it is possible to determine the overall level of success of the syntheses.

The first compound to be identified as a sythentic target was the aromatised

felodipine analogue, in which the dihydropyridine is oxidised to produce a pyridine. The

planned synthesis using CAN was a very straightforward one-pot method, which was

successful on the first attempt. Using this method the pyridine product (ZAL 001) was

succesfully produced in high yields of up to 93%. A potential issue that may arise in

subsequent experiments with this compound is that it is an oil at room temperature.

However, it may be that after sufficient time this compound may crystallise, though this

did not occur during the course of this study.

A partial oxidation of felodipine was also attempted, in which the same CAN

reagent was used in conjunction with sodium bromate in acetonitrile with the aim of

yielding two oxidation by-products. TLC was used to follow the progress of this syn-

thesis, which again, was a straightforward, one-pot method. However, rather than TLC
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revealing the evolution of three products (the pyridine and two oxidation by-products),

five compounds were seen to be produced, all with very similar Rf values. It is apparent

from the molecular structure of the felodipine that the five products seen on the TLC

plate have arisen as a result of the asymmetry of the felodipine starting compound (see

figure 3.2). Despite attempts at purification using flash column chromatography with

a number of different solvent systems and solvent gradients, it proved very difficult to

separate the products, especially as they formed in small amounts. It was thought that

a potential solution that would facilitate an easier separation of the compounds in better

yields, was to use a starting material with ester chains of the same length.

The diethyl ester analogue of felodipine was successfully obtained from a one-pot

Hantzsch synthesis followed by purification by flash column chromatography as a light

yellow solid in yields up to 53% (ZAL 007). Whilst this yield was not particularly high,

it is the author’s opinion that this is largely due to losses during separation by flash

chromatography, as TLC monitoring during the reaction indicated an exhaustion of the

starting materials. Therefore, should this reaction be repeated with more care taken at

the purification stage, the yield may be improved. As the diethyl ester analogue is a

symmetrical analogue of felodipine, a portion of ZAL 007 was taken forward for use in

a repeat attempt to synthesise the oxidation by-products. Due to the symmetry of the

starting compound, it was thought that this would yield only three products as opposed

to the five that appeared to have been produced in the previous synthetic attempt from

felodipine. Reaction monitoring by TLC showed only 3 products as predicted, but again

the Rf values for the compounds were very close, and despite careful solvent choice

and consideration of solvent gradients for flash column chromatography, it once again

proved difficult to completely separate the compounds in meaningful yields. No further

attempts to produce the oxidation by-products were made.

The N-methyl analogue was the next target that was identified, and synthesis

of this compound was anticipated to be a facile and reasonably high-yielding reaction

of felodipine first by deprotonation with potassium hydroxide and then alkylation with
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methyl iodide in DMF. However, initial attempts at producing the N-methyl derivative

via this method proved to be more tricky than expected, and the reason for this was

believed to be due to the need for strictly anhydrous conditions, which were difficult to

maintain. Whilst it was possible that the anhydrous conditions and therefore the yield

might be improved with continued attempts using this method, it was considered more

prudent to attempt an alternative method of synthesis. The Hantzsch dihydropyridine

synthesis had already proved to work in the production of the diethyl ester ZAL 007,

and a modified version of this synthetic pathway was proposed in the synthesis of the

N-methyl analogue, whereby the ammonium acetate is replaced with N-methylamine.

Initially a one-pot synthesis was attempted, but it became apparent that side-reactions of

the methylamine with the dichlorobenzaldehyde were occuring, which led to a reduction

in the yield of the desired product, and also would have necessitated an additional purifi-

cation step. Therefore, the reaction protocol was adapted so that the ethyl acetoacetate

and N-methylamine were reacted first to produce an iminoester intermediate, which was

isolated prior to addition of 2,3-dichlorobenzaldehyde to enable formation of the 1,4-

dihydropyridine. Once the intermediate had been isolated, it was divided and taken

forward in two separate concurrent reactions; one containing 0.10 mol% PhB(OH)2 cat-

alyst, and the other without the catalyst. The use of the Hantzsch reaction method was

shown to be successful, and produced the N-methyl analogue ZAL 011 in better yields.

It was also shown that use of the catalyst was successful in aiding the progression of the

reaction, as the reaction in which the catalyst was used yielded 31% product compared

to 15% in the reaction without the catalyst. Because the N-methyl was produced using

a two-step Hantzsch synthesis, rather than via the originally proposed method using

potassium hydroxide and methyl iodide, ZAL 011 differs from the target N-methyl com-

pound in that the ester groups are the same length, as it was determined that synthesis

of this product would be more straightforward.

The diethyl ester analogue, ZAL 007 has already been shown to be successfully

made using the Hantzsch dihydropyridine synthesis, and so the same method was used
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to produce the des-chloro analogue which was the next target compound that had been

identified. The one-pot synthesis was used, as there was no requirement to isolate an

intermediate as was the case for the N-methyl analogue, and benzaldehyde was used

instead of 2,3-dichlorobenzaldehyde. ZAL 005 was produced in low yields of up to 17%

as a yellow solid. It is thought that these low yields could partially be attributed to losses

that occur during the recrystallisation stage, but due to the scale that the synthesis of

this compound was carried out on, over 600 mg of the des-chloro ZAL 005 material was

produced, which was considered to be enough for subsequent experiments. Again, the

ester chains in this compound were of the same length, unlike in felodipine, as this was

a simpler approach that would prevent the formation of additional side-products during

the Hantzsch synthesis.

The final compound on the list of synthetic targets was the nitrile ester com-

pound. Again, this compound (ZAL 006) was made using the one-pot Hantzsch di-

hydropyridine synthesis which had previously shown to be successful in producing the

diethyl ester, and des-chloro analogues. However, instead of using two equivalents of

ethyl acetoacetate in the synthesis, one molar equivalent of the ethyl acetoacetate was

replaced with one molar equivalent of 3-aminocrotonitrile. This synthesis was more

successful than that of ZAL 005 as the light yellow solid resulting from this reaction

was yielded in higher amounts of up to 38%, but again, it is believed that the yield of

ZAL 006 could be improved upon if losses incurred during recrystallisation were further

minimised. Inspection of the reaction scheme indicated the possibility that a number of

by-products could have been produced due to the presence of two different enolates in

the reaction mixture, which would also explain the reduced yield of the desired product.

However, TLC of the reaction mixture prior to work-up, and NMR of the recrystallised

product, indicated that this was not the case.

It is possible to see from comparing the results of these syntheses with the original

list of target analogues, that all of the compounds except the two oxidation by-products

were successfully produced in some form. The aromatised (ZAL 001), diethyl ester
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(ZAL 007) and nitrile ester (ZAL 006) analogues all had the same molecular structure

as the target compounds listed at the outset of the synthesis work. On the other hand,

as a result of using the Hantzsch dihydropyridine synthesis, the N-methyl (ZAL 011) and

the des-chloro (ZAL 005) analogues were both diethyl esters unlike the target molecules,

which had been based directly on the asymmetrical felodipine compound. Despite some

low-yielding reactions, the Hantzsch dihydropyridine synthesis was shown to be a facile

method that led to the successful production of the products required; hence this method

was used to synthesise three extra compounds that had not been identified in the original

list of targets.

The first of these additional compounds to be synthesised was ZAL 008, which

was a dinitrile analogue of felodipine. This white solid was readily produced, and began

to precipitate from the reaction mixture. This led to some issues with extraction of the

compound from the reaction mixture as extra organic solvent was required to get the

product into solution, and some of the solid was still present in the organic extracts so

that when the mixture was dried, and then filtered it is very likely that a protion of the

product was lost. Despite this, the compound was still recovered in yields of up to 60%.

The final two compounds to be synthesised were des-chloro versions of both the

mono- and di-nitrile analogues. The des-chloro mono-nitrile compound (ZAL 009), was

a light yellow solid produced in a very low yield of 8%, and the dinitrile (ZAL 010)

was a white solid produced with a marginally better yield of 12%. Only one batch

of each of these compounds was synthesised, but both were purified by flash column

chromatography, and it is possible that the yield of both could be significantly improved

by taking more care to prevent losses at this stage. Also, carrying out these reactions

in two steps, whereby the aldehyde is initially reacted with one enolate, before the

other reagents are added may reduce the potential for side reactions to occur, and thus

improve the yields.
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Table 3.1: Summary of the compounds synthesised.

Analogue
Total amount of com-
pound available for sub-
sequent experiments

ZAL 001 352 mg
ZAL 005 669 mg
ZAL 006 1269 mg
ZAL 007 385 mg
ZAL 008 870 mg
ZAL 009 142 mg
ZAL 010 156 mg
ZAL 011 1748 mg

3.8 Conclusions

Eight analogues of felodipine were successfully synthesised for use in experiments to

investigate the influence of molecular structure on the formation of good solid dispersions

as will be described in the following chapters. These analogues were synthesised with

yields ranging from a poor 8% to a more successful 93%, leading to varying amounts

of material available for use in subsequent chapters (see table 3.1). This is important

to note, as the limited amounts of some compounds directly impacts on the number of

experiments that can be carried out, and careful planning is needed to get the most out

of each analogue.

3.9 Future work

In order to further investigate the effect of drug molecular structure on the successful

formation of solid dispersions, there is almost an infinite number of modifications that

can be made to the felodipine compound. However, the scope of any future work should

initially be limited to the following suggestions.

As the reaction in which the 1,4-dihydropyridine was oxidised to the pyridine
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ZAL 001 using CAN was so successful, the first suggestion for future work would be

to also carry out this oxidisation on the other analogues that had been synthesised,

as well as any additional analogues that may be produced. With the capacity of the

nitrogen to be a hydrogen bond donor removed from all of the analogues, it may enable

a better understanding of the influence of other functional group modifications on the

intermolecular interactions between the polymer and drug compound in subsequent

experiments.

Figure 3.13: Potential targets in future syntheses of additional felodipine analogues,
including a) analogues with modified ester chain length, b) analogues with alkyl chains
of varying lengths instead of esters, and c) analogues with amide substituents.

The next adaptations to the felodipine molecule should be focussed around the

side chains on carbons 3 and 5 of the dihydropyridine. The diethyl ester has already

been produced in this work, but it may also be of value to synthesise the dimethyl ester.

Furthermore, the alkyl chains could be lengthened to a propyl, butyl or tertiary butyl

group (figure 3.13a). As well as altering the length of the ester side chains, it may also

prove valuable to synthesise analogues which have alkyl chains without the preceding

ester moieties (figure 3.13b). Whilst synthesis of these analogues using the one-pot

Hantzsch dihydropyridine method would require the two side chains to be of equal length

for greater chance of success, it may be possible to explore a 2-step synthetic pathway

that would enable asymmetrical analogues to be made with several combinations of side
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chains. The lengthened side chains would increase steric bulk around the drug molecule,

and hence the effect of increased drug lipophilicity on solid dispersion formation could

be investigated using these analogues. Similarly, lengthening the alkyl groups at carbons

2 and 6 of the DHP would also increase steric bulk. An additional series of analogues

that may also be of interest are the amides that could be formed by gentle hydrolysis of

the nitrile analogues ZAL 006, ZAL 008, ZAL 009 and ZAL 010 (figure 3.13c).

Figure 3.14: Potential targets in future syntheses of additional felodipine analogues
in which the phenyl ring substituents have been changed or placed at different ring
posistions.

Another significant area of the felodipine molecule for modification is the substi-

tutions on the phenyl ring. Compounds ZAL 005, ZAL 009 and ZAL 010 have already

been produced to explore the impact that removing the chlorine groups might have on

the formation of solid dispersions with copovidone, however, no further alterations were

made to the analogues in terms of either phenyl substituent position or functionality.

Therefore it may be of relevance to synthesise analogues with methyl, methoxy or nitro

substituents at different ring positions (figure 3.14). These analogues could be eas-

ily produced using the one-pot Hantzsch dihydropyridine synthesis using commercially

available substituted benzaldehydes.
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Chapter 4

Solid State Analysis of Solid

Dispersions

4.1 Introduction

As discussed in Chapter 1, the term solid dispersion can actually have several meanings

in terms of the solid-state structure of the material. In this work, the aim was to

produce fully amorphous material in which the drug compound is molecularly dispersed

throughout the polymer; i.e. ‘a solid solution’.

There are a number of potential methods for preparing amorphous solid disper-

sions as was highlighted in Chapter 1. However, because of the limited availability of

drug compound, for this project the main focus has been on using a solvent casting

method with an additional annealing step. In this method the drug compound and the

polymer are co-dissolved in an appropriate solvent, which is then evaporated resulting in

the formation of a coprecipitate containing both the drug and polymer. For the samples

produced in this study, the production of a drug/polymer solution was often used as a

vehicle to deposit the solid dispersion material in a suitable vessel or on a substrate,

and the evaporation step in some instances of sample preparation may be too slow to

ensure the material was amorphous. Therefore the samples were always annealed above

78



the melting points of the drug and polymer components, and quench cooled to room

temperature. This step also served to ensure that there was essentially no solvent re-

maining in the sample that could act as a plasticiser, or in any other way influence the

properties of what was assumed to be a two-component system. This method was also

used to render samples of crystalline drug amorphous for control experiments.

A series of spray dried solid dispersion samples was also prepared for specific

use in dissolution experiments detailed in Chapter 6. The preparation, and solid state

analysis of the freshly prepared materials will be discussed in this chapter, and attempts

will be made to compare the structure of the material produced using this method with

film-cast samples.

The underlying hypothesis for the work in this thesis is that there are intermolec-

ular interactions between the drug and polymer compounds in a solid dispersion that

determine the properties and performance of that solid dispersion. Therefore, if this is

true, it would seem to follow that the drug to polymer ratio of the solid dispersions

would also directly correlate with their properties and performance. This is because

there would be more or less of these intermolecular interactions depending on the rel-

ative amounts of the two components in the solid dispersion. To test this, the solid

dispersions throughout this work have been produced with a range of drug loadings of

5% - 50% w/w.

This chapter will focus on the solid state analysis of freshly prepared solid dis-

persions of felodipine and the molecular analogues with copovidone, in a range of drug

loadings. The aims of the work detailed in this chapter were to use a range of analytical

methods to:

1. determine if solid dispersions formed were amorphous.

2. determine if any solid dispersions formed were molecular dispersions.

79



4.2 Materials

Felodipine (Batch 16101) was used as supplied by AstraZeneca. Copovidone (Kollidon

VA64, Lot 85392236WO) was used as supplied by BASF (Ludwigshafen, Germany)[98].

Molecular analogues of Felodipine were used as synthesised in Chapter 3. All solvents

were used as supplied by Fisher Scientific (Loughborough, UK)

4.2.1 Preparation of Solid Dispersion Samples

Film-Cast Felodipine Solid Dispersions

Solutions of 10% w/w felodipine/copovidone mixture were prepared in a solvent mixture

of 80% Methanol: 20% Acetone v/v, with drug:polymer concentration ratios which

varied from 5% w/w to 50% w/w Felodipine. The solvent was evaporated under ambient

conditions, and the samples were then placed in a pre-heated oven at 155◦C for 30

minutes and nitrogen was flowed over the samples. The samples were quench cooled

to room temperature on removal from the oven. Samples were stored in a vacuum

desiccator prior to analysis and all samples were analysed within 2 days of preparation.

Spray Dried Solid Dispersion Samples

Solid dispersions of felodipine in copovidone were produced by spray drying from a

mutually compatible solvent system (80% Methanol: 20% Acetone v/v). Solutions

of 10% w/w drug/polymer mixture were prepared for spray drying, with drug:polymer

concentration ratios which varied from 5% w/w to 50% w/w Felodipine.

Spray drying was performed with a Büchi Mini Spray Dryer B-290 (Flawil,

Switzerland), [4]). The drug/polymer solutions were spray dried using the following

process parameters: the inlet temperature was 100◦C, the aspirator and air flow were

set at 100%; the pump speed was set to 30%. The spray dried solid dispersion material

was isolated and dried in a vacuum-oven (Gallenkamp) at 40◦C overnight. All samples

were stored in a vacuum desiccator prior to use.
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Felodipine Analogue Solid Dispersions

The Felodipine analogue solid dispersions were prepared in the same way as the felodipine

solid dispersions, except that chloroform was used as a solvent. This solvent was chosen

as it was thought to be more likely that all of the analogue compounds would be

more likely to completely dissolve in this solvent than the methanol/acetone mix used

previously. Annealing temperatures were adjusted according to the melting point of the

compound being studied. The samples were quench cooled to room temperature on

removal from the oven. Samples were stored in a vacuum desiccator prior to analysis

and all samples were analysed within a day of preparation.

4.2.2 Preparation of Amorphous Drug, Copovidone, and Physical Mix-

ture Samples

Amorphous samples of Felodipine and the molecular analogues were also prepared for

comparison to the solid dispersions. These samples were produced using the same

methods detailed above, but during the solution formation step, no polymer was added.

Converesly, samples of copovidone in which no drug compound was added were also

prepared using the same method.

Physical mixture samples were also produced for comparative purposes in some

analyses. These samples were prepared by blending drug and polymer powders in the

desired ratio.

4.3 Methods of analysis

4.3.1 X-ray Powder Diffraction (XRPD)

X-ray powder diffraction data were collected on a Bruker D4 Endeavor diffractometer in

reflectance mode. Samples of solid dispersion were gently powdered with a pestle and

mortar prior to analysis. The powder samples were then smeared onto zero-background

silicon wafer sample holders. Each sample was exposed to CuKα1 and 2 radiation with
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an average wavelength of 1.5418 Å, for 0.03 s per 0:00570◦ 2θ increment (continuous

scan mode) over the range 2◦ to 40◦ in theta-theta mode. The operating voltage was

40 kV and the operating current was 40 mA.

4.3.2 Pair Distribution Function Analysis (PDF)

Data Collection

X-ray powder diffraction data were collected on the Bruker D8 diffractometer, which

has a Copper source generating X -rays with a wavelength of 1.5418 Å (Göbel mirrors

used to provide parallel beam optics remove the k β leaving a beam with an average

wavelength of kα1 and kα2) using a voltage of 40 kV and a filament emission of 40 mA.

Samples were measured in reflection mode and the diffraction pattern collected using a

scanning position-sensitive detector.

Data was collected by placing the material on a modified TTK sample holder

with reduced background noise under vacuum (typically 2.5 × 10−2 mbar) using the

Bruker TTK stage with vacuum attachment. Data acquisition parameters of 4-80◦ 2θ

in steps of 0.007091◦ counting for 0.2 s/step were used for each sample.

A peak in the patterns at 6.6◦ 2θ is caused by the sample holder, this was

removed in each case through subtraction of a blank run (i.e. an empty sample holder)

which is measured first in each experiment at the beginning of each set of experiments.

Data Analysis

PDFs were generated from each X -ray diffraction pattern measured using the software

PDFgetX2 [138]. Simulated traces of amorphous physical mixes were generated through

a linear combination of the PDFs of the separate components to the formulation com-

bined in the correct ratios to give a simulated PDF trace for a physical mixture of the

two. This could then be compared to the observed traces to determine whether the

materials produced were “phase separated” amorphous physical mixes or “molecularly

dispersed”.
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4.3.3 Differential Scanning Calorimetry (DSC)

Felodipine Samples and Felodipine/Copovidone Solid Dispersions

For DSC analysis 1.5-7 mg of material for testing was weighed directly into an alu-

minium sample pan, which was then hermetically sealed. Samples were analysed using

a DSC2920 Differential Scanning Calorimeter coupled to a Refrigerated Cooling System

(both TA Instruments, New Castle, DE, USA). An Indium sample was used to calibrate

both the temperature and heat flow of the instrument prior to analysis of each set of

samples. Additionally, a sapphire standard was used to calibrate for heat capacity mea-

surement. The sample chamber was purged with nitrogen gas flowing at 50 mL/min.

Samples were analysed in standard DSC mode. Each sample was heated from 20◦C to

200◦C at 10◦C/min and then cooled back to 20◦C at the same rate. This cycle was

repeated three times for each sample. Data analyis was performed using TA Instruments

Universal Analysis 2000 software v4.3A. The onset, peak and enthalpy (∆Hf ) of melt-

ing (Tm) were determined from the initial heating cycle. Glass transition temperatures,

and the associated change in specific heat capacity (∆CP ) were calculated as an av-

erage of the three glass transition temperatures observed in the cooling sections of the

temperature cycle.

Crystalline Analogue Samples

Material for testing (1.5-7 mg) was weighed directly into a 50 µL aluminium sample pan

and hermetically sealed. The sample was then analysed using a PerkinElmer Jade DSC

(PerkinElmer, Massachusetts, USA). An Indium sample was used to calibrate both the

temperature and heat flow of the instrument prior to analysis of each set of samples.

Additionally, a sapphire standard was used to calibrate for heat capacity measurement.

The sample chamber was purged with nitrogen gas flowing at 50 mL/min. Samples

were analysed in standard DSC mode. Each sample was heated from 25◦C to 300◦C

at 10◦C/min and then cooled back to 25◦C at the same rate. This cycle was repeated

three times for each sample. Data analyis was performed using Pyris Thermal Analysis
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software v8.0 (PerkinElmer, Massachusetts, USA). The onset, peak and enthalpy (∆Hf )

of melting (Tm) were determined from the initial heating cycle. Glass transition temper-

atures were recorded from the cooling section of the third temperature cycle where this

was possible. Some samples showed evidence of degradation at higher temperatures - in

these cases, the glass transition temperature was taken from the last complete cooling

cycle prior to degradation.

Amorphous Analogue and Analogue Solid Dispersion Samples

For analysis of the solid dispersion samples containing the analogue compounds, 1.5-7

mg of material for testing was weighed directly into a standard aluminium sample pan.

Samples were analysed using a Q1000 Differential Scanning Calorimeter coupled to a

Refrigerated Cooling System (both TA Instruments, New Castle, DE, USA). An Indium

sample was used to calibrate both the temperature and heat flow of the instrument

prior to analysis of each set of samples. Additionally, a sapphire standard was used

to calibrate for heat capacity measurement. The sample chamber was purged with

nitrogen gas flowing at 50 mL/min. Samples were analysed in standard DSC mode.

Samples were heated at 10◦C/min from 0◦C to either 140◦C or 200◦C, depending on

the thermal profile of the analogue. Samples were then cooled back to 0◦C at the

same rate. This cycle was repeated three times for each sample. Data analyis was

performed using TA Instruments Universal Analysis 2000 software v4.3A. Glass transition

temperatures, and the associated change in specific heat capacity (∆CP ) were calculated

as an average of the three glass transition temperatures observed in the cooling sections

of the temperature cycle.

