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Abstract 

Abstract 

Cold gas dynamic spraying (CGDS) is a recent development in the field of thermal 

spraying in which a powder feedstock can be deposited onto a substrate to form a 

coating without it being heated significantly. The aim of the present study was to 

investigate the potential for manufacturing electrical circuits for automobile 

applications by depositing copper tracks on non-metallic substrates. Powders were 

sprayed using He gas at room temperature and elevated temperatures onto a number of 

different polymers, ceramic and metal substrates to understand the factors controlling 

deposit formation and the development of adequate adhesion between track and 

substrate. The use of tin as an interlayer to improve adhesion was a novel development 

in this study. 

The deposits were characterized by optical microscopy (OM), scanning electron 

microscopy (SEM), X-ray diffraction (XRD), profilometry, microhardness, tensile 

testing, adhesion testing and resistivity measurements. Investigations were also 

performed to study thermal stability since as sprayed deposits are in non-equilibrium 

state. 

Copper could be deposited on aluminium for a wide range of deposition parameters. 

Sprayed copper had nanometre size grains and demonstrated high hardness and tensile 

strength. Annealing resulted in recrystallization and grain growth and decrease in 

hardness and tensile strength. 

Copper could be deposited on polymers like nylon (PA66), glass reinforced nylon 

(PA6T) and poly (butylene terepthalate) (PBT). Copper could be deposited on a wide 
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Abstract 

range of polymers when a layer of tin was deposited as a bond coat. The use of tin bond 

coat improved the overall adhesion of tin + copper tracks. 

Intermetallic compound formation was observed in tin - copper tracks after annealing at 

343 K and 443 K. The formation of the intermetallic compound did not increase the 

resistance of tin - copper couples as the resistance of the couples after annealing were 

found to be below that of the as - sprayed couples where the intermetallic compound 

formation had not taken place. This effect is a result of the recovery/recrystallization 

taking place in copper which reduces the resistance. 
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Chapter 1 

Introduction 

Surface coatings are utilized in engineering design and manufacture to 

modify/enhance properties of the surface or as a means to saving cost on expensive 

materials for manufacture of the whole component. There are different methods of 

surface coating and they differ in the manner in which the coatings are applied, 

thickness of coating, nature of bonding, materials coated and temperature during 

coating process. The choice of the surface coating process used for a particular 

engineering application depends upon factors such as [1]: 

0 The coating-surface treatment should not impair the properties of the bulk 

material. For example, there is little point in applying a coating for 

corrosion protection if the fatigue or mechanical properties of the bulk 

material are adversely affected. 

0 The deposition process must be capable of coating the component, in 

terms of both size and shape. For example, vacuum evaporation is partly a 

line of sight process and rotation of the component may be necessary to 

achieve a uniform coating. In contrast, chemical vapour deposition (CVD) 

and electroless nickel plating are noted for their ability to coat complex 

shaped components with a layer of uniform thickness. 
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Chapter 1 Introduction 

" Some changes in material specification may be necessary to accommodate the 

coating. In some cases it is not sufficient to coat an existing component, but 

usually it will be advisable to redesign in order to realize the full engineering 

benefits of the surface treatment. 

" The surface treatments must be cost-effective, but this judgment should include 

factors such as reduced downtime and improved product quality, in addition to 

the coating cost. For example, the improvement in surface finish, which occurs 

through the use of a coated tool, may give an additional benefit in that a 

subsequent finishing operation may be omitted. 

The decision to use particular coating process therefore will depend upon the 

capabilities and limitations of the process and benefits versus cost analysis of the 

coating applied. A comparison of various coating processes is given in Table 1.1 

Ill. 

Yazaki Europe Limited is the Industrial Sponsor of this project. The overall aim of 

this research project is to investigate cold gas dynamic spraying (CGDS) also called 

as cold spraying, of copper to produce EDS (Circuit Patterns). The circuit patterns 

are to be deposited upon polymer substrates, which will be part of an automobile 

body. The circuit patterns are expected to be used to operate various features in the 

automobile, such as motorized seat adjustment, central locking etc. The present 

technology for this application is the use of circuits in the form of wire harnesses. 

These wire harnesses are carried between the metal body of the door and the inner 

upholstery. In the present project instead of using wire harnesses, it is proposed that 

2 



Chapter 1 Introduction 

the circuit patterns are to be deposited on the inside of the car doors. This is 

expected to deliver the following benefits: 

1. Reduced weight and the space occupied by the circuits (wire harnesses are 

bulky, heavy and take up a lot of space) 

2. Reduce the time period from circuit design to manufacture as cold spray 

deposition can be rapidly carried out by mounting the cold spray gun on an 

industrial robot. (For wire harnesses this time is at least a few months, which is 

expected to be reduced to a few weeks by using a direct deposit circuit) 

The characteristics expected from a coated track are; 

1. Ability to deposit tracks on polymer substrates relatively quickly 

2. Good electrical conductivity. 

3. Sufficient adhesion and mechanical strength to withstand the environment of an 

automobile 

4. Metallurgical stability in the conditions of operation of the automobile. 

Cold spray deposited copper is expected to fulfill the above criteria; hence in this 

study the deposition of copper by cold spraying and the properties of the deposited 

copper were investigated. As cold spraying is a comparatively new coating process 

and many of the fundamental principles underlying the process are not clearly 

understood. The present project will investigate the influence of deposition 

conditions on the deposited tracks. The critical areas identified for investigation are: 

1. Adhesion of the track on various substrates 
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Chanter 1 Introduction 

2. Electrical conductivity of the track 

3. Mechanical strength of the track 

4. Use of a bond coat for deposition on various substrates and the effect of the 

bond coat on the adhesion of the track 

5. Metallurgical stability of the track 

4 



Chapter 1 Introduction 

Table 1.1: Comparison of different surfaci ng processes and depos its 1 
Vapour Ion Sol-gel Electro- Thermal Spray welding 

deposition implantation deposition spraying fusing 
Thickness / 0.001-0.2 -0.005 0.002 0.02-0.5 0.1-1.0 0.5-1.5 >1.2 

mm 
Component Versatile - - Versatile Line of sight 
geometry 

Limited 
Component Limited by chamber size 

Limited by plating No limit by No limit 
size bath fusing 

facility 
Substrate 

temperature 30-1000 - - 373 473 1323 1673 
/K 

PVD-ion Chemical plus 
Grit blast Chemical 

Pre- bombardment ion and/or cleaning Clean and roughen Cleaning 
treatment CVD-various bombardment chemical and surface 

clean etching 

Post- None/stress High 
one/stre 

treatment relief 
None temperature 

ss relief 
None Nil 

calcine 
Coating Nil to small Low Low Nil to 1-15 Nil 

porosity /% small 
Adhesion / High High High 100 20-140 High MPa 
Adhesion Atomic _ 

Surface Surface Mechanical Metallurgical 
mechanism forces forces 
Thickness Good - Good Good Low to good Low Low to 

control good 
Substrate 
distortion Low Low Low Low Low Moderate Can be 

high 
Phase 
change Controlled Controlled Controlled 

Controlle Uncontrolle Partly controlled 
during d d 
coating 



Chapter 2 

Description of thermal spraying and cold spraying 

2.1 Introduction 

In this chapter the development of the thermal spray processes since its discovery 

approximately 85 years ago and the discovery and development of the cold spray 

process is described. This chapter consists of the following sections: 

2.2 Brief history and description of thermal spray processes 

2.3 Historical development of the cold spray process 

2.4 Gas dynamic principles of cold spraying 

2.5 Commercially available cold spray systems 

2.6 Applications of cold sprayed deposits 

2.7 Mechanism of deposit formation 

2.8 Deposit microstructures and properties 

2.2 Brief history and description of thermal spray processes 

6 



Chanter 2 Description of thermal spraying and cold spraying 

Thermal spraying is a process of particulate deposition in which the molten or semi- 

molten particles are deposited on to a substrate whereupon they solidify to form a 

coating. M. U. Schoop described the metallizing process and he is considered as the 

inventor of metal spraying technology [2,3]. Since the first demonstration of the 

thermal spray process by Schoop there have been tremendous developments in the 

technology of thermal spray with respect to 

0 Heat source employed to heat the feed stock material 

0 Heating of the particles by the heat source 

0 Velocity attained by the particles 

0 Range of materials that can be deposited 

0 Properties of the coatings 

Thermal spray processes may be broadly classified into two categories [4,51: 

A. Those in which the material feedstock is rendered molten or semi molten by 

introduction into a region of intense heat such as flame, plasma or arc prior 

to propulsion onto the substrate. 

B. Those, which exploit higher particle velocities, shorter transit times and 

overall lower temperatures, experienced by feedstock particles. 

7 



Chapter 2 Description of thermal spraying and cold spraying 

Classification and features of thermal spraying processes are given in Table 2.1 [2, 

6,7]. 

Thermal spray methods are discussed in sections 2.2.1 to 2.2.6. The methods 

discussed in sections 2.2.1 to 2.2.3 [2] fall in category A and depend upon heating 

the sprayed material to form the coating. The philosophy here is that higher 

temperatures are preferred for enhanced coating properties due to enhanced 

softening/melting of the material, resulting in better flattening of the sprayed 

particles on the substrates. This increases contact between substrate and sprayed 

particle and improves bonding [2]. 

The methods discussed in section 2.2.4 and 2.2.6 are in category B and they depend 

upon the high velocity of the spray particles to create a dense and well adhering 

coating upon impact on the substrate. In these methods the spray particles are not 

very hot but they are travelling a lot faster. In the case of cold spraying, the particles 

may be sprayed even in the cold condition with no heating involved [8]. The 

coating is formed by the impact of the high velocity particles. Schematic diagrams 

of selected thermal spray process are shown in Fig. 2.1 [9] and the comparative gas 

temperature and particle velocity for thermal spray processes are shown in Fig. 2.2 

[10]. 

The trend in thermal spraying is towards increasing particle velocity and decreasing 

particle temperature [4,6,11]. This offers many benefits namely: 

8 



Chapter 2 Description of thermal spraying and cold sprayin 

" Less in-flight reactions of the sprayed particles and lower oxide content in 

the coatings 

0 Lower porosity and higher bond strength of coatings 

The process development over the past few years has resulted in the increase in 

spray particle velocity (Vp) from 25 m s-I, in flame spraying to - 750 m s"1 - 1500 m 

s"1 in cold spraying. The particle temperature has decreased from molten/semi- 

molten condition of the sprayed material, in thermal spraying, to solid state in cold 

spraying. 

2.2.1 Arc sprayin2 

In this process two wires of the material to be coated are brought together so as to 

propagate an arc between them, which continuously melts their tips. The molten 

metal is atomized and blown clear from the arc gap by compressed air. Feeding the 

wires together at a constant rate produces a steady stream of fine atomized particles 

which impact the substrate and form the coating [2]. 

2.2.2 Flame spraying 

In this process the material to be sprayed is heated/melted in an oxy-fuel flame and 

these particles are then propelled on the substrate where they form the coating. 

Flame spraying equipment is available to use either wire or powder as feedstock [2]. 

9 



Chapter 2 Description of thermal spraying and cold spraying 

z 
2.2.3 Plasma spraying 

In the plasma spraying process, gases like argon, helium and hydrogen are used to 

create high temperature plasma, wherein temperatures as high as 14000 K [2] can 

be generated. Ceramic, metal or cermet powder is injected in this high temperature 

region and the heated, melted or partially melted powder particles are propelled to 

the substrate where the coating is formed. The high temperatures generated in the 

plasma make it a very suitable method to coat ceramic materials creating coatings 

with typically 5- 10 % porosity [2]. 

2.2.4 Detonation Technoloay 

In the detonation spray system, a mixture of fuel and oxygen along with the powder 

is introduced into the combustion chamber. This gas mixture is ignited and an 

explosion/detonation wave is created. The powder particles are heated and 

accelerated to a very high velocity. A highly adhering low porosity coating is 

formed when the high velocity particles impact the substrate. The combustion 

chamber is purged by an inert gas after the detonation is over and the cycle is 

repeated again. Usually 1-15 cycles are carried out in one second. Due to the cyclic 

nature of the process deposition rates are usually low [2]. 

10 
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2.2.5 High Velocity Oxy-Fuel spraying (HVOF) 

In the HVOF processes, oxygen and fuel are combusted and accelerated in a 

specially designed nozzle and combustion chamber. This creates supersonic 

velocity of the gases in the nozzle. The powder is injected in to the gas stream 

where it is accelerated to high velocity and also heated up to some extent. A highly 

adhering and low porosity coating is formed due to the high velocity impact of the 

particles [2]. The fuels can be gaseous such as hydrogen, propylene, or liquid such 

as kerosene. HVOF process is mainly used for metal and cermet powders but can 

also be used for selected ceramics. 

2.2.6 Cold as dynamic spraying (CGDS) 

In the CGDS process, also known as cold spraying, a specially designed converging 

- diverging de Laval nozzle is used. The gas at a pressure of up to 3.5 MPa are fed 

to the de Laval nozzle and they attain supersonic velocity by virtue of the nozzle 

design. The powder, usually in the size range of 1 to 50 µm, is introduced into the 

flow by means of a high-pressure powder feeder, using a carrier gas to deliver the 

powder to the high-pressure converging part of the nozzle where it is entrained in 

the gas stream. The powder particles attain high velocity as the gas accelerates 

through the nozzle. Gases used are usually helium, nitrogen or air. The gases may 

be heated, although it is possible to form a coating without heating the gas [8,12]. 

A schematic of the cold spray system is given in Fig 2.3 [7]. 

11 



Chapter 2 Description of thermal spraying and cold spraying 

2.3 Historical development of the cold spray process 

The trend in thermal spray process development is towards increasing the particle 

velocity and decreasing the particle temperature [11]. In cold spraying the particles 

are deposited in the cold condition. In cold spraying the mechanism for acceleration 

of the feedstock particles results not from a combustion or detonation process, but 

rather through the control of the gas dynamics associated with a 

converging/diverging (de Laval) nozzle into which powder feedstock particles are 

introduced [4]. Cold spraying was developed in the mid 1980s at The Institute of 

Theoretical and Applied Mechanics of the Siberian Division of the Russian 

Academy of Science in Novosibirsk [13]. While performing supersonic wind tunnel 

tests with flows containing small tracer particles, scientists observed that above a 

critical particle velocity (Vp*) which, depends upon the material being sprayed, there 

was a transition from particle erosion of target surfaces to rapidly increasing 

material deposition. Although this wind tunnel phenomenon had been observed by 

others, the Russian scientists developed the process as a coating technique. They 

successfully deposited a wide range of pure metals, metal alloys, polymers, and 

composites onto a variety of substrate materials. They also demonstrated that cold 

spray could rapidly apply coatings over large surface areas, up to 5 m2 miri 1 in a 

pilot demonstration system for cold spray coating of pipe. A U. S. patent was issued 

in 1994 [8]. 

The actual mechanism by which the solid state particles deform and bond has not 

been well characterized. It is proposed that plastic deformation may disrupt thin 
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Chapter 2 Description of thermal spraying and cold spraying 

surface films, such as oxides, and provide intimate conformal contact under high 

local pressure, thus permitting bonding to occur. Though unproven, this hypothesis 

is consistent with the fact that wide ranges of ductile metals have been cold spray 

deposited. However experiments with non-ductile materials have not been 

successful unless they are co-deposited along with a ductile matrix material. This 

theory would also explain the observed minimum critical velocity necessary to 

achieve deposition, because sufficient kinetic energy must be available to plastically 

deform the solid material [13]. 

2.4 Gas dynamic principles of cold spraying 

The following discussion about the one-dimensional isentropic flow is primarily 

based upon the text book "Compressible fluid flow" by Oosthuizen and Carscalen 

[14] and on the work done by Dykhuzien et al. [13] and Jodoin [15]. The nozzle 

exit velocity of the particle in a cold spray device is in principle, limited only by the 

gas velocity. High pressure gas flow, long nozzles, and small particles result in 

particles travelling at or near the gas velocity, and a particle acceleration model in 

cold spraying has been developed based upon the work by Gu et al. [16] 

The gas flow in cold spraying may be studied as compressible gas flow under the 

following assumptions [13]: 

The flow is one dimensional 

13 



Chanter 2 Description of thermal spraying and cold spraying 

ii. The gas flow is isentropic (adiabatic and frictionless) 

iii. The gas is approximated as a perfect gas with constant specific heats 

iv. The gas flow is calculated without considering the influence of the powder 

flux 

The one dimensional flow ignores the small boundary layer present at the nozzle 

wall where the gas is traveling slower then the main body of the flow in middle of 

the nozzle. Thus, the gas flow rates calculated by the model are expected to be 

slightly higher than those obtained in practice. However, the area of the boundary 

layer is small as compared to the bulk of the flow thus it can be safely assumed that 

the bulk of the flow is largely one-dimensional. Also, the one-dimensional 

assumptions limit the application of the model to regions away from the jet 

impingement on the substrate. 

The compressibility of a fluid is basically, a measure of the change in density that 

will be produced in the fluid by a specified change in pressure. Gases are in general, 

highly compressible whereas most liquids have a very low compressibility. In a 

fluid flow, changes in velocity will result in a change in pressure. These pressure 

changes will influence the density of the fluid, which will have an influence on the 

flow, i. e., the compressibility of the fluid involved will have an influence on the 

flow. If these density changes are significant, the temperature changes associated 

with the velocity changes also influence the flow, i. e., when compressibility is 

important, the temperature changes in the flow are usually important. 

14 



Chanter 2 Description of thermal spraying and cold spraying 

Compressibility effects are normally associated with gas flows in which the flow 

velocity is relatively high compared to the speed of sound in the gas. The basic 

assumptions regarding compressible flow, apart from those discussed above are: 

i. The gas is continuous, i. e. the motion of individual molecules does not have 

to be considered, the gas being treated as a continuous medium. This is valid 

under most conditions, except under conditions of low pressure or vacuum 

ii. No chemical changes occur in the flow 

iii. The specific heats at constant pressure and constant volume, C. and C, are 

both constants. The ratio of two specific heats will be used extensively in the 

analyses of compressible gas flows and is given by: 

= 
Cp 

y CV ---------------------------------------------------------------- 
Equation 2.1 

It should also be recalled that 

R= Cp - Cv -------------------------------------------------------------- Equation 2.2 

Where, R is the universal gas constant. 

This is valid if the gases are not subject to very large temperature changes. 

iv. Gravitational effects on the gas flow field are negligible. This assumption is 

quite justified for gas flows. 
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v. Magnetic and electrical fields are negligible. These effects are important if the 

gas is electrically conducting, e. g. ionized gas. However in cold spraying this 

is not important. 

vi. The effects of viscosity are negligible. This is never true close to a solid 

surface; however, for a nozzle, the overall effects of viscosity remain small. 

When the above assumptions are adopted, the flow field is completely described by 

knowing the values of the following variables at all points of the flow field; 

0 Velocity vector, v 

0 Pressure, P 

0 Density, p 

0 Temperature, T 

The equations describing the flow field are derived by applying the following 

principles, 

0 Conservation of mass (continuity equation) 

0 Conservation of momentum (Newton's Law) 

0 Conservation of energy (First law of thermodynamics) 

0 Equation of state 
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2.4.1 One-dimensional isentropic flow 

The concept of control volume is used in the derivation and application of many 

equations of compressible flow. A control volume is an arbitrary imaginary volume 

of cross-section area A, fixed relative to the coordinate system being used bounded 

by a control surface through which fluid may pass. 

Applying the law of conservation of mass over a control volume gives us the 

continuity equation, which is: 

dp 
+ 

dv 
+ 

dA 
_0 ------------------------------------------------------------- Equation 2.3 

pvA 

Applying the law of conservation of momentum over a control volume gives: 

- dP 
= VdV -------------------------------------------------------------------- Equation 2.4 

P 

The energy equation for an adiabatic steady flow is given by: 

CpdT + VdV = 0--------------------------------------------------------------- Equation 2.5 

The equation of state applied on a control volume is given by: 

dp dp dT 
= 0--------------------------------------------- Equation 2.6 

ppT 

The compressibility effects are important in a gas flow when the velocity in the 

flow is high. In general it is taken that compressibility effects must be considered in 
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a flow M>0.3, where Mach number, M= velocity of gas/velocity of sound in that 

gas; 

M =v -------------------------------------------------------------------------- Equation 2.7 
a 

Where a is the velocity of sound. When M>1, the flow is called as supersonic flow 

and when, M<1 the flow is considered subsonic. 

The speed of sound in a perfect gas is given by 

a= yRT ----------------------------------------------------------------------- Equation 2.8 

Where, R is the specific gas constant and R=R; m is the molecular weight of the 
m 

gas. 

The entropy remains constant in an isentropic flow, thus 

P/ p7 =c (Constant) --------------------------------------------------------- Equation 2.9 

If any two points 1 and 2, in an isentropic flow are considered, having the 

conditions of pressure, temperature, volume and density specified by PI, TI, VI, pi 

and P2i T2, V2, p2. The cross-section areas at points 1 and 2 are Al and A2. 

Then from Equation 2.9 it follows that: 
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z 
PZ 

= 1PZ Equation 2.10 
------------------------------------------------------------------- Pi LP, 

Combining equations 3.4 and the general equation of state P= pRT gives: 

Y-I Y-1 
2 ZY 

a2 
=T /T 22 1 Equation 2.11 

---- ------------------------------------- 
a, z, -P, 

Applying the steady state adiabatic energy equation between points 1 and 2 gives, 

T2 
_1+2(y-1)M' T2 _ -------------- Tl 1+2(y-1)M2 

For isentropic flow Equations 2.12 and 2.11 can be combined, thus 

r 

P2 1+ 
2 

(r 
-1)Mi 

Y-1 

P 1+ 
1 (r-1)M2 
2 

Equation 2.12 

Equation 2.13 

1+- (y 
-1)Mi 

1 
P2 

-2 Equation 2.14 -- ------------------------------------------------- A 1+ 
2(y-1)M2 

The continuity equation gives, 
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p1V1A1 = P2 V2 A2 This can be rearranged to give, 

P2 V2 
= 

Al Equation 2.15 --- ------------------------------------------- - 
Pi Vi Aa 

The Equations 2.12 - 2.15 can be used to adequately describe the characteristics of 

one-dimensional isentropic flow. 

2.4.2 Stagnation conditions 

Stagnation conditions are those that would exist if the flow at any point in a flow 

was isentropically brought to rest. If the velocity is zero at some point in an 

isentropic flow, then the conditions at the zero velocity point are considered as the 

stagnation conditions. The stagnation conditions are denoted by the subscript 0. The 

stagnation Po, po and To since M at stagnation conditions is 0, are related to P, p and 

T at some point in the flow by the following equations, 

9=(1+T; 1M2) r-t 
-------------------------------------------------Equation 2.16 

I 

Po 
= 1+ 7 -1 M2 

Y-i 
----------------------------------------------------- Equation 2.17 

P2 

T. 
= 1+Y-M2 - ---------------------------------------------------------- Equation 2.18 

T2 
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2.4.3 Critical conditions 

The conditions that would exist if the flow was isentropically accelerated or 

decelerated to M=1 are known as critical conditions and they are denoted by an 

asterisk. The critical p*, p and T* since M2 at stagnation conditions is 1, are given 

by, 

2T+Y 
M2 ---------------------------------------------- Equation nation 2.19 

T (y+1) y+l 

a 2+ y-MZ 
- Equation 2.20 

a ýy+1ý y+l 

r 
P2 

+Y-1 MZ 
7-1 

P (y+1) y+l 

, 

p' 2+y -1 M2 
r-, 

p (y+l) y+l 

------------------------------------------ Equation 2.21 

------------------------------------------- Equation 2.22 

The relation between the critical conditions and the stagnation conditions can be 

found by setting M=0 in the above equations, thus 

T+ 2 
--------------------------------------------------------------------- Equation 2.23 

To y+1 
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a* 2 

ao y+l 

r 
2 r-t P 

Po y+l 

pý 2 Y-1 
PO y+1 

2.4.4 Shock waves 

------------------------------------------------------- Equation 2.24 

------------------------------------------------------------- Equation 2.25 

------------------------------------------------------------- Equation 2.26 

In a supersonic flow, under certain conditions sudden deceleration of the flow to 

subsonic flow can take place across a thin region. This deceleration of flow is 

accompanied by an increase in pressure. This extremely thin region where the 

change from a supersonic flow to subsonic flow takes place along with an increase 

in pressure is known as a shockwave. Shock waves are important in cold spray 

process because a shockwave occurring in the flow path will change the supersonic 

flow to a subsonic flow. Because the exit pressure calculated by Equation 2.16 is 

typically less than ambient a simple check is required to ascertain that shocks do not 

form inside the nozzle. The following calculation yields a trial pressure for the 

design. Ps is the downstream shock pressure that would be obtained if a shock 

occurred at the nozzle exit when the pressure at nozzle exit is Pe [13]: 
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Ps 
- 

2y 
11. I 2 

-r-1 Equation 2.27 
- ------------------------------------------------------- Pe y+l y+l 

If Ps is equal to ambient pressure, a shock occurs at the nozzle exit. If this pressure 

is less than the ambient pressure, a shock occurs somewhere inside the nozzle and 

subsequent subsonic flow occurs past the shock location so that the exit pressure is 

equal to ambient pressure. If Ps is greater than the ambient pressure, then the 

calculations as per the equations described in sections 2.4.1,2.4.2 and 2.4.3 

represent real conditions inside the nozzle. The gas stream then slows down outside 

of the nozzle exit as the pressure adjusts to the ambient. This gas deceleration upon 

exiting is not as significant in cold spraying due to short stand-off distances. 

2.4.5 Flow in converging-diverging nozzle 

The flow in a variable cross-sectional area is given by, 

dA 
_ (M -1) 

A 
----------------------------------------------------------- Equation 2.27 

dv v 

As A and v are positive, it is seen from Equation 2.27 that, 

1. If M<1, then dA has the opposite sign to dv, i. e., decreasing the area 

increases the velocity and vice versa. 

2. If M>1, then dA has the same sign as dv, decreasing the area decreases the 

velocity and vice versa. 
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3. If M=1 then = 0. From (1) and (2) it follows that when M=1, A must be 

a minimum. 

It follows from the above discussion that a converging divergent nozzle is required 

to accelerate the flow to supersonic. The convergent part accelerates the flow to M 

=1 and the divergent portion accelerates the flow to supersonic velocity. At the 

throat since dA =0 the Mach number, M=1. 

The critical nozzle area is given by, 

y+I 

A. _m2 
2(r-1) 

YPoPo r+l 
Equation 2.29 

A is the mass flow rate of the gas. This equation may be used to calculate the 

critical area needed to achieve supersonic flow in the divergent part of the nozzle, if 

the throat conditions are M =1. 

In a converging diverging nozzle the flow at any point down stream of the throat 

having cross-section area as Ai is related to the mach number of the flow by the 

equation, 

y+t 

A-12 
1+ýy-1ýM2 

2ýy-1ý 

M y+1 2 ---------------------- Equation 2.30 
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The Equation 2.30 can be used to calculate the Mach number for a ratio of A/A*. 

The conditions of flow depend upon the back pressure, which is the pressure in the 

downstream region of the nozzle. For a given stagnation conditions of Po, Po, To 

there exists a back pressure where the gas pressure at throat is equal to the critical 

pressure, P*. The gas velocity at throat will be M=1 when the back pressure is 

decreased to P*. Once the Mach number of 1 has been reached at the throat, further 

reduction in the back pressure can not affect the mass flow rate through the nozzle. 

The nozzle in this condition is considered as choked. If the back pressure is 

decreased further below P*, a region of supersonic flow develops just downstream 

of the throat. This region of supersonic flow is terminated by a normal shockwave. 

The shock wave increases the pressure and reduces the velocity to subsonic. If the 

back pressure is further reduced the supersonic flow region is extended and the 

shockwave moves further downstream in the divergent part of the nozzle. As the 

back pressure is further reduced the shock wave will eventually be on the exit plane 

of the nozzle. When this condition is achieved the flow in the nozzle is isentropic 

and the Equation 2.30 can be used to calculate the velocity of the gas. When the 

back pressure is decreased further the shockwave moves outside the nozzle and 

eventually, with further reduction in back pressure, a point is reached where the exit 

pressure and back pressure are equal. The nozzle is then known to operate at its 

design pressure ratio and there are no shock waves inside or outside the nozzle. 

When the back pressure is decreased below the exit plane pressure the exit pressure 

is expanded to the back pressure through a series of expansion waves and the nozzle 

is said to be in the under expanded condition. The above discussion was for a 
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condition of constant stagnation pressure and decreasing the back pressure. 

However, in the condition of operation of cold spray nozzle the back pressure is 

usually the atmospheric pressure and the stagnation pressure is increased to get 

supersonic flow in the divergent part of the nozzle. The area ratio of the nozzle is 

used to calculate the design Mach number of the nozzle using Equation 2.30. The 

Equation 2.29 can be used to calculate the minimum stagnation pressure and mass 

flow rate required to achieve, critical conditions at the nozzle throat. 

2.4.6 Particle acceleration model 

Gu et al. [16] developed a computational fluid dynamics model for acceleration of 

particles in HVOF spraying. The model developed is presented here. 

The momentum transport between the gas and particle can be solved directly from 

Newton's second law; 

dv 
m°=F ------------------------------------------------------------------ Equation 2.31 

P dt 

Where F is the force acting on the particle, N; mp is the mass of particle, kg; vp is 

the velocity of particle, m s"1 and t is time in seconds. The acting force in the 

particle could involve the drag force, force due to pressure gradients, force due to 

added mass, Basset history term, and external potential forces [2]. In principle, 

among the factors that affect the movement of particle during the HVOF process, 
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only the drag force plays a dominant role; other factors can be neglected in most 

cases [2]. Therefore, the aero-dynamic drag force can be used to represent the 

general force in the form; 

I ApPgCdlVg I(y 
y Equation 2.32 FD 

=8 

Where FD is the drag force, N; Ap is the surface area of the particle, m2; pg is the 

density of the gas, kg m'3; Cd is the drag factor, Vg is the velocity of gas, ms1. 

The acceleration for a spherical particle is deduced as; 

dvP 3p 
8 CdI vg - vpl(v8 - vp) ----------------------------------------- Equation 2.33 

dt 4d 
ppp 

Where dp is the diameter of the particle, m; and pp is the density of the particle, kg 

m3. 

The drag factor Cd is related to the Reynolds number (Re) as follows; 

_ 
24 

Cd 
Re 

ýRe<1) 

(1+0.15R0.67) 24 
Cd=Re l 

Cd = 0.44 

The Reynolds number is defined by; 

(1 < Re < 103) ----------- Equation 2.34 

(Re > 103) 
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R- 
ps1, 's - vnl da 

P9 
Equation 2.35 

Where, jig is the dynamic viscosity of the gas, kg m-1 s"1, which is assumed to be 

constant. The Equations 2.31 - 2.35 were solved numerically by Thei, using the 

assumption of isentropic gas flow to obtain particle velocities for various nozzle 

lengths and expansion ratios [17]. 

If the value of particle diameter is provided, Equation 2.33 can be used to calculate 

the velocity of a particle after a small time interval. The particle velocity can be 

calculated by inputting calculated gas velocity (Equation 2.30) and an initial value 

for particle velocity in Equation 2.35 and thereafter using the Reynolds number to 

calculate the drag coefficient. The drag coefficient is then used in Equation 2.33 to 

calculate the particle velocity. The density of gas to be used in Equation 2.33 is 

obtained from the Equation 2.17. Further details of particle velocity calculation in 

cold spraying are available in [17]. 

2.4.7 Nozzle design 

The one dimensional isentropic analysis shows that the nozzle geometry and the 

pressure ratio are important factors to consider when designing a cold spray nozzle 

operating at a specific Mach number [13-15]. The general geometry required to 

accelerate a subsonic flow to the supersonic regimen is a convergent-divergent 

nozzle. With this geometry, the fluid is continuously accelerated from low subsonic 
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to supersonic velocity. The flow passes through the sonic condition (M = 1) at the 

junction of the converging and the diverging parts, i. e. at the throat. 

The maximum possible particle velocity is the gas velocity; this can be increased by 

using a lower molecular weight gas or by increasing the inlet gas temperature. 

Equation 2.8 shows that heating the gas and using gas having lower molecular 

weight will achieve higher velocity of sound as it has higher specific gas constant 

(R). Thus, as predicted by Equation 2.30, the exit Mach number does not depend 

upon the type of gas or the gas temperature, but the higher velocity of sound will 

result in higher gas velocities. Equation 2.30 shows that the exit gas velocity can 

also be increased by using a nozzle with higher expansion ratio. However, it is seen 

from Equation 2.17; higher expansion ratio results in lower gas density in the 

divergent part. This decrease in gas density can be off-set by increasing the 

stagnation gas pressure, as this will increase the total gas mass flow and result in a 

denser gas. 

The CGDS nozzles can have a rectangular cross-section of the throat and exit [12, 

18-211 or a circular cross-section throat but rectangular cross-section of exit [22-241 

and circular cross-section of throat and circular cross-section of exit [25-27]. 
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2.5 Commercially available cold spray systems 

Cold spray systems are available commercially from Cold Gas Technology (CGT), 

Ampfig, Germany and Ktech Corporation, USA. The photo of the CGT cold spray 

system is shown in Fig. 2.4 [28]. The system consists of a nozzle, gas heater, 

powder feeder and a process controller. Various groups in Russia have come out 

with cold spray systems based upon their research into the two-dimensional gas 

dynamic model of the flow, heat and momentum transfer from gas to particles, 

particle impact and deformation theory, coating microstructural development, etc. 

These processes use compressed air, nitrogen and helium as the carrier gas at wide 

range of gas temperature and pressure to produce some coatings with acceptable 

characteristics. However, systems based on these processes are relatively cheap. 

These processes have been marketed with various brand names such as Rus Sonic, 

Tev Tech, Dymet, etc [29]. 

2.6 Applications of cold sprayed coatings 

ASB Industries in USA has carried out extensive work on development of the cold 

spray process for thick coatings/freeform fabrication. Most applications developed 

by ASB industries and other workers are proprietary. Cold spray has produced 

protective coatings and performance enhancing layers, ultrathick coatings, 

freeforms, and near net shapes. Large sizes and shapes can be spray-fabricated, and 

geometrical features can be easily incorporated during spray preparation, and then 
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machine finished. When a robot is used to handle cold spray gun, CAD files can be 

used to control the spray pattern to produce near net shapes (NNS). Moreover, by 

controlling the feed stock composition, the deposit microstructure and composition 

can be varied to produce functionally gradient materials (FGM) and other special 

structures [30]. 

Some applications of cold sprayed deposits are listed below [30-32]: 

0 Copper coatings on aluminium heat sinks. 

0 Cold sprayed thermal management layers for the RL60 rocket engine. 

Copper-carbon MMC thermal management layers for NASA GRC. 

0 Cold spray fabrication of slabs and plates of high strength copper alloys. 

Some of the potential applications of cold spray coatings are [32]: 

0 Nickel and nickel base alloys for corrosion and wear protection layers. 

9 Tantalum layers for chemically resistant layers in the chemical industry. 

0 Generation of solderable surfaces on materials with poor wettability (for 

example heat sinks, copper on aluminium) 

0 Deposition of electric screening coatings on plastics 

0 Deposition of conducting structures on non-metals 

0 Deposition of brazing and soldering alloys 

Fig. 2.5 shows an example of soldered power transistor on an aluminium heat sink 

with a cold sprayed copper layer [32]. The industrial applications of cold sprayed 
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coatings can be further developed by research and development in the following 

areas [32]: 

0 Availability of low cost powder feed stocks with adequate processing 

properties (feeding properties, purity), which can produce coatings of the 

required quality. 

0 Improving reproducibility of the cold spray process. 

" Integrating the complete manufacturing process; pre and post-treatment / 

machining processes / heat treatment and combination with other 

manufacturing processes. 

2.7 Mechanism of deposit formation 

2.7.1 Particle velocity and temperature during cold spraying 

2.7.1.1 Concept of critical velocity and its estimation 

The particles in cold spraying are accelerated by the drag force of the gas acting on 

them in the de Laval nozzle. There exists a critical impact velocity (V, *) for the 

sprayed particles, which, must be exceeded to induce particle deposition rather than 

erosion [4,6,12,13,21,22,26,27,33-36]. The value of Vp" usually lies between 

500 - 800 m s"t for most metals [4,27]. The variation of deposition efficiency with 

particle velocity in cold spraying is shown in Fig. 2.6 [4]. The deposition efficiency 

is seen to increase with particle velocity, reaching values from 30% to 80% [4]. 
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Stoltenhoff et al. [27] conducted experiments with four different nozzles having 

different geometries (expansion ratios, shape and length of the divergent section) to 

deposit copper on to aluminium. The diverging section of nozzle A had a length of 

65 mm, an expansion ratio of 6 and a conical shape. Nozzle B has the same length 

and shape of the diverging section but the expansion ratio is 9. Nozzle C is a 

lengthened version of nozzle A by a factor of 1.5 with a bell shaped contour. The 

bell shaped nozzle D is lengthened by a factor of 1.8 with respect to nozzle B. All 

four nozzles were tested for spraying copper onto aluminium substrates. The 

particle impact velocity was computed using computational fluid dynamic (CFD) 

Code FLUENT. It was seen that not all copper particles adhered to the substrate. 

