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Abstract

Ca2+ is an important messenger which mediates several physiological functions, in-

cluding muscle contraction, fertilisation, heart regulation and gene transcription. One

major way its cytosolic level is raised is via a G-protein coupled receptor (GPCR)–

mediated release from intracellular stores. GPCR’s are the target of approximately 50%

of all drugs in clinical use. Hence, understanding the underlying mechanisms of sig-

nalling in this pathway could lead to improved therapy in disease conditions associ-

ated with abnornmal Ca2+ signalling, and to the identification of new drug targets. To

gain such insight, this thesis builds and analyses a detailed mathematical model of key

processes leading to Ca2+ mobilisation.

Ca2+ signalling is considered in the particular context of the M3 muscarinic recep-

tor system. Guided by available data, the Ca2+ mobilisation model is assembled, first

by analysing a base G-protein activation model, and subsequently extending it with

downstream details. Computationally efficient designs of a global parameter sensi-

tivity analysis method are used to identify the key controlling parameters with re-

spect to the main features of the Ca2+ data. The underlying mechanism behind the

experimentally observed, rapid, amplified Ca2+ response is shown to be a rapid rate

of inositol trisphosphate (IP3) formation from Phosphatidylinositol 4,5-bisphosphate

(PIP2) hydrolysis. Using the same results, potential drug targets (apart from the GPCR)

are identified, including the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and

PIP2. Moreover, possible explanations for therapeutic failures were found when some

parameters exerted a biphasic effect on the relative Ca2+ increase.

The sensitivity analysis results are used to simplify the process of parameter esti-

mation by a significant reduction of the parameter space of interest. An evolutionary

algorithm is used to successfully fit the model to a significant portion of the Ca2+ data.

Subsequent sensitivity analyses of the best-fitting parameter sets suggest that mecha-

nistic modelling of kinase-mediated GPCR desensitisation, and SERCA dynamics may

be required for a comprehensive representation of the data.
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CHAPTER 1

Introduction

1.1 Cell signalling

The proper functioning of any organism depends on the ability of its individual cells

to correctly interact with their environment and each other. For example, a normal im-

mune response to harmful compounds (like insect bites) is the release of Histamine,

which then interacts with cells in the affected area to induce protective mechanisms

like swelling and muscle contraction. The processing of a variety of such signals by

various cells is what enables the proper functioning of organisms, and the underly-

ing mechanisms can collectively be referred to as cell signalling. Understanding those

mechanisms can help explain and rectify failures in physiological functioning. For in-

stance, in allergy sufferers, the protective release of Histamine occurs in response to

innocuous substances, and therapies (such as antihistamines) were developed using

knowledge of the mechanisms of Histamine’s interaction with cells.

One of the ways that cells respond to signals is via proteins called receptors, which

act as sensors. They are activated by ligands, which are molecules that induce a re-

sponse by binding to receptors and forming a complex; they often alter the conforma-

tion, and hence functionality of the receptors. Receptors which reside in the cell mem-

brane are called cell surface receptors; these possess an extracellular portion to which

ligands can bind, and a portion on the membrane interior where other molecules can

interact (see Figure 1.1). In this way the extracellular signal can be detected and relayed

into the cell. Molecules which can act as ligands, include hormones, neurotransmitters

and drugs [106]. Hormones are chemical messengers which, from organs where they

are produced, travel through the bloodstream to other organs [56], where they can in-

duce a cellular response by interacting with cell surface receptors; physiological func-

tions as varied as growth, metabolism, digestion and heart rate regulation are initiated

by hormones. Neurotransmitters are chemical messengers which transmit impulses

between nerves, or between nerves and muscles. Many existing drugs are synthetic

1



CHAPTER 1: INTRODUCTION

Figure 1.1: Schematic of a G-protein coupled receptor, which is a cell surface receptor.

compounds, either designed to induce similar responses to endogenous ligands or to

inhibit their action. For instance, antihistamines work by blocking the binding of His-

tamine to its receptor.

1.1.1 G-protein coupled receptor signalling

The interest of this work is confined to cell signalling pathways initiated by G-protein

coupled receptors (GPCR’s), a family of cell surface receptors. GPCR’s are the largest

family of membrane-bound receptors, through which the majority of extracellular sig-

nals are processed [1]. They span themembrane bywinding back and forth seven times

through it, and G proteins, which are located on the inside of the cell membrane, can

bind to their intracellular portion. It is reported that more than 50% of all drugs in clin-

ical practice are targeted toward GPCR’s [18]; this is because they mediate numerous

physiological functions, including metabolism, reproduction, development, hormonal

homeostasis, and behaviour [98].

G-proteins are so called because of the role that guanine nucleotides play in regu-

lating their activity [79]. The G-protein is a heterotrimer, i.e., it is composed of three

subunits: the α, β, γ units. There is a guanine nucleotide binding site on the α subunit,

and β and γ are very closely associated, and thought to operate as one subunit [27].

In the G-protein’s inactive state, the α subunit’s binding site is occupied by the gua-

nine nucleotide, guanosine diphosphate (GDP). The receptor can be activated with or

without a bound ligand, and when (in its active state) it binds to the G-protein, GDP

dissociates and leaves room for the guanine nucleotide, guanosine triphosphate (GTP),

to bind. GTP activates the G-protein, causing a change in conformation, and causing

the G-protein to dissociate from the ligand-receptor complex, which can subsequently

bind to other inactive G-proteins (see Figure 1.2).

A widely held hypothesis is that the G-protein’s subunits dissociate on activation.

However, there are objections to this hypothesis which state that while it is certain that

2
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Figure 1.2: Schematic of the G-protein activation cycle (reproduced with permission

from [106]), based on the hypothesis that the G-protein’s subunits dissociate; an alterna-

tive hypothesis states that they do not dissociate.
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CHAPTER 1: INTRODUCTION

Figure 1.3: Pathways activated by different G-proteins, and interactions between them.

Ca2+ mobilisation is mediated via the Gq protein. Picture reproduced with permission

from [32].

the G-protein can dissociate under certain experimental conditions (for example, in de-

tergent solution, in the presence of high concentrations of magnesium ions), it might

not necessarily do so in cell membranes [27]. Consequently, an alternative, experimen-

tally supported hypothesis is that the active α subunit does not need to dissociate in

order to mediate downstream signalling [27, 79]. Most mathematical models are based

on the former hypothesis [37, 44, 48, 86, 106], but in this chapter both will be consid-

ered.

The α subunit is inactivated when GTP is hydrolysed back to GDP, through an

intrinsic ability of the α subunit, referred to as GTPase activity. There are other proteins,

including Regulators of G protein signalling (RGS) and the enzyme Phospholipase C

(PLC), which have the ability to bind to the α subunit and accelerate its intrinsic GTPase

activity.

There are four main G-protein classes: Gs, Gi, Gq, and G12/13, to which all the afore-

mentioned G-protein activation mechanisms apply, but each type is capable of medi-

ating different pathways. Gs-coupled receptors stimulate adenylyl cyclase, which syn-

thesises cyclic adenosine monophosphate (cAMP), which in turn mediates gene tran-

scription; Gi-coupled receptors inhibit adenylyl cyclase and so reduce cAMP formation

(see Figure 1.3). The βγ subunits from Gi and other G-proteins are also able to mediate

downstream signalling [32]. The G12/13 class of G-proteins is the most recently discov-

ered of the four [89], and mediates signalling to the cytoskeleton via the GTPases Rac

and RhoA [27]. This thesis focuses on the pathway activated by the Gq protein, which

leads to calcium release from intracellular stores.

The active Gq-protein activates the β isoform of PLC (PLCβ) by binding, after which

4



CHAPTER 1: INTRODUCTION

its membrane-bound substrate phosphatidylinositoldiphosphate (PIP2) is cleaved by

PLCβ into inositol triphosphate (IP3) and diacylglycerol (DAG). Subsequently, IP3 and

DAG trigger divergent pathways. DAG remains in themembrane and activates Protein

Kinase C (PKC), which contributes to receptor desensitisation, and continues a path-

way that eventually reaches the nucleus of the cell [55]. IP3 diffuses into the cytosol

and goes on to stimulate calcium (Ca2+) release from intracellular stores into the cy-

tosol, ultimately leading to cellular responses such as smooth muscle contraction and

changes in gene expression via the activation of transcription factors. This thesis aims

to develop amathematical model that encompasses signalling events from ligand bind-

ing to Ca2+ mobilisation, but because of the complexity involved, this will be done in

stages, of which the early signalling event, G-protein activation is the first.

1.1.2 Motivation

Pharmacology has been described as “a way of thinking and designing experiments

[which] compare the activities of natural and synthetic compounds on a biological tar-

get (usually a GPCR) and use quantitative measurements to gain insight into mecha-

nisms of action” [33]. Exploring the relationship between drugs (synthetic compounds)

and the nature and extent of the cellular response they induce is an important part of

the process of drug discovery, where drugs are tested for potential use in medicine. The

work in this thesis was done in collaboration with pharmacological experimentalists

from the Institute of Cell Signalling at the University of Nottingham, who have studied

in particular the M3 muscarinic GPCR system, for which there are synthetic drugs that

successfully induce a similar Ca2+ response as the receptor’s natural ligand, Acetyl-

choline.

The model which will be assembled in this thesis will be tailored to match Ca2+

mobilisation data from the M3 muscarinic pathway [52, 54], from experiments carried

out by Dr Lauren May under the supervision of Professor Stephen Hill. Guided by

these data, the aim is to use a detailed model to provide further insight into mecha-

nisms of drug action in this pathway, and where possible, other GPCR-mediated Ca2+

pathways.

Pharmacological analysis frequently uses simplified functional forms which phe-

nomenologically describe the data, but, by lumping several processes together, might

obscure mechanistic detail. Hence, a detailed model can be used to shed light on im-

portant mechanisms in the pathway. It is hoped that this will inspire new ways of

thinking about, and designing, experiments. The M3 receptor is already a drug tar-

get in the treatment of lung-related and urological disorders [5], but understanding

the pathway mechanisms might highlight other drug targets. Also, this pathway is in-

5
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volved in controlling cell-cycle progression and cell death in activated T cells [49], so

important insights for regenerative medicine might be gained by better understanding

this pathway.

1.2 Experimental studies of GPCR signalling

For obvious reasons, testing the effects of ligands on receptor systems cannot routinely

be carried out in the human host. In previous years, the lack of access to human re-

ceptors necessitated the use of animal receptor systems, as many of the ligands medi-

ating response via these receptors were the same in animals as in humans [38]. Most

of the known therapeutic drugs were discovered using these surrogate animal tissues.

However, these experiments have largely given way to experiments carried out in en-

gineered human receptor systems known as recombinant systems [40]. These are set-ups

in which human DNA is used to make non-human cells express human receptors. This

process of introducing nucleic acid into cells to express particular proteins is what is

referred to as transfection. Another important term is overexpression, which refers to the

process by which these surrogate cells are exposed to high DNA concentrations in or-

der to yield increased expression of particular proteins [40]. Current technology allows

for both receptor and G-protein overexpression in appropriate GPCR systems [39, 85].

Recombinant systems are often used in drug discovery. Two terms often used to

describe the properties of a drug are affinity and efficacy (For a glossary of these, and

other, pharmacological terms, see appendix A). Affinity is a ligand-specific property

which refers to the ability of a drug to bind (or stay bound) to its receptor, and so is

purely ameasure of the strength of interaction, while efficacy is a measure of the drug’s

ability to induce a response. The latter would depend on a ligand’s intrinsic efficacy,

and system-specific mechanisms [40].

An agonist is a ligand which acts to positively increase cellular response, so it pos-

sesses positive efficacy; different agonists can have different efficacies. An inverse ago-

nist acts to decrease basal activity, hence it possesses negative efficacy, while an antago-

nistmerely occupies the binding site and in itself does not act to influence the response

either way. Figure 1.4 shows examples of dose-response curves which are often used in

pharmacology to quantify drug activity. The steepness of a curve depends on both the

affinity and efficacy of the agonist it represents, while its maximum value is dependent

on its efficacy alone. So in Figure 1.4(a), agonists A, B and C all produce the maximum

response, i.e. they are full agonists, but A and B are more left-shifted than C because

the agonists have varying affinites. In Figure 1.4(b), only A is a full agonist. B and C

are partial agonists, but B has the greater efficacy because the highest response it can

6



CHAPTER 1: INTRODUCTION

Agonist concentration

S
ys

te
m

 r
es

po
ns

e

(a)

Agonist concentration

S
ys

te
m

 r
es

po
ns

e

 

 
A
B
C

(b)

Figure 1.4: Dose-response curves illustrating (a) the action of full agonists; some curves

are more left-shifted, but all produce the maximal response. (b) the action of a full ago-

nist (A) and partial agonists (B and C), which do not induce the maximal response.

produce is higher than C’s.

In the study of receptor systems, cellular response cannot always bemeasured at ev-

ery level of the pathway. For GPCR’s there are currently no experimental methods for

tracking αGTP or βγ over time, hence there are no data with which to directly compare

time course simulations. But there are available procedures to measure the binding

of a GTP analogue GTPγS to the α subunit [58], which cannot be hydrolysed, so that

the whole G-protein cycle is not completed; hence, the G-protein responsemeasured in

such experiments is likely higher than it would normally be. Also, the accumulation of

ligand-receptor complexes and time courses for secondmessengers like Ca2+ are easily

measured. Experimental methods for measuring Ca2+ will be discussed in Chapter 3.

1.3 Previous mathematical models of GPCR signalling

Over the years, many models have been developed to describe the behaviour of recep-

tor signalling systems, which are largely a series of biochemical reactions. The majority

of models utilise the law of mass action, which states that the rate of a reaction is pro-

portional to the product of the concentrations of its reactants. Given the following

reversible reaction

A+ B

k+−−⇀
↽−−
k−

AB, (1.1)

the rate of production of the product AB, is given by

7
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d[AB]

dt
= −d[A]

dt
= −d[B]

dt
= k+[A][B] − k−[AB], (1.2)

where (and throughout this thesis), [∗] refers to the concentration of ∗. If the reaction
is irreversible, the rates are given by substituting k− = 0.

The majority of existing GPCR signalling models are equilibrium models. These are

models which describe the equilibrium states of the receptors with algebraic equations

derived from applying steady state conditions to themass action equations can be used

to describe how the addition of ligand changes the steady state distribution of receptor

states [46].

The simplest of these equilibrium models is Clark’s classical model [16], proposed

in 1933, which describes the interaction of two components only, the receptor, R and

ligand, L, and assume that they bind following the law of mass action, so that the

receptor can exist in two states: unbound (R) and ligand-bound (LR) [103]. The only

possible reactions are:

L+ R

k+−−⇀
↽−−
k−

LR, (1.3)

Using the law of mass action and the assumption of equilibrium (that the forward

rate is equal to the backward rate):

Ka =
k+
k−

=
[LR]

[L][R]
, (1.4)

where Ka is called the equilibrium association constant. Its reciprocal, KD, is called the

dissociation constant, and is measured in the same unit as the ligand. Both constants

are measures of affinity. A high Ka (or equivalently, low KD) indicates a strong affinity

for the receptor.

In this model, the efficacy of a drug is taken to be the ratio of ligand-bound to total

receptor concentration, and is quantified by the following saturation function:

Response =
[L]

[L] + KD
, (1.5)

using the fact that the total number of receptors is conserved and given by RTOT =

[R] + [LR]. No provision was made in this model for different drugs with similar affini-

ties but varying efficacies. In 1954, E. J. Ariens introduced a proportionality factor κ to

address this limitation as follows [4]:
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Response =
κ . [L]

[L] + KD
. (1.6)

κ values exist in the range of 0 to 1, representing a spectrum of agonists that pro-

duce no response to those that produce the maximum response. Since then many more

models with differing levels of complexity [103] have been developed to account for

further experimental observations. After it came to light that receptors can bind to

other membrane proteins (the G-protein in the case of GPCR’s), the ternary complex

model (TCM) [19] was proposed, which incorporates G-protein binding into the classi-

cal model. It allows the receptor to bind to a third component, the G-protein (G). The

reactions for this model are:

L+ R ⇋ LR (1.7)

LR+ G ⇋ LRG (1.8)

In this model the receptor can only bind to the G-protein when it has itself been

bound by the ligand.

New experimental evidence revealed that unbound receptors can spontaneously

become active and in turn activate G-proteins in the absence of any ligand; such a re-

sponse is referred to as constitutive activity. Increased constitutive activity has been

observed in systems where receptors have been overexpressed; for instance, it was

observed in Sf9 insect cells that the second messenger cAMP can be generated at a

rate which is directly proportional to the level of receptor expression [27]. Constitu-

tive activity has been detected by overexpressing many other GPCR’s, including the

Ca2+-activating Gq-coupled Histamine H1 receptor [84]. Another source of constitu-

tive activity is G-protein overexpression; in [85], GTPase activity was reported to in-

crease with G-protein expression levels. The TCM could not account for constitutive

activity, so an extension was proposed: the extended ternary complex model (eTCM).

This model assumes that the receptor can exist in two states: one active (R), one inac-

tive (R∗), with the ligand able to bind to both states with different affinities. The active

receptor, whether ligand-bound or not, can bind and activate the G-protein [103], al-

though the ligand can alter its affinity for the G-protein. Consequently, there are six

receptor species: R, R∗, LR, LR∗, R∗G, LR∗G (see Figure 1.5).

The discovery of promiscuous receptors, which can bind tomore than oneG-protein

type, prompted the proposal of a three-state receptor model. This model assumes the

simplest case, in which the receptor can exist in two active conformations, R∗ and R∗∗,

each able to bind to a unique G-protein type [71]. An explanation for the ability of a

drug to be an agonist in one system and an inverse agonist in another was offered by

the model.
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R*

LR*

RG

LR*G

Figure 1.5: The extended cubic ternary complex model (eCTM) accounts for the fact that

receptor can become spontaneously become active (R∗).

R LR

RG LRG

R∗ LR∗

R∗G LR∗G

G binding

R activation

L binding

Figure 1.6: The cubic ternary complex (CTC) model accounts for all possible states.

All the previously mentioned models (except the three state model) are subsets of

the cubic ternary complex model (CTC), a comprehensive model which includes all

possible combinations of receptor, ligand and one G-protein type, based on the as-

sumption that the ligand and G-protein never directly encounter each other [103]. In

this model the receptor can exist in eight states, as shown in Figure 1.6, and agonist effi-

cacy is the ability of a ligand to increase the number of receptors in the active, signalling

state (R∗G and LR∗G) at equilibrium.

1.3.1 Equilibrium vs kinetic models

The assumption of equilibrium in the previously discussed models limit the ability to

characterise a drug’s properties because important time-dependent (e.g. transient) re-

sponsesmight go uncharacterised. As a result, kinetic models are nowmore commonly

used tomodel GPCR signalling. The cubic ternary complex activation model (cTCAM),

for example, integrates the kinetics of G protein activation and deactivation in the CTC

model with three additional irreversible reactions that describe the G-protein activa-

tion cycle [86]. Without the assumption of equilibrium, the model consists of a system
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Figure 1.7: Transient responses induced by two different drugs. If only the equilibrium

response is measured, both drugs appear to have little efficacy. However, if the peak

response is used, drug B is efficacious.

of ODEs, allowing, for instance, a transient αGTP peak to be predicted [41]. Figure 1.7 is

used to illustrate why it may be important to use transient responses as measures of a

drug’s action. If only the equilibrium response is measured, both drugs would appear

to be similar, having little efficacy. However, if the peak response is used, only drug A

has little efficacy, and such behaviour can be captured by a kinetic model.

1.3.2 A kinetic model: The cubic ternary complex activation model

The cTCAM, which will be used to analyse the dynamics of G-protein activation in this

thesis, is now described in detail.

Receptor-Ligand binding

The model assumes that the receptor switches between an active and inactive state, as

follows:

R

kact−−⇀
↽−−
kdeact

R∗, (1.9)

The ligand can bind to both receptor states with different affinites, modelled by the

thermodynamic constant ζ = ζ+

ζ−
, as follows:

L+ R

klb+−−⇀
↽−−
klb−

LR, (1.10)

L+ R∗
ζ+klb+−−⇀
↽−−
ζ−klb−

LR∗. (1.11)

ζ = 1 indicates an antagonist, a drug which binds indiscriminately to both receptor

states; ζ > 1 indicates an agonist, which favours the receptor’s active state; ζ < 1
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models an inverse agonist, which favours the inactive state of the receptor. The ligand

concentration is assumed constant, since it is usually supplied in excess.

The inactive receptor-ligand complex can also spontaneously become active, as fol-

lows:

LR

ζ+kact−−⇀
↽−−
ζ−kdeact

LR∗. (1.12)

The four receptor states can also bind to the G-protein with different affinities. This

includes the possibility of precoupling, a situation in which a G protein binds to a recep-

tor before the ligand:

R+ G

kg+−−⇀
↽−−
kg−

RG, (1.13)

R∗ + G

µ+kg+−−⇀
↽−−
µ−kg−

R∗G, (1.14)

LR+ G

ν+kg+−−⇀
↽−−
ν−kg−

LRG, (1.15)

LR∗ + G

θνµµ+ν+kg+−−⇀
↽−−

θνµµ−ν−kg−
LR∗G, (1.16)

where µ+ and µ− make up the equilibrium constant, µ = µ+

µ−
, which models the extent

to which the active receptor binds more or less preferably to the G-protein than the

inactive receptor. ν+ and ν− make up the equilibrium constant ν = ν+
ν−
, which models

the extent to which the ligand binds more preferably to the precoupled receptors (RG,

R∗G) than to the uncoupled ones. θνµ quantifies the extent to which ligand binding and

receptor activation jointly facilitate the binding of G-protein.

The inactive receptor-G-protein complexes can also spontaneously become active:

RG

µ+kact−−⇀
↽−−
µ−kdeact

R∗G, (1.17)

LRG

θζµζ+µ+kact−−⇀
↽−−

θζµζ−µ−kdeact
, LR∗G. (1.18)

where θνµ quantifies the extent to which ligand binding and G-protein coupling jointly

facilitate receptor activation.

The ligand can also bind to precoupled receptors, as follows:

L+ RG

ν+klb+−−⇀
↽−−
ν−klb−

LRG, (1.19)
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L+ R∗G

θζνζ+ν+klb+−−⇀
↽−−

θζνζ−ν−klb−
LR∗G, (1.20)

where θζν quantifies the extent to which receptor activation and G-protein coupling

jointly facilitate ligand binding.

It is assumed that only the active receptor states, R∗G and LR∗G, can carry on the

signalling pathway, by activating the G-protein.

The G-protein activation cycle

As noted previously, there are divided views on the exact mechanisms of G-protein

activation and deactivation. The cTCAM is built on the hypothesis that GTP bind-

ing causes the α and the βγ subunits of the G-protein to dissociate into two activated

components, αGTP and βγ, which can interact with effector molecules and propagate

signalling [1], as given by the following reactions:

R∗G+ GTP −→ R∗ + αGTP + GDP+ βγ

LR∗G+ GTP −→ LR∗ + αGTP + GDP+ βγ.

It is assumed that GTP and GDP are present at constant levels. This means that

their concentrations can be incorporated into the rate constants, so that the activation

reactions are given by:

R∗G
kGTP+−→ R∗ + αGTP + βγ, (1.21)

LR∗G
kGTP+−→ LR∗ + αGTP + βγ. (1.22)

As previously mentioned, αGTP has the ability to deactivate itself by hydrolysing

GTP to GDP; its bound GTP loses one phosphate molecule, leaving the inactive form,

αGDP,; the inactive G-protein (G) is recovered when αGDP reunites with βγ:

αGTP
kgd+−→ kgd− αGDP, (1.23)

αGDP + βγ
kRA+−→ kRA− G. (1.24)

The law of mass action is used to convert all reactions to ODEs which can then be

integrated and used to describe time-dependent behaviour. A variant model, with a

G-protein activation and deactivation cycle built on the hypothesis that the G-protein

subunits do not dissociate will also be described in the next chapter.

There are other relevant kinetic mathematical models of G-protein signalling that

describe events beyond G-protein activation. Lemon et al. incorporated the dynamics

of IP3 formation and Ca
2+ mobilisation into the G-protein cascade [44], while Kang
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and Othmer incorporated the dynamics of IP3 formation, PKC feedback and Ca
2+ mo-

bilisation [37]. In another study, agonist-induced Ca2+ mobilisation was coupled to

downstream phosphorylation events [48]. Thesemodels will be discussedwhen events

downstream of G-protein activation are considered, later in Chapter 3.

1.4 Thesis Outline

The rest of the thesis is outlined below.

In Chapter 2, the cTCAM is analysed by considering the effects of varying cell-

specific parameters (total receptor and G-protein concentration) on the active G-protein

response. The effects of ligand-specific parameters are also considered, when particular

drugs are modelled. In addition, the cTCAM is compared with a variant model, in

which the G-protein subunits do not dissociate.

In Chapter 3, Ca2+ signalling is discussed in more detail. The cTCAM is then ex-

tended by adapting downstream details from an existing Ca2+ model [37]. Guided by

experimental results, the parameters of the extended model are then fine-tuned using

manual variation and numerical simulation. A more systematic parameter analysis is

then carried out in Chapter 4, by using a global sensitivity analysis method to identify

parameters which most influence key features of the Ca2+ response seen in the data.

Such parameters are then adjusted to enable the model match the data more closely,

while providing insight about pathway dynamics.

In Chapter 5, possible adjustments to the model (suggested by the results of Chap-

ter 4) are considered, resulting in variant Ca2+ mobilisation models, which are subse-

quently analysed.

In Chapter 6, a global parameter optimisation is carried out to improve the quan-

titative fit to the data, and to provide further insight about the model, while a further

sensitivity analysis points to possible model extensions.

Finally, in Chapter 7, themain results of the thesis are summarised, and suggestions

are made about future work that can build on these results.
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CHAPTER 2

Modelling G-protein Activation

2.1 Introduction

The pathway from ligand binding to Ca2+ release consists of multiple processes, many

ofwhich are complex in nature. This thesis seeks to assemble amodel of these processes

which is detailed enough to provide insight into important pathwaymechanisms; how-

ever, this results in a complex model; it therefore makes sense to start by analysing a

simpler, existing model of early signalling events (such as the cubic ternary complex

activation model (cTCAM)), which can subsequently be developed into a more exten-

sive model. This allows the model to be better understood before it is used as a base

model in the extension process. In addition, insight can be gained about the earlier

signalling events.

In this chapter, the cTCAM (see section 1.3), is used to study the responses of the

mediators of downstream signalling, αGTP and βγ; in particular, the effects of changing

model parameters such as the total receptor, total G-protein, and ligand concentrations

are explored; these parameters can be experimentally manipulated, and so have direct

practical application. Also, ligand-specific parameters such as affinity and efficacy are

modelled for actual drugs which were used in Dr Lauren May’s M3 muscarinic exper-

iments [52, 54].

As noted in Chapter 1, traditionally, GPCR modelling has made use of equilibrium

models, so time courses for active G-protein have only recently been simulated; αGTP,

but not βγ, has been simulated in some relatively recent studies [41, 44, 106]. Although

Ca2+ release in the M3 muscarinic pathway is mediated through αGTP, the βγ response

will also be discussed in this chapter, for comparison, since both subunits partake in

the G-protein activation cycle.

The cTCAM model equations, derived by applying the law of mass action to reac-

tions (1.9) - (1.24) in Chapter 1, are given by:
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d[R]

dt
= −kact[R] + kdeact[R

∗] − klb+[L][R] + klb−[LR]

−kg+[R][G] + kg−[RG] (2.1)

d[R∗]
dt

= kact[R]− kdeact[R∗] − ζ+klb+[L][R∗] + ζ−klb−[LR∗]

−µ+kg+[R∗][G] + µ−kg−[R∗G] + kGTP+[R∗G] (2.2)

d[LR]

dt
= klb+[L][R] − klb−[LR]− ζ+kact[LR] + ζ−kdeact[LR

∗]

−ν+kg+[LR][G] + ν−kg−[LRG] (2.3)

d[LR∗]
dt

= ζ+klb+[L][R∗]− ζ−klb−[LR∗] + ζ+kact[LR]− ζ−kdeact[LR
∗]

−θνµµ+ν+kg+[LR∗][G] + θνµµ−ν−kg−[LR∗G]

+kGTP+[LR∗G] (2.4)

d[RG]

dt
= kg+[R][G] − kg−[RG]− µ+kact[RG] + µ−kdeact[R

∗G]

−ν+klb+[L][RG] + ν−klb−[LRG] (2.5)

d[R∗G]

dt
= µ+kg+[R∗][G] − µ−kg−[R∗G] + µ+kact[RG]− µ−kdeact[R

∗G]

−θζνζ+ν+klb+[L][R∗G] + θζνζ−ν−klb−[LR∗G]− kGTP+[R∗G] (2.6)

d[LRG]

dt
= ν+kg+[LR][G] − ν−kg−[LRG]− θζµζ+µ+kact[LRG]

+θζµζ−µ−kdeact[LR
∗G] + ν+klb+[L][RG] − ν−klb−[LRG] (2.7)

d[LR∗G]

dt
= θνµµ+ν+kg+[LR∗][G] − θνµµ−ν−kg−[LR∗G]

+θζµζ+µ+kact[LRG]− θζµζ−µ−kdeact[LR
∗G]

+θζνζ+ν+klb+[L][R∗G]− θζνζ−ν−klb−[LR∗G]

−kGTP+[LR∗G] (2.8)

d[G]

dt
= −ν+kg+[LR][G] + ν−kg−[LRG]

−θνµµ+ν+kg+[LR∗][G] + θνµµ−ν−kg−[LR∗G]

−µ+kg+[R∗][G] + µ−kg−[R∗G]

−kg+[R][G] + kg−[RG] + kRA+[αGDP][βγ] (2.9)

d[αGTP]

dt
= kGTP+[R∗G]− kgd+[αGTP] + kGTP+[LR∗G] (2.10)

d[βγ]

dt
= kGTP+[R∗G] + kGTP+[LR∗G]− kRA+[αGDP][βγ] (2.11)

d[αGDP]

dt
= kgd+[αGTP]− kRA+[αGDP][βγ] (2.12)

The variables are the concentrations of the different signalling molecules (measured

in moles per litre, M) and time, measured in seconds. Because of the number of reac-

tions involved in the signalling pathway, the model is a high order system of coupled
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Figure 2.1: The unstimulated phase of signalling. (Note the log scale of the x axes.)

Initially, only the unbound receptor (R) and G-protein states (G) exist. (a) Receptor pre-

coupling occurs when the receptor and G-protein bind; (b) spontaneous receptor activa-

tion also occurs, allowing the active pre-coupled state (R∗G) to form; (c) some G-protein

activation also occurs. The steady state levels of these species then serve as initial condi-

tions for ligand stimulation.

ODEs which cannot be solved analytically, hence computational methods are heavily

relied on for the analysis of the models in this thesis. Model simulations are carried out

in MATLAB using the ode15s solver for stiff systems, because the existence of various

time scales makes the model stiff [106]. Parameter values for this chapter are listed in

Appendix B and were taken from a previous study [106].

In order to compare the hypotheses of G-protein subunit dynamics discussed in

section 1.1.1, this chapter finally compares the cTCAM with an adapted version, in

which the G-protein does not dissociate into αGTP and βγ.

2.2 Agonist-induced G-protein activation

This section uses the cTCAM to mimic experiments in which cells are in a basal state

before stimulation by a drug (specifically, an agonist) [54]. Hence, the ligand concentra-

tion is initially set as [L] = 0. In addition, the total (unbound) G-protein concentration

and total (unbound) receptor concentration are given by GTOT = 4.15× 10−10M and
RTOT = 4.15× 10−10M respectively (following a previous study [106]), while all other
species are at zero concentration. During this unstimulated phase, formation of other

species then occurs until a steady state is reached, as illustrated in Figure 2.1; precou-

pled receptors, RG and R∗G form, (Figure 2.1(a) (b)), and from the latter, basal αGTP

and βγ form (Figure 2.1(c)). The equilibrium values of all species then serve as the

initial conditions for ligand stimulation.

Unless otherwise indicated, a stimulation of [L] = 10−5M of a strong agonist will
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Figure 2.2: (a) αGTP and βγ responses in the cTCAM to an agonist, added after 10000s

(when a steady state has been reached). Both subunits exhibit the same transient peak

response when GTOT = 4.15× 10−10M, RTOT = 4.15× 10−10M; (b) Experimental results
reveal that Ca2+ also exhibits a transient peak response over various agonist concentra-

tions [54].

be used in the simulations; the strength of the agonist is modelled by the values

klb+ = 8.4× 107M−1s−1,

klb− = 0.37s−1,

ζ =
ζ+

ζ−
= 1000.

This is an agonist that quickly binds to the receptor and strongly favours the recep-

tor’s active state, since ζ is much greater than 1 (see section 1.3.2). As mentioned, the

cellular response will be defined as the concentration of activated G-protein.

2.2.1 The transient peak response

Previous studies illustrate that in response to agonist stimulation, αGTP can exhibit a

rapid, transient peak response [41, 106], brought on by rapid agonist binding which

increases αGTP production via reaction (1.22); consequent GTPase action via reaction

1.24) then makes the peak transient [106]. With the parameter set in Table B.2.1, the

cTCAM model predicts that rapid (≈ 5 seconds), transient αGTP peak, as illustrated in

Figure 2.2(a); βγ also exhibits an early peak due to rapid agonist binding, but unlike

αGTP, βγ does not undergo GTPase action, hence its descent to steady state level (also

referred to as the plateau in this chapter) is due to its subsequent re-association with

αGDP (see reaction (1.24)).

Figure 2.2(b) shows Ca2+ time courses from the M3 muscarinic receptor pathway

[54], from which it can be seen that Ca2+ also exhibits a rapid, transient peak. Because
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αGTP mediates the production of IP3, which is the trigger for Ca
2+ mobilisation, the

lifetime of the αGTP response can be expected to have an impact on the lifetime of cy-

tosolic Ca2+. Even though the pathway has downstreammechanisms for IP3 and Ca
2+

removal [74, 94], which would contribute to the transience of the Ca2+ response, their

efficiency would depend on the strength of αGTP activation. Hence, this section ex-

plores the hypothesis that the transience of the Ca2+ peak depends on the existence of

a transient αGTP peak (referred to as the transient peak hypothesis). In that case, parame-

ters that control αGTP’s peak could also be used to manipulate Ca
2+ release in a similar

fashion.

2.2.2 The influence of receptor and G-protein expression levels

In a previous study [41], a sensitivity analysis identified the key parameters that influ-

ence the dynamics of αGTP production in the cTCAM. 1000 parameter sets were sam-

pled (using latin hypercube sampling) from a parameter space constrained by defining

uncertainty ranges for each parameter, based on values from the literature, and it was

shown that these parameter sets predict varying αGTP time courses. The variations

included disparate basal levels (which could vary by factors of up to 350) and either

transient or sustained responses to agonist stimulation. Total G-protein GTOT and to-

tal receptor (RTOT) were implicated as the 1st and 3rd most important drivers of the

dynamics of αGTP, so they are key to understanding G-protein activation, which could

then have implications for the Ca2+ response. Hence this section considers the effects

of varying GTOT and RTOT, particularly on the transient αGTP (and βγ) peak.

RTOT and GTOT are sometimes quantified according to how many molecules are

present per cell. Ranges for RTOT and GTOT have been given as 10
2 − 105 per cell in the

literature [41]; conversion to moles per litre can be carried out by multiplying by the

number of cells per litre, and dividing by Avogadro’s number, NA = 6.022× 1023. As-
suming a typical value of 5× 109 cells per litre [86], 102 − 105 converts to 8.3× 10−13 −
8.3 × 10−10M. Obviously this conversion depends on the number of cells per litre,
which might vary across experiments, hence receptor and G-protein concentrations up

to 10−6M have also been reported [37]. An uncertainty range of 10−12 − 10−6M can
thus be defined for RTOT and GTOT.

The influence of G-protein concentration

The total G-protein concentration is now varied, while RTOT is fixed at 4.15× 10−10M.
Figures 2.3(a) and 2.3(b) show the [αGTP] and [βγ] time courses for various G-

protein concentrations; the peak concentrations of both subunits increase with GTOT,
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which can be seen more clearly in Figure 2.3(c), where the peak values are plotted

against log(GTOT/RTOT). In Figure 2.3(d), the size of the transient peak, quantified by

subtracting the plateau from the peak (Peak−Plateau), is plotted against log(GTOT/RTOT).
When the peak is sustained, Peak − Plateau= 0, but when it is transient, Peak −
Plateau> 0. The significant peak increases occur when log(GTOT/RTOT) lies between

1 and 3, while transience is lost after log(GTOT/RTOT) = 1 (which is when GTOT:RTOT

is 10:1). Also, around this value, the peaks become significantly slower, as illustrated

by Figure 2.3(e). Hence when G-proteins significantly outnumber the receptors, the re-

sponse increases but its qualitative nature changes. Hence, if the transience of the Ca2+

peak depends on the existence of a transient αGTP peak, it can potentially be removed

by expressing more G-protein than receptor.

In general, the dynamics of αGTP and βγ are strikingly similar; the only differences

occur at the lowest G-protein concentrations, when the peaks are relatively insignifi-

cant; in these cases, βγ takes longer to peak than αGTP (see Figure 2.3(e)).

The influence of receptor concentration

The total receptor concentration is now varied, while GTOT is fixed at 4.15× 10−10M.
Figures 2.4(a) and 2.4(b) show the [αGTP] and [βγ] time courses for various re-

ceptor concentrations; the peak values of both subunits increase with [RTOT], which

can be seen more clearly in Figure 2.4(c), where the peak values are plotted against

log(RTOT/GTOT). In Figure 2.4(d), (Peak− Plateau) is plotted against log (RTOT/GTOT).

The significant peak increases occur when log(RTOT/GTOT) lies between -1 and 2,

while transience is lost shortly before log(RTOT/GTOT) = 2 (which is when the RTOT:GTOT

ratio is 100:1). At this point the peaks also become significantly slower, as can be seen

in Figure 2.4(e). Hence, the qualitative nature of the response also changes when the

receptors significantly outnumber the G-proteins (and not just the other way round),

and if the peak hypothesis is true, these results suggest that the Ca2+ transient peak ob-

served in theM3muscarinic Gq pathway mobilisation experimentsmay also be remov-

able by increasing receptor expression. Hence, such experiments are worth designing.

An important observation is that, in general, the agonist generates less of a re-

sponse through receptor overexpression than it does through G-protein overexpres-

sion (compare Figures 2.3(c) and 2.4(c)). This is perhaps because of reaction (1.22)

(LR∗G
kGTP+−→ LR∗ + αGTP + βγ) which allows for instantaneous receptor ’recycling’. Af-

ter αGTP and βγ are released, the dissociated LR∗ complex is free to bind to a different

unboundG-protein, andwhen the total G-protein concentration is high, manymore cy-

cles of G-protein activation are then possible. However, when RTOT is varied the effect

is not the same; at high receptor concentrations, the number of possible cycles is limited
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Figure 2.3: The effects of varying the total G-protein concentration (RTOT = 4.15 ×
10−10M) on αGTP and βγ after the addition of an agonist at t = 10000s, when the system

is at steady state. (a),(b) αGTP and βγ time courses; (c) αGTP and βγ peak values, which

increase with GTOT; (d) Peak−Plateau for αGTP and βγ; (e) the times taken to reach αGTP

and βγ peaks, which are very similar for the significant peaks.
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Figure 2.4: The effects of varying the total receptor concentration (GTOT = 4.15 ×
10−10M) on αGTP and βγ after the addition of an agonist. (a),(b) αGTP and βγ time

courses; (c) αGTP and βγ peak values, which increase with RTOT; (d) Peak−Plateau for
αGTP and βγ; (e) the times taken to reach αGTP and βγ peaks, which are very similar for

the significant peaks.
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by the relatively small G-protein concentration (GTOT = 4.15× 10−10M). The G-protein
does undergo recycling when αGDP, the product of αGTP hydrolysis (αGTP

kgd+−→ αGDP),

reassociates with βγ to reform the whole G-protein (αGDP + βγ
kRA+−→G), which can thus

bind again to another free receptor; however, because it requires two extra reactions,

this is a comparatively delayed recycling process. As the G-protein cannot bind as ef-

fectively to multiple receptors, as the receptor can to multiple G-proteins, G-protein

overexpression is a more effective measure. The receptor concentration is more rou-

tinely manipulated in experimental studies [41], but these results suggest that more

effort should also go into manipulating the G-protein concentration.

