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SYNOPSIS 

The designer of lattice trusses has been traditionally encouraged to avoid extra 
joint bending moments by ensuring 'noding' of member centre lines. This can however 

cause problems in the design of RHS trusses with small (economical) branch members 
by causing large gaps at joints with undesirable flexibility for slender chord walls. 
100% overlap joints overcome this problem while still maintaining economic single cut 
branch ends. 

The research programme set out first to highlight the difference in behaviour of 
trusses with large gap noding and completely overlapping joints. Two similar trusses - 
one gap, the other lap - with matched sections were tested to failure. It was concluded 
that the gap joint truss (branch/chord width ratio = 0.4) was much less efficient than the 

corresponding 100% overlap truss despite the large eccentricities. The collapse load of 
the latter was some 35% greater, while the stiffness properties were better, and 
remained linear for a substantial proportion of the loading. On the other hand the gap 
joint truss soon became non-linear, with large overall deflections. Local connecting 
chord wall deflections were quite small in the lap joints while appreciable deflections 

occurred at gap joints under service loads. 

Elastic frame analyses were carried out for all the six test trusses (one gap and 
five lap). For the overlap trusses, axial forces and bending moments could be predicted 
fairly accurately but a non-linear analysis was required for the gap jointed truss even at 
fairly modest loads. The effects of ß ratio, chord slenderness and branch angle were all 

examined within the parameter range tested. The advantages of truss continuity 

moments as well as plastic redistribution of moments have been observed to reduce the 

occurrence of the local chord buckling mode of failure (L7), compared with previous 
isolated joint tests. 

Results obtained from tests on isolated joints can give good agreement with 
those obtained from truss tests, both with respect to strength and failure mode. 
However, as the isolated joint testing cannot always reproduce the support conditions in 

a truss, the failure modes (and hence strengths) can differ. 

The current CIDECT design strength equations and recommendations for gap 
and overlap joints are largely based on the results of isolated joint testing. The 

suitability of the CIDECT strength equations and recommendations for designing RHS 
lattice trusses has been reviewed. Consequently, for the 100% overlap joint trusses a 
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simple design method has been presented in conjunction with practical design 

recommendations. The problems associated with the analysis and design of the gap 
joint truss are described in detail. 
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8 : Normal deflection of connecting chord face at a 100% overlap joint, (see Fig. 4.14). 
S1 82 : Normal deflection of the connecting chord at a gap joint, (see Fig. 4.14). 

C Measured surface strain. 
eimean : Mean value of two strain gauges at one end for member i. 

Ili : Efficiency of member i at ram failure load, (Ni/Ai. (Yei; i=1, tie; i=2, strut; i=3, post). 
01 Acute angle between branch member i and the chord face. 

Member Slenderness ratio. 
µ Joint strength reduction factor due to presence of chord end load, (see Eqn. 8.1). 
V . Poisson's ratio. 
a Axial stress. 
CIE : Effective stress. 
oe : Minimum yield stress, (established from tensile test coupon). 
CO : Direct stress on shear plane A-A, (see Fig. 8.5). 
CFI, a2 : Principal stresses, (see Fig. 8.5). 
Gel : Minimum yield stress of member i, (established from tensile test coupon; 

i=0, chord; i=1, tie; i=2, strut; i=3, post). 
OD : Maximum axial stress in the chord. 
app : Stress in the chord due to pre-load Fop. 

aý Ultimate tensile stress of member i, (established from tensile test coupon; 
i=0, chord; i=1, tie; i=2, strut; i=3, post). 

IC Shear stress. 
ti0 Shear stress on plane A-A, (see Fig. 8.5). 

timax : Maximum allowable shear stress based on Von Mises stress field, (see Fig. 8.5). 



xviii 

C. I. D. E. C. T : Comite International pour le Developpement et 1'etude de la Construction Tubulaire. 

C. H. S : Circular Hollow Section. 

R. H. S : Rectangular Hollow Section. 

DG : Dial Gauge. 

ERSG : Electrical Resistance Strain Gauge. 

LC : Load Cell. 

LP : Linear Potentiometer. 

LVDT : Linear Variable Differential Transformer. 

TCPL : Thermo-couple. 
T1 Gap joint truss, (see Fig. 3.3 & Appendix A). 
T2 

. 100% overlap joint Warren truss, (see Fig. 3.3 & Appendix A). 

T2t2 : Shortened version of truss T2, (see Fig. 3.3 & Appendix A). 

T3 . 100% overlap joint Warren truss, (see Fig. 3.3 & Appendix A). 

T4 . 100% overlap joint Warren truss, (see Fig. 3.3 & Appendix A). 

T5 . 100% overlap joint Pratt truss, (see Fig. 3.3 & Appendix A). 

T6 : 100% overlap joint Warren truss, (see Fig. 3.3 & Appendix A). 

ANALYTICAL MODELS 

GS : Gap joint truss, spring model. 
GK : Gap joint truss, rigid frame model. 
P: Pin jointed frame model. 
S1 . 100% overlap joint truss, spring model-type 1. 

S2 100% overlap joint truss, spring model-type 2. 

Y. 100% overlap joint truss, rigid frame model. 
K. 100% overlap joint truss, simplified rigid frame model. 
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TERMS 

Connecting chord face : Chord face to which the branches are connected. 

Joint deformation Deformation of the connecting chord face in a direction perpendicular to the 
face. 

Truss deflection : Deflection of the tension chord at midspan in the direction of the applied 

load. 

Heel face Face of branch member which makes an acute angle with the connecting 

chord face. 

Toe face : Face of branch member which makes an obtuse angle with the connecting 

chord face. 

Sidewalls : Walls (of branches or chord) which are parallel to the plane of the truss. 

Strut Compression branch. 

Tie : Tension branch. 

Gap : Distance measured along the face of the chord between the toe faces of the 

strut and tie members. 

Overlap joint 

Squash force 

Member efficiency 

Joint where one branch member overlaps the other. 

Force in a member equivalent to measured cross-sectional Area x measured 

yield stress. 

Measured axial force at ram failure load 
Squash force 
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TRUSS JOINT. MEMBER AND STRAIN GAUGE NUMBERING SYSTEMS 

The referencing system used for the joints, members and strain gauges is presented in this 

section : 

Joints : Figure Sl 

Members : Figure S2 

Strain gauges : Figure S3 
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CJIAPTER 1 
INTRODUCTION 

1.1 Introduction 

The first Structural Hollow Sections (SHS) were produced by Stewarts and 
Lloyds in 1952. Since then their popularity has increased considerably world-wide due 

to the increased publicity and knowledge about their structural behaviour and design. 

A common application of SHS is in parallel chord lattice trusses for reasons of 

pleasing aesthetics, structural efficiency and economy. Tubes are often much stronger 

than open section members of the same weight, but the economic advantage gained 
from this is offset by the connection costs which can be high. The cost of joint 

fabrication can be reduced by minimizing the number of joints in the structure, and 

therefore an initial economy can be achieved in tubular trusses by designing as a 
'Warren' rather than a 'Pratt' or 'N' truss. Furthermore, to avoid profile-shaping 
Circular Hollow Section (CHS) members, Rectangular Hollow Sections (RHS) were 
developed to simplify jointing. RHS joints only require straight cutting of the branch 

member ends. 

1.2 Terminology 

1.2.1 Overla 

Partial overlap joints necessitate the double shaping of either one or both of the 
branch members as shown in Fig. 1.1. Authors in different countries have used 

different methods for defining the amount of overlap at a joint. In Britain, the 

percentage overlap, as seen in Fig. 1.2, is expressed as (BC/AC)xlOO, and this is the 

same as the CIDECT(43) definition. 

The simplest form of overlap joint is the 100% overlap as shown in Fig. 1.3. In 

this type of joint the branch member ends can be formed from straight cuts. 

1.2.2 Eccentricity 

For ease of design, members are usually arranged so that all centre-lines are 

noding. If a specific gap or overlap of branch members is required then noding may not 

occur in which case a moment on the joint can be produced by the eccentricity. 
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Eccentricity from the chord centre-line towards the outside of the truss is termed 
positive. Thus gap joints often have a positive noding eccentricity and overlapped 
joints, a negative eccentricity (see Fig. 1.2). 

1.2.3 Gap 

A Gap joint is one in which there is a gap between the branch members on the 
chord face, the nominal gap (g*) as shown in Fig. 1.3 is reduced to a smaller actual 
weld gap (g) because of the fillet welds around the branch members. 

1.3 The relative merits of gao and 100% overlapped joints 

Lattice truss joints in RHS are most economically formed using member ends 
with straight saw cuts which favour gap or 100% overlap joints; the former being more 
commonly used. The latter however exhibit many structural advantages which would be 
beneficial to exploit. 

Gap joints have an inherent flexibility that can lead to low joint strengths 
(particularly if the width ratio between branch and chord is low). The 100% overlap 
joint has the advantage of great stiffness, but apparent disadvantage of a large centre- 
line eccentricity. The results of 100% overlap joint testing(27,28,29,30) generally 
indicate however, that the strength is not in fact reduced by this eccentricity. 

1.4 Limitations of isolated joint testing 

The majority of testing to date has been on isolated joints. Joint testing, must 
necessarily reflect the structural behaviour in a complete structure, and there is evidence 
to suggest that some tests on isolated overlapped joints(4,6) have shown strengths well 
below those obtained in corresponding trusses(s, 32). This could be accounted for by 

the difficulty in correctly simulating in a joint test the boundary conditions which 
determine the true force and moment combination. Axial force is particularly difficult to 

apply in a joint test as the jacks, or other loading devices interfere with the joint 
behaviour. 

1.5 Objectives of the research urogramme 

Six full-scale lattice trusses were fabricated and tested. One of these was 
fabricated from noded gap joints, and the remainder from 100% overlap joints. All the 
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test specimens were fabricated from square RHS. To supplement the truss testing a 
number of isolated joints were also tested at the Tubes Division of the British Steel 
Corporation in Corby(37) and at Nottingham University(38). 

The research programme was specifically concerned with the behaviour of 
100% overlap joint trusses. However, the structural behaviour of the gap joint truss has 
also been reviewed in detail. The objectives of the project were: 
(i) To establish whether the eccentricity of the 100% overlap joint is detrimental to 

the strength and efficiency of the connection, (Chapters 5& 6). 
(ii) To compare the relative structural performance of trusses formed from noded 

gap joints and eccentric 100% overlap joints, (Chapter 6). 
(iii) To define which parameters influence the behaviour of 100% overlap truss 

joints, (Chapters 5 and 6). 
(iv) To assess whether the structural behaviour of 100% overlap joint trusses can be 

simulated by the use of elastic plane-frame analyses, (Chapter 7). 
(v) To assess whether the design strength equations which have been proposed for 

100% overlap joints are relevant in a truss environment, (Chapter 8). 
(vi) To compare the relative structural performance of 100% overlap joints tested in 

isolation with corresponding truss joints, with respect to ultimate strength and 
modes of failure, (Chapter 8). 

(vii) To establish a safe and reliable design method for structures fabricated from 
100% overlap joints, (Chapter 9). 

The research programme was essentially concerned with establishing an 
understanding of the behaviour of RHS lattice trusses formed from 100% overlap 
joints. It has been concluded from isolated joint tests that 100% overlap joints are 

stronger than equivalent gap joints. However, most structural engineers still favour 

centre-line noding because it is felt that a noded joint is structurally more efficient. Any 

eccentricity of the intersection of the branch members to the centre-line of the chord is 

normally considered to be a disadvantage, in that it produces primary bending moments 
in the chord in addition to the secondary moments associated with the member 
continuity at the joints, and is therefore undesirable. 

Noding can however cause problems in the design of RHS lattice trusses with 
small economical branch members by ensuring large gaps at the joints with undesirable 
flexibility for slender chord walls. These problems have been described by Coutie et 
al(42) (see also Chapter 6). The 100% overlap joint overcomes this problem while still 
maintaining economic single cut bracing ends. It is hoped that the information contained 
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within this thesis will aid designers in furthering their understanding of eccentric joint 

connections. For this reason particular attention has been focused on the practical 
design implications arising from the research. 
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CHAPTER 2 
LITERATURE REVIEW 

2.1 Introduction 

The CIDECT Monograph 6(43) on tubular connections was published in 1986. 
It is a 'state of the art' document containing SHS design guide-lines. The research 
programmes and developments leading up to its publication are reviewed extensively 
within the document itself. 

A summary of the main development work with respect to RHS gap and overlap 
joint design is discussed in this chapter. Isolated 100% overlap joint tests and the static 
testing of RHS trusses have been reviewed in detail. 

2.2 Summary of RHS isolated joint testing 

2.2.1 Gap and partial overlap joints 

For RHS gap and partial overlap joints the most significant early contribution 
was made by Eastwood and Wood(s). They carried out a small number of tests on a 
narrow range of section sizes and developed several empirical design rules. Most of 
these tests were on isolated N type (Pratt) joints with CHS branch members and RHS 

chord members. At the conclusion of their test programme in 1970 they published a set 
of empirically derived joint strength equations. 

An extensive programme carried out at the Mannesuran Research Institute(2), 

examined the behaviour of Warren braced (gap and partial overlap) joints with RHS 

chords and square or rectangular branches. The programme comprised forty-one tests 

and examined the effect of different branch angles and different methods of dealing with 
the intersection of branches. 

After Eastwood and Wood summarized their findings in 1970, a great deal of 
systematic experimental research was undertaken, principally in Europe, under the 
sponsorship of CIDECT. CIDECT programme 5EC(3) was conducted to supplement 
the Sheffield work and to extend the range of parameters. A total of five gap joints were 
tested. There was one 450 Warren joint, but the rest were N-braced joints. Both circular 
and square branch members were examined and in two of the tests, rectangular rather 
than square chords were used. 
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At Delft University of Technology(4) a major systematic investigation of CHS- 
RHS and RHS-RHS welded joints was organized by Wardenier, with final results 
published in 1978. A total of thirty-two N-braced joints, (28-gap; 4-partial overlap) and 
two-hundred and forty-one Warren joints, (230-gap; 1 1-partial overlap) were tested. 
The major part of the test programme was carried out on 100mm x 100mm chord 
sections of various thickness, however the effect of rectangularity and size of the chord 
was also examined. Based upon the Delft results, Wardenier and Stark(4) proposed a 
series of equations estimating the ultimate gap joint strength for square or rectangular 
branch members. To supplement the test programme in Delft large CHS-RHS and 
RHS-RHS trusses were fabricated at Corby, England, and tested at the University of 
Pisa, Italy(5) (see section 2.4.2). A number of corresponding identical isolated joints 

were tested at Corby(6). There were four N-braced joints, (2-gap; 2-partial overlap) and 
eight Warren joints (4-gap; 4-partial overlap). 

Although the strength equations suggested by Wardenier and Stark(4) gave a 
good correlation between predicted and actual joint strengths for the Delft results, 

substantial discrepancies were found when applied to the results from Corby. In order 
to improve the correlation with the latter tests Coutie and Davies(7) suggested a number 

of modifications to the mean ultimate strength formula for an RHS-RHS gap joint. 

After reviewing the comments and proposals from different research groups, 
Wardenier et al(8) then proposed another more comprehensive design method. The 

mean ultimate strength of an RHS or CHS-RHS gap joint was evaluated from the 

governing failure mode. Thus for RHS-RHS gap joints, the mean ultimate joint 

strength according to Wardenier and Davies(9) was given by the minimum of the values 

calculated from a series of equations, associated with particular failure modes. For gap 
joints the approach proposed by Wardenier et al(8) is the basis of CIDECT(43) design 

strength equations (see Table I1 in Appendix I). 

Work on various aspects of joint behaviour has also been carried out at 
Karlsruhe, CIDECT Programmes 5M(10), 5R('1) and 5T('2). In 5M tests were carried 
out on twelve Warren braced joints (3-gap; 9 partial overlap) of large size to supplement 
the information on size effect developed at Delft(4). In the second phase of this work the 
effect of using high yield steel chords and mild steel branches was examined. 
Programme 5R was specifically concerned with the behaviour of different joint types 
made from steels of a very high yield stress (up to 820 N/mm2). A total of four Warren 

gap joints were tested. The behaviour of a further four Warren gap joints was examined 
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in 5T. 

The objective of CIDECT Programme 5S(13) was to establish a correlation 
between the results of tests obtained from the three main test rigs, namely those at the 
TNO in Delft, Karlsruhe University, and the British Steel Corporation in Corby. This 
involved testing similar specimens in each rig. Both gap and overlap joints were used. 

2.2.2 100% overlap joints 

Gap joints have received much more research attention than overlap joints, 
because the latter have been found experimentally to be stronger than their gap 

counterparts. 

Two types of joint are possible, the strut overlapping the tie and the reverse of 
this namely, the tie overlapping the strut. The testing of 100% overlap joints has been 
incorporated into only four research programmes. Three of these were carried out in 
Sheffield and the results were presented by Blockley(27), Shinouda(28), and Mee(29). 
The latest testing of 100% overlap joints has been by De Koning and Wardenier(30) in 

the Netherlands. 

Giddings(14) developed a number of empirical equations for the ultimate 
strength of overlap joints. Wardenier and Davies (9) also gave recommendations for the 
calculation of the ultimate strength of overlap joints. As far as overlap joints are 
concerned the approach suggested by Giddings(14) and outlined as a design method by 
Wardenier and Davies(9) has been adopted by CIDECT(43). The CIDECT design 

strength equations for overlap joints are presented in Table 12 of Appendix I. 

For strut overlapping tie the majority of tests that have been carried out were for 
01=02=450 and bl=b2. Most failures occurred by yielding of the tie, and the failure 

was gradual and not abrupt. In some of the Sheffield tests(29), where tie yielding was 
observed, the recorded failure load was significantly above the calculated yield strength 
of the member, this was thought to be due to the effect of strain hardening. CIDFCT(43) 

suggests that for nearly equal square branches with the tie wall strength greater than that 
of the strut, the strut and tie efficiencies do not fall below 0.82 and 0.70 respectively 
(branch efficiency = Ni / Ai. aei). Only a few tests have been carried out with bl/b2=0.8, 

where strut local buckling (L6) was observed (see Table 2.1). 
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The only tests carried out on joints where the tie overlapped the strut have been 
by de Koning and Wardenier(30). In this case all were Warren type joints where the tie 
was deliberately made smaller than the strut to examine the effect of values of b2/bl less 

than unity. Local buckling of the strut wall (L6) was found to be the most common 
mode of failure. Where this did not occur failure was usually in the tie, by rupture of 
the tie from the strut. The investigators also found there was a significant difference 
between the measured axial load in the strut and that in the tie. 

A detailed study of the results of the isolated 100% overlap joint tests with 

respect to the predicted strength equations is presented in Monograph 6(43). Only the 

conclusions of this study are outlined below. 

For the strut overlapping the tie the design strength equations (see Table 12) 

were found to generally safely predict the failure loads found in the tests(27,28,29). 

However, for test results(30) of tie overlapping strut the reliability of the strength 

predictions was affected by the mode of failure. Where failure was in the tie the joint 

strength was found to be safely predicted. However, failures occurred below the 

predicted strut load in the case of local buckling of the strut (L6), nevertheless the 

corresponding load in the tie was found to be at or above the predicted value. The 

reason for premature failure has been suggested by Wardenier(30) to be due to the build 

up of bending moment in the branch member, and is thought to be a function of the 

method of testing. Since the chord was not restrained at all at one end the moments 

generated by the branch eccentricity were reacted to by only one end of the chord and 

the branches. A study(43) of the strut and tie efficiencies shows that for square branches 

with b2 greater than 0.75b1, the tie efficiency was never less than 0.80, but that the 

efficiency of the strut fell to 0.50. 

2.3 Hevelonment of current design procedures for RHS joints 

The CIDECT design recommendations are more comprehensive than those 

presently used by North American engineers, who for the most part follow the the 

proposals of Eastwood and Wood(1) which are incorporated into a tube manufacturer's 

connection manual, Stelco(23). While the Eastwood and Wood method has proved 

satisfactory in practice, Packer(22) has shown that it often provides considerably 
different results to the CIDECT design recommendations, which having a more 

extensive research background lead to an improved joint design with a more consistent 

margin of safety. 
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The Canadian implementation of CIDECT Monograph 6, (based on the 1982 
draft copy) has been produced by Packer et al( 24). In the Canadian implementation, the 
CIDECT recommendations are explained and adapted to be compatible with the 
Canadian code of practice for steel structures CAN3-S 16.1-M78. 

To assist Canadian engineers a design method to aid in the selection of members 
has been developed and described in (24,25 & 26). This procedure relies on six design 

charts to simplify the joint strength calculations(24). The method applied to K and N 

type (gap and overlap) truss joints with RHS chord members and circular or square 
web members. It relates specifically to single chord, planar Warren and Pratt trusses 

subject to predominantly static loading. 

2.4 Static load testing of RHS lattice trusses 

The static testing of RHS trusses has been confined to four research 
programmes(5,31,32, & 33), In each case the trusses were simply supported, and the 

compression chord was restrained against lateral instability. However, only the trusses 
in two of the projects(31 & 33) were perfectly symmetrical about the midspan. In the 

other two projects the trusses were asymmetric due to the fact that a different joint 

arrangement was used on either side of each of the trusses. 

The method of loading varied between projects. Dasgupta(31) applied loads 

vertically upwards at the central and quarter span points, this method was also 

employed in the testing of the Pisa(5) trusses. In the Dutch(32) and Polish(33) 

programmes the loads were applied vertically downwards. In the former a single point 
load was used at midspan, and in the latter two joints were loaded one on either side of 

the centre point, because the Warren configuration used did not have a joint at midspan. 
Dasgupta used asymmetric loading to initiate failure in joints on one side which could 
be subsequently strengthened. In the other projects the loads were applied 

symmetrically, with respect to the centre point. 

A detailed account of the projects is provided below with particular reference 
being made to the objectives and conclusions drawn in each case. 

2.4.1 Truss testing at the University of Nottingham 

The first tests carried out on complete trusses were by Dasgupta(31) at 
Nottingham University. The joint design was based on the results of isolated joint tests 
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conducted at Sheffield(s). Eleven tests were conducted on a total of three 'Pratt' (N) 
trusses, all with CHS branches and RHS chords. Only seven of the eleven tests were 
carried out on the initial eight-bay trusses. For the subsequent tests each of the trusses 
were modified to six bays. The basic failure modes identified were, strut buckling, and 
tensile failure at the toe of the tie branch corresponding to G2[b], G2[w], and G2[c] (see 
Fig. 2.2). The G2[w] modes were thought to be caused by the failure of fabricators to 
provide the welds specified. 

For each of the original trusses a different type of joint was chosen. Thus three 
types of joint were incorporated into the testing, and all were gap joints. From 
Dasgupta's work the following points were deduced: 
(i) Gap joints produced flexible connections; the resulting joint deformations were 

responsible for a significant proportion of the bending moments, and overall 
deflection of the trusses. 

(ü) Truss joint failure loads were up to 30% lower than the equivalent isolated joint 
failures in Sheffield(1), even though these were subject to larger deflections, 

than the equivalent truss joints. 
(iii) The distribution and magnitude of bending moments in the truss joints differed 

significantly from the isolated jointsWl>. 

Dasgupta also wrote a computer programme using the matrix equilibrium 

method to analyse trusses with joint eccentricity. This programme incorporated the joint 

flexibility and the effects of axial forces. The actual joint flexibility was deduced by a 
finite element analysis. 

2.4.2 Truss testing at the University of Pisa 

As a part of CIDECT programme 5F, eight Pratt trusses with RHS chords and 
spans of between fourteen and sixteen metres were fabricated in England (British Steel 
Corporation Headquarters, Corby), and then tested at Pisa University, Italy(5). Five 

trusses had CHS branches and three had RHS branches, in all cases the diagonal 

branches were inclined at 450. 

The trusses were designed to cover a range of parameters shown to be 

significant from isolated joint tests and to establish a correlation with isolated joint test 
results. The truss members were designed to the requirements of the relevant British 
Standard, and standard fabrication techniques were employed with respect to the welds 
and joints. However, the gap joints were deliberately chosen to be weaker than the 
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members to ensure that joint failures occurred under test. 

The joint details were arranged to give centre-line noding on one side of the 
truss and a nominal gap on the other side. This meant that in the majority of cases, the 
branches on the noding side of the truss overlapped each other; the degree of overlap 
depending on the size of the members. In all cases, the compression member was 
double shaped to fit over the tension diagonal. As all the branches were tack welded in 

place during fabrication before completing the welds, the toes of the tension diagonals 
in the overlap joints were not welded (this is a similar detail to that shown in Fig. A 12 - 
Appendix A). 

In association with these truss tests, some of the joints which were investigated 

in the trusses were reproduced as isolated joint specimens for testing at Corby(6). In the 

absence of any published documentation of the results of the Pisa trusses a 

comprehensive appraisal of the research programme is not possible. From draft 

documents studied(34), three basic facts have been established: 
(i) With respect to the overlap arrangement of branches, truss joints were found to 

be stronger than equivalent isolated joints. 
(ii) Many of the isolated joint tests failed by local buckling of the chord but this did 

not occur in any of the truss tests. 
(iii) In the truss tests no appreciable difference was observed between the strength of 

the joints on the compression chord and similar joints on the tension chord. 

