

AN AGENT-BASED

 SELF-CONFIGURATION

METHODOLOGY FOR

MODULAR ASSEMBLY SYSTEMS

Pedro Ferreira

Thesis submitted to the University of Nottingham for the

degree of

Doctor of Philosophy

April 2011

To my mother, Maria Adelaide Monteiro dos Santos, without whom I would not have

the opportunity to do this work, and to my girlfriend, Filipa Antunes, without whom I

would not have completed it

Para a minha mãe, Maria Adelaide Monteiro dos Santos, sem a qual eu não teria

tido a oportunidade de desenvolver este trabalho, e para a minha namorada, Filipa

Antunes, sem a qual eu não o teria completado

Abstract

Assembly systems today are exposed to market trends that have become increasingly

more dynamic and unpredictable, requiring product changes and adjustments which

emphasise de need for more flexible systems. The requirement for increased

responsiveness has led to the development of new modular concepts which provide

the bases for achieving higher system adaptability through increased

component/module interchangeability and reusability. The modularization of

physical and control infrastructure does, however, only address one aspect of the

issue and there is still a lack of appropriate tools and methods to support the rapid

configuration and reconfiguration of such systems for changing sets of requirements.

This work proposes a new distributed methodology for the configuration and

reconfiguration of Modular Assembly Systems (MAS) through the use of agent

technology. The new methodology defines a comprehensive model for the structured

description of the MAS requirements, equipment modules and the configuration

results.

This thesis proposes a new agent architecture for the self-configuration of equipment

modules into systems based on a given set of requirements, as the core of the self-

configuration methodology. This architecture introduces the overall behaviour of the

methodology through the definition of agent types, roles and overall interactions.

Furthermore this work describes the development of the specific models and methods

for the local behaviour of each agent. These enable the actual decision making

method for the agents to achieve configuration solutions.

This work also reports on a new methodology for the early performance simulation

of MAS characteristics that can be used in conjunction with the configuration

methodology.

Acknowledgments

I would like to take the opportunity to thank a few number of people without whom

this work would not have been possible. The first two people I would like to thank

are my supervisors Svetan Ratchev and Niels Lohse, for the opportunity to pursue

this venture, for their time and patience to support me along the way and most

importantly for their belief and trust in my abilities.

I would like to convey my deepest thanks to my Mom, Maria Adeleide Monteiro dos

Santos, and my girlfriend, Filipa Antunes, to whom I also dedicate this work.

Without them, this endeavour would have surely failed.

I also would like to thank all my colleagues in the Precision Manufacturing Centre,

for all their support across the years, I am very proud to have you all as colleagues. I

would like to add an extra thank you to my colleagues in C32 (the PhD office), for

their motivation and useful discussions; this work, in a way, is from all of us.

I would like to thank the members of the EUPASS project for their support, guidance

and useful discussions, this work could not be completed without their input.

Furthermore I would like to thank the European commission for funding this work

through the EUPASS project.

Finally, I would like to convey a warm thanks to my girlfriend, Filipa Antunes (her

support is beyond words), and Eirini Panagiotidou, for their friendship, patience,

support and for proof reading this thesis. Furthermore I would like to add a big

thanks to my supervisor, Niels Lohse, for his dedication in providing detailed critical

reviews for this thesis.

Table of Contents

Table of Contents

1 Introduction .. 1

1.1 Research Scope .. 4

1.2 Aim and Objectives ... 6

1.3 Approach and Structure of the Thesis ... 7

2 Literature Review ... 9

2.1 Introduction ... 9

2.2 Reconfigurable Assembly System ... 14

2.3 Modular Assembly Systems .. 15

2.3.1 Platform Development ... 16

2.3.2 Requirements Engineering ... 16

2.3.3 Standardization ... 17

2.3.4 Knowledge Models .. 18

2.3.5 Evaluation and Simulation ... 18

2.4 Assembly System Configuration ... 19

2.5 Multi-Agent Systems for Intelligent Manufacturing 21

2.5.1 Agent Organization .. 25

2.5.2 Agent Negotiation .. 27

2.5.3 Agent Architecture ... 32

2.5.4 Communication .. 33

2.6 Knowledge Gaps ... 34

2.7 Chapter Summary .. 35

3 Research Approach .. 36

3.1 Introduction ... 37

3.2 Problem Definition .. 38

3.2.1 Requirements for the Self-Configuration Methodology of Modular

Assembly System ... 40

3.2.2 Definition of Research Objectives ... 41

3.2.3 Definition of the Research Hypothesis .. 41

3.2.4 Research Methodology... 43

3.2.5 Requirements Model for Agent-Based Self-Configuration of Modular

Assembly Systems ... 45

Table of Contents

3.2.6 Agent Architecture for Distributed Self-Configuration Methodology for

Modular Assembly Systems ... 47

3.2.7 Behaviour Models for Distributed Self-Configuration 49

3.3 Definition of Validation Methods ... 51

3.4 Chapter Summary .. 52

4 Model for Agent-Based Self-Configuration of Modular Assembly Systems 53

4.1 Introduction ... 54

4.2 Agent Technology Requirements Identification ... 57

4.2.1 Common Semantic Notation Definition .. 58

4.2.2 Common Taxonomy and Terminology .. 59

4.2.3 Definition of Assembly Process Skills Library 61

4.2.4 Standardized Assembly Process (Skill) Descriptions 61

4.2.5 Definition of Standard Interfaces Library .. 68

4.3 Equipment Module Model Description ... 71

4.4 Assembly System Requirements ... 75

4.2.6 Assembly System Targets .. 76

4.2.7 Physical System Requirements .. 78

4.2.8 Assembly Process (Skills) Requirements .. 81

4.5 Assembly System Configuration Output ... 84

4.6 Chapter Summary .. 84

5 Agent Architecture for Distributed Self-Configuration Methodology for

Modular Assembly Systems ... 86

5.1 Introduction ... 87

5.2 Agent Architecture Requirements and Objectives 88

5.3 Agent Architecture .. 89

5.3.1 Agent Model Overview .. 90

5.3.2 Agent Organizational Model .. 94

5.3.3 Requirements Agent Definition ... 95

5.3.4 Equipment Module Agent Definition .. 100

5.3.5 MAS Expert Agent definition .. 111

5.3.6 Performance Simulation Agent .. 115

5.3.7 Agent Interactions .. 120

5.4 Agent Architecture Deployment ... 123

Table of Contents

5.5 Chapter Summary .. 124

6 Local Behaviour Models for Distributed Self-Configuration Methodology.... 125

6.1 Introduction ... 126

6.2 Communication Definition .. 128

6.2.1 Requirements Agent Communication Protocols 130

6.2.2 Equipment Module Agent Communication Protocol 132

6.3 Agent Methods to Enable Self-Configuration of Modular Assembly

Systems .. 135

6.3.1 Performance Characteristics for Modular Assembly Systems 137

6.3.2 Mathematical Normalization of Performance Characteristics 137

6.3.3 Formulation of Mathematical Beliefs Readjustment due to Failed

Collaborations .. 140

6.3.4 Requirements Agent Operational Strategy... 141

6.3.5 Equipment Module Agent Operational Strategy 143

6.3.6 Performance Simulation Agent Operational Strategy 152

6.3.7 MAS Expert Agent Operational Strategy .. 156

6.4 Reconfiguration of Existing Modular Assembly Systems 160

6.5 Chapter Summary .. 160

7 Illustration and Validation.. 161

7.1 Introduction ... 161

7.2 Validation of Model for Agent-Based Self-Configuration of Modular

Assembly Systems ... 162

7.2.1 Validation Scenario .. 163

7.2.2 Instantiation of Equipment Modules for Illustrative Scenario 165

7.2.3 Instantiation of MAS Requirements for Illustrative Scenario........... 167

7.2.4 Instantiation of Configuration Solution Output 174

7.2.5 Analysis of Validation Results of Model for Agent-Based Self-

Configuration of Modular Assembly Systems ... 177

7.3 Operational Validation of Agent Architecture for Distributed Self-

Configuration Methodology for Modular Assembly Systems 178

7.3.1 Validation Scenarios .. 179

7.3.2 Operational Verification of Architectural Design 181

7.3.3 Verification of Architecture Overall Behaviour Performance 183

Table of Contents

7.3.4 Verification of Architecture Overall Behaviour Performance in

Distributed Environment .. 191

7.3.5 Analysis of Operational Validation Results of Agent Architecture for

Distributed Self-Configuration Methodology for Modular Assembly Systems

 192

7.4 Operational Validation of Distributed Behaviour 193

7.4.1 Validation Scenario .. 193

7.4.2 Verification of Equipment Module Agent Local Behaviour 196

7.4.3 Verification of Performance Simulation Model 198

7.4.4 Analysis of Operational Validation of Distributed Behaviour 201

7.5 Chapter Summary .. 201

8 Conclusion and Future Work ... 203

8.1 Introduction ... 203

8.2 Key Knowledge Contributions .. 204

8.3 Areas of Application ... 206

8.4 Critical Review .. 207

8.5 Future Work .. 208

8.6 Concluding Remarks ... 209

References .. 212

Publications .. 220

Table of Contents

Table of Figures

Figure 1.1.- Trends and needs within the domain of assembly systems (based on roadmap

(EUPASS [4])) ... 2

Figure 1.2 - Three basic concepts for developing producing and marketing complex services

and products (based on (Kratochvíl and Carson [6])) .. 3

Figure 2.1 - Characteristics to meet system requirements (Based on (Bi et al. [13])) 10

Figure 2.2 - The Manufacturing Tetrahedron (Chryssolouris [14]). 11

Figure 2.3 - Assembly System Paradigms versus Changes and Automation (base on (Bi et al.

[15])). ... 12

Figure 2.4 - Research domain mind map ... 13

Figure 2.5 - A partial view of agent topology (Based on (Nwana [62])). 22

Figure 3.1 - Current MAS Configuration and Reconfiguration Process 36

Figure 3.2- Problem Definition Overview ... 39

Figure 3.3 - Research Methodology Overview .. 44

Figure 3.4 - Overview of Requirements Model for Agent-Based Self-Configuration of

Modular Assembly Systems .. 46

Figure 3.5 - Agent Architecture for Distributed Self-Configuration Methodology for MAS

.. 48

Figure 3.6 - Overview of Behaviour Models for Distributed Self-Configuration Methodology

.. 50

Figure 4.1 - Overview of Boundary Conditions of the Problem Domain 53

Figure 4.2 - Overview of Self-Configuration Requirements Model for Modular Assembly

Systems .. 57

Figure 4.3 - Overview of conceptual assembly process block................................... 62

Figure 4.4 - Overview of Assembly Process Skeleton (XSD) 63

Figure 4.5 - Overview of Distinction between Accuracy and Repeatability 65

Figure 4.6 - Composite Assembly Process Block Overview 67

Figure 4.7 - XSD Structure that Enables the Definition of Complex Assembly Processes 68

Figure 4.8 - Conceptual Representation of Port Types and Resulting Interfaces 69

Figure 4.9 - Interface XSD description .. 70

Figure 4.10 - Example of Equipment Connectivity Issues .. 72

Table of Contents

Figure 4.11 - Physical Port XSD Description .. 73

Figure 4.12 - Weight Matrix for the Configuration Attributes of the Equipment Module 74

Figure 4.13 - Equipment Module XSD Overview ... 75

Figure 4.14 - Assembly System Requirements XSD Overview 76

Figure 4.15 - Assembly System Targets XSD Overview .. 77

Figure 4.16 - Example of Conceptual Physical System Requirements 80

Figure 4.17 - Physical System Requirements XSD overview 81

Figure 4.18 - Assembly Process Requirements XSD Overview 82

Figure 4.19 - Conceptual Example of Assembly Process and System Relations 83

Figure 5.1 - Overview of Self-Configuration Methodology Solution 86

Figure 5.2 - Agent Architecture Class Overview ... 93

Figure 5.3 – Overview Model of Agent Environment ... 94

Figure 5.4 - Requirements Agent Use Case Diagram .. 97

Figure 5.5 - Overview of Requirements Agent Behaviour .. 98

Figure 5.6 - Equipment Module Agent Use Case Diagram 102

Figure 5.7 - Overview of Initial Equipment Module Agent Behaviour 105

Figure 5.8 - Overview of Final Equipment Module Agent Behaviour 106

Figure 5.9 - Base Concept of Non Exhaustive Cancelation needs 108

Figure 5.10 - MAS Expert Agent Use Case Diagram .. 113

Figure 5.11 - Overview of MAS Expert Agent Behaviour 114

Figure 5.12 - Assembly Process Agent Use Case Diagram 117

Figure 5.13 - Overview of the Performance Simulation Agent States and Functionalities 119

Figure 5.14 - Overview of the Configuration Methodology Steps 121

Figure 5.15 - Main Configuration Methodology Sequence Diagram 122

Figure 5.16 - Agent Architecture Deployment Overview 123

Figure 6.1 - Overview of Enabling Aspects for Emergence of Configuration in Agent

Architecture.. 125

Figure 6.2 - Example of Stalemate Situation ... 133

Figure 6.3 - Conceptual Assembly Characteristics Variation 138

Figure 6.4 - Graphical Illustration of Operational and Respective Spectrum 141

Figure 6.5 - Conceptual Example for Multiple Interests in Given Set of Requirements145

Figure 6.6 - Expression of Interest Decision Making Process 147

Figure 6.7 – Equipment Module Agent Collaboration Management Method 148

Table of Contents

Figure 6.8 - MAS Configuration Assessment Method .. 149

Figure 6.9 - Standard Deviation Example.. 151

Figure 6.10- Token flow description for an example of MAS 153

Figure 6.11 - Transition Behaviour Algorithm .. 154

Figure 6.12 - Place Holder Behaviour Algorithm .. 155

Figure 6.13 - Conceptual Overview of Pattern Structures 158

Figure 7.1 – Overview of the EUPASS Final Demonstrator 163

Figure 7.2 – Overview of the EUPASS project configuration process.................... 164

Figure 7.3 - Conceptual Definition of Assembly Processes 166

Figure 7.4 - Conceptual Manipulator Unit Description ... 166

Figure 7.5 - Grid Overview of Manipulator Unit XML Description 167

Figure 7.6 - EUPASS Demonstrator Conceptual High Level Assembly Process Requirements

.. 168

Figure 7.7 – Detailed View of Preparation Task (Assembly Process) 168

Figure 7.8 - Overview of Process Requirements Specification Front End 169

Figure 7.9 – EUPASS Demonstrator System Requirements Overview and Assigned

Assembly Process Responsibilities .. 170

Figure 7.10 - Overview of System Requirements Specification Front End 171

Figure 7.11 – EUPASS Demonstrator Grid Overview of MAS Requirements 171

Figure 7.12 - EUPASS Demonstrator Grid View of XML Description of High Level

Assembly Process Requirements ... 172

Figure 7.13 – Detailed Grid View of Preparation Task (Assembly Process) XML Description

.. 173

Figure 7.14 - EUPASS Demonstrator Grid View of XML Description of System

Requirements ... 173

Figure 7.15 - Overview of Physical Configuration Front End................................. 175

Figure 7.16 - Overview of Assembly Process Configuration Front End 176

Figure 7.17 - Grid View of Joining Workstation XML Description of the EUPASS

Demonstrator.. 177

Figure 7.18 - Conceptual MAS Requirements Overview .. 179

Figure 7.19 - Overview of Architecture Distribution .. 181

Figure 7.20 – Equipment Module Agent Interactions Screenshot 182

Figure 7.21 – Conceptual Overview of Potential MAS Configuration Solutions ... 183

Table of Contents

Figure 7.22 – Memory Consumption for no Limitation on Agent Interactions....... 184

Figure 7.23 - MAS Configuration Performance Results for no Limitation on Agent

Interactions ... 185

Figure 7.24 - Memory Consumption for Agent Interactions Restriction of 10 186

Figure 7.25 - MAS Configuration Performance Results for Agent Interactions Restriction of

10.. 187

Figure 7.26 - Memory Consumption for Agent Interactions Restriction of 20 188

Figure 7.27 - - MAS Configuration Performance Results for Agent Interactions Restriction of

20.. 189

Figure 7.28 –Results Comparison for Tested Interaction Restriction in Agent Environment

.. 190

Figure 7.29 - Memory Consumption on One of the Computers used in the Distributed

Scenario Testing (for 160 Equipment Module Agents distributed across two computers) 191

Figure 7.30 - Overview of Conceptual MAS Workstation 194

Figure 7.31 - Assembly Process Sequence Including the Required Information for Simulation

.. 195

Figure 7.32 - Simulation Model for Given Scenario ... 199

Figure 7.33 – Repeatability Simulation Results for y-direction 200

Figure B.1 - Sequence Diagram for the Broadcast of Requirements Protocol 229

Figure B.2 - Sequence Diagram for the Express Interests in Requirements Protocol229

Figure B.3 - Sequence Diagram for the Creation of a Configuration Solution Protocol230

Figure B.4 - Sequence Diagram for the Update of the Configuration Solution Protocol 230

Figure B.5 - Sequence Diagram for the Delete Configuration Protocol 230

Figure B.6 - Sequence Diagram for the Assessment of Solution Protocol 231

Figure B.7 - Sequence Diagram for the Establish Collaboration Protocol 232

Figure B.8 - Sequence Diagram for the Exchange Module Information Protocol .. 233

Figure B.9 - Sequence Diagram for the Establish Formal Collaboration Protocol . 233

Figure B.10 - Sequence Diagram for the Expert Validation Request Protocol 233

Figure B.11 - Sequence Diagram for the Request for Simulation Protocol 234

Figure B.12 - Sequence Diagram for the Kill Order Protocol 234

Figure B.13 - Sequence Diagram for the Establish Unique Collaboration Protocol 234

Figure D.14 - Overview of Process Requirements Specification Front End 240

Figure D.15 - Deliver Task Definition ... 241

Table of Contents

Figure D.16 - Task Sequence Generator .. 242

Figure D.17 - Assembling Process and Task Requirements Specification 243

Figure D.18 - Task and Operation Requirements Specification 245

Figure D.19 - Example Assembly System Concept for the Valve Test case 246

Figure E.20 - Example Workstation Configuration Overview 248

Figure E.21 - Example Individual of an Equipment Module 249

Figure E.22 Example of a Workstation Configuration .. 250

Figure E.23 – Example of the Connection creation ... 251

Figure E.24 Example Connection between two Modules .. 252

Figure E.25 - Example of Process Configuration Overview 253

Figure E.26 - Example of Relation between System Configuration and Process Configuration

.. 254

Figure E.27 – Example of a process (Skill) instance ... 255

Figure E.28 – Example of the Connection creation ... 256

Figure E.29 - Example Connection between two processes (Skills) 257

Chapter 1 – Introduction

1

1 Introduction

Current manufacturing systems require an increasingly higher responsiveness due to

the market demand for increasing product diversity leading to mass customization,

shorter product lifecycles and lower times to market while maintaining the cost to the

minimum and quality to a maximum. Nowadays, markets are truly global and are

characterized by an intensive global competition which is conditioned by socio-

economic aspects that influence the manufacturing systems. In addition to this,

market trends have become increasingly more dynamic and unpredictable, requiring

product changes and adjustments which emphasise the need for more flexible

manufacturing systems.

The issue of flexibility in manufacturing systems is not new and has been one of the

main research topics in the field of manufacturing, namely Flexible Manufacturing

Systems (FMS), which provided the first concepts to introduce bigger flexibility

through mainly the increase of the systems capabilities “just in case” and adding cost

to the system (Shen et al. [1]). This concept provides extra flexibility, but it is

restricted to what can be predicted to be needed in the future. This raised other

research questions on how to have a more flexible system that is able to deal with the

market needs, without adding to it redundant equipment that might never be used.

Moreover, the market’s volatility has led the systems’ lifecycle to be shortened and

also to the need for a rapid system design and configuration to cope with quicker

speeds to market, thus reducing the system profitability. To cope with this, the issues

of system reusability, rapid configuration and reconfiguration were introduced in the

research.

Chapter 1 – Introduction

2

The concept of Reconfigurable Manufacturing Systems (RMS) was introduced

focusing mainly on the control reconfiguration of the systems to increase their

lifecycle (Koren et al. [2]). Other approaches were also developed to deal with these

issues, namely using the concept of “Plug & Produce” to create a holonic production

system (Arai et al. [3]). These approaches provided some solutions to respond to the

market needs, although these were very control driven and provided limited

application on global systems.

Manufacturing is a very wide research topic which increases the complexity of

solving all its inherent problems. To deal with this complexity there are several

topics within manufacturing that are addressed individually. Assembly is one of

these aspects and plays a key role in the problems previously identified and as such a

lot of the research effort has focused on it.

The concept of equipment modularity is not a recent issue, but it is a quite complex

issue due to the inherent nature of global competition between equipment suppliers.

Nevertheless, this has been identified as a key aspect towards achieving the full

concept of “Plug & Produce” (EUPASS [4]). Several issues have been identified as

needs by roadmaping activities (Figure 1.1).

Figure 1.1.- Trends and needs within the domain of assembly systems (based on roadmap

(EUPASS [4]))

Products & Production

· Variable volumes

· High precision

· Short product lifecycles

· Customisation & high Product

variants

· Miniaturisation

· Dynamic supply chains

· Complex systems & product

Technology

· Ubiquitous computing

· Cheaper technology

· Improved networking

technology

· Improved materials

· Enhanced multidisciplinarity

· Rapid development rate

Opportunities / Needs

· Reduce implementation costs

· Reduce integration costs

· Minimise re-engineering

· Enhance autonomy, plugability,

modularity

· Improve uptime & yield (Better error

recovery & diagnostics)

· Improve man-machine interactions

(Ergonomics)

· Improve data & information flow to all

levels of the supply chain

· Robust processes

· Apply easy-to-use technology

· Systems with rapid responses to events

Workforces

· Shortage of labour

· Skills change over time

· Level of education

· Temporary workers increase

· Technology evolution & needs

· Legislation & changes of laws

Markets & Customers

· Increased competition

· Global markets

· Reduced TTM and TTV

· Service-oriented business

· Higher quality demands from

customer

· Higher customer feedback

· Need for improved customer-

supplier collaboration

Chapter 1 – Introduction

3

Other roadmaps also highlight the need for a shift to software based on configuration

and reconfiguration allowing functionality to be changed in ways not anticipated in

the original system design (NACFAM [5]).

Moreover, the question of component reusability, rapid configuration and

reconfiguration to enable “Configure to order” of assembly systems has become

increasingly more important due to ever decreasing product life-cycles and rising

process complexity. General purpose assembly machines, equivalent to CNC

machine tools, are only available in specialist domains such as printed circuit board

assembly where the components are highly standardised. The assembly of most other

products demand custom made systems which address the specific requirements for

these products. Today, these are mostly “Engineered to Order” making them cost and

time intensive to design or reengineer. Increased modularisation of assembly

equipment, rapid integration and design tools are considered fundamental for the

move towards cost and time effective configuration and re-configuration of complex

assembly systems (Koren et al. [2]; Kratochvíl and Carson [6]; Onori et al. [7]).

Figure 1.2 provides an overview of this trend and its business drivers.

Figure 1.2 - Three basic concepts for developing producing and marketing complex services and

products (based on (Kratochvíl and Carson [6]))

Significant effort has been directed towards creating modular assembly system

(MAS) architectures for physical equipment and control interchange ability. The EU

project EUPASS has created a framework for rapid integration for ultra-precision

Assemble to Order Configure to Order Engineer to Order

Business

Drivers

· Increase Customer Choice

· Enter New Markets

· Diversify Product Range

· Improve Brand Position

· Achieve Premium Pricing

· Increase Profit Margin

· Reduce Lead Times

· Improve Quality

· Reduce Risk

· Predict Profit Margins

· Enter New Markets

· Increase Business Volumes

Increased

Variation

Increased

Modularisation

Chapter 1 – Introduction

4

assembly modules defining hardware interfaces, control interfaces, and module

description formats (EUPASS [4]). Several other modular assembly system

platforms have been proposed (Hollis and Quaid [8]; Alsterman and Onori [9];

Gaugel et al. [10]). While the number and completeness of underlying industrial

applicable standards is still limited, there is a clear drive to overcome this barrier.

Standardisation of hardware and software interfaces is, however, only one aspect of

rapid assembly system configuration. Effective tools and methods for the

requirements driven selection, integration and validation of complex assembly

system solutions are also needed to drastically reduce the time and effort required for

the development of highly dedicated assembly systems. Most configuration methods

reported today adopt a top down approach providing either methods for stepwise

decomposition of the given set of requirements and subsequent solution synthesis or

methods for the adaptation of similar system solutions. These approaches are often

limited in their scalability and extendibility making them inappropriate and too

complex for most MAS configuration problems.

In this context, the vision of this work is to provide the means to support this

configuration and reconfiguration process through the creation of a methodology that

is able to analyse and provide a set of viable solutions to the system integrator. This

will reduced the time required for the analyses of the problem while increasing the

speed and quality of configuration and reconfiguration solutions.

1.1 Research Scope

The objectives of this research are the enhancement of modular assembly systems by

developing a Self-Configuration Methodology. This development will result in rapid

system configurability and reconfigurability based on a set of requirements using a

bottom-up approach. This approach is enabled by current advances in the MAS field

with the maturity of knowledge models for requirements definition and the

equipment modules standardization, which can be used as the basic building blocks

of a Self-Configured modular assembly system.

The number of possible combinations of modules required for an assembly system

solution depends on the number of available modules, their connection constraints

Chapter 1 – Introduction

5

and the complexity of the given assembly process requirements. The number of

combinations becomes quite large, even for relatively small problems, making

configurations based on exhaustive enumeration practically infeasible. For this

reason, an appropriate MAS configuration methodology needs to be more goal-

oriented. Furthermore, any method should be able to exploit the specificities of the

MAS configuration problem to reduce the search space.