It has been shown that variations in the ratio of the total G-protein to receptor con-

centration can alter the transience of the peak response. The ratios were carried out

either with GTOT fixed at 4.15× 10−10M or RTOT fixed at 4.15× 10−10M. A more thor-
ough analysis may be carried out by simulating with various other GTOT : RTOT ratios

within the defined ranges. This kind of analysis will be covered by a more global pa-

rameter analysis on an extension of the cTCAM in Chapter 4.

2.2.3 The influence of ligand properties

The effects of ligand related properties, such as affinity and efficacy (and concentra-

tion), on the dynamics of G-protein activation are now considered. Pharmacological

GPCR experiments are often carried out by stimulating cells with various concentra-

tions of various agonists and measuring the response at a selected point in the path-

way. The ability of these ligands to increase the cellular response can then be observed.

The levels of response tend to depend on where response is measured in the pathway.

For instance, in the previous section it was seen that one active ligand receptor com-

plex (LR∗G) can activate multiple G-protein cycles (see reaction (1.22)), so the αGTP

response is considerably higher than the LR∗G one, as illustrated in Figure 2.5. Such

mechanisms, which take small signals and amplify their effect, occur along the path-

way, and the phenomenon is referred to as signal amplification.

At the University of Nottingham’s Institute of Cell Signalling, Dr Lauren May’s ex-

periments on the M3 Muscarinic receptor pathway measured Ca2+ levels induced by

a range of concentrations of four different agonists; these data are presented as Ca2+

time courses (see Figures 2.2(b)), and corresponding dose response curves, constructed

using the Ca2+ peak values as measures of the system’s response (Figure 2.8(c)). As

mentioned in Chapter 1, αGTP cannot be measured in such an experiment. The cTCAM

can be used to mimic these experiments, but with output at the αGTP level. Although

the cTCAM has previously been analysed in different ways [41, 86, 106], it does not

appear that it has been used to model specific agonists. Here, each agonist will be
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Figure 2.5: The αGTP response is considerably greater than the [LR∗G] response, due

to signal amplification (GTOT = 4.15× 10−10M, RTOT = 4.15× 10−10M, klb+ = 8.4×
107M−1s−1, klb− = 0.37s−1, ζ = ζ+

ζ− = 1000, [L] = 10−7M.

modelled by adjusting the parameters that pertain to ligand binding (affinity) and ef-

ficacy. Comparing the simulated αGTP response with the Ca
2+ data then allows the

agonist’s effects at both levels of the pathway to be observed. In addition, since the

hypothesis of the previous sections is that the transience of the Ca2+ peak depends (in

somemeasure) on that of the αGTP peak, dose-response curves for the αGTP peak values

are compared to the Ca2+ dose-response curves from the experiments. In this section,

only αGTP, the mediator of Ca
2+ release in this receptor system, is considered.

The initial values of GTOT = RTOT = 4.15× 10−10M will be used in all the simula-
tions.

Modelling ligand-specific properties

The four agonists used in Dr May’s experiments are Oxotremorine-M, Carbachol, Pi-

locarpine and Bethanachol. Binding studies have been carried out on these agonists

which reveal that they have different affinities for the M3 muscarinic receptor, illus-

trated by the fact that their (experimentally estimated) binding and unbinding rate

constants, klb+ and klb− (which are shown in Table 2.2.1)) differ from each other [92].

Modelling affinity is then simply a matter of using these values in the simulations.

(Note that the experimental estimation method made use of a simplified model, which

excludes the active receptor state (R∗), hence the rate constants may not be completely

fine-tuned for the more detailed cTCAM. However, at the very least, they are useful for

comparing the different agonist affinities.)

Modelling efficacy is a less direct procedure. The parameter that controls ligand

efficacy in the cTCAM is ζ = ζ+
ζ−
, so each of the four agonists can have a different ζ

value. This is modelled by fixing ζ+ = 1 and assigning different ζ− values to each ag-

onist; ζ−, and not ζ+, is varied because experimental studies suggest that an agonist’s

24



CHAPTER 2: MODELLING G-PROTEIN ACTIVATION

Agonist klb+(M−1s−1) klb−(s−1) ζ

Oxotremorine-M klb+ = 2885.6 klb− = 0.14 543.48

Carbachol klb+ = 691.2 klb− = 0.14 294.11

Pilocarpine klb+ = 10222.2 klb− = 0.35 29.94

Bethanachol klb+ = 796.8 klb− = 0.26 49.5

Table 2.2.1: Rate constants for the association (klb+) and dissociation (klb−) of some ag-

onists, taken from the experimental studies of Sykes et al. [92], as well as estimates of

their efficacy, ζ.

efficacy might be governed by how slowly it dissociates [92]. ζ values for each agonist

can be estimated by converting experimentally estimated measures of relative efficacy,

τ, from the aforementioned study [92]; the τ values were obtained by fitting to Black

and Leff’s [9] operational model of agonism, given by

[L](Emax
τ

τ+1)
KD

τ+1 + [L]
, (2.13)

where Emax is the maximum possible response and KD is the dissociation constant of

ligand-receptor binding. It can be seen that, the higher its τ value ( τ
τ+1 → 1, KDτ+1 → 0),

the closer an agonist comes to producing the maximum response. There is no direct

way to make the conversions from τ to ζ, but since τ is a measure of relative efficacy,

a reasonable approach is to obtain corresponding ζ values which preserve the same

ratios as respective τ values. It is assumed that the agonist with the maximum efficacy

is represented by ζ = 1000, corresponding to the highest experimentally estimated τ

value, τmax = 42701 and then for the ith agonist:

τmax
τi

=
1000

ζ i
. (2.14)

Then,
ζ i− =

ζ+

ζ i
=
1

ζ i
. (2.15)

The ζ values obtained for each agonist are given in Table 2.2.1. Oxotremorine-M is

the most efficacious, with ζ = 543.48, while Pilocarpine, with ζ = 29.94, is the least.

Simulations

Figures 2.6 and 2.7 show that, for all the agonists, the simulated αGTP and experimen-

tal Ca2+ time courses are similar, and the αGTP and Ca
2+ peaks remain transient as

agonist concentration increases (although, as the previous section showed, receptor or

G-protein overexpression can remove the transience). Another similarity is that the
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simulated αGTP time-to-peak and the experimental Ca
2+ time-to-peak exhibit a simi-

lar dependence on the agonist concentration; Figures 2.8(c) and 2.8(d) show that both

times-to-peak decrease as each agonist’s concentration increases. It should be noted

that the times taken to reach the αGTP peak are generally longer than the times taken to

reach the Ca2+ peak in the experiments (Figure 2.8), which would seem to contradict

the transient peak hypothesis. However, the discrepancy might be explained by the

fact that αGTP’s interaction with PLC which occurs further down in the pathway is not

included in the model. PLC considerably accelerates αGTP hydrolysis (see section 1.1.1)

[27], and so would cause the αGTP peak to occur much earlier.

The main difference between the experimental Ca2+ peak and the simulated αGTP

one is that all agonists are able to produce the same maximal Ca2+ response (through

signal amplification), while they produce different maximal αGTP responses. In other

words, at the Ca2+ level, all four drugs are full agonists, but not at the αGTP level; this is

especially indicated by the fact that the Ca2+ curves are left-shifted, with smaller con-

centrations of agonist required to produce the maximal response. For instance, each

agonist, supplied at 10−5M, produces a small αGTP response, but the same concentra-

tion produces the maximal Ca2+ response. This indicates that beyond the G-protein

activation cycle, the pathway has other mechanisms which enable considerable signal

amplification. These mechanisms will be explored later in Chapters 3 and 4 when the

cTCAM is extended to include Ca2+ mobilisation.

Figure 2.9 shows that the maximal αGTP response increases with ζ; it is less influ-

enced by the ligand binding rate, klb+. For instance, even though Pilocarpine is by far

the fastest binding of the agonists (Table 2.2.1), it produces the smallest maximal αGTP

peak, because its ζ value does not favour the active receptor state as strongly as the

other agonists, making it the least efficacious agonist for the αGTP response. This is one

advantage of studying the G-protein model, the intrinsic pharmacological properties

of the drugs are more evident, before the signal is completely amplified.

2.3 The influence of subunit dissociation

The cTCAM and other mathematical models of GPCR signalling assume the widely

embraced hypothesis that the G-protein dissociates into αGTP and βγ on activation [37,

86, 106]. However, as discussed in section 1.1.1, another experimentally supported

hypothesis is that the activated subunits do not need to dissociate in order to mediate

downstream signalling [27, 79]; a variant of the cTCAM can be derived which reflects

the latter hypothesis. It is interesting and important to compare the models, looking

for parameter regimes under which they might or might not be interchangeable. In
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Figure 2.6: Ca2+ time courses from the experiments and simulated αGTP time courses

are qualitatively similar. (a) Ca2+ time courses for Oxotremorine-M; (b) Simulated αGTP

time courses for Oxotremorine-M (klb+ = 2885.6; klb− = 0.14; ζ = 543.48); (c) Ca2+

time courses for Pilocarpine; (d) Simulated αGTP time courses for Pilocarpine (klb+ =

10222.2; klb− = 0.35; ζ = 29.94).
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Figure 2.7: Ca2+ time courses from the experiments and simulated αGTP time courses

are qualitatively similar. (a) Ca2+ time courses for Carbachol; (b) Simulated αGTP time

courses for Carbachol (klb+ = 691.2, klb− = 0.14, ζ = 294.11;) (c) Ca2+ time courses

for Bethanachol; (d) Simulated αGTP time courses for Bethanachol (klb+ = 796.8, klb− =

0.26, ζ = 49.5).
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Figure 2.8: Comparing agonist effects seen in the Ca2+ data [54] with effects on simu-

lated αGTP (predicted by the cTCAM) (a) All four drugs are full agonists for the Ca
2+

peak response due to signal amplification; (b) partial agonism occurs for the αGTP peak

response; (c) Ca2+ times-to-peak decrease as the agonist concentrations increase ; (d)

αGTP times-to-peak do the same.
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Figure 2.9: The maximal αGTP peak increases with ζ.

essence, what is being explored is if one model of G-protein activation can be flexible

enough to account for both hypotheses.

An adapted version of the cTCAM is derived in which the G-protein does not disso-

ciate (called theNo-dissociation cTCAM). Bothmodels differ only in reactions pertaining

to the G-protein activation and deactivation cycle, outlined and named as follows:

cTCAM No-dissociation cTCAM

R∗G
kGTP+−→ R∗ + αGTP + βγ R∗G

kGTP+−→ R∗ + GGTP (Activation step)

LR∗G
kGTP+−→ LR∗ + αGTP + βγ LR∗G

kGTP+−→ LR∗ + GGTP (Activation step)

αGTP
kgd+−→ αGDP GGTP

ψkgd+−→ G (Deactivation step)

αGDP + βγ
kRA+−→ G (Re-association step)

where GGTP is the activated, undissociated G-protein. ψ is set to 1, based on the as-

sumption that the rate constant for the deactivation step is the same in the cTCAM and

No-dissociation cTCAM, as being bound to the βγ subunit is not expected to influence

the α subunit’s inherent GTPase ability.

The same agonist will be used to simulate both models (klb+ = 8.4× 107M−1s−1,

klb− = 0.37s−1, ζ = ζ−
ζ+

= 1000). The initial values are RTOT = GTOT = 4.15× 10−10M.
Figure 2.10(a) shows that the αGTP and GGTP time courses are virtually indistin-

guishable, hence the cTCAM and the No-dissociation cTCAM make almost identical

predictions of the activated G-protein response. This is due to the quick re-association

of subunits, built into the cTCAM via a high value of kRA+, which at 1.2× 1010M−1s−1,

is the largest parameter in the model among those with units of M−1s−1. This is il-

lustrated in Figure 2.11(a), where [αGTP] decreases with the value of kRA+ in the range

1.2× 105 − 1.2× 1010M−1s−1. Between kRA+ = 1.2× 108 − 1.2× 1010M−1s−1, [αGTP]
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Figure 2.10: Comparison of the activated G-protein responses in the cTCAM and No-

dissociation cTCAM simulated with GTOT = 4.15× 10−10M, RTOT = 4.15× 10−10M
and kRA+ = 1010M−1s−1 in the cTCAM. The responses in both models are similar for

this parameter set.

does not vary much, but below kRA+ = 1.2 × 108M−1s−1, begins to noticeably de-

crease, to the point where the response is insignificant at kRA+ = 1.2× 105M−1s−1. The

decrease in [αGTP] can be explained as follows. As re-association slows down, the G-

protein stays increasingly in the βγ and inactive αGDP forms, instead of re-forming the

intact G-protein G; this is evidenced by the fact that βγ and αGDP increase as kRA+ de-

creases (see Figures 2.11(b) and 2.11(c)); as a result, fewer and fewer G-proteins (G) are

available to re-associate with free receptors to form the active receptor-G-protein com-

plexes ([R∗G],[LR∗G]) from which αGTP is formed; this is illustrated in Figure 2.11(d),

where [R∗G] + [LR∗G] decreases with kRA+.

The cTCAM, under a parameter regime of fast subunit re-association, is thus equiv-

alent to the No-dissociation cTCAM. Outside of that regime, the αGTP response to an

efficacious agonist is much suppressed or trivial (see Figure 2.11(a)), which does not

seem likely. Therefore, it seems that if the subunits dissociate in cell membranes, they

re-associate quickly enough to ensure that the active G-protein response is similar to

a system in which the subunits do not dissociate. However, even though slow re-

association is less likely, it can be easily accounted for by the cTCAM, but not by the

No-dissociation cTCAM; so the cTCAM is the more flexible model.

The aim of this section was to determine which model is more suitable for mod-

elling G-protein activation. However, the results also suggest that agonist stimulation

experiments are worth designing, in which compounds that competitively and neu-

trally bind to either subunit are present; this would delay the rate of re-association,

and according to the cTCAM, potentially reduce the cellular response. Conclusions
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Figure 2.11: When the subunit re-association constant, kRA+, is decreased, [αGTP] and

the active receptor concentration decrease ((a), (d)), while [αGDP] and [βγ] increase and

accumulate ((c), (b)).

can then be drawn about the dependence of agonist potency on G-protein dissociation

dynamics.

2.4 Discussion

As a first step in the construction of a comprehensive model of GPCR-mediated mo-

bilisation of Ca2+ from intracellular stores, this chapter analysed models of G-protein

activation alone.

The cTCAM was used to analyse the αGTP and βγ response to agonist stimula-

tion. In virtually indistinguishable manners, [αGTP] and [βγ] both increased with the

G-protein and receptor expression levels (the previous section suggests however, that

the responsesmay not be so similar if subunit re-association is slow, see Figures 2.11(a)–

(b)). It was also seen that the effect of agonist stimulation is more enhanced by G-

protein overexpression than by receptor overexpression. This is because the receptor
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Figure 2.12: Partial agonism occurs for the Ca2+ response in the βγ-mediated A1 system

[53], unlike the αGTP-mediated M3 receptor system, where full agonism occurs.

has a more effective way of (sequentially) activating multiple G-proteins, and so more

G-protein activation cycles are made possible as the total G-protein concentration in-

creases. It thus seems that the manipulation of G-protein expression levels should be

the focus of more experimental work.

The effects of ligand-specific properties such as the binding rate and efficacy were

also explored, by comparing the responses induced by four different agonists. It was

seen that partial agonism occurs for the G-protein-level response, in contrast to the

full agonism which has been observed in experimental data obtained at the Ca2+ level,

suggesting that the M3 pathway is strongly amplifying, which is not always the case

with other Ca2+ mobilising pathways; for example, partial agonism occurs in the βγ-

mediated AdenosineA1 receptor system for the Ca2 response, as illustrated by the dose

response curves in Figure 2.12, which resemble the previously simulated αGTP curves

(Figure 2.8(b)).

The hypothesis that the transience of the Ca2+ peak is due to a transient αGTP peak

was explored. The simulated results suggest that G-protein and receptor overexpres-

sion, by removing the transient αGTP peak, may also remove the transient Ca
2+ peak,

replacing it with a sustained maximum response. The transient peak was more sen-

sitive to changes in the total G-protein concentration than the total receptor concen-

tration, suggesting that the same holds for the transient Ca2+ peak, if the hypothesis

is true. It should be noted that receptor desensitisation of the M3 muscarinic recep-

tor (which is not included in the cTCAM and would contribute to the transience of

the peak) is known to occur; therefore the peak might be more robust to changes in

the G-protein and receptor concentrations than the cTCAM suggests. The effects of re-

ceptor desensitisation will be explored when the model is extended in Chapter 3.The

simulated αGTP and experimental Ca
2+ transient peaks also responded similarly to in-
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creasing agonist concentrations, thus supporting the hypothesis, which will be further

explored in Chapter 3.

It was also shown that the cTCAM, a model of G-protein subunit dissociation, is

equivalent to one in which the subunits do not dissociate, under a parameter regime

of fast re-association. Outside of that regime, the αGTP response was either much re-

pressed or trivial (see Figure 2.11(a)), which is unlikely to be the case in the cell mem-

brane, as agonist efficacy would be greatly inhibited. This suggests that experiments in

which subunit re-association is delayed or inhibited could be carried out to determine

the dependence of agonist efficacy on subunit dynamics.

The cTCAM with fast subunit reassociation will be used to assemble the Ca2+

model, as either fast subunit re-association or no dissociation at all are what likely

occurs in the experimental system. The cTCAM is also more versatile than the No-

dissociation model, as it is able to account for the G-protein dynamics caused by slow

re-association.

34



CHAPTER 3

GPCR-mediated Ca2+Mobilisation

Model

3.1 Introduction

As mentioned in Chapter 2, the activation of αGTP in the M3 pathway leads to the

mobilisation of Ca2+ from intracellular stores into the cytosol. Having carried out some

analysis on the G-protein activation model (cTCAM), that modelmay now be extended

to include details of the events leading to Ca2+ mobilisation.

Ca2+ is an essential and versatile secondmessengerwith roles in numerous physio-

logical processes (and consequently, pathologies), including muscle contraction, fertili-

sation, gene transcription and cell division [27]. In heart muscle cells for instance, acti-

vation of the GPCR’s, Ang-2 receptor-Type 1 and Type 2, elevates cytosolic Ca2+, which

activates the phosphatase, calcineurin, [17]; this can cause massive cardiac enlarge-

ment and lead to heart failure [24]. In the M3 muscarinic receptor pathway, agonist-

stimulated Ca2+mobilisation influences function in bladder and intestinal smoothmus-

cle by mediating contraction; in disease conditions, such as diabetes, smooth muscle

is hypersensitive to Ca2+ [96]. The same pathway is also implicated in enhanced gene

transcription via the activation of the transcription factors, the early growth factor, Egr-

1, and activator protein, AP-1, both of which can mediate cell division [69]. Hence,

understanding the mechanisms behind Ca2+ mobilisation has implications for devel-

oping or improving therapies for many disease conditions.

There are two major ways by which the level of cytosolic Ca2+ is raised in non-

excitable cells, either via a GPCR-activated release from intracellular stores or an influx

from the extracellular environment across plasma membrane channels, activated when

the stores near depletion [27]. Organelles that can act as intracellular stores include

the endoplasmic reticulum (ER), the sarcoplasmic reticulum (SR), and the mitochon-
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Figure 3.1: GPCR activation leads to the production of IP3, which mediates Ca
2+ release.

dria. Agonist-stimulated Ca2+ release from the ER is a central process [27, 82] and so,

for simplicity, will be the focus of this work. There are mechanisms for removing ex-

cess Ca2+ from the cytosol, which could otherwise cause cell death or damage [94].

Excess Ca2+ can be transported back into the ER by the sarcoplasmic/endoplasmic

reticulum calcium ATPase (SERCA) pumps (located in the organelle membrane), or

removed from the cytosol into the extracellular environment by pumps located in the

plasmamembrane, called plasmamembrane Ca2+ ATPases (PMCA) [27]. Anotherway

in which the cytosolic Ca2+ concentration is regulated is via binding proteins, called

buffers, which thus decrease the concentration of free Ca2+ and inhibit the activation

of Ca2+-mediated processes [10].

In theM3 (Gq–coupled) pathway, αGTP binds to the enzyme Phospholipase C (PLC),

which is located in the plasmamembrane, to form αGTPPLC, which is then activated by

Ca2+. The signal generated by αGTPPLC is terminated by the α subunit’s intrinsic GT-

Pase activity, which is accelerated by PLC, resulting in the dissociation of the complex

into αGDP and PLC. There are three known PLC isoforms: PLCγ, PLCδ and PLCβ, the

last of which is activated by the Gq protein. The αGTPPLC complex hydrolyses its sub-

strate, phosphatidylinositol bisphosphate (PIP2), to produce inositol triphosphate (IP3)

and diacylglycerol (DAG). IP3 diffuses into the cytosol, eventually inducing Ca
2+ re-

lease from intracellular stores, and is subject to a multi-step degradation into an inositol

phosphate pool fromwhich PIP2 is re-synthesised [74]. DAG remains at themembrane

and causes the activation of Protein kinase C (PKC), which activates a pathway that can

involve the phosphorylation and consequent desensitisation of the GPCR, and can ex-

tend to the nucleus of the cell [55]. Other kinases might also mediate desensitisation

[105]. For simplicity, only the IP3 pathway (see Figure 3.1) will be explicitly modelled,

as it involves the main processes that lead to Ca2+ release.
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Figure 3.2: Ca2+ dependence of the IP3R open probability. Reproduced from [62]. Ini-

tially the open probability increases with [Ca2+] (pCa means |log[Ca2+]|), but past a
threshold value, begins to decrease.

IP3 diffuses through the cytosol to bind to receptors (IP3R) on the membrane of the

ER, which are ion channels that open on activation to release Ca2+ into the cytosol. The

IP3R consists of four subunits, each possessing binding sites for IP3 and Ca
2+, both

of which co-operatively regulate the channels. There are at least three IP3R subtypes,

designated type 1, type 2, type 3 – which differ in aspects of their regulation, and more

than one type may be expressed in the same cell [27]. All subtypes are believed to be

regulated in a biphasic manner by IP3-induced Ca
2+ [91]. The accepted theory is that

IP3R possesses three binding sites, one for IP3 and two for Ca
2+ – one stimulatory, the

other inhibitory. On binding, IP3 increases the Ca
2+ sensitivity of the IP3R’s, causing

them to bind to Ca2+ and open; this leads to an increase in cytosolic Ca2+, which when

high enough, causes the channels to begin to close again. In other words, Ca2+ first

exerts positive feedback on its own mobilisation, and then negative feedback. This

phenomenon is normally referred to as calcium-induced calcium release (CICR) [27,

82], illustrated in Figure 3.2.

3.2 Experimental studies of Ca2+ mobilisation

Agonist-stimulated Ca2+-mobilisation experiments are often carried out in either hu-

man or surrogate cells, which can be engineered to express a variety of Ca2+-activating

GPCR’s. Ca2+ is easily measured when the cells are loaded with high affinity indica-

tors that emit fluorescence when bound to Ca2+. These experiments can be carried out

in the presence or absence of extracellular Ca2+; the data that will be discussed here are

from the latter experimental setting, allowing for a simpler model which does not need
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Figure 3.3: Data from Ca2+-mobilisation (in the absence of extracellular Ca2+) exper-

iments performed at the University of Nottingham’s Institute of Cell Signalling (ICS)

[52]. Each point is the mean ± standard error (S.E.M) of the cell population, and is nor-
malised to the fluorescence due to stimulation by 10−4M of Carbachol (a) Time courses

for Ca2+-mobilisation induced by various concentrations of the agonist Oxotremorine-

M. (b) Dose response curves of various agonists for the Ca2+ peak response.

to include the influx of extracellular Ca2+.

Figure 3.3 shows data from the Ca2+ mobilisation experiments carried out at the

Institute of Cell Signalling [54], in which Chinese hamster ovary cells (CHO) are trans-

fected with the human muscarinicM3 receptor and loaded with a fluorescent indicator

that has a high affinity for Ca2+; the system is then left to settle down for 30 minutes,

and basal fluorescence is measured. Agonist treatment increases the fluorescence, indi-

cating the release of Ca2+ ions into the cytosol, to which the indicators rapidly bind. At

several time points, fluorescence is measured, and data for the average of the cell popu-

lation indicates that a transient Ca2+ peak occurring in 5− 20s is the response induced
by virtually all concentrations of the agonist Oxotremorine-M (Figure 3.3(a)), and Ca2+

tends to return to its basal concentration. Dose-response curves for Oxotremorine-M

and other agonists, Carbachol, Pilocarpine and Bethanecol (modelled in Chapter2) in-

dicate that they all act as full agonists, producing the same maximal Ca2+ response,

although at different concentrations (Figure 3.3(b)). The time courses for these agonists

are also similar (results not shown).

Studies have indicated that many fluorescent indicators, in their Ca2+-free forms,

are competitive antagonists for IP3 binding to IP3R, causing a concentration-dependent

inhibition of IP3 binding. Antagonism is only significant at unusually high concentra-

tions of the fluorescence indicators [64, 77], indicating that their binding dynamics do

not need to be included in the model.

38



CHAPTER 3: GPCR-MEDIATED Ca2+ MOBILISATION MODEL

3.3 Existing mathematical models of Ca2+ dynamics

There are many models of Ca2+ signalling which have shown good agreement with

available experimental results. Many of the existing models were developed to inves-

tigate Ca2+ oscillations, and it should be noted that the timecourses in Figure 3.3(a)

are non-oscillatory, so oscillations are not the focus here. However, in other systems,

oscillations have been experimentally observed [94].

Early models of Ca2+ dynamics did not include explicit details of IP3R’s mecha-

nisms, because they had not yet emerged from experimental studies. The early models

were based on the knowledge that Ca2+ oscillations rely on the phenomenon of CICR,

and generally focused on the cytosolic aspects.

Themost influential of these early phenomenological models was by Goldbeter and

Dupont [26]; it assumes the existence of two intracellular Ca2+ stores, one sensitive to

IP3, the other sensitive to Ca
2+. IP3 causes the release of Ca

2+ from the IP3-sensitive

store; this increase in cytosolic Ca2+ then triggers release from the Ca2+-sensitive store.

Influx and efflux of Ca2+ across membranes is included in this model as well. Influx

is modelled as constant while efflux depends linearly on cytosolic Ca2+ [82]. A later

version of this model allowed for the existence of just one Ca2+ store. Both versions

predicted Ca2+ oscillations similar to those observed experimentally.

3.3.1 Models of the IP3 receptor

Later experimental studies uncovered the role of the IP3 receptor (IP3R) in CICR (that

it is activated by low Ca2+ concentrations and subsequently inactivated by high Ca2+

concentrations); hence, the relationship between the open probability of the channel

and [Ca2+] is bell-shaped (see Figure 3.2). Models subsequently incorporated mecha-

nistic details of IP3R interactions with IP3 and Ca
2+.

The De Young-Keizer [20] model was the earliest model to include details of IP3R

kinetics. It assumes that there are three IP3R subunits, each with three binding sites

for IP3, activating Ca
2+, and inhibiting Ca2+, which are allowed to bind in any order.

Hence there are eight possible receptor states. The notation Sijk, i, j, k = 0 or 1 may

be used to describe fractions of IP3R in particular states, with 1 corresponding to an

occupied site, and 0, to an unoccupied one; so the possible fractional states are S000,

S010, S001, S011, S100, S110, S101 and S111. The receptor is activated when in the state S110.

It is assumed that the channels open only when three subunits are activated, hence S3110

is the open probability. The model is a system of eight ODEs, seven representative of

the receptor states and derived from mass action kinetics; its Ca2+ ODE has a source

term proportional both to the Ca2+ gradient between the cytosol and ER and to the
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open probability of the channels, and its sink term is a Hill function modelling SERCA

flux, given by:

d[Ca2+ ]

dt
= vr(v1S

3
110 + v2)([Ca

2+
ER]− [Ca2+]) − p1[Ca

2+]2

[Ca2+]2 + p22
, (3.1)

where Ca2+ER is the concentration of Ca
2+ in the ER, vr is the ER to cytosol volume ratio,

and v1 and v2 set the maximal Ca
2+ fluxes. The factor vr accounts for the fact that the

flux is between the cytoplasm and ER, which have different volumes. Hence, fluxes

between these compartments do not cause the same concentration change.
d[Ca2+ER]
dt is

then given by (v1S
3
110 + v2)([Ca

2+
ER] − [Ca2+]) − p1[Ca

2+]2

vr[Ca2+]2+p22
. Note that p1 is a composite

term including vr . The Hill function represents more complex mechanisms, in which,

after Ca2+ binds to the pump, it undergoes several transformations, including con-

formational changes which send Ca2+ back into the ER [94]. The Hill coefficient is 2,

representing two binding sites for Ca2+. Themodel was fit to steady state data to obtain

the rate constants, and was able to reproduce Ca2+ oscillations via a Hopf bifurcation

from a stable steady state [95]. No extracellular Ca2+ fluxes were modelled, so [Ca2+ER]

could be eliminated, [45].

The Li-Rinzel model is a simplification of the De Young-Keizer model, derived by

making assumptions of rapid kinetics for the binding of IP3 and stimulatory Ca
2+,

resulting in a two-dimensional system. This simplifiedmodel is able to reproducemost

of the qualitative predictions of the eight-state Keizer-De Young model [45].

Another simpler alternative to the Keizer-De Young model is the model by Othmer

and Tang [70], derived using the assumption that IP3, activating Ca
2+ and inhibitory

Ca2+ bind to the IP3R sequentially (an experimentally supported theory [91]) so that

the only possible IP3R states are S000, S100, S110, S111. As in the Keizer-De Youngmodel,

the active state is S110, but it is assumed that only one subunit needs to be active for the

channel to open. The Ca2+ rate is given by:

d[Ca2+ ]

dt
= (1+ vr)(γ0+ γ

′
1S110)(Ca

2+
AV − [Ca2+]) − p1[Ca

2+]4

[Ca2+]4 + p42
, (3.2)

where γ0 quantifies a basal leak, and γ
′
1, the maximal Ca

2+ flux. Ca2+AV is the volume

average concentration of the cell, the level cytosolic Ca2+ approaches if the ER network

is ruptured [36]; it is given by
[Ca2+]+vr[Ca

2+
ER]

1+vr
, and is assumed to be constant due to

no flux across the plasma membrane. Like the previous models, this one successfully

reproduces Ca2+ oscillations [70].

The above models do not include the details of ligand-receptor-G-protein dynam-

ics but merely utilise [IP3] as the input parameter. The literature also includes more

comprehensive models of GPCR-mediated Ca2+ mobilisation, which are discussed in
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the next section.

3.3.2 Comprehensive models of Ca2+ mobilisation

There are at least four relevant comprehensive Ca2+-mobilisation models in the liter-

ature, which incorporate details of signalling all the way from GPCR activation. Two

of these models cover events from agonist stimulation through to Ca2+ mobilisation

[37, 44], while the others go beyond to cover downstream processes: Ca2+-mediated

initiation of smooth muscle contraction via the phosphorylation of myosin II [48] and

the secretion of luteinizing hormone (LH) [6, 30].

Lemon et al. presented an ODE model of GPCR-mediated IP3 formation and con-

sequent Ca2+ mobilisation [44] in the PTY2 receptor system. This model took into

account the desensitisation, and subsequent recycling of the receptor, as well as PIP2

depletion and replenishment; assumptions of rapid kinetics were used to significantly

simplify the model equations. A rapid transient peak (≈ 25s) was predicted for αGTP,

IP3 and Ca
2+ over different rates of PIP2 replenishment. It was predicted that the de-

sensitisation of the ligand-receptor complex causes a decrease in αGTP on a time scale

of minutes.

Using the Virtual cell simulation and analysis suite software, Lukas [48] modelled

a Ca2+ signalling process of agonist binding through to Ca2+-mediated protein phos-

phorylation of the myosin light chain (MLC), which initiates contraction in smooth

muscle. G-protein activation was modelled similarly to the cTCAM (see Chapters 1

and 2) except that constitutively active receptors (R∗) were not included. Receptor de-

sensitisation is also included as an irreversible phosphorylation reaction by a G-protein

receptor kinase (GRK), hence there are five possible receptor states compared to eight

in Chapter 2’s G-protein activation model [48]. The model was simulated both with

generic parameters, and with parameters specific to the Bradykinin receptor. In both

cases, the Ca2+ response was a rapid, transient peak (see Figure 3.4 for the. When G-

protein-receptor pre-coupling was removed in the generic case, the peak was slower.

The model also predicted that the timing and magnitude of the downstream phospho-

rylation event is dependent on the agonist concentration.

Washington et al. [102] presented a model of GPCR-mediated Ca2+ mobilisation

leading to the secretion of luteinizing hormone (LH) (which triggers ovulation) in the

Gonadotropin-releasing hormone receptor (GnRH) system. In this model, the receptors

could bind to each other to form dimers, as has been experimentally observed in that

receptor system [30]. In addition to sustained hormone stimulation, the model also

considered the effects of stimulation applied in brief pulses, to mirror the way that

GnRH is secreted physiologically. Transient Ca2+ peaks were predicted, which could
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Figure 3.4: GPCR-mediated Ca2+ models in the literature predict the experimentally

observed transient Ca2+ peak. Shown are transients predicted by the Lukas model for

the bradykin receptor system [48]. The dotted line is the response to 3 × 10−6 M of
agonist, while the solid one is for 30× 10−6M.

re-occur at each point of stimulation, provided the dose and frequency of stimulation

were low. Armstrong et al. [6] used the same model to show significant reduction of

the Ca2+ response at high GnRH receptor concentration, with the peaks much lower

after the initial stimulation.

Kang and Othmer [37] modelled agonist-induced Ca2+ mobilisation in the Glu-

tamate receptor (GPCR) system, incorporating details of the pathways activated not

only by IP3, but also by DAG. In this model, the DAG pathway activates PKC, which

phosphorylates PLC and the active ligand-receptor complex (LR∗), causing temporary

desensitisation. The receptor can only become activated when bound by the ligand, so

the R∗ state is not included in the model. All reaction rates are governed by mass ac-

tion, and the [Ca2+]ODE is based on the Othmer and Tangmodel of sequential binding

[70]:

d[Ca2+ ]

dt
= (1+ vr)(γ0+ γ1[IP3 IP3RCa

2+])(Ca2+AV − [Ca2+]) − p1[Ca
2+]2

[Ca2+]2 + p22
, (3.3)

The full model is thus a system of 25 coupledODEs, which was reduced to 19, using

equations of conservation.

The influence of PKC on the nature of the Ca2+ response was explored. The model

was able to reproduce oscillations and transient peak responses. A bifurcation analysis

showed that the transient peak occurs for high IP3 production rates and zero or low

PKC regulation, while oscillations occurred for intermediate IP3 production rates and

zero or low PKC regulation. Hence, oscillations are possible without the inclusion of

PKC dynamics, which is in accordance with the previously mentioned IP3R models.

The range of IP3 production rates for which oscillations occurred were widened by
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Figure 3.5: Dose-response curves from the experiments of Sykes et al. measuring αGTPγS

in the M3 Muscarinic receptor system [93] reveal that partial agonism occurs for the G-

protein response. The system thus has amplification machinery through which partial

agonists at that level of the pathway are full agonists at the Ca2+ level (compare Figure

3.3(b)).

increasing PKC activity. Hence, the model predicts that PKC, in conjunction with PLC,

can act as a switch between different Ca2+ response patterns, because of the ability to

modulate [IP3], which is the main determinant of response patterns.

The Kang and Othmer model is comprehensive, like the Ca2+ model to be con-

structed in this chapter, and models IP3R dynamics based on an experimentally sup-

ported (and model-simplifying) theory of sequential binding. Hence, out of existing

Ca2+ models in the literature, Chapter 2’s G-protein activation model (cTCAM) is ex-

tended using downstream details from the Kang and Othmer model.

3.4 Signal amplification

Chapter 2’s G-protein activation model predicted that partial agonism occurs for the

αGTP response, a result which is apparently supported by the experimental results in

Figure 3.5, which show partial agonism for αGTPγS, which is a non-hydrolysable ana-

logue of αGTP. The experimental study included the four agonists studied in Chapter

2, and three others, including the receptor’s endogenous ligand, Acetylcholine [93].

A typical pharmacological measure of agonist efficacy is the EC50, which is the

concentration of agonist that induces the half-maximal response [40]. A quantitative

measure of signal amplification is found by comparing the EC50 values (or variants

of it) of the αGTPγS and Ca
2+ responses. It is convenient to use the absolute value of

the logarithm of the EC50, referred to as pEC50 in pharmacology, and denoted here by

|logEC50|. The higher the value of an agonist’s |logEC50|, the more potent it is; for
instance, |logEC50| = 9 means that only 10−9M of an agonist is required to induce a

half-maximal response. The values that pertain to αGTPγS and Ca
2+ are shown in Table
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Agonist
|log EC50| of response

αGTPγS Ca2+

Oxotremorine-M 5.59 8.76

Carbachol 4.64 7.98

Pilocarpine 5.05 7.72

Bethanechol 4.62 6.77

Table 3.4.1: |logEC50| values of the αGTPγS response and that of Ca
2+ [93]. The values

that pertain to Ca2+ and the corresponding ones for αGTPγS always differ by at least 2.15,

indicating that signal amplification has occurred between these stages in the pathway.

3.4.1 [93], and it can be seen that, for each agonist, they differ by at least 2.15 (thus the

Ca2+ curves are more left shifted). This shows that the pathway has mechanisms for

amplifying the signal between the levels of αGTP production and Ca
2+ release, as was

concluded in Chapter 2.

None of the aforementioned comprehensive models attempt to model the signal

amplification that occurs between the αGTP and Ca
2+ levels of the pathway. A major

aim of the Ca2+-mobilisation model of this chapter will be to reproduce that pathway

feature, which is so evident in the data. This continues the pharmacologically flavoured

modelling from Chapter 2.

3.5 Extension of the G-protein activation model

Here, the full Ca2+mobilisation model is assembled by extendingChapter 2’s G-protein

activation model to include the downstream processes which culminate in Ca2+ mobil-

isation. As previously mentioned, this is accomplished using relevant components of

the Kang and Othmer model.

The output of the cTCAM (see Chapter 2) is αGTP, and its role in activating the

cascade of processes that lead to Ca2+ release has been explained in section 3.1. These

processes are represented by the following reactions, after Kang and Othmer [37]:

αGTP + PLC

kPLCb+−−⇀
↽−−
kPLCb−

αGTPPLC (3.4)

Ca2+ + αGTPPLC

kPLCact−−⇀
↽−−
kPLCdeact

αGTPPLC
∗ (3.5)

αGTPPLC
∗ + PIP2

kPIP2b+−−⇀
↽−−
kPIP2b−

αGTPPLC
∗PIP2 (3.6)

αGTPPLC
∗PIP2

kIP3−→ αGTPPLC
∗ + IP3+ DAG (3.7)
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αGTPPLC
∗ kPLCdis−→ αGDP + PLC+ Ca2+ (3.8)

IP3
kIP3deg−→ 0 (3.9)

IP3 + IP3R

kIP3Rb+−−⇀
↽−−
kIP3Rb−

IP3 IP3R (3.10)

IP3 IP3R+ Ca2+
k
Ca2+act+−−⇀
↽−−
k
Ca2+act−

IP3 IP3RCa
2+ (3.11)

IP3 IP3RCa
2+ + Ca2+

kCa2+inh+−−⇀
↽−−
k
Ca2+inh−

IP3 IP3RCa
2+Ca2+ (3.12)

d[Ca2+]

dt
= (1+ νr)(γ0+ γ1[IP3 IP3RCa

2+])(Ca2+AV − [Ca2+]) − p1[Ca
2+]2

[Ca2+]2 + p22
. (3.13)

Reactions (3.4) - (3.12) represent the processes from αGTP-PLC binding to IP3 pro-

duction and consequent binding to its receptor (IP3R), while equation (3.13) describes

the rate of change of cytosolic Ca2+, which is not modelled by mass action, but is based

on the Tang and Othmer model described in the previous section. Ca2+’s rate of release

from the ER is proportional to the concentration gradient between the cytosol and ER,

and the concentration of activated IP3R’s ([IP3 IP3RCa2+]). νr is the ER/cytosol ratio,

γ0 represents the basal Ca
2+ permeability of the ER, while γ1 is a measure of the sensi-

tivity of IP3R to IP3. The rate of Ca
2+ efflux into the ER is modelled by a Hill function

with exponent two, in which p1 represents the maximal rate of the SERCA pumps, and

p2 is the Michaelis constant.