4.3.4 Helium Pycnometry

The true density of amorphous felodipine and the analogues was required for producing

Gordon-Taylor plots (see Chapter 2). Samples were prepared by dissolving the crystalline

material chloroform, and then flash evaporating the solvent over 15-20 min.
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Helium pycnometry was carried out using a Micrometrics AccuPyc 1330 pyc-

nometer with a 1 cm3 sample cup.

Samples were analysed by XRPD after the pycnometry, to ensure that the mea-

surements were for amorphous material. In cases where the material was subsequently

shown to have been crystalline, an estimated amorphous density value of 0.95 × the

crystalline density was used, as has been shown in a previous study [139].

4.3.5 Optical Microscopy

Spray dried material was placed on a glass microscope slide and immersed in paraffin

oil, and “sandwiched” with a cover slide. The sample was then imaged by brightfield

transmission microscopy using an inverse microscope (Olympus IX50 with Olympus TH4-

200 lamp, both Olympus, Japan), with a colour video camera attached (JVC KY-F55B

3CCD, Japan) using Image Pro Plus software (version 7.0).

4.3.6 Scanning Electron Microscopy (SEM)

Spray dried material was imaged using SEM according to the following protocol. Samples

were prepared on specimen stubs with a Carbon layer, and then coated with gold by

a low vacuum sputter coater. The gold-coated samples were imaged using a Hitachi

TM-1000 Tabletop Microscope, and the associated Hitachi TM-1000 software.

4.4 Results and Discussion

4.4.1 Copovidone

Copovidone is an X-ray amorphous polymer, as shown in following diffractogram figures

for reference. It was shown by DSC analysis to have a glass transition temperature

at 96.44◦C. This value is lower than the value of 108.1◦C reported in the literature

[42], but this is possibly due to the effect of moisture in the sample, which acts as a

plasticizer. Loss of water was observed as a broad endotherm with onset 49.29◦C and
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peak of 97.46◦C during the initial heating cycle of the DSC analysis. It is also possible

that the value obtained here differs from the literature value due to a difference in the

molecular weight distribution of the polymer. The true density (ρ) of copovidone was

determined using helium pychnometry, and was found to be 1.2026 g cm−3. This value

corresponds well with values presented in the literature [42].

4.4.2 Felodipine

Film Cast Samples

Felodipine was shown by XRPD to be easily rendered amorphous using the sample

preparation method detailed above. Solid dispersion samples were also shown to be

X-ray amorphous compared with the starting material (see Figure 4.1).

By DSC, crystalline felodipine was shown to have a Tg at 43.14◦C with ∆CP

of 0.2731 J g−1 K−1, and Tm with onset at 143◦C, peak at 147.93◦C, and ∆Hf of

26.28 kJ mol−1. The measured Tg and Tm are both in close agreement with data

in the literature [56, 64]. Single glass transition temperatures were observed for each

drug-polymer blend, indicating that the drug and polymer were intimately mixed at all

the drug loadings tested. The true density (ρ) of amorphous felodipine was found to be

1.3287 g cm−3; a value that agrees well with reported literature values [87], and was

used to create Gordon-Taylor and Couchman-Karasz plots (see Chapter 2). The single

Tgs measured for felodipine/copovidone solid dispersions were shown to fit well with

the Gordon-Taylor plot, confirming that felodipine and copovidone were miscible at the

drug loadings tested (Figure 4.2).

In contrast to the DSC data, PDF analysis suggests that the solid dispersion

samples are not true molecular dispersions, as the PDF traces for these materials closely

matches the traces simulated for physical mixtures at the same drug loadings (Figure

4.3). However, no conclusions can be made about the size of any domains, as the

PDF methodology used is this work is limited by low resolution. Nevertheless, there

are few peaks in the PDF traces, indicating that there isn’t much order left in the
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Figure 4.1: X-ray powder diffractograms of the film-cast felodipine/copovidone solid
dispersions with drug loadings of 5% (pink), 10% (blue), 20% (green), 30% (grey),
40% (purple) and 50% (light blue). Diffractograms of crystalline felodipine (red) and
copovidone (black) are also shown for comparison.

Figure 4.2: Tg of amorphous felodipine as a function of weight fraction drug. The solid
line represents the fit to the Gordon-Taylor equation and the dashed line represents the
fit to the Couchman-Karasz equation.
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formulations, and therefore confirming that the systems are essentially amorphous. Also,

the suggestion that the 5% drug-loaded formulation is phase separated is contradictory

to the good dissolution performance of this formulation in Chapter 6 that indicates

a solid solution has been formed. It could be that whilst the majority of the drug is

dispersed as amorphous nanoparticles in the polymer (giving rise to the PDF trace),

there is a small percentage of the drug that is molecularly dispersed (leading to the

enhancement in dissolution).
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(a) 15% drug loading (b) 30% drug loading

(c) 50% drug loading

Figure 4.3: Comparison of the simulated traces of felodipine/copovidone amorphous
physical mixes with the observed traces of the film-cast solid dispersions at drug loadings
of a) 15%, b) 30% and c) 50%.
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Spray Dried Samples

Before use in dissolution experiments (Chapter 6), the spray dried materials were assessed

with regards to their physical characteristics and solid-state properties. Firstly, the

samples were examined by optical microscopy to determine the morphology of the spray

dried particles, and as an initial check that no crystalline material was present. The

images in Figure 4.4 show that there were no obvious signs of crystalline material in

any of the spray dried samples. Additionally, it appears that the spray drying process

has generally produced spherically-shaped particles. These particles seem more likely to

form larger aggregates at higher drug loadings such as 30 and 50%.

Imaging of the spray dried material at higher magnifications by SEM supports the

optical microscopy by showing the morphology of the particles to be mostly spherical.

The spray dried particles also appear to be hollow, as shown by the fragmented particles

circled in Figures 4.6b, 4.7b and 4.8b. The hollow nature of the particles is most likely

to be due to solvent evaporation during the spray drying process as suggested previously

in the literature [140, 141, 142, 143]. It was also noted that at higher drug loadings (i.e.

30 and 50%) the particles were smooth (see Figures 4.7 and 4.8), but as the polymer

content increased to 85% the particles became more wrinkled (see figure 4.6), and the

5% drug-loaded particles had numerous sizeable indentations (see figure 4.5). Again,

this is likely to be due to the solvent evaporation during the particle processing.

Crystallisation of the drug compound from the spray dried dispersions was not

detected by SEM imaging, but to fully ensure that no crystalline material was present in

the spray dried material, samples were subjected to analysis by XRPD. This is because

whilst SEM is more sensitive than XRPD, it is also less statistically robust. Diffrac-

tograms of spray dried material at all four drug loadings showed the felodipine to have

been successfully rendered amorphous (see Figure 4.9). There was some concern that

the compaction process used for making the samples for the MRI flowcell experiments

may induce crystallisation of the felodipine. Therefore, samples of the spray dried ma-

terial after compaction were also analysed by XRPD, and were shown to have remained
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(a) 5% drug loading (b) 15% drug loading

(c) 30% drug loading (d) 50% drug loading

Figure 4.4: Images obtained by optical microscopy of spray dried solid dispersions with
drug loadings of a) 5%, b) 15%, c) 30% and d) 50%. Scale bars for images a) and d)
represent 20 µm and for images b) and c) represent 50 µm.
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(a) ×100 (b) ×1000

(c) ×5000 (d) ×10000

Figure 4.5: SEM images of the spray dried material containing 5% felodipine taken at
a) ×100, b) ×1000, c) ×5000 and d) ×10000 magnifications.
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(a) ×100 (b) ×1000

(c) ×5000 (d) ×10000

Figure 4.6: SEM images of the spray dried material containing 15% felodipine taken at
a) ×100, b) ×1000, c) ×5000 and d) ×10000 magnifications. Circled in image b) is a
fragmented hollow particle.
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(a) ×100 (b) ×1000

(c) ×5000 (d) ×10000

Figure 4.7: SEM images of the spray dried material containing 30% felodipine taken at
a) ×100, b) ×1000, c) ×5000 and d) ×10000 magnifications. Circled in image b) is a
fragmented hollow particle.
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(a) ×100 (b) ×1000

(c) ×5000 (d) ×10000

Figure 4.8: SEM images of the spray dried material containing 50% felodipine taken at
a) ×100, b) ×1000, c) ×5000 and d) ×10000 magnifications. Circled in image b) is a
fragmented hollow particle.
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amorphous (see Figure 4.10).

PDF analysis was carried out on the spray dried material to determine if molecular

dispersions had been produced. PDF analysis suggests that the spray dried materials

are not molecular dispersions, as the PDF traces for these materials closely matches the

traces simulated for physical mixtures at the same drug loadings (Figure 4.11). This

data suggests that these samples are solid suspensions, though as discussed previously

for the film-cast samples, the dissolution improvements also observed in Chapter 6 for

this material indicates the formation of solid solutions. This discrepancy is likely due to

there being a small percentage of drug that is molecularly dispersed, whilst the rest of

the drug is present as amorphous nanoparticles in the polymer matrix.
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Figure 4.9: X-ray powder diffractograms of the spray dried felodipine/copovidone solid
dispersions with drug loadings of 5% (pink), 15% (green), 30% (grey) and 50% (light
blue). Diffractograms of crystalline felodipine (red) and copovidone (black) are also
shown for comparison.

Figure 4.10: X-ray powder diffractograms of the compacted spray dried felodip-
ine/copovidone solid dispersions with drug loadings of 5% (pink), 15% (green), 30%
(grey) and 50% (light blue). Diffractograms of crystalline felodipine (red) and copovi-
done (black) are also shown for comparison.
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(a) 5% drug loading (b) 15% drug loading

(c) 30% drug loading (d) 50% drug loading

Figure 4.11: Comparison of the simulated traces of felodipine and copovidone amorphous
physical mixes with the observed traces of the spray dried solid dispersions at drug
loadings of a) 5%, b) 15%, c) 30% and d) 50%.
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4.4.3 ZAL 001

ZAL 001 was an oil, and hence was shown to be amorphous by XRPD. Because it was

an oil, DSC analysis was not carried out on this sample, or its solid dispersions.

4.4.4 ZAL 005

A sample of ZAL 005, was shown to be crystalline by XRPD (see Figure 4.12). By DSC,

crystalline ZAL 005 was shown to have a Tg at 12.74◦C with ∆CP of 0.346 J g−1 K−1,

and Tm with onset at 101.5◦C, peak at 107.2◦C, and ∆Hf of 38.53 kJ mol−1. ZAL 005

was successfully rendered X-ray amorphous after preparation according to the method

detailed above with an annealing step at 180◦C. Solid dispersion samples of ZAL 005

were also all found to be amorphous when annealed at 180◦C (see Figure 4.12).

Single glass transition temperatures were observed for each drug-polymer blend,

indicating that the drug and polymer were intimately mixed at all the drug loadings

tested. The true density (ρ) of crystalline ZAL 005 was found to be 0.2059 g cm−3;

and this value was used in a corrected form to create Gordon-Taylor and Couchman-

Karasz plots (see Chapter 2). The single Tgs measured for ZAL 005/copovidone solid

dispersions lay between the Gordon-Taylor and Couchman-Karasz plots, suggesting that

ZAL 005 and copovidone were miscible at the drug loadings tested (Figure 4.13).

Most of the amorphous analogue compounds analysed by PDF, displayed ordering

to a length scale of ∼10 Å (see Figure 4.14). By contrast, analysis of amorphous

ZAL 005 by PDF showed that it displayed ordering out to a longer length scale of ∼15

Å, which suggests that this compound may be more prone to recrystallisation than the

other compounds analysed. PDF analysis of the solid dispersion samples suggests that

they are not molecular dispersions, as the PDF traces for these materials closely matches

the traces simulated for physical mixtures at the same drug loadings (see Figure 4.15).

This suggests that this particular chemical modification of felodipine did not achieve the

formation of a solid solution at 15%.
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Figure 4.12: X-ray powder diffractograms of samples of crystalline ZAL 005 (red), amor-
phous ZAL 005 (dark blue), and solid dispersions of ZAL 005 and copovidone with drug
loadings of 15% (green), 30% (grey) and 50% (light blue). Copovidone is also shown
for reference (black).

Figure 4.13: Tg of amorphous ZAL 005 as a function of weight fraction drug. The solid
line represents the fit to the Gordon-Taylor equation and the dashed line represents the
fit to the Couchman-Karasz equation.
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Figure 4.14: Comparison of the PDF traces generated for each of the amorphous felodip-
ine analogues

(a) 15% drug loading (b) 30% drug loading

(c) 50% drug loading

Figure 4.15: Comparison of the simulated traces of ZAL 005 and copovidone amorphous
physical mixes with the observed traces of the solid dispersion at drug loadings of a)
15%, b) 30% and c) 50%.
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4.4.5 ZAL 006

XRPD analysis of ZAL 006 showed it to be a crystalline solid (see Figure 4.16). By DSC,

crystalline ZAL 006 was shown to have a Tg at 55.38◦C with ∆CP of 0.3642 J g−1

K−1, and Tm with onset at 165.3◦C, peak at 168.3◦C, and ∆Hf of 27.16 kJ mol−1. As

a result of this information, amorphous and solid dispersion samples were produced with

an annealing step at 180◦C. The drug compound was shown to be successfully rendered

amorphous using this method by XRPD, and solid dispersion samples were also shown

to be X-ray amorphous (see Figure 4.16).

Single glass transition temperatures were observed for each drug-polymer blend,

indicating that the drug and polymer were intimately mixed at all the drug loadings

tested. The true density (ρ) of amorphous ZAL 006 was found to be 0.2374 g cm−3; and

this value was used to create Gordon-Taylor and Couchman-Karasz plots (see Chapter

2). The single Tgs measured for ZAL 006/copovidone solid dispersions lay between the

Gordon-Taylor and Couchman-Karasz plots, suggesting that ZAL 006 and copovidone

were miscible at the drug loadings tested (Figure 4.17).

PDF analysis of the solid dispersion samples suggests that they are not molecular

dispersions, as the PDF traces for these materials closely matches the traces simulated

for physical mixtures at the same drug loadings (Figure 4.18).
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Figure 4.16: X-ray powder diffractograms of samples of crystalline ZAL 006 (red), amor-
phous ZAL 006 (dark blue), and solid dispersions of ZAL 006 and copovidone with drug
loadings of 15% (green), 30% (grey) and 50% (light blue). Copovidone is also shown
for reference (black).

Figure 4.17: Tg of amorphous ZAL 006 as a function of weight fraction drug. The solid
line represents the fit to the Gordon-Taylor equation and the dashed line represents the
fit to the Couchman-Karasz equation.
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(a) 15% drug loading (b) 30% drug loading

(c) 50% drug loading

Figure 4.18: Comparison of the simulated traces of ZAL 006 and copovidone amorphous
physical mixes with the observed traces of the solid dispersion at drug loadings of a)
15%, b) 30% and c) 50%.
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4.4.6 ZAL 007

ZAL 007 material was analysed by XRPD and shown to be crystalline (see Figure 4.19).

By DSC, crystalline ZAL 007 was shown to have a Tg at 81.41◦C with ∆CP of 0.2396

J g−1 K−1, and Tm with onset at 123.2◦C, peak at 127.2◦C, and ∆Hf of 19.84 kJ

mol−1. As a result of the DSC data, it was decided that amorphous and solid dispersion

samples of ZAL 007 would be produced by annealing at 130◦C. Analysis of these samples

by XRPD showed that this annealing step successfully afforded amorphous material (see

Figure 4.19).

Single glass transition temperatures were observed for each drug-polymer blend,

indicating that the drug and polymer were intimately mixed at all the drug loadings

tested. The true density (ρ) of crystalline ZAL 007 was found to be 0.1847 g cm−3;

and this value was in a corrected form used to create Gordon-Taylor and Couchman-

Karasz plots (see Chapter 2). The single Tgs measured for ZAL 007/copovidone solid

dispersions lay between the Gordon-Taylor and Couchman-Karasz plots, except at 50%

drug loading, suggesting that ZAL 007 and copovidone were miscible at the drug load-

ings of 15% and 30% (Figure 4.21).

Analysis of the solid dispersion samples by PDF suggests that they are not

molecular dispersions, as the experimental PDF traces for these materials closely matches

the traces simulated for physical mixtures at the same drug loadings (see Figure 4.20).
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Figure 4.19: X-ray powder diffractograms of samples of crystalline ZAL 007 (red), amor-
phous ZAL 007 (dark blue), and solid dispersions of ZAL 007 and copovidone with drug
loadings of 15% (green), 30% (grey) and 50% (light blue). Copovidone is also shown
for reference (black).
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(a) 15% drug loading (b) 30% drug loading

(c) 50% drug loading

Figure 4.20: Comparison of the simulated traces of ZAL 007 and copovidone phase
separated solid dispersion with the observed traces of the solid dispersion at drug loadings
of a) 15%, b) 30% and c) 50%.
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Figure 4.21: Tg of amorphous ZAL 007 as a function of weight fraction drug. The solid
line represents the fit to the Gordon-Taylor equation and the dashed line represents the
fit to the Couchman-Karasz equation.
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4.4.7 ZAL 008

A sample of ZAL 008, was shown by XRPD to be crystalline. By DSC, crystalline

ZAL 008 was shown to have a Tm with onset at 251.7◦C, peak at 255.4◦C, and ∆Hf

of 6.68 kJ mol−1, but a degradation endotherm was observed immediately after the

melting endotherm. No Tg was observed in this sample. Degradation of the sample

after melting made it difficult to prescribe a suitable annealing temperature for forming

amorphous or solid dispersion samples of this material that would not be chemically

degraded. An additional barrier to forming amorphous or solid dispersion samples of

this compound was that an organic solvent that fully dissolved the compound at a

suitable concentration, but was also volatile enough to be flash evaporated could not be

identified. Therefore no further work was carried out using this compound during the

course of the project described in this thesis.

This issues encountered with this compound highlights that one of the main

pitfalls of high melting compounds is that they have poor solubility in processing solvents.

As a result, this compound may be unable to be formulated as a solid dispersion using

conventional approaches.

4.4.8 ZAL 009

A sample of ZAL 009 as produced from the synthesis detailed in chapter 3 was analysed

by XRPD, and was shown to be crystalline (see figure 4.22). By DSC, crystalline

ZAL 009 was shown to have a Tg at 31.29◦C with ∆CP of 0.4966 J g−1 K−1, and Tm

with onset at 166.0◦C, peak at 169.4◦C., and ∆Hf of 30.09 kJ mol−1. Therefore an

annealing temperature of 180◦C was proposed for the the formation of amorphous and

solid dispersion samples of this compound. XRPD analysis of these samples showed that

this sample preparation method successfully produced amorphous material (see Figure

4.22).

Single glass transition temperatures were observed for each drug-polymer blend,

indicating that the drug and polymer were intimately mixed at all the drug loadings
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tested. The true density (ρ) of crystalline ZAL 009 was found to be 0.0718 g cm−3;

and this value was used in a corrected form to create Gordon-Taylor and Couchman-

Karasz plots (see Chapter 2). The single Tgs measured for ZAL 009/copovidone solid

dispersions all lay between the Gordon-Taylor and Couchman-Karasz plots suggesting

that ZAL 009 and copovidone were miscible at all tested drug loadings (Figure 4.23).

PDF analysis was not carried out on solid dispersion samples of ZAL 009 due to

limitations in the amount of available material.
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Figure 4.22: X-ray powder diffractograms of samples of crystalline ZAL 009 (red), amor-
phous ZAL 009 (dark blue), and solid dispersions of ZAL 009 and copovidone with drug
loadings of 15% (green), 30% (grey) and 50% (light blue). Copovidone is also shown
for reference (black).

Figure 4.23: Tg of amorphous ZAL 009 as a function of weight fraction drug. The solid
line represents the fit to the Gordon-Taylor equation and the dashed line represents the
fit to the Couchman-Karasz equation.
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4.4.9 ZAL 010

ZAL 010 was analysed by XRPD, and found to be crystalline (see Figure 4.25). Initial

DSC carried out with heating to 200◦C showed a melting point around 100◦C, and as

a result of this, an annealing temperature of 130◦C was suggested for the preparation

of amorphous material. DSC analysis of the sample subjected to amorphisation did

not contain any melting endotherms, and a Tg was identified in the cooling cycles at

76.80◦C with ∆CP of 0.256 J g−1 K−1, suggesting that the material was amorphous.

However, later XRPD analysis of the sample subjected to amorphisation was shown to

be crystalline, but of a different polymorphic form (referred to from here on as Form II

- see Figure 4.25) to the original, synthesised material (referred to as Form I). Repeat

DSC analysis of crystalline ZAL 010 showed a Tm for Form I with onset at 95.9◦C,

peak at 104.4◦C and ∆Hf of 11.41 kJ mol−1, followed by a recrystallisation exotherm,

(indicating formation of Form II material), with onset at 161.11◦C and peak at 175.13◦C.

This was followed by a further Tm for Form II with onset at 288.21◦C, peak at 289.89◦C

and ∆Hf of 6.03 kJ mol−1. A Tg is evident on subsequent heating cycles at 174◦C, and

it is likely that this is in fact the ‘true’ amorphous Tg. As a result of these experiments,

it seems that an annealing temperature above 300◦C is required for the sample to be

heated above all the phase transitions, but this temperature is not practical with regards

to decomposition of the polymer.

Solid dispersion samples of ZAL 010 had been prepared at the same time as the

amorphous pure drug sample, and hence an annealing temperature of 130◦C had been

used in the preparation of these samples. By DSC analysis, these samples were all shown

to be amorphous and displayed a single Tg (see Figure 4.24). The true density (ρ) of

crystalline Form I ZAL 010 was found to be 0.0672 g cm−3; and this value was used in

a corrected form to create Gordon-Taylor and Couchman-Karasz plots (see Chapter 2).

The single Tgs measured for ZAL 010/copovidone solid dispersions all lay between the

Gordon-Taylor and Couchman-Karasz plots suggesting that ZAL 010 and copovidone

were miscible at all tested drug loadings (Figure 4.24). However, XRPD analysis of the
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same samples indicated that whilst 15% and 30% drug loaded solid dispersions were

amorphous, there was some evidence of Bragg peaks in the 50% drug loaded sample,

which appeared to correspond to Form II ZAL 010 (see Figure 4.25). This indicates

that the samples were likely to have been partially phase separated at the time the DSC

analysis had been carried out, but that this level had been below the detection limit of

the DSC instrument (as discussed in Chapter 2). Unfortunately, there was not enough

material available for PDF analysis to confirm this.
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Figure 4.24: Tg of amorphous ZAL 010 as a function of weight fraction drug. The solid
line represents the fit to the Gordon-Taylor equation and the dashed line represents the
fit to the Couchman-Karasz equation.