The use of a bottom-up approach simplifies the system description, but it requires the

development of methods that ensure the overall system required capabilities. To deal

with this the development of negotiation methods that enable the module

representations to interact and establish relations that enable the Self-configuration

are proposed. This includes the need for a collaboration model, coalition rules and

conflict resolution methods.

The use of agent technology has been indicated in the literature as one of the best

ways to address bottom up problems (Jennings and Wooldridge [11]). Moreover, it

provides the right structuring methods and capabilities to model modular systems

without the need to model the complete system which in complex systems is very

difficult. It also allows for the modelling of low level rules for different actors

(agents) that can interact with each other creating complex models supported by

these simple rules. To use agent technology the conceptualization of agent shells for

different types of actors is proposed to act as complete representation of the modules.

This includes the different models that use the negotiation methods towards building

coalitions of modules that are able to fulfil the requirements, which will require

organizational models and knowledge models for agent decision making capabilities.

This raises the need for intelligent and decision making capabilities that ensure

validation to guarantee system consistency.

The decision making methods for MAS configuration solutions without early

performance assessments would result in the exploration of potential solutions that

are not optimal. However, assessment tools and methods in the domain are not fully

matured. Therefore, this work also intends to provide a method that is able to be

enhanced in the future through the introduction of new agent types, which will

contain the ability to assess the MAS configuration solution using different methods.

Chapter 1 – Introduction

6

The existence of a methodology that is able to be enhanced in the future is viewed as

a good decision in a constantly evolving domain.

In essence, the proposed self-configuration methodology targets the automatic MAS

configuration driven by a set of process requirements, through the use of agent

technology. This is a new approach for MAS configuration solutions, providing a

step change from the current manual configuration process, which restricts the

growth of the MAS concept, and is expected to allow quicker and more effective

configuration even when large sets of modules are available.

1.2 Aim and Objectives

The aim of this work is to provide a configuration and reconfiguration methodology

that enables the automatic configuration of MAS given a set of requirements. To

reach such a methodology it is necessary to capture the configuration relevant

information as well as the MAS equipment. This highlights the need for a clear

model that is able to structure, in a transparent manner, all the aspects related to the

MAS configuration process. Once this model is created, the analysis can be focused

on the specific methods and models for the configuration process. This work

proposes the creation of a bottom up configuration methodology using distributed

decision making that enables configuration solutions to emerge based on predefined

set of configuration rules and constraints. Later on, an agent architecture is proposed

as the overall model which executes the distributed decision making methods and is

able to achieve configuration solutions based on a set of requirements.

The following more detailed objectives provide a clear structure of the aims of the

work:

· Development of methodology formal description models

o Overall model of dependencies between concepts

o Provide a uniformed terminology

o Provide a clear assembly process taxonomy

o Establishment of a MAS Requirements model

o Establishment of a Equipment Module description model

· Development of distributed decision making framework

Chapter 1 – Introduction

7

o Development of Agent Architecture

 Definition of agent types

 Agent definition

 Definition of agent roles

 Definition of organizational model

 Definition of overall agent behaviour

· Development agent behaviour models for distributed decision making

o Definition methods that enable the fulfilment of agent roles

o Definition of communication protocols

o Definition of distributed configuration assessment methods

1.3 Approach and Structure of the Thesis

The research work was motivated by the European project EUPASS (Evolvable

Ultra-Precision Assembly Systems) which targets the development of innovative

micro-assembly modules and processes, accompanied by the standards and Industrial

Technical Agreements, underlying technologies, business concepts, and methods to

build up and promote radically new ultra-precision assembly solutions and support

infrastructures (EUPASS [4]). This project provides the initial support as well as

good contact with industrial partners which provide their best practices on the topics.

Furthermore, it provided the necessary background and advancements in modular

assembly systems to establish an automatic configuration methodology.

A literature review has been done on the relevant topics which are summarized in

Chapter 2 of this document. It is an interdisciplinary literature review that covers

aspects of manufacturing, assembly, agent technology, modularity, configuration and

reconfiguration while exploring their interconnectivity. On the basis of this literature

review the knowledge gaps are defined and described based on the current state-of-

the-art.

The detailed research methodology for this work is presented in Chapter 3. It

establishes the formal problem definition as well as the research hypotheses.

Chapter 4 reports on the development of methodology formal description models.

This provides insight into the creation of the models that enable the capture of MAS

Chapter 1 – Introduction

8

requirements and also the formalization of configuration solutions. The knowledge

contained in this chapter enables the creation of the MAS configuration

methodology.

Chapter 5 reports on the development of distributed decision making framework,

which consists in the description of the agent architecture that establishes the base of

the self-configuration methodology. This chapter takes advantage of the model and

respective information contained in Chapter 4 to propose a comprehensive overall

approach for agent environment that is able to provide a bottom up configuration

solution.

Chapter 6 reports on the development local behaviour models for distributed

decision making. This Chapter builds on the definition of Chapter 5 where the

overall system behaviour is defined, but not the local behaviours of the individual

agents. The establishment of the local methods that enable emergence of

configuration solutions are therefore explored in this chapter.

Chapter 7 reports on the validation scenarios of the proposed self-configuration

methodology by presenting and analysing the results obtained. Each core

contribution chapter is covered using a different set of validation scenarios to

establish an individual validation of each knowledge contribution.

Finally, Chapter 8 provides an overview of the knowledge contributions described

in this work while providing insight into future enhancements to this work. In this

chapter the final concluding remarks are also presented.

Chapter 2 – Literature Review

9

2 Literature Review

2.1 Introduction

This chapter will present a state-of-the-art review on the topics that serve as

foundations for the work developed in this thesis. This review will be broken down

into two main aspects, namely the analyses of the state-of-the-art related to modular

assembly system and the state-of-the-art of the application of agent technology to the

manufacturing domain.

In order to understand the specificities of modular assembly systems it is important

to analyse the origin of such systems. To do so, it is important to understand the

concept of reconfigurable manufacturing systems (RMS). This topic has been

extensively researched for several years providing several approaches to deal with

the issue of reconfiguration. This is a field with a high degree of influence from

different research disciplines making prime candidate for multidisciplinary solutions.

There are two approaches to achieve RMS, either through highly flexible systems or

modular systems (Bi et al. [12]). It is clear that flexibility increases by adding more

equipment to the system, however adding equipment that is not in use can be very

costly. Modular systems offer the structure to add new equipment as it is needed,

providing flexibility as it is needed.

A RMS is designed at the outset for rapid change in structure, as well as in hardware

and software components, in order to quickly adjust production capacity and

functionality within a product family, in response to sudden changes in market or in

regulatory requirements (Koren et al. [2]). This concept requires several enabling

characteristics shown in Figure 2.1.

Chapter 2 – Literature Review

10

Figure 2.1 - Characteristics to meet system requirements (Based on (Bi et al. [13]))

The reconfiguration efforts have been mostly focused in the control aspects of the

assembly systems producing reconfigurable software which is able to change the

control of the assembly systems yet falling to address the physical reconfiguration

and system enhancement. These approaches are also not related with the systems

design and requirements specifications.

The literature has identified the typical difficulties for the development of RMS (Bi

et al. [13]):

· The identification and generalization of design requirements, because they

are not process oriented

· The automated programming of reconfigurable machines or robot systems

· The systematic methodologies for system reconfigurations

· The standardization and modularization

· The development of a heterogeneous system consisting of different types of

reconfigurable machines

The manufacturing tetrahedron shown in Figure 2.2 identifies the key issues in

assembly, which are the bases for comparing reconfigurable assembly systems with

conventional assembly systems (Chryssolouris [14]). This provides a visual

understanding of the interrelations between these assembly system’s requirements

and the challenge of increasing flexibility while at least maintaining similar results

on the other attributes.

Modularity
To adapt small volume

Diagonosibility

Convertibility

Integrability

Scalability

To maintain low cost

To short deliver time

To deal with complexity

To deal with uncertainty

To produce variations
System Characteristics

System Requirements

Chapter 2 – Literature Review

11

Cost

Quality

Flexibility Time

Figure 2.2 - The Manufacturing Tetrahedron (Chryssolouris [14]).

The understanding of these attributes is crucial for the assessment of assembly

solutions (Chryssolouris [14]). Attributes such as time and cost are simple to

understand, since they have straightforward definitions. Cost is the money spent for

the creation and operation of a system. Time is the time required to set up a system

and produce products. For quality, on the other hand, it is harder to provide a

definition. Normally this attribute is related to the product, but it can be quite

complex to define since it can range from product features, which establish quality

acceptance criteria, to dismissal of product based on a human assessment of the

product quality. The final attribute is not as complex but it is definitely more

complex to establish a definition that is generally accepted. Nevertheless the ability

of a system to deal with changes despite being quite hard to quantify is generally

accepted as a definition.

The analysis of assembly systems is required to understand the importance of the

focus on reconfigurable assembly system. The majority of current systems are

dedicated production systems for a given product. This means that they are “data

rigid” because the product and the process control data are programmed in advance.

A shift from this rigid environment into a more dynamic and flexible environment

will reduce the cost. However, the most adaptable system possible is achieved

through the use of manual processes, since human beings can easily adjust to new

tasks and processes. Figure 2.3 provides an overview of an assembly system under

the scope of changes and level of automation.

Chapter 2 – Literature Review

12

Figure 2.3 - Assembly System Paradigms versus Changes and Automation (base on (Bi et al.

[15])).

It is clear that the two options for higher flexibility while looking at cost are

reconfigurable assembly system or flexible assembly systems. However, as it was

previously stated, flexible systems have the drawback of having redundant

equipment built in to the system which has an added cost.

This chapter will firstly focus on the analyses of the state-of-the-art of reconfigurable

assembly systems. This will be followed by a review on modular assembly systems

which are closely linked to RAS. This review will feature the specific aspects

required to achieve an automatic methodology for the configuration of such systems.

The other domain covered in this literature review is agent technology and its

characteristics. The review of agent technology will be performed using current

solutions within the manufacturing domain to ensure that context specific issues are

also covered. This is viewed quite positively since agent technology incorporates a

lot of context specific attributes. Figure 2.4 shows a mind map some of the different

aspects covered in this literature review while highlighting the concepts used for the

development of this work.

Manual

Reconfigurable

Flexible

Rigid

Manual

Reconfigurable

Flexible

Hard Automation

Flexibility for

Changes

Automation for

Productivity and

Cost

Manual Assembly System

Reconfigurable Assembly System

Flexible Assembly System

Dedicated Automated System

Chapter 2 – Literature Review

13

Figure 2.4 - Research domain mind map

Manufacturing

Systems

Multi Agent Systems

Reconfigurable

Manufacturing

Systems

Intelligent

Manufacturing

Systems

Reconfigurable

Assembly

Systems

Reconfigurable

Machines

Modular

Assembly

Systems

Flexible

Assembly

Systems

Platform

Development

Standardization

Configuration

Evaluation and

Simulation

Knowledge

Models

Negotiation

Communication

Agent System

Design

Learning

Agent

Architecture

Organizational

Model

Role Definition

Iteration

definition

Protocols

Strategies

Conflict

Resolution

Language

Environment

Agent-base Self-

Configuration

Methodology for MAS

Chapter 2 – Literature Review

14

2.2 Reconfigurable Assembly System

The understanding of the concept of Reconfigurable Assembly Systems (RAS)

requires a definition of assembly. Assembly consists of all assembly processes and

equipment required to bring together, configure, align, orient and adjust components

and materials to form an end product (Bi et al. [15]). Assembly is a crucial part of the

whole manufacturing process, taking up typically 25% to 50% of the total

manufacturing cost (Bi et al. [15]). Therefore the processing value is considered to be

significantly high compared to other manufacturing processes (Bellgran and

Johansson [16]).

The classification of assembly system using the system reconfiguration concept has

identified that assembly systems can be dedicated, flexible and reconfigurable

(Koren et al. [2]; Bukchin et al. [17]; Onori and Oliveira [18]). Dedicated systems are

designed for the production of a specific product with fixed tooling and automation

(Mehrabi et al. [19]). Flexible systems are designed for the production of a product

family, therefore having fix hardware and fix but adjustable software (Bi et al. [15]).

A reconfigurable system is designed for the rapid change of its structure to deal with

sudden market changes, which require changes in a product (Bi et al. [15]).

The development of RAS has been supported by several researchers and is becoming

more promising due to its capability to deal with changes and uncertainties (Koren et

al. [2]; Edmondson and Redford [20]; Yusuf et al. [21]; Michelini et al. [22]; Weber

[23]). However, few available systems demonstrate the potential of RAS (Bi et al.

[15]). Nevertheless, many companies still use manual system or hybrid systems to

deal with an uncertain market (Edmondson and Redford [20]).

The key drivers for the development of RAS have been identified in the literature as

the need for reducing cost and improving productivity through automation and the

changes and uncertainties in the market (Tichem [24]). The analysis of these drivers

provides insight into the issues that impact RAS such as, product variants increase,

product volume becomes lower and fluctuates, product lead-time becomes shorter,

product proves become more competitive, needs to reduce cost, achievement of high

an constant quality, among others (Tichem [24]; Feldmann and Slama [25]; Bodine

[26]).

Chapter 2 – Literature Review

15

The concept of modularity can be seen as a subset of RAS (Bi et al. [15]). A modular

system is capable of generating different configuration through the addition or

removal of modules. This means that the system topology can change according to

the changes made to the system. Therefore the enhancement of such system can be

made nearly infinite (Ulrich [27]).

2.3 Modular Assembly Systems

Modular assembly systems (MAS) are one of the leading approaches to deal with

system reconfiguration. The modularity might occur in different levels of the system,

from the control to the physical equipment, nevertheless the key aspect for such

systems is the need for a high standardization of the module, regardless of its level.

System modularisation provides significant advantages, namely adaptability for

product changes, scalability for capacity changes, simplicity due to decoupled tasks,

lead-time reduction, maintenance, repair and disposal, among others (Martin and

Ishii [28]; Gunnar [29]; Blackenfelt and Stake [30]).

The modularisation of a system involves the analysis of the similarities among

system components to establish modules, which should be kept as independent as

possible from each other (Bi et al. [15]). Once modules are defined under the context

of a modular architecture, a finite set of modules can potentially deal with an almost

infinite set of changes (Bi and Zhang [31]).

In MAS there are two types of modules, equipment modules and software modules.

By definition modules are interchangeable and are connected by the flow of

materials and information (Feldmann and Slama [25]; Heisel and Meitzner [32]).

Recent research has been conducted to enable this approach as a viable industrial

solution (EUPASS [4]; IDEAS [33]).

The MAS builds up the concept of “Plug & Produce” (Arai et al. [34]) based on the

concept “plug & play” which intends to create highly adaptive systems through a

high level of standardization of system’s components and processes.

The standardization of an open architecture for the next generation of distributed

control and automation through the IEC 61499 Standard has produced several

Chapter 2 – Literature Review

16

advances on the level of control programming (Vyatkin [35]). This provides support

tools for reconfigurable control of modular assembly system. The standard provides

a good shell structure to describe the control aspects of assembly systems; however a

detailed shell including all the relevant control aspects of assembly processes is still

missing.

The concept of MAS is highly dependent on modular equipment, and although there

has been a lot of research on specific equipment (robots, grippers, fixtures, etc) (Bi et

al. [13]) there has been very little standardization and the solutions are very

equipment specific.

The EUPASS project brought together several equipment suppliers to produce a

standard for modular equipment supported by a modular control structure which

opens the door for self configuration systems. The definition of MAS requirements

using a common description with the modular equipment is the key enabling factor to

achieve self-configurable assembly processes. However the standardized description

of the equipment modules supplies all the required information for physical system

configuration (EUPASS [4]).

2.3.1 Platform Development

The modular system concept requires the development of a system architecture that

can be modified simply by assembling different modules together (Bi et al. [13]).

There have been several developments of MAS platforms with different levels of

granularity (Alsterman and Onori [9]; Gaugel et al. [10]; Boër et al. [36]; Chen [37];

Giusti et al. [38]), although this technology has not yet been applied widely in

industrial environments.

The EUPASS project is one of the attempts to provide a MAS platform with

standardized equipment modules, modular processes, open architecture control and

standard interfaces that enable the “plug & produce” concept.

2.3.2 Requirements Engineering

Requirements engineering is traditionally defined as “the elicitation and formulation

of requirements to produce a specification” (EasterBrook [39]), so it can be inferred

Chapter 2 – Literature Review

17

that requirements engineering is the gathering and organization of customer

requirements and system specifications describing them in an explicit manner.

The requirements engineering is a broad research topic, therefore this literature

review was narrowed to requirement engineering for modular assembly systems. In

this context a comprehensive knowledge model was found that claims to target the

specific definition of the reconfigurable assembly systems requirements (Hirani

[40]). However this does not provide a structured model that caters for the automatic

configuration and reconfiguring of MAS, and it lacks the specific definitions for

performance and simulation assessment of such systems.

2.3.3 Standardization

The definition of standards is normally associated with maturity of a technology

being the key aspect to ensure the interoperability, integration and acceptance of the

technology. The existence of standards allows for compatibility of different

equipment which is of extreme importance to achieve adaptable systems. It is

important to highlight that the standardization effort is not limited to any individual

company, but rather a conjoined effort. Furthermore, the majority of the systems

combine subsystems of different vendors, which highlight the need for a conjoined

standardization effort (Faulkner et al. [41]). Standardization will provide the ability

to cater for any equipment supplier by assuring the common communication

protocols for all assembly equipments and operations (Grondahl and Onori [42]).

This research topic is quite wide and complex, therefore this literature review will

concentrate on the recent advances in modular assembly systems standardization. In

modular assembly systems the lack of standardization has been identified as one of

the major issues to overcome in order to implement such systems (Bi et al. [13]).

Recent developments in this field have been introduced by research projects bringing

together diverse industrial partners towards finding standards for modular assembly

systems. The results from this were a standardized assembly processes library that

entails the required descriptions to be used in a modular fashion and also the

standardization of the physical aspects of the modules through a standardized

emplacement and module blueprint description containing the generic characteristics

of modules, such as interfaces, capabilities, constrains, etc (EUPASS [4]).

Chapter 2 – Literature Review

18

2.3.4 Knowledge Models

Knowledge is a term with no single agreed definition, nonetheless the Oxford

English dictionary states that it is: “expertise and skills acquired by a person through

experience or education; the theoretical or practical understanding of a subject; what

is known in a particular field or in total; facts or information; awareness or

familiarity gained by experience of a fact or situation”. This definition helps the

understanding of the complexity of this topic since to define a knowledge model one

requires the full understanding of the topic.

The definition of knowledge does give focus to information; there is no knowledge

without information. The way we structure and deal with information leads us to our

own knowledge definition. To capture this there are knowledge representation

techniques and knowledge modelling techniques that allow us to formalise

knowledge models.

Knowledge-based engineering (KDE) is one possible way to use these models to

assist in the decision making processes through established rules based on acquired

knowledge (Hirani [40]; Gardan and Gardan [43]).

Within the modular assembly systems domain a very extensive ontology-based

knowledge model has been proposed allowing for the description and formalization

of system requirements using a standardized language (Lohse [44]).

2.3.5 Evaluation and Simulation

The evaluation and simulation of an assembly system is a quite complex topic due to

the specificities of each assembly systems. In the market there are several software

tools that support some simulation of assembly systems. With modular assembly

systems the simulation issues are simplified due to the concept of modularity,

however current systems do not deal with the issues of modularity. Nevertheless,

simulation is viewed to have a huge impact in the design stage of systems, where the

evaluation of potential solutions is used as a permanent aid to assure the best choices

are made (Michelini et al. [22]).

Chapter 2 – Literature Review

19

Combining modules and their capabilities is not as simple as adding them together,

thus to evaluate and simulate such a system it is required the ability to extrapolate the

combined capabilities and behaviours (EUPASS [4]).

Roadmaps on this field have identified that a computer representation of capabilities

and behaviour of the system and all its components could potentially be a big game

changer that would allow the test of alternative approaches providing the tools to

make changes in the early development rather than later when the cost of change is

significantly higher (NACFAM [5]). Furthermore, the literature also provides a

breakdown of the required efforts to advance in this field (Bi et al. [15]), namely:

· quantifying and evaluating reconfigurable requirements

· analysis and synthesis of system solutions

· modelling and simulation of reconfigurable processes

· modelling of system design and optimization for high RAS

· modelling and simulation of human roles in RAS

2.4 Assembly System Configuration

The assembly system architecture provides the conceptual model, or blueprint, that

defines the system structure, behaviour and boundaries of the available types of

assembly options of the system components, thus determining the configurations

variants of the system (Bi et al. [12]). The configuration design constraints and

objectives are derived from task specifications and business strategies.

Configuration design consists of design analysis and design synthesis. The design

analysis establishes the mappings from the design variables to the design constraints

and from the design variables to the design objectives. The design synthesis finds an

optimal solution from all configuration candidates. In reconfigurable systems, the

configuration design is repeated once the task requirements are changed (Bi et al.

[12]).

Reconfigurable systems can be classified as an uncoupled system, loosely-coupled

system, or strongly-coupled system. The establishment of methodologies for

configuration design depend on the complexity of the reconfigurable system (Bi et al.

[12]).

Chapter 2 – Literature Review

20

In uncoupled or loosely-coupled systems the components can be determined

individually based on their corresponding requirements. This might require some

adjustments to individual components. Configuration design of these systems is

comparable to the design of modular products (Bi et al. [12]). Therefore there are

many methods that can be applied such as feature-based methods (Perremans [45]),

modular-based methods (Tsai and Wang [46]), combinatorial synthesis methods

(Levin [47]), entity-based methods (Hong and Hong [48]), and case-based methods

(Watson [49]). Research conducted at the University of Michigan provided

methodology for reconfigurable machine tools, where the task requirements of a

machine tool are represented by matrices of motions, and the screw theory is

employed to identify appropriate components (Bi et al. [12]).

In strongly-coupled systems the design variables should be considered together

towards validating if the configuration fulfils its requirements. The combination of

different variables can fulfil a requirement, thus there is no one-to-one relation

between design variable and design requirement (Bi et al. [12]). Early works

suggested a sequential design procedure and most of them have considered the

portion of system behaviours (Paredis and Khosla [50]; Chen and Burdick [51]).

However, the coupling of design variables produced a concurrent consideration of

design variables, constraints and objectives towards finding global optimal solutions

(Bi and Zhang [31]).

Concurrent design can increase the problem dimension, which increases the

computational efforts. To cope with this, two approaches have been proposed:

parallel computation (Sims [52]; Parunak [53]) and space reduction approach (Bi

[54]).

The configuration design at a system level is usually made through system

simulation where an approximate solution is found in a time-consuming iterative

process. Mathematical formulation for the system level would be too complex and it

is used only in specific sub-problems (Bi et al. [12]). Deterministic models where the

system variables are constant have been used in configuration design (Son [55];

Spicer [56]; Tang et al. [57]), however these limit the system adaptability. Stochastic

models arise as a solution to this problem since they provide at least one uncertain

Chapter 2 – Literature Review

21

variable. Some configuration design methodologies have used stochastic models in

order to deal with the configuration problems (Zhao et al. [58]; Ohiro et al. [59]).

Although a lot of research on the topic of configuration methods has been done, there

is not any systematic configuration design methodology. Most of the research efforts

in this field have been conducted on the machine level, while the systems have been

designed intuitively (Bi et al. [12]).

2.5 Multi-Agent Systems for Intelligent Manufacturing

Agent technology is widely recognized as a promising paradigm for the next

generation of manufacturing system (Shen et al. [1]). It has already been applied in

several manufacturing domains such as: concurrent engineering, collaborative

engineering design, manufacturing enterprise integration, supply chain management,

manufacturing planning, scheduling and control, material handling, etc (Shen et al.

[1]; EUPASS [4]; Onori and Oliveira [18]; Oliveira [60]; Maturana et al. [61]). This

underlines the importance of this technology and the relevance of its underlying

concepts to perceive its applications.

Several definitions can be found in literature for “agent” yet there is no global

accepted one. Computer science defines generically an “agent” as a software

abstraction similar to object oriented programming terms such as methods, functions

and objects. The concept of an “agent” is referred as a convenient and powerful way

to describe a complex software entity that is capable of acting with a certain degree

of autonomy in order to accomplish tasks. But unlike objects, which are defined in

terms of methods and attributes, an agent is defined in terms of its behaviour (Nwana

[62]).

Agents are classified for their characteristics such as mobility which determines if

the agent is static or mobile. This classification can depend on a combination of

characteristics as shown in Figure 2.5.

Chapter 2 – Literature Review

22

Cooperate Learn

Autonomous
Collaboration

Agents

Interface

Agents

Collaboration

Learning

Agents

Smart Agents

Figure 2.5 - A partial view of agent topology (Based on (Nwana [62])).

A minimal common definition established by (Ferber [63]) states that an agent is a

physical or virtual entity:

· Which is capable of acting in an environment

· Which is able to communicate directly with other agents

· Which is driven by a set of tendencies (in the form of individual objectives or

of a satisfaction/survival function which it tries to optimise)

· Which possesses resources of its own

· Which is capable of perceiving its environment (but to a limited extent)

· Which has only partial representation of this environment (and perhaps none

at all)

· Which possesses skills and can offer services

· Which may be able to reproduce itself

· Whose behaviour tend towards satisfying its objectives, taking account of the

resources and skills available to it and depending on its perception, its

representation and the communications it receives

Chapter 2 – Literature Review

23

Agents are able to perform actions going beyond reasoning abilities which makes

them an enhancement of conventional artificial intelligence (AI). This is a key

characteristic of agents that in conjunction with their ability to communicate enables

multi-agent systems (Jennings and Wooldridge [11]; Ferber [63]).

The fact that agents can be autonomous enables the definition of different tendencies

adjusted to whom they represent. The agent follows these tendencies within its

environment producing complex results out of the collaboration with agents with

different tendencies. This result is obtained without defining very complex models of

interaction (bottom-up approach).