The fraction adhering is termed the deposition efficiency. Assuming that only 

particles above a certain critical velocity will form a coating, it is postulated that for 

the measured particle size distribution, this will only be the case for particles up to 

the diameter for which the cumulative mass fraction is equivalent to the deposition 

efficiency [27,36]. The respective deposition efficiencies for each nozzle are shown 

in Fig. 2.7(a). The maximum particle diameter corresponds to about 12.2 µm for 

nozzle A, 14.3 µm for nozzle B, 15.8 µm for nozzle C and 17.5 µm for nozzle D, as 

shown in Fig. 2.7(b). For these maximum particle diameters, the calculated impact 

velocity is in the range of 550 m s"1 to 570 m s"1 with their respective nozzles. 

Therefore, this can be considered as a critical velocity but only for the particular 

powder used in that work [27,36-38]. 
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2.7.1.2 Particle velocity and temperature during cold spraying 

Voyer et al. [27,36] carried out numerical simulation of the gas and particle flow. 

The Computational Fluid Dynamic code (CFD-code) FLUENT was used to model 

the flows inside and outside of the nozzle. Fig. 2.8 shows gas and particles flow 

calculations performed by the CFD-code FLUENT for a nozzle having expansion 

ratio of 9 using N2 as process gas at an initial temperature of 593 K and initial 

pressure of 2.5 MPa and using copper particles having 15 µm diameter. It is clearly 

observed that gas acceleration takes place in the nozzle throat area and in the first 

third of the divergent section of the nozzle. As the gas accelerates, its temperature 

falls far below room temperature. In the free jet, after the nozzle exit, irregular 

changes of the gas properties are due to compression shocks. The velocity of the 

particles rises sharply in the first half of the divergent section of the nozzle. Since 

the gas velocity in the free jet is still higher than the particle velocity, acceleration 

of the powder particles is still taking place. The powder particles are injected 

upstream of the throat of the nozzle, where the gas is relatively hot and slow, 

therefore, the particles are heated up rapidly in this section. After the throat section, 

the particles cool down but they always remain at a temperature higher than the gas 

temperature. 

The particle velocities and temperatures calculated by Voyer et al. using nitrogen as 

process gas are shown in Fig. 2.9 - 2.10 and using helium gas is shown in Fig. 2.11 

[36]. The temperature and velocity of 15 µm copper particles at the exit of the 

nozzle as a function of inlet gas pressure for a fixed inlet gas temperature of 673 K 
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is shown in Fig. 2.9(a). The particle temperature is almost independent of the gas 

inlet pressure. However, for the gas inlet pressure range shown in Fig. 2.9(a), the 

particle velocity is dependent on the pressure and increases by a factor of 15 % 

approximately as the inlet gas pressure is doubled. Fig. 2.9(b) shows the 

temperature and velocity of 15 µm diameter copper particles at the exit of the 

nozzle as a function of the inlet gas temperature for a fixed inlet gas pressure of 2.5 

MPa. Both particle temperature and velocity are strongly dependent on the inlet gas 

temperature. For the inlet gas temperature range shown in Fig. 2.9(b), when the 

inlet gas temperature is doubled, the particle temperatures is approximately doubled 

and the particle velocity increases by a factor of 25 % approximately. 

Fig. 2.10 shows temperature and velocity of copper particles at the exit of a nozzle 

as a function of particle diameter for an inlet gas pressure and temperature of 2.5 

MPa and 673 K respectively. It is seen that smaller particles are accelerated to 

higher velocities due to their lower inertia and are cooled to much lower 

temperatures (due to gas expansion) than coarser particles. 

Fig. 2.11 shows the effect of the process gas type (N2 or He) on the temperature and 

velocity of 15 µm diameter MCrAIY particles at the exit of the nozzle as a function 

of either the inlet gas pressure (Fig. 2.11(a)) or the inlet gas temperature (Fig. 

2.11(b)). The nozzles used in these experiments were optimized for N2 and He. 

Therefore the dimensions of optimal nozzle for N2 are different than the dimensions 

of the optimal nozzle for He. Fig. 2.11 clearly shows that higher particles velocities 

by approximately 75 % are obtained when using He gas for either a fixed inlet gas 
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pressure or temperature. At the same time, the use of He as a process gas decreases 

the particle temperature by approximately 100 K for either a fixed inlet gas pressure 

or temperature. 

Steenkiste et al. [24] used the one dimensional model to compute the gas and 

particle velocity and temperature along the length of the nozzle for copper particles 

of various sizes using a nozzle having throat diameter 2.8 mm and exit dimensions 

of 2 mm by 10 mm (expansion ratio of 3.25). They used air heated to 800 K for 

their deposition experiments. The velocity computation from their work is shown in 

Figs. 2.12 & 2.13. The results of their computations show that smaller particles (1 

µm) are accelerated to higher velocities, and although smaller particles are heated to 

higher temperatures in the throat they also cool down rapidly along with the gas in 

the diverging part of the nozzle. They validated their computations by measuring 

particle velocities for known particle diameters. Reasonable agreement between the 

results of the measurements and the computations was obtained. 

The particle velocity has been experimentally determined using techniques such as 

Laser two focus (L2F) Velocimetry and Particle Image Velocimetry (PIV) [21,23, 

39]. Shukla et al. used PIV to measure the velocity of copper particles (1,5 and 18 

gm in size) deposited using air at 288 K to 293 K, 3.1 MPa and nozzle having 

expansion ratio of 5.1. They measured velocities between 700 to 750 m s"1 [21]. L2F 

was used by Gilmore et al. to measure the velocity of 19 and 22 µm sized copper 

particles sprayed using air and helium as driving gas [39]. They observed that the 

measured variation of particle velocity with gas pressure and temperature was in 
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reasonable agreement with theoretical predictions. They concluded that helium can 

be used as the driving gas instead of air to achieve higher particle velocities for a 

given temperature and pressure. Coating deposition efficiencies were found to 

increase with particle velocity. A significant mass loading effect on the particle 

velocity was observed; particle velocities began to drop as the mass ratio of powder 

to gas flow rates exceeded 3 %. 

2.7.1.3 Influence of heating the as on substrate during cold spraying 

The influence of gas heating on the substrate was investigated by Taeyung et al. 

[40]. They used CFD - code FLUENT to predict the particle and gas, temperature 

and velocity in cold spraying. They observed significant heating of the substrate due 

to high shear flow at the substrate. The formation of a bow shock near the substrate 

was observed by Morgan et al. and the image of the bow shock provided by them is 

given in Fig. 2.14 [41]. They observed that larger particles deform the most even 

though they are not accelerated as much as smaller particles. This is due to the bow 

shock. When the gas jet impinges on the substrate, a high-pressure region is formed 

directly above the substrate, resulting in a shock wave opposing the flow from the 

nozzle. The particles have to penetrate the bow shock before impacting on the base 

material. While the larger particles have sufficient momentum to maintain the 

critical velocity, the smaller lighter particles are decelerated to the point where they 

will no longer undergo deformation on impact. Taeyung et al. [40] also studied the 

effect of presence of a bow shock region near the substrate on the particle velocity 
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for different particle diameters in aluminium. The results obtained by them are 

shown in Fig. 2.15. The velocity of 1 µm particles reduces drastically, due to the 

bow shock, from nearly 900 m s" to less than 400 m s"'; the decrease in 5 µm size 

particle is much less, from - 850 m s'1 to just below 800 m s4. The effect of bow 

shock on particle velocities of particles larger than 10 µm was negligible. 

2.7.2 Impact phenomenon in cold spraying 

The coating deposition and growth is dependent upon the impact of high velocity 

particles and hence the impact phenomenon of the particles with the substrate has 

been investigated by many researchers [22,35,42-44]. 

Steenkiste et al. studied the particle substrate interaction for aluminum particles in 

the size range of -106 µm +63 µm [35]. For the particle to stick to the substrate or 

the underlying coating, all of its kinetic energy must be transformed into heat and 

strain energy of the coating and substrate. Such a plastic deformation was observed 

experimentally, with a roughly spherical aluminum particle flattening into a 

pancake like shape with an aspect ratio in the range of 3: 1 to 5: 1. The yield stress of 

the particle and/or the substrate must be exceeded during the collision, and for this 

reason powders and substrates usually employed in the cold spray process are 

metals with relatively low strength. Such deformation of deposited material has 

been observed by several other researchers for a variety of substrate-deposited 

material combination [6,8,19,35,41,42,44-51]. The microstructure images of 
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cold sprayed aluminium, Inconel 718, copper and Cu-W are shown in Fig. 2.16(a- 

b) [41], Fig. 2.17(a-b) [47], Fig. 2.18(a-b) [45] and Fig. 2.19(a-b) [46] 

respectively. A wide range of materials have been deposited by cold spraying. The 

microstructures show significant deformation of the sprayed particles. 

Papyrin et al. [42] numerically studied the dynamics of aluminum particle 

deformation. They observed that a high speed radial jet of metal is formed at the 

contact zone. This effect is similar to the jet formed during explosive welding and it 

leads to corona shaped ejection of metal at the final stage of plastic deformation at 

the periphery contact zone. The formation of a metal jet has been suggested and it 

has been subsequently experimentally verified [43-45,52]. The image showing 

jetting for the case of aluminium particle impacts upon aluminium substrate is 

shown in Fig. 2.20 [43,44] and for the case of copper particle impact on copper 

substrate is shown in Fig. 2.21 [45]. 

2.7.3 Bonding mechanism for deposit formation 

In cold spraying, a clean and oxide free interface between substrate and the sprayed 

particles as well as between previously deposited particles and oncoming particles is 

formed due to the plastic deformation and metal jetting observed during cold 

spraying [19,22,42]. The bonding mechanism in cold spraying can be compared to 

those in processes such as explosive cladding or shock wave powder compaction. In 

these processes metal jetting is observed and the microstructures show regions of 
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highly deformed material [45]. In explosive cladding as well as shock wave 

compaction successful bonding has been related to the critical conditions for 

extensive plastic deformation at the particle/particle interface [45]. Assadi et al. [45] 

modelled the deformation of particles upon impact using the finite element program 

ABAQUS/EXPLICIT. They chose two particle velocities for the impact of copper 

particles (-22 +5 µm) on copper substrate in their model, namely 500 m s"1 and 600 

m s"1. The critical velocity was estimated according to the method described in 

section 2.7.1.1, for impact of copper particles on copper substrate was 570 m s-t. 

The phenomenon at impact is shown in Fig. 2.22. The particles and substrates are 

initially at room temperature. The contours indicate temperature and the arrows 

represent the magnitude of velocity at the respective surfaces. The figure shows 

much localized heating near the particle/substrate interface for both impact 

velocities; this is more severe for the higher velocity impact. The figure also shows 

the formation of a jet-type flow of material at the interface at an early stage of 

impact. The formation of the jet is attributed to the localization of plastic 

deformation in cold spraying. The strain and stress profiles for a 10 µm particle, 5 

ns after the beginning of the impact, for two initial velocities of 300 and 900 m s"1 

are shown in Fig. 2.23. For the impact velocity of 300 m s"1, there is a monotonic 

increase in flow stress as the interface is approached. This is a result of hardening 

effects due to high strains at the interface. The high plastic strain at the interface on 

the other hand results in softening due to adiabatic heating. At the higher particle 

velocities, the softening effect can dominate over the hardening effect thus leading 

to adiabatic shear instability at the interface. This effect is observed for an impact 
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velocity of 900 m s4. At this velocity, despite the high magnitude of plastic strain at 

the interface, the shear strength of material falls to values near zero due to 

dominance of thermal softening over hardening. Fig. 2.24(a-c) [45] shows the 

strain, stress and temperature rise during impact at various particle velocities. As 

shown in Fig. 2.24(a) strain rates of up to 0.5 x 109 s"1 and maximum strains of 

about 4 are observed for three velocities of 450,500 and 550 m s"t. For the velocity 

of 580 m s"1 the flow mechanism changes from plastic to viscous flow and strains of 

about 10 are achieved. Fig. 2.24(b) shows that heating rates for all impact velocities 

are around 109 K s"1. For the impact velocity of 580 m s"1, the temperature 

approaches the melting temperature of copper, whereas in other cases it remains 

well below it. Fig. 2.24(c) shows the temporal development of the equivalent stress. 

For lower or medium velocities of up to 550 m/s, there is a drop in stress after 0.05 

µs, which can be attributed to the loading conditions from the substrate. For an 

impact velocity of 580 m s"1 the stress changes 0.3 µs after impact and wide 

fluctuations in stress are observed. This coincides with the increase in temperature 

and strain as seen in Fig. 2.24(a-b). It is seen from the above analysis that rapid 

changes in variables like strain, temperature and stress take place in a narrow range 

of impact velocity between 550 and 580 m s'. This velocity range corresponds well 

with the estimated critical velocity for deposition (570 m s"'). Assadi et al. [45] 

suggest that bonding takes place due to adiabatic shear instability upon impact. The 

occurrence of adiabatic shear instability depends upon the impact velocity; the 

critical velocity must be exceeded for adiabatic shear instability to occur. A similar 

model for bonding in cold spraying has been suggested by Grujicic et al. [53]. They 

41 



Chapter 2 Description of thermal spraying and cold spraying 

suggest that adiabatic shear localization and the associated formation of the 

interfacial jets during cold spraying can be expected to produce clean contacting 

surfaces. In addition, adiabatic softening of the material in the particle/substrate 

interfacial region combined with relatively high contact pressures promote 

formation of mutually conforming contacting surfaces via plastic deformation of the 

contacting surfaces. 

2.8 Characterization of cold sprayed deposits 

The properties of the cold sprayed deposits are highly dependent upon the spraying 

conditions employed [7,19,20,24,35,54-57]. The wide range of spray parameters 

in terms of gas pressure, flow and temperature; particle morphology, size and route 

of manufacturing, etc that can be used to deposit coatings results in coatings with 

properties scattered over a wide range in terms of density, hardness, adhesion on 

substrate, electrical resistivity etc. Table 2.2 describes some properties of cold 

spray coatings and the conditions used to deposit these coatings. The values for a 

typical bulk material are also given for comparison. It is seen that the hardness of 

all the cold sprayed materials are higher than those of a corresponding bulk 

material. This is attributed to the significant cold working during cold spray 

deposition. The coatings display porosity <5% and in some cases for copper the 

porosity is < 0.1 %. The porosity in aluminium shows dependence upon the powder 

feed rate used; higher powder feed rate (0.65 g s"1) produces denser coatings 

(porosity 1.75 %) while lower powder feed rate produces coatings with higher 
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porosity (4 %) [35]. Similarly the adhesion of aluminium on brass for coatings 

produced using lower powder feed rate is lower (30.5 MPa) than the adhesion for 

coatings produced using higher powder feed rate (49 MPa). The authors attribute 

the lower porosity and higher adhesion to the peening effect of the impacting 

aluminium particles during spraying, which is greater for the higher powder feed 

rate. The adhesion strength of copper on aluminium substrate is greater than 70 

MPa as at this strength the epoxy failure was observed [24]. 

The resistivity of bulk copper and copper produced by cold spraying as well as 

different thermal spray methods is shown in Fig. 2.25 [541. The resistivity of cold 

sprayed copper was seen to be close to the bulk value whereas thermal sprayed 

copper had high values of resistivity. The effect of heat treatment on the resistivity 

of cold sprayed copper is shown in Fig. 2.26 [58]. As sprayed copper has resistivity 

of - 23 nS) m. It is seen that annealing at 373 K does not affect the resistivity 

significantly but annealing at 473 K decreases the resistivity to - 19 n) m. In 

addition, the hardness values of copper annealed at different temperatures are 

shown in Fig. 2.27 [58]. As-deposited copper has a hardness of 140 kgf mm 2. The 

hardness does not start to significantly decrease until 473 K; following annealing at 

673 K, the hardness decreases to - 95 kgf MM 2. The authors attribute the decrease 

in electrical resistivity after annealing to recovery and recrystallization and the 

decreases in hardness to grain growth. 

The properties of cold sprayed Ti were investigated by Marrocco et al [56,59]. The 

hardness plot from their work is given in Fig. 2.28 [59] and the porosity values are 
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shown in Fig. 2.29 [56]. The hardness values are distributed in the range between 

100 and 200 kgf MM-2 . The authors attribute the scatter in the hardness values to the 

porosity observed in the coatings. The porosity was 15 % to 22 % for coatings 

deposited at gas pressures between 15 bar to 29 bar. The adhesion strength of cold 

sprayed Ti on Ti6A14V and steel substrates is shown in Fig. 2.30 [56]. The 

adhesion on grit blasted substrate was - 10 MPa whereas on polished/ground 

surface it was - 20 MPa. The authors suggest that work hardening of the substrate 

during grit blasting hardens the substrate and decreases the deformation of the 

substrate during cold spraying. The decreased deformation of substrate hinders the 

formation of a metallurgical bond at the interface of coating-substrate. 

2.9 Conclusions 

The following areas can be identified in the science of cold spraying where gaps 

exist in the present knowledge. 

I Adhesion of cold sprayed deposits on non-metallic, particularly polymer 

substrates. 

2 Mechanism by which the phenomenon of adiabatic shear instability 

promotes bonding in cold spray coatings, as it is seen that the adhesion 

strength of deposits are lower than their tensile strength. 
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3 Relation between the deposit microstructure and their properties like 

resistivity, hardness, tensile strength. 

4 Microstructural stability of cold sprayed coatings has received only a little 

attention. 

The present work will attempt to increase the understanding of the adhesion of 

deposits on non-metallic substrates, the relationship between the deposit 

microstructure and their properties and thermal stability in cold sprayed coatings. 
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of 9, To = 673 K, Po = 2.5 MPa) [36]. 
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Fig. 2.14: As gas jet impinges on surface, a high- 
pressure region immediately above the substrate forms 
a bow shock opposing the gas jet, causing deceleration 

of particles before impact [411. 
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Fig. 2.15: Effect of bow shock on particle velocity of 
aluminium having different particle sizes [40). 
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Fig. 2.17: Microstructure of cold sprayed 
Inconel 718 coating [47]. 
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Fig. 2.18: Scanning electron micrographs 
(BSE) of a cross-section of a cold sprayed Cu 

coating on an aluminium substrate. Etched to 
reveal the particle/particle boundaries. The 

particles appear well bonded, and there is very 
little porosity [45]. 

Fig. 2.19 (a-b): SEM images of cross- 
sections of cold sprayed agglomerated 
Cu-W powder. The Cu-W powder was 
mixed in the ratio 75Cu-25W, wt % and 
ball milled for 20 h [461. 
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Fig. 2.20: Surface of aluminium alloy substrate Fig. 2.21: Scanning electron micrographs 
following cold spraying with aluminium (secondary electron mode) of wipe test 
particles. A) Low magnification image samples of copper particles on a copper 
showing bonding of both large and small substrate, showing a) an overview and b) a 
particles; b) high magnification image showing close-up image [45]. Metal jetting is seen in 
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particle and substrate, and the contours indicate 
temperature distribution [45]. 
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Fig. 2.27: Vickers hardness (HV0. I) of cold sprayed copper coating as a function of 
heat treatment temperature [58]. 
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Fig. 2.28: Hardness profile of cold sprayed Ti deposited using Ti powder in the size 
range of -25 +5 µm and gas at 298 K and different gas pressures [59]. 
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Fig. 2.29: Porosity in cold sprayed Ti versus gas pressure using gas at 
298 K. FTi and CTi represent Ti powder in size range of -25 +5 µm and - 
45 +5 µm respectively [56]. 
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Chapter 3 

General Experimental methods 

3.1 Introduction 

The experimental work was undertaken related to the characterization of the 

powders that were used as the feed stock materials, microstructural and mechanical 

characterization and electrical resistivity measurements of the tracks and coatings. 

The experimental part is divided in to the following activities: 

3.2 Microstructural characterization methods 

3.2.1 Powder particle size analysis 

3.2.2 Metallurgical preparation 

3.2.3 Optical Microscopy (OM) 

3.2.3.1 Thickness of intermetallic layers in annealed Sn - Cu 

deposits 

3.2.4 Scanning Electron Microscopy (SEM) 

3.2.5 X-Ray Diffraction (XRD) 

3.3 Mechanical characterization of deposits 

3.3.1 Microhardness testing 
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3.3.2 Tensile testing 

3.3.3 Pull - off adhesion testing 

3.4 Electrical resistivity testing of tracks 

3.5 Profilometry of substrates and deposits 

3.6 Annealing of deposits 

3.6.1 Copper deposits for recrystallization studies 

3.6.2 Diffusion in tin - copper deposits 

3.7 Characterization of materials 

3.7.1 Characterization of powders 

3.7.2 Substrates 
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3.2 Microstructural characterization methods 

3.2.1 Powder particle size analysis 

Copper and tin powders were used for deposition of tracks by cold spraying. A 

Malvern Instruments Laser Mastersizer was used to measure the powder size 

distribution. The powders were stored in vacuum desiccators to minimize oxidation. 

3.2.2 Metallurgical preparation 

The microstructure of powder particles was examined in the optical microscope and 

scanning electron microscope (SEM). Tin powder was observed under the SEM by 

sprinkling the powder on to an adhesive carbon tape to obtain a uniform layer of 

powder on the tape. The tape was then stuck on a holder for observation under an 

SEM. Copper powder was viewed under the optical microscope in the unetched and 

etched condition. The procedure of sample preparation for optical microscopy of 

copper powder and deposits was similar. The tin - copper and copper deposits were 

cut using a diamond saw to obtain specimens for metallographic observation. It was 

observed that the deposits exhibited change in its microstructure and microhardness 

when subjected to temperatures prevalent during hot mounting (423 K) hence it was 

decided to process the metallographic samples using the cold setting resin. The 

powder and deposit specimens were embedded in cold setting mounting resin 

before grinding and polishing. The grinding and polishing was done on emery 
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papers starting with size 400 grit and progressively polishing with finer size grit up 

to 2400. Water was used for sample cooling and lubrication. Thereafter polishing 

was done using diamond paste of 6 µm and 1 µm. Final polishing was carried out 

using 0.01 µm water based colloidal silica solution. The copper powder and 

deposits were observed in the unetched and etched condition. Etching of copper was 

performed using a solution of 5g FeC13 and 5m1 HCl in 100ml ethanol. 

3.2.3 Optical microscopy 

Optical microscopy was carried out using a Zeiss microscope fitted with a digital 

camera to record images. The copper powder and deposits were observed under the 

microscope and images taken at various magnifications of 100,200,400 and 1000. 

3.2.3.1 Thickness measurement of intermetallic lavers in annealed Sn - Cu deposits 

Optical microscope images of tin - copper deposits were used to obtain the 

thickness of the intermetallic compound formed after annealing of deposits. In order 

to measure the thickness of intermetallic layers optical micrographs of the interface 

region were recorded using a 100 X objective lens. Five locations were chosen at 

random and interface positions identified. The thickness of the individual Cu3Sn (c) 

and Cu6Sn5 (rl) layers were then measured at each location and the mean thickness 

and standard error computed. The tin - copper deposits were stored in refrigerator 
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prior to metallographic preparation and observation. The sample preparation and 

measurements were completed within one day of removal from the refrigerator. 

3.2.4 Scanning electron microscopy 

Two different instruments were employed in the course of the work namely a FEI - 

XL 30 and a JEOL 6400. Images were obtained using the back scattered (BSE) and 

secondary electron (SE) signals. On selected samples energy dispersive X- ray 

analysis (EDXA) was performed to determine chemical composition of diffusion 

layers. Quantitative elemental analysis was performed with a standards-based ZAF 

correction program utilizing an Oxford instruments (series 300) EDX system 

comprising a Pentafet Plus Series Si (Li) detector (crystal cross-sectional area 10 

mm2) and an ultra-thin entrance window. The beam current during analysis was 

normalized to that of the reference standards by performing a gain calibration at 

regular intervals using a cobalt standard. 

3.2.5 X-Ray diffraction 

X- Ray diffraction (XRD) analysis of as-sprayed and heat treated deposits of 

copper was undertaken using a Siemens D 500 powder diffractometer with Cu Koc 

radiation. The deposits were naturally de-bonded from the substrate and thus free 

standing deposits were used for XRD analysis. The conditions employed were a 
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step size of 0.01', a counting time of 6 seconds per step in the 20 range 40 - 140°. 

Annealed copper powder was also analysed in this way in order to provide 

reference data [61,62]. 

The X- ray data were collected from the surface of deposits. The purpose of the 

XRD analysis was to determine coherent crystallite size and internal microstrain by 

measuring the widths of the XRD peaks after correction for instrumental 

broadening using the annealed copper powder sample as the reference. After 

recording an XRD spectrum and removing the Ka2 diffraction component, all peaks 

were carefully measured to determine the full width at half-maximum (FWHM) (in 

radians). In order to obtain the pure broadening, B, of any peak it is necessary to 

first remove the instrumental broadening, B1, from the measured broadening, BM, 

according to the equation [61,63], 

B2 = BM - B, ------------------------------------------------------------------ Equation 3.1 

The pure broadening, B, is assumed to be due to a combination of small coherent 

crystallite size and the presence of internal microstrain such that, 

B=Bs+ Bc ---------------------------- ----------------------------------------Equation 3.2 

Where B, is strain broadening and B, crystal size broadening. Hall and Williamson 

[61,63] showed that, 

BS =C tan 0 ------------------------------------------------------------------- Equation 3.3 
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And 

Bc - 
SA 

dc cos 0 

Where, C=2 

Equation 3.4 

Equation 3.5 

d is interplanar spacing and Ad is change in interplanar spacing, thus Ad/d is the 

microstrain measurement, S=0.9, dd = crystallite size, A= wavelength of the X- 

ray radiation used and 0 the Bragg angle. 

So, 

B cos 9=C sin 6+ Sý 
------------------------------------------------------- Equation 3.6 

dc 

Hence, the independent components of broadening were obtained in this work by 

plotting B cos 0 versus sin 0; termed the Hall - Williamson plot [611. 

Sample of as received powder were also analysed by XRD for phase identification 

and in particular presence of oxides in the powder. The conditions employed were a 

20 range of 10° to 100°, step size of 0.02° and step time 4 s. 

3.3 Mechanical characterization of deposits 
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3.3.1 Microhardness testing 

Microhardness measurements of as-sprayed and annealed deposits were carried out 

on deposit cross-sections using a 200 gf load with a Leco 400M microhardness 

tester. At least five measurements were made on the specimens and the mean value 

of measurements was reported. 

3.3.2 Tensile testing 

Copper deposits on an aluminium substrate having a nominal thickness of -5 mm 

were machined using electrical discharge machining for removal from the substrate 

and then further machined to form tensile test samples. The deposition of copper 

was carried out as described in chapter 6, section 6.2.2. The tensile test specimens 

had a parallel (gauge) length of 30 mm and width of 6 mm in the gauge length, and 

thickness of 2 mm. The schematic diagram of the tensile sample is shown in Fig. 

3.1. A rolled copper sheet of dimensions 3 mm x 300 mm x 300 mm was used to 

prepare tensile test samples, as per the dimensions described above, to provide 

tensile test comparison with bulk copper. A number of samples were machined, 

both from sprayed copper as well as rolled copper. Some were tested in the as 

machined condition while some were annealed as per procedure described in 3.6.1, 

before testing. The tensile tests were performed using a JJ Lloyd tensile testing 

machine fitted with a 30 kN load cell with a cross head speed of 2 mm min-'. Scribe 
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marks were put on the samples in their gauge lengths 25 mm apart, before carrying 

out the tensile testing to enable determination of % elongation after the tensile test. 

3.3.3 Pull - off adhesion testing 

Adhesion testing was performed on deposits formed on 100 mm x 100 mm x3 mm 

substrates. The adhesion of the deposits to the substrates was tested using the 

Precision Adhesion Testing equipment (PAT, DFD instruments, Norway). Mild 

steel dollies having a diameter of - 15 mm were glued to the deposits using a two 

part epoxy resin (Hysol 9466, Henkel Loctite Ireland). A picture of the PAT tester 

and the dollies along with representative sprayed sample is shown in Fig. 3.2. The 

epoxy was cured at room temperature for 24 hours to attain its full strength. After 

curing the dollies were pulled apart using the PAT and the breakage of the deposits 

from the substrate was observed and the stress required for breakage from the 

substrate recorded. The epoxy had a tensile pull - off strength of - 20 MPa thus 

deposits having a pull - off strength 5 20 MPa could be measured with this method. 

The deposits whose adhesion was higher then 20 MPa, the failure occurred in the 

epoxy while the deposits remained intact on the substrate. In this case the deposit 

adhesion could only be reported as being higher then 20 MPa. 

3.4 Electrical resistivity testing 
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The resistivity of pure copper and Sn - Cu tracks was measured at room 

temperature using the four-point probe method. First, the resistance of a 0.02 m 

length of the track was measured accurately from current and voltage 

determination. The method for resistance measurement is shown schematically in 

Fig. 3.3. The material whose resistance is to be measured is termed as R. During 

this test Rx was connected in series to a resistance whose value was known, this 

resistance is termed as Rjd. A fixed amount of current was passed through these 

resistances and the voltage drop 

across Rx and Rsra i. e. Vx and V51d was measured. Rx is then calculated using, 

R_V 
I 

therefore; I_ 
std 

_x I 
std 

Rx 

and; R= 
Rstd 

xV x std x 

In the rig, the current is first measured by connecting the leads to the ends of the 

track and then another measurement is made by reversing the polarity of the current 

passing through the rig. This is done to eliminate any error coming in the measured 

values due to thermal effects. The resistivity of the unknown sample is calculated as 

p=AR/L 
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Where, p is the resistivity of the unknown sample, A is the cross section area of the 

track, R is the measured resistance of the track and L is the length over which the 

resistance was measured. 

The cross section area of the track was determined by using a profilometer 

to determine track profiles at five different locations. The profile data were 

integrated to obtain values of cross section area. The mean value from those five 

measurements was utilized to calculate the resistivity. There is an error in the area 

measurement using the profilometer as the deposited track tends to de-bond from 

the substrate. The nature of this de-bond is shown in Fig. 3.4, where it is seen that 

the tin-copper track has de-bonded from the nylon substrate. Such de-bonding is 

observed to a lesser or greater degree in many deposited tracks. The de-bonding of 

the track thus leads to over estimation of the track area as the de-bonded area is also 

measured as part of the track profile and this, results in over estimation of the 

calculated resistivity. 

A standard copper specimen (Cu 99.995% pure) was obtained from Advent 

research Materials LTD, and electrical resistance measurements were carried out on 

this sample of known dimensions (0.25 mm x 15 mm x 100 mm). The resistance of 

this sample was periodically measured along with other resistance measurements to 

ascertain any drift in the values measured. The resistivity of the standard copper 

sample was 17.50 nQ m. The resistivity of annealed copper reported in data books 

is 16.73 n) m [64]. 
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3.5 Profilometry of substrates and deposits 

The surface roughness and the deposit profiles were investigated by a profilometer 

(Surfcom, Advanced Metrology systems Ltd Leicester, England) equipped with a 

diamond stylus. The traverse speed of the stylus was maintained at 0.3 mm s"1. The 

surface roughness data was read from the profilometer display and the profile data 

was logged onto a PC. The profile data was then plotted in excel for further 

analysis. 

3.6 Annealing of deposits 

3.6.1 Copper deposits for recrystallization and tensile testine studies 

Copper deposits deposited on aluminium substrate were removed from the 

aluminium substrate by machining off the aluminium substrate. The machining was 

carried out using electrical discharge machining (EDM) to minimize stress to the 

deposits during machining. The machined deposits were cut using a diamond saw in 

to pieces of size 10 to 15 mm square and 1 mm thick. The copper deposits were 

subsequently annealed in air using a fan assisted furnace at temperatures of 373 K, 

423 K, 473 K, 523 K, 573 K and 773 K for 3600 s. The samples were placed on a 

ceramic holder for annealing. 
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Annealing of the tensile test samples was performed in a tube furnace in an 

atmosphere of H275% - N225% at temperatures of 773 K and 873 K. The samples 

were heated at the rate of 10 K per min to a temperature of 473 K and thereafter the 

temperature was raised at a rate of 1K per min to the required temperature to 

minimize thermal shock in the specimens. 

3.6.2 Interdiffusion in tin - copper deposits 

Sn-Cu deposits were de-bonded from the substrates and the free standing deposits 

were heat treated at two different temperatures namely 343 K and 443 K using a fan 

assisted oven. Samples temperatures were monitored directly using a chromel / 

alumel thermocouple and were found to be within ±1K of the set furnace 

temperature. At specific time intervals a sample was removed from the oven and air 

cooled to room temperature. The resistance was measured as described in section 

4.4 and a small length (5 - 10 mm) cut from the end for subsequent microstructural 

examination. This small sample was immediately stored in a refrigerator at 271 K 

and the remaining length was then put back in the oven for further heat treatment. 

3.7 Characterization of materials 

3.7.1 Characterization of powders 
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Commercially available pure tin and copper powders were employed. The 

commercially pure tin powder was supplied by Flame Spray Technologies b. v., 

Netherlands. It had a nominal size range 10 - 38 gm and had a near spherical 

morphology. The copper powder was supplied by BSA Metal Powders Plc 

(Formerly MBC Metal Powders), Birmingham UK. It had a nominal size range of 5 

- 22 µm also with a spherical morphology. 

The XRD pattern of the copper powder is shown in Fig. 3.5. The various peaks on 

the pattern are labelled. All the peaks correspond to copper and there is no evidence 

for oxide peaks. Thus, the oxide level is below the detection limit by XRD. The 

storage of the powder was under vacuum, hence the possibility of powder oxidation 

or contamination during storage is minimized. The size distribution of the copper 

powder used for CGDS trials is shown in Fig. 3.6. The size analysis was carried out 

by Malvern mastersizer as per the procedure described in section 3.2.1. It is seen 

that 80 vol. % of the particles are in the size range of -22 +5 µm; approximately 5 

vol. %<5 µm and 15 vol. %> 20 µm. The d50 value was 15 gm; i. e. 50 % particles 

had particle size <_ 15 gm. The SEM image of the copper powder is shown in Fig. 

3.7. The powder is largely spherical and some particles have satellites attached to 

them. The satellites are artefacts of the gas atomization process. An image of the 

etched cross-sections of powder particles is shown in Fig. 3.8. The etched 

microstructure shows that the grain size within the powder particles is between 5- 

10 µm. 

81 



Chanter 3 General experimental methods 

The size analysis of tin powder is shown in Fig. 3.9 and SEM image is shown in 

Fig. 3.10. It is seen that the tin powder is largely spherical with 90 vol % of the 

particles being in the size range of -38 +10 µm; approximately 3 vol % of powder is 

> 30 µm and 7 vol % is <5 µm. The d50 value was - 13 µm; i. e. 50 % particles had 

particle size <_ 13 µm. The satellites attached to some particles are artefacts of the 

gas atomization process. 

3.7.2 Details of substrates 

The substrates used for deposition trials were; various types of polymers, plasma 

sprayed alumina on mild steel, mild steel and aluminium. The thickness, hardness 

and surface roughness of the substrates used for deposition trials is shown in Table 

3.1 [65-68]. The properties of polymer substrates are shown in Table 3.2. The 

properties of polymers important for deposition in cold spraying are the glass 

transition temperature (Tg), ultimate tensile strength (UTS) and % elongation to 

failure. Air plasma spraying was used to deposit the alumina coating on mild steel. 

Yazaki provided the alumina coated mild steel substrates. All the substrates were 

wiped clean with acetone or industrial methylated spirit and blown dry with 

compressed air just before depositing copper or tin. 

82 



Chapter 3 General experimental methods 

Table 3.1: Properties of metallic and ceramic substrates used for deposition trials. 

Property/Substrate Aluminium Mild steel 
Alumina coated mild 

steel 
Hardness / kgf mm 2 40 ± 0.9 120 ±4 625 ± 15 

Roughness / p. m 0.34:: L 0.05 0.59 ± 0.08 3±0.2 

Table 3.2: List of polymers used as substrate to deposit copper with their relevant 
properties, from [65-68]. Rockwell R scale uses 12.7 mm steel ball indentor, a minor load of 
10 kgf and a major load of 50 kgf [69]. 