As in Chapter 2, the law of mass action is used to convert the reactions into ODEs,

which when coupled to the G-protein activation model constitute the Ca2+ mobilisa-

tion model, a system of 22 ODEs, which can be found in Appendix B.3; the whole

pathway is illustrated in Figure 3.6. The G-protein activation model of Chapter 2 was

a model of 10 governing ODEs, so this represents a considerable increase in model

complexity. Complex models can sometimes be simplified based on timescale consid-

erations (using asymptotic analysis) [106], but this requires confidence in the accuracy

of the model parameters, which is rarely the case with biological models as many pa-

rameters cannot be measured experimentally, while some vary from cell to cell [41],

hence such model simplification is not attempted here.

The data being used to guide this modelling effort pertain to experiments carried

out in the absence of extracellular Ca2+; as a result, there is no need to model the mem-

brane channels which would normally facilitate influx to the cytosol. As previously

mentioned, efflux occurs via membrane pumps, but initially this is not modelled, as

cytosolic Ca2+ removal is already modelled via the SERCA pumps which may only
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Figure 3.6: Schematic representation of the Ca2+ model, which is derived by extending

the cTCAM [86] (see Chapter 2) using downstream details from the Kang and Othmer

model [37].
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require careful parameter choices to account for the action of the membrane pumps. In

addition, Ca2+ buffers are not modelled, for the sake of simplicity; however the model

can easily be extended by including the relevant binding reactions to buffers.

3.5.1 Parameter values

The parameter values used in Chapter 2’s G-protein activation model are retained,

while the remaining relevant parameter values are taken (or modified) from the Kang-

Othmer model [37]. The resultant set of parameter values is referred to as the prelim-

inary parameter set; it can be found in Table B.2.2, and will subsequently be subjected

to some data-motivated analysis. Stimulation will be by 10−7M of Oxotremorine-M,

unless otherwise specified.

3.6 Data-driven modelling aims

The aim of this model is to predict the key features of the experimentally observed

Ca2+ response to varying agonist concentrations, and so to understand the pathway

processes which drive these features. Figure 3.3(a) shows that, in response to the ago-

nist Oxotremorine-M (added after 50s) Ca2+ rapidly peaks (5-20s, depending on ago-

nist concentration), and then more slowly returns to a plateau level; hence Ca2+ release

is rapid and transient (three other agonists similarly tested in these experiments pro-

duced qualitatively similar time courses, which are not shown here). Figure 3.3(b) also

shows that all agonists produce the same maximal Ca2+ response, with high EC50 val-

ues, indicating that signal amplification (previously discussed in section 3.4) occurs.

Hence, there are three key features of the Ca2+ response that the model needs to reflect,

and which are summarised below:

1. Rapid time-to-peak

2. Transient peak

3. Signal amplification

3.7 Data-motivated parameter variation

The Ca2+ model is initially simulated with the preliminary parameter set, and subse-

quent adjustments motivated by the data are made to relevant parameter values in an

initial attempt to reflect the key features of the data.
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Figure 3.7: Time courses of some species in the Ca2+-mobilisation model, simulatedwith

the preliminary parameter set in Table B.2.2 (in the appendices) and varying kIP3Rb+. (a)-

(c) show the response to 10−7 (M) of Oxotremorine-M, while (d)-(f) show the response

to 10−4 (M). αGTP and Ca
2+ are normalised to their basal levels.

3.7.1 Preliminary parameter set

The previously discussed experimental results pertain to the αGTP and Ca
2+ levels of

the pathway (see Figure 3.5), hence, for the sake of brevity, only model simulations of

αGTP and relevant downstream species will be discussed here.

With the preliminary parameter set, the model predicts that there is a small αGTP

response (Figure 3.7(a), solid line), and an insignificant Ca2+ response to 10−7M of

Oxotremorine-M, as Ca2+ hardly rises above its basal concentration (Figure 3.7(c), solid

line). This is contrary to what is seen in the data, in which this concentration of the

drug elicits the maximum Ca2+ response (see Figure 3.3). When a high concentration

(10−4(M)) is used, there is a significant αGTP response (Figure 3.7(d), solid line), and

a Ca2+ response which is small compared to the data, but qualitatively similar, being

rapid and transient (see Figure 3.7(f), solid line).

The simulated Ca2+ dose-response curves can now be directly compared to the ex-

perimentally generated ones, something that could not be done with just the G-protein

activation model in Chapter 2. Figure 3.8 shows the simulated curves (using the ligand-

specific parameters from Chapter 2); signal amplification is not predicted, since the

agonists do not all produce the same maximal response, acting as partial agonists in-
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Figure 3.8: Experimental dose response curves for the Ca2+ peak response show that

all four drugs are full agonists Dose-response curves simulated with the preliminary

parameter set in Table B.2.2 (kIP3Rb+ = 1.2× 107M−1s−1) do not predict full agonism for

all the agonists, unlike the experimental results (see Figure 3.3(b)).

stead. In contrast, agonist concentrations as low as 10−7M can produce the maximum

Ca2+ response in the data (see Figure 3.3(b)). Hence, with the preliminary parameter

set, the model does not reflect the experimentally observed signal amplification, and

so under-predicts agonist efficacy; therefore, parameters which influence the extent of

Ca2+ release need to be identified and manipulated in order to predict the desired level

of response.

3.7.2 Varying the binding rate of IP3 and its receptor

In the model simulations with the preliminary parameter set, the majority of the IP3

receptors (IP3R) are left unbound by IP3 (see Figures 3.7(b) and 3.7(e), solid lines),

which means that only a very small percentage of receptors can be activated by Ca2+,

even at high agonist concentrations; it is therefore unsurprising that the predicted Ca2+

response is insignificant, since only a very low concentration of IP3 receptors ever open

up to release Ca2+ into the cytosol. This suggests that, in order for the model to predict

a response comparable to the data, parameters in the preliminary parameter set that

can promote the binding of IP3 to its receptor should be varied appropriately.

The rate constants for the association and dissociation of IP3 and IP3R (kIP3Rb+ and

kIP3Rb− respectively) in the preliminary parameter set give a KD of ≈ 6.7 × 10−7M.
Experimental studies in which Ca2+-mobilisation was induced by directly transporting

IP3 to IP3 receptors purified from rat cerebellar membranes give the KD value of the

binding as 6.25 ± 0.4 × 10−9M [64], which is roughly 100 times smaller than in the
preliminary parameter set. Recall that the KD of a reversible reaction is given by the
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ratio of the forward rate constant to the backward one; the KD of the IP3-IP3R reaction

is then given by
kIP3Rb−
kIP3Rb+

, and to reduce its value in the preliminary parameter set, kIP3Rb+

can be fixed at its current value while kIP3Rb− is decreased, or kIP3Rb+ can be increased

while kIP3Rb− is fixed. The aim here is to promote the binding of IP3 to its receptor, and

the most direct way to do this is to increase the rate constant kIP3Rb+ alone (this should

also promote the binding of activating Ca2+, and consequently, Ca2+ mobilisation).

Using the KD value of 6.25± 0.4× 10−9M [64] as a boundary, the value of kIP3Rb+ can
be increased up to a hundred-fold.

A ten-fold increase in kIP3Rb+ (kIP3Rb+ = 1.2× 108M−1s−1) leads to a small increase

in the percentage of channels bound by IP3 when [L] = 10−7M (Figure 3.7(b), dashed

line), and so gives a trivial increase in Ca2+ release (Figure 3.7(c), dashed line). When

[L] = 10−4M, though the increase in IP3-bound receptors appears to be insignificant

(only ≈ 4%, see Figure 3.7(e), dashed line), the increase in the Ca2+ response is signifi-
cant: approximately 1.75 times more than basal (Figure 3.7(f)).

When kIP3Rb+ is increased a hundred-fold to 1.2× 109M−1s−1 (giving a KD value

of 6.67 × 10−9M, which fits the previously discussed published value of 6.25± 0.4×
10−9M [64]) and [L] = 10−7M, there is still no significant agonist-induced Ca2+ in-

crease (Figure 3.7(c), dotted line). However, the dynamics are significantly altered

when [L] = 10−4M (Figures 3.7(d)-3.7(e), dotted lines). The transient peak is no longer

exhibited by Ca2+, but still seen in αGTP. 50% of the IP3 receptors are now bound by

IP3, leading to the opening of more channels, and at three times over basal, a more

significant Ca2+ release. Also the time-to-peak is no longer rapid, as it is in the data.

Dose-response curves for this parameter set reveal that very high concentrations of

each agonist induce an almost-maximal Ca2+ peak (Figure 3.9(b)), but this is still dis-

similar to the the data, where the maximal peak occurs at lower concentrations.

In summary, by increasing the rate constant of the IP3 − IP3R binding reaction
(kIP3Rb+) a hundred-fold from its original value in the preliminary parameter set, as

guided by a published KD value of the reaction [64], a parameter set was obtained

under which the model predicts an approximately maximal Ca2+ response to all four

agonists, but at concentrations higher than in the data (i.e., without the left shift, com-

pare Figures 3.9(a) and (b)), and without the rapid, transient peak. The challenge is to

attempt to find, initially through this method of data-motivated parameter variation, a

parameter set that replicates all three key features at once: signal amplification, and the

rapid, transient peak.

At this point, the value of kIP3Rb+ in the preliminary parameter set (see Table B.2.2)

is replaced by 1.2× 109M−1s−1, because with this value the agonists induce non-trivial

Ca2+ responses, indicating that the G-protein activation model is better coupled to the

50



CHAPTER 3: GPCR-MEDIATED Ca2+ MOBILISATION MODEL

−11 −10 −9 −8 −6 −5 −4 −3 −2
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−11

α G
T

P
 p

ea
k 

va
lu

e

 

 

Oxotremorine−M
Carbachol
Bethanachol
Pilocarpine

Log [L]

(a)

−11 −10 −9 −8 −7 −5 −4 −3 −2
1

1.5

2

2.5

3

3.5

4

4.5
x 10

−7

 

 

Oxotremorine−M
Carbachol
Pilocarpine
Bethanachol

Log [L]

(b)

Figure 3.9: Dose-response curves (a) αGTP peak response (b) Ca
2+ peak response , sim-

ulated with the preliminary parameter set in Table B.2.2 but with kIP3Rb+ increased a

hundred-fold to 1.2× 109M−1s−1

downstreammodules.

3.7.3 A theory of IP3R occupancy

With the various values of kIP3Rb+ utilised up until this point, the model has only been

able to predict significant agonist-induced Ca2+ peak responses at very high agonist

concentrations. However if the model is to agree with the data, an Oxotremorine-

M concentration of [L] = 10−7M should predict a maximal response (see Figures 3.8

and 3.9(b)). Hence the change made to the value of kIP3Rb+ is not sufficient; other

parameters need to be considered for variation.

Marchant et al. carried out experimental studies to compare the kinetics of Ca2+

mobilisation evoked by endogenous IP3, with those evoked by a stable analogue. In

independent experiments Ca2+-release was induced by transporting different concen-

trations of both analogues directly to IP3 receptors in rat hepatocytes [50]. The maxi-

mally effective concentrations of IP3 for Ca
2+ mobilisation were between 10−6M and

10−5M. It was reported that 99.8% of the receptors were bound when [IP3]was 10−5M,

suggesting that high occupancy occurs when Ca2+ release is maximal. Hence, for the

Ca2+ model it can be assumed that a high percentage of the IP3 receptors should be

occupied for a maximal Ca2+ release.

Based on this observation it becomes clear that a maximal Ca2+ release cannot be

expected at [L] = 10−7M with the adjusted value of kIP3Rb+ = 1.2× 109M−1s−1, since

the concentration of IP3 produced is enough to bind only 2.7% of the total IP3R con-

centration (see Figure 3.7(b)); therefore, the concentration of IP3 produced needs to be
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higher. There is a need to identify and adjust appropriate parameters that can promote

the production of more IP3.

One way to producemore IP3would be to simply producemore αGTP, whichwould

increase the concentration of αGTPPLC available to hydrolyse PIP2, but this would shift

the αGTP dose-response curves unnecessarily to the left, predicting an overly amplified

signal at the wrong level of the pathway. In order to produce the desired concentra-

tion of IP3 therefore, some amplification is required somewhere in the steps between

αGTP production and IP3 production, that is, between reactions (3.4) and (3.9). The

maximum possible concentrations of the products of reactions (3.4) - (3.6) are limited

by the concentration of αGTP produced in reactions that occur earlier in the pathway;

that is, the production of the species αGTPPLC, αGTPPLC
∗ and αGTPPLC

∗PIP2 cannot

be amplified. Hence, a higher IP3 concentration must be achieved directly; one way is

to increase the rate at which it is hydrolysed, via kIP3 in reaction (3.7); another way is to

increase the concentration of available αGTPPLC
∗PIP2 by decreasing kPIP2b− or increas-

ing kPIP2b+ in reaction (3.6); alternatively, it might be achieved by making kPLCdis small

in reaction (3.8) so that αGTPPLC can re-associate with PIP2, keeping αGTPPLC
∗PIP2

available to produce IP3; reducing the rate of IP3 degradation via kIP3deg in reaction

(3.9) might also be another way.

All the previouslymentionedmeasures to increase IP3 production, and consequently,

IP3R occupancy, lead to excessively high basal activity, as illustrated in Figure 3.10; this

is unsupported by the experimental data, in which the basal level is negligible relative

to the agonist-induced response (see Figure 3.3). This raises an interesting question:

what processes in Ca2+-activating pathways are responsible for ensuring that signal

amplification only occurs after the addition of agonist?

3.7.4 Data-driven analysis of G-protein parameters

The basal level of IP3 is driven by basal αGTP, which is produced from the R
∗G state

of the GPCR. This means that any parameters of the G-protein activation model which

control the extent of basal activity relative to the agonist-induced response need to be

identified, and appropriately adjusted. Hence, the parameters of the G-protein activa-

tion model will be re-assessed.

There is more than one way of lowering the basal production of αGTP in the G-

protein activation model. To facilitate the discussion of these possibilities, the rate

equations for some of the GPCR species and αGTP are reproduced below.

d[R∗]
dt

= kact[R]− kdeact[R∗]− θζ ζ+klb+[L][R∗] + θζ ζ−klb−[LR∗]
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Figure 3.10: Discussed changes in certain parameter values cause the basal response to

be excessively high, suggesting that some parameter fine-tuning needs to occur, in order

to maintain a significant peak-to-basal ratio.

−θµµ+kg+[R∗][G] + θµµ−kg−[R∗G] + kGTP+[R∗G] (3.14)

d[LR∗]
dt

= θζζ+klb+[L][R∗]− θζζ−klb−[LR∗] + ζ+kact[LR]− ζ−kdeact[LR
∗]

−θνµµ+ν+kg+[LR∗][G] + θνµµ−ν−kg−[LR∗G]

+kGTP+[LR∗G] (3.15)

d[R∗G]

dt
= θµµ+kg+[R∗][G] − θµµ−kg−[R∗G] + µ+kact[RG]− µ−kdeact[R

∗G]

−θζνζ+ν+klb+[L][R∗G] + θζνζ−ν−klb−[LR∗G]

−kGTP+[R∗G] (3.16)

d[LR∗G]

dt
= θνµµ+ν+kg+[LR∗][G] − θνµµ−ν−kg−[LR∗G]

+θζµζ+µ+kact[LRG]− θζµζ−µ−kdeact[LR
∗G]

+θζνζ+ν+klb+[L][R∗G]− θζνζ−ν−klb−[LR∗G]

−kGTP+[LR∗G] (3.17)

d[αGTP]

dt
= kGTP+[R∗G]− kgd+[αGTP] + kgd−[αGDP] + kGTP+[LR∗G] (3.18)

The rate of αGTP formation from R
∗G could be slowed directly by reducing the

value of kGTP+ (see equation (3.18)); less directly, either the R
∗G formation rate could

be slowed by reducing the ratio
µ+

µ−
(see equation (3.16)), or the rate of R∗ formation

slowed by lowering the ratio kact
kdeact
(see equation (3.14)). However, all of these measures

would have a similar effect on the corresponding ligand-bound states, as can be seen

from equations (3.15), (3.17), (3.18), and consequently, the level of agonist-induced αGTP

production would also drop; that is, the peak-to-basal ratio would not necessarily be

increased. What is desired is a parameter change that would result in an increase of the

peak-to-basal ratio for [αGTP], resulting in the production of enough IP3 to cause full
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Figure 3.11: The αGTPγS model (represented by the figure without the dotted lines) is

derived, in order to mimic data from an αGTPγS assay [93]; it is a subset of the (cubic

ternary complex activation model) cTCAM, which is represented by the whole figure

(see Chapter 2).

occupancy of its receptors only after agonist stimulation.

The parameters in the preliminary parameter set which pertain to the G-protein

activation model can be re-assessed with the help of the αGTP-level data discussed in

section 3.4, which were obtained from a GTPγS binding assay [93]. The experiment

measures the level of agonist-induced G-protein activation by measuring the concen-

tration of the complex formed from the binding of the non-hydrolysable GTP ana-

logue, GTPγS to the α subunit of the G-protein (forming αGTPγS). Since GTPγS is

non-hydrolysable, there is no deactivation of αGTPγS into αGDP or subsequent reunion

with βγ to reconstitute the inactive G-protein. These experiments were carried out in

CHO-cells expressing the M3 Muscarinic receptor, the same system used to produce

the Ca2+ data of Dr Lauren May here at the University of Nottingham (see section

2.2.3). The αGTPγS response to several agonists, measured after one hour, is shown in

dose-response curves in Figure 3.5.

A model of the GTPγS binding experiment is derived by setting kgd+ = kRA+ = 0

in the G-protein activation model (see section 2.1). The relationship between the two

models is illustrated in Figure 3.11. Comparing the predictions of the αGTPγS model

with the αGTPγS data serves as a way to analyse some parameters in the preliminary

parameter set that pertain to the G-protein activation model.

Figure 3.12(a) shows the dose response curves predicted by the αGTPγS model with
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Figure 3.12: Dose response curves for αGTPγS predicted by the αGTPγS accumulation

model ((a)) simulated with the parameter set in Appendix B.2.1 but with kgd+ = kRA+ =

0, (b) simulated with the parameter set in Appendix B.2.1 but with kgd+ = kRA+ = 0 and

adjusted values kGTP+ = 0.001s−1, ν = 100, which allow the curves resemble the data

more closely (compare Figure 3.5.

relevant parameters taken from the preliminary parameter set. In contrast to the data,

the model predicts that all of the agonists are full agonists, capable of producing the

maximum possible [αGTPγS], which is approximately equal to the total G-protein con-

centration (GTOT = 4.15× 10−10M). It is also clear from Figure 3.12(a) that over the dif-
ferent agonist concentrations, the model response range is very small, 4.135 − 4.15×
10−10M. In fact, in the absence of agonist, the system, via the R∗G state, is able to

produce almost the maximum possible αGTPγS response (result not shown); this is a

significant overestimation of the basal activity when compared to the data. These re-

sults then imply that one or more of the G-protein parameters require adjustment in

order to predict a more realistic basal response. Since all the parameters in the αGTPγS

model are also in the G-protein activation model and in the Ca2+ model, the conse-

quent parameter changes informed by the αGTPγS data can be applied to those models

as well.

The fact that the basal αGTPγS concentration is too high suggests that the rate of the

reaction R∗G
kGTP+−→ R∗ + αGTP + βγ is too fast, hence an obvious parameter to lower

is kGTP+. An examination of the αGTPγS rate equation

d[αGTPγS]

dt
= kGTP+([R∗G] + [LR∗G]), (3.19)

indicates that lowering kGTP+would lower the basal concentration of αGTPγS, produced

from R∗G, but also its agonist-induced peak concentration, produced from LR∗G. There-

fore lowering the value of kGTP+ on its own would not necessarily increase the peak-

to-basal ratio. From equations (3.16) and (3.17), it can be seen that if the value of ν+

is also increased, the effect would be to promote the LR∗G state of the GPCR while
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inhibiting the R∗G state; this counteracts the negative effect on the peak-to-basal ratio

of decreasing kGTP+.

With the adjusted values kGTP+ = 0.001s−1 (previously kGTP+ = 1s−1) and ν+ =

100 (previously ν+ = 1) themodelmakes qualitatively similar predictions to the αGTPγS

data, predicting different maximal responses for each agonist (Figure 3.12(b)). The

model’s dose-response curves are steeper than those of the data, which means that the

predictions of efficacy for the agonists are overestimated. This may be accounted for

by the fact that mechanisms of receptor desensitisation are not included in the model.

Following previous modelling efforts, the model had so far assumed that the ago-

nist binds indiscriminately to the pre-coupled (RG and R∗G) and un-coupled states of

the GPCR (R and R∗); that is, ν = ν+
ν−

= 1 [86, 106]. The need to increase the value of ν+

suggests that this might not be the case. The model suggests that in reality, the agonist

might favour the pre-coupled state of the receptor.

The values kGTP+ = 0.001s−1, ν+ = 100 have improved the qualitative predictions

of the αGTPγS model and as such replace their former values in the Ca
2+ model.

3.7.5 Final variation of the Ca2+ model parameters

As a reminder, the current parameter set has been derived by replacing relevant param-

eters in the preliminary parameter set with the new values: kIP3Rb+ = 1.2× 109M−1s−1,

kGTP+ = 0.001s−1 and ν+ = 100. The last two parameter choices have the effect of keep-

ing the basal [αGTP] low, as illustrated by Figure 3.13(a), but (as would be expected) do

not necessarily increase the number of IP3-bound receptors (see Figure 3.13(b)), or con-

sequently, the Ca release (see Figure 3.13(b)). To maximally bind the IP3 receptors,

parameter adjustments that increase IP3 production need to be made.

In Chapter 2, it was shown that increasing the total G-protein concentration (GTOT)

up to ≈ 10−6M in the G-protein activation model also increases the maximum [αGTP]

(see Figure 2.3), and that increasing the total receptor concentration (RTOT) up to 10
−8M

has a similar effect (see Figure 2.4), all without significantly elevating the basal concen-

tration of αGTP. Hence, the new values, GTOT = 10−6M and RTOT = 10−8M are now

used instead of their former values (GTOT = 4.15× 10−10M, RTOT = 4.15× 10−10M)
in the preliminary set; by increasing αGTP production, IP3 production can also be in-

creased, without unduly increasing the basal level. Any of the parameter changes dis-

cussed in section 3.7.3 can also be implemented to increase the production of IP3, since

the peak-to-basal ratio will be controlled by the values of new values of kGTP+, ν+,

GTOT and RTOT. The most direct parameter change is to increase the rate constant of

αGTPPLC and PIP2 binding, kPIP2b+ (see reaction 3.6), and consequently, the available

αGTPPLCPIP2 concentration, from which IP3 is hydrolysed.
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Figure 3.13: Time courses predicted by the Ca2+ model, simulated with the preliminary

parameter set in Table B.2.2 but with the adjusted values: kIP3Rb+ = 1.2× 109M−1s−1,

kGTP+ = 0.001s−1, ν = 100. The changes in kGTP+ and ν only impact the αGTP peak-to-

basal ratio.

Increasing kPIP2b+ a hundred-fold, from 10
9M−1s−1 to 1011M−1s−1 does cause pro-

duction of enough IP3 to occupy nearly all receptors only after stimulation by 10
−7M

of Oxotremorine-M (see Figure 3.14(b), dashed line), and Ca2+ release is increased (see

Figure 3.14(a), dashed line), but it is not maximal (results not shown). This is because

of the way that the IP3-bound receptors are distributed between states; Figure 3.15(a)

shows that at any time after stimulation, more receptors are in the inhibitory state

([IP3 IP3RCa
2+Ca2+]) than the active state ([IP3 IP3RCa

2+]), which limits Ca2+ release.

This indicates that the value of the binding rate constant of inhibitory Ca2+, kCa2+ inh+

must be too large (or the unbinding rate constant too small). Figure 3.15(b) indicates

that lowering kCa2+ inh+ ten-fold, from 1.8× 106M−1s−1 to 1.8× 105M−1s−1 causes more

receptors to stay in the active, than the inhibitory state, without significantly changing

the total percentage bound to IP3R (see Figure 3.14(b), solid line); Ca
2+ release is also

increased (Figure 3.14(a), solid line). Figure 3.16 indicates that this Ca2+ release is max-

imal, and all other agonists are able to produce it. The simulated dose-response curves

thus resemble the data in predicting that all the drugs are full agonists.

All the parameter changes made to get to this point form a new parameter set found

in Table B.2.2, referred to as the derived parameter set. The model predicts signal am-

plification with these new parameters, but the rapid, transient peak has been lost.

3.8 Model extension: Effects of receptor desensitisation

So far, the model has not simultaneously predicted all the features of the Ca2+ data

with any of the parameter sets that have been tested. In each case (apart from the cases

where the response was trivial) either the rapid, transient peak was predicted without
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Figure 3.14: Time courses predicted by the Ca2+ model, simulated with the preliminary

parameter set in Table B.2.2 but with the adjusted values: kGTP+ = 0.001s−1, GTOT =

4.15× 10−6M, RTOT = 10−8M, kPIP2b+ = 1011M.

signal amplification, or vice versa. With the preliminary parameter set (see Table B.2.2),

the Ca2+ removal process (carried out by SERCA pumps) was influential enough to

make the peak transient, probably because the Ca2+ response was not amplified (see

Figures 3.7 and 3.8); with the derived parameter set (see Table B.2.2) came the model’s

ability to predict signal amplification (see Figure 3.16), but at the cost of the transient

peak, with the action of the SERCA pumps no longer influential enough to bring the

peak down (see Figure 3.14).

The Ca2+ removal process is modelled by a Hill function, as similarly used in some

existing Ca2+ models [44, 48, 70]. It might be that varying the parameters p1 and p2

of the Hill function could enable the prediction of a transient peak, which will occur

when d[Ca
2+

dt ] is negative; that is, when,

(1+ vr)(γ0+ γ1[IP3 IP3RCa
2+])(Ca2+AV − [Ca2+]) <

p1[Ca
2+]2

[Ca2+]2 + p22
. (3.20)

Other upstream parameters might also modulate equation 3.20 by influencing the

production of IP3 IP3RCa
2+, thus influencing the lifetime of the peak. The next chapter

will attempt to identify such parameters.

However, there is an indirect process of Ca2+ removal which has not yet been in-

cluded in the model, but which may have a role in making the peak transient. In the

data, Ca2+ returns to its basal level, indicating that the signal from the agonist becomes

ineffective through desensitisation. Hence, it might be necessary to incorporate recep-

tor phosphorylation into the Ca2+ model, in order to predict the return from peak to

basal level. As previously mentioned, PKC, which is activated by DAG (a co-product
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Figure 3.15: When the model is simulated with the adjusted values: kGTP+ = 0.001s−1,

GTOT = 4.15× 10−6M, RTOT = 10−8M, kPIP2b+ = 1011M, the response is not maximal

because kCa2+inh+ = 1.8× 106M−1s−1 is too high, favouring the inhibited IP3R state (a),

but when kCa2+inh+ is lowered to 1.8× 106M−1s−1, more active states are formed.
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Figure 3.16: Dose response curves for the peak [Ca2+] predicted by the Ca2+ model,

with the parameter set in Table B.2.2, but with the adjusted values: kGTP+ = 0.001s−1,

GTOT = 4.15× 10−6M, RTOT = 10−8M, kPIP2b+ = 1011M, kCa2+inh+ = 1.8× 105M−1s−1.

with IP3 of PIP2 hydrolysis) causes GPCR desensitisation by phosphorylating GPCR’s

in the Gq pathway, and causing termination of the signal. In the Kang and Othmer

model, where the active, unbound receptor (R∗) is incapable of signalling, the phos-

phorylation reaction (in the terminology of this work) is given by

LR∗G+ PKC
kPKLR−−⇀
↽−−
k−PKLR

LR∗desG. (3.21)

The DAG-PKC pathway will not be included in this chapter’s Ca2+ model, as

that would significantly increase model complexity. Instead, a simple desensitisation

scheme, which accounts for the fact that the lifetime of active GPCR’s is shortened by

PKC-mediated phosphorylation is incorporated by adding the following phosphoryla-
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tion reactions:

R∗G
kdes+−−⇀

↽−−
kdes−

R∗desG (3.22)

LR∗G
ρ+kdes+−−⇀
↽−−
ρ−kdes−

LR∗desG, (3.23)

where ρ+, ρ− are factors that potentially differentiate the rate constants of the desen-

sitisation and re-sensitisation of R∗G from LR∗G. Values for kdes+ are available from

a GPCR-mediated IP3 production model of Cooling et al. [17], which incorporates

receptor phosphorylation via the forward reaction in (3.23); in that model kdes+ =

6.22× 10−6s−1 and kdes+ = 4× 10−4s−1 were used to model phosphorylation in two
different GPCR systems. The forward rate constant in the Kang and Othmer model

(reaction 3.21) is not directly applicable because it has units of M−1s−1; however, the

reverse reaction, which is similar to those in reactions (3.22) and (3.23), makes use of

the value, k−PKLR = 0.1s−1 [37]. There are thus values in the literature that can be used

as guide for setting kdes+ and kdes−. Without evidence to the contrary, it is assumed that

the agonist-bound receptor is phosphorylated at the same rate as the unbound receptor,

so that ρ+ = ρ− = 1.

Suitable values of kdes+ and kdes− need to be found which permit the model to still

satisfy the IP3Rmaximal occupancy theory (see section 3.7.3). Hence, one criterion that

will be used to fine-tune these parameter choices is the percentage of bound IP3R,

IB =
100(IP3RTOT − IP3RP)

IP3RTOT
, (3.24)

where IP3R
P is the peak IP3R concentration. Another measure is the ratio,

PBP =
Peak− Plateau
Peak− Basal , (3.25)

which should be 1 if the plateau returns to the basal value. (Note that Peak−Basal 6= 0
in the parameter range explored).

Figure 3.17 shows three-dimensional plots of PBP and IB on the z axes with kdes+

and kdes− on the x and y axes. In Figure 3.17(a) there is a region in which IB is high,

while in Figure 3.17(b) there is one in which PBP ≈ 1. However, only small portions of
these regions intersect, meaning that only pairs in a constricted region of (kdes+,kdes−)

parameter space cause a post-peak return to basal and high IP3R occupancy. Figure

3.18 shows areas in space for which 0.95 ≤ PBP ≤ 1.04 and IP3R occupancy is high.
Only a very small area causes ≥ 90% IP3R occupancy or more (Figure 3.18(a)), and the
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Figure 3.17: The dependence of (a) the percentage of bound IP3 receptors and of (b)

Ca2+’s plateau relative to its basal (b) on the values of kdes+ and kdes−. Only a few pairs

kdes+ and kdes− cause a return to basal and high IP3R occupancy.
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Figure 3.18: Shown in black are areas of the kdes+-kdes− plane where PBP ≈ 1 and (a) IP3R
occupancy ≥ 90%, (b) IP3R occupancy ≥ 70%, (c) IP3R occupancy ≥ 50%.

area increases for ≥ 70% IP3R occupancy (Figure 3.18(b)) and ≥ 50% IP3R occupancy
(Figure 3.18(c)).

A pair of values, kdes+ = 5 × 10−3s−1 and kdes− = 5 × 10−6s−1, from the ≥ 90%
IP3R occupancy area (Figure 3.18(a)) are used to simulate the model. To illustrate the

role that the desensitisation reactions have on the model, Figure 3.19 compares the

GPCR states in the presence and absence of desensitisation. Figure 3.19(a) shows that,

in the absence of desensitisation, the majority of receptors are in the inactive RG state

before agonist stimulation. On stimulation, RG and R∗G get converted into the LRG

and LR∗G states, whosemaximum concentrations are sustained as the steady state (the

sustained Ca2+ response in Figure 3.14(a) might be explained by the fact that the active

state, LR∗G is sustained). However, when desensitisation is incorporated, the majority

of receptors are distributed between the inactive (RG) and desensitised (R∗desG) states
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Figure 3.19: (a)-(b) Receptor states in the model without desensitisation (kdes+ =

0, kdes− = 0) are shown; (c)-(d) With desensitisation, the states are re-distributed kdes+ =

5× 10−3s−1, kdes− = 5× 10−6s−1, with the majority ending up desensitised.

just before stimulation. On stimulation, the agonist bound states LRG and LR∗G start

to form, with the latter also being converted into the desensitised state, LR∗desG, which

accumulates, so that most receptors end up in that state. The transience of the LR∗G

state then causes the Ca2+ response to be transient, as discussed in the next paragraph.

Figure 3.20 shows the Ca2+ simulations. The response is a slow transient for higher

concentrations of Oxotremorine-M (Figure 3.20(a)), and is amplified for all agonists

(Figure 3.20(b)). Hence, with the incorporation of a minimal receptor desensitisation

process, the model predicts signal amplification and a transient, but not rapid, Ca2+

peak. This might suggest that the calcium-induced calcium release (CICR) mechanism

alone is not sufficient to produce the transient Ca2+ peak, in amplifying systems. How-

ever, the derived parameters for desensitisation cannot explain the rapid time to peak,

suggesting that they (and other parameters) require further analysis.
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Figure 3.20: The simulated time courses are now transient, with the incorporation of

desensitisation into the model, (a), qualitatively resembling the data (see Figure 3.3(a)),

but the peaks are not rapid. The simulated dose-response curves (b) resemble the data

(see Figure 3.3(b)), with all agonists producing the maximum response.

3.9 Discussion

In this chapter a Ca2+ model was assembled by extending the G-protein model of

Chapter 2, using relevant downstream reactions from an existing model [37]. The

model predicted a rapid, transient Ca2+ peak, but not signal amplification, when sim-

ulated with a preliminary parameter set assembled from the literature. Using available

data from experiments carried out at the University of Nottingham’s Institute of cell

signalling [52], and other experimental results from the literature [50, 93], adjustments

were made to the preliminary set to derive a parameter set with which the model could

predict signal amplification, but not the rapid or transient Ca2+ peak.

The model was then extended by incorporating GPCR desensitisation, which im-

proved the predicted Ca2+ response; the model predicted signal amplification and the

transient peak (with return to basal level, as in the data), but not its rapidity. This

extension of the model is what will subsequently referred to as the Ca2+ mobilisation

model.

GPCR pre-coupling

When the αGTPγS model (a subset of the Ca
2+ model) was fine-tuned to qualitatively

predict the αGTPγS data, the value ν+ = 1 in the preliminary parameter set had to be

changed to ν+ = 100, suggesting that the agonist favours the GPCR’s pre-coupled state

(RG, R∗G) over the uncoupled one (R, R∗). This suggests that agonist efficacy may be

dampened if pre-coupling (via reactions 1.13 and 1.14) is inhibited, a model result that

can be tested experimentally.
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Receptor desensitisation

To enable the simultaneous prediction of signal amplification and the transient peak,

receptor desensitisation had to be incorporated into the model. This might suggest that

the Ca2+-induced Ca2+ release mechanism alone is not sufficient to cause a transient

peak, when the Ca2+ response is amplified. This can be tested by measuring Ca2+

time courses in experiments where kinase/PKC-mediated desensitisation is blocked

by using commercially available PKC/kinase inhibitors [57, 88], and checking whether

the transient peak occurs.

Hints of a fine-tuned Ca2+ response

The fact that the model could not simultaneously predict signal amplification and the

rapid Ca2+ time-to-peakwith any of the parameter sets that were tested raises the ques-

tion of how the system fine-tunes the Ca2+ response, amplifying a signal without de-

laying the response. The method of model simulation interacting with experimental

data has not been sufficient to provide an explanation for this seemingly optimised

mechanism. However, it has provided a base parameter set around which to define

a reasonable parameter space, in which a more systematic parameter analysis can be

carried out; this will be the focus of the next chapter.
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Global sensitivity analysis of

parameters

4.1 Introduction to sensitivity analysis

In Chapter 3 an initial parameter analysis was carried out using a heuristic approach

that involved making data-guided adjustments to relevant parameters. With these ad-

justments, the model’s prediction of the Ca2+ response was improved, matching the

data more closely, but not completely. Since the parameter changes were not sufficient

to enable the model to reflect all the features of the Ca2+ data, a more systematic pa-

rameter analysis is carried out in this chapter using a method of sensitivity analysis.

Sensitivity analysis methods can quantify the impact of varying a parameter’s value

on specific model outputs, providing a parameter significance ranking. Such a method

of analysis is ideal for the Ca2+ model for the following reasons. Firstly, the Ca2+

model, like many large models of biological systems, has many parameters whose

values are uncertain. A sensitivity analysis would identify the subset of parameters

which are key drivers of particular model output features like the rapid, transient peak

response and signal amplification. Hence, unlike steady state analysis methods, sen-

sitivity analysis can be used to analyse such time-dependent behaviour as exhibited

in the Ca2+ data (see Figure 3.20). Secondly, if appropriate non-influential parameters

are identified, sensitivity analysis may open up the possibility of model simplification,

and perhaps, simplify or enable the use of other methods of analysis, simply by re-

ducing the number of parameters requiring further analysis. For instance, a process

like parameter estimation can potentially be significantly simplified, because the di-

mensionality of the parameter space can be reduced by fixing the values of relatively

non-influential parameters, and only estimating the rest.

Local sensitivity analysis (LSA) methods are carried out at a point in parameter
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space, and generally involve the use of partial derivatives to identify which parame-

ters have the greatest influence on the output. Given that the output of interest is rep-

resented by Y, and the ith parameter by Xi, a commonly used measure of sensitivity is

[80]:

Ci =
δY/Y

δXi/Xi
, (4.1)

which quantifies how changes in the parameter’s value influence the output; also, if

|Ci > 1|, the relative change in the output is greater than in the parameter. LSA meth-
ods are appropriate for situations in which the model parameters are known with rea-

sonable certainty. However, for nonlinear models with considerable uncertainty in the

parameters, sensitivity analysis methods applied to parameters as they change across

space are more appropriate [2, 81]. These are referred to as global sensitivity analysis

(GSA) methods.

4.2 GSA methods and applications

Global sensitivity analysis methods measure sensitivity at different points in param-

eter space, and so give an indication of each parameter’s average effect as it changes

simultaneously with other parameters. There are a variety of established GSAmethods

in the literature, as well as instances of their application to problems in various fields

of study.

Variance-basedmethods form a group of GSAmethods that quantify the percentage

that each parameter or combination of parameters (from pairs to highest order inter-

actions) contributes to the variance in the model output [81]. The parameters which

contribute little can thus be identified. Variance-based methods are called quantitative

because the contribution of each parameter to the variance of the output has a quanti-

tative measure, but they are computationally expensive and can become impracticable

when the number of parameters is large.

The method of elementary effects (EE) calculates for each parameter, at multiple

points in parameter space, the change in output relative to changes in that parame-

ter’s value, using the average of these ratios as the sensitivity measure. This measure

has been shown to be as effective as variance-based measures in identifying parame-

ters that contribute significantly to the variance of the output [15], but does not quan-

tify their exact contribution. The EE method is able to distinguish between parame-

ters which have effects that are (a) negligible, (b) linear and additive, or (c) nonlinear

and/or due to interactions (correlation) with other parameters [63]. The method of dis-

tinguishing between these effects will subsequently be clarified (see section 4.3.2). The
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EE method is computationally cheaper than variance-based methods, and suitable for

models with a high number of parameters.

