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Abstract

This thesis presents a crystallographic orientation determination technique which

is based on a laser ultrasonic method: spatially resolved acoustic spectroscopy

(SRAS). Surface acoustic waves (SAW) propagate on a solid surface with a phase

velocity that is frequency independent, but which varies with the crystallographic

orientation. By comparing the SRAS results with the calculated SAW velocities,

the orientation of crystal can be determined.

The SRAS technique allow the SAW velocity to be recorded in two slightly

different approaches. According to the formula v = λf , the velocity v can be

obtained by varying the k-vector (λ) or frequency f of the wave while the another

multiplier is fixed. K-SRAS is implemented by firing a laser beam with a fixed

intensity modulation frequency through a spatial light modulator (SLM); the SAW

velocity is determined by varying the fringe spacing of the SLM image. F-SRAS

uses a broadband (sharp pulse) laser, the beam passes through a chrome photomask

with fixed fringe spacing, and the peak frequency is used to determine the SAW

velocity. Scans are performed on single or multiple-grain titanium alloy, aluminium

and nickel samples by both methods. The contrast of the velocity maps give

adequate information of grain size and location.

A SAW velocity model is developed according to the elastic constants and

mass density of the material. The orientation of crystals can be determined by

comparing the SRAS results and the SAW velocity model. The SAW velocities in

different propagation directions are measured on nickel, aluminium and titanium

α samples with known orientations, and agree well with the predicted velocities

from the model. An overlap function is introduced as a search algorithm to link

the SRAS results to the SAW velocity model. The results are compared with

measurements taken using the Laue back-reflection technique; they gave very close

crystallographic orientation with acceptable error within the industrial limit.

At the end of the thesis, consideration is given to further research in the acoustic

modelling and data processing algorithms that would improve the technique in the

future.
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Chapter 1

Introduction

This thesis presents the technique Spatial Resolved Acoustic Spectroscopy (SRAS),

which uses laser generated and detected Surface Acoustic Waves (SAWs) to image

the microstructure of materials, for instance titanium, aluminium, nickel and sili-

con. It is a rapid, non-contact and non-destructive method. The measured SAW

phase velocity over the sample surface gives the contrast of grains, and reveals the

microstructure of materials and crystallographic orientations, which are significant

metrics of material characterisation.

The initial development of the technique and system occurred in earlier years,

researched by Steve Sharples and Matt Clark [1]. Recent years’ work, presented in

this thesis, covers the development of fast SRAS systems, modelling of SAW phase

velocity, and orientation determination by SRAS results. Two welled developed

techniques are compared against the SRAS technique. SRAS has great potential

as a complimentary technique alongside exciting methods, and in some cases to

replace current techniques entirely.

1.1 Overview of Thesis

The central contribution of this thesis is orientation determination of crystals based

on SRAS imaging. Figure 1.1 illustrates the four main themes of the thesis, along
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CHAPTER 1. INTRODUCTION 6

with the relevant chapters. Two approaches of SRAS are illustrated with exper-

imental results of titanium, aluminium and nickel samples presented. A SAWs

velocity model of several materials is computed according to the wave equation

and boundary conditions. The overlap function is introduced as a search algo-

rithm to interpret the SRAS results and to indicate crystallographic orientations.

Finally, in order to test the performance, SRAS results of single crystal nickel are

compared with an X-ray diffraction (XRD) Laue back-reflection (LBR) method.

Moreover, SRAS images of multigrain nickel and titanium α samples are obtained;

parts of the results are compared with Electron Backscattered Diffraction (EBSD).

Assessment of the search algorithm is made based on the nickel single crystal re-

sults.

Figure 1.1: Four topics of this thesis with relevant chapters.

A brief description of each chapter is as follows:

• Chapter 1 introduces the background knowledge of the SRAS technique and

crystallographic orientation, including the concept of SAWs, laser ultrason-

ics, crystal structure and two of the existing crystallographic orientation tech-

niques.

• Chapter 2 explains the theory, system construction and sources of error for

two approaches using the SRAS technique.
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• Chapter 3 illustrates the test results obtained by two SRAS techniques; the

imaging ability of these two techniques are presented.

• Chapter 4 describes the foundation of SAWs behaviour and properties. The

procedure of modelling of several materials (aluminium, nickel, titanium α

and β phase) are shown. A search algorithm is introduced to link the SRAS

results with crystal orientations.

• Chapter 5 illustrates the orientation determination results by SRAS, and

compares this with two of the mature techniques (XRD-LBR and EBSD).

System reliability is investigated.

• Chapter 6 provides a discussion around the considerations and problems of

the current technique/system. It also discusses potential areas for future

research.

• Chapter 7 summarises the work which has been presented in this thesis.

1.2 Ultrasonics

Since Galileo Galilei (1564–1642) tried to measure the sound frequency by scrap-

ing a chisel at different speeds, more and more scientists joined the exploration

of acoustic waves. The hearing range of a human being is between 20Hz and

20,000Hz. Any acoustic wave with a frequency above this range is called ultra-

sound (discovered by Lazzaro Spallanzani in 1790). It was not until World War

I that the ultrasonic application (sonar) was introduced for the first time. Sonar

emits a series of ultrasound signals with different frequencies under water, and the

reflected waves can provide information about distance, shape and state of motion

of the target objects, for instance submarines.

An acoustic wave is generated by the particle vibration of a medium, in a gas,

liquid or solid. It propagates in four principle modes which are distinguished by the



CHAPTER 1. INTRODUCTION 8

direction of the particle oscillation; they are transverse waves, longitudinal waves,

plate waves and surface waves.

For transverse waves, particles oscillate in the direction which is perpendicular

to the wave propagation direction. This causes shear stress when it propagates

in elastic materials (i.e., all solids), hence it is know as a shear wave, or a Sec-

ondary Wave (S-wave) in seismology. In liquids the interaction stress between

the molecules is too weak to transmit a shear force, thus transverse waves cannot

propagate, except in the case of visco-elastic liquids. The wave velocity in isotropic

media is given by [2]

vt =

√
E

2ρ(1 + σ)
(1.1)

where σ is the Poisson Ratio, ρ is the mass density of medium, E is the Young’s

Modulus.

If the particles oscillates in parallel to the propagation direction within a

medium, it is called a longitudinal wave, which is known as a Primary Wave (P-

wave) in seismology, or a compressional wave because the compression leads to the

change in local particle density during wave propagation. Unlike transverse waves,

longitudinal waves do not only exist in solids but also in gases and liquids. Their

velocity in isotropic solids is given by [2]

vl =

√
E(1− σ)

ρ(1 + σ)(1− 2σ)
(1.2)

where σ is the Poisson Ratio, ρ is the mass density of medium, E is the Young’s

Modulus.

Plate waves, as implied by the name, exist in the thin plate or layer with two

parallel surfaces. A wave with an appropriate frequency incident to a plate or

layer below a certain thickness, generates particle vibrations at both surfaces and

internally within the plate.
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SAWs and Pseudo-SAW (PSAW)

Surface waves were first introduced by Lord Rayleigh [3]. Rayleigh researched

waves travelling along and parallel to the half-infinite surface of an isotropic medium.

These waves contain at least two rapidly damped terms. The motion of particles

during propagation follows an elliptical locus, and oscillates in the plane which con-

tains the wave propagation direction and is perpendicular to the material surface,

as seen in Figure 1.2. The amplitude of the wave decreases exponentially beneath

the free surface, and the penetration depth roughly equals its wavelength. The ve-

locity of the surface wave is slightly slower than the slowest transverse bulk wave;

it is frequency independent and exists at any combination of plane and direction

on crystals [4] [5].

A. E. H. Love identified another type of surface wave known as Love waves [6];

the displacement of particles oscillates in plane and perpendicular to the wave prop-

agation direction. However the amplitudes do not attenuate with the penetration

depth.

Figure 1.2: Surface wave.

A particular type of surface wave, which travels faster than the slowest trans-

verse bulk wave, can be observed at some directions of certain planes. It is known

as a ‘Pseudo’ Surface Acoustic Waves (PSAWs) or a ‘Leaky’ waves because it

propagates towards the material in a small angle and carries the energy away from

the surface. Two terms of the wave are involved; they share the properties as a

Rayleigh wave and decay rapidly beneath the surface. There is a small third term

which leads the wave tilts down slightly into the material. Because this term has

a minor contribution, PSAW generally behaves like a normal SAW over a short
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distance and can be detected.

A significant property of cubic crystals is the elastic anisotropy ratio, which is

given as [7]

η =
2C44

C11 − C12

(1.3)

where C44, C11 and C12 are elastic constants. On isotropic material has η = 1;

any materials with η > 1 or η < 1 are anisotropic; the further away the η to 1,

the stronger anisotropic the material is. The magnitude of the anisotropic ratio

indicates the stiffness along the axis and across the axis, hence the SAW phase

velocity of the materials is influenced. Farnell believed PSAW can be observed on

plane (001) and (111) of the crystals which has η > 1, and plane (110) of crystals

with η < 1 [4].

1.3 Non Destructive Testing (NDT)

NDT techniques are widely used to examine the quality of products without dam-

aging the testing material in industrial inspection; in other words, the testing

material can be used in the future. These are widely used techniques, especially if

the test objects are expensive or are the only existing samples.

1.3.1 Background

The history of NDT goes back many decades. More than one hundred year ago,

before Professor Wilhelm Conrad Roentgen (1845-1923) discovered X-rays, people

only used oil and powder to inspect the defects on testing materials surfaces (this

was a predecessor of penetrate testing which will be mentioned later). Roentgen

changed this situation by producing the first industrial radiograph in the world.

After World War II, other inspection techniques such as ultrasonic and eddy current

testing began to be developed rapidly. The purpose of NDT technology has changed

over time, from the basic defect inspection to designing devices that have no defects
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over thresholds levels that would cause failure during their useful life.

With the development of the discipline of fracture mechanics in the 1970s, NDT

techniques were not only used to detect whether there were defects but also to indi-

cate the size of any flaws. The knowledge of fracture mechanics enables predictions

of the growth of cracks under cyclic loading to be calculated, to establish how long

a device with a defect can be used.

Typically, NDT techniques are not only locating the defects, but also could

indicate some features about defects such as shape, size and orientation.

Now NDT techniques are used as a significant method of inspection in lots

of fields including industrial automation, civil engineering, the aerospace industry

and the medicinal industry (where the testing objects are nonliving organs).

1.3.2 NDT Techniques

There are a number of NDT methods that are utilised in industry. The most

popular methods are:

• Visual Inspection

Visual inspection involves either examining by eye directly, or the examiner

using special tools to get a closer look at the testing object (e.g. magnify-

ing glasses, mirrors, or borescopes). This method is only suitable for the

transparent or translucent device, or the one which only have defects on the

materials’ surface. This is the simplest and cheapest method. However, it is

not useful if the cracks are too small to be seen using the human eyes.

• Penetrate Testing

This inspection method is also used to check for defects on the testing ma-

terial surface. Firstly, a paint or fluorescent dye is applied to the testing

surface and then the excess is removed. Next, a developer is applied—this

could be dry, soluble, suspendable or nonaqueous, depending on the rough-

ness of the surface of the material. The developer absorbs fluorescent dye



CHAPTER 1. INTRODUCTION 12

from the imperfections highlighting those areas so that they can be identified

by the human eyes. In addition, ultraviolet light can help to brighten the

colour contrasts between the penetrate and developer.

• Magnetic Particle Testing

Magnetic particle testing requires iron particles and a ferromagnetic material

to implement. The iron particles are first wet and spread on the testing

material. The testing object is put into a magnetic field which induced

by the ferromagnetic material. The iron particles are then drawn to any

imperfections indicating their location and shape.

• Electromagnetic or Eddy Current Testing

In contrast with the inspection methods mention above, Eddy current test-

ing can be used to detect the defects inside the material. The Eddy current,

which flows in a circular path at and below the surface of the material is in-

duced by an alternating magnetic field in a conductive material. If the current

flow hits the cracks, the material’s conductive and permeability properties

the current itself can be changed. An amperemeter can be used to detect the

current change in the material (i.e. within just a few microamperes).

• Radiography

Radiography uses penetrating γ or X-ray radiation to examine the imper-

fections of the testing object. The X-rays are generated by X-ray generator

or radioactive isotope, which penetrates through the material onto a film

or other imaging media. The resulting image is shown as a shadowgraph

in which a defect or fracture can been seen. This method is also used fre-

quently in the medical industry when testing for broken bones and examining

tumours.

• Ultrasonic Testing

This NDT method is accomplished by introducing a high frequency acoustic
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wave into the testing structure. By analysing the pulse echo reflected back

or transmitted through a material, the structure and other properties of

material, such as the structure of layers can be obtained.

• Acoustic Emission Testing

Short bursts of sound waves are emitted from the cracks inside solid materials

when they are stressed. These emissions can be detected by special receivers

(as used in ultrasonic testing); allowing the location and dimensions of the

cracks to be determined.

1.4 Laser Ultrasonics—SAW

Laser ultrasonics is a non-contact technique, widely used in NDT applications to

generate and detect ultrasound for measuring the thickness, defects and character-

isation of materials. The following discussion will now focus on SAWs.

SAW devices and their applications have been well reported in the literature

for over 40 years. The most common methods reported utilise contact electronics

components (e.g. piezoelectric transducer with wedge and comb) [8], while laser

generated SAWs have been—since the first reports of their applications [9]—a

major branch research in this field.

1.4.1 Generation Mechanism

There are three basic mechanisms for generating ultrasound by laser:

• The Plasma Regime

A laser beam hits the surface with enough power to melt the material and re-

lease plasma onto the surface. The impulse caused by the vapourisation, and

generates a force normal to the surface, and the material is deformed. A lon-

gitudinal wave and surface wave are generated efficiently and the amplitudes

of transverse waves decline after reaching a maximum value [10].
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• The Thermoelastic Regime

When the laser beam is not powerful enough to melt the material, the energy

absorption of the surface raises the local temperature. Hence the longitudinal

and transverse waves are radiated because of the thermoelastic expansion and

thermoelastic pressure in the area. The amplitudes of longitudinal, transverse

and surface waves increase linearly [10].

• The Constrained Surface Source

For the plasma and thermoelastic regimes, a transparent coating is applied

on the material surface to enhance the amplitudes of the three types of waves,

especially in the direction of the surface normal.

1.4.2 Modes of Laser Operation

There are two modes of laser operation according to the output power: Continuous

Wave (CW) operation and pulsed operation. As indicated by the name, the CW

mode has a constant output power over time, or the output power is stable in a

long time period.

A pulse laser generates intermittent power output at a fixed repetition rate

over a certain time scale. Most of the applications require high peak pulse power,

which equals the average power divided by the laser repetition rate. It can be

implemented by reducing the pulse width or raising the peak power of the laser.

Two main types of pulse laser are Q-switched and mode-locked.

Q-switching is named by decreasing the quality factor ‘Q’ of the laser cavity.

The laser operation does not occur but the energy accumulates in the gain medium.

After a certain time the laser quickly switches the low Q to a high Q. The energy

is released and it generates a short pulse with high peak intensity. Mock-locking is

implemented by fixing the phase of all the modes or frequencies in the resonator,

and producing a short pulse which can be as short as a few femtosecond.
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1.4.3 Optical Detection

Several techniques of laser detection of ultrasound have been developed and im-

proved. They could be used to measure either the surface displacements (e.g.

knife-edge detection and Michelson interferometer), or ultrasound frequency (e.g.

Fabry-Perot interferometer). Three common detection methods for ultrasound are

introduced in this section along with the advantages for each.

Knife-edge Detection

Knife-edge detection is a type of amplitude variation detection. Figure 1.3 il-

lustrates its working theory. The incident laser beam focuses on a spot which is

smaller than half of the wavelength. The surface moves up and down due to SAWs,

the amplitude of the angular deviation of the reflected beam is proportional to the

local slope. A ‘knife-edge’ is placed on the path to partially block the reflection

beam. Hence the intensity variation received by the single diode is converted from

the angular displacement.

Knife-edge detection is simple and inexpensive, but testing surfaces must be

flat as knife-edge detection is sensitive to the surface roughness.

Figure 1.3: Schematic of knife-edge detection.

Michelson Interferometer

The construction of the Michelson interferometer is displayed in Figure 1.4. The

incident beam has been split into two and both of them are reflected back to
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the photodiode either by the surface or the mirror. In SAWs propagation, the

surface motion changes the optical path length of one of the arms of the Michelson

interferometer. The optical path difference of the two split beams indicates the

phase and amplitude, hence deduces the displacement of the surface.

The Michelson interferometer has high sensitivity in detecting surface displace-

ments of less than an Å [11]. It requires lower reflectivity of the sample surface

than knife-edge detection, and is the preferred instrument/tool for narrow pulse

detection [12].

Figure 1.4: Schematic of Michelson Interferometer.

Confocal Fabry-Perot Interferometer (CFPI)

CFPI is described as a two beam time-delay interferometer. As seen in Figure 1.5,

two high reflective spherical mirrors with concave surfaces are placed facing each

other at a distance d. An incident beam is refracted and reflected repeatedly

between two mirrors, causing constructive interference of the reflected beams inside

the cavity. The intensity of the transmission beam varies significantly with the

small change of input beam frequency.

CFPI has low requirement of surface roughness [13] [14] but the detection band-

width is limited [15].
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Figure 1.5: Schematic of CFPI. Beam 1 and 2 are transmitted beams, 3 and 4 are
reflected beams. The distance between two spherical mirrors is d.

1.5 Crystallography

Crystallography studies the arrangement and structure of atoms (or ions) in mate-

rials which exhibit long range atomic order. The crystal structure strongly relates

to the physical properties of materials. Some materials have the same chemical

compositions but different crystal structures and status (called ‘phase’) resulting in

significant difference between materials. For example, under different temperature

and pressure, titanium alloy has phase transitions between α, α + β and β; each

phase has different levels of performance for tensile strength, plastic property and

percentage elongation.

Miller indices provide figures to define the planes and directions in the crystal

system. It uses three numbers h, k and l written as [hkl] to note a direction

based on the direct lattice vectors, or (hkl) for a plane that is orthogonal to this

direction. The notation 〈hkl〉 describes the directions that are equivalent to [hkl]

by symmetry, and the planes noted as {hkl} are equivalent to (hkl) similarly. This

notations are normally written in integers with lowest terms.

1.5.1 Crystal System

There are seven classes of crystal structures. Materials in the same crystal system

share a similar symmetry, which plays a key role in determining the physical prop-
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erties of the material. Seven types of crystal structures are given in Table 1.1 with

examples.

Crystal System Simple Example Length of Axial Angle between Axial

Triclinic a 6= b 6= c α 6= β 6= γ 6= 90◦

Monoclinic a 6= b 6= c
α= γ =90◦

β 6= 90◦

Orthorhombic a 6= b 6= c α= β= γ = 90◦

Rhombohedral a = b = c α= β= γ 6= 90◦

Tetragonal a =b 6= c α= β= γ = 90◦
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Hexagonal a= b 6= c
α= β= 90◦

γ = 120◦

Cubic a = b = c α= β= γ = 90◦

Table 1.1: Seven classes of crystal structures [16].