Polymer 

Glass 
transition Melti n g 

temperature / Density 
3 

Ultimate 
tensile Elongation at 

Hardness / 
R k ll temperature p K k grri- strength / break /%o oc we 

(Ts )/K Mpa R 

Nylon 6/6 
(PA66) 323 (50 °C) 488 (215 °C) 1140 82 83 121 

Nylon 6/6 
with 30 % 
glass fibre 368 (95 °C) 599 (326 °C) 1450 180 5 120 

(PA6T) 
Poly 

(butylene 
terepthalate) 

339 (66 °C) 500 (227 °C) 1311 52 120 117 
(PBT) 

Polypropylene 
(PP) 263 (10 °C) 449 (176 °C) -900 36 120 96 

Polyethylene 
(PE) 253 (-20 °C) 410 (137 °C) -940 20 380 63 

Poly 
phenylene 358 (85 °C) 558 (285 °C) 1670 138 4 123 

sulfide (PPS) 

Noryl 427 (154 °C) 483 (210 °C) 1270 54 40 - 60 119 
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Fig. 3.1: Image of tensile test specimen, showing the gauge length (30 mm) and 
width in gauge length (6 mm). 
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Fig. 3.2: Image showing PAT adhesion tester, adhesion test sample with Cu deposits, 
dollies used for adhesion testing and spacer ring used to provide an even surface for 
adhesion testing. 
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R,, is measured across a, and b, 20 mm apart. 

Bakelite 
fixture to 
hold sample 

Fig. 3.3: Schematic of the resistance testing rig. 

Fig. 3.4: SEM image of Sn-Cu track I-tepusiiCd On ii} 1011.1 lie track 
has naturally de-bonded from the nylon substrate thus leaving a gap 
between the Sn-Cu track and nylon substrate. 
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Fig. 3.6: Size distribution of copper powder. 
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Fig. 3.7: SL, ti9 image of copper puýNder showing spherical particles 
and some particles with satellites attached to them. 
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Fig. 3.8: Optical micrograph of etched Cu powder cross-section showing large 
individual grains within the powder particles 
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Fig. 3.9: Size distribution of tin powder. 
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89 

Fig. 3.10: SEM image of Sn powder showing spherical particles and some 
particles with satellites attached to them. 



Chapter 4 

System development and preliminary experiments 

4.1 Introduction 

The primary aim of the work was to deposit copper tracks on to various substrates 

with well defined characteristics such as bond strength, electrical resistivity and 

mechanical properties. The cold spray tracks were produced at The University of 

Nottingham (NU) as well as at Yazaki Europe Ltd (YEL-HH) in Hemel Hempstead, 

UK. Helium was used as the accelerating gas to deposit all the tracks. The reason 

for using helium is its lower atomic weight compared to other inert gases and high 

value of y (y = 1.66 for helium as compared to 1.4 for nitrogen. Further details of 

gas dynamic behaviour are given in Appendix 1). 

This chapter is divided into sections as follows; 

4.2 Description of cold spray system 

4.3 Gas flow controls at Nottingham and Yazaki 

4.4 Nozzle design 

4.5 Measurement of powder feeding to the cold spray nozzle 

4.6 Preliminary spray trials 

4.7 Discussion 
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4.8 Conclusions 

The details of the cold spray system and their constituent components are described 

in section 4.2. Although the cold spray systems at Nottingham and Yazaki are 

similar in principle, there are certain important differences with respect to gas flow 

control and design of the nozzle. These are discussed in sections 4.2 - 4.4. The 

experiments to measure the powder feed rate and its stability are described in 

section 4.5. A description of the preliminary trials carried out with the cold spray 

systems is presented in section 4.6. This is followed by a discussion of the results 

and conclusions in sections 4.7 and 4.8 respectively. 

The information generated in these initial experiments and trials was used to design 

a matrix of cold spray trials to deposit copper on a variety of substrates and 

optimize the cold spray conditions to deposit well adhering deposits of copper. This 

work is described in chapter 5. 

4.2 Description of the cold spray system 

Schematic diagrams of the cold spray systems installed at Yazaki and Nottingham 

are given in Figs. 4.1 and 4.2 respectively. The cold spray systems at Nottingham 

and Yazaki are housed in a spray chamber. In outline a cold spray system consists 

of a gas supply system, high pressure powder feeder to feed powder to the nozzle, 

cold spray nozzle and an exhaust system for gas and powder. The cold spray system 
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at Yazaki has a heater to raise the temperature of the main driving gas if required. 

The process gas is supplied from multiple cylinders. The gas pressures in the system 

are limited to a maximum of 30 bar and the system is provided with safety 

interlocks to prevent the gas pressures increasing beyond 30 bar. The oxygen level 

in the spray chamber is monitored by oxygen sensors. The oxygen sensors are 

interlocked with the gas supply system such that the system will shut down if 

oxygen level in the spray chamber reduces below 18 %. 

In the cold spray system at University of Nottingham the relative movement 

between the nozzle and substrates is achieved by placing the substrates on a X-Y 

table equipped with servo motors and computer software to program the spray path 

or raster. The cold spray system at Yazaki is equipped with a six axis industrial 

robot to manipulate the cold spray nozzle with substrates remaining stationary to 

deposit the required patterns. 

4.3 Gas flow controls 

4.3.1 Gas now controls at University of Nottingham 

The schematic diagram of the cold spray system installed at the University of 

Nottingham (NU) is shown in Fig. 4.2. The cold spray rig at NU is configured to 

work using a bank of four helium cylinders to supply helium gas for the cold spray 

process. A separate single helium cylinder provides the carrier gas to feed the 
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powder to the nozzle. The carrier gas (i. e. that which passes through the powder 

feeder) and the process gas (i. e. that which is delivered directly to the nozzle) mix 

in a chamber located just before the cold spray nozzle. This is shown in Fig. 4.2 and 

also in Fig. 4.3, which shows the design of the standard nozzle used at Nottingham. 

The carrier gas flow is controlled through a needle valve on the carrier gas line and 

it has the capacity to control gas flows up to a maximum of - 250 slpm (7.60 x 104 

kg s"'). The carrier gas pressure and the process gas pressure can be 

independently controlled as the cylinders supplying carrier gas and process gas 

have separate control valves. The maximum limit for any pressure to be set on the 

carrier gas supply is 30 bar and the process gas is usually set at one bar below the 

carrier gas pressure to prevent the flow of powder and gas back through the carrier 

gas line. The cylinder regulator reading when no process gas is flowing is taken as 

the stagnation pressure of the system and the cylinder regulator pressure recorded 

when the process gas is flowing is taken as the run time pressure of the system. 

4.3.2 Cold spraying at Yazaki 

A schematic of the Yazaki cold spray rig is shown in Fig. 4.1. The cold spray rig at 

Yazaki is configured to run using a bank of fifteen helium cylinders. Mass flow 

controllers are used to control the gas flows. The mass flows of the carrier gas 

and process gas along with the pressures are displayed on the console of the cold 

spray system. The supply gas line is divided in the mass flow controller cabinet into 
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separate lines for carrier gas and process gas. The sensors to measure the gas 

pressure and temperature are located in the chamber formed before the converging- 

diverging section of the spray nozzle. This is shown schematically in Fig. 4.4, 

which shows the design of the standard nozzle used for trials at Yazaki. Pressure 

and temperature recorded at this location is, as an approximation, taken to be the 

stagnation pressure and temperature of the gas. 

In the YZK spray rig, carrier gas flows can be achieved as per the process 

requirements and carrier gas mass flows > 3.04 x 10-4 kg s"1 are possible. However, 

it is observed that repeatable powder feeding is only obtained when the carrier gas 

flow is between mass flows of 1.27 - 2.43 x 10-4 kg s'1 (60 to 80 slpm). The YZK 

rig also has a gas heater in the process gas line and the process gas can nominally be 

heated up to a maximum temperature of 748 K. The gas mass flow measured at gas 

temperature of 298 K and various pressures is shown in Table 4.1. 

4.4 Nozzle design 

In this section the design aspects of the nozzle used for cold spray deposition are 

discussed. 

Nozzles used in cold spray can have either circular or rectangular cross-sections of 

throat and exit. The nozzles used for all trials at Nottingham and Yazaki had 

circular cross-sections of throat and exit. The exit velocity of gas depends upon the 
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area ratio of the nozzle, A ,, l Agh where A,, is the cross-section area of nozzle exit 

and Alh is the cross-section area of nozzle throat measured just before the start of the 

diverging part for a nozzle of conical shape. 

The spray trials at University of Nottingham have been primarily conducted using a 

nozzle design that will hereafter be termed the standard nozzle. The design of 

standard nozzle is shown in Fig. 4.3. The powder injector fits in the chamber 

upstream of the throat (i. e. in to the high pressure region). The powder injector fed 

powder at a distance of 5 mm upstream of the converging part of the nozzle. The 

detailed dimensions of the standard nozzle are given in Table 4.2. 

The spray trials at Yazaki were carried out using a nozzle similar to standard nozzle 

of Nottingham. However, there were important differences, which are summarized 

in Table 4.2. The nozzle used at Yazaki has a diffuser at the beginning of the 

convergent portion and, the gas and powder inlets are located at the diffuser plate. 

The exit mach number of Nottingham nozzle was 4.5 and for the Yazaki nozzle it 

was 4.9. These values were calculated assuming isentropic behavior as explained in 

chapter 2, section 2.4. The exit velocity of gas and particle for the Yazaki nozzle 

were also calculated using the one-dimensional model and particle acceleration 

model (chapter 2, section 2.4.6) and are presented in Appendix 1. 

4.5 Measurement of powder feeding to the nozzle 
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In this section the experiments conducted to measure and control the powder feed 

rate (PFR) of copper to the cold spray nozzle are described. A comparison is made 

between the powder feed rate calculated using the volume of the powder wheel used 

in the feeder and, the measured powder feed rate. 

4.5.1 Operation of the powder feeder 

The powder is fed to the cold spray nozzle using a Praxair model 1264, high 

pressure powder feeder. The powder feeder shown in Fig. 4.5 has a pressurized 

canister on the top which is filled with the powder to be sprayed. A schematic 

diagram of the powder feeder mechanism is shown in Fig 4.6. The powder feeder 

consists of a canister to hold the powder and a heating jacket is provided to heat the 

canister up to a maximum of 338 K. In the powder canister, the powder rests above 

the gland plate, which is offset from a slotted wheel, Fig. 4.6. The slotted wheel is 

rotated and the slots (or holes) are exposed to the powder whereupon these holes are 

filled with powder. The holes carry the powder to the carrier gas tube which forces 

the powder out of the holes and thereafter it is carried by the carrier gas through a 

high pressure hose to the cold spray nozzle. During cold spray spraying, the canister 

is maintained at a positive pressure with respect to the process gas pressure to 

prevent back flow of gas and powder in the powder and carrier gas lines. 
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4.5.2 Controlling and estimating the powder feed rate to the nozzle 

The powder feed rate is controlled by: 

(1) Slot (or hole) volume 

A larger slot volume will carry more powder thus increase powder feed rate. 

(2) Rotational speed of the slotted wheel. 

Larger quantities of powder will be delivered to the carrier gas line at higher 

rotational speeds of slotted wheel. 

In the present study a powder wheel with 120 holes along the circumference was 

used to feed the powder. The amount of powder fed to the spray device was 

controlled by the rate of rotation of the powder wheel i. e. a higher rotation speed fed 

more powder. 

A weighing system attached to the powder feeder was used to measure the weight 

of the powder and feeder, Fig. 4.5. The weighing system consists of a load cell 

assembly mounted below the base plate which also supports the powder hopper and 

a PC controlled data logger for acquiring and displaying the data from the load cell. 

The weight of the hopper was recorded before and after spraying for a fixed time. 

The powder feed rate (PFR) was obtained by dividing the powder sprayed by the 

total time of spray. Calibration of the powder feeder was carried out by operating 

the cold spray system at different powder wheel speeds (PWS) and measuring the 
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weight of powder sprayed. The accuracy of the weighing system was verified by 

measuring 0.1 N dead weights on the weighing system. The error in the 

measurement of the dead weights was found to be less than 5%. The measured 

powder feed rate of copper is shown in Fig. 4.7. The measured powder feed rate is 

given by, 

Pf= mPs ------------------------------------------- Equation 4.1 ------------------------- 

Where; 

P; 
, 

is the powder feed rate; m, is the slope of the trend line and PS is the powder 

wheel speed. From Fig. 4.7, m was found to be; 0.24 g s"' rpm"1. 

Pf can also be calculated from the wheel volume (volume of the slots) and PS 

using the formula given below; 

PpowderVwPs 

60 -------------------------------------------------------- Equation 4.2 

Where; Pf is the theoretical powder feed rate in gs1, ppowder is the density of 

powder, V,, is the volume of the slots in the powder wheel in and Ps is the powder 

wheel rotational speed. The 120 hole wheel has a slot volume of 3.28 x 10.6 m3 (data 

provided by Praxair). The loose density of copper powder was determined by 

weighing a known volume of powder (10-4 m3) and then dividing the measured 
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weight of this powder by the volume. The loose density of copper powder was 

calculated to be 5190 kg m"3. The relationship between Pf and P. from Equation 

4.2 is also plotted in Fig. 4.7. The slope of the equation in this case is 0.28 g1 s'1 

rpm"'. It is seen that there is good agreement between the measured and calculated 

powder feed rates. The measured feed rate is slightly lower then the calculated 

value, this may arise due to error in estimating the powder density during actual 

powder feeding. During powder feeding the carrier gas keeps the powder in the 

canister in a fluidized condition. The powder in the fluidized condition will have 

lower density than that measured in the static condition. 

4.6 Preliminary trials 

This section describes the preliminary trials carried out to identify the key cold 

spray parameters in terms of their influence on the deposition process and 

properties of the deposits. In these trials, copper was deposited on mild steel and 

alumina coated mild steel substrates. The deposits were analyzed qualitatively as 

well as quantitatively to understand the influence of cold spray parameters. In this 

section the formation and buildup of deposits is described. The deposit profiles 

were measured for single and multiple passes of the nozzle over the substrate. A 

single traverse of the nozzle over the substrates is known as one pass. 
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4.6.1 Cold spray conditions to deposit copper 

Preliminary trials to deposit copper were carried out using room temperature 

process gas (298 K) at the University of Nottingham and using heated process gas at 

Yazaki. The gas flow and temperature were varied in the cold spray process to 

determine the range of conditions for depositing copper. Cold spray conditions to 

deposit copper at Nottingham are shown in Table 4.3 (a). The cold spray conditions 

to deposit copper at Yazaki are shown in Table 4.3 (b). The gas pressure in the 

Yazaki rig was maintained at 22 bar by decreasing the gas flow rate when the gas 

temperature was increased. The gas flow rate at various temperatures to maintain a 

gas pressure of -' 22 bar, is given in Table 4.4. The deposits were formed by 

depositing single and multiple passes of the nozzle over the substrates. The stand 

off distance had been previously optimized to 0.02 m for depositing copper and the 

same was used for these trials. The powder feed rate was maintained at 0.5 g s"1. 

4.6.2 Deposit profile in single and multiple passes without off-set 

The profile of the deposits was measured by profilometry as described in section 

3.5. Profilometer traces across tracks (perpendicular to the direction of travel) are 

shown in Fig. 4.8 (a-d); the profile seen in Fig. 4.8 (a) represents deposit formed by 

a single traverse of the nozzle over the substrate, while Fig 4.8 (b-d) represent 2,3 

and 4 passes respectively. Each track is thicker in the centre region than at its 

periphery. Such a profile develops due to lower gas velocity near the nozzle wall 

where the gas flow is not strictly one-dimensional and isentropic due to the presence 
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of a boundary layer near the wall. This results in lower particle velocity near the 

nozzle wall and results in lower deposition efficiency in that region. Additionally it 

is also possible that the bulk of powder flow is in the centre of the nozzle with very 

little powder flow near the nozzle walls. 

The maximum thickness i. e. peak height is seen to increase approximately linearly 

with number of passes. De-lamination of tracks was observed in the centre of the 

tracks for thicker tracks. 

The effect of traverse speed on maximum track thickness was also examined using 

the same conditions but a range of gas temperatures. Fig. 4.9 shows a graph of 

thickness plotted against 1/v where v is the traverse speed. For all temperatures 

thickness increased linearly with 1/v up to a speed of 0.025 m s" (i. e. 1/v = 40 s m- 

1). The thickness of deposits decreases with increase in traverse speed because the 

same mass of material in unit time is being spread over a greater surface area when 

using higher traverse speeds. At lower speeds (i. e. 0.012 m s") the increase in 

thickness deviated from this linear trend. The deposit formed at 298 K gas 

temperature had de-bonded from the centre of the track and hence the thickness was 

overestimated during measurement. This is seen in the positive deviation from 

linear behavior of the curve for this data point in Fig. 4.9. In the case of deposits 

formed using heated gas, where de-bonding was not significant a negative deviation 

from linear behavior was observed. At lower speeds thicker tracks are deposited and 

the track buildup is at increasingly off-normal angles. The angle of spraying can be 
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estimated as the tan _1 
2h ; where w is the width of the track and h is the height of 

the profile. Fig. 4.8 shows that the width of the track is -5 mm. The spray angles 

calculated for 5 mm wide deposits of various thicknesses is shown in Table 4.5. It 

is seen that the spray angle decreases from - 85.4 ° for a deposit thickness of 0.2 

mm to - 68 ° when the thickness of deposit increases to 1 mm. Li et al. studied the 

effect of spray angle on deposition efficiency for copper powder (-45 µm +5 µm) 

[70]. They observed that for normal impacts of particles the deposition efficiency 

was - 98 %, when the impact angle was 80 °, the deposition efficiency was 92 % 

and for impacts at 70 ° the deposition efficiency was 85 %. This they attributed to 

the decrease in the normal component of particle velocity for off-normal impacts. 

4.6.3 Qualitative assessment of deposits 

The qualitative analysis of the deposits was based on two criteria; a) relative DE, 

and, b) adhesion. The relative track DE was estimated from the deposited track 

thickness and traverse speed. Differences in track thickness due to change in 

deposition conditions provide a relative estimate of DE (assuming constant PFR). 

Higher track thickness implies higher DE and lower track thickness implies lower 

DE. Adhesion was estimated by visual inspection of the deposited track; existence 

of a gap between the track and the substrate provided a means of estimating the 

adhesion qualitatively. Thus, initial assessment of the substrates and spraying 
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conditions for suitability in cold spray process was based on the above mentioned 

criteria of DE and adhesion. 

Copper deposited on mild steel using single pass with gas at 298 K detached from 

the substrates and only very weakly adhering deposits were formed on alumina 

coated mild steel. When the gas was heated to 673 K adhering copper deposits were 

formed on mild steel. Deposits on alumina coated mild steel spalled when gas was 

heated above 473 K, but the bond failure was between the alumina coating and the 

mild steel while the copper remained adhered to the alumina coating. When copper 

was deposited in overlapping multiple passes on mild steel, adhering deposits were 

formed for gas heated to 473 K and above. 

4.6.4 Deposit Characteristics 

When sprayed using room temperature gas (298 K) the bonding of the deposit is 

poor with both mild steel and alumina substrates. The microstructure of copper 

deposited using conditions described in Table 4.3 (a) on alumina coated mild steel, 

is shown in Fig. 4.10. It shows partial de-bonding of the copper deposit from 

alumina substrate. Fig. 4.11 shows the etched microstructure of copper de-bonded 

from an alumina coated mild steel substrate, deposited using gas at 298 K and 

conditions described in Table 4.3 (b). The deposit has very low porosity and 
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etching delineates the particle boundaries. The particles are highly flattened due to 

deformation upon impact. 

Heating the process gas improved the adhesion of copper on mild steel as well as on 

alumina. At gas temperatures above 473 K, adhering deposits were formed on mild 

steel as well as alumina coated mild steel. The alumina layer had the tendency to 

de-bond from the mild steel substrate when deposition was carried out using gas 

above 473 K. The etched microstructure of copper deposited on alumina coated 

mild steel using gas heated to 673 K and conditions described in Table 4.3 (b) is 

shown in Fig. 4.12. Copper is well adhered to alumina, however the alumina layer 

had detached from the mild steel substrate. Etching has revealed the particle 

boundaries and some very fine sub-grains are also seen. 

The etched microstructure of copper deposited on mild steel using gas at 673 K and 

conditions described in Table 4.3 (b) is shown in Fig. 4.13. Copper is seen to be 

well adhered to mild steel. The dark features seen at the copper-mild steel interface 

belong to a narrow region of considerable plastic deformation in the mild steel and 

copper. 

Fig. 4.14 shows the microhardness of the coatings as a function of gas temperature, 

for, coatings sprayed with two different nozzle-substrate traverse speeds. A 

significant drop in microhardness of the coatings is observed as the gas temperature 

was increased. 
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4.7 Discussion 

The deviation from linear increase in thickness at lower traverse speed is due to the 

lower DE for deposition while using lower traverse speeds. The deposit buildup at 

lower traverse speeds progresses at increasingly off-normal spray angles as the 

thickness of deposit increases (Table 4.5). The off-normal spray angles result in 

decrease of deposition efficiency. 

The tendency for deposits to de-bond was seen in deposits formed at Nottingham as 

well as Yazaki while using process gas at 298 K. Heating the process gas above 473 

K decreased the tendency for deposits to de-bond from mild steel substrates. The 

tendency of deposits to de-bond seems to be related to the residual stress developed 

in the coatings during the spraying process. Even if the residual stress itself is 

independent of thickness, the strain energy release (associated with the relaxation of 

the residual stress) for coating de-bonding increases linearly with deposit thickness, 

and thus once coatings exceed a critical thickness de-bonding occurs. 

Heating the process gas provides a mechanism for stress relieving and also might be 

associated with better bonding of the sprayed particles to the substrate due to the 

higher velocity of particles achieved with heated gas. The overall effect is increase 

in deposit thickness that can be achieved before de-bonding occurs. 
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The effect of heating the process gas has the effect of heating the substrate by 

impingement of the hot gas jet and does not significantly heat the particles during 

flight. This is seen from the hardness of deposits formed at two traverse speeds 

(Fig. 4.14) where it is seen that deposit hardness decreased more rapidly for 

traverse speed of 12 mm s"1 as compared to traverse speed of 50 nun s"1. With this 

change in traverse speed, the temperature and velocity of particles upon impact will 

not be altered; however, the coating itself will reach a higher temperature due to the 

increased time of impingement of the heated gas and thus it is proposed that it is 

this latter effect that controls the heating of the deposit. 

The improvement in adhesion of copper deposits on mild steel while using heated 

process gas (Fig. 4.13) is probably related to the higher velocities generated and 

reduction in residual stress at higher temperatures. There appears to be a narrow 

region in mild steel near the interface where significant deformation seems to have 

taken place. The bonding of copper to alumina is probably due to interlocking of 

splats during spraying as formation of a metallurgical bond between alumina and 

copper during cold spraying is not likely. The lower adhesion of copper deposits on 

alumina when sprayed using gas at 298 K seems to be the reason for de-bonding 

seen in Fig. 4.10. The deposits formed on alumina coated mild steel appear well 

bonded to alumina when sprayed using gas heated to 673 K (Fig. 4.12). The 

improvement in the bonding of copper is probably related to the greater degree of 

flattening of copper particles at higher temperatures due to which greater 

interlocking of copper and alumina is attained. However, the impingement of the 
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hot gas on the plasma sprayed alumina produces tensile stress in the alumina layer 

as there is a mis-match in the co-efficient of thermal expansion of alumina and mild 

steel. The co-efficient of thermal expansion of alumina (7.4 gm m"' °C) is lower 

than that of mild steel (12.6 µm m"1 °C); hence, mild steel expands more than 

alumina layer. The greater expansion of mild steel with respect to alumina generates 

tensile stress in alumina resulting in de-lamination at higher spraying gas 

temperatures. 

The project requirement was to spray copper onto an insulating substrate. Due to 

difficulties in depositing copper on alumina coated mild steel, it was decided to try 

and deposit copper on various polymer substrates. It was decided to undertake 

detailed spray trials to investigate and then optimize the spray parameters for 

depositing copper on metallic, ceramic and polymer substrates. The initial step was 

to spray on a wide variety of substrates and then shortlist from these substrates for 

inclusion in further trials to optimize cold spray conditions. The first trials were 

termed as spray matrix of cold spray trials. These trials are presented in the next 

chapter. 

4.8 Conclusions 

The following conclusions are drawn from the preliminary trials; 
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1) Cold spray parameters influence the deposition process as well as the properties 

of the sprayed deposits. The deposits are highly cold worked due to the high 

velocity impact of the particles. 

2) At lower traverse speeds the DE decreases as the impact is at increasingly off- 

normal angles. 

3) Cold sprayed coatings exhibit compressive residual stresses and the residual 

stress is an important factor in the observed adhesion of cold sprayed copper. 

Using higher gas temperatures seems to reduce the residual stresses in the 

copper deposits. 

4) Copper cannot be deposited on mild steel substrate for process gas temperature 

below 473 K. Heating the process gas increases the adhesion of deposits on mild 

steel but does not seem to influence the deposit efficiency. 

5) The major effect of process gas heating is in heating already deposited material 

and it does not seem to significantly heat the spray particles in flight. 

6) Copper deposits on alumina coated mild steel result in de-bonding of the copper 

layer at gas temperatures below 473 K and in de-bonding of the alumina layer 

from the mild steel substrate at process gas temperatures above 473 K. 
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Table 4.1: Gas pressures attained at different gas mass flows for He gas at 298 K in the 
Yazaki system using standard nozzle. 
Pressure / bar 11 15 22 26 29 
Mass flow / 
10-3 kg s-' 

1.522 1.96 2.906 3.53 4.126 

Table 4.2: Design features of nozzle used at Nottingham (NU) and Yazaki (YZK). 

Feature Nottingham Yazaki 
Convergent region length (11) / mm 10 34 

Convergent region initial diameter (Dl) / mm 13 18 
Divergent region length (12) / mm 100 96 

Total length (11 + 12) / mm 110 126 
Diameter of throat (DO / mm 1.45 1.3 

Diameter of exit (Da) / mm 4 4 
Area ratio (A,, /Atti) 7.62 9.46 

Calculated exit Mach number of nozzle 4.5 4.9 
Distance of powder injector from start of convergent region / mm 5 0 

Diameter of powder injector exit / mm 1 3 
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Table 4.3 (a): Deposition conditions used at Nottingham for preliminary 
experiments to deposit copper on mild steel and alumina coated mild steel 
substrates. 

Process gas 
pressure / bar 

Carrier gas flow / 
10-4 kg s"' 

Powder feed 
rate /g s"1 

Process gas 
temperature /K 

Stand off 
distance /m 

22 3.78 0.5 298 0.02 

Table 4.3 (b): Deposition conditions used at Yazaki for preliminary experiments 
to deposit copper on mild steel and alumina coated mild steel substrates. The gas 
mass flows to attain 22 bar pressure in the Yazaki system is given in Table 4.4 

Process gas 
pressure / bar 

Carrier gas flow / 
10-4 kg s"1 

Powder feed 
rate /g s"t 

Process gas 
temperature /K 

Stand off 
distance /m 

22 1.82 0.5 298 - 673 0.02 

Table 4.4: Gas mass flow in YZK system at different process gas temperatures to 
maintain a constant pressure of 22 bar. 

Temperature /K 298 373 423 473 523 573 623 673 
Mass flow / 10"3 kg s4 2.90 2.34 2.23 2.11 2.00 1.91 1.84 1.78 
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Table 4.5: Estimated spray angles for various 
thicknesses of deposits formed using gas heated to 423 
K and conditions as specified in Table 4.3 (b). 
Measured track 
thickness / mm 

1.00 0.75 0.35 0.20 

Estimated 
spray angle /° 

68 73 82 85 
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Process gas inlet 

Carrier gas and 
powder inlet c 

Convergent region initial 
diameter (DI) = 13 mm Exit diameter 

Powder injector 5 mm (Dex) =4 mm 
inside convergent region 

Throat Diameter 7 (Drh) =1.45 mm 

Process gas inlet Divergent region 
Convergent region Length (12) = 100 mm 
Length (11) = 10 mm 

Fig. 4.3: Design of standard nozzle used at University of Nottingham. 

injector planar with diffuser 

Process gas inlet 
Diffuser Throat diameter (Dth) =1.3 mm 

Exit diameter 
(D) =4 mm 

Powder inlet 

LE 

Convergent region Divergent region 
Temperature and 

length (l1) = 34 mm length (12) = 96 mm 
pressure sensors Convergent region initial 

diameter (DI) =18 mm 

Fig. 4.4: Design of standard nozzle used at Yazaki 

Up stream Down stream 
IN -ME" 

114 



Chanter 4 System development and preliminary experiments 

Powder canister 
with heater 
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Fig. 4.5: Powder feeder comprising powder canister to Iwtd the pO dCr and \ýticighing sy stein 
mounted on the base elate comnrisinp- of load cell assembly and data loap-er. 
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Gland plate 

Details showing the 
slotted disc which is 

offset relative to the 
gland plate. 

Clotted disc 

Powder canister 

id 

Fig. 4.6: Schematic diagram showing the principle of operation of the powder feeder 
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Fig. 4.8: Profiles of copper sprayed at Nottingham using traverse speed of 
100 mm s", but different number of passes of the nozzle over substrate 
(alumina coated mild steel); a=1 pass, b=2 passes, c=3 passes and d= 
4 passes. Deposition conditions as described in Table 4.3 (a). 
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Fig. 4.9: Plot of deposit thickness versus 1/traverse speed at different gas 
temperatures. Deposition conditions as described in Table 4.3 (b). 

Fig. 4.10: Optical micrograph of Cu deposited on alumina coated mild steel 
at Nottingham using traverse speed of 12 mm s"1 and conditions described 
in Table 4.3 (a), showing partial de-lamination of the Cu layer from the 
alumina. 
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Fig. 4.11: Etched optical micrograph of Cu deposit de-bonded 
from alumina coated mild steel. Deposition carried out at Yazaki, 
using traverse speed of 100 mm s-I, gas at 298 K and conditions 
described in Table 4.3 (b). 

4ý 

77: -k 

-X 
(ý J .. rt1 "A 

lr 

ry 
1-ß A 1R a 

YA 

'* Vk1Z 

y4n. 
cy ýy i >` 

Ak 
ý«C 

ý° " /ýy' 
. 4k 

x 

ýý. 
A 

ý^ 
,. f +/; 

-' 
, 

1, "ß. MyN, at! 
ýyý, 

4 "' 'M ýý frr S 

119 

Fig. 4.12: Etched optical micrograph of Cu deposited on alumina 
coated mild steel showing Cu well bonded to alumina. De? osition 
carried out at Yazaki, using a traverse speed of 100 mm s, gas at 
673 K and conditions described in Table 4.3 (b). 
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Fig. 4.14: Plot of microhardness versus gas temperatures at two different 
traverse speeds. Deposition carried out at Yazaki using conditions 
described in Table 4.3 (b). 
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Fig. 4.13: Etched optical micrograph of copper deposited on rolled 
mild steel substrate, showing copper well bonded to mild steel. 
Deposition carried out at Yazaki using gas at 673 K and conditions 
described in Table 4.3(b). 



Chapter 5 

Deposition of conducting tracks on insulating substrates 

5.1 Introduction 

The aim of this study is to investigate deposition of conducting tracks onto 

insulating substrates. Polymer substrates were included as they provide an 

insulating layer for copper deposits and help in the overall process economy by 

avoiding the plasma spraying of alumina as an insulator onto metallic substrates. 

Hence, a range of polymer substrates were selected along with plasma sprayed 

alumina on mild steel. Pure aluminium was used as reference substrate for 

comparison of deposition efficiency and bonding/deposition mechanisms since it is 

well established that copper is readily deposited onto aluminium by cold spraying. 

In this chapter the work undertaken to investigate and optimize the conditions for 

copper deposition onto aluminium, polymer substrates and plasma sprayed alumina 

is reported. The purpose of initial trials was to spray onto a wide variety of 

substrates and then shortlist from these substrates candidates for inclusion in further 

trials to optimize deposition conditions. The substrates selected from the initial 

trials then formed the parameter investigation study. The aim of this parameter 

investigation was to identify the deposition parameters having significant influence 

on the deposition process and optimize the 
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parameters for depositing copper on to the selected substrates. This also involved 

trials using tin as an interlayer between the substrate and copper deposit. 

The deposits were qualitatively assessed for adhesion and deposition efficiency 

(DE). Adhesion testing was carried out as per the procedure described in Chapter 3 

(section 3.3.3). 

Cross-sections and plan view of the deposits were examined using optical 

microscopy and SEM to provide understanding of the interaction between the 

substrate and the sprayed particles. Microhardness testing of deposits was also 

undertaken. The procedures for optical microscopy, SEM and micro-hardness 

testing are described in chapter 3 (sections 3.2.3,3.2.4 and 3.3.1 respectively). 

This chapter is organized as follows: 

5.2 Initial experiments 

5.3 Spray parameter study 

5.4 Deposition efficiency measurements 

5.5 Adhesion test results 

5.6 Summary of results in sections 5.2 to 5.5 

5.7 Tin bond coat for depositing copper tracks 

5.8 Fundamental studies on deposition mechanisms 

5.9 Studies on the interface and deposit microstructures 

5.10 Summary of results 
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5.11 Discussion 

5.12 Summary and conclusions 

5.2 Initial experiments 

This section describes the initial trials to deposit copper on polymer, metallic and 

ceramic coated substrates. The procedure for spraying copper is described and the 

substrates are assessed qualitatively for suitability. 

5.2.1 Spray deposition for initial experiments 

The initial trials focused on identifying substrates for more detailed experiments to 

investigate influence of spray conditions on deposition. The polymer substrates used 

were: PA6T, PBT, PP, PE, PPS and Noryl. Table 3.2 lists the relevant properties of 

the various substrates used. In addition to the polymer substrates aluminium and 

alumina coated mild steel substrates were included. The trials consisted of 

depositing single copper tracks on the substrates laid out on an XY table. The 

arrangement of the substrates is shown in Fig. 5.1. The substrates were each 50 mm 

x 25 mm x3 mm in size. Deposition was carried out across the 25 mm width of the 

substrates. The substrates were traversed relative to the nozzle and deposition on all 

the substrates was accomplished in the same run. The surface roughness and 
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z 

microhardness of the aluminium and alumina substrates is given in Table 3.1. The 

surface preparation for the substrates is described in chapter 3, section 3.7.2. The 

cold spray conditions used to deposit copper in initial trials are shown in Table 5.1. 

5.2.2 Results of initial experiments 

Table 5.2 shows the thickness of single pass copper deposits on various substrates 

and qualitative assessment of adhesion. Adhering copper tracks were deposited on 

aluminium. Copper tracks de-bonded from the alumina-coated mild steel. Copper 

deposits on PA6T and PBT were well adhered, whereas on NORYL substrate the 

deposits de-bonded. The deposits formed on PPS were weakly adhering. Erosion of 

the PE and PP substrates was observed due to impact of the copper particles. The 

PE substrate was eroded to a greater extent and copper deposits could not be formed 

on PE. PP did not erode to the same extent and weakly adhering copper deposits 

were formed on PP. 

Fig. 5.2 (a-g) shows macro photographs of typical deposits on PA6T, PBT, PP, 

PPS, Noryl, PE and alumina coated mild steel. Well-adhered tracks are seen on 

PA6T and PBT (Fig. 5.2 (a-b)). On PP, despite erosion of substrate, 70 µm thick 

copper deposits could be formed and on PPS the deposits, although formed have 

very low adhesion (Fig. 5.2 (c-d)). The deposits on NORYL de-bonded from the 

substrate (Fig. 5.2 (e)). On PE no copper deposits could be formed due to erosion of 
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the substrate during deposition (Fig. 5.2 (t)). Fig. 5.2 (g) shows copper deposits de- 

bonded from the alumina coated mild steel substrate. 

Substrates identified from these initial trials for more detailed study were, PA6T, 

PA66, PP, PBT, alumina coated mild steel and aluminium. PA6T and PBT 

exhibited a good adhesion rating in the initial trials. Copper could be deposited on 

PA6T and PBT; hence they were included in future trials. PP was included in 

further trials to ascertain if copper could be deposited on PP under different set of 

deposition parameters. Substrates excluded from further trials were PE, PPS and 

NORYL as copper deposits did not adhere well to them, or substrates were eroded 

while spraying. 

5.2.3 Polymer substrate suitability to deposit copper 

The properties of various polymers included in these trials are shown in Table 3.2. 