Themethod of Partial rank correlation coefficients (PRCC) is another global method;

it measures the strength of the linear relationship between the output and a parameter

after the effects of the other parameters have been removed, and ranks the parameters

accordingly [41]. The method assumes that the relationship between parameters and

the model output is monotonic [41], and so is not applicable to every type of model.

Global sensitivity analysis methods have routinely been applied in the fields of en-

vironmental engineering [15] and finance [81]. Recently they have been applied to

mathematical models of biological systems, including the cubic ternary complex acti-

vation model (cTCAM) discussed in Chapter 2 [41], a gene transcription model [35], a

T cell receptor signalling model [107], and a GPCR-mediated IP3 activation model [17].

It does not appear that a (global) sensitivity analysis has previously been carried out on

an agonist-induced Ca2+ model, especially not with regard to pharmacological features

such as signal amplification. The applications to the cTCAM and the GPCR-mediated

IP3 activation model are of relevance, and are discussed in more detail below.

Kinzer-Ursem and Linderman [41] used the PRCC method to identify the parame-

tersmost correlated to the αGTP response in the cTCAM, and found both ligand-specific

and cell-specific parameters to be influential. The ligand-specific parameter most cor-

related with response generation was ζ, the extent to which the ligand favours the

receptor’s active state. The cell-specific parameters highly correlated with response

generation were: the total concentrations of receptor and G-protein, RTOT, GTOT; the

equilibrium of ratio of active (R) to inactive receptor (R∗), quantified by kactkdeact
; the extent

to which the active receptor binds more or less preferably to the G-protein than the

inactive receptor, µ; and the rate constants in the G-protein activation loop. Guided by

these results, it was found that changes in the cell-specific parameters, GTOT and
kact
kdeact
,

could produce the experimentally observed phenomenon of protean agonism (which

refers to the ability of a ligand to induce both positive and negative responses).

To understand why two different agonists, Endothelin-1 (ET-1) and angiotensin-II

(Ang-2), could produce different IP3 transients through essentially identical pathways

in the cardiac myocyte, Cooling et al. [17] used the method of elementary effects to

identify parameters that controlled the features of the transient. They found that the

rate constant for the phosphorylation of the active receptor and the rate constant for

the binding of ligand to pre-coupled receptors were among the most significant. The

differences in the ET-1- and Ang-2-induced IP3 responses could then be explained by

adjusting these two parameters (and a third, chosen because of its individual effect on

the IP3 peak).
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4.3 The method of elementary effects

Of the methods discussed above, the method of elementary effects is chosen to analyse

the Ca2+ model parameters because it is computationally efficient, hence suitable for

the model which has many (48) parameters. Also, no prior assumption needs to be

made about the model’s parameter-output relationship. The method is described in

detail below.

A parameter space is defined by specifying a range of uncertainty for each param-

eter. Let k be the number of parameters of interest, then the vector X = (X1,X2, ...,Xk)

represents a point in parameter space and the output of interest is represented by Y(X).

The parameters are not sampled directly from the actual parameter space, A ⊆ R
k. Ini-

tial values are randomly sampled from a discrete uniform distribution in the [0,1] in-

terval, so that the sampling space is a k-dimensional unit hypercube,Ω. Let a point inΩ

be given by x; its ith component, xi, is a randomly chosen value from {0, 1p−1 , 2p−1 , ..., 1}
(p ∈ N). Thus, the number of possible values is given by the choice of p. The x vector

is then transformed into a point in actual parameter space, X = (X1,X2, ...,Xk), accord-

ing to a specified distribution. For instance, if each parameter is to be selected from a

uniform distribution, the transformation to each Xi is as follows:

Xi = xi(UBi− LBi) + LBi, (4.2)

where LBi is the lower bound of the ith parameter’s range of values, and UBi its upper

bound.

A ratio pertaining to the ith parameter, referred to as an elementary effect (EE), is

calculated using two points in A, identical, except in their ith components which differ

by ∆i. For a given value of X, the elementary effect of the ith input factor on an output

of interest Y is defined as:

EEi(X) =
[Y(X1,X2, ...,Xi−1,Xi + ∆i, ...,Xk)− Y(X1,X2, ...,Xi−1,Xi, ...,Xk)]

∆
, (4.3)

where Xi ≤ 1− ∆.

If Xi > 1− ∆, the elementary effect is calculated as follows,

EEi(X
∆−) =

[Y(X1,X2, ...,Xi−1,Xi, ...,Xk)− Y(X1,X2, ...,Xi−1,Xi − ∆, ...,Xk)]

∆i
, (4.4)

where X∆− indicates that the elementary effect calculated is for X with ∆i subtracted

from its ith dimension.

Let δ ∈ { 1
p−1 ,

2
p−1 , ..., 1− 1

p−1} be a fixed amount by which xi can be increased (note
that thismeans the parameter change is not necessarily the same as the lattice sampling,
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since δ 6= 1
p−1 is possible); the corresponding increase of Xi in the actual parameter

range is then given by:

∆i = δ(UBi − LBi). (4.5)

The ith parameter has a distribution, Fi, of p
k−1(p− δ(p− 1)) possible elementary

effects, if calculated at all possible sample points in Ω [63]. For high values of p and k,

calculating all the elements of Fi is an impractical computational effort. (For instance,

if for a model with k = 40 parameters, p = 10 is chosen, 1039(10− 9δ) total elementary
effects can be calculated.) Instead, a random sample of r representative elementary

effects is selected from Fi. The average of these elementary effects then provides a

measure of each parameter’s global influence on an output feature of interest.

4.3.1 Sampling strategy

Sampling the parameter space effectively involves selecting a sufficient number (r) and

spread of sample points, while minimising the number of model evaluations required

for the calculation of corresponding elementary effects. Each elementary effect requires

the output to be calculated at two points in parameter space (see equations (4.3) and

(4.4), thus requiring the model to be evaluated two times. The most straightforward

sampling strategy would require 2rk model evaluations, a linear function of the num-

ber of parameters being tested, k. This is an advantage of the method of elementary

effects; the required number of model evaluations always varies linearly with the num-

ber of parameters.

An even smaller number of model evaluations than 2rk can be used to calculate

the same number of elementary effects using a sampling strategy that requires only

r(k+ 1) model evaluations [63]. This strategy considerably reduces the computational

expense (r(k − 1) fewer model evaluations required), and is especially advantageous
when applied to the Ca2+ model, which has many parameters. The strategy, which

exploits the fact that one of the 2 points used to calculate an elementary effect is used

in the calculation of the next one, is explained below.

A random starting point, X∗, is selected in parameter space, from which k other

points are generated, forming a trajectory. A trajectory can be represented by a ma-

trix, B′, with dimension (k + 1) × k, whose rows are the vectors X∗1,X
(1)
1 ,X

(2)
1 ,...,X

(k)
1 ,

X∗2,X
(1)
2 ,... representing consecutive points in the trajectory. k elementary effects can be

calculated using this matrix if every pair of consecutive rows only differs (by ∆i) in one

unique column. An example of such a matrix is
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B’ = Jk+1,kX
∗ + ∆B, (4.6)

where Jk+1,k is a (k+ 1)-by-k matrix of 1’s and B is the (k+ 1) × k strictly lower trian-
gular matrix of 1’s:

B =

























0 0 0 . . . 0

1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

. . . . . . . . . . . .

1 1 1 . . . 1

























. (4.7)

B’ is then given by:

B′ =

























X∗
1 X∗

2 X∗
3 . . . X∗

k

X∗
1 + ∆ X∗

2 X∗
3 . . . X∗

k

X∗
1 + ∆ X∗

2 + ∆ X∗
3 . . . X∗

k

X∗
1 + ∆ X∗

2 + ∆ X∗
3 + ∆ . . . X∗

k

. . . . . . . . . . . .

X∗
1 + ∆ X∗

2 + ∆ X∗
3 + ∆ . . . X∗

k + ∆

























(4.8)

Note that sampling strategies can be chosen which generate points along the tra-

jectory that decrease by ∆; that is, a parameter’s value may change from Xi to Xi − ∆.

However, the elementary effect is always calculated as the effect of increasing a param-

eter by ∆; in such cases, equation (4.4) is used to calculate the elementary effect.

Given that D∗ is a k-dimensional diagonal matrix whose elements are either +1 or

−1 with equal probability, and P∗, a k-by-k random permutation matrix, a randomised
version of B’ is given by:

B∗ = (Jk+1,1X
∗ + (∆/2)[(2B− Jk+1,k)D∗ + Jk+1,k])P

∗. (4.9)

D∗ determines, in a randommanner, whether the ith parameter changing by ∆ from

point to point along the trajectory increases, orwhether it decreases, while P∗ randomly

determines the order in which the parameters change in each trajectory. This randomi-

sation ensures that the shape of each trajectory is randomly selected, in keeping with

the statistical idea of random sampling. For illustrative purposes, the effects of the

randomisation scheme are considered in a design for which the number of parameters

is k = 2, number of grid points, p = 9, and number of trajectories, r = 5. Without

the random permutation matrix, P∗, or the random diagonal matrix, D∗, the design

is pre-determined. All trajectories from the starting points, X∗1-X
∗
5 would have to take
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X∗1

X∗2

X∗3

X∗4

X∗5

(a)

X∗1

X∗2

X∗3

X∗4

X∗5

(b)

X∗1

X∗2

X∗3

X∗4

X∗5

(c)

Figure 4.1: Possible trajectories from the starting points X∗1-X
∗
5 for a sampling scheme

in which k = 2, p = 9, r = 5. (b) and (c) are possible results with the randomisation

scheme, while (a) is the result without randomisation.

the same shape, as in Figure 4.1(a), but with the randomisation scheme each trajec-

tory is able to take any of eight possible shapes, allowing the design to be randomly

determined. Figures 4.1(b) and 4.1(c) show forms that the randomisation scheme can

produce.

For r trajectories the matrix for the entire sample is given by:















B∗1
B∗2
...

B∗r















. (4.10)

Improving coverage of parameter space

Whatever the value of r chosen, trajectories can be chosen whose spread across param-

eter space is maximised with a strategy developed by Campolongo et al. [15]. A high

number (M > r) of trajectories is generated using the above strategy, and then the sub-

set of r trajectories with the maximum spread in the parameter space are selected, after

which model evaluations can be carried out using the optimised trajectories. Thus the

sampling of parameter space can be improved without increasing the number of model

evaluations required.

The concept of spread is based on the Euclidean distance between a pair of trajec-

tories, m and l:
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dz,l =











∑
k+1
j=1

√

∑
k
i=1

[

Xzj (i) − Xlj(i)
]2
for z 6= l,

0 otherwise,

(4.11)

where Xzj (i) is the ith coordinate of the jth point of the mth trajectory. This mea-

sure dz,l is used to calculate, for each possible combination of r trajectories, the quan-

tity D, which is the square root of the sum of the squared distances (dz,l)
2 between

all possible pairs of trajectories in that combination. For example, if there are M =

{1, 2, 3, 4, 5, 6, 7, 8} initial trajectories, D for the combination of trajectories 2, 3, 7 (r = 3)

is given by:

D2,3,7 =
√

(d2,3)2 + (d2,7)2 + (d3,7)2. (4.12)

The optimal sample matrix (of size r(k+ 1) × k) for the whole design is the combi-
nation of r trajectories out of

M!

(M− r)!r! (4.13)

possible choices with the highest value of D [81].

The sample of r elementary effects that are obtained per parameter will usually

be few compared to the pk−1[p − ∆(p − 1)] number of possible effects; maximising
the spread of the trajectories across parameter space is therefore important, since the

trajectories should be as representative as possible. When the sensitivity analysis of

the model parameters is carried out later, two different values of r will be compared in

order to explore the effects of the sample size on the results obtained, and the utility of

this sampling strategy.

Figure 4.2 shows the samples obtained for each Xi by the optimised sampling strat-

egy and the original sampling strategy of Morris [63] for a scheme in which k = 4,

r = 20 and p = 4. The optimised strategy can sometimes reduce clustering across di-

mensions; this can be seen in the sample for X3, across which the spread is evidently

more uniform when the optimised strategy is used.

4.3.2 Sensitivity measures

The original method of elementary effects [63] uses two measures to quantify parame-

ter sensitivity: the average of elementary effects pertaining to the ith parameter,

mi =
1

r

r

∑
j=1

EE
j
i , (4.14)
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Figure 4.2: Histograms representing sample obtained for k = 4 parameters when

M = 1000, r = 20, p = 4 using the (a) original Morris sampling strategy [63] (b) sam-

pling strategy of Campolongo et al. [81]. The parameter samples have a more uniform

distribution in (b).

and its standard deviation,

σi =

√

√

√

√

1

r− 1
r

∑
j=1

(EE
j
i −mi)2. (4.15)

A σi value equal to or approximately zero, indicates that the EE
j
i values are constant

or (approximately constant) over all values of the ith parameter; hence that parameter’s

effects are linear. A value of σi > 0 implies that the EE
j
i values are a nonconstant func-

tion of Xi or one or more of the other parameters (Xj, j 6= i). Hence, the parameter’s
effects are nonlinear and/or due to interaction with other parameters. The latter inter-

pretation can be understood as follows. A high σi value indicates that a parameter’s

elementary effects are rather different from each other, which implies that its influence

is dependent on its location in parameter space, andmight thus be due to the particular

choice of one or more other parameters.

When a parameter has inverse and non-inverse effects on the output,mi can under-

estimate the parameter’s significance, due to the cancellation of positive and negative

values of EE
j
i . However, such a parameter would have a high σi value, and so, if con-

sidered together with the value of mi, the parameter can still be identified as influential

[63]. A revised version of mi was proposed by Campolongo [15], which calculates the

average of the absolute values of each elementary effect, serving as a single measure to

quantify and rank the influence of parameters,
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High σi Low σi

High mi/m
∗
i Non-linear effects and/or interactions Linear effects

Low mi Non-linear effects and/or interactions Negligible effects

Low m∗
i — Negligible effects

Table 4.3.1: A summary of how the sensitivity measures m and σ are interpreted.

m∗
i =
1

r

r

∑
j=1

|EEji |. (4.16)

m∗
i identifies significant parameters even when their effect on the model output is

non-monotonic, since cancellation effects cannot occur with |EEji |. Hence, m∗
i will be

the main measure used to rank the parameters in this chapter. A high value of m∗
i

indicates that the parameter has considerable effects on the output, while a low value

unambiguously indicates that the ith parameter has negligible effects on the output.

However, mi is still useful in some cases, where m
∗
i > mi reveals that the parameter’s

effects occur in alternating directions (non-monotonic).

mi is a particularly useful measure for analysing the parameters of the Ca
2+ model,

because it will be important to identify the direction in which the parameters are sig-

nificant. mi > 0 means that, on average, an increase in the ith parameter leads to an

increase in the model output of interest, while mi < 0 means that, on average, an in-

crease in the parameter leads to a decrease in the model output. If |mi| = m∗
i , then

mi > 0 means that, at all tested points, an increase in the ith parameter leads to an

increase in the model output of interest, while mi < 0 means that an increase in the

parameter leads to a decrease in the model output; hence, the effects of the ith parame-

ter are monotonic across parameter space. Parameters with opposite signed mi values

for the Ca2+ Time-to-Peak and Left-Shift are of special interest because changes in their

values might enable the simultaneous prediction of the rapid Time-to-Peak and signal

amplification, as discussed in Chapter 3.

The parameters of the Ca2+ model are ranked using m∗
i , while mi and σi are used to

give qualitative information about the effects of the parameters. Table 4.3.1 summarises

how the sensitivity measures are interpreted.

4.4 Application of the EE method to the Ca2+ model

In the Ca2+-mobilisation experiments being modelled, the agonist concentration is reg-

ulated by the experimentalist. The same experiment is repeated for n agonist concen-

trations [L1], [L2], ..., [Ln], and the corresponding Ca
2+ peak values P1, P2, ..., Pn are used
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to construct the dose-response curves (see Figure 3.3(b)). In the same way, the sen-

sitivity analysis is carried out n times, using each agonist concentration. This makes

the required number of model evaluations for the sensitivity analysis nr(k+ 1) instead

of r(k + 1). Hence the value of r must be even more carefully chosen, in order for the

computational expense of the sensitivity analysis to stay affordable. The computational

cost of implementing the method for the Ca2+ model will be discussed in a later section

(see section 4.4.4).

The sensitivity measures (4.14) - (4.16) are then re-defined as an average over n

values:

mi =
1

n

n

∑
L=1

1

r

r

∑
j=1

EE
j
i,L (4.17)

m∗
i =
1

n

n

∑
L=1

1

r

r

∑
j=1

|EEji,L| (4.18)

σi =
1

n

n

∑
L=1

√

√

√

√

1

r− 1
r

∑
j=1

(EE
j
i,L −mi,L)2. (4.19)

The key features of the Ca2+ response have been identified from the data, and will

be the outputs for which elementary effects are calculated. These are the Transient-

Peak, the Time-to-Peak, Left-Shift of the Ca2+ peak dose-response curves relative to the

αGTP ones (indicative of signal amplification) and Peak-over-Basal. These four features

can be quantified by f = 4 objective functions (Y1,Y2,Y3,Y4), explained below.

Ca2+ Peak-Over-Basal

The Ca2+ peaks in the data are significant because they represent a considerable rise

over the basal level (see Figure 3.3(a)); hence, the Ca2+ peak output is considered rela-

tive to the basal response, as defined by the following:

Y1 =
Peak− Basal
Basal

, (4.20)

where ’Peak’ and ’Basal’ are illustrated in Figure 4.3. Considering the peak value on its

own can be misleading, since a small percentage rise over a high basal value is likely to

make a higher contribution to the absolute peak value than a large percentage rise over

a lower basal value. Hence, the potency of an agonist is better quantified by Y1 than

the absolute peak value, as the higher the value of Y1, the more potent the agonist. Y1

can also be used to distinguish between types of drugs, since Y1 > 0 holds for agonists,

Y1 = 0 for antagonists, and Y1 < 0 for inverse agonists.
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Figure 4.3: Features of the Ca2+ peak response which are used to define output features

for the sensitivity analysis.

Peak values for which Y1 < 0.05 are not taken into consideration. In such cases,

’Peak’ is taken to be 0. This distinguishes between peaks that actually arise from the

model, and ’peaks’ that arise from small numerical errors of the ODE solver.

Ca2+ Transient-Peak response

The transience of the Ca2+ peaks in the data is also an important feature, and is quan-

tified as:

Y2 = Peak− Plateau, (4.21)

where ’Peak’ and ’Plateau’ are illustrated in Figure 4.3. Y2 indicates whether the

transient peak seen in the data occurs in a model simulation. When the peak response

is sustained, Y2 = 0, but when it is transient, (Peak− Plateau) > 0.

Ca2+ Time-to-Peak

The time taken to reach the peak Ca2+ concentration after agonist stimulation is also an

important feature. In the data it is rapid, 5− 20s, depending on [L] (see Figure 3.3(a)).

The Time-to-Peak,

Y3 = tp, (4.22)

is illustrated in Figure 4.3. In those cases where Y1 < 0.05, Y3 = 0.
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Figure 4.4: An illustration of features related to the dose-response curves, used in the

quantification of the Left-Shift (see equations (4.23) and (4.25)).

Left-Shift

Signal amplification is quantified by measuring how much the dose response curve

shifts from the αGTP level in the pathway to the Ca
2+ level; it is calculated by subtract-

ing the absolute value of the EC50 of the αGTP dose response curve from the EC50 of the

Ca2+ one, as follows:

Y4 = |log(ECCa2+50 )| − |log(ECαGTP
50 )|, (4.23)

where log(ECCa
2+

50 ) is the log(EC50) of the Ca2+ peak response and log(EC
αGTP
50 ) is that

of the αGTP peak response. Recall that the EC50 is the concentration of agonist that

induces the peak response halfway between the baseline (B) and the maximal response

(T) of the dose-response curves, as illustrated by Figure 4.4). Y4 > 0, this indicates a left

shift from the αGTP level to the Ca
2+ level, while a negative value implies a right shift.

A left shift is an indication of signal amplification, since it means a smaller agonist

concentration is required to generate the half-maximal Ca2+ response than the αGTP

one.

Y1,Y2 and Y3 above are easily calculated from outputs of the model’s numerical

solution, but the EC50 values used to calculate the dose-response shift require an ad-

ditional estimation process, since in many simulations, EC50 /∈ [L1], [L2], ..., [Ln], but

will normally lie between two of the discrete values. The EC50 values are estimated by

fitting the peak values for each parameter set (run n times, for each [L] value) to the

following sigmoidal function:
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S([Lc]; B, T, EC50, h) = B+
T − B

1+ ( EC50
[L]

)h
(4.24)

where c = 1, 2, ...n and h is the Hill slope, which describes the steepness of the curve;

this equation is standard in pharmacological practice. In pharmacology, the curve with

h = 1 is referred to as the standard curve which describes most receptor-response

systems, and is used to fit dose response curves with few points [65]; it was used to fit

theM3 Ca2+ data, hence h is fixed at 1. The fminsearch function ofMATLAB,which uses

the Nelder-Mead simplex search method to estimate the local minimum of a function

without the use of gradients [51], is used to find values that minimises the following

function:

n

∑
c=1

(Pc − S([Lc]; B, T, EC50, h))2, (4.25)

where Pc is the c
th element of the Ca2+ peak values, P = [P1, P2, ...Pc, ...Pn], correspond-

ing to the cth ligand value [Lc]. Throughout this chapter n = 10 ligand concentrations

will be used.

The half maximal peak is given by:

P1
2

=
T + B

2
, (4.26)

where B and T are illustrated in Figure 4.4. Given that Pc < P1
2

< Pc+1, either Lc or

Lc+1 is chosen as the initial guess EC50 for the search method, depending on whether

Pc or Pc+1 is closer in value to P1
2
. L1 and Ln are chosen to ensure a wide range, so that

B = P1, and T = Pn are expected; hence, only EC50 needs estimation.

4.4.1 Selection of the GSA parameters

The choices made for the EE method and sampling strategy parameters, p, δ,M and r

require careful consideration in order for the sensitivity analysis to be efficiently imple-

mented, because they influence how representative a sample of elementary effects will

be.

The value of δ will depend on that selected for p. It has been shown that choosing

p to be even and

δ =
p/2

(p− 1) , (4.27)

is a convenient choice [63]. This can be illustrated as follows. When δ = p/2(p − 1),
the [0,1] interval can be divided into two subsets of equal length

p
2 , as follows:
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Figure 4.5: (a) A sampling scheme in which p = 6, and δ = p/2
(p−1) = 3

5 allows each point

to be sampled with equal likelihood. (b) If, instead, δ =
p/3

(p−1) = 2
5 is chosen, points

2
5

and 35 are more likely to be sampled than the others.

S1 = {0, 1/(p− 1), 2/(p− 1), ..., 1− δ }
S2 = {0+ δ, 1/(p− 1) + δ, 2/(p− 1) + δ, ..., (1− δ) + δ } (4.28)

It becomes clear that the pair of initial samples fromΩ which will be transformed into

the ith components of the two points in parameter space required for the calculation of

any elementary effect (see equations (4.3) and (4.4)) will either be (xi ∈ S1, xi + δ ∈ S2)
or (xi ∈ S2 and xi − δ ∈ S1). Thus all elements in S1 and S2 have an equal probability
of being chosen.

A scheme in which p = 6 is used to further illustrate. Figure 4.5(a) shows the

resultant spacing in the [0, 1] interval. Each double-headed arrow points to a pair of

possible points for the calculation of an elementary effect when δ = p/2
(p−1) = 3

5 is chosen;

the possible pairs are
(

0, 0+ 3
5

)

,
(

1
5 ,
1
5 + 3

5

)

,
(

2
5 ,
2
5 + 3

5

)

and there is no bias to sample

any particular point more than any others. Figure 4.5(b) shows that if δ = p/3
(p−1) = 2

5

is chosen instead, 25 and
3
5 are more likely to be sampled than the others, illustrated by

the fact that they have two arrows pointed at them.

A choice of p = 10 (δ = p/2
(p−1) = 5

9 ) for the Ca
2+ model parameters affords a rela-

tively dense grid which allows even wide ranges (e.g., four orders of magnitude) to be

well explored with a log spacing (see next section). The choices made for r and M are

discussed below in section 4.4.4.

The value of k is the number of parameters included in the sensitivity analysis.

Some initial assumptions are made to reduce the number of parameters for consider-

ation. The thermodynamic constants θνµ, θζµ, θζν are fixed and assumed to be 1. In a

sensitivity analysis carried out on the cubic ternary complex model (cTCAM)’s 16 pa-

rameters, these parameters were shown to be non-influential to the G-protein activa-

tion response [41]. Also, based on discussions with experimental collaborators, [Ca2+AV ]

is fixed at its value in the base parameter set, which gives an initial ER Ca2+ concentra-

tion in middle of the micromolar range (4.88× 10−6M); the basal permeability of the
ER, γ0, chosen to be small, is also fixed, while the ER/cytosol ratio, νr , is also fixed at
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Figure 4.6: The advantage of using the log-uniform distribution (b) over the uniform

distribution (a), illustrated using the values obtained with the upper and lower bounds

of the parameter RTOT. Note the log scale of the y-axes.

its value in the base parameter set, as published in [1]. The Ca2+ model has 47 param-

eters in total, but with the previously discussed assumptions, k = 40. With p = 10, the

sampling space is then a 40-dimensional grid with 10 levels.

4.4.2 Log-uniform sampling

The ranges of uncertainty for some of the Ca2+ model parameters can be several or-

ders of magnitude, therefore a log-uniform spacing is preferred over a uniform one

to transform the initial x samples from Ω into X values in the actual parameter space

A [35]. The random sample xi ∈ {0, 1/(p − 1), 2/(p − 1), ..., 1} is transformed to a
corresponding value, Xi ∈ [LBi,UBi], in the ith parameter’s log-uniform spaced range:

Xi = 10
xi(logUBi−logLBi)+logLBi . (4.29)

Using a range of four orders of magnitude, defined for the total receptor concentra-

tion, RTOT, Figure 4.6 illustrates how the log-uniform distribution samples the param-

eter range more effectively than the uniform distribution, when the range is wide.

The spacing δ is also transformed from its value in the sampling space, Ω, into the

dimensionless

∆i = δ(logUBi − logLBi), (4.30)

whose value is thus dependent on the width of the ith parameter’s range.

The elementary effect of the ith parameter is then given by
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EEi(X) =
[Y(X1,X2, ...,Xi−1,Xi + ∆i, ...,Xk) −Y(X)]

∆i
, (4.31)

so that its unit is the same as that of the output Y.

4.4.3 Constraining parameter space

The particular way that the parameter space is constrained could influence the results

of the sensitivity analysis. Some parameters, such as molecular concentrations, may

be more likely to vary from cell to cell, requiring a wider range to be defined. Sen-

sitivity analyses of the Ca2+ model parameters will be carried out in two differently

constrained parameter subspaces. The effect that the different constraints have on the

sensitivity analysis will then be explored by comparing results from the two subspaces,

which are constrained as follows.

Parameter Subspace 1

The parameters are grouped according to their type, which determines the widths of

the ranges from which they are sampled (about their values in the base parameter set,

unless doing so would take them out of biologically reasonable range) as follows:

• Molecular concentrations: 4 orders of magnitude

• Rate constants: 2 orders of magnitude

• Thermodynamic constants: 1 order of magnitude

• Ca2+ flux parameters 1: 4 orders of magnitude

Here, the range of values defined for molecular concentrations is wider because it

can be argued that expression levels can vary from cell to cell [41], and less routinely

characterised than rate constants [75]. The Ca2+ flux parameters, γ1, p1, p2, are varied

over four orders of magnitude because they have not necessarily be experimentally

measured; their base values were taken from the Kang and Othmer model [37], where

they were chosen to match experimental data; hence, they are considered to be more

uncertain. The thermodynamic constants µ+, µ−, ν+, ν−, ζ+ and ζ− are only varied

over one order of magnitude because there are constraints on the values their ratios

µ = µ+

µ−
, ν = ν+

ν−
and ζ = ζ+

ζ−
can take. These ratios should be > 1; in the case of

ζ, only (positive) agonists are used in the data (see section 1.3.2); in the case of ν, it

is assumed that the agonist binds preferably to the pre-coupled states of the receptor

1These are: γ1, p1, p2.
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(RG, R∗G) over the uncoupled states (based on Chapter 3’s results); in the case of µ,

it is assumed that the receptor’s inactive state is not able to bind more preferably than

its active state to the G-protein. The rate constants are only varied over 2 orders of

magnitude because they are less likely to vary from cell to cell. This actually allows

corresponding KD values to vary over four orders of magnitude.

Parameter Subspace 2

The ranges defined for the parameters are as follows:

• Molecular concentrations: 2 orders of magnitude

• Rate constants: 2 orders of magnitude

• Thermodynamic constants: 1 order of magnitude

• Ca2+ flux parameters: 2 orders of magnitude

Here, all parameters are varied over two orders of magnitude, except the thermo-

dynamic constants (for the same reasons outlined above). Hence, all parameters except

the thermodynamic constants are assumed to have the same level of uncertainty.

4.4.4 Computational expense

The size of Fi, that is, the number of possible elementary effects for the ith parameter,

pk−1[p− ∆(p− 1)], increases with p, so presumably, the higher the value of p chosen,
the higher the value of r (the sample size of Fi) should be. However, the Campolongo

sampling strategy, which maximises the spread of the samples, ought to minimise the

need for higher and higher values of r, by producing samples that are good representa-

tives even at low values of r. To further explore this, two values of r, high and low, are

used in two separate sensitivity analyses and the results are checked for consistency.

M = 2000 was chosen as a high number of initial trajectories. Sensitivity results

from r = 20, r = 50, r = 100 and r = 150 trajectories were initially compared, and

acceptable agreement was found between results from r = 100 and r = 150. These

trials also gave an idea of the computational cost. Hence, r1 = 150 and an even more

thorough r2 = 1000 were chosen as values with which computationally affordable anal-

yses could be carried out, while covering parameter space well. Two sets of r1 and r2

trajectories were generated.

The computation time of the analysis may be divided into three: the time taken to

obtain r optimised trajectories, tot, which is a function of M, r, p, k (tot(M, r, p, k)), the

82



CHAPTER 4: GLOBAL SENSITIVITY ANALYSIS OF PARAMETERS

time taken to carry out nr(k+ 1)model evaluations, tme, and the time taken to calculate

the elementary effects and sensitivity measures (m∗,m, σ), tsm.

The time taken to obtain r1 = 150 optimised trajectories from an initial sample of

M = 2000 on aDell PowerEdgeR610with two Intel Xeon X5570 processors (8 processor

cores total) with 48GB memory was t1ot ≈ 5.3h, while the time taken to generate r2 =

1000 optimised trajectories was t2ot ≈ 41.2h (approximately t2ot = t1otr2
r1
). The time taken

to carry out the model evaluations is highly dependent on the parameter sets that are

obtained with the trajectories – a few parameter sets may require the ODE solver to

take far smaller time steps. For instance, for the first set of r = 150 trajectories, tme was

approximately 67.6 hours, while the second set had tme ≈ 131.9 hours. On the other
hand, for the first set of r = 1000 trajectories, tmewas lower than for both r = 150 runs at

approximately 29.2 hours, while the second set took 354.1 hours. Since the parameter

sets are randomly chosen, the model evaluation times are unpredictable. The times

taken to calculate the sensitivity measures, for both r1 and r2, were trivial.

4.5 GSA results: Influential parameters

The forty parameters for analysis are labelled 1− 40, as specified in Table C.1.1. In each
subspace, two sets of trajectories are used to produce two sets of sensitivity results (run

1 and run 2) and the average sensitivity measures taken, so that they are given by

mi =
1

2
(mi,1 +mi,2), (4.32)

m∗
i =
1

2
(m∗
i,1 +m

∗
i,2), (4.33)

σi =
1

2
(σi,1 + σi,2), (4.34)

where the subscript i, o refers to the ith parameter and the oth run.

4.5.1 Key drivers of individual features

Below, the parameters to which the individual output features are most sensitive are

discussed. The results from parameter subspace 1 are considered here; they are later

compared to those from parameter subspace 2. The sensitivity results obtained when

r2 = 1000 are analysed here, as they provide the more thorough coverage of parameter

space; the results from that scheme will later be compared with results from one in

which r1 = 150 (see section 4.8).
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Figure 4.7: Sensitivity analysis results for the Ca2+ Peak-over-Basal. m∗
i ranks the pa-

rameters (a), the sign of mi indicates the direction of a parameter’s average effect (b),

m∗
i − |mi| > 0 indicates that a parameter exerts non-monotonic effects (c). σi is the stan-

dard deviation of the elementary effects.

Sensitivity of the Ca2+ Peak-over-Basal

The m∗
i values for the Ca

2+ Peak-over-Basal are shown in Figure 4.7(a), from which it

may be said that the feature is relatively insensitive to all but six parameters. These

are (parameter numbers indicated before colon): the rate constant for IP3 degradation,

26:kIP3deg; the rate constant of the GPCR desensitisation reaction, 36:kdes+; the rate con-

stant of PLC activation, 23:kPLCact; the maximal rate of the SERCA pumps, 39:p1; the

concentration of PIP2, 5:[PIP2]; and the rate constant for GPCR deactivation, 12:kdeact.

As mentioned previously, the Ca2+ Peak-over-Basal quantifies the ability of an drug to

induce a response; hence changes in these parameters can alter agonist potency.

Figure 4.7(c) shows that 26:kIP3deg, 36:kdes+, 39:p1, 5:[PIP2] can all exert nonmono-

tonic effects, since m∗
26 − |m26|, m∗

36 − |m36|, m∗
39 − |m39| and m∗

5 − |m5| are greater than

84



CHAPTER 4: GLOBAL SENSITIVITY ANALYSIS OF PARAMETERS

10
0

10
1

10
−6

10
−4

0

0.5

1

1.5

2

2.5

3

3.5

5:[PIP2](M) 26:kIP3deg(s
−1)

C
a2

+
P
ea
k
-
B
as
al
)/
B
as
al

(a)

10
2

10
3

10
4

10
−310

−210
−110

0

0

1

2

3

4

5

6

36:kdes+(s−1)
12:kdeact(s

−1)

(C
a2

+
P
ea
k
-
B
as
al
)/
B
as
al

(b)

0
2000

4000
6000

8000
10000

0

1

2

3

4

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

23:kPLCact(M
−1s−1) 12:kdeact(s

−1)

(C
a2

+
P
ea
k
-
B
as
al
)/
B
as
al

(c)

10
−6

10
−4

10
−2

10
−1

0

1

2

3

4

5

6

36:kdes+(M−1s−1) 5:[PIP2(M)

(C
a2

+
P
ea
k
-
B
as
al
)/
B
as
al

(d)

Figure 4.8: The Ca2+ % Peak-over-Basal changes nonlinearly in response to variations in

some of the significant parameters. These parameters were selected to illustrate mono-

tonic and biphasic nonlinearity.

0. This ability to exert either inverse or non-inverse effects may depend on the values

of other parameters, and/or on the fact that they themselves act in a nonlinear fashion

which is nonmonotonic. This can be seen in Figures 4.8(a), (b) and (d), where varying

those four parameters from the base parameter set influences the Peak-over-Basal in a

biphasic manner. This suggests that the rate of IP3 degradation, the rate of GPCR de-

sensitisation, the maximal rate of the SERCA pumps and the concentration of PIP2 all

have optimal values (or ranges of values), outside which the nature of agonist efficacy

can alter dramatically. These parameters might be able to determine whether a drug

acts as an agonist (Ca2+ Peak-over-Basal> 0) or antagonist (Ca2+ Peak-over-Basal= 0).

The reason that these parameters act in a biphasic fashion may be understood by

considering their effects on the peak and basal separately, which are shown in Figure

4.9, where 26:kIP3deg and 5:[PIP2] are used to illustrate. In Figure 4.9(a), both the peak

and basal decrease monotonically as 26:kIP3deg increases. Initially the relative change

in peak is greater than the relative change in basal, which causes the Peak-over-Basal

to increase; however, the basal level soon becomes constant, while the peak continues
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Figure 4.9: The individual effects on the Ca2+ Peak and Basal of varying (a) 26:kIP3deg,

(b) 5:[PIP2].

to decrease, hence Peak-over-Basal starts to decrease. In Figure 4.9(b), both the peak

and basal increase monotonically as 5:[PIP2] increases, and initially the relative change

in peak is greater than the relative change in basal, causing the Peak-over-Basal to in-

crease; however, the relative change in peak becomes small before the relative change

in basal, causing the Peak-over-Basal to start to decrease.

12:kdeact exerts increasing monotonic effects at all points tested across parameter

space, since m∗
12 − |m12| = 0 (see Figure 4.7(c)). When varied in the base parameter

set, 12:kdeact, as well as, 23:kPLCact, exert increasing monotonic effects on the Peak-over-

Basal (Figure 4.8(c)), meaning that the reactions they are involved in are important to

maintaining the Peak-to-Basal ratio. In other words, they are important determinants

of an agonist’s potency. 23:kPLCact is the rate constant for the reaction in which Ca
2+

activates PLC (see (3.5)), so that it can go on to hydrolyse IP3 from PIP2, leading to Ca
2+

release. This Ca2+ release exerts a positive feedback, since it leads to the activation of

more PLC, which will be more pronounced after the addition of the agonist. Hence the

peak is more significantly influenced, while the basal could remain relatively constant.

12:kdeact is the rate constant for the reactions in which the active GPCR species are

deactivated (see reactions (1.9), (1.12), (1.17), (1.18)); it determines the ratio of inactive

to active GPCR’s at equilibrium. The sensitivity of the Ca2+ Peak-over-Basal to kdeact

suggests that an agonist’s potency increases as the ratio of inactive to active GPCR’s at

equilibrium does. This is to be expected, as a high ratio of active to inactive GPCR’s

would mean that the system could generate a high response in the absence of agonist,

diminishing the agonist’s role. Hence the lifetime of the active GPCR species may also

be a determinant of agonist potency.
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Figure 4.10: Sensitivity analysis results for the Ca2+ Transient-peak. m∗
i ranks the pa-

rameters (a), the sign of mi indicates the direction of a parameter’s average effect (b). σi

is the standard deviation of the elementary effects. Several parameters are identified as

significant.

Sensitivity of the Ca2+ Transient-Peak

Unlike the Ca2+ Peak-over-Basal, the Ca2+ Transient-Peak only has a few parameters to

which it is relatively insensitive (Figure 4.10(a)). This means that, though there may be

dominant mechanisms which control the Transient-Peak, the system has other mecha-

nisms that can significantly contribute. The significant parameters are a combination

of parameters from the G-protein activation cycle, and from further downstream in the

pathway.

The most influential parameter is 39:p1, the maximal rate of the SERCA pumps,

which is unsurprising, since it is the maximal rate at which Ca2+ can be removed from

the cytosol back into the ER, potentially making the Ca2+ peak transient. 40:p2, as the

Ca2+ concentration at which half-maximal pumping occurs, can also exert a similar

influence by determining how sensitive the pumps are. Being two of the three most

sensitive parameters, they imply that the mechanism of the SERCA pumps is crucial to

the Transient-peak response.

Cell-specific parameters are also influential, such as: the total IP3R concentration,

4:IP3RTOT; the total PIP2 concentration, 5:[PIP2]; the total G-protein concentration,

2:GTOT; and the total receptor concentration, 1:RTOT. Differences in their expression

levels can occur from cell to cell [41], even in the same line, which might explain dif-

ferences in Ca2+ time course profiles, when taken from individual cells in the same

experiment [27].

Rate constants of several reactions are also significant. 36:kdes+ affects the rate at
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which desensitisation occurs; desensitisation is responsible for reducing the number

of active receptor-G-protein complexes available to signal, hence it has a role in mak-

ing the IP3 response, and consequently the Ca
2+ response, transient. Recall that PKC

mediates desensitisation, so its dynamics would influence the shape of the transient.