1.5.2 Characterisation of Crystal Structure

Several techniques were developed for measuring the microstructure of materials,

including the size of grains and the orientation of crystals. In this section the

XRD-LBR method and EBSD are introduced. These are compared with the SRAS

results in later chapters.

X-ray diffraction (XRD) Laue back-reflection (LBR) Method

X-rays are electromagnetic radiation waves with a wavelength of 0.01 to 10nm.

They share the same light behaviours as other electromagnetic waves, including

reflection, refraction, scattering, interference, diffraction, polarisation and absorp-

tion. The distance between atoms and molecules (approximately 1 to 10 Å) just

falls within the X-rays wavelength range and the crystal structure of a material

can be determined by X-rays scattering and diffraction.

Bragg’s law is defined as

2d sin θ = nλ (1.4)
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where d is the interplanar distance of lattice, θ is the scattering angle, λ is the

wavelength as can be seen in Figure 1.6, and n is an integer determined by the

order given.

Figure 1.6: Bragg diffraction.

LBR method is an XRD technique named after Max von Laue, the pioneer of

the diffraction of X-rays. In this method a (white) incident X-ray beam strikes

a single crystal surface orientated perpendicular of the beam. As its d and θ are

fixed by the lattice parameters and orientation respectively, several wavelengths

from the broad spectrum can be reflected in different orders from the each set of

planes satisfying the specifications of Bragg’s law. A film is placed between the

X-ray source and crystal to record the backwards diffraction, which is called a Laue

pattern.

The interpretation of the Laue pattern to the crystal orientation is accomplished

by using a Greninger chart [17] manually, or computer software which uses a com-

patible generated overlay mask [18]. The results are given in primary orientation

angles (see Appendix D).

LBR method is a fast way for measuring the orientation of single crystals.

Typically the lateral resolution of the system is 2mm in diameter with an error of

±1.5◦ [18].
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Electron Backscattered Diffraction (EBSD)

EBSD is a technique using a Scanning Electron Microscope (SEM) to obtain sample

crystallographic characteristics. It emits an electrons beam onto a sample surface

at a certain angle. Analysis of the diffraction pattern gives information about the

crystal orientations, boundaries and disorientation between grains.

EBSD also obeys Bragg’s law’s Equation 1.4 because of the Wave-particle du-

ality of electrons. The sample is placed at a tilting angle, typically 60◦–70◦ [19]

in a SEM chamber, the incident electrons beam interacts with the atoms in the

sample and inelasically scatters (the scattered beam keeps the same wavelength as

the incident beam). Some of the scattered electrons satisfy the Bragg angle θ when

incident on certain plane of crystal, and diffracted to produce large angle cones

which are corresponding to the diffraction plane. The image of Kikuchi bands of

the electron back scattered diffraction pattern is caught by a fluorescent screen.

Several methods were developed in the past to locate the pattern of Kikuchi bands.

Burns algorithm [20] and Hough transformation [21] are two reliable translation

methods among them. The results are translated to the crystal orientation in the

Miller indices. By scanning the sample surface in a grid by electrons beam, the

orientation of crystal can be measured at each point across the sample, a map is

presented to reveal the crystallographic orientation and microstructure.

Because electrons beams are highly attenuated in gas, this technique must be

operated in a vacuum chamber. Due to the high sensitivity of the technique,

samples must be sufficiently polished. The spatial resolution of EBSD is decided

by SEM conditions, sample and the electron source. Grain size not smaller than

10nm is distinct under optimal conditions with system error of ±0.5◦ [22].

Both XRD and EBSD are useful of microstructure studies and examine the

materials in different scale of resolution. Currently EBSD is the most popular

technique in crystallographic research.
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Spatially Resolved Acoustic

Spectroscopy

2.1 Introduction

Spatially Resolved Acoustic Spectroscopy (SRAS) is a nondestructive testing method

which maps the SAWs velocity on a material’s surface. The velocity contrast of

SAWs reveals the material’s microstructure and orientation of crystals. This can

also be accomplished by other methods such as EBSD, which gains crystallographic

information by impinging electrons onto the sample and analysing diffraction pat-

terns [22]. Alternatively, the Scanning Acoustic Microscope (SAM), a contact

technique, analyses the phase shift of a narrow band SAWs signal. Both these

methods have disadvantages such as restriction on sample size, or (in the case of

the SAM) ambiguity caused by a periodic phase function. SRAS eliminates those

concerns. It is based on the spectroscopy technique (perhaps more familiar in

optics) and uses the spectral characteristics of acoustic waves.

SRAS is a new technique to image the SAWs velocity over the surface. It

is based on the spectroscopy technique but differs because it uses the acoustic

characteristics of waves. This method is used to measure the velocity of the SAWs

22
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over individual grains for several types of industrial materials such as aluminium

alloys and titanium alloys, and produces a SAW phase velocity map over the sample

surface as shown in Figure 2.1. A faster velocity is indicated on the left whilst a

slower velocity is indicated on the right, corresponding with two grains at different

orientations. SAWs velocity, as a function of intensity of received signal, can be

observed via the waveforms on the left and right in the figure.

Figure 2.1: SAW velocity difference shows the contrast of two grains.

2.2 K-vector SRAS (k-SRAS)

2.2.1 Theory

The k-SRAS technique and its system have been developed in Applied Optics

Group of University of Nottingham for quite a few years [23]. The scheme of k-

SRAS is shown in Figure 2.2. A laser source generates a fixed frequency light beam

which goes through a Spatial Light Modulator (SLM) and a grating pattern hits

the sample material surface. SAWs are excited by excitation laser at the same time

and travel along the sample surface to the receiver.
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Figure 2.2: Scheme of k-SRAS.

A grating pattern with even spacing is used to generate a SAWs packet which

propagates on the sample surface. Figure 2.3 illustrates how each line of the pattern

generates SAWs within a short period of time t1. The received signal on the right

is by adding together all of the SAWs. In reality, SAWs propagate towards both

directions. The spacing of grating that is generated by the SLM is changed over a

likely range of the SAWs’ wavelength.

Figure 2.3: The waves packet is generated by fringes in a selected spacing.

Each time when the spacing is changed, a waveform is received by a broadband

detector. If the grating spacing matches the SAWs wavelength, the frequency

response of the overlapped waves packet, (e.g. as shown in Figure 2.3), at the

receiver, is a sharp Gaussian-like wave with large peak. In contrast, when the
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spacing distance does not match the wavelength, the frequency response has a

bigger bandwidth and a smaller amplitude.

This procedure is illustrated in Figure 2.4. After Fast Fourier Transform (FFT)

of these waveforms, the amplitude of frequency responses are plotted as a func-

tion of the grating line spacing. A curve similar to a Gaussian wave is conse-

quently formed. The corresponding spacing of the largest amplitude on this curve

is located; this spacing distance equals the wavelength of the SAWs which was

generated. Because the wave frequency is fixed, the velocity of the wave is calcu-

lated using the wavelength and the frequency. Due to the nature of the generation

mechanism of laser ultrasound, the calculated velocity is represented in the grain’s

property under the grating pattern on the sample surface, not at the receiver. The

Gaussian curve fit is used at all times to locate the peak value of all curves as the

blue line shown in the right of Figure 2.4.

Figure 2.4: This is the theory of k-SRAS: two wave packets are generated by fringe
patterns A and B with spacing of D1 and D2, the amplitude of wave’s frequency
is the largest when the spacing matches the wavelength λ2 of SAW.

If a titanium testing sample and an operation frequency of 82MHz is used,

(with SAWs velocities approximately ranging between 2800m/s to 3200m/s), ac-

cording to λ = v/f , the determined wavelength of SAWs should fall between

[34.15µm, 39.02µm]; therefore, the range of scanning fringes spacing should be

larger than the interval mentioned above. If the pattern size is 300µm×300µm,
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the maximum number of fringes on the pattern is 9. If the pattern size is reduced

to 100µm×100µm, the resolution is improved. Nevertheless, the Signal to Noise

Ratio (SNR) is degenerated because the maximum number of fringes falls to 2. As

explained earlier, the frequency response of a received signal has a smaller ampli-

tude and narrower bandwidth if the number of fringes is less. As a result, there is

a bigger error margin when the search function is used to find the centre frequency

of the curve. In conclusion, the resolution of a velocities image is proportional

to the operation frequency and is inversely proportional to the SLM size, though

these two factors do interact with each other.

The Figure 2.4 used a square grating pattern as an example. However, in the

case of a low SNR, (i.e. due to sample surface roughness), arcs in an even spacing

can be used to generate a grating pattern and therefore enhance the SNR. When

comparing the two types of SLM patterns in Figure 2.5, there is more energy flow

to the detecting points on the curves pattern when the detecting point is at the

focus of the arcs. The arcs pattern improves the SNR. However, it is not a true

representation of the SAWs’ velocity for the direction; the ambiguity of velocity

depends on the curvature.

(a) (b)

Figure 2.5: Patterns of SLM: lines and arcs.

2.2.2 Instrumentation

The k-SRAS system has major components of a Q-switched laser, SLM, detection

unit, oscilloscope and a computer controlled scan stage; the computer connects
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to the oscilloscope for data acquisition and processing. The sample is positioned

by the scanning stage, which consists of four separate units: XY stage, Z axis

stage, rotation stage and tilting stage. The received unit of k-SRAS system is CW

Nd:YAG laser with modified knife-edge detector. The schematic and photo of the

k-SRAS system are shown in Figure 2.6.

(a)

(b)

Figure 2.6: System construction [1] and photo of k-SRAS system.
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Excitation Source

The surface acoustic wave is generated by a Q-switched mode locked Nd:YAG

laser with a wavelength of 1064nm. The mean output power of the laser is 2W

and the peak energy of a single pulse is approximately 0.3MJ [1]. The operation

frequencies of the system are set at 82MHz, which is determined by the cavity

length of the laser and by multiples of 82MHz (e.g. 164MHz, 328MHz and so on).

The repetition rate of the laser is also adjustable within the range of a few hundred

hertz to 10kHz; this determines the measurement speed of the instrument. The

grating pattern is generated by the SLM and projects on the sample, which is fixed

on a computer controlled scan stage.

Signal Detection

The SAWs are detected by a CW Nd:YAG laser with an optical power of 100mW at

a wavelength of 532nm. They travel a short distance, around half of the SLM size,

on the sample surface and reach the detection point. In order to utilise the optical

energy more efficiently, a split photodiode is used in the knife-edge detector rather

than the single diode (described in Chapter 1.4.3). The extra diode replaces the

knife-edge in this modified version. When the reflected beam is deflected by the

oscillation of the SAWs, the intensity of light varies inversely on two diodes, hence

the angular displacement of the reflected beam is determined by the difference

between the two intensities.

Data Acquisition

A high speed complex amplitude analogue acquisition system is used. After the

laser has completed the scanning of the sample material and has calculated the ve-

locity of each pixel, an image of velocities can be plotted by the computer analysing

program.

Figure 2.7 shows the measured result on a single point of the sample surface;
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the SAWs’ amplitude varies with the grating line spacing which corresponds to the

SAWs’ wavelength. The blue solid line with circles represents the amplitudes of

the SAWs’ which are derived from the experimental data. The green solid line with

crosses describes the Gaussian curve fitted to the experimental data. By finding

the largest amplitude of received signals and using the formula v = λf , the velocity

of a grain (the speed at which the SAWs travel over the individual grains) at a

specific testing position is measured for the sample material.
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Figure 2.7: SAWs amplitude respect to the grating spacing of SLM.

2.2.3 System Accuracy

The resolution of images of velocities are determined by the step size when the

grating pattern moves on the sample surface also the size of the grating patterns

and the operation frequency. Most of the time the step size is equal to the SLM

pattern size. If the step size is smaller than the SLM size, the velocity of pixels

transit more smoothly. However, if step size is larger, some areas are not covered

by the SLM pattern during the whole scanning, hence the velocity map does not

provide a full and informative representation of the sample surface.

The scanning stage alignment is set at the same horizontal level for the SLM

projection and the sample surface. Any defocus of laser beam or tilts of the sample

would cause deformation of the SLM pattern and fringe spacing, thus the velocity

would be influenced indirectly. The lateral resolution is approximately half of the
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SLM size [24].

As seen in Figure 2.8 [24], an isotropic glass sample that is coated with alu-

minium is scanned by the k-SRAS system and the velocity map is shown. The SAW

phase velocity should be uniform across the area. However the velocity range is

2962.5m/s±1.5m/s; the standard deviation of velocity is 0.89m/s corresponding to

0.03%.

k−SRAS std

 

 

m/s

2961

2961.5

2962

2962.5

2963

2963.5

2964

Figure 2.8: Velocity of map of isotropic aluminium coated glass [24]. The image
size is 10x10mm, pixel size is 250µm; the standard deviation of velocity is 0.89m/s.

2.3 Frequency SRAS (f-SRAS)

2.3.1 Theory

Another approach of implementation is called f-SRAS, which is implied by its name

and implemented by changing the frequency of v = λf . A pulsed laser is used as

the excitation source in this version of SRAS. Alternatively, the laser could be

capable of being modulated by a series of sine waves with different frequencies.

Both of these methods are capable of implementing frequency scanning, although

the broadband excitation source is generally quicker and is the method used to

acquire the experimental results in the current system. A glass mask coated with

chrome is used to generate a fringe pattern with fixed spacing instead of SLM.
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Each of the fringes generate a series of SAWs which cover a range of frequencies.

These are received by the detection laser with a knife-edge detector and only the

SAWs whose wavelengths are equal to the fringe spacing are enhanced in intensity.

The grating excitation pattern acts as a filter on the generation of the SAWs

and is multiplied with the frequency content of the laser. The effective centre

frequency of the grating is determined by the grating period and the local velocity

(v = fλ again) as shown in Figure 2.9. As the wavelength of the SAWs equals

the fringe spacing and its frequency is known, the local velocity is calculated. F-

SRAS is potentially faster than the k-SRAS system because the measuring speed

of scanning a sample area is the same as the repetition speed of the emission

laser in f-SRAS. Unlike in the k-SRAS system, the SLM must be changed several

times, which is the same number of times of laser emission, to produce the velocity

information at one testing point, the laser only fires once to obtain the frequency

information in f-SRAS.

Figure 2.9: Theory of f-SRAS

2.3.2 Instrumentation

The f-SRAS system, in Figure 2.10, has the major components of a Q-switched

laser, including an optical mask, a detection unit, an oscilloscope and a computer

controlled scan stage; the computer also connects to the oscilloscope for data ac-

quisition and processing. The sample is positioned by the scanning stage, which
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consists of XY stage, Z axis stage, rotation stage and tilting stage. The received

unit of f-SRAS system is the same as k-SRAS: CW Nd:YAG laser with modified

knife-edge detector. The photo of the system is also illustrated in the figure.

(a)

(b)

Figure 2.10: Schematic and photo of f-SRAS laser ultrasound system.

Excitation Source

The Q-switch laser signal has a short pulse (<10ns) with 135mJ per pulse and a

peak power of 13.5kW. The laser beam is 2mm in diameter, and gives a power den-

sity of 8.6W/cm2 per pulse. It has a wide bandwidth from DC to >100MHz. The
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time and frequency response of the emission laser are demonstrated in Figure 2.11;

the frequency spectrum in the right hand side of the figure decreases slowly as the

frequency increases.
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Figure 2.11: Broadband laser signal of f-SRAS system in time and frequency do-
main.

Mask Design

The pulsed laser beam passes through a mask, which is 8mm by 10mm in size,

consisting of a set of stripes, as shown in Figure 2.12. The unblocked light excites

SAWs when it is imaged onto the sample surface. In our instrument there are

twenty masks that have different curvatures and fringe spacings, to cover a range of

different materials and conditions. A smaller distance between the fringes generates

SAWs with a shorter wavelength and higher frequency. A straight (rather than

focused) grating was used, which had an effective period of 43.5µm on the sample.

The patch size was 300µm in diameter—less than 1mm2 on the sample surface.

Since the effective bandwidth of the filtering action of the grating generation is

much smaller than the bandwidth of the laser pulse we can make the assumption

that the frequency content of the laser is locally flat across the bandwidth of the

grating and hence that the peak of the combined frequency response is at the same

location as the peak of the grating filter; thus we can determine the local velocity.
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Figure 2.12: Example of optical masks used to generate SAWs. Only one mask is
used in each scanning.

Data Acquisition

The oscilloscope recorded the SAWs waveforms every time the laser fired and this

data was downloaded to a computer. Because the laser repetition rate was much

faster than the reading and writing speed of oscilloscope and computer, this work-

ing mode slowed down the system measurement speed. The segmented memory of

the scope was utilised (storing the waveforms in a stack) and the scope communi-

cated with the computer only when the memory was full. As a result, waveforms

did not have to be transferred individually at single measuring point. Moreover,

the waveforms were collected when a single pulse of laser fired, hence a certain

numbers of adjacent waveforms could be averaged as a single point measurement

to improve the SNR. The disadvantage of this method was the increase in step size

(equals the times of average of original step size) which reduced the resolution of

the velocity mapping.

Figure 2.13 shows a typical SAWs signal captured by the system. The spacing of

the grating determines the wavelength of the SAWs. The top graph is the waveform

in a time domain; the FFT is in the bottom graph along with a Gaussian curve

(green line with crosses) which has been fitted to the raw FFT data (blue line with
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circles). The frequency where the amplitude is the largest indicates the closest

value corresponding to the SAWs travelling on the grain. Note that the velocity

measurement relates to the sample area under the generation patch, rather than

at the detection point or inbetween the generation and detection.
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Figure 2.13: Raw data in the time domain (top) and frequency domain (bottom)
with Gaussian fit.

2.3.3 System Accuracy

A glass sample which was coated with a thin layer of aluminium at a size of 1×1mm

(to improve the SNR of SAWs) was tested. It was an isotropic material and ideal

for evaluating the velocity accuracy of the f-SRAS system. Figure 2.14 displays

the velocity maps of the ideal sample. It was measured by using a mask with a

grating spacing of 64µm—the experimental data was taken at 16 points average.

The velocity varied between 2933m/s to 2938m/s, and gave a standard devia-

tion of 0.89%, which corresponded to 0.03%. It was the same velocity accuracy as

the k-SRAS system.
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Figure 2.14: Standard deviation test of f-SRAS system under temperature con-
trol. Image size is 1×1mm with pixel size of 5×5µm. The grating distance of
mask is 64µm, data is 16 points average. Velocity range over the whole area is
2935.5±2.5m/s, the standard deviation is 0.89m/s, corresponds to 0.03% [25].