It is seen that the glass transition temperature (Tg) is a key fundamental property of 

polymer to be considered for a polymer to be suitable for depositing copper. The 

glass transition temperature (Tg) is the temperature at which the noncrystalline 

portions of the polymer change from a glassy state (at low temperature) to rubbery 

state (at higher temperatures). It represents the temperature above which the 

polymer stiffness decreases significantly. 
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It is seen that copper was deposited only on substrates which had a Tg >- 323 K; 

for lower Tg erosion of the substrates occurred. Copper deposits were formed on 

polymers having ultimate tensile strength of at least 50 MPa. Thus, wear is seen in 

polymers like PP and PE which have low Tg and tensile strength and Copper is 

deposited on polymers like PA6T and PBT whose Tg and tensile strength is higher 

than 323 K and 50 MPa respectively. The presence of nylon in PA6T which has an 

elongation of 83 % prevents the erosion of PA6T substrate during the deposition 

process. Copper deposits de-bonded from PPS although it had high Tg (358 K) and 

tensile strength (138 MPa); the reason for this seems to be its low elongation to 

break (4 %). In the case of Noryl, a combination of low tensile strength and low 

melting point seems to result in poor adhesion of copper deposits. 

5.3 Spray parameter study 

Five substrates namely PA6T, PBT, PP, alumina coated mild steel and aluminium 

were identified from the initial experiments for detailed parameter investigation. 

The spray deposition experiments were conducted at both University of Nottingham 

and Yazaki, and results of qualitative assessment of deposits are described in this 

section. At Nottingham all trials were conducted using helium at 298 K whereas at 

Yazaki, heating of the helium driving gas was investigated. Samples for adhesion 

testing were sprayed at Yazaki. The surface preparation of the substrates is 

described in chapter 3, section 3.7.2. 

126 



Chapter 5 Deposition of conducting tracks on insulating substrates 

5.3.1 Deposition trials at University of Nottingham 

The parameters used for trials at Nottingham are shown in Table 5.3 (a) & (b). 25 

mm wide and 100 nun long substrates were lined up on the XY table and deposition 

was carried out in the same run 

The carrier gas flow was set in the carrier gas flow meter at - 0.01 m3 s"1 (600 litres 

per minute) for all the runs. The actual carrier gas flow rate depended upon the gas 

pressure. Table 5.3 (b) shows the actual carrier gas mass flow rate for different 

process gas pressures for a flow meter reading of 600 litres per minute in the carrier 

gas line. 

5.3.2 Results of deposition trials at Nottingham 

Figs. 5.3 (a-f) show macro photographs of typical deposits on PA6T and 

aluminium, using different process gas pressures. The deposits are seen to be well 

adhered to the substrate. The width of the deposits is - 5.0 mm, which is similar to 

the width seen in the deposit profiles in chapter 4, Fig. 4.8. 

The deposits were qualitatively assessed by measuring the thickness of deposits and 

visual inspection of the adhesion between substrate and deposits. Tables 5.4-5.8 

show the results of the trials. The increase in deposit thickness, on aluminium, with 
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the number of passes and increasing powder feed rate is approximately linear. Such 

an observation cannot be made for other substrates as the deposits de-bonded for 

various spray conditions. However, even on aluminium, some deviation from linear 

increase in thickness, particularly when copper is deposited in single passes is seen. 

Fluctuation in the powder feed rate as well as differences in deposition efficiency 

during spraying, may be responsible for the deviation from linear behaviour 

observed. 

There appears to be a thickness threshold, which is different for each substrate, after 

which the deposits start to de-bond. This threshold of thickness depends upon the 

spraying conditions used. Table 5.4 shows that copper can be deposited on 

aluminium for almost all the spray conditions employed. Some de-bonding is seen 

in deposits formed at powder feed rate of 1.0 g s"1, using pressures of 18 bar and 22 

bar. However, copper deposits up to - 0.8 mm thick could be deposited on 

aluminium without de-bonding. Tables 5.5 & 5.6 show that copper could be 

deposited on PA6T and PBT for a wide range of parameters. Using higher 

stagnation pressures seems to decrease the tendency of copper to de-bond from 

PA6T and PBT. 0.5 mm thick tracks were deposited on PA6T and 0.31 mm thick 

tracks were deposited on PBT without de-bonding. For deposition of copper on 

PA6T using gas at room temperature, gas pressure of 26 bar and powder feed rate 

of - 0.75 g s'' seems to be the most suitable. For deposition on PBT gas pressure of 

22 bar and powder feed rate of 0.5 g s'1 seems to be most suitable. 
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It is seen that for deposition at 11 bar pressure, the thickness of deposits is much 

less than for deposition at higher pressures. For copper on aluminium (Table 5.4) at 

11 bar pressure, the maximum thickness was 0.33 mm deposited in 4 passes at 

powder feed rate of 1g s', but when pressure was increased to 15 bar, while 

maintaining a powder feed rate of 1gs1 and using 4 passes, the deposit thickness 

increased to 0.81 nun. The lower thickness of deposits formed while spraying at 11 

bar gas pressure, as compared to spraying at higher pressures indicates a lower DE 

for deposition at 11 bar. Such a trend is not seen for PA6T (Table 5.5), where the 

thickness of deposits formed using gas pressures of 11 bar - 26 bar is largely similar 

while using the same powder feed rate and number of passes. At 29 bar pressure 

there seems to be a slight decrease in the deposit thickness on PA6T. 

Thin deposits were formed on alumina coated mild steel and the deposits were 

found to de-bond when the thickness was increased above 0.17 mm in most cases 

(Table 5.7). Increasing the gas pressure had a detrimental effect on adhesion of 

copper on alumina coated mild steel as at higher pressures deposits de-bonded. Low 

powder feed rates (- 0.25 g s'1) and a single pass at lower gas pressures seemed to 

favour deposition on alumina coated mild steel. Deposits on PP were only weakly 

adhering; those thicker than 0.2 mm de-bonded from the substrate (Table 5.8). 

5.3.3 Deposition trials at Yazaki 
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The parameters used for heated gas deposition at Yazaki are shown in Table 5.10 

(a). During the spray trials at Yazaki the layout of the substrates was similar to that 

at Nottingham (Fig. 5.1). A set of tracks were also deposited using room 

temperature He to compare with those produced at Nottingham. The major 

differences between spraying at Nottingham and Yazaki are outlined below. 

1 Only a single pass was employed but the traverse speed was varied between 

0.012ms'tto 0.4ms"1. 

2 The gas mass flow rate was fixed at 2.9 x 10"3 kg s'1; this corresponded to a gas 

pressure of 22 bar for a stagnation temperature of 298 K. The measured gas 

pressure at various gas temperatures for gas mass flow of 2.9 x 10"3 kg s"' is 

given in Table 5.10 (b) The measured gas mass flow and pressure at 298 K is 

given in Table 5.10 (c). 

The samples for adhesion testing were prepared at Yazaki by spraying overlapping 

tracks off-set from each other by 1 mm using parameters described in Table 5.11. 

The parameters were adjusted to obtain a deposit thickness of - 0.5 mm. For 

example, at higher powder feed rates, higher traverse speed was used and number of 

passes were adjusted between 2-3 passes to obtain deposit thickness of -i 0.5 mm. A 

mild steel plate with 15 mm diameter holes was used as a mask on a substrate to 

obtain circular deposits. The adhesion testing was carried out as per the procedure 

described in chapter 3, section 3.3.3. 
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5.3.4 Results of deposition trials at Yazaki 

Tables 5.12 - 5.15 show the deposit thickness and qualitative assessment of 

adhesion. A comparison of the deposit thickness data in Tables 5.12 - 5.15 with the 

data for Nottingham trials in Tables 5.4 - 5.8 shows that the thickness of the 

deposits formed at Yazaki (using gas at 298 K), is higher than those formed at 

Nottingham. Thus, the process deposition efficiency (DE) is higher for the Yazaki 

system as compared to the Nottingham system. This is probably due to the 

differences in the Yazaki and Nottingham system outlined in chapter 4, and may be 

related to the higher expansion ratio of the Yazaki nozzle. 

The threshold of deposit thickness before spontaneous de-bonding takes place 

seems to be similar for the two systems. When using gas at 298 K the threshold of 

deposit thickness is seen to be - 0.7 mm for aluminium and - 0.4 mm for PA6T 

(Tables 5.4 - 5.5 & 5.12 - 5.13). 

Copper deposited on aluminium using heated gas had very good adhesion and did 

not show de-bonding anywhere on the track for all the spray conditions employed 

(Table 5.12). The maximum thickness of single pass deposits, without any de- 

bonding was - 1.35 mm on aluminium. However, increasing the gas temperature 

did not result in an increase in the deposit thickness when other parameters were 

unchanged. For example, deposition of copper on aluminium using traverse speed 

of 0.025 m s"1, powder feed rate of 0.32 g s"1 and gas temperatures between 298 K- 

523 K gave deposit thickness of - 0.6 mm (Table 5.12). Using heated gas for 
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deposition on polymer substrates resulted in erosion of substrates above a 

temperature of 348 K for PA6T and above 298 K for PBT (Table 5.13 - 5.14). On 

PA6T, the threshold of deposit thickness for de-bonding was -' 0.38 mm when the 

gas was at 298 K and this threshold increased to - 0.49 mm when the gas was 

heated to 323 K. CGDS trials with heated gas resulted in increased tendency for the 

deposits to de-bond from alumina coated mild steel substrates (Table 5.15). PP 

substrate eroded while spraying copper using gas at 298 K as well as when using 

heated gas; heated gas increased the erosion rate. 

5.3.5 Deposition trials on PA66 

In view of the relative success in depositing copper on glass filled nylon (PA6T) a 

limited study on deposition on unfilled nylon (PA66) was conducted. The aim was 

to provide a baseline for evaluation of the influence of the reinforcing glass fibres. 

Copper deposition using conditions described in Table 5.17, was carried out on 

nylon 6/6 (PA66) substrates. The macro photographs of copper deposited on PA66 

are shown in Fig. 5.4. Thickness of copper deposits and qualitative assessment of 

adhesion is reported in Table 5.18. Tracks deposited using process gas at 298 K and 

pressure between 11 bar and 22 bar are seen to be well adhered to PA66 substrate; 

increasing the pressure to 26 bar and above results in erosion of the substrate. 

copper could not be deposited on PA66 using process gas heated to 340 K; heating 
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the process gas resulted in erosion of substrates for process gas pressures as low as 

11 bar, and at higher pressures the erosion of PA66 resulted in no measurable 

copper deposits being produced. 

5.4 Deposition efficiency of copper on aluminium and polymer 

substrates 

In this section, the deposition efficiency (DE) of copper on aluminium and PA6T 

substrates is reported. 

The DE was calculated using the measured powder feed rates. For the measurement 

of DE, substrates were weighed before and after depositing the coating. The time 

duration for spraying was noted using a stopwatch. The DE was calculated using the 

formula; 

DE% =100 
Wz W') 

-------------------------------------- Equation 5.1 
Pft 

Where, W2 is the mass of substrate after spraying, Wj is the mass of substrate before 

spraying, Pf is the measured powder feed rate in and t is time of spraying. 

5.4.1 Deposition efficiency of copper on aluminium 
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The DE of copper on aluminium versus stagnation pressure is shown in Fig. 5.5, 

and, versus powder feed rates is shown in Fig. 5.6. The measurements of DE show 

that for the spray conditions used in these experiments, it was always above 75 

(Figs. 5.5 & 5.6). Fig. 5.5 shows that the lowest value of - 78 % is observed when 

stagnation pressure of - 15 bar was used. The DE for stagnation pressure > 22 bar 

was 90 ±1%. Thus higher DE was obtained for higher stagnation pressures. Fig. 

5.6 shows that DE was 90 ±1% for powder feed rate up to 0.75 g s'1 but it is seen 

to drop to - 85 % as the powder feed rate was increased further to 1.25 g s"1. The 

powder feed rate of 0.75 g s"1 is equivalent to 21 wt % of the gas mass flow, while a 

powder feed rate of 1.25 g s"1 is equivalent to 36 wt % of the gas mass flow. 

5.4.2 Deposition efficiency for copper on PA6T 

The DE of copper on PA6T is shown in Fig. 5.7. The DE is reported for a gas mass 

flow of 2.9 x 10-3 kg s't and for gas at 298 K and 333 K. The gas mass flow of 2.9 x 

10"3 kg s" at 298 K corresponds to a pressure of 22 bar and at 333 K corresponds to 

a pressure of 25 bar. It is seen that heating the gas to 333 K increased the DE from 

80 % to - 95 %. It is also seen that increasing the powder feed rate from 0.5 g s-1 to 

0.75 g s'1 decreased the DE marginally from - 95 % to - 93 %. It should be noted 

that DE of - 95 % was observed for deposition on PA6T whereas from Fig. 5.6 it is 

seen that for deposition on aluminium, DE - 90 % was observed. However it is also 

seen from Tables 5.4 & 5.5 that the threshold for de-bonding is lower on PA6T. 
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Thus, DE on PA6T is better than aluminium but deposits de-bond at lower 

thickness. 

5.5 Adhesion test results 

Fig. 5.8 shows the adhesion of copper on aluminium for different gas pressures 

between 11 bar and 29 bar, and temperature of 298 K and 523 K. The powder feed 

rate to deposit these coatings was - 0.5 g s"'. Fig. 5.8 shows that increasing gas 

pressure from 11 bar to 29 bar while using gas at 298 K increased the adhesion from 

6.8 MPa to 16 MPa. The adhesion test carried out on copper deposits produced by 

heating the gas to 523 K did not result in failure between copper and aluminium, 

instead failure within the epoxy used in the tests was observed at - 20 MPa. Thus, it 

can be concluded that the adhesion of copper deposited using heated gas is above 20 

MPa. 

The measured values of adhesion for depositing copper on PA6T using gas mass 

flow of 2.9 x 10-3 kg s'1 different gas temperatures and powder feed rates are plotted 

in Fig. 5.9. Increasing the gas temperature above 298 K improves the adhesion of 

the deposits up to gas temperatures of 348 K. The highest adhesion of 2.75 MPa is 

seen for deposition using 348 K and powder feed rates of 0.25 and 0.37 g s-1. 

Increasing the gas temperature to 373 K decreases the adhesion to 1.75 MPa. 

Increasing the powder feed rate up to 0.75 g s"1 did not have a significant effect on 
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the adhesion of copper on PA6T. It must be noted that depositing single tracks using 

gas heated above 348 K resulted in de-bonding of the copper tracks on PA6T 

(section 5.3.4). The deposits for pull-off tests were formed by depositing successive 

tracks off-set to each other. This seemed to improve adhesion as adhering deposits 

were formed for gas heated to 373 K. The lower residual stresses associated with 

deposits formed by successive tracks off-set to each other may have been 

responsible for this. 

5.6 Summary of results in section 5.2 to 5.5 

The results of the initial trials and the parameter study are summarized below; 

1. Thicker deposits were formed using the Yazaki cold spray rig as compared 

to the University of Nottingham rig while using the same cold spray 

conditions. This indicates higher DE for Yazaki rig. It is probably related to 

the higher expansion ratio of the Yazaki cold spray nozzle. 

2. Copper deposits adhered well to aluminium and polymers PA6T and PBT 

(Table 5.2). 

3. The impact of copper particles erodes PE and PP, whereas weakly adhering 

deposits are formed on PPS. Copper deposits on Noryl and alumina coated 

mild steel de-bonded from the substrate (Table 5.2 and Fig. 5.2). 
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4. High deposition efficiency (- 90 %) can be achieved for deposition of 

copper. Powder loading of the gas stream, > 36 wt % of total gas flow, 

reduces the DE from -' 90 % to -' 85 %. Heating the process gas to 333 K 

increased the DE for copper deposition on PA6T from - 80 % to - 95 % 

(Fig. 5.7). 

5. Adhesion strength of copper deposits on aluminium increases as the process 

gas pressure is increased (Fig. 5.8). Copper deposits formed using process 

gas pressure of 11 bar have adhesion of -7 MPa but increasing the process 

gas pressure to 29 bar increases the adhesion strength to - 15 MPa. 

6. Heating the process gas improves the adhesion of copper deposits on 

aluminium; when the process gas is heated to 523 K, the adhesion strength 

is above 20 MPa (Fig. 5.8). 

7. Copper deposited on PA6T, using process gas at room temperature has 

adhesion strength of <2 MPa. Heating the process gas to 345 K increases 

the adhesion strength on PA6T to - 2.8 MPa (Fig. 5.9). Heating the process 

gas above 373 K results in erosion of PA6T substrate. 

5.7 Tin bond coat for depositing copper tracks on polymers 

In an effort to widen the range of polymers onto which copper could be deposited 

and to improve the adhesion, investigations were performed using cold sprayed tin 

as a bond coat for the copper. The selection of tin was based on the observations 
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that copper tends to erode polymers during cold spraying. Thus a material with 

lower yield strength is more likely to adhere and also form a layer onto which 

copper could bond. The yield strength of tin is 9 MPa compared with 48 MPa (0.2 

% proof stress) for annealed oxygen free copper. There is also the requirement that 

the two materials should not react chemically during deposition and this criterion is 

met by tin and copper combination. The results of these trials are reported in the 

following sections 5.7.1 and 5.7.2. 

5.7.1 Deposition of tin and Sn + Cu tracks 

The characterization of the tin powder used to deposit tin tracks on polymers is 

described in chapter 3, section 3.7.1. The conditions used to deposit tin on polymer 

substrates are shown in Table 5.19; copper was deposited using the spray 

conditions described in Table 5.1. The results of deposition of tin are shown in 

Table 5.20. Well adhering tin deposits were formed on all the polymer substrates 

including Noryl, PP, PE and PPS which previously were eroded by spraying of 

copper powder. Subsequently, copper could also be deposited on the tin layer. A 

thickness of - 80 - 100 µm of tin was required for forming successful bond coat. 

Lower thickness (< 50 µm) of tin resulted in either erosion of the substrate + tin or 

de-bonding of the tracks following copper deposition. Macro photographs of Sn + 

Cu deposits on PA6T and PA66 substrates are shown in Fig. 5.10. Well-adhered Sn 

+ Cu deposits are seen. The top copper layer is clearly visible; there is no sign of 
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any apparent de-bonding of either the tin or the copper layer. The thickness of 

copper deposits formed on tin coated PA6T and PA66 is lower than the thickness of 

copper deposits formed without any tin bond coat (Tables 5.5 and 5.18). This 

indicates lower DE for depositing copper on tin coated PA66 and PA6T. A macro 

photograph of Sn + Cu deposit on PP (using a powder feed rate of 0.5 g s"1 instead 

of 0.25 g s'1), is shown in Fig. 5.11. Copper was deposited using six sets of 

overlapping passes to a total thickness of - 600 µm. The Sn + Cu deposits are well 

adhered to PP. A sample was cut from one edge for cross-section observation. The 

microstructures of deposits on tin coated substrates are described in section 5.9.2. 

5.7.2 Adhesion test results (Sn + Cu) 

The adhesion of copper deposits sprayed using four different powder feed rates 

between 0.37 g s'1 to 0.75 g s"1 and gas at 298 K, on tin coated PA6T substrates, is 

reported in Fig. 5.12. The failure during adhesion testing occurred between the tin 

deposit and the substrate and gave a value of -6 MPa. This is more than twice the 

adhesion strength of copper deposits on PA6T without a tin bond coat (Fig. 5.9). 

Thus, using a tin bond coat improved the overall adhesion of the deposits. Heating 

the process gas above 298 K for depositing copper resulted in erosion of tin layer. 

The adhesion of copper and Sn + Cu on PA66, deposited at different process gas 

pressures, is shown in Fig. 5.13. Without any tin bond coat, copper had adhesion 
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below 1 MPa. Copper deposited using process gas pressure of 11 bar and 29 bar de- 

bonded from the substrate during pull-off tests with dial showing a zero reading, 

indicating poor adhesion strength. The adhesion of tin + Cu deposits is <2 MPa. 

This is lower than the adhesion of copper and Sn + Cu on PA6T (Figs 5.9 & 5.12). 

The use of a tin bond coat improves the adhesion of Sn + Cu deposits on PA6T as 

well as PA66 substrates. 

5.7.3 Summary of sections 5.7.1 and 5.7.2 

1 Copper could be deposited directly on aluminium, PA66, PA6T and PBT. 

Copper could be deposited on PA66, PA6T, PBT, PP, PE, PPS and NORYL 

substrates when a bond coat of tin was used. 

2 Well adhered tin deposits can be formed on all types of polymer substrates 

and subsequently copper could be deposited on the tin layer. 

3A minimum thickness of - 80 µm of tin was required for it to work as bond 

coat. Lower thickness of tin resulted in erosion of the tin layer during copper 

deposition. 

4 Using a tin bond coat increases the overall adhesion of tracks on PA6T to 

6 MPa; more than twice the adhesion of copper deposited directly on PA6T. 

5 Thicker deposits are formed when copper is deposited directly on PA66 and 

PA6T as compared to when a tin bond coat is used. 
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6 Copper deposited using gas heated above 298 K resulted in erosion of the tin 

bond coat. 

5.8 Fundamental studies on deposition mechanisms 

In this section the results of SEM observation of the impact of tin and copper 

particles on aluminium and nylon (PA66) and glass filled nylon (PA6T) substrates 

taken from the centre of the spray pattern are described. The impact of copper 

particles was studied at two different gas stagnation (process gas) pressures, 11 bar 

and 29 bar, at a single gas temperature of 298 K. The impact of tin particles was 

studied at a pressure of 11 bar and 298 K. The deposits were formed by traversing 

the nozzle over the substrates at 0.5 m s"1 using a powder feed rate of 0.25 g s" for 

copper and 0.12 g s'1 for tin. 

5.8.1 Impact of copper particles on aluminium substrate 

The impact on aluminium at 11 bar is shown in Figs. 5.14 and 5.15. Craters are 

formed in aluminium due to impact of copper particles. Copper particles are largely 

spherical although some flattened disks are also seen. The flattened disks have a 

diameter of - 25 gm (Fig 5.15). The spherical particles also have a diameter of 

around 25 gm. Thus, it is likely that the larger particles (-4 25 µm) upon impact do 
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not deform significantly while finer particles are deformed and form disk like 

structures. 

The impact on aluminium at 29 bar pressure is shown in Figs. 5.16 and 5.17. The 

density of copper particles in this image is higher then the density of copper 

particles in Fig. 5.14 from the 11 bar deposit. Very few craters are seen in Fig. 5.16 

suggesting that more particles adhere during spraying at 29 bar than at 11 bar. Some 

spherical particles were also seen for impact at 29 bar pressure. The spherical 

particles seen were usually above 30 µm in diameter. Copper seems to be deeply 

embedded in aluminium and at least one instance of the metal jetting phenomenon 

is seen in Fig. 5.17 (shown by arrow). 

5.8.2 Impact of copper particles on nylon (PA66 and PA6T) 

The impact of copper particles on PA66 substrate at 11 bar pressure is shown in 

Figs. 5.18 and 5.19. Angular craters are formed in PA66 due to impact of copper 

particles, which is related to the erosion of the substrate. These craters are distinctly 

different from the more regular ones, circular in appearance seen in aluminium. Fig. 

5.18 shows copper particles, usually < 10 µm in diameter deeply embedded in 

PA66 (shown by arrows). Larger particles seem to be loosely adhering to PA66. 

The impact of copper on PA66 at 29 bar gas pressure is shown in Figs. 5.20 and 

5.21. Metal jetting is seen in Fig. 5.20 during impact of copper onto previously 

142 



Chanter 5 Deposition of conducting tracks on insulating substrates 

embedded copper particles. During spraying at 11 bar finer copper particles are 

embedded in PA66 and while spraying at 29 bar coarser copper particles are 

embedded in PA66 (Figs. 5.18 & 5.20). Impacts at 29 bar pressure also result in 

increased deformation of the copper particles and erosion of PA66; this is shown in 

Fig. 5.21 where a crater is seen along with a deformed copper particle. A 

comparison of this crater with that shown in Fig. 5.19 (for impact at 11 bar 

pressure) reveals that the extent of fracture of the substrate in impact at 29 bar 

pressure is much higher than at 11 bar. 

The impact of copper on PA6T at 11 bar pressure is shown in Figs. 5.22 and 5.23. 

The impact at 11 bar pressure exposes the glass fibres in PA6T by erosion of the 

nylon matrix. The glass fibres seem to be largely undamaged. The copper particles 

embedded in PA6T are around 10 µm or smaller. The copper particles are not 

significantly deformed. 

The impact of copper on PA6T at 29 bar pressure is shown in Figs. 5.24 and 5.25. 

The glass fibres are fractured and PA6T is eroded. In Fig. 5.25 the copper particles 

are seen to be deeply embedded in PA6T and at some places metal jetting is seen at 

the site of copper-copper impacts. A notable feature of impacts on PA66 and PA6T 

is the presence of deformed and un-deformed particles. The un-deformed particles 

are embedded in the polymer. The deformation of the copper particles is largely 

seen to be due to the impact of copper particles over previously embedded copper 

particles. 
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5.8.3 Impact of tin particles on nylon (PA66 and PA6T 

Figs. 5.26 and 5.27 show the plan view of tin deposits on PA66. The impact of tin 

does not result in any significant erosion of PA66 (Fig. 5.26) unlike the effect of 

impact of copper particles. The tin particles are embedded in PA66 and they appear 

to be highly deformed (Fig. 5.27). PA66 is also plastically deformed in the region 

surrounding the embedded tin particle. The fine particles of tin are probably formed 

during impact (no particles of this size were in the feedstock) and could be 

associated with the metal jetting phenomenon in tin during impact. 

The plan view of tin deposits on PA6T is shown in Figs. 5.28 and 5.29. Fig. 5.28 

shows tin particles embedded in PA6T. PA6T is plastically deformed in places 

where tin is embedded. This is different from fracture of the PA6T substrate due to 

impact of copper particles (Figs. 5.23 & 5.24). Fig. 5.29 shows a high density of tin 

particles most of which are well deformed. Fine particles of tin are again clearly 

visible in the plan views. 

5.8.4 Impact of copper particles on tin coated nylon (PA66 and PA6T) 

The plan view of copper deposits on PA66 + Sn, sprayed at 11 bar pressure is 

shown in Figs. 5.30 and 5.31. In Fig. 5.30, the copper particles are not deformed to 
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any appreciable extent and they are deeply embedded in tin. The tin particle seen in 

Fig. 5.31 has a highly deformed structure and fine tin particles are seen scattered 

around the tin particle. The plan view of copper deposits on PA66 + Sn sprayed at 

29 bar pressure is shown in Fig. 5.32. Fig. 5.32 shows considerable flattening of the 

copper particles. Metal jetting of copper is seen in some places in Fig. 5.32. 

The plan view of copper deposits on PA6T + Sn sprayed at 11 bar pressure is shown 

in Fig. 5.33 and for spraying at 29 bar pressure is shown in Fig. 5.34. The copper 

particle is seen embedded in tin in Fig. 5.33. Metal jetting is seen in tin due to 

impact of copper particle in Fig. 5.33. Droplets of tin are seen and thin sheets of tin 

are formed due to deformation of tin by impact of copper particles. CGDS of copper 

at 29 bar resulted in deformation of the copper particles and metal jetting in copper 

(Fig. 5.34). Copper deposited using 29 bar process gas pressure on tin coated PA66 

and PA6T substrates covered the tin layer almost completely and it was not possible 

to observe tin in these samples. 

5.9 Studies on the interface and deposit microstructures 

It was seen in the preceding section that there is significant deformation of the 

substrate and sprayed particle during CGDS. This section reports the investigation 

of the deposit - substrate interface. The coating microstructures were studied to 

qualitatively analyze the deposits for porosity and adhesion. Microhardness of 
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deposits was measured to investigate work hardening in the deposits and co-relate 

them to the CGDS conditions used. 

5.9.1 Microstructures of copper deposited on aluminium 

Fig. 5.35 shows cross-sectional images of the copper coating on the aluminium 

substrate following deposition using gas at 298 K, powder feed rate of 0.5 g s-', 

traverse speed of 0.05 m s't and three pressures ranging from 11 bar to 29 bar. The 

substrates were originally in the as rolled condition, H� = 40 kgf MM -2 with a 

roughness of 0.34 ± 0.05 µm. The undulations observed in the interface between the 

substrate and coating result from the impacts of the copper particles during 

spraying. It is noticeable that the degree of disruption of the original interface has 

increased significantly on increase of the pressure from 11 bar to 29 bar. The 

coatings shown in Fig. 5.35 appear to have good bonding to the aluminium 

substrate. Fig. 5.36 shows a copper coating naturally de-bonded from its aluminium 

substrate. It is notable that some copper remains bonded to the substrate whilst 

some aluminium has also fractured from the substrate and remains well bonded to 

the detached copper coating. The fracture in the aluminium substrate could result 

from a loss in ductility in this layer due to the high levels of cold work associated 

with impact of the copper particles. Whilst a variation in the morphology of the 

interface is evident as the gas pressure is increased, no change in the level of 

porosity in the coatings themselves was observed over the range of pressures 
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examined (Fig. 5.35). No porosity was observed using optical microscopy. Fig. 

5.37 shows the hardness of the coatings as a function of gas pressure where an 

increase in hardness is observed as the pressure was increased up to 22 bar; further 

increase produced no further increases in coating hardness. 

5.9.2 Characterization of cold sprayed copper deposited using heated as 

Figs. 5.38 (a - c) show the etched microstructures of deposits using a pressure of 22 

bar, powder feed rate of 0.5 g s-1, traverse speed of 0.05 m s"1 and gas at 298 K, 473 

K and 673 K respectively. When sprayed at 298 K, the original powder particle 

boundaries are delineated; significant deformation of the particles during spraying 

has occurred to produce a dense coherent coating. The coatings sprayed at elevated 

temperatures show fine scale structure within the particles themselves; which could 

well be sub-micron grains. The microhardness of the deposits shown in Fig. 5.38 

(a-c) is shown in Fig. 5.39. The hardness of copper sprayed at 298 K is 166 kgf 

mm 2, which reduces with gas heating and when gas is heated to 673 K the hardness 

is 110 kgf Mm-2 . The fine sub-micron grains seen in Fig. 5.38 (b) coincide with the 

decrease in hardness of deposits seen in Fig. 5.39, for deposition at 473 K. The 

recrystallization of copper deposits and microstructural and mechanical properties 

of copper deposits after annealing at various temperatures are described in further 

detail in chapter 6. 

147 



Chapter 5 Deposition of conducting tracks on insulating substrates 

5.9.3 Microstructures of copper deposited on PA66, PA6T and PP 

Cross-section images from optical microscopy of copper deposits on PA66, PA6T 

and PP are shown in Fig. 5.40, Fig. 5.41 and Fig. 5.42 respectively. Copper was 

deposited using the conditions described in Table 5.17 on PA66 and Table 5.3 on 

PA6T and PP respectively. Deposition on PA66, PA6T and PP employed gas at 11 

bar, 22 bar and 29 bar. 

An impact-affected zone is seen at the substrate-deposit interface consisting of 

fractured surface of the substrate and embedded copper particles. PA66 suffers a 

much greater amount of fracture due to the impact of copper particles as compared 

to PA6T. The impact-affected zone in PA66 is larger due to the greater degree of 

fracture in PA66 as compared to PA6T. The impact-affected zone progressively 

increases with increasing gas pressure in both PA66 and PA6T (Fig. 5.40 (a-c) & 

Fig. 5.41 (a-c)). Fig. 5.41 shows that the glass fibres in PA6T are surrounded by 

copper particles and the fracture of substrate is reduced where the copper particles 

encounter the glass fibres. It is also seen that the particles embedded in PA66 and 

PA6T are largely spherical, whereas the particles impacted upon previously 

embedded particles are flattened. The PP substrate is eroded due to impact of 

copper particles. This is demonstrated clearly in Fig. 5.42 (c), where it is seen that a 

curvature is formed at the interface of PP - copper due to the erosion of PP by 

impact of copper particles at the centre of the track where particle flux was greatest. 
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5.9.4 Microstructures of copper deposited on tin coated PA66, PA6T and PP 

Fig. 5.43 & 5.44 shows the Sn + Cu deposits on PA66 and PA6T respectively; 

copper was deposited using process gas at 298 K, powder feed rate of 0.5 g s"t and 

CGDS conditions described in Table 5.3 (PA6T) and Table 5.17 (PA66). Process 

gas pressure of 11 bar, 22 bar and 29 bar was used. Tin was deposited using 

conditions described in Table 5.19. The tin bond coat and the copper layer on top of 

tin are adhered well to the PA66 and PA6T substrate. The gaps seen in the 

PA66/PA6T - copper interface (Fig. 5.40 & 5.41) are not seen in the deposits 

formed using tin bond coat. Thus, qualitatively the tin bond coat improves the 

adhesion of copper deposits on polymers. The measurements of pull - off tests 

reported in section 5.5 and 5.7.2 indicate that the adhesion of Sn + Cu deposits is 

higher by a factor of -2 as compared to copper deposits, on PA66 and PA6T 

substrates (Fig. 5.8, Fig. 5.12 & Fig. 5.13). 

Fig. 5.45 shows the Sn + Cu deposit on PP substrate deposited using six passes of 

the spray gun over the substrate. The thickness of tin and copper is - 200 µm and 

600 µm respectively. No gaps are seen at the interface of either PP - Sn or Sn - Cu. 

Hence, well adhering deposits of Sn + Cu are formed on PP. 

5.10 Summary of results 
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1. Metal jetting is seen in plan views of copper deposits formed using gas at 29 

bar. Fine particles of tin are seen in the plan view of tin deposits. 

2. The thickness of copper deposited directly on PA66 and PA6T is 

approximately independent for deposition pressures of 11 bar to 29 bar, 

whereas on aluminium and tin coated polymer substrate the thickness of 

copper deposits is lower when gas pressure of 11 bar is used. 

3. The interface in copper deposits on aluminium is heavily deformed. The 

deformation increases when higher gas pressures are used. 

4. The impact-affected zone at the copper-PA66/PA6T interface is formed due 

to; a) embedding of copper particles and; b) due to fracture of PA66/PA6T. 

Tin and copper deposits on PA66 and PA6T substrate are formed due to the 

embedding of the tin and copper particles in the substrate. 

5. Glass fibers in PA6T are surrounded by copper; the strengthening effect of 

glass fibers improves the adhesion of copper deposits. Thus, in PA6T a 

larger proportion of particles are embedded in the impact affected zone as 

compared to PA66. 

5.11 Discussion 

The suitability of the polymer substrates for depositing copper was discussed in 

section 5.2.3. In this section the results of parameter study, DE, adhesion, 

microstructure and microhardness are discussed. 
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5.11.1 Deposition of copper on aluminium, PA66 & PA6T and tin coated PA66 & 

PA6T 

The thickness of copper deposits on tin coated PA66 and PA6T for single pass, is, 

60 µm when deposited using process gas pressure of 11 bar. The thickness increases 

to - 100 µm when deposited using process gas pressure of 22 and 29 bar (Fig. 5.43 

& 5.44). This indicates lower deposition efficiency for deposition of copper tracks 

on tin coated substrate at 11 bar pressure. Figs. 5.40 & 5.41 indicate that such a 

decrease in deposition efficiency is not observed for depositing copper directly on 

PA66 and PA6T. In section 5.3.2 it has been reported that when similar conditions 

of powder feed rate and No. of passes was used, the thickness of copper deposits on 

aluminium was lower for 11 bar process gas pressure as compared to 15 bar - 29 

bar whereas, the thickness of copper deposits on PA6T was not influenced 

significantly by the process gas pressure (Tables 5.4 and 5.5). The lower deposition 

efficiency for depositing copper on metallic surfaces (aluminium or tin) while using 

11 bar process gas pressure is probably related to the different mechanisms by 

which copper adheres to polymers and metals. This difference seems to be related 

to the difference in behavior of polymers and metals when subjected to deformation 

and cold work. The tendency of polymers to erode due to impact of copper particles 

was observed whereas in aluminium, particularly when 29 bar gas pressure was 

used; the craters formed due to impact are associated with metal jetting 
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phenomenon (Table 5.2 & Fig. 5.17). The sprayed copper particles have sufficient 

kinetic energy when sprayed using process gas pressures between 11 bar to 29 bar, 

to embed in PA66 and PA6T; however adhesion of copper particles on aluminium 

is related to metal jetting phenomenon which takes place only if the particles are 

traveling over the critical velocity. The above discussion for deposition on PA66, 

PA6T and aluminium substrate is related to single pass deposited at a relatively fast 

traverse speed of 0.1 m s'1. If multiple passes are used to deposit the tracks or if 

slower traverse speeds are used it is possible that the track thickness and thus, the 

overall deposition efficiency may show behavior similar to that seen for deposition 

on metals (i. e. lower deposition efficiency at 11 bar process gas pressure). This is 

because after an initial layer of copper is formed the tracks build-up continues by 

further impacts on previously deposited copper and not on the polymer substrate. 

5.11.2 Mechanism of copper deposition onto aluminium 

It is generally accepted that metal jetting and related phenomenon promote a 

metallurgical bond at the deposit substrate interface in cold spraying [45]. If the 

velocity exceeds the critical velocity then metal jetting and bonding is expected to 

take place; however, if the impact velocity is below the critical velocity, then 

impacts of the particles will lead to craters being formed in the substrate. 