2.4.3 Truss testing at Delft University of Technology 

At Delft University of Technology in the Netherlands, four Warren braced 

trusses with square chords and branches were tested(32). Although the majority of the 

joints were K type, there were in each truss two N type joints, one at each support end. 
The main objective of the investigation was to compare the behaviour of the truss joints 

with regard to strength and stiffness with that of the previously tested isolated joint 

specimens(4). 

The joints were designed to give a 50% overlapped condition on one side and a 
nominal gap on the other side. Contrary to the Pisa trusses the gap joints in two of the 
trusses were configured to produce noding, and positive eccentricity in the other two 
trusses. In the case of the overlap joints all eccentricities were negative, and the 

compression branch overlapped the tension branch, so that no weld was laid along the 
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toe of the tension brace (similar to the detail shown in Fig. A12 - Appendix A). 

The conclusions derived from this test programme were as follows : 
(i) Considerable bending moments occurred in the chords especially in those parts 

of the trusses where the joints were overlapped. These moments were thought 
to be caused by the eccentricities in the joints and overall truss deflection. 

(ii) The influence of bending moments in the members affected the axial load 

distribution, which deviated from that calculated for an equivalent pin jointed 

truss. 
(iii) A considerable degree of bending was identified in the top chords of the trusses 

with large span - depth ratio. This was attributed to the imposed deflection of 
the truss, and the proximity of the applied load at the midspan. 

(iv) The local deformation of the truss joints was similar to that observed for isolated 
joints tested previously(4). 

(v) For the trusses with relatively low depths, the deflections were nearly the same 
as calculated under the assumptions of pin ended members. 

(vi) The static strength of the truss joints was found to be in good agreement with 

that observed in the isolated joint tests(4). Furthermore, the same modes of 
failure were observed. In general the influence of chord pre-stress in 

compression was found to be less severe than for isolated gap joints. For chord 

pre-stress in tension the influence was small as was observed in the isolated 

joint tests. In the case of the overlap joints the influence of chord pre-stress 

was found to be negligible. 
(vii) Even with joints of high flexibility, as in the case of the gap joints, a reduction 

was observed in the effective in-plane buckling length of the struts. 

2.4.4 11W programme XV-562-84 (in Poland) 

The objectives of the Polish test programme(33) were similar to the Dutch, 

namely to examine to what extent the joint behaviour in a truss environment is reflected 
in isolated joint testing. Furthermore, the structural behaviour of the test trusses was 

examined in relationship to deflections, secondary moments, and stability of branch 

members. 

The twelve Warren test trusses were fabricated totally from square RHS, and 

each was 7.5 metres in length. The test specimens were manufactured from welded cold 
formed hollow sections of mild steel. For ten of the trusses the same section size was 
used for the tension and compression chords, while in the other two a thicker section 
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was used on the compression chord. With respect to the branch members the same 
section size was used for the tie and the strut in each truss. 

Each truss was made up of one joint type (two in the case where the wall 
thickness of the chord was differentiated between top and bottom). There were thus 
fourteen different joint types, with seven trusses formed from gap joints and the 
remainder from overlap joints. Two branch angles used 450, and 600, with brace to 
chord width ratios ranging from 0.4 to 0.8. 

With respect to the modes of failure the distinction was made between joint 

failures and member failures, however, the failure modes have not been classified 

according to the CIDECT definitions (Figs. 2.1 & 2.2). Joint failure was identified as 

chord face plastification, and member failure as instability (in-plane) of the branch 

member. Simultaneous failure of the joint and compression branch was also identified. 

Cracking of the weld at the toe of the tie branch was observed in the joints with small 

gap joints. The findings of the Polish test programme were as follows: 

(i) The highest flexibility was in the gap joints with the lowest width ratio and the 
biggest gap size. In the other joints local deflections were lower, and in the 

case of the overlap joints, hardly visible. In general joint deformations were 
found to be 2-3 times smaller than those found in the equivalent isolated joint 

tests. 
(ii) Experimental centre spandeflections proved to be 15% to 60% greater than 

those calculated from a simple pinned joint model. A second order model, 
taking into account joint flexibility was found to under-estimate by 20% the 
deflections of the overlapped trusses and give close estimates in the case of gap 
joint trusses. 

(iii) The branch members in all lattice trusses were subject to a much larger degree 

of bending than predicted from corresponding rigid frame analyses. This 
bending was attributed to local joint deformation, which was thought to alter 
the original geometry of the joint, thus inducing additional eccentricity 
moments. It was found that the second order model gave good estimates of the 
distribution of bending within the trusses. 

(iv) It was identified that branch members behaved as double curvature deflected 
beam columns. The effective length factors derived from non-linear interaction 

formulae taking into account the bending moments were found to be between 
0.5 and 0.7. It was concluded in this respect that it is not safe to assume that 
branch members are axially compressed and that an arbitrary effective length 

factor can be used. 
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(v) The gap joints with the smallest width ratio proved unexpectedly weak, by 
about 40% than in the corresponding isolated joints. This was thought to be 

caused by a rapid reduction of overall structural rigidity affected by strongly 
increased 'post-yield' flexibility of a joint. 

(vi) The strength of remaining joints was found to be greater than predicted 
theoretically, but less by 10% with respect to the isolated joints. Furthermore 

no correlation was apparent between joint strength and chord loading. 
(v) It was found difficult to identify the failure mechanism in overlap joints, 

and failure of these joints appeared to interact with the instability of the strut. 
However, in general the truss joints failed less explicitly than those tested in 
isolation. 

2.5 Current position of RHS truss testing 

The conclusions derived from the Delft(32) programme conflict in many 
instances with those from the other projects(s, 31 & 33), The two most significant 
differences are, firstly that the Delft results indicate a good correlation between the 

strength of truss joints and isolated joints, and secondly that good agreement is obtained 

with respect to the experimental truss midspan deflections and those calculated from a 

pin jointed frame analysis. 

The structural behaviour of 100% overlap joints has not yet been clearly 
defined. For tests in isolation it is thought that the various test rig characteristics affect 
the joint strength obtained. Furthermore, this type of joint has never been tested in the 

context of a complete truss. 
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CHAPTER 3 
DESIGN OF TEST TRUSSES 

3.1 Scope of the experimental work 

A total number of six trusses were fabricated. They were designed to cover a 
range of parameters which are commonly used in practice, and as such they were 
intended to be practical trusses in terms of their general member size and load carrying 
capacity. 

The first truss (Ti) to be tested was fabricated entirely with noded gap joints, 

while the five subsequent trusses (T2, T3, T4, T5, & T6) were formed using eccentric 
100% overlap joints. Of the overlap joint trusses one was an N type truss (T5), while 
the remainder were Warren trusses. 

The general layout and joint configurations of the trusses are summarized in 

Figs. 3.1 and 3.2, but presented in detail in Appendix A. The section sizes and 

parameter range are defined in Tables 3.1 and 3.2 respectively. 

The test programme was conducted in two stages. Stage 1 was a direct 

comparison of two trusses, one fabricated from gap joints (Ti) and the other from 

100% overlap joints (T2), but where the corresponding members were identical. The 

aim was to assess the relative performance of the trusses with respect to ultimate 
strength and serviceability, and to determine whether the inherent joint eccentricity in 

the 100% overlap joint truss would be detrimental to its structural performance. Stage 2 

was concerned solely with 100% overlap joints, and entailed the testing of the four 

remaining trusses. The objective in this case was to assess the performance of 100% 

overlap joints within a truss environment. 

One aspect of the test programme was to compare the behaviour of all the 
trusses with that predicted from simple analytical models namely pin joint and rigid joint 
frame analyses, and hence define the most practical approach with respect to the 
modelling of the elastic force distribution and deformation of the trusses. Furthermore, 

the reliability of the CIDECT design equations (ie., those presented in Tables I1, & 12), 

was assessed by comparing the predicted and experimental failure loads. These design 

equations are based on the results of previous isolated joint tests. 

In order to understand the mechanisms causing truss failure, it was necessary to 
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study the plastic behaviour. Of particular interest was the degree of ductility, and the 
capacity for plastic deformation. Sudden onset of failure in a structure is undesirable. 
With respect to the test trusses, it was thus important to assess both the elastic and 
plastic behaviour. 

The basic objective however, was to assess what parameters influence the 
behaviour and ultimate strength characteristics of 100% overlap joint trusses, and hence 
define a design method for such structures. 

3.2 Design parameters 

The main geometric parameters which define the strength of an RHS joint are: 
(i) Ratio of branch width to chord width, (ß). 
(ii) Ratio of chord width to chord thickness, (bp/to). 
(iii) Angles of branches relative to the chord, (A). 

(iv) Size of the gap (for gap joints). 
(v) Percentage overlap (for overlap joints). 

In selecting the range of parameters to be incorporated into the test programme 

particular attention was paid to producing the most practical combinations, rather than 

attempting a detailed investigation of a wide range. 
There are several basic principles which were adhered to in the selection of the test 
trusses: 
(i) All trusses were fabricated from square RHS. 
(ii) For each particular truss the outside dimension of the tension and compression 

branches was the same, although the thickness was different in four cases 
(namely, trusses Ti, 72, T3, & T5). In these trusses the strut always had the 

greater wall thickness. 
(iii) With the exception of Tl and T2 the top and bottom chords were fabricated 

from the same section size. For these trusses the top and bottom chords had 

the same outside dimensions, but a different section thickness was 

used for the central and outer lengths. 

(iv) For the overlap joint trusses the sense of overlapping was reversed on one side 
of the truss, so that both tie overlapping strut, and strut overlapping tie 
conditions could be studied. 
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3.2.1 Stage 1- Trusses Ti & 72 

For the gap joint truss (Ti) the most critical value of branch to chord width was 
selected, namely (3=0.4. This corresponds to the lower limit recommended by 
CIDECT, with respect to the proposed design strength equations. Chord splices on the 
top and bottom chord provided, in each case, two values of bp/to, namely 25 and 20. 

Truss T2 was fabricated to be similar to Ti, with corresponding matched 
members from the same rolled section, but where the joints were 100% overlap. This 

was achieved by modifying the branch angle between the branch members and the 
chord. The design of the remaining trusses was not undertaken until Ti and T2 had 
both been tested. It was found in the case of T2 that to avoid chord member failures the 
truss had to be shortened, and the number of bays reduced. This was expected since T2 

was designed on the basis of being matched to the gap joint truss Ti, and as such the 
joint strength was not critical. 

3.2.2 Stage 2- Trusses T3. T4. T5. & T6 

In Stage 2 of the test programme the same section size was used for the chord 
members in T3, T4, and T5 namely a l00x100x5 RHS. This size corresponds to the 

section used in the central chord span of T1 and T2. To prevent chord failures in these 

trusses a shorter span was used than that in Stage 1. 

Truss T3 was formed using branch angles of 630 while retaining the same 
section sizes for the chord and branch members as those in T2. The objective was to 
assess the significance of the branch angle 8 by directly comparing the results of T2, 

and T3. 

Truss T4 was identical in general layout to T3, however a larger section size 
was used for the tension and compression branch members, so that the ratio of branch 

to chord width (ß) was increased to 0.6. The chord section used was the same as in T3, 

thus a comparison between these two trusses was intended to define the effect of 
altering the ß ratio. 

Truss T5 was an N type truss fabricated using the same section sizes as T2 and 
T3. The objective in this case was to compare the relative efficiency of the branch 

geometry, and to assess whether one is more efficient than the other. The branch angles 
chosen for T5 are those which are most common in design namely 450 for the tie and 
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900 for the strut. 

Truss T6 was formed using the same section size for the branch members as 
T4, namely a 60x6Ox3.2 RHS. The angle of the branch relative to the chord was also 
the same, however a larger section was used for the chord (150x150x6.3 RHS), thus 
giving aß ratio of 0.4, and a bo/to value of 23.8. This truss was designed primarily to 
investigate the incidence of local buckling of the chord face behind the tension branch, 

which has been identified in isolated joint testing and referred to as L7 (see Fig. 2.2). 
This particular mode of failure is associated with small ß ratios and large values of 
be/to. 

Thus several comparisons were set up between the test trusses incorporating a 
variation of the parameters thought to be significant. However, it was not intended to be 

simply a comparative study, but rather to help clarify the role the various parameters 
play in defining the structural behaviour and mode of joint failure. 

3.3 Design of test trusses 

The standard approach adhered to by designers was followed in most respects. 
As a first step basic engineering principles were applied to assess the joint strength, 
namely checking combined stresses, punching shear, and bearing stresses. However, 

the CIDECT recommendations(43) relating to joint capacity were also used. 

3.3.1 Member design 

The trusses were designed to BS 5950(45), Part 1, assuming Grade 43C steel. 
Initially the nominal dimensions were used in conjunction with an assumed yield stress 

of 275 Nmm-2. Subsequent to the tensile testing and measurement of the section 

properties the design of each truss was re-assessed using the measured properties. 

Member axial loads were calculated using a pin frame analysis, based on 
member centre-line noding, and using the member lengths and branch angles such a 
condition would produce (clause 4.10, BS 5950, Part 1). The compression branches 

were designed in accordance with BS 5950 Part 1, clause 4.7. The effective length 
factors of the compression members were taken as 1.0 for the chords (based on the 
distance between lateral supports), and 0.7 for the branches (based on the distance 
between the centre-lines of the chords). 
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Where centre-line noding did not occur, the bending stresses in the chords were 
evaluated. The moment generated by the joint eccentricity was assumed to be carried by 

the chord alone and to be distributed equally either side of each joint. The effect of the 
combined stresses was calculated for each panel according to BS 5950, Part 1, clause 
4.2. The compression chord alone was considered, as this gave the worst case. For the 
branch members only the axial forces were considered to be effective. 

3.3.2 Detailing and welding 

All chord welds were full strength butt welds. Truss branch welds were either 
5mm fillet welds or full strength butt welds. All details used are shown in Fig. 3.3. 
Particular attention was paid with respect to the welding to ensure that the CIDECT 

recommendations(43) were adhered to, and that standard practice was incorporated in 
both the detailing and the fabrication process. All welds were fabricated in accordance 

with BS 5135(46). 

3.3.3 Shear strength of the branch members 

The shear capacity of the connecting branch member to transfer horizontal 

forces to the connecting chord face was not used as a criterion for design (see Fig. 3.4). 

According to BS 5950 Part 1, clause 4.2.3 only the sidewalls of the member should be 

assumed as being effective in carrying shear (see Fig. 3.4 - section A-A). 

Horizontal shear failure of a branch member has never been identified in any 

previous testing programme, so it was decided to ignore the recommendations of the 

code, and thus assess the validity of the assumptions made by BS 5950, clause 4.2.3. 

3.3.4 Joint strength 

The equations presented in Tables I1 & 12 were used to assess the mean ultimate 
joint strengths for the trusses. In the case of the gap joint truss Ti, the joints were 
designed using the RHS gap joint formula (Eqn. 1, Table I1), which is based on the 

mean strength results for isolated joints. Truss T1 was designed such that failure would 
occur at the joints before yielding or buckling in any of the members. 

For each of the overlap joint trusses there were two possible joint configurations 
per truss, namely strut overlapping tie and vice versa. The respective joint strengths 

were assessed using Eqns. 1-4 in Table 12. Unlike the other trusses T2 was not 
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designed to produce joint failures. It was fabricated purely to be similar to Tl and thus 
allow a comparative study. 

3.4 Materials Testing 

As soon as the material was delivered from the rolling mill, samples of full size 
tube were taken from each batch and used to measure the actual section properties to 

assess whether the rolling tolerances were within the specified limits. Before fabrication 

of the lattice trusses, samples from each batch were machined to produce tensile test 

coupons which were tested for strength by BSC staff. The results of the tensile coupon 
tests are presented in Figs. 3.5,3.6 and 3.7. No stub column tests were carried out. 

For the purpose of measuring the cross-sectional area of the RHS sections a 
length of tube was cut from each batch and machined to an exact length. This length 

was then cleaned and weighed, and the volume was calculated by assuming a density of 
7860 kgm-3. The volume was then divided by the length of the tube to derive the cross- 

sectional area. The thickness of each length of tube was measured around the cross 

section at each end of the cut length. Three measurements were taken on each wall with 

a micrometer screw gauge. For each tube length the mean section thickness was then 

calculated. The width and depth of each tube length were measured with vernier calipers 

at the midspan of the length. 

The British Steel Corporation produce data tables giving the nominal section 

properties of Rectangular Hollow Sections. From these tables it was possible to 

establish a relationship between the second moment of area and the cross-sectional 
dimensions (bi, ti) such that : 

I. = _63)(4a2 - 

where, 

a=(b'1 

12.72a + 11.946 Eqn. 3.1 

The second moment of area for each specimen was calculated from this equation. The 

section modulus was then calculated from: 
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Zi 
_r bi) Eqn. 3.2 

It is commonly understood amongst engineers that there can be considerable 
variation of yield properties of steel as supplied even to the same grade specification. As 
long as the material used satisfies the minimum requirements, the designer is not 
normally worried by what is usually an excess of strength. This is not the case however 
for the researcher who is setting out to understand physical phenomena, and attempting 
to produce coherent design recommendations on the basis of the same material 
throughout. The interpretation of the results is made particularly difficult in such cases 

when failure can be in a range of members or joints and associated with different modes 

of failure. This has certainly been true in this investigation. 

Although the tensile strength specification was generally satisfied, the specified 

minimum yield stress was not reached in two cases (see Fig. 3.5). The major cause for 

concern was, however, the considerable variation of yield strength recorded. Using the 

gap joint equation, the applied loads for the failure for each of the joints and the 

members had been calculated, and the estimated order of failure ascertained on the basis 

of a uniform yield strength of 275 Nmm-2. The strength of the gap joints in truss T1 

were thus re-estimated using the actual measured yield and ultimate stress values. In the 

case of the 100% overlap joints the strength estimates were also re-calculated using the 

measured section properties and tensile strength values. 

The strength of the sections ordered to form the branch members in the trusses 

were generally higher than those of the chord sections. The member design was thus re- 

assessed to prevent the incidence of premature chord failures. The non-uniformity of 

the strength of the steelwork also meant that the specification of the welds had to be 

modified from Grade 43C to 50C to avoid the occurrence of weld failures. 

The limits of validity for the strength equations in Tables 11 and 12 state that the 

yield stress of the chord section should never exceed 360 Nmm72. It was not possible 
under the circumstances to meet this requirement in all of the test trusses. 
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CHAPTER 4 
EXPERIMENTAL INVESTIGATION AND INTERPRETATION OF 

RESULTS 

4.1 Test set uo 

The trusses were tested under simply supported end conditions, with a roller 
bearing at one support and a rocker at the other (see Fig. 4.1). Although such trusses 
would normally have purlin loads at each joint, it was decided to carry out all the tests 
with a central point load only, so that shear and hence the forces in the branches were 
constant throughout. The test rig is shown in Plate 4.1. 

Special strengthening was applied at the loading point, where the ram was 
located on to the top chord by means of a machined plate (see Appendix A, Fig. A12). 
The load was applied vertically downwards by means of a hydraulic jack. For the 
testing of trusses Ti, T2, and T2/2 a semi-automatic hydraulic system was used to 
control the jack, however the hydraulic system in this case only had a maximum 
capacity of 350 kN. For the remaining test specimens a hand pump was used to control 
the jack. The load was always applied under controlled deformation loading. The 

structural components of the test rig (see Plate 1) were as follows : 
(i) A steel frame to which the hydraulic jack was attached. This was bolted 

together, and fixed to the laboratory strong floor by holding down bolts. 
(ii) A rocker bearing under one end of the test truss and a roller bearing at the other. 
(iii) A mechanism to prevent lateral instability of the compression chord (see Plate 

4.2). This comprised of roller ball-races which were fixed on to steel frames 

bolted to the laboratory floor. The design of the lateral restraint system was in 

compliance with BS 5950(45), Part 1, clause 4.2.2, such that the sum total 
lateral capacity of the system was equivalent to 1.0% of the maximum expected 
axial force in the compression chord. Lateral restraint to the compression chord 
was provided near the end supports and at several intermediate points (see Plate 
4.1). 

All structural steelwork was designed to BS 5950(45) and the reinforced 
concrete strong floor was checked using Cpl 10(47). The most important consideration 
was safety. The rig was designed such that the serviceability limit state was never to be 

exceeded in any component. This also ensured that the deformation of the rig was kept 

to an acceptable level. 
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Allowance was made in the rig design to accommodate the large in-plane 
deformations of the test trusses. Therefore the positioning and fixing of the sensors was 
given careful consideration. It was important that the sensors were able to function 

reliably throughout the entire load range. 

Although the self-weight of the test trusses acted in each case in the direction of 
the applied load, it was decided to neglect the effects caused by the weight of the 
trusses, instrumentation and cables. For the largest test specimens, namely Ti and T2 

this was of the order of 0.6 kN. 

Before testing, each joint of the respective test truss was whitewashed with 
hydrated lime, which when dry provided a brilliant white brittle surface. The dry 
hydrated lime allowed cracking and local deformations to be identified more easily. One 
important characteristic of this whitewash was that at loads close to the yield stress of 
the steel striation marks developed. These were caused by 'shear slip' between the 

crystals in the steel, thus defining the directions of the principal shear planes. Thus it 

was possible to identify the direction of the principal stresses in the vicinity of a joint. 
This proved to be useful in defining what force combinations had caused a particular 
failure mode. 

4.2 Instrumentation and measurements 

The instrumentation consisted of Electrical Resistance Strain Gauges (ERSG's), 
Linear Potentiometers (LP's), Linear Variable Differential Transformers (LVDT's), 

Load Cells (LC's), Dial Gauges(DG's), and a thermo-couple. Only the DGs were 

recorded manually, all other sensors were automatically scanned by a 3530-D Orion 

data logger(48) (see Fig. 4.1). By inputing the respective factors and calibrations for the 

various instruments into the logger, all outputs were in the form of direct values ie., 

micro-strain for the ERSG's, millimetres for the LP's and LVDT's, kilo-Newtons for 

the LC's, and degrees Celcius for the thermo-couple. The arrangement of sensors at a 
joint is shown in Plate 4.3, and consisted of four LP's and eight ERSG's. 

All setting up and operation was achieved using the Orion front panel which 

contains control keys for the main functions. The built-in magnetic cartridge recorder 

was used to record and replay logged data, and to store and retrieve setting up 

programs. All analogue measurements were performed via the analogue to digital 

convertor (adc) which employs the pulse-width conversion technique(48), offering fast 

and accurate measurement. 
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Each measurement by adc is by continuous integration. A reading rate of 40 

channels per second was chosen in preference to the other options available, namely 
500/s, 150/s, and 10/s. The 40/s rate was chosen because of its increased sensitivity 

and better interference rejection with respect to the faster rates. The reading rates are 
applicable to DC voltage based measurements and are the effective rates at which the 

measurements are accepted by the memory. 

A 1000 measurement buffer is used by the Orion for temporary storage of 

results; when this is filled the average scan rate is slower than that selected to 

accommodate any process or output device throughput. An auto-zero and calibration 
sequence is performed automatically which ensures that the highest possible accuracy of 

measurement is attained. 'Zeros' are measured for each range at appropriate resolutions 

and stored. These readings are used as corrections when the active channels are 

scanned. Thermo-offset correction is offered on resistance-type measurements. This is 

useful in cases where unavoidable thermal EMF's are produced, ie., in wiring, 

connectors and switches associated with the transducers being measured. 

The adc has five measurement ranges. During the first scan, or as a result of any 
initializing scan (such as that used for the strain gauges) the range for each channel is 

automatically established and stored. On subsequent scans the same respective range for 

each channel is adopted. If an input is too high or too low for the adopted range, the adc 

automatically moves to a more appropriate range. When an overload is detected the 

measurement is stopped and the adc up ranges so that the input is re-measured. 

The wiring from inputs are taken to screw terminals located within a plug-in 

input connector, thus each input in turn is connected to the measuring circuit by means 

of switches on a selector card. Each connector is totally enclosed and incorporates 

wiring clamps. The 3530-D Orion data logger has the advantage that nearly any type of 

sensor can be connected to any channel in any sequence. Thus instrumentation layout is 

the operator's choice and not the criterion of the data logger. In most other systems each 
different sensor requires a particular dedicated module. The system used thus allowed 

all the sensors for each joint (ERSG's and LP's) to be connected in the same logger 

connector. 
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4.2.1 Strain Gauge Installation 

The cost was a prime consideration in the selection due to the large number of 

strain gauges being used. TML FLA-6 strain gauges(49) were used throughout. These 

were foil as opposed to wire strain gauges. The strain gauges were installed and 

positioned in accordance with the manufacturer's recommendations(49) and allowed 
accurate and reliable strain measurements to be made. 