The rate constants of IP3-IP3R binding and unbinding, 30:kIP3Rb+, and 31:kIP3Rb− and

the rate constant for the binding and unbinding of activating Ca2+, 32:kCa2+act+ and

33:kCa2+act−, respectively are also significant. This means that the dynamics of IP3-IP3R

binding, as well as positive and negative Ca2+ feedback in CICR can also contribute to

the transience of the Ca2+ signal.

αGTP dynamics are also important. The rate of αGTP production is an important fac-

tor (as its rate constant, 16:kGTP+ is among the six most significant parameters), while

the lifetime of αGTP is also a relatively important factor, since the rate constant of the

PLC-mediated αGTP hydrolysis reaction, 25:kPLCdis, has a significant m
∗ value.

Some of the parameters which strongly effect the Transient-peak also significantly

influence the Peak-over-Basal response (5:[PIP2], 26:kIP3deg, 39:p1 and 36:kdes+). 23:kPLCact,

and 12:kdeact are not among the most significant parameters for the Transient peak,

which means that they control the Ca2+ Peak-over-Basal without significantly altering

the Transient-Peak.

Sensitivity of the Ca2+ Time-to-Peak

Figure 4.11 shows them∗
i values for theCa

2+ Time-to-Peak; this feature, like the Transient-

Ca2+-Peak, can only be considered insensitive to a few parameters (see Figure 4.11a).

This means that though there are dominant mechanisms which control the timing of

the peak, the system has other mechanisms that may significantly contribute. 40:p2

and 39:p1 are the most influential parameters, suggesting that the dominant mecha-

nism controlling the Ca2+ Time-to-Peak is the action of the SERCA pumps.

The sensitivity of the IP3 receptor to IP3, quantified by 38:γ and the binding rate

of IP3, 30:kIP3Rb+ are significant. The binding and unbinding rates of activating Ca
2+

(32:kCa2+act+, and 33:kCa2+act−, respectively) are also significant, suggesting that the dy-

namics of the IP3 receptor are also key to the timing of the peak.

The rates of IP3 degradation, and of GPCR desensitisation, quantified by 26:kIP3deg

and 36:kdes+ respectively, can affect the timing of the Ca
2+ peak by preventing further

IP3-mediated Ca
2+ release, through direct degradation of IP3 or desensitisation of ac-

tive GPCR’s respectively.

Cell-specific parameters like the total IP3R concentration, 4:IP3RTOT, total PIP2

concentration, 5:[PIP2] and the total receptor concentration, 1:RTOT are also influential.

As previously mentioned, differences in their expression levels can occur from cell to
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Figure 4.11: Sensitivity analysis results for the Ca2+ Time-to-peak. m∗
i ranks the param-

eters (a), the sign ofmi indicates the direction of a parameter’s average effect (b). σi is the

standard deviation of the elementary effects. Several parameters have significant effects

on this feature.

cell, and might thus explain differences in Ca2+ time courses, when taken from individ-

ual cells in the same experiment.

As with the Transient-Peak, hydrolysis of αGTP can also be an important mecha-

nism, either mediated by αGTP itself (via 18:kgd+ in reaction 1.24) or PLC (via 25:kPLCdis

in reaction 3.8).

Sensitivity of the Left-Shift

Figure 4.12(a) shows the ranking of the parameters for the Left-Shift. The dominant

mechanism in signal amplification is also the action of the SERCA pumps, as 40:p2 and

39:p1 are the highest ranked parameters. This illustrates how signal amplification is

system- and not just ligand-dependent. m40 and m39 are negative, which means that

on average, 40:p2 and 39:p1 exert inverse effects on the Left-Shift. Hence, regardless

of the strength of signal applied, if the SERCA pumps are too sensitive, Ca2+ release

can be strongly inhibited, thereby reducing the agonist’s ability to generate a response

irregardless of the agonist’s intrinsic efficacy.

The dynamics of constitutive GPCR activity are also shown to be significant, since

13 : kact and 12 : kdeact are influential. Together, these parameters determine the ratio of

active to inactive GPCR’s at equilibrium, implying that signal amplification is highly

dependent on this ratio. This is in agreement with the sensitivity results for the Peak-

over-Basal, where it was seen that the agonist potency depended on the ratio of inactive

(R) to active GPCR’s (R∗).
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Figure 4.12: Sensitivity analysis results for the Left-Shift, which is quantifies signal am-

plification, using equation (4.23). m∗
i ranks the parameters (a), the sign of mi indicates

the direction of a parameter’s average effect (b). σi is the standard deviation of the ele-

mentary effects.

The total receptor concentration, 1:RTOT, and the total G-protein concentration,

2:GTOT, are also significant parameters. These parameters can be experimentally ma-

nipulated, indicating that these results can be readily tested.

Nonlinearity and interaction among parameters

Across all the output features, the relationship between m∗
i and σi is always approxi-

mately linear, which indicates that the larger a parameter’s influence, the more non-

linear it is, and/or due to interaction with other parameters (see Figures 4.7(a), 4.10(a),

4.11(a), 4.12(a)). Hence, none of the influential parameters exert linear effects on the

Ca2+ Peak-over-Basal, Transient Ca2+ Peak, Ca2+ Time-to-Peak or the Left-Shift. This

highlights the importance of using a global sensitivity analysis over a local sensitivity

analysis (LSA), since an LSA’s ability to identify parameters of significance is highly

dependent on what point in parameter space is analysed. Of course, if the parameters

represented by that point are known with certainty, then an LSA should be the method

of choice, as its computational expense is relatively trivial.

4.5.2 Key drivers of the overall Ca2+ response

A useful way to quantify the overall influence of the parameters is to define a repre-

sentative sensitivity measure, across all the output features, for each parameter. Given

that the vector of m∗ values for the f th objective function is given by m∗ f
i , the average
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Ranking Parameter Description SAR

1 40:p2 [Ca2+] for half-maximal rate of SERCA 0.76

2 39:p1 Maximal rate of SERCA 0.75

3 36:kdes+ On-rate for GPCR desensitisation 0.72

4 4:IP3RTOT Total IP3R concentration 0.72

5 26:kIP3deg Rate constant for IP3 degradation 0.63

6 5:[PIP2] Total [PIP2] concentration 0.62

7 33:kCa2+act− Off rate for IP3R-activating Ca
2+ 0.57

8 38:γ1 Sensitivity of IP3R 0.57

9 28:kPIP2b+ On-rate for PIP2 and αGTPPLC
∗ 0.53

10 27:kIP3 Rate constant for IP3 hydrolysis 0.52

Table 4.5.1: The ten most significant parameters of the Ca2+ model, as quantified by SAR

(see equation (4.36))

relative sensitivity of the ith parameter is given by,

S
′
AR =

1

q

q

∑
f=1

m
∗ f
i

max(m∗ f )
, (4.35)

which is adapted from [17]. q = 4, since four features are considered in the sensitivity

analysis. S
′
AR is a dimensionless measure, and is used to rank the parameters of the

Ca2+ model according to significance. The maximum value that a parameter can score

is 1, which would be the case if it was the most significant for all features.

S
′
AR values can be calculated for both parameter subspace 1 (S

′
AR1
) and subspace 2

(S
′
AR2
). An average of the two,

SAR =
S

′
AR1

+ S
′
AR2

2
, (4.36)

is used to provide the main overall ranking for the model. The individual rankings for

each subspace will be compared in section 4.5.3.

The ten parameters with the highest score (SAR) are listed in Table 4.5.1, identified

as the key parameters controlling the Ca2+ response and signal amplification. The

complete list of all parameters and their average relative sensitivity scores can be found

in Table C.2.1 in the appendices.

Investigating the amplified, yet rapid Ca2+ response

In this section, the mechanisms which might be responsible for the amplified, yet rapid

Ca2+ response, are investigated by considering the particular effects of the ten high-

est ranked parameters on the Left-Shift and the Ca2+ Time-to-Peak. The ten parame-

ters can be divided into those that have monotonic increasing effects on both features,

shown in Figure 4.13; those that have monotonic decreasing effects on both, shown in
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Figure 4.14; and those which have biphasic effects on either feature, shown in Figures

4.16 and 4.15.

The SERCA pump parameters 40:p2 and 39:p1 have similar sensitivity scores and

are the most significant parameters. This is because the SERCA pumps play a direct

role in determining the rate at which Ca2+ is removed from the cytosol back into the ER,

and so they influence the timing and magnitude of the (basal and peak) Ca2+ response.

Increasing the 40:p2 means that the concentration of Ca
2+ required for half-maximal

pumping increases; this makes the pumps less sensitive and the Ca2+ re-entry into

the ER slower, increasing both the Left-shift and the Time-to-peak (Figures 4.13(a) and

4.13(b)). On the other hand, increasing 39:p1, the maximal rate of the SERCA pumps

decreases both the Left-shift and the Time-to-peak (Figures 4.14(a) and 4.14(b)). This

is because the pumping capability increases with 39:p1, hence Ca
2+ can be transported

more quickly back into the ER, decreasing both the peak and Time-to-Peak.

Figures 4.13(c) and 4.13(d) show that increasing 4:IP3RTOT increases the Left-Shift,

as well as the Ca2+ Time-to-Peak. The increase in the Left-Shift is explained by the

fact that increasing 4:IP3RTOT increases the probability of forming IP3 IP3R and the

activated (open channel) state, IP3 IP3RCa
2+, thus increasing Ca2+ release. However, it

takes more time to bring down the increased Ca2+ peaks, probably because over time,

far more receptors enter the IP3IP3RCa
2+ state than leave it.

The Ca2+ Time-to-Peak and the Left-Shift also increase with 38:γ1 (Figures 4.13(e)

and 4.13(f)). The increase in the Left-Shift is due to a higher Ca2+ release, because of

the increased contribution of the source term involving 38:γ1 to the Ca
2+ ODE (see

Equation (3.13)). It then takes longer for the action of the SERCA pumps to bring down

the Ca2+ peak.

5:[PIP2] is a participant in reaction (3.6), which produces αGTPPLC
∗PIP2; therefore,

as [PIP2] increases, so does [αGTPPLC
∗PIP2]; this leads to the production of more IP3,

and consequently a higher Ca2+ release and greater Left-Shift (Figure 4.13(g)). How-

ever, Figure 4.13(h) shows that the Ca2+ Time-to-peak increases in the process. Increas-

ing another top ten parameter, 28:kPIP2b+, has similar effects on the Left-Shift and the

Time-to-Peak, since it is the rate constant for the binding of [PIP2] (which is assumed

constant) and αGTPPLC
∗ in reaction (3.6).

The identification of [PIP2] among the most significant parameters might have im-

plications for the assumption in the model that [PIP2] is constant; in reality, [PIP2] is

depleted but replenished, but there is no evidence that it is rate-limiting [104]. How-

ever, since it has been identified as one of the most important parameters, the cost of

this assumption might be reconsidered, by incorporating the dynamics of [PIP2] re-

synthesis into the model, and considering the effects on the Ca2+ response; this will be
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Figure 4.13: Varying significant parameters which have similar effects on the Ca2+ Time-

to-Peak and signal amplification. Increasing 40:p2, 5:[PIP2], 4:IP3Rtot and 38:γ1 increases

the Left-Shift (1st column, (a,c,e,g)), but also the Time-to-Peak (2nd column, (b,d,f,h)).
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done in Chapter 5.

Increasing the IP3 degradation rate constant, 26:kIP3deg, decreases the Left-Shift and

also shortens the Ca2+ Time-to-Peak (Figures 4.14(c) and 4.14(d)). This is as would

be expected; increasing 26:kIP3deg heightens the rate of IP3 degradation, and so Ca
2+

release, which is mediated through IP3, is inhibited, hence the decrease in the Left-

Shift. The Time-to-Peak is also shortened, since the signal for Ca2+ release (IP3), is

terminated more quickly.

When 33:kCa2+act−, the rate constant for the dissociation of activating Ca
2+ and IP3R

(reaction (3.11)), is increased, the Left-Shift and the Time-to-Peak are increased as well.

This is because increasing the rate of this reaction shortens the lifespan of the activated

IP3 receptor (IP3 IP3RCa
2+); hence, Ca2+ release is inhibited, causing the decrease in

the Left-Shift and Time-to-Peak.

36:kdes+, although a G-protein level parameter, is one of the four parameters to

which the Ca2+ response is most sensitive (see Table 4.5.1). It is the rate constant for

the reactions in which the active GPCR’s are desensitised, thereby reducing the num-

ber available to signal for IP3-mediated Ca
2+ release. As a result, a higher 36:kdes+

decreases the Ca2+ Time-to-Peak, as can be seen in Figure 4.15(b). The effect on the

Left-Shift, however, is biphasic. Initially, it rapidly decreases as 36:kdes+ increases, up

to a threshold value, after which it starts to increase slowly. The Ca2+ Time-to-Peak

decreases up to a minimal value of ≈ 200s, so changing 36:kdes+ cannot account for the
rapid, yet amplified response.

Varying the parameter 27:kIP3 influences the Ca
2+ Time-to-Peak and Left-Shift dif-

ferently than varying the other parameters. Increasing 27:kIP3 has a monotonic increas-

ing effect on the Left-Shift and a biphasic effect on the Time-to-Peak (Figure 4.16). Ini-

tially, the Ca2+ Time-to-Peak increases with 27:kIP3 , until a threshold value, after which

it begins to decrease, following the IP3 Time-to-Peak.

Since no minimal value is reached for the Time-to-Peak within 27:kIP3 ’s defined

range for the GSA, the Time-to-Peak can decrease further if 27:kIP3 is increased beyond

that range. Thus, increasing the rate of IP3 production can potentially account for the

Ca2+ response seen in the data, in which the signal is amplified to produce a maximal

response, without delaying the Time-to-Peak. This will be explored in a later section.

Non-influential parameters

Not only is it useful for the sensitivity analysis to identify influential parameters, the

non-influential parameters that come to light also provide important insight. The rela-

tively insignificant parameters identified might not require further analysis, effectively

reducing parameter space by many dimensions. In addition, they are parameters that
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Figure 4.14: Varying significant downstream parameters which have similar effects

on the Ca2+ Time-to-Peak and signal amplification. Increasing 39:p1, 26:kIP3deg and

33:kCa2+act− decreases the Time-to-Peak (1
st column, (a,c,e)), but also the Left-Shift (2nd

column, (b,d,f)).
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Figure 4.15: The effects of varying the significant G-protein level parameter 36:kdes+

on the Ca2+ Time-to-Peak and signal amplification. Increasing kGTP+ exerts a biphasic

effect on the Left-Shift, while reducing the Time-to-Peak.

experimentalists can consider as not crucial to measure, or test as drug targets. For

instance, the concentration of PLC, 3:[PLCTOT], is not an easily measured parame-

ter, but since it has been identified as a relatively noninfluential parameter, it can

be concluded that it is not crucial to measure. The range defined for 3:[PLCTOT] is

0.8× 10−6 − 0.8× 10−6M; as PLC works by binding to αGTP, which is converted from

G, it is likely that PLC is in excess if only small amounts of αGTP are formed, hence

variations in [PLCTOT] would not matter much. These results suggest that PLC might

not be a worthwhile drug target, and it might be possible to test this hypothesis exper-

imentally, by making use of available PLC inhibitors [73, 90].

The ten least significant parameters of the Ca2+ model are listed in Table 4.5.2. It is

informative to investigate why the rate constants identified are insensitive, and what

can consequently be learnt about the reactions in which they are involved. For instance,

are any of these parameters insensitive because relevant reactions reach equilibrium

quickly? Are their forward reactions so fast that they are essentially irreversible?

15:kg+ and 14:kg− are the rate constants for receptor pre-coupling (reaction (1.13)),

19:klb+ and 20:klb− are the rate constants for ligand binding (reaction 1.10), 34:kCa2+ inh+
and 35:kCa2+ inh− are the rate constants for the binding and unbinding of inhibitory Ca

2+

to IP3R respectively (reaction (3.12)), and 24:kPLCdeact is the rate constant for the deac-

tivation of PLC (reaction (3.5)). Simulations show that none of these reactions reach

equilibrium quickly (see Figure C.1 in the appendices), and that setting 14:kg− = 0 and

24:kPLCdeact = 0 has no discernable effect on the response (see Figure 4.17), which might

mean that receptor pre-coupling and the activation of PLC by Ca2+ are irreversible pro-
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Figure 4.16: The effect of varying the significant downstream parameter 27:kIP3 on the

Ca2+ Time-to-Peak and signal amplification. Increasing 27:kIP3 increases the Left-Shift,

while exerting a biphasic effect on the Time-to-Peak.

Ranking Parameter Overall score

1 kRA+ 0.01

2 kg+ 0.04

3 kg− 0.05

4 klb− 0.06

5 klb+ 0.06

6 kPLCdeact 0.07

7 ζ− 0.07

8 ν− 0.07

9 kCa2+inh+ 0.08

10 kCa2+inh− 0.08

Table 4.5.2: The ten least significant parameters of the Ca2+ model.

cesses, at least when the base parameter set is used; the model might thus be slightly

simplified by excluding their backward reactions.

The insensitivity of the Ca2+ response to the ligand binding parameters means that

the Ca2+ features are robust to changes in their values. Recall that the ranges of ζ+ and

ζ− were restricted so that they only represented positive agonist values (see section

4.4.3). This result only means that positive agonists produce similar Ca2+ responses; if

one agonist produces a particular response pattern, then changes in klb+, klb− and ζ−

do not significantly alter that pattern, due to signal amplification. This is in agreement

with the data, where four different agonists induce the maximal response (see Figure

3.3(b)). However, it is important to note that the location of the Ca2+ dose-response

curve depends on the values of klb+, klb− and ζ− (see Figures 3.3(b) and 3.20(b)). This

is probably not reflected in the sensitivity analysis results because the Left-Shift only
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Figure 4.17: G-protein pre-coupling (reactions (1.13)-(1.16)) and Ca2 activation of PLC

(reaction (3.5)) appear to be effectively irreversible reactions, as setting the backward

rates, kg− and kPLCdeact respectively, to 0 has no distinguishable effect on the Ca2+ re-

sponse.

quantified the location of the Ca2+ dose-response curve relative to the αGTP one.

4.5.3 Comparing results from parameter subspaces 1 and 2

Figure 4.18 compares the parameter sensitivity rankings from the runs carried out in

Subspace 1 and Subspace 2, and it can be seen that there is reasonable correlation be-

tween the rankings. The box in the bottom left contains parameters that were iden-

tified in the top 10 of both subspaces, and there are six such parameters. The rate

constants 27:kIP3 , 28:kPIP2b+, 31:kIP3Rb− and 32:kCa2+act+, are identified in the top ten

significant parameters of Subspace 2, where all parameters, apart from the thermo-

dynamic constants, are varied over two orders of magnitude, but not in Subspace 1,

where the molecular concentrations and Ca2+ flux parameters are varied over four or-

ders of magnitude (see section 4.4.3). On the other hand, the molecular concentrations,

1:RTOT and 5:[PIP2], the rate constant 30:kIP3Rb+, and the Ca
2+ flux parameter, 38:γ1 are

identified among the top ten significant parameters of Subspace 1, but not Subspace 2.

The total receptor concentration, 1:RTOT, is a parameter that can vary from cell to

cell, and the fact that it is higher ranked in Subspace 1 (where it has a wider range) may

imply that the Ca2+ response is more affected when receptor expression levels vary

widely. This implies that if receptor expression levels are experimentally manipulated

to be approximately uniform across cells, time courses for individual cells might also

be more uniform.

From the base parameter set, increasing 1:RTOT increases the Left-Shift, and has the

previously discussed biphasic effect on the Time-to-Peak; this is illustrated in Figure
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Figure 4.18: Sensitivity results (S
′
AR) from subspaces 1 and 2 are compared. There is

reasonable correlation between both sets of results.

4.19. Therefore, at least qualitatively, it can be seen how in systemswhere they can vary

widely, the receptor expression levels can have a role in shaping the Ca2+ response seen

in the data, in which signal is amplified without delaying the Time-to-Peak. Also, the

biphasic effect that increasing 1:RTOT has on the Ca
2+ Time-to-Peak explains how low-

expressing receptor systems which amplify Ca2+ more weakly can still have a rapid

Ca2+ Time-to-Peak comparable to those of high-expressing systems [42]. In Chapter 2

it was seen that the receptor and G-protein expression levels influence the level of the

αGTP response, and it was speculated that they would similarly influence the Ca
2+ re-

sponse. The sensitivity analysis results from Subspace 1 have validated the significant

sensitivity of the Ca2+ response to the total receptor concentration, while the medium

sensitivity of 2:GTOT in both subspaces confirms the influence of the G-protein con-

centration. However, the rate constant of desensitisation, 36:kdes+ —another G-protein

level parameter— is always higher ranked than 1:RTOT and 2:GTOT; kinetic models of

G-protein activation alone tend not to include receptor desensitisation [13, 86, 100], but

these results suggest that they should.

The box in the top right of Figure 4.18 contains parameters identified in the bottom

ten ranking of both subspaces; the results are very consistent, as there are 9 parameters

in the box.

Though there is good agreement between the results from parameter subspaces 1

and 2, it cannot necessarily be said that the few discrepancies are insignificant. The

averaging of the overall scores from each subspace (see equation 4.36), would have

evened out some of the discrepancies.
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Figure 4.19: The effect of varying the total receptor concentration 1:RTOT on the Ca
2+

Time-to-Peak and signal amplification. Increasing 1:RTOT increases the Left-Shift, while

exerting a biphasic effect on the Time-to-Peak.

4.5.4 Implications for parameter fitting

It is reasonable to assume that the most significant parameters are those which most re-

quire estimation, as variations in their valuesmost significantly alter theCa2+ response;

all other parameters may then be fixed at any value in their ranges of uncertainty. A

dimensionally reduced parameter space is then obtained in which a parameter estima-

tion routine can be applied, probably at a lower computational cost, in order to locate

the parameter set with which the model best fits the data. Since the computational ex-

pense of many parameter estimation routines increases with the number of parameter

space dimensions, reducing the parameter space can make the parameter estimation

process more practicable. This will be considered in Chapter 6.

4.6 The key driver of the amplified, yet rapid Ca2+ response

Of the parameters that have opposite effects on the Time-to-Peak and the Left-Shift,

27:kIP3 is the only one which, when varied within its defined range of uncertainty, did

not reach a lower bound for the Ca2+ Time-to-Peak (see Figure 4.16(b)). When 27:kIP3

is increased to 50000 s−1 (beyond 1000 s−1, the upper bound of its originally defined

range), this leads to a far more rapid Time-to-Peak of 50 seconds for the higher agonist

concentrations (Figure 4.20(b)), while themaximal response is predicted for all agonists

(Figure 4.20(c)). This is because the rate of reaction αGTPPLC
∗PIP2

kIP3−→ αGTPPLC
∗ +

IP3 + DAG increases with the value of 27:kIP3 . Hence, the rapid, yet amplified Ca
2+

response cannot be explained by any of the reactions in which the other nine significant
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Figure 4.20: (a) Ca2+ time course data. When kIP3 = 50000s−1, (a) the Times-to-Peak at

the higher agonist concentrations are rapid, ≈ 50s and (c) dose-response curves show
that signal amplification occurs. (d) Under a transformation of the original timescale,

the time courses better resemble the timescale of the data, with Times-to-Peak ≤ 50s.

parameters are involved, but by a rapid IP3 production rate via a high value of 27:kIP3 ,

through the enzymatic action of PLC∗. This means that PIP2 is rapidly hydrolysed to

produce IP3, which binds very quickly to its receptors, to release Ca
2+ from the ER.

The fast reaction rate also increases the probability that the dissociated αGTPPLC
∗ will

bind (sequentially) to several free PIP2 molecules, especially as [PIP2] is not depleted.

Thus, small amounts of αGTPPLC
∗ cause significant IP3 production, which explains the

significant Left-Shift.

The biphasic dependence of the Ca2+ Time-to-Peak on 27:kIP3 is less easy to explain.

The first thing to recognise is that, as Figure 4.21 shows, as 27:kIP3 varies, the shape of

the Ca2+ transient (as well as IP3 IP3R and IP3 IP3RCa
2+) follows the IP3 one, so under-

standing the IP3 Time-to-Peak sheds light on the Ca
2+ Time-to-Peak. It is important

to keep in mind that the IP3 peak occurs when
d[IP3 ]
dt = 0, whose individual rates are

given by:
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Figure 4.21: The shapes of the IP3 IP3R, Ca
2+ IP3 IP3R and Ca

2+ transients follow that of

IP3.

R1 = kIP3 [αGTPPLC
∗PIP2] (4.37)

R2 = kIP3deg[IP3] (4.38)

R3 = kIP3Rb−[IP3 IP3R] (4.39)

R4 = kIP3Rb+[IP3][IP3R]. (4.40)

In the case of a transient peak,
d[IP3]
dt = 0 occurs the first time that R1 = R2 and R3 =

R4 (see Figure 4.22). Figure 4.23 shows the time courses of d[IP3 ]dt for values of 27:kIP3

in the range 10− 1000s−1, and it can be seen that the maximum d[IP3 ]
dt always increases

with kIP3 (causing increased IP3 concentrations and signal amplification); however, the

time taken for IP3 to peak depends on the time taken to descend to zero velocity, which

initially increases with kIP3 , but after a threshold value (around kIP3 = 316s−1), starts to

decrease, as shown in Figure 4.23. Figure 4.22(c) shows that this rapid descent occurs

because at high values of kIP3 , the initial velocities of IP3 degradation (R2) and IP3-

IP3R association (R3) and dissociation (R4) peak more quickly, so that R1 = R2 and

R3 = R4 holds at an earlier time. Hence, increasing kIP3 has a biphasic effect on the

Ca2+ Time-to-Peak because it has the same effect on the IP3 time-to-peak (see Figure

4.23(b)).

This explains why kIP3 is the only significant parameter downstream of G-protein

activation which can have this amplifying, yet quickening effect on the Ca2+ peak re-

sponse, by speeding up R1 (IP3 production) past some threshold rate which quickens

the timescales of R2 − R4. Increasing either 5:[PIP2] or 28:kPIP2b+ (two other signif-
icant parameters, see Table 4.5.1) can also promote IP3 production by increasing the
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Figure 4.22: The evolution of the individual terms of
d[IP3]
dt for different values of kIP3 .
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concentration of αGTPPLC
∗PIP2 but not past the threshold rate, because the concentra-

tion of αGTPPLC
∗PIP2 is limited by that of αGTPPLC

∗. Hence increasing 5:[PIP2] (or

28:kPIP2b+) can only mimic the first portion of the biphasic curve of the Ca
2+ Time-to-

Peak versus 27:kIP3 (compare Figures 4.13(h) and 4.16(b)).

The value kIP3 = 50000s−1 suggests that the enzyme αGTPPLC
∗ is in the same class

as some of the fastest known enzymes, such as: carbonic anhydrase, which catalyses

the hydration of carbon dioxide at rates of up to 106s−1 [47]; acetylcholinesterase, which

hydrolyses acetylcholine at a rate of 25, 000s−1 [99]; and catalase, which hydrolyses hy-

drogen peroxide into water and oxygen at rates up to 1.6× 107s−1. However, this result
may be hard to test, as PLC and PIP2 experiments are usually carried out, not in whole

cells, but in buffer solutions; in one such experiment [76], the PIP2 hydrolysis rate was

783.33s−1, which is quite different from kIP3 = 50000s−1, but this might be accounted

for by the differences in experimental conditions. An informative experiment would

be to observe the effects of slowing down the rate of PIP2 hydrolysis on the features of

the Ca2+ response.

4.6.1 Refining the Ca2+ Time-to-Peak prediction

The previously discussed parameter change allowed the Ca2+ Times-to-Peak at the

three highest Oxotremorine-M concentrations to occur in ≤ 50s. To improve the quan-
titative prediction, especially at the lower agonist concentrations, the timescale of the

Ca2+ model can be transformed to quicken the dynamics without changing their pat-

tern. If the Time-to-Peak is to be shortened by a factor of b, the time variable and the

ODE system can be transformed as follows:

θ =
1

b
t (4.41)

dC

dθ
= b

dC

dt
, (4.42)

where C is the vector of all model variables, and θ is the new time variable. When b is

set to 10, the Ca2+ response is quickened without changing qualitatively, as shown in

Figure 4.20(d)).

The Ca2+ time course predictions have been improved by parameter variations

guided by the sensitivity analysis results. However, an aspect of the simulated re-

sponse does not match the data; in the simulations, the transients for the higher agonist

concentrations decay more quickly than those for the lower concentrations, whereas,

in the data, the decay is slower for the higher concentrations (compare Figures 4.20(a)

and (d)). Since the decay of the transient indicates extrusion of cytosolic Ca2+, aspects
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Figure 4.24: m∗ values are used to quantify the sensitivities of the Ca2+ and αGTP

Transient-Peak.

of the model that regulate that process might need to be re-considered, which will be

done in the next chapter.

No further manual parameter variation will be attempted at this stage; the chal-

lenge of matching the data quantitatively is left to a parameter estimation study later

in Chapter 6.

4.7 Transient peak hypothesis

In Chapter 2, the peak hypothesis, which states that the transientCa2+ Peak depends on

the existence of a transient αGTP Peak, was proposed, due to results from the analysis

of the G-protein activation model. Identifying parameters to which the features are

sensitive can shed light on (but not necessarily prove) the hypothesis. To do this, the

sensitivity of an additional model output, the αGTP Transient-Peak, which is analogous

to the Ca2+ Transient-Peak (see equation 4.21), is considered.

Some parameters to which the Ca2+ Transient-Peak and the αGTP Transient-Peak

are both significantly sensitive are: 16:kGTP, the αGTP production rate constant; 36:kdes+,

the on-rate for GPCR desensitisation; and 2:GTOT, the total G-protein concentration, as

shown in Figure 4.24). Their effects on both features will be analysed. Parameters to

which either feature is highly sensitive will also be analysed. As Figure 4.24 shows,

the Ca2+ Transient-Peak alone is highly sensitive to 40:p2, the Ca
2+ concentration for

half-maximal SERCA pumping, and 4:IP3RTOT, the total concentration of IP3 receptors,

while the αGTP Transient-Peak alone is highly sensitive to 18:kgd+ , the rate constant of

αGTP hydrolysis, and 7 : ζ+, the ligand efficacy parameter.

Figure 4.25 compares [αGTP] and [Ca2+] time courses for different values of the pa-

rameters to which both features are highly sensitive, while Figure 4.26 compares the
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Figure 4.25: The effects of varying parameters to which the Ca2+ Transient-Peak and the

αGTP Transient-Peak are both significantly sensitive.

time courses for different values of the parameters to which only αGTP is highly sen-

sitive. In these cases, [αGTP] and [Ca2+] evolve similarly; they increase together, and

flatten synchronously. The uniting factor is that αGTP is sensitive in both cases, which

supports the peak hypothesis.

In Figure 4.27, the [αGTP] and [Ca2+] time courses are compared for different val-

ues of the parameters to which only the Ca2+ Transient-Peak is highly sensitive, and

some non-intuitive behaviour occurs. Increasing 40:p2 and 4:IP3RTOT increases the

Ca2+ response, but decreases the αGTP one (although αGTP is relatively insensitive to

4:IP3RTOT). As both parameters are rather directly linked to Ca
2+ release, it appears

that in these cases, the Ca2+ response modulates the αGTP one. This is probably be-

cause of increased Ca2+ binding to the αGTPPLC
∗ form, via Ca2+ + αGTPPLC

kPLCact−−⇀
↽−−
kPLCdeact

αGTPPLC
∗ (see reaction (3.5)), which decreases the amount of free αGTP. It is important
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Figure 4.26: The effects of varying parameters to which only the αGTP Transient-Peak

is highly sensitive. Compare with Figure 4.25, where [αGTP] and [Ca2+] also evolve

similarly.

to note however, that the Ca2+ transient peak still does not occur without the αGTP one;

they therefore appear strongly linked.

4.8 The dependence of GSA results on the sample size, r

The sensitivity results from parameter subspace 1, which were carried out with r2 =

1000 optimised trajectories, are now compared with results from the same subspace,

carried out with r1 = 150 trajectories, in order to consider the effect of the sample size

on the results.

Figure 4.28 shows the parameter rankings obtained for both runs, using S
′
AR (see

equation 4.35), and there is reasonable correlation between both sets of results. Param-

eters 1, 26, 28 and 36 are significantly more highly ranked by the r2 = 1000 run; on

the other hand, 19, 25, 31-33, 35, and 37 are noticeably lower ranked. It could be that

a smaller sample of elementary effects, such as that obtained with r1 = 150 overesti-

mates the relative significance of a parameter because it underestimates the significance

of some of the other parameters.

In general, the r1 = 150 run does well to identify the most significant parameters.

Among its ten most significant parameters are seven of those found by the r2 = 1000

run (see the bottom left box in Figure 4.28). The r1 = 150 run identifies the least sen-
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Figure 4.27: The effects of varying parameters to which only the Ca2+ Transient-Peak is

highly sensitive.
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and r2 = 1000. Parameters are ranked using S
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AR, quantified in equation 4.35.
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Optimal r = 1000 Optimal r = 150 Non-optimal r = 150

p1 p1 kPIP2b+

p2 kCa2+act− kPLCdis

IP3RTOT kCa2+act+ IP3RTOT

kdes+ IP3RTOT kIP3Rb+

kIP3deg γ1 p2

[PIP2 ] p2 γ1

γ1 [PIP2] p1

kIP3Rb+ kPKCdes− kCa2+act+

kCa2+act− kIP3Rb+ kGTP+

RTOT kPLCdis [PIP2]

Table 4.8.1: Sensitivity analysis results obtained using r2 = 1000 optimal, r1 = 150

optimal, and r̆1 = 150 non-optimal trajectories are compared. The ten most sensitive

parameters for each run (in subspace 1) are shown here.

sitive parameters almost as well as the r2 = 1000 run, since nine of the ten least sig-

nificant parameters of both runs are in common (see the top right box in Figure 4.28).

Therefore, for this model, if the computational expense of a higher sample size run is

too expensive, a lower sample size such as r = 150 could be used.

The importance of optimising the sampling strategy (as discussed in section 4.3.1)

is also considered by comparing the results obtained from r̆1 = 150 non-optimal trajec-

tories with those obtained from the r1 = 150 run. The results from the r2 = 1000 run

are taken to be the best results, and used to judge the performances of the r1 = 150 and

r̆1 = 150 runs.

In terms of identifying the ten most sensitive parameters, the r1 = 150 and r̆1 = 150

runs perform similarly; the former identifies seven of the parameters found by the

r2 = 1000 run, while the latter identifies six, as shown in Table 4.8.1. However, the pa-

rameters identified as the twomost sensitive in the r̆1 = 150 run are not even identified

among the top ten of the r2 = 1000 run. Since the top two parameters identified by

the r1 = 150 are in the top ten of the r2 = 1000 run (both runs also identify the same

parameter as the most sensitive), it is concluded that the optimisation strategy results

in a better ranking of the parameters. This becomes crucial in circumstances where only

a handful of the most sensitive parameters are sought.

4.9 Discussion

In this chapter, a global sensitivity analysis has been carried out on the parameters of

the Ca2+ model, identifying which of them are most significant, and providing insight

into the pathway dynamics. The problem of finding a good balance between thor-

ough exploration of parameter space and computational affordability when applying
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a global sensitivity analysis to a model as detailed as the Ca2+ mobilisation model was

also considered.

Global sensitivity analysis and computational efficiency

The method of elementary effects was carried out using both r1 = 150 and r2 = 1000

optimal trajectories, and the results from both were agreeably consistent; this means

that in situations where computational resources are more limited, results generated

from using a lower number of optimised trajectories such as r1 = 150 can give accept-

able results. Also, if the sensitivity analysis from the more expensive r2 run leads to

insight that requires a further sensitivity analysis (that is, extra, unexpected computa-

tional expense), the lower number of trajectories could be used for this.

The time taken to generate 1000 optimal trajectories from 2000 (≈ 41.2h) may be
considered too high, but it was carried out because the available computational re-

sources were sufficient. In addition, because each parameter is initially sampled from

the [0,1] interval, the process needs to be carried out only once, and the trajectories

could be used repeatedly for differently defined and constrained parameter spaces, as

long as they have the same number of dimensions. For instance, the same r1 = 1000

trajectories were used to generate the sensitivity results for the two subspaces earlier

defined (see section 4.5.3). (The same trajectories are also used to generate new sensi-

tivity results later, in Chapter 6.)

Insight into pathway dynamics

Parameters controlling agonist potency

Agonist potency, as quantified by the Ca2+ Peak-over-Basal function (equation (4.20)),

was relatively insensitive to all but six parameters: 26:kIP3deg, the rate constant of IP3

degradation, 36:kdes+, the rate constant of theGPCR desensitisation reactions, 23:kPLCact,

the rate constant of PLC activation, 39:p1, the maximal rate of the SERCA pumps,

5:[PIP2], the concentration of PIP2 and 12:kdeact, the rate constant for GPCR deactiva-

tion. Guided by these results, agonist potency experimentsmight be designed in which

any of the relevant reactions are inhibited, or one in which [PIP2] is varied. In particu-

lar, the hypothesis that such experimental manoeuvres can cause known agonists to act

as antagonists should be tested. This might provide an explanation for unexpected fail-

ures when agonists are used in therapy strategies, since parameters such as [PIP2] and

PKC concentration, which mediates the desensitisation process (abstracted in the Ca2+

mobilisation model by the reactions involving 36:kdes+, see reactions 3.22 and 3.23), can

vary from cell, and cellular variability could be conceptualised to represent patient to
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patient variability [31].

Understanding the amplified, yet rapid Ca2+ response

The rate constant for PIP2 hydrolysis, 27:kIP3 , was identified as the only parameter

which could individually account for the amplified yet rapid response seen in the data.

Individual changes in the other significant parameters could account either for the Left-

Shift or the rapid Ca2+ Time-to-Peak, but not both. A high value of 27:kIP3 (50000s
−1),

was required to simultaneously predict the two features, suggesting that the enzyme

αGTPPLC
∗, which mediates PIP2 hydrolysis, could be in the same class as some of the

fastest known enzymes.

The most sensitive parameters

The three most sensitive parameters are the SERCA pump parameters, 39:p1 and 40:p2,

and the GPCR desensitisation on-rate 36:kdes+. These are pathway components that the

design of pharmacological (agonist) experiments do not typically prioritise, yet these

results suggest that new experiments should be designed that explore the robustness of

the agonist-induced Ca2+ response to changes in these particular pathway processes.

The availability of inhibitors for the pump [61], and for PKC, which mediates the de-

sensitisation process makes such experiments feasible [14].

PIP2, is also a significant pathway component, since its concentration was ranked

6th overall; interestingly, the concentration of PIP2’s enzyme was only ranked 24th.

This implies that, even though both compounds participate in the same reaction, PIP2

might be a far more promising drug target.

The fact that there are several sensitive points in the pathway with components

that are potential drug targets may also suggest co-drugging opportunities in Ca2+

pathways.

Model simplification

It was shown that two of the least significant parameters 14:kg− and 24:kPLCdeact can

be set to zero, without altering the Ca2+ response, suggesting that GPCR pre-coupling

and Ca2+ positive feedback on PLC are irreversible reactions. Hence, in addition to

providing insight into pathway dynamics, the results of the Global sensitivity analysis

could be used to slightly simplify the model.
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CHAPTER 5

Variant Ca2+-mobilisation models

5.1 Introduction

This chapter considers modelling questions that arose from the previous chapter. The

results of Chapter 4’s global sensitivity analysis (GSA) guided parameter changeswhich

resulted in a parameter set (here referred to as the GSA-guided parameter set, found in

Table B.2.2) with which the Ca2+-mobilisation model predicted key features of the ex-

perimental data (the transient, rapid peak, and signal amplification, see section 4.6).

However, a feature of the Ca2+ data came to prominence that had not previously been

highlighted; while in the Ca2+ data the descent from peak to steady state occurs in rel-

atively short times for [L] = 10−9–10−4M, the descent is slow for [L] = 10−9–10−7M in

the simulated time courses, as illustrated in Figure 5.1. In other words, it became clear

that the steepness of the Ca2+ curve after the peak is also an important feature.