Deposition of copper at 11 bar pressure results in more craters being formed and the 

deposition efficiency remains low as compared to deposition at 29 bar gas pressure. 
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Plan view images of copper impacts at 29 bar gas pressure on aluminium show 

metal jetting (Fig. 5.17), whereas no metal jetting is seen for impacts at 11 bar gas 

pressure (Fig. 5.14 and 5.15). Impacts of copper on aluminium at 11 bar pressure 

result in embedding and flattening of smaller particles while larger particles ->ý 

25 µm do not deform and maintain their spherical shape. Impacts of copper at 29 

bar resulted in flattening of larger particles also. It is likely that deposition at 11 bar 

pressure resulted in acceleration of finer particles to above the critical velocity, but 

not the coarser particles. Thus, only the finer fraction of the powder was deposited, 

while the coarser size fraction rebounded after impact (leaving behind craters). 

Impact at 29 bar pressure resulted in deposition of the finer as well as the coarser 

size fraction of the powder due to the acceleration of all powder sizes to above the 

critical velocity. Hence, thicker deposits are formed at 29 bar as compared to 11 

bar. 

The metal jetting phenomenon at 29 bar gas pressure increases the adhesion of 

copper deposits on aluminium (- 16 MPa) as compared to 11 bar gas pressure (- 7 

MPa), where metal jetting was not observed (Fig. 5.8). Heating the process gas 

results in higher particle velocity and raises the substrate temperature due to 

impingement of hot gas. Metal jetting raises the local temperature at impact to near 

the melting point of sprayed material [45]. A combination of high particle velocity 

and higher local temperature promote adhesion on metal substrates at higher gas 

temperatures. This is seen in the pull-off test results on aluminium; deposits formed 

using gas at 298 K had lower adhesion than those formed at 523 K (Fig. 5.8). 

153 



Chapter 5 Deposition of conducting tracks on insulating substrates 

5.11.3 Mechanism of metal deposition on polymers 

a) Cow 

Erosion of polymer substrates was observed in the case of polymers that had low Tg 

and tensile strength. The impact of copper particles onto PA66 and PA6T does not 

result in metal jetting. The metal jetting seen in Figs 5.17 and 5.25 is due to the 

impact of copper particle on the previously deposited copper particle. Figs 5.40 & 

5.41 shows that single particles of copper embedded in the polymer are largely 

spherical whereas copper particles that have suffered impacts of other copper 

particles are deformed. The impact of the relatively hard copper particles onto 

polymers will result in deformation in the polymer and thus a temperature rise in 

the near-surface regions by conversion of the kinetic energy of impact in to heat [2]. 

Weston et al. [71 ] measured the temperature rise in a polymer during impact of 

solid CO2 pellets (10 mm diameter) at a velocity of 225 and 241 m s-1 on 

polypropylene. They observed that the temperature recorded by thermocouples 

embedded in the PP rose to 363 K immediately after impact. They proposed that the 

impacts where the temperature does not rise above Tg results in brittle erosion of PP 

and where the temperature rises over Tg plastic deformation of the polymer takes 

place. During impact of copper particles on PA66 and PA6T sufficient heat is 

generated to raise the temperature above Tg. Polymers loose their rigidity when 

heated to temperatures above T. and impacts of copper particles in this situation 

results in erosion. The amount of erosion depends upon the strength of polymer; 
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thus, PA6T (tensile strength = 180 MPa) which is a glass reinforced polymer erodes 

much less than PA66 (tensile strength = 82 MPa) which does not have any glass 

reinforcement. Another phenomenon seen during impact of copper particles is the 

embedding of copper particles in PA66 and PA6T. Polymers like PA66, PA6T and 

PBT have sufficient strength to allow copper particles to embed. PA66, PA6T and 

PBT provide enough support to the powder particle embedded to allow subsequent 

impacts to build. This phenomenon is responsible for the formation of adhering 

deposits on PA66, PA6T and PBT. The impact-affected zone is formed in PA66 and 

PA6T due to a combination of the phenomenon of erosion of substrate and 

embedding of copper particles. In PA66 the impact affected zone is wider due to 

greater erosion of the substrate whereas in PA6T more copper particles are seen 

embedded in the substrate hence copper has higher adhesion on glass-reinforced 

nylon (PA6T) than on PA66 (Fig. 5.9 & Fig. 5.13). This higher adhesion results 

from the higher tensile strength of PA6T as compared to PA66 (Table 3.2), due to 

which the erosion of substrate due to impact of copper particles is minimized. The 

higher strength of PA6T is obtained by adding glass fibres to PA66. The glass fibres 

seem to withstand the impact of copper particles better than nylon matrix. This is 

seen in Fig. 5.22 and Fig. 5.23, where the glass fibre does not seem to have been 

damaged during spray deposition but the surrounding nylon matrix is fractured. At 

higher gas pressures (Fig. 5.24) very few glass fibers are seen; however, the 

adhesion of copper on PA6T is increased at this pressure. It is likely that, at this gas 

pressure, the glass fibres are eroded but copper is deeply embedded in PA6T. The 
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contrast between erosion rate of nylon matrix and glass fibre may have a role to 

play in this by providing anchors for deformed copper particle to adhere. The nylon 

matrix is eroded more while erosion is minimized in locations where the glass 

reinforcement is present, thus providing an anchor for copper particle to adhere. 

Such anchoring is seen in Fig. 5.41 where it is seen that copper particles have 

surrounded the glass fibres. Polymers like PP and PE have low Tg and tensile 

strength and they cannot withstand the impact of copper particles and the erosion of 

substrate is the primary mechanism operating on such polymers. 

b) Tin 

It is hypothesized that tin particles (observed in Figs. 5.26-5.29,5.31 & 5.33) 

droplet melts upon impact and forms a splat. The particles of tin are formed due to 

the break up of the splat. Mostaghimi et al. modeled the splat formation in plasma 

sprayed coatings [72,731. They predicted the splat shape formed during plasma 

spraying of Ni on substrates maintained at temperatures of 563 K and 673 K (Fig. 

5.46). They showed that break-up of the splat on a flat surface is primarily due to 

solidification. When solidification was artificially suppressed in their model, no 

break-up was predicted. The prediction from their model has been experimentally 

verified [72]. Zhang et al. [43,44]studied the impact of aluminium particles on tin 

substrate in cold praying. The observed melting of tin substrate due to impact of 

aluminium particles. Melting of tin upon impact or due to impact of other particles 

(copper or tin) on previously deposited tin results in significant flattening of the tin. 
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The fine particles of tin seen in Fig. 5.27 - 5.29 & 5.31 are formed due to the 

melting of tin. The particles seen in cold sprayed tin are formed due to break-up of 

the tin splat during solidification and/or due to the radial forces acting on the splat 

during the impact. The presence of tin particles is evidence that melting on impact 

has taken place. The layer of tin thus formed provides a matrix of tin in which 

copper particles are deposited. 

Tin could be deposited on most of the polymers as it is a much softer material than 

copper (Yield strength of tin is 9 MPa and 0.2 % proof stress for copper is - 50 

MPa). Upon impact, both the tin and polymer will exhibit deformation and thus 

heating. The plastic deformation of PA66 and PA6T due to impact of tin particles 

(Figs. 5.26 & 5.29), and melting of the tin particles result in tin particle embedding 

in the substrate. Subsequent impacts of tin particles lead to growth of deposits on 

the previously embedded tin layer. The significantly less erosion of substrate by tin 

as compared to copper improves the adhesion of Sn + Cu tracks on PA66 and 

PA6T. A comparison of the adhesion of copper to; PA6T (Fig. 5.9) and tin coated 

PA6T (Fig. 5.12), reveals that copper deposited on tin coated PA6T has higher 

bond strengths (- 6 MPa) than copper deposited on PA6T without any tin bond coat 

(- 1.75 MPa). On PA66 the adhesion increased from <1 MPa to -2 MPa when tin 

bond coat was used. 

The adhesion test samples failed at the PA6T/PA66 - tin interface. Metal jetting was 

observed in copper (Figs. 5.32 & 5.34) and tin (Fig. 5.33) due to impact of copper 
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particles. Metal jetting results in the formation of metallurgical bonds in the 

deposits and improves adhesion of copper on tin. 

From the above discussion, the following mechanism can be proposed for adhesion 

of copper and tin on polymers; 

1 Initial impacts result in erosion of polymer substrate, the extent of erosion 

depends upon the polymer and particle properties. The stronger polymers 

like PA66, PA6T and PBT do not suffer massive erosion; instead the kinetic 

energy of impacting particle is sufficient to result in copper particle 

embedding in these polymers. 

2 The extent of bonding depends upon degree of erosion versus embedding of 

particles, materials which do not erode the substrate substantially are more 

likely to embed in the polymer; tin due to its low yield point could be 

deposited on all the polymers. 

3 Impact of subsequent copper particles is on previously embedded copper 

and further deposit growth takes place by the interaction between embedded 

copper and incoming copper particle. Further growth of the deposit is 

similar to growth of deposit on metallic substrates. The metal jetting seen in 

Fig. 5.25 supports this hypothesis. 

4 Polymers like PP and PE suffer significant erosion during impact of copper 

particles due to their low strength. PPS is a very glassy polymer and 
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although it has high strength, but its glassy nature results in brittle erosion of 

substrate during impact. 

The bond strength of copper on PA6T increases with increase in process gas 

temperature. The range of temperatures used to deposit copper for bond strength 

(pull-off) tests was up to a maximum of 373 K, the effect of heating the gas is to 

increase the particle velocity and heating the substrate due to impingement of hot 

gas, and not so much on heating the particle; thus it seems likely that higher particle 

velocities obtained by heating the process gas produces better adhesion on PA6T 

substrate. The wearing effect of heated gas on PA6T substrate is not substantial, 

probably due to high tensile strength and Tg of PA6T. The qualitative assessment of 

adhesion on PA66 shows that heating the process gas results in erosion of PA66 

(Table 5.18). Thus for PA66 the impingement of hot gas results in softening, 

leading to erosion during impact of copper particles. The difference in the tensile 

strength and Tg of PA6T (180 MPa, 368 K) and PA66 (82 MPa, 323 K) may be 

responsible for this. 

5.11.4 Deposition efficiency 

The DE is an important criterion for process optimization in CGDS. Higher DE 

indicates that a greater proportion of the particles have accelerated above the critical 

velocity. The gas density in the nozzle increases with increasing pressure resulting 
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in higher drag forces on the particles and thus to higher acceleration. For aluminium 

substrate, Fig. 5.4 indicates that as the pressure is dropped below 22 bar, the DE 

decreases, indicating that a lower proportion of particles have reached the critical 

velocity for deposition upon impact. The thickness measurements shown in Table 

5.4 reveal that the thickness of deposits achieved for spraying at 11 bar pressure is 

lower than that for higher pressures. As discussed in section 5.11.1, for deposition at 

11 bar pressure, the larger size fraction of particles is excluded from the deposition 

process due to their lower velocity; and consequently the % of particles exceeding 

the critical velocity is lower. 

The velocity achieved by the particles depends not only on the gas conditions, but 

also upon the particle loading within the gas stream (Fig. 5.5) where a loading of 

greater than 21 wt % has resulted in a significant decrease in DE. The loading of the 

gas stream may result in lower velocities of particles because the gas stream may 

not be able to accelerate greater number of particles above the critical velocity. 

The DE for depositing copper on PA6T is shown in Fig. 5.6. The higher particle 

velocities and heating of substrate during spraying using gas at 333 K as compared 

to 298 K may be responsible for the higher DE seen for copper deposition at 333 K 

in Fig. 5.6. The softening of PA6T due to heating by impingement of heated gas 

would improve the embedding of copper particles in to PA6T. Thus it seems that 

more copper particles are embedding in to PA6T when gas is heated to 333 K. 
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5.11.5 Microstructures and microhardness 

The increase in particle velocity with increasing gas pressure results in higher levels 

of cold work in the coating leading to higher levels of microhardness (Fig. 5.37). 

The higher velocities also result in a larger degree of impact deformation observed 

on aluminium substrate at the substrate-deposit interface (Fig. 5.35). 

The effect of heating of the gas is not limited to changes in flow conditions and thus 

to particle impact velocity. Fig. 5.38 shows that deposition using heated gas results 

in recrystallization of the deposit as seen from microstructural observations and 

from the decrease in microhardness (Fig. 5.39). It is also observed that the tendency 

for coatings to debond from aluminium substrate is greatly reduced (or eliminated) 

when spraying at elevated temperatures indicating that the recrystallization also 

results in stress relief. It is of note that significant effects are observed (both 

microstructurally and in terms of microhardness) at temperatures as low as 473 K. 

The recrystallization occurs in a short time period (the jet is moving at its slowest at 

50 mm s"1 over the substrate); such rapid recrystallization at these low temperatures 

is driven by the very high levels of work hardening that the particles have suffered 

upon their own impact and from subsequently impacting particles. 

5.12 Summary and conclusions 

161 



Chapter 5 Deposition of conducting tracks on insulating substrates 

1. The higher expansion ratio of nozzle used at Yazaki results in thicker deposits 

thus, implying higher deposition efficiency. 

2. Copper can be deposited directly on polymers, which have high T. and tensile 

strength. Such polymers are PA66, PA6T and PBT. Other polymers are eroded 

due to impact of copper. 

3. Tin can be deposited on all the polymers and subsequently copper can be 

deposited on tin coated polymers. Pull-off tests reveal that the adhesion of Sn + 

Cu deposits is higher than copper deposits on PA66 and PA6T substrates. The 

use of tin bond coat raises issues relating to the stability of the Sn + Cu tracks 

and the influence of tin bond coat on the electrical resistivity of tracks. These 

issues are addressed in chapter 6. 

4. Using higher process gas pressures and heating the process gas improves the 

adhesion of copper deposits on aluminium. 

5. The process deposition efficiency for depositing copper is high for the spray 

conditions examined in this study. Thus, it is likely that the spraying conditions 

used in our study accelerate most of the particles above the critical velocity 

required for deposition. 

6. The grain size in as-sprayed copper deposits is very fine. The grains are not 

resolvable in the optical microscope. Copper deposited using heated gas results 

in formation of very fine grains at gas temperatures of 473 K, where fine 

crystals are seen in the etched microstructure (Fig. 5.38 (b)). Annealing at 673 
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K promotes nucleation of more grains and also grain growth in previously 

nucleated grains. 
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Table 5.1: Deposition parameters used at Nottingham to deposit copper for 
initial experiments. 
Stagnation Powder Carrier gas Traverse Stand-off 
pressure / feed rate / flow rate / speed / No. of passes distance / 
bar s' kg s-1 10-4 m s'1 m 

22 0.25 3.8 0.05 1 0.02 

Table 5.2: Thickness of copper deposits on polymer, metallic and ceramic 
substrates; and qualitative assessment of their adhesion. Deposition 
conditions as described in Table 5.1. 

Substrate thickness 
/mm 

Thickness of 
copper / µm 

Qualitative 
assessment of 

adhesion 
Remarks 

Aluminium 2.97 120 1 Good adhesion. 
APS 

alumina 
1.05 Nil 3 Deposits de-bonded 

PA6T 3.04 100 1 Good adhesion 
PBT 2.92 90 1 Good adhesion 

NORYL 2.98 Nil 3 Deposits de-bonded 
PP 3.04 70 2 Erosion of substrate 
PE 4.89 Nil 3 Erosion of substrate 
PPS 2.93 130 2 Poor adhesion 
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Table 5.3 (a): Deposition conditions to deposit copper at University of Nottingham 
during parameter study experiments. Deposition carried out using gas at 298 K. 

Stagnation 
pressure / bar 

Powder feed 
rate /g s"1 

No. of 
passes 

Traverse 
speed /m s'1 

Carrier gas flow 
rate / m3 s"1 

Stand-off 
distance /m 

11 to 29 0.25 to 1 1 to 4 0.1 0.01 0.02 

Table 5.3 (b): Carrier gas mass flow at different gas pressures corresponding to flow 
meter reading of 0.01 m3 s'1 in the University of Nottingham cold spray rig. 
Gas pressure / bar 10 15 20 22 25 30 
Gas mass flow / 

kg s" 10 2.6 3.1 3.6 3.8 4.1 4.4 
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Table 5.4: Deposit thickness on aluminium for spraying copper at different pressures, powder feed 

rates and No. of passes using traverse speed of 0.1 m s-I and stagnation temperature of 298 K. 

Thickness in mm. Key to colour coding of cells described in Table 5.9. Deposition trials carried 

. ,, t at Nnttincyham. 
Powder feed rate /g s-1 

Gas 0.25 0.50 0.75 1.00 
pressure 

/ bar No. of passes 

IT 2 34 12 3 4 1 2 3 4 1 2 3 4 

11 0.07 0.10 0.16 0.16 0.07 0.13 0.20 0.26 0.08 0.15 0.24 0.31 0.08 0.16 0.25 0.33 

15 0.08 0.13 0.19 0.21 0.1210-221 0.311 0.37 0.18 0.31 0.4 2 0.62 0.19 0.3 8 0.59 0.81 

18 0.06 0.15 0.17 0.24 0.12 0.20 0.29 0.41 0.17 0.29 0.45 0.57 0.17 0.34 0.56 0.74 

22 0.07 0.12 0.14 0.22 0.06 0.13 0.19 0.30 0.13 0.21 0.33 0.48 0.16 0.30 0.43 0.72 

26 0.06 0.12 0.14 0.21 0.06 0.12 0.21 0.30 0.10 0.21 0.31 0.47 0.16 0.27 0.43 0.67 

29 0.08 0.11 0.19 0.25 10.07 0.15 0.23 10.34 0.1 1 0.21 0.34 0.5 3 0.14 0.34 0.58 0.8 l 

Table 5.5: Thickness of copper deposit on PA6T sprayed at different pressures, powder feed 

rates and No. of passes using traverse speed of 0.1 m s-1 and stagnation temperature of 298 K. 
Thickness in mm. Key to colour coding of cells described in Table 5.9. Deposition trials carried 
out at Nottingham. 

Powder feed rate /g s-1 
Gas --- 0.25 0.50 0.75 1.00 

pressure 
/ bar No. of passes 

2 3 4 1 2 3 4 1 2 3 412 3 4 

1I .I0.23 
0.28 0.32 0.21 0.38 0.1 0*' J(). 

217 0.3 13 0.31 0.13 0.13 
15 .00.13 

0.19 0.22 0.09 0.24 034 0.43 04 3 (). 2 0.37 7 . 54 0.69 0.29 0.45 0.64 0.08 
18 .20.28 

0.36 0.36 0.241 0.32 10.41 10.48 0.24 0.35 0.44 0.550.230.32 0.5 0.8 
22 080.15 0.22 0.26 0.11 0.16 0.24 0.35 0.21 0.27 0.36 0.5 0.32 0.51 0.82 
26 . 220.26 0.28 0.31 0.17 0.23 0.31 0.37 0.2 0.29 0.38 0.43 0.23 0.33 0.46 0.59 
29 .00.12 

0.19 0.29 0.1 0.22 0.31 0.42 0.24 0.27 0.47 0.59 0.24 0.48 0.65 0.87 
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Table 5.6: Thickness of copper deposit on PBT sprayed at different pressures, powder feed rates 

and No. of passes using traverse speed of 0.1 m s-1 and stagnation temperature of 298 K. 

Thickness in mm. Key to colour coding of cells described in Table 5.9. Deposition trials carried 
-r . if xIr%ttinoham 

Powder feed rate /gs 
Gas 0.25 0.50 0.75 1.00 

pressure 
/ bar No. of passes 

1 2 3 4 1 23 4 1 2 3 4I 2 3 4 

11 . 08 0.09 0.15 0.19 0.15 No deposits 

15 . 05 0.14 0.19 0.23 0.10 0.24 0.30 0.45 0.15 0.29 0.41 0.58 0.25 0.43 0.52 

18 .0 
0.08 0.19 0.21 0.12 0.19 0.30 0.35 0.15 0.33 0.45 0.48 0.13 0.26 0.44 0.04 

22 .0 
0.10 0.16 0.23 0.08 0.111 0-1910.31 

. 
0.07 0.13 0.26 0.35 0.06 0.18 0.25 0.05 

26 .1 
0.16 0.19 0.25 0.11 0.15 0.22 0.13 0.23 0.30 0.36 0.13 0.27 0.45 0.51 

29 - 0.15 0.20 0.22 0.05 0.10 0.21 0.28 0.04 0.08 0.21 0.34 0.04 0.13 10.3810.60 

Table 5.7: Thickness of copper deposit on alumina coated mild steel sprayed at different 

pressures, powder feed rates and No. of passes using traverse speed of 0.1 m s-1 and stagnation 
temperature of 298 K. Thickness in mm. Key to colour coding of cells described in Table 5.9. 
Deposition trials carried out at Nottingham. 

Gas 
ure 

0.25 

Powder feed rate /gs 

0.50 0.75 1.00 
press 

/ bar 
2 1 1 l 1 2T 

No. of passes 
-4 >-1 i 1 2 t 

11 . 03 0.09 0. I( 0.17 º. I16 0.12 0.16 0.21 (1.07 0.13 0.19 0.27 0.06 0.15 0.20 0.26 
15 .0 0.09 0.1 c, 

__ 
11 0.20 0.27 0.38 0x. 14 0.33 0.48 0.53 0.16 . 37 0.51 0.72 

18 .0 0.13 0.16 0.25 0.12 0.18 0.26 0.32 0.12 0.28 0.46 0.60 0.16 0.28 0.45 0.67 
22 . 01 0.05 0.11 0.13 0.04 0.07 0.13 0.22 0.03 0.15 0.22 0.38 0.11 0.15 0.40 0.58 
26 .0 0.08 0.10 0.15 0.05 0.07 0.17 0.00 0.11 0.2 ; 0.34 0.43 0.11 0.27 63) 0.56 
29 .0 0.08 0.13 0.20 0.03 0.10 0.19 0.28 0.07 0.00 1.36 0.50 0.12 0.32 10.00 10.00 

II D-.., A-- V--A -*- /- ý- 
I 
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Table 5.8: Thickness of copper deposit on PP sprayed at different pressures, 

powder feed rates and No. of passes using traverse speed of 0.1 m s-' and 

stagnation temperature of 298 K. Thickness in mm. Key to colour coding of 

cells described in Table 5.9. Deposition trials carried out at Nottingham. 

Powder feed rate /g s- I 
Gas 0.25 0.50 0.75 1.00 

pressure/ 
of passes No bar . 

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
11 No deposits formed, PP substrate wears 

15 
0 

0.13 0.17 No deposits formed, PP substrate wears 

18 
0.0 0.07 0.12 

021 
No deposits formed, PP substrate wears 

0 0 0.1 0.0.0. 0.0. 0. 0. 0. 0. 0. 0. 0. 
22 . 

6 
0.070.10 

8 07 07 12 20 05 11 14 23 05 09 14 07 

26 - - 0.16 
0* 1 

-- 
6 

- PP Substrate wears 1 

29 - -- 
051 

PP substrate wears 

Table 5.9: Key to colour coding of cells in Tables 5.4-5.8. 
No apparent damage to track 

Minimum damage to track. Track slightly lifted at some edges 
Medium damage to track. Track lifted up from centre of cross-section and edges 
Maximum damage to track. Track totally de-bonded from substrate 
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Table 5.10 (a): Cold spray parameters to deposit copper on various substrates. Trials 
carried out at Yazaki using heated process gas. Process gas pressure at different gas 
temperatures is given in Table 5.10 (b). 

Total gas mass Stagnation 
flow (process + temperature / 

Powder feed rate Traverse No. of Stand-off 
carrier) K /g s" speed /m s"1 passes distance /m 

/10-3 k s'' 
2.9 298 - 523 0.25 -1.5 0.012-0.4 1 0.02 

Table 5.10 (b): Measured process gas pressure at different process gas 
stagnation temperatures for fixed mass flow rate of 2.9 x 10"3 kQ s'1. 

Process gas temperature /K 298 323 340 348 373 423 473 523 

Process gas pressure / bar 21 23 24 24 25 26 28 30 

Table 5.10 (c): Measured process gas pressure at different gas mass 
flow rate and 298 K process gas temperature in Yazaki svstem. 

Process gas mass flow rate / 
10"3 kg s-1 

1.5 2.1 2.5 2.9 3.5 4.1 

Process gas pressure / bar 11 15 18 22 26 29 
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Table 5.11: Cold spray parameters used at Yazaki to deposit copper for adhesion testing 

samples. The parameters of traverse speed and number of passes were adjusted to obtain 
0.5 mm thick deposits. 

Total gas mass Stagnation 
flow (process + temperature / 

Powder feed rate 
-' 

Traverse 
' 

No. of Stand-off 
carrier) 

' K 
/gs speed /ms passes distance /m 

/k s" 
0.0029 298 - 523 0.25 - 0.75 0.2 - 0.5 2-3 0.02 

Table 5.12: Thickness of copper on aluminium sprayed at different process gas 
temperatures. powder feed rates and traverse speeds. Deposition carried out at 
Yazaki using gas mass flow rate of 2.9 x 10-3 kg s'. Thickness is reported in mm. 
Key to colour coding of cells described in Table 5.16. 

Process gas temperature /K 
Traverse 

d/m 298 323 348 373 423 473 523 
spee 

SI Powder feed rate /g s"' 
0.25 0.32 0.25 0.321 0.251 0.321 0.251 0.32 0.25 0.32 0.251 0.32 0.25 0.32 

0.4 0.03 0.1 0.03 0.05 10.031 0.05 10.031 0.09 0.03 0.06 0.03 0.06 0.08 0.07 
0.2 0.06 0.12 0.06 0.09 10.06 0.11 10.06 0.12 0.05 0.11 0.07 0.13 0.03 0.11 
0.1 0.12 0.21 0.12 0.17 10.13 0.17 10.14 10.18 0.11 0.17 0.1 0.18 0.21 0.19 
0.05 0.21 0.37 0.19 0.32 0.19 0.29 0.2 0.32 0.2 0.33 0.2 0.24 0.33 0.38 
0.025 0.42 0.6 0.39 0.65 0.44 0.66 0.37 0.7 0.4 0.63 0.46 0.68 0.48 0.62 
0.012 0.9 11.61 0.82 1.35 0.88 1.38 0.83 1.46 0.81 1.34 0.83 1.27 1.07 1.36 
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Table 5.13: Thickness of copper on PA6T sprayed at different process gas 
temperatures, powder feed rates and traverse speeds. Deposition carried out at Yazaki 

using gas mass flow rate of 2.9 x 10-3 kg s-'. Thickness is reported in mm. Key to 

colour coding of cells described in Table 5.16. 

Process gas temperature /K 
Traverse 298 323 348 373 423 473 523 
speed /m 

SI Powder feed rate /g s-' 

0.25 0.32 0.25 0.32 0.251fl12O25 0.32 0.25 0.32 10.25 0.32 0.25 1 0.32 

0.4 0.030.13 0.04 0.080.03 0.08 0.09 

0.2 0.06 0.17 0.061 0.15 0.081 0.23 0.11 

0.1 0.15 0.26 0.09 0.27 0.17 U. 3,0.44 0.35 No deposits formed. Substrate 
0.05 0.21 0.23 0.49 0.38 0.07 0.81 0.62 erosion occurs during spraying 

0.025 

0.012 
0.38 0.38 0.1 0.49 E 

Table 5.14: Thickness of copper on PBT GF 30 sprayed at different process gas 
temperatures, powder feed rates and traverse speeds. Deposition carried out at Yazaki 
using gas mass flow rate of 2.9 x 10 3 kg s-'. Thickness is reported in mm. Key to 
colour coding of cells described in Table 5.16. 

Process gas temperature /K 
Traverse 298 323 348 373 423 473 523 
speed /mi 

S Powder feed rate /gs 
0.25 10.32 10.2510.3210.2510.3210.2510.3210.2510.3210.2510.3210.2510.32 

0.4 0.03 0.08 
0.2 0.05 
0.1 0.181 0.22 

No deposits formed. Substrate erosion occurs during 
0.05 0.44 fl u 

0.025 
0.012 
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Table 5.15: Thickness of copper on alumina coated mild steel sprayed at 
different process gas temperatures, powder feed rates and traverse speeds. 
Deposition carried out at Yazaki using gas mass flow rate of 2.9 x 10-3 kg s-'. 
Thickness is reported in mm. Key to colour coding of cells described in Table 
5.16. 

Traverse 

speed / 

m s-I 

0.4 

0.2 
0.1 

0.05 

0.025 

0.012 

298 1 323 

0.25 0.32 10.25 10 

0.02 n. fR 0.01 
11.111 0.1 (l. ll? 0 

Process gas temperature /K 
348 373 423 473 523 

Powder feed rate /g s-1 

. 32 0.25 0.32 0.25 0. ")? (1.25 0.3? 0.251,0.3? 0.25 0 

1o . l5 

0.15 
0.15 

Table 5.16: Key to colour coding of cells in Tables 5.12-5.15. 
No apparent damage to track 

rMinimum damage to track. Track slightly lifted at some edges 
Medium damage to track. Track lifted up from centre of cross-section and edges 

Maximum damage to track. Track totally de-bonded from substrate 
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Table 5.17: Cold spray conditions used at Yazaki to deposit copper on PA66. 
Process gas Powder Carrier Process gas Traverse Stand - off 
pressure / feed rate / 

1 
gas flow / 

-4 1 
temperature / 

speed /m s-1 distance /m 
bar s 10 kg s" K 

11 - 29 0.5 1.8 298 & 340 0.1 0.02 

Table 5.18: Thickness and qualitative assessment of adhesion of copper deposits on 
PA66. Deposition carried out as per conditions described in Table 5.17. 

Process gas te mperature /K 
Process gas 
ressure / bar 298 340 

p Thickness / mm Adhesion Thickness / mm Adhesion 
11 0.02 1 0.09 2 
15 0.1 1 3 
18 0.12 1 No deposits 3 
22 0.12 1 

formed as 
substrate eroded 

3 
26 0.13 2 during spraying. 3 
29 12_ 12 3 

The adhesion of deposits is assessed qualitatively as follows, 1= well adhered with no 
signs of de-lamination at any place, 2= de-lamination seen in some places, 3= totally 
delaminated. 

Table 5.19: Cold spray conditions used at Nottingham to deposit tin on 
polymers. 
Process gas Carrier gas Powder Process gas 
pressure / -a flow / 10 feed rate temperature / 

Traverse 
1 s eed /m s' 

Stand - off 
distance /m bar kg s"' /g S' K p 

11 2.4 0.12 298 0.05 0.02 
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Table 5.20: Thickness and qualitative assessment of adhesion of tin and tin + copper 
deposits on polymers. Tin and copper were deposited at Nottingham using conditions 
described in Table 5.19 & Table 5.1 respectively. 

Thickness Qualitative assessment of Substrate Thickness 
of copper adhesion Remarks 

thickness / mm of tin / µm on tin / µm Tin Tin + copper 

PA6T 3.04 - 80 120 1 1 Good adhesion of 
tin and copper. 

PA66 3.03 - 80 120 1 1 Good adhesion of 
tin and copper. 

PBT 2.92 - 80 100 1 1 Good adhesion of 
copper on PBT. 

NORYL 2.98 80 120 1 1 Good adhesion of 
tin and copper. 

PP 3.04 80 100 1 1 Good adhesion of 
tin and copper. 

PE 4.89 - 80 100 1 1 Good adhesion of 
tin and copper. 

PPS 2.93 - 80 70 1 1 Good adhesion of 
tin and copper. 

The adhesion of deposits is assessed qualitatively as follows, 1= well adhered with no signs 
of de-lamination at any place, 2= de-lamination seen in some places, 3= totally delaminated. 
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175 

Fig. 5.1: Photograph of cold spray system at Nottingham 
showing the cold spray nozzle, gas & powder inlet and 
arrangement of substrates for deposition trials. 
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Fig. 5.2: Macro photographs of 
deposits on various insulating 
substrates from initial trials. a, PA6T; 
h, PBT; c, PP; d, PPS; e, Noryl; f, PE 
; und g, alumina coated mild steel. 
Deposition conditions are described in 
fable 5.1. 
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('u tracks 

5t 

L 

I; 

ýý 
ý; "ý 
..; . 'ý, 

u tracks 

Fig. 5.3: Macrophotographs ut copper deposits on PA6T (a-c) and aluminium (d-f) substrates. 
Copper deposited using conditions described in Table 5.3 and powder feed rate of 0.5 gs1 at 
gas pressures of 15 bar (a, d), 18 bar (b, e) and 26 bar (c, f). 
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\o 0 

Ü 

C 

_ 
0 

O 
a aý Q 

Well-adhered 
tracks 

Erosion of 
substrate 

Fig. 5.4: Macrophotographs showing ('u tracks on PA66, deposited at 
Yazaki using process gas at 298 K and spraying conditions described in 
Table 5.17. Process gas pressures of a, 11 bar; b, 18 bar and c, 26 bar. 

100 

90 

80 

70 

10 15 20 25 30 35 
Stagnation pressure / bar 

Fig. 5.5: Plot of deposition efficiency versus stagnation pressure for copper 
deposition on aluminium. Powder feed rate = 0.25 g s"1, gas temperature = 298 K 
and traverse speed of 0.2 m s'1. Deposition conditions described in Table 5.10 (c). 
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100 

0 21 wt % of total 
gas flow rate 

36 wt % of total 
gas flow rate 

I 

95 U 

U 
U 

90 

85 
Q 

80 
0 0.5 1 1.5 

Powder feed rate / gs-1 
Fig. 5.6: Plot of deposit efficiency versus powder feed rate for copper deposition on 
aluminium. Deposition carried out at Yazaki using gas at 298 K, gas flow rate of 3.5 x 
10"3 kg s'1 (corresponding to a gas pressure of 26 bar), traverse speed of 0.2 m s"1. 

105 

100 

95 

90 

85 

80 

75 

" Gas at 333 K 
 Gasat298K 

f 

. . 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Powder feed rate /g s"1 
Fig. 5.7: Plot of deposit efficiency versus powder feed rate for copper deposition 
on PA6T using a gas flow rate of 2.9 x 10-3 kg s"1 (corresponding to a gas 
pressure of 22 bar) and traverse speed of 0.2 m s-1. Deposition carried out at 
Yazaki. 
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25 

20 

15 

. r, 10 

5 

0 

Epoxy failure at 20 MPa   298 K   523 K 

T 

11 18 22 29 

Gas pressure / bar 
Fig. 5.8: Bar chart of adhesion test data of Cu deposited on Al versus gas 
pressure. Deposition carried out at Yazaki using gas flow of 2.9 x 10"3 kg s'1, 
two different gas temperatures; 298 K and 523 K, powder feed rate of 0.5 gsI, 
traverse speed of 0.3 m s' and in 2 passes. 523 K samples exhibited failure in 
epoxy resin. 

3 

cý 
ý2 

Ö 

..... 

ý, 

0 

 298K 

 323K 

D333 K 

D340 K 

  345 K 

E348 K 

  373 K 

0.25 0.37 0.5 0.67 0.75 
Powder feed rate / gs-' 

Fig. 5.9: Bar chart showing adhesion test data of Cu on PA6T versus 
powder feed rate for different gas temperature. Deposition carried out at 
Yazaki using conditions described in Table 5.11. 

ISO 



Chapter 5 Deposition of conducting tracks on insulating substrates 

Fig. 5.10: Macro photographs of Sn + Cu deposits on PA6'1' (a, b and c) and 
PA66 (d, e and f). Cu deposited using process gas pressure of 15 bar (a, d); 18 
bar (b, e) and 26 bar (c, f). Cu is seen to be well adhered to the tin coated 
substrate. Sn and Cu deposition carried out at Nottingham using conditions 
described in Tables 5.19 & 5.1 respectively. 
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L) -' 

1 

Fig. 5.11: Macrophotograph of 0.6 
mm thick Cu deposit on Sn coated 
PP. CGDS parameters used are 
described in Table 5.1; except, six 
passes were used with a powder 
feed rate of 0.5 gs 

as 

0 

ý2 

0 

6 

0.37 0.50 0.67 0.75 
Powder feed rate /g s-1 

Fig. 5.12: Bar chart showing adhesion of Cu on Sn coated PA6T for different 
powder feed rates; Cu deposited at Yazaki using conditions described in 
Table 5.11 and gas at 298 K. Tin deposited using conditions described in 
Table 5.19. De-bonding occurred between the tin layer and the substrate. 
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3 

e 

Z. 

