
The University of Nottingham

Department of Computer Science and Information Technology

The University of
' Nottingham

An Automated Marking System for

Graphical User Interfaces

GEORGE GREEN LIBRARY OI-
SCIENCE AND ENGINEERING

Geoffrey Richard Gray, BSc.

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

February 2008

Abstract

This research investigates the feasibility and effectiveness of assessing students

programming solutions to Graphical User Interface exercises in an automated fashion.

Automated marking systems ease the burden on the staff involved in running a course

and allow students to get results and feedback in a timely fashion. Several automated

marking systems exist but are currently unable to mark GUIs. The inherent complexity

of GUIs and the need for aesthetic analysis has rendered GUIs beyond the scope of

most marking systems.

The marking approach described in this thesis implements a number of novel con-

cepts. By exploiting language design properties such as the hierarchical relationship

between components, it was possible to develop a framework capable of testing and

marking students' GUI programs. Introspectively analysing the interface enables the

marking system to obtain access to the intrinsic elements contained within the GUI.

Once access has been obtained, the tests can be performed on the actual interface com-

ponents themselves rather than a mere representation. GUI assessment is more than

functional testing, aesthetics play a major role in the creation of an interface. Exist-

ing aesthetic metrics do not provide the analytical capabilities required due to their

failure to include colour. The distractive effects that colours have were quantified and

incorporated into the metrics.

The results of the dynamic and aesthetic testing show that through the implementa-

tion of the novel components detailed, the creation of a GUI marking system is feasible

and its marking both consistent and effective. The design enables the system to return

results in a timely fashion and the effects that colour has can be seen in the results of

basic aesthetic testing.

Acknowledgements

"Remember, we all stumble, every one of us. That's why it's a comfort to

go hand in hand. " - Emily Kimbrough

There are those who deserve to be thanked for all their inspiration, advice, love

and support. Without such friends, the completion of this thesis would have been an

infinitely more difficult task. However, there is no need for a list of names as those to

whom I am indebted already know who they are and that I owe them everything.

Contents

1 Introduction

1.1 Computers in Education
....

1.1.1 Why Automate?
...

1.1.2 Teaching Programming
1.1.3 Assessing Students

......
1.2 Marking System Requirements
1.3 Motivation
1.4 Scope

......
1.5 Synopsis

.................................

2 Background and Related Systems

2.1 Learning Technology
.....

2.1.1 Assessment
2.1.2 Branches of Learning Technology

2.2 Existing Systems
....

2.2.1 Assistive Systems
2.2.2 Testing Systems

...
2.2.3 Capture and Replay Tools

....
2.2.4 Automated Submission and Assessment Tools

2.2.5 GUI Marking
2.2.6 Interface Quality Measures

2.3 Summary
....

15

17

17

19

22

24

25

26

27

31

32

33

35

39

39

40

42

44

48

49

50

3 CourseMarker 51

3.1 Overview
52

3.1.1 Remote Method Invocation 52

5

6 CONTENTS

3.1.2 Subsystems
.

3.2 Marking Subsystem
3.2.1 Exercise Properties
3.2.2 Marking Tools
3.2.3 Dynamic Test Execution
3.2.4 Feedback

....
3.2.5 Reliability

....
3.2.6 Security

.
3.2.7 Extensibility

....
3.3 CourseMarker's Usage at Nottingham

......
3.3.1 Assessment

....
3.3.2 Course Coverage

....
3.4 Summary

................................