Since the descent from peak indicates the removal of Ca2+ from the cytosol, the role

that extra removal mechanismsmight have in determining the steepness of that descent

is considered here, by incorporating plasma membrane pumps (ATPases), which facil-

itate Ca2+ efflux to the extracellular environment, into Chapter 4’s Ca2+-mobilisation

model (hereafter referred to as the original CM). This change results in a variant of the

original CM, which will be referred to as the Ca2+-mobilisation model with membrane

pumps (CMMP). Parameter variation will be carried out on this extendedmodel to ob-

serve the role that membrane pumps could play in determining the steepness of the

descent from peak.

The second question that arose from Chapter 4 is whether the total concentration of

PIP2 should be assumed constant, since it was identified by the GSA as the 6th most

significant parameter. In reality, PIP2 undergoes a cycle of depletion and re-synthesis

(described in section 3.1) which does affect its concentration, hence this chapter also

considers another extension of the original CM, which takes PIP2 dynamics into ac-

count.
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Figure 5.1: A comparison of (a) experimental Ca2+ data and (b) corresponding simula-

tions obtained with the GSA-guided parameter set. In the data, the time to steady state

appears to increase with the agonist concentration, while the reverse is the case in the

simulations.

5.2 Ca2+-mobilisation model with membrane pumps

The original CM is extended into the Ca2+-mobilisation model with membrane pumps

(CMMP) by accounting for the fact that the cytosolic Ca2+ concentration can be de-

pleted due to the action of plasmamembrane Ca2+ ATPases (PMCA). The rate at which

the pumps transport Ca2+ from the cytosol into the extracellular medium is modelled

by a Hill function, following previous studies [87, 95, 101]. The cytosolic Ca2+ rate

equation for this extended model is then given by (compare with equation (3.13)):

d[Ca2+]

dt
= νr(γ0 + γ1[IP3.IP3R.Ca

2+])([Ca2+ER]− [Ca2+])

− p1[Ca
2+]2

[Ca2+]2 + p22
− VP[Ca

2+]2

K2P + [Ca2+]2
, (5.1)

where VP is the maximal rate of the membrane pumps, and KP is the concentration

of Ca2+ at which half-maximal pumping occurs. Also, note that [Ca2+ER] + [Ca2+] is no

longer constant, as cytosolic Ca2+ is pumped out via the PMCA pumps; hence, [Ca2+ER]

is included as a variable in the model, whose ODE is given by:

d[Ca2+ER]

dt
=
1

νr

(

p1[Ca
2+]2

[Ca2+]2 + p22

)

− (γ0+ γ1[IP3.IP3R.Ca
2+])(Ca2+ER − [Ca2+]). (5.2)

(
d[Ca2+ER ]
dt is multiplied by the cytosol/ER volume ratio, 1νr , to account for the fact that cal-

cium flux from the cytoplasm causes a greater concentration change in the ER (because

of its smaller volume) than it does in the cytoplasm.)
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Figure 5.2: (a) A comparison of the rates of the SERCA (p1 = 6 × 10−6Ms−1, p2 =

0.45× 10−6M) and membrane pumps (VP = 28× 10−6Ms−1, KP = 0.425× 10−6M). (b)
There is no Ca2+ response to 10−7M of Oxotremorine when VP = 28× 10−6Ms−1 and
KP = 0.425× 10−6M.

5.2.1 Fine-tuning membrane pump parameters

The initial values given to VP and KP are 28× 10−6Ms−1, and 0.425× 10−6M respec-
tively, taken from a previous study [87], in which they were estimated by fitting an

IP3-stimulated CICR model to Ca
2+ data. The original CM and the CMMP have all

other parameters in common, and their values in the GSA-derived parameter set are

retained (see Table B.2.2) since they were shown to predict key features of the data in

Chapter 4.

Figure 5.2(a) shows how the SERCA and plasma membrane Hill functions vary

with [Ca2+] for the aforementioned VP and KP values. These values give the mem-

brane pumps a far higher pumping capacity than the SERCA pumps over most Ca2+

concentrations. As a result, there is no discernible Ca2+ release in response to 10−7M

of Oxotremorine-M, as illustrated in Figure 5.2(b). This prediction is opposed to that of

the original CM, in which (as with the data) 10−7M of Oxotremorine-M induces a max-

imal Ca2+ release (see Figure 4.20(d)). This strongly suggests that more fitting values

of VP and/or KP need to be found for the CMMP. Since values which allow significant

responses to agonist stimulation are sought, the Ca2+ Peak-Over-Basal feature, as used

in Chapter 4, and reproduced here:

PB =
Peak− Basal
Basal

, (5.3)

will also monitored in the process of finding suitable values for VP and KP. Non-zero

values of PB indicate that there is a response to agonist stimulation.
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Figure 5.3: The steepness of the Ca2+ descent from peak is an important feature in this

chapter. The descent phase of the transient is referred to as the ’Ca2+-Tail’.

To also ensure that the response is transient,

PMP = Peak− Plateau, (5.4)

(also used in Chapter 4) will also be calculated; thus, when PMP = 0 it can be known

that the response is no longer transient.

As this chapter is concerned with fine-tuning the steepness of the descent from the

Ca2+ peak, that feature is mathematically quantified in the next section.

Quantifying the rate of the transient decay

The Ca2+ descent from peakwill be referred to as the steepness of the ’Ca2+-Tail’, which

is illustrated in Figure 5.3. There are different ways to quantify the steepness of the tail;

the most suitable way is more easily chosen when the exact form of the transient is

known. For example, the transient may be assumed to undergo exponential decay, and

then fit to an exponential function such as,

Ca2+(tp)e
−zt, (5.5)

where time t is measured from the occurrence of the Ca2+ peak, tp; zmay then be taken

as a measure of the Ca2+-Tail steepness (which increases with z). However, there are

at least two disadvantages of such an approach. Firstly, the assumption of exponential

decay may not apply to some (or all) of the time courses. Secondly, a computation-

ally inexpensive fitting method might be needed to estimate z; such a method would

generally require a good initial guess for z, which might be hard to provide.
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An alternative approach will be employed here; instantaneous gradients of the

Ca2+-Tail are used to quantify steepness, and so does not require an assumed func-

tional form for the transient. The following equation is used to calculate a normalised

instantaneous gradient:

IG =
|d[Ca2+ ]/dt|
[Ca2+](0)

. (5.6)

The gradients are normalised to the basal level to account for the way the Ca2+

data have been normalised in Figure 5.1(a); these are the same data that were used in

Chapters 3 and 4, where they were normalised to the (Peak - Basal), due to stimulation

by 10−4M of Carbachol). The normalisation was changed to the present form to prevent

dividing by zero when some VP,KP values cause Peak− Basal = 0 (as in Figure 5.2(b)).
After the addition of the agonist, the model is run until steady state. The Ca2+-Tail

is measured up to when the transient falls to 95% of the (Peak− Plateau) value. IG is
measured every second of the tail, and the average, TS, is a measure of steepness, given

by:

Ts =
1

nt

nt

∑
i=1

IGi , (5.7)

where nt is the number of time points to go from the peak value to 95% of the (Peak−
Plateau) value.

Parameter variation

A region of VP–KP space constrained by the ranges VP = 28× 10−14 − 28× 10−6Ms−1

and KP = 0.425× 10−7− 0.425× 10−5M is searched to identify coordinates which cause
significant Ca2+ responses. Parameter variation is carried out for two agonist concen-

trations; firstly, at 10−9M, which is the low agonist concentration, for which the Ca2+

steady state in the data is reached within the shorter timeframe of ≈ 40s; secondly, at
10−5M, which is representative of the higher agonist concentrations (10−8 − 10−4M) at
which Ca2+ removal occurs within the longer timeframe of ≥ 50s (see Figure 5.1(a)).
Figures 5.4(a)–(c) show the values of the Ca2+-Tail steepness (TS), the Ca

2+ Peak-

Over-Basal (PB) and the (Peak−Plateau) (PMP) in response to 10−5M of Oxotremorine-
M, for various values of KP andVP; for each curve KP has a fixed value, whileVP varies.

In Figure 5.4(a), all the curves have the same basic shape, with steepness initially in-

creasing up to a maximum value, and subsequently decreasing until it reaches zero.

The higher the value of KP, the further right the curve is located. The first curve (solid

lines), where KP = 0.425× 10−7M, represents the most sensitive setting of the pumps
(in the defined range), where only 0.425× 10−7M is required for half-maximal pump-
ing, and the maximum Ca2+-Tail steepness occurs when the maximal rate is given by
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VP = 2.168 × 10−12Ms−1, which is on the lower end of its defined range. However,
when KP = 0.425× 10−6M (dashed lines), making the pumps less sensitive to [Ca2+],
a higher maximal pumping rate (VP = 1.353× 10−11Ms−1) is required to produce the
maximum steepness. When the pumps are at their least sensitive (KP = 0.425× 10−5M,
thick solid line), the curve is also shifted forward, as an even higher maximal rate

(VP = 1.724× 10−9Ms−1) is now required to produce the maximum steepness. A simi-
lar correlation between KP and VP also influence the PB and PMP, with higher maximal

pumping rates compensating for lower Ca2+ sensitivities. For each curve, there are

threshold values ofVP, after which PB and PMP start to decrease until they become zero.

This means that, after the threshold value, as the maximal pumping rate increases, the

transient starts to flatten, until it is completely flat.

Figures 5.4(f)–(h) show individual plots of both PB and TS for single KP values, as

VP varies. This makes it easy to observe what is happening to the size of the agonist-

stimulated response as the steepness of the Ca2+-Tail changes (note that each curve has

been normalised by its peak value to allow PB and TS, which are of different orders,

to be seen clearly when plotted together). For all KP values (that is, in all five plots)

PB and TS respond similarly to changes in VP. In general, the maximum steepness (TS)

occurs together with the maximum Peak-Over-Basal.

When [L] = 10−9M, the changes in TS, PB and PMP, as KP and VP vary, are similar

to those that occur when [L] = 10−5M, as shown in Figures 5.5(a)–(c). The aforemen-

tioned correlation between KP and VP is also evident here, as the curves shift forward

with each increase in KP. As would be expected, the values of PB and PMP are lower

than they were for the higher agonist concentration. However, the fact that the TS

values are lower means that the Ca2+-Tail tends to be less steep at the lower agonist

concentration.

It is therefore clear that the incorporation of membrane pumps allows for modu-

lation of the Ca2+-Tail steepness, but also the size of the response to agonist stimula-

tion. This is further illustrated by plotting time courses with VP = 0, KP = 0 (rep-

resenting the original CM model), and time courses using one of the (KP, VP) pairs

(KP = 0.425 × 10−6M, VP = 1.6786 × 10−11Ms−1, marked ’*’ in Figures 5.4(a) and
(b)) which simultaneously caused maximum steepness and Peak-Over-Basal at both

agonist concentrations.

Figure 5.6(a) shows the response to 10−9M of Oxotremorine-M, while Figure 5.6(b)

shows the response to 10−5M. The influence of the membrane pumps is more pro-

nounced when [L] = 10−5M; the action of the membrane pumps causes the peak re-

sponse to stimulation (relative to basal) to significantly increase, as well as the steep-

ness of the tail, so that the time to steady state is shortened. When [L] = 10−9M, the
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Figure 5.4: (a)-(c) Curves for the Ca2+-Tail steepness (TS), Ca
2+ Peak-over-Basal (PB) and

Ca2+ (Peak - Plateau) (PMP) for various KP and VP values, when [L] = 10−5(M). (d)–(h)

TS and PB (each curve normalised to its maximum) have been plotted together for each

KP value; it can be seen that both features respond similarly to changes in VP and KP.
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Figure 5.5: (a)-(c) Curves for the Ca2+-Tail steepness (TS), Ca
2+ Peak-over-Basal (PB) and

Ca2+ (Peak - Plateau) (PMP) for various KP and VP values, when [L] = 10−9(M). (d) –(h)

TS and PB (each curve normalised to its maximum) have been plotted together for each

KP value; it can be seen that both features respond similarly to changes in VP and KP.
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Figure 5.6: Comparing Ca2+ time courses from the original CM (solid line) and the

CMMP (dashed line) for (a) [L] = 10−9M (b)[L] = 10−5M. In both cases, the action of

the membrane pumps can increase the steepness, as well as Peak-Over-Basal, but when

[L] = 10−9M, the change is not significant.

membrane pumps cause the peak response (relative to basal) to slightly decrease, but

increase the steepness of the tail, although not significantly enough to resemble the

data, where the steady state is reached within 40 seconds (see Figure 5.1(a)). The time

courses for all agonist concentrations are plotted in Figure 5.7, where it can be seen that

compared to the data (shown again in the same figure), the descent from peak is still

much slower at the lower agonist concentrations.

This section has shown that although the action of membrane pumps can influence

the steepness of the Ca2+-Tail, the effect is not enough to allow the simulated Ca2+ tran-

sients for the lower agonist concentrations resemble corresponding ones in the data. It

therefore seems that the extension to the original CM is not necessary.

5.3 PIP2 depletion and replenishment

As previously mentioned, the results of Chapter 4’s GSA indicated that the total con-

centration of PIP2 is one of the parameters with the strongest impact on the Ca
2+ re-

sponse; hence, fluctuations in its value might alter the Ca2+ response. This section

considers another variant Ca2+-mobilisation model, which incorporates a basic PIP2

depletion and resynthesis cycle into the original CM, allowing the effects of such a

cycle to be explored.

Following a previous study [44], it is assumed that the product of PIP2 cleav-

age, IP3, is degraded into a phosphate pool, PHOS, from which PIP2 can then be re-
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Figure 5.7: A comparison of (a) experimental Ca2+ data and (b) corresponding simula-

tions of the CMMP with VP = 1.6786× 10−11Ms−1, KP = 0.425× 10−6M. At the lower
agonist concentrations, the descent from peak is still much slower in the simulations

than in the data.

synthesised, as follows:

IP3
kIP3deg−→ PHOS

kPIP2rep−→ PIP2. (5.8)

The relevant ODEs are then given by:

d[PIP2]

dt
= kPIP2b−[αGTPPLC

∗PIP2]− kPIP2b+[αGTPPLC
∗][PIP2]

+ kPIP2rep[PHOS] (5.9)

d[PHOS]

dt
= kIP3deg[IP3]− kPIP2rep[PHOS] (5.10)

This is a simplification of the cycle of PIP2 depletion and resynthesis, but should

be sufficient to address the concern of this section, which is to explore what effects

fluctuations in PIP2’s concentration might have on the Ca
2+ response. Equations (5.9)

and (5.10) allow [PIP2] to drop when it is hydrolysed, and subsequently be replenished

from the phosphate pool. Since PIP2 depletion might affect the lifetime of the Ca
2+-

activating IP3 signal, its effect on the steepness of the Ca
2+-Tail is also considered.

This extendedmodel, referred to as the Ca2+-mobilisation model with [PIP2] deple-

tion and replenishment (CMPDR), only has one additional parameter to those of the

original CM: kPIP2rep, which controls the rate at which PIP2 again becomes available

after depletion (see equation 5.10). A previous study used the values 0.015, 0.1, 10s−1

[44], which are used here as a guide to vary kPIP2rep between 10
−6 − 1s−1. (The range

was adapted because the dynamics are not sensitive in the range 0.1− 10s−1.)
Figure 5.8 shows the Ca2+ transients in response to both 10−9M and 10−5M of

Oxotremorine-M, as kPIP2rep varies between 10
−6s−1 and 1s−1; the time courses of [PIP2]
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and [PHOS] are also shown. When [L] = 10−5M and kPIP2rep is highest (1 s
−1), the ef-

fect is virtually the same as having [PIP2] constantly available at a high concentration;

as a result, the phosphate pool is hardly filled (see Figures 5.8(d) and (f)). There is sig-

nificant [PIP2] depletionwhen kPIP2rep is lower, at 0.1s
−1 or 0.01s−1, which is temporary

as [PIP2] is subsequently replenished; however, when kPIP2rep = 10−3s−1 for instance,

[PIP2] is hardly recoverable by replenishment in the 120 second timeframe. Hence,

one effect of [PIP2] fluctuations is on the steepness of the Ca
2+-Tail, which increases as

kPIP2rep decreases from 0.1 – 10
−4s−1 (see Figure 5.8(b)).

In response to 10−9M of Oxotremorine-M, the [PIP2] and [PHOS] concentrations

do not significantly change from their basal values, regardless of the value of kPIP2rep

(Figures 5.8(c) and 5.8(e)), as there is not enough agonist to drive [PIP2] depletion. As

a result, the steepness of the Ca2+-Tail at [L] = 10−9M is not significantly impacted by

changes in the value of kPIP2rep. As observed when the previous model (CMMP) was

analysed, the steepness of the Ca2+-Tail at [L] = 10−9M is not as sensitive as it should

be in order to match the data.

Agonist efficacy can be diminished if the rate of PIP2 replenishment is slow; at

kPIP2rep = 10−5s−1 and kPIP2rep = 10−6s−1, the dose-response curves of the Ca2+ peak

shift considerably to the right, as shown in Figure 5.9. Hence, it seems that the most

reasonable values for kPIP2rep are between 10
−4− 0.1s−1. It is also important to note the

effect that the rate of replenishment has on the Ca2+ Peak-over-Basal, which is largest

when kPIP2rep = 10−5s−4. However, the corresponding dose-response curve is more

right-shifted than those which pertain to higher kPIP2rep values.

This section has shown that the original CM, which assumes that [PIP2] is constant,

is roughly equivalent to the CMPDR when its rate constant of PIP2 replenishment is

very high. At intermediate values of kPIP2rep (when [L] = 10−5), the Ca2+ Peak-over-

Basal and the steepness of the Ca2+-Tail can be influenced by the rate of replenishment.

At the low values of kPIP2rep agonist efficacy is significantly diminished, suggesting

that they do not represent realistic rates of PIP2 replenishment. Hence, the dynamics

of PIP2 may be important for fine-tuning the Ca
2+ Peak-over-Basal and the Ca2+-Tail

steepness at the higher agonist concentrations. However, the CMPDR does not neces-

sarily offer improved predictions of the Ca2+ data, particularly at [L] = 10−9; there-

fore, it might be more reasonable to find an optimal value for the constant [PIP2] in

the original CM, which is the simpler model. Indeed merely by varying [PIP2] in the

original model, a similar modulation of the can be achieved Ca2+ Peak-over-Basal and

the Ca2+-Tail steepness, as shown in Figure 5.10 (compare with Figures 5.8(a) and (b)).
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Figure 5.8: The effects of varying kPIP2rep on [Ca
2+] (a-b), [PIP2] (c-d) and [PHOS] (e-f),

in response to 10−9M and 10−5M, of Oxotremorine-M. Within a range of faster PIP2 re-

plenishment rates, the Ca2+ responses do not change much; outside this range, features

like the Ca2+ Peak-over-Basal, and Ca2+-Tail steepness can significantly change. Fast

rates of PIP2 replenishment are acceptably approximated by the assumption that [PIP2]

is constant.
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Figure 5.10: The effects of varying [PIP2] in the original CM on [Ca
2+] in response to

(a) 10−9M and (b) 10−5M, of Oxotremorine-M. Features like the Ca2+ Peak-over-Basal,

and Ca2+-Tail steepness can be sensitive. Fast rates of PIP2 replenishment are acceptably

approximated by the assumption that [PIP2] is constant.
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5.4 Discussion

In this chapter, two extended versions of the original CM were derived and analysed

to address modelling questions that arose in Chapter 4.

The first variant model, the CMMP, incorporated the action of membrane pumps

as an additional source of cytosolic Ca2+ removal, which was solely carried out by the

SERCA pumps in the original CM.

Parameter variation was carried out to identify the PMCA pump parameter values

(VP and KP) which had the strongest impact on the Ca
2+-Tail steepness. Even though

there were VP and KP values which could increase the steepness of the Ca
2+-Tail, they

were not significant enough to make the tails at the lower concentrations anything as

steep as they are in the data. This suggests that it is not crucial to include themembrane

pumps in the model, and that the original CMmight just need parameter optimisation

to better predict the Ca2+-Tails.

The second variant model, the CMPDR, unlike the original CM did not assume that

[PIP2] was constant; it was derived by incorporating a basic cycle of PIP2 depletion

and replenishment into the original CM. It was shown that, if not fast enough, the rate

of PIP2 replenishment can diminish the Ca
2+ response, and thus agonist efficacy. It

was also seen that at the higher agonist concentration, [L] = 10−5 M, the Ca2+ Peak-

over-Basal and the Ca2+-Tail steepness can be sensitive to changes in the rate constant

of PIP2 replenishment. Similar changes in those features could be achieved by vary-

ing [PIP2] in the original CM. Hence, the the models can be considered as roughly

equivalent. This suggests that the better modelling strategy is to optimise the value

of constant [PIP2], rather than model depletion and replenishment, which makes the

model slightly more complex.

Neither of the variants considered here drastically improve the predictions of the

original CM; in particular, they do not improve the prediction of the Ca2+-Tail steep-

ness when [L] = 10−9 M. Therefore, as it is simpler than its variants, the original CM

will be retained as the model for further analysis in the next chapter, where a global

parameter optimisation is performed.
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CHAPTER 6

Parameter optimisation

6.1 Introduction

In Chapter 4, a global sensitivity analysis (GSA) was used to rank the parameters of the

Ca2+-mobilisation model according to their influence on the Ca2+ response. Guided by

the GSA results, parameter adjustments were made to the base parameter set (found in

Table B.2.2), which resulted in the best qualitative predictions of the Ca2+ response

made by the model so far. The resulting parameter set (which can be found in Table

B.2.2) will be referred to as the GSA-guided parameter set. In this chapter, a systematic

parameter optimisation is carried out to improve the quantitative fit to the Ca2+ data,

and gain more insight into pathway dynamics.

Parameter estimation is an optimisation problem, since the parameter setwithwhich

the model output least deviates from the data is sought. Specifically, it is a minimisa-

tion problem, which can be stated as follows: find the n-dimensional vector, x∗ that

minimises an objective function,

F(x) : Rn → R, (6.1)

where, given that Ỹl is a vector of experimental data measured at k time points in the

lth experiment,

F(x) =
m

∑
k=1

d

∑
l=1

(Ỹl,k −Yl,k(x))2 =
d

∑
l=1

‖Ỹl − Yl(x)‖2. (6.2)

Equation (6.2) is also often referred to as the least squares function. For the available

experimental Ca2+ data (discussed in previous chapters, and reproduced in Figure 6.1),

the number of time points is given by k = 34 and the number of experiments is d =

8, since each time course represents an experiment with stimulation by one of eight

agonist concentrations.
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Figure 6.1: The Ca2+ data, to which the model will be fitted [52]; Ca2+ fluorescence

is normalised to the basal level. The number of time points, counted from the time of

agonist stimulation (t = 0), is k = 34.

6.2 Optimisation methods

For nonlinear models such as the Ca2+-mobilisation model, there often exist many so-

lutions to the minimisation problem, that satisfy the following:

F(x∗) < F(x) ∀ x ∈ S ⊆ R
n (6.3)

F(xl) ≤ F(x) ∀ x ∈ Ss ⊂ S, (6.4)

where S (referred to as the search space) is the region of parameter space to which the

search is confined and Ss is the set of points in the neighbourhood of x
l . x∗ is the global

minimum, while xl is a local minimum. It is common for some nonlinear models to

have multiple local, and even global minima. In such cases, the objective function is

said to be multimodal. The results of the global sensitivity analysis (GSA) in Chapter

4 show that there are many parameters to which the output is relatively insensitive,

meaning that these parameters can vary over orders of magnitudewithout significantly

changing the value of the cost function. The Ca2+ model can thus be expected to have

either multiple local minima for F and/or flat sections on its surface, over which its

value is approximately invariant.

6.2.1 Local optimisation methods

Local optimisation methods use local properties of the objective function to guide the

search, and so when the cost function is multimodal, easily converge to the minimum

closest to the starting point of the search [60]. These methods may be divided into two

classes: gradient-based, which use function derivatives to guide the search, and direct

search, which make use of only function evaluations.
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A popular direct search method is the Nelder-Meadmethod, which is a typical sim-

plex search method (a simplex is an nth-order generalisation of a triangle). A simplex

of n + 1 vertices is generated in S ⊂ R
n, and the function is evaluated at each ver-

tex. The vertex with the worst value is replaced, creating a new simplex by reflection,

expansion or contraction, and the search is continued. A sequence of simplexes with

improving function values at the vertices is generated, until the minimum is found, or

some other specified criterion is met [66].

There are many gradient-based optimisation methods which are known to quickly

converge to a local minimum, such as the Levenberg-Marquardt, and Gauss-Newton

Methods, used for least squares functions. Starting from an initial guess x0, the Gauss-

Newton method takes iterative steps towards the minimum, as defined by xa+1 =

xa + ha. Let Ỹl − Yl(x) = rl(x), then equation (6.2) can be written as:

F(x) =
d

∑
l=1

rl(x)
Trl(x). (6.5)

Using a Taylor function-linearisation of F(xa + ha), it can be shown that

JT(xa)J(xa)ha = −JT(xa)rl, (6.6)

where J is the Jacobian matrix, which contains the first-order partial derivatives of rl.

ha is calculated from equation (6.6), and the iterations are repeated until the minimum

is reached [67].

The Levenberg-Marquardt method modifies the Gauss-Newton method by adding

a step size modifier as follows:

(J(xa)JT(xa) + λI)ha = −JT(xa)rl, (6.7)

where I is the identity matrix [67]. This is an improvement on the Gauss-Newton

method because when the iterate is far from the minimum, the step size can be ad-

justed in the direction of the gradient. Other optimisation methods are discussed in

detail elsewhere [25, 68].

Local optimisation methods, while effective in situations where there is only one

minimum, or a good guess for the global minimum is known, are not appropriate oth-

erwise, as they simply converge to the minimum closest to x0. On the other hand,

global optimisation methods, which take larger parts of the search space into account,

are more likely to escape local minima; hence, such a method is preferred for the Ca2+-

mobilisation model.
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6.2.2 Global optimisation methods

Global optimisation (GO) methods can be divided into two classes: deterministic and

stochastic. Deterministic methods often use information about the mathematical struc-

ture of the problem to carry out the search for the optimum. For example, trajectory

methods use search strategies that generate paths such that at least one global mini-

mum lies on one path. The paths tend to be differential equation-based, generated by

an equation of motion, such as Newton’s law for a particle of mass in a potential, sub-

ject to a dissipative force [21]. Trajectory methods aim to visit and enumerate all the

stationary points of the objective function, thus identifying all global and local min-

ima; this means that they are generally computationally demanding, and impractical

for high order problems [72].

Another class of deterministic methods are branch and bound methods, which do

not necessarily require mathematical properties of the objective function to be known.

Branch and bound methods have been implemented in various ways, but are based on

a general underlying principle.

An upper bound for the objective function, FU, is set; this can be done by picking a

random value, or more systematically —for example, choosing a local minimum, using

a local optimisation method, such that FU = F(xl). A lower bound is also estimated

using established methods (convex relaxation, duality, Lipschitz or other bounds [11]).

The search space is then partitioned into a family of sets, using a selected method.

Lower bounds and upper bounds are estimated for each subset, and those sets whose

lower bounds are greater than the upper bound (hence not containing any elements

that give an objective function value less than FU) are eliminated, and permanently

ignored. The upper bounds and lower bounds are then updated. Among the remain-

ing sets, the one which contains an element giving the lowest function value is re-

partitioned, and the upper bound is updated with this function value. The previous

steps are then repeated until no sets containing elements with lower objective function

values can be found [12].

A key idea of this algorithm is that time is saved by exploring the most promising

regions of the search space first, but in the worst cases, the search effort grows expo-

nentially with the problem size.

In theory, deterministic methods are guaranteed to converge to the global optimum;

in practice however, as parameter space dimensionality increases, deterministic meth-

ods are unable to converge in finite time [59]. Deterministic methods tend to carry out

the search through space sequentially, while stochastic methods such as evolutionary

algorithms tend to carry out parallel searches through space using a diverse set of trial

solutions. On the other hand, stochastic methods use probabilistic rules to guide the
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search, which involves random elements, and so are not guaranteed to find the global

optimum; however, they often find very good solutions (in the vicinity of the global

optimum) in finite time [59, 60].

In an informative study [59], representative GOmethods were compared by testing

their performance when estimating the parameters of a benchmark problem: an eighth

order nonlinear ODE model of a metabolic pathway with thirty six parameters. Being

a high-dimensional search space, this represents a challenging optimisation problem,

with which the ability of existing GO methods to handle difficult estimation problems

can be tested. The deterministic methods: Global optimisation using the DIRECT algo-

rithm (GBLSOLVE), Multilevel Coordinate Search algorithm (MCS) were tested. Both

these algorithms are related; they are similar to Branch and bound methods, as they

divide the search space into smaller and smaller, non-intersecting hyperrectangles, but

they do not make use of bounds [34]. MCS adds a heuristic aspect to the basic deter-

minist approach [59]. The following stochastic methods were also tested: Differential

evolution (DE), Integrated Control Random Search algorithm (ICRS), Unconstrained

evolution strategy (uES), Evolution strategy using stochastic ranking (SRES) and the

Evolution strategy with covariance matrix adaptation (CMA-ES) [59].

Pseudo-experimental data were generated by simulating the benchmark problem

with a fixed parameter set, so that in this case the solution to equation (6.1), x∗, was

known. Sixteen sets of data were produced using various initial concentrations of sub-

strate and product. The Evolution strategy using stochastic ranking (SRES) produced

the best results of the tested methods. With SRES, all 36 parameters were estimated

with error less than 17%, the majority being estimated with less than 3% error, show-

ing that convergence was towards the global minimum. The other methods, with the

exception of uES, perfomed relatively poorly, as shown in Figure 6.2. Based on these

results, this chapter uses SRES (which is described in the next section) to address the

minimisation problem of the Ca2+ model.

6.3 Evolutionary algorithms

The evolution strategy using stochastic ranking (SRES) is one version of the stochastic

group of GO methods called evolution strategies, which in turn belongs to the group

of stochastic GO methods referred to as Evolutionary algorithms.

Evolutionary algorithms iteratively apply ideas from the biological theory of evo-

lution, such as selection, reproduction, crossover (or recombination), and mutation,

to improve trial solutions, in hopes of approaching the global optimum. The general

scheme of an evolutionary algorithm consists of (1) below, (2)–(4) in variable order, and
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Figure 6.2: Results of a study in which several global optimisation methods were com-

pared. The evolution strategies, uES and SRES,were by far the best performingmethods.

The figure was taken from [60].

(5):

1. INITIALISATION:Generate randomly or deterministically chosen trial solutions,

collectively referred to as the population; population members are often referred

to as individuals.

2. FITNESS: Evaluate the fitness of population members, using an objective mea-

sure such as F(x).

3. REPRODUCTION: Create offspring from all, or selected individuals (called par-

ents), using either or both of the following:

(a) MUTATION: Produce randomly altered forms of the parents.

(b) RECOMBINATION/CROSSOVER: Combine traits of parents to form new

individuals.

4. SELECTION: Select parents and offspring with best fitness and use them to update

the population (for evolution strategies, this is referred to as the (µ+λ) strategy);

or select only highest ranked parents to reproduce for the next generation (for

evolution strategies, referred to as the (µ,λ) strategy). The latter strategy allows

for a more diverse population, as it prevents original parents from surviving into

the next generation [23].

5. TERMINATION: Repeat (2)–(4) until a specified criterion, such as an acceptable

error or maximum number of generations, is reached.
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Many evolution strategies use all of the above steps. uES performs recombination

and mutation before using selection to update the population; SRES on the other hand,

performs selection before recombination and mutation, so that only the best individu-

als are allowed to reproduce. This might explain why SRES converged more quickly

than uES in the aforementioned study [59] (see Figure 6.2).

In step 3(a), strategy parameters are used to determine the extent to which parents are

mutated, and a unique feature of evolution strategies among evolutionary algorithms

is that thesemutation parameters are adaptive; they are part of the trial solutionswhich

evolve across generations. Hence, a vector of the strategy parameters, σ, is included in

each member of the population, which is represented by (x,σ). Each σj (j = 1, 2, ..., n)

is subject to mutation and is used to define the mutation step size of the jth parameter.

The particular way in which SRES implements steps (1)–(5) above is explained in the

next section.

6.3.1 Evolution strategy using stochastic ranking (SRES)

An initial population of λ trial solutions, xi, i = 1, ...,λ, is randomly generated from

an n-dimensional uniform distribution (allowing an unbiased spread across the search

space), while for the strategy parameters initial guesses are given by:

σ
(0)
i,j =

x j − x j√
n
, i ∈ {1, ...,λ}, j ∈ {1, ..., n}, (6.8)

where xj is the upper bound of the jth parameter, while x j is its lower bound; hence,

the initial step size decreases as the dimension of the search space increases. The super-

script in σ
(0)
i,j in equation (6.8) is the generation counter, g; the value of zero indicates

that this is the value of σi,j before the first generation.

F(xi) is calculated for each population member, (xi,σi), and they are ranked ac-

cordingly. The next operation is selection, by which the highest ranked µ (out of λ)

individuals, (x′i ,σ
′

i ), ∀i ∈ 1, 2, ..., µ are chosen as parents, while all others are discarded.
The population is then completely updated, with each (x′i ,σ

′

i ) replicated PS = λ
µ times

on average, as illustrated in Figure 6.3. (The population size (λ) thus remains constant.)

The ratio, PS, is normally referred to as the selection pressure and, because it determines

the number of parents that survive to reproduce, influences the regions of space in

which the search is carried out. If PS is too high and the population size is too small,

diversity will be lost, and the search will tend to be carried out in subregions of the

search space [8]; the choice of these parameters can therefore influence the efficiency of

the search.

After selection, global intermediate recombination [78] is carried out on the updated

132



CHAPTER 6: PARAMETER OPTIMISATION

PSfrag

(x1,σ1) = (x′1,σ
′

1)
(x2,σ2) = (x′2,σ

′

2)

...

(xµ,σµ) = (x′µ,σ
′

µ)
(xµ+1,σµ+1) = (x′1,σ

′

1)
(xµ+2,σµ+2) = (x′2,σ

′

2)

...

(x2µ,σ2µ) = (x′µ,σ
′

µ)
(x2µ+1,σ2µ+1) = (x′1,σ

′

1)

...

Figure 6.3: An illustration of the process by which the population is updated with the

fittest individuals (selection), which then go on to reproduce for the next generation

(reproduction).

strategy parameters according to the following rule:

σ̂
(g)
i,j = (σ

(g)
i,j + σ

′(g)
k j ,j

)/2, i = 1, ...,λ, kj ∈ {1, ..., µ}, (6.9)

where kj is an index generated at random and anew for each j. Hence, a strategy param-

eter may be replaced by its average with another randomly chosen strategy parameter

from the parent population. For instance, the jth dimension (parameter) in the first in-

dividual could be updated by σ̂
(g)
1,j = (σ

(g)
1,j + σ

′(g)
2,j )/2 or σ̂

(g)
1,j = (σ

(g)
1,j + σ

′(g)
5,j )/2, etc; or

it could be unchanged via the choice, σ̂
(g)
1,j = (σ

(g)
1,j + σ

′(g)
1,j )/2. This step allows traits of

the good strategy parameters to spread across the population. It has been shown that

recombination can increase the rate at which the offspring population converges to its

lowest average fitness value [97].

The population for the next generation is obtained by mutation, which is first car-

ried out multiplicatively on each strategy parameter, and additively to each (model)

parameter, as follows:

σ
(g+1)
i,j = σ̂

(g)
i,j exp(N(0, τ́) + Nj(0, τ)) (6.10)

x
(g+1)
i,j = x

(g)
i,j + Nj(0, σ

(g+1)
i,j ), (6.11)

where N(0, ∗) is a random number from a normal distribution with mean, 0, and
standard deviation, ∗; Nj(0, ∗) is similar, but generated anew for the jth parameter.
exp(N(0, τ́)) and exp(Nj(0, τ)) in equation (6.10) are thus numbers from the lognor-

mal distribution; the former applies the same mutation to each component, while the

133



CHAPTER 6: PARAMETER OPTIMISATION

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

P
ro
b
ab
il
it
y
d
en
si
ty

Random variable

τ = 1
τ = 0.5

τ = 0.3

(a)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

P
ro
b
ab
il
it
y
d
en
si
ty

Random variable

σ = 1
σ = 0.5
σ = 0.3

(b)

Figure 6.4: (a) Scaling factors of σ in equation (6.10) are taken from the lognormal distri-

bution (exp(N(0, τ))), which makes smaller mutations more likely than larger ones (at

the tails of the curve). Smaller values of τ increase the probability of exp(N(0, τ)) values

close to 1. (b) The step sizes in equation (6.11) are taken from the normal distribution,

making small values more likely. The spread of the normal distribution N(0, σ) is con-

trolled by its standard deviation, σ. Smaller σ values increase the probability of a step

size close to 0.

latter applies dimension-wise mutation. The (multiplicative) mutation factors for σ̂i,j

(see equation (6.10)) are taken from the lognormal distribution because smaller scal-

ings (gathered around the peak) are more likely than larger ones (found at the tails), as

shown in Figure 6.4(a). τ́ and τ are called learning rates, and as illustrated in Figure

6.4(a), the smaller they are, the more likely that exp(τ́N(0, 1)) and exp(τNj(0, 1)) will

be close to 1. Hence, τ́ and τ influence which the speed at which σ
(g+1)
i,j is adapted. The

values τ́ = 1√
2
√
n
and τ = 1√

2n
have been recommended based on theoretical and prac-

tical considerations, and have been shown to be efficient in somemultimodal problems

[8, 83].

The additive step sizes (see equation (6.11)) are taken from the normal distributions

because smaller values are more likely, as shown in Figure 6.4(b). If mutation takes

a parameter value outside its defined bounds, it is re-tried up to ten times; if these

attempts are unsuccessful, the parameter is left unmutated to limit computational ex-

pense. Since each x
(g+1)
h,j is derived by taking a step size determined by a mutated value

of σ̂
g
i,j, the worst mutations will be rejected in the next generation when only the fittest

µ offspring are selected. Hence, the step sizes evolve to optima as well as the model

parameters.

The cycle is repeated until some specified user criterion is met (for example, maxi-

mum number of generations, or minimum objective function value).
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SRES was designed with constrained optimisation in mind, hence it can also use a

penalty function to penalise trial solutions which violate known parameter constraints.

The method then adjusts the balance between the contributions of the penalty function

and the objective function to the ranking of an individual’s fitness [78]. The only con-

straints used for the Ca2+-mobilisation model are the parameter ranges, thus SRES is

used with the value of the penalty function as zero.

6.4 Searching with SRES for known global minima

In this section, the ability of SRES to find a known global minimum is first tested, the

results of which will be used to interpret its performance when fitting the Ca2+ model

to actual experimental data later in section 6.5.2.

6.4.1 Generation of pseudo-data

The Ca2+ model is used to generate what is referred to as pseudo-data, which is the Ca2+

response when the model is simulated with a chosen parameter set, whose members

are then referred to as the ’nominal’ values. Hence, a global minimum, x∗ (chosen to

be the GSA-guided parameter set in this case) for this particular estimation problem is

known, and the accuracy of the estimates found by SRES can be assessed. In this case,

the data in equation (6.1) is then given by Ỹl = Yl(x
∗), and the objective function by:

F̄(x) =
d

∑
l=1

‖Yl(x∗)− Yl(x)‖2. (6.12)

To mimic actual experimental data, which often have measurement errors, a noisy

version of the pseudo-data, Ỹnl , is also generated using the following:

Ỹnl = Ỹl(x
∗) + Θ · Ỹl , (6.13)

where Θ is a k-length vector of random numbers between -0.05 and 0.05, randomly

chosen from the uniform distribution. The Ca2+ pseudo-data are generated at the

same time points, and for the same ligand concentrations, as the experimental data,

in order to set up a test case as close as possible to the actual optimisation prob-

lem; it is then more straightforward to make some direct comparisons. The pseudo-

data have been normalised using the basal value, so that F is dimensionless; hence

Yl = [Ca2+]/[Ca2+(0)].
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Ranking Parameter

1 kCa2+act−
2 kPIP2b+

3 kIP3Rb−
4 p1

5 kIP3Rb+

6 kdes+

7 [PIP2 ]

8 kdeact

9 p2

10 RTOT

Table 6.4.1: The ten most sensitive parameters, identified by a GSA carried out in a

parameter space confined around the GSA-guided parameter set. These 10 parameters

are referred to as the GSA Top 10.