ö 

0 
ll 18 22 29 

Gas pressure / bar 
Fig. 5.13: Bar chart showing adhesion test data for different gas pressures used in 

copper deposition on PA66 with and without a tin bond coat Sprayed using gas at 
298 K and powder feed rate of 0.5 g s"1.2 passes of the gun at a traverse speed of 
0.3 m s-1 were used. Deposits formed at II bar and 29 bar pressure on PA66 de- 
bonded at loads of -0 in pull-off tests. Tin deposited as per conditions described 
in Tables 5.19. 
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Fig. 5.14: Back scattered image of copper deposited on aluminium at 11 bar 

and 298 K showing both deformed and un-deformed particles. Deposition 
using traverse speed of 0.5 m s" and powder feed rate of 0.25 g s. i' 

184 

Fig. 5.15: BSl; image of copper deposited on aluminium at II bar 
and 298 K showing deformation of copper particle due to impact of 
another copper particle. Deposition using traverse speed of 0.5 ms 

and powder feed rate of 0.25 g s-1. 
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JOP 
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ss a 7° d" ý'ýý 

vil 

Oit 

*ý-A, t ,,:; '3 

Fig. -. 16: Back scaucrei iinagc ul'coppL"t dk: po. ºtLd un dui mmin at 
29 bar and 298 K showing largely deformed copper particles. A few 

spherical copper particles are also seen. Deposition using traverse 
speed of 0.5 m s-º and powder feed rate of 0.25 g s'º. 

11 1 rz WIN 
6ý" 

~f 

Fig. 5.17: Back scattered image of copper deposited on aluminium at 29 bar 
and 298 K showing deformation and metal jetting in copper. Deposition using 
traverse speed of 0.5 m s"' and powder feed rate of 0.25 g s"1. 
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Fig. 5.19: ticcoýnd irv electron ini, t e ()I' copper particles ddcpposited on 
PA66 at 11 bar and 298 K. Craters are formed in PA66 due to impact of 
copper particles (circled area). Deposition using traverse speed of 0.5 m 
s0 and powder feed rate of 0.25 g sl. 

186 

Fig. 5.18: Back scattered image of copper deposited on PA66 at 
11 bar and 298 K. Largely un-deformed copper particles are seen 
embedded (shown by arrows) in PA66. Deposition using traverse 
speed of 0.5 m s-' and 1pmv der fccd rite of O. 25 g s"1. 
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5. 

A 

Fig. 5.21: ýLcuIIW I: LIcctron image of copper cold sprayed on PA66 
at 29 bar and 298 K showing the erosion of PA66 substrate due to 
impact of copper (lower left hand corner). Deformed copper particle is 
seen in the upper right hand corner. Deposition using traverse speed of 
0.5 m s'º and powder feed rate of 0.25 g s-1. 
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Fig. 5.20: Back scattered image of copper deposited on PA66 at 29 
bar and 298 K showing metal jetting. Copper particles -ý 25 µm 
are embedded in PA66. Deposition using traverse speed of 0.5 m s' 
I and powder feed rate of 0.25 g s"1. 
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Fig. 5.22: Back scattered image of copper cold sprayed on PA6T at II 
bar and 298 K. The glass fibres are exposed by the impact (shown by 

arrows). Copper particles are seen embedded in the nylon. Deposition 

using traverse speed of 0.5 rn s"1 and powder feed rate of 0.25 g s- I. 

ýr 

ýý. 

Embedded Cu 

i o. 
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- '%% II 

ý. ý, ' _. ýc ýv 

Fig. 5.23: Secondary electron image of copper cold sprayed on 
PA6T at Ii bar and 298 K. The glass fibre is relatively 
undamaged but the surrounding nylon matrix is fractured. Copper 
particles are seen embedded in nylon. Deposition using traverse 

I' speed of 0.5 m s" and powder feed rate of 0.25 g s". 
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Fig. 5.25: Back scattered image of copper cold sprayed on PA6T 
at 29 bar and 298 K showing deformation and metal jetting in 
copper (shown by arrows). Copper is deeply embedded in PA6T. 
Deposition using traverse speed of 0.5 m s-1 and powder feed 
rate of 0.25 gs'. 
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Fig. 5.24: ticcmuhlar\ c1ccti-mi image ()I' copper cold on 
PA6T at 29 bar and 298 K respectively. Very few glass fibres are 
seen and the substrate is heavily fractured. Deposition using 
traverse speed of 0.5 m s' and powder feed rate of 0.25 gs. 't 
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Fig. 5.26: Back scattered image of tin cold sprayed on PA66 showing 
plastic deformation of PA66 where tin is embedded. Deposition using 

I conditions described in Table 5.19 but using a traverse speed of 0.5 m s'. 

Fig. 5.27: Back scattered image of Sn deposited on I'A66. Deformed tin 
particles form a matrix of tin where other tin particles are embedded. Fine 
particles of tin are shown by arrows. Deposition using conditions 
described in Table 5.19 but using a traverse speed of 0.5 m s'. 
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Fig. 5.28: ESSE image of tin deposited on PA6'1'. PA6't' is plastically 
deformed in places where tin is embedded. Deposition using conditions 
described in Table 5.19 but using a traverse speed of 0.5 m s"1. 
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Fig. 5.29: Back scattered image of tiii deposited on I'A61 shoeing 
tin particles embedded in the previously deposited tin particles. Fine 
tin particles are seen (shown by arrows). Deposition using conditions 
described in Table 5.19 but using a traverse speed of 0.5 m s-1. 
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Fig. 5.30: 1351 image of impact of copper particles on PA66 + Sri. 
Copper deposited using gas at 11 bar and powder feed rate of 0.25 g s"1. Copper particles (darker phase) are embedded in tin (brighter phase). Copper particle maintains its spherical shape. Tin deposited using 
conditions described in Table 5.19 and traverse speed of 0.5 m s1. 

Fig. 5.31: ESSE image of copper cold spia) Lu ou PAoo I S, 1 ui II bar and powder feed rate of 0.25 g s- I, showing splashing in the form of fine 
particles of tin. The darker phase is identified as copper and the brighter 
phase is tin. Tin deposited using conditions described in Table 5.19 and traverse speed of 0.5 ms1. 
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Fig. 5.32: Back scattered image of copper cold sprayed on PA66 + Sri at 29 
bar using powder feed rate of 0.25 gsI showing deformation and metal 
jetting in copper (shown by arrows). Tin deposited using conditions 
described in Table 5.19 and traverse speed of 0.5 m s"1. 
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Fig. 5.33: liýl 
. im, gbc ul capper culd ,! )rayed on 11AA0 I; iii ul l1 bar 

using powder feed rate of 0.25 g s"1, showing fine particles formed in tin 
and extensive deformation of tin (shown inside circle). Metal jetting in tin 
due to impact of copper is also seen (shown by arrows). Tin deposited 
using conditions described in Table 5.19 and traverse speed of 0.5 m s'1. 
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Fig. 5.34: Secondary electron image of cold sprayed copper on Pi\(ý V+ 
Sn at 29 bar using powder feed rate of 0.25 g s- , showing deformation 
and metal jetting (shown by arrows). Tin deposited using conditions 
described in Table 5.19 and traverse speed of 0.5 m s". 1 
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Fig. 5.35: Optical micrograph of unetched deposit cross sections 
showing the morphology of the interface, (a) 11 bar pressure; (b) 
22 bar pressure; (c) 29 bar pressure. Deposition using conditions 
described in Table 5.3, powder feed rate of 0.5 g s-' and 2 passes. 
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Fig. 5.36: Optical micrograph showing a de-bonded interface between 
copper deposit and Al substrate. Deposition using conditions described in 
Table 5.3,29 bar pressure, powder feed rate of 1.0 g s-1 and 3 passes. 
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Fig. 5.37: Plot of microhardness of copper deposited using single pass 
on aluminium at different stagnation pressures for two different powder 
feed rates. Deposition using conditions described in Table 5.3. 
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Fig. 5.38: Optical micrograph of etched copper deposit cross 
section, deposited at Yazaki using gas at 22 bar showing the 
particles and grains; (a), 298 K gas temperature; (b), 473 K gas 
temperature; (c), 673 K. Deposition using powder feed rate of 0.5 g 
s"' and traverse speed of 0.05 m s' and two passes. 
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Fig. 5.39: Plot of microhardness versus gas temperature of cold sprayed 
copper on aluminium. Deposition at Yazaki using gas pressure of 22 bar, 
powder feed rate of 0.5 g s'1, traverse speed of 0.05 m s"1 and 2 passes. 
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' ig. o. '. u; vpucai micrographs of copper deposits on PA66; 
deposited using gas at 298 K and conditions described in Table 
5.17 and process gas pressure of; a, 11 bar; b, 22 bar; c, 29 bar. 
Powder feed rate of 0.5 g s-1 and single pass. 
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Fig. 5.41: Optical micrographs of copper on PA6T; deposition 
conditions described in Table 5.3, gas pressure of; a, 11 bar; b, 
22 bar; c, 29 bar. Powder feed rate of 0.5 g s-1 and I pass. 
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Fig. 5.42: Optical micrographs of copper deposited on PP in 1 pass using powder feed 
rate of 0.5 g s"I, conditions described in Table 5.3 and pressure of; a, 11 bar; b, 22 bar; c, 
29 bar. In "c"; the substrate is curved at the interface of Cu - PP due to erosion of PP. 
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Fig. 5.43: Optical micrographs of Sn + Cu deposits on PA66; Cu deposited in 
single pass using process gas at 298 K and conditions described in Table 5.17 
and process gas pressure of, a, 11 bar; b, 22 bar; c, 29 bar. Sn deposited using conditions described in Table 5.19. 
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Fig. 5.44: Optical micrographs of Sn + Cu deposits on PA6T; copper deposited in single pass using gas at 298 K, powder feed rate of 0.5 m s"' and conditions described in Table 5.3 (PA6T) and gas pressure of, a, 11 bar; b, 22 bar; c, 29 bar. Sn deposited using conditions described in Table 5.19. Copper and tin deposited in single pass. 

-kJ. 
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Cu 

Fig. 5.45: Optical micrographs of Sn + Cu deposits on PP; copper deposited 
using process gas at 298 K, powder feed rate of 0.5 g s1 and conditions 
described in Table 5.3 and process gas pressure of; 22 bar. Sn deposited 
using conditions described in Table 5.19. Sn and Cu deposits formed in six 
passes each respectively. 

Fig. 5.46: Predicted nickel splat shapes at two different substrate temperatures. Left: 
563 K; right: 673 K from Mostaghimi et al [72,73]. 
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Chapter 6 

Stability of copper and tin - copper deposits 

This chapter describes the stability of copper tracks deposited on various substrate 

materials. An investigation in the stability of cold sprayed copper is described in the 

section 6.2 and section 6.3 describes the investigation in to stability of copper tracks 

deposited on tin. Sections 6.2 and 6.3 both have their separate literature review 

sections. 

6.1 Introduction 

Cold sprayed copper tracks have been deposited on aluminium and various types of 

polymer substrates. The deposition process can be seen as constituting two 

components, i. e. interaction between substrate and impacting copper particle and 

interaction between previously deposited copper particle and the impacting copper 

particle. The overall adhesion and development of the track microstructure is 

governed by the phenomena happening during impact, at the substrate and between 

the deposited particles. The generation of heat during the deposition process also 

influences the process. The adhesive and cohesive strength of the deposits are 

determined by the phenomena occurring during these impacts. This chapter 

describes the metallurgical phenomena at impact in copper deposits in terms of Cu- 
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Cu interactions within the deposits. Tin was used as bond coat to deposit copper on 

nylon substrates. Sn-Cu interaction at the interface has been studied by annealing 

the deposits at higher temperatures. 

6.1.1 Stability of copper tracks - microstructure and properties 

The mechanical and electrical properties of copper deposits depend upon the 

deposit microstructure. The electrical and mechanical properties are influenced by 

the cold work and dislocation density in the tracks. Thus, understanding the 

microstructure of the deposits would increase the understanding of the deposition 

process and the influence of deposition conditions on the properties of the deposited 

coatings. 

Investigations to understand the microstructure and mechanical behavior were 

carried out according to procedures outlined in sections 3.2 and 3.3, on as sprayed 

deposits as well as annealed deposits. The tracks were annealed as per the 

procedure outlined in section 3.6.1. The results of these investigations are reported 

in section 6.2. 

6.1.2 Diffusion in tin -copper tracks 
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It was observed that copper tracks can be more readily deposited on to tin coated 

polymers, whereas in the absence of tin coating substrate erosion takes place for 

most polymer substrates. It was seen that using a tin bond layer with nylon 

substrates increases the adhesion of tin - copper tracks for all the spraying 

conditions tested (chapter 5, sections 5.5 & 5.7). Growth of intermetallic 

compounds at room temperature during storage has been widely reported for tin - 

copper couples in soldered copper joints. This intermetallic is expected to influence 

the over all stability of the deposited tin - copper tracks. Hence, understanding the 

nature and behavior of the tin bond coat is important from the point of view of 

overall tin - copper track stability and reliability. 

The behavior and nature of the cold sprayed tin - copper was investigated by 

annealing tin - copper tracks as per the procedure described in section 3.6.3. The 

annealed tracks were then studied using optical microscopy and SEM as per 

procedure described in section 3.2. Resistivity measurements were carried out as 

per procedure described in section 3.4. The results of these experiments are reported 

in section 6.3. 

6.2 Stability of copper tracks - microstructure and properties 

In this section, the work undertaken to investigate the stability of the cold sprayed 

copper deposits during annealing and their resultant mechanical and electrical 
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properties is described. Background literature relevant to this study is reviewed in 

sections 6.2.1 to 6.2.4. The general features of spray deposition were described in 

chapters 4 and 5 and so the procedures used to deposit copper for this study are only 

briefly detailed in section 6.2.5. Similarly, characterization procedures are briefly 

detailed in 6.2.6, with the main body of results reported in 6.2.7. 

6.2.1 Literature review 

6.2.1.1 Deformation structures in copper 

Cold gas dynamic spraying (CGDS) is a relatively new spray deposition technique 

wherein the deposits form due to the high velocity impacts leading to significant 

plastic deformation and adiabatic shear phenomenon at the deposit-substrate and the 

internal interface of the particles [13,19,27,45,54,74,75]. Assadi et al. modelled 

the strain in cold spraying of copper by using finite element method for a 10 µm 

size copper particle travelling at a velocity of 550 m s"' [45]. They found that cold 

spraying can produce plastic strain of -4 and strain rate of 0.5 x 109 s'' at nodes of 

highest deformation in the particle. Adiabatic shear occurred when the particle 

velocity was increased to 580 m s'1 and the strain during adiabatic shear was seen to 

be '- 10. The localized temperature at the nodes with highest deformation increased 

to - 1250 K due to adiabatic heating. The results from their study are shown in Fig. 

2.24. The adiabatic shear results in a rise in local temperature (at point of impact 
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where adiabatic shear takes place) and high strains accompanied by a lowering of 

the stress to attain that strain. These high velocity impacts lead to significant cold 

working and in some cases recrystallization and/or dynamic recrystallization in the 

deposited material [75,76]. The technique of cold spraying can be considered as a 

high strain and high strain rate process. The evolution of a material's microstructure 

and properties in cold spraying shows many similarities to high strain rate and/or 

high strain processing with explosive deformation, severe plastic deformation 

induced by torsion straining under high pressure and equi-channel-angular-pressing 

(ECAP) [45,77-83]. A recent study by Borchers et al. [76] has focussed on 

studying the microscopic changes in the internal interface between the particles of 

FCC metals during cold spraying; they describe the copper deposit as being non- 

homogenous due to the presence of equiaxed nanosized grains, elongated nanosized 

grains, large grains with extremely high dislocation density, and micron sized grains 

with recrystallization twins in the absence of dislocations. The TEM image from 

Borchers et al. [76] is shown in Fig. 6.1. Similar non-homogenous microstructures 

have been reported for ECAP copper, wherein the copper had non-homogenous 

microstructures even after strains of -10 [82,84,85]. It was also seen that 

recrystallization in fine grained copper did not occur until a certain minimum 

annealing temperature was provided, although the high dislocation density provided 

sufficient stored energy for grain nucleation and grain growth. For example 

Islamgaliev et al. [83] have reported an annealing temperature of 473 K, for copper 

following severe strain by torsion, before grain growth takes place from an initial 
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grain size of 107 nm. The stacking fault energy of copper is 60 mJ mni 2 and for 

aluminium it is 200 mJ mm -2 [76,86]. The non homogenous microstructure of 

copper is attributed to the low stacking fault energy of copper leading to 

dislocations which are arranged in a dissociated manner which hinders cross slip 

and makes recovery difficult [76,80,82,86]. The absence of recovery in copper 

leads to high dislocation density, and consequently significant strain energy is 

available for recrystallization. 

6.2.1.2 Dynamic recrystallization in cold worked copper 

The possibility of dynamic recrystallization in such deformed copper is very high 

due to high dislocation density and absence of recovery process in copper [87-90]. 

In cold spraying, high velocity impacts lead to adiabatic shear and metal jetting, 

leading to adiabatic heating and a localised rise in temperature. Similar features 

have been observed in the impact of shaped charges. Fig. 6.2 shows the principle 

and schematic features of shaped charge [91]. A shaped charge consists in its 

simplest form, of an explosive with a conical cavity, lined with metal. When the 

detonation wave generated by an explosion reaches the conical metal liner, the 

intense pressure forces the tip of the cone to collapse. A jet emerges at a high 

velocity. The emerging jet when it impacts a target surface results in high strain rate 

and high strain deformation of target and produces metal jetting [92,931. It has 

been shown by Meyers et al. [94] in their study of high strain and high strain rate 

deformation of shaped charges of copper, that a strain of 3 at high strain rate (- 105 
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s"1) is sufficient to raise the localised temperature above 0.4 TM, the temperature 

above which dynamic recrystallization in copper is expected to take place. Murr et 

al. observed that dynamic recrystallization was a common microstructural feature 

which appears to be central to, and facilitating of, extreme plastic flow in the solid 

state in their experiments on hypervelocity impact crater formation in copper targets 

and copper shaped charges [93]. The localized strain, strain rate and temperature in 

cold spraying is much higher than the values employed by Meyers et al. [94] for 

dynamic recrystallization to occur in copper. It is thus reasonable to suggest that 

dynamic recrystallization could occur during cold spray deposition of copper. 

Microstructures in dynamically recrystallized copper are characterized by grain size 

which is relatively independent of strain [87,94]. The recrystallized grain size after 

dynamic recrystallization depends upon the strain rate; higher strain rates lead to 

finer grain sizes. The presence of dislocations inside the recrystallized grains is also 

taken to indicate dynamic recrystallization [94]. The strain rate influences the grain 

size and at higher strain rates the recrystallized grain size is smaller [87]. 

Meyers et al. showed that copper shaped charges had strains of >5 and strain rate of 

10' s"', while strains of -3 at these strain rates are sufficient to result in localised 

temperature rise above 0.4 TM. In ECAP, copper was strained to - 10 at strain rates 

of 10"3 s". Dynamic recrystallization was observed in shaped charges of copper but 

not in ECAP [80,82]. The reason for the absence of dynamic recrystallization is the 

absence of local temperature rise in absence of high strain rates during ECAP. The 
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high strain rates induce adiabatic heating along with adiabatic shear and lead to rise 

in the local temperature. 

6.2.1.3 Grain refinement and microstrain after cold working 

The effect of cold working is to produce grain refinement, and it is also responsible 

for introducing non uniform microstrain in the heavily cold worked material. The 

grain size and microstrain are often measured using the peak broadening in X-ray 

diffraction spectra [61-63,79,81,83,85,95-99]. The peak broadening in an X-ray 

peak profile can be measured as the full width at half maxima (FWHM). The peak 

broadening is due to grain refinement and due to the microstrain associated with 

dislocations present inside the grains. A technique to relate the peak broadening 

data to the grain size and microstrain was first enunciated by Hall and Williamson 

and thereafter it has been used by many workers to separate the peak broadening 

data into components of grain size and microstrain [61,63,83]. The technique is 

explained in chapter 3, section 3.2.5. 

The grain size of copper measured by various workers from peak broadening and 

TEM studies is shown in Table 6.1. The microstrain in nano crystalline copper 

prepared either by severe plastic deformation [83] or electrodeposition [81] was 

shown to be : 5- 0.06 %. The electrodeposited copper was cold rolled to obtain strains 

of 2300 %. After cold rolling the microstrain showed a significant increase to about 

0.15 % although the grain size remained around 30 nm. Annealing rolled electro 

deposited copper at 373 K resulted in decrease of microstrain to 0.1 % but the grain 
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size remained unchanged. Annealing at 473 K increased the grain size to 80 nm and 

reduced the microstrain to 0. The ECAP material had relatively coarser grain size of 

about 300 nm and grain coarsening was not observed for annealing at 373 K, but 

when annealing temperature was increased to 423 K the grain size increased to 3 

µm. 

6.2.1.4 Properties of nano crystalline copper 

The properties of nano crystalline copper produced by different cold working 

methods is shown in Table 6.2. Islamgaliev et al. [83] measured the electrical 

resistivity of copper deformed by severe plastic deformation and having a grain size 

of - 50 nm after deformation. They report a decrease in electrical resistivity of 

around 7% for annealing at 448 K, and annealing at 523 K reduced the resistivity 

by more than 50 % (They do not report the actual values of resistivity measured). 

The grain size after annealing at 448 K was 110 nm and after annealing at 523 K it 

was - 600 nm. Annealing at temperatures below 448 K did not have significant 

effect on the resistivity. The hardness of copper without any annealing was 160 kgf 

mm 2 which reduced to 110 kgf mm2 following annealing at 473 K. The hardness 

remained relatively unchanged for annealing below 423 K. 

The hardness of ECAP copper was reported by Neishi et al. to be - 150 kgf mm 2; 

annealing ECAP copper at 373 K did not decrease the hardness, but annealing at 
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423 K decreased the hardness to 100 kgf mm"2 and annealing at 473 K decreased 

the hardness to 80 kgf mm-2 [80]. The hardness decrease in ECAP coincides with 

the grain growth after annealing, as reported in Table 6.1. 

The properties of electrodeposited nano crystalline copper were studied by Lu et al 

[81,100-103]. They report the hardness of as deposited nano crystalline copper to 

be - 110 kg mm-2 [101]. The hardness increases to its maximum value of 120 kg 

mm 2 when electro deposited copper is strained to - 1000 %. For strains above 1000 

%, the hardness does not increase further. This they attribute to increase in 

microstrain in the deposits due to rolling. The grain size and microstrain from their 

studies is given in Table 6.1. The room temperature electrical resistivity of electro 

deposited copper measured by them is 28.8 nQ m [81]. 

There have been some reports on the tensile properties of nano crystalline copper. 

Wang et al. [84] studied the behaviour of nano crystalline copper fabricated by the 

ECAP route. ECAP copper had a grain size of - 300 nm. The as-fabricated copper 

had a tensile strength of -' 375 MPa and strain to failure of 15 %. ECAP copper was 

rolled to 1180 % after cooling in liquid nitrogen. Rolling refined the grain size to 

200 nm. The tensile strength increased to - 460 MPa and strain to failure was 20 % 

after this rolling treatment. Sanders et al. [77,781 carried out tensile testing of nano 

crystalline copper produced by compaction of nano crystalline copper powder 

which was produced by inert gas condensation. The compaction was carried out in 

vacuum for 10 min at 423 K under 1.4 GPa of pressure. The stress strain plots 
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obtained by them for nano crystalline copper of different grain sizes are shown in 

Fig. 6.3. Copper with grain size of 26 nm and 49 nm had tensile strength > 400 

MPa but low strain to failure of -I%. When grain size was increased to 110 nm 

strain of 3% was observed with a tensile stress of - 400 MPa after which the test 

was stopped because the displacement range was exceeded. The failure of samples 

with smaller grain size seemed to be flaw dominated, with little deformation before 

failure. In fact, the presence of flaws and artefacts like voids, residual stress and 

microstrain is seen to be the cause of brittle failure in many nano crystalline 

materials [77,84,103]. Thus it is seen that nano crystalline copper is characterized 

by high tensile strength > 350 MPa but low strain to failure of -I%. 

Ostwaldt et al. [79] studied behaviour of polycrystalline copper under compressive 

stress at strain rates between Ix 10-4 s"t and 1x 103 s1 at room temperature, 673 K 

and 883 K. At room temperature, they observed a monotonic increase in stress with 

strain. The stress strain curves determined at 883 K show a local maximum for all 

strain rates and for 673 K such a local maximum is seen in tests carried out at high 

strain rates. This is followed by a fall in stress. They interpreted this behaviour as 

being evidence of dynamic recrystallization where the local maximum is the strain 

at which dynamic recrystallization is initiated which results in grain coarsening and 

a decrease in stress. The studies on high strain rate phenomenon in copper indicate 

that dynamic recrystallization is an important recovery mechanism at higher strain 

rates and more so when the straining process is accompanied by a temperature 

increase [54,76,79,94]. 

216 



Chanter 6 Stability of copper and tin - copper deposits 

6.2.1.5 Deformation mechanisms during tensile testing of nano crystalline copper 

A material is generally considered to be nano crystalline if its average grain size is 

< 100 nm and ultra fine grained if its grain size is 100 - 300 nm [77,84]. An 

enhancement in both the strength and ductility has been predicted for nano 

crystalline and ultra fine grain material based on the Hall-Petch relationship [86, 

104-106]; 

6r ra"o + kfd - ------------------------------------------------------------- Equation 6.1 

Where, d is the grain size and k is a constant. 0y is the yield stress and co is the 

friction stress needed to move individual dislocations. The reported data show three 

different regions: (1) a region from single crystal to a grain size about 1 pm where 

the classical Hall-Petch description can be used; (2) a region for grain sizes ranging 

from about 1 mm to 30 nm where the Hall-Petch relation roughly holds, but 

deviates from the classical 0.5 exponent to a value near zero; and (3) a region 

beyond a very small critical grain size where the Hall-Petch slope is essentially 

zero, with no increase in strength on decreasing grain size or where strength 

actually decreases with decreasing grain size. 

Nano crystalline materials possess higher tensile strength than coarse grained 

materials; however most of the nano crystalline materials exhibit a room 

temperature tensile elongation to failure of no more than a few %. It has been 

postulated that small grain sizes lead to reduced flaw sizes and increased difficulties 
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for the imposed stress concentration at the flaw to exceed the critical toughness of 

the material, thus suppressing the crack nucleation/propagation instability [84]. The 

tensile strength of ECAP copper and nano crystalline copper reported in the 

preceding section [84] indicates that the above mentioned mechanism seems to be 

valid for ultra fine grain copper but not for nano crystalline copper. The increase in 

the strength and ductility of ECAP copper is consistent with an extrapolation of the 

Hall-Petch relationship for coarse grain material to the fine grain size [84]. 

Lu et al. fabricated defect free nano crystalline copper by electro deposition [100- 

103]. The copper with a grain size of 30 nm was rolled at room temperature using 

strain rates between Ix 10"3 to Ix 10"2. They reported strains of 5100 % without 

breakage of the copper. The conventional coarse grained polycrystalline copper 

usually breaks after an extension of 800 %. They attribute the deformation process 

of the nano crystalline copper to grain boundary activities rather than lattice 

dislocations and propose a two stage mechanism for deformation in a nano 

crystalline copper [102]; 

1. Stage 1: c< 1000 %. In this case, the deformation process seems to be 

dominated by dislocation activities (probably in the larger grains or at the grain 

boundaries). Generation and motion of dislocations may result in a substantial 

increase in the density of defects (i. e., microstrain) and in the misorientation 

between neighbouring grains due to pile up of dislocations at grain boundaries. 

Hence the grain boundary energy increases in this stage. This tendency can also 
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be verified by the results of hardness measurements, which show a slight 

hardening effect during this stage [101]. 

2. Stage II: c >_ 1000 %. The microstrain, grain boundary enthalpy and grain 

boundary structure, as well as the grain size remain unchanged in this 

deformation stage. Also, the hardness of the nano crystalline copper becomes 

constant when F. ? 1000 % [101]. This implies that lattice dislocation activity is 

no longer a dominating mechanism in the deformation. Instead grain boundary 

activities (grain boundary sliding or grain boundary diffusional creep) may be 

activated and become more dominant in the deformation as the grain boundary 

structure is evolved to be of higher energy (with a higher density of defects). 

When the deformation is controlled by grain boundary activities, the strain 

hardening effect disappears [101], and grain boundary structure as well as the 

dislocation density tends to be saturated. Such a two stage behaviour in the nano 

crystalline copper during cold rolling has also been verified in the variation of 

the electrical resistance with the degree of deformation [81]. 

Due to the low strain rates and temperatures involved, dynamic recrystallization 

may not be an important phenomenon in their experiments. 
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6.2.2 CGDS deposition of copper 

Deposition was performed with the Yazaki system, the general features of which 

are described in chapter 4, section 4.3.2; using the nozzle No. 1 (described in 

chapter 4, section 4.4). One set of deposits was produced at constant gas mass flow 

rate of 2.9 x 10"3 kg s-1 using helium gas at 298 K and the other set using the same 

gas mass flow rate but a gas temperature of 523 K. The powder feed rate was 0.38 

g s"1 in both cases. The aluminium substrates were placed in a holder for spraying 

and the gun was traversed at a speed of 0.2 m s"1, relative to the substrates. Using a 

gas temperature of 523 K twenty-five passes of the gun over an area of 25 mm x 

100 mm were used to give a deposit thickness of -5 mm. Deposition using room 

temperature gas was performed under similar conditions except that only six passes 

were used to obtain a deposit thickness of - 0.6 mm. Thicker deposits could not be 

produced because de-bonding occurred. Samples for tensile testing were machined 

from the 5 mm thick deposits deposited using gas heated to 523 K. 

The substrate temperature was measured during spraying using heat sensitive tapes 

and its temperature was <_ 373 K. 

6.2.3 Characterization of deposits 

Annealing of the deposits is described in chapter 3, section 3.6.1. The grain size and 

microstrain were measured using X-ray diffraction peak broadening and calculated 
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using the Hall - Williamson method described in chapter 3, section 3.2.5. Tensile 

testing and electrical resistivity measurement of the deposits was done on samples 

machined from thick deposits deposited using process gas heated to 523 K. 

Microhardness testing was done on deposits prepared using gas at 298 K and 523 K. 

The method to carry out hardness testing and tensile testing is described in chapter 

3, section 3.3.1 and 3.3.2 respectively. Tensile testing was carried out only on 

deposits formed using gas at 523 K as, thick deposits (- 5 mm) suitable for 

machining of tensile samples, could only be produced at this temperature. Tensile 

testing was also carried out on rolled copper sheet in the rolled condition and after 

annealing at 773 K for 1 hr to obtain reference data for comparison with cold 

sprayed copper. Electrical resistivity of the copper was measured by the 4 point 

probe method as described in chapter 3, section 3.4 and section 3.4.1 using 75 mm 

long samples of various cross-sectional areas, cut from the material deposited at 523 

K. 

6.2.4 Results 

6.2.4.1 XRD analysis 

Typical XRD spectra for the annealed reference powder, as-sprayed deposit (using 

gas at 523 K) and deposit annealed at 573 K for 1 hr are shown in Figs. 6.4 & 6.5. 

Fig. 6.4 shows the major peaks obtained from copper in the 20 range of 40° to 100° 
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and the peak at 20 of - 900 is shown in detail in Fig. 6.5 which clearly reveals the 

peak broadening in the as-sprayed deposit. The sharpest peak is observed for the 

copper reference powder annealed at 773 K whilst there is very little broadening of 

the peak from the deposit annealed at 573 K in comparison with this reference. 

The Hall - Williamson plot according to Equation 3.6 for as-sprayed copper, 

sprayed using gas at 523 K is shown in Fig. 6.6 where B is the experimental 

broadening and 20 the diffraction angle. The slope and intercept values determined 

from this plot and similar plots obtained from annealed deposits are summarized in 

Table 6.3. The presence of measurable intercepts and slopes in the Hall-Williamson 

plots is taken to indicate the presence of fine grain size (nanometre size grains) and 

microstrain within the grains respectively. The slope did not significantly differ 

from zero for the samples deposited at 298 K indicating absence of microstrain. The 

XRD data from deposits using gas at 523 K had slopes significantly > 0; and 

intercepts, thus these deposits had nanometre sized grains as well as microstrain. 

The crystallite size and microstrain values calculated from these slope and intercept 

values in Table 6.3, using Equations 3.4 & 3.5, are given in Table 6.4. It should be 

noted that when deposits sprayed at 298 K were annealed at temperatures of 473 K 

and above there was negligible peak broadening due to either crystallite size or 

microstrain effects. This corresponds to a grain size in excess of - 300 nm and a 

microstrain - 0. A Similar effect was observed for deposits sprayed using gas 

heated to 523 K when annealed above 573 K. 
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Copper deposited using gas at 298 K does not show any microstrain and has a finer 

grain size (40 nm) in the as - sprayed condition as compared to copper deposited 

using gas at 523 K (60 nm). However, in copper sprayed using room temperature 

gas, annealing at temperatures as low as 373 K results in grain sizes becoming 

larger than the grain size of copper sprayed using gas at 523 K when annealed 

above 423 K. The grain size of deposits sprayed using gas heated to 523 K does not 

change significantly for annealing up to 423 K. Grain sizes increase in these 

deposits is observed only when annealed above 423 K. The microstrain in copper 

sprayed using 523 K gas remains relatively constant for annealing up to 423 K and 

for annealing above 473 K no microstrain was detectable. 

6.2.4.2 Optical microscopy 

Figs. 6.7 (a-c) and Figs. 6.8 (a-c) show the etched optical micrographs of as- 

sprayed copper, and following annealing at 473 K and 773 K for I hr, respectively. 

Fig. 6.7 shows the microstructures for deposits sprayed using gas at 523 K and Fig. 

6.8 shows microstructures for deposits sprayed using gas at 298 K. In Fig. 6.7 (a) 

and 6.8 (a) etching has clearly delineated the boundaries between the heavily 

deformed powder particles. The severe deformation is due to the high strain rate 

imposed by the impact during cold spraying. Individual grains are not revealed 

within the particles, in contrast to those clearly seen in the as-received powder, Fig. 

3.8. In Fig. 6.7 (b) the boundaries between individual particles are still evident with 
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features at particle boundaries, which are possibly porosity or oxide and some very 

fine recrystallized grains. However, in Fig. 6.7 (c) recrystallization grains are 

clearly seen and the recrystallized grain size is 1-5 µm. Again, dark features at 

particle boundaries are evident, typically about 1-5 µm in size. In Fig 6.8 (b) 

small recrystallized grains are seen; this is different from Fig. 6.7 (b) where only a 

very few much finer grains are seen. The grains visible in Fig. 6.8 (c) are largely in 

the size range 1-5 µm, however a few larger grains of the order of 5 -10 µm are 

also seen. The features at particle boundaries are visibly larger and more in number 

with a more spherical nature. Fig. 6.9 shows the etched BSE image of copper 

sprayed at 298 K gas temperature and annealed at 773 K for 1 hr. Recrystallized 

grains are seen and dark features are also evident. EDX analysis of the dark features 

revealed that the dark features were composed entirely of copper (- 100 %) and no 

oxygen was detected. Thus it is most likely that the dark features are porosity and 

not oxides. 

6.2.4.3 Electrical resistivity measurements 

The results of the resistivity measurements along with the resistivity of a 99.998 % 

pure copper foil are shown in Fig. 6.10 & Table 6.5. Table 6.5 shows that the 

standard deviation in the measurement of resistance is lower then the measured 

value by approximately a factor of 10. A copper foil was used as a reference to 

compare the resistivity of cold sprayed copper and calibrate the equipment. It is 
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seen that the resistivity of as sprayed copper using gas at 523 K is - 27.1 nQ m and 

annealing at temperatures up to 473 K did not decrease the resistivity significantly. 

However, annealing at 573 K decreased the resistivity to - 23.9 nQ m and 

annealing at 773 K reduced the resistivity further to - 21.1 nS) m. The resistivity of 

the reference copper foil was 17.5 nQ m, which decreased to 16.7 n) m after 

annealing at 773 K for 1 hr. The resistivity of annealed copper is reported to be 

16.73 nQ m in data books [107]. 

6.2.4.4 Mechanical testing of deposits 

The microhardness of the as-sprayed deposits and after annealing at various 

temperatures for 1 hr is shown in Fig. 6.11. The microhardness of deposits 

decreases after annealing; however, the temperature at which the hardness decreases 

is different in deposits sprayed using gas at 298 K and 523 K. 

The deposits formed using gas heated to 523 K had a microhardness of - 180 kg 

MM-2 The hardness of the deposits remained relatively unchanged for annealing 

temperatures up to 523 K. However, the microhardness of the deposits decreased 

when annealed at 573 K and above. The deposits attained a value - 90 kgf mm 2 for 

annealing at 673 K and annealing at higher temperature of 873 K decreased the 

deposit hardness further to about 65 kgf mm"2. 
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The as sprayed deposits sprayed using gas at 298 K had a lower hardness as 

compared to the deposits formed using gas at 523 K. Annealing at temperatures as 

low as 373 K reduced the deposits hardness and they attained a value - 90 kgf nM-2 

for annealing at 573 K. Annealing at 873 K reduced the hardness to - 70 kgfmm"2. 