4 Graphical User Interfaces

4.1 The Evolution of Interfaces
......

4.2 The Teaching of Graphical User Interface Design
...........

4.3 What are Graphical User Interfaces?
.

4.4 Design and Construction
....

4.4.1 Design Problems
........................

4.4.2 What Constitutes a Good Graphical User Interface?
.... ..

4.4.3 Hierarchies
....

4.4.4 Interface Layout
4.4.5 Summary

............................
4.5 States
4.6 Summary

5 Testing And Marking Graphical User Interfaces

5.1 Problems Faced by Testing GUIs
.

5.1.1 Locating Components
.

5.1.2 Performing Operations
5.1.3 State Comparison
5.1.4 Setting the Assignment
5.1.5 Summary

5.2 Test Coverage

53

55

55

56

58

58

60

61

61

62

62

63

63

65

66

67

68

69

70

71

74

77

77

78

78

81

82

82

83

84

86

87

87

CONTENTS 7

5.3 Typographic Testing 88

5.4 Source Code Feature Testing 88

5.5 Analysing the Aesthetics of an Interface 89

5.5.1 Interface Metrics 90

5.5.2 Colour Theory 97

5.5.3 Summary 105

5.6 Dynamic Testing
105

5.6.1 Test Types
106

5.6.2 Performing Tests
....

106

5.6.3 Result States 106

5.6.4 Security Considerations
.....

108

5.6.5 Summary 108

5.7 Test Oracles
..... 108

5.7.1 GUI Oracle Representation
.

109

5.8 Summary
.

109

6 Design and Framework Implementation 111

6.1 Introspection
....

112

6.1.1 What is Introspection?
.....................

113

6.1.2 Reflection
....

113

6.1.3 Using Introspection
.....

114

6.2 Dynamic Program Loading
....................... 116

6.2.1 Class Loaders
.... 116

6.3 Security and Reliability
.

117

6.3.1 Sandboxes
...........................

117

6.3.2 Compilation
118

6.3.3 Class Loading Security
119

6.3.4 Reliability 120

6.3.5 Summary
............................

121

6.4 Object Recognition 121

6.4.1 Descent Parser 122

6.4.2 Object Abstraction 122

6.4.3 Object Handles 123

6.4.4 The Parser Package 124

8 CONTENTS

6.4.5 Summary
.... 125

6.5 Testing System
... 125

6.5.1 XML Test Oracles 126

6.5.2 Test Execution
........ 130

6.5.3 Retrieving Marks 131

6.5.4 The GUITest Package
. 132

6.5.5 Summary
.... 132

6.6 CourseMarker Integration
........................ 132

6.6.1 Marking Command Programs
......

133

6.6.2 Marking Tools
........

134

6.6.3 Aesthetic Tests
..... 136

6.6.4 Marking Criteria
.... 136

6.6.5 Summary
. 137

6.7 Summary
.... 138

7 Evaluation 139

7.1 Implementation
.......

140

7.2 Recent Uses
............................... 142

7.2.1 The Current Course
.

142

7.2.2 Improvements
....

143

7.3 Analysis
... 144

7.3.1 Educational
. 144

7.3.2 Technical
............................ 149

7.3.3 Assessment
. 150

7.3.4 Aesthetic Metrics 152

7.3.5 Summary
............................ 161

7.4 Summary
... 162

8 Conclusion 165

8.1 Objectives
..................... 166

8.1.1 Summary 167

8.2 Contributions
. 168

8.2.1 Education 168

8.2.2 Testing 169

8.2.3 Aesthetic Analysis 169

CONTENTS 9

8.2.4 Test Repository
. 169

8.3 Limitations
............................... 170

8.4 Future Work 170

8.4.1 Aesthetics
.

171

8.4.2 Assisted Test Creation
..................... 171

8.4.3 Test Expansion 172

8.5 Epilogue
173

A Example Test Oracle 175

B Example Question Specification 181

10

CONTENTS

List of Figures

1.1 Example of interfaces that could require marking - Calculators
....

24

1.2 A Mind Map of the Structure of the Thesis
28

3.1 A high level view of CourseMarker's subsystems
53

3.2 CourseMarker's Results Tree
60

4.1 An Example Interface
....

69

4.2 A Simplistic Breakdown of a GUI
75

4.3 GUI Component Inheritance
......

76

5.1 A Faulty Calculator 85,

5.2 State Transistion Checks
....

85

5.3 Calculating the Balance
92

5.4 Balance Example 1: Diametrically Opposite
...

93

5.5 Balance Example 2: Unbalanced
93

5.6 Calculation the Sequence
....

95

5.7 Subtractive Colour
98

5.8 Additive Colour 98

5.9 RGB Space
99

5.10 The Colour Wheel 100

5.11 Constructing Colour Concords 101

5.12 Balance Example 3: Colour 103

5.13 A Calculator ready for State Comparison 107

6.1 Descent Parser Class Diagram
125

6.2 Interface Tests Class Diagram 132

7.1 An Example of Interfaces Marked 143

ii

12 LIST OF FIGURES

7.2 Average Marks (2004-05) with S. D. Bars 145

7.3 Average Marks (2005-06) with S. D. Bars 145

7.4 The distribution of marks for an exercise 146

7.5 Example Calculator Interfaces
..... 151

7.6 The effect background colour has on the visibility of objects 153

7.7 A Basic Aesthetic Test
..... 154

7.8 The Horizontal Test 155

7.9 Diagonal Test 1
.... 156

7.10 Vertical Test 157

7.11 Diagonal Test
. 158

7.12 After Images Test Screen
..... 159

7.13 After Image Test Results
...... 160

7.14 Pure Colours against a Black Background 160

List of Tables

7.1 Submissions Used 2004-05 147

7.2 Submissions Used 2005-06 147

7.3 Student Evaluation - Are the methods of assessment appropriate? ... 148

7.4 Tests results from Faulty Interface
. 152

7.5 Basic Aesthetic Tests - Moving an Object 154

7.6 Multiple Objects - Basic Opposite Tests 156

7.7 Multiple Objects - Different Sized Objects
.

156

7.8 Multiple Objects - Different Colour Objects
... 157

7.9 Multiple Objects - Similar Euclidean Distances 158
7.10 After Image Test - Grey Background 159

7.11 After Image Test - White Background
. 160

13

14 LIST OF TABLES

Chapter 1

Introduction

"The unexamined life is not worth living" - Socrates

15

16 CHAPTER 1. INTRODUCTION

Computer programming courses are changing. The days of command line driven

programs are almost over. The use of Graphical User Interfaces (GUIs) is fast becom-

ing universal [Mye95]. Previously the term Human Computer Interaction (HCI) was

almost unknown, with the subject being minimally taught to students. HCI is about

more than just technology, it involves understanding users' goals, capabilities and what

humans find aesthetically pleasing [PA06]. With the increasing ubiquity of the GUI,

the old course model is having to be altered to include HCI in the curriculum. The

principal concepts emerging from HCI that need to be taught to students are generally

agreed upon [Gre96] these include usability principles and heuristics. The ability to

correctly test and assess interfaces is essential to any interface programmer and stems

from adequate teaching. Without these skills and their implementation, the results,

although dramatic, can be fatal [MHC96].

With changes to the course structure comes additional marking responsibilities.
Widely regarded as the least interesting part of academia [FHSTO1], marking is a

"necessary evil". Several automated assessment solutions have been created to ease

the problem, but none of these have any GUI marking or testing capabilities. There are

commercial programs which enable the testing of GUIs normally through record and

playback functionality which itself is error prone. When marking systems are created,

the focus is often put on the areas of assessment that are easy to perform [JacOO]. GUI

marking is one area so far avoided due to their complexity. This complexity stems from

the fact that their input / output is not linear as with command line interfaces. Graph-

ical User Interfaces allow for information to be disseminated in a variety of ways,

simultaneously. They also utilise advanced Object-Oriented programming techniques

to enable complex structures to be created.

The automation of the marking process significantly reduces the time needed to

return a mark for each submission [JL98b] and increases the accuracy and consistency

of the mark. The additional time it takes to analyse a GUI by hand due to their inherent

complexity makes GUIs an ideal candidate for automated marking. However, it is also

this complexity that has kept people from tackling the problem. This thesis shows

that the automation of the marking process for a Graphical User Interface is not only

feasible, but also that it is both efficient and effective.

This chapter introduces the concepts behind the teaching of computer program-

ming and the automation of marking. It also presents an overview of the contents and

1.1. COMPUTERS IN EDUCATION

structure of the remainder of the thesis.

1.1 Computers in Education

17

Computers have become such an intrinsic part of assessment that they are now

the subject of several areas of research. Known broadly as Learning Technology, it

is described as the application of technology for the enhancement of teaching, learn-

ing and assessment. Contained within learning technology are two areas of research,

Computer Assisted Assessment and Computer Based Assessment. Computer Assisted

Assessment (CAA) is a term used to describe the use of computers to support assess-

ment. Computer Based Assessment (CBA) refers to the use of computers to deliver,

mark, score and analyse assessments [CE98a].

The approaches known as Computer Aided Assessment and Computer Based As-

sessment may not be new concepts but are more significant today than they were when

the ideology was conceived. Through the use of CAA/CBA techniques, the automa-

tion of tasks previously performed manually not only ensures their consistency but

also saves lecturers time [FHH+01]. This time can then be spent more productively

elsewhere, for example improving the quality of the course. The use of automation

to guarantee consistent marking, without influence through bias or tiredness, has long

been a topic of research [Ho160]. Whilst considerable work has since been done along

this vein, the marking of Graphical User Interfaces is still very much novel. Graphi-

cal Interfaces are more complex than standard command line based programs due to

the infinite number of possible combinations of input and output [Bel01]. By allow-

ing the components of a GUI to appear anywhere on screen it is impossible to predict

where a component will be and what its functionality is, posing additional questions

to any markers. With the commercial demands for "easy to use interfaces" they are

also becoming increasingly common [Mye93]. All this places new demands on course

conveners and the marking that needs to be done. The added complexity of the GUI

increases the time costs of marking students' solutions.

1.1.1 Why Automate?

It is no revelation to say the larger the class size, the greater the resources required

18 CHAPTER 1. INTRODUCTION

to communicate the course effectively. Irrelevant to how many extra staff are employed

to assist the course, there comes a limit when alterations need to be made to keep the

course feasible [CS98, PS98]. When this limit is breached, students are no longer able

to obtain a desired level of feedback [PP97]. Although face to face feedback may no

longer be a feasible option, feedback can still be provided in an alternative fashion,

namely electronically. This hinges upon changes being made to provide more effi-

cient methods of course delivery and assessment [DH9S]. Due to their programmable

nature, computers are the obvious choice to automate certain parts of the assessment

process. Numerous reasons [MMM04] have been suggested as to why academics want

to use computers to assist the running of their course. These reasons include:

9 To increase the frequency of assessment.

" To encourage students to practice their skills.

" To increase feedback to students and lecturers.

" To increase consistency.

" To reduce the marking burden.

Automation and the use of computers, in addition to the stated reasons, places

more emphasis on students to take their learning into their own hands. This does

not always go unopposed. Students are often reluctant to make alterations to their

accustomed learning methods [AT95], even though computer based assessment has

been shown to improve performance in summative assessments [CE98b]. If computer

automation increases student ability, then the motivation exists to bring about complete

automation should the opportunity arise. Computer programming is an ideal candidate

for the automation of assessment. Whilst such systems do currently exist, they all have

failings in that they are unable to test and mark Graphical User Interfaces.

The need for automation is clear, it also provides us with the following question:
"Is it possible to automate the marking of Graphical User Interfaces without compro-

mising the benefits afforded by the hand marking approach? ". This question is to be

answered through investigation into the makeup of Graphical User Interfaces and anal-

ysis of each of the problems that will be faced by a GUI marking system such as object

recognition and test execution.

1.1. COMPUTERS IN EDUCATION

1.1.2 Teaching Programming

19

The teaching of programming is an important field in many disciplines through-

out the academic spectrum. The learning of any language, programming or spoken,

is a complex hands-on process requiring significant practice [Jen02]. Over the years,

the methods used to teach programming to students have undergone several revisions

[FBC+01, Jen98]. For example, changing students from passive to active recipients

of the teaching by making the students participate more in teaching sessions. The de-

mands being placed upon current programmers are but one cause. The inception of the

Graphical User Interface and the advancement of programming languages have altered

the skill sets employers are now looking for [EmiO I]. No longer is it enough to just

create a working program. The program must now be efficiently designed and be both

ergonomic and aesthetically pleasing. However, it is not merely the methods that have

been changed, but also the languages taught. Today's object oriented programming

languages such as C++ [Str00] and Java [Mic05] provide both power and flexibility

in a high level environment, thus making them obvious candidates for teaching to stu-

dents [KKR95]. Adequate support and feedback along with a well structured course

can reduce any problems that may arise from language complexities, as will be shown

by the students' results in a later chapter.