6.4.2 Reduction of search space dimension

Using the method of elementary effects (as described in Chapter 4), a global sensitivity

analysis (GSA) was carried out in a parameter subspace constrained around the GSA-

guided parameter set, since it will serve as the base set around which the search space

S is constrained. Table 6.4.1 lists the ten parameters (out of forty) to which the Ca2+ re-

sponse is most sensitive, and, as discussed in section 4.5.4, they are assumed to be the

ones whose values most need to be determined by parameter estimation; consequently,

the dimensions of the search space can be significantly reduced, so that S ⊆ R
10 instead

of S ⊆ R
40. This assumption will be scrutinised in a later section, by comparing opti-

misation results from both search spaces.

The results are similar to those obtained for the previous base set in Chapter 3, with

six parameters in common. The newly identified parameters are kIP3Rb+, kIP3Rb−, kdeact

and RTOT, replacing IP3RTOT, kIP3deg, γ1 and kIP3 .

Let theW ∈ {1, 2, ..., 10} most sensitive parameters in Table 6.4.1 be referred to as
the GSA TopW, then corresponding subspaces SWG ⊂ R

W (or hyperplanes in R
40) can

be defined, by fixing all other parameters at their nominal values (the subscript G refers

to the fact that the GSA TopW serve as the axes in the subspace). The higher the value

ofW, the more dimensions there are to explore, hence lower values ofW simplify the

estimation problem.

The main minimisation problem in this section will be that solved in S10G . However,

SRES is first used to search in S2G ⊂ R
2 for the nominal values of the GSA Top 2. The

objective function surface in this subproblem can be visualised, and thus provide in-

sight into the performance of the algorithm, as well as the topology of the search space.

The search is then carried out in S4G, for the nominal values of the GSA Top 4, before
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finally being carried out in S10G for all the values in Table 6.4.1. Hence, the dimensions

of the solution, x∗, vary in this section. By first tackling these subproblems, a sense of

the computational cost attached to the main problem and of suitable SRES search pa-

rameter values, such as the population size and number of generations, can be gained.

The full search space, S ⊂ R
40 is defined according to parameter space 2 in sec-

tion 4.4.3, except with molecular concentrations varying over four orders of magnitude

around their base values in the GSA-guided parameter set in Table B.2.2.

6.4.3 SRES search parameters

As with most stochastic algorithms, there are no fixed rules for choosing values for the

SRES search parameters: the population size, λ, the number of generations, G, and the

selection pressure PS (or equivalently, the number of parents, µ); there is an element of

trial and error involved in selecting them. It is also important, when choosing them,

to remember certain factors that may influence the performance of the routine. For

instance (as noted before) the value of PS can influence how well the search space is

explored. Several publications have recommended a selection pressure of 7 [43, 78, 97],

which will be used as a starting value here. The size of the population also influences

how well the search space is explored [8], and should be adjusted according to the

dimension of the search space.

The aforementioned study [60], in which SRES was the best performing global op-

timisation method, used the search parameters λ = 350, G = 8000 and PS ≈ 11 for the
eight order benchmark problem, which has thirty six parameters. These values are not

practical for the Ca2+ model, which is being fit to data from d = 8 experiments (see

Figure 6.1), and would require λ × G × l = 22, 400, 000 model evaluations. Moreover,
when the sensitivity analysis was implemented in Chapter 4, it was seen that there are

parameter combinations that significantly increase model evaluation time (see section

4.4.4); hence, a model evaluation could take anything from one tenth of a second to tens

of seconds. Large values of λ and G would thus make the optimisation computation-

ally unaffordable. However (at least initially) only estimates for the≤ 10most sensitive
parameters are sought, so it is unlikely that a population size as large as λ = 350 is re-

quired. Different λ values will be tested, depending on the number of parameters being

estimated. The choices for G will be discussed as the runs are implemented.

The Ca2+-mobilisation model has 24 variables, and available data are for 1 variable

([Ca2+]), while the aforementioned benchmark model had 10 variables, and data for

each variable, generated from 16 different initial conditions. Hence, parameter estima-

tion for the Ca2+ model is a significantly more challenging problem.
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Ranking Parameter

1 p2

2 kCa2+act+

3 kGTP+

4 kIP3Rb+

5 RTOT

6 kPIP2b+

7 [PIP2 ]

8 kCa2+act−
9 kIP3Rb−
10 kIP3deg

Table 6.4.2: The ten most sensitive parameters, identified by a local sensitivity analysis

(LSA) carried out at the point in space which corresponds to the GSA-guided parameter

set. These 10 parameters are referred to as the LSA Top 10.

6.4.4 Local sensitivity of F̄

In this section a local sensitivity analysis (LSA) is carried out at the point in parame-

ter space which corresponds to the GSA-guided parameter set. Determining the most

sensitive parameters at that point gives an indication of the coordinate-wise landscape

of F̄ in the vicinity of the global minimum, x∗; thus, the steepest F̄ changes along the

axes can be estimated. It is useful to have such information because flatness in some

parameter directions around the global minimum can make those parameters hard to

estimate [60], as many possible values would give roughly the same low value of F;

thus, numerous individuals with similarly high fitness exist and can be favoured by

the (SRES) selection step, which therefore becomes of little use in focusing the progres-

sion to x∗; the routine can thus come to resemble a purely random search in the flat

regions.

The output feature of interest for the LSA is F̄ itself; the sensitivity with respect to

the jth parameter is then given by:

C̄j =
F̄(x∗ + 0δj) − F̄(x∗)

δj/x
∗
j

, (6.14)

where 0δj is an n-dimensional vector of zeros, but with its jth element equal to δj, which

is taken to be±0.1x∗j (note that F̄(x∗) = 0, hence it is not used to divide the numerator).

The average of |C̄j| due to both ±0.1x∗j is calculated and used to rank the parameters,
the results of which are given in Table 6.4.2.

The W ∈ {1, 2, ..., 10} most sensitive parameters in Table 6.4.2 are then referred to
as the LSA TopW. Although many of the GSA Top 10 are also among the locally most

sensitive, they tend to be ranked differently (compare with Table 6.4.1); this is because

the GSA ranks the model parameters using an average of sensitivities calculated at se-
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kGTP+
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GSA LSA

Figure 6.5: A comparison of the globally and locally most sensitive parameters. There

are seven parameters which are identified by both sensitivity analyses.

lected points in parameter space, and so the GSA ranking, though representative of the

whole space, may be different at individual points. Probably for that reason, there are

parameters in the LSA Top 10 not represented in the GSA Top 10 (and vice versa), as

illustrated in Figure 6.5, their average significance across parameter space being dis-

similar to their local significance. Hence, some of the steepest directions around x∗,

kCa2+act+, kGTP+ and kIP3deg are not represented in the GSA Top 10. When the GSA Top

10 (or any subset within) are being estimated, kCa2+act+ and kGTP+ will be fixed at their

nominal values, and since they are ranked high (2 and 3 respectively) in terms of local

sensitivity, it might be possible to get good fits without getting close estimates for other

(locally less sensitive) parameters in the GSA Top 10.

It should be noted that due to model nonlinearity (which was clearly seen in Chap-

ter 4) the LSA results might not apply to more global regions; also, as sensitivity coeffi-

cients are calculated one parameter at a time, the LSA results do not account for effects

due to parameter correlation, even within the local region.

6.4.5 Estimating two parameters

In this section the search is first carried out in the hyperplane S2G ⊂ R
2, to find the nom-

inal values of the GSA Top 2, kCa2+act− and kPIP2b+; for comparison, S
2
L is then searched

for the nominal values of the LSA Top 2. Since there are only 2 parameters to estimate,
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a population of λ = 20, and number of generations, G = 40 are initially chosen; selec-

tion pressure is set as PS = 7, so that µ = 3 parents survive for reproduction in every

generation. The accuracy of the estimates will be quantified by calculating a percentage

error as follows:

Ep =
100(xej − x∗j )

x∗j
, (6.15)

where xej is the estimated value of the jth parameter, and x
∗
j is its nominal value.

The results of the search are shown in Figure 6.6. Figure 6.6(a) shows that the best

solution is found after 4 generations with an error of F̄ ≈ 0.046; the pseudo-data and
the time course predictions of the best estimates are very close (Figure 6.6(c)), because F̄

is low, giving an average squared error of 0.000169117647 per data point, each of which

is ≥ 1. However, Figure 6.6(b) shows that the estimates are ≈ −40% less than their
nominal values, which again raises the question of how sensitive the Ca2+ response is

to particular parameters. It can be seen in Table 6.4.2 that kCa2+act− and kPIP2b+ are only

the 8th and 6th ranked parameters in terms of local sensitivity; it follows that since the

higher ranked parameters are fixed at their nominal values, good fits can be obtained

even though kCa2+act− and kPIP2b+ are imperfectly estimated.

After the fourth generation, the search seems to be drawn to subregions of S which

map on to similar values of F̄ ≈ 0.5 (Figure 6.6(a)). The average population’s fitness is
also converging towards that value; hence the members of the population are becom-

ing more similar, and little new information would be gained by increasing the number

of generations, since the selection operation becomes redundant in an increasingly ho-

mogeneous population. (A large mutation step size could re-introduce diversity in the

population, however, since the lognormal distribution is biased towards small muta-

tions, such a step size has a very low probability, and would generally require many

more generations to appear.) Two strategies are thus attempted to encourage further

exploration of the search space; first, a lower selection pressure, PS = λ
µ = 20

7 ≈ 3, is
used, to allow more parents (7) to survive to reproduce; second, a higher population

λ = 50 is tried, to allow a more diverse population to be considered for selection.

In Figures 6.7(a)–(b) the results from choosing PS ≈ 3 are shown. As intended, the
rather low selection pressure keeps the average fitness of the population from converg-

ing (Figure 6.7(a)). The error is improved (from ≈ 0.046 to ≈ 0.035), but as the im-
provement is not a drastic one, it is hard to conclude that the lower selection pressure

improves the search, because the random elements involved in the algorithm make

small variations inevitable across independent searches. It can however be concluded

that the lower selection pressure does not solve the problem of finding global mini-
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Figure 6.6: Searching in S2G ⊂ R
2 for the nominal values of the GSA Top 2, using the

search parameters λ = 20, G = 40, and PS = 7. (a) The best and the average F̄i in

each generation. (b) The errors associated with the estimates, calculated using equation

(6.15). (c) The fits obtained with the best individual. The pseudo-data and solution are

almost indistinguishable, even though the estimates are considerably different (≈ 2
5 ) of

the nominal values.
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Subspace λ PS G F̄

S2G 20 7 40 0.045592

S2G 20 3 40 0.035251

S2G 20 3 100 0.031787

S2G 50 7 40 0.012738

S2G 50 5 40 6.813200× 10−3
S2L 50 7 40 9.444200× 10−5
S4G 50 7 100 0.016938

S4G 50 5 100 0.026576

S4L 50 7 100 1.490000× 10−3
S10G 50 7 100 0.125090

S10G 50 7 300 0.070371

S10G 50 5 100 0.155420

S10G * 50 5 100 0.446665

S10L 50 7 100 0.307190

S10L 50 7 200 0.198360

Table 6.4.3: A summary of the optimisation results for the trial runs with the pseudo-

data. *This solution was found fitting to the noisy pseudodata.

mum’s vicinity, as the errors of the estimates in this run are even larger, at 97.4% and

103% (Figure 6.7(b)). (Another run that allowed 100 generations was also carried out,

but did not significantly improve the solution, giving a value of F̄ ≈ 0.032.)
Figures 6.7(c)–(d) show the results of increasing the population size to λ = 50 (PS =

7). The best solution is found in the first generation and is never improved thereafter

(Figure 6.7(c)). In this case, SRES does not improve the best initial trial solution, whose

fitness is high due to chance, helped by the large sample. The larger population size

does not guide the search beyond subregions where F̄ ≈ 0.4 (Figure 6.7(c)). However,
the fact that an average population F̄ value of greater than 100 is possible (Figure 6.7(c)),

means that there are regions of space with high F̄ values; the SRES algorithm does well

to steer away from those regions, but in low F̄ subregions it seems indiscriminate.

A combination of both diversity-promoting strategies is also tried by choosing λ =

50 and PS = 5, the results of which are shown in Figures 6.7(e) – (f). This run produces

the best solution, finding an individual which gives F̄ ≈ 0.0068, but the estimates are
still not very close (41.4% error for parameter 1 and 42.7% for parameter 2). It should

be noted that these strategies are elaborate schemes for the estimation of only two pa-

rameters, an indication of how difficult the optimisation problem might be. However,

an indication of why it is difficult can be gained; since the search space here is in R
2,

the objective function surface can be visualised (this is done at the end of this section,

after all the optimisation runs have been implemented).

So far the searches have found several solutions with low F̄ values (see Table 6.4.3

for a summary of the results from all previous (and subsequent) searches), suggesting
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Figure 6.7: Searching in S2G ⊂ R
2 for the nominal values of the GSA Top 2; search param-

eters (specified at the top of each row) are varied to promote population diversity. (a),

(c), (e) The best and the average F̄i in each generation; (b), (d), (f) the errors associated

with the estimates, calculated using equation (6.15). Decreasing the selection pressure

seems to improve the solutions.
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that there are flat regions on the objective function surface not too far from the mini-

mum (as two of the runs found estimates with 41− 48% error (see Figures 6.7(d) and
(f)). To gain perspective on how the topology of F̄ influences the performance of the

search, the LSA Top 2, p2 and kCa2+act+, are now estimated, while all the other param-

eters are fixed at their nominal values. The search is thus carried out in a subspace in

which the LSA Top 2 serve as the independent axes, namely, S2L ⊂ R
2 (the L subscript

indicates that the LSA Top 2 serve as the independent axes). Because the LSA Top 2 are

the locally most sensitive parameters, around x∗ the objective function surface is steep-

est along the axes of this hyperplane. Hence, it can be observed whether the selection

step performs better on a less flat region. This might also give an indication of whether

the locally sensitive parameters have to be correctly estimated to achieve a good fit.

Searching in S2L

This search is carried out with the higher population size λ = 50 and higher selection

pressure PS = 7, while G = 40. Figure 6.8(c) shows that for this estimation prob-

lem, SRES does perform considerably better, finding estimates for the LSA Top 2 with

very small percentage error: −0.35% and ≈ 0.73%. The best solution gives a value of
F̄ = 9.4442× 10−5 (Figure 6.8(a)), orders of magnitude lower than was found with the
best estimates of the GSA Top two; consequently, the simulations fit the pseudo data

extremely well (Figure 6.8(d)). The average population fitness does not converge (it

actually significantly fluctuates) towards the end of the search (see Figure 6.8(b)); this

means that the selection step continues to provide information that directs the search

(in fact, the majority of progress is made towards the latter half of the search, after G=23

(see Figure 6.8(b)).

Visualising F̄

The surfaces of F̄ in S2G and S
2
L are compared in Figure 6.9. In both subspaces there are

regions of high and low F̄ values (compare Figures 6.9(a) and 6.9(b)). Viewing the axes

on log scales allows the low F̄-value regions to be seen in more detail: the nominal

values of the GSA Top 2, (16.5s−1, 1012M−1s−1), form the only minimum in S2G (Figure

6.9(c)), while in S2L there are other (high fitness) minima besides that formed by the

nominal values (Figure 6.9(d)). This shows that even the LSA Top 2 do not need to be

correctly estimated to achieve an acceptable fit.

The colour maps of Figures 6.9(c) and (d) are defined using a log scale, so that the

low valued regions can be better observed. Both surfaces have valleys containing low

value solutions (coloured dark and light blue, for F̄ ≤ 100). All previous solutions
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Figure 6.8: Searching in S2L ⊂ R
2 for the nominal values of the LSA Top 2, using the

search parameters λ = 50, G = 40, and PS = 7. (Note that the parameter labels are

as in Table 6.4.2.) (a) The value of F̄i for the best individual found in a generation. (b)

The average F̄i of the whole population. (d) The errors associated with the estimates,

calculated using equation (6.15). (d) The fits obtained with the best individual. The

pseudo-data and solution are indistinguishable, and, unlike when searches were carried

out S2G, the parameter estimates are very close to the nominal values.
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Figure 6.9: F̄ is shown in (a) S2G, and (b) S
2
L. In (c) and (d), the same plots are shown using

log axes; it might be inferred that optimal step sizes are hard (or require more time) to

find in S2G because of its flat valley; on the other hand the multiple minima in S
2
L allow

more step size information to be gained because of the more significant changes when

travelling along its valley.

found in S2G lie in its flat diagonal valley, where the global minimum, x
∗, also lies.

S2L also contains a curved valley which is littered with local minima. It can thus be

understood that, because of its gradual descent, a variety of step sizes along S2G’s valley

might survive the selection step, while in S2L’s valley, many would be rejected because

they more significantly change the F̄ value (by jumping in and out of minima). This

seems to be the reason that SRES performs better in S2L.

The comparison of searches in these low-dimensional subspaces gives an indication

of the performance of SRES. It is able to escape higher valued regions of F̄, even when

they occupy the majority of the search space (see Figures 6.9(c) and (d), where all so-

lutions found were in the low-valued regions). Also, flatness of the objective function

surface seems to be a harder problem for SRES than multi-modality. This also illus-
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trates the importance of including more than a handful of parameters from the GSA

Top ranks, when reducing the dimensions of the search space; as the GSA results pin-

point parameters that are most sensitive on average across space, the rankings are not

necessarily representative of each individual point in space, including the global mini-

mum, x∗. Hence, the most locally sensitive parameters may not be represented if only

a few are chosen for estimation, causing flatness in F̄ around x∗.

6.4.6 Estimating four parameters

In this section, the search is carried out in the hyperplane S4G ⊂ R
4 for the nominal

values of the GSA Top 4, namely, kCa2+act−, kPIP2b+, kIP3Rb− and p1 (with all other pa-

rameter values fixed); for comparison, S4L is later searched for the nominal values of the

LSA Top 4. The larger population size, λ = 50 is used and the initial selection pressure

is given by PS = 7, while the search is carried out for longer (G = 100) because more

time might be needed to better explore a higher-dimensional space.

The parameter estimates found in this run have percentage errors of −70%, 25%,
75% and 250%, as shown in Figure 6.10(b), and yield a value of F̄ = 0.016938 (Figure

6.10(a)). As in the previous section, a very close fit to the pseudo-data is obtained with

these estimates, even though three of them are not very close to the nominal values.

It seems that the surface of F̄ in this subspace is similar to a 4-dimensional version

of that in Figure 6.9(c), with substantial flat regions, possibly in a long hypervalley.

The average population fitness progressively decreases to a value of F̄ ≈ 0.4 (Figure
6.10(a)), indicating that individuals are becoming more alike, since the lowest F̄ per

generation also converges to around the same value. The selection step is practically

redundant in a homogeneous population, and so it does not seem that increasing the

number of generations (except drastically) would improve the search.

Without increasing the number of function evaluations, population diversity (a

more thorough exploration of space) is encouraged by using a lower selection pres-

sure, PS = 5, which allows 10 parents, instead of 7, to survive for reproduction. Figure

6.11 shows that this scheme does not provide a better solution, with F̄ = 0.026576 (Fig-

ure 6.11(a)), and the errors in the estimates still significant (see Figure 6.11(b)). This is

perhaps unsurprising, since a similar scheme in the lower dimensional S2G did not make

any improvements.

Searching in S4L

The search is now carried out in S4L, for the nominal values of the LSA Top 4, namely,

p2, kCa2+act+, kGTP+, kIP3Rb+ (with all other parameters fixed at their true values). The
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Figure 6.10: Searching in S4G ⊂ R
4 for the nominal values of the GSA Top 4, using the

search parameters λ = 50, G = 100, and PS = 7. (a) The best and the average F̄i in

each generation. (b) The errors associated with the estimates, calculated using equation

(6.15). (c) The fits obtained with the best individual. As when the search was carried

out in S2G, the pseudo-data and solution are almost indistinguishable, even though the

estimates are considerably different to the nominal values.
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Figure 6.11: Searching in S4G ⊂ R
4 for the nominal values of the GSA Top 4, using the

search parameters λ = 50, G = 100, but with a lower selection pressure PS = 5 than

in Figure 6.10. (a) The best and the average F̄i in each generation. The lower selection

pressure does not improve on the solution in Figure 6.10. (b) The errors associated with

the estimates, calculated using equation (6.15).

search parameters are set to λ = 50, G = 100 and PS = 7. The results of the search

are shown in Figures 6.12(a)–(c). The best solution gives fits that are virtually indis-

tinguishable from the pseudo-data (Figure 6.12(c)), with an error F̄ = 1.49× 10−3 (see
Figure 6.12(a)); this F̄ value is only about one order of magnitude greater than the so-

lution in S2L, which was extremely close to the global minimum (F̄ = 9.4442 × 10−5).
However, in this case, the errors associated with parameters 2 and 3 are rather high

(−68.1%, 369% respectively, see Figure 6.12(b)), indicating that the solution is some dis-
tance from the global minimum. This illustrates that in S4L (as in S

2
L, where the function

surface was actually visualised, low error estimates are not required to achieve a good

fit. In other words, despite the fact that all other parameters are fixed at their nominal

values, there are combinations of the LSA Top 4, apart from that of the nominal values,

which give low F̄ values. (An independent run was carried out which found a different

solution that also had a low F̄ value, given by 3.4459× 10−3.)

6.4.7 Estimating ten parameters

The search is now carried out in S10G ⊂ R
10 for the nominal values of the GSA Top

10; recall that this is the main optimisation problem. For comparison, S10L will then

be searched for the nominal values of the LSA Top 10. With search parameters that

seemed thorough, the true solutions were not found in the lower dimension hyper-

planes, S2G, S
4
G and S

4
L, therefore, the true solutions are not expected to be found in (the

higher dimensional) S10G and S
10
L . However, it is still informative to analyse the nature of

solutions that will be found. Initially, the search parameters are set as λ = 50, G = 100
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Figure 6.12: Searching in S4L ⊂ R
4 for the nominal values of the LSA Top 4, using the

search parameters specified at the top of the rows. (a) The best and the average F̄i in

each generation. (b) The errors associated with the estimates, calculated using equation

(6.15). (c) The fits obtained with the best individual. As when the search was carried

out in S2G, the pseudo-data and solution are almost indistinguishable, even though the

estimates are considerably different from the nominal values.
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and PS = 7.

The best solution found gives F̄ = 0.12509 (see Figure 6.13(a)); searches in the 2-

dimensional subspace, S2G, found solutions with values as low as F̄ = 0.0068132, but

F̄ = 0.12509 still yields close fits (Figure 6.13(d)), since it gives an average squared error

per data point of ≈ 0.00046. In this run, six of the ten parameters are estimated with
> 500% error (Figure 6.13(c)), so the solution is quite far from the global minimum. For

the most part, the population’s average F̄ value hovers around 30, and does not show

convergence. Hence, the selection step has not necessarily become redundant, and the

search might be improved by allowing more generations. This might also be necessary

because this is a higher dimensional subspace that needs more time to be thoroughly

explored.

Figure 6.14 shows the results of carrying out the search with G = 300 (PS = 7).

Although the solution is better, with F̄ = 0.070371, this is not due to the increase in

G, as the solution was found in the 14th generation, so nothing has been gained by

increasing the number of generations from G = 100. At G = 300, the selection step has

not necessarily become redundant, since the average F̄ (≈ 22) is still much higher than
the lowest F̄ (≈ 2) (compare Figures 6.14(a) and 6.14(b)); the search might thus improve
with more generations, but would get computationally expensive, since this run took

181.51 hours (7.56 days), while the G = 100 search only took 13.72 hours (0.57 days).

Like the previous solution, these estimates also have generally high percentage errors

(6 estimates have > 500% error), meaning that the solution is again far from the global

minimum.

To promote further exploration of space, a higher population size, λ = 100, as well

as a lower selection pressure, PS = 5, are tried, allowing 20 parents to survive for

reproduction in each generation. The results are displayed in Figures 6.15(a)–(c), from

which it can be seen that the solution is not improved, because the best individual now

gives F̄ = 0.15542. Also, as when the population size was 50, the errors associated with

many of the parameters are large.

Searching in S10L

The search is now carried out in S10L for the nominal values of the LSA Top 10, using the

search parameters λ = 50, G = 100 and PS = 7. The best solution has F̄ = 0.30719, as

shown in Figure 6.16(a); compared to the initial search in S10G (see Figure 6.13(a), where

F̄ = 0.12509), the fits are visibly worse (Figure 6.16(d)). The large percentage errors

associated with some of the estimates (Figure 6.16(c)), indicate that the solution is far

from the global minimum. The fact that the solution found in S10G is considerably better

than that found in S10L might be due to the fact that there is more global sensitivity
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Figure 6.13: Searching in S10G ⊂ R
10 for the nominal values of the GSA Top 10, using the

search parameters λ = 50, G = 100. (a) The value of F̄i for the best individual found

in a generation. (b) The average F̄i of the whole population. (c) The errors associated

with the estimates, calculated using equation (6.15). (d) The fits obtained with the best

individual. As previously seen, the fits are very close to the pseudo-data, even though

the estimates are considerably different from the nominal parameter values.
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Figure 6.14: Searching in S10G ⊂ R
10 for the nominal values of the GSA Top 10, using

the search parameters specified at the top of the rows. (a) The value of F̄i for the best

individual found in a generation. (b) The average F̄i of the whole population. (c) The

errors associated with the estimates, calculated using equation (6.15).
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Figure 6.15: Searching in S10G ⊂ R
10 for the nominal values of the LSA Top 10, using the

search parameters specified at the top of the rows. (a), (a) The value of F̄i for the best

individual found in a generation. (b), (b) The average F̄i of the whole population. (c), (c)

The errors associated with the estimates, calculated using equation (6.15).

information in S10G to guide the search (recall that the LSA Top 10 includes only seven

parameters from the GSA Top 10 (see Figure 6.5)).

The fact that the lowest and average F̄ values do not converge (compare Figures

6.16(a) and (b)) might mean that the selection step has not necessarily become redun-

dant, and that a better solution might be found with more generations; however, it has

previously been seen in S10G that 300 generations were not sufficient to allow this, and

that beyond this the search starts to be computationally unaffordable. Hence, a smaller

value of G = 200 was tried in S10L , which resulted in a better F̄ value of 0.19836, but this

was found just outside G = 100, at G = 108; in addition, a close value of F̄ = 0.2017

had already been found at G = 41 (results not shown). The computational time for this

scheme was 54.94 hrs (2.29 days).

Testing the effects of noise

A search is now carried out in S10G , but using Ỹ
n
k,l (equation (6.13)) in equation (6.12) to

measure the sum of the squared deviations from the noisy version of the pseudo-data.

The concern is what quality of fit will be obtained when the data are noisy, not how

well the global minimum will be estimated, since the previous runs with the noiseless

pseudo-data generally did not result in good estimates (though they produced good

fits).

Figure 6.17 shows that the overall results are similar to those obtained with the

noise-less pseudo-data. Figure 6.17(d) shows that a good fit is obtained; and as would

be expected, based on the previous runs, the errors in the estimates are large (Figure

6.17(c)). The best solution’s F̄ value, at 0.44665, is higher than those found with the

noiseless pseudo-data, which is unsurprising, as the squared deviations generally in-
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Figure 6.16: Searching in S10L ⊂ R
10 for the nominal values of the LSA Top 10, using the

search parameters λ = 50, G = 100, PS = 7. (a) The value of F̄i for the best individual

found in a generation. (b) The average F̄i of the whole population. (c) The errors as-

sociated with the estimates, calculated using equation (6.15). (d) The fits obtained with

the best individual. As previously seen, the fits are very close to the pseudo-data, even

though the estimates are considerably different from the nominal parameter values. This

occurs despite the fact that these are the locally most sensitive parameters.
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crease because of the noise.

The addition of noise therefore, does not noticeably worsen the fits. This means that

when fitting to the experimental data, a quality of fit can be expected, which is similar

to one that would be obtained using clean data.

6.4.8 Parameter uncertainty

The errors that accompany many of the estimates have generally been large. These are

examples of a phenomenon that has been referred to as ’sloppiness of parameter sen-

sitivities’. A study on seventeen systems biology models revealed that in each, there

were a few parameter combinations towhich themodel behaviour was sensitive (called

’stiff directions’), but that there were many more parameter combinations (’sloppy di-

rections’) over which huge changes could occur without significantly altering the re-

sponse. Thus, even with a comprehensive set of data, most parameter estimates had

large errors (uncertainties ranged from a factor of 50 up to around 1,000,000) [29]. This

section has shown that the Ca2+ model is similar, as the qualities of fit have been good,

even while the parameter estimates, have been poorly constrained.

A more recent study showed that, by carefully choosing the combination of ex-

periments so that they provide complementary information, parameters can be well

estimated [3]. The problem was posed as finding the subset of all possible experi-

ments, which though individually characterised by sloppy directions/sensitivities, col-

lectively combine to form stiff directions. Hence, comprehensive data are not necessar-

ily key to correct estimation, and a data set that might be much smaller, but provide

complementary information may be more important. The authors were able to use data

from only five experiments (knockdown, overexpression and single and two drug stim-

ulation) to estimate 48 parameters of a signalling model to 10% accuracy. Hence, a

similar process of computational (and actual) experimental design may be needed to

accurately estimate the parameters of the Ca2+-mobilisation model.

Another approach might be to use, togetherwith a comprehensive pseudo-data set,

very large SRES search parameters, similar to λ = 350 and G = 8000, as successfully

used in [60]. Even though parameter sloppiness causes flatness on the objective func-

tion surface, such large parameters might allow more time for the algorithm to adapt

to flat regions on the objective function surface, and to approach the global minimum.

Only pseudo-data for Ca2+ were generated here however, to reflect the available ex-

perimental Ca2+ data.

In summary, the trial runs for SRES indicate that the global minimum is not easily

found with a set of data for one model variable ([Ca2+]), but that comparably good

parameter sets (in terms of goodness of fit) will generally be found.
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Figure 6.17: Searching in S10G ⊂ R
10 for the nominal values of the GSA Top 10, using the

search parameters λ = 50, G = 100, PS = 7. This case is different from those in Figures

6.13 and 6.14, because the noisy pseudo-data are used here. (a) The value of F̄i for the

best individual found in a generation. (b) The average F̄i of the whole population. (c)

The errors associated with the estimates, calculated using equation (6.15). (d) The fits

obtained with the best individual. The fits are close to the pseudo-data, even though the

estimates are considerably different from the nominal parameter values.

157



CHAPTER 6: PARAMETER OPTIMISATION

6.5 Parameter estimation for experimental data

The parameters are now estimated by fitting to equation (6.2), the objective function (F)

which pertains to the experimental Ca2+ data. Recall that the data has been normalised

(see Figure 6.1), so that F is dimensionless. Note that the global minimum for this prob-

lem is not known, hence, there will be no way of knowing how good the estimates are;

however, the results of the previous section strongly suggest that the global minimum

will not be found.

6.5.1 Searching in S10G

In this section, the search is carried out in S10G , seeking optimal values for the GSA Top

10, while the other parameters are fixed at their nominal values. Based on the previous

section’s results, the search parameters G = 100, λ = 50 and PS = 7 are used.

Figure 6.18 shows the results of the search. The best solution gives F = 20.794

(Figure 6.18(a)), and the resulting fits are shown in Figure 6.18(b). The fits obtained at

the four highest agonist concentrations, [L] = 10−7 − 10−4M, are good, while the fits
obtained for [L] = 10−11M and [L] = 10−10M are good but trivial, because, to these

concentrations, there is no essentially no response. At [L] = 10−9M and [L] = 10−8M

the fits are poor; the times-to-peak are considerably slower in the simulations, and the

peaks considerably lower. Towards the end of the search, the average F seems to be

converging towards around the same value as the lowest F (Figure 6.18(a)). This indi-

cates that in the last stages, the population is becoming increasingly homogeneous, so

that the selection step is getting redundant. Thus, increasing the number of generations

might not yield a better solution; the population size is increased instead, to promote

diversity.

A population size, λ = 100, is tried, together with a selection pressure, PS = 7.

Figure 6.19(a) shows that the best solution found in this run has F = 21.381, which is

slightly higher than was found in the previous run, hence no improvement has been

made by increasing the population size from λ = 50; the fits from both runs are of a

similar quality: good for the higher agonist concentrations, but not when [L] = 10−9M

and [L] = 10−8M (compare Figures 6.19(b) and Figure 6.18(b)).

If the model is a very close reflection of the actual Ca2+ system, good fits to the ex-

perimental data should have been obtained for all agonist concentrations, as in the trial

runs with the pseudo-data. SRES was good at converging to low-valued regions in F̄,

so there are probably no values much lower than the F = 20.794 and F = 21.381 values

found here. It is therefore possible that the Ca2+ model, though detailed, requires some

extension. There is also the possibility that more appropriate parameter ranges should
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Figure 6.18: Searching in S10G ⊂ R
10 for values of the GSA Top 10 that give good fits to

the experimental data, using the search parameters λ = 50, G = 100, PS = 7. This case is

different from those in Figures 6.13, 6.14 and 6.17, because actual experimental data are

used here. (a) The best and the average Fi for each generation. (b) The fits obtained with

the best individual.
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Figure 6.19: Searching in S10G ⊂ R
10 optimal values of the GSA Top 10 that give good fits

to the experimental data, using the search parameters G = 100, PS = 7, and an increased

population size λ = 100 (compare with Figure 6.18, where λ = 50). (a) The best and the

average Fi for each generation. (b) The fits obtained with the best individual, which are

similar to those found with λ = 50 (compare Figure 6.18(b)), good at the higher agonist

concentrations, but not at [L] = 10−9M and [L] = 10−8M.
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be used in the search (which could contain significantly lower values of F). However,

there are no clear indicators of what those would be. Before making such conclusions

however, section 6.5.2 will check that the reduction of parameter space does not have

an adverse effect on the fit.

Local sensitivity of F

A local sensitivity analysis is now carried out at the two solution points found in S10G

(henceforth referred to as x10λ50 and x
10
λ100
, where the superscript a indicates the dimension

of the subspace in which the solution was found, and the subscript λb indicates that a

population size of b was used). Since some of the fits could do with improvement,

the LSA can identify sensitive points in the pathway which might pertain to processes

whose modelling should be revisited, should the model require extension.

Sensitivity coefficients are calculated using the following:

Cj =
(F(xbλa + 0δj) − F(xbλa))/F(x)

δj/x
b
λa,j

, (6.16)

where 0δj is an n-dimensional vector of zeros, but with its jth element equal to δj, and

xbλa,j is the jth estimated parameter. δj will be calculated as ±0.1xbλa,j and ±0.5x
b
λa,j
. The

larger the value of |Cj|, the greater the sensitivity of F to that parameter; in particular,
|Cj| > 1 indicates a bigger relative change in F than in the parameter.

Figures 6.20(a) and 6.20(b) show the results of the sensitivity analysis. Each 4-

bar group represents the sensitivity coefficients for parameter perturbations of −50%,
−10%, +10%, +50% consecutively. Most of the parameters have at least one relatively
significant sensitivity coefficient (defined as |Cj| ≥ 1), except 5:kIP3Rb+, 8:kdeact, and
10:RTOT, when perturbed from x

10
λ100
(see Figure 6.20(b)). Among the significant param-

eters, the ones that do not just pertain to simple binding or unbinding, but to processes

that could be more extensively modelled are: 2:kPIP2b+, 7:[PIP2], 6:kdes+ and 9:p2. The

simplifying assumptions underlying the modelling of these processes, and ways in

which it can be revisited, will be discussed later in section 6.6. Before that, it is impor-

tant to check that there are no better solutions in the full search space that would be

missed by searching in the reduced space.

6.5.2 Searching in the full search space

The search is now carried out in the full search space, S ⊂ R
40, for optimal values of all

40 parameters originally included in Chapter 4’s global sensitivity analysis (see Table

C.4.1); as previously stated, this is done to understand how well the search space S10G
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Figure 6.20: Sensitivity coefficients calculated (using equation 6.16) at the best three pa-

rameters sets found by SRES when fitting to the experimental data. (a) x10λ50 , (b) x
10
λ100
, (c)

x40λ100 . Several of the same parameters are sensitive at all three points, including 2:kPIP2b+,

7:[PIP2], and 9:p2.
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substitutes the full search space. The results are then compared with those obtained in

the previous section.

Figure 6.21 shows the results of the search. The best solution (referred to as x40λ100)

gives an F value of 21.824 (Figure 6.21(a)), slightly higher than those found by search-

ing in S10G . Hence, the fit is still not good at the lower ligand concentrations. Unlike

the previous search, however, the average population is not converging towards the

lowest F value (compare Figures 6.21(a) and (b)), implying that the selection step is not

necessarily redundant, and that improvements could possibly be made by increasing

the number of generations. However, the computational cost of searching in S can be

prohibitive; the search took 231.9 hours, an average of 10.4355s per model evaluation,

compared to 18.09 hours in S10G , which is an average of only 1.6282s per model evalua-

tion. It should also be noted that in the trial runs, increasing the number of generations

never improved the results (see sections 6.4.5 and 6.4.7).

The three solutions sets, x10λ50 , x
10
λ100
, and x40λ100 produce similar fits, but it is not neces-

sarily because the parameters are all similar to each other. Figure 6.22 plots each xaλb,j,

normalised to the maximum from {x10λ50 ,j, x
10
λ100,j
, x40λ100,j}; therefore at least one x

a
λb,j
will

have a value of 1. If the other two values are close to 1, then the estimates are similar;

if either or both of the two other values are << 1, then there is notable dissimilarity

across the estimates. Parameters 2, 4, 7 and 10 each take values as low as ≈ 0.1, with
parameter 10 getting as low as ≈ 0.001, so their values in each solution can take values
that differ up to 3 orders of magnitude. (The absolute values are given in Table C.4.1.)

’Parameter sloppiness’ is thus exhibited across the solution sets, as would have been

expected, based on the trial runs, which showed that parameter sets that were rather

different from the true solution could give very similar predictions.

It is clear that it is reasonable to search in S10G , in place of S, since the quality of the

fits found in both spaces are very similar; in other words, it is very reasonable to focus

on the GSA Top 10, and this constitutes a significant simplification of the analysis. It

should be noted however, that the success of a GSA-informed reduction of parameter

space likely depends on howwell the output features defined for the GSA represent the

overall output. It seems that this chapter’s parameter space reduction was successful

because the Ca2+ Peak-over-Basal, Ca2+ Time-to-Peak, Ca2+ Transient-Peak and Left-

Shift, as defined for the GSA in Chapter 4, constitute a suitable representation of the

overall Ca2+ response (as was intended when they were selected).

Local sensitivity of F

Using equation (6.16), sensitivity coefficients are also calculated for the parameter set

obtained in the full search space and the results are shown in Figure 6.20(c). Chapter
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Figure 6.21: Searching in the full search space, S ⊂ R
40, for values that give good fits

to the experimental data, using the search parameters λ = 100, G = 100, PS = 7. (a)

The value of F̄i for the best individual found in a generation. (b) The average F̄i value of

the whole population. (c) The fits obtained with the best individual, are very similar to

those found searching in S10G (compare Figures 6.18(b) and 6.19(b)). The fits are good at

the higher agonist concentrations, but not at [L] = 10−9M and [L] = 10−8M.
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, normalised to the maximum

from {x10λ50,j, x
10
λ100,j
, x40λ100,j

} is shown. Some parameters range between one and < 0.1,

illustrating that they can take on a wide range of values.