The stress - strain curves obtained from tensile testing of as sprayed copper and 

after annealing at 873 K are shown in Fig. 6.12 (a-b). The results obtained from 

mechanical testing of as-deposited copper and following annealing at 873 K for I hr 

are shown in Table 6.6 and SEM images of the fracture surfaces of the cold sprayed 

copper tensile test samples are shown in Fig. 6.13 (a-b). The as-sprayed deposit 

had a high tensile strength of 375 MPa and microhardness of 180 kgf mm"2 but had 

a negligible elongation to fracture (< 1 %). The fracture surface does not show any 

evidence of ductile fracture and it seems that fracture has taken place along copper 

particle boundaries, Fig. 6.13 (a). After annealing the deposits at 873 K, the tensile 

strength and microhardness values decreased to 230 MPa and 65 kgf mm 2 

respectively and elongation to failure increased to 26 %. The fracture surface shows 

characteristic ductile features, Fig. 6.13 (b) but some defects (denoted by arrows) 

are also evident and these might be responsible for the reduced elongation. These 

defects are probably the pores seen in Figs. 6.7 (c), 6.8 (c) and 6.9. 

The stress-strain plots of rolled copper sheet both in as-received condition and 

following annealing at 773 K for 1 hr are shown in Fig. 6.14 (a-b) and the results 

obtained from mechanical testing are shown in Table 6.6. The rolled copper sheet 
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had a tensile strength of 260 MPa, microhardness of 89 kgf mm-2 and % elongation 

to failure of 42 %. After annealing, the tensile strength of rolled copper sheet 

decreased to 208 MPa, microhardness decreased to 48 kgf mm"2 and % elongation 

to failure increased to 60 %. 

6.2.5 Discussion 

6.2.5.1 As-sprayed microstructure 

Dynamic recrystallization as a mechanism to achieve a steady state recrystallized 

grain size in high strain high strain rate deformation of copper has been suggested 

by many researchers (90,91,93-95,108]. Meyers et al. suggest that dynamic 

recrystallization is a thermally activated process which is important for - 0.4 Tm 

(Tn, = melting temperature in Kelvin) [90,94]. In the case of copper 0.4 Tr� is 542 

K. The high plastic deformation of particles during cold spraying is similar to 

explosive welding [33,43,44,109] and the related phenomena of metal jetting and 

adiabatic shear are also known to occur in cold spraying [90]. During spraying, a 

gas temperature of 523 K was employed along with multiple gun passes to build up 

a deposit thickness of -5 mm. It has been previously shown that the heated gas 

heats the substrate and indeed in this study the substrate was found to reach - 373 

K. The particle temperature versus gas temperature while using helium as process 

gas is shown in Fig. 2.11 (b) [36]. It is seen that the particle temperature is < 200 K 

227 



Chanter 6 Stability of copper and tin - copper deposits 

when gas is heated to 523 K. Dynamic recrystallization might take place during 

spray deposition due to the combined effect of high dislocation density and 

localized elevated temperature during spraying due to adiabatic shear and influence 

of substrate heating by heated process gas. Moreover, the presence of internal 

dislocations (microstrain) in the as sprayed deposits also indicates dynamic 

recrystallization in the deposits [94]. The microstructure of as-sprayed coatings for 

deposition using gas at 523 K is one of dynamically recrystallized grains - 60 nm in 

size and dislocations associated with microstrain within the grains. 

In the case of copper deposited using gas at 298 K the microstructure seems to 

consist of very fine grains, which are essentially free of internal dislocations. The 

fine grain size of 37 nm and the absence of microstrain suggest that the dislocations 

are associated with the grain boundaries. Grain growth in these fine grains is 

achieved by annealing at 373 K. The absence of dislocations within the grains and 

the finer as-sprayed grain size suggests that dynamic recrystallization may not be an 

important feature of deposits formed using gas at 298 K. The as-sprayed 

microstructure seems to be characterized by very fine grain size due to cold 

working. The mechanism for heat generation during cold spraying is due to the 

impact of particles, by conversion of kinetic energy in to heat (friction heating), and 

by adiabatic shear. These mechanisms are more localized in nature as compared to 

heating of substrate or previously deposited coating by impingement of hot gas. The 

heating associated with adiabatic shear and friction heating, during spraying at 298 

K might result in some dynamic recrystallization, generating very fine grains. 
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Deposition at 523 K leads to much higher particle velocities, but the particle is not 

heated significantly by the gas during flight (see Appendix 1 for particle velocity 

and temperature calculations). The heating effect of the gas is more important for 

the previously deposited coating due to the impingement of the hot gas. Thus, it 

might be easier to deform the previously deposited coating when heated gas is used 

in the deposition process. Moreover dynamic recrystallization could be an important 

factor during cold spraying using gas at 523 K. The dislocations associated with 

microstrain seen in the deposits formed using gas at 523 K are due to the 

combination of continued deformation and dynamic recrystallization during cold 

spraying. The lower particle velocity and absence of hot gas impingement in copper 

sprayed at 298 K results in lower levels of cold working as compared to spraying at 

523 K. Moreover it is likely that due to lower temperatures and lower levels of cold 

working, dynamic recrystallization is also not a major factor in these deposits. Thus 

dislocations within sub-grains are apparently absent in deposits formed using gas at 

298 K. 

The present results for spraying at 298 K largely support the transmission electron 

microscopy study of Borchers et al. [27,76] (Fig. 6.1). They found high dislocation 

densities in cell walls but few dislocations within the cells and cell sizes of 50 - 200 

nm. Our study has confirmed the existence of coherent crystallite sizes around 100 

nm. In the case of spraying at 523 K, dislocations within the cell (microstrain) were 

also observed. The differences in their work and the present study (for deposition at 

523 K) might be related to the differences in spraying conditions used to deposit 
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copper. They have used nitrogen gas heated to 623 K and a nozzle with expansion 

ratio of 9 for deposition of copper whereas in our experiments we used a nozzle 

with expansion ratio of 9.46 and He gas heated to 523 K for deposition. The 

differences in the type of gas used, the temperature of gas during spraying and the 

different expansion ratio of nozzle are likely to produce different grain sizes and 

dislocation arrangement in deposits. The heating of the particles is significantly 

larger when nitrogen is used as the process gas (Fig. 2.11 [36]). 

6.2.5.2 Recrystallization and grain growth during annealing 

Recrystallization - grain growth in cold sprayed copper seems to proceed 

differently for deposits formed using room temperature gas (298 K) and deposits 

formed using gas heated to 523 K. The first point to note is that recovery is largely 

absent in copper because of its low stacking fault energy. Recrystallization involves 

nucleation of new grains and their subsequent growth. Nuclei are formed in regions 

where dislocation concentrations are highest. A certain local concentration of elastic 

energy is needed. Hence in material deposited with gas at 298 K, there is 

considerable stored energy in sub-grain walls where nuclei will readily form even at 

low temperatures. In material deposited using gas at 523 K, the presence of a more 

diffuse sub-grain (cell) structure means that more thermal energy is required to 

produce a nucleus as the regions of highly concentrated stored elastic energy are not 

present. 
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In the first scenario (process gas at room temperature, 298 K), the fine grains do not 

need high activation energy for grain growth to proceed as the grains are free of 

dislocations and hence there is no need to nucleate new grains. It is possible that 

some very fine grains are formed due to dynamic recrystallization and annealing of 

these deposits simply results in growth of these grains. However, in deposits formed 

using gas at 523 K, the grains have many internal dislocations, which require 

activation energy for re - arrangement of these dislocations to nucleate new grains. 

The microstructures in Fig. 6.8 (a-c) show that for copper deposited using room 

temperature gas a fine grained structure is visible for annealing at 473 K (Fig. 6.8 

b), and annealing at 773 K (Fig. 6.8 c) increases the grain size to the range of 5- 10 

gm. 

In the second case (gas heated to 523 K), new grains are nucleated from the 

dislocations and then grain growth occurs. It is seen that the grain size after 

annealing at 773 K remains in the range of 1-5 µm (Fig. 6.7 c). The 

microstructure of the deposit sprayed at 523 K seems to be more stable during 

annealing due to the formation of dynamically recrystallized grains during the 

deposition process with a more diffuse cell structure. 

The absence of recovery in copper due to its low stacking fault energy also results 

in the dislocations being available for nucleation of new grains, the consequence of 

which is a large number of smaller sized grains after recrystallization. Thus, higher 

dislocation density in copper deposited using gas at 523 K produces a finer grain 
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size after annealing at 773 K (1 -5 µm) as compared to copper deposited using gas 

at 298 K (5 - 10 µm) and is due to difference in dislocation arrangements in the as- 

deposited material.. 

6.2.5.3 Microstructure and hardness of deposits 

The very fine grain size (-60 nm) in the as-sprayed deposit is the reason for the 

high hardness of the as-sprayed deposit (-180 kgf mm-2 for copper sprayed using 

gas at 523 K and ~ 155 kgf mm 2 for copper sprayed using gas at 298 K, Fig. 6.11). 

Copper deposited using gas heated to 523 K is harder than Copper sprayed using 

gas heated to 298 K because of the microstrain present in copper deposited using 

gas heated to 523 K (Table 6.3). 

In the case of copper sprayed using gas at 523 K; the grain size increases from - 60 

nm to 120 nm with increasing annealing temperature from 298 K to 473 K, while 

the microstrain remains relatively unchanged at a value of about 1.8 x 10-3 (Table 

6.4). Despite this increase in grain size, the microhardness of copper deposits 

remains approximately constant for annealing at temperatures up to 523 K (Fig. 

6.11). However, when the annealing temperature was increased to 573 K and above, 

the dislocations associated with microstrain re-arrange to nucleate new grains and 

subsequently recrystallization proceeds with further grain growth. The re- 

arrangement of dislocations and nucleation of new grains cause a fall in deposit 
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hardness. These results are consistent with the observations made earlier for nano 

crystalline materials [106]. The low stacking fault energy of copper may be 

contributing to this phenomenon, as recovery is not usually observed in metals with 

low stacking fault energy. In absence of recovery the mechanical properties of 

copper are not regained until recrystallization begins [86]. The activation energy for 

nucleation of recrystallization to proceed is provided by annealing at temperatures 

equal to or above 573 K. At temperatures below 573 K, although some grain 

coarsening could take place in the pre-existing grains, the grain interiors still have 

high dislocation density as evidenced by the microstrain in the deposits. 

In the copper deposited using gas at 298 K there is no activation barrier to be 

crossed for recrystallization as internal dislocations are not present. The hardness 

decreases upon annealing at 373 K due to rapid grain growth of the fine grain 

structure in the as-sprayed material. 

Neishi et al. have reported microhardness for equi channel angular pressing (ECAP) 

of copper with a strain of 6, after annealing for 1 hr at temperatures between 298 K 

and 673 K [80,82]. They report a reduction in microhardness from -150 kgf mm'2 

to -75 kgf mm 2 when the annealing temperature is increased from 298 K to 573 K. 

In their paper they also report that the hardness of copper remains unchanged for 

annealing at temperatures up to 373 K. These results differ from the present results 

on cold sprayed copper deposits. In copper sprayed using gas at 298 K the hardness 

decreases for annealing temperatures as low as 373 K. The hardness of copper 
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deposited using gas heated to 523 K decreases only for annealing temperatures of 

573 K and above. This suggests that the deformation process in cold spraying using 

gas at 298 K and 523 K produces different internal dislocation arrangements than 

ECAP. The lower hardness of ECAP copper after annealing at 573 K is most likely 

due to the coarser starting grain size (300 nm) of ECAP copper as compared to cold 

sprayed copper, Table 6.4. 

6.2.5.4 Tensile behaviour of deposits 

The tensile testing of deposits shows a largely ductile failure for deposits annealed 

at 873 K. This indicates that there already exists a clean well adhered interface 

between particles in the as-sprayed state and during annealing the microstructure 

develops by the mechanism outlined above. In the as-sprayed coating a near brittle 

fracture is observed. However, the tensile strength is very high this again supports 

the hypothesis of well adhered particles. The high tensile strength of cold sprayed 

copper could be due to the nano-crystalline structure of copper and the low ductility 

due to the presence of defects in the material [77,84,103,110]. Annealing the 

copper deposits at 873 K is likely to result in some sintering of the deposited copper 

particles. There is intimate and largely oxide free contact between copper particles 

in cold sprayed copper. Moreover, the copper is nano crystalline. Thus, annealing at 

873 K could lead to sintering in the copper deposits enhanced by the rapid diffusion 

through the nano crystalline grain structure of copper. The sintering of annealed 
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copper deposits results in better ductility and lower tensile strength than as sprayed 

copper. However, the % elongation of annealed copper deposits is lower than that 

of annealed copper sheet; this is probably due to the fine grain size of sprayed 

copper (1- 5 µm) after annealing and also due to the presence of pores. 

It is likely that the two stage mechanism proposed by Lu et al. [102] for 

deformation in nano crystalline copper (described here in section 6.2.4) operates for 

cold sprayed copper, however the presence of defects dominates the tensile 

behaviour of as sprayed copper and they show low elongation to failure. 

6.2.5.5 Resistivity of deposits 

The resistivity of as sprayed copper is higher then resistivity of the reference copper 

foil. The defects in metal such as vacancies, dislocation and grain boundaries are 

known to scatter electrons and increase resistivity [86], thus cold sprayed copper is 

expected to have higher resistivity than rolled copper sheet due to its higher grain 

boundary area. When sprayed copper is annealed, the resistivity does not decrease 

markedly until after recrystallization. The temperature for onset of decrease in 

resistivity and recrystallization for cold sprayed copper deposited using gas at 523 

K is 573 K; at lower annealing temperatures the resistivity remains relatively 

unchanged. The resistivity after annealing at 773 K is 21.1 nQ m, which is higher 

than the resistivity of annealed copper reported in data books (16.73 nQ m) and 
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measured on annealed copper foil (17.50 nQ m) at University of Nottingham (Fig. 

6.10). This is probably due to the fine grained structure (- 5 µm) after annealing in 

cold sprayed copper as well as the presence of pores which reduce the effective 

cross-sectional area. 

6.2.6 Conclusions 

Cold spraying of copper results in considerable grain refinement as compared to the 

original powder. Deposition conditions employed influence the microstructure and 

mechanical properties of the deposits. Higher particle impact velocity in copper 

deposited using gas at 523 K introduces dislocations (microstrain) in the deposits. 

Copper deposited using gas at 523 K did not show any recovery when annealed 

below 573 K whereas annealing at or above 573 K, recrystallization occurs and 

results in decrease of hardness. 

The onset of recrystallization is accompanied by a decrease in electrical resistivity. 

The resistivity of as sprayed copper decreases from 27.1 n) m to 21.1 nQ m after 

annealing at 773 K for I hr. 

The deposits sprayed using gas at room temperature (298 K) show grain growth for 

low temperatures of annealing and there does not seem to be any activation barrier 

for grain growth to occur in absence of internal dislocations in grains. Thus, 
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deposition conditions are important factors in determining the microstructure and 

properties of cold sprayed copper. 

In the as-sprayed condition tensile failure occurs at a high stress but with virtually 

no plastic deformation. Following recrystallization the tensile behaviour is not 

dissimilar to that of bulk material indicating atomic bondings across interparticle 

boundaries have developed. The differences in grain sizes and distribution of 

dislocations in this work, as compared to previous work on copper deposition [76] 

could be related to the differences in spraying conditions employed. 
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6.3 Interdiffusion of copper and tin 

In a previous chapter the use of tin as a bond coat to improve the bonding of cold 

sprayed copper to certain polymers was described and promising results, in terms of 

pull-off bond strength, were obtained. However, there is the possibility of Sn - Cu 

interdiffusion occurring in bimetallic layers produced in this way and the purpose of 

the work reported in this chapter was to investigate such behavior by annealing 

bimetallic layers at temperatures above room temperature but below the melting 

point of tin (505 K). As significant interdiffusion between tin and copper has been 

reported previously and since cold sprayed copper, and probably also tin, possess a 

submicron grain size there is clearly the potential for such an effect to be 

accelerated in cold sprayed layers. 

In the present chapter the literature pertaining to copper - tin interdiffusion is first 

reviewed, relevant experimental details are presented, experimental findings are 

reported and finally these are discussed in the light of previous work and 

conclusions drawn. 

6.3.1 Literature review 

6.3.1.1 Cu - Sn interdiffusion 
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The diffusion characteristics of tin-copper diffusion couples have been studied by a 

number of workers for both high and low temperature regimes. The low 

temperature regime is usually taken to mean up to a maximum of 453 K [111-115]. 

The high temperature regime is usually up to 1123 K and in this temperature regime 

the diffusion occurs partly in the presence of liquid tin [116] which melts at 505 K 

(232 °C). 

One or more intermetallic compounds are generally formed in tin-copper couples 

after annealing, in the low as well as high temperature regimes. It is seen from the 

copper - tin alloy phase diagram (shown in Fig. 6.15) and from the diffusion 

studies carried out by various researchers at temperatures below 493 K that the 

intermetallic compounds formed in this temperature range are the z phase (Cu3Sn) 

and the 11' phase (Cu6Sn5) [111-126]. Tu confirmed the existence of -q' by XRD 

studies of Sn - Cu thin films [126]. The Cu6Sn5 phase found in the Cu - Sn thin 

films is il'. The transformation from r' to ii occurs at - 459 K. il' is a long period 

superlattice i. e. the ordered form of il phase. This is confirmed by the appearance of 

extra superlattice lines in the X-ray patterns. However, this transformation 

reportedly has no effect on tin - copper inter-diffusivity [119,126] and in the 

majority of literature the il' phase is not separately identified and is generally 

referred to as the i phase. When a copper - tin couple is aged at relatively low 

temperature (293 K to 343 K), -q grows without developing an obvious c layer. 
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However, when the system is aged at higher temperature (408 K to 493 K), both i 

ands layers appear [112-115,119,121-123,126,127]. 

6.3.1.2 Nature of intermetallic phase formation 

The methods used to produce tin - copper couples for interdiffusion studies are 

reported as follows: 

1. Electroplating tin over copper [113-115]; 

2. Dipping copper plates in to liquid tin or liquid lead - tin solutions having 

compositions similar to commonly used solders to form an initial layer of 

intermetallic compound + tin, further annealing leads to growth of the 

intermetallic layer [113-115,118,120,123,125,127]; 

3. Clamping together cylinders of tin, copper and tin - copper intermetallic 

compounds with stainless steel clamps and annealing in argon atmosphere in 

the temperature range of 463 K- 493 K for one hour. After annealing for 

one hour the clamps were removed and annealing was continued without the 

clamps [116]; 

4. Using copper - tin soldered joints [124]. 

The diffusion of copper into tin and a variety of metals has been studied and it is 

seen that the copper diffuses rapidly into metals like gold, silver and tin at 

temperatures below the melting point, i. e. in the solid state. The rapid diffusion rate 
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of copper into these metals at low temperatures is attributed to a grain boundary 

mechanism by some researchers [111,112,114,126] and to interstitial diffusion of 

copper by others [121,126,128]. Transition from lattice (bulk) diffusion to grain 

boundary diffusion usually occurs anywhere between 463 K and 353 K, depending 

on the nature of tin - copper couples. This transition from bulk diffusion to grain 

boundary diffusion has been identified by an apparent decrease in the activation 

energy seen in the plots for logD versus 
I 

where, D is the diffusion coefficient 

and T is the absolute temperature. Generally, the smaller the grain size, the higher 

the temperature of transition [112,114,129] i. e. in material with finer grain size the 

grain boundary diffusion mechanism persists until higher temperatures. Kay et al. 

[113]] studied the effect of work hardening of the copper substrate on the diffusion 

of plated tin. They observed that at 343 K the work hardened copper had a thicker 

intermetallic compound layer as compared to the annealed copper. However, at 443 

K the intermetallic compound thickness was the same for work hardened and 

annealed copper. This they attributed to annealing of the copper during diffusion at 

443 K. Haimovich [1121, in his study of hot air levelled tin (HALT), attributed the 

lower growth rate of intermetallics in HALT, as compared to electroplated Sn - Cu, 

for diffusion at 373 K, to the extremely large grain size of tin generated in HALT. 

The large grain size leads to the relative contribution of grain boundary diffusion 

being insignificant down to very low temperatures (The grain size of tin is not 

mentioned in their work). 
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The relative rates of diffusion of tin and copper have been studied using inert 

markers during diffusion [121,122,130]. It is reported that inert markers in a 

copper - tin diffusion couple are displaced toward the copper side during growth at 

low temperature (293 K to 343 K) but toward the tin side at higher temperatures (> 

443 K). These observations have been interpreted to mean that copper diffusion 

dominates at low temperatures, while tin diffusion is dominant at higher 

temperatures. 

The thickness (W) of the intermetallic has been represented by an equation of the 

usual form 

W= Wo + kt" ------------------------------------------------ Equation 6.2 ------------------- 

The exponent n is 0.5 for ordinary diffusional growth and has been found to have 

this value for intermetallic growth in a semi-infinite copper - tin couple [112,121, 

123,129]. K is the growth rate constant and Wo is the initial thickness of the 

intermetallic layer. The thicknesses of intermetallic compounds formed during 

annealing of tin - copper couples are shown in Table 6.7. It is seen from Table 6.7 

that the thickness of the intermetallic compound is not the same for Sn - Cu couples 

produced by different techniques. Annealing of electrodeposited tin on copper 

produces an intermetallic compound of much lower thickness as compared to Sn - 

Cu couples formed by dipping copper in liquid tin, or soldered Sn - Cu. This is 

probably due to the initial reaction taking place in the presence of liquid tin when 

diffusion couples are formed by dipping. The reaction of liquid tin with copper 
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generates a thin initial layer of intermetallic compound and further annealing results 

in the growth of this layer. In diffusion couples where a third element, usually lead, 

is present, this does not apparently have a significant influence on the thickness of 

intermetallic layer. The exception is where a high ratio of lead (> 80 %) limits the 

amount of tin available for the formation of the intermetallic compound [124]. 

There have not apparently been any studies related to interdiffusion in cold sprayed 

materials. The grain size in as sprayed copper determined in other studies and also 

in the present work is - 50 - 100 nm [33,76]. However, the influence of such fine 

grain deposits on diffusion behavior during annealing has not been studied. 

6.3.1.3 Kinetics of intermetallic growth - analytical model 

Mei et al. [121] proposed an analytical model for diffusion in Cu - Sn couples, the 

same is outlined here. 

They considered a binary diffusion couple of semi-infinite copper and tin plates 

brought into contact at t=0. The two intermetallic phase's c and r form as layers 

and grow as planar plates, so that the net diffusion is one-dimensional. A schematic 

illustration of the analytical model is shown in Fig. 6.16. 

The model given above is a good representation of the processes in tin - copper 

diffusion, where the interfaces given by 4; j are moving with respect to annealing 
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time. The rate of growth of the intermetallics can be computed from the movement 

of the interfaces which depend upon the interdiffusion coefficients in the c and 11 

phases. 

The solution of the diffusion equation obtained from Fick's second law, to calculate 

the layer thickness of s and il, is given by Mei et al. [121]. The layer thickness 

depends upon the position of the interface position parameters, ý; j. 4ij is the 

instantaneous position between phase i and j (i, j=1, copper solid solution; = 2, c; = 

3, q; = 4, tin solid solution). E. g., the thickness of rl phase is given by 423 - ß, 12 

where 423 is the instantaneous position of c and 11 interface at time t and 412 is the 

instantaneous position of copper solid solution and s interface, at time t. The 

interface position parameters obtained from the solution of the diffusion equation 

were plotted against annealing temperature. The plot obtained by Mei et al. [121] is 

shown in Fig. 6.17. The boundary position between the copper solid solution and 

the c phase, 412, is negative, which shows that the Cu-c boundary migrates toward 

the copper side. Similarly, the F. --q boundary moves toward copper. The boundary 

between the q and tin moves into the tin solution but by only about half the distance 

that 412 moves into copper. Therefore the centre of the intermetallic layer (including 

both c and ri phases) migrates into copper. Unless there is a significant Kirkendall 

effect, the original Cu - Sn interface is located near the centre of the il-phase region 

and shifts towards the copper side as the temperature decreases. Diffusion studies 
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using diffusion markers placed at Sn - Cu interface also report the movement of 

diffusion markers towards the centre of il phase after ageing [122]. 

The model discussed above is valid under certain conditions; namely [121]: 

1. Bulk diffusion is assumed to occur 

2. Kirkendall effect is neglected 

3. The interfaces are planar and the tin and copper layers are semi - infinite. 

6.3.2 Cold spray deposition 

Commercially available pure tin and copper powders were employed for deposition 

by cold spraying as reported in chapter 3 section 3.7.1. The powders were deposited 

onto commercial grade nylon-66 substrates of 

dimensions 100 mm x 100 mm x3 mm . 
Spray deposition was carried out using 

the Yazaki system, described in chapter 4, section 4.3. 

The spray gun was attached to a five axis robot arm which allowed accurate and 

repeatable positioning of the deposits. Tracks of tin were deposited onto the nylon 

substrate whilst copper was overlaid directly on to the tin. 

First, five separate tracks of tin were deposited, each in two passes and each 

approximately 100 mm long. Then the copper was sprayed directly onto the initial 
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tin deposits, again in two passes. Helium gas at room temperature was used to 

deposit the tracks. The parameters employed for spray deposition are given in 

Table 6.8. The tin layer was approximately 100 µm thick and the copper layer 

approximately 600 µm thick following 2 passes. 

6.3.3 Sample heat treatment 

Tin - copper tracks were heat treated at two different temperatures namely 343 K 

and 443 K in a fan assisted oven. Sample temperatures were monitored directly 

using a chromel / alumel thermocouple and were found to be within ±1K of the set 

furnace temperature. At specific time intervals a sample was removed from the 

oven and air cooled to room temperature. The resistance was measured as described 

in section 2.5 and a small length (5 - 10 mm) cut from the end for subsequent 

microstructural examination. This sample was immediately stored in a refrigerator 

at 271 K and the remaining length was then put back in the oven for further heat 

treatment. The samples de-bonded from the nylon substrates during heat treatment, 

hence after the first cycle of annealing the nylon substrate was discarded and only 

the free standing tracks were annealed further. For comparative purposes cold 

sprayed copper tracks were also annealed. 

6.3.4 Microstructural examination 
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Samples for microstructural study were removed from the refrigerator and prepared 

immediately for examination by optical and scanning electron microscopy. The 

procedure for optical microscopy is described in chapter 3 section 3.2.3, scanning 

electron microscopy is described in section 3.2.4 and the procedure for thickness 

measurement of the intermetallic layer is described in section 3.2.3.1. 

6.3.5 Resistance measurements 

The tin - copper couples and for comparison cold sprayed copper tracks were 

removed from the furnace at different time intervals to measure the resistance. 

Thus, resistance data were obtained for the tracks for different annealing treatments. 

The resistance of cold sprayed Sn - Cu couples and copper tracks were measured 

using the four-point probe method. The procedure for measuring the resistance is 

described in chapter 3, section 3.4. 

The results were converted to % change in resistance. Since repeated measurements 

were made on the same length of track, and assuming no change in cross-sectional 

area during annealing, the % change in resistance equals % change in overall track 

resistivity. 

6.3.6 Results 

247 



Chapter 6 Stability of copper and tin - copper deposits 
1 

6.3.6.1 Identification of the intermetallic phases 

Fig. 6.18 shows a SEM BSE image of a tin-copper couple annealed at 443 K for 

1.261 x 107 s (146 days); the position of a line scan is seen in the image and signals 

from the line scan itself is shown in Fig. 6.19. It is clear that layers of different 

composition formed in this tin - copper couple which are most probably, copper 

solid solution, c phase, il phase and a tin solid solution phase. The composition 

change between the phases occurs over a very short distance and within the phase 

remains relatively constant. The two intermetallic layers along with the copper and 

a highly porous tin layer are also clearly seen in the BSE image (Fig. 6.18) where 

the different mean atomic numbers of the constituent phases create the contrast. It is 

evident that what is believed to be the rj phase is significantly thicker than the c 

phase. A second SEM image of a sample heat treated at 443 K for 1.261 x 107 s 

(146 days) showing the various intermetallic compound layers formed is shown in 

Fig. 6.20. This is taken from the same sample as that used for Fig. 6.18 but from a 

different region. The porous tin layer in this sample fractured during preparation. 

The chemical composition determined by quantitative EDX spot analysis in various 

regions identified in Fig. 6.20 is shown in Table 6.10 along with calculated 

composition of q and c. The EDX spot analysis confirmed the presence of tin rich 

and copper rich solid solution layers. The phase present adjoining the copper layer 

was identified as c (Cu3Sn) and the phase adjoining the tin layer was identified as -q 

(Cu6Sns). This il layer is possibly il' (an ordered form of 11 phase [16,21]) but, this 

layer is referred to as the i in the present work. The SEM image of a sample heat 
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treated at 343 K for 1.16 x 107 s (135 days) is shown in Fig. 6.21. A single layer of 

intermetallic is seen, with a contrast intermediate between that of copper and tin. 

The EDX results of the phases identified in Fig. 6.21 are shown in Table 6.10. 

Quantitative EDX analysis gave a composition of 36 at% tin. However, since the 

layer is 3-5 mm thick beam spreading will have occurred into the surrounding 

phases so it is not possible to be certain whether this is q ors phase. On the basis of 

previous reports it is most probably 11 [114,115]. 

6.3.6.2 Characterization of intermetallic compound laver growth 

The SEM image of an as - deposited tin-copper track is shown in Fig. 6.22. The 

layer thickness of tin and copper are clearly visible on the nylon-66 substrate. The 

tin and copper layers are well bonded to each other without any apparent porosity 

between the two layers. It is seen that the maximum thickness of the tin layer is 

approximately 100 µm and the approximate thickness of the copper layer is 600 

Jim. 

The SEM image of tin copper couple maintained at room temperature (298 K) for 

2.03 x 107 s (235 days) is shown in Fig. 6.23. A thin discontinuous intermetallic 

layer is seen, which is presumably il phase [1151, showing interdiffusion occurred 

even at this temperature. 
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The SEM images of the samples heat treated at 343 K and 443 K, for different heat 

treatment times are shown in Fig. 6.24 (a--I) and Fig. 6.25 (a-f) respectively. 

Intermetallic phases are seen after heat treatment for only one day at 343 K and 443 

K. The sample heat treated at 443 K shows two distinct phases, s and 11 which are 

identified in the BSE image of the microstructure by their different grey level 

contrast whereas in sample annealed at 343 K only a single phase is seen. The dual 

layer is difficult to discern in Fig. 6.25 (a) but the higher magnification image in 

Fig. 6.25 (d) shows the dual layer. In Fig. 6.25 (c) (heat treatment for 1.08 x 107 s 

(125 days)), the dual layer is clearly evident. In the sample heat treated at 443 K 

porosity is seen in the tin layer at an early stage in the annealing cycle and the 

porosity increases as the annealing time increases (as seen in Figs. 6.20 & 6.25). 

The porosity is negligible for annealing up to 2.16 x 106 s (25 days, Fig. 6.25 (b)). 

Fig. 6.26 shows the BSE image after annealing for 4.23 x 106 s (49 days). It is seen 

that significant porosity has developed after annealing for 49 days and annealing 

further up to 125 days results in a more porous tin layer. After annealing for 1.26 x 

107 s (146 days), it was observed that the tin layer had largely been converted into a 

dense intermetallic layer. Another significant feature observed during annealing at 

443 K is the formation and development of transverse cracks in the rl layer. After 

49 days small cracks are seen (Fig. 6.26 (b)) and further annealing increases the 

size and number of cracks (Fig. 6.25 (c) and (f)) The samples held at 343 K 

appeared to form only a single intermetallic phase, believed to be 11, even after 

annealing for up to 1.16 x 107 s (135 days). Furthermore there was no evidence for 
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porosity in the tin phase. The BSE image of tin layer (without any copper layer over 

it) annealed at 443 K for 2.67 x 106 s (31 days) is shown in Fig. 6.27. Porosity is not 

observed in the tin layer. Therefore, the formation of porosity appears to depend 

upon Cu - Sn interdiffusion and intermetallic phase formation and not on 

evaporation of tin in the furnace. 

An etched optical microscope image of cold sprayed copper annealed at 443 K for 

1.26 x 107 s (146 days) is shown in Fig. 6.28. Fig. 6.28 shows a few very fine 

recrystallized grains of the order of (1-3 µm). The microhardness of cold sprayed 

copper after annealing at 443 K for 1.26 x 107 s (146 days) was measured to be - 90 

kg mm 2 and after annealing at 343 K for 8.64 x 106 s (100 days) it is - 111 kgf mm 

2. The microhardness of the as-deposited copper was - 166 kgf mm-2. 

6.3.6.3 Thickness of intermetallic layers 

The mean values of measured thickness of total, 11 phase, c phase and q+c phase 

for 343 K and 443 K heat treatments for 1.16 x 107 s and 1.26 x 107 s (135 and 146 

days) respectively is shown in Table 6.11. The ratio 77 1(17 + c), for heat treatment at 

443 K, shows that the intermetallic layer is dominated by 11 phase as nearly 90% of 

the intermetallic compound is composed of 11 phase after annealing for 1.26 x 107 s 

(146 days). 
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A plot of intermetallic compound layer thickness versus time is shown in Fig. 6.29. 

The thickness of intermetallic compound increases with annealing time. The 

thickness of intermetallic compound after 135 days is -5 µm. The SEM image of 

Sn - Cu couple annealed at 343 K for 3.11 x 106 s (36 days) is shown in Fig. 6.30. 

The image shows a single layer of intermetallic compound at the interface. The 

intermetallic compound thickness is not uniform throughout the interface and it 

ranges between 2-5 µm. 

Examination of the samples annealed at 443 K showed dense, uncracked q and 

negligible porosity up to 16 days. At 25 days porosity began to become significant 

but no cracking of il was observed. After 49 days significant porosity and some 

cracking was beginning to appear, whereas after 49 days sever cracking and 

significant porosity was seen. The intermetallic layer growth data for annealing at 

443 K is plotted in Fig. 6.31 (a-b). Two distinct regions of growth of intermetallic 

layers are seen; the first region is for annealing up to 2.16 x 106 s (25 days) and the 

second region is for annealing from 2.16 x 106 s (25 days) to 1.26 x 107 (146 days). 

Figs. 6.31 (a) and (b) shows the plot of thickness versus annealing time up to 2.16 x 

106 s (25 days) and 1.26 x 107 (146 days) respectively. The il and c layers grow at a 

steady rate in the annealing period up to 25 days. After 25 days the thickness of rý 

and c is - 13 µm and -6 µm respectively. Annealing for more than 25 days leads to 

rapid growth of il but c thickness decreases; after 146 days the thickness of ri and c 

is - 45 µm and -5 µm respectively. 

252 



Chanter 6 Stability of copper and tin - copper deposits 

6.3.6.4 Measurements of resistance 

The % change in resistance of the tracks after heat treatment was calculated by the 

following equation, 

8Rl =100`Rt-R0) RO ------------------------------------------------------------ Equation 6.3 

Where, Rt is the measured resistance after heat treatment for time t and Ro is the 

resistance of the as sprayed tracks i. e. without any heat treatment. 

Figs. 6.32 and Fig. 6.33 show the change in resistance of the tin-copper couples and 

pure copper tracks, after annealing at 343 K and 443 K respectively. The resistance 

for t=0 is the value of resistance before the annealing cycle was started. In the case 

of the 343 K anneal the resistance decreased continuously with time and after 

annealing for 1.166 x 107 s (135 days) was approximately 8% lower than the t=0 

value. In the case of 443 K anneal the resistance decreased after annealing for 8.64 

x 104 s (one day) by more than 10% but thereafter the annealing is seen to increase 

the resistance and after 1.261 x 107 s (146 days) the resistance was only 

approximately 5% below the resistance value for t=0. In the case of copper, 

resistance decreased continuously at both annealing temperatures. At 343 K for 1.1 

x 107 s (127 days) the decrease was more than 11 %. After annealing at 443 K for 

8.64 x 107 s (one day) it was - 16 % and after annealing for 1.1 x 107 s (127 days) 

was-20%. 
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6.3.7 Discussion 

6.3.7.1 General aspects of phase formation 

The Cu - Sn phase diagram is shown in Fig. 6.15 [131]. The phase diagram 

suggests that at 343 K and 443 K the equilibrium phases are copper rich solid 

solution, c, if (or TI) and tin rich solid solution. Annealing at 443 K resulted in the 

formation of c, r and the two solid solution phases in agreement with the phase 

diagram. This is also in agreement with observations reported in references [111- 

126]. From the 343 K annealing experiments it was not possible to conclusively 

identify the phase which formed. On the basis of previous experiments conducted in 

this temperature range [112-115,123] it is most likely to be il. 