For each strain gauge the logger requires data to be input relating to the gauge 
factor, and resistance. Furthermore, the data logger includes a thermistor to reduce 

effects produced by fluctuation in temperature, by compensating for any apparent 

strain. The logger takes a reading of a strain gauge channel without energizing, and then 

takes a reading when energized - it then subtracts one reading from another to derive the 

recorded value. This value is thus free from 'electrical noise' and heating effects. The 

logger only takes a reading of one channel/sensor at a time, thus reducing the risks of 

one channel 'electrically interfering' with an other. 

4.2.2 Member forces and bending moments 

Member axial forces, in-plane bending moments and shears were calculated 
from the surface strains. For each member four strain gauges were mounted. These 

were placed in pairs at a known distance apart, and far enough from the member ends to 

avoid the effects of local deformation adjacent to a joint. From each pair of ERSG's an 

axial force and a bending moment were derived using the measured cross-section 

properties. A linear extrapolation was used to obtain the end moments of each member. 

The positioning of the ERSG's for each truss is presented in Appendix C. 

4.2.3 Loads and reactions 

Compression load cells were used under the hydraulic jack and at the support 

points to measure the applied load and the resulting end reactions. An initial calibration 

of the LC's in a standard calibrating rig did not yield good agreement with respect to 

equilibrium in the preliminary elastic testing. Therefore, all the load cells were re- 

calibrated'in- situ' using exactly the same power supplies and lead wires as those used 
in the truss tests. This had the desired effect of removing the discrepancy between the 

LC's with respect to elastic equilibrium tests. 
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4.2.4 Joint deformations 

At each joint linear potentiometers (LP's) were used to measure the in-plane 

joint deformations. Two LP's were mounted at each end of a branch member, one on 

each side of the member (see Plate 4.3). The reason for using two LP's in this way was 
to assess the component of the joint deformation caused by out of plane rotation, and 

eliminate it by taking the average of the two values. The object of using these sensors 

was to assess the chord face deformation at each joint. 

The local deformation of the joint was measured relative to small indent marks 

on the chord. The rectangular frame (see Fig. 4.2 and Plate 4.3) was located at the 

correct position using the indent marks on the chord. The rectangular frame was 
designed so that the locating spindles would remain in the same position regardless of 

any deformation or buckling of the chord sidewalls. It was for this reason that the idea 

of fixing the spindles'directly onto the chord faces was rejected. 

Conductive plastic LP's were chosen due to their infinite resolution, compact 

size, and low cost. The LP's were powered by an external power unit designed 

specifically for the test, and calibration was undertaken 'in-situ' using the same 

electrical configuration as for the testing. 

4.2.5 Truss deflection 

LVDT's were used to measure the deformation of the bottom chord of the 

trusses relative to the laboratory strong floor. The deflection was measured at midspan 

(and at the quarter-points in the case of Ti and T2). As in the case of the LP's, the 

LVDTs were also powered by an external power unit and calibration was conducted 

'in-situ'. 

Two dial gauges were used at each support to monitor the vertical movement at 

the supports during the loading sequence. These dial gauges were placed on each side 

of the truss, so that the difference in reading between the two at a support would give 

an indication of vertical movement caused by out of plane rotation. 

4.3 Test monitoring 

The control desk is shown in Plate 4.4. An X-Y plotter was used throughout all 

testing sequences to automatically plot applied load against central deflection. However 
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for the most part 'live' graphical representation of the truss behaviour during testing 
was carried out using a BBC microcomputer. The computer was connected to the Orion 
data logger via an RS-232 interface. A program was written(50) to retrieve the data from 

the logger immediately on completion of a scan. The program had the facility of plotting 
graphically one selected channel against any other channels, and to display up to a 
maximum of six simultaneously. 

While the data was displayed graphically on the screen it was simultaneously 
stored onto floppy disk. Facilities were also available within the program to design 
finished graphs of the stored data, and to print out all recorded data. For the most part 
the microcomputer was used to display the applied load against either the outputs from 

the strain gauges, linear potentiometers, LVDT"s, or reaction load cells. For these tests 

the applied load channel was always chosen to be the ordinate. At each load increment 

the values of all the sensors were recorded by the data logger and stored on magnetic 

tape as well as on floppy disk by the BBC microcomputer. 

At each load increment a visual examination of the truss was conducted, with 
particular reference being made to the joints, so that the initial signs of yielding, 

cracking or buckling were noted with respect to applied load. In this way a detailed 

account of the structural performance of the each truss was afforded. 

4.4 Test procedure 

Prior to loading a test truss to failure, a preliminary elastic test was conducted 

where the maximum ram load was limited to 30% of the expected failure load. The 

object in this case was to check that all the instrumentation was functioning correctly. 
Some degree of 'settling in' of the truss was always apparent, however bearing this in 

mind all the sensors were expected to behave linearly with respect to the applied load 
for the duration of the test and to return to the initial zero mark on removal of the load, 

with negligible hysteresis. Once this criterion had been checked and satisfied for all the 
sensors the test specimen was deemed ready for testing to failure. 

During the load sequence leading to the failure of the truss, the load was initially 
incremented until approximately 50%-70% of the estimated maximum capacity was 
reached, the load was then decremented to zero. This was done to allow 'settling in' of 
the truss. Once the zero scan had been taken the load was once more incremented and 

the test continued until failure was achieved. 
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Ultimate truss load (ram failure load) was characterized in all cases by the truss 
unable to sustain further increases in load. At the point of failure the deformation was 

maintained at a constant value and a detailed visual investigation was undertaken, to 

assess yielding patterns, cracks and modes of failure. Once joint and/or member failure 

had occurred in a truss the applied load was removed in a controlled manner, and a 

number of scans were taken during the unloading sequence. A scan was also taken 
immediately on reaching the zero load. At zero applied load a scan of all the instruments 

was made and recorded on the datalogger. The truss was then allowed to settle for a one 
hour period after which a second scan was taken. Photographs were then taken of the 

members and joints that exhibited signs of distress. 

Where possible failed members and joints were strengthened by plating. On 

completion of the repair work the truss was allowed to cool down for a period of twelve 
hours after which a scan of the strain gauge values was taken. The strain gauge values 

were then initialized (ie., set to zero) and the test repeated until a higher truss ultimate 
load (ram failure load) was achieved. This procedure allowed a history to be maintained 

with respect to the residual strains in the truss members. The repair process on 

completion of each load cycle was repeated until the maximum helpful information for 

each truss had been obtained. The loading sequence for each truss is shown in Figs. 

4.3 to 4.9. 

4.5 Test results 

The test data obtained at each load increment and recorded on the Orion data- 

logger's magnetic tape was transferred on completion of each test to a Sinclair QL 

microcomputer where it was processed to provide output in a convenient graphical and 

tabular form. 

In order to allow comparisons between trusses and analytical models only the 
first load cycle leading to failure has been considered. Subsequent failure cycles proved 
to be unreliable for this purpose because the trusses had already undergone yielding and 

repairs. 

4.5.1 Graphical presentation of results 

For each truss five types of graph were used to assess the behaviour up to ram 
failure load (typical examples are shown in Fig. 4.10). The ordinate in each case 

represents the applied ram load, and the values plotted as the abscissa are: 
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(i) Strains at the gauge positions . 
(ii) Chord face local deformation. 

(iii) Member axial force. 
(iv) Member bending moments. 
(v) Midspan truss deflection. 

For the sake of clarity only the values on the increasing part of the load cycle 
have been plotted. The first two types of graph relate to the joints, while (iii) and (iv) 
have been plotted with respect to each member. For the axial force and bending moment 

plots two values are presented per graph, one for each end of the member. 

It is impractical to present all the graphical information in this thesis. However, 

relevant examples have been provided in the main body of the text. For each truss a full 

set of the graphs is provided in independent reports(51,52,53,54,55,56,57). 

4.5.2 Joint strength tables 

For each truss an assessment of the joint forces at ram failure load has been 

made. This information is provided in a tabulated form and referenced against the 

respective modes of failure. All tabulated information relating to joint behaviour at ram 
failure load is presented in Appendix D. Appendices J, K, L and M are referred to in 

Chapter 8. The tables in these appendices have been used to compare experimental joint 

and member strengths with those predicted from various equations and design methods. 

4.5.3 Stress distribution diagrams 

For each of the truss joints the stress distribution has been plotted in the 

sidewalls at the gauge positions (see Fig. 4.11). There are two stresses, one relating to 

an applied load in the elastic range and the other to the distribution at the ultimate load 

(ram failure load). The stress distribution diagrams for each truss are presented in 

Appendix E. 

4.5.4 Distribution of axial forces and bending moments 

The measured elastic axial forces and bending moments are tabulated for each 
test truss in Appendix F, where the experimental results are compared to those derived 

from various theoretical elastic frame analyses. The distribution of axial forces and 
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bending moments at ram failure load are also presented in Appendix F. For each of the 
trusses the measured and theoretical elastic bending moment diagrams are presented in 

Appendix G. The distribution of bending moments at ram failure load is presented in 
Appendix H. 

4.6 The derivation of forces and deflections 

4.6.1 Truss deflection 

All graphs of truss deflection relate to the deflection of the tension chord at 

midspan relative to the supports. All LVDTs measured the deflection of the truss 

relative to the laboratory floor. To define the actual truss deflection relative to the 

supports, the settlement at the supports has also been considered (see Fig. 4.12). 

4.6.2 Joint deformation 

In the case of graphs displaying joint deformation, the deflection normal to the 

chord face has been plotted. In the case of the gap joint truss two values exist per joint, 

one relating to the tie and the other, to the strut (see Fig. 4.13[a]). For 100% overlap 
joints there is only one value (see Fig. 4.13[b]). 

For truss Ti (gap joint truss) the displacements were measured along the centre- 
line of the branches, from the clamp position to the intersection point of the branch 

member centre-lines. The locating spindles were thus positioned on the chord centre- 
line. The joint deformation has been calculated in a direction perpendicular to the chord 
face (see Fig. 4.14[a]). For the overlap joint trusses where the branch member centre- 

lines intersected on or above the chord face, the locating spindles were positioned at a 
depth of 5mm from the connecting chord face (see Fig. 4.14[b]). In all cases the clamps 
holding the LP's were placed at a distance of 150mm from the chord face, as measured 

along the centre-line of the branch member. 

The elastic elongation of each branch was accounted for in the calculation of 
joint deformation, however with the onset of branch yielding this component could not 
be determined accurately. Consequently, it was not possible to define what component 

of the non-linearity prior to the attainment of ram failure load was due to member 

yielding. 
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4.6.3 Axial forces and bending moments 

Since strain gauges were placed to assess only in-plane stresses, out of plane 
bending was ignored and the stress distribution in the sidewalls was interpolated (see 

Fig. 4.15[a]). The axial force and bending moment at a strain gauged section were 

calculated in the elastic range assuming the stress distribution in the sidewalls was as 

shown in Fig. 4.15[b]. Where extreme fibre yielding occurred at the strain gauges a 

number of yield patterns were possible, as shown in Figs. 4.15[c], [d] & [e]. The axial 
force and bending moment were calculated according to the relevant stress distribution. 

In the graphical representation of member forces with respect to applied load 

(see Fig. 4.10[e]), the axial forces calculated at the gauge positions were plotted. 
However, in the case of bending moments, although the values were first evaluated at 
the gauge locations, the distribution was extrapolated to the ends of each member (see 

Figs. 4.16 & 4.17). 

Two values of axial force were calculated per member. However for the 

tabulated results only one value of axial force has been quoted for any given member. 
This value was derived either by taldng the mean of the two sets of gauges or using the 

most reliable value. 

Within the elastic limit of a member the difference in the two values of axial 
force expressed as a percentage of the lower value was generally found to be lower than 
3%. Outside the elastic range this difference was higher, but in most cases still lower 

than 10%. Where the discrepancy was greater than 10% it is likely that the assumed 

stress distribution from which the axial force was calculated (see Fig. 4.15) does not 

apply (for overlapped branch members the possible reasons for this are discussed in 

section 5.5.2). 

Where the calculated difference was less than 10% then the mean of the two 

values was used. For errors greater than 10% the strain paths were studied to assess 

which of the two sets of gauge values was more reliable. At ram failure load, however, 

there are examples where the extreme fibre yielding occurred in all four strain gauges. 
In such cases the axial force in the member was assumed to be equivalent to the squash 
load (see Fig. 4.18). However, for 'overlapped' branch members where extreme fibre 

yielding occurred at all four strain gauges, there is evidence to suggest that the true axial 

force was in fact less than the squash load (see section 5.5.2). 
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Plate 4.1 The test rig. 

Plate 4.2 Lateral bracing of the compression chord. 
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I Typical arrangement of joint instnimentation. 

Plate 4.4 The control bench. 
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CHAPTER 5 
FAILURE MECHANISMS AND CHARACTERISTICS RELATED TO 

FAILURE 

5.1 Introduction 

In this chapter the modes of failure which were observed in the test trusses are 
discussed. This chapter should be read in conjunction with Appendix D. The ultimate 
strength of the joints in the test trusses is discussed in Chapter 8 where detailed 

comparisons are made with various design formulae and the results of isolated joint 

testing. 

5.2 Definition of failure and failure modes 

In joint testing the ultimate strength is normally defined as the maximum 

resistance to applied load - ie., a joint is deemed to have failed when it is no longer 

capable of resisting further increases in load. For the test trusses ultimate strength has 

been defined in a similar manner - ie., the ultimate load is the ram load at which the 

structure was unable to sustain further increases in applied load. (see Fig. 5.1[a]). Other 

researchers have chosen to define joint failure by different criteria. For example 
Mang(58) proposed a method in which joint failure is deemed to occur when the rate of 

change of slope of the load/deformation graph is greatest. However, application of this 

criterion to the truss joints would generally give values for the joint failure loads which 

are lower than the ultimate strengths of the joints. 

In isolated joint testing the loads in the branch members are normally measured 
by load cells placed in between the member and the hydraulic jacks. As a result it is 

possible to measure the axial forces in the branch members directly without relying on 

calculations involving the strain gauge values. Therefore, for isolated joints, the local 

deformation of the connecting chord face is normally plotted against branch axial force 

(see Figs. 5.1[b] & [d]). For the joints in the test trusses the branch axial forces 

calculated from the strain gauge values were found to be unreliable once extreme fibre 

yielding had occurred at the strain gauge positions (see section 5.4.2). Consequently, it 

was decided to plot the local deformation of the connecting chord face against the 

measured ram load (see Figs. 5.1 [c] & [e]). 

Experimental research(43) has shown that many different failure modes may 

occur for an SHS joint. The failure modes identified in K and N type joints have been 
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summarized in Figs. 5.2 and 5.3. The notation used is that suggested by CIDECT(43), 

whereby the letter defines the type of joint and the number refers to the failure type, ie., 
G4 is equivalent to a type 4 failure mode in a gap joint configuration, L4 would refer to 
the same failure mode but in an overlapped joint. The failure mode depends on the type 

of joint, loading conditions, and various geometrical parameters. Failure in test 

specimens has also been observed to be a combination of more than one mode. 

5.3 Identification of failure modes 

Truss failure characterized by an increasing central deflection under constant 

applied load, was determined from the plots of applied ram load against overall truss 
deflection. In order to assess individual joint failure mechanisms it was necessary to 

study the processed data obtained from the instrumentation in conjunction with 

qualitative information derived from visual examinations. Yielding at a joint was 
identified by the development of 'shear-slip' lines in the hydrated lime whitewash (see 

section 4.1). The onset of localized joint yielding did not usually correspond to the yield 

strain being exceeded at the gauge positions. At truss ultimate load two possibilities 

were found to exist: 
(i) Local yielding at a member end (ie., a joint) identified from the existence of 

'shear-slip' lines, occurred in conjunction with extreme fibre yielding at one or 
both of the corresponding strain gauges (at that end of the member). 

(ii) Local yielding at the member end did not occur in conjunction with extreme 
fibre yielding at either of the two corresponding strain gauges. 

For the purpose of this research project 'member' yielding relates to case (i), 

and 'local' yielding to case (ii). Local yielding was observed in all joints at ultimate 

truss load, whether gap or 100% overlap. For this reason local yielding has not 

necessarily been identified as mode of failure. At truss ultimate load only the following 

characteristics were considered to be significant: 
(i) 'Member' yielding. 
(ii) 'Member' buckling. 

(iii) 'Local' buckling. 

(iv) Rupture of a weld or, fracture of the parent metal. 

The failure modes identified in the gap joint truss, T1 generally differed from 

those of the 100% overlap joint trusses. The failure characteristics of each truss type 
have therefore been considered separately. 
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5.4 Failure modes in the gall ioint truss Ti 

Truss Ti was subject to seven failure cycles. Each time a failure was achieved 
the load was removed in a controlled manner, and the joint or member which had failed 

was strengthened by plating. The joint failure modes which were identified in this truss 

are presented in Appendix D (see Tables Dl & D2). 

A visual examination of the joints revealed several common features. From the 
'shear-slip' patterns three main areas of stress concentration were identified, (see Plate 
5.1): 
(i) On the connecting chord face, adjacent to the heel of the compression branch. 
(ü) On the connecting chord face, at the junction with the weld connecting the 

compression branch. 

(iii) In the branch members, on the toe crosswall directly above the weld. 

5.4.1 Joint failure 

Joint failure caused by plastification of the connecting chord face was identified 

by studying the graphs of ram load v. local joint deformation, where at failure the slope 

tended towards zero (for example see Fig. 4.13[a]). Where joint failure occurred it 

always involved deformation of the connecting chord face. The joint failure modes 

which were identified in truss T1 can be defined according to the CIDECT categories: 
(i) G4 chord face and wall local buckling without any fracture, (see Plate 5.2). 

(ii) G2[b] chord face and wall local buckling with fracture in the tension branch, 

(see Plate 5.3). 

(iii) G8 chord face and wall local buckling around the tension branch, 

(see Plate 5.4). 

(iv) G1 chord face failure only, (see Plate 5.5). 

The first three modes occurred only in compression chord joints. The G1 type 
failure was observed only in tension chord joints, where local buckling of the sidewalls 
did not occur. Overall yielding of branch members did not occur in any of these failure 

modes I(V. B - the gap joint truss was designed to fail at the joints and not in the branch 

members). On the 1st load cycle, mode G4 at joint 9 occurred when the axial force in 

the tie (Ni) was 51% of the squash force (squash force = Al. ael). However, even for 

those joint failures which occurred during the the final load cycle the maximum member 

efficiency (member efficiency = N1/A1. Qel) sustained by the tie was only 0.74. This 

demonstrates that joint strength can be significantly less than the branch member 
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strength, a characteristic which is not always appreciated by structural engineers. 

In conjunction with deformation of the chord connecting face, rupture did occur 
at joint 3 in the tension branch. This was on the toe Grosswall directly above the weld in 

the 'heat affected zone' (see Plate 5.3), and occurred at a member efficiency of 0.71. 

It was not possible to identify the onset of yielding in the connecting chord face 

with reference to the strain paths. However, the development of 'shear-slip' lines on the 
chord face did correspond to the onset of non-linearity in the graphs of local joint 
deformation. The maximum chord axial force that was developed at the joints at the 
instance of failure differed in the case of the tension and compression chords, (see 
Appendix D, Table D2). In the former the maximum member efficiency was 0.69 

(joints 1& 8), while in the latter this was 0.80 (joints 4& 11). The strength of the 

compression chord joints was thus less than the corresponding tension chord joints. 

This demonstrates that a compressive axial force can have a detrimental effect on the 
local stability of the chord. This is discussed in greater detail in section 8.6. 

5.4.2 Member failure 

Member failures occurred only in the 4th, 5th and 6th load cycles, and were 
observed only in the chord sections. There were two types of member failure: 
(i) In-plane buckling of the compression chord. This occurred during both the 4th 

and 5th load cycles. In load cycle 4 both of the chord members either side of the 

ram failed (members 13 & 14). In the 5th load cycle local yielding occurred at 
both of the chord splice positions on the compression chord (members 12 & 

15). 

(ii) Yielding of the tension chord. This mode of failure occurred in the 6th load 

cycle along the midspan section, (member 5). 

In-plane buckling of the compression chord was always preceded by the 
development of 'shear-slip' lines along the face where the bending strain was 

compressive. With the progression of instability the 'shear-slip' lines were observed to 

extend onto the sidewalls. On the tension chord, at joints 4 and 11, 'shear-slip' lines 

were observed on the tie branch side of the joints, on the sidewalls and on the 

connecting chord face. 
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5.5 Failure modes in the 100% overlap joint trusses 

Chord face deformation was negligible in the case of the 100% overlap joints. 
As such there was little interaction between the branch members and the chord section at 
a joint. The modes of failure that were identified in the test programme, can be divided 

into two groups. Firstly, those related to the chord section, and secondly those which 
involved the branch members. In the chord the following modes were observed. 
(i) Local buckling of the compression chord behind the tension branch, L7, (see 

Plate 5.6). 
(ü) General instability of a compression chord member (see Fig. 5.4[a]). 

(iii) Yielding followed by local buckling at the ram position. 
(iv) General yielding of the tension chord. 
(v) General yielding of the compression chord. 

In the branch members there were five modes of failure which occurred, 

namely: 
(i) Member yielding of the tension branch. 

(ii) Member yielding of the compression branch. 
(iii) Rupture of the tension branch in the heel crosswall directly above the weld with 

the chord, (see Plates 5.7 & 5.8). 

(iv) Local yielding and/or buckling of the compression branch, (see Plate 5.9). 

(v) In-plane member buckling of the compression branch. 

In T2 instability of the compression chord occurred without failure in any 
branch members, however the strain paths of the tie branches at joints 12 and 14, 

indicate that the yield strain was exceeded at the ram failure load. It is thought that this 

was caused by the development of the 'shear-plane' in the sidewalls of the overlapped 
branch, and is discussed in section 5.5.2. 

The ultimate capacity of the modified T2 truss (T2/2) was defined by member 

yielding of the tension branches, although member yielding was also identified in some 

of the compression branches. In T3, at ultimate load, member yielding was observed in 

the tie members closest to the midspan (members 15 & 18). However, since local 

buckling also occurred in the compression chord either side of the ram, it is not clear 

which of these was the critical mechanism. The compression chord was strengthened 

and the load re-applied, however only a 4% increase in the strength was obtained, 

indicating that member yielding of the ties was in fact critical. 
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In T4, member yielding was observed in the compression chord and also in the 
majority of the branches in conjunction with overall buckling of the central struts 
(members 16 & 17). In T6 yielding of the tension and compression chords at midspan, 
member yielding of both tension and compression branches, and local buckling of the 

compression branches occurred. 

In T5 yielding was observed at midspan on the tension and compression 
chords, and occurred in conjunction with member yielding of all the tie branches. 
Instability of the chord section and subsequent failure of the truss occurred only in T2. 
Although yielding and the onset of local buckling of the compression chord (at the ram 

position) was observed in T3, T4, T5 and T6 it did not lead to instability. The critical 

mechanism in these trusses appeared to be failure of the branches. 

5.5.1 Chord failure 

In general it was not possible to relate member failure in the chord directly to the 

measured strain values at the corresponding gauge positions. However, when the 
bending moments at the member ends were evaluated by extrapolation, and the 

combined stress due to axial and bending forces was calculated, it was found that the 

onset of yielding did correspond with the extrapolated stresses exceeding the yield limit. 

On the first load cycle of T2 in plane buckling of the compression chord 

occurred (see Fig. 5.4[a]). Initially this involved local yielding in the 4mm thick section 

adjacent to the splice. The member was subsequently repaired, as was the 

corresponding section on the opposite side of the truss. On re-loading the same member 
failed but this time in the L7 mode (see Fig. 5.4[b]) which has been identified in 

isolated joint testing. 

It is likely that the L7 failure mode was related to the stiffening that was 

afforded to the adjacent chord section. This appeared to prevent the redistribution of 

moments away from the area of stress concentration. In isolated joint testing 

redistribution of stresses in the chord section cannot occur to the same extent as in the 

continuous chord of a truss joint. The L7 mode is probably a characteristic of the test 
installation, and is unlikely to occur in homogeneous chord sections which form part of 

a complete structure. The influence of chord bending moments, generated in a truss 

environment, on the L7 mode is discussed in greater detail in Chapter 8. 

The local buckling of the compression chord at the ram position was observed 
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in T3, T4, T5, and T6 irrespective of the fact that the section at this location had been 

strengthened by stiffening plates. This feature was related to the high bending stresses 
induced by the proximity of the ram. 

5.5.2 Influence of shear stress in the branch member sidewalls 

The most highly stressed regions of the 100% overlap joints appeared to be the 

sidewalls of the branch member connected to the chord face. Local yielding in the 

sidewalls above the weld to the chord face was a feature observed in all joints at truss 

ultimate load. Consequently, the development of 'shear-slip' lines was well advanced in 

this location. Two shear transfer mechanisms were identified, (see Fig. 5.5): 

(i) Transfer of horizontal shear to the chord face in the direction A-A. 

(ii) Transfer of axial force between adjacent branch members in the direction B-B. 