General Teaching Practices

In order for students to become all round competent programmers, there are several

distinct parts to the teaching of programming that need to be covered. Each topic is

equally important, lack of knowledge in any one domain will significantly hinder a

student's programming ability. For explanation purposes, the sphere of programming

has been broken down into four distinct sections.

Syntax and Fundamentals

There are four schools of thought about how Object Oriented (00) languages

should be taught [YJ04]. The first is to teach it as a procedural language at the begin-

ning, covering all procedural aspects e. g. data types, conditionals, functions / methods

20 CHAPTER 1. INTRODUCTION

before then explaining the concepts of objects. By the time the students have a grasp

of the basic concepts they will have need to create functional objects. The second is

to start off teaching Object Orientation, covering all other topics as they are required

in the explanation of the 00 programs. The third is GUI-first. This involves teaching

students how classes and objects operate through the use of Graphical User Interfaces,

before tackling the fundamentals of the language and Object Oriented programming.

It has up to now not been proven that one approach yields better results and all ap-

proaches can be used. Finally there is the school of thought that the "objects first"

approach should be taken even further and that student should be taught design pat-

terns first instead [PPPO6].

Before being able to write a working program, it is self-evident that a programmer

must first learn the syntax and the fundamentals of the language in question. Returning

to our foreign language metaphor, you cannot write a sentence without knowing how

it is to be structured and how the words are spelt.

Whichever approach is being used, the syntax needs to be tackled early on in a

programming course. It is an intrinsic part of learning to program, without it students

will not be able to create a program that compiles. The syntax explains how to create
legal sentences or in this instance, lines of code. Once completed, the semantics can
be covered.

Graphical User Interfaces

After examining course descriptions for several university computer science de-

partments', it became clear that there is a general pattern to the way in which GUI

programming is taught. All courses offer a basic programming module in which an

overview of the programming language is presented. As there is not sufficient time to

cover every aspect of a language in the detail required, certain areas are bypassed. The

overlooked topics often include distributed computing, graphics and security. Graph-

ical User Interfaces are normally included as part of the basic programming course,

with the instruction focused on the use of different components, event handling and

basic layout concepts. It is evident that Graphical User Interface programming is a

complex topic as it warrants an advanced course of its own in most institutions. The

Including such institutions as Nottingham, Southampton and Stanford

1.1. COMPUTERS IN EDUCATION 21

advanced courses are occasionally of a general programming nature and tend to in-

clude topics such as layout techniques, java beans etc.

Testing and Debugging

The benefits of regular testing during the development of a computer program in-

clude allowing programmers to ensure they are meeting the specification and to locate

errors early. However, the number of students2 who think it reasonable to submit a so-

lution without a thought for testing is significant. To encourage regular testing, it is a

practice best nurtured at an early stage of programmer development in order for it to be

ingrained in the programmer's actions. It is not the case that experienced programmers

are unable to be taught to test and debug, they just need the desire to change [dJ05]. To

have become an experienced programmer, it surely follows that high quality, working

programs must have been produced. Without testing, such programs are unobtainable.

Testing is a two fold process and must be taught in conjunction with debugging

[AEH05]. Debugging is the process of analysing faulty code in an attempt to locate the

errors contained within. Debugging is a skill which programmers develop by making

mistakes in the first instance and being able to recognise when they have recreated

them. Novice programmers have not yet gained sufficient experience and therefore

need to be taught basic methods for error identification and correction e. g. binary chop

which involves commenting out sections of source code until the block containing the

error is located. These techniques, however simplistic, form the basis of the techniques

they will use later in their programming careers.

Design and Layout

There are several typographical conventions as far as programming is concerned

[Gib95]. These recommendations include the length of identifiers, the amount of white

space and the indentation of the source code. The conventions have but one aim,

improved readability. This in turn leads to several other advantages, one of which

is that tidy source code is an order of magnitude easier to debug than source code

put together in a haphazard fashion. Making source code more readable will allow

2Based on experience as a demonstrator in a first year Java programming module

22 CHAPTER 1. INTRODUCTION

programmers new to a project to understand its makeup more readily, thus reducing

the time needed for acclimatisation.

Whilst important, the layout only helps us read each line independently. The de-

sign of the program should provide a better indication of the program's aim. The

hardest "programming" skill to master is that of design. Countless books have been

written on this and other closely related topics, one of the most famous and instrumen-

tal of which being Design Patterns by the `gang of four' [GHJV95]. Students must first

be taught the basics of design before attempting to comprehend such topics as frame-

works and patterns. To give students good foundations from which to proceed, all

areas of Object Oriented design need to be covered, from procedural methods, through

classes, to inheritance and polymorphism.

Design and layout does not only relate to the source code. When Graphical User

Interfaces are concerned there is a new dimension that must be considered, namely the

way in which the input and output is relayed to the user.

1.1.3 Assessing Students

Programming is a hands-on discipline and requires considerable practice. It is

more valuable to students if insightful comments can be made on the programs they

have written [PP97]. Therefore, a form of assessment is required, whether it be sum-

mative or formative. The structural nature of programming allows lecturers to split

the teaching of programming into concepts, which can then be used as a basis for

assessment e. g. conditionals, methods, inheritance.

Before continuing, a distinction that needs to be made between testing and assess-

ment. Testing is a binary operation where the result is either right or wrong depending

on whether the program passes or fails the tests which it is subjected to. Assessment

should be a graded scale where marks can be awarded for partial correctness. Feed-

back is another important concept that assessment depends on, it is this that enables

students to learn from any mistakes they have made.

Exams are the stalwart of the educational assessment arsenal. Programming gives

you two main options when it comes to exams, a standard written exam or an on-

line programming exam. The online exam is more suited to programming allowing

students to both compile and test their solutions. It also allows students to write a

I. I. COMPUTERS IN EDUCATION 23

program in an environment they have experience with. Another assessment method is

via the use of Multiple Choice Questions (MCQs). MCQs enable lecturers to cover

several, if not all, details within a set conceptual area. A fine line exists, which when

breached stop MCQs from testing knowledge and instead see how well students read

the question or can learn obscure facts about the concepts being tested. Both exams

and MCQs are expensive with regards to time needed to organise and run, however,

there is another option, coursework. By no means is coursework a substitute for ei-

ther MCQs or exams, they are important in their own right. MCQs and exams enable

lecturers to assess individual rather than communal knowledge under restrictive exam

conditions.

Regularly assessed coursework is a convenient way to measure student progress.

Not only can questions be written relatively quickly compared to exams, students do

not need to complete the exercises in exam conditions. Course conveners can also

benefit from the regularity of the exercises. Through analysis of the results, lecturers

are able to see where mistakes are made and whether the difficulties uncovered are

general or concept related. The requirement of having to mark each solution written is

where problems are encountered.

Marking Exercises

Traditional hand marking methods have their place in academia, unfortunately the

marking of programming solutions is not one of them [AB99a]. Visually checking a

program to determine whether it is syntactically and dynamically correct is a difficult

and time consuming task. This is especially true when large numbers of scripts are

involved. In order to set regular programming exercises, there needs to be a fast turn

around with regards to the marking of solutions. This routinely involves the lecturers

enlisting help, usually from postgraduates. Additional manpower reduces the time

needed to process all scripts, but introduces consistency issues it also relies on the

postgraduates hired to complete their marking competently and within a reasonable

time frame. A form of automation is required to remove inconsistencies and improve

the marking turn-around. Lecturers often took it upon themselves to write tools to

speed the marking process along, automating such tasks as script collection. Over the

years more tools were written, one such collection at the University of Nottingham

eventually became Ceilidh [BBF+95, FHG96].