Figure 4.25: X-ray powder diffractograms of samples of crystalline ZAL 010 (red),
ZAL 010 subjected to amorphisation (dark blue), and solid dispersions of ZAL 010
and copovidone with drug loadings of 15% (green), 30% (grey) and 50% (light blue).
Copovidone is also shown for reference (black).
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4.4.10 ZAL 011

A sample of ZAL 011 was analysed by XRPD and found to be crystalline (see Figure

4.26). By DSC, crystalline ZAL 011 was shown to have a Tg at 70.82◦C with ∆CP

of 0.1912 J g−1 K−1, and Tm with onset at 101.5◦C, peak at 108.0◦C, and ∆Hf of

23.5 kJ mol−1. Therefore an annealing temperature of 130◦C was proposed for the the

formation of amorphous and solid dispersion samples of this compound. XRPD analysis

of these samples showed that this sample preparation method successfully produced

amorphous material (see Figure 4.26).

Single glass transition temperatures were observed for each drug-polymer blend,

indicating that the drug and polymer were intimately mixed at all the drug loadings

tested. The true density (ρ) of crystalline ZAL 011 was found to be 0.1995 g cm−3; and

this value was used in a corrected form to create Gordon-Taylor and Couchman-Karasz

plots (see Chapter 2). The single Tgs measured for the solid dispersion with 15% drug

loading lay on the Gordon-Taylor plot, but solid dispersion samples with higher loadings

were below both the Gordon-Taylor and Couchman-Karasz plots (Figure 4.27).

The experimental PDF traces for ZAL 011 solid dispersion samples closely matches

the traces simulated for physical mixtures at the same drug loadings, suggesting that

they are not molecular dispersions (see Figure 4.28).
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Figure 4.26: X-ray powder diffractograms of samples of crystalline ZAL 011 (red), amor-
phous ZAL 011 (dark blue), and solid dispersions of ZAL 011 and copovidone with drug
loadings of 15% (green), 30% (grey) and 50% (light blue). Copovidone is also shown
for reference (black).

Figure 4.27: Tg of amorphous ZAL 011 as a function of weight fraction drug. The solid
line represents the fit to the Gordon-Taylor equation and the dashed line represents the
fit to the Couchman-Karasz equation.
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(a) 15% drug loading (b) 30% drug loading

(c) 50% drug loading

Figure 4.28: Comparison of the simulated traces of ZAL 011 and copovidone amorphous
physical mixes with the observed traces of the solid dispersion at drug loadings of a)
15%, b) 30% and c) 50%.
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4.5 Conclusions

From analysis of the molecular analogues by DSC analysis, it has been possible to identify

a suitable annealing temperature to be used in the preparation of solid dispersion samples

for the work detailed in the following chapters. XRPD analysis of samples produced

using these prescribed annealing temperatures, shows that amorphous material can be

sucessfully produced for most analogues.

Solid State analysis of ZAL 001 was not possible as this compound is an oil. NMR

analysis of this compound in Chapter 3 indicates that the oily nature of this compound

is unlikely to be due to the presence of impurities in the material, and therefore that this

compound is an oil must be related to the molecular structure of the compound. The

only difference between this compound and felodipine (which is a crystalline solid) is

that ZAL 001 has an aromatised pyridine ring, compared with the dihydropyridine ring

in felodipine, and this structural modification leaves ZAL 001 without a hydrogen-bond

donating group that can participate in the drug-drug intermolecular interactions present

in the felodipine crystal structure [144]. ZAL 001 will be used in following experiments,

but when interpreting data for this compound it is important to bear in mind that it is

liquid in ambient conditions, and that initial testing to determine extent of mixing has

not been carried out on the solid dispersion samples.

ZAL 008 was found to be practically insoluble in suitable organic solvents, which

was likely to be due to its high melting point. This meant that formation of solid

dispersion samples was not possible for this compound by solvent evaporation, and the

degradation of the compound above the melting point indicated that processing by melt

methods was also unlikely to be successful. These limitations mean that no further work

will be carried out using ZAL 008.

ZAL 010 was shown to have a solid state profile that was complicated by the

existence of two polymorphs. The analogue was shown to crystallise readily from two

of the amorphous samples, which is likely to be because the samples were not annealed

above the melting point of the Form II polymorph, and this may prove to be an issue in
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later experiments.

PDF data indicated that all of the solid dispersions tested are phase separated in

the drug loading range 15-50%, suggesting that solid solutions had not been formed for

any of the analogues. It may be that at these loadings the amount of drug is above its

super-saturation level in copovidone, and that at lower drug loadings the samples would

be shown to be solid solutions.

4.6 Future work

Firstly it would be useful to carry out PDF analysis on samples containig ZAL 009 and

ZAL 010, as these analyses were not possible here due to restrictions on the amount

of material available. Similarly, if more analogue material were available, it would be

useful to test solid dispersions with a greater range of drug loadings.

FTIR analysis of the analogues and their solid dispersions could be useful in high-

lighting the presence of drug-drug and drug-polymer intermolecular hydrogen-bonding

motifs, which could be used to explain the reults from experiments in the following

chapters.
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Chapter 5

Physical Stability Testing of

Felodipine-based Solid Dispersions

As solid dispersions are formulations of thermodynamically unstable amorphous material,

their stability with respect to physical changes is a key consideration in their develop-

ment. Exposure to particular environmental conditions may cause solid dispersions to

undergo morphological changes such as polymer swelling, phase separation (de-mixing)

or drug crystallisation. Any such changes can subsequently have a detrimental effect

on the performance of the drug; for example, by affecting the release of the drug from

the delivery system, or reducing the apparent drug solubility. The relative stability of

a solid dispersion formulation is of particular relevance when one considers the lengthy

shelf-lives that are desirable for a marketed drug, and the need for the dosage form to

behave in the same way after storage as it would have done prior to storage. Therefore,

in order for a solid dispersion to reach the market, it is of major importance to fully

understand the potential for any physical changes to occur.

In this chapter we will look at the effect of environmental conditions on the

physical stability of solid dispersions in two parts. The first part of this chapter will focus

on a the use of a laser light scattering technique, with the intention of investigating how

the phase separation of solid dispersions can be initiated under specific environmental
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conditions. This work focusses specifically on the solid dispersions of felodipine in

copovidone. In the second part of this chapter, we will look at the crystallisation of

the felodipine analogues that were synthesised in chapter 3 from their solid dispersions

with copovidone under different storage conditions at a range of drug loadings using

polarised light microscopy.

5.1 Light Scattering Studies of Felodipine/Copovidone Solid

Dispersions

5.1.1 Introduction

Phase Separation

Phase separation is a term used to describe the collection of component molecules

into domains, meaning that they are no longer evenly dispersed. This phenomenon

is well-documented in the literature with respect to polymer blends (for example, see

[145, 146, 147, 148, 149, 150]), and it is also of particular relevance to the field of solid

dispersions, as phase separation could be considered to be a pre-cursor to crystallisation.

This has been discussed in more detail in Chapter 1

It is clear that the crystallisation of the drug component from amorphous solid

solutions cannot happen unless phase separation has first occured. This is because sev-

eral molecules of the compound are required to be within close proximity of each other

in order for crystals to nucleate and grow. We have already discussed in chapters 1,

2 and 4, how systems that may appear by XRPD and DSC analysis to be molecularly

disperse can in fact be shown to be more accurately described as a microparticles of

drug in carrier, or solid suspensions. In such systems it could be considered that the

drug and polymer components already exist in discrete domains, therefore fulfilling the

true definition of a phase separated material; yet they are not necessarily termed so,

particularly if the drug remains in the amorphous state. Therefore, perhaps a key ques-

tion should be: “when do we consider phase separation to be a problem with respect to
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crystallisation?” Afterall, it strikes the author that there may not be a defined boundary

between molecular dispersions and solid suspensions, but that there is in fact a contin-

uum from one state to the other. That is, there is no rule to say how many molecules of

a substance must be near to each other, and how close they must be before a material

is no longer considered a solid dispersion and becomes a phase separated system. It is

most likely that the answer to this question lies both in the sensitivity of the analytical

instruments used to detect structural changes in such materials, and continued observa-

tions showing that crystallisation occurs as a result of such changes. Therefore, for the

remainder of this chapter we will use the term phase separation to refer to the process

of a solid dispersion becoming less intimately mixed, rather than as a general descriptor

of the physical state.

Ideally, once it has been decided that a drug will be formulated as a solid dis-

persion, the propensity for a solid dispersion to phase separate would be determined

during the screening activities to identify a suitable polymer. This way, the time and

costs associated with developing a formulation that is later shown to be unstable can be

avoided. Or, at the very least, the early identification of such challenges would provide

formulators with more time to develop strategies to succesfully bring the product to

market. In an attempt to address this, we set about developing a laser light scattering

instrument as a means of detecting phase separation. If successful, this technique would

lend itself to forming the basis of a high-throughput screening method to identify phase

separation of solid dispersions during initial screening work. This is beacause laser light

scattering is a relatively cheap method, and the data obtained from such methods gives

a better statistical average over a larger area of the sample compared with microscopy.

With further development, the film-cast samples used for screening activities could be

presented to the light scattering instrument in their well-plates, thus meaning that more

information could be obtained from small amounts of material. Also, whilst there is

obviously no real substitute for human observations arising from years of experimental

experience, the data acquired using this method could be automatically manipulated by
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a computer to enable faster screening.

Development of the Laser Light Scattering Instrument

As discussed in Chapter 1, phase separation occurs if the total free energy of separated

phases is lower than the free energy of the mixed state (i.e. there is a ‘miscibility gap’)

[71], and may be bought about by changes in, for example, temperature or humidity. The

different domains of a phase separated material have slightly different optical properties

(refractive index), and light passing through the sample will undergo Mie scattering if

the domains are of a similar or larger size to the wavelength of the incident light [151].

In a static laser light scattering experiment, the intensity of the scattered light over a

range of angles is measured, and this information can then used to determine the size of

the domains in the material. [151, 152, 153]. This technique has already been used in

a number of studies to investigate phase separation in polymer blends [154, 155, 156],

and in particular, the method used by Hashimoto et al in their 1984 work [155] seemed

appropriate to emulate for the purposes of this study.

The light scattering system described by Hashimoto et al basically consists of a

laser beam that is passed through the sample (which is held in a temperature controlled

cell), and scattered by it. The scattered light is then projected onto a screen, and the

resulting scattering pattern is in turn imaged using a video camera. From the scattering

patterns the size of the phase separated domains (Rs), and the interdomain distance

(Ds) were determined as shown in equations (5.1) and (5.2) respectively, where λ is the

wavelength of the incident laser light, and θm is the angle at which the intensity of the

scattered light reaches a maximum [155].

4π(Rs/λ) sin(θm/2) = 5.765 (5.1)

2Ds sin(θm/2) = λ (5.2)

Generally speaking the scattering pattern projected onto the screen is due to
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light scattered at an angle of ≤35◦ [153]. Therefore, if we use this as the value for θm

in equation 5.1, we can see that with a helium-neon laser with λ = 633 nm, the smallest

domain size that can be detected using this method is approximately 970 nm.

This method was attempted for detecting phase separation in solid dispersions,

but the samples did not produce the well-defined scattering patterns observed by Hashimoto

et al in their phase separated polymer blend systems, and so a more simple approach

was attempted. It was reasoned that the more domains that appear, and the larger

they become during the phase separation process, the more light will be scattered by

the sample. It therefore followed, that this process would lead to an attenuation of the

central incident light beam by the sample with increasing phase separation. Hence, the

method that was developed involved measuring the intensity of the central laser light

beam after it had passed through the sample, using a photodiode, in order to determine

the level of beam attenuation with time. Using this approach would enable information

regarding the kinetics of phase separation to be acquired.

5.1.2 Materials

Drop cast film samples

Solid Dispersions of felodipine (AstraZeneca) in copovidone (Kollidon VA64, BASF) were

produced by casting from a mutually compatible solvent system (80% Methanol: 20%

Acetone v/v). Solutions of the drug / polymer mixture with different concentrations

were prepared and then drop-deposited onto clean, glass substrates, where the solvent

was allowed to evaporate for 75 minutes. The samples were then placed in an oven

under Nitrogen at 30◦C, heated to 155◦C, and held at that temperature for 30 minutes

to anneal the sample. The samples were then quench cooled to room temperature. All

samples were stored in a vacuum desiccator and analysed within 2 days of preparation.

It was important to produce flat, featureless film samples, as any bubbles in the film, or

an uneven surface to the film could lead to additional scattering of the laser light during

the experiment.
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5.1.3 Methods

Light Scattering Experimental

Figure 5.1: Schematic showing a cross-section of the temperature controlled sample cell
used in the laser light scattering experiments.

Laser Light Scattering experiments, during which the intensity of light passing

directly through the sample was measured, were carried out using a custom-built in-

strument. A Helium-Neon laser beam (Spectra Physics, Model 31005; power, 1.5 mW;

wavelength, λ0 = 633nm) travels to a beam splitter. Part of the beam is diverted to a

Reference Photodiode, whereas the rest of the beam passes through the sample (which

is held in a temperature-controlled flow cell - see Figure 5.1), and then to another pho-

todiode (see Figure 5.2). Changes in intensity are measured by obtaining a Transmission

Coefficient, which enables any fluctuations in the intensity of the incident laser to be

ratioed out:

Transmission Coefficient =
Sample Intensity

Reference Intensity
(5.3)

The computer controlling the light scattering apparatus samples the light intensities

measured by the photodiodes every 2-3 seconds as the experiment progresses.
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Figure 5.2: Photograph showing the experimental setup for the laser light scattering
studies. The path of the laser beam is shown in red.

Optical Microscopy

Optical microscopy was carried out on water-exposed film samples using an Olympus

BX51M microscope in Brightfield mode. ImageProPlus software (version 5.0) was used

for imaging.

Atomic Force Microscopy (AFM)

Film samples were analysed before and after exposure to water by atomic force mi-

croscopy using an Asylum Research MFP-3D scanning probe microscope, with NSC16/AlBS

tips (MikroMasch), and controlled using Igor Pro software (version 6.04). Samples were

analysed in tapping mode, and topographic and phase information about each sample

was collected.

5.1.4 Results and Discussion

Initial tests performed using the felodipine / copovidone films showed that when a water

droplet was placed on the sample, the film turned cloudy. When the water was removed

from the film, the cloudiness remained for some time, indicating that the turbidity was

present in the film itself, and not due to a saturated solution that had formed in the

water droplet. This was also evident from the properties of the film which had changed
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from having a hard, glassy texture to being swollen and gel-like. The same test was

performed using a control sample containing 100% copovidone, but this sample did not

turn cloudy. These observations suggested that the cloudiness could be due to the drug

separating out from the dispersion.

To further investigate this phenomenon in a more quantitative manner, the sam-

ples were analysed using the light scattering apparatus. The analyses were performed

at a range of temperatures encompassing 37◦C, and at least four repeat analyses were

performed for each drug loading at each temperature. From these experiments it be-

came evident that the total time for the films to become completely opaque differed

from sample to sample, depending on the concentration of the film and the temperature

at which the experiment was carried out (see Figure 5.3).

Figure 5.3: Graph showing changes in transmission coefficient after water is injected into
the sample cell for solid dispersions containing 50% felodipine at four temperatures.

In order to better understand the effects of temperature and concentration on

the changes in film turbidity, a number of transformations of the data were made. As

the decrease in transmission coefficient appears to be exponential in nature, the natural
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log of the transmission coefficient was taken for each plot, in order to produce a straight-

line graph. This transformation produced plots which had two distinct regions; a region

after water injection which is horizontal, and a second straight-line region with a negative

gradient (see Figure 5.4). The first region could be considered as a time during which

the nucleation of phase separated domains occurs (τN ). The gradient of the second

region could be considered as equal to the reciprocal of a time during which the phase

separated domains grow (1/τG).

Figure 5.4: Semi-log plot of the light scattering data, showing how characteristic nucle-
ation times (τN ) and growth times (τG) can be determined for each sample.

Once determined, the τN and 1/τG values were used to produce Arrhenius plots

in order to establish any trends in the data (Figures 5.5 and 5.6). These plots indicate

that the nucleation and growth rates for the turbidity are influenced by the temperature

at which the experiment is carried out in a way that is consistent with the behaviour

of thermally activated processes. More unexpectedly, it was found that nucleation and

growth rates for the evolution of turbidity in the samples was lower for those containing

higher concentrations of drug. Initially it was considered that this may have been
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influenced by uptake of water into the samples, and so further analysis was carried out

to determine what was happening to the samples during the experiment.

Figure 5.5: Arrhenius plots of ln(1/τN ) against 1/T for film cast solid dispersions with
drug loadings of 50% (blue), 40% (black), 30% (green) and 20% (red).

In order to investigate the changes occurring in the film samples that may account

for the increase in turbidity, further analysis was carried out on them using several

techniques. Firstly, material was recovered from films that had been exposed to water

and then been left to dry, and this was subjected to analysis by XRPD. If the turbidity

was indeed due to phase separation, it seemed logical to suggest that this might lead

to the crystallisation of felodipine from the samples. However, the samples were found

to be X-ray amorphous, indicating that if crystallisation had begun to occur, it was at

levels undetectable by XRPD, i.e. typically less than 2% of the sample [105].

The films were then observed during exposure to water with brightfield optical

microscopy. The films prior to water exposure were shown to be smooth and glassy, with

no notable features (Figure 5.7a). Within a minute of the water droplet being placed

on the film, cracks in the film can be seen to appear (Figure 5.7b), from which the

film seems to raise away from the substrate (Figure 5.7c). After the water droplet has
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Figure 5.6: Arrhenius plots of ln(1/τG) against 1/T for film cast solid dispersions with
drug loadings of 50% (blue), 40% (black), 30% (green) and 20% (red).

dried, the film can be seen to be mostly smooth and glassy again, but with some cracks

remaining where the film appears to have buckled away from the substrate (Figure 5.7d).

The cracks present in the film when wet, and the associated buckling of the film, were of

a scale which would go some way to explaining the increase in the amount of laser light

scattered by, and hence the attenuation of the laser beam passing through the samples.

Atomic force microscopy experiments were also carried out on samples both pre-

and post-water exposure. Tapping mode AFM was used to analyse the samples, as this

method would enable phase information as well as topological information to be gathered

from the sample. If phase separation was the cause of the increased turbidity (and hence

increased light scattering), then the different domains of the phase separated material

will have different phase information associated with them. AFM of the samples prior

to water exposure showed them to be homogenous, and mostly smooth as any height

variations across the samples were very small (Figure 5.8), and this supports the optical

microscopy data. This can be seen in Figure 5.9a where variations in film height are

to the order of hundreds of picometres. After exposure to water, a greater variation in
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the topographies of the samples is observed, which is of the order of several nanometres

(Figure 5.9b). However, this topographical change does not appear to be accompanied

by significant changes in phase across the samples which would be consistent with a

theory of phase separation. It was also noted from AFM experiments that films with

higher polymer concentration appear to show greater changes in surface structure.

Following the experiments detailed above, the turbidity and topographical changes

in the samples on exposure to water appears to be most consistent with polymer swelling

of the film. This swelling causes the films to buckle and crack away from the sample

substrate as shown by optical microscopy, and this has an effect on the topography

across the whole of the film surface, as shown by AFM. The observation that films with

higher polymer loadings appear to show greater changes in surface structure also sup-

ports the idea that polymer swelling in the presence of water is more likely. The theory

that the turbidity is caused by phase separation is not supported by optical microscopy

or AFM, neither of which shows evidence of the formation of distinct phase separated

domains. Additionally, XRPD does not provide evidence that the materials are phase

separated or that the felodipine has crystallised out from the films.

5.1.5 Conclusions - Light Scattering Work

Glassy, transparent solid dispersion films of felodipine in copovidone were shown in these

experiments to become increasingly opaque upon contact with water. This study has

shown that the laser light scattering method detailed here can be used to detect and

monitor changes these changes in film turbidity caused by morphological changes on

micron length scales. It was shown that the rate at which the solid dispersion films

became turbid was dependant on the drug loading and the temperature at which the

experiment was carried out. This turbidity was initially believed to be due to phase

separation of the solid dispersion films, however, the Arrhenius plots indicated that

nucleation and growth of turbidity in the films was slower in films containing more

felodipine, and hence suggested that the opacity of the films was caused by water
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uptake by the samples. Microscopic techniques showed that the turbidity in the films is

most likely caused by surface structure modifications caused by polymer swelling.

Laser light scattering is a technique that has the potential to form the basis of a

high-throughput method for the detection of morphological chages in solid dispersion,

due to its simple design, low costs and the ability to analyse samples under a range

of environmental conditions. However, this technique does have some limitations - the

most crucial of which is that whilst this technique can be used to detect changes in

a sample, it cannot tell us what causes those changes. This was highlighted with the

experiments detailed in this chapter, in which it was shown that morphological changes

in the sample were not due to phase separation as had originally been suspected, but

were instead due to polymer swelling. Despite this, the polymer swelling process was

successfully monitored using the light scattering technique, and it was possible to show

how the kinetics of the polymer swelling process were dependent on the temperature at

which the experiment was conducted, and the polymer-loading of the solid dispersion.

Polymer swelling is also of particular interest to the pharmaceutical industry, as it can

impact upon the release of drug from a formulation during dissolution, as we will see in

Chapter 6. It is believed that if attempts to develop a system that could provide further

structural information about the changes in the samples had been more successful (for

example, regarding the length scales at which the changes were occuring), it may be

possible to better distinguish between different types of morphological changes such as

polymer swelling and phase separation.
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(a) Film pre-water exposure (b) Film under water droplet

(c) Film under water droplet (d) Film after water removal

Figure 5.7: Brightfield optical microscopy images of a 10% felodipine-loaded film prior
to water exposure (a), during water exposure (b & c) and after removal of the water
droplet (d). All images were taken at ×5 magnification and scale bars represent 500
µm.
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Figure 5.8: Topographies of Felodipine/Copovidone films as imaged using AFM prior to
and after exposure to water. Phase data is shown overlaid on the topographies, with
shadings as indicated by the individual scale bars. Images on the left are samples pre-
water exposure and images on the right are of samples after exposure to water. Images
are of samples with 0% (top images), 10% (middle images) and 50% (bottom images)
felodipine-loadings.