A visual inspection of the joints revealed the existence of a shear plane in the 

sidewalls of the branch connected to the chord face, (see Plate 5.6). It was observed 
that this plane spanned between the heel and the toe above the line of the weld. With the 

onset of member yielding 'shear-slip' lines were observed to develop initially on the 

crosswalls of the 'overlapped' branch. 

In joints 12 and 14 of truss T2, the shear plane was observed prior to failure of 

any branches, and corresponded to non-linearity in the strain paths of the ties, (see Fig. 

5.6). When the truss was shortened and re-loaded, shear failure was expected to occur, 
however no rupturing was observed. In the remaining trusses the 'shear plane' was 

observed at each joint, however as in the case of T2 shear failure of the sidewalls did 

not occur. 

There is, necessarily, an upper bound to the shear stress which the sidewalls of 
the overlapped branch member can sustain along section S-S (see Fig. 5.7). When this 
limit is reached it is likely that the sidewalls are no longer able to transmit direct stresses 

efficiently across the shear plane S-S, in the direction A-A. At the strain gauge position 
(section WXYZ) there would be a tendency for the stress relief in the sidewalls (W-X 

and Y-Z) to be balanced by an increase in stress in the crosswalls (W-Z and X-Y) in 

order to maintain the axial force. There are many examples where there was a 
significant difference (> 10%) in the 'calculated' axial force between the two ends of an 
'overlapped branch member at the ram failure load (Fig. 5.8 is typical). However, the 

axial force must, necessarily, be the same at both ends of a branch member, irrespective 

of whether yielding has occurred at the strain gauge positions. This indicates that strains 
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in the sidewalls of 'overlapped' branch members cannot be interpolated from the 

measured strains on the crosswalls, once extreme fibre yielding has occurred at the 
strain gauge position. Hence the assumptions made in the calculation of axial force and 
bending moment (which have been described in section 4.5) are violated. 

For the 'overlapped' branches yield patterns ('shear-slip' lines) were usually 
observed initially on the crosswalls (see Plate 5.10). With subsequent increases in load 

the 'shear-slip' lines developed on the sidewalls. Therefore, the horizontal shear plane 
S-S did appear to influence the pattern of branch member yielding even though shear 
failure itself did not occur. In the case of the 'overlapping' branches the yield patterns 

were usually first observed in the sidewalls or corners (see Plate 5.11). This indicates 

that the flexibility of the toe and heel connections reduces the axial stiffness of the 

crosswalls relative to the sidewalls, this causes the stress in the sidewalls to be higher 

relative to that in the crosswalls. 

Considering the transfer of forces in the direction normal to the chord face (see 

Fig. 5.5, direction B-B) , this component is likely be transferred mainly by shear in the 
branch member sidewalls. This would explain the 'shear-slip' lines which were visible 

on the branch sidewalls in the direction perpendicular to the chord face (see Plate 5.12). 

5.5.3 Failure of branch members 

For all branch members local yielding was always initially apparent at the 

member ends (ie., at the joints). However at truss ultimate load yielding in many 

members extended over the entire length. The visual discrimination of member yielding 

correlated in all instances with the yield strain being exceeded at one or more of the 

gauge positions. For each truss the modes of failure and measured joint forces at truss 

ultimate load are presented in Appendix D. 

Member yielding of the tie member was the most common failure mode. In 

addition to tie yielding there were two occurrences of fracture in the heel crosswall of 

the tie branches, namely in trusses T5 and T6 (see Plates 5.7 & 5.8, respectively). In 

both of these joints the tie overlapped the strut. This rupture was always in the region 

corresponding to the 'heat affected zone' adjacent to the weld, and on the most highly 

stressed face. It is significant that fracture was always in the parent metal and not in the 

weld, indicating that the welds were not defective. It is common knowledge among 

structural engineers that welding reduces the yield stress in high yield members directly 

adjacent to welds. Where fracture did occur it was in conjunction with member yielding 
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of the branch. It appears, therefore, that the welding did not have a detrimental effect on 
the ultimate load carrying capacity of the tension branches. 

However, fracture of the weld or parent metal in the direct vicinity of a joint is 

classified by CIDECT(43) as a joint failure. In general, for the 100% overlap joint test 

trusses, member yielding occurred before joint failure. It is possible that fracture in the 

tension branch could be the critical failure mode in a 100% overlap joint truss where the 
joints are weaker than the member. 

Member yielding of the tension branches was identified in all trusses except T2 

where failure was by in-plane buckling of the compression chord. Comparing the 
forces sustained in those ties which were subject to member yielding (- extreme fibre 

yielding at one or more of the strain gauges) in T212, T3, and T5, a member efficiency 

of at least 0.86 was reached in each case. In T4 and T6 tie yielding occurred at member 

efficiencies of 0.76 and 0.71, respectively. It is likely that member efficiency for those 

tie branches which were subject to extreme fibre yielding at the strain gauges was 
influenced by the bending stiffness of the joint, and the bending stiffness of branch 

member. In this sense three joint parameters appear to be significant: 
(i) R 
(ü) bl/ti & b2/t2 

(ii) bo/to 

These parameters combined in trusses T2/2, T3, and T5 to produce a low joint 

stiffness, relative to the joint stiffness of T4 and T6. The increased component of 
bending stresses induced in the branch members of trusses T4 and T6 thus had a 
detrimental effect on the maximum axial force which those members were able to 

sustain, prior to the onset of extreme fibre yielding at the strain gauges. The member 

efficiency was also influenced by the sense of overlapping. The bending moments in 

the branch members were greater where the tie overlapped the strut (see also section 
6.3.8). Comparing the member efficiencies on opposite sides of each truss, it can be 

seen that the values are higher where the strut overlapped the tie. 

Member yielding of the strut occurred in T2/2, T4, and T6. The relationship that 
has been proposed between member yielding of the tie and the joint parameters also 
holds for the case of member yielding of the compression branches. Two buckling 

modes were identified in the compression branches: 

(i) In truss T4 in-plane, single curvature member buckling occurred in two of 
the compression branches (see Fig. 5.9). However, in each case member 
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yielding of the branches occurred prior to the development of buckling. 
(ii) Strut local buckling (L6) occurred only in truss T6. For the joints where the tie 

overlapped the strut local buckling was observed in both the toe and heel 

crosswalls. For those joints where the strut overlapped the tie local buckling 

occurred only on the heel crosswall. 

For all the joints in truss T6 the L6 failure mode was normally preceded by 

yielding at one or both of the corresponding gauges. The heel face was always subject 
to more local deformation even though the toe face was more highly stressed in some 

cases. It is therefore likely that the heel connection to the chord face affords less 

restraint to local buckling than the toe interface. 

Strut local buckling was not observed in T4 even though the same section size 

was used for the branches as in T6. The only difference between T4 and T6 was the 

size of the chord. In T6 the branch to chord width ratio was smaller (T4: 0=0.6; 

T6: (3=0.4), even though the slenderness of the chord section was only marginally 

greater (T4: bp/tp = 20; T6: b0/tp = 23.8). It is difficult to conclude from this limited 
information, which of these two parameters ((3 or b0/t0) is more significant in 

determining the occurrence of strut local buckling L6. 

Overall strut buckling was observed only in truss T4. With the exception of 
trusses T4 and T6 the section used for the strut was stronger than the corresponding tie. 
Trusses T4 and T6 were fabricated using the same section for both compression and 
tension branches. Furthermore the branch members in these two trusses were identical 

with respect to length, inclination and section size. In T6 the lowest member efficiency 
(N1/Ai, vel) at which local buckling (L6) of the compression branch occurred is 0.69 

(joints 7& 9), while overall member buckling in T4 occurred at a member efficiency 

greater than 0.76 (joint 3). It was anticipated that overall member buckling would occur 
in T6, however strut local buckling proved to be more critical. 

5.6 Difference between gap and 100% overlap joint failure modes 

In the case of the gap joint truss the joint failures which occurred involved local 
deformation of the chord connecting face. In the case of the failure modes observed in 

the 100% overlap joint trusses, none involved deformation of the chord connecting 
face. Member yielding of the branches, which was the most common mode of failure in 

the 100% overlap joint trusses, did not occur in the gap joint truss. 
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However, similar types of member failure occurred in the chord section of both 
gap and 100% overlap joint trusses. In-plane member buckling of the compression 
chord, and yielding of the tension chord were observed in both types of truss. 

5.7 Definition of ultimate joint strength 

There were only two trusses where it was possible to relate truss ultimate load 
to failure in individual elements, and both involved failure of the compression chord. In 
Ti there was local buckling at joint 9 in the first load cycle, and in the second load cycle 
the corresponding joint on the opposite side of the truss failed by the same mode. In T2 
in-plane chord member buckling was observed between joints 8 and 9. In all other 
cases the ultimate load of the structure was related to several modes of failure occurring 
simultaneously. 

In the cases where overall buckling, local buckling or fracture were visible in a 
member it is likely that the element in question had attained its ultimate load, however 

when only local yielding or member yielding occurred it is possible that there was 
capacity in that member to carry further load. Therefore, in the testing of complete 
trusses the ultimate load capacity of individual joints and members can be difficult to 
define exactly. 

In isolated joint testing the axial forces in the branch members are normally 
assessed using load cells. In the test trusses the axial forces were calculated from the 

strain gauge values. It has already been indicated that where extreme fibre yielding was 

observed in 'overlapped' branch members at the strain gauges the calculation of axial 
force proved to be unreliable (see section 5.5.2). However the unreliability of the 

measured strains at sections where one or both crosswalls had yielded was not 

restricted to 'overlapped' branch members. This is reflected in the discrepancy in the 

calculated axial force between each pair of strain gauges. Prior to extreme fibre yielding 
at any of the strain gauges on a member the error in the calculated axial force between 

each end was always less than 5%. Once yielding had occurred this error was observed 
to increase. Care was taken to select the most reliable axial force value for each member 
(see section 4.6.3). 

Even with the high level and extent of instrumentation that was used during 
testing an understanding and definition of the modes of failure was only made possible 
by detailed visual examinations of the joints and members. The main problem proved to 
be the determination of the distribution of forces at those positions in the trusses where 



73 

yielding had occurred. 
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R 
Ram 

load cycle =1 

Rmax = 475 kN 

Fig 5.9 Overall in-plane single curvature buckling of the midspan compression 
branches in truss T4. 

j3 --º -. - j7 
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Truss T1 - joint 14 after unloading ; Ram failure load = 163 kN ; load cycle = 6. 
(For description of the joint failure mode see Table D2 in Appendix D) 

Plate 5.1 Typical stress pattern on the connecting chord face of the gap 
joints in truss Ti. 

Truss Ti - joint 9 after unloading ; Ram failure load = 125 kN ; load cycle = 1. 
(See also Tables D1 and D2 in Appendix D) 

Plate 5.2 Failure mode G4 in a compression chord gap joint. 
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Truss Ti - joint 3 after unloading ; Ram failure load = 158 kN ; load cycle = 5. 
(See also Table D2 in Appendix D) 

Plate 5.3 Failure mode G2(b) in a compression chord gap joint. 

"['russ Ti -joint 10 after unloading ; Ram failure load = 163 kN ; load cycle = 6. 
(See also Table D2 in Appendix D) 

Plate Failure mode G8 in a compression chord gap joint. 
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Truss Ti - joint 6 after unloading ; Ram failure load = 158 kN ; load cycle = 5. 
(See also Table D2 in Appendix D) 

Plate S Failure mode G1 in a tension chord gap joint. 

Truss 1'2 - joint 9 after unloading ; Ram failure load = 170 kN ; load cycle = 2. 

Plate 5 The only occurrence of local buckling (L7) of the compression 
chord in the 100% overlap joint test trusses. 
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Truss T5 - joint 2 after unloading ; Ram failure load = 330 kN ; load cycle = 1. 
(For description of the joint failure mode see Table D7 in Appendix D) 

PI 7 Rupture of the tension branch along the heel crosswall in a 100% 
overlap joint truss. 

Truss T6 - joint 3 after unloading ; Ram failure load = 560 kN ; load cycle = 1. 
(For description of the joint failure mode see Table D8 in Appendix D) 

Plate 5.8 Rupture of the tension branch along the heel crosswall and the 
sidewalls in a 100% overlap joint truss. 
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Truss T6 - joint 4 after unloading ; Ram failure load = 560 kN ; load cycle = 1. 
(For description of the joint failure mode see Table D8 in Appendix D) 

Plate 5.9 Local buckling (L6) of the compression branch in a 100% 
overlap joint truss. 

Truss T6 - joint 12 at a ram load of 530 kN. 
Ram failure load = 560 kN ; load cycle = 1. 

(For description of the joint failure mode see Table D8 in Appendix D) 

Plate 5.10 The onset of member yielding in the toe crosswall of an 
'overlapped' tension branch member. 
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Truss T6 - joint I after unloading.; Ram failure load = 560 kN ; load cycle = 1. 
(For description of the joint failure mode see Table D8 in Appendix D) 

Plate 5.11 Typical stress pattern in the sidewall of an 'overlapped' branch 
member. 

Truss T6 - joint 7 at a ram load of 530 kN. 
Ram failure load = 560 kN ; load cycle = 1. 

(For description of the joint failure mode see Table D8 in Appendix D) 

Plate 5.12 The onset of member yielding in the sidewalls of an 
'overlapping' branch member. 
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CHAPTER 6 

STRUCTURAL BEHAVIOUR OF THE TEST TRUSSES 

6.1 Introduction 

In this chapter the elastic and plastic behaviour of the trusses is discussed, with 
reference to : 
(i) Overall deflection. 
(ü) Joint deformation. 
(iii) Stress distribution at the joints. 

(iv) Distribution of axial forces and bending moments. 
The inter-relationship between the structural behaviour and the modes of failure is also 
considered. In addition, the structural performance of T1 (gap joint truss) and T2 (the 

corresponding 100% overlap joint truss) is compared with respect to the relative 
structural efficiency. 

For the main part the structural performance has been assessed by studying the 

graph plots described in section 4.5.1. However, use has also been made of stress 
distribution diagrams (Appendix E), tabulated member forces (Appendix F) and 
bending moment diagrams (Appendices G and H). 

6.2 Behaviour of gall joint truss. Ti 

6.2.1 Central Deflection 

The midspan deflection over the first load cycle was approximately linear up to a 

ram load of 60 kN, and was thereafter non-linear (see Fig. 6.1). Thus the limit of the 
linear range corresponds approximately with the total imposed ram load at which the 

serviceability limit of span/360 was attained namely, 70 kN. However, in a normal 

situation a truss would be carrying both dead and imposed loading. For ram loads 

higher than 60 kN the slope of the load/deflection graph decreases with increasing load. 

Applying the span/360 criterion to the imposed load only, the proportion of imposed 

load that can be sustained would therefore dependent on the amount of dead load. The 

higher the dead load the less would be the permissible imposed load. 

6.2.2 Joint deformation 

A study of the plots of local joint deformation (see Fig. 6.2) indicates that there 
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were four basic features: 
(i) The deformations on the 4mm chord section were larger than those on the 5mm 

section for both the tension and compression chord. For example in the case of 
the compression chord the relationship between chord thickness and joint 
deformation is indicated by comparing Figs 6.2[a] and 6.2[b]. The influence of 
chord thickness was less significant in the case of the tension chord. 

(ii) The relationship between applied load and local deformation was approximately 
linear up to an applied load of 60 kN and thereafter became non-linear. 

(iii) For the same chord section thickness the deformations on the compression 
chord were greater than those on the tension chord (compare Figs. 6.2[b] & 
6.2[d]). 

(iv) The axial force in the compression chord section appeared to affect the local 
deformation and hence influenced the mode of failure. This confirms the 
observations of previous investigations on isolated joint tests(43). For the same 
chord thickness the deformation was greatest at the joints where the axial force 

was highest (compare Figs. 6.2[b] & 6.2[c]). In the G7 failure mode at joint 9 
instability occurred in all four sides of the chord section. For the tension chord 
the effect of axial force on the deformation was negligible. 

(v) For all the gap joints the deflection of the strut was always greater than that of 
tie (see Figs. 6.2[a]-[d]). 

Gap joints are normally designed on the basis of strength, service behaviour 
being normally considered acceptable if the local deflection is less than 1% of the chord 
width (Wardenier(34)). With respect to truss Ti, joint 9 was critical and the service limit 

was reached at an applied ram load of 65 kN (see Fig. 6.2[b]). The serviceability limit 
imposed for the chord face deformation at joint 9 corresponds approximately to the 

span/360 service limit for the overall deflection. 

6.2.3 Joint stress distribution at the strain gauge positions 
(see Appendix E) 

The distribution of stresses in the branches and chord members followed a 
simple pattern (see Fig. 6.3). This pattern was usually the same in the elastic range and 
at the ram failure load. For the branches the more highly stressed face was always the 
toe face. This holds for both the strut and the tie. In the case of joint 9 the incidence of 
chord instability did not affect this distribution. For both the compression and tension 
chords the stress on the connecting chord face was at most joints less than that on the 

opposing face. This distribution was directly related to the secondary continuity 
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moment. Theoretically there should be no bending stresses in a noded gap joint, 
however the experimental results indicate that the level of secondary stresses was high 

even in the elastic region. 

6.2.4 Chord axial forces and bending moments 

The relationship between applied ram load and axial force was linear for all the 

chord members up to the point of failure (for example see Fig. 6.4[a]). This 
demonstrates that the distribution of axial forces was not significantly influenced by the 

overall truss deflection, or the joint deformation. At the failure of joint 9 there did not 

appear to be a redistribution of axial forces in the chord section (ie., the relationship 
between ram load and axial force for member 16 was linear up to and including the 
failure load - see Fig. 6.4[a]) 

Bending in the chords was predominantly single curvature, with double 

curvature evident only in the end bays (see Fig. 6.5). The bending moments in all the 

chord members behaved linearly with respect to applied load up to approximately a ram 
load of 60 kN (Fig. 6.4[b] is typical), however from this point on the behaviour was 

non-linear. Non-linearity appeared to be caused by local yielding of the connecting 

chord face at the joints. 

There appeared to be two components to the bending moment distribution in the 

chord, both of which were secondary since the joints were noded : 
(i) The deformation of the chord face at a joint induced an 'eccentric' moment. (ie., 

once chord face deformation occurred the joint was no longer geometrically 

noded). The resulting 'eccentric' moment produced a discontinuity in the chord 
bending moment at each joint (see Fig. 6.5). 

(ii) The overall deflection of the truss induced a continuity moment in both the 

tension and compression chords. 

The shear forces were higher in the 4mm thick compression chord section 

where the joint deformations were largest. However the most significant shear force 

was along the chord at the loading point, and is related to the large moment. This is 

typical of such trusses under symmetric loading, which produces zero slope at the 
loading point. In the tension chord the highest shear forces occurred in the end bays. 
Otherwise there was little variation in shear along the tension chord. 

Thus in the case of the compression chord the magnitude of the shear forces 
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was related to the chord section thickness and was less in the case of the thicker section. 
The fact that this correlation does not hold in the case of the tension chord is an 
indication that the joint deformation had a significant effect on the distribution of chord 
shear forces. 

The distribution and magnitude of moments were approximately symmetrical 
about the midspan of the truss, and remained so throughout the entire load cycle. 
Imbalances between corresponding members at, and prior to ultimate load were less 

than 10%. 

6.2.5 Branch member axial forces and bending moments 

The variation of axial force (with respect to applied ram load) in all the tie 
branches, was linear right up to the ultimate load. However, non-linearity occurred in 

those struts connected to the thinner compression chord where the deformations were 
greatest (Fig. 6.6[a] is typical). This takes the form of a change in slope at a ram load of 
approximately 60 kN. Above this load level the slope of the graph increases. This 
behaviour is related to the onset of non-linearity in the local joint deformation, and not 
to a loss of stiffness of the strut. The corresponding tie members were not affected (see 
Fig. 6.6[b]). To maintain equilibrium at these joints between the tie and strut axial 
forces, the imbalance between the two forces was, necessarily, reacted against by shear 
in the chord section. 

The variation of bending moments with respect to applied ram load in the 
branches was non-linear. Three types of behaviour were identified: 
(i) The bending moment increased with respect to applied load throughout the 

whole load cycle, and changes in slope were small (Fig. 6.7[a] is typical). 
(ii) The relationship between bending and applied load had three components (Fig. 

6.7[b] is typical). In the first part of the load cycle (0 to 40 kN ram load) the 

moment increased with respect to applied load. The moment then remained 

constant or decreased (40 to 80 kN), and finally the slope changed once more so 

that further increases in bending took place (80 to 125 kN). 

(iii) The bending moment increased for the first part of the load cycle, then remained 
constant or decreased for the latter part (Fig. 6.7[c] is typical). 

Type (i) relates to the end branches, (members 18 & 33) where the joint 
deformations were small. Type (ii) occurred in the branch members which spanned 
between the two thinner chord sections (members 19,20,21,30,31, & 32). There 
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was no difference in behaviour between the tension and compression branches. Finally, 

type (iii) occurred in both struts and ties which spanned between the two thicker chord 

sections (members 23,24,27 & 28). 

The two members (22 & 29) which spanned between the 4mm compression 

chord and the 5mm tension chord, exhibited different types of behaviour at either end. 
Type (i) behaviour occurred at the end which was connected to the thicker section, and 

type (iii) at the opposite end (Fig. 6.7[d] is typical). 

Nevertheless up to the service load (ram load = 70 kN) the relationship between 

bending moment and applied load was linear for all branches. It appears to be 

significant that the onset of non-linearity for ram load v. branch member bending 

moment occurred at the same ram load that the local joint deformations became non- 
linear. This suggests that the different types of non-linear behaviour that have been 

identified could be related to local yielding of the connecting chord face at the joints (ie., 

once local yielding occurred the variation of bending moment was related to the degree 

of local deformation of the connecting chord face). 

The mode of bending was double curvature in all branches except the central 

struts where single curvature was observed. However, in one of these struts (member 

26) double curvature developed prior to truss failure (see Fig. 6.8[a]). In member 28 

(see Fig. 6.8[b]) there was a change from double to single curvature. 

6.3 Structural behaviour of the 100% overlap joint trusses 

6.3.1 Central deflection 

The relationship between applied load and central deflection was linear almost 

up to the point of failure for T2 and linear over at least 80% of the load cycle for the 

remaining trusses (see Fig. 6.9). The failure mechanism in T2 differed from the 

remaining trusses in that only chord yielding was observed prior to failure. With the 

exception of T2/2, yielding of the chord and branches usually occurred simultaneously 
in the remaining overlap joint trusses. T2/2 was the only truss where chord local 

yielding did not occur, however an extended non-linear region was observed in the 
load/deflection relationship (see Fig. 6.9[b]). 
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6.3.2 Joint deformation 
(for definition see Fig. 4.13[b]) 

The deformation of the chord face (see Fig. 4.14[b]) never exceeded 1% of the 

chord width prior to the onset of member yielding in the branch members (see Fig. 

6.10). The sense of the deformation was always inwards (ie., positive - see Fig. 4.14) 

and not related to the direction of the resultant force perpendicular to the connecting 

chord face. This resultant force at a joint was caused by the difference in adjacent strut 

and tie forces. 

The joint deformation was always positive because under the applied load the 

centre-lines of the tension and compression chords move closer together. Even in the 

case of the gap joint truss Ti the chord face deformation under the strut was greater 

than that under the corresponding tie (see Fig. 6.2). This indicates that the depth 

between the centre-lines of the tension and compression chords was reduced under the 

action of the applied load. 

Once member yielding of the branches occurred the relationship between joint 

deformation and applied load tended to become non-linear (see also section 4.6.2). 

Nevertheless at ultimate load the deformation of the connecting chord face never 

exceeded 3% of the chord width in any of the trusses. 

For the corner joints the local deformation was only measured in T5 and once 

more non-linearity was associated with member yielding of the tie. In this type of joint 

the deformations were negligible and always directed away from the chord face. 

6.3.3 Stress distribution at the strain gauge positions 
(see Appendix E) 

The stress distribution in the branch members appears to be related to the sense 

of overlapping (ie., whether the strut overlapped the tie and vice-versa). Of particular 

significance is the fact that there was no weld along the toe face of the overlapped 

member (see Fig. 3.3). 

For the tie overlapping the strut there were three possibilities with respect to the 

transfer of force to the chord via unwelded toe face of the strut : 
(i) The toe was proud of the chord face and there was no force transfer between the 

toe and the chord face. 
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(ü) The toe was perfectly settled and able to transfer forces by means of bearing to 
the chord face. 

(iii) The toe was partially settled on the chord face allowing some force to be 

transferred via the interface. 

Type (i) would have relieved the stress on the toe face, thus causing it to be less 

than that on the heel face. Conversely, type (ii) would have attracted stress to the toe 
face and is probably associated with those stress distributions where the toe face of the 
overlapped strut was more stressed than the heel face - this was the most common 
stress distribution for both 450 and 600 Warren joints at the ram failure load (see Fig. 
6.11 [a]). The stress distribution for the overlapping tie member did not appear to be 

related to that of the strut, and the more highly stressed face was usually the one 
connected to the chord (ie., the heel face). 