24 CHAPTER 1. INTRODUCTION

Marking exercises does not solely consist of analysing it functionally, although

this must be a priority as a program that does not meet its specification is of no use.

There are other concepts that must also be considered, these include source code ty-

pographical testing and more importantly aesthetic testing. Comprehensive aesthetic

testing would include analysing layout choices and consistency across the interface.

1.2 Marking System Requirements

To determine whether a marking system is of value to an institution, a list of mark-

ing system requirements should first be collated. This can be aided through examina-

tion of an example of what is too be marked (see Figure [1.1]) and the desired output.

The interface on the left was created as a model solution to a basic calculator exercise,

where as the interface on the right has two flaws. The `7' button has been mislabeled as

`A' and the multiply button has the incorrect functionality and will subtract rather than

multiply. The calculator examples shall be used throughout the thesis in an attempt to

better explain certain concepts.

Figure 1.1: Example of interfaces that could require marking - Calculators

The interfaces shown in Figure [1.1] highlight some of the problems that need to

be addressed by a marking system. There are often several ways in which the user

can interact with the interface, be it through text entry, buttons or through the menus.

Any marking system would need to be able to replicate this. There are also design

issues to be considered. If a number of students are creating similar interfaces, it

is unlikely that they will all be identical. A GUI marking system should be able to

1.3. MOTIVATION 25

identify components e. g. buttons in a variety of ways such as through the icon used or

text displayed. The system needs to be able to take into account different layouts. For

example, whilst it may be conventional to have buttons in the order `new document',

`open document' and `save' this need not be the case and any system must be able to

cope with variations.

The tests need to be complimented by marks which correspond to the success or
failure of the tests run. These should work on a graded scale so that the final mark

obtained is not either 0% or 100%. In addition, the marks for each individual test

should be augmented by feedback explaining where mistakes have been made or how

to improve the solution.

An ideal marking system will be able to do the following:

1. Run tests automatically, with no human interaction, this is a basic principle of

automation.

2. Be able to interact with the interface in any way required, known as test ade-
quacy [ZHM97].

3. Be consistent with the testing and marking performed [Bon99].

4. Handle varying layouts for the same problem, this is a by product of having a
large number of different submissions.

5. Identify objects such as buttons in a number of ways, this is an educational

restraint allowing for different forms of testing.

6. Be able to provide a graded mark for tests run [BW98].

7. Supply feedback to support the marks given [BRS96].

Whilst it was stated that these criteria would be met by an ideal marking system, it

is not unfeasible for a system to exist that would exhibit all of the required traits.

1.3 Motivation

Education cannot exist without assessment, students must be asked to demonstrate

what they have learnt for it to be of value. Whilst the benefits of assessment far out-

weigh the demands marking places upon lecturers, marking still remains a consider-

26 CHAPTER 1. INTRODUCTION

able problem. In an attempt to remedy this, several systems have been created to auto-

mate marking [AB99b, BBF+94, JL98a]. Whilst these systems all provide assistance

to those running courses, they all have one particular failing. None of the systems

currently available provide any mechanism for the automated testing or marking of

Graphical User Interfaces.

The marking of command line driven programs, is a relatively simple task involv-

ing the use of a collection of unchanging test data that is to be entered. GUIs do not

have that advantage, it is possible to have a large number of solutions to the same

problem. Even if you only consider the location of the components concerned, the

test data for a GUI is still changeable. Therefore, the time required to mark a GUI

is significantly longer than for command line driven programs. The longer and more

complex test data is, the more likely a mistake is to be made when marking by hand.

The savings that would be provided by the automation of the marking process would

be considerable. The removal of erroneous testing, on-demand feedback and instant

responses are but a few of the benefits that it would yield. There is also the extra

available time freed up by the use of such a system that can then be put back into the

course.

The difficulties of marking Graphical User Interfaces are apparent and the solu-

tions that currently exist merely divide the marking responsibilities. The creation of

automated systems to mark programming coursework highlights the desire that exists

to reap the rewards that such systems provide. The only area not yet tackled is that of

Graphical User Interfaces. With the increasing commonality of GUIs, the need for the

automation of GUI marking is clear. Therefore, it is the aim of this thesis to propose

and design a system capable of marking student's basic GUI programming exercises

from a dynamic, typographic and aesthetic perspective. The benefits of this system will

also be presented through implementation and testing against actual programs created

by students undertaking a programming course.

1.4 Scope

At the University of Nottingham, there is already a CBA assessment system in

place, CourseMarker formerly CourseMaster and Ceilidh. Whilst the theory behind

the automated Graphical User interface marking system allows for implementation in

1.5. SYNOPSIS 27

any scenario, it was implemented for insertion into the CourseMarker system. It was

used in the second semester of the first year programming course for two years running.

This allowed for the theory to be tested and any holes in the design to be highlighted

and corrected. This real world testing provided results that could be analysed to see

how effective the system was. The integration into CourseMarker also meant that the

students were able to utilise CM's abilities without the need to learn how to use a new

marking system.

The marking system was designed and implemented with Java in mind. The de-

cision of which programming language to teach students is a controversial one with

several factors influencing the decision [How95], including topics as language design

and the user-friendliness of the language. The decision was made in 1999 to change the

curriculum at Nottingham, now the first year programming course is solely Java based.

The GUIs the students shall be creating will be written in Java using SWING. The tests

that were created for the system only includes those that were needed in the marking

of the assignments set. However, the system was designed to allow for the inclusion of

additional tests without significant knowledge of how the GUI marking system works.

The final restriction that was placed upon the implementation of the system referred

to the aesthetic and ergonomic tests. At the current time, design considerations of

Graphical User Interfaces are not explicitly covered in the programming course, but

are left for a later module. This meant that the design measures discussed were not

tested alongside the main student marking but were implemented independently and a

number of tests were performed.

1.5 Synopsis

This thesis uncovers and explains the complications involved with marking Graph-

ical User Interfaces. It also describes solutions to these complications and explains

how they can be implemented to create a system capable of automating the marking of

Graphical User Interfaces. Outlined below is the contents of the following chapters, it

is also shown in the form of a mind map (see Figure [1.2]). The mind map highlights

important sections of each chapter and their relative position in the thesis.

Chapter two will provide an overview of how learning technology can be utilised

in the assessment of students undertaking programming courses. There will also be an

28 CHAPTER 1. INTRODUCTION

Chapter 2: Background And Related Systems
Learning Technology

r`
Existing Systems

Maiking Tools

Masking Subsystem Test Execution
Chapter 3: CourseM.,. wr

Feedback

1, Usage at Nottingham

Teaching of GUI Design

What are GUIs?
Chapter4: Graphical User Interfaces

GUI Design and Construction

States

Problems with Testing GUIs

Test Coverage

Typographic

Chapters: Testing and Making GUIs Feature
Types of Testing

Aesthetic

Dynamio

Test Representation

Introspection

Dynamic Loading

ChapterO: Design and Framework Implementation Security
VObject

Recognition

Testlog System Design

Recent Uses

Eduoational

Chapter 7: Evaluation
Analysfs

Technical

Assessment

Metrics

Contributions

Chapter 8: Conclusion limitations

Future Wo, k

Figure 1.2: A Mind Map of the Structure of the Thesis

analysis of systems currently available for the automated testing and marking of both

command line and GUI based programs.

Chapter three will concentrate solely on the CourseMarker CBA system. It will

give a brief explanation of the system as a whole before going into detail on the sec-

tions of the marking system relevant to the implementation of all new marking systems.

This chapter has been based upon the journal paper "Automated Assessment and Ex-

periences of Teaching Programming" [HGST06].

Chapter four is where Graphical User Interfaces are considered. There shall be a

description of what they are and their purpose, before outlining how to create a GUI

and important considerations to take into account during their design.