In sum, an agent can be described as some sort of “living” entity which has a certain

behaviour that can be recapitulated as communicating, acting and even reproducing,

aiming at satisfying its needs and obtaining its objectives and using the available

elements (perceptions, representations, actions, communications and resources).

Multi-agent systems can be roughly defined as environments where different agents

interact with each other. The complexity of multi-agent systems can vary based on

the complexity of the agent’s behaviour. Further in this chapter it is discussed how

the agent’s behaviour affects the complexity of the multi-agent system. The agent

organizational structures in multi agent systems also play a key role on the

complexity of the system (Ferber [63]).

In manufacturing systems, agent technology is seen as the natural way to address the

problems presented by traditional approaches and that limit the expandability and

reconfigurability of such systems (Shen et al. [64]). Furthermore, agent technology

has recently been considered as a paradigm for developing distributed industrial

systems (Jennings and Wooldridge [11]; Jennings et al. [65]). It has been highlighted

as a promising concept for the next generation of manufacturing systems (Shen et al.

[1]; Shen and Norrie [66]). Moreover, agent technology has been widely applied

within the field providing solutions for manufacturing enterprise integration,

enterprise collaboration (including supply chain management and virtual enterprises),

manufacturing process planning and scheduling, shop floor control, and to holonic

manufacturing as an implementation methodology (Shen et al. [1]; Jennings and

Wooldridge [11]; Parunak [53]; Wooldridge and Jennings [67]; Deen [68]).

Chapter 2 – Literature Review

24

The use of agent technology in the intelligent manufacturing context has been

implemented in several ways, providing distinct approaches to the use of agent

technology under this context (Shen et al. [64]). Agent technology has been used as a

wrapper for manufacturing activities in a distributed environment using functional

decomposition approach. Examples of this include product design, engineering

analysis, process planning, production scheduling, simulation and execution

(Azevedo et al. [69]; Barry et al. [70]; Fox et al. [71]; McEleney et al. [72]; Peng et

al. [73]; Sadeh et al. [74]; Shen et al. [75]; Yen and Wu [76]). These solutions

provide a significant improvement of the integration of heterogeneous software and

hardware systems (Shen et al. [64]).

The implementation of agent technology in the intelligent manufacturing domain has

also used a representation approach, which consists in the representation of physical

resources (e.g., machines, robot, tools, fixtures, etc.), as well as parts, operations and

processes (Butler and Ohtsubo [77]; McDonnell et al. [78]; Parunak et al. [79]; Shen

and Norrie [80]; Lu and Yih [81]; Usher [82]; Wang et al. [83]). The concept of

representation under the agent technology domain also opened the possibility for

agent deployments as representations of negotiation partners to facilitate enterprise

collaboration (Sadeh et al. [74]; Bremer and Molina [84]; Nigro et al. [85]; Hao et al.

[86]). Furthermore, this enabled research on agent based architectures for

manufacturing systems design (Shen et al. [75]; Parunak et al. [87]).

The literature on agent technology provides extensive sources of information for

agent models, negotiation models and agent environments, among others that range

from shop floor control (Oliveira [60]) to virtual enterprises (Camarinha-Matos [88]),

however these models are mostly application specific. Nevertheless the key

advantage of agent technology is its adaptability, which enables it to be applied to

different levels guaranteeing an overall integration. Therefore it is useful to analyse

the solutions given by the literature for establishing best practices for the use of agent

technology.

The MetaMorph II is an agent based architecture for distributed intelligent design

and manufacturing with the objective of integrating the manufacturing activities

(e.g., design, planning, scheduling, simulation, execution, etc) with the activities of

the suppliers, customers and partners within a distributed system (Shen et al. [75]).

Chapter 2 – Literature Review

25

This project builds on the MetaMorph I which addressed system adaptation and

extended-enterprise issues at four fundamental levels: virtual enterprise, distributed

intelligent systems, concurrent engineering, and agent architectures (Maturana et al.

[61]). The projects provided an overall architecture for collaboration which included

some reconfiguration methods namely on the control side. The projects also defined

agent organizational and collaboration models which followed different architectures

(Federation, hybrid) (Shen et al. [75]). The projects provide a good global approach

to the problem but do not really address the issues of system configuration and

reconfiguration, targeting more the system adaptability.

The AARIA (Autonomous Agents for Rock Island Arsenal) agent architecture also

provided an agent-based system design presenting another agent organizational and

collaboration model which was more requirements driven (Parunak et al. [87]).

Although this project describes an interesting requirements’ driven approach, it is

very case specific, providing a limited scope of requirements. Nonetheless, this

project provides valuable guidelines for the developing agent solutions for a non case

specific system.

Agent-based approaches are mainly used to provide agility and reconfigurability of

manufacturing systems. However, optimization is also one of the most important

objectives of such approaches. This approach to optimization is quite different from

the mathematical approaches that target global optimization through mathematical

formulation of industrial problems which for complex systems can be quite difficult.

On the other hand, agent approaches attempt to achieve optimization through

efficient coordination mechanisms (Shen et al. [64]).

2.5.1 Agent Organization

The organization of agents is a crucial aspect in any multi agent environment. It

provides the basic rules for the interactions between agents. There are three distinct

approaches for agent organization in manufacturing systems, the hierarchical

approach, the federation approach and the autonomous approach (Shen et al. [64]).

The hierarchical approach takes advantage of the existing structure of manufacturing

environments, where there is a workstation that contains equipment units that

execute certain operations. Examples for the use of this approach are described in the

Chapter 2 – Literature Review

26

literature (Butler and Ohtsubo [77]; Leeuwen and Norrie [89]; Bussmann [90]; Burke

and Prosser [91]; Fischer [92]), although this approach is criticized due to its

centralized appearance.

The federation approach has some variations but in essence consists on the

establishment of clusters where a special agent is created to operate on behalf of the

group. In the literature, the special agent is identified as a facilitator, broker and

mediator. The facilitator consists of an agent that assumes all communication

between agents. It provides the means for communication between local and remote

agents usually by providing services such as routing outgoing messages to the right

destination and translating incoming messages (McGuire et al. [93]; Petrie et al.

[94]).

The brokers are quite similar to the facilitators, since they execute the same things

but have extra functionalities of monitoring and notification (Oliveira [60]). The

functional difference between the two is that the facilitator is responsible for a given

agent cluster, while in the broker approach any agent may contact a broker for the

execution of a given service (Peng et al. [73]).

The mediator is an agent that assumes the role of system coordinator by promoting

cooperation among other agents and learning from their behaviour (Maturana et al.

[61]; Shen et al. [75]; Ouelhadj et al. [95]).

The use of federation as the core concept of the agent architecture provides the

means to coordinate multiple agent activities via facilitation as a way to reduce

overheads, ensuring stability and providing system scalability (Shen et al. [64]).

The autonomous agent approach has a lot of different definitions, but in essence it is

a multi agent environment where agents are individuals that are not controlled or

managed by other agents or human operators. All agents are able to interact with

each other without any preconceived rules. To have such a system, the agents need to

posses knowledge about the environment and other agents that are contained in the

environment and also a set of goals that drive their operations in the environment

(Azevedo et al. [69]; Shen et al. [75]; Shen and Barthès [96]; Babayan and He [97]).

Chapter 2 – Literature Review

27

2.5.2 Agent Negotiation

Multi agent systems are populated with agents with different behaviours and

objectives. So what happens when agents have both cooperative and conflicting

interests at the same time? In such situations the agents have the problem of defining

how to cooperate to obtain the associated benefits, thus emphasising the importance

of negotiation in multi-agent systems which enables the agent to resolve conflict

situations through reasoning and communication (Kraus [98]).

The topic of negotiation is by itself a complex research topic which has been widely

investigated in several fields, and broadly speaking one can define negotiation as an

interaction of influences. A more complete definition of an agent based scenario was

given by Lesser: “Negotiation, the process of arriving at a state that is mutually

agreeable to a set of agents, is intimately related to coordination. The negotiation

process can be used as part of a multi-agent coordination algorithm that implements,

for instance, a contracting mechanism for getting one agent to commit to solving a

sub problem for another agent”(Lesser [99]).

The establishment of the negotiation model can be broken down into four

components:

· The negotiation protocol

· The negotiation strategies

· The information state of agents

· The negotiation equilibrium

Negotiation between agents uses a premise that they can communicate and

understand each other. This is achieved by establishing public rules that allow agents

to achieve agreements, which are commonly designated as protocols. The protocols

define the kind of interaction that can be made, as well as the allowed offers and

counter-offers sequences. The protocols do not deal with the mechanisms of

communication, simply address its content, thus protocols are very specific to the

targeted domain (Rosenschein and Zlotkin [100]). Protocols establish the restrictions

imposed to the agent’s interactions, these restrictions have a direct impact on the

reduction of the required communications to achieve a beneficial agreement (Kraus

[98]).

Chapter 2 – Literature Review

28

A strategy can be defined as the approach that the agent should take to maximise its

success, thus it is the definition of the agent’s next move in an interaction. The

interactions are constrained by the protocols; nevertheless the deals proposed by the

agent are based on its strategy. A simple example of this, is an agent with the

objective to maximise quality that will negotiate with an agent that wants to

maximise cost, both have their own strategies but require a common protocol for

negotiating. Therefore, there are usually many strategies compatible with a particular

protocol, thus different strategies can be present that achieve different outcomes. The

definition of strategies is not obligatory to solve conflicts since it can be avoided by

the existence of a centralized algorithm that deals with all possible conflicts,

although this is not possible in systems with no agreed hierarchal centralized

structure and dynamic systems (Kraus [98]).

The information state of an agent describes the information it has about the

negotiation. In a nutshell, agents can have complete information when they are aware

of all relevant information about the rules of the game and other agent’s preferences,

or they have incomplete information where information may be lacking, thus agents

may have private information about their own situation that is unavailable to other

agents (Kraus [98]). This obviously has a big impact on the definition of agent’s

strategies.

The negotiation equilibrium is the point where all agents and respective strategies

have no motivation to change the status quo. This is quite an important characteristic

in multi agent systems since this is the point that negotiations end until the

equilibrium is disturbed (Fatima et al. [101]).

The negotiation has the principle that it requires a topic to discuss, thus the

establishment of the topic or topics to be discussed is the first step towards having a

successful negotiation process.

Within the domain of manufacturing, negotiation has been used to enable decision

making capabilities towards achieving the systems design objectives (Shen et al.

[64]). The main concern of negotiation in the literature is the resulting behaviour of

the multi agent environment in terms of stability. The stability of the system often in

literature is associated with the term coordination, which comes in play for complex

systems. In a simple system, the stability of the system given a set of negotiation

Chapter 2 – Literature Review

29

strategies can be foreseen, however in a complex system this task is quite

complicated (Shen et al. [64]). The organizational approach here takes a central role,

since the easiest way to guarantee that the multi agent environment does not

degenerate is through the creation of a coordination agent (Shen et al. [64]).

However the creation of such an agent centralizes the decision making of the system,

since this agent would gather information, create plans, and assign tasks in order to

ensure the normal operation of the system. This is in fact the traditional centralized

manufacturing system approach that establishes controllers that are hierarchically

above other controllers which they regulate (Shen et al. [64]). The problem is that the

reconfiguration of such systems is quite complex and involves a lot of effort. This

goes against the current need for more reconfigurable system due to market changes,

which is the main factor of the current interest in multi agent system. Furthermore,

the use of a central controller for large groups of agents raises an issue of system

scalability. The larger the group of agents under the controller the more complicated

it is for the controller to be informed of all things happening in the system. In fact,

the controller under these conditions becomes a communication bottleneck which

brings problems to the system performance.

The issue of having a central coordinator does not imply that all coordination

involves a completely centralised approach. Actually, there are several different

coordination mechanisms in the literature, namely mutual adjustment, direct

supervision, coordination by standardization, mediated coordination and coordination

by reactive behaviour (Shen and Norrie [80]). These can be used depending on the

agent organizational approach.

2.5.2.1. Negotiation Protocols

As was said before, the negotiation protocols are domain specific, nevertheless there

are guidelines towards defining negotiation protocols using formal languages that

enable communication (Finin et al. [102]; FIPA [103]; FIPA [104]).

The establishment of negotiation protocols requires a clear definition of the parties

involved in this process, thus the agent architecture needs to be defined before

defining the negotiation protocols. The negotiation protocols need to be defined

taking into account the knowledge domain which they are addressing, this allows for

Chapter 2 – Literature Review

30

a better definition of the negotiation rules, which in turn reduces the negotiation

effort.

Within manufacturing systems some guidelines for the design of negotiation

protocols have been defined (Krothapalli [105]). However, due to the close relation

between the agent architecture and protocol definition, the proposed negotiation

protocols are very specific and do not cover modular assembly systems, nonetheless

these provide a good support for the definition of new protocols. Furthermore, for a

better understanding of the definition of negotiation protocols it is important to

analyse other solution within the manufacturing domain.

The usual negotiation protocols used within the manufacturing domain are mostly

Contract Net protocols (Smith [106]), or variants of this (Shen et al. [64]). Examples

of this can be found in literature, however they tend to be problem specific solutions

(Butler and Ohtsubo [77]; Shen and Norrie [80]; Ouelhadj et al. [95]; Duffie and

Piper [107]; Parunak [108]; Ow and Smith [109]; Shaw [110]; Saad et al. [111]).

Despite the general use of this protocol, other market-based approaches are

becoming more popular. Market-based protocols are building using the principle of

auctions, which make them quite simple to define and use. The use of this type of

protocol in the manufacturing domain is mainly on scheduling systems (Baker [112];

Lin and Solberg [113]).

2.5.2.2. Negotiation Strategies

In agent technology the negotiation strategy is the approach that agents take to find a

compromise that suits all parties trying to maximise their objectives, thus the strategy

defines what the agent is willing to compromise and in return of what. In multi-agent

systems the negotiation strategies are of extreme importance since they should be

able to cope with a diverse agent environment (Kraus [98]).

In the literature there are classifications of negotiation strategies (Shen et al. [1]) that

have been used within the manufacturing domain, namely:

· Game theory based negotiation

· Contract based negotiation

· Market based negotiation

Chapter 2 – Literature Review

31

· Plan based negotiation

· AI based negotiation

· Other approaches

The literature does not identify the best approach for the design of negotiation

strategy. Analyses of different strategies in specific domains have shown that no

strategy dominates over another and that combining strategies constitutes a good

approach (Matos et al. [114]).

The game theory based negotiation has been indicated to produce optimal strategies

and predict outcomes. However, within complex domains most strategies are

designed resorting to intuition and experience of the designer. This happens because

in complex domains there are no clear optimal strategies, thus the definition of

strategies uses heuristic approaches (Rahwan et al. [115]). Nevertheless, there are

some examples in the literature where the similarity between the characteristics of

the problem and game theory have been found and explored, namely in the context of

independent schedule decisions (Guan et al. [116]).

The choice of negotiation strategy is highly dependent on the analysis of the

problem. In fact, it is not possible to create solution without some adjustments to the

strategies to cater for the specificities of the problem domains (Shen et al. [64]). The

definition of an agent negotiation strategy is also highly dependent of the choice of

organization approach and the definition of the agent roles in the wider context of an

agent architecture (Henderson-Sellers [117]), since these have a high impact on the

definition of agent behaviours which in turn are implemented using a negotiation

strategy.

2.5.2.3. Conflict Resolution

Conflict resolution, in very simple terms, is the attempt to resolve a conflict or a

dispute. The first step in conflict resolution is the identification of the conflict

situation so that the negotiation mechanisms can step in (Kraus [98]).

A conflict is a state of discord caused by the actual or perceived opposition of needs,

values and interests. A conflict can be internal (within oneself) or external (between

two or more individuals). Extrapolating this definition to the agent world, a conflict

Chapter 2 – Literature Review

32

occurs once there is an inability to achieve an objective or a belief, either because of

oneself or a combination of agents (Fatima et al. [101]).

The use of some sort of hierarchical structure in the development of solutions using

agent technology under the manufacturing context, provide very little information for

distributed conflict resolution. In fact, the possibility of the existence of conflicts is

minimized on the design of the agent environment as way to ensure the rapid

response and stability of the solutions (Shen et al. [64]).

2.5.3 Agent Architecture

An agent’s architecture is roughly its internal design, covering aspects from the

knowledge it possesses to their reasoning abilities and thus the way they behave. On

a multi agent environment this can become a quite complex definition depending on

the taken approach. The architecture of a multi agent system generically follows a

organizational approach of hierarchical (low flexibility), autonomous (low

scalability) or hybrid architectures. Regardless of this, it has to define the types of

agents present, their organizational clusters, their roles, their goals, their tasks and

interactions (related to the negotiation protocol definition). The definition of an agent

architecture and subsequent agent system requires a structured approach as for any

problem solving activity (Henderson-Sellers [117]).

The literature provides several methodologies for the definition of agent systems

(Bernon et al. [118]; Cossentino [119]; Garijo et al. [120]; Iglesias and Mercedes

[121]; Padgham and Winikoff [122]; Zambonelli et al. [123]). Each of these has its

own unique perspective and approach on the definition of an agent system, and there

is not a clear choice in methodology (Henderson-Sellers [117]). The literature

suggests that problem analysis and the definition of the agent system requirements is

the key aspects in the choice of the right methodology for the definition of an agent

system. In fact, a common denominator of all methodologies is the need for the

definition of clear requirements for the agent environment, and not just the

requirements for the solution outputs (Henderson-Sellers [117]). The Gaia

methodology provides a good generic approach that is broken down into four stages,

the requirements specification stage, the analysis of the requirements, the design

stage and the implementation stage. The requirements specification consists on the

Chapter 2 – Literature Review

33

formalisation of the problem, the definition of the objectives and assumptions of the

environment. The analysis of the requirements stage consists on analysing the

problem and identifying the necessary agent roles and interactions that establishes

the overall agent architecture. The design stage consists in detailing the individual

agent’s behaviours and strategies (Zambonelli et al. [121]).

The assessment of existing systems which have used a methodology is seen as an

important factor for the decision on the suitability of a methodology for a similar

problem. However, the use of these structure methodologies for the definition of

agent architectures in manufacturing has not been widely used. Additionally a review

of agent architectures in the domain of information technology provides evidence

that the majority of the systems use these methodologies as guidelines for the system

design, sometimes merging different concepts as it is suitable to solve a given

problem (Sugumaran [124]).

Within the manufacturing domain there have been developed some agent

architectures which provide useful solutions and hints for future development in the

manufacturing domains, although these do not follow the concepts from the

structured methodologies they are still quite important for the understanding of the

problems in the domain that are solved using agent technologies (Shen et al. [1];

Inohira et al. [125]; Ryu et al. [126]).

2.5.4 Communication

Agent technology uses the assumption that agents communicate with each other in an

understandable manner. The communication between agents has been subject of

investigation since the creation of agent technology which provided two leading

agent communication languages: KQMP (Finin et al. [102]) and FIPA ACL (FIPA

[103]; FIPA [104]). Both these languages provide basic specifications and structures

for communication, knowledge and ontology guided communication (Finin et al.

[102]; FIPA [127]).

FIPA is the most widely used in the literature, and it provides an open and quite

flexible way of defining the language for an agent environment. Its wide use and its

openness provide great means to ensure interoperability between existing system and

newly developed systems.

Chapter 2 – Literature Review

34

2.6 Knowledge Gaps

The current state-of-the-art provided an overview on the current advances in MAS.

The focus has been predominantly on the development of equipment module

definitions which provide the information required for creating automatic solutions.

Moreover, it revealed that the current MAS have insufficient automatisms and

support tools to be more reactive and flexible producing solutions. In fact, one of

the gaps in current MAS is the lack of a formal configuration and reconfiguration

methodology to define a MAS based on system requirements and available

equipment; current practices for such systems rely on human experience and

judgment to provide solutions for configuration and reconfiguration. Furthermore

there is a lack of bottom-up approaches for configuration problems, the majority

of the configuration methods reported use top-down approaches, which provide very

rigid solutions.

The literature identifies agent technology as one of the best ways to solve distributed

problems. Additionally the concept of modularity has characteristics that enable

distributed approaches. Therefore it is a good approach to establish a self-

configuration methodology for MAS.

Currently the existing agent architecture in the field of manufacturing does not

fully cover the issues of MAS self-configuration. This presents a clear gap since

there are no appropriate agent architectures to support configuration of

modular assembly systems.

The development of the methodology for self-configurability of MAS through agent

technology provides a simple structure to deal with a complex problem, yet there is

currently little formalisation of the interaction and negotiation protocols applied

during the configuration of a technical system. Particularly for automated

distributed systems.

Currently MAS optimization is based on human expertise, partly because of the

absence of the behaviour and capability models, but also due to the absence of

an appropriate structure to simulate and evaluate the systems. The literature

provides the main optimization aspects for MAS (Flexibility, Quality, Cost, Time),

yet currently the existing models lack the appropriate structure to support decision

Chapter 2 – Literature Review

35

making driven concurrently by these aspects. Furthermore there is an insufficient

availability of early MAS configuration assessment methods that would have a

huge impact on the MAS configuration decision making process.

The scarce availability of suitable decision making support tools for the system

design has also been highlighted in the literature. In fact, this has been identified as

one of the potential game changes in the assembly domain. The gaps in this are

quantifying and evaluating reconfigurable requirements, analysis and synthesis of

system solutions, modelling and simulation of reconfigurable processes, modelling of

system design and optimization for high RAS, modelling and simulation of human

roles in RAS.

2.7 Chapter Summary

The literature review has provided the general background of concepts used in this

thesis. It includes a general review of RMS and RAS, and a detailed review of

modular assembly system and the concepts it involves. Furthermore, this review

includes a review on assembly system configuration process which is significantly

important for the work developed in this thesis.

The second part of this state-of-the-art review focused on agent technology under the

manufacturing domain. This covered aspects such as agent architectures design,

agent organization models, agent negotiation protocols, agent negotiation strategies,

among others.

Chapter 3 – Research Approach

36

3 Research Approach

New System Reconfigured

System

Product B

Product A

Analyses

Design

Equipment Information

Contact SuppliersInternet

Equipment

DescriptionEquipment

DescriptionEquipment

DescriptionEquipment

DescriptionEquipment

Description

Different Formats

Time Consuming Process

Redesign

Timeline A (New System)

Timeline B (System Reconfiguration)

Reconfiguration

Figure 3.1 - Current MAS Configuration and Reconfiguration Process

Chapter 3 – Research Approach

37

3.1 Introduction

This work was motivated by the current trend towards Modular Assembly Systems

(MAS) and the analysis of the current state of the art of these systems. The MAS

paradigm has a series of objectives which were covered in the previous chapter.

However, the development of MAS is still in its early stages and it raises a clear

problem of scalability in the future. The work presented in this thesis intends to

provide answers to allow the automatic configuration and reconfiguration of MAS in

a constantly evolving domain.

In order to understand the aims and challenges of this work it is important to analyse

the current state-of-the-art of the configuration and reconfiguration of MAS. The

configuration and reconfiguration of MAS is currently a very manual process which

requires a lot of analysis from the system integrator. This alone would not be a

problem, however, with a growing solution space, as a result of many different

modules being available, the system integrator would struggle to reach good

solutions. Figure 3.1 provides a simplified overview of the configuration and

reconfiguration process. In this conceptual view it is clear that the analysis effort lies

mostly with the system integrator. By increasing the number of equipment modules

by any factor produces a big impact on the analysis time, if the system integrator

considers all the possible configuration and reconfiguration solutions. Or it makes it

much less likely for the system integrator to intuitively choose optimal solutions.

The vision of this work is to provide the means to support this configuration and

reconfiguration process through the creation of a methodology that is able to analyse

and provide a set of viable solutions to the system integrator. This will reduce the

time required to analyse while increasing the speed and quality of configuration and

reconfiguration solutions(Onori et al. [7]; Lohse [44]).

The aim of this work is to develop a configuration and reconfiguration methodology

that enables the automatic configuration of MAS given a set of requirements. To

achieve this aim it would be necessary to create a complete implementation of the

whole theory and carry out substantial validation work across the whole domain.

Consequently, the work involved to create a complete domain theory goes far beyond

the scope of this research. Therefore, the proposed self-configuration methodology is

Chapter 3 – Research Approach

38

not intended to provide a complete solution but rather to build a suitable foundation

that can evolve with the domain changes while also providing the basis for further

enhancements of the approach.

In this chapter, the details of the research methodology followed in this work are

presented.

3.2 Problem Definition

The problem definition for this work was design with a foundation on three pillars,

the literature review presented in Chapter 2, the industrial input provided by the

involvement in collaborative research project and finally the current state-of-the-art

of the MAS domain.

The question of component reusability, rapid configuration and reconfiguration to

enable “Configure to order” of assembly systems has become increasingly more

important due to ever decreasing product life-cycles and rising process complexity.

General purpose assembly machines, equivalent to CNC machine tools, are only

available in specialist domains such as printed circuit board assembly where the

components are highly standardised. The assembly of most other products demand

custom made systems which address the specific requirements for these products.

Today, these are mostly “Engineered to Order” making them cost and time intensive

to design or reengineer. Increased modularisation of assembly equipment, rapid

integration and design tools are considered fundamental for the move towards cost

and time effective configuration and re-configuration of complex assembly systems

(Koren et al. [2]; Kratochvíl and Carson [6]; Onori et al. [7]).

Currently, the design of assembly systems is a human driven approach based on the

expertise of system integrators. Although this process provides valid system

configurations, it can be quite time consuming, often considers only a fraction of the

possible solution space, and does seldom provide repeatable and transparent

solutions. The MAS paradigm with its focus on clear functional decoupling of

equipment module functionalities and standardised interfaces for interchange ability

has opened the scope for automatic configuration methods. It becomes possible to

clearly formalise the functional capabilities and connectivity constraints of the

Chapter 3 – Research Approach

39

available modules hence allowing the mapping of required against available

capabilities. The design of MAS is therefore essentially a conjoint equipment and

process configuration problem at several levels of granularity with equipment

modules and their functional capabilities (skills) as the elementary building blocks

(EUPASS [4]).