Since the SAWs velocity was very sensitive to the operation temperature, for

instance on aluminium as the temperature decreases the velocity rises by approxi-

mately 3.7m/s/◦C between 22.5◦C and 27.5◦C [26]. Figure 2.15 demonstrates how

strongly the temperature variation influenced the velocity for the same sample.

The velocity decreased gradually along with the scanning order in time; the veloc-

ity range over the whole area was 2938±7m/s, the standard deviation was 3.13m/s,

corresponding to 0.11%—nearly four times higher compared to the standard de-

viation under normal operating circumstances 0.03%. The variation of the room

temperature is illustrated on the right figure. This rose approximately 2◦C during

the scanning from 12:00 to 14:30. It caused a velocity decline of approximately

12m/s over the sample surface.
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Figure 2.15: Left figure shows the ideal sample velocity map by f-SRAS without
temperature control. Image size is 1×1mm with pixel size of 5×5µm. The grating
distance of mask is 64µm, data is 16 points average. Temperature change during
the experiment period is shown on the right.
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SRAS Results

The surface acoustic wave velocity measurement taken using the SRAS technique

is local to the area where the waves are being generated. As the measurement

is relatively fast the sample may be scanned and an image built up of the SAW

velocity over the sample. The velocity at any point is determined by the material

elastic parameters at that point and the resulting images clearly reveal the grain

structure. This method is used to measure the velocity of the SAW over individual

grains on several industrial materials such as aluminium and titanium alloys. The

variations of velocities, which indicate the change in orientations of grains, are

presented as a colour map.

The velocity scan results of an aluminium sample and several titanium alloy

samples taken by both k-SRAS and f-SRAS are presented in this chapter. The

two methods are compared in terms of the images of SAW velocity produced.

Images where SAW are propagated in either two or three directions on the same

sample are presented, and compared, qualitatively, with EBSD results. Finally,

velocity surfaces over 360◦ of nickel and aluminium single crystals are measured

and illustrated.

All the tested samples have a smooth polished surface, due to the sensitivity of

knife-edge detector.

38
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3.1 K-SRAS

Figure 3.1 shows the velocity maps of a Ti-685 sample which are acquired using the

k-SRAS system with a laser frequency of 164MHz, with typical SAW wavelengths

of 16–19µm. The top figure presents the velocity variation when SAWs propagate

from left to right, while the bottom one refers to SAWs propagating from bottom

to top. The image size is 84×36mm; the scanning step size (the pixel size) is

250×250µm in each figure. The grains of the sample are distinguished easily by

the velocity contrast. The colour bar presents the velocity from 2700m/s (dark

blue) to 3400m/s (dark red).
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Figure 3.1: SAW velocity map of Ti-685: SAWs propagating left to right (top),
and bottom to top (bottom). Image size 84×36mm, pixel size 250×250µm [27].
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3.2 F-SRAS

Figure 3.2 shows four velocity maps of the same Ti-635 sample which are acquired

using the f-SRAS system. Figure 3.2a and Figure 3.2c are images acquired at a

low resolution, the step size is 500µm. It is worthwhile because each scan takes

only three minutes to acquire 105×55 pixels; the maximum scan speed is 60 pix-

els/second, using single shot data for each point (no averaging). The image was

acquired before the fast segmented memory data acquisition method—described

in section 2.3.2—was implemented; the maximum scan rate of 60 points/second is

defined by the maximum number of individual traces per second that the oscillo-

scope can record. At a slightly higher resolution, a pixel size of 200µm, 15 minutes

for one scan is sufficient and the results are shown in Figure 3.2b and Figure 3.2d.

The colours in the image represent the SAW velocity in the range 2600m/s (dark

blue) to 3400m/s (dark red).
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Figure 3.2: SAW velocity map of Ti-635: image size 27.4×52.4mm, pixel size
500×500µm (left), 200×200µm (right). SAWs propagating left to right (top two
figures), and propagating bottom to top (bottom two figures) [28]. A ‘z’ shape
crack can be seen across the sample and divides it into two pieces.

Figure 3.3 shows the same sample in a finer step size (50µm), and the scanning

speed was improved by utilising the oscilloscope’s segmented memory, as described
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in section 2.3.2. 40 minutes is needed to obtain each of the velocity maps, which

are measured at a scan speed of 238 points/second. The repetition rate of the

generation laser is 1kHz and every single pulse results in an acquired trace which

corresponds to one velocity measurement. The reduction in the overall scanning

rate is due to two factors. The dominant factor is the limitation in the speed of

the stages used to scan the sample, and the fact that data is only acquired in one

direction; the flyback at the end of each line is dead time. Additionally, there is a

delay as the acquired data is transferred from the fast acquisition memory in the

oscilloscope to the host PC’s memory.

After the scanning speed improvements described above, another bottleneck

that was overcome was the processing of the raw data, whereby a Gaussian curve

was fitted to the acoustic spectrum to determine the peak frequency. In order to

solve this problem, the time trace data were zero-padded prior to performing the

FFT (to get the amplitude frequency spectrum), this has the effect of interpolating

the spectrum in the frequency domain. The peak of this interpolated spectrum is

then found, rather than using Gaussian curve fit, which improves the processing

speed significantly.

It should be noted that this different processing technique affects the calculated

peak velocity significantly where there is more than one peak in the spectrum. The

grain in the square of Figure 3.3a is presented in orange in Figure 3.2a and 3.2b but

is a mixture of dark red and cyan in Figure 3.3a. This is because there are two peaks

with similar amplitude in the frequency spectrum of those tested points. The ‘peak

searching’ method picked the peak with larger amplitude in Figure 3.3a, whereas

the Gaussian curve fit returned an intermediate value of the peaks in Figure 3.2a

and 3.2b.
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Figure 3.3: SAW velocity map of Ti-635: image size 27.4×52.4mm, pixel size
50×50µm. SAWs propagating left to right (left), and propagating bottom to top
(right).

3.3 Data Fusion

A ‘velocity vector map’ can be obtained by combining the two velocity maps where

SAWs are propagating in orthogonal directions. The velocity maps on the right of

Figure 3.2 are used here as an example. The resulting velocity vector map shown

in Figure 3.4d is compared to the etched picture (Figure 3.4a) and the EBSD

orientation image of the same sample, shown in Figure 3.4b. EBSD is a much

more established and mature technique—the image provides true crystallographic

orientation, whereas the velocity vector map is an approximate approach.

The etched picture gave good contrast of grain boundaries without orienta-

tion information. There are a few grain boundaries not distinct in the velocity

vector map but obvious in the EBSD figure; two reasons are discussed for this

inconsistency as follows. Firstly, the velocities of two neighbouring grains may be
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very close, when the grains are almost oriented in the same direction. However,

the velocity range—2600m/s to 3400m/s—is significantly larger than the velocity

difference on these two grains. For instance in Figure 3.4d, the velocity differ-

ence between grain 1 and grain 2 is approximately 20m/s; the difference between

grain 3 and grain 4 is around 10m/s. Those differences are a small, but detectable

portion—1.25% to 2.5%—of the full 800m/s velocity range. Secondly, it is possible

for the velocities in orthogonal directions of two differently oriented grains to be

identical. The more directions in which SAWs are propagated, the less likely this

coincidence is to occur.

(a) Etched picture.

Dwell sample: EBSD image

(b) EBSD.
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(d) Velocity vector map.

Figure 3.4: Close fit between etched picture (left), EBSD image (middle) and
f-SRAS velocity vector map (right) on Ti-635.

Figure 3.5 shows the velocity maps of a Ti-685 sample obtained from prop-

agating SAWs in three directions, separated by 60◦, instead of two orthogonal

directions. This method reduces the ambiguity of grain boundaries compared to

the two directions velocity vector map. This vector map is presented by mapping

to RGB (red, green, blue) colour space after normalising the velocity range be-
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tween 2600m/s to 3300m/s. For example, for the basal plane SAWs travel at a

relatively fast speed (approximately 3300m/s for this material) on all directions,

the RGB value is close to [1,1,1]—white, for example the grain at the top of the

sample—stands for [>=3300m/s, >=3300m/s, >=3300m/s] on three directions.

If the colour is red, green or blue, it means the SAWs are slow on one direction

but faster in the other two.

Velocity map of three directions
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Figure 3.5: Velocity vector map of Ti-685 when SAWs propagate on three direc-
tions: 15◦, 75◦ and 135◦. Image size 30×18mm, pixel size 200µm. The vector
map is presented by mapping to RGB colour after normalised in the velocity range
2600m/s to 3300m/s.

3.3.1 Scattered Distribution

Certain combinations of velocities of SAWs propagating in orthogonal directions

are possible only in specific orientations on materials with hexagonal crystal struc-

tures. For example, if the velocities are both fast, it must be the basal plane

(001). Any other combination of velocities—one slow and one fast—correspond to

an orientation between the basal plane and plane (100). A scattered distribution

is considered to reveal the relationship between orientation and SAW velocity of 2

directions in materials with hexagonal crystal structures.

Two k-SRAS images of a Ti-685 sample where the SAWs are propagated or-

thogonally are selected to perform this method, as illustrated in Figure 3.6. Bigger
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grains will have more sample dots to form a cluster, as shown in Figure 3.6b. Two

clusters of sample dots are chosen to find the corresponding grains. The bottom

cluster of spots, shown in Figure 3.6b, corresponds to the grains where the SAWs

are fast in one direction but slow in another; the top cluster corresponds to the

grains where the SAWs are slow in both directions. If we use the points within

each of the two clusters as masks for the original velocity data, we can discrimi-

nate and highlight the grains that these refer to, this is shown in Figure 3.6c and

Figure 3.6d.

However we note that there are fewer obvious clusters in the scattered distri-

bution than there are individual grains of unique orientation. This implies that

the velocity information of only two orthogonal directions can only be used to de-

termine certain special situations where the combinations of the two velocities are

unique.
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Figure 3.6: Scatter map of two directions velocities.

3.4 Comparison of K-SRAS and F-SRAS

In Figure 3.7 and Figure 3.8, Ti-6246 k-SRAS results are compared with f-SRAS

results, which represent the velocity of SAWs propagating in two directions. The

k-SRAS results were acquired at a fixed frequency of 164MHz (typical wavelengths

16–19µm) and f-SRAS at a fixed wavelength of 74.4µm (typical frequencies 35–

41MHz). Figure 3.7 shows SAWs propagating from left to right, Figure 3.8 shows

SAWs propagating from bottom to top. All the SRAS images are scanned at a
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step size 250µm.
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Figure 3.7: SAW velocity map of Ti-6246: k-SRAS (top) vs f-SRAS (bottom),
SAWs propagating left to right. Image size 85×36mm, pixel size 250×250µm [27].

The spatial resolution of both variations of the SRAS technique is determined

by the size of the grating pattern on the sample surface. As the two experimental

setups (f-SRAS and k-SRAS) had very different grating sizes, the k-SRAS images

have had a spatial low pass filter applied. This has been done to match the spatial

resolution of the two sets of the results. Apart from differences in spatial resolution,

both of the techniques have almost the same velocity distribution. The colour bars

in the figures define the different SAW velocities, which for this alloy vary from

2650m/s (dark blue) to 3050m/s (dark red).
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Figure 3.8: SAW velocity map of Ti-6246: k-SRAS (top) vs f-SRAS (bottom),
SAWs propagating bottom to top. Image size 85×36mm, pixel size 250×250µm
[27].

The time required to scan a 341×145 pixel image of a 85×36mm sample using

the k-SRAS technique is 75 minutes, which gives a scanning speed about 11 pix-

els/second. The same image acquired using f-SRAS takes 100 minutes, which is 9

pixels/second (including overheads for fly-back during raster scanning). Although

in this case k-SRAS is marginally faster than f-SRAS, it should be noted that only

two averages at each testing point were used when the k-SRAS data was collected,

whereas 64 averages were used for f-SRAS.
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Figure 3.9: SAW velocity map of aluminium: k-SRAS (top) vs f-SRAS (bottom),
SAWs propagating left to right. Image size 61×41mm, pixel size 125×125µm [27].

SRAS can also be used on a material which has smaller grains, such as the

61×41mm aluminium sample shown in Figure 3.9 and Figure 3.10. The velocity

at each point on this sample is calculated from a single laser shot for those images

acquired using the f-SRAS technique. This means only one waveform has been

collected at each sample point, with no data averaging. The acquisition time

of each f-SRAS figure is more than 21 times faster than the time required for the

equivalent k-SRAS image after the segmented memory technique was implemented.
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Figure 3.10: SAW velocity map of aluminium: k-SRAS (top) vs f-SRAS (bottom),
SAWs propagating bottom to top. Image size 61×41mm, pixel size 125×125µm
[27].

3.5 SAW Velocity Results on a Single Grain

On single crystals, SRAS scans reveal the SAW velocity variation over 360◦ of

propagation direction. Figure 3.11 presents such scan results of single crystal

nickel and aluminium samples with known orientation.

The scans are taken on a random spot on the sample and starts with the SAWs
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propagating in an arbitrary direction. A measurement is performed every time the

sample is rotated by a certain interval, which is 5◦ on the nickel crystal (using the

k-SRAS technique), and 1◦ on the aluminium crystal (using f-SRAS). The figures

in the top row are presented as polar velocity spectra surface plots, whereby the

radial distance from the centre of the square represents the SAW velocity in the

direction of the radius. The colour indicates the intensity level of the received

signal, where red is the strongest and blue represents the weakest; the scale of

the images represents velocities varying from 0m/s in the centre of the square to

4000m/s in the centre of each edge. The recorded acoustic spectra are clearly

visible.

Another way to present the experimental data of SRAS on single crystal is a

velocity surface, which is plotted with the radius proportional to v. A Gaussian

curve fit is applied to the velocity surface spectrum to determine the velocity with

the largest signal component in every SAW propagation direction. These peak

velocities are plotted as a velocity surface, shown in the bottom two figures.

The four figures represent the SAW velocity variation on one plane of two media

in two different ways. Aluminium is a more highly isotropic material than nickel;

its velocity change on this plane is 2972.5±12.5m/s, which is more than 10 times

smaller than the velocity variation of nickel which is 2900±150m/s. Because the

results of both media are demonstrated in the same scale, the aluminium results

look considerably more circular.
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Figure 3.11: SAW velocity surface spectrum (top) and velocity surface (bottom)
of single crystal nickel (left) and aluminium (right) and both are on plane (001)
and in polar plots. The measurements are taken by k-SRAS and f-SRAS system
respectively.

3.6 Discussion

The two variations of the SRAS technique—frequency spectrum SRAS and k-

vector SRAS—have been compared in terms of their imaging capabilities. They

are found to be broadly equivalent, once allowances have been made for differences

in the spatial resolution due to the different sizes of the generation fringe patterns

used.
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The SAW velocity data acquired can be used to discern grains of different ori-

entations, and it has been shown that by fusing velocity data from two or more

propagation directions into vector or RGB colour maps, a significant amount of am-

biguity about whether two arbitrary grains have the same orientation or not can be

removed. A study of a scattered distribution of SAW velocities of a polycrystalline

hexagonal titanium alloy has shown that certain combinations of velocities in or-

thogonal directions are unique enough to define grains of specific orientations—but

that in many cases, more than two directions are required. Finally, the velocity

and velocity surfaces of two materials with very different anisotropy factors are ex-

amined, using velocity data recorded in many different directions using the SRAS

technique.



Chapter 4

Determining the Orientation from

SRAS

In this chapter I will link the SAW velocity measurement that SRAS gives to the

orientation of the crystal using the relation between SAW phase velocity, crys-

tallographic orientations and the elastic constants of the medium as illustrated

in Figure 4.1. They are complementary to each other; the third element can be

deduced if the other two factors are known. In other words, based on the known

elastic constants, the SAW velocity at the defined crystal cut and angle can be

calculated. Furthermore, a model can be built if it covers the SAW velocity infor-

mation of all crystallographic orientations. For convenience the Miller indices here

are all noted as decimals between 0 and 1 rather than integers.

I will start by stating the wave equation for the general case before explaining

the simplified case for an isotropic medium and then solving the general case. The

solution developed has involved firstly solving the so-called forward problem of

determining the SAW velocity from the elastic constants for a given orientation,

and secondly solving the inverse problem of determining the orientation from SAW

velocity measurements.

55
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Figure 4.1: SAW phase velocity, crystallographic orientations and the elastic con-
stants of the medium are related to and depend on each other.

The forward problem can be solved analytically (Chapter 4.1), however the

inverse problem is ill conditioned and analytically intractable except for some trivial

special cases. The technique developed here is to determine the orientation by

fitting the measured data to the forward problem (Chapter 4.3 and Chapter 4.4);

this technique is experimentally validated in Chapter 5.

4.1 Forward Model

4.1.1 The Wave Equation

In order to deduce the SAW velocity at a given orientation, it is necessary to solve

the elastic wave equation with appropriate boundary conditions. As illustrated in

Figure 4.2, x1, x2 and x3 are three axes of Cartesian coordination system. When

an elastic wave propagates in the medium, on the surface whose normal to the axis

xi has force exerted along the direction xj, noted as Tij. Thus, the equation of

motion in medium is [29]

ρ
∂2uj
∂t2

=
∂Tij
∂xi

, (i, j = 1, 2, 3) (4.1)
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where ρ is the mass density of the media and ui is the displacement along xi

direction.

Figure 4.2: Stress and SAW in Cartesian coordination system. T11, T21 and T31 are
the stresses on the planes x1 = 0, x2 = 0, x3 = 0, along the direction of x1 axis.
SAW propagates in the surface whose normal parallels to x3 and x3 = 0.

According to the tensor expression of Hooke’s law, in the elastic medium stress

Tij and strain Skl have the linear relationship

Tij = cijklSkl, (i, j, k, l = 1, 2, 3) (4.2)

where cijkl is the stiffness tensor containing the elastic constants. In anisotropic

media, the stress of any certain direction is not only related to the strain of this

direction, but also related to the strains in other directions.

At the same time, the relationship between Skl and uk is

Skl =
∂uk
∂xl

, (k, l = 1, 2, 3). (4.3)

Then substituting Equation 4.2 and 4.3 into Equation 4.1, gives

ρ
∂2uj
∂t2

= cijkl
∂2uk
∂xi∂xl

, (i, j, k, l = 1, 2, 3) (4.4)

which is the wave equation for anisotropic elastic media.
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In the following sections the distribution of waves on an isotropic medium will

be used to explain the general principles and then the analysis will be extended to

anisotropic media.

Figure 4.3 shows the coordinate system used to examining the propagation of

SAWs on the infinite half space. These definitions go in the equation.

Figure 4.3: Definition of coordination system and the free surface.

The solution of wave equation 4.4 is

ui = αiexp {j [ωt− β(l1x1 + l2x2 + l3x3)]} , (i = 1, 2, 3) (4.5)

where l1, l2 and l3 are the direction cosines of the propagation vectors, ω = 2πf is

the angular frequency, β = 2π/λ is the wave-number, and αi are the eigenvectors

of the corresponding eigenvalue. The solution defines the particle displacement

and the wave type, whereas the eigenvectors are associated with the eigenvalues

corresponding to the phase velocity of the wave.