Chapter five shall take the concept of the Graphical User Interface further and

1.5. SYNOPSIS 29

tackle the problems of testing such a program. It will highlight the problems involved

in the testing of GUIs whilst mentioning ways in which the problems could be over-

come. It will then describe the two important aspects of marking GUIs, functional

testing and the aesthetic analysis of the program. The section on aesthetics shall de-

scribe a number of pre-existing metrics before explaining, through the implementation

of colour theory, how colour can be used to enhance the results obtained.

In chapter six, the design of the marking system is explained. It will show how

the problems faced by marking GUIs can be solved using techniques available to any

Java programmer. The introspective approach has been peer reviewed in the paper "An

Introspective Approach to Marking Graphical User Interfaces" [GH06]. Each phase of

the marking process will be outlined from object recognition to the actual execution of

the tests themselves. This will be combined with a description of how the theory was

implemented and integrated with the CourseMarker system.

Chapter seven will provide an evaluation of the results obtained through the use of

the GUI marking system over two semesters at the University of Nottingham. These

results will demonstrate that the automated marking of GUIs is indeed possible. The

results analysis shall be performed from a number of perspectives to show how such a

marking system be have an impact from an educational, assessment and metric point of

view. It shall also highlight the effectiveness of the system and how all the advantages

of automation are received by those running and taking the course. This shall be

followed by the conclusion and a selection of possible extensions that could be made

to the marking system in the future.

30 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Systems

"We recommend grading programs to all who teach programming and

numerical analysis to masses of students, but the prospective user should

first carefully investigate the systems available to him "- Forsythe + Wirth

31

32 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

This chapter will present an overview of the research important to the creation

of an automated interface marking system. The fields covered are those of Learning

Technology and the existing approaches to automated marking.

The first section contains an overview of learning technology and all its facets,

assessment, Computer Assisted Learning, Computer Aided Assessment and Virtual

Learning Environments. It will explain why assessment is important to the educational

process, its different types and what it aims to achieve through its existence. The

rationale behind the move to automated assessment from more traditional marking

approaches is also discussed.

Finally there will be a discussion of existing systems. Whilst no systems with the

capability to mark GUIs exist, a large number of related systems have been created

since the early 1960s when the first automated marker was suggested [FW65]. This

section will detail systems from all areas of the automated marking and testing spec-

trum.

2.1 Learning Technology

Learning Technology is a term used to describe a wide range of information and

communication technologies that are used to support and enhance learning, teaching

and assessment [Pap04]. These technologies include the use of multimedia, Computer

Aided Assessment, Computer Assisted Learning and Virtual Learning Environments.

If implemented correctly, the use of learning technology can greatly improve the ef-

fectiveness of teaching through its ability to provide students with extra support in the

form of online notes, links to external resources etc.

One use of Learning Technology is in distance education, which as the name sug-

gests, involves taking courses at a remote location. Therefore, as attending classes is

impossible, a new method of delivering the course to the students was needed. Learn-

ing technology provided the solution. One problem with distance learning is that the

majority of the research done in this area is nationally localised. For useful work to be

done the research needs to become more global [Coo01]. Whilst research is not being

done directly in distance learning, people are researching related topics. It is the direct

implementation of these related topics that is more relevant than distance learning.

2.1. LEARNING TECHNOLOGY

2.1.1 Assessment

33

Before covering the different uses that learning technology has within education,

it would be prudent to first tackle the problem of assessment and why it is important.

Assessment in education can take many forms e. g. exams, multiple choice ques-

tions, essays and programming exercises. Each form of assessment does have its uses,

but it is important to pick the correct form for the situation in question. When deciding

how to assess students there are guidelines that can be followed. Assessment should

play a positive role in student learning. Assessment should also provide students with

feedback and the methods used should be valid [BRS96]. This is particularly relevant

to this research. Valid methods for assessing programming would be the marking of

students' programs and the use of an automated system enables feedback to be deliv-

ered to the student moments after a solution is submitted. Each educational institution

has its own preferred method of assessing the students with regards to programming in

Computer Science courses, the University of Nottingham is no exception [HGST06].

The complications do not disappear once the decision over how the students are to

be assessed has been made. Creating assignments that enable students to demonstrate

their knowledge is a complicated task, although it is relatively simple to write assign-

ments for the sole purpose of generating grades. Grades, however, do not show what

a student knows but represent the extent to which a student has successfully met the

faculty member's requirements and expectations for a course [Rog03]. The last state-

ment may be a generality about assessment, but can be avoided by following existing

defined criteria for the creation and grading of programming assignments.

Creating Programming Assignments

The creation of programming assignments is a complicated matter. It is a fine bal-

ance between not supplying a strict enough specification and having to interpret the

output results, or restricting the students to such an extent that there is no opportunity

for them to exhibit creativity in their solution. There are criteria that good program-

ming assignments should meet in order to get the most out of the students taking the

course [SW06]. Assignments should:

34 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

" Be based on "real-world" problems.

" Allow students to create realistic solutions.

" Allow students to focus on current topics from the class within the context of a
larger solution.

" Be challenging.

" Be interesting and achievable by basing the question around practical and / or

current issues.

" Have multiple levels of achievement, this allows for the awarding of partial

credit.

Whilst the above is by no means a comprehensive list, it will ensure a certain degree

of confidence in the assignments created. Unfortunately for course lecturers, creating

well written assignments is not enough, they also need to be graded in the appropriate

fashion.

Grading Programs

The biggest problem when marking is that of consistency. It is something that can

be affected by bias, laziness or fatigue etc. Consistency becomes a bigger problem

when there is more than one marker and has lead to universities creating their own

scales for marking programming assignments [HKHRT83]. However, these scales are

rarely universally applicable having been created for specific use at one educational

institution. More user friendly program marking criteria have been separately devised.

One such set of criteria [How94] consists as follows:

" Program Execution - are the results correct?

" Specification - has it been met explicitly?

" Program Design - analysis of the structure, modularity etc. of the source code.

" Coding Style - are standard conventions met?

" Comments - are programmer comments useful and occur regularly?

2.1. LEARNING TECHNOLOGY 35

" Creativity - has the student gone beyond the call of duty and created an interest-

ing solution?

All of the criteria, with the exception of creativity, lend themselves to automation.

Most of the research done into grading solutions exists in the form of automatic as-

sessment tools where the above criteria are often the basis.

What Assessment Achieves

One question so far unanswered is "Why are students assessed? ". Assessment is

used to allow students to demonstrate the knowledge they have acquired throughout the

duration of a course. It also enables lecturers to rank the students in order of how well

they have performed. However, if incorrectly applied these are the only advantages

of using assessment. Much more can be achieved if the assessment is implemented

correctly, it can be used to increase knowledge. Analysis of studies has shown that the

practice of formative assessment produces significant and often substantial learning

gains [BW98]. The studies this information was extracted from were wide ranging

encompassing students from the age of 5 years to university undergraduates.

2.1.2 Branches of Learning Technology

Within Learning Technology, there are certain areas of research that are of impor-

tance to the automated marking of Graphical User Interfaces. The research can be

divided into two sections, learning through the use of computers and using computers

for assessment. They are very closely connected, both striving toward the same goal,

enhanced student ability. It is also fairly common to see the two concepts combined

within the same system, normally a Virtual Learning Environment, which shall also be

discussed.

Learning with Computers

The use of computers to aide learning is a contentious topic. Surveys have shown

that students do receive benefit from their usage compared to more traditional teaching

methods [Leu99]. However, counter-claims have been made that many of the surveys

36 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

are flawed through the use of inadequate statistical measures and claims that variables

such as Computer Assisted Learning are precise and controllable [Mit97]. Not all

surveys are flawed in that way. The aforementioned survey [Leu99] attempts to prove

that students' underlying approach to learning influences how well they interact with

Computer Assisted Learning systems. Whilst still relevant, the target of the survey

was economics students rather than computer science students who would naturally be

more used to computer interaction and would be more likely to embrace the transition

to Computer Assisted Learning methods.