Configuration

Solutions

New MAS

Concepts

MAS Requirements

Self-Configuration

Methodology

Equipment

DescriptionEquipment

DescriptionEquipment

DescriptionEquipment

DescriptionEquipment

Description

Equipment Pool

System Integrator

Different Formats
No Configuration

Format

N
o

 E
x
is

ti
n

g

F
o

rm
a

t

N
o

 E
x
is

ti
n

g

F
o

rm
a

t

New Equipment
New Equipment

New Equipment

In
c
re

a
s
in

g

N
u

m
b

e
r

Module

Supplier

Module

Suppliers

Figure 3.2- Problem Definition Overview

The MAS configuration problem can be defined as illustrated in Figure 3.2. A set of

assembly process, system and business requirements needs to be translated into

possible assembly system solutions using a given set of equipment modules. A set of

methods and tools will be required to determine both the technical and logical

completeness of different configurations and establish their respective performance

characteristics. One of the key challenges is the concurrent solution configuration for

both the process logic based on the available skills of equipment modules and the

physical hardware required to execute the process logic. Another important aspect is

the possibility of new concepts and paradigm shifts in the domain, as the domain is

expected to evolve in the future (Onori and Oliveira [18]). This openness to new

concepts allows for the solution to remain valid in a domain which has not reached

the full maturity.

Chapter 3 – Research Approach

40

The analysis over the actors involved in this process is another crucial aspect of the

problem. There are two major types of actors in this process, the equipment module

suppliers and the system integrators. The equipment module suppliers provide the

construction blocks used by the methodology to establish solutions, while the system

integrator provides the requirements for these solutions. Once configuration solutions

have been reached, they are passed on to the system integrator consideration and

selection. It is important to note that the methodology is a support tool for the

decision of a system configuration by the system integrator.

The final aspect of the problem that was taken into account is the diversity of

standard formats for descriptions. The literature and industrial practices shown a

quite disperse environment where the lack of standard definitions and terminologies

is overcome by the users. This is obviously one of the biggest challenges to achieve a

self configuration methodology, since without clear, transparent, structure and

meaningful information it is not possible to establish such methodology.

3.2.1 Requirements for the Self-Configuration Methodology of

Modular Assembly System

The definition of the boundary conditions of the problem domain is a crucial factor

in enabling the operation of the methodology. The establishment of the set of

conditions not only provides the base line of rules for which the solution is valid, but

also provides good insight into the problem resolution. Thus, the first requirement for

the self-configuration methodology is a clear description of the boundary conditions,

namely what are the inputs and outputs of the methodology. This implies the creation

of clear, transparent and well structure data models. The models will have to rely on

a common terminology to enable the mapping between the information coming from

different sources.

The self-configuration methodology will have to be able to deal with the models that

are used for inputs and also produce outputs in the agreed formats. The methodology

will be required to combine the information from the equipment modules to fulfil the

set of established requirements.

A clear methodology for designing the configuration methodology should be

followed to ensure a systematic approach for solving the problem.

Chapter 3 – Research Approach

41

3.2.2 Definition of Research Objectives

The aim of this work is to provide a self-configuration methodology for MAS. The

main research objective is to establish the suitable approach to solve the self-

configuration problem. The idea is to use existing technologies and methods that

can contribute for the establishment of self-configuration methodology. This research

objective is covered in Chapter 2 through the literature review together with the

identification of the specific knowledge gaps that prevent the existence of a self-

configuration methodology.

The next two research objectives are closely related, one is the architecture design

and respective models that will enable the existence of a dynamic environment

that will produce configuration solutions. The other is the definitions of local

behaviour models for distributed decision making which will drive the

methodology and provide the necessary solutions for MAS.

However, to achieve a self-configuration methodology, one requires the

establishment of the relevant models and structures for describing the information

required for the operation of the methodology. Therefore, the establishment of

formal description models that enable the self-configuration methodology is also

a clear research objective.

In summary, the main research objectives are:

· Development of methodology formal description models

· Development of distributed decision making framework

· Development local behaviour models for distributed decision making

3.2.3 Definition of the Research Hypothesis

The definition of the research hypothesis is the core of this chapter and sets the scene

for this thesis. In a constantly evolving domain it is expected that in the near future

the available numbers of equipment modules will increase quite significantly,

creating a scalability problem for the configuration of MAS using the current human

driven method. Therefore the need for support tools is a clear demand. However, the

definition of support tools requires clear models that provide the necessary

description of the domain for the tools to be able to interpret and process. Thus the

first aspect of the research hypothesis is if a structured and transparent model can

be defined which formalises the physical and assembly process constraints of

Chapter 3 – Research Approach

42

equipment model and a model that enables the definition of MAS requirements

using the same concepts, it will be possible to establish automatic configuration

methods.

In the scenario that this first statement of the hypothesis, where the necessary

description models exist for the purpose of self-configuration methodology, then it is

hypothesized that the self-configuration of MAS is better achieved through the

use of a distributed bottom up approach. While heuristic search and linear

programming methods are able to solve these kinds of configuration problems, they

require quite complex models and are difficult to define and maintain. These

solutions are also very specific and non scalable, which makes their applicability not

very good in a constantly evolving domain (Onori and Oliveira [18]). Furthermore,

they apply a top down approach which only takes limited to no advantage of the

hierarchical nature of the problem. Therefore, this work proposes a distributed

bottom up solution for solving of this configuration problem.

The use of agent technology is viewed in the literature as the natural approach for

bottom up problem solving (Jennings and Wooldridge [11]). Therefore, it is

hypothesised that by creating a multi-agent solution for the bottom up solving of

this configuration problem maximising the parallel computation and taking

advantage of the latest negotiation protocols to achieve a goal oriented

behaviour of the overall configuration environment. The choice of agent

technology is also supported because of the modular nature of the problem, with the

added advantage of providing scalability option and future enhancements. It also

provides the basis for distributed computing built in, which in computer intensive

processes is crucial for viable solutions. Therefore, it is proposed that the

development of an agent architecture and respective models, will provide the basis

for solving the configuration problem, while providing means to deal with future

advancements in the MAS domain. In addition to this, it also provides the ability for

different equipment module vendors to define individual equipment module rules

(which can be shielded from other vendors) for actively seeking for participation in

MAS solutions.

The final step in the hypothesis definition is the emergence of solutions through the

agents interactions supported by simple lower level rules that support their decisions.

Chapter 3 – Research Approach

43

It is therefore hypothesised that the collaboration of the agents using basic rules

will enable the emergence of complex solutions.

The research hypothesis requires three major elements which are the knowledge

contributions contained in this work. These are the Requirements Model for Agent-

Based Self-Configuration of Modular Assembly Systems, the Agent Architecture

for Distributed Self-Configuration Methodology for Modular Assembly Systems

and the Local Behaviour Models for Distributed Self-Configuration

Methodology.

3.2.4 Research Methodology

The work presented in this thesis followed a systematic methodology presented in

Figure 3.3. The first step of this work consisted in an extensive literature review of

the MAS domain. This literature review was only a partial view to establish the

current state-of-the-art in the field. In addition to that, the input from the industry

through a collaborative research project (EUPASS [4]) was a crucial source of

information that in conjunction with the academic work in the field provided a good

starting point to establish a problem definition.

The problem definition provides a clear view of the domain which enables the

identification of a clear set of research requirements that provide the set of conditions

for which the hypothesis will be validated. In addition to the research requirements, a

set of research objectives was also extrapolated from the knowledge gaps found in

the literature. The combination of these, offer the basis for the definition of the

research hypothesis which sits at the core of this research methodology.

The hypothesis of this work was broken down into sections which result in the

knowledge contributions contained in this work. The first contribution focuses on the

means to elicitate the MAS requirements and the equipment module descriptions,

proposing a model to describe these aspects. The second contribution addresses the

need to achieve configurations while catering for the scalability of the MAS domain,

through the use of agent technology architecture that is designed for this purpose.

Finally, the last contribution is the creation of a self-configuration methodology for

MAS, which consists of a set of methods and beliefs that enables the agent

interactions which lead to configuration solutions.

Chapter 3 – Research Approach

44

Figure 3.3 - Research Methodology Overview

Research Domain Knowledge Gaps Definition

State-of-the-artLiterature Review
Industrial

Requirements

Problem Definition

Definition of

Research

Objectives

Definition of

Research

Requirements

Hypothesis Definition

Knowledge Contributions

MAS Self-

Configuration

Requirements

Definition Model

MAS Self-

Configuration

Agent Architecture

Local Behaviour

Models for MAS

Self-Configuration

Implementation

Development of

Manual Definition

for MAS Self-

Configuration

Requirements

Agent Environment

Implementation

MAS Self-

Configuration

Scenario

Implementation

Validation

Self-Configuration

Requirements

Model Applied to

Industrial Case

(EUPASS)

Self-Configuration

Environment

Achieves Valid

Configuration

Solutions

Self-Configuration

Environment

Achieves Optimal

Configuration

Solutions

Discussion

C
h

a
p

te
r

2
C

h
a

p
te

r
3

C
h

a
p

te
rs

 4
,5

 a
n

d
 6

C
h

a
p

te
r

7
C

h
a

p
te

r
8

Chapter 3 – Research Approach

45

Once the hypothesis was broken down into the core contributions, it was possible to

establish validation procedures for each of these contributions. The definition of

validation scenarios for a wide range of configurations problems is outside of the

scope of this work, therefore the validations of each contribution focus on the

available examples provided by the collaborative research project (EUPASS [4]).

Each contribution will require its validation against their individual research

objectives.

The final stage of this work is the critical discussion or conclusion where the

information achievements, the limitations and future work is discussed.

3.2.5 Requirements Model for Agent-Based Self-Configuration of

Modular Assembly Systems

The formalisation of models that enable the clear and structured capture of the

different aspects required for the configuration of MAS is the first knowledge

contribution contained in the work. The justification for its existence is simple,

without a clear model that can be computer interpretable it is not possible to establish

any method to support the configuration process. Figure 3.4 provides an overview of

the models required to enable the self-configuration methodology while highlighting

the involved actors.

The actors identified are the equipment module supplier, the configuration expert and

the system integrator. It is important to identify the actors since they are the source of

all the information that is required to formalise the models. The analysis of the

individual contributions in the MAS domain allows for the formalisation of these

contributions. The proposed model will be established after an analysis of current

state-of-the-art configuration procedures in the scope of the collaborative European

project EUPASS.

In the proposed model seen in Figure 3.4, the equipment module suppliers will be

required to supply their module description following a specific format that adheres

to the common concepts and terminologies. Similarly the system integrator will also

define the MAS requirements following a specific format that also adheres to the

common concepts and terminologies. However, without the establishment of

common concepts and terminologies it would not be possible to map the

Chapter 3 – Research Approach

46

requirements to the existing capability. Furthermore, the concepts will require

updates as the domain evolves. To address these issues, it is proposed the creation of

a new role of configuration expert that is able to add, change and update these

concepts and terminologies. Finally a data model needs to be created for the

solutions to be presented to the system integrator.

Equipment

Modules

XML

Module

Description

XML

Module

Description

Equipment

Module

Description

S
y
s
te

m

R
e

q
u

ir
e

m
e

n
ts

Self-

Configuration

Methodology

Process Requirements

Apply

Glue
Place Cure

XML System

Requirements
Business Informtion

System Constraints

Feeder

Skills:

Interfaces:Description:

Feeder unit equipped with

part location device.

Bay Port

(Male)

Part Port

(Male)

Feeding

XML

Module

Description

System Integrator

Configuration Expert

Adheres To

Common

Concepts and

Terminologies

Assembly

Process

Library

Interface

Library

Adheres To

Module Supplier

Module Supplier Module Supplier

Figure 3.4 - Overview of Requirements Model for Agent-Based Self-Configuration of Modular

Assembly Systems

In sum, the requirements model for the self-configuration of MAS will include

models for assembly process and interface libraries, for the definition of MAS

requirements, for equipment module descriptions and for the description of MAS

configuration solutions.

Chapter 3 – Research Approach

47

3.2.6 Agent Architecture for Distributed Self-Configuration

Methodology for Modular Assembly Systems

The creation of an agent architecture that is able to represent the aspects of the MAS

configuration problem is the first step in the creation of the proposed bottom up

distributed self-configuration methodology. The basic notion of this proposal is that

agent technology can enable the creation of this methodology. For this, one needs to

create agent types, roles and a structured hierarchy that is able to accurately structure

the configuration problem.

The design of a multi agent architecture requires a structured approach. In the

literature there are a couple of methodologies for the design of multi agent solutions.

The majority of the existing methodologies are domain specific, however the GAIA

methodology provides a good generic approach for the architecture design that has

proven itself in computer science domain (Zambonelli et al. [123]). The design of

the agent architecture based on the GAIA methodology requires firstly an analysis of

the problem, namely the clear definition of the objectives and targets that the agent

system has to address. The first step is the understanding of the requirements for such

system, specifically the identification of what needs to happen and what information

is required. The required information was already identified in the Requirements

Model for Agent-Based Self-Configuration of Modular Assembly Systems. In this,

requirements are established that have an impact on the objectives of modular

assembly system configuration and reconfiguration. The main objective of the

system is to provide valid solutions for the configuration and reconfiguration of

MAS.

Once the objectives are defined, the next step in the design of a multi agent

architecture is the analysis of the problem. This establishes the need for the definition

of the agent types, roles and expected interactions.

 The nature of the MAS paradigm provides a clear focus on functional decoupling of

equipment module functionalities and standardised interfaces for interchange ability.

This enables the formalisation of functional capabilities and connectivity constraints

of the available modules hence allowing the mapping of requirements against

available capabilities. This clearly identifies the two main agent types required for

Chapter 3 – Research Approach

48

the self-configuration methodology agent architecture based on the different

objectives: the Equipment Module Agent and the Requirements Agent. This

decoupling into two agent types, uses principles from blackboard architecture model,

where two agent types come together to solve a problem, the difference being these

will have a structure and common understanding of the relations between the two

aspects of the configuration problem. These agents will provide the basic

functionality required for solving the configuration problem. The Equipment

Module Agents provide representation of equipment modules, which can interact

with each other to establish collaborations that represent configurations. The

Requirements Agent will provide the objectives that motivate the Equipment

Module Agents interactions, while also being able to evaluate the solution based on

the requirements established by the system integrator. Figure 3.5 provides a

conceptual overview of the agent architecture for the self-configuration

methodology, where all the agent types and respective hierarchies are established.

Figure 3.5 - Agent Architecture for Distributed Self-Configuration Methodology for MAS

Self-Configuration Methodology

Virtual Sandpit

Agent Environment

Requirements Agent

Equipment Module Agent

Performance Simulation Agent

MAS Expert Agent

Equipment Module

Description

S
y
s
te

m

R
e

q
u

ir
e

m
e

n
ts

System

Configuration

Chapter 3 – Research Approach

49

The nature of agent technology allows for the distribution of decision making

processes that would be computer intensive through the creation of child agents,

therefore taking advantage of distributed computing. The Performance Simulation

Agent is introduced into this architecture to provide a decoupling of one of the most

computer intensive problems, the simulation of given set of configurations for

selections. It is easy to understand how the computer processing requirements grow

exponentially if simulations for the performance characteristics are required for all

solution possibilities.

The final aspect of the analysis of the configuration problem has to do with assessing

the logical conditions of the configurations based on its internal knowledge model.

The issue is, if this knowledge was built in to the configuration methods, e.g. the

internal decision making models of Equipment Module Agents, future changes

might require a complete change of the configuration methodology. Therefore, it is

proposed that this knowledge is decoupled into the MAS Expert Agent, which can

be changed or even replaced in order to cater for the evolution of this knowledge.

3.2.7 Behaviour Models for Distributed Self-Configuration

The creation of agent architecture is followed by the detailed design and

implementation according to the GAIA methodology. Thus, establishment of the

behaviour for each agent is the final piece for enabling the methodology. The

behaviour builds on the previous contributions providing the specific methods that

enable the operation of the multi-agent solution. Figure 3.6 provides an overview of

the concepts involved in this definition, which sit at the core of the decision making

process on finding MAS configuration solutions.

The definition of the agent behaviour is based on the specific roles and interactions

established in the agent architecture. The interactions impose the first and most

important aspect in a multi-agent solution, the establishment of the interaction

protocols that define the rules and means for agent interaction. These will provide the

basis for the agent behaviour in relation to other agents. It is a crucial definition since

agents will only be able to deal with the protocols which are known to them. The

protocols are closely related with the collaboration agreements, which are a set of

Chapter 3 – Research Approach

50

formalization rules that are triggered within a protocol sequence. The models for

information exchanges between agents will provide the basic information for the

agents to make decisions.

The protocol definitions will provide the overall agent system behaviour, however

this is only one of the steps required to enable the distributed decision making

process. For this, it is important to clearly formalised the agents beliefs since they

drive their decision making process. The formalization of the decision of each

individual agent will provide the missing elements of the self-configuration

methodology, namely how each agent type behaves based on a set of information.

The distributed decision making agent architecture raises two important issues for the

individual agent behaviour, namely on how to capture and use MAS expert

knowledge and how to establish a performance simulation of potential solutions.

These require a set of models that enables the agent behaviour and operation that

addresses aspects that have an impact on the self-configuration methodology but are

in a different domain. This is the basis for the definition of the Performance

Simulation Agents and the MAS Expert Agent behaviour. This will entail the

creation of a new model and method to establish modular components that can be

distributed with a set of rules that enables the simulations of assembly characteristics,

and the means to capture MAS configuration knowledge.

Self-Configuration Methodology

Virtual Sandpit

Agent Environment

Requirements Agent

Equipment Module Agent

Performance Simulation Agent

MAS Expert Agent
Protocols

B
e
lie

fs

E
quipm

ent

M
odule A

gent

M
A
S
 E

xpert

A
gent P

er
fo

rm
an

ce

S
im

ul
at

io
n

A
ge

nt

Structures

C
o
lla

b
o
ra

tio
n
s

Algorit
hm

s

R
eq

ui
re

m
en

ts

A
ge

nt

Self-

Configuration

System

Configuration

Figure 3.6 - Overview of Behaviour Models for Distributed Self-Configuration Methodology

Chapter 3 – Research Approach

51

The creation of all the agent behaviours will culminate in the establishment of the

self-configuration methodology that caters for both configurations and

reconfigurations of MAS.

3.3 Definition of Validation Methods

The definition of validation methods in any research requires an analysis of the

domain. The proposed solution targets a domain that is quite vast, complex and

expensive to validate for all existing MAS systems. Therefore, the validation of this

work will focus on a set of representative scenarios that reflect the key problems and

characteristics in the domain of MAS configuration. The complete validation of the

proposed methodology for the whole domain is outside of the scope, and in practice

could only be done in industry.

The validation of methods for the proposed agent based self-configuration

methodology for MAS will be broken down into three main parts, which represent

the three knowledge contributions.

The requirements model for agent-based self-configuration of MAS will be validated

through the incorporation of the model in a manual configuration tool, which will be

used by both academic and industrial experts to define requirements for MAS,

equipment modules and system configurations in a collaborative project (EUPASS).

This tool will be developed with the proposed model as its base, and will be used to

perfect the model to cater for inputs from the expert users. This provides a good

validation platform for this model. This data will also help to populate the equipment

module library with available equipments and expert selected configuration solutions

that can be used in the validation of other methods.

The agent architecture for distributed self-configuration methodology for modular

assembly systems validation cannot cover all possible MAS in existence, therefore

the focus will be on the operational side. The first validation is the demonstration that

the designed architecture in operation works. This will entail the demonstrations of

the different operational states of agents as described in the architecture. The second

Chapter 3 – Research Approach

52

aspect of validation and perhaps the most important is the demonstration that this is a

good computational approach for solving the configuration problem.

The behaviour of self-configuration of modular assembly systems through agent

technology validation will be achieved through the verification and logical analysis

of the results derived from the proposed methods, given a set of MAS scenarios. The

methods account for possible adjustments that ensure the testing of scenarios under

different conditions, namely using exhaustive and heuristic approaches which

provide the basis for comparing different configurations of the approaches. This will

enable the identification of best practices for the operation of the method while

validating that it works for all given scenarios. It is expected that the results for this

validation will focus on two aspects, MAS configuration solutions and MAS

performance simulation results.

3.4 Chapter Summary

This chapter gives an overview of the research methodology and highlights the

motivations behind this work. The chapter presents the definition of the problem that

this thesis addresses and formalises the research approach. The hypothesis for this

work has been formalised and described, also detailing an overview of the

knowledge contributions of this work. Finally the validation strategy for this work

has been presented.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

53

4 Model for Agent-Based

Self-Configuration of

Modular Assembly

Systems

Figure 4.1 - Overview of Boundary Conditions of the Problem Domain

Equipment

Modules

XML

Module

Description

XML

Module

Description

Equipment

Module

Description

S
y
s
te

m

R
e

q
u

ir
e

m
e

n
ts

Self-

Configuration

Methodology

Process Requirements

Apply

Glue
Place Cure

XML System

Requirements
Business Informtion

System Constraints

Feeder

Skills:

Interfaces:Description:

Feeder unit equipped with

part location device.

Bay Port

(Male)

Part Port

(Male)

Feeding

XML

Module

Description

System

Configuration

Equipment Configuration

Base Table

Glue Dispenser

Transport
Apply

Glue

Feed
Pick

Up

Place Cure Transport

Manipulator B

ConveyorFeeder

Assembly Process Configuration

System Configuration

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

54

4.1 Introduction

In this chapter it is proposed a model that encompasses the requirements description

that enables an agent-based self-configuration of modular assembly system. The

chapter covers all the different sources of requirements, highlighting the need for

clear and their formal definition which will enable the self-configuration of modular

assembly systems.

The concept of modularity is highly dependent on the general understanding of a

module. A module is a building block with certain characteristics, both physical and

logical, that enable it to be combined with other modules. The question that arises

from this definition is what these characteristics are, and more importantly whether

they can be generalised. It is clear that different modular systems can have different

characteristics. The domain of modular assembly system is quite wide and complex,

and there are several different types of solutions. The challenge is to find the

common characteristics and establish a clear model for their descriptions. Despite the

fact that this target domain is quite wide, what can be clearly generalized is that to

establish any configuration methodology for a modular system, one requires a

module description, which has to contain information on its capabilities and how the

module can be combined with others.

Modular assembly systems (MAS) have existed for over two decades. They focus

mainly on the advantages of fast physical integration of equipment. Nowadays,

system builders often use the concepts of modularity on the physical side.

Standardization is a complex and lengthy process and, in the case of assembly, quite

impossible to tackle. However, the need for standards does not provide an obstacle

for system configuration. If one equipment only plugs in to another of the same

supplier, it is not ideal for the future of MAS, but it does not pose a problem for

configuring a system, since there is a set possible solutions. The real need that arises

from analysing the standardization issue is the need for a storage of terminology that

should be used by different module suppliers, regardless of it being shared

definitions or not. The intention of this chapter is to provide a model that is module

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

55

supplier independent, catering only for the aspects relevant to the configuration of

modular systems.

In the assembly domain, we should consider two aspects of modules, namely their

physical characteristics and their assembly process capabilities. Assembly modules

exist to perform certain activities, which can be described as its capabilities or skills

(EUPASS [4]). The capabilities of the module can themselves be described as a

module, a different type of module but still a module. This is important to note

because these modules also have their connection issues that are crucial for the

definition of the assembly process sequence (Lohse [44]).

The context of system configuration has to be driven by a clear set of requirements.

For the assembly system requirements an important aspect is to maintain certain

common terminologies with the equipment modules descriptions. These have been

identified as the assembly process capabilities and physical interfaces (EUPASS [4]).

The physical interfaces allow for the definition of physical requirements and

constraints. The assembly process capabilities allow for the identification of which

modules can fulfil the capability requirements. The assembly processes descriptions

should also follow a common taxonomy to enable the possibility of high level

assembly process requirements, which will be complex compositions of assembly

processes. This definition provides the basis for making configuration decisions

based on clear hierarchical assembly process structure (Lohse [44]).

The choice of agent technology poses a few constraints on the configuration process

since agents are required to communicate. Consequently, the information needs to be

transparent for the agents to be able to exchange information and make decisions

based on the semantic descriptions. The configuration of an assembly system is a

process that involves different information types which must be modelled for the use

of agents. It is important that the model is structured in a scalable manner, catering

for possible modular assembly systems evolutions. Moreover, it is very likely that

new assembly processes, new interfaces, and new equipment module types will be

introduced over time.

The definition of clear assembly process and system requirements is crucial for the

design of an agent system that will provide configuration solutions. If the

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

56

requirements are not defined there are no clear objectives to establish the

configuration. The established requirements will define the information that can be

inputted in the agent environment. This information also enables the decision making

process of the agents, namely for establishing valid configuration solutions. In

addition, it highlights the boundary condition of the problem this work intends to

tackle. Figure 4.2 provides a high level overview of all the descriptions that are

required by the configuration methodology. The proposed model is supported by

three types of actors, which highlight the requirements of the agent environment. The

system integrator provides the definition of the system requirements, namely what

are the expected capabilities and constraints for the desired system. This description

will follow a complex skeleton or template which imposes the required common

terminologies. The next user is the configuration expert, which provides the required

maintenance to the model in terms of common terminologies for both the interfaces

and the assembly process. The final user is the module provider, who is responsible

for populating the equipment module library (providing descriptions that follow the

established terminology). It is also important to point out that the output of the

configuration methodology will be provided in a structured manner to the system

integrator for validation. The details of these models will be presented throughout

this chapter.

The use of Extensible Markup Language (XML) format is proposed for the

instantiation of the proposed models definitions, because it allows for a clear

description that is transferable and usable across different systems. XML description

is transparent and understandable format for both individuals and computer systems.

The use of XML format provides a transparent description which is widely accepted

for transfer of information, and is also able to cater for future extensions which

enables the scalability of this approach. The wide use of XML also allows for a

better acceptance of industry for the use of this approach.