Substituting Equation 4.5 into Equation 4.4, gives

β2cijklliljαk − ρω2αl = 0.

By dividing by β2 on both sides of the above equation, it becomes

(cijkllilj − ρv2δik)αk = 0, (i, j, k, l = 1, 2, 3) (4.6)
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where v2 = ω2/β2, and δik =

 1, when i = k;

0, when i 6= k.
According to the Equation 4.6, the

phase velocity and particle displacement can be calculated for arbitrary directions

(l1, l2, l3) if the elastic constants cijkl are known.

Equation 4.6 has a nontrivial solution when its determinant is equal to zero:

∣∣cijkllilj − ρv2δik∣∣ = 0, (i, j, k, l = 1, 2, 3). (4.7)

If one considers SAWs only here the propagation is confined to the directions in

the plane which contain l1 and l2. The velocity of propagation of the SAWs is

dependant on the values l1 and l2 which define the direction of propagation in the

plane. In order to show the main features of Rayleigh waves the isotropic case

where the propagation velocity does not depend on direction will be examined.

4.1.2 SAW on Isotropic Materials

In an isotropic material the elastic constants are [30]



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


where c44 = 1

2
(c11 − c12).

Assuming the SAW propagates along x1 axis, hence l1 = 1, l2 = 0; substituting
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cijkl, l1 and l2 into Equation 4.7 gives

∣∣∣∣∣∣∣∣∣
Γ11 − ρv2 Γ12 Γ13

Γ21 Γ22 − ρv2 Γ23

Γ31 Γ32 Γ33 − ρv2

∣∣∣∣∣∣∣∣∣ = 0 (4.8)

where

Γ11 = c11 + c44l
2
3,

Γ22 = c44(1 + l23),

Γ33 = c44 + c11l
2
3,

Γ13 = Γ31 = (c11 − c44)l3,

Γ12 = Γ21 = Γ23 = Γ32 = 0.

The determinant of Equation 4.7 after transformation is

(c44l
2
3 + c44 − ρv2)2(c11l23 + c11 − ρv2) = 0. (4.9)

The above is a cubic equation in l23, therefore, there are three roots of l23; Equation

4.9 gives six roots of l3:

l
(1)
3 = −i(1− v2/v2t )1/2, l

(4)
3 = i(1− v2/v2t )1/2,

l
(2)
3 = −i(1− v2/v2t )1/2, l

(5)
3 = i(1− v2/v2t )1/2,

l
(3)
3 = −i(1− v2/v2l )1/2, l

(6)
3 = i(1− v2/v2l )1/2

(4.10)

where vt =
√
c44/ρ and vl =

√
c11/ρ, being the velocities of transverse and longi-

tudinal bulk waves respectively in an isotropic medium.

According to the characteristics of SAWs inside the medium where x3 → −∞,

the particle displacement must be zero. Three of the roots in Equation 4.10, l43,

l53 and l63, result in the displacements of waves approaching infinity when x3 →

−∞ after being substituted into Equation 4.5. Therefore, those roots which have

positive imaginary parts are discarded.
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Substituting the three roots with negative imaginary parts into Equation 4.6,

each root has a set of corresponding normalised eigenvectors such that

α
(1)
1 = 0, α

(2)
1 = i(vt/v)(1− v2/v2t )1/2, α

(3)
1 = vl/v,

α
(1)
2 = 1, α

(2)
2 = 0, α

(3)
2 = 0,

α
(1)
3 = 0, α

(2)
3 = vt/v, α

(3)
3 = −i(vl/v)(1− v2/v2l )1/2.

(4.11)

Furthermore, the solutions of the wave equation must also satisfy the boundary

conditions, therefore, no traction exists at x3 = 0,

T3j = c3jkl∂uk/∂xl = 0, for j = 1, 2, 3. (4.12)

This boundary condition in Equation 4.12 limits the available solutions to the wave

equation 4.4 to solutions corresponding to SAWs. However, based on the linear

differential equation, the solution will be

ui =
3∑

n=1

Cnα
(n)
i exp[−jβl(n)3 x3]exp[j(ωt− βl1x1)] (4.13)

where Cn are the weighting factors, which satisfy both the determinant of the wave

equation (4.4) and the boundary conditions (4.12).

By substituting the solution 4.13 and the elastic constants of the isotropic media

into Equation 4.12, three equations are given as

(α
(2)
3 + α

(2)
1 l

(2)
3 )C2 + (α

(3)
3 + α

(3)
1 l

(3)
3 )C3 = 0

l
(1)
3 C1 = 0

(c11α
(2)
3 l

(2)
3 + c12α

(2)
1 )C2 + (c11α

(3)
3 l

(3)
3 + c12α

(3)
1 )C3 = 0.

(4.14)

If the determinant of the system of linear equations 4.14 has a nontrivial solution,
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its determinant must equal zero:∣∣∣∣∣∣∣∣∣
0 α

(2)
3 + α

(2)
1 l

(2)
3 α

(3)
3 + α

(3)
1 l

(3)
3

l
(1)
3 0 0

0 c11α
(2)
3 l

(2)
3 + c12α

(2)
1 c11α

(3)
3 l

(3)
3 + c12α

(3)
1

∣∣∣∣∣∣∣∣∣
= l(1)

[
(α

(2)
3 + α

(2)
1 l

(2)
3 )(c11α

(3)
3 l

(3)
3 + c12α

(3)
1 )− (α

(3)
3 + α

(3)
1 l

(3)
3 )(c11α

(2)
3 l

(2)
3 + c12α

(2)
1 )
]

= 0.

(4.15)

Two solutions of 4.15 are derived after substituting 4.10 and 4.11 into it, and are

given by

l
(1)
3 = i(1− v2/v2t )1/2 = 0 (4.16)

where v = vt, and C2 = C3 = 0. The displacements of this solution are parallel to

the free surface, the amplitude of the wave is constant and does not vary with the

depth beneath the surface, hence it is defined as a transverse bulk wave. Also,

[
2− (v/vt)

2
]2

= 4
[
1− (v/vt)

2
]1/2 [

1− (v/vl)
2
]1/2

(4.17)

where v is solved so that C2, C3 are then deduced by Equation 4.15; hence, the

displacements are:

u1 = C
[
exp(jβl

(3)
3 x3)− Aexp(jβl

(2)
3 x3)

]
exp [jβ(x1 − vt)]

u2 = 0

u3 = −jC [1− v2/v2t ]
1/2
[
exp(jβl

(3)
3 x3)− 1

A
exp(jβl

(2)
3 x3)

]
exp [jβ(x1 − vt)]

(4.18)

where A = (1 − v2/v2l )1/4(1 − v2/v2t )1/4. The solution of Equation 4.18 is a wave

which propagates along the half space boundary and is known as a Rayleigh

wave [31]. The particle displacement of the Rayleigh wave is made up of two

components: one is parallel to the wave propagation direction x1, and the other

is perpendicular to the free surface with a phase difference 90◦ to the first com-
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ponent. For this reason the particle movement is elliptical; the amplitude of the

displacements decrease exponentially with the depth of the free surface. The vari-

ation of the displacements of vertical (red line) and longitudinal (blue line) waves

are presented in Figure 4.4. The energy of the SAW is predominantly concentrated

within a range of 1–2 SAW wavelengths below the free surface.
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Figure 4.4: The displacements of vertical (u3) and longitudinal (u1) waves decrease
exponentially with the depth beneath the free surface.

4.1.3 SAW on Anisotropic Materials

Due to the nature of anisotropic media the SAW phase velocity is dependent on

the medium composition, and both crystal plane and angle. The procedure for

solving the SAW phase velocity is similar to that used for isotropic materials, but

of course the variables when solving for anisotropic materials are more complicated.

Beginning again from Equation 4.8,

Γik =ci1k1l
2
1 + ci2k2l

2
2 + ci3k3l

3
3 + (ci2k3 + ci3k2)l2l3 + (ci1k3 + ci3k1)l1l3

+ (ci1k2 + ci2k1)l1l2, (i, k = 1, 2, 3)
(4.19)

Because Γik has symmetry where Γ23 = Γ32, Γ13 = Γ31 and Γ12 = Γ21, they can be

expressed according to their crystal systems as follows:
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1. Cubic

Γ11 = c11l
2
1 + c44l

2
2 + c44l

2
3

Γ22 = c44l
2
1 + c11l

2
2 + c44l

2
3

Γ33 = c44l
2
1 + c44l

2
2 + c11l

2
3

Γ12 = (c12 + c44)l2l3

Γ13 = (c12 + c44)l1l3

Γ23 = (c12 + c44)l1l2

2. Hexagonal

Γ11 = c11l
2
1 + c66l

2
2 + c44l

2
3

Γ22 = c66l
2
1 + c11l

2
2 + c44l

2
3

Γ33 = c44l
2
1 + c44l

2
2 + c33l

2
3

Γ12 = (c13 + c44)l2l3

Γ13 = (c13 + c44)l1l3

Γ23 = (c11 − c66)l1l2

3. Tetragonal

Γ11 = c11l
2
1 + c66l

2
2 + c44l

2
3

Γ22 = c66l
2
1 − c11l22 + c44l

2
3

Γ33 = c44l
2
1 + c44l

2
2 + c33l

2
3

Γ12 = (c13 + c44)l2l3

Γ13 = (c13 + c44)l1l3

Γ23 = (c12 + c66)l1l2
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4. Triclinic

Γ11 = c11l
2
1 + c66l

2
2 + c44l

2
3 + 2c14l2l3

Γ22 = c66l
2
1 + c11l

2
2 + c44l

2
3 − 2c14l2l3

Γ33 = c44l
2
1 − c44l22 + c33l

2
3

Γ12 = (c13 + c44)l2l3 + c14(l
2
1 − l22)

Γ13 = (c13 + c44)l1l3 + 2c14l1l2

Γ23 = (c11 − c66)l1l2 + 2c14l1l3

5. Orthorhombic

Γ11 = c11l
2
1 + c66l

2
2 + c55l

2
3

Γ22 = c66l
2
1 + c22l

2
2 + c44l

2
3

Γ33 = c56l
2
1 + c44l

2
2 + c33l

2
3

Γ12 = (c23 + c44)l2l3

Γ13 = (c13 + c44)l1l3

Γ23 = (c12 + c65)l1l2

l1 and l2 are defined by the direction of propagation. The Equation 4.8 may

be considered as a cubic equation with variable l23 and parameter v2, and therefore

for each v2 there are six roots of 4.8. For anisotropic media, they are generally

complex roots given by

Re[l
(1)
3 ]± jIm[l

(1)
3 ]

Re[l
(2)
3 ]± jIm[l

(2)
3 ]

Re[l
(3)
3 ]± jIm[l

(3)
3 ].

In a similar fashion to the case of isotropic media, although in this case the roots

have a negative imaginary part and decay into the material

l
(1)
3 = Re[l

(1)
3 ]− jIm[l

(1)
3 ]

l
(2)
3 = Re[l

(2)
3 ]− jIm[l

(2)
3 ]

l
(3)
3 = Re[l

(3)
3 ]− jIm[l

(3)
3 ]
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match the boundary conditions. Substituting the three roots into Equation 4.6,

the eigenvectors of each root α
(n)
i , (i, n = 1, 2, 3) can be found.

Additionally, the solution must satisfy the boundary conditions 4.12. Again

nontrivial solutions exist, thus the determinant of the coefficient is given by

dmn = cm3klα
(n)
k l

(n)
l = 0, with l

(n)
1 ≡ l1, l

(n)
2 ≡ l2. (4.20)

The displacements along the three Cartesian axes can be calculated when you

have a known: velocity, three lower-half space roots, and its corresponding eigen-

vectors and weighting factors being

ui =
3∑

n=1

Cnα
(n)
i exp[−jβl(n)3 x3]exp[j(ωt− βl1x1 − βl2x2)] (4.21)

Farnell [4] illustrated how to use iterative search procedures to achieve an ap-

propriate v value using a computer algorithm. The SAW phase velocity is varied

to find the value of v which satisfies the Equation 4.20.

Even though the determinant can be complex in order to satisfy the boundary

conditions it is necessary for both real and imaginary parts to approach zero simul-

taneously. It is now believed [4] [5] that this can be achieved in all combinations

of planes and propagation directions. In some cases other modes also exist where

the determinant does not vanish but becomes small. In these cases, as described

by Farnell [4], the wave attenuates along the direction of propagation and is not a

true surface wave. However, if the attenuation is small the behaviour can appear

like a normal surface wave. These waves are called PSAWs and exist on specific

planes and directions.

4.1.4 Calculation of ‘Dominant’ Modes

To determine the measured velocity the magnitude of the determinant (Equation

4.20) is plotted against possible velocities. The approximate formula of Rayleigh
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wave velocities on isotropic media is given [31] as

v =
0.87 + 1.12σ

1 + σ
vt (4.22)

where σ is the Poisson’s ratio of the material and vt is the velocity of the transverse

bulk wave. This formula gives a useful indication of the velocity searching range

of isotropic and anisotropic media and it can be adjusted according to the specific

conditions of different materials. As the Poisson’s ratio varies between 0–0.5, the

phase velocity varies from 0.87vt to 0.96vt. Therefore, the velocity searching range

has to be larger than this. The minima of the curve when the determinant equals

or approaches zero represent the possible wave modes.

A curve of magnitude of determinant (Equation 4.20) vs. velocity is plotted in

Figure 4.5; the location of the troughs of the curve indicate the SAW velocities,

which lead the determinant infinitesimally close to zero and satisfy the boundary

conditions. The three minima shown in Figure 4.5 correspond to the wave ‘modes’

which might exist. The deteminant value is calculated at approximately every

7m/s; larger intervals may cause the absence of troughs, hence miss possible wave

modes.
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Figure 4.5: Curve of determinants vs. velocities of arbitrary direction on plane
(001) of silicon with ρ = 2.328gm/cm3, c11 = 165GPa, c12 = 64GPa and c44 =
79.2GPa [32].

The displacements along three Cartesian axes are calculated by Equation 4.21.

For an arbitrary angle on a free surface the vertical displacement is along the x3 axis

and the longitudinal and transverse displacements are the sum of the projections

of the displacements along x1 and x2 axes respectively. The displacements of those

directions establish the wave mode oscillation pattern and define the wave type.

In our SRAS systems, the Rayleigh waves are generated efficiently by ther-

moelastic expansion [13], hence, when considering surface wave generation, the

displacements on the longitudinal and vertical directions are the most significant.

The knife-edge detector which is implemented in both SRAS systems, translates

the slope of surface to the spatial displacement and so it is sensitive to the out-

of-plane displacements of SAW. Even though only the displacement along the x3

axis is detectable by the knife-edge detector, the laser generated force in the longi-

tudinal direction is significant for driving the wave propagation. In the model, by

considering the displacements in these two directions, the mode is ranked according

to
⇀
utotal displacement =

⇀
uvertical +

⇀
u longitudinal (4.23)
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which defines the ‘dominant’ mode or the one that is most likely observed.

Figure 4.6 shows an example of multiple modes calculation on silicon (001)

plane. The top left figure displays four modes located within the velocity searching

range. Not all the wave modes are continuous, for example, one mode in this figure

only appears at particular angles. It may be because the mode disappears and is

not present between those angles, or that the interval of the determinant curve

calculation is not small enough and so the minimum was missed. The modes are

named according to the velocity at each angle, and are presented in different colours

from lowest to higher velocities by blue, green, red and cyan respectively. The

slowest mode, which is the true SAW, agrees with Farnell’s research in Figure 4.6d

[4].

The top middle figure shows the displacement versus the angle and mode order.

The mode which has largest displacement according to the second figure is plotted

as in the top right graph; it is defined as the ‘dominant’ mode, which is the wave

mode most likely to be observed. It is noteworthy to mention that the unit of

calculated velocity in this thesis is m/s, which does not correspond to the unit

of elastic constants GPa and density gm/cm3, which are the units given by some

references herein.
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(c) The ‘dominant’ mode.

(d) Farnell’s result.

Figure 4.6: Calculated modes (top left) and its corresponding displacements (top
middle) on plane (001) of silicon. The top right graph displayed the SAW mode
which has the largest displacements. Bottom figure is the calculated velocity curve
by Farnell [4].

PSAWs appear at certain angles of particular crystal planes on the free sur-

face of anisotropic materials. They propagate along the surface medium, which

then gradually degenerates into a bulk wave and penetrates into the depth of the

medium. In the above calculations, because the ‘dominant’ modes are ranked

according to the largest displacements, which are the sum of vertical and longitu-

dinal terms, PSAWs are regarded as primary if their displacement is larger than

the SAW’s, as at the angles between 28◦ and 63◦ in Figure 4.6c.
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4.1.5 Rotation of Coordination System

Figure 4.7: Rotation of plane and reference direction in the coordination system.

Section 4.1.4 has described how to calculate SAW phase velocities on plane (001),

where the primitive vectors are parallel to the axes of the coordinate system as

demonstrated in Figure 4.7. The model is based on the left-hand Cartesian co-

ordination system. For the case of an arbitrary plane, the elastic constants are

rotated about the rotation matrix from plane (001) to the desired plane before the

iterative search procedures:

cdesired = creference ×RT (4.24)

where R is the rotation matrix (see Appendix C), and both cdesired and creference are

4th-order tensors. The reference direction [100] on plane (001) is also processed

using this method. For example, the rotation matrix of plane (110) is

R =


1
2
−1

2
1√
2

−1
2

1
2

1√
2

− 1√
2
− 1√

2
0


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Thus:

P(110) = (0 0 1)×RT = (0 0 1)×


1
2
−1

2
− 1√

2

−1
2

1
2

− 1√
2

1√
2

1√
2

0

 = (1 1 0)

and the reference vector on plane (110) is

V(110) = Vreference ×RT = [1 0 0]×


1
2
−1

2
− 1√

2

−1
2

1
2

− 1√
2

1√
2

1√
2

0

 =

[
1

2
− 1

2
− 1√

2

]
.

This rotation method makes plane (001) rotate to the desired plane normal via

the shortest path. The model allows one to calculate the velocity surface of planes

as a function of orientation determined by the normal to the plane and a reference

direction within the plane.

4.1.6 Symmetry of Cubic System

Because of the structural symmetry of cubic crystals, a plot of SAW velocities on

plane (hkl) may be rotated by a determinable angle to give that of a mirror of

plane (khl). The velocity surfaces of the two planes do not share a common plane

of symmetry and so can not been superimposed.