In those joints where the strut overlapped the tie the stress on the toe face of the 
tie was, for the majority of joints, higherAon the heel face (see Fig. 6.11 [b]). This 

suggests that there was little or no bond to the chord along the toe face, thus relieving 
the stress. For the overlapping strut, as in the case of the overlapping tie, the stress was 
for the majority of joints greater on the heel face which was connected to chord. 

For the 100% overlap Warren joints it is possible that weld did penetrate 
beneath the heel of the overlapping member and further aided the transfer of force via 
the toe of the overlapped branch and the chord. 

- In the N-type truss the general distribution of stresses differed from that of both 

the 450 and 600 Warren joints. For the joints where the strut was connected to the 

chord face, the heel faces of both the strut and the tie developed the highest stresses (see 

Fig. 6.11[c]). Where the overlapping was reversed the stresses on opposing faces of 
the tie member were approximately equal, but the overlapping strut was always more 
highly stressed on the toe face (see Fig. 6.11[d]). As in the case of the Warren joints no 

weld was specified along the toe of the overlapped branch. However a visual inspection 

of the N-truss indicated, for all joints, that the weld had penetrated beneath the heel of 
the overlapping member, thus forming a connection between the toe of the overlapped 
branch and the chord face. In the case of the Warren joint trusses this was not observed 

visually, although it is possible that it did occur in some joints. 

The magnitude and sense of the bending moments in the branch members was 
influenced by the rotational stiffness of the joints. The absence of a weld between the 
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toe of the overlapped branch and the chord face appeared to reduce the rotational 
stiffness of the joint if no force could be transferred across the interface. For this reason 
the rotational stiffness of the joints at which the strut overlapped the tie was less than at 
those joints where the sense of overlapping was reversed. Transfer of force between the 
toe of an overlapped compression branch and the chord is possible via bearing, 

although the efficiency of the transfer would be determined by how settled the toe is on 
the chord after fabrication. Therefore, the rotational stiffness of the 100% joints in the 
test trusses (both strut/tie and tie/strut) varied according to how efficiently the 
overlapped branch member transferred forces into the chord via the toe face. 

6.3.4 Distribution of axial forces 

The relationship between applied load and axial force was linear up to the point 
where member yielding occurred. This is true for both branch and chord members (for 

example see Fig. 6.12[a] & [b]), but not the end posts (for example see Fig. 6.12[c]). 

In those corner joints on the top chord where there was no branch connection (trusses 

T3, T4, and T6) the axial force in the end post was equivalent to the shear force in the 

adjoining compression chord member. Local yielding of the compression chord at the 

midspan joint caused moment redistribution along the chord, which reduced the shear 
force in the end bays. For the end posts, therefore non-linearity in the relationship 
between applied ram load and axial force coincided with local yielding of the 

compression chord at midspan. At the load level where chord local yielding began the 

posts attained a maximum axial force, and further increases in load caused a reduction 
in axial force. 

Although, for each truss, the elastic axial force distribution was symmetrical 
about the centre-line (for example see Table 6.1), the forces in the branches were not 
constant. For the test trusses the shear force in a member was equivalent to the slope of 
the bending moment distribution along the length of the member. In the 100% overlap 
joint trusses the slope of the bending moment diagram for both the tension and 
compression chords varied (Fig. 6.13is typical). Therefore the shear force in the chord 
was different for each member. Consequently there was a resultant force at a joint 

caused by the difference in the chord shear forces either side of the joint. In order to 
maintain equilibrium of the in-plane forces perpendicular to the chord, the resolved 
components of the axial forces in the branch members were caused to differ in 

magnitude. This difference was equivalent to the shear force in the chord at the joint. 
The largest differences between the axial forces of the tie and strut at a joint occurred 

where the change in the chord shear force across a joint was greatest, namely where the 
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change in slope of the chord bending moment diagram was most pronounced. For the 
compression chord joints this was either side of the midspan, and for the tension chord 
in the joints adjacent to the end posts (Fig. 6.13is typical). 

The imbalance at the joints between the measured axial forces in the strut and tie 
was observed in all 100% gverlap joint trusses, and to a lesser degree in the gap joint 
truss (see Table 6.1). The difference in the measured axial forces was observed both in 
the elastic and plastic region. The difference was in some cases as much as 25%. The 

strut force normally exceeded the tie force at a joint, however there were also joints 

where the tie force was greater than the strut. 

The shear forces in the branch members were negligible compared to the axial 
forces in the chord (of the order of 1%), and thus although there was interaction 
between the two it was insignificant. 

6.3.5 Elastic bending moment distribution 

Over the range where the relationship between applied load and bending was 
linear, bending in the chord was usually double curvature, with a point of inflection 

occurring between two adjacent joints (for example see Fig. 6.13). However for both 

the tension and compression chords there was a continuity component to the 
distribution, and therefore the point of inflection was never at the midspan of the 
member. The continuity moment was a secondary effect caused by the overall deflected 

shape of the truss. The distributions were symmetrical about the centre-line. 

The discontinuity in the experimental bending moment distribution at the 

position of the applied ram load (Fig. 6.13 is typical) was probably caused,; the 
imbalance of axial force in the branch members connected to the central joint. The large 

central moment associated with the loading position occurred in all the 100% overlap 
joint trusses. It is associated as in the case of the gap joint truss with symmetry and zero 

slope at the centre-line. 

6.3.6 Moment redistribution 

Non-linearity in the relationship between applied load and bending moment for 

the chord members indicates a redistribution of moments away from the sections where 

yielding occurred. This is demonstrated in rig. 6.14 where the expcrimcntal 
distribution of bending at ultimate load in truss T6 is plotted against that extrapolated 
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from the elastic range. The behaviour in the remaining trusses was similar (see 
Appendix H). 

The difference between the two distributions indicates the amount of 

redistribution which took place prior to the attainment of ultimate load. In each truss 

yielding occurred at one or more points in the chord sections. The most critical position 

was at the midspan of the compression chord where the load was applied. Yielding at 
this location was the primary factor influencing the redistribution of bending moments. 

Chord section yielding defined an upper limit to the bending capacity of the 

section. Once yielding had occurred the bending moment at that section either remained 

constant at further increases in load (ie., end 1 of the member in Fig. 6.15[a] is typical) 

or decreased (ie., end 2 of the member shown Fig. 6.15[b] is typical). To maintain 

equilibrium the moment that was shed was distributed along the chord. The loss in 

stiffness associated with the yielding of the compression chord was reflected in the 

response of the tension chord. Along the tension chord there was an increase in the 

continuity component of the moment distribution. The redistribution of moments also 

caused a change from double to single curvature bending in some members. This 

however, did not occur in all trusses. 

6.3.7 Interaction between chord and branches 

Apart from the case of T2 where only chord failure was observed, all the other 
100% overlap joint trusses were subject to the simultaneous occurrence of chord and 
branch member yielding. Since member yielding of a branch affected the axial force in 

that member it also influenced the distribution of bending in the chord. Loss of branch 

force at constant applied load led to an increase in chord shear force at that joint. 

6.3.8 Bending moment distribution in the branches 

For all trusses the relationship between bending moment and applied load in the 
branch members was non-linear (Fig. 6.16 is typical). Furthermore the distribution was 
not symmetric with respect to the truss centre-line (see Fig. 6.13). On the side where 
the tie overlapped the strut the moments were larger than those of the corresponding 

members on the opposite side. The joints where the strut overlapped the tie had a lower 

rotational stiffness than the joints where the sense of overlapping was reversed - this is 

described in detail in section 6.3.3. Even considering just one side of a truss there was 

variation in the magnitude and sense of the branch bending moments. This is possibly 
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an indication of how sensitive the rotational stiffness of the joints was to the weld 
detailing. 

When a branch member began to yield there was a corresponding decrease in 

the bending moment which it was able to sustain (see Fig. 6.16[a]). There are also 
branch members where the moment was shed completely at either one or both ends (for 

example see Fig. 6.16). This moment was redistributed into the chord section and not 
the adjacent branch. However, due to the relative stiffness, moments in the branches 

were negligible in magnitude compared to those of the chord. Therefore the effect of 

this redistribution was negligible. 

In the elastic range bending in the branches was normally double curvature, 
however changes in curvature over the load cycle did occur (for example see Fig. 

6.17). The most common change was from double to single curvature. Complete 

reversal of curvature was only identified in the cases where the branch member was 

connected to the chord face (ie., the overlapped member). 

6.4 Comparison of structural performance for trusses Ti and T2 

6.4.1 Central deflection 

The measured deflections of the trusses at the centre of the tension chord are 

shown in Figs 6.1 [a] and 6.1 [b]. By comparing the deformation behaviour of Ti and 
T2 it is apparent that the latter represents the stiffer system. At the failure load of Tl, the 
deflection of truss T2 (which was still unfailed) was only 50% of the deformation of the 
former. 

6.4.2 Joint deformations 

The local joint deformation for joint 9 in trusses Ti and T2 is compared in Fig. 
6.18 which is typical. For T1 the local joint deformations became non-linear at an 
applied ram load of approximately 60 kN. In the case of 72 the local joint deformations 

were linear up to a ram load of 140 kN. Unlike Ti, the joint deformations on the 
tension and compression chords were approximately the same. Furthermore, the 

magnitude of the joint deformations are largely independent of the chord thickness and 

chord axial force. A comparison between the two trusses indicates that the joint 

deformations in Ti were ten times greater than those of T2. While the maximum joint 

deflection in T2 was less than 0.7 mm, that of T1 was greater than 7.0 mm 
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6.4.3 Axial forces and bending moments 

For each truss a comparison of the graphs of applied load v. measured member 
axial force indicates that the relationship was linear in both cases. Non-linearity was 
only observed in the critical elements with the onset of yielding. A study of the forces in 

corresponding members for the two trusses indicates that the axial forces were 
approximately equivalent (see Table 6.1). 

From a comparison of the bending moment distribution with respect to applied 
load two points emerge: 
(i) The moments in the chord and post members were linear for T2 prior to the 

onset of the chord yielding. However, the chord moments in Ti were non-linear 
over the whole load cycle. 

(ii) For the branch members non-linearity in the bending moments was observed in 
both Ti and 72, but was more pronounced in Ti. 

At the 50 kN ram load the bending moments in the chord members were 
generally greater in the case of T2, (see Fig. 6.19). However at 100 kN, the moments 
in Ti exceeded those in T2 at several joints, (see Fig. 6.20). At this load therefore the 
secondary moments in truss T1 exceeded the primary moments generated by the joint 

eccentricity of T2. This indicates that in the design of the chord members of gap joint 

trusses with slender chord sections and small 03 ratios the secondary bending moments 
in the chord should not be ignored. The bending moments in the branch members at 
both load levels were significantly larger in Ti. The moments were in most branch 

members at least three times larger in Ti at the higher load level. 

6.4.4 Ultimate load carrying capacity 

Truss T1 attained its maximum load carrying capacity at an applied ram load of 
125 kN, when joint 9 failed by mode G7 - chord face plastification with sidewall 
buckling. The ultimate strength of truss T2 was reached at a ram load of 168 kN, 

indicating a 35% increase in strength over Ti. Failure in T2 was due to in-plane single 
curvature buckling of member 15 between joints 8 and 9. This was ascribed to the 

combined axial and bending stresses induced by the joint eccentricity. Thus T1 was 
joint critical while T2 was member critical. 
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6.4.5 Structure serviceability limits 

Assuming an upper limit on chord face deformation of 1% of the chord width, 
the service load of T1 corresponds to a ram load of 70 kN (joint 9 was critical). For T2 

no joint reached the limit, and even at failure the maximum joint deformation was only 
0.7% of the chord width. 

Assuming a serviceability limit of 1/360 of the span for imposed loading, the 
central deflection is set at 31 mm. For T1 this limit was attained at a total applied load of 
70 kN, and for T2 at 90 kN. The acceptable service load was 29% greater in 72 - on the 
basis of overall deflection limits. On removal of the load truss Ti only recovered 57% 

of the maximum deflection, and there was a 37mm permanent set. In the case of T2 the 

recovery was 85% and the permanent set was only 10mm. 

6.4.6 Effect of chord face deformation 

Since in all other respects T1 and T2 were identical, the joint geometry and force 

transfer mechanism at the joints are the factors responsible for the difference in the 

structural behaviour of the two trusses. Essentially the joint geometry dictates the 

mechanism by which the forces are transferred between the respective members. In the 

case of a gap joint the forces in the branch members must interact via the chord face. 
However in the case of a 100% overlap joint the forces perpendicular to the chord face 

are transferred directly from one branch to the other, leaving only a horizontal shear 
force to be transmitted to the chord. This explains why the deformation of the 

connecting chord face was negligible in the case of the 100% overlap test joints. 

6.4.7 Relative strength 

Truss T2 proved to have a superior load carrying capacity as well as being a 

stiffer structure. In Ti the joint flexibility coupled with the force transfer mechanism, 

combined to produce large local joint deformations. The chord face deformation at a 
joint allowed large translations and rotations, thus producing a flexible joint which, 

necessarily, affected the overall truss deflection and led to the development of 
significant secondary bending moments in the structure. The joint deformation thus 

appeared to have a detrimental effect on the structural efficiency. For the gap joints on 
the compression chord the deformation of the chord face caused a loss in strength of the 

chord - by increasing the tendency to buckle locally. 
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In trusses composed of gap joints with low 0 ratios and high bp/to values the 

bending moments induced by joint deformations are likely to be significant and should 
not be ignored in design. The 100% overlap joint truss thus represents the more 

efficient structural system, in spite of the joint eccentricity. 

The gap in Ti was large (43mm), and the chord slender. In gap joint trusses 

with smaller gaps and less slender chords the local joint deformations and the resulting 
secondary bending moments are likely to be less. However, irrespective of the chord 
slenderness, or size of gap it is 'unlikely' that, for small ß ratios (< 0.6), a gap joint 

truss will be more efficient in strength and serviceability than an equivalent 100% 

overlap joint truss. This however needs to be verified experimentally. 



103 

Elastic axial force co-efficients for trusses Ti and T2. 

Member Member Axial force co-efficients 
type No truss Ti truss T2 

kN kN 

Tension chord 1 -0.02 0.02 
Tension chord 2 0.96 0.95 
Tension chord 3 1.91 1.92 
Tension chord 4 2.98 2.86 
Tension chord 5 3.93 3.80 
Tension chord 6 2.86 2.88 
Tension chord 7 1.93 1.92 
Tension chord 8 0.93 0.96 
Tension chord 9 -0.03 0.03 

Comp. chord 10 -0.48 -0.47 
Comp. chord 11 -1.43 -1.43 Comp. chord 12 -2.36 -2.36 Comp. chord 13 -3.21 -3.26 Comp. chord 14 -3.27 -3.22 Comp. chord 15 -2.36 -2.40 
Comp. chord 16 -1.44 -1.44 
Comp. chord 17 -0.48 -0.47 

Tie 18 0.64 0.61 
Strut 19 -0.67 -0.64 
Tie 20 0.69 0.64 
Strut 21 -0.69 -0.64 Tie 22 0.68 0.65 
Strut 23 -0.70 -0.63 
Tie 24 0.64 0.60 
Strut 25 -0.69 -0.68 Strut 26 -0.69 -0.71 
Tie 27 0.65 0.60 
Strut 28 -0.71 -0.63 
Tie 29 0.69 0.63 
Strut 30 -0.68 -0.66 
Tie 31 0.68 0.64 
Strut 32 -0.72 -0.67 
Tie 33 0.64 0.61 

Vertical post 34 -0.51 -0.52 
Vertical post 35 -0.51 -0.51 

Notes : 
1) To be read in conjunction with Fig S 1. 
2) Co-efficients for each truss have been derived at a ram load of 50 kN. 
3) Values are in kN per 1 kN of applied ram load. 
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CHAPTER 7 
ANALYTICAL MODELLING OF THE TEST TRUSSES 

7.1 Scone of theoretical plane frame modelling 

For each of the trusses the elastic behaviour has been compared to that derived 
from various two-dimensional theoretical models. This comparison has been carried out 

with respect to the distribution of axial forces and bending moments, as well as the 

overall truss deflection. Attention has been concentrated on the trusses formed from 

100% overlap joints, however the analytical modelling of the gap joint truss has also 
been investigated. With respect to the test trusses the object was to derive answers to 

the following questions: 

(i) Are the assumptions made in the conventional method of analysing the chord 

valid? Designers normally assume that the bending stress in the chord section 

can be deduced by distributing the eccentricity moment equally either side of the 
joint. For the critical chord section this bending stress is combined with the axial 
force derived from a pin jointed frame analysis. 

(ii) Does the joint stiffness need to be modeled in order to simulate the structural 
behaviour? 

(iii) What are the limitations of elastic plane frame analyses in assessing the 

structural behaviour? 

Essentially the objective was to define the most practical analytical approach for 

the 100% overlap joint trusses and to outline the problems associated with the 

modelling of the noded gap joint truss. 

7.2 Two-dimensional pin-jointed frame models 

Where reference is made to a pin jointed analysis (P), the axial force distribution 
in the truss was evaluated by using the true branch to chord angle, 0. In the case of a 
truss formed from noded joints such as T1 it is possible to model both 0 and the 

effective depth (see Fig. 7.1 [a]). However for eccentric 100% overlap joints the branch 

centre-lines intersect at a distance away from the chord centre-line. By modelling the 

true branch angle, the actual effective depth of the structure differs from that assumed in 

the theoretical analysis (see Fig. 7.1 [b]). 
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7.3 Rigid frame analytical models 

The support conditions have been simulated in each of the analytical models by 

assuming a roller bearing at one end and a rocker at the other. 

In the rigid frame models only simple beam elements have been used to model 
the structure. This type of element is capable of transmitting only in-plane axial, 
bending and shear forces. In all the analyses the measured section properties were used 
for each of the members (see Appendix B). 

In a gap joint the end of each branch member has two in-plane degrees of 
freedom, namely, a translation perpendicular to the chord face and a rotation. In a 100% 

overlap joint the branch members intersect and form a single connection to the chord 
face. The in-plane degrees of freedom associated with such a connection are the same as 
those in the gap joint. However, for both gap and 100% overlap joints the experimental 
data could only be used to assess the stiffness associated with translations. Rotations 

were not measured. 

For both gap and 100% overlap joints the local deflection in the direction 

perpendicular to the chord face has been simulated by the use of a short connecting 

element (denoted as element ' 1' throughout Fig. 7.2). This element was given infinite 

bending and shear stiffness, however, the axial stiffness was derived from the 

experimental data as shown in Fig. 7.3. 

7.3.1 Modelling of gap joint truss, Ti 

For the gap joint truss two rigid frame models have been used to assess the 

performance, namely GS and GK (see Fig 7.2). Model GS approximately simulates the 

chord face deformation. The traditional form of analysis which is used for a noded truss 
is represented by GK. In this case the chord face flexibility has been ignored but the 
correct geometry of the truss has been maintained. 

In model GS the deformation of the chord connecting face has been simulated, 
while maintaining the correct geometry. This type of theoretical model is similar to the 
'micro-bar model' referred to in the Polish test programme(33). The axial stiffness of 

element 1, was derived from the experimental results (see Fig. 7.3 and Table 7.1), 

while element 2 was given infinite axial and bending stiffness. The Polish researchers 
derived the axial stiffness of element 1 from a theoretical analysis, in which the chord 
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face was considered as a strip plate restrained at the edges by the adjacent walls. This 

method considered both the translational and 'rotational' degrees of freedom. However, 

the 'rotation' that is referred to is the effective rotation of the joint about the noding 
point as opposed to the rotation at the ends of individual branch members. 

7.3.2 Modelling of 100% overlap joint trusses 

Since the rotational stiffness of the 100% overlap joints could not be derived 
from the experimental data, two models have been used to assess the influence of the 
joint rotation, namely S1 and S2 (see Fig. 7.2). The former provides an upper bound 

value to the rotational joint stiffness, and the latter a lower bound. A further two models 
have been considered in the case of the 100% overlap joint trusses, namely Y, and K 
(see Fig. 7.2). In both S1 and S2 the joint translation perpendicular to the chord face 
has been simulated, but not in the remaining models. All the analyses have two 

common characteristics. Firstly, the true branch angle has been modeled and secondly 
the branches are rigidly connected to each other. In S 1, S2, and Y the effective depth 
has been correctly simulated. 

For S 1, S2, and Y the joint eccentricity has been incorporated into the geometry 
of the frame analyses. This has been done by the use of a beam element (see 

'connecting element' in Fig 7.2) which connects the intersection of the branch members 

to the chord centre-line. In S1 and S2 an axial stiffness, derived from the experimental 

test results, has been designated to this element (see Fig. 7.3 and Table 7.1), while the 
bending stiffness is assumed to be infinite. In model Y the deformation of the 

connecting chord face at the joints was set to zero. This was achieved by using a 
'connecting element' with infinite axial and bending stiffness. S1 differs from S2 only 

in the method of attachment of the 'connecting element' to the branch members. In S1 it 

is rigidly connected, while in S2 the connection is pinned. 

The K type model does not incorporate the joint eccentricity in its geometry. In 

this case the bending moments generated at the joints have been input as a component of 
the applied load. These bending moments were calculated using the axial forces derived 
from the pin-jointed frame analysis (P). 

7.3.4 Modelling of corner joints 

The methods that have been used to model the corner joints are shown in Fig 

7.4. With the exception of truss T2 the branch member centre-line coincides with the 
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junction of vertical post and the chord. At this type of joint the deformation was 
identified from the tests as negligible (see section 6.3.2). Therefore the axial and 
bending stiffness of the 'connecting element' was assumed to be infinite. The moment 
connections at either end of this element are rigid. 

Where stiffening plates have been used to prevent chord face deformation of a 
corner joint (see truss T2, Appendix A, Fig A8), the correct geometry has been used in 

conjunction with a'connecting element' of infinite axial and bending stiffness. 

7.3.5 Modelling of central joints 

In the case of the joints where the ram load was applied a significant amount of 
stiffening was afforded to each structure. The extent and nature of the stiffening plates 
has been incorporated into each of the rigid frame models (see Fig 7.5). In trusses T1, 

T2, T3 and T5 stiffening plates were only provided to the top and bottom faces of the 

chord section. In the remaining trusses additional plates were welded to the sides of the 

chord. Furthermore, plates were welded to the sidewalls of the branch members to 

prevent the branches from punching into the connecting chord face. 

In all trusses the stiffening effect of the plates welded to the top and bottom 
faces of the compression chord was modeled using an element of infinite axial and 
bending stiffness. The length of this element being equivalent to the length of the plated 
section. 

With respect to trusses Ti, T2, and T3 the S type models (GS for Ti, Si and 
S2 for T2 and T3) the chord face stiffness has been modeled by deriving from the 

experimental data the respective axial stiffnesses for element 1. Since joint deformations 

were not measured at the central joints, the joint stiffness was extrapolated from the 
corresponding truss joints. It has been assumed that the deformation of the chord face 
is, approximately, directly proportional to the cube of the thickness (to3), of the chord 
face. Therefore, if the normal joint stiffness of the chord wall, to is denoted by C and a 
stiffening plate of thickness 2t0 was welded to the connecting chord face then the 
combined stiffness was assumed to be (23+1g. 

For T4 and T6 even the sidewalls of the chord were stiffened, and therefore 
deformation perpendicular to the chord face was very small. In T5 the full width T joint 

connection ensured that the deformation of the chord face was negligible. Therefore in 

T4, T5 and T6 the 'connecting element' has been given infinite axial and bending 
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stiffness. As far as joint rotation is concerned the plating on the connecting chord face, 
has been assumed to provide a rotational rigidity. 

7.4 Comparison of experimental and theoretical behaviour for the pan 
joint truss 

7.4.1 Axial force distribution 

From Table 7.2[a] it can be seen that the analytical models give similar values 
for the axial. force distribution. Each model under-estimates the magnitude of the 

experimentally derived axial forces. The percentage error between the theoretical and 

experimental values is in most members less than 5%. It was found in measuring the 

cross-sectional areas from specimen tubes that there was often a variation over a length 

from the same batch. This, in some cases, was as much as 5%. There are however 

members where the percentage error between the theoretical and experimental axial 
forces is in the region of 10% (see Table 7.2[b]). In these cases errors in the measured 

cross-sectional area could account for the larger difference between the theoretical and 

experimental values. 

7.4.2 Bending moment distribution 

The GS model gives a good general representation of the elastic bending 

moment distribution in the chord members (see Fig. 7.6). The eccentric moment 

generated by the joint deformation (see section 6.2.4) can be identified as a 
discontinuity at the joints. Generally this eccentric moment has been overestimated by 

the theoretical analysis as has the continuity moment. In the case of the branch members 

the correlation between the experimental and theoretical bending moments is very poor. 
The theoretical moments are double the magnitude of the experimental, but the sense of 
the bending is generally predicted correctly. 