(a) Film prior to water exposure (b) Film after water exposure

Figure 5.9: Graphs showing the topography of 10% felodipine loaded films a)pre- and
b) post-water exposure along a cross-section of the samples, as determined by AFM.
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5.2 Polarised Light Microscopy Studies of Felodipine-based

Solid Dispersions

5.2.1 Introduction

Drug crystallisation from amorphous solid dispersions has been the subject of a large

number of papers in the literature, as physical instability with respect to crystallisation

poses one of the biggest obstacles to their succesful formulation and marketing. In

previous studies it has been suggested that intermolecular interactions between the

drug and polymer components are key to explaining the relative stability of some solid

dispersions compared to the pure amorphous form. For example, Taylor and Zografi

identified that in solid dispersions of indomethacin with PVP, the polymer carbonyl

group forms hydrogen bonds with the carboxylic acid moiety of the drug [100]. This

intermolecular interaction was later shown to stabilise these solid dispersions with respect

to crystallisation by preventing the dimerization of the drug which was known to act as

a nucleation point in its crystallisation [157]. Khougaz and Clas also suggested that the

inhibition of crystallisation of compound MK-0591 from solid dispersions with PVP and

PVP/VA was due to the formation of an ion-dipole interaction between the PVP carbonyl

group and the COO−Na+ moiety of the drug [158]. Vasanthavada et al added weight to

the argument that the formation of drug-polymer interactions leads to improved physical

stability of solid dispersions with respect to phase separation and crystallisation when

they found that solid dispersions of indoprofen, which has a proton donating group,

was miscible with PVP, unlike griseofulvin, which did not contain any proton donating

groups [59]. Shibata et al carried out a broader study that investigated the physical

stability of several drug compounds when they were formulated as solid dispersions with

PVP-CL, and found that the amorphous state was maintained for at least 6 months for

drugs containing hydrogen-bond donor groups, irrespective of their melting points or

molecular weights. Once again, it was suggested that in these compounds a hydrogen-

bond was formed between the drug and the carbonyl group of the polymer. Conversely,
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the amorphous state was not maintained in the drug compounds without hydrogen-bond

donating groups. Additionally the type and number of hydrogen-bond donating groups

in the drugs was not shown to have an effect on solid dispersion formation in this study

[48].

Of particular influence on the work detailed here, are the studies carried out

by Lynne Taylor’s group. One series of experiments investigated inhibition of felodipine

crystallisation by three different polymers; PVP, HPMC and HPMCAS. It was found that

all three polymers were effective in inhibiting crystallisation in the absence of moisture,

and a correlation between the nucleation rate and the Tg of either the drug of polymer, or

the strength of the drug-polymer hydrogen-bonds could not be determined. Therefore, it

was suggested that the kinetic barrier to crystal nucleation was increased proportionally

with polymer loading [87]. Analysis of the same systems after storage in the presence

of moisture showed that a decrease in Tg of the solid dispersions occured due to the

absorption of more water by the samples as a result of the addition of the hydrophilic

polymer. This indicates an increase in molecular mobility and would suggest a greater

propensity for drug crystallisation, but the nucleation rate of felodipine was still found

to be lower in the solid dispersion samples than the pure drug samples [56]. More

recently, it was shown that crystallisation of felodipine from bulk solid dispersions stored

in humid conditions was more rapid when relative humidity levels were greater than

75%. Moreover, it was shown that crystallisation of felodipine from PVP was faster than

from HPMCAS, and this was attributed to PVP absorbing more water than HPMCAS.

Crystallisation of felodipine was shown to reach a kinetic plateau, whereby a fraction

of the drug remained amorphous even after 500 days or more [60]. Another series of

studies compared the tendency of two structurally related 1,4-dihydropyridine calcium

channel blockers to crystallise from solid dispersions with PVP. The first study, carried

out in the absence of moisture, concluded that the tendency for nifedipine to crystallise

more readily from solid dispersions with PVP than felodipine could not be predicted

from parameters commonly measured by DSC such as Tg and molecular mobility, as
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these values were virtually the same for the two drug compounds tested. Instead, it was

concluded that the tendency for the drug to crystallise from the solid dispersion was

related to the readiness of the pure substance to crystallise from the amorphous form

[91]. A subsequent study, in which the same samples were stored in humid conditions

suggested the reason for nifedipine to crystallise more readily than felodipine was because

it exhibits a higher level of supersaturation in the polymer, and also takes up more water,

which acts as an anti-solvent [93]. The following study aims to build upon the work by

Lynne Taylor’s group by providing further insight into how the molecular structure of

felodipine impacts on the physical stability of its solid dispersions.

This study, set out to further test the hypothesis that strong intermolecular bonds

between drug and polymer molecules in a solid dispersion lead to increased physical sta-

bility with respect to crystallisation. It could be considered that these drug-polymer

interactions might aid physical stability in two ways. Firstly, that the interactions act to

complex the drug to the amorphous polymer, and hence, ‘fix’ the drug molecules in an

amorphous arrangement. Secondly, these intermolecular bonds may serve to block the

functional groups involved in competing drug-drug interactions that would potentially

otherwise lead to drug crystallisation. It was also proposed that the disruption of com-

peting drug-drug intermolecular bonding motifs that would lead to crystallisation of the

API, could occur through engineering the drug molecule in such a way as to make any

drug-drug interactions weaker or less likely to form. Therefore, the aim of these experi-

ments was to use observations of the ability of copovidone to inhibit the crystallisation

of the felodipine molecular analogues synthesisised in chapter 3 to further understand

what molecular interactions might lead to the formation of physically stable solid disper-

sions. The crystallisation of the analogues formulated as solid dispersions was observed

over time when stored under a range of environmental conditions, and compared to the

performance of felodipine in the same tests. As studies in the literature have already

shown that hydrogen bond formation between the drug and the PVP carbonyl leads to

improved physical stability of the solid dispersion, it was our hypothesis that removal of
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the hydrogen-bond donor NH group from felodipine would lead to rapid crystallisation

of the drug. Further to this we were interested to determine the effects of changing

other felodipine functional groups on the ability of copovidone to inhibit crystallisation

of the drug.

Experimental Design

A key concern in the design of these experiments was that only very limited amounts

of material were available for some of the analogue compounds (in some cases only

100 mg) and this placed constraints on which analytical techniques could be used for

sample monitoring and the number of storage conditions used during the experiments,

as well as the number of repeat samples that could be produced. In previous studies,

measurements of sample Tg by DSC provided the means for testing [157], but using

this method would require a minimum of 20 mg of material for just one set of samples

(with drug loadings of 100%, 50%, 30% and 15%), with no repeat analysis, held under

only one set of storage conditions for 5 experimental timepoints. Additionally, the

DSC run for a single sample could take upwards of 30 mins, meaning that an absolute

maximum of 48 samples could be analysed in a 24 hour period (not taking into account

sample preparation time, and assuming that the instrument had an autosampler). The

combination of all these factors indicated that analysis of the samples by DSC was not

a viable option.

Raman mapping initially seemed like a suitable alternative to DSC analysis, how-

ever this method was discounted for two reasons: firstly on account of the amount of

time required to map a single well in the plate, and secondly because some of the

compounds fluoresced. Therefore, polarised light microscopy was selected as the most

suitable method for analysing the well-plates.

Polarised light mocroscopy was chosen for several reasons. Firstly, the process of

taking an image of a sample is quick and easy, particularly if the microscope is equipped

with a motorised X,Y stage that can be programmed to automatically ‘read’ the well-
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plate. Microscopy is also a cheap and simple analytical method, which makes it ideal for

analysing a large number of samples. Using cross-polarised light to analyse the samples

means that crystals will be spotted as soon as they are above the lower size limit for

detection. The resolution d, of a microscope is given by:

d = λ/2NA (5.4)

where the wavelength of the incident light (λ) is usually assumed to be 550 nm

(the wavelength of green visible light), and NA refers to the numerical aperture of the

objective in use. The highest practical NA when imaging in air is usually 0.95, and this

would result in a resolution of 290 nm.

Although imaging a single well in a plate is a quick process, analysis of all the

samples is still a time-consuming process due to the number of them. As a result of

this, and the fact that the well plates would be removed from their storage conditions

during the analysis, it was determined that the shortest time interval between analyses

would be 1 day. Therefore, it was scheduled for the well plates to be analysed after

storage for 1 day, 2 days, 1 week and then weekly thereafter for 7 weeks.

5.2.2 Materials

Preparation of well-plates

Solid Dispersions of felodipine (AstraZeneca) or molecular analogue (See Chapter 3) in

copovidone (Kollidon VA64, BASF) were produced by casting from chloroform (Fischer

Scientific).

Wells in the well-plates were known to have a capacity of 400 µL, and it was

determined that there should be approximately 1 mg of material in each well in or-

der to detect the crystallisation. Therefore, a solution was prepared for each of the

analogue compounds (including felodipine) and copovidone with a concentration of 2.5

mg/mL. Using a multi-channelled pipettor, different ratios of the analogue and polymer

solutions were dispensed into the well plates such that 400 µL of solution in total was
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placed in each well, so that solid dispersions of 100%, 50%, 30% and 15% drug loading

were present in each plate in duplicate (see Figure 5.10). The solvent was flash evap-

orated from the well plates, which were then placed immediately in a pre-heated oven

under a nitrogen flow for 30 minutes. The samples were then quench cooled to room

temperature.

Figure 5.10: A schematic to show the layout of samples in well plates for crystallisation
studies. Each well plate was prepared in triplicate to enable storage in three different
stability testing rooms.

As a result of DSC experiments in Chapter 4, it was determined that different

compounds required their solid dispersions to be annealed at different temperatures.

To aid in sample preparation, two annealing temperatures were used, and the samples

were prepared in separate well-plates accordingly. Felodipine, ZAL 005, ZAL 006 and

ZAL 009 were annealed at 180◦C, and ZAL 001, ZAL 007, ZAL 010 and ZAL 011 were

annealed at 130◦C. Each well plate was produced in triplicate to enable storage of the
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samples under three different environmental conditions.

The well plates took a day to prepare, and so they were stored overnight in sealed

containers with desiccant in a fridge at 5◦C, prior to initial analysis by polarized light

microscopy.

5.2.3 Methods

Polarized Light Microscopy

Crystallization of the drug compounds from their respective solid dispersions was followed

by polarized light microscopy. An Olympus IX50 Inverted Microscope (Tokyo, Japan),

equipped with motorised X,Y,Z stage (H107PIX model, Prior Scientific, Fulbourn, UK),

and camera (JVC KY-F55B 3-CCD, Yokohama, Japan) was used. Images were taken

at 2x magnification using Image Pro Plus version 7.0 software (Media Cybernetics, Inc.,

Maryland , USA). Samples were analyzed using polarized light with an analyzer (model

IX-LWPO, Olympus, Tokyo, Japan) set to 90◦ with respect to the polarizer.

Storage and sampling

The well plates were first imaged by polarized light microscopy prior to storage in

environmentaly-controlled stability testing rooms. Due to the time-consuming nature

of this analysis, and the fact that the well plates would be removed from their storage

conditions during this time, it was determined that the shortest time interval between

analyses would be 1 day. Therefore, it was scheduled for the well plates to be analysed

after storage for 1 day, 2 days, 1 week and then weekly thereafter.

The well-plates were stored in stability rooms with conditions of 25◦C/60% Rel-

ative Humidity (RH) and 40◦C/75% RH, and in an oven set at 40◦C. The well-plates

stored in the stability rooms were stored in open boxes, and the plates stored in the oven

were stored in an air-tight tin containing desiccant, to ensure 0% RH for those samples.
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Figure 5.11: Example grid of images obtained from crystallisation experiments. This
example shows the images obtained for solid dispersions of ZAL 011 with ranging drug
loadings stored at 25◦C/60% Relative Humidity over 7 weeks.

5.2.4 Results and Discussion

The images obtained from the well-plate crystallisation experiments were arranged in

grids like the example shown in Figure 5.11 in order to better observe trends in crystalli-

sation with respect to time, drug-loading and storage conditions. The grids are organised

with 10 images in the horizontal direction; one image for each sampling timepoint, and

eight images vertically; two images, one below the other, for each of four drug loadings.

Each analogue has three image grids associated with it - one for each storage condition.

All of the images obtained from these experiments can be seen in Appendix A, and the

results of these experiments are summarised in Table 5.1.

Firstly, an assessment of the felodipine samples shows that whilst the 100%

drug material crystallised rapidly after storage in all three conditions, solid dispersion

formation with copovidone was able to successfully prevent the nucleation of any crystals
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Table 5.1: Table summarising the results of the well-plate crystallisation experiments.
Duplicate samples were tested, and both results for each condition are detailed in the
table. The numbers indicate the sampling day on which evidence of crystallisation was
first seen for that sample; 0 denotes that crystals were seen during the initial analysis
carried out prior to storage of the well-plate; ‘-’ denotes that no evidence of crystallisation
was observed for this sample for the duration of the experiment (49 days).
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at all three drug-loadings. This supports previous work by Konno and Taylor, which

showed that the crystallization of felodipine could be inhibited when formulated as a

solid dispersion with either PVP or HPMC [87].

Upon assessment of the crystallisation behaviour of the solid dispersions con-

taining the felodipine analogues, ZAL 001 in particular stands out, as no crystals are

observed for this compound at any drug loadings under any conditions. Based simply

on the hypothesis that intermolecular interactions between the drug and polymer in a

solid dispersion influence its physical stability, this compound was originally expected to

perform less well than felodipine due to the lack of the secondary amine hydrogen-bond

donor. However, the absence of crystallisation in samples containing this compound is

simply explained when we are reminded from observations detailed in chapters 3 and 4

that this compound is an oil at room temperature, and for this reason would not be

expected to crystallise.

If we move on to analyse the crystallisation of the remaining analogues, it can

be seen that there is an overall trend for the relative humidity at which the samples

are stored to have a greater impact on the rate of crystal nucleation and growth than

temperature. This can be seen for 100% samples of compounds ZAL 005, ZAL 006

and ZAL 007, which all crystallise at earlier timepoints when stored at 40◦C/75%RH

compared with samples stored 40◦C/0%RH. Also, it can be seen that solid dispersion

samples of ZAL 010 and ZAL 011 that crystallise out when stored at 25◦C/60% RH and

40◦C/75% RH, do not crystallise when stored at 40◦C/0% RH. It is well known that

in general amorphous materials are more hygroscopic than their crystalline counterparts

[159, 160], and also that the presence of water can cause the plasticization (i.e. the

lowering of the Tg) of both the polymer and drug [161, 162]. Therefore, it can be

seen how the combination of these two factors during the storage of the samples at

25◦C/60% RH and 40◦C/75% RH, leads to an enhancement of molecular mobility, and

with time, the crystallisation of the drug.

The 100% drug sample of the des chloro diethyl ester analogue, ZAL 005, was
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shown to crystallise early on in the study under all conditions. This correlates with

the results of the PDF experiments detailed in chapter 4, which suggested that due to

the ordering of this compound to a greater length scale than the other analogues in

the amorphous state, recrystallisation would occur more readily. The solid dispersions

containing ZAL 005 did not crystallise when stored at 25◦C/60% RH or 40◦C/0% RH,

but in contrast, all of the solid dispersions stored at 40◦C/75% RH (regardless of the

level of drug loading) crystallised after just one day.

ZAL 007 (the diethyl ester analogue) is structurally the most similar analogue

to ZAL 005, in that the only difference between these two molecules is the presence of

the chlorine subtituents on the phenyl ring of ZAL 007 which are absent in ZAL 005.

Therefore, we may conclude that any discrepancies in performance between these two

compounds during the stability tests are likely to be due to these molecular differences.

Whilst the samples of 100% ZAL 007 crystallised at an early timepoint under all storage

conditions, none of the solid dispersion samples gave indications of crystallisation, even

under the accelerated conditions of 40◦C/75% RH. As the only molecular difference

between ZAL 005 and ZAL 007 is the chlorine substituents on the phenyl ring, it may

be supposed that either the presence of the chlorine atoms contribute to drug-polymer

interactions, or, that the lack of chlorine atoms is more favourable to the crystallisation

of the compound. It has previously been shown that in the felodipine crystal lattice,

the plane of the phenyl ring bisects the dihydropyridine (DHP) of another felodipine

molecule [144]. If an ortho-substituent is present on the phenyl ring, as in the case of

felodipine, it must be oriented so that this substituent points away from the DHP due to

the steric strain that might otherwise be imposed on the 3,5-diester groups. Therefore,

it seems logical to suggest that if the phenyl ring does not have any substituents (as in

the case of ZAL 005) there is no energy barrier resulting from steric strain that would

hinder the phenyl ring bisecting the adjacent DHP, and hence explaining why such a

compound may crystallise more readily (see Figure 5.12). Additionally, the 3,5-diesters

are shielded by the ortho-substituents on the phenyl (as in the case of felodipine and
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ZAL 007), meaning that they are less accesssible for drug-drug hydrogen-bonding [144],

and therefore such compounds would be less likely to crystallise.

(a) (b)

Figure 5.12: Images showing how entropy of crystalisation is lower for chlorine substi-
tuted analogues (a) compared with analogues without chlorine substituents (b) due to
the restriction for only π face-to-face stacking, compared with the additional possibility
of π edge-to-face interactions when there are no chlorine substituents.

ZAL 007 also has a very similar molecular structure to felodipine, in that the

two compounds only differ by one carbon unit on one of the ester chains. Despite this

difference, felodipine and ZAL 007 performed in a very similar manner with respect to

crystallisation, and therefore we can suggest that the extra carbon unit in ZAL 007 has

very little affect on intermolecular interactions with copovidone.

ZAL 011 is also similar to the diethyl ester analogue, ZAL 007, and differs only

in the addition of a methyl group on the nitrogen of the DHP. Despite this small change,

the performance of ZAL 011 was much poorer than ZAL 007, as not only did the pure

drug crystallise immediately under all three storage conditions, but also, all of the solid

dispersions stored at 40◦C/75% RH, and the 50% drug-loaded dipsersions stored at

25◦C/60% RH crystallised before the study concluded. These results indicate that,

as predicted, the secondary amine in felodipine is key to the formation of physically
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stable solid dispersions, and this is because it participates in hydrogen-bonding with

the carbonyls present in the vinylpyrrolidone rings of copovidone, as shown previously

by Konno and Taylor for felodipine/PVP systems[87]. In considering the influence of

intermolecular interactions on the formation of stable solid dispersions, it should not

be forgotten that this process is competing against the process of drug crystallisation,

which is itself directed in many ways by the formation of intermolecular bonds. It is

well documented that the amine in felodipine is involved in hydrogen bonding with

the carbonyls of other felodipine molecules in its pure state, in both crystalline and

amorphous forms [163, 91]. For the analogue ZAL 011, the hydrogen bond donating

amine has been blocked, and therefore the ability for the molecule to hydrogen bond

with itself in this way is lost. Nevertheless ZAL 011 crystallises more readily than

ZAL 007, and this suggests that the free energy difference between the amorphous and

crystalline states of ZAL 011 is greater than for ZAL 007. This must indicate that there

are intermolecular interactions that occur between molecules of ZAL 011 other than the

hydrogen bonds between the amine and carbonyl in order to drive crystallisation of the

pure drug.

ZAL 006, the mono nitrile compound, was the only analogue for which the pure

drug did not crystallise at 25◦C/60% RH. However, at other storage conditions the

100% drug samples crystallised at an early timepoint. The solid dispersion samples did

not show any evidence of crystallisation under any of the conditions tested. It may be

that the replacement of one of the strong hydrogen-bond accepting ester carbonyls with

a weaker hydrogen bond acceptor in the form of a nitrile has resulted in less difference

between the free energies of the crystalline and amorphous forms of this compound.

This would mean that amorphous felodipine or ZAL 007 are more likely to crystallise

than ZAL 006, as their crystalline forms will have a lower energy potential than the

crystalline form of ZAL 006. Additionally, the ability for ZAL 006 to hydrogen bond with

copovidone is not lost by the presence of the nitrile group, and so the solid dispersion

samples are more stable than the pure drug samples, which would explain why they do
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not crystallise.

Moving on to compare ZAL 006 with the des-chloro mononitrile compound,

ZAL 009, it is once again evident that the presence of chlorine substituents on the

phenyl ring leads to the formation of more stable solid dispersions. This is because not

only had the samples of pure ZAL 009 readily crystallised under all storage conditions,

but also all of the solid dispersion samples stored at 40◦C/75% RH had crystallised by

the end of the experiment. Also, comparison of ZAL 009 with the des-chloro diethyl

ester, ZAL 005, further supports the theory that the weaker nature of the nitrile as a

hydrogen bond acceptor than the carbonyl reduces the difference in free energy between

the crystalline and amorphous forms, as the ZAL 009 solid dispersion samples take longer

to crystallise at 40◦C/75% RH than the ZAL 005 solid dispersions.

Swapping the remaining ester group on ZAL 009 for an additional nitrile leads

to analogue ZAL 010, which also lacks the presence of chlorine substituents on the

phenyl ring. ZAL 010 was found to be the least stable of all the analogues with re-

spect to crystallisation, as not only was crystalline material detected in all samples of

pure ZAL 010 prior to storage, but crystallinity was also observed in most of the solid

dispersion samples stored at 25◦C/60% RH and 40◦C/75% RH prior to their storage.

The plates due to be stored at 40◦C/0% RH were held under the same conditions

in the same place as the other two plates prior to being placed in the stability rooms,

and so the absence of crystals in the solid dispersion samples in this plate prior to

storage is difficult to understand. However, one suggestion may be that nanocrystalline

material that was too small for detection by polarised light microscopy formed in the

plate destined for storage at 40◦C/0% RH, but that once this plate was placed in storage,

these nanocrystallites did not sufficiently grow any further to enable their detection.

5.2.5 Conclusions - Well-plate crystallisation experiments

These experiments have identified trends in crystallisation tendency with respect to

the molecular structure of the drug compound. It has been shown that blocking the
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amide group of felodipine prevents the formation of hydrogen bonds between the drug

and polymer that are required to maintain drug amorphicity. Additionally, the absence

of chlorine substituents on the phenyl group leads to more rapid crystallisation of the

drug as drug-drug interactions are strengthened in two ways: Firstly, because there is no

steric hindrance to the phenyl ring bisecting the DHP in the crystal lattice; and secondly,

because there is no shielding of the diester carbonyls, thus making drug-drug hydrogen

bonding more favourable. The substitution of one of the ester groups with a nitrile group

also appeared to lead to the formation of more physically stable solid dispersions. These

experiments have shown how important it is to study the drug molecule as a whole, and

investigate the variety of both drug-polymer and competing drug-drug intermolecular

bonding interactions that can occur in order to understand the physical stability of a

solid dispersion.