Assumes plane (hkl) has reference direction noted as

V(hkl) = Vreference ×RT
hkl

= [1 0 0]×RT
hkl

=
[
k2 × (1− cos θ) + cos θ − kh× (1− cos θ) − h× sin θ

]
where θ = 6 ([001], [hkl]). The reference direction of plane (khl) is similarly avail-
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able

V(khl) =
[
h2 × (1− cosφ) + cosφ − kh× (1− cosφ) − k × sinφ

]
where φ = 6 ([001], [khl]) and θ = φ. If plane (khl) rotates via the shortest route to

the position of plane (hkl), its new reference direction V ′khl, which must be parallel

to plane (hkl) is

V ′(khl) = V(khl) × (R′khl)
T

=
[
h2 × (1− cosφ) + cosφ − kh× (1− cosφ) − k × sinφ

]
× (R′khl)

T

where ψ = 6 ([khl], [hkl]). The angle between Vhkl and V ′khl is always

δ = arcsin(V(hkl) · V ′(khl)) = 90◦

where both h and k are positive real numbers with h < k, the angle δ will be

negative. Consequently, the velocity surface of plane (hkl) and (khl) (l = 1 in

the model) will be identical if the mirror reflection of latter is rotated 90◦ counter-

clockwise.

An example of planes (0.25 0.1 1) and (0.1 0.25 1), of the face centred cubic

lattice of nickel, are given in Figure 4.8. Plane (0.1 0.25 1) has been flipped and

rotation 90◦, and matches plane (0.25 0.1 1) in Figure 4.8c.
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(a) Plane (0.25 0.1 1).

  2000

  4000

30

210

60

240

90

270

120

300

150

330

180 0

Plane (0.1 0.25 1)

(b) Plane (0.1 0.25 1).
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Figure 4.8: SAW on plane (0.25 0.1 1) and (0.1 0.25 1) of nickel are on the
left; plane (0.1 0.25 1) has been flipped and rotation 90◦, and matches plane
(0.25 0.1 1). They are calculated based on the elastic constants c11 = 247GPa,
c12 = 153GPa, c44 = 122GPa and ρ = 8.912gm/cm3 [32].

4.2 SAW Model of Specific Materials

4.2.1 Cubic Structure

Because of the symmetry of the cubic crystal structure, only 1/48 of planes of

a sphere are needed to describe all the SAW velocity surfaces of a cubic crystal,

and the remaining planes are repetitions of this information. The planes have

normals in the area between [001], [011], [101] and [111], which is shown as dots

in Figure 4.9. In other words, only the planes (hkl) and (khl) (h, k ∈ [0, 1],

and l = 1) are calculated; the symmetry relationship between these two types of

planes was shown in the previous section. The angle between adjacent planes is

approximately 2.25◦ and the velocities on each plane are calculated at one degree

intervals.
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Figure 4.9: The area with dots is where the normal of the calculated planes are.

4.2.2 Aluminium

Aluminium is a face-centred cubic crystal. Aluminium has the advantage of light

weight, also high specific strength, better than some alloys of steel, and it has

become one of the most commonly used metals in industry. In the manufacturing

and aviation industries, aluminium is often an excellent structural material. The

parameters of aluminium used for the model are c11 = 107.3GPa, c12 = 60.9GPa,

c44 = 28.3GPa and ρ = 2.699gm/cm3 [33].

SAW on typical planes : (001), (011) and (111)

The previous section demonstrated that the modes of SAWs are calculated by

searching the troughs of the determinant curve. The method to determine the

‘dominant’ mode was also explained (determined by the largest displacement of

the sum of longitudinal and vertical displacements).

On the (001) plane of single aluminium crystal, SAWs have 4-fold symmetry,

hence Figure 4.10a shows the calculated SAW ‘dominant’ mode versus angles be-

tween 0◦ and 90◦ with respect to the reference direction [100]; in other words, 0◦ is

the direction of vector [100]; 45◦ represents the direction [110] which is 45◦ coun-

terclockwise from direction [100] on plane (001). The PSAW of plane (001) first



CHAPTER 4. DETERMINING THE ORIENTATION FROM SRAS 76

occurs at the angle which is approximately 35◦ rotation from the reference direc-

tion [100] (0◦) and last observed at 56◦. From 35◦, SAWs gradually become bulk

waves and the displacements of the longitudinal and vertical directions decrease

significantly towards zero at 45◦. Simultaneously, PSAWs arise as it has a SAW-

like oscillation pattern even though its propagation direction is not parallel to the

free-surface but tilts down by a small angle into the medium. At 45◦, PSAWs have

no displacement component in the transverse direction, and the ellipse is only in

the sagittal plane. The ‘dominant’ mode aluminium on planes (011) (Figure 4.10b)

and (111) (Figure 4.10c) appear as a continuous curve without mode hopping. All

the velocity curves agree with Farnell (the bottom three figures in Figure 4.10) [4].
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Figure 4.10: Top three figures are the calculated SAW on plane (001), (011) and
(111) of aluminium. The bottom three figures are the calculated velocity curve by
Farnell [4]. On top plane (111) 30◦ is the direction equivalents to the 0◦ of Farnell’s
result.
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Modelling of Aluminium

In the 3D space, because the SAW velocity is influenced by the stress and strain

indirectly, the SAW travels at different velocities on different planes along the same

direction. Here in the SAW model, we used two dimensions to express the plane,

one dimension for the direction on the plane, and one dimension to present the

SAW velocities.

Figure 4.11 demonstrates the model for aluminium. The ‘dominant’ mode of

SAW on each plane, whose normal is in the area between [001], [101] and [111], are

shown as the ordinate varies from plane (101) to (001), with the abscissa being from

plane (101) to (111); each plane has 11.25◦ with its adjacent one. The calculation

procedure for the SAW velocity model is as follows:

1. Defines the plane by its Miller index.

2. Calculates the 4th-order stiffness tensor corresponding to the defined plane.

3. Defines the SAW propagation direction in the defined plane.

4. Calculates the ‘dominant mode ’ according to the determinant curve corre-

sponding to the defined plane and direction.

5. Repeats the previous step on all propagation directions of the defined plane.

6. The velocity surface is obtained for the defined plane.

7. Repeats from the first step for all planes.

Although only half of the total distinct planes are shown, the planes that make

up the other half of the model have mirror symmetry, except for a 90◦ rotation as

explained in previous section. It should be noted that the shape of SAW varies

gradually between the adjacent planes. The velocity surface is demonstrated in

magnitude, i.e. the radii are proportional to velocity—which is also represented

by segment colour, with red (longer) segments for faster phase velocity and blue
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segments representing slower (shorter) ones. It can be seen that velocity surfaces

of aluminium look almost like a circle as the velocities are not normalised although

the velocity variation can be more easily recognised by the colour change with

angle. The PSAW appear as continuous clusters with faster velocity than pure

SAW, and can be observed on some planes such as (0.25 0.25 1).

The wave modes at each angle are determined by the troughs of the determinant

curve which is calculated by the approximate velocity. There is the chance that if

the interval of velocities are not small enough, the trough, which locates the mode,

is missed. This can causes the absence of velocity at certain angles of some planes,

for instance on plane (0.75 0.25 1) and (0.75 0.5 1).
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Figure 4.11: SAW velocity surface on planes whose normal is in the area between
[001], [101] and [111] of aluminium.
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4.2.3 Nickel

Nickel is a face-centred cubic crystal. Because of its good plasticity and corrosion

resistance, nickel and its alloys are widely used in chemical engineering, electronic

engineering and aeronautical manufacture. Nickel-based alloys are classified in cer-

tain applications as either superalloys, corrosion-resisting alloys or shape memory

alloys.

Knowledge of the precise orientation of single nickel or nickel-based alloy crys-

tals is essential for engineering control. For example, a nickel-based-superalloy

which is used in applications such as high pressure turbine blades, requires high

creep endurance in high temperature operating environments up to 1600◦C [34].

Anisotropic control of the materials enhances their performance, with subsequent

benefits such as more efficient fuel consumption. The model is calculated based

on the elastic constants of single nickel crystal, c11 = 247GPa, c12 = 153GPa,

c44 = 122GPa and ρ = 8.912gm/cm3 [32].

SAW on typical planes : (001), (011) and (111)

As nickel is a cubic crystal and in the same category of having an anisotropic ratio

η > 1, the velocity surface behaviour on all planes follows the same pattern as

aluminium, hence the model is calculated at the same area as aluminium. SAW

and PSAW (if it presents) of typical planes (001), (011) and (111) are plotted as

a function of angle in Figure 4.12. The PSAW of plane (001) occurs at an angle

which is at approximately 23◦ from the reference [100] direction (0◦) is evident upto

67◦. The ‘dominant’ mode of planes (011) (Figure 4.12b) and (111) (Figure 4.12c)

appear as a continuous curve without mode hopping. The behaviour found here—

including SAW and PSAW behaviour, roots pattern, manner of weighting factors

and displacements—of typical planes (001), (101) and (111) are in agreement with

Farnell in the bottom three figures in Figure 4.12 [4].
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Figure 4.12: Top three figures are the calculated SAW on plane (001), (011) and
(111) of nickel. The bottom three figures are the calculated velocity curve by
Farnell [4]. On top plane (111) 30◦ is the direction equivalents to the 0◦ of Farnell’s
result.

Modelling of Nickel

Comparing the velocity surface of nickel with aluminium on typical planes, the

results show a similar trend with regard to waves behaviour. The difference between

these two materials is the anisotropic ratio—the variation of SAW phase velocity

of all the planes of aluminium is approximately 2900m/s to 3200m/s, and in nickel

it is approximately 2200m/s to 3400m/s.

Figure 4.13 illustrates the SAW velocity (‘dominant’ mode) of nickel. The ve-

locity surface are not only demonstrated in magnitude (with magnitude represented

by both length and colour), with red representing faster phase velocities and blue
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representing slower one. The ‘dominant’ mode of SAWs on each plane whose nor-

mal is in the area between [001], [101] and [111] are shown as ordinate from plane

(101) to (001), with abscissa is presenting from plane (101) to (111). Each plane

has 11.25◦ with its adjacent one. It can be seen that the shape of SAWs varies

gradually between the adjacent planes. The planes (k h 1) have mirror symmetry

with the half planes (hk1) (shown in the figure, except at 90◦ rotation as explained

in previous section).

However, on nickel it is possible for more modes to exist than on aluminium,

hence the behaviour of the waves is more complex. Because of this more mode

jumping is observed on the velocity surface of nickel. The PSAW, which appear

as a continuous clusters in a faster velocity than pure SAW, can be observed on

some planes such as (001) and (0.25 0 1), and disappear as the planes gradually

rotate from (001) towards (101) and (111). It is more obvious than those which

were observed on aluminium as the plane rotates from (001) towards (101) and

(111).
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Figure 4.13: SAW velocity surface on planes whose normal is in the area between
[001], [101] and [111] of nickel.
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4.2.4 Titanium β

Titanium is named after the Greek god ‘Titan’ because of its high strength, ductil-

ity, heat resistance and corrosion resistance. Because of these properties titanium

and its alloys are commonly utilised in space and aeronautics engineering. Due to

its ubiquitous use in aircraft, naval hulls, spacecraft and missiles, the evaluation of

its structure and characteristics is in high demand.

Titanium experiences phase transition during the annealing procedure, at 882◦C

it changes from α (hexagonal) to β (cubic) structure [35]. The parameters of tita-

nium β used in the model are c11 = 97.7GPa, c12 = 82.7GPa, c44 = 37.5GPa and

ρ = 4.581gm/cm3 [36].

SAW on typical planes : (001), (011) and (111)

The anisotropy ratio η of titanium β is 5 resulting in the SAW phase velocity

varying across a bigger range than aluminium on all planes. The wave modes are

more complicated than aluminium and nickel. Figure 4.14 shows the SAW velocity

of planes (001), and (011) as a function of propagation angle.
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Figure 4.14: SAW on plane (001) and (011) of titanium β.

In Figure 4.14a, there are two modes ‘dominant’ in alternation between 0◦
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and 28◦ alternately, where only one continuous pure SAW appears during the

same angles as with nickel and aluminium. The ‘dominant’ mode between 0◦ and

14◦, and between 25◦ and 28◦ is a pure SAW. Between 15◦ and 24◦ is a mode

which satisfies the boundary conditions with an increasing transverse component

despite its propagating direction not being parallel to the surface. The PSAW

arises between 29◦ to 61◦. SAWs on the titanium (011) plane have a similar curve

variation as aluminium and nickel. The ‘dominant’ mode in Figure 4.14b is a pure

SAW and becomes Rayleigh wave at 0◦ and 90◦.
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Figure 4.15: SAW on plane (111) of titanium β.

Figure 4.15 illustrates the SAW on plane (111) of titanium β. The left figure

shows the ‘dominant’ mode with largest displacement, which might be two discon-

tinuous modes, as a function of angle. The two ‘dominant’ modes are shown in

Figure 4.15b. The slower curve is a SAW and the faster one represents a PSAW.

The colour indicates the order of the magnitude of displacements; blue and green

are first ‘dominant’ and second ‘dominant’ modes respectively. Because SAW and

PSAW appear alternately, it is very likely that the displacements are very close

numerically in the sagittal plane; and that these two waves would be observed

simultaneously in a medium with a large η [4]. The PSAW branch has mode

jumping to the adjacent mode at angles (near15◦ and 40◦), however it still follows
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the particle motion pattern of PSAW. At 45◦, the PSAW degenerates into a bulk

wave and the SAW becomes ‘dominant’ (depicted in blue) and the isolated green

point at this angle is the bulk wave.

Modelling of Titanium β

The Figure 4.16 illustrates the model of titanium is β phase. The ‘dominant’ mode

of SAWs on each plane, whose normal are in the area between [001], [101] and [111],

are shown as ordinates from plane (101) to (001), with abscissa presented from

plane (101) to (111). Each plane differs by 11.25◦ from its adjacent planes. There

are significant variations of wave modes on most of the planes. As the planes rotate

from (001) towards plane (111), PSAW and SAW gradually become significant and

can be observed simultaneously on the some planes, for instance (111). This figure

only shows the ‘dominant’ wave mode on each plane, the criterion for observation

of SAW and PSAW evidently requires further investigation.



CHAPTER 4. DETERMINING THE ORIENTATION FROM SRAS 87

Figure 4.16: SAW velocity surface on planes whose normal is in the area between
[001], [101] and [111] of titanium β.
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4.2.5 Hexagonal Structure

Several different notations of the coordination system are in use for hexagonal

crystals in different circumstances. Figure 4.17a illustrates the coordination sys-

tem which is used in the model described herein; six directions, [100], [010], [-110],

[-100], [0-10] and [1-10], rotated counterclockwise on basal plane (001) are demon-

strated. Because of the symmetry of the hexagonal crystal structure, only 1/24

of planes of a sphere are needed, all others being repetitious information. The

modelled planes, whose normals are in the area between [001], [010] and [100],

are as shown in Figure 4.17b. The angle between adjacent planes is 2.5◦ and the

velocities on each plane are calculated at one degree intervals.

(a) Coordinate system. (b) Calculated area.

Figure 4.17: Definition of coordinate system of hexagonal crystals is shown in the
left figure with six directions on basal plane (001). The right hand side of the
figure shows the area where the normal of the calculated planes are.

4.2.6 Titanium α

The structure of titanium exists in two phases, the cubic titanium β, and the

hexagonal alpha phase. The alpha phase is more stable at ambient conditions

and the beta phase is formed by annealing alpha titanium above 882◦C [35]. α

titanium has a hexagonal structure, and the model is calculated based on the

elastic constantsc11 = 163.6GPa, c12 = 92.3GPa, c13 = 67.92GPa, c33 = 185.2GPa,
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c44 = 47.05GPa and mass density ρ = 4.429gm/cm3 [37].
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Figure 4.18: SAW on plane (001) and (100) of titanium α.

SAWs on the basal plane (001) of hexagonal crystals is isotropic and can be seen

in Figure 4.18a, that the SAW phase velocity is a constant (3058m/s at all angles).

Due to the unique SAW velocity behaviour on this plane the SAW can not be used

to determine the information about the angle on this plane. The (100) plane of

titanium α has 2-fold symmetry; the ‘dominant’ mode in Figure 4.18b is continuous

pure SAW and rotates from reference direction [00-1] towards [010] (90◦) with a

corresponding velocity decrease.

Model of Titanium α

The calculated model of titanium α is displayed in Figure 4.19. The ‘dominant’

mode of the SAW on each plane, whose normal is located in the area between [001],

[110] and [100], are shown with the abscissa from plane (100) to (110), and with

ordinate from plane (100) to (001). Each plane has 7.5◦ with its adjacent plane

from plane (100) to (110) and 20◦ from plane (100) to (001). The planes of the

other half of model have mirror symmetry excepts 90◦ rotation as explained in the
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previous section. In summary, SAWs on the basal plane are isotropic and all the

other planes have 2-fold symmetry.

4.2.7 Summary

The SAW velocity models of four materials—aluminium, nickel, Ti-β and Ti-α—

are presented in this section. The velocity surface on several planes of each material

are shown. Because of the symmetry of each crystal family, those planes which

have redundant (i.e., identical) information are excluded in the model. The ’dom-

inant’ mode on each plane is determined by considering the wave modes which are

generated most efficiently i.e., with the largest overall displacement, which is the

sum of displacements on the longitudinal and vertical directions. The velocity sur-

face of the dominant modes are presented in the model. It is notable that certain

combinations of orientation and direction on certain materials result in more than

one observable mode.
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Figure 4.19: SAW velocity surface on planes whose normal is in the area between
[001], [110] and [100] of titanium α.
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4.3 Inversion: Overlap Function

Chapter 3.5 shows how SRAS works experimentally either measuring Ak or Af , in

both cases this can be converted to A(v), which is the spectrum at a particular

direction on a velocity surface spectrum. It is assumed the plane orientation noted

as (hkl) and the direction on the plane is θ, with (hkl) and θ are known. If a

mode exists with a velocity v(h, k, l, θ) then A(v) should have a maximum present

at v(h, k, l, θ).

In a real experiment A(v) is measured at each point on the sample but orien-

tation and direction are unknown. The challenge then is to determine orientation

and direction from A(v). A brief examination of the ‘forward’ problem (determin-

ing vmodel from known orientation and direction) will demonstrate that inverting

this would be extremely challenging and most likely ill-conditioned (due to the

redundancy resulting from the symmetry). In addition to the analytical challenge

of inversion and ill-conditioning there is a practical problem,

((hkl), θ) → velocity

but there is no unique mapping velocity → ((hkl), θ). However, for a set of

v
′
(h, k, l, θ) (a velocity surface with unknown orientation and direction) there might

be a mapping v(θ)→ (hkl) finding an analytical technique to map v(θ)—combining

a multitude of velocity measurements—poses additional complexity.

As a consequence of this complexity (and potential non-invertibility) I have

developed a semi analytical inversion technique that can robustly find orientation

and direction as a function of v
′
(h, k, l, θ) where v(θ) is sufficiently anisotropic. It

can also identify when v(θ) is insufficiently anisotropic or isotropic.