The bending moment distribution predicted by model GK does not correspond 
to the experimental in either the branch or the chord members (see Fig. 7.7). The model 
is only capable of defining the continuity component of the moment distribution in the 
chord, consequently the sense of bending has been correctly predicted. The sense of the 
bending is also correctly defined for the branch members, however the magnitude is 

significantly under-estimated. 



129 

7.4.3 Truss deflection 

The Pin jointed frame analysis (P) gives similar results to model GK, but model 
GS represents a more flexible theoretical structure (see Fig. 7.15[a]). Nevertheless even 
the latter under-estimates the true deformation behaviour. At the span/360 serviceability 
limit model GS under-estimates the experimental value by 15%. At ultimate load the 
discrepancy is of the order of 100%. The most important characteristic is the non-linear 
behaviour of the experimental deflection, and the fact that the load/deflection behaviour 

was only approximately linear even at load levels less than 50% of the ultimate load. 

7.5 Implications arising from the theoretical modelling of the gap joint 

1= 

It is clear that in order to define the structural behaviour of the noded gap joint 

truss it is necessary to model the chord face flexibility. Nevertheless, however good the 

model is in the elastic region the experimental structural performance was non-linear 
with respect to bending and deformation (see section 6.2). Although the behaviour was 
never linear for the test truss, non-linearity was more pronounced at loads in excess of 
60 kN. At ultimate load the measured bending moment distribution bears little 

resemblance to the extrapolated experimental distribution (see Fig. 7.8). Therefore, 

even if the joint deformations had been defined more accurately, the theoretical results 
would only have been reliable at low load levels. A complex non-linear analysis would 
be necessary to predict the structural behaviour in the region between serviceability and 
ultimate load. 

In a gap joint there are three ways of increasing the stiffness of a joint : 
(i) By decreasing the size of the gap. 
(ii) Increasing the branch to chord width ratio, 
(iii) Decreasing the slenderness of the chord wall, bp/ta. 

In truss T1 the bending moments and the overall truss deflection were, for ram 
loads greater than 60 kN, non-linear with respect to the applied ram load. The onset of 
non-linearity in the graphs of applied load v. local joint deformation also occurred at the 
60 kN ram load. In this case the non-linearity was related to yielding of the connecting 
chord face at the joints. Therefore the extent of the linear region with respect to the 
bending moments and central deflection is likely to have been determined by the 

stiffness of the joints. 
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The conclusions from the Polish research programme(33) were that the 
experimental bending moments in the gap joint test trusses were greater than those 
predicted by the 'theoretical micro-bar model'. However, it has not been specified 
whether this relates to both the chord and branch members, or just the chord. 
Furthermore, it was found that the experimental central deflection of the trusses was 
closely predicted. It has not been stated, however, over what load range these 
deductions were applicable. Although similar conclusions have been made for the 
Nottingham gap joint truss Ti, they only apply at modest applied load levels as 
indicated above. 

The argument that the Polish test trusses have stiffer joints and therefore an 
extended linear range (ie., for applied ram load v. overall deflection and applied ram 
load v. bending moment) cannot be used in defending their conclusions. For the 

majority of the gap joint trusses tested the chord walls were more slender than for Ti. 

Furthermore one of their trusses (K1) was similar to Ti. The K1 Warren truss was 
fabricated from 40x4Ox3mm RHS branch members and 100x100x3mm RHS chords. 
The inclination of the branches being 450. 

For gap joint trusses with flexible joints as in T1 the non-linear joint 
deformations with respect to the applied load makes any elastic frame analysis 
impractical. The choice as to whether to use 'flexible' (as opposed to 'stiff) gap joints 
in a truss must remain with the structural engineer. If structural efficiency with respect 
to strength and serviceability are primary requirements, then 'flexible' gap joints should 
be avoided. However, where a design calls for a lattice truss fabricated from gap joints 
it is important that the designer understands the behaviour and limitations of gap joints. 

7.6 Comparison of exnerimental and theoretical behaviour for 1001 

overlap joint trusses 

7.6.1 Axial force distribution derived from a pin-jointed frame analysis 

The pin-jointed frame models (see Fig. 7.1[b]) always over-estimate the axial 
forces in the truss members (for a typical example see Tables 7.3[a] & [b] - taken from 
Appendix F). In the chord the discrepancy between the theoretical and experimental 
values lies in the range of 10%-25%. The error is most pronounced in the midspan 
chord sections. For the branches the discrepancy is greater and generally of the order of 
25%-30%, however the error exceeds 50% in the midspan tie members. 
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By modifying the branch angles and using the true effective depth in the pin- 
jointed analysis, the errors with respect to the experimental axial forces are reduced. In 

this case the difference in the theoretical and experimental values is generally less than 
5% for the chord members, but still high (less than 20%) in the branch members. The 

influence of the effective depth and the branch angle on the axial forces derived from a 
pin jointed analysis is similar for all the 100% overlap joint trusses, (Table 7.4 relating 
to truss T3 is typical). 

The large difference between the theoretical and experimental axial forces in the 

branch members is caused by the varying slope of the experimental bending moment 
distribution in the chord (Fig 7.9 is typical). This causes the chord shears on either side 
of a joint to be different (see section 6.2.2). In order to establish equilibrium in the 
direction perpendicular to the connecting chord face the chord shear reduces the 

axial forces in the branches with respect to those predicted by a pin-jointed analysis. 
The experimental shear forces in the branch members were negligible (less than 1%) in 

comparison to the experimental chord axial forces. 

The distribution of errors in the theoretical branch member axial forces is 

greatest along the midspan section and the ends of the trusses. At these locations large 

changes in the slope of the experimental bending moment distribution occurred across 
the joint (see Fig. 7.9). 

7.6.2 Axial force distributions derived from rigid frame models 

For each truss the experimental elastic axial force distribution has been 

compared with the values derived from the theoretical models. The results are presented 
in Appendix F. 

The S1 and S2 models give similar predictions for the member axial forces (for 

example see Table 7.2[b]). These theoretical values are generally less than the 

experimental. The error for the chord and branches is less than 5% and 10% 

respectively. The Y model gives similar values for the chord forces to those of the S 

models, but larger errors generally occur in the branch members. These errors are 
greatest in the branches along the midspan section. The results derived from the K 

model are the least accurate of all the analyses. 
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7.6.3 Bending moment distribution in the chord members 

For each truss the experimental elastic bending moment distribution has been 
compared with the values derived from the theoretical models. The results are presented 
in Appendix G. 

For the chord members the best representation of the experimental bending 

moment distribution is given by Si, S2 and Y (Figs. 7.10,7.11,7.12 are typical). The 

values derived from the K-model are less accurate (Fig 7.13 is typical), but the 
magnitude of the experimental moments is generally over-estimated. 

The S models give similar values. The only difference between S1 and S2 is 

that there is no moment transfer between the branches and the chord section in the case 
of the S2. The experimental moments in the branches were small compared to those in 

the chord. The values of branch bending moment derived from the Y-model differ from 

those of the S-models only along the midspan section of the compression chord, 
particularly at the position of the central point load. 

Differences with respect to the experimental distribution occur in all the 
theoretical models along the midspan section of the compression chord. However the S- 

models do give a more accurate representation than the Y or K models. The theoretical 

moment at the applied load is sensitive to the joint stiffness. This is demonstrated in 
Fig. 7.14, relating to truss T3. In distribution (a) the stiffness of the compression chord 
section under the ram has been set to the same value as the remaining chord section, 

while in (b) this part of the chord section has been modeled by an infinitely stiff beam 

element. It can be seen that the bending moment distribution is significantly affected in 

the compression chord, particularly at the position of the applied ram load. At this 

position the model in which the infinitely stiff element was used attracts extra bending. 
Away from the loading point the two analyses indicate better agreement with each other, 
and in the tension chord the distributions are similar. 

This indicates that where the concentrated load was applied to the 100% overlap 
joint trusses the bending moment in the chord section either side of the ram was 
sensitive to the stiffness of the joint. Conversely, where there were no applied loads at 
the joints (ie., away from the midspan section) the chord bending moment distribution 
is similar for models Si, S2, and Y, indicating that the chord bending moment was not 

sensitive to the joint stiffness. 
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Normally trusses are subject to uniformally distributed loads (U. D. L's) from 
floors or roofs. This usually involves transferring the loads to the truss at the joints by 

some form of secondary structure such as purlins. The test trusses were loaded only at 
the midspan joint. It is therefore difficult to assess the influence of the joint stiffness on 
the chord bending moment distribution for a 100% overlap joint truss subject to a 
U. D. L. It is likely, however, that there is a range of bp/to and ß for which aY type 

model would be adequate in analysing 100% overlap trusses subject to a U. D. L. 

7.6.4 Bending moment distribution in the branch members 

For the branch members models Si, Y and K always over-estimate the 
experimental moments, while S2 under-estimates the values. Furthermore Sl and Y 

give similar values, while those of K are larger in magnitude. 

None of the models give a reliable prediction for the sense of the branch 
bending moments. The sense and magnitude of the bending moments is influenced by 

the rotational stiffness of the joint which is sensitive to the weld detailing - this is 

discussed in section 6.3.3. Therefore, an accurate representation of the branch moments 

cannot be deduced from simple rigid frame models. However, it is encouraging that the 

magnitude of the bending moments is over-estimated by those analyses where the 
branches are rigidly connected to the chord section (namely models, S 1, Y, and K). 

7.6.5 Truss Deflection 

Up to the serviceability limit of span/360 all the models give estimates of the 

central deflection which agree with the experimental to within 5% (for example see 
Figs. 7.15,7.16, and 7.17). The prediction afforded by a pin-jointed analysis 

corresponds to that defined by the K-model. The values derived by S 1, S2, and Y are 
similar but differ from those of the P and K-models. The Si, S2 and Y models 
generally under-estimate the central deflection, while the P and K models give over- 
estimates. The fact that all the analyses give similar results indicates that joint 
deformation did not significantly influence the overall deflection. Truss deflection was, 
therefore, governed by the axial stiffness of the members. 

7.7 Implications arising from the theoretical modelling of the 100% 

overlap joint trusses 

There was little difference in the experimental axial force, bending moment or 
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deflection and the corresponding theoretical values derived from models S1 and Y. For 
the range of parameters studied (ie., ß<0.6 ; b0/t0 < 25) the influence of the joint 

stiffness on the structural behaviour was negligible. Hence, there is little merit in 

simulating the deformation of the connecting chord face. However, for slender chord 
sections the joint stiffness may be more important. 

The Y-type frame analysis provides a simple and practical tool for assessing the 

elastic axial forces, bending moments and overall deflection of 100% overlap joint 

trusses. It is important, therefore, to assess more precisely the range of parameters ((3, 

and b0/t0) for which this form of analysis is applicable, particularly for 100% overlap 
joint trusses subject to a U. D. L. 

Designers normally assume that the bending stress in the chord section can be 

evaluated by distributing the eccentricity moment equally either side of the joint. For the 
design of the critical chord section this bending stress is combined with the axial force 

derived from a pin jointed frame analysis. In the test trusses there was a continuity 
bending moment in both the tension and compression chords which was caused by the 

overall truss deflection. The assumption that the bending moment in the chord is the 

same either side of a joint is therefore incorrect (Fig. 7.9 is typical) - this simplified 
design technique is not recommended. 
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Table 7.1 Chord face stiffness co-efficients derived from the experimental results. 

----------------------------------------------- ----------------------------------------------- 
Truss Chord wall thickness Stiffness Co-efficient 

to r 
mm kNmm-1 

Tl 4.0 65 
5.0 75 

T2 4.0 21 
5.0 41 

T3 5.0 43 

T4 5.0 93 

T5 5.0 40 tie overlaps strut 
70 strut overlaps tie 

T6 6.3 27 

Notes : 
1) Refer to Fig 7.3 for the definitions relating to chord face stiffness co-efficients. 
2) Chord face stiffness co-efficients were evaluated for each joint. For truss Ti 

there were two values for each joint while in the 100% overlap joint trusses only 
one value was derived for each joint. 

The following simplifications have been made : 

GaI2 joint ss 

(i) For each joint the mean of rl and T2 (see Fig 7.3) was calculated, so that the 
same value was used for the chord face stiffness under the tension and 
compression branches. 

(ii) Mean values for each chord thickness were then evaluated (ie., the 4mm and 
5mm thick chord sections were considered separately). Therefore, two joint 
stiffness co-efficients have been derived for the gap joint truss, one for the 4mm 
thick chord section and another for the 5mm thick section. 

(iii) The variation in chord face deformation that was observed in the test truss 
between corresponding tension and compression chord joints has not been 
incorporated into Model GS. 

100% overlap joint trusses 

(i) A chord face stiffness co-efficient was derived for each joint. A mean value was 
then calculated for each truss. 

(ü) In truss T2 where there were two different chord thicknesses, a chord face 
stiffness co-efficient was evaluated for for each chord section thickness. 

(iii) In truss T5, due to the absence of symmetry in the joint geometry, the chord face 
stiffness of the joints where the tie overlapped the strut was different to that 
where the strut overlapped the tie, therefore two different values have been 
derived for this truss. 
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Table 7.2(al Experimental and theoretical elastic axial force co-efficients for truss 
Ti. 

Member Axial force co-efficients 
(kN per 1 kN of applied load) 

Experimental Theoretical models 
P GS GK 

Xe X1 X2 X3 

1 -0.02 0.00 0.06 0.04 
2 0.96 0.93 0.92 0.92 
3 1.91 1.87 1.85 1.85 
4 2.98 2.80 2.77 2.78 
5 3.93 3.73 3.64 3.65 
6 2.86 2.80 2.77 2.78 
7 1.93 1.87 1.85 1.85 
8 0.93 0.93 0.92 0.92 
9 0.03 0.00 0.06 0.04 

10 0.48 -0.47 -0.46 -0.46 
11 1.43 -1.40 -1.38 -1.39 
12 2.36 -2.33 -2.31 -2.31 
13 3.21 -3.27 -3.20 -3.21 
14 3.27 -3.27 -3.20 -3.21 
15 2.36 -2.33 -2.31 -2.31 
16 1.44 -1.40 -1.38 -1.39 
17 0.48 -0.47 -0.46 -0.46 

18 0.64 0.68 0.58 0.61 
19 0.67 -0.68 -0.65 -0.67 
20 0.69 0.68 0.66 0.68 
21 0.69 -0.68 -0.66 -0.68 
22 0.68 0.68 0.66 0.68 
23 0.70 -0.68 -0.66 -0.68 
24 0.64 0.68 0.61 0.64 
25 0.69 -0.68 -0.64 -0.64 
26 0.69 -0.68 -0.64 -0.64 
27 0.65 0.68 0.61 0.64 
28 0.71 -0.68 -0.66 -0.68 
29 0.69 0.68 0.66 0.68 
30 0.68 -0.68 -0.66 -0.68 
31 0.68 0.68 0.66 0.68 
32 0.72 -0.68 -0.65 -0.67 
33 0.64 0.68 0.58 0.61 

34 0.51 0.50 -0.45 -0.46 
35 0.51 0.50 -0.45 -0.46 

Notes : 
1) To be read in conjunction with Fig S 1. 
2) Forces shown are per 1 kN of applied ram load. 
3) Experimental co-efficients have been derived from the measured strain gauge 

values at the 50 kN ram load. 
4) For definition of theoretical models see Chapter 7. 
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Table 7.2(b) Comparison of experimental and theoretical elastic axial forces for 
truss Ti. 

Member Percentage difference 
between theoretical 

and experimental values 
(Xn-Xe). 100/Xe 

P GS GK 

2 -2.9% -4.2% -4.5% 
3 -2.5% -3.6% -3.6% 
4 -6.0% -6.9% -6.8% 
5 -4.9% -7.2% -7.1% 
6 -2.1% -3.0% -3.0% 
7 -3.5% -4.6% -4.6% 8 0.5% -0.8% -1.1% 

10 -2.5% -4.2% -3.8% 
11 -2.2% -3.3% -3.2% 
12 -1.3% -2.3% -2.2% 
13 1.9% -0.1% 0.1% 
14 -0.1% -2.0% -1.8% 
15 -1.0% -2.0% -2.0% 
16 -2.9% -4.0% -4.0% 
17 -2.9% -4.6% -4.2% 

18 6.2% -9.3% -5.3% 
19 2.1% -2.5% -0.4% 
20 -0.7% -4.4% -1.0% 
21 -0.6% -4.8% -1.9% 
22 0.1% -3.2% -0.6% 
23 -1.6% -5.5% -2.6% 
24 6.2% -4.7% -1.4% 
25 -0.4% -7.4% -6.3% 
26 -1.4% -8.4% -7.2% 
27 5.7% -5.1% -1.9% 
28 -3.7% -7.5% -4.6% 
29 -1.4% -4.8% -2.2% 
30 0.6% -3.7% -0.7% 
31 0.4% -3.2% 0.1% 
32 -4.5% -8.8% -6.8% 33 7.7% -8.0% -3.9% 
34 -2.7% -13.2% -10.3% 
35 -1.8% -12.4% -9.4% 

Notes : 
1) To be read in conjunction with Figs S 1. 
2) Forces shown are per 1 kN of applied ram load. 
3) Experimental co-efficients have been derived from the measured strain gauge 

values at a ram load of 50 M. 
4) For definition of theoretical models see Chapter 7. 
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Table 7.3(a) Experimental and theoretical elastic axial force co-efficients for truss 
T3. 

Member Axial force co-efficients (kN per 1 kN of applied load) 
Experimental Theoretical models 

P Si S2 YK 
Xe X1 X2 X3 X4 X5 

1 0.26 0.25 0.26 0.26 0.25 0.25 
2 0.67 0.75 0.68 0.68 0.69 0.67 
3 1.02 1.25 1.03 1.03 1.03 0.99 
4 0.66 0.75 0.68 0.68 0.69 0.67 
5 0.25 0.25 0.26 0.26 0.25 0.25 

6 -0.06 0.00 -0.06 -0.06 -0.06 -0.08 
7 -0.46 -0.50 -0.47 -0.47 -0.47 -0.46 
8 -0.80 -1.00 -0.84 -0.84 -0.84 -0.82 
9 -0.79 -1.00 -0.84 -0.84 -0.84 -0.82 

10 -0.45 -0.50 -0.47 -0.47 -0.47 -0.46 
11 -0.05 0.00 -0.06 -0.06 -0.06 -0.08 

12 -0.44 -0.56 -0.44 -0.44 -0.41 -0.37 
13 0.47 0.56 0.46 0.47 0.49 0.47 
14 -0.47 -0.56 -0.46 -0.47 -0.48 -0.45 
15 0.38 0.56 0.37 0.37 0.35 0.33 
16 -0.43 -0.56 -0.42 -0.43 -0.41 -0.40 
17 -0.44 -0.56 -0.42 -0.43 -0.41 -0.40 
18 0.39 0.56 0.37 0.37 0.35 0.33 
19 -0.46 -0.56 -0.46 -0.47 -0.48 -0.45 
20 0.48 0.56 0.46 0.47 0.49 0.47 
21 -0.43 -0.56 -0.44 -0.44 -0.41 -0.37 

22 -0.06 0.00 -0.07 -0.06 -0.09 -0.12 
23 -0.06 0.00 -0.07 -0.06 -0.09 -0.12 

Notes : 
1) To be read in conjunction with Fig S 1. 
2) Forces shown are per 1 kN of applied ram load. 
3) Experimental co-efficients have been derived from the measured strain gauge 

values at a ram load of 200 kN. 
4) For definition of theoretical models see Chapter 7. 
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Table 7.3(b) Comparison of experimental and theoretical elastic axial forces for 
truss T3. 

Member Percentage difference between 
theoretical and experimental values 

(Xn-Xe). 100/Xe 
P Si S2 Y K 

1 -2.3% 0.0% 0.0% -3.5% -2.0% 
2 12.4% 1.5% 1.3% 2.7% 0.1% 
3 22.1% 0.8% 0.9% 0.2% -3.0% 
4 13.1% 2.1% 1.9% 3.3% 0.8% 
5 -0.8% 1.6% 1.7% -2.0% -0.4% 

6 -4.9% -5.4% -1.6% 36.1% 
7 9.9% 2.4% 2.6% 2.6% 1.5% 
8 24.4% 5.0% 4.9% 4.9% 1.4% 
9 26.1% 6.4% 6.3% 6.3% 2.8% 

10 10.1% 2.6% 2.8% 2.9% 1.8% 
11 26.1% 25.4% 30.4% 80.4% 

12 28.2% 0.0% 1.3% -6.0% -15.6% 
13 18.9% -1.3% 0.3% 3.8% -0.4% 
14 19.7% -1.3% 0.1% 1.7% -3.9% 
15 47.9% -2.6% -1.0% -7.9% -14.0% 
16 28.8% -3.2% -1.9% -5.8% -7.8% 
17 25.9% -5.4% -4.1% -7.9% -9.9% 
18 44.1% -5.2% -3.5% -10.3% -16.2% 
19 21.3% 0.0% 1.4% 3.0% -2.6% 
20 17.4% -2.5% -1.0% 2.5% -1.7% 
21 30.0% 1.4% 2.7% -4.7% -14.4% 

22 0.0% 14.4% 65.5% 121.8% 
23 1.9% 6.6% 54.2% 106.8% 

Notes : 
1) To be read in conjunction with Fig S 1. 
2) Forces shown are per 1 kN of applied ram load. 
3) Experimental co-efficients have been derived from the measured strain gauge 

values at a ram load of 200 kN. 
4) For definition of theoretical models see Chapter 7. 
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Table 7.4 Comparison of experimental and theoretical axial force co-efficients for two 
types of pin jointed frame analysis. (truss T3) 

Member Axial force co-efficients (kN per kN of applied ram load) 
Experimental Pin 1 Pin 2 

1 0.26 0.25 0.22 
2 0.67 0.75 0.65 
3 1.02 1.25 1.08 
4 0.66 0.75 0.65 
5 0.25 0.25 0.22 

6 -0.06 0 0 
7 -0.46 -0.5 -0.43 
8 -0.8 -1 -0.87 
9 -0.79 -1 -0.87 

10 -0.45 -0.5 -0.43 
11 -0.05 0 0 

12 -0.44 -0.56 -0.54 
13 0.47 0.56 0.54 
14 -0.47 -0.56 -0.54 
15 0.38 0.56 0.54 
16 -0.43 -0.56 -0.54 
17 -0.44 -0.56 -0.54 
18 0.39 0.56 0.54 
19 -0.46 -0.56 -0.54 
20 0.48 0.56 0.54 
21 -0.43 -0.56 -0.54 

22 -0.06 00 
23 -0.06 00 

Notes : 
1) To be read in conjunction with Fig Si. 
2) Forces shown are per i kN of applied ram load. 
3) Experimental co-efficients have been derived from the measured strain gauge values 

at a ram load of 200 kN. 
4) Pin 1 is equivalent to the pin-jointed frame analysis shown in Fig 7.1 [b]. In this 

model the effective depth is equivalent to the distance between the connecting chord 
faces. The theoretical effective depth is, therefore, less than the true effective depth, 
but the true branch angle, 0 has been used in the calculation of the axial forces. 

5) Pin 2 is equivalent to a pin jointed frame analysis where the effective depth is 
equivalent to the true effective depth ie., the distance between the chord centre-lines. 
In this model the branch angle that has been used to calculate the axial forces is 

greater than the true branch angle, 0. 
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CHAPTER 8 
JOINT ULTIMATE STRENGTH 

8.1 Introduction 

Different strength models and formulae have been developed for the failure 

modes associated with RHS gap and overlap joints - these are described in detail in 
CIDECT Monograph 6(43); some have been derived theoretically while others are 
substantially empirical. In some cases it has been possible to predict the joint strength 
by only one or two governing failure modes. Normally joint ultimate strength is used as 
the design criterion, but the CIDECT design recommendations and limits of validity are 
set so that a limit state for deformation will not be exceeded at the service load. 

A summary of the critical equations for determination of the mean and 
characteristic strengths of K and N gap joints with RHS chords and branches is given 
in Table I1 of Appendix I. The ultimate strength of RHS overlap joints is primarily 

governed by the strength of the compression and tension branches. Table 12 gives the 

equations that have been developed to give the mean and characteristic strength of fully 

or partially overlapped joints. For both gap and overlap joints, the design joint strength 

equations presented in Appendix I are substantially empirical and are based on the 

results of isolated joint testing (see CIDECT Monograph 6(43)). 

The limits of validity for the equations are also presented in Tables I1 and 12. 
Some of these limits represent bounds for which supporting test evidence is available; 

others are theoretical estimates to ensure adequate joint performance, with regard to 

such factors as local joint deflections at the service load level, sufficient moment- 

redistribution capacity and prevention of premature local buckling. The reasons for their 

implementation are described in detail by CIDECT(43). 