The use of XML means that in order to encapsulate this information, the model will

be provided in a XML Schema language known as XSD. This form of description is

at its core hierarchical since it is based on the definition of nodes, with certain

attributes, that contain other nodes making it hierarchical form of description. Some

nodes and information might be optional in some cases, and mandatory in others.

The full XSD model can be found in Appendix A.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

57

Equipment

Module

Repository

Assembly

System

Skeleton

(XSD)

Configuration

methodology

Assembly

Process Library
Interface Library

Assembly

Process

Types

Descriptions

(XML)

Assembly

System

Requirements

Descriptions

(XML)

Equipment

Module

Description

(XML)

Equipment

Module

Skeleton

(XSD)

Interface

Types

(XML)

Interface

Types

Skeleton

(XSD)

Assembly

Process

Types

Skeleton

(XSD)

System

Integrator

Module

Supplier

Configuration

Expert

Assembly

Process

Types

Descriptions

(XML)

Interface

Types

Descriptions

(XML)

Equipment

Module

Descriptions

(XML)

Assembly

Process

Skeleton

(XSD)

Assembly

System

Configuration

Description

(XML)

Figure 4.2 - Overview of Self-Configuration Requirements Model for Modular Assembly

Systems

4.2 Agent Technology Requirements Identification

The analysis of the requirements is the first step in any methodology to define a multi

agent system. Its first step is the problem definition, which will provide the boundary

conditions of the agent environment. The boundary conditions will establish what

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

58

information needs to be introduced into the agent system in order for it to provide the

expected results.

The configuration of MAS requires clear definition of both system requirements and

equipment module description. Therefore, clear models have to be defined to tackle

these aspects. However, simply providing descriptions is not enough for the agent

environment. These descriptions are required to share the same common semantic

model, otherwise the agent environment will not be able to correctly interpret the

information. Consequently, the agent environment requires both structure and

meaningful information, hence it is required to establish a common semantic model,

and the structure for both equipment module descriptions and system configuration

requirements.

The agent environment intends to provide the configuration of MAS. However, the

form of the solution is not a trivial matter. The details for establishing configuration

description of MAS are themselves quite complex. This highlights the need for a

clear model for describing the configuration solution. The model will simply build on

the already available terminology and structures, and provide a clear system

configuration description.

4.2.1 Common Semantic Notation Definition

The common semantic model is a set of elements intended to serve as the language

that will permit specification of the meanings of any domain term or concept. The

common semantic model is a crucial element for building any type of distributed

decision making system (Nwana [62]).

The first stage of the MAS configuration process is the identification of which

modules can perform the required assembly processes. This matching activity

provides the first clear need for semantic notations, the assembly processes (or

Skills). The assembly processes need to be matched between the configuration

requirements and the equipment modules, as such both need to use the same

terminology for each assembly process. The existence of taxonomy for the assembly

processes is also quite important, since it provides a wider matching based on

hierarchical definitions (Lohse [44]). This also enables the concepts of elementary

assembly processes and composite assembly processes(Onori et al. [7]; Lohse [44]).

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

59

The notion is quite simple; composite assembly processes are composed of lower

level assembly processes. This also provides a basis for a better matching between

the system requirements and the equipment modules.

The second need for semantic notation is the specification of interfaces for

establishing connections between equipment modules and also between the assembly

processes. The configuration of MAS will require modules to be connected with

others, as well as assembly sequences which require connections between different

assembly processes. The identification of what can be plugged together can only be

determined if a common terminology exists for the definition of interfaces.

It is clear from the above discussion that the terminology for the skills and interfaces,

needs to be defined in a uniform manner to enable the creation of the configuration

methodology. As such the creation of two types of repository, an Interface Library

and an Assembly Process (Skill) Library is being proposed (as showed in Figure

4.2).

4.2.2 Common Taxonomy and Terminology

The descriptions provided so far for the assembly processes do not cover any sort of

classification. Without a clear assembly process classification it would not be

possible to address elementary and composite assembly processes (Lohse [44]). An

assembly process classification establishes a hierarchical view which enables high

level assembly processes that can be composed of lower level assembly processes.

The established hierarchy allows for semantic reasoning because it gives bigger

depth to the information. If, for example, an assembly process A is hierarchically

above assembly process B, then if A is required then B can also be used. This depth

contributes to an easier establishment of system configuration requirements,

providing the mechanism to define high level assembly processes. The high level

definition of assembly processes simplifies the requirements and leaves more leeway

for the configuration methodology to provide the low level solution. In (Lohse [44]),

an assembly process classification is proposed for modular assembly system fitting

the requirements of the configuration methodology. However, this classification has

a limitation, namely it does not cater for how processes do or do not affect the

product. The way the product is affected is quite important for the assessment of

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

60

certain MAS characteristics, namely repeatability and accuracy. Therefore, it is

proposed in this work an extension of the characteristics for reasoning about how

processes do or do not affect the product, and also the inclusion of MAS

configuration characteristics. These extensions will not change the core of the

classification, but a new classification is introduced in the form of an attribute that

establishes information to allow for repeatability assessment by the configuration

methodology. As such, the use of a high level process definition, which is able to

represent a large number of sub processes with similar characteristics, has been

proposed. The following classification of product relevant process types has been

identified and proposed in (Ferreira et al. [128]):

· Qualifying Process: Sensing processes, vision systems, etc, that enable the

compensation of stack up errors.

· Fixating Process: Processes that attach two or more components together,

which will result in the inability to compensate for the current errors.

· Decision: Processes that require certain thresholds, thus providing a certain

guarantees to the product characteristics.

· Other Process:

o Compensate Process: This is a characteristic that each process has and

provides the possibility of classifying the processes that are able to

compensate for error based on their specificity, namely certain types of

gripping.

o Non-Compensate Process: All other processes that do not fall in the

previous category are considered error stack up processes.

This work builds on the work of (Lohse [44]) in this domain, which provides the

base terminologies and classification of assembly processes. This work proposed the

enhancement of Lohse’s classification by providing the previous extra attributes to

the classifications. These attributes provide a functional meaning to the different

types of assembly processes, which enables the assessment of MAS characteristics

for a given configuration. The characteristics that can be assessed are the

repeatability and accuracy which will require the creation of dedicated synthesis

methods, which provide detailed repeatability and accuracy results which in turn can

be used for the decision making process of the configuration methodology.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

61

4.2.3 Definition of Assembly Process Skills Library

The creation of a repository with common terminology and clear taxonomy is

fundamental for the operation of the self-configuration process. The need for a

repository is supported by the nature of the modular concept. The nature of the

concept allows for a constant update of new modules that might require new

assembly processes due to new technological advances. The only way to allow for a

scalable self-configuration method is to provide a way of describing new concepts in

an understandable fashion. The purpose of creating a repository is to provide

scalability to the self-configuration method by creating a placeholder for assembly

processes that is common across all module vendors and system integrators. This is

supported by the impossibility of providing a list of all existing and future assembly

processes. This also highlights the importance of classification of assembly

processes, since it provides a high level placeholder that facilitates the understanding

of newly introduced assembly processes. It is proposed, that providing a transparent

structure for the definition of assembly processes that can be used for current and

future assembly process definition, will provide future scalability of this

configuration approach.

The Assembly Process Library is defined as the repository that contains all possible

assembly processes considered for the configuration. Thus, if a given assembly

process does not exist in the repository, it is not possible to be defined as an attribute

of an equipment module or include it in configuration requirements.

4.2.4 Standardized Assembly Process (Skill) Descriptions

The description of an assembly process is in line with the new IEC 61499 Standard

which provides an object oriented control structure and reuse of program logic for

PLC’s. The standard is applicable to the system control, which consist in the

operation of the MAS. This is the step that occurs after the process of configuration.

The use of this function block concept in the configuration methodology allows

direct mapping between the configuration of the system and the control of the

system. If the same function block descriptions are used both for configuration and

for control, then the setting up of the system control will be shortened. Figure 4.3

provides an overview of the conceptual assembly process block, the main

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

62

characteristics of the Assembly Process description for the purpose of configuration

are:

· The Assembly Process type – which has to be extracted from the existing list

of assembly process types within the Assembly Process Library, so it is

included in the assembly process template.

· The Control Ports – which provide control variables, both inputs and outputs,

for operating the assembly process (namely: Start, Interrupt, Finished, etc.).

These also provide the means for plugging together two different assembly

processes. This will enable the establishment of the control sequence.

· The Parameter Ports – which exist for assembly processes interactions,

providing complex data when present. A typical use of these is a force

feedback loop, where the value of the force would be passed on to other

processes via a parameter port. In other word this provides the information

flow of a given assembly process configuration.

..
.

..
.

..
.

..
.

Control Ports

(Inputs)

Control Ports

(Outputs)

Parameter

Ports (Inputs)

Parameter

Ports

(Outputs)

Assembly

Process Block

Figure 4.3 - Overview of conceptual assembly process block

The Assembly process needs to be able to encapsulate all of the characteristics, but

also to be structured in a way that can be enhanced in the future to add other

characteristics. The proposed assembly process description establishes a main node

for the assembly process, which contains a set of attributes (Name,

AssemblyProcessID and Description). The node will contain five child nodes to

provide the additional information that can be common across other assembly

processes, namely Assembly Process type, Control Ports, Parameter Ports,

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

63

Configuration Characteristics and Composed. These can be seen in the overview of

the XSD description provided in Figure 4.4.

Figure 4.4 - Overview of Assembly Process Skeleton (XSD)

The Assembly Process type is linked with the Assembly Process Library, therefore

the template will contain a list of possibilities, which restricts the choice of assembly

process type to the types that exist in the Assembly Process Library. This enforces

the use of the same terminology to define the same type of skill.

The Control Ports node contains several nodes of the type “Control Port”. This

enables the possibility of an infinite number of ports. However, at least four are

always required, namely two inputs, Start and Interrupt and two output, Finished and

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

64

Error. Each port will contain the interface information which provides the

information for the other control ports which can be plugged into the current one.

The Parameter Ports is an optional node that contains several nodes of the type

“Parameter Port”. In simple assembly processes it is expected that this node will not

exist. However, in more complex assembly processes this will be required. When this

node exists it will also require interface information for establishing to what other

ports it can be plugged into.

4.2.4.1. Assembly Process Configuration Assessment Characteristics

The assembly process description needs to contain configuration relevant

information. It has been identified in the literature that the most important parameters

for the configuration methodology are Time, Cost, Quality and Flexibility

(Chryssolouris [14]). All these aspects could be related to the assembly process.

However, it is considered that only characteristics that are intrinsic to the assembly

process should be associated with it. For the purposes of this work, flexibility has

been defined as the spare capabilities within a given system. Therefore, it is not

specific to an assembly process but rather to the non used assembly processes present

in the given system.

The Cost of the process could be viewed as a relevant characteristic, but the process

cost would have a marginal impact on the system cost. However, a system running

cost can be inferred if its cost is defined for each assembly process. This information

should be an average value by a unit of time. So, the first required characteristic of

an assembly process is “Running Cost” and is defined as:

“The average cost per unit of time to activate and run a given assembly process”

The execution of an assembly process always has a time constraint, as “Time” is

required for performing any assembly process. Therefore, “Time” is another

important characteristic that needs to be established for each process in order to

determine the cycle time of a given system. Consequently, “Time” is the second

required characteristic of an assembly process, and is defined as:

 “The average time required to perform an given assembly process”

Quality is a concept intrinsically related to the product. However, accuracy and

repeatability are assembly process characteristics which have an impact on the

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

65

quality of the product. Furthermore, these are characteristics that are related to the

defined flexibility of a system. Therefore these need to be included in the assembly

process description. To do so it is required to clarify what is the difference between

accuracy and repeatability, which can be summarized by Figure 4.5, where an

overview of the two concepts can be seen.

Bad Accuracy, Good RepeatabilityBad Accuracy, Bad Repeatability

Good Accuracy, Good RepeatabilityGood Accuracy, Bad Repeatability

Target

Accuracy

Repeatability

Figure 4.5 - Overview of Distinction between Accuracy and Repeatability

Accuracy tells us how close a measurement is to achieve its intended target. The

difference between the target and the achieved result is the accuracy of the assembly

process. Thus, “Accuracy” is the third required characteristic of an assembly process

and is defined as:

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

66

 “A numeric value that establishes the average difference between the achieved

assembly process result and its intended target”

The repeatability of an assembly process is its ability to achieve the same target in a

repeatable manner. The perfect precision is achieved if an assembly process is

capable of obtaining the same result, regardless of the number of times it is executed.

So the repeatability is the deviation obtained when performing repeatedly the same

assembly process under the same conditions. So, “Repeatability” is the fourth

required characteristic of the assembly process and it is defined as:

“The deviation of results obtain from running the assembly process under the

same conditions several times”

The configurations characteristics described should appear in the format of a

statistical distribution. This will provide better insight into the assembly processes,

allowing a more realistic description of the assembly process. This will also allow

more information for system optimization issues. The normal distribution will be

used in this work, which can be seen in Equation 1. This distribution has two

variables that enable its definition the mean value (µ) and the variance of that value

(). Thus all values for the configuration characteristics will have the following

form:

 ()

√

()

Equation 1 - Normal Distribution (Snedecor and Cochran [129])

4.2.4.2. Composition of Assembly Processes

The Composed node provides the means to define composite assembly processes.

These composite assembly processes are composed of more elementary assembly

processes. This allows for the high level definition of assembly processes and

provides the basis for combining assembly processes into new assembly processes.

Figure 4.6 provides a schematic overview of this concept.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

67

Assembly

Process

Block

Assembly

Process

Block

Assembly

Process

Block

Assembly Process Block

Figure 4.6 - Composite Assembly Process Block Overview

The composite assembly process also need to cater for the connectivity issues that

arise from being composed of elementary assembly processes. Therefore, there is a

need for establishing how to connect the control and parameter ports. Another

important aspect to consider is the possibility of a composite assembly process

having alternative realizations. This should be an element that the description should

also cater for. The Composed node will contain several composition nodes to deal

with the alternatives possible. These will in turn contain assembly process nodes, and

a connection node that establishes which port nodes connect to one another. Figure

4.7 presents that XSD structure that incorporates all the description and enables the

definition of composite assembly process blocks.

This provides the model for the definition of templates that can be stored in the

Assembly Process library. Once stored these can be retrieved and used by the actors

involved in the configuration methodology.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

68

Figure 4.7 - XSD Structure that Enables the Definition of Complex Assembly Processes

4.2.5 Definition of Standard Interfaces Library

An interface is defined as a combination of two ports, either physical or logical, that

can be paired together and establish a connection. The definition of interfaces stands

at the core of the modular assembly system concept. Interfaces will establish what

may be plugged together and what may not. Therefore, the first step is to clarify the

origin of the interfaces in MAS, in order to be able to classify them. In MAS there

are equipment modules, which will require physical interface descriptions, and

functional blocks, which will require logical interfaces.

The assembly process is a functional block with interfaces quite distinguishable from

the equipment module interfaces. The assembly process describes a capability, which

description includes, as previously mentioned, ports that allow for its operation. The

interface definition will consist of a pair of ports of the same type. Therefore, each

port is required to have a port type which is extracted from the interface library. In

addition, the interface library will have at least two port types for each interface.

The equipment module interfaces follow the same principle as the assembly process

ones. These interfaces are defined as the combination of physical ports. So, each

physical port will require a type which is established in the interface library with

each interface having at least two ports.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

69

The standard interface library will be a repository of defined interfaces. These

interfaces will be described in a semantic relevant pre-existing XML structure which

allows for its understanding by the self-configuration methodology. An interface is a

logical association of two or more assembly process ports which can be plugged

together. It is clear that an interface must have at least two ports to fulfil the

definition. However, this does only set a lower constraint for the definition. The

model allows for the definition of complex interfaces that require the existence of

more than two ports. It is envisioned that in some complex cases, both physical and

logical interfaces might require this possibility.

The main constraint is that an interface requires all ports to exist in order to be a

valid interface. As a result, if there are more than two ports present in the definition

of an interface, all must be present when considering a configuration. However, this

constrain does not mean that alternative interfaces containing the same type of ports

in different numbers cannot exist. On the contrary, it is expected that some port types

might be combined to form a lot of different interfaces. Another constraint is that no

two interfaces can exist if they contain the same port types. This is a logical

constraint to prevent the explosion of duplicate interfaces. Figure 4.8 provides a

conceptual overview of possible interfaces given a set of port types.

Figure 4.8 - Conceptual Representation of Port Types and Resulting Interfaces

There are two types of interfaces for assembly processes, the interfaces that target

control ports and the interfaces that target parameter ports. In both cases the structure

of the interface is the same. On the physical side of the modules, there is only one

interface type, the equipment interfaces. The equipment interface type is the one that

Port Types Interfaces

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

70

contains the pair of ports related to physical equipment modules. These are the

interfaces responsible for the physical connections between different equipment

modules. For completeness of the model they include not only geometry connection

but also equipment required interfaces, namely for electric, hydraulic or pneumatic

connections. However these aspects will not be catered for in the self-configuration

methodology, since for configurations purposes the interface and its port composition

is enough to guarantee plugability.

The proposed XSD structure in Figure 4.9 is composed of the same port types as the

interface. The port types need to have their own characteristics, namely name, port

type and description. This caters for searches on interfaces that contain a given port

type. It is proposed that the interface node contains its own attributes, name, unique

ID and Interface Type. The Interface type allows for a faster search within the

repository. The proposed types are based on the identified connectivity requirements,

which are summarized into three types of interface, namely:

· Control Interfaces – The interfaces that contain only control ports.

· Parameter Interfaces – The interfaces that contain only parameter ports.

· Equipment Interfaces – The interfaces that contain physical ports of the

equipment modules creating the pair that enables their connectivity.

Figure 4.9 - Interface XSD description

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

71

4.3 Equipment Module Model Description

The equipment module model defines the relevant module characteristics which need

to be captured. The configuration methodology requires an equipment description

that is transparent and understandable. The reasoning behind this requirement is the

need to identify what information is necessary in order to establish a configuration.

This information also needs to be structured in order to become semantically

understandable. The XML format is also used here for the equipment module

description, thus its structure will be provided through an XSD file.

The definition of the equipment module capabilities is central to enable the matching

of available capabilities against required ones. The definition of the module

capabilities allows the configuration method to identify those set of modules which

have the capability to fulfil the given assembly process requirements. Therefore, this

information needs to be contained in the equipment module description. In addition,

the assembly processes need to follow the established standard descriptions. For this

reason, the equipment module description will simply include a node for capabilities,

where you can set a number of specific assembly processes that follow the

classifications and terminologies established before in section 4.2.4. The use of

overall classifications and terminologies guarantees the ability to compare

capabilities between different module vendors, and more importantly to map these to

established set of requirements, which is the trigger of the configuration process.

The equipment module physical descriptions required for the configuration are the

physical ports. This work focuses solely on the connectivity aspects, thus other

physical consideration are not covered here. It follows from this that physical ports

are the only physical description required which needs to be in line with the standard

interface definitions. For completeness of the model it was included the ability to

define reference coordinates for the physical ports. This aspect is not used in the

configuration process since the assessment for plugability can be made by checking

if a combination of ports has a established interface. The ports also provide

characteristics of type, namely:

· Physical Fit – Ports that provide only physical connections with other ports.

· Product Fit – Ports that provide connection for interactions with the product.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

72

These port types are quite important to maintain, since only the physical fit is

considered to have a standard interface description. The product fit is an open port

that is not considered as an interface in this work. Nevertheless, the model allows for

this to change in a future enhancement of the configuration methodology that

includes the product descriptions. Figure 4.10 provides an example where a gripper

is attached to a robot to establish a physical fit, while highlighting the importance of

the product fit to achieve valid configurations.

Product

Gripper Module

Robot Module

Physical Fit

Product Fit

Figure 4.10 - Example of Equipment Connectivity Issues

The XSD for the physical ports is established based on what has been described and

can be seen in Figure 4.11.

The final required description for the equipment model is business information. The

crucial information required for the configuration methodology in this section is cost.

The equipment modules description has to contain what the cost of the module is.

However, this is not considered to be a straightforward number. The concept of MAS

presents two different business solutions for cost, the buying of the modules and

leasing of the module (EUPASS [4]; Maffei [130]). This needs to be described in a

way that caters for the three possibilities that arise (just buying, just leasing or both).

The lease option also requires an extra definition for the availability of the module.

This characteristic can also be used for identifying available and unused modules for

reconfiguration purposes.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

73

Figure 4.11 - Physical Port XSD Description

 The delivery time is an important consideration for cost, especially taking into

account the reconfiguration of a system. So, it is established as the average time to

deliver the specified module. Another aspect is the preferable collaboration, which

contains information to drive equipment modules to interact with preferred modules

suppliers. This is introduced because industrialists tend to cooperate with one another

within groups, which they want to maintain. Thus, when present, this definition

would force configurations to use preferred supplier if the configuration solution is

possible using preferred modules. The description also allows for an added value to

the collaboration, meaning it is established a percentage to use to discount the cost.

This is an important characteristic that is expected to be used when module supplier

has several types of modules. The final attribute of the business information

establishes the owner of the module. This information is important to determine the

source of the module, but also in the case of reconfiguration it allows the method to

readjust the values if modules are already present.

The final node within the equipment module is the configurability strategy, which is

a simple weight matrix that attributes which configuration indicators are more

relevant to the equipment module (Figure 4.12). To understand the proposal of this

node one needs to look at the previously defined configuration attributes. It is clear

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

74

that some modules will be cheaper, others more accurate, others quicker, etc.

Therefore it is only logical that module suppliers want to influence an automatic

configuration by establishing priorities among these attributes in order to increase the

chances of participating in a system configuration. This way, the module suppliers

have the ability to influence the configuration strategy of the equipment modules

playing to their strengths. It is clear that a cheap module might want to put emphasis

on this aspect to collaborate with other cheap modules. On the other hand a very

precise module might want to value this aspect more. The idea here is to provide the

module suppliers with the means to influence how their module will try to fulfil its

objective of being selected into a MAS configuration. The total value of the sum of

all the elements of this matrix is always one.

[

]

Figure 4.12 - Weight Matrix for the Configuration Attributes of the Equipment Module

In summary the equipment module XSD contains all the described characteristics,

divided into four main nodes, namely Module Capabilities, Module Structure,

Business Information and Configuration Strategy. An overview of the equipment

module XSD is provided in Figure 4.13.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

75

Figure 4.13 - Equipment Module XSD Overview

4.4 Assembly System Requirements

The assembly system requirements define the expectations for the assembly system.

It is important to differentiate these expectations into two groups, the required

capabilities and constraints of the system, and the assembly system targets that will

drive the configuration process. Based on literature the main targets that the

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

76

configuration methodology will use for establishing valid configuration are Cost,

Time, Flexibility and Quality (Chryssolouris [14]).

Generally speaking, the definition of the assembly system requirements is composed

of three parts. The first is the definition of the values and targets for the wide system.

This will contain the information for system validation, as well as the optimization

information. The second is the physical requirements for the system. This will

provide all the system information, namely constraints on the workstations and

existing equipments. The third and final part is the assembly processes that the

system is required to perform. This defines the required capabilities of the system in

terms of assembly processes.

The XSD that provides this structure will contain the three main nodes, plus some

attributes, namely Name, unique ID and description. Figure 4.14 provides the

overview for the assembly system requirements, which will be detailed in the

following sub-chapters.

Figure 4.14 - Assembly System Requirements XSD Overview

4.2.6 Assembly System Targets

The assembly system targets node contains all the overall targets for the system. In

this node the overall information of the system is defined. This information provides

the basis for the assessment of valid solutions, namely the values set by the different

targets. The XSD diagram Figure 4.15 shows how the information is structured and

arranged for the purpose of defining the assembly system requirements.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

77

The system cost has been discussed previously, and it was stated that the two options

of assembly system are buying a system or leasing a system. This is the first decision

that the system integrator needs to supply for the configuration methodology to

operate. The cost information on this node will define the configuration methodology

targets. Because cost is an indicator that is expected to be minimized, any solutions

that go above the target will be discarded. Therefore, the cost establishes a maximum

threshold for the system cost.

Figure 4.15 - Assembly System Targets XSD Overview

Time is another central block for the operation of the configuration methodology.

Time is divided into two categories, commissioning time and cycle time. The

commissioning time simply states by when the system needs to be available. This

information is important since some equipment modules might be available in the

near future, but not at present. The cycle time is defined as the time required for

running the required processes one time. It is important to note that the possibility of

defining an overall cycle time does not prevent the system integrator from defining

specific cycle times for individual required assembly processes. However, it is not

expected that all required assembly processes will contain this information and thus,

the overall cycle time is crucial for establishing a target for the configuration

methodology. In summary, time information provides two crucial requirements, one

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

78

for the commissioning time and the other for the overall cycle time. The cycle time

and commissioning time are similar to cost, so they establish a maximum threshold

number that cannot be broken.

The quality indicator, or as defined previously the accuracy and repeatability of a

workstation, is related to the definition of the required assembly processes, and will

be described in the subsequent chapters. Nevertheless, similarly to the time indicator,

it is expected that an overall system accuracy and repeatability needs to be present in

the overall system description. The overall system accuracy and repeatability are

indicators that are defined based on the allowed difference between the system

targets and the system performance. These indicators are at their best when their

value is zero, so similarly to the other indicators these also establish a maximum

threshold.

Flexibility has been defined as the spare capacity of the system and it does not need

to be defined in the assembly system requirements as a value. This characteristic can

be inferred based on its definition. Extra capabilities are viewed as positive if it has a

minimum impact on other characteristics.

In the assembly targets node there is a weight matrix that defines the importance of

each of the indicator for the given required assembly system. These indicators will be

used for the assessment of the different configurations, providing the most suitable

solutions for the required assembly system. These are the same as for the equipment

module descriptions seen in Figure 4.12.