The different approaches investigated to determine this merit function are dis-

cussed below. The two methods discussed are both overlap functions, but different

calculations of the merit function utilised. In order to distinguish these methods

they are named method I and method II.
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4.3.1 Method I: Use Experimental Data in Velocity Sur-

face Spectrum and Model Velocities with Displace-

ments

Figure 4.20 is the experimental data A(φ, v) represents the signal strength with

regard to propagation directions φ and possible velocity v over a certain range with

the displayed signal strength proportional to a colour spectrum i.e., a colour map

(where red is the highest and blue for the lowest signal level recorded). This merit

function is customised for the SRAS scanning results.

The experiment begins at an arbitrary direction on the sample surface and

moves through the angles of direction stepwise. In the data presented here the step

size is 5◦. The overlap function is calculated by comparing the measured velocity

versus values from the precalculated model. The final orientation is determined as

the plane and direction where the maximum of the figure of merit of the overlap

function is located.

In order to determine the orientation, the following procedure was implemented:

the model velocity and displacements are defined as v(h, k, l, θ) (black dots in

Figure 4.20), where the plane is defined by its (hkl) parameters, and θ is the angle

on the plane. The experimental dataA(φ, v) is shown as a velocity surface spectrum

in Figure 4.20. The calculated velocity v(h, k, l, θ) is used as an index, hence, the

value where it is overlapped by v(h, k, l, θ) on the velocity surface spectrum is

A(φ, v(h,k,l,θ)). The figure of merit is the sum of A(φ, v(h,k,l,θ)) at each (hkl) and θ

calculated. Therefore, by repeating the calculation on all planes and all directions,

the largest value for the figure of merit after normalisation indicates the best match

F (h, k, l, θ) =

φ=n−1
n
π∑

φ=0

A(φ, v(h,k,l,(φ−θ))), (n = 1, 2, 3, ...) (4.25)

where n represents the number of evenly spaced velocity measurements used to

determine the velocity.
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Figure 4.20: Experimental data A(φ, v) is shown on the left, and the calculated
velocity model v(h, k, l, θ) is plotted as black dots. The calculated velocity is used
as index, and the value underneath it is A(φ, v(h,k,l,θ)).

Each figure in Figure 4.21 demonstrates the calculation performed at one angle

on one plane; the left three figures show incorrect combinations of angle and plane

(i.e., those not being maximum figures of merit); the right hand figure shows the

combination of angle and plane with the highest figure of merit and therefore

represents the result of the overlap function. The merit function is simply the sum

of the amplitude under the black asterisks on those graphs and is given under each

graph. It can be seen in this figure, F (h, k, l, θ) is larger when the model better

fits the velocity surface spectrum.
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(d) F (0.85 0.3 1 15)=1

Figure 4.21: Curve fitting procedure. From left to right are the normalised figure
of merits of three different angles on different planes. The normalised value of F
indicates how well the model fits to the experimental velocity surface spectrum.
Left three are not the matched results but the right one is.

The inversion technique presented here is a facile method to search through

orientation and direction to maximise the merit function. This is illustrated in

Figure 4.22, where the correct output model plane (asterisks) by the overlap func-

tion is shown against the experimental data. Calculations of the figure of merits

show the unknown nickel sample is plane (0.85 0.3 1) with a 15◦ rotation from

reference direction [1 -0.1 -0.82]. For convenience fractions are used rather than

integers to present Miller indices here.
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Figure 4.22: Curve fitting procedure. On the left is the figure of merit over all
planes and rotation angles; the right top points out the maximum of the figure of
merit is on the rotation of 15◦; the right bottom shows the experimental data with
the determined result (asterisks).

4.3.2 Method II: Use Experimental Data Fitted and Model

on Gaussian Filter

The method II is still an overlap function but accomplished using the simulated

data A(h, k, l, θ, v) based on the model, and swapping the position of experimental

data and model in method I. A comparison of method I and method II is shown

in Table 4.1.
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Data Source Method I Method II
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A(h, k, l, θ, v) = D(h, k, l, θ), v = v(h, k, l, θ)

0, v 6= v(h, k, l, θ)

Figure of Merit

F (h, k, l, θ) =

φ=n−1
n
π∑

φ=0

A(φ, v(h,k,l,(φ−θ)))

F (h, k, l, θ) =

φ=n−1
n
π∑

φ=0

A(h, k, l, (φ− θ), ve(φ))×G(v),

whereG(v) =
1

σ
√

2π
exp

(v − µ)2

−2σ2

The Maximum of F (h, k, l, θ) Points to the Correct Orientation

and Direction.

Table 4.1: Two different approaches of the overlap function.
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As described in Chapter 2, SRAS results can be presented as a velocity sur-

face ve(φ). This is accomplished by selecting the model velocity v(h, k, l, θ) of an

arbitrary plane (hkl) and converting this velocity curve into a velocity surface spec-

trum, with the peak of the spectrum at each direction θ equal to the displacement

D(h, k, l, θ) which corresponds to v(h, k, l, θ). A Gaussian filter, which is defined

as

G(x) =
1

σ
√

2π
exp− (x− µ)2

2σ2
(4.26)

where µ is the expected value and σ is the standard deviation of the Gaussian

distribution, has been applied on the vertical direction of A(h, k, l, θ, v). And the

figure of merit is

F (h, k, l, θ) =

φ=n−1
n
π∑

φ=0

A(h, k, l, (φ− θ), ve(φ))×G(x) (4.27)

As with method I, the maximum of F (h, k, l, θ) points to the correct orientation

and direction.

The full width at half maximum (FWHM) of the Gaussian filter is given by

FWHM = 2
√

2ln2σ (4.28)

and equals 240m/s in this figure. The FWHM is increased by increasing σ.

The method I is customised for SRAS results, which presents experimental

data as velocity surface spectrum. However, for other techniques which obtain

SAW velocity surface as raw data, the method II is appropriate. The least-squares

method is not used here because it is not appropriate if the velocity curve is

discontinuous either in measured data or predicted model. The random points

would contribute a large error to the sum of the squares. In addition, at the

certain angles of some planes, two modes can be observed simultaneously, and

since the Gaussian curve fit on the velocity spectrum can only return one velocity
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(an intermediate value of the peaks) at that angle, the least-squares method is not

suitable in these cases.

4.3.3 R-value Assessment

The difference in orientation between the plane selected for the simulation and the

output using the overlap function is assessed by a figure known as the ‘R-value’ [34].

It is an industry standard which has been used over the past 30 years to evaluate

the disorientation between two adjacent grains. There are five common ways to

calculate the R-value: single-angle cos, two-angle cos, two-angle root mean square

(RMS), three-angle cos and three-angle RMS (see Appendix E). Here we have used

the two-angle cos method (also known as REL or R-2cos), whereby the R-value is

calculated using two angles

R = arccos(cosφcosτ) (4.29)

where φ is the smallest angle to rotate grain A to the orientation of grain B, τ

is the rotation angle needed to superpose grain A and B after the first step (see

Appendix E). The R-value is presented in degrees with range from 0◦ to 62.8◦.

Here the R-value is used as an indication of the error of the overlap function

rather than the disorientation at the boundary of two adjacent grains. If only the

plane (hkl) is required and the rotation angle of the plane is unimportant, φ alone

is sufficient. Note that in the case of the basal (001) plane of hexagonal crystal

structures where the SAW velocity is isotropic, it is not possible to determine τ by

SRAS.

4.3.4 Interpolation of the Figure of Merit

When performing the overlap function on SRAS results, the rotation angle and

plane were determined by the location of the maximum of the figure of merit



CHAPTER 4. DETERMINING THE ORIENTATION FROM SRAS 100

in Figure 4.22. The maximum of F (h, k, l, θ) matched plane (0.85 0.3 1) with

the propagation direction of 15◦. The top row in Figure 4.23 shows F (0.85 k1θ),

F (h 0.3 1θ) and F (hk1 15) respectively, which are the figures of merit near the

maximum. None of them are smooth surfaces in the strictest sense of the word,

although near the maxima the variation (spatial frequencies) are relatively low.

Hence, interpolation is introduced to improve the accuracy of the search results.

The cubic spline interpolation is a common curve fitting method in engineering

which uses piecewise polynomial function. It refers to the polynomial function

but avoids the Runge’s phenomenon which is the error caused by the high degree

polynomial function. The cubic spline interpolation function is defined as follow:

S(x) =



s1(x), if x1 ≤ x < x2

s2(x), if x2 ≤ x < x3
...

sn−1(x), if xn−1 ≤ x < xn

(4.30)

where si(x) is a third degree polynomial defined as

si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (4.31)

for i = 1, 2, ..., n− 1.

All three figures are shown in the bottom row in Figure 4.23 plotted at smaller

intervals using the interpolated results to produce smoothed curves. The interpo-

lation is only applied to the area around the maximum value of the figure of merit

in search algorithm because the interpolation does not change the location of the

maximum value (which gives the orientation of the crystal), but does identify it

more precisely. After interpolation, the example in Figure 4.23 gives an orientation

of plane (0.91 0.35 1) and propagation direction of 16.75◦; these differ from the

uniterpolated results which gave the plane as (0.85 0.3 1) and the propagation

direction as 15◦.
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(a) h=0.85. (b) k=0.3. (c) θ=15◦.

Figure 4.23: The maximum of F (h, k, l, θ) gave the matched plane (0.85 0.3 1)
with rotation angle 15◦. The top three figures illustrate F (0.85 k 1 θ), F (h 0.3 1 θ)
and F (h k 1 15) respectively; the bottom three figures are the same results after
using cubic spline interpolation.

4.4 Search Algorithm Performance Evaluation

For evaluating the performance of the overlap function, a Gaussian filter and Gaus-

sian white noise (GWN) are applied to a model velocity i.e., a model calculated

for a given plane and direction, to simulate experimental data. The output of the

overlap function is compared with the known plane and direction of the simulated

data to evaluate its performance. This evaluation is demonstrated on both nickel

and aluminium models in the following section.

These evaluation results can be applied to both overlap function methods. Since

the major difference between the two methods is the FWHM of the velocity surface

spectrum, this is one of the variables used in the evaluation.
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4.4.1 Experimental Data Simulation

Table 4.2 describes the simulation procedure of an experimental velocity spectrum

for evaluating the overlap function. Firstly, a velocity surface with a corresponding

calculated displacement from an arbitrary orientation and direction is chosen. A

scaling factor is multiplied by the velocity to simulate the velocity shift which is

caused by the apparatus. Secondly, the velocity surface is then weighted according

to its displacement and converted to a velocity surface spectrum. As described

in the previous section, a Gaussian filter is used to customise the FWHM of the

velocity spectrum. GWN has been chosen to be applied in the simulation data as it

is a common type of signal noise within electronic systems. The GWN parameter

of µ (mean) is set to 0 in this simulation procedure since it will otherwise raise

the amplitudes of the signal levels therefore causing F (h, k, l, θ) to increase by

values proportional to µ. µ has no effect on the maximum of F (h, k, l, θ). σ is the

parameter which relates to the width of Gaussian distribution and has relationship

with the SNR

SNRdB = 10log10
µ

σ
(4.32)



CHAPTER 4. DETERMINING THE ORIENTATION FROM SRAS 103

Steps Description Expression

1

Chooses an arbitrary velocity

surface and its corresponding

displacement from the model

v(φ) and D(φ)

2
Applies a scaling factor on the

velocity surface

v
′
(φ) = v(φ)× (1 + p),

where p is the scaling factor

3
Converts the velocity surface

to velocity surface spectrum
A(φ, v) =

 D(φ), v = v
′
(φ)

0, v 6= v
′
(φ)

4 Applies Gaussian filter A
′
(φ, v) = A(φ, v)×G(v)

5 Applies Gaussian noise A
′′
(φ, v) = A

′
(φ, v) +GWN(µ, σ)

Table 4.2: Simulation of the Experimental Data.

Figure 4.24 shows a simulated example A
′′
(φ, v) and a A

′′
(v) at a particular

angle. The FWHM of the spectrum equals 240m/s and SNR is 17dB. After prepa-

ration of simulated experimental data, the overlap function is performed on this

simulated data A
′′
(φ, v).
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Plane ( 0.45 0.75 1)
after added noise

SNR: 17 dB
std = 0.03%
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Figure 4.24: A
′′
(φ, v) (left) and a A

′′
(v) at a particular angle (right) with noise

have been added. In these two figures, the FWHM of the spectrum equals 240m/s
and SNR is 17dB.

The evaluation is performed by varying the spectrum width, SNR and the

velocity shift of the simulated velocity surface spectrum. The experimental data

from k-SRAS and f -SRAS results in Table 4.3 show the average SNR and average

spectrum width of both systems. These data give us approximate ranges of SNR

and spectrum width, which are then used as the initial variables in the simulation.

Hence, the evaluation results allow confirmation of how reliable the overlap function

is under the parameters of the experimental conditions. The evaluation results also

allow us to identify experimental parameters (FWHM of the spectrum and SNR)

which minimise the R-value (which is described in the following section) for the

overlap function.
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Operation System Average SNR(dB)
Average FWHM of the

Experimental Spectrum

k-SRAS 16.90 243 m/s

f -SRAS 23.98 219 m/s

Table 4.3: Experimental parameters of two SRAS systems.

4.4.2 Nickel

A velocity surface of an arbitrary orientation and direction is chosen from the

calculated model; the parameters: the spectrum width, SNR and the velocity

scaling factor, are varied within a certain range and simulate the experimental

velocity surface spectrum for performing the search algorithm. Figure 4.25 shows

the evaluation results of nickel. The figure shows the R-value in slice image where

x axis is the SNR from 5dB to 50dB, and y axis is the FWHM of the experimental

spectrum from the simulated experimental data recorded from 50m/s to 700m/s,

and z axis indicates the velocity shift from 0% towards 3% (assuming the average

SAW velocity of nickel is 3000m/s, hence, the maximum velocity shift in this

figure is ±90m/s). The industrial standard of 8◦ is typically set as a limit for the

R-value [34]; any value larger than 8◦ is displayed here in dark red and the areas

of yellow, green and blue colour indicate the acceptable ranges of SNR and width

of spectrum in the experimental data.

It can be seen in the figure that if the experimental data has an identical velocity

to the model for nickel and where the FWHM of experimental raw data spectrum

is less than 250m/s with an SNR from 5dB to 50dB, then the correct plane can be

determined by the overlap function without error (indicated in dark blue). Where

the experimental data has a FWHM smaller than ca. 650m/s and with a SNR

larger than 5dB, despite the velocity having a 2.4% shift, the correct plane can

still be determined by the overlap function within the accepted maximum R-value.
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Figure 4.25: The R-value evaluation of searching algorithm. Value range of system
SNR and width of experimental spectrum are tested.

4.4.3 Aluminium

The evaluation of the overlap function on aluminium is illustrated in Figure 4.26.

The figure shows the R-value in a slice image where x axis is the SNR from 5dB

to 50dB, and the y axis is the FWHM of the spectrum from the simulated ex-

perimental data from 50m/s to 400m/s. The feasible range of velocity shift on
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the z axis is smaller than that with the nickel model since aluminium is a weakly

anisotropic material (its velocity variation is approximately ±16m/s to ±126m/s

on each plane, rather than ±176m/s to ±353m/s of nickel), therefore a velocity

shift of only 0.3% is permissible in the experimental data if the FWHM of the ex-

perimental spectrum is smaller than 150m/s. In the case of there being no velocity

shift of the ‘measured’ results, the maximum FWHM of its spectrum is 300m/s for

the overlap function to work efficiently i.e., having an error of less than 8◦.

4.5 Summary

This chapter has explained the procedure for modelling the phase velocity of SAWs.

Models of four crystals have been shown. A merit function with different ap-

proaches (methods I and II) were introduced to adapt the format of the velocity

data obtained from different techniques. This merit function was evaluated based

on the models of nickel and aluminium. Simulation results have confirmed this

function is successful when the experimental data spectrum, system SNR and ve-

locity shift are within a certain range. For practical applications the SRAS systems

satisfy these requirements and the overlap function based on the SRAS results is

reliable for crystal orientation determination.
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Figure 4.26: The R-value evaluation of searching algorithm. Value range of system
SNR and width of experimental v curve are tested.



Chapter 5

Experimental Validation

This chapter describes the experimental measurement of grain orientation and

compares these measurements with orientation measurements made using compli-

mentary techniques such as LBR and EBSD.

The overlap function is performed on 3 aluminium and 12 nickel samples in

two approaches; results are compared to LBR data. Since acquiring the data is

relatively slow and the time required is proportional to the numbers of angles mea-

sured, experiments were compared to determine the minimum numbers of angles

required. Results of three samples are illustrated when 36, 9 and 6 directions of

experimental data are used. Error analysis of 12 single crystal nickel samples with

known orientations are used to demonstrate and assess the inversion algorithm. Fi-

nally, the inspection procedure for samples with multiple grains is demonstrated,

the results of SRAS scanning and orientation determination are shown.

As both k-SRAS and f-SRAS record the experimental data as velocity surface

spectrum, samples may be measured using either system; both were used to collect

data presented in this chapter.

109
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5.1 System Accuracy

Comparing the SRAS results on single grain (which was obtained in Chapter 3),

with the calculated model from Chapter 4, the orientation of the grain can be

determined. The SAW velocity model is calculated based on the elastic constants

and mass density of the material; any error in these parameters could cause sig-

nificant error and prevent the inversion algorithm from working. Furthermore, the

system efficiency and systematic error need to be considered practically. Finally,

the system noise must be considered.

The following factors may influence the accuracy of the SAW inversion proce-

dure:

• SRAS system generating/detecting efficiency

In the cases where several wave modes are found in the model calculations,

the modes which are most efficiently generated and detected with the exper-

imental set-up should be selected. The experimental results of samples with

known orientation are compared with the calculated wave modes to confirm

the system efficiency.

• Feature tolerance of mask

Chapter 2 gave details of how a mask is used to generate a grating pattern in

the SRAS system. As the grating spacing is a significant parameter in data

processing, the precision of the mask does effect the experimental results to

a certain extent. According to the mask manufacturer’s technical report, the

feature tolerance of the super high resolution design of chrome on soda lime

glass, which is the customisation mask in the f-SRAS system, is ±0.8µm [38].

The mask, which has been used to obtain the single grain results in Chapter 3,

has a grating spacing of 43.5µm, which means the feature tolerance of the

mask can cause a 1.8% velocity shift of f-SRAS experimental results at most.

• Demagnification ratio
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In the SRAS systems the mask is refocused by optics on to the sample surface,

hence, the pattern is also demagnified. The focus of image of the mask needs

to be adjusted manually, which may cause a demagnification error. Under

typical experimental parameters in f-SRAS, the demagnification ratio is 2.67,

hence, the fringe spacing on the sample surface is 2.67 times smaller, and a

systematic error in the velocity measurement can be introduced.

• Operating temperature

The SAW velocity is sensitive to the operating temperature, for instance as

the temperature decreases the velocity on aluminium rises by approximately

3.7m/s/◦C between 22.5◦C and 27.5◦C [26]. The laboratories have their

air conditioner set at 20◦C for several hours up to and including during

inspection. Accordingly, the parameters of the elastic constants of nickel

and silicon are measured at 20◦C; however, the models of aluminium and

titanium α are calculated based on the elastic constants which were obtained

at 298K (see Appendix B), and this leads the experimental data faster than

the calculated model.