In this chapter the experimental and design joint strengths have been compared 
for the gap joint truss as well as the 100% overlap joint trusses. Although this thesis is 

not specifically concerned with gap joint trusses, it is felt that the observations made in 

the testing of truss Ti will be of use to those involved in the testing of gap joint trusses 
in the future. For the 100% overlap joint trusses the relationship between the results 
derived from the truss tests and those obtained from the testing of isolated partial and 
100% overlapped joints have been reviewed in detail. Attention has been focused on the 

relevance of the isolated joint failure modes, and the suitability of the corresponding 
design joint strength equations. 
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8.2 Identification of joint and member failures in the test trusses 
(for a detailed description see Chapter 5) 

In isolated joint testing the ultimate strength has normally been defined as the 
maximum resistance to applied load. In this case an isolated joint is deemed to have 
failed when it is no longer capable of resisting further increases in load. For the gap 
joint truss, Ti, individual joint failures were identified by studying the graphs of 
applied ram load v. chord face deformation (see section 5.3). 

In the 100% overlap joint trusses the most common mode of failure was 
member yielding of the branches. Only three joint failure modes were observed: 
(i) Local buckling of the compression chord, L7. This occurred only in truss T2 at 

joint 9. 

(ii) Local buckling of the compression branch (L6). This failure mode was 
observed only in truss T6. 

(iii) Rupture of the tension branch. This occurred on two occasions (in truss T5 at 
joint 2, and in truss T6 at joint 3). These ruptures always occurred in the heel 

crosswall directly above the weld to the chord face. The tear occurred in the 
'heat affected zone' of the parent metal and not in the weld itself. This type of 
failure occured only at joints where the tie overlapped the strut. 

For all the 100% overlap truss joints the deformation of the connecting chord 
face was negligible, irrespective of the failure mode. As a result joint failure was not 
clearly defined from the graphs of applied ram load v. chord face deformation. For the 
100% overlap joint trusses joint failures were identified visually. 

In the 100% overlap joint trusses it was found difficult to assess joint strength 
independently of the structure strength, particularly since the structures achieved higher 

strengths by redistribution of chord bending moments (see section 6.3.6). In the test 
trusses it was difficult to define whether an element (member or joint) had reached its 
full load carrying capacity (see section 5.7). The distribution of axial forces at truss 
ultimate load did not, therefore, necessarily correspond to the ultimate load carrying 
capacity of a particular part of the truss. In the case of the 100% overlap joint trusses, it 
is possible to state only the joint forces at truss ultimate load, and to indicate whether 
extreme fibre yielding had occurred at the strain gauges in any of the members. 
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8.3 Post-failure residual strains in branch and chord members 

For both gap and 100% overlap joint trusses an attempt was made to measure 

the residual strains (see section 4.4). The most likely causes of post failure residual 

strains in the truss members are : 
(i) Extreme fibre yielding at a section. 
(ii) Axial and bending forces caused by permanent set in joint deformation and 

overall truss deflection. 
(iii) Welding and repair work. 

8.4 Residual strains in the gao joint truss. TI 

During the entire loading history (seven failure cycles) of the truss it was 

observed that the branch members were not subject to yielding at the strain gauge 

positions. Therefore, the residual axial and bending forces in these members were 

caused by : 
(i) Axial and bending forces arising from permanent set in joint deformation and 

overall truss deflection. 

(ii) Welding and repair work. 
(iii) A combination of (i) and (ii). 

The residual axial forces generated in the branch members at each failure cycle 

varied along the length of the truss, and were highest at those positions where failure of 

a joint or member had occurred. The residual axial forces generated by a single failure 

cycle were, generally, less than 5% of the maximum branch force for that load cycle. 

However, the residual forces caused by each load cycle were not always additive. 

For the chord members yielding did occur at the strain gauge positions. The 

residual forces cannot be evaluated for a section which has yielded since the amount of 

strain caused by extreme fibre yielding cannot be distinguished from that caused by 

permanent deformation set. 

For both the branch and chord members the residual strains created by the repair 

of an element were negligible in magnitude compared to those caused either by yielding 

or permanent set deformations. Furthermore, these strains were always localized, 

affecting only those members directly adjacent to the element that was repaired. 



161 

8.5 Secondary bending stresses in the 
-g-, 112 joint truss. TI 

At truss ultimate load the secondary chord bending stresses in the gap joint truss 
(caused by the continuity moment) were of the same order of magnitude as the primary 
chord bending stresses in the corresponding 100% overlap joint truss T2 (see section 
6.4.3). Therefore, in truss T1 it is likely that the secondary bending stresses influenced 

the mode of failure and ultimate strength of the joints. With respect to the influence of 
the secondary chord bending stresses on ultimate joint strength two observations have 
been made : 
(i) For the compression chord joints the secondary bending stress was always 

tensile on the connecting chord face. Therefore, it was in the opposite sense to 
the compressive stress caused by the axial force in the chord (see Fig 8.1[a]). 

(ii) For the tension chord joints the secondary bending stress was always 
compressive on the connecting chord face. Once more the bending stress was in 

the opposite sense to the tensile axial force in the chord (see Fig 8.1 [b]). 

A study of the residual stresses in the chord indicates that a proportion of 
continuity bending moment was retained on removal of the applied ram load. For 

multiple failure cycles, the residual bending stresses caused by the permanent set in the 
overall deflection were additive. 

8.6 Comparison of experimental and design joint strengths for the gala 
joint truss. Ti 

The gap joint mean strength equation (Eqn. 8.1) is based on the results of 
isolated joint testing. In isolated joint tests the bending induced in a continuous chord 

section cannot be correctly simulated. However, the chord bending moments in truss 
Ti were significant even though the joints were noded (see section 6.2.4). 
Consequently the influence of observations (i) and (ii) in section 8.5 have not been 

considered in the formulation of the mean ultimate joint strength equation. 

2 
Nim =7.7. Geo. to2"ß" . f( 

). µ Egn. 8.1 

where: 
fp 

b 125 )= (1+3ooo)). ((3o). (90-01-02) ; (< 1) Egn. 8.1.1 CJ 
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f()=1 for < 30 

ß_ (bl+hi+b2+h2) 
1400 

=r1.3-ýßll. 
6eo for compression chord 

for tension chord 

Eqn. 8.1.2 

Eqn 8.1.3 

The modes of failure that occurred in truss T1 over the six failure cycles have 
been categorized using the CIDECT definitions. Each joint failure mode involved 

deformation of the chord connecting face. The predicted joint strengths derived from the 

gap joint mean strength equation (Eqn. 8.1) are shown in Table 8.1. It should be noted 

that the residual stresses have not been considered in the determination of the 

experimental axial forces. 

It is clear that a compressive axial load in the chord is detrimental to the joint 

strength (this has been found in isolated joint testing - see CIDECT Monograph 6( 43)). 

The joints on the compression chord were weaker than corresponding joints on the 

tension chord. Furthermore, the compression chord joints were normally subject to 
buckling in the sidewalls. On the tension chord only deformation of the connecting face 

occurred. The inclusion of the t function for the compression chord joints is thus 
justified, without it the compression chord joint strengths would be significantly over- 

estimated (see Table 8.1). 

There was a compressive bending stress on the connecting chord face of the 
tension chord caused by the continuity moment (see Fig 8.1[b]) and by the residual 

stresses accumulated in previous load cycles. This compressive bending stress appeared 

to be detrimental to the strength of tension chord joints. This could explain why the gap 
joint mean strength equation significantly underestimates the experimental ultimate 

strength of joints 4,11 and 12, which all failed by mode G1. Since these joints were at 
truss midspan the continuity bending moment in the tension chord was greater than for 

the other tension chord joints. 

In a truss environment the influence of secondary bending stresses in the 

tension chord joints could, therefore, have a significant effect on the strength of a joint. 

Joints 4 and 11 failed in the third load cycle, and joint 12 in the sixth. Therefore, the 

accumulated residual stresses in the chord also need to be considered. After the first 
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load cycle the combination of accumulated residual stresses and the influence of 
stiffening plates and repairs make it difficult to assess the influence of secondary 
bending stresses on the strength of the joints. Moment redistribution in the chord 
section was also observed in the case of the gap joint truss. Although this may have 

relieved the stress concentration at chord sections subject to extreme fibre yielding, the 
redistributed moment would have tended to increase the bending stress at other chord 
sections, thus possibly reducing the the strength of joints elsewhere in the truss. 

8.7 Failure modes observed after the first load cycle in the 100% 

overlap joint trusses 
(for a detailed description see Chapter 5) 

Of the 100% overlap joint trusses only trusses T2 and T3 were subject to more 
than one failure cycle. On the first load cycle of T2 in plane double curvature buckling 

of the compression chord occurred. Initially this involved yielding in the 4mm thick 

section adjacent to the splice. The member was subsequently repaired, as was the 

corresponding section on the opposite side of the truss. On re-loading the same member 
failed but this time in the L7 mode which has been identified in isolated joint testing (see 

CIDECT Monograph 6(43)). Failure of the branch members did not occur, and only a 
1% increase in the ram failure load was achieved with respect to the first load cycle. 

In truss T3 overall yielding of the branch members was observed in the first 
load cycle, however local buckling of the chord in all four walls of the central joint 
(joint 9) was also observed. Joint 9 was strengthened, but only the same branch 

members yielded on the second load cycle. For truss T3 a 4% increase in the ram failure 

load was achieved with respect to the first load cycle. 

Truss T2/2 is unique in that it was formed by cutting truss T2, once it had 

failed, and reducing the span. Although it was subject to only one failure cycle. It was 
not possible to evaluate the residual strains caused by the cutting, welding and plating 

necessary to form truss T2/2. This is because the sensors had to be disconnected from 

the datalogger to allow the repair to take place. The experimental results of T2/2 have, 

therefore, been treated with caution. 

With the exception of the L7 mode in truss T2, only the experimental joint 

strength results of the first load cycle have been considered for the 100% overlap joint 

trusses. 
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8.8 The influence of joint stiffness on 100% overlat joints 

In the 100% overlap joint trusses a variation in stiffness between the heel and 
toe faces has been identified in both the overlapping and overlapped branches. The 

stress distribution in the crosswalls of the branch members appeared to be influenced by 

the sense of overlapping (ie., strut/tie or tie/strut), and is described in detail in section 
6.3.3. 

Due to the variation of stiffness in a'partially' overlapped connection, from the 
flexible heel to the stiff overlapping toes of the branches, a moment is induced in the 
branches which increases the stress in the walls facing each other (see Fig 8.2[a]). In 

the testing of isolated partial overlap joints (see CIDECT Monograph 6(43)) this has led 

to two failure modes for the branch members : 
(i) Local yielding of the toe crosswall of the tie or strut. 
(ii) Local buckling of the toe crosswall of the compression branch. 

The results derived from the test trusses do not conform with the results of partial 

overlap isolated joint testing. Although (i) was observed in the truss tests, local yielding 

on the heel crosswall was more common. Furthermore, the L6 local buckling mode in 

truss T6 was observed initially to form on the heel Grosswall of the strut. 

It has been concluded from isolated joint testing that the moment generated by a 
negative eccentricity always relieves the bending in the branches caused by the variable 

stiffness of the connection. The resulting change in the sign of the bending moments 

has been observed by De Koning and Wardenier(32) in fully overlapped joints. For the 

trusses this change in sign was observed mainly in the branches where the tie 

overlapped the strut. This can be explained by the fact that the bending moment caused 

by the difference in stiffness between the toe and heel crosswalls was in opposition to 

that caused by the joint eccentricity (see Fig. 8.2[b]). For the joints where the strut 

overlapped the tie the general tendency was for the heel face of the overlapped tie 

members to be more highly stressed than the toe face (for the reasons described in 

section 6.3.3). As a result the eccentricity moment added to the moment induced by the 

variable stiffness of the connection (see Fig. 8.2[c]). 

8.9 Comparison of experimental and design joint strengths for the 
100% overlap joint trusses 

The CIDECT design joint strength equation (Eqn. 8.2) is presented in Table 

8.2. The IIW(44) implementation is given by Equation 8.3. Both sets of equations relate 
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the mean ultimate joint strength to the axial forces in the branch members. 

Nim = ßei (2hi - 4ti + bi + be(ov)) where i =1 or 2 Eqn. 8.3 

C (ßeiti)ov 
bi < bi be(°V) = 

((bi/ti)ov) 
' (6eiti) 

() Eqn. 8.3.1 

where (ov) = overlapped member 

The IIW method of assessing the joint strength is the simpler of the two. Only 

the strength of the overlapping member is calculated, while the overlapped member is 

assumed to develop its full axial capacity (ie., cross-sectional area x yield stress). 

The CIDECT approach is more comprehensive and strength equations are 
provided for both of the branches at a joint. The derivation of the equations is outlined 
in detail in Monograph 6(43). The equations are based on a defined stress distribution in 

the walls of the branch members. This has been derived by assuming that the heel 

crosswall weld of the overlapping member is formed adjacent to the toe weld of the 

overlapped member (see Fig. 8.3[a] - detail 2). In the truss joints this type of detail was 

not used, no weld was provided along the toe of the overlapped branch (see Fig. 8.3[b] 

- detail 4). Consequently, the predicted stress distributions (at failure) in the walls of the 

overlapped tie branches do not always correspond to the experimental distributions at 
the ram failure load. 

For strut overlapping tie the experimental stress (at the ram failure load) on the 
heel crosswall of the tie was, for the majority of Warren joints, greater than on the toe 

face (see Fig. 6.11[b]). The predicted tie strength is, however, based on the assumption 

that the opposite is true. For the strut the predicted strength equation assumes that the 
higher stress is on the heel crosswall. This generally corresponds to what has been 

identified experimentally (see Fig. 6.11 [b]). Where the tie overlaps the strut the 

predicted stress distributions generally correspond to the experimental (see Fig. 

6.11 [a]). In this case the overlapping tie was always more highly stressed on the heel 

face, while the overlapped member was more highly stressed on the toe face. 

In a truss environment it is difficult to define whether an element (member or 
joint) has reached its full load carrying capacity (see section 5.7). For this reason a 

comparison of the predicted and experimental failure loads in the branches cannot be 

relied upon to assess the 'accuracy' of the joint strength equations. For each of the 
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100% overlap joint trusses the CIDECT and IIW effective width equations have been 

compared to the experimental joint forces at the ram failure load (see Appendix J, Table 

8.3 is typical). The branch member axial forces corresponding to the predicted joint 

strengths are always higher than the experimental axial forces at ram failure load, even 

where joint failure occurred by strut local buckling, (L6). With respect to these joint 

failures the CIDECT and IIW equations are unsafe. Member yielding of the tension 

and/or compression branches was the most common mode of failure in the test trusses. 
It could, therefore, be argued that where branch member yielding occurred the CIDECT 

and IIW equations are not unsafe, but rather that the yielding of the branch member was 

critical. 

From isolated joint tests Haleem(59) observed that the longitudinal strains on the 

tie branch side of the strut (ie., on the toe crosswall) were usually significantly higher 

than the average value. Generally, for the Warren trusses the opposite was true, namely 

that the heel crosswall of the strut was more highly stressed than the toe crosswall. For 

the N-truss the heel crosswall of the strut was more highly stressed than the toe only 

where the strut overlapped the tie. On the opposite side of the N-truss where the 

overlapping was reversed (ie., tie overlapped the strut), the toe crosswall of the strut 

was more highly stressed than the heel crosswall. The experimental distribution of 

stresses in the Warren and N-type 100% overlap joint test trusses is described in detail 

in section 6.3.3. Haleem's overlap joint strength formula (Eqn. 8.4) is based on the 

assumption that the strength is limited to that load which produces local yield or 
buckling of the strut on the toe crosswall. 

Nlm = A1.6el. hi 

where 

Eqn. 8.4 

b0 b1 Sin(01+4 
hl 1.4 ,( 

)(b1) Cl)ý 2. Eqn. 8.4.1 
1+Sin(oT2) 

and 
$1 = 90°-81 ; 
02 = 900-02 

This formula has been applied to the joints in the test trusses with the result that 

the predicted strut efficiency is never less than 0.96 (see Appendix J, Table 8.3 is 

typical). Strut local buckling (L6) in truss T6 always occurred firstly on the heel 

crosswall. Haleem's equation is unsafe in predicting the L6 failures in truss T6 (see 

Table 8.3). This is not surprising since Eqn. 8.4 is based on the assumption that local 
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yield or buckling (L6) occurs on the toe face of the strut. 

Haleem's equation was later modified for the mean results by dropping the 
angle function and including the effect of the chord axial pre-load, Fop. The resulting 

equation is deemed to apply to joints with overlap in excess of 25% and assumes that 
deformation of the chord connecting face occurs in conjunction with local buckling of 
the compression branch. For overlapped joints Packer(17) considered two mechanisms 
of failure. Both correspond to mode of failure L6 and again assume deformation of the 

chord connecting face. In truss T6 where strut local buckling did occur (see section 
5.5.3) it did not involve deformation of the chord connecting face. Since deformation of 
the chord connecting face was negligible for the 100% overlap joint trusses, the 

predicted joint strengths derived from Packer's mechanisms and Haleem's modified 

equation are not applicable. However, in a truss where a 100% overlap joint is subject 
to a concentrated point load significant deformation of the connecting chord face is 

likely to occur. In this case the Packer mechanisms could be applicable. 

The L7 type joint failure in the chord was only observed in one of the trusses, 

namely T2 at joint 9. In this case there is reason to suspect that it was related to the 

repair afforded to adjacent chord section (see section 5.5.1). The L7 mode is directly 

related to the build up of compressive stress in the chord connecting face behind the 
heel of the tie, due to joint eccentricity moment. In a continuous chord section, this 

stress can be relieved by : 

(i) Moment redistribution in the chord. This was observed in each of the 100% 

overlap joint trusses (see section 6.3.6). 

(ii) The continuity moment in the chord. For the test trusses this was caused by the 

overall deflected shape. The bending stress related to the continuity moment was 
always tensile on the connecting chord face of the compression chord, therefore 

acting against the L7 mode (see Fig. 7.1[c]). 

In Warren joints an estimate of the branch force required to produce local 
buckling of the chord (L7) has been presented in CIDECT Monograph 6(43), namely: 

Nlm = Al. c el. hl Eqn. 8.5 

where 
hl =[(t0/6eo)/(tl/ae1)1. [(h0(b0)+1-(2to/b0)]. [1-(IFop/AO. (Yeol)]. Sin 02 

[(hi/bi) +1-(2tl/bl)]. [1+k(Aoho/Zo)]. (e/hp). Sin(01+92) 
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This equation incorporates the chord pre-load, Fop. For a continuous chord the 

moment induced by the joint eccentricity is assumed to be distributed equally on either 

side of the chord, ie., k=0.5. Haleem(59) noted from isolated joint tests that the 

measured stress distribution in the chord sidewalls due to branch shear transfer parallel 
to the chord is approximately triangular, irrespective of the actual geometric eccentricity, 
in which case 

k. r Z°) 
. 

rhý1= 1 

In a truss environment, the effect of chord continuity moment and the action of 

moment redistribution invalidate Haleem's assumptions. The chord bending moments 
in the test trusses either side of a joint were never equal (see bending moment 
distributions in Appendices G& H). 

For T2 the L7 mode occurred at a strut force of 90 kN. Use of Eqn. 8.5 predicts 
failure at a strut force of 70 kN. In the remaining trusses the equation gives limiting 

values for the strut axial force which are generally exceeded by the experimental values 
(see Table 8.4) However, with the exception of truss T2, the L7 failure mode was not 

observed in any of the other trusses. 

Haleem and Packer(15) also suggested that the chord shear strength should be 

checked and presented an equation for this purpose. However, no such failure occurred 
in any of the trusses that were tested. In fact shear failure of the chord has never been 

observed in any isolated joint or truss tests on partial or 100% overlap joints. 

8.10 Use of plane frame analyses in designing 100% overlap joint 
trusses 

In order to design a lattice truss, a designer needs to know which frame analysis 

to use in conjunction with the joint strength equations. Three analytical methods have 

been investigated. The objective was to define the most practical approach by which to 
design a 100% overlap joint lattice truss. 

8.10.1 Design of the branch members based on joint failure 

Using the CIDECT joint mean strength equations (see Table 8.2) the predicted 

applied ram load corresponding to the failure of each joint, (ie., local yielding of the 
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branch member), has been evaluated, by considering the strut and tie strengths 
individually. Two calculation methods have been used, method '1' is based on the 

experimental elastic axial force co-efficients, and method '2' on the axial force co- 

efficients derived from the model-Y rigid frame analyses, described in Chapter 7. 

The predicted ram load corresponding to local yielding in the branches has been 

evaluated by : 
(i) Calculating the predicted branch forces corresponding to joint failure from the 

CIDECT equations - see Table 8.2. 

(ii) Dividing the calculated branch force from (i) by the corresponding axial force 

co-efficient. (NB. The axial force co-efficient in any member is defined as the 

axial force caused by a1 kN applied ram load). 

The results have been tabulated with respect to individual branch members as 

opposed to joints. Therefore for each branch member in a truss there is a corresponding 

predicted ram load which causes local yielding at the joint in that member. Since each 
branch spans between two joints there can be two different values of predicted ram load 

for the same member. In such cases the critical value has been tabulated. 

For each branch the experimental strain gauge values, at ram failure load, have 

been extrapolated to assess whether the yield stress was exceeded at the ends of the 

member. In the tables presented in Appendix K (Table 8.5 is typical) the asterisk 
denotes the occurrence of extreme fibre yielding in a branch member at the ram failure 

load. 

The predicted ram load corresponding to local yielding in a branch member has 

been compared to the experimental ram failure load (see Appendix K, Table 8.5 is 

typical). For those branch members where extreme fibre yielding occurred the predicted 

ram load is always greater than the experimental ram failure load. Even for those 

members which failed by L6 in truss T6 the predicted ram load is always greater than 

the corresponding experimental ram failure load (see Table 8.5). This demonstrates that 

the CIDECT joint strength equations can be unsafe if used in conjunction with a rigid 
joint frame analysis. 

8.10.2 Design of the branch members based on overall member yielding 

This design method ('3') involves : 

(i) Calculating the predicted branch forces corresponding to overall member 
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yielding, assuming that the member develops its full axial capacity (ie., 

measured cross-sectional area x measured yield stress). 
(ii) Dividing the calculated branch force from (i) by the corresponding axial force 

co-efficient derived from the pin jointed frame analysis, model-P described in 
Chapter 7. 

For the members where joint failure and/or extreme fibre yielding occurred 
(denoted by an asterisk) the predicted ram load required to cause overall yielding of the 

member is, with the exception of members 29 and 33 in truss 72, less than the 

experimental ram failure load. In truss T2 yielding of the tie branches at joints 12 and 
14 did not cause the truss to fail. When truss T2 was shortened joint 12 was included in 

the shortened truss (T2/2). This truss attained a ram failure load of 263 kN, as opposed 

to the ram failure load of T2 which was only 168 kN. The predicted ram load required 

to cause overall yielding of member 29, (the tie branch in joint 12 of truss 72) is only 

218 kN. 

Therefore, method '3' is always safe, irrespective of the mode of failure. It also 
follows that if the CIDECT joint strength equations are used in conjunction with the 

pin jointed frame analysis then the ram failure load is once more always safely 

predicted, irrespective of failure mode. 

The implication is that for all the 100% overlap joint trusses that were tested 

method'3' could have been used to design the branch members, and the strength of the 
joints need not have been assessed. 

8.10.3 Design of the chord section based on extreme fibre yielding 

For the chord section the theoretical combined stress due to axial forces and 
bending moments has been evaluated at the member ends using the model-Y rigid frame 

analysis. As a result it has been possible to evaluate for each chord member in a truss a 
predicted value for the applied ram load which causes extreme fibre yielding in that 

member. For each chord member this predicted ram load has been compared to the 

experimental ram failure load (see Appendix L, Table 8.6 is typical). 

For each chord member the experimental strain gauge values, at ram failure 

load, have been extrapolated to assess whether the yield stress was exceeded at the 
joints. In Appendix L (Tables 8.6 is typical) the asterisk denotes the occurrence of 

extreme fibre yielding in a chord member at the ram failure load. With the exception of 
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member 14 in truss T2, the predicted ram load values are significantly less than the 
experimental ram failure load for those chord members where yielding (denoted by *) 

was observed. In truss T2 the predicted ram load is approximately equivalent to the 
experimental ram failure load for member 14. 

Truss T2 differs from the other trusses in that the chord sections were spliced 
(see Appendix A, Fig A2), to allow the section thickness to change from 5mm to 4mm. 
Extreme fibre yielding occurred in the 4mm section of member 14 adjacent to the chord 
splice. Subsequent to the attainment of the yield stress there was little increase in 

applied load before the member failed by in-plane overall buckling. The splice, 
therefore, appeared to limit the redistribution of moments away from the position of 
yielding. For the remaining 100% overlap joint trusses the redistribution of moments 
was observed to prevent the sudden onset of instability in those chord members where 
extreme fibre yielding occurred (see section 6.3.6). Consequently, the ultimate load 

carrying capacity of trusses T3, T4, T5 and T6 was significantly higher (> 20%) than 
the applied load which caused extreme fibre yielding in the chord section. 