4.2.7 Physical System Requirements

The physical system requirements are designed to provide physical guidelines for the

configuration. The configuration methodology requires the definition of workstations

to predetermine the workspace for the system. Therefore there is the need to pre-

establish the number of workstations. The requirements catering for such definition

also allow for establishing pre-existing modules for the configuration. This is viewed

to be the case in reconfiguration scenarios, where a full system can be described

minus the missing capabilities.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

79

The proposed physical system requirements model is comprised of information for

both configuration but also reconfiguration. It is expected that the definitions for

configuration can be quite high level descriptions, however, the system

reconfiguration needs to contain the existing configuration, which needs to provide

specific equipment module information. Therefore, the model needs to provide a

structure that enables definitions at all levels.

It was stated above that the model follows a hierarchical structure, from system to

equipment module. Systems contain workstations and workstations contain

equipment modules. Each of these is considered to be a main node, which can

contain several instances of its subsequent node. For each of these nodes have their

own characteristics, namely their description, unique ID and name.

The second node will contain the port description, establishing the connectivity

possibilities for each node level. These ports are mere lists of what the expected

plugability options are. These options will be used in the third node which contains

the connections. The port descriptions will have a name, a unique ID, an interface

type and a description. The connections node establishes the expected connections

using the established ports. This node will contain several connection nodes, which

in turn contain which ports plug to each other. This enables the possibility to

establish constraints for the configuration solution, if the system integrator requires

certain modules to be connected in a certain way.

It is important to note that the established connections in some cases are across

different levels, i.e. between system and workstation or workstation and equipment

module. Figure 4.16 provides a conceptual example of this, by describing the

conceptual system level with three workstations. One of the workstations is pre-

existing, and therefore has specified its equipment modules. This example is missing

the necessary feeding module, which means the configuration methodology will be

required to complete this workstation. It is also important to note that defining

equipment modules is optional. The example also allows for a better understanding

of how the outer ports of each block needs to be connected to its inner blocks to

describe how the system looks. Finally, another important remark is that the

described ports are only those that have an interface, meaning that the product related

ports are not present in this diagram.

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

80

The physical constraints for the configuration and reconfiguration method are

provided in the Requirement Level attribute in each level. This attribute determines if

the node is optional, mandatory or advised. This is mostly intended for the equipment

module level but it is valid for the other levels. In the equipment module level it

allows for forcing specific modules, advising then, or simply inform of availability.

Figure 4.16 - Example of Conceptual Physical System Requirements

The last node, the spare equipment modules, provides a list of available equipment

modules which targets the system reconfiguration without any constraint on where to

place them. The idea is this is a list of available modules in a given site, which will

obviously have low cost since they are not required to be bought. This will provide

them with an incentive for use whenever possible in the configuration methodology.

Figure 4.17 provides the discussed aspects modelled into a XSD file overview of the

model.

Conveyor

Module

System

Testing

Station
Insert Station

Table

Feed

Station

Male Port (Output) Female Port (Input) Neutral PortEquipment

Ground

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

81

Figure 4.17 - Physical System Requirements XSD overview

4.2.8 Assembly Process (Skills) Requirements

The assembly process requirements are the representation of the system desired

capabilities. The assembly processes should reflect the needs for the assembly of a

given product, or set of products. This work does not focus on the product side,

therefore it is assumed that all the relevant product information is included in the

assembly process requirements.

The assembly process requirements provide two sets of high level information for the

configuration methodology. The first is the required system capabilities which are

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

82

required for the assembly of a product and which need to be present in the assembly

system. The second is the assembly processes connections, which defines the

sequence of the required assembly processes. The overall XSD model view of the

assembly process requirements can be seen in Figure 4.18.

Figure 4.18 - Assembly Process Requirements XSD Overview

The required system capabilities need to be matched with the capabilities of the

equipment modules, therefore these have to be instances from assembly process

definitions from the assembly processes library. Therefore, this definition follows the

same terminology as the one used to describe the equipment modules. The control

ports and parameter ports need also to be instantiated to provide the inputs and

outputs for the connection nodes. These ports in turn allow for the definition of the

assembly processes sequence in the connections node. It is important to note that

these port definition are expected to be the bare minimum, however the model caters

for a full definition for completeness.

The assembly process requirements allow for the definition of composite assembly

processes that are composed of elementary assembly processes, allowing for the

encapsulation of complex assembly processes in the requirement. This is viewed as

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

83

important for the establishment of constraints on what is the composition of high

level assembly processes. Toward that end the “Composed” node is proposed. This

node consists of two other nodes, the assembly processes and the connections. The

assembly processes node describes the composition of the assembly process by

defining its containing assembly processes. The connections node establishes

connections between the control ports of these assembly processes. This follows the

same concept that was presented in Figure 4.6, where the need for a clear

establishment of connections is crucial for the concept to work. Without the

connections, it would be impossible to have complex assembly processes and also no

process sequence. It is important to note that in all requirement definition there exists

a high level assembly process that contains all other assembly processes.

Finally, this model needs to provide a relation to the physical system requirements to

establish where the assembly processes are expected to be performed, so the

“Belongs” attribute is introduced. This simply provides a relation through unique ID

with the system, workstation or equipment module responsible for the assembly

process. Figure 4.19 shows a conceptual example of this relation.

Measuring

Module
Conveyor

Module

Testing Station

Table

Belongs

Transport Measure Transport

Testing

Belongs

Belongs

Belongs

Control Port Parameter Port

Figure 4.19 - Conceptual Example of Assembly Process and System Relations

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

84

4.5 Assembly System Configuration Output

The final piece of the model definition is driven by the need to present the results of

the self-configuration methodology. However, there is no need for a complex

definition of the output of the methodology since the established structures already

provide all the necessary structuring for defining a configuration file.

The system requirements model presented in Section 4.4 provides the perfect base

structure for this. As it was discussed in the previous chapter the structure has three

main elements, the physical assembly requirements, the assembly process

requirements and the assembly system targets. The physical assembly requirements

allows for the definition of the system to the equipment module level, which in the

requirements is optional. Nevertheless, the structure is there to define a complete

physical configuration. In the case of the output configuration description this node

would be the same but called physical assembly. Similarity, the assembly process

requirements also allows for the definition of complete assembly process sequences,

thus the use of the same structure is only logical. Again the node is renamed to

assembly process for clarity of the model. Finally the assembly system targets define

the information that enables the choice of assembly system configuration. Thus the

same values will need to be provided for the assessment process, therefore the same

structure can be used.

In sum, the assembly system requirements model is more than suitable for the

definition of a configuration output file with the mentioned minor changes, since it

provides the base structure for the definition of the whole system.

4.6 Chapter Summary

The focus of this chapter was on the formal definition of the model developed to

enable the self-configuration methodology. The proposed model enables the

description of information to be introduced in the proposed self-configuration

methodology. Moreover, a common terminology is presented and a structure to

maintain the commonalities across all descriptions is proposed. A taxonomy was

also identified for MAS which is suitable for the configuration methodology, and it

was proposed some enhancements to cater for the assessment of MAS quality

Chapter 4 – Model for Agent-Based Self-Configuration of Modular Assembly Systems

85

characteristics. An equipment module definition and structure is also proposed as

well. Finally a clear assembly system requirements definition and the output of the

methodology are presented.

This chapter also establishes some of the assumptions for the use of this model by the

configuration methodology, such as the disregard of the product for the system

configuration, the need for the use of a global terminology, the required inputs of the

configuration methodology and their structure and the definitions of the used

terminology. Finally, it offers the means for introducing information into the

configuration methodology, namely through the creation of XML files that follow

the described specifications.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

86

5 Agent Architecture for

Distributed Self-

Configuration Methodology

for Modular Assembly

Systems

Figure 5.1 - Overview of Self-Configuration Methodology Solution

Self-Configuration Methodology

Virtual Sandpit

Agent Environment

Requirements Agent

Equipment Module Agent

Performance Simulation Agent

MAS Expert Agent

Equipment

Module

Description

S
y
s
te

m

R
e

q
u

ir
e

m
e

n
ts

Equipment Configuration

Base Table

Glue Dispenser

Transport
Apply

Glue

Feed
Pick

Up

Place Cure Transport

Manipulator B

ConveyorFeeder

Assembly Process Configuration

System Configuration

System

Configuration

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

87

5.1 Introduction

In this chapter, a new multi agent architecture for the self-configuration of Modular

Assembly Systems (MAS) will be presented. The chapter describes the followed

approach to create the agent architecture, while also providing the detailed

descriptions and models of the proposed architecture. The proposed agent

architecture will provide the basis for the creation of an agent environment that

reflects the concepts of MAS. This enables the distributed decision making necessary

to enable the bottom up approach to establish an automatic distributed self-

configuration methodology.

The nature of the MAS paradigm with its focus on clear functional decoupling of

equipment module functionalities and standardised interfaces for interchange ability

has opened the scope for automatic configuration methods (EUPASS [4]). It

becomes possible to clearly formalise the functional capabilities and connectivity

constraints of the available modules, hence allow the mapping of process

requirements against available capabilities to synthesise suitable assembly system

configurations. The design of MAS is therefore essentially a conjoint equipment and

assembly process configuration problem at several levels of granularity with

equipment modules and their functional capabilities (assembly processes) as the

elementary building blocks.

The number of possible combinations of modules required for an assembly system

solution depends on the number of available modules, their connection constraints

and the complexity of the given assembly process requirements. The combinations,

even for relatively small problems, become quite large making configurations based

on exhaustive enumeration practically infeasible. For this reason, an appropriate

MAS configuration methodology needs to more goal-oriented. Furthermore, any

method should be able to exploit the specificities of the MAS configuration problem

to reduce the search space. Most MAS solutions described in literature exhibit a very

low level of complexity. This can be split into a number of loosely coupled sub-

problems with corresponding solutions making them hierarchical in nature.

Additionally, elementary equipment modules often have specific predefined roles

within a solution and can be classified accordingly, reducing the possible number of

candidates for specific aspect of a configuration. This chapter will reflect on all these

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

88

aspects in order to provide a coherent agent architecture which serves as the basis for

the self-configuration methodology.

While heuristic search and linear programming methods are able to solve these kinds

of configuration problems, they require quite complex models and are difficult to

maintain. These solutions are also very specific and non scalable to a domain that is

constantly evolving. Furthermore, they apply a top down approach which only takes

limited to no advantage of the hierarchical nature of the problem. Therefore, this

work proposes a multi agent solution for the bottom up solving of this configuration

problem maximising the parallel computation and taking advantage of latest

negotiation protocols to achieve a goal oriented behaviour of the overall

configuration environment.

5.2 Agent Architecture Requirements and Objectives

The design of multi agent environments is a problem extensively covered in the

literature, covering a wide range of problem domains (Shen et al. [1]). The variety of

problem domains poses a challenge for a widely acceptable methodology for the

definition of such systems. Nevertheless, several methodologies have been presented

each one arguing their strengths. After a literature review the GAIA methodology

(Zambonelli et al. [123]) was identified as the most promising for the configuration

problem because it provides guidelines for the system definition which are flexible

and provides enough leeway for heuristic inputs in the definitions.

The GAIA methodology identifies the clear definition of the system requirements as

the first step for a definition of a multi agent system. In the previous chapter the

MAS requirements and the equipment module description were identified and

modelled as the inputs for a self-configuration methodology. These established

inputs allow for a clear mapping between what exists in the equipment module

repository and the requirements for the new systems. In addition, the definition of the

requirements as defined in Chapter 4, caters for both configuration and

reconfiguration problems. Figure 5.1 clearly shows the requirements needed as

inputs, namely in the form of XML files, which have been described in detail in the

previous chapter.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

89

The following steps of the GAIA methodology are analysis, architectural design,

detailed design and implementation. The analysis of the inputs was presented in the

previous chapter, while the problem analysis will be performed across this chapter.

5.3 Agent Architecture

The design of the agent architecture based on the GAIA methodology first requires

an analysis of the problem, namely the clear definition of the objectives and targets

that the agent system has to address. The first step is the understanding of the

requirements for such system, namely the identification of what needs to happen and

what information is required, which has been done in the previous chapter.

Therefore, the established requirements are already influenced by the objectives of

modular assembly system configuration and reconfiguration. The main objective of

the system is to provide valid solutions for the configuration and reconfiguration of

MAS. What this work proposes is the creation of an agent environment that through

collaboration between agents is able to achieve this objective.

The achievement of valid solutions, e.g. logical and plausible configuration

combinations, is the first objective. Its achievement alone however would not grant a

big step forward compared to current state of the art solutions. Valid solutions can be

achieved with the current manual configuration tools. However, these solutions tend

to use only a restrict set of modules, which might not be the best set, but a valid set.

Also, the modular concept is expected to produce an increasing number of modules

in the future, making the manual configuration untreatable if all modules should be

considered. Therefore, the need for an automatic solution that also targets the best

system configuration is critical.

 As the need for a solution that targets the best system configuration has been

identified, it is crucial to define what constitutes the best solution. In the

configuration of MAS the best solution will vary depending on the individual

performance objectives for a system. In fact, it would be impossible to determine the

best. Nevertheless, what can be defined is a best solution that is based on globally

accepted performance characteristics for assembly systems. These have been

identified and described in the previous chapter.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

90

The existence of performance characteristics does not establish which are more

relevant, and which are less relevant. In fact, the value of these parameters varies

depending on the person providing an estimate. This is the reason for the non

existence of an absolute best configuration. Therefore, it is proposed that the

different actors involved in the system configuration can provide inputs for

establishing what qualifies as the best configuration. This is catered for in the model

provided in the previous chapter and takes the form of a weight matrix.

The ultimate decision for choice of the best configuration will always reside with the

system integrator. What the proposed system will provide is a list of the top

configurations based on pre-established weights for the performance characteristics.

The system integrator defines these weights, but has the freedom to choose from any

of the available solutions. This is viewed as an important aspect of the self-

configuration methodology to ensure the transparency of the method for their users.

The module suppliers are the other user that might have some expert knowledge on

which performance characteristics should be more valued for their specific module.

The idea is to capture their past experience in what characteristics made them more

successful (sold more equipment modules). As such, each equipment module

description contains a weight matrix that ultimately will determine the configuration

decision. It is foreseen that in the future these can be readjusted based on prior failed

or successful configurations. The detailed strategies for the use of these aspects will

be contained in the agent methods in Chapter 6.

In this chapter the agent model will be described, as well as the detailed agent

definitions, the organizational model of the agent architecture and the definition of

the agent interactions, which is a crucial step for the achievement of a distributed

decision making solution.

5.3.1 Agent Model Overview

The main common denominator of all configuration design methodologies including

MAS is the need to elicit and maintain the system requirements independent of the

proposed solution alternatives (Ferreira et al. [131]). Consequently there is a need

for Requirements Agent which is able to provide clear objectives to those agents

involved in the configuration process. Furthermore, they need to be able to represent

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

91

the interests of the customer/system user to validate possible system configurations

against the original requirements. The need for assessment capabilities in this agent

is justified by the possibility of a big list of configuration solutions, which will be

filtered and ranked by this agent based.

Another important aspect within this problem domain is the equipment modules. It is

proposed that each equipment module should be represented by Equipment Module

Agents that have a detailed understanding of the module’s capabilities and

behaviour, which is viewed as crucial to enable the concept of self-configuration.

The Equipment Module Agents have to play a key role in the bottom up approach

to the MAS configuration process, because they are representations of the equipment

modules enhanced with methods to enable the collaboration with other agents to

achieve MAS configurations. Each Equipment Module Agent should only be aware

of its own capabilities and only should have a very limited understanding of the

surrounding world to maximise the adaptability and scalability of the framework.

This provides the ability to introduce new modules, or remove them without the need

to adjust the self-configuration methodology. Consequently, there needs to be a

mechanism which validates the logical consistency of the agreed interactions

between collaborating Equipment Module Agents. An agent system is in itself a

modular system where new agents can be introduced as long as they adhere to the

agent architecture rules. This characteristic allows the creation of interactions with

expert agents that can be enhanced in the future to cater for the changes in the

constantly evolving domain of MAS (Onori and Oliveira [18]).

The role of a mediator has been introduced to the agent architecture to create a

configuration assessment mechanism. This role will be fulfilled by an MAS Expert

Agent which is responsible for assessing the logical conditions of the configurations

based on its internal knowledge model. The need for the introduction of these

concepts into a separate agent is supported by the nature of this knowledge, which is

in constant evolution. If this knowledge was built in to the configuration methods,

e.g. the internal decision making models of Equipment Module Agents, future

changes might require a complete change of the configuration methodology.

Therefore, it is proposed that this knowledge is decoupled into the MAS Expert

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

92

Agent, which can be changed or even replaced in order to allow the evolution of this

knowledge.

The MAS Expert Agent is expected to change, however its interactions in the agent

architecture will not. This strengthens the need of clear communication and iteration

protocols which are required to work in the future iterations of this agent. The

general premise to establish an interaction is its need, thus the question is which

agent or agents require this expert knowledge. At first glance both Requirements

Agents and Equipment Module Agents can benefit from access, but a closer look

shows the redundancy of establishing interactions for both. The requirements could

be extended by the MAS Expert Agent to contain extra constraints for the MAS

configuration. However, this would not include equipment module specific

constraints, therefore the Equipment Module Agents will require an additional

interaction with the MAS Expert Agent, regardless of prior interactions with the

Requirements Agent. On the other hand if the MAS Expert Agent only interacts

with the Equipment Module Agents, the extension of the requirements will occur as

part of the configuration assessment. Therefore it is proposed that the MAS Expert

Agent only interact with the Equipment Module Agents for validating

configuration that fulfil the requirements as they were set.

This architecture will potentially provide a very large number of possible solutions.

Some method for early evaluation of the likely success a consortium needs to be

available to reduce the computation effort required. Ideally, this evaluation should be

synthesised from the actual performance characteristics of the modules. To provide

some bases for early comparison, it is proposed that the Equipment Module Agents

deploys Performance Simulation Agent a simulation environment. These agents

represent the physical and process capabilities of the modules and dynamically

interact with each other to determine the resulting behaviour and performance

characteristics of a consortium. The information provided by these agents is used for

the final decision of which configuration is better. The decoupling the simulation

process from the Equipment Module Agents is justified by the computer intensive

task that configuration methodology already is. Furthermore this decoupling provides

the means for equipment suppliers to supply this computational effort as a service,

which reduces the computational requirements on their clients, the system

integrators. In addiction it is envisioned that each Equipment Module Agents will

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

93

run multiple simulations, therefore the use of distributed computing is seen as the

best option. This vision was supported and generally accepted within the EUPASS

consortium (EUPASS [4]).

The organizational structure for these agents is based on the agent-roles discussed

above. The Requirements Agent is hierarchically above the Equipment Module

Agent, since it triggers the beginning of the collaboration process and it terminates it

by making a selection.

The Performance Simulation Agent is hierarchically below the Equipment

Module Agent, since this agent is the only one with the information required to

deploy it. The MAS Expert Agent is on higher level from the Equipment Module

Agent since it can provide a global view of the configurations. An overview of this

can be seen in Figure 5.2.

Figure 5.2 - Agent Architecture Class Overview

The existence of different agent types emphasises the need for clear separation of

levels. In the proposed agent model there are three clear tiers. The first tier is the

triggering configuration tier where the Requirements Agent sits. The second tier is

collaboration establishment tier, where the MAS configurations are established. This

tier is populated by Equipment Module Agents and MAS Expert Agents. The final

tier is the virtual sandpit tier, where the Performance Simulation Agent are

deployed to assess performance characteristic of given configurations. The proposed

three tier structure requires some decoupling of agent roles, particularly across tiers,

for a clear architecture design.

+Advertise new requirements()

+Assess configuration proposals()

+Suply list of interested agents()

-Assembly Process Requirements Description

-Equipment Module Constraints

-Economic Constraints

Requirements Agent

+Establish collaboration()

+Assess interest in requirements()

+Deploy simulation agents()

+Establish formal collaboration()

+Evaluate collaboration()

+Establish unique collaboration()

+Advertise requirements()

-Equipment Description

-Equipment Constraints

Equipment Module Agent

+Validation Assessment()

+Request Performance Assessment()

-Global understanding of MAS

-Knowledge of Configuration Patterns

-Knowlewdge of Performance Patterns

MAS Expert Agent

+Simulate collaboration()

+Process inputs()

+Collaborate to optimize configuration()

-Capability Model

-Behaviour Model

Performance Simulation Agent

System Integrator

Embedded MAS Expert Knowledge

Internal Models Influenced

by Equipment providers

Customers Requirements

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

94

All agents have to be able to communicate, which is an intrinsic characteristic of

agent technology. However, the agents will disregard communications that are not

modelled in this chapter.

5.3.2 Agent Organizational Model

The proposed multi agent environment should be seen in three tiers which provide a

clearer picture of what occurs during the configuration process. In addition to this

clarity this three tier structure also reflects the existing hierarchies between the

different actors. Figure 5.3 provides an overview model for the agent environment.

Figure 5.3 – Overview Model of Agent Environment

The first tier represents the separation between the MAS requirements established by

the system integrator and the equipment modules agents (representations of the

equipment modules) that will drive the configuration process. The communication

from the first tier provides the configuration requirements, which are the trigger of

the configuration methodology. As such this tier only contains one agent, the

Requirements Agent.

Virtual Sandpit

Agent Environment

Tier 1

Tier 2

Tier 3

Requirements Agent

Equipment Module Agent

Performance Simulation Agent

MAS Expert Agent

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

95

The second tier is created to cater for the decision making processes involved in the

configuration methodology. In this tier Equipment Module Agents react to

advertised requirements and try to form collaborations that represent valid

configuration that fulfil the requirements. The interaction with MAS Expert Agent

occurs also here and is viewed as added value to establish better configurations.

The final tier is created to have clear separation of simulations and the decision

making process for establishing configuration solutions. Simulations are quite

computer intensive, therefore if included in the Equipment Module Agents the

configuration methodology would be quite slow. Thus it is proposed the existence of

Performance Simulation Agents that are able to be distributed across different

machines in order to distribute the most computer intense process. This is viewed as

a way to shorter decision times, since the results will appear faster.

5.3.3 Requirements Agent Definition

Requirements Agents are responsible for eliciting the assembly system

requirements from a system integrator and advertising them in an understandable

format to the other Equipment Module Agents. These agents will provide the

assembly tasks description to the interested agents, which entail the basic

requirements for the system.

The Requirements Agent also has to have the capability to assess the established

collaborations in order to select the most suitable assembly system. This selection is

based on the relevant assembly system aspects, namely cost, time, accuracy,

repeatability and flexibility.

Finally, this agent can also negotiate with the system integrator some trade-offs

between the established systems constraints and requirements.

5.3.3.1. Agent Role and Use Cases

The Requirements Agent sits at the first tier and stands alone, therefore a clear

separation between this agent and the other agents must be set. Firstly, it should be

clear that the roles that this agent performs are unique to this tier, since other agents

have no access to the system integrator, or can select the final configuration. This

agent is placed as a buffer between the system integrator, through the definition of

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

96

configuration requirements, and the configuration methodology which sits in the

lower tiers.

The role of the Requirements Agent needs to reflect all these considerations, but

also enable the operation of the configuration methodology. The first role of the

Requirements Agent is to trigger the start of the configuration process. This will

require the definition of a few functionalities, which will be detailed later in this

work, but the general concept is the elicitation of configuration requirements and the

broadcast of the requirements to the second tier agents, namely the Equipment

Module Agents.

The second role of the Requirements Agent is the communication with the system

integrator. This role is defined to provide methods that enable a two way

communication with the system integrator, either to inform him on the current status

of the configuration method, or to request changes to the requirements when

solutions are not possible given the existing equipment. This role enables the system

integrator to track the configuration method, and change requirements if needed. To

ensure this ability the Requirements Agent has to provide the means for a constant

update of configuration solutions by the Equipment Module Agents.

The final role of the Requirements Agent is to select a subset of solutions from the

provided solutions, that better serves the established configuration requirements, and

provide these to the system integrator for final selection. After the final selection is

performed this agent also informs the lower level agents about the decision. This

enables the Equipment Module Agents to update their internal decision making

models based on the success or failure of the configuration solution.

The use cases for the Requirements Agent provide a description for the triggering

mechanisms of the agent. These provide the input methods for triggering the

functionalities of the agent, which in turn allow the agent to perform its role. The use

cases for this agent can be grouped into two aspects, the system integrator

interactions and the equipment module agent interactions. These result in the

introduction of six use cases for the Requirements Agent. Figure 5.4 identifies

these use cases and provides the information on the actors involved in triggering

them.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

97

System Integrator

New Configuration

Expression of

Interest

Equipment Module Agent
Assess

Configuration

Resquest Update

Requirements Agent

Delete Possible

Collaboration

Add Possible

Collaboration

Figure 5.4 - Requirements Agent Use Case Diagram

5.3.3.2. Agent Behaviour Model

The Requirements Agent behaviour model was inferred from the role it has in the

multi-agent environment, but also from the tasks associated with this role. Figure 5.5

provides an overview of the Requirements Agent behaviour, which this subchapter

will detail.

The first functionality is the ability to communicate with a system integrator. This

ability enables the start of the configuration methodology, providing the means for

collecting the MAS requirements from the system integrator. It is also important to

note that the communication between this agent and the system integrator is required

throughout the configuration process to provide updates on the configuration process.

Moreover, in the case of an unsuccessful configuration, it is expected that the

Requirements Agent may relay back to the system integrator reasons for the failure.

All this can be seen in Figure 5.5, where the communication with system integrator

is present in all procedures except for the monitor configuration process procedure

that targets the Equipment Module Agents.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

98

Figure 5.5 - Overview of Requirements Agent Behaviour

The second ability that the Requirements Agent is required to possess is inferred

from its role of relaying information to the Equipment Module Agents. Before this

happens the Requirements Agent needs to assess the constraints established in the

requirements. This procedure of requirements elicitation provides the first filters in

the configuration methodology because it prevents early on configurations that are

not allowed by the requirements. The decision will be based on the business

information and the system description of the requirements XML file. If a specific

equipment module is required, that means that only the Equipment Module Agents

can be involved in the configuration. If a specific equipment vendor is not allowed in

Requirements Elicitation Procedure

Read MAS

Requirements

XML

Assess

Requirements

Constraints

Broadcast

Requirements

to Available

Agents

Check for

Available

Agents for

Given

Constraints

Broadcast List

of Interested

Agents

Monitor Configuration Process Procedure

Assess and

Rank Proposed

Solution

Message

?