4 showed that there are many parameters to which the Ca2+ response is insensitive, so

such parameters will have very small coefficients; the bottom 15 parameters in Table

C.4.1 (where the GSA rankings are shown) thus have insignificant coefficients, and are

not shown in Figure 6.20(c). The parameters are arranged according to their sensitivity

ranking (see Table C.4.1), so the first 10 parameters correspond to the GSA Top 10.

In this case, a relatively significant coefficient is defined as |Cj| ≥ 10. Other param-
eters outside the GSA Top 10 show relatively significant sensitivity, including 11:kdes−,

13:kGTP+, 14:kCa2+act+, and 25:GTOT. Of the parameters that have significant sensitivity

coefficients, the ones that pertain to processes that can be more extensively modelled

are 2:kPIP2b+, 7:[PIP2], 9:p2, and 11:kdes−. These are consistent with those identified by

the LSA carried out at x10λ50 and x
10
λ100
(see section 6.5.1). Potential ways to revisit the

modelling of those processes are discussed in the next section.

6.6 Potential model extensions

It was previously mentioned that some parameters identified as locally sensitive at the

three solution points (x10λ50 , x
10
λ100
, and x40λ100) pertain to processes that can be modelled

more extensively. Those parameters are 2:kPIP2b+, 6:kdes+, 7:[PIP2], 9:p2, and 11:kdes−.

7:[PIP2] and its rate constant of binding, 2:kPIP2b+, serve essentially the same func-

tion in reaction (3.6), since [PIP2] is assumed constant. The modelling of [PIP2] dynam-

ics has already been considered in Chapter 4; there, a simplified cycle of PIP2 depletion

and replenishment was incorporated, but did not significantly improve the predicted

Ca2+ response. It therefore does not seem that the cycle needs to be further described,
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especially since significant PIP2 depletion would typically occur only for strong ago-

nist stimulation, and the model already reflects those cases well (see Figures 6.18, 6.19,

6.21).

9:p2, which shows very high sensitivity in x
40
λ100
(see Figure 6.20(c)), pertains to the

Hill function that models the SERCA pump dynamics in the Ca2+ ODE, reproduced

below:

d[Ca2+]

dt
= (1+ νr)(γ0+ γ1[IP3 IP3RCa

2+])(Ca2+AV − [Ca2+]) − p1[Ca
2+]2

[Ca2+]2 + p22
. (6.17)

Equation 6.17 is a simple representation of processes that might be modelled in

more detail, since the SERCA pump actually undergoes a multi-step reaction cycle (in-

volving association and dissociation from Ca2+, and phosphorylation) [22]; indeed,

a realistic representation of the reaction scheme can include up to twelve states [28].

Other models have also described the pump with terms that account for modulation

of the pumping rate by the concentration of Ca2+ in the ER [95]. As the pump plays a

central role in the removal of cytosolic Ca2+, it can influence the steepness of the Ca2+

descent from peak. Hence, modelling its dynamics in more detail might enable better

reflection of the data at the lower agonist concentrations, where the descent needs to

be steeper to fit the data (see Figures 6.18(b), 6.19(b) and 6.20(c)).

6:kdes+ and 11:kdes− pertain to receptor desensitisation, which is an intricate set of

PKC-mediated processes which, in the Ca2+ mobilisation model, has been minimally

represented, for the sake of simplicity, as follows:

R∗G
kdes+−−⇀

↽−−
kdes−

R∗desG (6.18)

LR∗G
ρ+kdes+−−⇀
↽−−
ρ−kdes−

LR∗desG. (6.19)

There is definitelymore scope for re-modelling here, since the desensitisationmech-

anisms are not definitely understood. M3 receptors can also be desensitised as a result

of being phosphorylated by G-protein receptor kinases (GRKs), after which the binding

of Arrestin to the phosphorylated receptors inhibits further G-protein-receptor interac-

tion. Alternatively, some GRKs can directly inhibit signalling without phosphorylating

the receptor, possibly via binding to αGTP (or βγ) to inhibit phospholipase C activity,

and consequently, Ca2+ mobilisation [105]. These are all mechanisms that can be incor-

porated into the Ca2+ model and investigated. As desensitisation affects the lifetime

of the active GPCR’s, and consequently, the stimulus for Ca2+ release, these mecha-
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nisms are promising extensions to the Ca2+ model that could improve the time course

predictions at the lower agonist concentrations.

6.7 Discussion

This chapter first tested the performance of the evolutionary algorithm, SRES, in find-

ing known global minima of a minimisation problem for the Ca2+ mobilisation model.

It was seen that, with computationally moderate optimisation parameters (λ, G), high

quality fits were obtained, but not good parameter estimates. This corresponds with

findings that systems biology models can have many ’sloppy parameter sensitivities’

such that several parameters values can vary widely without significantly altering the

response [29]. The presence of many high quality solutions can thus make the SRES al-

gorithm indiscriminate in choosing which individuals survive the selection step. Even

in a two-dimensional search space, the global minimum could not be found when the

combination of parameters formed a sloppy direction (GSA Top 2); when the search

was carried out along a less sloppy direction (LSA Top 2), a solution very close to the

global minimum was found. Promoting diversity in the population by increasing the

population size (λ) or decreasing the selection pressure (PS) did not generally cause

significant improvements.

It is possible that even higher SRES parameter values, such as λ = 350 and G =

8000 (used in a previous study [60]), can furnish the algorithm with more time and

information to adapt to the topology of the objective function surface, and allow con-

vergence to the vicinity of the global minimum (with respect to the pseudodata). The

computational expense of such a scheme would be considerable, and might need to

be carried out using programming languages, such as Fortran and C, which can be at

least an order of magnitude faster than MATLAB [60], which was used for this chap-

ter. Also, parallel computing, which exploits the availability of multiple processors in a

computing unit [7], would allow individual members of the population to be assessed

concurrently (instead of sequentially) per generation, and thus significantly reduce the

computation time, allowing more elaborate search parameters (high population sizes

and number of generations) to be used.

Sensitivity analysis and parameter estimation

The results of a global parameter sensitivity analysis (GSA) were used to reduce the

dimensions of the search space from 40 to 10. This significantly simplified the op-

timisation problem by reducing the computational expense, as a smaller population

size can be used in the smaller subspace (S10G ); in addition, the average time per model
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evaluation was much lower, presumably because the probability of extreme parameter

combinations is lower with only 10 parameters. When the model was fit to the experi-

mental data, a very similar quality of fit was obtained by searching in S10G , as in the full

space. The power of a global sensitivity analysis to simplify the analysis of complex

models such as the Ca2+ mobilisation model has thus been demonstrated. However,

it should be stressed, again, that this likely depends on how well the output features

defined for the GSA represent the overall output.

Possible model extensions

The trial runs in which SRES was used to fit the pseudo-data showed that SRES easily

finds, not the global minimum, but solution parameter sets which cause similar Ca2+

time course predictions. It thus seems reasonable that predictions of the global mini-

mum of F would not be very different from those of the three solutions that produced

the best fit to the experimental data. For all three solutions, good quality fits to the ex-

perimental Ca2+ data were only obtained for the higher agonist concentrations. If those

data were the only ones available, it would have been easy to conclude that the model

was sufficient, however the inability to fit the data at the lower agonist concentrations

suggests otherwise. (This highlights the importance of having significant amounts of

experimental data.) Thus, as comprehensive as the Ca2+ mobilisation model is, and

successful at predicting key features like the rapid time-to-peak, the transient peak and

signal amplification, it still lacks some mechanistic detail.

The local sensitivity analysis results in Figure 6.20 point to possible aspects of the

model which may be adapted. The dynamics of [PIP2], SERCA and GPCR desensi-

tisation were all highlighted as processes that can be modelled in more detail. Since

[PIP2] dynamics were already minimally modelled in Chapter 5, without significantly

altering the predictions of the model, the most promising model extensions should be

those applied to SERCA and GPCR desensitisation mechanisms.
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Conclusion

The main aim of this thesis was to assemble a detailed kinetic model of GPCR medi-

ated Ca2+ mobilisation in the M3 muscarinic receptor system, and, guided by available

data, to gain further insight into the pathway dynamics. Such insight could be used to

improve existing therapies for disease conditions associated with abnormal Ca2+ sig-

nalling, and new therapies could be developed based on the improved understanding

of the pathway.

As a first step in the construction of the comprehensive model, a base G-protein

activation model (the cTCAM) [86] was first analysed in Chapter 2. The total G-protein

(GTOT) and receptor concentrations (RTOT) were varied, based on results from a sensi-

tivity analysis [41] that identified them as key controlling parameters with respect to

the G-protein response. It was seen that increasing RTOT and GTOT can enhance ago-

nist stimulation, increasing G-protein activation but altering the qualitative nature of

the response; in particular, removing the transient peak. It was also shown that ago-

nist stimulated G-protein activation was more enhanced by G-protein overexpression

than by receptor overexpression, due to the receptor’s ability to bind sequentially to

multiple G-proteins. Subsequent sensitivity analysis results on the full Ca2+ model

ranked the desensitisation rate constant (which is not included in the cTCAM) higher

than RTOT and GTOT (see Tables 4.5.1 and 6.4.1), which highlights a need for an exten-

sion to the cTCAM (and related G-protein activation models) that at least takes GPCR

desensitisation into account.

A novel use of the cTCAM was in the simulation of specific agonists used in stan-

dard pharmacological agonist stimulation experiments on the M3 muscarinic receptor

system [52, 54, 93]. This involved using recent experimental results [92] to adapt the

affinity and efficacy parameters for each drug. Simulated dose-response curves then

revealed partial agonism by the drugs for the G-protein response. Also in Chapter 2,

a variant of the cTCAM was used to explore the hypothesis that the G-protein’s sub-

units do not dissociate, and it was shown that the cTCAM (in which the subunits do
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dissociate) is equivalent to the variant, if re-association happens quickly; otherwise, ag-

onist efficacy was diminished. This led to the testable hypothesis that agonist efficacy

depends on fast subunit reassociation. The cTCAM with fast re-association was then

used throughout the thesis.

In Chapter 3, the cTCAM was extended into the Ca2+ mobilisation model, using

downstream details from an existing model [37]. Data-guided numerical simulation

and parameter variation were carried out on the model in an initial attempt to reflect

the key features of the data, namely, signal amplification, the rapid time-to-peak, and

the transient peak. The publication of new results from αGTPγS (a non-hydrolysable

analogue of αGTP) stimulation experiments allowed some cTCAM parameters to be

fine-tuned, and these were then used in the full Ca2+ model. To better reflect the data,

a parameter change that enabled agonists to bind preferably to the GPCR’s pre-coupled

state (over its uncoupled one) had to be made; this might suggest that agonist efficacy

depends on receptor pre-coupling.

In the same chapter, receptor desensitisation had to be incorporated into the Ca2+

model to predict the transient peak when signal amplification occurred. This further

suggests that G-protein activation models need to take receptor desensitisation into

account. However, signal amplification and the rapid Ca2+ time-to-peak could not be

predicted simultaneously, hinting that the underlying mechanisms were highly fine-

tuned. This seemed to be confirmed through a global sensitivity analysis carried out on

the model parameters in Chapter 4, which identified a change in kIP3 , the rate constant

for PIP2 hydrolysis, as the only measure which could single-handedly account for the

amplified, yet rapid Ca2+ response. A value of kIP3 = 50, 000s−1 produced the desired

change, suggesting that PIP2 hydrolysis could be as quick as some of the fastest known

catalytic reactions.

The sensitivity analysis also revealed that agonist potency, as quantified by the ex-

tent to which the Ca2+ peak was raised over its basal value (see equation 4.20), was

mainly sensitive to six parameters, namely, the rate constant of PLC activation, the rate

constant for GPCR deactivation, the rate constant of IP3 degradation, the rate constant

of (PKC-mediated) GPCR desensitisation, the maximal rate of the SERCA pumps and

the PIP2 concentration. The last four parameters could exert a biphasic effect. Agonist

potency experiments were thus recommendedwhich involve experimentally intruding

on those processes, with the hypothesis that such experimental manoeuvres can cause

known agonists to act as antagonists. The results might also shed light on why known

agonists can sometimes fail in therapy.

Another use of the sensitivity analysis was the identification of relatively insignif-

icant parameters. The total concentration of Phospholipase C (PLC), the enzyme that
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hydrolyses PIP2 (via αGTPPLC
∗PIP2

kIP3−→ αGTPPLC
∗ + IP3 + DAG ) was shown to

be one such parameter. Hence —even though the rate of PIP2 hydrolysis drives the

rapid, amplified response— underexpression or overexpression of the mediating en-

zyme does not significantly influence the response, implying that PLC may not be a

worthwhile drug target. This hypothesis could possibly be tested experimentally, since

there are commercially available PLC inhibitors [73, 90]. On the other hand, the concen-

tration of PLC’s substrate, PIP2, was one of the most sensitive parameters, suggesting

that PIP2 is a more promising drug target.

After the results of the sensitivity analysis were used to make parameter changes

throughwhich the model qualitatively resembled the data, attempts weremade to pro-

duce a tighter quantitative fit. In particular, the steepness of the Ca2+ descent from peak

(which represents the rate of Ca2+ removal) needed to reflect the data more closely. In

Chapter 5, the influence that the membrane Ca2+ ATP-ase might have on the rate of

Ca2+ removal was considered, by extending the Ca2+ mobilisation model. In another

extension, the assumption of constant [PIP2] was reconsidered —due its high sensitiv-

ity ranking from Chapter 4—by incorporating a simple cycle of [PIP2] depletion and

replenishment. Neither variant model significantly improved the predictions of the

Ca2+ response. Hence, it was concluded that neither the membrane Ca2+ ATPases nor

PIP2 dynamics in fact needed to be included in the model, and the job of improving

the quantitative fit was left to a global parameter optimisation, using the original Ca2+

mobilisation model, in Chapter 6.

An evolutionary algorithm, the Evolution Strategy using Stochastic ranking (SRES),

was used to tackle the parameter optimisation problem, by minimising a least squares

function representing the deviation of the model from the Ca2+ data. Global sensitiv-

ity analysis results were used to reduce the dimensionality of the parameter space by

focusing only on the ten most influential parameters and fixing the values of all oth-

ers. It was shown that solutions found in the reduced subspace produced a similar

fit to that found in the full search space, highlighting the role of a global sensitivity

analysis in simplifying the analysis of complex, multi-parameter models like the Ca2+

mobilisation model.

The best parameter sets found by SRES produced good quality fits to the Ca2+ data

at the four highest agonist concentrations; however, at [L] = 10−9M and [L] = 10−8M,

the fits were poor. In initial trial runs fitting ’pseudo-data’ generated from model sim-

ulation, SRES had been shown to find, not the known global minimum, but solutions

which fit the pseudo-data well; thus (apart from the possibility that more appropriate

ranges need to be defined) it seemedmost likely to conclude that no significantly better

fit to themodel can be found. A key result of that chapter, therefore, was that additional
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mechanistic detail needs to be incorporated into the model. Local sensitivity analy-

ses of the least squares function, at the three points in parameter space corresponding

to the best solution parameter sets, identified parameters related to the dynamics of

[PIP2], SERCA pumps and PKC-mediated GPCR desensitisation as influential; hence,

revisiting the modelling of these aspects might improve the response. The ubiquity

of these parameters in the top ranks of all sensitivity analyses carried out in this the-

sis (see sections 4.5.2, 6.4.2 and 6.6) pinpoints the processes they mediate as central in

Ca2+ signalling; hence, in addition to [PIP2] (see above), the SERCA pump and PKC

may also be counted as potentially good drug targets.

The importance of the SERCA pump function is supported by experimental find-

ings that reduction (or loss) of its expression are associated with colon and prostrate

cancer [61]. Such experimental findings provide extra motivation to model the pump

in more detail (see below). The availability of pharmacological inhibitors of the pump

[61] could also make predictions from an extended model testable.

7.1 Future work

The role of a global sensitivity analysis (GSA) in reducing the number of parameters

for analysis has already been mentioned. A computationally efficient GSA method

(the method of elementary effects (EE)) was used because of the large number of pa-

rameters; however, this method could only identify the significant parameters, without

quantifying the contribution of each parameter to the variance of the output, something

which other more computationally expensive (variance-based methods) methods are

able to do [81]. As the EE method already provided a ranking for the parameters, and

as it was confirmed that it was reasonable to focus on just the ten highest ranked pa-

rameters, a variance based method could be applied to quantify the percentage which

each of these parameters contribute to the variance output, potentially reducing the

subspace of interest further.

Following the GSA and parameter optimisation results, an important next step

would be to extend the Ca2+- mobilisation model by including a more mechanistic

representation of Ca2+’s interaction with the SERCA pump. Also, variant extensions

of the model can be derived by incorporating different GPCR desensitisation hypothe-

ses from experimental evidence [105]. The fact that these extensions would increase

model complexity should not be taken lightly. Section 4.8 showed that the method

of elementary effects (especially when combined with an optimised sampling strat-

egy) still identified significant model parameters even when the number of trajectories

was significantly reduced. Less expensive, but useful, global sensitivity analyses could
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therefore be designed for an extension of the model.

The full potential of the Evolution Strategywith Stochastic Ranking (SRES) strategy

may not have been realised with the search parameters used in Chapter 6. The largest

population size ever used was λ = 100, while the biggest number of generations was

G = 300, whereas λ = 350 and G = 8000 have been successfully used for a simpler

optimisation problem [59]. Therefore, even larger parameters might be required for

a more efficient search, which would considerably increase computational expense.

However, the algorithm could be implemented using parallel computing, which can

significantly reduce the computational time, scaling the number of runs by the number

of available processors. It is possible then, that due to a more thorough exploration of

space, a better fit to the Ca2+ data at the intermediate agonist concentrations might be

obtained.

It has been shown that fitting to data from a few different experiments, which pro-

vide complementary information, can allow parameters to be well estimated [3]. The

data that was being fit here was from agonist stimulation experiments by a single drug.

Experiments in which two drugs are used to stimulate (e.g., agonist and antagonist) in

Ca2+-activating pathways are already routinely carried out at the University of Not-

tingham’s Institute of Cell Signalling, so such data can be easily obtained; receptor or

G-protein overexpression experiments are also possible. The latter experiments can be

simulated merely by varying the total receptor or G-protein concentrations, while the

former require extension of the Ca2+ model to include interaction with another drug.

Before attempting to fit such data, tests could be carried out with similar pseudo-data,

to see if the accuracy of parameter estimates from Chapter 6 is improved.

This thesis has demonstrated that, guided by experimental data, computational

methods can be used to glean insight from complex signal transduction models. The

collaborators from the experimental aspect of this work have confirmed that many of

the model predictions are experimentally testable; the results from such experiments

might lead to actual improvements of present therapy strategies.
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Glossary of pharmacological terms

Ligand: The ligand is a molecule that binds to another one to form a complex. The

ligand starts the signalling cascade and is also referred to as the first messenger.

Receptor: The receptor acts as a sensor for the cell. It binds selectively to ligands and

transduces the signal intracellularly.

GPCR: G-protein coupled receptor.

Affinity: This refers to the willingness of one molecule to bind to another [106].

Efficacy: This refers to the ability of a ligand to cause a response by binding.

SecondMessenger: This is the term used to refer to an intracellular molecule activated

as a result of binding, which relays the signal into the interior of the cell. It triggeres a

chain of events that eventually lead to a change in cell behaviour.

Agonist: An agonist is a ligand which has a higher affinity for active receptors. It

will shift the equilibrium in favour of the active receptors. Different agonists can have

different efficacies.

Antagonist: This is a ligand which binds indiscriminately to both states of the receptor.

It does not affect conformational equilibrium, but competes for binding sites with other

ligand types. In essence an antagonist has affinity but no efficacy.

Inverse agonist: This is a ligand which has a higher affinity for inactive receptors.It

will shift the equilibrium in favour of the inactive receptors.
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Dissociation constant (KD: This is the ratio of the dissociation rate constant of a ligand–

protein reaction to its association rate constant.

EC50 : This is the concentration of agonist it takes to produce half the maximal re-

sponse.

Desensitisation: This refers to a process by which the receptor is made unable to re-

spond to ligand application.
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Model parameters

B.1 Description

Here, the parameters for the various models in Chapters 2–6 are described.

Parameter Description Chapter

kact Receptor activation rate constant 2,3,4,5,6

kdeact Receptor deactivation rate constant 2,3,4,5,6

klb+ Drug/ligand binding rate constant 2,3,4,5,6

klb− Drug/ligand unbinding rate constant 2,3,4,5,6

kg+ G-protein binding rate constant 2,3,4,5,6

kg− G-protein unbinding rate constant 2,3,4,5,6

kGTP+ G protein activation rate constant 2,3,4,5,6

kgd+ GTP hydrolysis rate constant 2,3,4,5,6

kRA+ G-protein reassociation rate 2,3,4,5,6

kPLCb+ αGTP and PLC association rate constant 3,4,5,6

kPLCb− αGTP and PLC dissociation rate constant 3,4,5,6

kPLCact αGTPPLC and Ca
2+ association rate constant 3,4,5,6

kPLCdeact αGTPPLC and Ca
2+ dissociation rate constant 3,4,5,6

kPIP2b+ αGTPPLC
∗ and PIP2 association rate constant 3,4,5,6

kPIP2b− αGTPPLC
∗ and PIP2 dissociation rate constant 3,4,5,6

kIP3 Rate constant for PIP2 hydrolysis 3,4,5,6

kPLCdis αGDP and PLC dissociation rate constant 3,4,5,6

kIP3deg Rate constant for IP3 degradation 3,4,5,6

kIP3Rb+ IP3 and IP3R association rate constant 3,4,5,6

kIP3Rb− IP3 and IP3 IP3R association rate constant 3,4,5,6

kCa2+act+ Ca2+ and IP3 IP3R association rate constant (activating) 3,4,5,6

kCa2+act− Ca2+ and IP3IP3R dissociation rate constant 3,4,5,6

Continued on the next page...
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...continued from the previous page

Parameter Description Chapter

kCa2+ inh+ Ca2+ and Ca2+ IP3 IP3R association rate constant 3,4,5,6

kCa2+ inh− Ca2+ and Ca2+ IP3IP3R dissociation rate constant 3,4,5,6

kdes+ Forward desensitisation rate constant 3,4,5,6

kdes− Reverse desensitisation rate constant 3,4,5,6

kPIP2rep [PIP2] replenishment rate constant 5

ζ,ν,µ,θνµ ,θζµ, θζν Thermodynamic constants (explained in section 1.3.2) 2,3,4,5,6

νr ER to cytosol volume ratio 3,4,5,6

γ0 Basal permeability of the ER 3,4,5,6

γ1 Sensitivity of IP3R to IP3 3,4,5,6

p1 Maximal rate of SERCA 3,4,5,6

p2 [Ca2+] for half-maximal SERCA pumping 3,4,5,6

VP Maximal rate of PMCA 5

KP [Ca2+] for half-maximal PMCA pumping 5

[L] Ligand (Drug) concentration 2,3,4,5,6

RTOT Total receptor concentration 2,3,4,5,6

GTOT Total G-protein concentration 2,3,4,5,6

PLCTOT Total PLC concentration 3,4,5,6

[PIP2] Total PIP2 concentration 3,4,5,6

[Ca2+AV ] Volume average Ca2+ concentration,
Ca2++vr[Ca

2+
ER]

1+vr
3,4,6

[IP3RTOT] Total concentration of IP3R 3,4,5,6

Table B.1.1: Descriptions for all parameters.

B.2 Values

Here, the parameter values used in Chapters 2–6 are given.
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Parameter Value

kact 1s−1

kdeact 103s−1

klb+ 8.4× 107M−1s−1

klb− 0.37s−1

kg+ 3.6× 107M−1s−1

kg− 3× 10−3s−1

kGTP+ 1s−1

kgd+ 0.1s−1

kRA+ 1.2× 1010M−1s−1

ζ+ 1

ζ− 10−3

µ+ 1

µ− 0.5

ν+ 1

ν− 1

θνµ 1

θζµ 1

θζν 1

Table B.2.1: Parameter values specific to the G-protein activation models, as used in

Chapter 2.
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Parameter Preliminary Base GSA-guided

kact 1s−1 10s−1

kdeact 103s−1 104s−1

kg+ 3.6× 107M−1s−1 3.6× 108M−1s−1

kg− 3× 10−3s−1 3× 10−2s−1
kGTP+ 1s−1 0.001s−1 0.01s−1

kgd+ 0.1s−1 1s−1

kRA+ 1.2× 1010M−1s−1 1.2× 1011M−1s−1

ζ+ 1

ζ− 10−3

µ+ 1

µ− 0.5

ν+ 1 100

ν− 1

θνµ 1

θζµ 1

θζν 1

kPLCb+ 2.25× 106M−1s−1 2.25× 107M−1s−1

kPLCb− 1s−1 10s−1

kPLCact 30× 106M−1s−1 30× 107M−1s−1

kPLCdeact 1s−1 10s−1

kPIP2b+ 109M−1s−1 1011M−1s−1 1012M−1s−1

kPIP2b− 5× 103s−1 5× 104s−1
kIP3 100s−1 50000, 500000s−1

kPLCdis 1.667s−1 16.67s−1

kIP3deg 2.5s−1 25s−1

kIP3Rb+ 1.2× 107M−1s−1 1.2× 109M−1s−1 1.2× 1010M−1s−1

kIP3Rb− 8s−1 80s−1

kCa2+act+ 15× 106M−1s−1 15× 107M−1s−1

kCa2+act− 1.65s−1 16.5s−1

kCa2+inh+ 1.8× 106M−1s−1 1.8× 105M−1s−1 1.8× 106M−1s−1

kCa2+inh− 0.21s−1 2.1s−1

kdes+ 0 2.75× 10−2s−1 2.75× 10−1s−1
kPKCdes− 0 2.75× 10−6s−1 2.75× 10−5s−1
vr 0.185

γ0 0.2s−1

γ1 40× 106M−1s−1 40× 107M−1s−1

p1 6× 10−6Ms−1 6× 10−5Ms−1
p2 0.45× 10−6M

[GTOT] 4.15× 10−10M 4.15× 10−6M
[RTOT] 4.15× 10−10M 10−8M

[PLCTOT] 0.8× 10−6M
[PIP2] 25× 10−6M
[Ca2+AV ] 0.78× 10−6M

[IP3RTOT] 0.8× 10−6M
KP 0.425× 10−6M
VP 28× 10−6Ms−1 28× 10−13Ms−1
kPIP2rep 0.015, 0.1s−1

Table B.2.2: Parameter values for the Ca2+ models in Chapters 3, 4, 5 and 6.
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B.3 The Ca2+ mobilisation model

The Ca2+ mobilisation model assembled in Chapter 3 is given here. Note that in the

first half of that chapter, GPCR desensitisation was not included (kdes+ = kdes− = 0).

d[R]

dt
= −kact[R] + kdeact[R

∗]− klb+[L][R] + klb−[LR]

−kg+[R][G] + kg−[RG] (B.1)

d[R∗]
dt

= kact[R] − kdeact[R∗]− ζ+klb+[L][R∗] + ζ−klb−[LR∗]

−µ+kg+[R∗][G] + µ−kg−[R∗G]

+kGTP+[R∗G] (B.2)

d[LR]

dt
= klb+[L][R] − klb−[LR]− ζ+kact[LR] + ζ−kdeact[LR

∗]

−ν+kg+[LR][G] + ν−kg−[LRG] (B.3)

d[LR∗]
dt

= ζ+klb+[L][R∗] − ζ−klb−[LR∗] + ζ+kact[LR]− ζ−kdeact[LR
∗]

−θνµµ+ν+kg+[LR∗][G] + θνµµ−ν−kg−[LR∗G]

+ν−kGTP+[LR∗G] (B.4)

d[RG]

dt
= kg+[R][G] − kg−[RG]− µ+kact[RG] + µ−kdeact[R

∗G]

−ν+klb+[L][RG] + ν−klb−[LRG] (B.5)

d[R∗G]

dt
= µ+kg+[R∗][G] − µ−kg−[R∗G] + µ+kact[RG]− µ−kdeact[R

∗G]

−θζνζ+ν+klb+[L][R∗G] + θζνζ−ν−klb−[LR∗G]

−kGTP+[R∗G]− kdes+[R∗G] + kdes−[R∗desG] (B.6)

d[LRG]

dt
= ν+kg+[LR][G] − ν−kg−[LRG]− θζµζ+µ+kact[LRG]

+θζµζ−µ−kdeact[LR
∗G] + ν+klb+[L][RG] − ν−klb−[LRG] (B.7)

d[LR∗G]

dt
= θνµµ+ν+kg+[LR∗][G] − θνµµ−ν−kg−[LR∗G]

+θζµζ+µ+kact[LRG]− θζµζ−µ−kdeact[LR
∗G]

+θζνζ+ν+klb+[L][R∗G]− θζνζ−ν−klb−[LR∗G]

−ν−kGTP+[LR∗G]− kdes+[LR∗G] + kdes−[LR∗desG] (B.8)

d[G]

dt
= −ν+kg+[LR][G] + ν−kg−[LRG]

−θνµµ+ν+kg+[LR∗][G] + θνµµ−ν−kg−[LR∗G]

−µ+kg+[R∗][G] + µ−kg−[R∗G]

−kg+[R][G] + kg−[RG] + kRA+[αGDP][βγ] − kRA−[G] (B.9)

d[αGTP]

dt
= kGTP+[R∗G]− kGTP−[R∗][αGTP][βγ] − kgd+[αGTP] + kgd−[αGDP]

−ν+kGTP−[LR∗][αGTP][βγ] + ν−kGTP+[LR∗G]
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−kPLCb+[αGTP][PLC] + kPLCb−[αGTPPLC] (B.10)

d[βγ]

dt
= = kGTP+[R∗G] + ν−kGTP+[LR∗G]− kRA+[αGDP][βγ] (B.11)

d[αGDP]

dt
= kgd+[αGTP] − kRA+[αGDP][βγ] + kPLCdis[αGTPPLC

∗] (B.12)

d[PLC]

dt
= −kPLCb+[αGTP][PLC] + kPLCb−[αGTPPLC]

+kPLCdis[αGTPPLC
∗] (B.13)

d[αGTPPLC]

dt
= kPLCb+[αGTP][PLC]− kPLCb−[αGTPPLC]

−kPLCact[αGTPPLC][Ca2+] + kPLCdeact[αGTPPLC
∗] (B.14)

d[αGTPPLC
∗]

dt
= kPLCact[αGTPPLC][Ca2+]− kPLCdeact[αGTPPLC∗]

−kPIP2b+[αGTPPLC
∗][PIP2] + kPIP2b−[αGTPPLC

∗PIP2]

+kIP3 [αGTPPLC
∗PIP2]− kPLCdis[αGTPPLC∗] (B.15)

d[αGTPPLC
∗PIP2]

dt
= kPIP2b+[αGTPPLC

∗][PIP2] − kPIP2b−[αGTPPLC
∗PIP2]

−kIP3 [αGTPPLC∗PIP2] (B.16)

d[IP3]

dt
= kIP3 [αGTPPLC

∗PIP2]− kIP3deg[IP3]
−kIP3Rb+[IP3][IP3R] + kIP3Rb−[IP3 IP3R] (B.17)

d[IP3R]

dt
= −kIP3Rb+[IP3][IP3R] + kIP3Rb−[IP3 IP3R] (B.18)

d[IP3 IP3R]

dt
= kIP3Rb+[IP3][IP3R]− kIP3Rb−[IP3 IP3R]

−kIP3Ract+[IP3 IP3R][Ca2+] + kIP3Ract−[IP3 IP3RCa
2+] (B.19)

d[Ca2+ ]

dt
= (1+ vr)(γ0+ γ1[IP3 IP3RCa

2+])([CAV ]− [Ca2+])

− p1[Ca
2+]2

[Ca2+]2 + p22
(B.20)

d[IP3 IP3RCa2+]

dt
= kIP3Ract+[IP3 IP3R][Ca2+]− kIP3Ract−[IP3 IP3RCa

2+]

−kIP3Rinh+[IP3 IP3RCa
2+][Ca2+]

+kIP3Rinh−[IP3 IP3RCa
2+Ca2+] (B.21)

d[IP3 IP3RCa2+Ca2+]

dt
= kIP3Rinh+[IP3 IP3RCa

2+][Ca2+]

−kIP3Rinh−[IP3 IP3RCa
2+Ca2+] (B.22)

d[R∗desG]

dt
= kdes+[R∗G]− kdes−[R∗desG] (B.23)

d[LR∗desG]

dt
= kdes+[LR∗G]− kdes−[LR∗desG] (B.24)
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Sensitivity analysis-related

information

C.1 Parameter bounds and labels

Parameter Label Range Unit

RTOT 1 10−10 − 10−6 M

GTOT 2 10−10 − 10−6 M

PLCTOT 3 8× 10−9 − 8× 10−5 M

IP3RTOT 4 8× 10−9 − 8× 10−5 M

[PIP2] 5 2.5× 10−7 − 2.5× 10−3 M

ζ− 6 10−3 − 10−2 Unitless

ζ+ 7 10−1 − 1 Unitless

µ− 8 10−3 − 10−2 Unitless

µ+ 9 10−1 − 1 Unitless

ν− 10 3.162× 10−1 − 3.162 Unitless

ν+ 11 31.62− 316.2 Unitless

kdeact 12 100− 10000 s−1

kact 13 10−1 − 1 s−1

kg− 14 3× 10−4 − 3× 10−2 s−1

kg+ 15 3.6× 108 − 3.6× 1010 M−1s−1

kGTP+ 16 10−4 − 10−2 s−1

kRA+ 17 1.2× 109 − 3.6× 1011 M−1s−1

kgd+ 18 10−2 − 1 s−1

klb+ 19 288.56− 28856 M−1s−1

klb− 20 0.14× 101 − 0.14× 103 s−1

kPLCb+ 21 2.25× 105 − 2.25× 107 M−1s−1

Continued on the next page...
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...continued from the previous page

Parameter Label Range Unit

kPLCb− 22 10−1 − 10 s−1

kPLCact 23 30× 105 − 30× 107 M−1s−1

kPLCdeact 24 10−1 − 10 s−1

kPLCdis 25 1.667× 10−1 − 16.67 s−1

kIP3deg 26 2.5× 10−1 − 25 s−1

kIP3 27 10− 1000 s−1

kPIP2b+ 28 1010 − 1012 M−1s−1

kPIP2b− 29 5× 102 − 5× 104 s−1

kIP3Rb+ 30 1.2× 108 − 1.2× 1010 M−1s−1

kIP3Rb− 31 8× 10−1 − 8× 101 s−1

kCa2+act+ 32 15× 105 − 15× 107 M−1s−1

kCa2+act− 33 1.65× 10−1 − 16.5 s−1

kCa2+ inh+ 34 1.8× 104 − 1.8× 106 M−1s−1

kCa2+ inh− 35 0.21× 10−1 − 2.1 s−1

kdes+ 36 2.75× 10−3 − 2.75× 10−1 s−1

kPKCdes− 37 2.75× 10−7 − 2.75× 10−5 s−1

γ1 38 20× 104 − 20× 108 M−1s−1

p1 39 6× 10−8 − 6× 10−4 Ms−1

p2 40 0.45× 10−8 − 0.45× 10−4 M

Table C.1.1: Model parameters and their corresponding labels, as used in the sensitivity

analysis in Chapter 4.
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C.2 Sensitivity results for Chapter 4

Ranking Parameter Overall sensitivity (S
′
AR)

1 p2 0.76

2 p1 0.75

3 kdes+ 0.72

4 IP3RTOT 0.72

5 kIP3deg 0.63

6 [PIP2 ] 0.62

7 kCa2+act− 0.57

8 γ1 0.57

9 kPIP2b+ 0.53

10 kIP3 0.52

11 kCa2+act+ 0.51

12 kPLCdis 0.50

13 kIP3Rb+ 0.49

14 kIP3Rb− 0.49

15 kPIP2b− 0.46

16 kGTP+ 0.46

17 kdeact 0.45

18 kPKCdes− 0.41

19 kact 0.41

20 GTOT 0.41

21 RTOT 0.38

22 µ− 0.25

23 µ+ 0.23

24 PLCTOT 0.23

25 kgd+ 0.21

26 kPLCb+ 0.21

27 kPLCact 0.17

28 kPLCb− 0.13

29 ζ+ 0.11

30 ν+ 0.09

31 kCa2+inh− 0.08

32 kCa2+inh+ 0.08

33 ν− 0.07

34 ζ− 0.07

35 kPLCdeact 0.07

36 klb+ 0.06

37 klb− 0.06

38 kg− 0.05

39 kg+ 0.04

40 kRA+ 0.01

Table C.2.1:Model parameters ranked according to their overall influence on the five ob-

jective functions, as quantified by (4.36), produced with r = 1000 trajectories. Averaged

over parameter subspaces 1 and 2.

184



APPENDIX C: SENSITIVITY ANALYSIS-RELATED INFORMATION

C.3 Extra simulations for Chapter 4

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

x 10
−18

N
et
ra
te
o
f
li
g
an
d
-r
ec
ep
to
r
in
te
ra
ct
io
n

(M
s−
1

Time (s)

(a)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−15

N
et
ra
te
o
f
G
-p
ro
te
in
-
fr
ee
re
ce
p
to
r
in
te
ra
ct
io
n

(M
s−
1

Time (s)

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 10

−14

N
et
ra
te
o
f

α
G
T
P
-C
a2

+
in
te
ra
ct
io
n

(M
s−
1

Time (s)

(c)

0 500 1000 1500 2000 2500 3000 3500 4000

−2

−1

0

1

2

3

4

5
x 10

−11

N
et
ra
te
o
f
IP
3
IP
3
R
-C
a2

+
in
te
ra
ct
io
n

(M
s−
1

Time (s)

(d)

Figure C.1: The rates of the reversible reactions involving the least significant rate

constants, 15:kg+ and 14:kg−, 19:klb+ and 20:klb−, 34:kCa2+inh+ and 35:kCa2+inh−, and

24:kPLCdeact, do not reach steady state quickly.
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C.4 GSA (and optimisation) results for Chapter 6

Ranking Parameter Overall score x10λ50 x10λ100 x40λ100 Unit

1 kCa2+act− 0.74 149.95 108.30 159.18 s−1

2 kPIP2b+ 0.63 0.395× 1012 3.84× 1012 3.8997× 1012 M−1s−1

3 kIP3Rb− 0.62 536.5 447.01 670.49 s−1

4 p1 0.61 3.02× 10−4 5.96× 10−4 5.8526× 10−3 M−1s−1

5 kIP3Rb+ 0.59 0.82× 1010 1.04× 1010 0.83067× 1010 M−1s−1

6 kdes+ 0.54 1.43 2.16 2.1102 s−1

7 [PIP2 ] 0.51 3.997× 10−4 0.366× 10−4 0.97612× 10−4 M

8 kdeact 0.48 15850 37358 58759 s−1

9 p2 0.47 0.9247× 10−6 2.8684× 10−6 1.1462× 10−6 M

10 RTOT 0.46 1.682× 10−7 0.44141× 10−7 459.37× 10−7 M

11 kPKCdes− 0.44

12 γ1 0.43

13 kGTP+ 0.42

14 kCa2+act+ 0.42

15 kIP3deg 0.41

16 kact 0.38

17 kPLCact 0.35

18 kPLCdis 0.34

19 kCa2+inh+ 0.33

20 IP3RTOT 0.33

21 µ+ 0.33

22 ν+ 0.30

23 kCa2+inh− 0.30

24 µ− 0.28

25 GTOT 0.28

26 kPLCb− 0.28

27 kg− 0.27

28 PLCTOT 0.18

29 ζ+ 0.16

30 kPLCb+ 0.15

31 klb− 0.15

32 kgd+ 0.12

33 ζ− 0.12

34 kIP3 0.11

35 ν− 0.11

36 klb+ 0.10

37 kPIP2b− 0.08

38 kg+ 0.06

39 kPLCdeact 0.06

40 kRA+ 0.01

Table C.4.1: The ranking of parameters, according to a GSA carried out in a parameter

space constrained around the GSA-guided parameter set (see Table B.2.2). This is the

ranking that was used to reduce the search space in Chapter 6. The best parameter

estimates found from fitting to the experimental data in Chapter 6 are also shown.
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