Overall, the phases which nucleate and grow at the Cu - Sn interface in cold 

sprayed deposits are consistent with those found in layers formed by other routes e. 

g. annealing electroplated layers, layers formed by hot dipping, layers formed by 

vapour deposition. 

The formation of transverse cracks in the ri phase seems to be due to the tensile 

stresses in the layer resulting from the volume changes to produce c and il phase. 

6.3.7.2 Porosity formation in tin laver 

An important feature seen in the present study was the high volume fraction of 

porosity in the tin layer of Sn - Cu couples. This does not seem to have been 
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reported previously for Sn - Cu couples. Although in previous works the thickness 

of q} was < 30 µm (Table 6.7) whereas in our study the thickness of q was 44 ±6 

µm. The formation of pores in the tin was observed in the higher temperature 

diffusion couple but not in the lower temperature one. Also such significant 

porosity was not noted in the single layer tin track annealed at 443 K. This strongly 

suggests that the interdiffusion of copper and tin and intermetallic phase formation 

are directly influencing porosity formation and that it was not due to evaporation of 

tin in the furnace. 

The tin layer starts becoming porous after annealing beyond a period of 2.16 x 106 s 

(25 days) at 443 K. The development of porosity in tin could be a result of faster 

diffusion of tin into ii phase as compared to the diffusion of copper from 11 phase 

into tin. This will result in a net vacancy flux into tin. These vacancies could, under 

condition of tensile stress in tin or the presence of a non-reactive gas form pores. 

This is the well known Kirkendall effect [129]. Another possible explanation could 

be creep damage in the tin at the relatively high homologous annealing temperature 

(T/Tm 443/505). At such a high homologous temperature relatively low stresses 

could give high creep rate and significant creep strain. The stresses might arise from 

the volume changes associated with phase changes. The tin could be experiencing a 

tensile strain rate as a result of phase growth. Alternately residual stresses from the 

spray deposition could be such as to put the tin in tension. 
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The rapid diffusion of tin might be due to the fine sub - grain size and high level of 

dislocation density expected in the tin and copper phases. Fig. 6.28 shows that the 

grain size of copper after annealing is -1-3 µm. Diffusion through grain 

boundaries occurs when very fine grains are present, which is the case for cold 

sprayed copper. The fine grain size provides larger grain boundary areas for grain 

boundary diffusion. Thus it is likely that diffusion through grain boundaries is 

responsible for the rapid diffusion of tin. 

The porosity development coincides with formation of cracks in the r} phase. The 

role played by the porosity and the cracks in the subsequent diffusion phenomenon 

is quite complex and it is not possible to provide suitable explanations of their role 

in the diffusion phenomenon at this stage. 

6.3.7.3 Rate of growth of intermetallic phases 

From the literature; layer thickness is expected to increase as if growth is bulk 

diffusion controlled [112-115,123,130]. Hence, plots of intermetallic compound 

layer thickness versus square root of heat treatment time (I) for heat treatment 

temperature of 343 K and 443 K are shown in Fig. 6.34 and Fig. 6.35 respectively 

along with best fit linear regression lines. Intercepts and slopes for the various 

phases in the tin-copper couple in different annealing periods are shown in Table 

6.12. 
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Clearly at 343 K the intermetallic layer growth is linear with respect to - and the 

thickness of the intermetallic layer after 1.16 x 107 s (135 days) annealing is -5 

µm. However, the regression line shows a negative intercept with the y-axis. The 

negative intercept suggests a time delay in the formation of the intermetallic 

compound. This probably represents the incubation period to nucleate the phase at 

this low annealing temperature. In the present study c phase was not observed for 

diffusion at 343 K. Mei et al. [121] estimated that for diffusion at 343 K the c layer 

would comprise 33 % of the intermetallic layer, however as the total intermetallic 

layer thickness at this temperature is only -5 µm after annealing for 135 days, it is 

possible that; 

1. The high surface volume ratio of equilibrium c phase may prevent its 

formation [1211. 

2. The thickness of c layer is below the level detectable by optical microscopy 

and SEM. 

The intermetallic growth for annealing at 443 K (Fig. 6.35) is more complex. It 

shows a linear relation to vrt in the annealing periods 1- 25 days and 49 - 146 days, 

but the slopes and intercepts in these regions for the intermetallic growth are 

different. The regression line for E and TI phases in the annealing period for 1- 25 

days has a positive slope and intercept with the y-axis. The positive intercept 

suggests growth of the intermetallic compound more rapid than bulk diffusion. The 

growth of intermetallic compounds in the annealing period of 49 - 146 days is not 
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expected to follow the v relation ship due to the transverse cracking and the 

formation of porosity. 

The ratio of c/, q shown in Fig. 6.36 has a value of - 0.45 after 2.16 x 106 s (25 days) 

of annealing at 443 K. Mei et al. [121] have reported this ratio to be equal to 0.55 in 

their study and Prakash et al. [123] have reported value of 0.44 in their study. Mei 

et at. solved Fick's diffusion equation and determined the interdiffusion coefficients 

in c and r phases (D E and D ; 7). The values of DE and Dq obtained by them are 

given below [121], 

- 61.86 56(m2 Is) = 5.48x10-9 exp RT 
Equation 6.4 --------------------------------------- 

D, 
ý(m2 

/s) =1.84x10-9 exp - 53.92 
RT 

Where the activation energies are given in kJ / mole, R is the universal gas constant 

and T is the absolute temperature. Equation 6.4 suggests that, 9 has lower activation 

energy for interdiffusion than s phase thus at lower temperatures the higher ratio of 

r phase is expected. It might be possible that in cold sprayed Sn - Cu couples this 

behavior persists up to 443 K. 

Mei et al. [1211 plotted the `t (4j is the interface position parameter and t is the 

time of annealing) versus the annealing temperature, for the model shown in Fig. 

6.16. The plot obtained from their data is shown in Fig. 6.17. The data from their 
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study was extrapolated to 443 K and the plot with the extrapolated data is shown in 

Fig. 6.37. The thickness of the intermetallic compound can be obtained from the 

interface positions, for e. g. the thickness of c phase can be calculated as (ý23 - 

ßj2) xJ . The thickness of the c, il and c+i calculated from Fig. 6.37 and the 

measured values obtained in this study, for annealing time of 2.16 x 106 s (25 days), 

are shown in Table 6.13. It is seen that the thickness of the intermetallic compound 

developed in our study was higher than the values predicted by the model of Mei et 

al. [121]. The large grain boundary area associated with the fine grain size of cold 

sprayed copper could be responsible for this. Diffusion through grain boundaries is 

a much rapid process as compared to bulk diffusion [112,114,115,121,122]. It 

seems likely that in the cold sprayed Sn - Cu diffusion couples, for annealing 

temperature of 443 K, diffusion through grain boundaries is an important 

mechanism. 

6.3.7.4 Resistance of cold sprayed Sn - Cu 

The resistance of the tin - copper tracks after annealing depends upon [1321: 

1) The reduction in dislocation density in the copper due to annealing. This is 

expected to decrease the resistance. 

2) The formation of intermetallic compound after annealing. This is expected 

to increase the resistance. 
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3) Porosity in tin layer. 

The overall decrease in resistance observed for tin - copper tracks after annealing at 

343 K and 443 K for 1.16 x 10' s (135) days and 1.26 x 107 s (146 days) 

respectively, shows that, the reduction in dislocation density in copper has greater 

influence on the resistance of the tracks. However, this effect is greater for tracks 

annealed at 343 K as compared to tracks annealed at 443 K as the resistance of 

tracks annealed at 343 K has decreased by 8% and the tracks annealed at 443 K 

show a5% decrease in resistance. The track annealed at 343 K show a gradual 

decrease in resistance to a lowest value approximately 15 % below the starting 

value, after 4.23 x 106 s (49 days) annealing, and thereafter the resistance gradually 

increases and attains a value about 8% below the starting value, after 1.16 x 107 s 

(135 days) annealing. This may be due to the gradual decrease in dislocation 

density at such low annealing temperature which attains is lowest value after 

annealing for 4.23 x 106 s (49 days) and thereafter the growth of the intermetallic 

compound results in increase of the resistance. The track annealed at 443 K shows a 

decrease in the resistance of about 10 % after annealing for 8.64 x 104 s (1 day) and 

the resistance than increases to a value about 5% below the starting value after 

further annealing. This behavior may be due to the decrease in dislocation density 

with in one day to a low value and with further annealing the growth of the 

intermetallic compound will result in increase in resistance. The microstructure in 

Fig. 6.28 shows that annealing at 443 K for 146 days results in recrystallization in 

copper. The decrease in resistance of Sn - Cu tracks is due to recrystallization and 
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grain growth in copper. The copper track without any tin undercoating shows that 

for annealing at 343 K the decrease in resistance follows trend similar to Sn - Cu 

tracks. Thus at annealing temperature of 343 K, it is likely that the decrease in 

resistance of copper and tin - copper tracks is due to decrease in dislocations due to 

annealing at 343 K and the formation of intermetallic compound in tin - copper 

tracks does not significantly influence the resistance of the tracks. The decrease in 

dislocation density in copper tracks annealed at 443 K results in decrease of 

resistance after one day of annealing to - 16 % below t=0 (t is the time of starting 

the annealing treatment) and then it gradually decreases to a value of - 20 % below 

t=0 after annealing for 3.19 x 106 s (37 days) and thereafter the resistance stays at 

around this value for the entire duration of annealing. There is no increase in 

resistance after longer annealing times observed in the case of pure copper tracks as 

in the case of Sn - Cu tracks, where the increase in resistance is due to formation of 

the intermetallic compound and development of porosity in tin layer. 

6.3.8 Conclusions 

The intermetallic compounds are formed during annealing of the cold sprayed Sn - 

Cu couples at 343 K and 443 K for annealing period as low as one day. 

Intermetallic layer was also formed in Sn - Cu sample maintained at room 

temperature for 2.03 x 107 s (235 days). 
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Only a single phase of the intermetallic compound is seen in samples annealed at 

343 K, which is estimated to be most probably 11. At 443 KE and i phases were 

observed. These results are in agreement with the work of other researchers. 

The formation of transverse cracks in ri and the formation of porosity in tin are 

important features observed in samples annealed at 443 K. These features influence 

the formation of intermetallic compound as the onset of porosity and cracking after 

49 days of annealing coincides with a different region in the plot of intermetallic 

thickness versus . (Fig. 6.35). 

The intermetallic layer grows with longer annealing times. The growth rate of the il 

phase during annealing at 443 K was found to be much higher as compared to the 

growth rate of this phase reported by other workers. This higher growth rate could 

be due to diffusion through grain boundaries in the cold sprayed Sn - Cu couples. 

The electrical resistance of the Sn - Cu deposits decreases after annealing, at 343 K 

and 443 K. Thus, reduction of the resistance due to decrease in dislocation density 

seems to be the dominant mechanism while increase in resistance due to the 

formation of intermetallic layer and porosity does not have a major effect on the 

resistance of the annealed Sn - Cu deposits. 
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Table 6.1: Grain size and microstrain of copper after cold work and, annealing at various 
temperatures (shown in bold italics) for 1 hr. Data for electro deposited copper are for 
annealing for -2 hr. 

Method used 
to determine 

Cold work method Grain size / nm Microstrain /% grain size Ref 
and 

microstrain 

< 300 < 300 Measuremen 
, [82, 

298 K 373 K 3000 - - - t from TEM 84] 423 K image 

Severe plastic 50 90 110 0.06 0.05 0 XRD peak 
deformation 273 K 398 K 448 K 273 K 398 K 448 K broadening [83] 

Compaction of inert 26 - 110 

gas condensed Cu (Compaction 
- - - 

XRD peak [77] 
powder, - 99 % dense temperature of 423 broadening 

K) 

Ball milled Cu powder 46 hrs 96 hrs 46 hrs 96 hrs XRD peak 133 
after milling 31 15 0.03 0.02 broadening [ ] 

As ~30 - 40 - 80 -0.03 0.03 0 
Electro deposited 298 K 373 K 473 K 298 K 373 K 473 K XRD peak 

deposited Rolled (s = - 30 ~40 - 80 -0.15 0.1 0 broadening [81] 

2300%) 298K 373K 473K 298K 373K 473K 
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Table 6.2: Properties of cold worked Cu prepared by different cold working methods. The 

annealing temperatures for ECAP and SPD, and the grain size of compacted powder are given 
in bold italics. 

Cold work 
or 2 Hardness / kgf mm 

Resistivity / Room temperature tensile Ref. 
fabrication nQZ m strength / MPa 

method 

ECAP 
150 150 100 70 

_ 375 [83, 
298 K 373 K 423 K 573 K 84] 

Severe 
plastic 160 160 110 70 

_ - [83] deformation 298 K 423 K 473 K 673 K 
(SPD) 

Compacted 
inert gas 

condensed 90 75 65 50 340 425 460 415 
Cu powder, 16 nm 26 nm 49 nm 110 nm _ 16 nm 26 nm 49 nm 110 nm 

[77] 

-99% 
dense 

Electro 110 28.8 - 
[8 

deposited 101] 

264 



Chanter 6 Stability of copper and tin - copper deposits 

Table 6.3. Slopes and intercepts of Hall-Williamson plots obtained from full width 
at half maximum of XRD peak profiles of cold sprayed copper. 
Process gas Annealing 
temperature temperature /K 298 373 423 473 573 

/K 

Intercept / 10-3 
radians 

3.73 2.26 1.63 '0 -0 
298 

Slope/ 10-3 -0 -0 -0 -0 ~0 

Intercept / 10"3 
radians 

2.33 1.89 1.97 1.20 -0 
523 

Slope / 10"3 3.66 3.59 3.22 3.55 -0 

Table 6.4: Grain size and microstrain calculated from slopes and intercepts in 
Table 6.3. 

Process gas Annealing 
temperature temperature 298 373 423 473 573 

/K /K 

Grain size / 40 60 85 > 300 > 300 
298 nm 

Strain 
-0 -0 -0 -0 -0 

Grain size / 60 75 70 115 > 300 
523 nm 

Strain /x 
10-3 1.83 1.80 1.6 1.78 -0 
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Table 6.5: Measured value of resistance and the resistivity calculated from these 
values for cold sprayed Cu deposited using gas heated to 523 K and annealed at 
various temperatures. Resistance and resistivity values of 99.998 % Cu sheet are also 
shown. Resistance was measured over a length of 20 mm. 

Annealing 
temperature /K 

Mean resistance (from 
six measurements) / 
104 nS 

Standard 
deviation / 
103 nn 

Cross-section 
area of track or 
sheet / 10-6 m2 

Resistivity 
/ nQ m 

298 6.14 1.91 8.8209 27.09 
373 6.13 1.21 8.8209 27.05 
473 3.37 3.98 15.83 26.70 
573 2.97 4.33 16.1 23.91 
773 4.78 1.21 8.8209 21.16 

298 (Cu sheet) 9.11 1.02 3.84 17.50 

773 (Cu sheet) 7.89 2.20 4.25 16.76 

Table 6.6: Microhardness and tensile strength of cold sprayed and 
bulk Cu. Scribe marks were made on the samples before tensile 
testing. Elongation was measured on the samples as the increase in 
the length between scribe marks after breakage. 

Microhardness / Tensile Elongation 
Material kg mm 2 strength / to fracture/ 

MPa % 
Cold sprayed 180 375 <1 

Cold sprayed and 65 230 26 
annealed (873 K/1 hr) 

Cu sheet rolled 89 260 42 
Cu sheet rolled and 48 208 60 

annealed (773 K/1 hr) 
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Table 6.7: Intermetallic layer thickness after annealing Sn-Cu and Sn + Pb - Cu couples 
at different temperatures and times. 

Annealing Duration of Intermetallic layer 
Diffusion couples temperature annealing / thickness / µm Reference 

/K days 
C E+11 

Electro deposited tin 343 - - -5 [113 310 , 
on Cu 115] 443 - - -30 

293 2209 - - 3 
Fused Sn - Pb on 353 70 2 0.9 2.9 

copper 393 28 3.3 1.5 4.8 
[114] 

433 28 6.3 3.7 10 
323 625 - - -0.3 d i di ppe n on t Hot 

phosphor bronze 348 625 - - ý1.5 [112] 
373 144 - - -2.3 

Hot Pure Sn 29 -9 -5 -14 dipped 
Sn and 82Sn18Pb 448 29 -9 -5 -14 [123 Sn-Pb ] 

solder 
63Sn37Pb 29 -9 -5 -14 

on Cu 27Sn73Pb 29 -6 -4 -10 
Solder 
on Cu 63Sn37Pb 443 30 -13 -5 -18 [124] 
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Table 6.8: Spray parameters to deposit tin and copper. 

Gas flow rate / 
Gas Powder 

No of 
Stand-off Traverse 

Material ' o-3) kg s" (x 10") pressure/ / feed rate 
I 

. 
passes 

distance speed 
bar /gs- / mm / mms"1 

Tin 1.52 10 
_ 

0.2 2 5 100 

Copper 2.9 T 7T2 0.9 2 15 100 

Table 6.9: Measured and calculated compositions of 
phases shown in Fig. 6.19. Sample annealed at 443 K 
for 146 days. 

Region Contrast Measured 
composition 
(at. % Sn 

Calculated 
composition 

at% Sn) 
Tin Bright 99.6 - 

11 Light grey 47.9 46 

c Dark grey 28.1 25 

Copper Dark 0 - 
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Table 6.10: Composition of various 
regions in tin - copper sample 
annealed for 1.16 x 10 s (135 days) 
at 34i tc, snown in rl . o. lv. 

Region Composition 
at. %Sn 

Bright 99 

Grey 36 

Dark 0 

Table 6.11: Thickness of intermetallic phases after annealing at 343 K and 443 K 

Layer thickness / µm Thickness 
Heat treatment temperature yý 

s phase i phase (s + 77)phase ratio, 

4±2 
343 K for 1.16 x 107 s (135 days) - (Cu rich phase) 

4f2- 

443Kfor 1.26x107s(146days) 5±1.5 44±6 49±7.5 0.9 
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Table 6.12: Slopes and intercepts obtained following linear regression 
analysis of graphical data plotted in Figs. 6.27 & 6.29 for different annealing 
times, 

Slope / 10-4 
Intercept 

/ µm 2 temperature erature Time /s Phase 
µm s -0.502 

value R 
/K 3.15 

1.16 x 10's 
343 (up to 135 71 14.51 -0.502 0.972 

days) 
2.16 x 10 s 11 53.4 3.15 0.7492 

(up to 25 
E 34.3 0.33 0 9321 days) . 

443 4.23 x 10 s to 159.3 -12.4 9941 0 . 1.26 x 107S 
(49 to 146 e -4.2 6.51 0.3365 

days) 

Table 6.13: q and c phase thickness calculated 
from interphase position parameters from Mei 
et al. [2] and measured values from this study, 
for annealing at 443 K. 

Time /s Thickness / µm c 
2.16 x 106 Calculated (Fig. 21) 9 4 
(25 days) Measured (Fig. 16) 13 6 
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I 

;4 

Fig. 6.1: ULM micrograph of an interparticle triple 
point in a cold spray copper coating showing typical 
microstructural features. Particle-particle boundaries 
are marked with arrows. A, high dislocation density 
with dislocations arranged in walls, grain size above 
1 µm; B, aligned elongated grains sized about (50 x 
150) nm2 in projection, featuring nonequilibrium 
grain boundaries characterized by ultra high 
dislocation densities adjacent to the grain boundaries; 
C, equiaxed ultrafine grains about 100 nm in 
diameter. They exhibit heavily deformed zones 
around the grain boundaries with extremely high 
dislocation densities, while the inner part of the 
grains are rather free of dislocations; D, dislocation 
free region exhibiting twins, grain size above I µm. 
From Borchers et al. [76]. 
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Fig. 6.2: Development of a shocked metal flow at 
explosion: a) initial stage, b) & c) after partial 
compressive collapse, d) slug collected from target-length 
L= 18 mm, diameter D,,, ax =7 mm, Dmin =3 mm [91 ]. 

-o--- 26 nm 
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0 0.005 0.01 0.015 0.02 0.025 0.03 
Engineering Strain 

Fig. 6.3: Stress-strain plots for Cu fabricated by compaction of nano 
crystalline Cu powder prepared by inert gas condensation method. From 
Sanders et al. [77,78]. The test for grain size of 110 nm and 20 µm was 
stopped because the displacement range was exceeded. 
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Fig. 6.4: X-Ray diffraction pattern for; a) As-sprayed deposit, b) 
Deposit annealed at 573 K, c) Cu powder annealed at 773 K. 
Showing peak broadening in (a). 
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Fig. 6.5: Detail of XRD peak at 89.9° showing peak profiles; 
a) As-sprayed deposit, b) Deposit annealed at 573 K, c) Cu 
powder annealed at 773 K. 
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Fig. 6.6: Hall - Williamson plot for as sprayed Cu deposited 
using gas at 523 K showing experimental data points and linear 
regression line with a slope of 3.66 x 10-3, intercept of 2.31 x 10"3 
and correlation coefficient of 0.4549. 
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Fig. 6.7: Optical microscope image of Cu Fig. 6.8: Optical microscope image of Cl 
deposited using gas at 523 K. a) as sprayed, b) deposited using gas at 298 K. a) as sprayed, b 
annealed at 473 K, c) annealed at 773 K. In (c) annealed at 473 K, c) annealed at 773 K. In (b) , 
fine recrystallized grains can be seen. few fine recrystallized grains can be seen and ii 

(c) larger recrystallized grains can be seen. 
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Fig. 6.9: BSL image of Cu cold sprayed at 2298 K and annealed for I hr 

at 773 K, showing recrystallized grains and dark features. 
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Fig. 6.10: Plot showing resistivity of cold sprayed and bulk copper after 
annealing for 1 hr at different temperatures. 
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Fig. 6.11: Microhardness of Cu deposits after annealing for 1 hr at 
various annealing temperatures. The points at 298 K correspond to as- 
sprayed material. 
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Fig. 6.12 (a-b): Engineering stress - strain plot of cold sprayed Cu deposited 

using gas heated to 523 K and gas mass flow of 2.9 x 10"3 kg s"1; (a) as 
sprayed copper, (b) after annealing at 873 K for 1 Hr. Strain values derived 
from cross head movement. 
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279 

Fig. 6.13 (a - b): SEM images of fracture surfaces following tensile testing; (a) As-sprayed 
deposit showing fracture largely at particle - particle interface, (b) deposit annealed at 873 K, 
showing a typical ductile dimple fracture surface. The arrow indicates secondary phase particles 
on the fracture surface. 
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Fig. 6.14 (a-b): Stress - strain plot of cold rolled Cu. (a) as rolled, 
(b) after annealing at 773 K for 1 hr. 
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Fig. 6.15: Tin - copper phase diagram [131]. 
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I C12 

C21 LC23 

Cy is the concentration on 
the i side of the interface, C32 

C34 

and CC, the concentration on 
the j side of the interface. 
4ij is the instantaneous C43 C 
position of the (ij) interface X 
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Fig. 6.16: Schematic drawing of the analytical model [121]. 
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Fig. 6.17: Calculated interphase position parameters vs temperature. 4iß 
is the instantaneous position between phase i and j (i, j=1, Cu solid 
solution; = 2, c; = 3, il; = 4, Sn solid solution) [1211. 
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Fig. 6.19: Line scan of the Sn-Cu diffusion couple annealed at 443 K 
for 1.26 x 107 s (146 days), showing the composition with respect to 
the line shown in Fig. 6.18. Cu, Sn, E and il phases are labeled. 
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Fig. 6.18: BSL image of Sn - Cu couple annealed at 443 
K for 1.26 x 107 s (146 days), showing Cu, porous Sn, two 
intermetallic phases and the position of the line scan. 
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Fig. 6.20: 13SIi image oi' Sn - Cu couple annealed at 443 K iör 
1.26 x 107 s (146 days) showing the Cu, porous Sri, and two 
intermetallic phases. The phases are quantified in Table 6.9. 
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Fig. 6.21: BSL image ol- Sn - Cu couple annealed at 343 K I'm I. 16 x 
10 (135 days) showing the Cu rich layer. The phases are quantified in 
Table 6.10. 
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Fig. 6.22: BSE image of Sn-Cu track showing the profile and 
thickness of tin and copper layers. 
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Fig. 6.23: BSL image of Sn-Cu couple after holding at room 
temperature (298 K) for 2.03 x 107 s (235 days). A discontinuous and 
thin layer of intermetallic compound is seen. 
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- Fig. 6.24: BSl_: image of Sn-Cu samples annealed at 343 K for; `a' and `d', 8.64 x 104 s (1 
day); `b' and `e', 3.11 x 106 s (36 days) and `c' and `f, 8.64 x 106 s (100 days); showing the 
formation of a single layer of intermetallic compound. 
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Fig. 6.25: BSE image of Sn-Cu samples annealed at 443 K for; `a' and `d', 8.64 x 106 s (1 day); 
`b' and `e', 2.16 x 106 s (25 days) and `c' and T, 1.08 x 107 s (125 days); showing the 
formation of intermetallic compound and transverse cracks in il after annealing for 125 days. 
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290 

Fig. 6.27: BSE image of single layer Sn deposit on PA66, annealed for 2.67 x 106 s 
(31 days) at 443 K showing a largely dense layer of tin. 



Chapter 6 Stability of copper and tin - copper deposits 

°: -ý ý 
20 pm 

6 

., _wr 

ý 
;pý ýI? .. ý, 

, ýk: 
ice.. 

. ý-ýº 
a. 

s 
MYMIfiu!. 

`M.. 
*. M 

^' 
k.. 

." wA+l 
,y 

Fig. 6.28: Etched optical micrograph of Cu deposited using driving gasat 
room temperature and annealed at 443 K for 146 days showing few very fine 
recrystallized grains (1 -3 µm). 
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Fig. 6.29: Plot of intermetallic compound thickness versus annealing time 
for annealing at 343 K, slope and intercept are given in Table 6.12. 
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Fig. 6.30: ß)l', image of Sn (u couple annealed at 343 K lür 3.11 x 10`, , (36 days) 
showing the intermetallic layer which is approximately 2 µm thick. 
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Fig. 6.31: Plot of intermetallic compound thickness versus annealing time for 
annealing at 443 K; a), for annealing time up to 25 days and b), for annealing 
time up to 146 days. 
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Fig. 6.32: Plot showing percentage change in resistance of copper and Cu - 
Sn samples versus annealing time for an annealing temperature of 343 K. 
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Fig. 6.33: Plot showing percentage change in resistance of copper and Cu - 
Sn samples versus annealing time for an annealing temperature of 443 K. 
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Fig. 6.34: Plot showing thickness of intermetallic layers versus V for an 
annealing temperature of 343 K. 
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Fig. 6.35: Plot showing growth of intermetallic layer versus for an 
annealing temperature of 443 K. The slopes and intercepts obtained 
following linear regression analysis are shown in Table 6.12. 
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Fig. 6.36: Plot showing thickness ratio c/ il phase versus time in tin - copper 
track for annealing at 443 K. 
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solid solution and c phase, 423 = interphase position between c phase and il phase, X34 
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Chapter 7 

Conclusions 

Copper and tin tracks were produced by cold spraying using gas atomized powders 

having spherical morphology. Cold spraying was carried out using a wide range of 

cold spraying conditions. The cold spraying conditions had significant influence on 

the properties of the deposited tracks. The process gas pressure and temperature, 

powder feed rate and traverse speeds were identified as important parameters 

affecting the deposit formation and properties. The grain size and microstrain in the 

deposit was measured using XRD and it was related to the deposition conditions 

used. Annealing tin - copper samples resulted in the formation of intermetallic 

compound; the nature and properties of this intermetallic compound formation were 

investigated. Following conclusions can be drawn from this work 

7.1 Process characteristics 

The cold spray process can be used to deposit well adhering deposit of copper and 

tin - copper on a variety of substrates. The deposition of copper on aluminium as 

well as polymer substrates is characterized by deposition efficiencies > 90 % in 
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most cases. Well adhering deposits of copper were formed on aluminium using gas 

at 298 K. Gas heating above 473 K was required to deposit copper on mild steel and 

alumina coated mild steel. The absence of significant heating or no heating at all 

during the deposition process results in deposition of coatings which are not 

oxidized or altered due to chemical reactions during flight. The width of the track 

formed for the nozzle design used in our experiments is -5 mm and it was seen that 

the deposit thickness increased more or less linearly with number of passes and 

decrease in traverse speed, except where thick deposits were formed (-' 1 mm). In 

case of thick deposits the increase in thickness showed a negative deviation from 

linear behavior. 

7.2 Deposit formation and growth 

7.2.1 Metallic substrates 

The mechanism of deposit adhesion on metallic and non - metallic substrates seems 

to be different. On metallic substrates adhesion takes place due to excessive 

deformation of sprayed particle and/or substrate leading to adiabatic shear and 

metal jetting. This provides clean interfaces between particle - substrate or particle 

- particle and promotes the formation of metallurgical bonds. Metal jetting is 

observed in aluminium substrate and well adhered deposits were formed on 

aluminium for a wide range of spraying conditions. Heating the process gas seems 
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to improve the adhesion on aluminium as the bond strength measured in pull - off 

tests increased from - 12 MPa > 20 MPa when using gas heated to 523 K to deposit 

copper. The copper deposits had the tendency to de-bond beyond a certain 

thickness. Heating the process gas increased the thickness at which the deposits de- 

bonded and led to recrystallization in as-sprayed copper when gas is heated to 673 

K. 

7.2.2 Polymer substrates 

The impact of copper particles on polymers resulted in the wear of substrate and 

also some embedding of particles in the polymer. Polymers with low strength were 

unable to withstand the impacts of copper particles and excessive wear is observed 

in them and consequently copper can not be deposited on them. Polymers that had 

high strength, signified by Tg above 323 K and tensile strength above 50 MPa, 

suffered less wear during spraying and copper particles could be embedded into 

them. Subsequent growth of the deposits involved metal jetting as the impacts were 

on previously embedded copper particles. 

Tin can be deposited on all the polymers investigated in this work. The impact of 

tin particles did not result in any apparent wear of polymer. The use of tin bond coat 

improves the overall adhesion of tin + copper deposits. 

7.2.3 Ceramic substrates 
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Copper sprayed using gas at 298 K de-bonded from alumina coated substrate. The 

adhesion of copper on alumina was improved when gas was heated to > 473 K, 

however, the alumina layer itself de-bonded from the mild steel substrate, possibly 

due to mis-match of thermal expansion coefficient. The mechanism of adhesion on 

alumina seems to be mechanical interlocking of copper particles with the plasma 

sprayed alumina splats. Heated gas increases the flattening of copper particles 

which promotes better interlocking between copper and alumina. 

7.3 Stability of copper and tin - copper deposits 

Cold sprayed copper have nanometre sized grained structure which is the result of 

excessive deformation of copper particles upon impact on the substrate or 

previously deposited particles. Copper deposits formed using gas heated to 523 K 

also has dislocations associated with microstrain within the grains. Dynamic 

recrystallization seems to be an important mechanism by which cold sprayed copper 

recovers their properties. Dynamic recrystallization is seen to be an important 

mechanism in copper sprayed at 523 K and as a result the microstructure is more 

stable. Upon annealing at temperatures z 573 K recrystallization and grain growth 

seemed to proceed by nucleation of new grains from the dislocations associated 

with microstrain. In copper sprayed at 298 K dynamic recrystallization did not 

appear to be an important mechanism and grain growth is observed for annealing at 

temperatures as low as 373 K. Cold sprayed copper has high hardness due to 
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significant cold working during spraying. The recrystallization and grain growth 

resulted in decrease of hardness in copper sprayed at 298 K and 523 K, albeit at two 

different temperatures; at 373 K for copper sprayed at 298 K and at 573 K for 

copper sprayed at 523 K. 

The formation of intermetallic compound was confirmed for annealing at 343 K and 

443 K. At 343 Ka single layer of intermetallic compound formed which is most 

probably q. At 443 K two inter-metallic compound layers are formed; these are 

identified as 1 and c. The growth of intermetallic compound at 443 K is very 

complex and it is characterized by the formation of porosity in the tin and 

transverse cracks in the rl layer after 25 days of annealing. The role played by the 

porosity and transverse cracks in the growth of intermetallic layer is not clear yet, 

however it was seen that the rate of growth ri phase increased and the thickness of s 

phase decreased when annealed beyond 25 days. The rate of growth of intermetallic 

compound in cold sprayed tin - copper couples is seen to be larger than that 

reported for tin - copper couples prepared by other methods. This could be due to 

diffusion through grain boundaries in copper as copper has nanometer size grains 

and diffusion through grain boundaries is much faster as compared to bulk 

diffusion. 

7.4 Deposit properties 

7.4.1 Mechanical properties of cold sprayed copper 
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The as-sprayed copper had high hardness and tensile strength of - 375 MPa, but 

negligible elongation to failure. The low ductility of cold sprayed copper is 

probably due to the presence of defects which are artifacts of the cold spray 

deposition process. The hardness and tensile behavior of cold sprayed copper 

following annealing at 873 K is similar to bulk copper as a result of recrystallization 

and grain growth, indicating that atomic bonding has formed across interparticle 

boundaries. The fracture surface of as-sprayed copper did not show any evidence of 

ductile fracture, rather the fracture was along interparticle boundaries. The fracture 

surface of deposit annealed at 873 K showed characteristic dimpled structure, 

evidence of a ductile fracture. 

7.4.2 Resistivity of copper and tin - copper tracks 

In cold sprayed copper the onset of recrystallization is accompanied by a decrease 

in electrical resistivity. The resistivity of as-sprayed copper decreases from 27.1 nQ 

m to 21.1 n) m after annealing at 773 K for 1 hr. In tin - copper samples there was 

a decrease in resistance after annealing at 343 K and 443 K, however growth of 

intermetallic layer in samples annealed at 443 K resulted in an increase in resistance 

however, it was seen that the overall resistance was still less that that measured in 

as-sprayed samples. The resistivity of tin - copper tracks decreased by about 5% 

following annealing at 443 K for 146 days and by 8% following annealing at 343 K 

for 135 days. 
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Chapter 8 

Future work 

There is a generic need to improve process understanding. The effect of particle velocity 

and temperature on the deposition process and properties of deposits is not fully 

understood. This investigation could be carried out using in-flight diagnostics like particle 

velocity measurement (DPV 2000) and mathematical modeling (i. e. CFD) to understand 

the influence of particle velocity and heating. Such work would allow the stability of the 

process to be monitored and a process window (essential for putting into production) 

identified. 

There is a need to further improve the bonding between copper and polymers. In pursuit of 

this, a number of avenues can be investigated such as, Surface treatment of polymers 

including cleaning and surface texturing to improve mechanical keying of the cold sprayed 

material, use of interlayer other than tin; for e. g. zinc. Optimum thickness of interlayer 

could be studied. The role of substrate temperature can be explored in more detail along 

with effect of heated gas and its effect on particle velocity and substrate temperature. More 

detailed study of impact of copper and tin with polymers needs to be undertaken. 

This study could be better qualified if simultaneous particle velocity is measured and varied 

in a systematic way. 
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Chapter 8 Future work 

A systematic study of the mechanical properties of cold sprayed material would yield 

further information about the mechanisms involved in failure of cold sprayed material and 

also help to optimize the cold spray process to produce deposits with low defects. Post 

spray processing of cold spray material should be investigated to improve their properties. 

This will lead to better understanding of the electrical and mechanical properties of cold 

sprayed material. The microstructure of sprayed copper can be characterized by TEM 

studies along with XRD to look at grain structure and dislocation behaviour. 

The nature of interfaces in the as-sprayed condition and after annealing could also be 

investigated to see if oxide is present. 
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Appendix 1 

Gas and particle velocities calculated using the one dimensional isentropic gas flow model 

and the particle acceleration model described in chapter 2, section 2.4 for nozzle having 

area expansion ratio of 9.46 and designed exit Mach No. of 4.9. 

4 

1:: 

Fig. 1: Calculated gas densities in different regions in the nozzle 
using helium as driving gas at a gas mass flow of 2.9 x 10"3 kg s". 
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Appendix 1 Gas and particle velocities 
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Fig. 2: Calculated velocity of 15 µm size copper particle along the 
length of the nozzle for two different gas temperatures. Gas mass 
flow of 2.9 x 10-3 kg s-1. 
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Aaendix 1 Gas and particle velocities 
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Fig. 3: Calculated temperature of 15 µm size copper particle along 
the length of the nozzle tor two different gas temperatures. Gas mass 
flow of 2.9 x 10"3 kg s"1. 
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Appendix 1 Gas and particle velocities 
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Fig. 4: Plot showing calculated velocities of copper particles versus 
particle diameter for gas at 298 K and 523 K. 
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Appendix 1 Gas and particle velocities 
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