Delete Possible

Collaboration

Check for

Message from

Equipment

module Agent

Check for

Message Type

Type ?

Add Possible

Collaboration

Reset Time

Out

Time

Out?

No

No

Yes

Delete Possibility

Final Configuration

Configuration Selection Procedure

Relay Failure

Deatails to

System

Integrator

Relay Selection

to Equipment

Module Agents

Solutions

?

Check Existing

Solutions

Relay Top

Solutions to

System

Integrator

Selection

?

Yes

Yes

No

No

User Update Procedure

Inform System

Integrator

Retrieve

Current

Configuration

Proposals

Check for

Update

Requests

Requests

?

Yes

Yes

Yes

F
in

a
lis

e
 P

ro
c
e

d
u

re

Time

Out?

Yes

No

Relay Failure

Deatails to

System

Integrator

Modules

Found?
No

Yes

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

99

the configuration, the relevant Equipment Module Agents should not be contacted.

It is important to note that this procedure uses only the requirement constraints

provided in Chapter 4.

The identification of which Equipment Module Agents should be contacted is

obviously followed by the Requirements Agent relaying to them the requirements.

This identification involves checking which Equipment Module Agents are

available and do not conflict with constraints defined in the requirements. This

ability is seen as a broadcast functionality, where there will be a time period for

expressions of interest by the Equipment Module Agents. If the agent denotes

interest in a given configuration, then it will contact the Requirements Agent and

establish a possible configuration thread. These threads will over time be destroyed

once final collaborations between different Equipment Module Agents start to

emerge. This can be seen in Figure 5.5 in the monitor configuration process

procedure. It can be also seen there that during this procedure open a full

collaboration proposal, this agent will assess the results in relation with the weights

established by the system integrator and produce a rank number which is used in the

configuration selection. In sum, Requirements Agent will maintain a list of the

configuration possibilities and solutions, allowing it to inform the system integrator

of the status of the configuration at any given time.

The ability to update the system integrator on the current state of the configuration

process is enabled by the user update procedure as seen in Figure 5.5.

The final ability of the Requirements Agent is to relay the ranked list of

configuration possibilities to the system integrator, if one exists, otherwise the agent

will relay to the system integrator the failure to achieve a configuration. The failure

to achieve a configuration also entails the description for the reasons for the failure.

Once the system integrator selects a configuration option, the Requirements Agent

proceeds to inform all Equipment Module Agents on the decision so these can

update their internal decision making models. The configuration selection procedure

in Figure 5.5 provides the illustration to enable this behaviour.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

100

5.3.4 Equipment Module Agent Definition

Equipment Module Agents represent the equipment modules containing detailed

models of their connection constraints in terms of available interfaces, capabilities in

terms of assembly processes they can perform and business information. The

Equipment Module Agent’s main objective is to participate in as many successful

configurations as possible. It constantly monitors the adverts for new system

requirements to identify opportunities for its own set of capabilities. Once the agent

identifies an opportunity to fulfil some of the requirements broadcasted by

Requirements Agent, it expresses interest on fulfilling the requirements and waits

for the list of other interested agents. On arrival of the list of interested agents the

Equipment Module Agents proactively engage in negotiation with other

Equipment Module Agents to establish a collaboration which will fulfil the given

set of system requirements.

The basis for negotiation is the individual capabilities of the Equipment Module

Agents and their expected contribution to the success of the consortium. The

Equipment Module Agent needs to find other Equipment Module Agents that are

willing to collaborate to fulfil the set of requirements. Once a potential configuration

is identified these agents will find a MAS Expert Agent to assess potential

collaboration and identify logical faults and missing requirements. Once the

collaboration is validated by the MAS Expert Agent, the Equipment Module

Agents will deploy the Performance Simulation Agent into the virtual simulation

and validation environment. After deployment the Equipment Module Agents will

be able to interact with their counterparts and analyse the technical validity of a

given configuration and its expected performance characteristics.

5.3.4.1. Agent Role and Use Cases

The Equipment Module Agent plays the central role in the configuration

methodology, because it actively represents the equipment modules with the

objective of establishing collaboration with other Equipment Module Agents to

fulfil the established requirements. Each equipment module agent is a one to one

representation of an available equipment module. Therefore, the combination of all

equipment agents represents the pool of all possible configurations.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

101

The first role of the Equipment Module Agent is to listen for broadcasts from the

Requirements Agent. The architecture decision to make the requirements

broadcasted requires the Equipment Module Agent to make an assessment on its

interest to participate in a configuration process. This choice is considered the best

approach because it eliminates the need to maintain complex tables of availability of

modules. If a module is not able to participate, it simply ignores the broadcasted

messages. Therefore, this agent will decide if it will actively participate in a

configuration process, which is its second role.

The Equipment Module Agent also has the central role of broadcasting to other

Equipment Module Agents that have expressed interest, its capabilities and

negotiate collaborations with them. This iteration allows for the establishment of

collaborations between different equipment modules. However, these simple

collaborations are not seen as enough for valid configuration, because they are solely

based on the established requirements.

The Equipment Module Agents also have the role of interacting with the MAS

Expert Agent. This interaction is intended to provide an expert MAS assessment to

the Equipment Module Agents on a given preliminary configuration solution. The

fact that all agents in the collaboration interact with the MAS Expert Agent

guarantees that each can make different decisions based on their internal models. The

role is simply to provide the collaboration information to the MAS Expert Agent,

and receive the feedback provided by this agent, namely what is missing from the

configuration based on the expert knowledge contained in this agent.

The Equipment Module Agents are also responsible for the deployment of the

Performance Simulation Agents, which are responsible for assessing the

established collaboration. Therefore, the Equipment Module Agents have the role

of deployment of these agents to assess different possible configuration options.

The most important role of the Equipment Module Agents is the decision on which

collaboration it is participating. This is crucial for the configuration methodology to

work. The decision to leave a collaboration will lead to an opportunity for other

Equipment Module Agents.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

102

The Equipment Module Agents are also required to continuously update the

Requirements Agent on the current state of the configuration process. This is put in

place to have a continuous stream of information for the system integrator, if he

chooses to track all the configuration processes.

The final step of the configuration methodology is the proposal of a definitive

configuration to the Requirements Agent, which is a role performed by the

Equipment Module Agents. The definitive proposal will entail the details of the

configuration, namely the equipment modules, how they are plugged together and the

attributes of the configuration.

The final role of the Equipment Module Agent is the updating of the assembly

attributes weight matrix based on the system integrator decision of selecting them or

not.

The use cases of the Equipment Module Agent describe the mechanisms that are

used to trigger this agent. Therefore, they highlight the agent iterations and how and

by whom they are triggered. Figure 5.6 provides a description of the Equipment

Module Agent use cases and their triggering actors.

Figure 5.6 - Equipment Module Agent Use Case Diagram

Requirements Agent

Performance Simulation Agent

Equipment Module Agent

MAS Expert Agent

New Configuration

Requeriments

Configuration

Assessment Results

Simulation

Performance Results

Request

Collaboration

Reject

Collaboration

Request Unique

Collaboration

Deploy Performance

Simulation Agents Request

Equipment Module Agent

Configuration

Selection Results

Request Formal

Collaboration

Cancel

Collaboration Request

Request Equipment

Module Information

Equipment Module

Information

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

103

The Equipment Module Agent is the most complex agent of the proposed agent

architecture because of its central role in the configuration methodology. Being the

most complex agent produces a big impact in its use cases because this agent will

require a lot of interactions in order to perform its target objective. This translates in

the need of at least one use case for each of these agents, plus the need to interact

with agents of the same type. By analysing the agent roles and functionalities we can

clearly identify the following use cases:

· New Configuration Requirements – Triggers the configuration process by

providing the MAS requirements.

· Configuration Results – Provide the information if configuration was selected

or rejected.

· Configuration Assessment Results – Provides the results for an expert

assessment of a given configuration solution.

· Simulation Performance Results – Provides the simulation results for a given

configuration solution.

· Request Collaboration – The first contact provides the subset of requirements

that a given agent requires. If the agent can fulfil some of those it will accept

this request, otherwise it will refuse it.

· Request Equipment Module Information – Once the agent identifies a

possible configuration solution, it proceeds to request the full information of

the involved modules for an assessment.

· Request Formal Collaboration – If the configuration is ranked as high a

request for a formal collaboration is performed to all agents involved in the

given solution.

· Cancel Collaboration Request – This provides the means to cancel a

previously made collaboration proposal.

· Reject Collaboration – This use case allows for the termination of a

collaboration.

· Unique Collaboration Request – This use case provides the trigger to assess if

an agent wants to choose a collaboration as its final proposal for the system

configuration solution.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

104

· Deploy Performance Simulation Agents Request – This use case triggers

the launch of the lower level agents which will lead to results on the

performance of a given collaboration.

5.3.4.2. Agent Behaviour Model

The functionalities of the Equipment Module Agent provide the means for the

agent to perform their role in the multi agent environment. As stated before this is the

core agent for the configuration methodology responsible for the majority of the

decision taking. This leads to a quite complex agent behaviour description, therefore

this has been broken down into two parts. Figure 5.7 where the initial steps for

establishing a collaboration between different Equipment Module Agents are

described and Figure 5.8 that looks at the decisions for collaboration at a later stage

in the configuration process.

The first behaviour of this agent is the ability to read and interpret upon creation the

equipment module characteristics which he represents. This is provided by the

initialization procedure. This is followed by the ability to listen to broadcasts from

the Requirements Agents. This ability is needed since the broadcast of requirements

is the first step in the configuration methodology. It is important to note this ability to

listen is only useful because Equipment Module Agents can read the information

and map it to their own capabilities.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

105

Figure 5.7 - Overview of Initial Equipment Module Agent Behaviour

The reception of new requirements by Equipment Module Agents triggers it to

leave idle state and perform an evaluation of these requirements. This evaluation

consists on the matching of its own assembly capabilities to the ones required, based

on the established assembly process classification. The agent shows interest in the

requirements if it can contribute to the new configuration, thus making this the first

cut point of the configuration methodology. The preliminary configuration

assessment procedure seen in Figure 5.7 provides this behaviour to the Equipment

Module Agent

Unique Collaboration Request Procedure

Configuration Selection Procedure

Collaboration Request Procedure

Potential Configuration Management Procedure

Identify Potential Configuration Solutions Procedure

Define

Collaboration

Targets

Express

Interest in

Collaboration

Back

Interest?

Assess Module

Details for

Collaborations

Request

Equipment

Information

Collaboration

Yes

Yes

No

No

Initialization Procedure

Read

Equipment

Module

Description

XML

Create

Necessary

Objects

Register

Module

Description

Preliminary Configuration Assessment Procedure

Assess

Requirements

Conf.

Request? Yes Interest?

Express

Interest on

Configuration

Yes

Wait for List of

Modules

No
No

Got List?

No

Yes

Enough

Collarabo

rations?

Message

?

Equip.

Info?

Rejected

Collabora

tion?

Request

Collabora

tion?

Unique?

All

Received

?

Accepted

Collabora

tion?

Yes

Configuration Assessment Procedure

Rank

Collaborations

Select Best

Ranked

Configurations

Send New

Collaboration

Requests

Configuration Expert Validation Procedure

Simulatio

n info?

Remove

Collaboration

Cancel

Request?

Update List of

Confirmations

Requirements Agent Update Procedure

Update

Requirements

Agent

YesChanges

No

Yes

Yes

S
to

p
 P

ro
c
e

d
u

re

No

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

106

Figure 5.8 - Overview of Final Equipment Module Agent Behaviour

In the event of the Equipment Module Agent expressing interest in a given set of

MAS requirements it triggers the identify potential solutions procedure. The

Equipment Module Agents triggers this upon the arrival of a message from the

Requirements Agent that contains all Equipment Module Agents that have shown

interest in those requirements, which is an architecture design decision which

prevents Equipment Modules Agents from contacting agents that are not interested in

the given set of requirements. The procedure is designed to identify potential

collaboration targets within the list provided by the Requirements Agent. This list

of interested agents only provides the pool of agents available for collaborations,

therefore the agents need to advertise what they are able to perform out of the

requirements, and inform others to identify possible collaboration targets. The

Equipment Module Agents requires the ability to disseminate what it can do. This

Collaboration Request Procedure

Potential Configuration Management Procedure

Identify Potential Configuration Solutions Procedure

Configuration Expert Validation Procedure

Requirements Agent Update Procedure

Exists?
High

Ranked?

All

Confirme

d?

Update

Configuration

Options

No

Yes

Update List of

Confirmations

Put On Waiting

List

Yes

No No

Request

Assessment

from Expert

Agent

Missing

Parts?

Formalise

Missing

Requirements

Deploy

Simulation

Agents

Request

Simulations

Yes

No

Configuration Assessment Procedure

Yes

Unique Collaboration Request Procedure

Best

Option?

Put On Hold

All

Confirme

d?

Withdraw from

Other

Collaborations

Accept Unique

Configuration

No

Yes

Yes

Submit

Configuration
Selection

Result?

Update Internal

Decision

Making Model

Yes

No

Configuration Selection Procedure

All

Results?

Assess Results

and Select

Final

Configuration

Request

Finalise of

Configuration

Assess Results Valid?

Solutions

?

Request Expert

Assessment

Withdraw From

Collaboration

Formalise New

Requirements

No

No

Yes

Yes Yes

S
to

p
 P

ro
c
e

d
u

re

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

107

ability can be achieved through the use of an already defined agent capability, which

is the interpretation of requirements which uses the model proposed in Chapter 4.

As such the agents simply need to generate new requirements using the same model,

which will consist of the full requirements minus the assembly process capabilities

that the agent can provide. In the event of agents being able to provide more than one

capability they simply create parallel requirements containing all combinations in

which they can fulfil the requirements. In this way, the agent will keep all options

open until it can perform an assessment and then make a decision on which option is

a better suited solution based on its internal model. This implies also that the agent

will be able to assess the replies of other agents to the new set of requirements, and

based on the assembly process capabilities determine preliminary possible

combinations of equipment modules that allow for the fulfilment of the requirements.

This is followed by the interface validation of such configuration possibilities.

The last note of identify potential solutions procedure is the consideration of the size

of the list of interested agents. If the list is quite large, an exhaustive approach that

requires all agents to exchange information with each other, results in a large set of

option which cause a significant increase on the computational effort. So there is a

built in method that allows for the constraint of the number of contacts between

agents. The method is quite simple, if a minimum number of solutions are possible

within the restricted number of agents, then no more communications will be

executed. However, if a solution is not found, the agent will proceed to communicate

to another certain number of agents and repeat the cycle until the minimum number

of solutions is reached or there are no more available agents. Once the minimum

number of solutions is achieved, the agent will disseminate its equipment module

specific information to those involved in potential solutions, while simultaneously

requesting the same information from the involved modules.

One important consideration to add is the restriction of the Equipment Module

Agents contacts, thus when using a non exhaustive approach, will lead the agent to

have a local awareness which is composed of the agents it has contacted. This raises

the possibility of receiving a formal collaboration request for a configuration solution

that the agent has not considered. This will happen in the event of agents having

different collaboration partners. Figure 5.9 provides an example that highlights the

need for a proposal cancelation. In it, agent 1 would have knowledge of agent 2, 3

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

108

and 4. Based on this knowledge its best option would be a collaboration with agent 2

and 3. However after he requested this collaboration, agent 4 proposes a

collaboration between itself and agent 1 and 5. Agent 1 would assess the

configuration and realise it is better, and if in time it would cancel the collaboration

with agent 2 and 3. This clearly highlights the need to have a cancelation

functionality built in for all proposals, since the best configuration solutions might

change over time.

Figure 5.9 - Base Concept of Non Exhaustive Cancelation needs

The proposed extension to the local awareness concept in the Equipment Module

Agents endows the methodology with the ability to reach better solutions based on

the propagation of local decisions. This can be exemplified by analysing again

Figure 5.9 where if the combination of agents is E, A, 6 and 4 would be reachable if

all agents consider it as the best.

The Equipment Module Agents potential configuration management procedure

provides the agent with the ability to trigger different states according to information

that it receives. The first information that is expected is the equipment module

specific information for the solution it possesses. Once all information is present, the

agent needs to perform an assessment which will rank the solutions. The agents

present in the highest ranked solutions will be contacted towards establishing formal

collaborations. The details of the decision making methods will be presented in

Chapter 6.

The individual Equipment Module Agents make a decision on what to do with

formal requests for collaborations through the configuration assessment procedure.

The problem here isn’t as straightforward as it might appear, since it is not a case of

simply accepting or rejecting the formal collaborations. A closer look shows us how

a simply accept/reject logic would fail, let us consider an agent that rejects its second

31

Agent

Environment

2

6

4

7
5

A

8

9

E

B

C

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

109

best option. If this is followed by another agent rejecting its first option, then it

would have to go for its third best, since it already rejected the second best. Because

of this agents put on hold proposals for collaborations that are not ranked as their

best. This guarantees the agent always chooses its best possibility producing a better

configuration solution. Despite the positive impact on the configuration quality this

does imply that the configuration methodology will require more time to reach

solutions. Nevertheless this is seen as a good compromise since one of the objectives

of this work is the achievement of a methodology that not only reaches solutions but

also reaches good solutions. The handling of the proposals is performed by the

collaboration request procedure. One final note on this process is the rejection

process, which simply removes the configuration from the pool of possibilities, and

retriggers the configuration assessment procedure.

The cancel request option in the potential configuration management procedure is

designed for the use of the method in a non exhaustive form. If an agent is contacted

by another agent that provides a better solution after it has already sent out

collaboration requests, then the agent needs to have the ability to cancel the previous

request to pursue its new best option. It is important to note that this is only possible

if the collaborations are not finalised, otherwise the agent will simply ignore new

options.

The configuration expert validation procedure is triggered when a formal

collaboration is achieved, thus when all capability requirements are fulfilled. In this

state the Equipment Module Agents relay the configuration information to the

MAS Expert Agent and wait for its results. If the configuration solution is not valid

a new set of requirements is established, and these trigger the start of the establish

collaborations state, and restarts the process for the missing requirements. On the

other hand, if the solution is valid the Equipment Module Agents will deploy the

Performance Simulation Agents to get simulated performance results to make their

final decision.

The configuration selection procedure, establishes how the Equipment Module

Agents react to the results provided by the Performance Simulation Agents. The

performance results might indicate that the configuration solution performs

according to the requirements, or below the requirements. In the event of

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

110

underperforming solutions the Equipment Module Agents will try to salvage the

configuration by contacting the MAS Expert Agent for possible solutions. It is

important to note these solutions target the enhancement of the current solution to

compensate for a limitation. The absence of an Equipment Module Agent removal

from collaboration procedure is due to the nature of the proposed methodology. In

this methodology parallel Equipment Module Agents combinations are happening

in parallel, and replacing an agent from a solution for another would only create the

same solution as an existing parallel solution. If no solutions are available the

configuration solution is dissolved, if a solution is presented in the form of new

requirements then the Equipment Module Agents trigger the start of the identify

potential configuration solutions procedure, and restarts the process for the missing

requirements. Once all high ranked solutions are assessed or dismissed, the

Equipment Module Agents proposed the unique collaboration to the members of

their highest ranked solution.

Upon receiving a request to a unique collaboration, the Equipment Module Agents

trigger the unique collaboration request procedure. If the request comes for its

highest ranked solution the agent waits for all agents involved in the configuration

solution. If the request is not for its highest ranked solution it is simply put on hold.

This uses the same principle as before to ensure that the agent selects its best solution

possible.

An important consideration to be had here is that agents will make decisions at

different times, this means agents need to deal with information that is sometimes

ahead of their decisions, and sometimes behind. While some agents might be

proposing formal collaborations others have not yet gotten all required information.

Therefore the functionality of the agents needs to address the real-time constraints of

parallel computing, while maintaining the functional requirements detailed above.

The ability of the Equipment Module Agents is the update changes to

Requirements Agent, which runs in parallel to the configuration method, and

simply updates the Requirements Agent of the current state of the configuration

process through the Requirements Agent update procedure.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

111

5.3.5 MAS Expert Agent definition

The proposed MAS Expert Agent is a MAS expert that focuses on two aspects that

are foreseen as the base pillars for the guaranteeing sound configuration solutions,

namely constraints of physical aspects and assembly processes (EUPASS [4]). This

encompasses the logical completeness of the assembly process requirements and

physical constraints that go beyond the mere connectivity of the equipment modules.

The decision to have this expert knowledge to be outside of the Equipment Module

Agents is the nature of this knowledge. This knowledge is not module specific but

rather more global, the type of knowledge that system integrators possess (EUPASS

[4]). The fact that this knowledge covers a higher level configuration aspects implies

that it is dependent on the context of given configuration solution. As such this

knowledge should not be part of the Equipment Module Agent. Nevertheless the

use of this knowledge in the configuration methodology would provide better

solutions. Therefore the MAS Expert Agent is introduced to cater for this.

The analysis of this expert knowledge raises two problems; one is the capture of such

knowledge; the other is the evolution of this knowledge (Onori and Oliveira [18]).

This knowledge currently sits on the brain of system integrators; therefore it is not

straightforward to get it all at once into an agent. Nevertheless, it is envisioned that

this knowledge might be captured in the future, which would have a huge positive

impact on the configuration methodology results.

The other problem with this type of knowledge is the fact that it changes over time.

Therefore even if it was possible to take a snapshot of the whole knowledge today,

this would not be the same as another taken tomorrow.

It is clear that having this expert knowledge provides better and more complete

configuration solutions. At the same time, it is also clear that this should not be

hardcoded into the methodology, therefore the decision of taking this knowledge out

of the Equipment Module Agents and the creation of an advisory agent that is able

to be extended in the future to better the configuration results without having to

rework the configuration methodology.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

112

5.3.5.1. Agent Role and Use Cases

The main role of the MAS Expert Agent is to supply expert knowledge about a

MAS configuration. There are two distinct periods of the configuration method

where the MAS Expert Agent is asked to provide input, the validation of a formal

collaboration and in the event of a failure in the MAS performance assessment. The

other aspect to consider in the definition of the MAS Expert Agent role is the two

aspects that it targets, namely the logical constraints of physical and assembly

processes.

The validation of a possible configuration is seen in two fold. The assembly process

side and the physical aspects of the modules. The MAS Expert Agent needs to

assess the completeness of the configuration based on these two aspects. It is

important to highlight that this agent not only assess the solution against the

requirements, but also has the ability to provide missing requirements that were not

formalised but are necessary for a valid system configuration.

The second main role of the MAS Expert Agent consist of assessing if something

can be done to improve a given configuration that does not have valid simulated

performance indicators. The idea is that expert knowledge can be used to

compensate for a given bottleneck, or an accuracy deviation might be compensated

by a measuring system. The MAS Expert Agent would be able to provide this

feedback and the solution might be improved and salvaged.

The use cases of the MAS Expert Agent are quite straightforward since there is only

one actor, the Equipment Module Agent. This agent is a passive agent, only acting

upon a trigger, thus the identification of the triggering is quite important. Figure 5.10

provides the use case diagram for the MAS Expert Agent.

The first use case of the MAS Expert Agent is the request validation assessment,

which is used by the Equipment Module Agents in order to request a completeness

and validation assessment of a given configuration solution.

The second and final use case is the request performance assessment, which is again

triggered by the Equipment Module Agents. This use case allows for the agent to

get possible solutions for performance failures in a given configuration, namely if

there are strategies that can correct the failures.

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

113

Figure 5.10 - MAS Expert Agent Use Case Diagram

5.3.5.2. Agent Behaviour Model

The abilities of the MAS Expert Agent allow for the execution of its role in the

agent environment. However the role of the agent describes nothing of its content. As

said before this agent is introduced into the system to provide expert knowledge to

the system. For the purpose of this work it is expected that this knowledge is

hardcoded into the agent, meaning that these agents always exist with their

knowledge in the pool of agents. In the event of change to the expert knowledge, the

agents will be updated accordantly. The specific methods to collect and distribute the

knowledge are considered outside of the scope of this work. Nevertheless, this work

identified the importance of having this knowledge in the configuration method,

therefore proposes a lightweight knowledge model where some basic rules are

defined to exemplify the envisioned operation of this agent. Figure 5.11 provides an

overview of the MAS Expert Agent behaviour.

The behaviour for the MAS Expert Agent is quite straightforward, since it consists

of the execution of only three procedures. The agent waits for an assessment request

within the assessment request procedure. On the arrival of an assessment request, the

agent determines the request type, if it is a validity request the expert configuration

assessment procedure is triggered. If it is a performance failure assessment it triggers

the performance failure procedure. Otherwise it simply replies to the request as

unknown request.

In the expert configuration assessment procedure, the MAS Expert Agent assesses

the completeness of the proposed solution. The completeness assessment is viewed

as a set of rules that a given solution needs to verify. If a solution is not complete, it

Equipment Module Agent

Request Validation

Assessment

Request

Performance Assessment

MAS Expert

Agent

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

114

is obviously not valid. In this case, the MAS Expert Agent can only determine if the

solution is incomplete if it has some internal rules that are able to determine missing

elements. A simple example of this is all configurations solutions require a base

frame for the equipment modules to plug in to, if this is missing, then the MAS

Expert Agent will formalise these missing requirements and feed them back to the

Equipment Module Agents. It is important to note that for this ability this agent

needs to be able to produce requirements as defined in Chapter 4, so it can enhance

the original set of MAS requirements.