The theoretical rigid frame analysis (model Y) thus provides a reliable method of 
defining the onset of extreme fibre yielding in the chord section. In the test trusses the 
redistribution of moments ensured that chord member failure occurred at loads higher 

than those corresponding to the attainment of the yield stress. The model-Y rigid frame 

analysis thus provides a safe method for designing the chord section. However, 
discontinuities in the bending stiffness of the chord section (ie., such as splices and 
local stiffening) appear to limit the extent of moment redistribution, and can therefore 
have a detrimental effect on the ultimate load carrying capacity of a truss. 

8.11 Design against overall member buckling of the compression 

Member buckling in the branches was observed only in truss T4. For the critical 

compression branch in each truss the experimental strut force at ram failure load has 

been compared with the predicted buckling force derived in accordance with section 4.7 

of BS 5950(45), Part 1 (see Table 8.7). 

In T4 the strut buckling force is accurately predicted. In the remaining trusses 
buckling did not occur, and the following relationships exist between predicted strut 
buckling and strut failure: 

(i) For trusses Ti, T2 and T5 the critical strut did not yield, but the predicted strut 
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buckling force is at least 50% greater than the experimental strut force at the ram 
failure load. 

(ii) For truss T3 the predicted strut buckling force is 13% greater than the sustained 
experimental strut force, but only member yielding occurred. 

(iii) For truss T212 the predicted strut buckling force is the same as the experimental 
strut force, but only member yielding occurred. 

(iv) In T6 the predicted strut buckling force is higher than the experimental force but 

only strut local buckling (L6) occurred. 

The same section size was used for the compression branches in T4 and T6 
(60x6Ox3.2 RHS). In T4 the strut to chord width ratio was greater than in T6, thus 

affording more restraint against local buckling and member instability. This is reflected 
in the higher experimental strut efficiency of T4, at the ram failure load (see Table 8.7). 

In truss T6 local buckling of the compression branches was critical - overall buckling of 

the compression branches did not occur. In the other trusses the section used was a 
40x40x4 RHS. Trusses T3 and T4 were identical in all respects apart from the size of 

the branch members. A comparison of the bending moments in corresponding branch 

members indicates that they were significantly larger in T4, where the branches were 

stiffer. 

Although the elastic bending moment distribution in the branches was double 

curvature, where overall buckling occurred in truss T4 (members 16 & 17) the mode 

was single curvature. It was observed that local yielding in these branch members at the 
joints was responsible for a change from double to single curvature bending. 

Local yielding at the joints was a characteristic which occurred in all branch 

members prior to their failure. This was irrespective of the mode of failure. At many 
joints it was observed the compression branch section became fully plastic before the 

truss reached the ram failure load. For those compression branches subject to local 

yielding at the joints it is unlikely that the joints provided any significant rotational 

restraint against member buckling. There are examples where this yielding led to the 

complete loss of bending in a branch member (see section 6.3.8). In these cases only 

axial force was sustained by the branch and the end restraint afforded by the joints at 
either end was significantly reduced. It would be logical, therefore, to assume an 
effective length equivalent to the actual length of the branch. This makes the assumption 

that at ultimate load the branch member is pinned at both ends. 
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8.12 Shear strength of branch member sidewalls 

According to BS 5950 Part 1(45) (clause 4.2.3) only the sidewalls should be 

assumed to be effective in transferring the shear force from the branches to the chord 
face (see Fig. 8.4). Extensive yielding in the sidewalls of the branches was observed in 

the area of overlapping where the transfer of shear into the chord takes place. There was 

evidence of the formation of a shear plane in the sidewalls of the connecting branch 

member and it was thought that a mode of failure associated with this shear transfer 

might occur. However, tearing of the sidewalls was never observed (see section 5.5.2). 

No gross deformation took place and the shear transfer was well in excess of that which 

could be carried by the branch sidewalls in shear. 

In BS 5950 the Von Mises criterion of pure shear is assumed such that there is 

no direct stress across the critical shear plane (see Fig. 8.5). The shear stress in the 

sidewalls at the ram failure load has been compared with the allowable shear stress for 

all joints in each of the trusses (see Appendix M, Table 8.8 is typical). The allowable 

shear stress was exceeded in most instances. 

It appears that the presence of the transverse weld at the stiff point where both 

branch crosswalls meet greatly assists in transferring the horizontal shear. It is likely 

that the other crosswall also made some contribution to this action. It is also possible 

that residual stresses induced by fabrication welding affected the shear strength of the 

sidewalls. A residual direct stress in a direction perpendicular to the shear plane would 

tend to increase the shear capacity of the sidewalls (see stress field in Fig. 8.5). 

It is possible that shear failure in the overlapped branch member of a 100% 

overlap joint is never critical. This could explain why it has never been observed in 

isolated joint testing. Further truss testing is necessary before a definitive conclusion 

can be drawn. However, it is possible (for all 100% overlap joints) that the shear stress 
in the sidewalls of the overlapped branch need not be considered with respect to the 

joint design. 

For trusses T2, T2/2, T3, and T5 , the joints where the strut overlapped the tie 

were critical with respect to the shear capacity. This is because a thinner walled section 

was used for the tie member. In the remaining trusses T4, and T6 the same section size 

was used for both of the branch members. For the strut overlapping tie joints in trusses 

T2, T2/2, T3, and T5 and all joints in T4 and T6 the following observation has been 

made (see Appendix M) : BS 5950, clause 4.2.3 always underestimates the 



174 

shear strength of the joints by at least 50%. This implies that it would be safe 
to multiply the allowable shear capacity of the branch sidewalls defined by BS 5950 by 

a factor of 1.5. 

It is also worth emphasizing that the distress in the sidewalls, due to shear 
transfer to the chord, was always more pronounced where the thinner branch was used 
as the overlapped member. Therefore, the thicker walled branch should always be used 
as the overlapped member, as it affords greater shear strength. 

8.13 Weld Detailing 

The weld details for the joint connections are shown in Fig. 3.3. Cracking in the 

welds did not occur although rupture of tension branch adjacent to the welds was 

observed in two 100% overlap joints (truss TS joint 2 and truss T6 joint 6). In both 

cases fracture occurred in the 'heat affected zone' of the heel branch wall. The failures 

did not appear to correspond to defective welding in these instances. 

It is significant that cracking was always in the parent metal and not in the weld, 
indicating that the welds were not defective. It is common knowledge among structural 

engineers that welding reduces the yield stress in high yield members directly adjacent 

to welds. Where cracking did occur it was in conjunction with member yielding of the 
branch. It appears, therefore, that the welding did not have a detrimental effect on the 

ultimate load carrying capacity of the tension branches. The weld details that were used 

were thus satisfactory, ensuring ease of fabrication without compromising the strength 

of the joints. 

8.14 100% overlap isolated joint testing at Corby 

In order to supplement the truss testing programme, joints identical to those 

used in truss T6 were tested in isolation at Corby (British Steel Corporation - tubes 
division). The objective was to investigate to what extent isolated joint testing of 100% 

overlap joints correctly reflects the behaviour of identical joints in a truss environment. 

Four joints were tested in all, three were formed by the tie overlapping the strut 
and the remaining joint was fabricated with the strut overlapping the tie. Two loading 

patterns were investigated. The first involved holding the tie and pushing the strut, 

while in the second the strut was held in position and the tie was pulled. The results of 

this programme are outlined by Marniche(37). The relative performance of the isolated 
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and truss joints have been compared below. Particular attention has been paid to the 
modes of failure and the ultimate load capacity of the joints. 

The failure mode that was obtained in the isolated joints where the tie 
overlapped the strut was similar to that observed in the truss. In the isolated joint test 
failure was by local buckling of the strut (L6), however this occurred only on the heel 

adjacent to the chord connecting face. In the truss environment local buckling was 
observed both on the toe and the heel faces. In the isolated joint tests local buckling was 
followed by overall member buckling of the strut. On each occasion no evidence of 
yielding was observed in the tie member. 

In the case where the strut was being pushed and the tie held buckling of the 

compression branch was always more pronounced. This indicates the difficulty in 

controlling the compression ram with the onset of instability. By pulling the tie member 

more control was afforded during testing. 

Only one joint was tested with the strut overlapping the tie. Failure was by local 

buckling of the strut on both the toe and heel faces, this subsequently initiated overall 
buckling in that member. Only local buckling of the strut heel occurred in the 

corresponding truss joints. 

Significant deformations occurred at the ends of the isolated joint members, 
both in and out of plane of the joint. Furthermore, the measured in-plane bending 

moments in the branch and chord section were of the same order as the out of plane 

moments. Nevertheless, only in-plane buckling occurred. In the truss out-of-plane 

bending was not monitored, and therefore no comparisons can be made in this respect. 

The measured strut efficiencies at ram failure load compare favourably. For the 

tie overlapping the strut the experimental strut efficiencies from the isolated joint tests 

were 0.82,0.85 and 0.90. The corresponding values from the truss test were in the 

range 0.74 to 0.88. For the strut overlapping the tie the value derived from the isolated 

joint test was 0.88, and from the truss test in the range 0.75 and 0.86. Agreement is 

good, however, it should be noted that the values obtained for the truss joints do not 

necessarily correspond to the joint ultimate strength (see section 5.7). 

In the isolated joint tests conducted by Marniche(37) only failure of the branch 

members was observed, and in each case this did not involve deformation of the chord 

connecting face. In this respect the isolated joint testing appears to simulate the main 
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failure mode characteristics of the 100% overlap joints in truss T6. Nevertheless, the 
method of loading and the end restraint of the isolated joints can never correctly reflect 
the situation in a truss. This largely influences the distribution of bending moments at 
the joint. Consequently, the in-plane bending moments in the isolated joints differ from 

those of the truss joints. 

At Nottingham Ben Salem(38) performed isolated joint tests on 100% overlap 
joints with joint parameters different to those of the test trusses. The majority of joints 

tested by Ben Salem failed by L7, chord local buckling. The advantages of chord 
continuity as well as plastic redistribution of moments have been observed to prevent 
the occurrence of chord local buckling in a truss environment. 

It appears that results(37 & 38) obtained from isolated joint tests relating to the 
branch members agree with those obtained from the truss tests, both with respect to 

strength and failure mode. However in an isolated joint test it is difficult to simulate the 
bending moment in the chord section to coincide with that of a chord in a truss 
environment. It is likely, therefore, that isolated joint testing is unreliable in assessing 
the strength of the chord in 100% overlap joints. Further testing is necessary before a 
definitive conclusion can be drawn with respect to the reliability of isolated 100% 

overlap joint testing for indicating the strength of 100% overlap joints in a truss 
environment. 

8.15 Ultimate strength ca acity of truss corner joints 

A number of configurations are possible for the end bays of a truss (see Fig. 

8.6), however only two types were used in the test programme, namely [a] and [c]. The 

arrangements shown in Figures 8.6[b] & [d] would be subject to considerable joint 

deformation and were avoided for this reason. 

As a direct consequence of the truss tests it was realized that the most efficient 
force transfer mechanism to use with respect to corner joints is that shown in Fig. 
8.7[e]. No failure was observed at these joints. Subsequently on completion of each 
truss test the corner joints were flame cut from the truss and tested in isolation by 

pulling on the branch member. The results of these isolated joint tests have been 

presented by Marniche(37). 

It was found that the branch always attained the squash load (Cross-sectional 

area x yield stress). Failure was by tearing of the branch adjacent to the welds 
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connecting it to the chord sections . 

It is likely that for any type of corner joint the maximum efficiency of the branch 

member is attained by ensuring that the centre-line of the branch intersects the interface 

of the post and the chord (see Fig 8.7[e]). This is irrespective of the angle of inclination 

of the branch. Corner joint eccentricity was found not to be detrimental to the joint 

strength. 

The strength of the corner joint appears to be defined by the geometry, namely 
that one of the branch cross-walls is connected to the post and the other to the 

compression or tension chord. This produces a joint with high axial stiffness and low 

rotational stiffness. Deformation of the connecting chord sections, due to axial force in 

the branch member, is therefore small. If both the branch member crosswalls are 
connected to either the post or the chord (see Fig 8.7), then a gap type joint is obtained 

and deformation of the connecting chord face results. With the exception of [e] in Fig. 
8.7 the remainder, [a, b, c, & d] involve deformation of the connecting chord face which 
is likely to be detrimental to the joint strength. 
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O Partial overlap 

I 

® 100% overlap [tie/strut] 

c-) i 

C-) 3 

(E 100% overlap [strut/tie) 

C. ) 

heel crosswall 

Key 

I Axial force. 

2 Bending moment due to difference in stiffness between toe and heel crosswalls. 

3 11 11 eccentricity bending moment. 

C) Tension. 

c-, Compression. 

Fig 8.2 Components forming the stress distributions in the branch members of overlap 
joints. 
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CHAPTER 9 
CONCLUSIONS AND RECOMMENDATIONS 

9.1 Comments 

9.1.1 Material variation 

Some difficulty was found in obtaining steel of consistent properties. For 

normal design a specification giving minimum values (as in BS 4360) is adequate. 
However, for researchers material having consistent properties between samples is all 
important. In this investigation the wide range of material properties found in material, 
all supplied at grade 43 caused delays in fabrication, and considerable difficulty in 
interpretation of results. 

9.1.2 Elastic truss behaviour 

Various methods of elastic analysis were used in modelling the non-noding trusses 
including : 
(i) simple pin jointed approach which either involved 

(a) an assumed modification of the branch angle to ensure noding, or 
(b) modification of chord centre line to ensure noding 

(ii) simple calculations allowing for pin-ended branches, but continuous chords 
(iii) stiffness analysis allowing for a range of connection details from rigid joint 

assumptions to various degrees of axial and rotational flexibility in the joints 

For the gap joint truss Ti, good agreement was obtained for axial force for the 

pin jointed assumption - agreement being within 5%. 

For the overlapped joint trusses T2 - T6, neither of the pin joint models (i) 

above gave good results for the branches although the chord forces were predicted to 
within 5% by (i(b)) above. It was found that branch forces could be over predicted by 

as much as 20% indicating that the shear forces generated in the chord by the joint 

eccentricity moments can have a significant effect, by relieving the axial forces in the 
branches. The agreement between measured axial forces for members of the test trusses 
and those derived from stiffness analysis where allowance for eccentricity was made 
was usually within 5%. 

The theoretical distribution of moments based on rigid connections for the gap 
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joint truss (Ti) was an indication of the level of the secondary moments. As predicted 
this test showed that the sense of the chord moments for the six middle bays was single 

curvature, but the numerical agreement was relatively poor. The predicted moments in 

the branch members fell well below those obtained in the test. This shows that severe 
bending moments can occur at the end of branch members in practice, and that more 

careful modelling of the joint is needed to successfully predict these. 

For the 100% overlap joint trusses the agreement of the test results with the 

rigid jointed model was good where allowance was made for the lack of noding, and 

points of contra-flexure were clearly seen along the length of most chord bays. It 

should be noted that in the case of T2, the bending moments in the branches were not 

only lower than in the corresponding gap joint truss Ti (and were more accurately 

predicted by rigid joint frame analysis) but were opposite in sense. 

In much of the isolated joint testing on overlap joints, failure was found to be 

associated with local buckling of the connecting chord face adjacent to the heel of the 

branch tie (failure mode L7). The measured bending moments in the 100% overlap joint 

trusses showed these to be relieved by the secondary moment shifting the maximum 

chord moment to the side of the joint with the lower chord axial force. This effect is 

likely to be particularly advantageous to the 100% overlap joint, and will reduce the 
incidence of L7 type failures in real trusses compared to isolated joints. 

The large moment in the top chord at the truss loading point is of particular 
interest and is mainly associated with secondary effects. This is typical of such trusses 

under symmetric loading which produces zero slope at the loading point. It is likely that 

redistribution of moments at failure can take place for stocky sections but care is 

required if more slender sections are to be used. This may well be the reason for 

premature failure in some of the Pisa trusses (5). 

9.1.3 Overall truss performance 

Load/central deflection graphs for the trusses were obtained. In the Ti gap joint 

truss departure from linearity occurred at an early stage, and agreement with the 

theoretical deflections was poor. In the overlap joint trusses linearity was retained 

nearly up to the point where member yielding occurred. Furthermore there is good 

agreement with the theoretical truss deflections for most of the range. 
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9.1.4 Local joint deflection 

The difference between gap and 100% lap joints in ram load - local joint 

deflection curves was immediately obvious. It is clear that local joint deflections under 

service conditions are unlikely to be a problem with 100% overlap joints where there 

are no external purlin loads. This is not necessarily the case with large gap joints as 
seen for the T1 joints. Gap joints are normally designed on the basis of strength, 

service behaviour being usually considered acceptable if the local deflection is less than 
1% of the chord width (=1 %bo). 

9.1.5 Joint ultimate strength 

It was difficult to assess joint strength independently of the structure strength in 

the test trusses, particularly when the structures achieved higher strengths by plastic 

redistribution of moments. Gap joint strengths were assessed according to the CIDECT 

rules. The best estimates of gap joint strength have been compared with the predicted 

strength, with and without the chord axial load factor, t, which was found to be of 

great importance. Generally the CIDECT approach predicts the joint strengths for gap 
joints to within 10% of the actual member forces. However the failure load of several 

tension chord joints was significantly underestimated - this is thought to be due to 

secondary bending moments in the chord, caused by chord continuity and the build up 

of residual stresses from successive load cycles. 

In the overlap joints design strengths were predicted according to the CIDECT 

design recommendations and compared with the experimental strengths. Generally the 

predicted strengths were in excess of the maximum branch member forces achieved, 

even where joint failure occurred by failure mode L6. This indicates that the CIDECT 

equations can be unsafe. L7 failure loads have also been tabulated and compared. It was 
observed that sufficient redistribution took place for failure loads to exceed those 

predicted, sometimes quite significantly. 

9.1.6 Modes of Failure 

In the gap joint truss failure occurred when axial force in the critical branch 

member was less than 50% of the squash force. The majority of failures occurred at the 
joints and involved deformation of the chord connecting face. For the compression 

chord local buckling of the chord sidewalls was also evident. 
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In the 100% overlap joint trusses full joint failures did not occur, i. e. 
deformation of the chord connecting face was not apparent. The most common mode of 
failure was overall yielding of the branch members. L6 type strut failure occurred only 
in truss T6 and L7 chord buckling was observed only once, in truss T2. It is thought 

that the L7 mode in truss T2 was related to the close proximity of stiffening plates 

which had been used to repair the chord section which had failed in the previous load 

cycle. Only two fractures occurred, both in the heat affected zone of the branch wall. 
Apart from this, weld cracking was not observed in any of the overlap joints. 

Extensive yielding of the sidewall of the branches was observed in the area of 
overlapping for the 100% overlap joints, where the transfer of shear into the chord 
takes place, and it was thought that a mode of failure associated with this shear transfer 

might occur. However, no gross deformation took place and the shear transfer was well 
in excess of that which could be carried by the branch sidewalls in shear. It appears that 

the presence of the transverse weld at the stiff point where both branch crosswalls meet 

greatly assists in transferring the horizontal shear. It is likely that the other crosswall 
also makes some contribution to this action. 

9.2 Conclusions 

(i) The inherent eccentricity of the 100% overlap joint is not as detrimental 

to the strength and efficiency of the connection, as traditionally anticipated. Although 

some chord moment redistribution did occur it did not generally reached the value 

associated with fully plastic interaction in the chord. 

(ü) Elastic plane frame analyses can be successfully used to predict the 

structural behaviour of overlap joints provided allowance is made for the eccentricity. 
However, great difficulty arises in deriving a suitable model to describe the behaviour 

of trusses with gap joints. 

(iii) A comparison of the structural behaviour of two almost identical gap and 
100% lap joint trusses indicates the latter's considerably improved behaviour in all 

ways - under elastic and failure conditions. Local joint deflections were much reduced, 

and linear behaviour observed up to near a much improved collapse load. Although this 

may not be true for all parameters, it is likely to be so when compared with low values 
of ß and large gaps. 

(iv) In the trusses, up to 20% of the load was carried by shear action in the 
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continuous chords. When this effect is taken into account the branch forces did not 

usually reach the joint failure values predicted by the CIDECT and IIW joint strength 

equations, but it was not usually apparent that failure occurred in the joint. 

(v) The parameters previously identified appear to be the important ones, 
although the effect of slenderness (b/t) and angle (0) have been clarified, as well as the 

sense of overlapping. The capacity of 100% overlap joints to transfer shear wall in 

excess (> 50%) of the values allowed in BS 5950 (clause 4.2.3) has been clearly 
demonstrated for square and rectangular branches (h/b <1) - but is dependent on good 

quality transverse welds. 

(vi) The structural behaviour of 100% overlap joints in trusses compared 
favourably with that predicted from isolated joints. The low local joint deformation was 

particularly noticeable. The effect of chord continuity was however particularly 

noticeable in restricting local chord failure, which had occurred in a large number of 

previously tested isolated joints. The boundary conditions imposed in isolated joint tests 

can be very important, particularly when associated with particular modes of failure. 

The truss tests showed large chord secondary moments (not associated with 

chord eccentricity) at the centre point of loading which could cause early failure in 

slender sections. 

(vii) Although the elastic bending moment distribution in the branches was 
double curvature, where overall buckling occurred the mode was single curvature (in- 

plane). It was observed that local yielding in the branch members at the joints was 

responsible for a change from double to single curvature bending. Subsequently, at 

several joints the branch section became fully plastic before the truss reached the ram 
failure load. For those compression branches subject to local yielding at the joints it is 

unlikely that the joints provided any significant rotational restraint against member 
buckling. This is contrary to the recommendations regarding effective length criteria 

outlined in clauses 4.7.2 and 4.10[b] of BS 5950 Part 1. 

(viii) Simple and safe design recommendations have been identified although 

care has to be taken with their application. 

9.3 General recommendations 

> The CIDECT joint strength equations should always be used in conjunction 
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with a pin jointed frame analysis (for both gap and 100% overlap joints). This ensures 
that the joint strength is safely predicted. 

> For 100% overlap joints the thinner branch member should always overlap the 
thicker member in order to utilize the greater shear capacity of the thicker walled section 
in transferring horizontal shear to the chord face. 

> The weld details shown in Fig. 3.3 should be used for gap and 100% overlap 
joints. For 100% overlap joints the absence of weld along the toe face of the overlapped 
branch is not detrimental to the strength of the joint. These weld details ensure both ease 
and economy in the fabrication of 100% overlap joint trusses, without compromising 
their strength. 

> For RHS joints which have both low brace to chord width ratios (ß < 0.6), and 

slender chord sections (bo/tp > 20), 100% overlap joints should be used in preference to 
gap joints. 

9.4 Method for designing the members in a 100% overlap joint triff 

The following ('Limit State') design approach is intended for use only in the 

parameter range that was studied (see Tables 3.1 & 3.2). It is both simple and safe. 
Branch members 

> Derive the distribution of axial forces in the branch members from a pin jointed 

frame analysis. 

> Design the tension branches assuming that they develop the full axial capacity 
based on the specified minimum yield stress (= minimum yield stress x cross-sectional 
area). However, the compression branches should be designed against overall 
buckling. 

> Design the compression branches against single curvature buckling assuming an 

effective length equivalent to the true length of the member. 



197 

Chord section 

> For eccentric joints designers normally assume that the maximum bending stress 
in the chord section can be evaluated by distributing the eccentricity moment equally 
either side of the joint. This simplification will lead to the maximum bending stress in a 
chord member being under-estimated. 

> Continuity bending moments in the chord members of 100% overlap joint 

trusses are significant. Therefore, the distribution of axial and bending forces in the 

chord sections should be derived from a rigid frame analysis - allowing for joint 

eccentricity. 

> Locate the critical section with respect to the combined axial and bending 

stresses and design the section according to the specified minimum yield stress. 

It should be noted that the design approach outlined above does conflict with 
certain aspects of the recommendations outlined in clause 4.10 of BS 5950. 

(i) For the purpose of calculating the forces in the chord members a rigid 
frame analysis should be used which allows for joint eccentricity. This is in conflict 
with clause 4.10[a]. A designer may be tempted to evaluate the bending moment in the 

chord section of a 100% overlap joint by distributing the eccentricity moment equally 
either side of a joint. As indicated previously this is not advisable, since it can lead to 
the maximum bending stress in a chord member being under-estimated. 

(ii) For the branch members it has been suggested from the results of this 

research that the fixity of the connections should not be considered as providing 

rotational restraint against buckling ie., the effective length of a branch member should 
be taken as equivalent to the true length of the member. This is in conflict with clause 
4.10[b]. 

9.5 Recommendations for further research 

(i) The parameter range needs to be extended in order to assess whether the 
recommendations outlined in section 9.4 are more generally applicable. 

(ii) The influence of concentrated point loads on the strength of 100% overlap joints 
in a truss environment needs to be assessed. 

(iii) For reasons of aesthetics some Architects are now favouring the use of partial 

overlap joints as opposed to gap or 100% overlap joints. It is therefore 
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necessary to study the structural behaviour of trusses formed from such joints 

with the aim of producing simple design guide-lines. 
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