5.3 Future Work

It is the author’s opinion that with further investigation the laser light scattering ap-

proach could eventually be successfully developed to detect phase separation in film

solid dispersion samples, as has already been shown to be possible for polymer blends.

In order to do this the next step would be to identify a system that is known to phase

separate, and use this as a model to refine the technique. The sample cell of the light

scattering instrument could also be used to enable experiments under humid conditions,

and it would be of particular interest to determine whether or not such experiments could

be undertaken without the risk of water vapour at high relative humidities scattering

the light in addition to the sample. If it could be shown that such experiments are prac-

tical, experiments on the felodipine/copovidone solid dispersions under such conditions

might be used to further support the data obtained from the well-plate crystallisation

experiments by highlighting changes that occur prior to crystallisation in samples stored

under humid conditions.

In the case of the well-plate crystallisation experiments, it is clear that the amount
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of available analogue material was the limiting factor in the scope of the experiments

that could be carried out. However, there are a number of improvements that could be

made to the experimental protocol if these experiments were to be repeated. Firstly,

it appeared that in many cases if the compound crystallised out, it did so within a

week, and that analysis of a sample at a particular timepoint would show the well to be

completely filled with crystals when at the previous timepoint there had been no evidence

of crystal nucleation. Therefore there may be a better time-resolution to the data if

sampling occured at more frequent timepoints, particularly during the initial two weeks

of the study. With these additional timepoints, it may have been possible (provided

that the sample wells were imaged in exactly the same region at each timepoint) to

determine crystal nucleation and growth rates for the analogues as demonstated in the

literature [87, 56, 93]. If unlimited amounts of anaolgue material were available, it also

follows that solid dispersions with a wider range of drug loadings could be tested during

storage under additional conditions, to provide a more detailed understanding of the

differences between the analogues and their crystallisation mechanisms.

If both the laser light scattering and well-plate crystallisation experiments were

further developed in the ways outlined above, future work would ideally involve com-

bining the two approaches to provide a high-throughput screening method for detecting

(and understanding) the onset of phase separation and ultimately crystallisation.
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Chapter 6

Dissolution Performance of

Felodipine-based Solid Dispersions

6.1 Introduction

As discussed in Chapter 1, it is important for a drug compound to have a good dis-

solution profile and acceptable aqueous solubility levels, as this in turn influences the

amount of drug available for absorption from the GI tract into the systemic circulation

[164]. Therefore, it is imperative that poorly soluble APIs formulated as solid dispersions

demonstrate an enhanced dissolution profile compared with the free drug. In most cases,

this means faster initial dissolution rates, and higher solution concentrations achieved

and maintained for longer for drugs formulated as solid dispersions.

Despite the large number of reports in the literature of dissolution enhancement

as a result of solid dispersion formation, the mechanisms by which dissolution enhance-

ment occurs are still not fully understood, and there are several theories as to the

release mechanism of the drug from the solid dispersion during dissolution, as explained

in Chapter 1.

It is well known that amorphous compounds have a solubility advantage over

more stable crystalline forms [78], and this is because the lattice energies associated
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with dissolving crystalline material are not present and do not need to be overcome

during the dissolution of amorphous materials. However, the actual measurement of

the ‘true’ solubility of an amorphous form is often challenging because precipitation and

crystallisation are likely to occur before the amorphous solubility is reached. Because of

the challenges associated with experimentally determining amorphous solubility, in silico

models have been developed to calculate this [165, 166, 167, 168]. Determining the

amorphous solubility of a drug is important for understanding the dissolution mechanisms

and physical structure of solid dispersions.

As has previously been alluded to in previous chapters, the physical structure of

a solid dispersion may have a significant impact on its dissolution profile. For example, a

molecular-level solid solution would be expected to exhibit better dissolution properties

than an equivalent solid suspension, due to reduction of the particles to their smallest

size [55]. Also, whilst incorporation of the drug into a polymer matrix is often a means

to stabilise the drug with respect to crystallisation, the polymer can also act to solubilise

the drug.

In this chapter, felodipine/copovidone solid dispersions will continue to be used

as a model system to interrogate the dissolution mechanism. Previous studies have

shown that the dissolution of felodipine can be enhanced when formulated as a solid

dispersion with PVP or HPMC [69, 88, 92, 94], but there appear to be no previous reports

in the literature about the dissolution enhancement of felodipine in formulations with

copovidone. The dissolution performance of solid dispersions containing the felodipine

analogues will then be investigated, and attempts will be made to relate dissolution

performance to the molecular structure of the analogue.

In Chapter 2 it was discussed that a variety of dissolution testing methods are

available to formulation scientists, and that each method has advantages and disadvan-

tages. In this study a combination of two dissolution methods will be used in attempts to

further elucidate the mechanisms responsible for the dissolution enhancement of felodip-

ine from solid dispersions. Firstly, the micro-dissolution method, which was used for the
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analysis of the majority of samples, is a technique which can be carried out using just

milligram quantities of material [169]. This enables formulation scientists to gain an

understanding of whether formulating a drug as a solid dispersion will produce a disso-

lution enhancement at an earlier stage of drug development, when there may be only

small quantities of drug compound available for testing. Dissolution testing with smaller

sample sizes is made possible with the use of fibre optic UV probes which negate the

need for continued removal of sample aliquots from the dissolution media, and therefore

allow for smaller dissolution vessels to be used. For this reason, the micro-dissolution

technique was ideal for use in this study, as limited quantities of analogue material were

available for testing. Additionally, the automated and frequent analysis made possible

by the use of the fibre optic probes, meant that ‘high resolution’ dissolution profiles

could be obtained.

“MRI dissolution” uses a flow-cell located within a magnetic resonance imager

to enable the non-invasive study of dissolution processes under a controlled liquid flow.

MRI has been used in previous studies to monitor water ingress into solid dosage forms

[170], but the measurements are usually made using a low volume of static water as

the dissolution medium. Because of this restriction it can be difficult to relate physical

processes such as water ingress, to the dissolution monitored in separate tests (e.g. using

USP I or II apparatus). Other studies which have sought to overcome this restriction

by performing MRI experiments on controlled release dosage forms located within USP

IV or other apparatus, in which the dissolution media flows past the tablet or capsule

[171, 172, 173]. In this study we have adopted a novel integrated measurement strategy

in which the UV absorbance of the re-circulating dissolution media from a USP IV-style

flow-cell is continuously recorded during imaging. Through simultaneous measurements

this enables changes in the dissolution profile to be directly related to the physical

changes occuring to the dosage form.
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6.2 Materials

Spray Dried Micro-dissolution Samples

For micro-dissolution testing, samples of spray dried material (see Chapter 4) were

weighed directly into the vials, such that the mass of drug was kept constant (2 mg),

and the maximum achievable felodipine concentration was 100 µg/mL in all experiments,

corresponding to 100 × the crystalline solubility of felodipine [88].

Compact Samples for MRI-flowcell

For analysis using the MRI-flow cell, the spray dried formulations (see Chapter 4) were

compacted. Unlike the micro-dissolution experiments, the same total mass of spray dried

formulation (500 mg) was used to produce each compact, and therefore with the changes

in drug:polymer ratio, there were different masses of drug in each compact, correspond-

ing to maximum felodipine concentrations of 50-500 µg/mL. Monolithic compacts with

dimensions of 7.5 × 3.0 × 20 mm were formed using a die in an IR press with 2000 kg

pressure.

6.2.1 Preparation of Solid Dispersion Films

Solid Dispersions Containing Felodipine

Solid dispersion films containing felodipine were prepared by solvent-casting directly into

the 20 mL vials. Samples were prepared such that the mass of drug was kept constant

(2 mg), and the maximum achievable felodipine concentration was 100 µg/mL in all

experiments, corresponding to 100 × the crystalline solubility of felodipine [88].

Solutions containing both felodipine and copovidone were produced such that

the concentration of felodipine in solution was fixed at 4 mg/mL, and the mass of

copovidone was adjusted to ensure the correct drug:polymer ratio for each sample.

Casting solutions were prepared in 80% methanol: 20% acetone v/v solvent mix. A

500 µL aliquot of the solution was pipetted into the dissolution vial, so that the mass
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of felodipine in each vial was constant at 2 mg. (For 5% drug-loaded samples, 1 mL

of 2 mg/mL felodipine solution was used instead, as the copovidone was not soluble in

such a small volume.) Where possible, the volume of solution was kept close to 500

µL to ensure the formation of uniform films from which the solvent could be rapidly

evaporated. The sample vials containing drug/polymer solution were inserted into a pre-

heated vial holder on a stirrer hotplate at 60-70◦C for 10-15 minutes until the solvent

had evaporated (checked visually). The samples were then annealed at 155◦C for 30

mins prior to use.

Solid Dispersions Containing Analogue Compounds

Only compounds ZAL 001, ZAL 005, ZAL 006, ZAL 007 and ZAL 011 were subjected

to dissolution testing as there were insufficient quantities of the other analogue com-

pounds. Due to the limited amount of available analogue material, the dissolution tests

for these compounds were carried out in smaller vials which had a capacity of 2.5 mL.

Again, samples were prepared such that the maximum achievable solubility of

each compound was 100 × the solubility of the crystalline compound. Because the

solubility of the compounds had not been measured, predicted solubilities were used

(see below for details), and multiplied by 2 to account for the raised temperature of the

experiments compared with the prediction. The mass of analogue in each vial was kept

constant for each series of experiments (see Table 6.1).

Samples were prepared by solvent-casting directly into the vials using the same

method described above, except that chloroform was used as the solvent, and annealing

was carried out at a temperature appropriate for the drug compound (see Chapter 5).

6.2.2 Pure Drug and Physical Mixture Samples

Felodipine Samples

To obtain the dissolution profile of pure crystalline felodipine by micro-dissolution, ap-

proximately 2 mg of the drug was dispensed directly into the 20 mL dissolution vessel.
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Amorphous felodipine samples were also prepared for micro-dissolution testing. These

samples were prepared by solvent-casting 500 µL of a 4 mg/mL solution prepared in

80% methanol: 20% acetone v/v solvent mix directly into the vial. The solvent was

flash evaporated as detailed above, and the samples were then annealed at 155◦C for

30 min prior to use.

In order to assess the impact of copovidone on the dissolution and solubility

of crystalline felodipine, physical mixtures were prepared by directly weighing ∼ 2 mg

felodipine and the required quantity of copovidone to give the required composition (15

or 50% w/w felodipine).

Felodipine Analogues

Pure drug and physical mixtures containing the felodipine analogues were prepared using

the same method as for felodipine, except for the following:

• the solvent used for casting amorphous samples was chloroform,

• the dissolution vessels had a volume of 2.5 mL,

• the mass of drug in the vial determined by the predicted solubility of the particular

analogue (see Table 6.1),

• the annealing temperature depended on the compound (see Chapter 5).

6.2.3 Dissolution Media

Blank Fasted-state Simulated Intestinal Fluid (FasSIF) was used as prepared by As-

traZeneca, Alderley Park Media Preparation Lab according to the following method:

1.74 g NaOH pellets, 19.77 g NaH2PO4• H2O (or 17.19 g NaH2PO4 anhydrous)

and 30.93 g NaCl are dissolved in 5 litres of deionized water. The pH is adjusted with

1N NaOH or 1N HCl to exactly pH 6.5 using a pH meter calibrated over the range pH

4 to 7.
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Dissolution tests of amorphous drug samples were also carried out using blank

FasSIF media which contained pre-dissolved copovidone at 2% w/v. These samples are

referred to as having been tested in ‘doped media’.

6.3 Methods

6.3.1 Solubility Prediction

Aqueous solubilities, used to calculate the mass of each analogue used in the dissolution

tests, were predicted using AstraZeneca in-house C-Lab software based on AstraZeneca

library compounds. These values correspond to the predicted molar solubility of the

compound in aqueous buffer at pH 7.4, and the data used to build the model comes

from solid solubility measurements, rather than DMSO solubility (see Table 6.1).

Amorphous Solubility Prediction

Amorphous solubility was calculated In Silico using the computational methods detailed

by Lüder et al [168], based upon their previous work [165, 166, 167] (see Table 6.1).

The charges of each of the components (i.e. the drug and the water) are taken into

account in this statistical model via the Lennard-Jones potential approximations. Then,

a statistical algorithm (Monte Carlo method) explores the possible metastable states of

the system and ascertains their relative likelihood to appear. Through the results of

these computations, it is possible to predict the likely solubility of the amorphous drug

in water.

6.3.2 Dissolution Methods

Micro-dissolution

Dissolution testing was carried out on the mg scale using µDiss™stirrer blocks (pION

Inc., Woburn, MA, USA) connected to a water bath (Julabo F34 with Julabo ME
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Table 6.1: Summary of the predicted crystalline and amorphous solubilities for the
felodipine analogues tested in this chapter, and the mass of analogue used in micro-
dissolution tests.!
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control unit), and with Fibre Optic UV detectors (Rainbow Dynamic Dissolution Monitor

System)(see Figure 6.1).

The fibre optic UV probes (5 mm pathlength) were calibrated for measurement

of wavelengths within the range of 200-380 nm prior to use with a standard of the

compound being tested. The µ-Diss™software (pION, Woburn, MA, USA) was used

to collect and analyse the UV/Vis absorbance data. UV/Vis spectra were recorded

according to the following schedule:

200 spectra with 5 sec intervals followed by

50 spectra with 30 sec intervals followed by

19 spectra with 1 min intervals followed by

84 spectra with 5 min intervals.

(total = 8hrs of spectra collection)

Additional spectra were recorded with 30 minute intervals if required.

The concentrations of dissolved drug were determined using the 2nd derivative

(to reduce particulate effects) of the UV absorbance in a suitable range for the particular

compound being tested (see Table 6.2). All experiments were performed in duplicate

at 37◦C. Felodipine experiments were carried out in 20 mL of media, with a cross-

shaped magnetic follower stirring at 300 rpm. Experiments with felodipine analogues
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Figure 6.1: Schematic of a single µDiss vessel.

were carried out in 2.5 mL of media, with a disc-shaped magnetic follower stirring at

300 rpm.

Table 6.2: Summary of the UV absorption ranges used to determine the solution con-
centrations of drug in the micro-dissolution experiments.
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High-Performance Liquid Chromatography (HPLC)

Samples for analysis by HPLC were prepared as follows: 300 µL of solution of interest was

centrifuged at 14000 rpm for 10 minutes and 200 µL of the supernatant was transferred
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Table 6.3: The HPLC method, mobile phase gradient used for analysisng the drug
content of dissolution samples.

Minutes % A % B

0 90 10
0.3 90 10
3.3 10 90
4.0 10 90
4.1 90 10

into a second eppendorf, and centrifuged again at 14000 rpm for a further 10 minute

period. An aliquot of 100 µL of acetonitrile was dispensed into a HPLC vial with an

insert, and to the acetonitrile, 100 µL of the double-centrifuged supernatant was added.

HPLC analysis was carried out using a Phenomenex Luna 5u C8 (2) 100 A

column in a Hewlett Packard instrument. The mobile phases used were: A = 100%

water + 0.1% Tetrafluoroacetic acid (TFA) B = 100% Acetonitrile + 0.1% TFA

The mobile phase was changed during the sample run according to the gradient

detailed in Table 6.3.

The detection wavelength was adjusted depending on the compound (see Table

6.2). The column was maintained at 40◦C, with a flow rate of 1.5 mL/min. The sample

injection volume was 5 µL.

This method is checked with 100% standard set at 100 µg/ml. Standards were

made up to give a nominal composition of 50/50 acetonitrile /water.

Solution concentrations were determined using the area under the chromato-

graphic peak for the compound under test with reference to a calibration solution of

known concentration.

MRI Flow-cell

The compacts were fixed inside a USP 4-type flow-cell (see Figure 6.2) constructed from

20 mm internal diameter glass tubing, through which 500 mL of blank FasSIF dissolution
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medium was circulated at a flow rate of 15 mL min−1. The extent of dissolution was

determined by continuous sampling of the medium using a 10 mm UV flow cell and

measuring the absorbance at 350 nm.

Figure 6.2: Schematic of the USP IV-style flow cell used in the MRI experiments.

The flow-cell was placed in the probe of a 400 MHz Bruker Advance NMR

spectrometer (see Figure 6.3). Data acquisition and processing was performed using

ParaVision software v4.0. Magnetic resonance images were acquired using a standard

single spin-echo multi-slice protocol to produce 16 × 1 mm thick horizontal and vertical

slices with a 1 mm slice separation. The field of view was 2.5 cm and split into a

2D matrix of 256 × 256 pixels giving an in-plane resolution of 0.0098 cm/pixel. The

effective echo time was 8 ms and the repetition time was 1 s. No correction for T2

relaxation was applied to images; the repetition rate was chosen to give good contrast

between the hydrated gel layer and the buffer. Experiment time for acquisition of 16

slices was 4 mins 16 s. The extent of hydration and gelation was followed by measuring

the dimensions of a single horizontal slice through the monolith (see Figure 6.4) as a

function of time.
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Figure 6.3: Schematic of the MRI flow-cell system with in-line UV monitoring.

Figure 6.4: Diagram showing the monolithic compact and an example cross-sectional
image obtained by MRI.

6.3.3 Complimentary Measurement Techniques

XRPD

X-ray powder diffraction data were collected on a Bruker D4 Endeavor diffractometer

in reflectance mode. Compacts were gently powdered in a mortar and pestle prior to

analysis. The powder samples were then smeared onto zero-background silicon wafer

sample holders. Each sample was exposed to CuKα1 and 2 radiation with an average

wavelength of 1.5418 Å, for 0.03 s per 0:00570◦ 2θ increment (continuous scan mode)
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over the range 2◦ to 40◦ in theta-theta mode. The operating voltage was 40 kV and

the operating current was 40 mA.

6.4 Results and Discussion

6.4.1 Felodipine Dissolution

Micro-dissolution - Film-Cast and Spray Dried Samples

A summary of all the results from the micro-dissolution experiments on felodipine sam-

ples can be found in Table 6.4. Crystalline felodipine demonstrated a poor dissolution

profile with an 8-hour solubility level of 0.41 µg mL−1, which was similar to the value

obtained by Karavas et al [88]. The amorphous felodipine material demonstrated an im-

provement in initial dissolution rate, and gave a peak solubility level of 0.90 µg mL−1,

this level was not maintained, and the 8-hour solubility of the material was found to

be the same as for crystalline felodipine material. The initial dissolution rate and maxi-

mum solution concentration of amorphous felodipine in media containing pre-dissolved

polymer were both almost a factor of 10 greater than for the amorphous sample. In

addition, the 8-hour solubility of the amorphous felodipine in doped media was higher

than that of either of the pure drug samples at 2.82 µg/mL.

When crystalline felodipine was formulated as a physical mixture with copovi-

done, improvements in the initial dissolution rate and the equilibrium solubility level,

compared to the crystalline felodipine, were observed across all drug loadings (Figure

6.5). It was also noted that the maximum solution concentration of the crystalline

felodipine was maintained in the presence of the copovidone, rather than the felodipine

precipitating out of solution as had been observed with the amorphous material. It was

also interesting to observe that the maximum solubility for all of the physical mixture

samples was higher than that observed for the amorphous felodipine samples, but of a

similar order to the amorphous felodipine sample in doped media. However, the maxi-

mum solution concentration of the amorphous samples in doped media was higher than
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Table 6.4: Summary of the data from micro-dissolution experiments carried out on
samples containing Felodipine. Data are reported as mean values ± standard error.
All equilibrium solubility values were determined from the micro-dissolution data at 8
hours. a Equilibrium solution concentration values could not be determined for the 5%
drug-loaded film-cast samples as the solution concentration did not drop to equilibrium
levels within the 8 hour experimental time frame.!"#$%&'&(")&**(+,-#".
.
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for the physical mixtures, due to the amorphicity of the drug in these samples. This

was despite the initial dissolution rate for all loadings of the physical mixtures being

less than for the amorphous felodipine (except the 5% felodipine physical mixture which

had an initial dissolution rate of 1.15×10−3 µg mL−1 s−1). These results both indicate

that the amorphous felodipine is crystallizing on contact with the aqueous media and

preventing the theoretical amorphous solubility to be reached, and that copovidone has

a solubilising effect on crystalline felodipine.

The dissolution profile of felodipine was significantly enhanced when it was for-

mulated as a solid dispersion with copovidone (see Figures 6.6 and 6.7). The initial
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Figure 6.5: Dissolution profiles from micro-dissolution experiments of crystalline felodip-
ine (black plot), amorphous felodipine (grey plot) and physical mixtures of crystalline
felodipine with copovidone at drug loadings of 50% (red plot), 30% (pink plot), 15%
(green plot) and 5% (blue plot). Mean data is plotted (n=2).

dissolution rates for both the spray-dried and film-cast materials were shown to be much

higher than for the pure drug or physical mixes; and although the maximum solution

concentrations were not maintained, they were also shown to be much higher than for

either the pure felodipine or the physical mixes (see Table 6.4). Of particular interest

was the observation that the performance of the solid dispersion formulations appears to

be highly dependant on the drug loading, with the solid dispersions containing less drug

exhibiting higher initial dissolution rates (Figure 6.8), higher maximum solution concen-

trations (Figure 6.9) and maintaining the maximum solution concentration for longer.

The initial dissolution rate and maximum solution concentration are highly correlated, as

shown in Figure 6.10, and this suggests that dissolution is driven by solubility. However,

it was noted that the maximum solution concentration for the 50% drug loaded solid

dispersions (2.02 µg mL−1) was no higher than the level achieved for the equivalent

physical mixture (2.08 µg mL−1). It was also observed that upon precipitation of the

drug from solution for the solid dispersions, the concentration of drug in solution tended

towards similar plateau levels measured for the physical mixtures, which again supports
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Figure 6.6: Dissolution profiles from micro-dissolution experiments of spray-dried solid
dispersions of felodipine with copovidone at drug loadings of 50% (red plot), 30% (pink
plot), 15% (green plot) and 5% (blue plot). Inset shows the first 5 minutes of the
experiment in detail. Mean data is plotted (n=2).

other reports in the literature that indicate that the felodipine crystallizes from the solid

dispersions [88, 94], and it is in fact the aqueous solubility level of the crystalline drug

(influenced by dissolved polymer) that is observed.