Overall, the first factor relates to the efficiency difference of generated modes,

while the last three could cause scale factor errors in the experimental data.

5.1.1 Demagnification of Mask

A calibration test is first performed on an ideal sample which has a calibrated

velocity of 2933 m/s on the f-SRAS system at 20◦C; the results of which are shown

in Table 5.1. The first column shows the fringe spacing on the mask and the second

column shows the frequency of waves which have the same wavelength as the fringe

spacing on the sample. The spacing of the fringe pattern which is projected on

the sample surface is calculated by the wave frequency and SAW velocity; it is

different from the value in column five, which equals the mask spacing divided

by the demagnification ratio 2.67. The true demagnification ratio varies as the
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different mask is used, and does not have either a fixed or linear relationship to

the mask spacing.

Mask

Spacing

(µm)

Frequency

Generated

(MHz)

Calculated

Spacing on Sample

(µm)

Demagnification

Ratio

Theoretical

Spacing on Sample

(µm)

116 67 43.77 2.59 43.5

145 53 55.33 2.63 54.4

203 38 77.18 2.62 76.1

304 26 117.31 2.65 114

Table 5.1: Calibration of f-SRAS system.

Figure 5.1 shows the experimental results of a single crystal aluminium (001)

plane with the blue solid line, which was measured in the f-SRAS system; the

curves in blue, green and red are the calculated results using material constants

from three different sources [32] [33] [39] respectively; the specific values are listed

in Appendix B. These three references were measured at temperatures of 20◦C,

25◦C and 24◦C respectively; hence the calculated results in the figure have been

calibrated to the experimental room temperature 20◦C according to the velocity

variation of 3.75m/s/◦C between 22.5◦C and 27.5◦C [26].

Figure 5.1 shows that the calculated SAW velocity curves follow the same vari-

ation pattern with the experimental data. The experimental velocity curve of

aluminium is shown by a blue solid line and is well matched to the calculated SAW

velocity curve (green dots) using constants from Anderson [33]. The calculated

result (in red dots) has only a 4m/s difference, and the result shown by blue dots

is approximately 17m/s slower. The reason why the measured data in the figure is

continuous and not discrete will be explained in next section.

In the right hand figure the experimental data are shown with a manually

added velocity shift of 3% faster than the calculated results. The experimental
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curve is far from the three calculated curves and has no intersection at all; it is

impossible to locate the correct plane by the overlap function in such situations.

This scaling error could be caused by 3µm difference on the mask, or a 0.01 error

of the demagnification ratio. In reality, such a velocity shift must be considered

when performing the overlap function.
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Figure 5.1: Experimental SAW velocity curve on aluminium (100) with three cal-
culated results whose parameters were given by Hearmon [32], Anderson [33] and
Ledbetter [39]. The correct experimental SAW velocity curve are on the left, and
the experimental data on the right are manually added 3% velocity shift.

Figure 5.2 presents the calculated velocity on nickel plane (001) with elastic

constants and density based on three different references respectively. All the

curves follow the same pattern but are different numerically.
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Figure 5.2: The calculated velocities of nickel plane (001); the elastic constants
and density are based on three different references [33] [32] [40]. The parameters
can be found in Appendix B.

In order to minimise the effect of a systematic error in the SAW velocity mea-

surement (i.e., calibrate), a series of scaling factors were applied to the model before

performing the merit function as shown in Figure 5.3. The curve of the maximum

of the figure of merit is obtained as a function of the scaling factors. The peak

of this curve shows the systematic error, which is 99% in this case. The velocity

model is multiplied by this error value before performing the merit function on this

calibrated model, which determines the grain/crystal orientation.
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5.2 Overlap Function: Curve Fitting Results

The overlap function can be operated in two different ways which were discussed

in Chapter 4; fitting to results measured from single crystal nickel and aluminium

samples are shown in the following sections. 3 aluminium wafers and 12 nickel

samples, all of them with known orientations, were tested. The minimum number

of directions required to perform the search successfully is discussed and fitting

results using various numbers of directions are presented. Finally, an R-value

assessment is performed between all the SRAS fitting results and LBR results to

determine the overlap functions accuracy.

5.2.1 Measured Results of Aluminium vs. Model

Figure 5.4 illustrates the experimental results from three planes—(001), (011) and

(111)—on a single crystal aluminium sample, and then matches their calculated

SAW velocities. The experimental data are taken every 1◦ over 360◦ using the

f-SRAS system.
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Figure 5.4: SAW velocity curves for all directions on three cuts of single crystal
aluminium. The rotated angle is due to the randomly selected starting propagation
direction. Experimental data are plotted as blue solid lines, and the calculated
results are in red asterisks. In each graph, experimental data are plotted as blue
solid lines, and the calculated results are in red asterisks [25].
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In Figure 5.4a, at 22 degrees from [100] on plane (001), the wave mode at certain

angles, where it transforms between SAW and PSAW, causes a mismatch between

22◦ to 40◦ (between two straight lines). The velocity variation on this plane is ap-

proximately ±14m/s; the displacements of SAW and PSAW around these angles

are equally strong and dominate alternately. Due to these two factors, between

these angles there are two peaks—corresponding to SAW and PSAW—appear in

the experimental velocity spectrum. The Gaussian curve fit of the experimental

data returns the weighted average value of SAW and PSAW, which is approxi-

mately 15m/s slower than the calculated value at these angles in the figure. The

experimental data of plane (011) and (111) are in good agreement with the cal-

culated SAW velocities except for a minor scale difference, which causes the mis-

matches at the extrema on plane (011) and (111). Note the calculated results in

Figure 5.4 are manually shifted on the plane to match the angle of experimental

data because the inspection starts at a random direction.

Results of the Overlap Function

The overlap function is performed on experimental data from 3 single aluminium

wafers with known orientation; the searching results are shown in Table 5.2 and also

illustrated in Figure 5.5. In method II, the FWHM of the velocity spectrum has

been set as 100m/s. The R-value is used as a metric to present the disorientation

between searched outputs and the known orientation of the samples.

Table 5.2 shows the R-value is smaller than 5◦ between the searched results and

the reference of plane (001) and (111) using both methods. The R-value of plane

(011) is slightly larger but still less than 9◦. The φ component, which is the angle

between two planes in the R-value calculation is the main contributor to the large

R-value on plane (001) and (011) by method II and τ , which is the propagation

angle to the reference direction on the plane, is larger than φ in the other results

shown.



CHAPTER 5. EXPERIMENTAL VALIDATION 117

Samples Overlap Function I Overlap Function II

Results R φ τ Results R φ τ

sample 1:

(001)

14◦

(0 0 1)

14.09◦
0.09◦ 0◦ 0.09◦

(0 0.05 1)

14◦
2.86◦ 2.86◦ 0◦

sample 2:

(011)

154◦

(1 0.1 1)

67.67◦
6.70◦ 4.04◦ 5.35◦

(0.95 0.2 1)

70◦
8.77◦ 8.38◦ 2.6◦

sample 3:

(111)

41◦

(0.9 0.95 1)

43.76◦
4.19◦ 2.46◦ 3.39◦

(1 1 1)

40◦
1◦ 0◦ 1◦

Table 5.2: R-value of the two types of overlap functions results of 3 aluminium
samples.

The experimental velocity surface of three planes and searched results are plot-

ted against each other in Figure 5.5. It can be seen the results by both methods

on plane (001), (011) and (111) are all well matched.
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(b) Method II: sample 1.
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(c) Method I: sample 2.
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(d) Method II: sample 2.
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Figure 5.5: Curve fitting results of 3 aluminium samples by two types of overlap
function. The left column is from method I and the right column shows the results
of method II. The red asterisks, which represent the searched output, are plotted
to match the experimental velocity surface (blue lines) in each figure.
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5.2.2 Curve Fitting of Nickel

The results for 12 samples of nickel tested by the k-SRAS system are shown. The

experimental data are taken every 5◦ over 180◦ and all of the velocities on these

angles are applied in the searching algorithm.

Table 5.3 gives the R-value between the LBR results (see Appendix G) and

the two methods used to perform the overlap functions of the 12 samples. The

R-value of method I varies between 0.5◦ and 6.54◦, while method II varies between

3.02◦ and 16.93◦. The vast majority of the R-values were found to be within the

industrial acceptable standard of 8◦ [18].

The mismatch of method II results are larger than method I. Comparing either

the R-value, or φ or τ components, only two of those R-values when using method

II are smaller than using method I. Method I was found to have a better fit than

method IIas indicated by the lower R-values. As defined in Chapter 4, φ and τ

represent the differences between planes and the reference direction respectively;

the larger of these two values, the more it contributes relatively to the R-value.
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No.
Overlap Function I Overlap Function II

Results R φ τ Results R φ τ

1
(0.045 0.155 1)

30.1◦
5.79◦ 1.49◦ 5.6◦

(0.1 0 1)

24.28◦
3.23◦ 3.22◦ 0.22◦

2
(0.125 0.2 1)

45◦
4.5◦ 0.2◦ 4.5◦

(0.35 0.2 1)

131.59◦
10.66◦ 10.6◦ 1.09◦

3
(0 0.245 1)

70.45◦
2.56◦ 2.17◦ 1.35◦

(0.2 0.2 1)

166.63◦
9.67◦ 6.08◦ 7.53◦

4
(0.1 0.045 1)

149.35◦
6.54◦ 1.94◦ 6.25◦

(0.3 0.15 1)

148.53◦
12.73◦ 11.53◦ 5.43◦

5
(0.2 0.095 1)

138.95◦
4.07◦ 3.33◦ 2.35◦

(0.35 0.05 1)

139.70◦
11.28◦ 11.17◦ 1.6◦

6
(0 0.05 1)

87.35◦
4.36◦ 0.96◦ 4.25◦

(0.1 0 1)

87.96◦
7.55◦ 5.78◦ 4.86◦

7
(0.15 0.105 1)

17.9◦
0.8◦ 0.77◦ 0.2◦

(0.3 0.2 1)

103.35◦
11.56◦ 10.72◦ 4.35◦

8
(0.045 0.045 1)

74.1◦
3.85◦ 3.77◦ 0.8◦

(0.05 0.1 1)

75.46◦
6.28◦ 6.26◦ 0.56◦

9
(0.145 0 1)

19.25◦
3.11◦ 2.96◦ 0.95◦

(0.2 0.15 1)

111.84◦
3.02◦ 2.54◦ 1.64◦

10
(0.22 0 1)

20.6◦
0.5◦ 0◦ 0.5◦

(0 0 1)

26.52◦
16.93◦ 15.7◦ 6.42◦

11
(0.04 0.09 1)

125.1◦
0.31◦ 0.29◦ 0.1◦

(0 0.2 1)

124.06◦
5.69◦ 5.61◦ 0.94◦

12
(0.28 0.1 1)

17.95◦
6.2◦ 5.71◦ 2.41◦

(0.3 0.1 1)

18.09◦
7.23◦ 6.77◦ 2.55◦

Table 5.3: R-value of LBR results and the two types of overlap functions results
of 12 nickel samples.
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Figure 5.6 show the fitting results of two types of overlap function. In all figures

showing both of these methods, the determined plane is plotted as black asterisks

over the experimental velocity surface spectrum. It can be observed that the

method I has better fit (the black asterisks fall on the brightest part of the velocity

surface spectrum) of determined plane to the experimental data than method II.
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(f) Method II: sample 12.

Figure 5.6: Curve fitting results of 3 nickel samples by two types of overlap function.
The left column is from method I and the right column shows the results of method
II. The black asterisks, which represent the searched output, are plotted to match
the experimental velocity surface spectrum in each figure.
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5.3 Search Algorithm Performance vs. Numbers

of Measured Angles

To increase the efficiency of the system we determined the minimum number of

directions needed to find the crystallographic orientation. The search algorithm

results of the nickel samples when varying the number of directions measured are

discussed in the following section.

Only the overlap function I is implemented since the previous results shown have

indicated that method I has a superior performance in orientation determination.

In addition, if two modes appear in the experimental result—especially when they

are equally strong in some cases—the average velocity of the two modes rather

than the strongest one is applied in method II, hence, the information may be

distorted, while method I prevents this error. This is the same reason why the

least-squares method is not used as a search algorithm.

Figure 5.7 shows the velocity surface spectrum measurements around 360◦ with

5◦ spacing on 3 single crystal nickel samples with corresponding curve fitting results

(using method I) which are determined by Equation 4.25. The curve fitting results

in the figure are based on the experimental data using either 36 (Figure 5.7b), 9

(Figure 5.7c) or 6 (Figure 5.7d) directions over 180◦. All searched planes are in

agreement with the experimental data. The searching results based on 9 and 6

directions are also very close to the LBR results.
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Figure 5.7: Curve fitting results of single crystal nickel. Three columns repre-
sent three samples; first row is the experimental data by SRAS technique, second
strongest mode vaguely appears in sample 10 and 12; the second to forth row are
the matching results (asterisks) when 36, 9 and 6 directions are used respectively.
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Sample’s Name

and LBR Results

Number of

Directions
SRAS Results R-value φ τ

10:

γ=-10.9◦,

δ=-11.4◦,

κ=18.2◦.

36
(0.22 0 1)

20.6◦
0.5◦ 0◦ 0.5◦

9
(0 0.21 1)

109.5◦
3.89◦ 3.84◦ 0.6◦

6
(0.21 0.04 1)

25.1◦
5.02◦ 0.48◦ 5◦

11:

γ=-5.7◦,

δ=0.5◦,

κ=34.9◦.

36
(0.04 0.09 1)

125.1◦
0.31◦ 0.29◦ 0.1◦

9
(0.09 0.05 1)

35.7◦
1.9◦ 1.77◦ 0.7◦

6
(0.05 0.1 1)

120.8◦
4.36◦ 1.16◦ 4.2◦

12:

γ=-14.0◦,

δ=1.7◦,

κ=15.5◦.

36
(0.28 0.1 1)

17.95◦
6.2◦ 5.71◦ 2.41◦

9
(0.3 0.14 1)

22.55◦
10.09◦ 7.28◦ 7.01◦

6
(0.29 0.14 1)

21.4◦
8.95◦ 6.77◦ 5.86◦

Table 5.4: R-value of the LBR and SRAS results of 3 nickel samples in different
numbers of directions.

Table 5.4 shows the R-value of 3 SRAS results compared to the LBR results,

with φ and τ indicating the difference between the planes and reference directions.

Where only 9 and 6 directions are used (with 20◦ or 30◦ intervals), only sample 12

have an R-value larger than the typical industrially accepted standard 8◦.
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5.4 Error and Uncertainty Analysis

The R-value analysis of 12 single crystal nickel samples, where the number of direc-

tions of the experimental data measured being 36, 9 or 6, are shown in Figure 5.8.

LBR results are used for reference. The graph shows the statistical variation of

the R-values when fewer propagation directions are used in the experiment. When

36 directions of data are used 98% of the R-values are less than 8◦, which is the

‘industry acceptance limit’ of this material. When 9 directions are applied this

drops to 86% of the R-values being less than 8◦. In the case of 6 directions with a

30◦ interval, only 79% of the results have R-value less than 8◦.

These statistics are based on the curve fitting results of the overlap function

method I. The 36-direction curve fitting results of all 12 samples can be found in

Appendix F.
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Figure 5.8: Error of curve fitting strategy. The blue solid line, red solid line and
green dash line display the percentages when 36, 9 and 6 directions of data are
used respectively.

It deserves note that, on certain planes there may be some angles where two

wave modes jump and these may have velocity information missing. When the 9
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Figure 5.9: A serials of scaling factors are multiplied with the SAW model before
performing the search algorithm; the RMS of φ, τ and R-value of 12 samples are
shown as a function of the scaling factor.

or 6 directions searching algorithm is performed, the accuracy of the curve fitting

results degenerate if such directions are selected and no effective information is

provided.

As discussed in the previous chapter, a scaling factor is used in the merit

function to reduce or eliminate the systematic error (i.e., calibrate the model); it

also described how miscalibration can influence the search algorithm. The RMS of

φ, τ and R-value of all samples as a function of the scaling factor are illustrated

in Figure 5.9; comparing φ to τ we find τ is less sensitive to the velocity shift of

the experimental data. The RMS of the R-value gradually increases if the scaling

factor shifts from its minimum (a scaling factor of 1). If the scaling factor shift

by approximately ±3.5% from its minimum, then the RMS of R-value will be

larger than 8◦. This scaling factor analysis matches the performance of the search

algorithm evaluation described in Chapter 4.4.2 which was ±3%.
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5.5 Orientation Determination on Multigrain Ma-

terials

The previous section on both nickel and aluminium were performances on single

crystals with known orientation. However, for the orientation determination of

multigrain materials, only one additional step needs to be performed. This process

will be detailed for a multigranular nickel sample. Firstly, two standard SRAS

velocity images are acquired on the nickel sample, whose grain orientations are

unknown, to locate the grains and determine their size. This is essential because

the SAW velocity of two or more adjacent grains might be similar, hence, they may

be treated as one grain. Such coincidences are eliminated by scanning over two

direction. Secondly, we perform SRAS again on the directions with an interval of

5◦ over 360◦ (or 180◦) on specific grains. Thirdly, we use an overlap function to

determine the orientation of grains.

Figure 5.10b illustrates the SRAS results over the whole surface of a nickel

sample with 360◦ results. The velocities maps show the sample to have two large

grains A and B of different orientations in this case. The velocity surface spectrum

of these two grains are shown in Figure 5.10a and Figure 5.10c, along with their

corresponding curve fitting analysis. Grain A is determined to be plane (0.1 0.25

1) rotated 34.61◦ from its reference direction [1 -0.01 -0.1]; grain B is the plane

(0.15 0.2 1) rotated 44.14◦ from the reference direction [0.99 -0.01 -0.15]. SRAS

results distinguish the individual grains and the R-value shows the disorientation

to be 9.86◦, which is over the industry limit 8◦ [18] of nickel, meaning they would

be considered as grains with ‘different’ orientation.
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Figure 5.10: Middle: SRAS on nickel sample indicates there are two grains. Top:
Velocity surface spectrum on area A with curve fit result. Bottom: Velocity surface
spectrum on area B with curve fit result.
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5.6 Titanium α Model vs. Ti-685

K-SRAS scanning has been applied over 12 directions on a Ti-685 sample over 180◦

with a 15◦ interval; the velocity maps are shown in Figure 5.11. 12 large grains on

the sample surface are selected and labelled in the Figure 5.12a. The velocity of

each grain at each direction is calculated as the average velocity value for all pixels

of the image of the corresponding grain.

0 degree 15 degree 30 degree

45 degree 60 degree 75 degree

90 degree 105 degree 120 degree

135 degree 150 degree 165 degree

Figure 5.11: Velocities of 12 directions of Ti-685 sample by k-SRAS.
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Figure 5.12: EBSD scan result of Ti-685 sample.