There are two significant areas of research with regards the use of computers in

learning, Computer Assisted Learning and Computer Managed Learning. Computer

Assisted Learning (CAL) is the implementation of technology to present educational

experiences electronically. This is often accomplished in a variety of means. Computer

based tutorials where the material presented depends on students answers, dialogue

systems where the student and computer conduct a learning dialogue or more sim-

ply the inclusion of multimedia such as sound or video etc. [KN81]. In comparison,
Computer Managed Learning (CML) uses technology to better administer educational

experiences through electronic systems [Zel93]. It is an extension of CAL which en-

sures that students are working at the correct pace and are receiving the information

required. It can also involve the inclusion of testing systems, grade books and com-

puter mediated communication.

The use of CAL methods has both advantages and disadvantages. The disadvan-

tages include the perception and reaction by the users of systems involved, poorly

designed and implemented systems and other factors such as cost and initial set up

time. Within a Computer Science department, there should be few issues with the use

of computers in learning due to the extensive exposure to computers the students al-

ready have. The advantages of using courseware far outweigh the disadvantages. The

ability to track students' progress through the software enables lecturers to see where

problems are arising and tackle them early on. There is also the ability to archive notes,

exercises and past papers from previous years for later use. One of the more common

implementations of CAL techniques can be seen in Virtual Learning Environments,

these shall be discussed shortly.

2.1. LEARNING TECHNOLOGY

Using Computers for Assessment

37

Whilst it is not just programming courses where computers are used to assist the

assessment process, they are a large contributor with regards the automated systems

created.

Before computers were used to automate various parts of the exercise delivery, col-
lection and assessment process, it had to be done manually. This involved collecting

and assembling the submissions in an appropriate location, then compiling and testing

the programs by hand. Besides being a laborious task, there are several areas where

problems could arise [GG06], examples include files that do not compile, non com-

patible compilers could have been used and minor errors would sometimes be fixed by

marking assistants of a generous nature. If the output did not meet the specification,

assistants would need to determine the significance of the discrepancies. In order for

marks to hold weight, the way in which solutions are marked needs to be consistent.

Computers, through their ability to be programmed and strict adherence to the rules

make perfect candidates to assist the process.

Computer Aided Assessment (CAA) refers to the use of computers in assessment.

The term encompasses the use of computers to deliver, mark and analyse assignments

or examinations. CAA also includes the collation and analysis of data gathered from

optical mark readers [Bu199b]. There exists a specialisation of CAA, known as Com-

puter Based Assessment (CBA). Computer Based Assessment refers to the delivery of

materials, the input of solutions by the students, an automated assessment process and

the delivery of feedback, all achieved through an integrated, online system [FHB06].

The use of CAA and CBA also have their advantages and disadvantages. Disadvan-

tages include the perceived validity of CAA, the fear associated with using technology

and changes needed to invest time in designing and creating new assessments rather

than marking traditional assessments [Bu199a]. However, the use of CAA / CBA tech-

nologies offers many pedagogic benefits, the most obvious is that of time saved by

those running the course. This time saved could be used to improve the student learn-

ing experience by devoting more time to student contact [SC04]. More valuable from

a knowledge development point of view is the delivery of instant feedback. It has not

been shown that feedback provided by a CBA system improves overall marks, but that

it does reduce the length of time students spend discussing problems with course tutors

38 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

[OHZO1]. This finding can be compared to another study performed. Students were

split into two groups. The students in one of the groups had to regularly meet with

the lecturer and their work was graded there and then in the student's presence, whilst

the other group's work was graded alone. The results showed neither group performed

significantly better at the end of the course, despite the extra time that had to be spent

by the course lecturer [ES05].

A large number of Computer Based Assessment systems have been created, some

of which include multimedia such as graphics, sound and video. There is also a current

trend for CBA systems to be web based [O'L99]. CBA systems can be used for ev-

erything from marking multiple choice questions, through diagrams to programming

solutions. The use of such systems can cause a change in the way students are asked to

answer questions, but despite any additional demands that can be placed upon students

by these systems, they are generally happy and rarely are complaints made [LTH+99].

Virtual Learning Environments

Creating an exact definition of a Virtual Learning Environment (VLE) can be a
difficult task. This is due to the fact that VLEs are flexible and can be used to perform

a plethora of tasks in a variety of ways [Di100]. This does not mean that a definition

cannot be created. A Virtual Learning Environment is an online computer environment

where various tools are provided to facilitate learning [Chi05]. They were created to

allow for the easy communication of information, whether it be for distance learning

or locally. VLEs encourage collaboration and can be used to share information, either

between lecturers and students or just between students [JIS05]. The advantage of

VLEs are that lecturers can keep tabs on their students through the system by seeing

which notes they have accessed, exercises undertaken etc. This is significantly easier

than tracking students turning up to lectures where there is often limited direct contact

with individual students.

There are a number of Virtual Learning Environments available, some have been

created by educational establishments and others commercially. Some of the more

common are WebCT [Web], Blackboard [Bla] and Virtual Campus [Cam]. VLEs

are now used by the majority of UK universities and higher education establishments

[KF05]. They do not just have uses with regards to the delivery of courses but can be

adapted to provide automated assessment. This is a simple extension, whereby a CAA

2.2. EXISTING SYSTEMS 39

/ CBA system is incorporated into the VLE. The use of VLEs in education have been

shown to save staff time, and improve the experiences of the learners, although there

are times when the systems can be a little unstable [Sma02]. For the use of VLEs and

also CBA systems to become universal, stability will need to be guaranteed, until then

paper-based backup systems shall always be required.

2.2 Existing Systems

Writing a program is not just a case of programming and then releasing the result,

it is a cyclic process involving regular testing and refinement. The process can be as-

sisted by useful feedback, this is especially helpful for novice programmers [VH03].

However, the feedback needs to be provided on-demand to be of use. In order to anal-

yse a program and provide on-demand feedback, the testing needs to be automated.

There are two distinct sets of programs that need to be considered. Software designed

solely for the testing of programs and education based software created with assess-

ment in mind. It is a relatively simple task to classify these systems either by the way

they operate or by their overall goals. The systems described below do not by any

means constitute a comprehensive list, they are merely examples of the different types

of system.

2.2.1 Assistive Systems

Not all tools designed to assist the teaching of programming courses were created

to grade solutions. Of the two tools described below, the first was created to automate

the delivery of the course and assessments and the second is a system to simplify the

creation of GUIs which has been incorporated into several marking systems.

JERPA

The Environment for Remote Programming Assignments in Java (JERPA) is a dis-

tance learning educational tool [ET02]. JERPA provides students with access to the

programming assignments, class libraries, test data etc. through it's interface. It con-

nects to the server information using standard HTTP connections. This allows the

40 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

client to be used on any machine with both Java installed and web access. However,

the functionality exhibited by JERPA is rather lacking. It may succeed as a course de-

livery agent offering opportunities to download, compile, run and submit the program

written. It unfortunately does not offer any marking abilities to the users.

There are future plans to expand JERPA to allow it to also work with programming

languages other than Java and to allow roaming-profile support. At the current time

JERPA works best if students use it on one machine only.

TCL and TK toolkit

TCL and TK are two toolkits, which combined provide a system for developing

and using Graphical User Interfaces [Ous94]. They are both implemented as a library

of C procedures which allows them to be used in a variety of other systems. The C/

C++ complexity with regards to GUIs is hidden through the use of TCL and TK, this

allows interfaces to be created after a few hours learning the system.

The simplicity of the TK toolkit for creating GUIs, along with the knowledge that

they are created using C procedures has meant that they have been integrated with

automated assessment systems. Ganesh is one example of a system that has integrated

TCL into its own program development and grading process.

2.2.2 Testing Systems

The following systems discussed provide users with the ability to interact with

their interface directly. There is no automation to allow users to create tests quickly or

with very little effort. A high degree of programming competency is required to create

the test initially. Once created, however, the test can be reused ad infinitum often with

minimal changes required to reuse the test in different situations.