It was noted that different extents of release were observed between the samples

prepared by the two methods for 15% and 50% drug-loaded solid dispersions. The spray

dried sample loaded with 15% drug performed better than its film-cast counterpart, and

this suggests that in this sample a higher percentage of the drug is molecularly dispersed

within the polymer. This may be a kinetic effect due to more rapid evaporation of the

solvent during spray drying. It was also observed that the 50% spray dried sample

achieved a much lower maximum solution concentration than its film-cast counterpart,

and it may be that this material was contaminated with residual crystalline material.
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Figure 6.7: Dissolution profiles from micro-dissolution experiments of film-cast solid
dispersions of felodipine with copovidone at drug loadings of 50% (blue), 30% (grey),
15% (green) and 5% (pink). Mean data is plotted (n=2).

Figure 6.8: The initial dissolution rate of the film-cast dried solid dispersion samples
as determined from micro-dissolution experiments plotted against drug loading. Mean
data is plotted (n=2) and error bars represent the std error.
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Figure 6.9: The maximum solution concentration of the film-cast solid dispersion sam-
ples as determined from micro-dissolution experiments plotted against drug loading.
Mean data is plotted (n=2) and error bars represent the std error.

Figure 6.10: The maximum solution concentration of the film-cast solid dispersions
plotted against the initial dissolution rate. Mean data measured from micro-dissolution
experiments is plotted (n=2) and error bars represent the std error.
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MRI-flowcell Dissolution Experiments - Spray Dried Compacts

The dynamic environment of the flow cell located within the MRI scanner better repre-

sents the conditions present in standard dissolution tests, compared with the static cells

used in MRI experiments detailed elsewhere in the literature. Therefore, MRI experi-

ments as detailed above were conducted on compacts of the solid dispersion material

in order to gain a better understanding of the dissolution of bulk material, the effect of

compaction on the material dissolution of the material, and to better understand the

mechanisms which lead to the dissolution profiles seen in the micro-dissolution experi-

ments. By linking the flow cell to a UV-vis spectrophotometer, we were able to record

a dissolution profile at the same time as monitoring the physical form of the compact.

Figure 6.11: Dissolution profiles for spray-dried solid dispersions of felodipine with
copovidone at drug loadings of 50% (red plot), 15% (green plot) and 5% (blue plot), as
recorded by UV spectrophotometry in MRI experiments. 30% drug loaded sample not
shown as the concentration levels were below the detection level of the UV spectropho-
tometer.

One of the findings of the MRI flow-cell experiments was the observation of a

clear divide in dissolution behaviour between the samples with low drug loading (5% and

15% felodipine) and higher drug loadings (30% and 50% felodipine). This is most clear
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from the UV spectrophotometry, in which the levels of drug released from the 30% and

50% drug-loaded compacts were below the level of detection for the instrument. This

was in comparison to the 15% loaded compact which reached a maximum solubility

level of 7.31 µg mL−1 from an initial dissolution rate of 2.2×10−3 µg mL−1 s−1, and

the 5% loaded compact which reached a maximum solubility of 12.75 g mL-1 from an

initial dissolution rate of 3.2×10−3 µg mL−1 s−1 (see Figure 6.11 and Table 6.5).

Table 6.5: Summary of the data from MRI-flowcell dissolution experiments carried out
on samples containing Felodipine. a Only data for 5% and 15% drug loaded samples is
shown as the levels of drug released from the 30% and 50% drug-loaded compacts were
below the level of detection for the UV/Vis instrument.
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Analysis of the dissolution profiles obtained from the MRI-flow cell experiments

corresponded with the data obtained in the micro-dissolution experiments, in that it

showed a clear correlation with drug loading. However, the maximum percentages of

felodipine dissolved were found to be significantly lower in the flow-cell experiments

than in the corresponding micro-dissolution experiments, and the maximum solution

concentration was maintained for a shorter duration. For the 5% loaded samples, the

drug release peaked at 96.29 µg mL−1 in the micro-dissolution experiments, compared

to 12.75 µg mL−1 for the MRI compact sample. The initial dissolution rate was also

found to be lower for the compact samples analysed in the MRI-flow cell experiments

(2.2×10−3 µg mL−1 s−1 for 15% felodipine loaded compact compared with 0.79 µg

mL−1 s−1 for the samples with same loading in the micro-dissolution experiments).

These differences between the MRI-flowcell and micro-dissolution experiments

may be due to a number of factors. Firstly, it is important not to ignore the fact that
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the fibre-optic probes are closer to the source of dissolving drug in the micro-dissolution

experiments than the UV flow cell is to the compact in the MRI experiment, and this

may lead to a time-lag in measuring changes in the solution concentration, leaving more

time for the drug to crystallise in the MRI-flowcell. Additionally, if crystallisation and

precipitation of the drug from solution is a continuous process, as has been suggested

elsewhere in the literature, there may be an introduction of errors associated with the

equilibration of the solution concentration between measurements, and there may have

been some deposition of precipitated drug on the inside of the connecting tubes between

the flow cell and the UV spectrophotometer. However, these reasons alone do not

appear significant enough to explain the observed differences. The main reason for

these differences between the UV measurements from the two experiments is likely to

be due to a change in dissolution mechanism for the compacts of spray dried material.

The effect of compaction would lead to the spray dried particles being compressed and

packed more closely, thus inhibiting water ingress into the compact compared with the

free-flowing powder, and hence could be a key explanation for the lower levels of drug

detected in solution in the MRI experiments.

Following the MR images obtained from these experiments, it can be seen that

the dimensions of the compacts change with time (Figure 6.12). When these changes

in dimension were plotted against time (Figure 6.13), it is clear that a distinction can

be made between the 5% and 15% drug loaded compacts, and the 30% and 50% drug

loaded compacts. The 5% and 15% drug loaded compacts demonstrate the same linear

rate of change in their dimensions of -0.02 mm s-1, which corresponds to erosion of

the compact. The 5% and 15% drug loaded compacts had both dissolved entirely after

120 mins. Conversely, the 50% drug loaded compact appears to swell as it is hydrated,

demonstrating increases in dimensions of 1.25 mm for the long side and 2.09 mm for

the short side of the cross-section, and shows no evidence of erosion.

The 50% drug loaded compact was still shown by the MR images to be completely

intact after 52 hours. The experiment was stopped at this time, and the compact was
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Figure 6.12: Example MR images of the 5% (top row) and 50% (bottom row) drug-
loaded compacts at a range of time points.

recovered from the flowcell. Similarly, the undissolved core of the 30% drug loaded

compact was also recovered from the flowcell after 24 hours. These compacts were

analysed by XRPD and the drug in these compacts was shown to have crystallised (see

Figure 6.14). The crystallisation of the drug in these two samples is likely to be via

solid-to-solid transitions on exposure to the aqueous dissolution media, as identified by

Alonzo et al [94], and this is likely to be one of the main contributing factors in the

swelling behaviour of these samples. From the MRI-flow cell experiments, there appears

to be a marked distinction between the lower loaded samples (5 and 15%) and the

higher drug loaded samples (30 and 50%) both in terms of the dissolution profiles and

the physical changes to the samples during the dissolution, thus indicating that there

are different processes dominating the dissolution mechanisms.
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Figure 6.13: Graphs to show the changes in the dimensions of the compacts in the MRI
experiments with time.

Figure 6.14: X-ray powder diffractograms of the compacted spray dried felodip-
ine/copovidone solid dispersions recovered from the MRI flow-cell experiments. The
samples with drug loadings of 30% (grey) and 50% (light blue) are shown. Diffrac-
tograms of crystalline felodipine (red) and copovidone (black) are also shown for com-
parison.
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Suggestion of a Dissolution Mechanism

By drawing upon key observations of the dissolution data presented here, a mechanism

can be suggested for the dissolution of felodipine from solid dispersions with copovidone.

The dissolution profiles for the physical mixture samples shows that copovidone

has a solubilising effect on crystalline felodipine. If we assume that a 1:1 complex is

formed between the drug and the monomer units in the polymer, a binding constant,

K11, can be calculated using equation 6.1:

St = S0 +
(K11S0Lt)

(1 +K11S0)
(6.1)

where S0 is the solubility of the crystalline drug in the absence of ligand (which in this

case is the polymer), St is the solubility of the drug in the presence of the ligand, and

Lt is the concentration of the ligand [174]. The binding constant calculated from the

physical mixture micro-dissolution data for felodipine and copovidone is 154.5 M−1 (see

Figure 6.15). If this binding constant is used in the same equation to determine the

influence of copovidone on the amorphous solubility of felodipine, it predicts that whilst

the effect is not negligible, it does not explain the solution concentrations observed in

the dissolution experiments. This is supported by observations that even in the presence

of the relatively high-polymer-concentration doped media, dissolution of the amorphous

drug film did not exceed the literature value for amorphous solubility of felodipine in the

absence of polymer.

If the solubilising effect of copovidone on felodipine is not significant, this sug-

gests that observations of concentrations of felodipine in solution above the amorphous

solubility, such as from 5% and 15% spray dried powders, is due to a significant pro-

portion of the drug being molecularly dispersed in the polymer. This would enable the

drug to be rapidly released into solution following the dissolution of the porous spray

dried powder, resulting in solution concentrations of the drug in excess of the amorphous

solubility.

Assuming that the maximum solution concentration levels observed in the micro-
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Figure 6.15: A plot of the aqueous solubility of felodipine in the presence of copovidone
(St ) against the concentration of the ligand copovidone (Lt). The linear fit from
this graph can be used to determine the binding constant (K11) for felodipine and
copovidone.

dissolution experiments of film-cast samples correlate with the amount of drug molecu-

larly dispersed in the solid dispersions, it then follows that the solubility of felodipine in

copovidone is approximately 5% w/w. This would lead to 100% dissolution of felodipine

from a 5% drug-loaded solid dispersion, 33% dissolution from a 15% loaded dispersion,

17% from a 30% loaded dispersion and 10% dissolution from a solid dispersion with a

drug loading of 50%. Reference to Figure 6.7 shows that these values are very close to

the maxima in the dissolution profiles. The low solubility of felodipine in copovidone

is also consistent with concentrations reported for solutions of felodipine in the struc-

turally similar polymer, PVP [75]. The extent of drug dissolution enhancement from

solid dispersions may therefore be limited in cases where the drug has low solubility in

the polymer, and this consequently means that higher (more practical) drug-loaded solid

dispersions cannot significantly improve drug bioavailability.

Taking into account these factors, and additional observations from the MRI

experiments, the suggested mechanism of felodipine release from these solid dispersion
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samples is as follows:

• Erosion, driven by the aqueous solubility of the polymer, initiates and continues

the dissolution of the compact (as observed by MRI).

• A boundary layer, in which there is a higher local concentration of drug, is formed

adjacent to the slowly dissolving compact.

• Super-saturation of the drug in the boundary layer drives the formation of amor-

phous nanoparticles and reduces the solution concentration of drug below the level

predicted by the analysis of the erosion.

• The dissolution profile of the 5% drug-loaded compact peaks around the litera-

ture value for the amorphous solubility of the drug [75], suggesting the presence

of amorphous particles. These act as a thermodynamic sink for the dissolving ma-

terial and limit the maximum solution concentration to the amorphous solubility

of the drug.

• Nucleation of crystalline material occurs. As the maximum solution concentration

for the 5% formulation approximates to the amorphous solubility, the crystalli-

sation process must have minimal contributions for this formulation. However,

as samples with higher drug loadings do not reach the amorphous solubility, this

suggests that crystallisation is a competing process from early in the dissolution

process.

• At 30% and 50% drug-loadings there is a switch from the erosion-driven process

to a swelling-dominated mechanism. The influence of crystalline drug on the

dissolution of the drug occurs from an earlier stage

It is believed that the mechanism outlined here can be used as a basis to develop

a model to describe the release of drug compounds from amorphous solid dispersions,

that could potentially be applied to other drug/polymer systems [175].
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6.4.2 Analogue Dissolution and Solubility - Micro-dissolution

The dissolution profiles for the analogue samples are shown in tables below, and numer-

ical data derived from the analogue dissolution experiments is summarised in tables in

Appendix B.

ZAL 001 is the aromatic felodipine analogue that is an oil at room tempera-

ture. As a crystalline form of this compound had not been produced, all of the samples

containing this compound were amorphous, and as such were expected to demonstrate

better aqueous dissolution than felodipine. Although all of the samples would be amor-

phous, solid dispersion samples were still prepared by film-casting for comparison with

the drug in its native form, in order to determine if the film casting process had an

impact on the performance of the drug.

Figure 6.16: Mean dissolution profiles of samples of ZAL 001 and the corresponding
physical mixture and solid dispersion samples (n=2). Profiles for the pure (unpro-
cessed) drug (black), film-cast drug (red) and film-cast drug in media containing 2%
w/v copovidone (purple) are shown alongside profiles for physical mixture samples loaded
with 15% (light blue) and 50% drug (light green), as well as film-cast solid dispersion
samples with drug-loadings of 15% (dark blue), 30% (grey) and 50% (dark green).

177



As predicted, this compound had a much higher maximum solution concentration

(5.87 µg mL−1) than crystalline felodipine and also amorphous felodipine. There was

virtually no difference between the two pure drug samples, despite the different sample

preparation methods. The addition of copovidone to the dissolution media, led to a small

increase in the dissolution rate of the drug (0.25×10−3 µg mL−1 s−1) compared to the

equivalent film cast sample dissolved in the absence of dissolved copovidone (0.15×10−3

µg mL−1 s−1), but did not significantly enhance either the maximum or equilibrium

solution concentrations. The physical mixture samples also exhibited small increases

in the initial dissolution rate and maximum and equilibrium solution concentrations

in a drug-loading dependent manner. These results indicate that copovidone has a

solubilising effect on the drug, but the increases in solubility as a result of this effect are

very small compared with the baseline values obtained for the pure drug compounds.

The dissolution profiles of the solid dispersion samples were somewhat erratic (see Figure

6.16, and a theory for this is that some form of degradation may have occured to the

drug during sample preparation that has adversely effected the dissolution behaviour of

the drug compound.

It can be seen that the maximum solution concentration does not scale with the

initial dissolution rate when these variables are plottted against each other for each drug

loading (see Figure 6.17), and this suggests that the dissolution of the drug does not

benefit from the addition of polymer. This result is not surprising considering that this

analogue is a liquid. It is interesting to note that the maximum solution concentration of

this compound does not reach the predicted amorphous solubility (1112 µ g/mL) despite

the compound being liquid, and this suggests that the amorphous solubility calculation

has over-estimated the amorphous solubility. It is possible that the amorphous solubility

calculations for the other analogues have similarly been over-estimated, but nevertheless,

this calculation can still give an indication of the ranking of the solubilities that can be

expected for the analogues.

Dissolution profiles of the samples containing the des chloro diethyl ester, ZAL 005
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Figure 6.17: Plots of maximum solution concentration against initial dissolution rate
for felodipine analogues ZAL 001 (black), ZAL 005 (red), ZAL 006 (green), ZAL 007
(blue) and ZAL 011 (grey). Mean data (n=2) is plotted and error bars represent the
standard error.

are shown in Figure 6.18 and the data from these experiments is detailed in Table B.2.

The crystalline solubility of this compound was low at 0.8 µg/mL, and following the

crystallisation experiments detailed in Chapter 5 it was expected that the amorphous

drug would crystallise very rapidly during the dissolution experiments, and exhibit an

equilibrium solubility equal to that of the crystalline sample. However, whilst the maxi-

mum solution concentration of 11.71 µg/mL could not be maintained, the sample did

not revert to the crystalline solubility, but was maintained at 1.7 µg/mL - twice the

equilibrium solution concentration for the crystalline sample. This may be due to the

crystallisation of the drug as a different polymorphic form.

The amorphous solubility was calculated at 1871 µg/mL for ZAL 005, and again,

none of the samples achieved this level. However, from the plot in Figure 6.17 it can be

seen that the maximum solution concentration increases with increased initial dissolution
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Figure 6.18: Mean dissolution profiles of samples of ZAL 005 and the corresponding
physical mixture and solid dispersion samples (n=2). Profiles for the crystalline drug
(black), amorphous drug (red) and amorphous drug in media containing 2% w/v copovi-
done (purple) are shown alongside profiles for physical mixture samples loaded with 15%
(light blue) and 50% drug (light green), as well as film-cast solid dispersion samples with
drug-loadings of 15% (dark blue), 30% (grey) and 50% (dark green). The inset shows
a zoomed-in area of the graph.

rate, indicating that dissolution is driven by the solubility of the drug.

Dissolution profiles of the samples containing the mono nitrile ester, ZAL 006 are

shown in Figure 6.19 and the data from these experiments is detailed in Table B.3. The

amorphous solubility was predicted to be 4917 µg/mL for this analogue - the highest

value of the analogues that underwent dissolution testing, and in Figure 6.17 it can be

seen that this compound also achieves the highest maximum solution concentration of

the analogues tested for the 15% drug loaded sample. Again, this suggests that whilst

the amorphous solubility has been over-estimated, it is still a useful tool to compare the

performance of analogous compounds relative to each other.

Dissolution profiles of the samples containing the diethyl ester, ZAL 007 are

shown in Figure 6.20 and the data from these experiments is detailed in Table B.4.
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Figure 6.19: Mean dissolution profiles of samples of ZAL 006 and the corresponding
physical mixture and solid dispersion samples. Profiles for the crystalline drug (black),
amorphous drug (red) and amorphous drug in media containing 2% w/v copovidone
(purple) are shown alongside profiles for a physical mixture sample loaded with 15%
drug (light blue), as well as film-cast solid dispersion samples with drug-loadings of 15%
(dark blue), 30% (grey) and 50% (dark green). The inset shows a zoomed-in area of
the graph.

The amorphous solubility was predicted to be 370 µg/mL for this analogue. In Figure

6.17 it can be seen that for this compound the maximum solution concentration and

initial dissolution rate are correlated, again suggesting that dissolution is driven by sol-

ubility. However, the solid dispersions generally have lower initial dissolution rates and

maximum solution concentrations than the equivalent drug-loaded samples for the other

analogues. ZAL 005 and ZAL 007 differ only by the presence of chlorine substituents

on the phenyl ring, but ZAL 005 samples have better dissolution profiles than ZAL 007

samples - a ranking that is supported by the predicted amorphous solubility values. Sim-

ilarly ZAL 007 and ZAL 006 only differ by the substitution of an ester side-chain for a

nitrile group, but again, ZAL 006 samples have better dissolution profiles than ZAL 007

samples - a ranking again supported by the predicted amorphous solubility values. This
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suggests that the nitrile group has improved the intrinsic solubility of the compound.

Figure 6.20: Mean dissolution profiles of samples of ZAL 007 and the corresponding
physical mixture and solid dispersion samples. Profiles for the crystalline drug (black),
amorphous drug (red) and amorphous drug in media containing 2% w/v copovidone
(purple) are shown alongside profiles for physical mixture samples loaded with 15%
(light blue) and 50% drug (light green), as well as film-cast solid dispersion samples
with drug-loadings of 15% (dark blue), 30% (grey) and 50% (dark green). The inset
shows a zoomed-in area of the graph.

Dissolution profiles of the samples containing the diethyl ester, ZAL 011 are

shown in Figure 6.21 and the data from these experiments is detailed in Table B.5. The

amorphous solubility was predicted to be 176 µg/mL for this analogue - the lowest of

the analogues tested. In Figure 6.17 it can be seen that for this compound the maximum

solution concentration and initial dissolution rate are again correlated, suggesting that

dissolution is driven by solubility. The maximum solution concentration of ZAL 011

is lower than for ZAL 005 or ZAL 006, but higher than for ZAL 007. However, in

general, samples of ZAL 011 achieve higher initial dissolution rates than for equivalent

ZAL 005, ZAL 006 and ZAL 007 solid dispersions. ZAL 011 is the N-methyl analogue,

and it may be that the better initial dissolution rates are due to blocking the hydrogen
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bond donating amine, leading to a reduction in crystalline lattice enthalpy, and hence

improving dissolution. It is also interesting to note that whilst the maximum solution

concentration does not reach the predicted amorphous solubility for any of the analogue

solid dispersions, the 15% drug loaded sample of ZAL 011 achieves a maximum solution

concentration closest to the amorphous solubility prediction.

Figure 6.21: Mean dissolution profiles of samples of ZAL 011 and the corresponding
physical mixture and solid dispersion samples. Profiles for the crystalline drug (black),
amorphous drug (red) and amorphous drug in media containing 2% w/v copovidone
(purple) are shown alongside profiles for physical mixture samples loaded with 15%
(light blue) and 50% drug (light green), as well as film-cast solid dispersion samples
with drug-loadings of 15% (dark blue), 30% (grey) and 50% (dark green). The inset
shows a zoomed-in area of the graph.

6.5 Conclusions

In this chapter it has been shown that it is important to select a dissolution testing

method that is appropriate for the aim of the experiments being carried out. The MRI

flow-cell instrument was ideal for providing additional information about the physical
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changes to the sample during the experiment that could be used to aid suggestions for

dissolution mechanisms. On the other hand, the micro-dissolution instrument was ideal

for providing as much information about the dissolution behaviour of a compound as

possible with the minimum amount of sample.

Across all of the dissolution experiments detailed in this chapter, it has become

clear that in general, the dissolution performance of a solid dispersion is inversely pro-

portional to the drug loading of the solid dispersion. Whilst the polymer may have

a solubilising effect on the drug, which is enhanced at higher polymer loadings, it was

shown for felodipine solid dispersions that this was effect was negligible. Instead, the dis-

solution enhancement resulted mainly from the proportion of drug that was molecularly

dispersed in the polymer, and although his proportion did not change with lower drug

loadings, it was a greater percentage of the drug incorporated in the solid dispersion,

meaning that maximum solution concentrations closer to 100% dissolution were achieved

for lower drug loaded samples. These observations enabled a dissolution mechanism for

solid dispersion systems to be suggested.

With the spray dried samples it was seen that the compacted samples achieved

a lower initial dissolution rate and maximum solution concentration compared with the

free-flowing powder tested in the micro-dissolution experiments. This highlights the

need to carefully consider the formulation of solid dispersion materials as tablets, and

contemplate the need for other excipients such as disintegrants to be incorporated in

the dosage form to ensure that the potential of the formulation can be realised.