Figure 5.12 shows an EBSD (which gains crystallographic information by im-

pinging electrons on to the sample and analysing diffraction patterns [22]) orien-

tation image for this sample. Because the original EBSD data from which the

orientation image is derived is not available (the EBSD scan was conducted by

researchers at the University of Swansea and only this RGB picture was available),

the orientation of the 12 grains are estimated based on the EBSD image and the

IPF alone.

Grain Number
Orientation

in Miller Index
Grain Number

Orientation

in Miller Index

1 (0.03 0.08 1) 2 (0.17 0.32 1)

3 (0.82 1 0.60) 4 (0.57 1 0.31)

5 (0 0.92 1) 6 (0.17 1 0.47)

7 (0.88 1 0.30) 8 (0.13 0.28 1)

9 (0.41 1 0.45) 10 (0.72 1 0.85)

11 (0.20 1 0.32) 12 (0.20 1 0.71)

Table 5.5: The orientation of 12 grains of Ti-685 sample are estimated according
to the RGB value of EBSD image.

The experimental SRAS velocity data from each grain are fitted to the predicted

model velocities—based on the EBSD-derived orientations—in Figure 5.13 and
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Figure 5.14. To be clear: the orientations were not derived from the SAW velocity

data; the measured SAW velocities are compared to the predicted SAW velocities

based on the known orientations derived from EBSD. They share similarity with

one of the modes or partially of both modes; this can be observed clearly on

grains 4, 10 and 12. On grains 1, 2 and 8, experimental velocities follow the

variation pattern of the model with a velocity scaling error of less than 3% in

Figure 5.13. Two modes appear at certain angles simultaneously on the velocity

surface spectrum of grain 9, hence, two peaks occur in the velocity spectrum. In

this case the calculated velocity is determined as the peak of the Gaussian curve

on the velocity spectrum and the intermediate value of the peaks is returned.

Therefore, at certain angles of grain 6, 9 and 11, the experimental velocity is the

average value of the two calculated velocities in Figure 5.13.

Velocity mode jumping occurred frequently over all 12 grains and can be ob-

served in Figure 5.14. The discontinuity of the velocity spectrum at the middle

right of each figure indicates the direction where the measurements start.

Ti-685 is an α/near-α titanium alloy which is mainly hexagonal in structure

but contains a small amount of β phase crystal, thus the elastic constants which

are used to calculate the model are not 100% correct. Furthermore, without con-

sidering the SAW generation and detection mechanisms in detail, the velocity

model is not established maturely; the uncertainty in the calculated ‘dominant’

mode/modes is the main reason for the mismatch. Also the interval between the

calculated model planes is 2.5◦. The closest plane to the EBSD results is shown in

both figures rather than the actual planes derived from the EBSD results.

This section obviously is an uncompleted study, but it highlights some of the

challenges involved in predicting the acoustic velocity response on some materials,

which will be discussed further in the next chapter.
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Figure 5.13: The SAW velocity surface of the 12 grains of Ti-685 (red solid line)
are plotted against the Ti-α model. The calculated first and second ‘dominant’
modes of the Ti-α model are plotted as blue and green dots respectively.
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Figure 5.14: The SAW velocity surface spectrum of the 12 grains of Ti-685 are
plotted against the Ti-α model (black asterisks).
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5.7 Summary

The SRAS results of known planes of nickel and aluminium samples are in good

agreement with the calculated model velocity. Three planes of aluminium crystals

were determined by the overlap function with an error of less than 8.77◦. Both

methods of the searching algorithm also work efficiently on nickel samples, with

error close to 8◦ compared to the LBR results.

The velocities of 36 directions over 180◦ of each sample plane were applied

in the above searching algorithm. 98% of these results have an R-value of less

than 8◦ compared to the LBR results. If the number of directions measured is

reduced to 9, 86% of the reaching results have an error of less than 8◦. The

figure of error of less than 8◦ drops to 79% when 6 directions are applied. There

is no significant change between 36-directions and 9-directions, but considerable

degeneration appears when only 6-directions are measured.

A fundamental demonstration of how to determine the crystallographic ori-

entations of a multigranular sample has been illustrated. Nickel and titanium α

samples were examined. For cubic nickel samples the surface grains and their ori-

entations were determined and illustrated. For the results on Ti-685 sample, which

has a primarily hexagonal structure, the experimental data were plotted against

the predicted Ti-α model; the similarity of modes’ behaviour can be observed be-

tween them. However, because of the complexity of SAW behaviour for this type

of crystals, further work needs to be conducted to elucidate how we may determine

the ‘dominant’ mode/modes, and thus permit the inverse problem to be solved.



Chapter 6

Discussion and Future Work

The previous chapter confirmed that the crystallographic orientation determination

using SRAS gave better than 10◦ accuracy at 95% repeatability, when 36 or 9 SAW

propagation directions are used in the search algorithm. This is a higher measure-

ment uncertainty of the R-value compared to the Laue back-reflection technique,

which at 95% confidence level is ±1.5◦ [18]. In this regard, there is still room for

improvement in the SRAS technique and specifically the search algorithm. So far

the application and analysis has mainly focused on single crystal nickel, this tech-

nology should be expanded to other materials. Hence, several issues are highlighted

for discussion, first on the modelling and then the data processing.

6.1 Modelling

6.1.1 Generation/Detection Model

As stated in the previous chapter, Rayleigh waves are excited with great efficiency

by a laser working in the thermoelastic regime, thus the displacements in the

vertical and longitudinal directions are considered in the modelling. Sinclair [41]

described the calculation of the surface displacement by a point source, Dike [42]

and Royer [13] also investigated the SAW displacements which are excited by a

136
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pulse laser. Computer programs which are used to simulate the wave generation

and propagation are described by Spicer [43] and Sanderson [44]. This research

would provide a solid foundation to more accurately predict which wave modes are

efficiently excited by the SRAS instrumentation, improving the accuracy of the

model and by implication the inversion to determine the orientation.

The displacement amplitude is proportional to the incident optical energy if

a point-source works in the thermoelastic regime; and the directivity pattern of

duraluminum is given as an example in Figure 6.1 [13]. The longitudinal waves

radiate as a lobe and reach a maximum at approximately 65◦ away from the normal

of the surface. The shear waves have a maximum at approximately 31◦ and a

small ‘maximum’ at 62◦. Hence the displacements on vertical, longitudinal and

transverse directions can be simulated if the laser working condition and the power

level are known. We can predict how many modes are generated, the behaviour of

the propagation of these waves, also how many of them can be observed efficiently

by the different possible detection techniques.

(a) Longitudinal waves. (b) Shear waves.

Figure 6.1: The directivity pattern of laser generation in thermoelastic regime of
duraluminum [13].

6.1.2 Multiple Modes

Figure 6.2 shows the SRAS results on a grain of titanium α sample. It can clearly be

seen there are two modes at several SAW propagation angles, with approximately
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equal signal level. The modes match the predictions in the model, however at this

point we can not confirm in what conditions more than one mode can be observed.

As described in the previous section, on the one hand the system response relates to

the efficiency with which the different SAW modes are excited using thermoelastic

laser generation, and the motion that the optical detection technique is sensitive to,

which is generally out-of-plane motion. On the other hand, it relates to the model

calculations: all the calculated modes satisfy (or nearly satisfy) the boundary

conditions, but the different acoustic modes have different amplitudes of particle

motion. By predicting more accurately the response of the measurement system

as a whole, it should be possible to use more than the most dominant mode (as

determined by the model) to match against the measured acoustic spectra. This

will make the inverse problem more deterministic, as the uniqueness of each plane

is increased.
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Figure 6.2: The experimental results of titanium α grain. Two modes are observed
at several angles and equally strong.

6.1.3 Higher Precision of Model

The angle between the normals of two adjacent planes in our model is 2.5◦. The

model can be recalculated in a finer intervals, to 1◦ or perhaps 0.5◦ between planes
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in order to increase the accuracy of the merit function. There is no technical

problem for this issue, only the processing time required, which depends on the

computer capability. Note that the forward model is a one-time calibration, so the

processing time limitation is particularly non-critical.

6.2 Data Processing: Multiple Modes

This is the same issue mentioned earlier but needed to be solved from a different

point of view. In overlap function method II, the experimental velocity was deter-

mined by either by applying a Gaussian curve fit on the raw data spectrum, or by

finding the highest peak of the whole spectrum. In the case of two modes detected

in the spectrum A(v) shown in Figure 6.3, the Gaussian curve fit would give the

weighted average velocity of both modes, and the single peak detection method

would only return the velocity of the highest mode. Least square or polynomial

curve fitting could be used to to smooth the curve and determine the maxima corre-

sponding to the modes velocities to determine two or more ‘dominant’ modes. The

technique needs to be robust enough to determine vn(θ), where n ≥ 1 i.e. an un-

known number of peaks. In fact, there is an argument for permitting n = 0 where,

because of the measurement system response, in certain propagation directions the

measured acoustic spectrum has a very low energy content.
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Figure 6.3: Two wave modes appear in the experimental spectrum A(v). The
signal intensities are plotted as a function of velocities.

6.2.1 Search Algorithm of Strongly Isotropic Materials

The least-squares method was not utilised in the search algorithm because of the

discontinuous nature of the wave modes (in different propagation directions of the

same plane) in either the calculated model and the measured results. After the

velocity models are well established by considering the generation efficiency and

detection sensitivity, if the velocities appear without random mode jumping, a

least-squares function is given

F ′(h, k, l, θ) =

φ=n−1
n
π∑

φ=0

(ve(φ) − v(h,k,l,(φ−θ)))2, (n = 1, 2, 3, ...) (6.1)

where ve(φ) is the velocity measured experimentally, and v(h, k, l, θ) is the calcu-

lated velocity. The minimum of this function will point out the matched plane.

By combining the function 4.25 and function 6.1, the modified overlap function III

can be developed as

F (h, k, l, θ) =

φ=n−1
n
π∑

φ=0

A(φv(h,k,l,(φ−θ)))

(ve(φ) − v(h,k,l,(φ−θ)))2
, (n = 1, 2, 3, ...) (6.2)
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The location of the maximum of this overlap function III would give the matched

plane.

The modified function would be useful for reducing the error of the search

algorithm. The accuracy and reliability of this new search algorithm needs fur-

ther investigation. New search algorithms also should be discussed besides the

improvement of the overlap function.



Chapter 7

Conclusions

This thesis introduced a crystallographic orientation determination method based

on a laser ultrasonics technique termed SRAS. SRAS is non-contact and non-

destructive to samples, and uses lasers to generate and detect SAWs; the phase

velocity of these SAWs changes depending on the crystal orientation and the char-

acteristics of material.

Two slightly different approaches to performing SRAS measurements have been

described in Chapter 2. One approach, K-SRAS, works by firing a laser beam with

a fixed intensity modulation frequency through an SLM, this forms a fringe pattern

with even spacing on the sample surface. SAWs are generated by the pattern which

also works as a filter: as the fringe spacing is changed, the detected SAWs have

the highest amplitude if the their wavelength matches the fringe spacing. Another

method, f-SRAS, uses a broadband laser instead; a chrome coated photomask is

imaged onto the sample surface producing a fixed grating pattern, which again

works as a filter. The generated SAWs, which have a wavelength determined by

the grating spacing, are detected and the velocity of SAW is determined by the

peak frequency of the acoustic spectrum. Both SRAS methods show 0.03% stan-

dard deviation in velocity variation by testing isotropic aluminium coated glass.

Velocity measurements in two orthogonal directions on titanium alloy and alu-

minium samples have been presented as velocity maps and compared with EBSD;
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the results are shown in Chapter 3. The lateral resolution of k-SRAS is 150µm,

the scan speed is 11 pixels/second. F-SRAS scans at a speed of 238 pixels/second

have been presented; the spatial resolution for these measurements is of the order

of 400µm, and can be significantly reduced by using different masks with fewer

lines at shorter wavelengths. Both methods are capable of producing high quality

quantitative images of SAW phase velocity, and hence reveal the material mi-

crostructure with grain sizes down to a few hundred microns, providing excellent

contrast for differently orientated grains.

A SAW velocity model is calculated according to the elastic constants and mass

density of the material, and is described in Chapter 4, in sections 4.1 and 4.2. An

iterative search algorithm is performed to determine the solutions which satisfy

the wave equation and the boundary condition simultaneously when the propaga-

tion direction of SAW is defined. These solutions correspond to the wave modes

which possible exist on the half-infinite surface of the medium. The correspond-

ing displacement of each mode in three principal particle oscillation directions—

longitudinal, transverse in-plane and vertical—are calculated. By considering the

laser ultrasonic SAW generation mechanism and the SRAS system detection sen-

sitivity, the strongest wave mode is selected according to the largest amplitude

of the vector sum of longitudinal and vertical displacements. For different crystal

symmetries, the velocity surface of all the planes that do not contain redundant in-

formation are calculated using the SAW velocity model. The model of aluminium,

nickel, Ti-β and Ti-α are demonstrated in this chapter.

In later sections of Chapter 4, an overlap function is introduced as an inversion

algorithm to link the SRAS results and the SAW velocity model. Two implementa-

tions/methods of this overlap function are demonstrated, for use under the different

circumstances. Method I is specially designed for SRAS results—or velocity mea-

surements from other techniques—which present the tested outcome as a velocity

map over 360◦. In the case where only a velocity surface, rather than an acoustic

spectrum, is available—for example by other inspection techniques—method II is
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more appropriate for orientation determination. This search algorithm has been

evaluated on simulated experimental results; the R-value is introduced as a indica-

tor to show the difference between the simulated plane and the plane as determined

by the algorithm. The simulation parameters—SNR, FWHM of the Gaussian fil-

ter, and velocity shift/scaling error—are varied within a certain range to locate

the best combination of the smallest error below a common industrial limit of 8◦

disorientation. Within the typical SNR and FWHM of the SRAS spectrum, the

velocity shift would have to be less than 1.2% for nickel to achieve the correct

results with errors smaller than 4◦. Due to the strong isotropy of aluminium, this

figure is down to 0.3% to maintain the error less than 3◦.

Orientation determination has been demonstrated on aluminium and nickel sin-

gle crystal samples with known orientations by the overlap function, and has been

presented in Chapter 5. The orientation of two of the aluminium samples with

planes (001) and (111) were correctly determined by better than 4.19◦ error. The

calculated plane of the third sample (011) had a larger error (but still smaller than

8.77◦ by both overlap function methods) because of its common 2-fold symmetry

and the low anisotropy of aluminium. The results for 12 nickel samples are com-

pared to LBR; the statistics show that 98% and 86% of the differences between

SRAS and LBR orientation measurements are less than 8◦ when 36 or 9 SAW

propagation directions are used in the search algorithm. Multiple-grain samples of

nickel and titanium α have been tested, and the search results broadly agree with

the calculated model. However, further work is still needed to solve the case when

multiple modes are ‘dominant’ in certain crystal cuts.

Finally, some thoughts and issues are brought up in Chapter 6 in order to

improve this orientation determination technique. They are discussed in both

aspects of modelling and data processing. Even though a few problems still need

to be solved, SRAS has great potential for complimentary measurements or even

for replacing established orientation determination and imaging techniques.



Appendix A

Elastic Stiffness Matrices of

Crystal Systems

Elastic stiffness matrices of different crystal systems [45]:

1. Cubic crystal

(Cij) =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


2. Hexagonal crystal

(Cij) =



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 2(c11 − c12)


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3. Trigonal crystal (six constants)

(Cij) =



c11 c12 c13 c14 0 0

c12 c11 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14 2(c11 − c12)


4. Trigonal crystal (seven constants)

(Cij) =



c11 c12 c13 c14 c15 0

c12 c11 c13 −c14 −c15 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 −c15
c15 −c15 0 0 c44 c14

0 0 0 −c15 c14 2(c11 − c12)


5. Tetragonal crystal (six constants)

(Cij) =



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66


6. Tetragonal crystal (seven constants)

(Cij) =



c11 c12 c13 0 0 c16

c12 c11 c13 0 0 −c16
c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

c16 −c16 0 0 0 c66


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7. Orthorhombic crystal

(Cij) =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


8. Monoclinic crystal

(Cij) =



c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66


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Appendix C

Rotation Matrix

The rotation matrix is defined as

R =


x2(1− cosθ) + cosθ xy(1− cosθ)− zsinθ xz(1− cosθ) + ysinθ

yx(1− cosθ) + zsinθ y2(1− cosθ) + cosθ yz(1− cosθ)− xsinθ

zx(1− cosθ)− ysinθ zy(1− cosθ) + xsinθ z2(1− cosθ) + cosθ


where [x y z] is the rotation axis from (001) plane to the target plane, θ is the

angle between the [001] and the target plane normal.
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Appendix D

Definition of Primary Angles

Definition of primary angles γ, δ, κ, θ and α [34].

Figure D.1: The reference plane (in grey) and direction (RD).
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Figure D.2: Definition of γ, δ, κ, θ and α.



Appendix E

Definition of R-value

E.1 R-value Definitions

The table shows five R-value definitions [34].

Name Formula

Single-angle cos (R-1cos) R = Minimum of 24 single rotations

Two-angle cos (REL or R-2cos) R = arccos(cosφcosτ)

Two-angle RMS (R-2RMS) R =
√

(φ2 + τ 2)

Three-angle cos (R-3cos) R = arccos(cos(γA − γB)cos(δA − δB)cos(αA − αB))

Three-angle RMS (R-3RMS) R =
√

(γA − γB)2 + (δA − δB)2 + (αA − αB)2

Table E.1: Definitions of R-value.
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E.2 Definition of φ and τ for R-value Calcula-

tions

The figure represents the rotation angle φ and τ visually [34].

(a) Definition of φ. (b) Definition of τ .

(c) Finish.

Figure E.1: Definition of two angles of R-value.



Appendix F

Results of Overlap Function: 13

Nickel Samples

F.1 By Method I
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F.2 By Method II
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Appendix G

Laue back-reflection (LBR)

Results of 12 Nickel Samples

Samples γ δ κ

Sample 1 -0.3◦ -0.5◦ 74.9◦

Sample 2 10.4◦ 5.4◦ 16.6◦

Sample 3 11.3◦ -3.6◦ 51.1◦

Sample 4 -0.6◦ -1.8◦ 83.1◦

Sample 5 -9.5◦ 3.0◦ 52.9◦

Sample 6 10.6◦ 4.8◦ 68.7◦

Sample 7 7.2◦ -8.2◦ 25.4◦

Sample 8 -13.3◦ -4.7◦ 39.2◦

Sample 9 -10.9◦ -11.4◦ 18.2◦

Sample 10 -9.7◦ -9.8◦ 18.7◦

Sample 11 -5.7◦ 0.5◦ 34.9◦

Sample 12 -14.0◦ 1.7◦ 15.5◦

Table G.1: LBR Results of 12 Nickel Samples.
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