GUITAR

GUITAR is a framework solution which integrates various tools and techniques

to be used in the various phases of GUI testing [Mem01]. Of GUITAR's constituent

components, the most interesting is that of the regression tester. Once the tests have

2.2. EXISTING SYSTEMS 41

been automatically generated and run, the regression tester checks the results supplied

by the system for any invalid test responses. On subsequent testing iterations, any test

that previously completed successfully is bypassed. The tests that failed to complete

returning an invalid result, most probably due to modifications to the GUI, undergo a

repairing process. They theorise that by altering tests that previously did not complete,

the major failings of the system will eventually be highlighted.

The power GUITAR exhibits when testing Graphical User Interfaces are also its

hindrances when marking is considered. For marking to be consistent, every solution

needs to be run against the same tests. By modifying the tests using the regression

tester, the solutions will be subjected to different test sets, thus negating any consis-

tency rendering it worthless for marking purposes.

Java Robot Class

The Robot Class [Mic04] was created by Sun Microsystems for their 1.3 release of

the Java programming language. It was designed for the purpose of automating tasks

Graphical User Interfaces could perform, with a view to demonstrating the software

created. The class allows the programmer to take control of all native input to the op-

erating system. This capability can be used to simulate a user attempting to operate the

application under test and could feasibly be adapted for testing purposes. Although the

Robot has the potential to be extremely powerful, it's inflexibility is a major hindrance.

The robot needs to be told explicitly where each object in the interface is located. It

does not handle changes made to the design of the interface without requiring a major

rewrite to the robot.

In the hands of an experienced programmer, most dangers should be avoidable.

However, because use of the robot involves control over the native input, it is possible

to access the underlying operating system, be it accidentally or with malicious intent,

and cause great damage to the machine being used.

Jemmy

Jemmy is one part of the SUN sponsored netbeans project [Pro]. It is a relatively

new project, which allows users to create demonstrations or tests for Java Graphical

42 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

User Interfaces. A lot of the tests are performed directly upon the event queue. How-

ever, they have recently added functionality which can perform tests using the Java

Robot class. Whilst a valuable library, it had recently been updated for the first time in

three years. Such regularity of support may cause issues as the language develops.

Unfortunately, the documentation states that the GUI tests are unstable. To be of

any use for marking purposes, any instability issues would need to first be addressed.

The other significant issue with Jemmy, is that all tests would need to first be pro-

grammed before they could be used to test a students solution. This requires an in-

depth knowledge of both Java and the way the Jemmy library works. Ideally a system

for testing students' work should be usable by those with only a limited knowledge of

the testing system.

JUnit / JFCUnit

JUnit [JU] is a Java framework designed for programmers to create test suites.

These suites consist of testing sequences to be carried out to determine whether a
program is working. JUnit was created for testing command line driven programs, but

has been extended and superseded by JFCUnit which works with the Java Foundation

Classes enabling the testing of Graphical User Interfaces.

The main advantage of the JFCUnit software is that with a few parameters, the

test suites will attempt to locate the object required. With the test suites themselves

being Java programs, the opportunity for errors being present in the test suite exists.

Also unless the tests have been previously written and can be reused, it can take a

considerable length of time to create them initially.

2.2.3 Capture and Replay Tools

Of all the variations of testing software, this is by far the most commonplace. This

is down to the fact that a large proportion of all commercial testing software falls into

this category. Each piece of testing software may work in a slightly different way, but

they are all based around the concept of the video recorder. They allow you to load

a Graphical User Interface and use the system to record the user interactions. When

required, users are able to replay the actions previously performed.

2.2. EXISTING SYSTEMS 43

The trouble with Capture / Replay tools are that the tests contain a lot of infor-

mation but little meaning about the intent of the interactions [Si103]. Performing the

capture at a logic level would allow for changes in the interface without having to

rerecord the tests.

jRapture

jRapture is a Capture / Replay tool designed for use with Java programs [SCFPOO].

It works by capturing the executions created during testing. The capturing is done

with the use of modified Java API classes. When a program is started, these modified

libraries are loaded instead of the standard ones. These classes store the process of

events that have occurred along with how they can be recreated. Captured executions

can then be replayed by the system to recreate the same testing process as before,

possibly for analysis by testing experts. It does provide a level of GUI support. The

majority of the interactions with GUIs are done by posting actions to the event queues.

This approach works well when just recreating actions that were recognised by

additional layers of the JVM. It is less efficient for marking purposes. The authors

state that they cannot guarantee a completely faithful recreation of tests performed,

especially with GUIs, which when marking is of the utmost importance. However,

jRapture has been used as a platform for creating other similar pieces of software, one

example is SCARPE which is currently at the prototype phase [OK05].

gftestJUl

Of the many programs on the market for testing Graphical User Interfaces, one of

the more advanced is gftestJUl [QFS], created by Quality First Software. gftestJUl

works by allowing the users to record their test sets within the testing system. The

software then splits the tests up into the separate actions performed, thus allowing

users to add and remove tests from specific places in the testing sequence.

The ability to alter the test sequence without having to rebuild it from scratch

makes gftestJUl a very powerful piece of software. However, it does not have the

flexibility to deal with solutions from large numbers of users where the exact details

of objects are not known. Precise information is required for the software to find the

44 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

GUI objects.

2.2.4 Automated Submission and Assessment Tools

All the systems hereto mentioned were designed with testing in mind. There are

systems which have been created with assessment in mind. The following systems

have all been created to assist with the marking and teaching of programming.

Ceilidh

Ceilidh [FTHS99] was created at the University of Nottingham from a collection of

unix shell scripts that had been developed to automate certain tasks. As the number

of scripts increased it was decided they should be packaged up to give not only the

lecturer but also the students the advantages they could provide.

Ceilidh's marking system was developed around the fact that it was able to mark

programs from several perspectives. It had the capability to not only mark programs

dynamically, i. e. does the program work providing responses consistent with the ques-

tion specification. Ceilidh was also able to perform marking directly upon the students

submitted source code. These tests were concerned with the programming style and

layout of the code.

In addition to the automated marking, Ceilidh was also the distribution system for

not only the coursework exercises, but also the course notes. It was initially created

to deliver aC course but its extensible design meant that marking tools were rapidly

developed for several other programming languages. This extensibility contributed to

Ceilidh's downfall, over the years it had effectively become a collection of extensions

based around user suggestions received since it's inception.

Ceilidh was not without its limitations. There was no network support, users had

to log on to the server hosting the system to be able to use it. It also did not have a full

X-Windows or PC-Windows graphical interface. Ceilidh was updated in 1998 when

it became the more functional CourseMarker [FHTSOO, FHSTO1] (formerly known as

CourseMaster).

2.2. EXISTING SYSTEMS

Agar

45

Agar was designed to take the mantel of "Killer App" [WP06]. The authors claim

that current systems are too restricting on the user and have remedied this with Agar. It

is to work alongside a human grader as an assistant [WP05], allowing the human grader

to overrule any mark awarded by the system. The fact that it only aides assessment in

this way makes it different from all other CAA/CBA systems currently in use.

There are obvious disadvantages to a system of this nature. If the tests created are

not comprehensive, it relies on the human grader to complete all other marking. Whilst

the system does assist by providing different views for the grader to use in this process,

it is still time consuming. Another worry is the fact that the students' solutions are

not run in a sandbox (a secure environment for running potentially unsafe programs),

certain restrictions are placed on the running programs but nothing to protect it from

malicious code. The lack of GUI marking is a significant failing of the system.

ASAP

The Automated System for the Assessment of Programming (ASAP) [DLO+05],

assesses programs through the use of other systems such as Virtual Learning Environ-

ments. The students submit solutions through the VLE, this passes their source code to

the Automatic Java Marker and tests the solution against a set of test data. The marks

are returned to the student again with the use of the VLE.