For the analogue samples, it was shown that whilst amorphous solubility predic-

tions tended to over-estimate the amorphous solubility, the values obtained still provided

a measure by which the performance of the analogues could be ranked. It was also sug-

gested that the presence of the N-methyl group in ZAL 011 and the nitrile group in

ZAL 006 enhanced the dissolution performance.
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6.6 Future work

The first priority for future work would be to carry out dissolution analysis on the

analogues for which there was limited material, so that further correlations between

drug molecular structure and dissolution performance can be determined. Additionally,

the dissolution testing of solid dispersions with a wider range of drug-loadings may

provide a better indication of the dissolution mechanism for the analogue compounds.

If more material were availiable, it would also be interesting to carry out dis-

solution testing on samples that had previously been subjected to storage in physical

stability testing experiments, as this would provide a better understanding of both the

physical stability and dissolution performance of the analogues.

185



Chapter 7

Molecular Descriptors of

Felodipine Analogues and

Correlation With Measured

Properties

7.1 Introduction

The overall aim of this thesis, as outlined in Chapter 1, was to study the correlation

between the molecular structure of a family of drug compounds and the performance

of their respective solid dispersions. In Chapter 5 it was found that blocking the amine

hydrogen bond donating group in felodipine led to less physically stable solid dispersions,

which supported the findings from other work in the literature. However, it was also

seen that the absence of chlorine substituents on the felodipine phenyl ring decreased

the stability of the analogue with repect to crystallisation, and that the nature of the

dihydropyridine substituents at positions 3 and 5 also impacted upon the physical sta-

bility of the analogue solid dispersions. In Chapter 6 it was appeared that blocking the
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felodipine amine, and presence of a nitrile group led to an increased dissolution rate.

In this chapter, we will look to see if it is possible to quantitatively correlate the per-

formance of the analogue solid dispersions in the crystallisation screen and dissolution

tests, with molecular descriptors calculated in silico, as well as physical properties.

If it is possible to identify trends between molecular descriptors and experimental

data using a large enough test dataset, this approach could become invaluable to phar-

maceutical companies seeking to formulate compounds as solid dispersions for a number

of reasons. If a particular trend can be reliably identified, this knowledge could be used

to narrow the design space for the molecular structure of a drug compound which will

have both the desired pharmacological effect, and a greater chance of successful for-

mulation as a solid dispersion. This would result in a more economical and targeted

approach to drug discovery, whereby attrition of candidate drugs may be reduced, and

actively engineered to form a high performance formulation with a specific solid disper-

sion excipient. As a result, this would reduce spending on unviable drug candidates, and

lead to a greater number of poorly soluble compounds reaching the market.

7.2 Methods

7.2.1 In Silico Calculations

Calculations of pKa values

pKa values were calculated for the felodipine analogues using ACD software and pKa

database (ACD labs version 12.01, Advanced Chemistry Development, Inc).

Amorphous Solubility Prediction

Amorphous solubility was calculated In Silico using the computational methods detailed

by Lüder et al [168], based upon their previous work [165, 166, 167].
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C-Lab

Molecular descriptors were calculated using C-Lab (AstraZeneca) software. The results

of these calculations are shown in Appendix B. Most of these descriptors are calculated

based on quantum mechanics.

7.2.2 Thermal Properties

Correlations were also investigated between the thermal properties of the analogues

compounds (as determined in Chapter 4) and the performances of their solid dispersions

in crystallisation and dissolution experiments. The reduced temperature Tr, which is

the Tg/Tm ratio, was also calculated.

7.2.3 Scoring Analogue Performance

The process of identifying correlations between the experimental data and the molecular

and physicochemical descriptors of the drug analogues, is facilitated by scoring the

performance of the compounds in each of the experiments with numerical values. This

score must be devised in such a way as to capture all the data obtained from all samples

in that particular experiment, and also in such a way that it takes into account the

performance of the solid dispersions relative to the drug compound alone, or physical

mixture samples. The scoring systems devised and used in this study are described

below.

Scoring the Performance of the Analogues in the Crystallisation Experiments

As detailed in Chapter 5, the images obtained from the crystallisation experiments were

arranged in grids (see Figure 7.1). Through examination of the images and understand-

ing of the most desirable outcome in terms of crystallisation inhibition for drug use, two

rules were identified to aid the objective analysis of the images:

1. Crystals seen at earlier timepoints were less desirable than those seen after longer
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storage times, and indicated that the polymer was less able to inhibit crystallisation

for that analogue under the conditions of storage.

2. Crystals were more likely to appear at higher drug loadings due to the relative

absence of crystallisation-inhibiting polymer. Crystals seen at 15% drug-loadings

were deemed less desirable than crystals seen at 50% (and in fact it was assumed

that in most cases the drug would crystallise out in the 100% samples)

Figure 7.1: Example grid of images obtained from crystallisation experiments. This
example shows the images obtained for solid dispersions of ZAL 011 with ranging drug
loadings stored at 25◦C/60% RH over 7 weeks.

From these rules it can be seen that crystals observed in the bottom-left cor-

ner of the grid are much less desirable than crystals observed in the top-right corner,

with gradations between these two extreme states that form along diagonals running

downwards from left to right. The number of images along each diagonal that contain

crystals is then multiplied by a ranking assigned to the diagonal according to the grada-

tions described above (see Figure 7.2), thus leading to a series of scores being obtained
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for each image grid. The scores from each diagonal are added to give a score for the

entire grid, and in turn the three grid scores for each compound (one for each storage

condition) are added together to give a score for the compound. Using this scoring

system a compound will have a score between 0 and 1680, where the higher the score,

the worse the compound has performed with respect to crystallisation.

Figure 7.2: A schematic to demonstrate the system used to score the performance of
compounds in the crystallisation study carried out in Chapter 5. The 10x8 image grids
are scored along diagonals such that the number of images containing crystals along each
diagonal is counted, and this number is multiplied by the weighted ranking assigned to
that diagonal.

To further illustrate how the scoring system described above can be applied to provide a

score for each analogue, the calculations for the grid in Figure 5.11 are shown in Table

7.1. The score for this example grid is 184, and when this is added to the scores of

299 for samples stored at 40◦C/75% RH and 83 for samples stored at 40◦C/0% RH, an

overall score of 570 is obtained for compound ZAL 011. The total scores obtained for

each analogue using this method are shown in Table 7.2.

190



Table 7.1: The scoring system for crystallisation images obtained in chapter 5 applied to
the image grid in figure 5.11 for ZAL 011 stored at 25◦C/60% Relative Humidity over
7 weeks.

Diagonal
Number of images
containing crystals
in diagonal

No. of images ×
Diagonal weight-
ing

1 2 2
2 4 8
3 4 12
4 4 16
5 4 20
6 4 24
7 3 21
8 3 24
9 3 27
10 3 30
11 0 0
12 0 0
13 0 0

Total 34 184

Table 7.2: Summary of the scores determined for each analogue from the crystallisation
screening experiment.
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Scoring the performance of the analogues in the micro-dissolution experiments

In order to score the dissolution performance of the solid dispersion samples relative to

the parent crystalline analogue compounds as determined in Chapter 6, the following

integration methodology using the Area Under the Curves (AUC) was utilised. Using

this approach meant that information regarding the initial dissolution rate, the maxi-

mum dissolved drug concentration achieved and the 1 hour equilibrium dissolved drug

concentration would all be represented by the number obtained.

Firstly, the area under the first hour of the dissolution profile curves was deter-

mined for each dissolution sample using the trapezium rule (Equation 7.1), where A is

the area under the curve, t represents the time in seconds, and c is the concentration in

µg/mL.

A =
N∑

n=1

(
cn + cn+1

2
)(tn+1 − tn) (7.1)

Because n = 2 for the dissolution experiments in Chapter 6, the mean of the two

AUC values was determined (see Table 7.3 for these values). The AUC values for the

solid dispersion samples (An) were normalized with respect to the crystalline pure drug

sample (A0), and then 1 was subtracted from these ratios to provide values which

represented the improvement in dissolution performance compared with the crystalline

pure drug sample. The normalized AUC values (An
A0
− 1) were then plotted against the

drug loading of the solid dispersion (see Figure 7.3). The AUC of this subsequent plot

was determined, again using the trapezium rule (Equation 7.2), where Z is the area of

the new plot, and L is the percentage drug loading of the solid dispersion.

Z =
N∑

n=0

(
AN−n +AN−n−1

2
)(LN−n − LN−n−1) (7.2)

Z was then used as a final score to represent the performance of the solid dispersions

of each felodipine analogue (see Table 7.4).
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Table 7.3: Summary of the Area under the Curve (AUC) values obtained from the
dissolution data for solid dispersions of each analogue tested after 60 minutes. Data
for 100% drug loaded samples refers to the crystalline form (except for ZAL 001, where
this data refers to the oil sample). Data are reported as mean dimensionless scores ±
standard error.
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Table 7.4: Summary of the scores determined for each analogue from the dissolution
data. Scores are determined by calculating the AUC for a graph in which the AUC
values for each drug loading have been plotted, and normalised with respect to the
100% crystalline sample. Data are reported as mean values ± standard error.
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Figure 7.3: Plots of AUC60 against % drug Loading for each felodipine analogue anal-
ysed by micro-dissolution. Mean values are plotted (n=2) and error bars represent the
standard error. The area under each of these plots (Z) is used to score the dissolution
preformance of each analogue.
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7.2.4 Determining correlations between modelled and experimental datasets

In order to determine if there were any correlations between the molecular descriptors

predicted using clab, and the experimental data obtained from the micro-dissolution

and crystallisation experiments, the Pearson correlation coefficient, r, was calculated

between the datasets of interest (x and y) (equation 7.3).

r =
Σ(x− x̄)(y − ȳ)√

Σ(x− x̄)2Σ(y − ȳ)2
(7.3)

Using the Pearson correlation coefficient yields a score of between -1.0 and 1.0 inclusive

to describe the extent of a linear relationship between the two data sets. The value

of the score indicates the noisiness of the relationship, whereby a score of 0.0 denotes

that there is no correlation, and the closer the score is to 1.0 or -1.0, the stronger the

correlation is. The sign of the score indicates the whether the relationship has a positive

or negative correlation. The sample sizes in these experiments is small (9 structural

analogues, 8 of which were used in crystallisation studies, and 5 in dissolution testing),

and so correlation coefficients were required at least to be less than -0.8, or greater than

0.8 to be considered statistically relevant for linear relationships [176].

There are three main assumptions in the calculation of the Pearson correlation

coefficient:

1. there is a linear relationship between the two variables;

2. both variables consist of continuous data;

3. each variable is approximately normally distributed.

It is not unreasonable to suggest that some of the datasets may have a correlation

that is not linear, but perhaps exponential or polynomial in nature, and these will give

Pearson correlation coefficients with absolute values lower than 0.8, despite potentially

having a good fit to a non-linear trendline. It was for this reason that comparisons

which yielded a correlation coefficient with an absolute value greater than 0.6 were then

plotted as a scatter graph to visualise the relationship. If appropriate, a trendline (linear

195



or otherwise) was fitted to the data, and least square regression analysis (R2) was carried

out to determine how well the trendline fits to the data.

7.3 Results and Discussion

The Pearson correlation coefficient was calculated between all experimental and cal-

culated descriptors, and the cells with a correlation coefficient with an absolute value

greater than 0.6 were highlighted (see Appendix C for data and correlation calculations).

Of initial interest was to determine if a correlation existed between the two sets of ex-

perimentally determined data; that is the scores determined from the micro-dissolution

data and the crystallisation screen experiments. The correlation coefficient for these

sets of data was very low at just -0.13, and plotting the points clarified that there was

no discernible trend (see Figure 7.4).

Figure 7.4: Scores determined from micro dissolution data plotted against scores deter-
mined from the crystallisation screening experiments. The linear trendline is shown with
its equation and R2 value, indicating that it is a poor fit.

Strong correlations between the micro dissolution scores and other molecular

descriptors were also sought, but as there are only 6 data points from the dissolution

experiments, the correlation coefficient would have to have an absolute value greater

than 1 to be statistically significant, which is not possible. Therefore, it would be
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prudent to obtain micro-dissolution data for more of the analogue compounds before

correlations can be calculated with this data.

Next, strong correlations were sought between the scores from the crystallisation

screens and the calculated molecular descriptors. In total, out of the 81 descriptors

tested, 27 had a Pearson correlation coefficient with an absolute value greater than 0.6.

Of these, 14 descriptors had a correlation coefficient absolute value above 0.7, and only

one variable scored above an absolute value of 0.8 - the score required for a relationship

to be considered statistically significant. Examination of the datasets indicated that

many of the descriptors had a very coarse spread of data. With so few unique values of

one particular descriptor, we essentially have even fewer useful data points, and as such

the data is not sufficient to draw any firm conclusions or trends for these descriptors.

Therefore, if we disregard the data sets without a broad range of unique data values, the

number of descriptors with an absolute correlation above 0.6 is reduced to to 18. Several

of the correlations were with quantum mechanic molecular descriptors, which do not

have an intuitive physical interpretation. Nevertheless, consistently strong correlations

with such descriptors could still be useful in the development of a screening tool for

identifying drug compounds for solid dispersion formulation.

The plots for some of the more physically intuitive correlations with absolute

Pearson correlation coefficients above 0.7 are shown in Figures 7.5, and it can be seen

that the R2 value for the trendline for most of these graphs is ≥ 0.5.

It is interesting to note that the placement of the data points follows a similar

pattern in these graphs. Using the crystallisation score vs. molecular weight (MW) graph

as an example we can see that analogues with the same chemical moieties are grouped

together (Figure 7.6). For example, analogues which have the chlorine substituents on

the phenyl ring are all located in the bottom right hand corner of the plot graph, whereas

those without the chlorine substituents are in the top left corner of the graph. Simi-

larly, compounds appear to be grouped depending on the nature of the dihydropyridine

substituents. Graphs in Figures 7.5a, 7.5c and 7.5d closely follow this pattern, and the
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(a) (b)

(c) (d)

(e)

Figure 7.5: Graphs in which the scores obtained from the crystallisation screen are
plotted against a) molecular weight (MW), b) amorphous solubility, c) Entropy of Sub-
limation, d) Polarizability and e) log P. For each plot, the trendline is shown with its
equation and R2 value.
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position of points in Figure 7.5b is a mirror image of those in Figure 7.6. From the pat-

terns highlighted, it seems that the substituents of the phenyl group have the strongest

influence on the stability of a solid dispersion with respect to crystallisation compared

to the DHP substituents. From the graphs in Figure 7.5, we could perhaps also suggest

that felodipine analogues with a high mW, Entropy of Sublimation and polarizability,

all form solid dispersions with improved stability against crystallisation. However, the

values of some of these descriptors may be weighted according to their substituents. For

example, chlorine atoms have a higher atomic weight than carbon, hydrogen, oxygen

or nitrogen atoms, and so their incorporation into a molecular structure will affect the

molecular weight more than other structural changes. Also, C-Cl bonds are more polar

than C-O or C-N bonds, and so their inclusion is also likely to increase the polarizability

of a compound. Once again, it seems that it would be prudent to test additional ana-

logue compounds for two reasons. Firstly, this would improve the statistical significance

of the correlation coefficient, as well as the R2 value of the trendline. Secondly, the

incorporation in the graphs of more analogues with greater structural variety may better

highlight any effects the substituents may have on the molecular descriptors.

Whilst the R2 value for the correlation between the crystallisation score and log

P was low, this trend is particularly noteworthy. The octanol/water partition coefficient

(log P) is the ratio of concentrations of un-ionized compound between the two solvents

(Equation (7.4)), and is used as a measure of the lipophilicity of a compound [177].

logPoct/wat = log

(
[solute]octanol

[solute]water

)
(7.4)

Log P is an important pharmaceutical descriptor, as it gives an indication of the

ability of the compound to pass through lipophilic biological membranes - such as during

gastrointestinal absorption, as well as the aqueous solubility of the drug. The higher the

log P value for a compound, the more lipophilic, and the less water soluble it tends to

be [178]. As discussed in Chapter 1, increasing numbers of drugs in development are

lipophilic, and accordingly these would be expected to have higher log P values. The
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Figure 7.6: Copy of the plot of crystallisation screen score vs. molecular weight, with
overlays to show regions where different molecular structures dominate. Red circles
highlight phenyl substituents, blue circles highlight DHP substituents.

trend shown in Figure 7.5e is that the crystallisation of analogues with a higher log P

values is better inhibited when formulated as a solid dispersion: a trend that does not

appear to have been identified previously in the literature. This trend is particularly

noteworthy, as it is more likely that compounds nominated for formulation as solid

dispersions will have higher log P values, and indicates that, in so far as stabilising

the amorphous form, solid dispersions may be a suitable answer for the formulation of

poorly soluble compounds. In order to further assess the usefulness of solid dispersions

as a method to improve the aqueous solubility of the analogue compounds, it would be

desirable to carry out dissolution testing on more compounds, and identify if a similar

trend exists between the results of these experiments and calculated log P values.

As well as identifying strong correlations between the crystallisation scores and

several molecular descriptors, it was also interesting to note some of the molecular

descriptors that did not have a correlation with the crystallisation score. For example,
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perhaps the most surprising observation was that correlations between the crystallisation

scores and any of the molecular descriptors pertaining to hydrogen bonding capability

were not higher (Pearson correlation coefficients were 0.261 for hydrogen-bond-donor

dispersion, -0.596 for hydrogen-bond-acceptor dispersion and -0.583 for hydrogen-bond

strength). This could be for one of two reasons: Firstly, that the hydrogen bonding

capability of an analogue only plays a relatively small part in the stabilisation of a com-

pound with respect to crystallisation compared with other intermolecular interactions,

and therefore the effect is not strongly correlated. On the other hand, it may be that

inclusion of additional data points would lead to identification of a stronger correlation.

In the literature it has been suggested that compounds that cannot form hydrogen-

bonds with the carrier may still form stable solid dispersions if both components have

high dipole moments [75]. Therefore, it was anticipated that a strong correlation be-

tween the dipole moment and score from the crystallisation screen would be observed.

However, the Pearson correlation coefficient for these variables was only 0.178. This

may be because most of the compounds are able to hydrogen bond with copovidone via

the amine group, and therefore the dipole moment has less of an influence.

It was also surprising that more and better correlations were not observed between

the thermal descriptors and the crystallisation scores. The highest correlation observed

was with the analogue Tm, which had a Pearson correlation coefficient of -0.636, a

trendline was not fitted to the plotted data because it was thought that the data would

fit better to a polynomial trendline (see Figure 7.7). ∆CP , a measure of the fragility of

the amorphous glass of the analogue and Tr, which were also expected to have good

correlations with the crystallisation score, gave Pearson correlation coefficients of -0.085

and 0.311 respectively.
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Figure 7.7: Graph in which the scores obtained from the crystallisation screen are plotted
against Tm.

7.4 Conclusions

In this chapter we have identified some trends between the performance of solid dis-

persions containing felodipine analogues, and their molecular descriptors. We have also

seen that inherent in some of these trends is a pattern relating to the molecular struc-

tures of the analogues, and it appears that the presence of chlorine substituents on the

phenyl ring have the strongest influence on these trends. It was expected that removal or

blocking of the hydrogen bond donating amine group in the dihydropyridine ring of the

analogue compounds would heavily impact on the performance of the solid dispersions,

but this was shown not to be as crucial to solid dispersion performance as predicted.

However, it may be that not enough of the analogue compounds had this modification

to accurately reflect the impact that this change may have.

Perhaps the most interesting correlation observed in this chapter was that be-

tween the crystallisation score and log P, as this trend suggests that more poorly water-

soluble compounds will be more likely to form physically stable solid dispersions. Ad-

ditionally it was shown that compounds with lower MW, entropy of sublimation and

polarizability were less likely to form solid dispersions that were stable to crystallisa-
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tion. However, it is important to note that the trends observed in this chapter are only

relevant in relation to solid dispersions of felodipine analogues in copovidone. To deter-

mine general rules that could be applied to all solid dispersion systems, would require

testing on analogues of a wider range of drugs as well as analysis of several different

pharmaceutically relevant polymers.

It is also important to realise that none of the correlations observed were strictly

statistically significant due to the small sample sizes, and therefore, it is important to test

additional analogues. Carrying out further experiments on a greater range of analogues

would also enable a better understanding of how the molecular stucture influences the

performance of the solid dispersions.

7.5 Future Work

Carrying out the micro dissolution tests on the compounds not originally tested (i.e.

ZAL 009 and ZAL 010) should be the first priority of any future work. These additional

points may better highlight any correlations between datasets. It may also be necessary

to refine the method used for scoring the performance of the analogue solid dispersions

in the dissolution tests, so that the scoring system is more sensitive to subtle differences

in the dissolution profiles.

For a more thorough assessment as to whether any trends exist between molecular

descriptors and experimental results from both dissolution and crystallisation studies, it

would be prudent to synthesise and test additional analogue compounds which have a

greater structural diversity. It was also noted in the conclusions that the results presented

here are only relevant to felodipine analogues dispersed in copovidone, and therefore it

would be of particular interest to carry out the same experiments on solid dispersions

in which a different polymer, such as PVP or HPMC, has been used. This may identify

the effect of the polymer molecular structure on the solid dispersion performance, and

would also show if the same or different drug molecular descriptors are relevant in

understanding the performance of solid dispersions which use different carriers.
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With an enlarged sample size, it might be of interest to employ some more so-

phisticated statistical analysis tools to better identify any correlations between molecular

descriptors and experimental results. For example, principal component analysis could

help to identify when several factors of molecular structure contribute concurrently to

improve the performance of a solid dispersion. It may also be of use to develop scoring

strategies for data from other experiments, and identify if correlations exist between the

molecular descriptors and performance in other tests.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The aim of the work in this thesis was to investigate the influence of molecular structure

on the properties and performance of solid dispersions, and then use this data to identify

trends between molecular and physicochemical descriptors and the performance of the

solid dispersions, which could then be used as the basis for a high-throughput screening

method to identify drug molecules that can be more successfully formulated as solid

dispersions.

In order to do this, a testing protocol was developed, using felodipine/copovidone

solid dispersions as a model system. In Chapter 4 it was shown that amorphous solid

dispersions of felodipine in copovidone with a single Tg were successfully formed, how-

ever PDF analysis suggested that the systems tested were not completely miscible. A

laser light scattering instrument was developed in Chapter 5 for detecting morphologi-

cal changes in solid dispersion films. Using this apparatus, it was shown that polymer

swelling occured in felodipine/copovidone solid dispersion films when exposed to water.