With the exception of using an already existing Virtual Learning Environment to

act as an interface to the marking system, ASAP does not appear to do anything novel.

The marking is basic as it seems to be restricted solely to the Java programming lan-

guage. No GUI support was mentioned in their literature.

Boss2

Boss2 [JCLOO], an update of the BOSS system [LJ99, JL98a] created at the Uni-

versity of Warwick, is an assistive rather than a marking tool. It provides students

with the information required to complete the task and also a means to submit their

solution. BOSS's marking capabilities are somewhat limited, it is able to run com-

46 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

mand line driven programs against a set of test data but returns just a mark of either

100% or 0% with no feedback. Once all student submissions have been received, it

randomly allocates all submissions to a list of designated markers for hand marking.

Thus reducing any bias from marking the scripts of known students.

The Boss system was updated in an attempt to remove some of the limitations of

the previous version. These limitations included the lack of network support for the

system and the operation of some of the result comparison utilities such as di f f. The

new design implementation, which uses a standard Java client / server architecture

using RMI, does provide extra functionality. One improvement of the new system is

that instead of supplying the expected result as text, the results can be expressed as an

object. This allows the course designer to incorporate different levels of strictness in

the mark scheme.

CodeLab

CodeLab, formerly WebToTeach [AB99b], is a web-based interactive assessment

environment. Its designers claim it ideal for introductory programming courses. It

provides students with large numbers of questions of increasing difficulty on all topics

covered. The answers which can range from single word answers to fragments of code

are marked automatically by the system.

CodeLab appears to only mark either single line or short answer questions. Stu-

dents using the system may understand the theory about the concepts the system exam-

ines, however, they will have no experience of writing complete programs themselves.

DATSYS

DATSYS is an extension to the Ceilidh - CourseMarker system [Tsi02]. It pro-

vides the capability for CourseMarker to assess a wide variety of technical diagrams

e. g. circuit diagrams, flowcharts and entity relationship diagrams. It works by convert-

ing the diagrams into programming code which can then be tested using the standard

CourseMarker procedures.

2.2. EXISTING SYSTEMS

Ganesh

47

Ganesh is a web based learning environment for computer science courses [LM98,

LMOO]. Its goal is to assist students' learning of programming. It does this not only

through the delivery of coursework, but by offering help via the use of tools for debug-

ging, editing and other help systems.

It is a client-server system using the Internet as its transmission layer, enabling it

to be used as a distance learning system. The client provides the students with access

to the exercises and relevant tools, where as the server along with performing any

marking required, allows lecturers to keep track of the students' performance.

The programming course offered by Ganesh uses an assembley language and the

Apoo virtual machine [RM98]. The Apoo virtual machine was developed to ease the

learning of assembley languages in conjunction with the Apoo interface. This interface

provides users with a look at the contents of any registers being used along with other

properties such as the system stack.

Apoo and Ganesh provide a great deal of assistance to those learning assembler.
There are naturally a few drawbacks too. Firstly is the fact that it seems to only be

able to test and grade programs written in assembler using the Apoo interface. The

general move toward Object Oriented programming languages means that Ganesh is

becoming dated unless new courses and virtual machines can be written for it. There

is also reference in the documentation to being able to create GUIs by interfacing the

TCL and TK toolkit although no information on how this is achieved could be found.

Kassandra

Kassandra [uvM94] like the majority of automated assessment systems was de-

signed to relieve pressure from teaching assistants. It was predominantly used to grade

both Maple and MathLab programs, but can be adapted to mark programs written in

more conventional languages such as C. Kassandra, through its design, allows addi-

tional assignments to be added to the system with ease. This provides it with a certain

flexibility over the assignments the students are set.

There are limitations to the system, it must be run on a UNIX operating system to

function. As with other current software there is also no GUI marking capabilities.

48 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

RoboProf

RoboProf [Da199] is another web-based system. It is different from CodeLab in

that it simulates an electronic course book. The students are provided with the course

notes in HTML form and RoboProf will not let them advance until they have mastered

the chapter currently being studied. If the student answers a question incorrectly they

are given another similar question to complete. This does promote learning, but cannot

be used for assessment as the opportunity for inconsistencies is too great.

TRAKLA2

TRAKLA2 is a system developed for the assessment of visual algorithm simula-

tion exercises [SMKO1, KMS03, LSKM04]. The exercises are individually tailored

and delivered to the students. The students then use a GUI to manipulate the underly-

ing data structures with the solution to the exercise being a sequence of discrete states

of data structures.

The TRAKLA system and methodologies were also incorporated into a web-based

version of the system WWW-TRAKLA. Unfortunately, the TRAKLA system is lim-

ited to assessing algorithm simulations only.

2.2.5 GUI Marking

This is the smallest section concerning existing systems. There are systems avail-

able that can test GUIs in a variety of ways as have previously been described, but

there is only one that claims to be a GUI marking system.

JEWL

The John English Window Library (JEWL) was designed to provide novice pro-

grammers with a simplified windowing tool kit [Eng04]. It was suggested that Java's

SWING API was too complicated for students as a first GUI building system. JEWL

was created as just that, not a replacement for, but a simplified version of SWING with

some of the complexities hidden away.

2.2. EXISTING SYSTEMS 49

Whilst it is essentially just a windowing API, it does allow for automated mark-

ing. An alternative implementation of JEWL exists. This implementation is used only

by the marking process, it suppresses the display of any windows and provides the

marking system with several methods that can be exploited to interact with the GUI.

The test harnesses within the JEWL system are able to monitor what the program is

attempting to do and provide marks accordingly.

The JEWL system does attempt to mark Graphical User Interfaces, however, the

way in which it does so is not beneficial to the students using it. The major problem

is that although students will be able to create GUIs using simplified APIs, when they

enter the software industry they will be faced by the full version of SWING with which

they will have little to no experience. Also by suppressing the loading of the GUI, there

is less opportunity to analyse the layout and aesthetics of the Interface created. JEWL

may provide a solution to the problem of marking GUI, but it has done so by altering

the questions asked.

2.2.6 Interface Quality Measures

The final section concerns ways of analysing Graphical User Interfaces and making

decisions based upon the results of the metrics. The methods below attempt to discern

several aspects about the interface without the need to actually create the interface

itself. They are theoretical approaches to the creation of GUIs.

As well as the methods mentioned below, there are also metrics created that at-

tempt to analyse the aesthetics of an interface. These metrics are discussed in detail in

Chapter Five.

VEG Toolkit

Visual Event Grammars (VEG) is a specification language [BRRP05]. It is an

extension of BNF grammars. VEG is used to describe the communicating components

of a GUI. It attempts to describe sequences of user events as sentences in a formal

language. By creating automata in this way it drastically reduces the number of states

(or components) involved, these automata can then be used to verify whether the GUI

created is correct. VEG is less concerned with actually testing the system more proving

50 CHAPTER 2. BACKGROUND AND RELATED SYSTEMS

that there are no deadlocks or unreachable states etc.

VEG is primarily a specification language and therefore cannot perform the afore-

mentioned verification checks itself. These are done using the model checker Spin

[Ho197]. Before it can be used, the VEG notation must be translated into the input

language for Spin, Promlea.

VEG is still only in its early stages of development and so far has limited func-

tionality with regards to system verification. However, VEG is also able to generate

Java code to create the GUIs described. The authors claim there to be no difference in

performance between VEG generated and Java code, although these claims were not

substantiated.

2.3 Summary

This chapter has shown why CBA systems are needed to reduce the burden placed

upon lecturers and how they can be used to solve the problem. It has also described the

different ways in which technology has been incorporated into education to improve

the students' learning experience. There are a large number of systems in existence

that can be used to test and / or mark programs. However, each system has it's own

failings and has been shown to be unable to perform marking adequately, especially

when Graphical User Interfaces are concerned.

In the next chapter an overview of the CourseMarker, formerly Ceilidh, system

will be given. The main area of focus will be the marking subsystem with a view to

seeing what important attributes it has and how it could be extended.