Finally, dissolution experiments in Chapter 6 were carried out using both a small-scale

micro-dissolution apparatus, and an integrated MRI flowcell system for testing of bulk

samples. The data from both techniques was used to suggest a mechanism for the disso-
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lution of solid dispersions. Using these experiments as a starting point, the methodology

for testing a series of analogues was developed.

A series of eight analogues based on felodipine were successfully synthesised in

Chapter 3 with a range of yields, requiring that experiments were carefully planned to

fully utilise the available material. In subsequent experiments, solid dispersions con-

taining these analogues (including felodipine) were tested to identify the effect of drug

molecular structure on their properties and performance. To the author’s knowledge,

there is no prior evidence in the literature of this type of approach, whereby each drug

molecule in the series differs by only one functional group, being used in order to further

understand the contribution of each group on the properties and performance of solid

dispersions. In Chapter 4 it was shown that amorphous solid dispersions with single Tg

were successfully formed for six of the synthesised analogues. PDF analysis was carried

out on solid dispersions of four of these analogues, and as with the felodipine samples,

the results of this technique suggested that none of the systems tested was completely

miscible at the drug loadings analysed. In Chapter 5, the ability of copovidone to in-

hibit drug crystallisation in the solid dispersion was tested. Literature evidence shows

that hydrogen bonding between the amine of felodipine and the carbonyl of the poly-

mer pyrrolidone ring is central to explaining the physical stability of this solid dispersion.

This was supported by the data in Chapter 5 that showed an analogue with an N-methyl

group (and therefore unable to act as a hydrogen bond donor) crystallised rapidly from

its respective solid dispersions. Additionally, it was shown that analogues without chlo-

rine substituents on the phenyl ring crystallised more readily from their solid dispersions

than those with substituted phenyls, and similarly, changing the functional groups on

carbons 3 and 5 of the DHP also impacted on the crystallisation of the analogue from its

solid dispersions. These observations suggest that additional intermolecular interactions

other than hydrogen bonding must be important in the formation of stable solid disper-

sions. In Chapter 6 it was suggested that blocking the felodipine amine, and presence

of a nitrile group led to an increased dissolution rate.
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In Chapter 7, correlations were calculated between molecular and physicochem-

ical descriptors (including thermal properties from Chapter 4) for the analogues, and

crystallisation and dissolution performance data for their respective solid dispersions

with copovidone from Chapters 5 and 6. It was the intention that identification of

strong correlations between descriptors and performance can be used to direct the syn-

thesis of drug molecules that will be more likely to be successfully formulated as solid

dispersions. For this particular series of analogues it was shown that compounds were

more likely to crystallise from solid dispersions with copovidone if they had a low log

P, low Mr and low polarizability. Prior to these experiments, it was thought that the

number or dispersion of hydrogen bonding groups, and the dipole moment would cor-

relate strongly with the performance of the compound in a solid dispersion, but for this

system, no correlations were observed for these particular descriptors.

In summary, a number of testing methodologies have been used in this thesis to

provide further understanding of the solid state structure, physical stability, and dissolu-

tion performance of solid dispersions containing analogues of felodipine and copovidone.

From the results of these experiments, a number of general observations have been made

regarding the influence of drug molecular structure on the performance of the solid dis-

persions. Subsequently, a screening method can be derived from the correlations between

compound descriptors and the data from these experimental observations in order to

identify analogous drug compounds that are likely to form solid dispersions with copovi-

done that have favourable properties. With further experimental data, the methodology

detailed herein for identifying correlations could be expanded to develop a database of

a broader library of drug compounds, from which APIs suitable for development as solid

dispersions with a number of polymers could be identified.

8.2 Future Work

The development of the API screening tool would benefit from the testing of more

analogues (including other commercially available dihydropyridine drugs) using the same
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methodology, so that more statistically relevant correlations are observed. In order to

fully validate the screening method, it should then be used to suggest the molecular

structure of an analogue that will be expected to perform well as a solid dispersion

based on the observed correlations, and this compound should be tested according to

the same protocol as the analogues in the test-set.

The work detailed in this thesis has focussed on felodipine-based solid dispersions,

and so the observations regarding drug molecular structure are likely to be specific to

this particular series of analogues. Therefore, it would be of interest to test compounds

from other analogue series. Similarly, as all of the systems tested in this thesis use

copovidone as the carrier, correlations with drug structure are specific for this polymer.

Therefore, testing with other amorphous polymers, such as PVP and HPMC, would

extend the dataset so that the screening tool could be used to predict successful solid

dispersion formulation for a wider range of systems.

The evaluation of solid dispersions in this work has been based on the physical

stability and dissolution performance of solid dispersions. However, as alluded to in

Chapter 1, there are additional requirements that a solid dispersion must fulfill: not

least, that it should have good in vivo activity. Therefore, further development of

the screening technique described in this work should involve the inclusion of in vivo

performance descriptors.
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Appendix A

Images from Well-plate

Crystallisation Study

Figure A.1: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of felodipine with ranging drug loadings stored at
25◦C/60% Relative Humidity over 7 weeks.
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Figure A.2: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of felodipine with ranging drug loadings stored at
40◦C/75% Relative Humidity over 7 weeks.

Figure A.3: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of felodipine with ranging drug loadings stored at
40◦C/0% Relative Humidity over 7 weeks.
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Figure A.4: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of ZAL 001 with ranging drug loadings stored at
25◦C/60% Relative Humidity over 7 weeks.

Figure A.5: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of ZAL 001 with ranging drug loadings stored at
40◦C/75% Relative Humidity over 7 weeks.
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Figure A.6: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of ZAL 001 with ranging drug loadings stored at
40◦C/0% Relative Humidity over 7 weeks.

Figure A.7: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of ZAL 005 with ranging drug loadings stored at
25◦C/60% Relative Humidity over 7 weeks.
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Figure A.8: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of ZAL 005 with ranging drug loadings stored at
40◦C/75% Relative Humidity over 7 weeks.

Figure A.9: Grid of images obtained from crystallisation experiments. This grid contains
images obtained for solid dispersions of ZAL 005 with ranging drug loadings stored at
40◦C/0% Relative Humidity over 7 weeks.
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Figure A.10: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 006 with ranging drug loadings stored
at 25◦C/60% Relative Humidity over 7 weeks.

Figure A.11: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 006 with ranging drug loadings stored
at 40◦C/75% Relative Humidity over 7 weeks.
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Figure A.12: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 006 with ranging drug loadings stored
at 40◦C/0% Relative Humidity over 7 weeks.
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Figure A.13: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 007 with ranging drug loadings stored
at 25◦C/60% Relative Humidity over 7 weeks.

Figure A.14: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 007 with ranging drug loadings stored
at 40◦C/75% Relative Humidity over 7 weeks.
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Figure A.15: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 007 with ranging drug loadings stored
at 40◦C/0% Relative Humidity over 7 weeks.

Figure A.16: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 009 with ranging drug loadings stored
at 25◦C/60% Relative Humidity over 7 weeks.
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Figure A.17: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 009 with ranging drug loadings stored
at 40◦C/75% Relative Humidity over 7 weeks.

Figure A.18: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 009 with ranging drug loadings stored
at 40◦C/0% Relative Humidity over 7 weeks.
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Figure A.19: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 010 with ranging drug loadings stored
at 25◦C/60% Relative Humidity over 7 weeks.

Figure A.20: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 010 with ranging drug loadings stored
at 40◦C/75% Relative Humidity over 7 weeks.
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Figure A.21: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 010 with ranging drug loadings stored
at 40◦C/0% Relative Humidity over 7 weeks.

Figure A.22: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 011 with ranging drug loadings stored
at 25◦C/60% Relative Humidity over 7 weeks.
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Figure A.23: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 011 with ranging drug loadings stored
at 40◦C/75% Relative Humidity over 7 weeks.

Figure A.24: Grid of images obtained from crystallisation experiments. This grid con-
tains images obtained for solid dispersions of ZAL 011 with ranging drug loadings stored
at 40◦C/0% Relative Humidity over 7 weeks.
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Appendix B

Analogue Dissolution Results

Table B.1: Table summarising the data from dissolution experiments carried out on
samples containing analogue ZAL 001. Data are reported as mean values ± standard
error. a Analysis of the crystalline form of this compound was not possible as it is an oil.
For these samples the oil was dispensed directly into sample vials without any further
preparation. b The equilibrium solubility determined by HPLC after 18 hours. c The
equilibrium solubility determined by HPLC after 15 hours.
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Table B.2: Table summarising the data from dissolution experiments carried out on
samples containing analogue ZAL 005. Data are reported as mean values ± standard
error. a Equilibrium solubility values are obtained by HPLC after 18 hours. b Equilibrium
solubility values are obtained by HPLC after 48 hours.
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Table B.3: Table summarising the data from dissolution experiments carried out on
samples containing analogue ZAL 006. Data are reported as mean values ± standard
error. a Initial dissolution rates could not be determined for these samples due to the
irregularity of the data. b Equilibrium solubility values are obtained by HPLC after 18
hours. c Equilibrium solubility values are obtained by HPLC after 48 hours.
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Table B.4: Table summarising the data from dissolution experiments carried out on
samples containing analogue ZAL 007. Data are reported as mean values ± standard
error. a Only n=1 for this sample. b Equilibrium solubility values are obtained by HPLC
after 18 hours. c Equilibrium solubility values are obtained by HPLC after 48 hours.
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Table B.5: Table summarising the data from dissolution experiments carried out on
samples containing analogue ZAL 011. Data are reported as mean values ± standard
error. All equilibrium solubility values are obtained by HPLC after 18 hours.
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Appendix C

Calculated Molecular Descriptors

and Correlations
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?@A5BBC 8D> EFG H8BB> FBBCB BI8F BI>E BIBB 8IE> BIGF BICC BIFF HBIDE HBIJK H8IBE BIBB HBIDD HBIDD
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?@A5BBD C8F 8FC HFBKK KBK> BIFG BI>J BIBB 8IEK BIGD BIED HBIF> HBIDK HBIJC H8IBE BIBB HBIJG HBIJG

?@A5BBE FCJ JCD HFK8G KF>8 BI8> BI>D BIBB 8I>K BIKG BIJE HBI8C HBIDE HBIJG HFIBD BIBB HBIJG HBIGE

?@A5BBG DDC HGFJ EBBD BI8F BI>D BIBB 8IJD BIGB BIDE HBIJJ HBIDE HBIJE HFIB8 BIBB HBIDB HBIGG

?@A5BBK HFEDD E>FC BI8> BI>C BIBB 8IBD BIDF BIJK HBIJC BIBB BIBB BIBB BIBB HBIDE HFIJK

?@A5BFB F8BJ HCJB J8CB BI88 BI>E BIBB 8I8> BIJC BIJG HBICK BIBB BIBB BIBB BIBB HBIDF HFIJD
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HBI8JF BIFFB BIFDB BIJG8 BIFBB BIJFJ BICCF BIFBG HBI>BE HBIFF8 HBIBDF BI>G> HBIDEC HBIB>8
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HBIF8K BIEJB BIFCK HBI8BD BIEFE BIEB> HBICF> HBICGC

HBIJF8 BI8KD HBIFE> HBIBF> HBIFEC HBIFEF BI8CG
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F;G?HHI DJK LMN OKJPH HPIH QHPNN DLRPLH QRPMD DINPHH QHPHL QDPDD DHPRK DPHK QRPRO QMIPLM QIPIM
F;G?HHM H QMO OHIPK HPHH QKPKD DDIPJH HPHH DDNPLH HPHH QDPHJ KDPJL QMPMN QMDPHK QMIPKI QIPJM
F;G?HMM JIH DLO OJLPO HPHH QHPIM DOJPDH HPHH DOIPOH HPHH QDPDD MNPLM MPIR QIPNM QMLPNO QRPMD
F;G?HHJ IDM DMI KJLPL HPIH QMPHI DLOPRH QIPIN DIOPNH QHPHL QDPDD DHPRK DPLM QRPKL QMRPKJ QRPKR
F;G?HHL MIO OIJ KRNPO HPIH QMHPMN MIIPJH QRPHH MRLPNH QHPHL QMPKL DKPHR QIPIJ QDHPHN QMJPOK QOPDH
F;G?HHN JJI KMMPH HPIH QMHPLO MIJPRH QIPNI MRJPDH QHPHL QMPKL DKPHR QIPJM QMNPJK QMJPLH QOPLL
F;G?HHR KOOPD HPLL QMNPOL RRPOJ QRPOH NIPOM QHPHL QHPJH DLPLI QMIPJI QDRPNK QMHPRJ QHPJM
F;G?HMH MDHO DLJPO HPLL QDHPDL RIPHH QRPMD NJPLR QHPHL QHPJH DLPLI QMIPLJ QDRPKO QMHPLK QHPNH
S$#"92:20$ DJH DMRO OMOPL HPIH QMPHO DJNPDH QIPNN DLNPOH QHPHL QDPDD DDPDD MPRH QNPIM QMIPRR QIPOH

QHPMDR QHPIMK HPDLM QHPJNL QHPJRK QHPDNK QHPJIK QHPDND HPJNI QHPMRM QHPJLK QHPJMH HPLIN HPJJJ
HPMDD HPORI HPMRO HPDJR QHPOND HPKHN QHPORI QHPMIK QHPDIL HPMNM HPMHH QHPDHR HPHOD
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F;G?HHI DJK LMN LPOO LPRH QNIPLI LMPRO HPDK HPDR H HPOL HPIL HPHH HPJR HPKL HPMK
F;G?HHM H QMO KPND LPLN QRNPHN LMPKO HPDK HPHH H HPDN HPNN HPJL HPHH HPKI HPMO
F;G?HMM JIH DLO LPLD LPRR QMHDPIH LDPMM HPDK HPHH H HPOL HPIJ HPHH HPJH HPKL HPMK
F;G?HHJ IDM DMI IPKO LPLI QNDPLL LHPJN HPDD HPDR H HPOO HPIK HPHH HPJR HPKL HPMK
F;G?HHL MIO OIJ QKPOD LPJK QINPOR LHPNK HPDK HPDR H HPOL HPID HPHH HPJR HPKR HPMK
F;G?HHN JJI QDPRR LPKH QIOPOI JNPKR HPDK HPDR H HPOL HPID HPHH HPJR HPKI HPMO
F;G?HHR QMKPDI LPMO QLMPDN JNPRR HPDJ HPDR H HPOI HPID HPHH HPJR HPHH HPHH
F;G?HMH MDHO QMKPHH JPRR QJLPDR JIPNI HPDO HPDR H HPOI HPID HPHH HPJR HPHH HPHH
S$#"92:20$ DJH DMRO JPNN LPIM QNDPLL LMPJD HPDK HPDR H HPOL HPIL HPHH HPJR HPKL HPMK

QHPMDR QHPJJN QHPLRR HPJIO QHPIJH HPKKR HPDND HPJHL QHPJLK QHPONK HPORD QHPINO QHPIRN
HPMDM QHPHMD QHPHMN HPMLO HPDJM HPORI HPOKH QHPKHN QHPKNK HPOKD QHPDRD QHPKNK
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[50] Fernando A. Alvarez-Núñez and Mark R. Leonard. Formulation of a poorly soluble

drug using hot melt extrusion: The amorphous state as an alternative. Am. Pharm.

Rev., July/August:88–92, 2004.

[51] Dave A. Miller, Jason T. McConville, Wei Yang, and James W. McGinity Robert

O. Williams III. Hot-melt extrusion for enhanced delivery of drug particles. J.

Pharm. Sci., 96(2):361–376, 2007.

[52] Gavin P. Andrews, David S. Jones, Osama Abu Diak, Daniel N. Margetson, and

Mark S. McAlister. Hot-melt extrusion: an emerging drug delivery technology.

Pharm. Tech. Eur., 21(1), 2009.

[53] Michael A. Repka. Hot-melt extrusion. Am. Pharm. Rev., September/October:

18–27, 2009.

[54] Caroline Bruce, Kurt A. Fegely, Ali R. Rajabi-Siahboomi, and James W. McGinity.

Crystal growth formation in melt extrudates. Int. J. Pharm, 341:162–172, 2007.

[55] K. Nollenberger, A. Gryczke, Ch. Meier, J. Dressman, M.U. Schmidt, and

S. Brühne. Pair distribution function X-Ray analysis explains dissolution charac-

teristics of felodipine melt extrusion products. J. Pharm. Sci., 98(4):1476–1486,

2009.

[56] Hajime Konno and Lynne S. Taylor. Ability of different polymers to inhibit the

crystallization of amorphous felodipine in the presence of moisture. Pharm. Res.,

25(4):969–978, 2008.

[57] Alfred C.F. Rumondor, Igor Ivanisevic, Simon Bates, David E. Alonzo, and

Lynne S. Taylor. Evaluation of drug-polymer miscibility in amorphous solid dis-

persion systems. Pharm. Res., 26(11):2523–2534, 2009.

[58] Shan-Yang Lin, Chao-Ming Liao, Ging-Ho Hsiue, and Run-Chu Liang. Study of a

theophylline-eudragit L mixture using a combined system of microscopic Fourier-

233



transform infrared spectroscopy and differential scanning calorimetry. Ther-

mochimica Acta, 245:153–166, 1995.

[59] Madhav Vasanthavada, Wei-Qin Tong, Yatindra Joshi, and M. Serpil Kislalioglu.

Phase behaviour of amorphous molecular dispersions II: Role of hydrogen bonding

in solid solubility and phase separation kinetics. Pharm. Res., 22(3):440–448,

2005.

[60] Alfred C.F. Rumondor, Lindsay A. Stanford, and Lynne S. Taylor. Effects of poly-

mer type and storage relative humidity on the kinetics of felodipine crystallization

from amorphous solid dispersions. Pharm. Res., 26(12):2599–2606, 2009.

[61] Justin D. Moser, Jennifer Broyles, Lina Liu, Elise Miller, and Michael Wang.

Enhancing bioavailability of poorly soluble drugs using spray dried solid dispersions.

part I. Am. Pharm. Rev., September/October:68–73, 2008.

[62] Erika Broman, Cynthia Khoo, and Lynne S. Taylor. A comparison of alternative

polymer excipients and processing methods for making solid dispersions of a poorly

water soluble drug. Int. J. Pharm, 222:139–151, 2001.

[63] Markus Vogt, Klaus Kunath, and Jennifer B. Dressman. Dissolution improvement

of four poorly water soluble drugs by cogrinding with commonly used excipients.

Eur. J. Pharm. Biopharm., 68:330–337, 2008.

[64] Eun-Jung Kim, Myung-Kwan Chun, Jae-Sang Jang, In-Hwa Lee, Kyeo-Re Lee,

and Hoo-Kyun Choi. Preparation of a solid dispersion of felodipine using a solvent

wetting method. Eur. J. Pharm. Biopharm., 64:200–205, 2006.

[65] Mariarosa Moneghini, Barbara Bellich, Pietro Baxa, and Francesco Princivalle.

Microwave generated solid dispersions containing ibuprofen. Int. J. Pharm., In

Press, 2008.

234



[66] F.I. Kanaze, E. Kokkalou, I. Niopas, M. Georgarakis, A. Stergiou, and D. Bikiaris.

Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG ma-

trixes: a comparative study. J. Appl. Polym. Sci., 102(1):460–471, 2006.

[67] Manfred Gordon and James S. Taylor. Ideal copolymers and the second-order

transitions of synthetic rubbers. I. non-crystalline copolymers. J. Appl. Chem., 2

(9):493–500, 1952.

[68] Ann Newman, David Engers, Simon Bates, Igor Ivanisevic, Ron C. Kelly, and

George Zografi. Characterization of amorphous API:polymer mixtures using X-

Ray powder diffraction. J. Pharm. Sci., 97(11):4840–4856, 2008.

[69] Evangelos Karavas, Emmanuel Georgarakis, Michael P. Sigalas, Konstantinos Av-

goustakis, and Dimitrios Bikiaris. Investigation of the release mechanism of a

sparingly water-soluble drug from solid dispersions in hydophilic carriers based on

physical state of drug, particle size distribution and drug-polymer interactions.

Eur. J. Pharm. Biopharm., 66:334–347, 2007.

[70] Gert Strobl. The Physics of Polymers: Concepts for Understanding Their Struc-

tures and Behaviour. Springer-Verlag, Berlin, 2nd edition, 1997.

[71] Richard A.L. Jones. Soft Condensed Matter. Oxford Master Series in Condensed

Matter Physics. Oxford University Press, Oxford, 2002.

[72] Patrick J. Marsac, Sheri L. Shamblin, and Lynne S. Taylor. Theoretical and prac-

tical approaches for prediction of drug-polymer miscibility and solubility. Pharm.

Res., 23(10):2417–2426, 2006.

[73] P.J. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca,

1953.

[74] David J. Greenhalgh, Adrian C. Williams, Peter Timmins, and Peter York. Solu-

bility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci.,

88(11):1182–1190, 1999.

235



[75] Patrick J. Marsac, Tonglei Li, and Lynne S. Taylor. Estimation of drug-polymer

miscibility and solubility in amorphous solid dispersions using experimentally de-

termined interaction parameters. Pharm. Res., 26(1):139–151, 2009.

[76] Seung-Uk Yoo, Steven L. Krill, Zeren Wang, and Chitra Telang. Miscibil-

ity/stability considerations in binary solid dispersion systems composed of func-

tional excipients towards the design of multi-component amorphous systems. J.

Pharm. Sci., 98(12):4711–4723, 2009.

[77] Makiko Fujii, Junko Hasegawa, Hideaki Kitajima, and Mitsuo Matsumoto. The

solid dispersion of benzodiazepams with phosphatidycholine. the effect of sub-

stituents of benzodiazepins on the formation of solid dispersions. Chem. Pharm.

Bull., 39(11):3013–3017, 1991.

[78] Bruno C. Hancock and Michael Parks. What is the true solubility advantage for

amorphous pharmaceuticals? Pharm. Res., 17(4):397–404, 2000.

[79] O.I. Corrigan. Mechanisms of dissolution of fast release solid dispersions. Drug

Dev. Ind. Pharm., 11(2-3):697–724, 1985.

[80] O.I. Corrigan. Retardation of polymeric carrier dissolution by dispersed drugs: fac-

tors influencing the dissolution of solid dispersions containing polyethylene glycols.

Drug Dev. Ind. Pharm., 12(11-13):1777–1793, 1986.

[81] D.Q.M. Craig and J.M. Newton. The dissolution of nortriptyline HCl from

polyethylene glycol solid dispersions. Int. J. Pharm, 78:175–182, 1992.
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