Figure 5.11 - Overview of MAS Expert Agent Behaviour

In the case of the configuration solution being complete the MAS Expert Agent

analyses the validity of the system. This assessment will have two components,

namely if the configuration violates any rules and if it does not follow pre-existing

configuration patterns. Both rules and patterns will be part of the internal model of

the MAS Expert. This is introduced to add the ability for rejection of a configuration

solution even if the reasons cannot be formalised. The idea is this way the

methodology will not waste computational time pursuing solutions that will be

invalid due to global and context specific aspects. It is envisioned that the knowledge

that this agent holds will evolve over time, so new rules and more configuration

Assessment Request Procedure

Monitor for

Assessment

Request

Request?

No

Verify

Assessment

Type

Validity?
Performa

nce?
Yes No

Expert Configuration Assessment Procedure

Analyse

Configuration

Completeness

Complete

?

Send

Information to

Equipment

Module Agent

Formulate

Needed

Change

Yes

No

Yes

Performance Failure Assessment

Procedure

Analyse

Performance

Failure

Formulate

Needed

Change

Send

Information to

Equipment

Module Agent

Yes
Yes

Reply Unknown

Resquest
No

Valid?

Analyse

Configuration

Validity

Solution? NoYes

No

Check If

Solutions are

Available

Solution?No

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

115

patterns. Ideally invalid configuration solutions assessment should always provide

solutions, however this is a not a realistic target for the near future.

The performance failure assessment procedure of the MAS Expert Agent contains

the functionality to deal with performance assessment requests. These requests occur

after the simulation takes place, therefore the possibilities of the performance failures

are clearly identified. These will consist on the results provided by the Performance

Simulation Agents, namely results on the performance of cycle time, accuracy,

repeatability and energy consumption. The type of performance failure is crucial for

the ability to formulate a possible mitigation strategy. For example, if the

repeatability of the configuration solution underperforms due to stacking of different

equipment modules repeatability, the MAS Expert Agent could suggest based on

internal rules the introduction of a measuring module that could compensate this

stacking of error.

5.3.6 Performance Simulation Agent

Performance Simulation Agents represent the process capability of an equipment

module. What this work proposes is that each assembly process step can be

represented by a Performance Simulation Agent that is aware of the type of

assembly process, where it sits in the overall assembly process classification and its

plugability requirements and options. It is envisioned that this will provide the agents

with the ability to emulate the operation of the assembly process step they represent.

Thus in addition to this, it is proposed that these agents are able to connect to other

agents of the same to establish a virtual assembly process sequence. Once this is

established the agents can exchange information in the established network, therefore

simulating and providing results for MAS performance characteristics.

The required information for these agents sits inside the equipment module

description files, and therefore it is already contained inside the Equipment Module

Agent. Because the information is already inside these agents one could argue that

the creation of another agent type is not necessary. However, the proposed

configuration methodology predicts parallel collaborations among Equipment

Module Agents, which would lead to much more complex module agents and a lot

more computational strain in the machine that is running the agent environment. By

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

116

detaching this knowledge to lower level agents, the agent can be deployed in

different machines to perform the simulations providing a distributed computation

frame, on the most computer intense process of the configuration methodology, the

simulation of possible configurations.

The assembly system performance characteristics of MAS are mostly related with the

capability side of the system. The characteristics that the Performance Simulation

Agents can simulate are highly dependent on the information contained in the

assembly process descriptions. Assuming all information is present, the

Performance Simulation Agents are able to perform simulations on the cycle time,

the accuracy, the repeatability and the power consumption. These have been selected

because they have slight variations under runtime, which are important to consider

for the decision involved in the proposed configuration methodology.

The introduction of simulation capabilities allows for more detailed information on

configuration solutions, which enables better decisions of the Equipment Module

Agents in relation to potential solutions.

5.3.6.1. Agent Role and Use Cases

The Equipment Module Agent is the creator of the Performance Simulation

Agent, being in a hierarchically superior position. This means that the Performance

Simulation Agent is a lower level agent in relation to it and is, in effect, owned by

it.

The role of the Performance Simulation Agent in the configuration methodology is

to provide simulations on the MAS performance attributes that are strictly related

with the logical side of the assembly system. Therefore its only role in relation with

the high level agents is to provide results for the given configuration proposal.

The role the Performance Simulation Agent plays in the other lower level agent is

to act as the representation of a given capability and interact with the other

Performance Simulation Agents that are part of the proposed configuration

solution. Based on the configuration details supplied by the Equipment Module

Agent, these agents can establish a virtual logical configuration that represents the

logical sequence of the given configuration. Therefore, the first use case and the

trigger for operation of the Performance Simulation Agent is the configuration

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

117

specification. Once this is done the agents will go through a series of simulations

exchanging information towards establishing the MAS performance results for the

given configuration. To enable this, the first use case is the establish connection,

which allows for the creation of the virtual network that represents the assembly

process configuration. The second use case is the simulation data, which enables the

agents to exchange and update the simulation object. The third and final use case is

the simulation results, which allows all the agents to receive all the simulation results

so they can relay them back to their creator, the Equipment Module Agent. The

final use case is the suicide order, which will terminate the agent. A use case diagram

for this agent can be seen in Figure 5.12.

Figure 5.12 - Assembly Process Agent Use Case Diagram

5.3.6.2. Agent Behaviour Model

The Performance Simulation Agent comes to existence on demand, meaning it is

created with the sole purpose of simulating a given configuration. As such, the

monitoring for configuration specifications is the first step in describing its

behaviour. On creation this agent will inherent the knowledge related with the

assembly process which enables the agent to represent it, since this is the same for

any deployment on any configuration assessment.

Once the Performance Simulation Agents are deployed and they have the

configuration specifications, they proceed to create a virtual network that represents

the configuration solution from the assembly processes point of view.

The virtual network provides the means for the agents to emulate a Petri net based

model adapted for the synthesis and simulation of MAS behaviour (Ferreira et al.

Equipment Module Agent

Configuration

Specification

Performance Simulation Agent

Establish

Connection

Suicide Order

Performance Simulation Agent

Simulation Data

Simulation Results

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

118

[128]). A Petri net is a graphical tool for the formal description of the logical

interactions among parts or of the flow of activities in complex systems. Petri nets

are composed of places, transitions and arcs, which are combined to represent a

logical description of a system. The agents represent the place holder and the

transitions represent how the performance characteristics are affected based on the

assembly process type. The Performance Simulation Agents states and

functionalities will allow for the execution of this Petri net method for all the

established performance characteristics. One important adjustment to this network is

the connection between the terminal assembly processes and the starting assembly

processes. The passing of information between these two processes is considered the

finish of a simulation cycle, therefore is when the results are stored. Further details

on this model and its operation inside the Performance Simulation Agents can be

found in Chapter 6

The Performance Simulation Agent will possess five procedures, where the first is

the simulation request procedure which is triggered by the Equipment Module

Agent. During this procedure the configurations specifications are obtained which is

the trigger for the establishing virtual configuration procedure. In this procedure the

Performance Simulation Agent is required to interact with the other Performance

Simulation Agents which represent the assembly processes directly connected to it.

Once this is done, the agent verifies if it is a trigger of the simulation process. If the

agent is the simulation starter agent the simulation driver procedure is triggered,

otherwise the simulation procedure is triggered. Figure 5.13 provides an overview of

the agent functionalities and states.

The simulation driver procedure is performed by the Performance Simulation

Agent identified has the simulation starter, and it starts with the creation of the

simulation object. This object will contain a place holder for the cycle time,

accuracy, repeatability and power information. The object is representative of the

components of a given product going through the assembly process sequence. Once

this is created, the agent will update this object according to the assembly process

information, and send the updated objected to the agents it is connected to in the

virtual network. When this object returns the Performance Simulation Agent

checks if the number of configurations was executed, if not it records the results and

restarts the process, otherwise, it simply records the results and triggers the finish of

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

119

the simulation process by broadcasting the results to all the Performance

Simulation Agents involved in the simulation, and triggers the simulation

finalization procedure

The simulation procedure is a passive procedure where the Performance Simulation

Agent waits for messages from other Performance Simulation Agents. In the case

of the message being the simulation object, the agent simply updates it based on the

type of assembly process that it is representing, and passes the object on to the

Performance Simulation Agents directly connected to it. The other message type is

the signalling of the end of the simulation which will trigger the simulation

finalization procedure.

Figure 5.13 - Overview of the Performance Simulation Agent States and Functionalities

The simulation finalization procedure is quite straightforward; the agent relays the

performance simulation results to the relevant Equipment Module Agents, and

waits for a termination order or a stand by order to restart the simulation process.

Simulation Request Procedure

Monitor for

Configuration

Specifications

Specs?

No

Establishing Virtual Configuration Procedure

Analyse

Configuration

Specifications

Establish

Connections

with Relevant

Assembly

Process Agents

Success?
Ask for

redeployment
No

Establish

Starting Agent
Starter?

Yes

Create

Simulation

Object

Affect

Simulation

Object

Send

Simulation

Object to

Connected

Agents

Object

Back?
Yes

No

Simulation Finalization Procedure

Send Results to

Equipment

Module Agent

(Creator)

Suicide?
Auto Destroy

Itself
Yes

No

Yes

Yes

Simulation Procedure

Wait for

Message

Finished?

Object?

Affect

Simulation

Object

Send

Simulation

Object to

Connected

Agents

Yes

Yes Finished?Record Results No

Broadcast

Finished

Simulation and

Results

Yes

Simulation Driver

Procedure

No

Record Results

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

120

5.3.7 Agent Interactions

The description of the agent interaction is a key aspect of any agent model, because it

maps the possible sequences while identifying the message types that need to be

created. The base concept of any agent system is the communication ability that

agents possess. However, the ability to communicate implies a clear understanding

by all involved agents of a common language and structure for the messages.

Therefore it is of extreme importance to map the agent interaction and identify the

required message types, required responses and expected sequences.

The agent interactions enable the behaviour of the agents to fulfil their role in the

agent architecture. From the previous descriptions it is straightforward to establish

who speaks to whom and at what stage of the configuration process this occurs.

However these do no establish formally a message type, if a response is required and

what sort of response. Agents only know how to react to messages if they are

expecting them. Therefore an analysis of the agent interaction should be detailed.

Toward that end it is useful to break the interactions down into different stages.

Figure 5.14 provides an overview over the different states that the configuration

methodology goes through.

The first stage is between the Requirements Agent and all Equipment Module

Agents. In this stage the MAS requirements are sent to Equipment Module Agents

and these assess their interest. If interested, the Equipment Module Agents provide

an expression of interest to the Requirements Agent, otherwise they do nothing.

The second stage is triggered once enough time has elapsed for Equipment Module

Agents to express interest. Once this occurs the Requirements Agent interacts with

all interested agents to disseminate the list of all interested agents.

The third stage is the interactions between the interested Equipment Module Agents

to achieve configuration solutions. During this stage the Equipment Module Agents

will exchange information on their module characteristics, and will validate

configurations with MAS Expert Agents. The interactions in this stage enable the

core decision making process of the configuration methodology.

The fourth stage is the iterations between the Equipment Module Agents and the

Performance Simulation Agents. The Performance Simulation Agents are

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

121

deployed and the simulation information is passed to them. They are able to interact

with each other to simulate a given configuration and provide the results through an

interaction to the Equipment Module Agent that deployed them.

The fifth and final stage is final interaction between the Equipment Module Agents

after these include into their decision making capabilities the simulation results. The

interactions here provided the ability to reach final configuration solutions which will

be submitted through another interaction to the Requirements Agent for final

selection.

Figure 5.14 - Overview of the Configuration Methodology Steps

Agent Environment

Requirements

Agent

Configuration

Expert Agent

Virtual Sandpit

Agent Environment

Agent Environment

Requirements

Agent

Agent Environment

Requirements

Agent

Next Configuration Process Step

N
e

x
t
C

o
n

fi
g

u
ra

ti
o

n

P
ro

c
e

s
s
 S

te
p

N
e

x
t
C

o
n

fi
g

u
ra

ti
o

n

P
ro

c
e

s
s
 S

te
p

Stage 1 Stage 2

Stage 3

Stage 4

Agent Environment

Requirements

Agent

Stage 5

Next Configuration

Process Step

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

122

The stage overview provides a glimpse of the interactions; however these are much

more complex. In the stage overview it is presented an example that is representative

of a main flow of interactions. This can also been seen in Figure 5.15 provides an

overview sequence diagram of the main agent interaction cycle, the same one as

described above. In this main sequence the agent decisions points are identified, but

it assumes that the answer is always positive to simplify the sequence. Also an

Equipment Module Agent is detached from Equipment Module Agents pool to

highlight the heavy interactions between the agent types. Detailed sequence diagrams

for all agent interactions can be found in Appendix B. The set also contains the

identification of message types, and the specific procedures in each allowed

sequence.

Figure 5.15 - Main Configuration Methodology Sequence Diagram

Performance Simulation

Agent
Performance Simulation

Agent
Performance Simulation

Agent

Equipment Module AgentEquipment Module AgentEquipment Module AgentRequirements Agent Equipment Module AgentEquipment Module Agent MAS Expert Agent

MAS Requirements

Express Interest

List of Interested Modules

Reply to Collaboration R.

Request Collaboration

...

Resquest Formal Collaboration

Reply to Formal Collaboration R.

...

Resquest Validation

Validation Answer

Performance Simulation

Agent

Resquest Simulation

Simulation Results

Suicide Order

Request Unique Collaboration

Reply to Unique Collaboration R.

Propose Solution

...

...

Selection Results

Configuration Update

Configuration Update

Configuration Update

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

123

In Chapter 6 the used communication protocols are presented. These are included in

the detailed sequence diagrams for all agent interactions can be found in Appendix

B.

5.4 Agent Architecture Deployment

The deployment of the proposed architecture is a crucial step for the enabling of the

configuration methodology, while supporting some of decisions taken in the

architecture design. In a multi suppliers environment with an infinite number of

modules it is not feasible to have all of the Equipment Module Agents running on

the same computer. The problem is the computational strain to reach solutions would

rise exponentially based on the number of available modules. Therefore it is

proposed that the deployment of the Equipment Module Agent be done in the

suppliers servers, allowing them control over the agents, and more importantly

distribute the computational load across different computers. The equipment supplier

will have the motivation to have this since it potentially can bring new business for

them, while for the system integrator (representing the customer) it is advantageous

since solutions will be provided quicker due to the distribution of the computer load.

Figure 5.16 provides a deployment overview highlighting the communications

across different computers.

Figure 5.16 - Agent Architecture Deployment Overview

Customer Site

MAS Expert Knowledge

Equipment Supplier 1

Simulation Resources

Simulation Resources

Equipment Supplier n

3

1

2

4

5

5

6

3

2

1

4

7

Simulation Resources

1
2

Simulation Resources

3

Requirements Agent

Equipment Module Agent

MAS Expert Agent

Performance Simulation Agent

Chapter 5 – Agent Architecture for Distributed Self-Configuration Methodology for Modular

Assembly Systems

124

The other important aspect of this distributed deployment is that the Performance

Simulation Agent can also be deployed in other machines to distribute to computer

processing load, facilitating quicker solutions.

The final consideration of the deployment of the proposed agent architecture is

placement of the MAS Expert Agent in a separated machine that is updated by

configuration experts and where the libraries proposed in Chapter 4 would also be

placed. The information on this machine could be in other machines in order to take

advantage of the distributed computing paradigm. Nevertheless, it is crucial that all

updates made to the MAS Expert Agent and the library change at the same time

across different machines to ensure the proper operation of the configuration

methodology.

5.5 Chapter Summary

In this chapter a multi agent model for the self-configuration of MAS was proposed.

The chapter contains detailed agent descriptions, their roles and behaviours that

enable the self-configuration methodology. It also provides a detailed description of

the agent model, as well as the necessary interaction to ensure the execution of the

self-configuration methodology.

The agent architecture provides an original representation of MAS that is able to

reflect its concepts. Furthermore, the proposed agent architecture caters for the

evolution of expert knowledge over time, by providing the means to introduce new

knowledge without a need for changing the configuration methodology. Finally the

proposed agent architecture provides a simulation level that provides early

simulation results for potential configuration solutions. Furthermore these results are

use in the configuration methodology towards achieving better results.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

125

6 Local Behaviour Models

for Distributed Self-

Configuration Methodology

Figure 6.1 - Overview of Enabling Aspects for Emergence of Configuration in Agent

Architecture

System

Configuration

Equipment Configuration

Base Table

Glue Dispenser

Transport
Apply

Glue

Feed
Pick

Up

Place Cure Transport

Manipulator B

ConveyorFeeder

Assembly Process Configuration

System Configuration

Protocols

B
e
lie

fs

E
quipm

ent

M
odule A

gent

M
A
S
 E

xpert

A
gent P

er
fo

rm
an

ce

S
im

ul
at

io
n

A
ge

nt

Structures

C
o
lla

b
o
ra

tio
n
s

Algorit
hm

s

R
eq

ui
re

m
en

ts

A
ge

nt

Self-

Configuration

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

126

6.1 Introduction

In this chapter we will cover the specific methods of the multi agent architecture that

will enable self-configuration of modular assembly systems. The chapter will break

down the agent specific methods as well as provide the method for assessing the

validity of the configuration results.

The proposed configuration methods were developed based on the described model

of Chapter 4 and the characteristics of the agent environment in Chapter 5. This is

important to highlight because the entire input information and agent environment

definitions for the proposed configuration methods are already defined in these

chapters.

One important note for this chapter is the distinction between configuration and

reconfiguration of the module assembly systems. For the purposes of this work

reconfiguration is defined as a configuration with some extra constraints. The

constraints in the event of a reconfiguration process are the description of the

existing system, including the ability to force the use of certain equipment modules.

This ability in conjunction with the introduction of equipment module agents with

quite advantageous characteristics, such as near zero cost, provides the basis for the

reconfiguration using the same methodology as for the configuration process. These

constraints are as defined in Chapter 4.

The development of methods for an agent environment requires a clear

communication structure. This structure entails the definition of available protocols,

which enable agents to trigger other agents using predefined collaboration rules that

are understood and followed by both. Despite the existence of protocols for multi

agent systems, these tend to be domain and solution specific (Kraus [98]). Therefore,

protocols for this multi agent system need to be described in this chapter.

In order to develop the methods for the configuration of modular assembly systems

using a multi agent environment, the configuration process steps should be clear as

defined in Chapter 5.

The configuration of modular assembly systems will be driven by an established set

of capability requirements. This is the first stage of the configuration process, which

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

127

consists of the individual equipment module agents matching their own capabilities

to the ones required. Once this is done a cluster of interested equipment modules is

created (Oliveira [60]).

These Equipment Module Agents will then need to establish preliminary

collaborations with other equipment module agents, in order to establish potential

configurations. This stage will require an assessment by each individual agent. The

method for this assessment will be presented throughout this chapter.

The equipment module agents will be able to participate in a number of different

potential solutions. This raises an issue of participation on multiple solution clusters.

If a solution is not possible the agent will expand its search parameters for other

agents until no more equipment module agents can be found. This highlights the

iterative nature of the method. There are two outcomes for this stage, either no

solution is found, or a series of potential configuration solutions are found.

The next stage of the configuration process is the assessment of the solutions by the

configuration expert agent. The assessment consists of the configuration expert agent

checking its internal knowledge for existing configuration patterns and relaying

missing elements to the established collaborations. This stage might have required

the repetition of the prior stages, if missing elements are identified.

The formulation of the next assessment requires the creation of the simulation agents.

These will perform specific methods to validate the potential configurations. Once

the results are achieved, these are relayed back to the equipment modules for final

assessment.

The equipment module agents perform the final assessments of the potential

configuration solutions and decide on which one they foresee to be the best one.

This choice involves also the pulling out of other potential configuration solutions,

which in turn will lead these collaborations to find other potential equipment

modules.

The final stage is the final assessment of the requirements agent for the selection of

the top three configurations for system integrator decision.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

128

It is important to underline that the proposed configuration methodology is based on

the emergence that distributed systems can obtain (Kennedy and Eberhart [132]).

The principle is that simple rules distributed across multiple agents while enabling

them to interact will result in this emergent complex solution. In addition, the fact

that the domain of modular assembly system raises issues of future scalability of the

different systems highlights the need for a distributed system than can be enhanced

with more equipment modules and new concepts.

The description of the emergent complexity of the methodology requires firstly the

development of the distributed blocks, in this case the agents. The agent environment

has been described in the previous chapter, however the specific decision making

methods have not been presented yet. Therefore, this chapter will start by covering

the specific communication requirements of the agent environment, and this will be

followed by the detailed methods for each agent and finally the emergent method of

distributed self-configuration of modular systems.

6.2 Communication Definition

The ability to communicate lies at the core of the agent definition. Without this

ability the whole agent concept would be void. Therefore it is a crucial development

for any agent environment.

Agent technology platforms provide extensive models and communication solutions

which provide quite flexible solutions. Therefore these were used in the development

of the agent environment and provide the basis for the development of the

communication. However, despite the extensive literature on communication models

and methods, these still require extension due to the domain’s specific issues (Kraus

[98]). The current best practices in agent technology use the FIPA protocols as a

baseline for the establishment of communications between agents. FIPA provides a

quite open model which covers generic agent interactions, therefore reducing quite

significantly the effort of developing the agent communication methods.

Nevertheless, to establish a multi agent environment, clear and specific protocols

need to be defined.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

129

A crucial factor in communication is the language the agents use to understand one

another. This is one of these issues that is solely related to the problem domain. The

model presented in chapter 4 provides the information that is domain specific for the

configuration of MAS, therefore instead of creating an agent specific language, the

use of this model is proposed. The model has been described in XML which is easily

incorporated into agent technology, since XML is a standardised description in the

computer science domain. This underlines the importance of a transparent and

computer interpretable description as provided in chapter 4.

The need for the definition of a language is only one of the requirements for viable

communication between agents. The other requirement is the definition of

communication protocols. Protocols define the rules and regulations for agent

interactions. This is a crucial element establishing collaborations among agents, since

the rules for establishing these collaborations, rules for cancelling a collaboration,

rules for submitting a solution and rules for the interactions of different agent types

all need to be defined. The rules also have a big impact on the decision making

process, not for the results but to ensure that the agent environment works properly.

The rules will provide the guarantee that conflicts between decisions of different

agents do not create stalemate situations. The fact that different agents have different

beliefs to what is the best solution might cause stalemates in the established

architecture unless clear rules exist. Agent solutions are driven by communication

between the agents, this communication enables the individual agent decisions, and

therefore the communication protocols need to prevent the agent stalemate situations.

Once the language, the rules and regulations are defined then the focus lies in the

decision making methods that enable the emergence of MAS configuration solutions.

In this chapter only the protocols for the requirements agent and the equipment

module agents will be described, because these two agents provide the two major

input points in the system. The other agents only require protocols to interact with

these agents, interactions that are triggered by these main agents. As such their

specific protocols are the mere counterpart of the ones provided for the equipment

module agent and the requirements agent.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

130

6.2.1 Requirements Agent Communication Protocols

The Requirements Module Agent communicates with the system integrator and the

Equipment Module Agents. However this work does not cover the communication

protocols with the system integrator since these would require a specific frontend

solution which is not relevant for the developed aspects of the configuration

methodology. Nevertheless it is recognised that extra protocols will be required for

the communication between the system integrator backend and the Requirements

Agent.

The first step of the configuration process is the broadcast of the requirements, which

is clearly an information protocol for the consideration of the Equipment Module

Agents. The language is clear between the two agents, since both are aware of the

structures described in chapter 4 for the description of MAS requirements. The

protocol is not time critical, however as defined in chapter 5 there will be

Equipment Module Agents that will not show interest, so it is required a definition

of a timeframe for Equipment Module Agents to show interest in the requirements.

This first protocol is defined as Broadcast of the Requirements, and is independent

from others to ensure that it can be used for other future agents simply to share the

MAS requirements.

Although the Broadcast of Requirements protocol is independent of the other

protocols, it will result in the triggering of the configuration process protocols. The

Equipment Module Agents will demonstrate interest in fulfilling the MAS

broadcasted requirements, which requires a clear protocol for this action, the

Express Interests in Requirements protocol. The type of message is a request to be

involved in finding a solution for the broadcasted requirements. The intention of

making this a request is because the Equipment Module Agents require an answer

back with all agents that are also interested in the MAS requirements. Therefore the

communication protocol is triggered by the requests which only require an ID to

which MAS requirements the agent is expressing its interest. The Requirements

Agent upon arrival adds it to its interest list, and once the timeframe for interest

expression is expired it simply broadcasts this list of agent addresses to all, thereby

confirming the acceptance of the expression of interest.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

131

The next required protocols are related to the creation of possible collaborations and

all their maintenance aspects, namely update actions and delete actions and final

submission actions. The nature of these protocols requires them to be defined

separately since this triggering action might or might not occur, it is good practice to

separate all things that are independent from each other, and even though the

maintenance aspects can only be perform on existing solutions, they might occur or

not, therefore it is an independent event which needs to be treated separately.

The Creation of a Configuration Solution protocol is triggered by any Equipment

Module Agent, however the finalisation of this protocol is only performed upon

arrival of the creation request of all involved agents, this ensures that solutions are

only accepted if they are proposed by all Equipment Module Agents involved in the

solution. This also highlights the need for the description of the configuration when a

creation request is performed, which again uses the model in chapter 4 for MAS

configuration solutions.

The Update of the Configuration Solution protocol follows the same procedure as

the creation of a configuration, since updates need to come from all parties. The only

difference is instead of creating a new configuration solution the Requirements

Agent will replace its previous one with the currently sent.

The Delete Configuration protocol requires only the configuration solution ID and

reason, and contrary to the other solutions it is an action that can be confirmed even

if the Equipment Module Agents have not confirmed it. The reasons for failed

configurations have been defined in chapter 5, and are used for providing extra

information to the system integrator.

The final protocol is the Assessment of Solution, which is the most complex

protocol of the Requirements Agent. This protocol follows the same approach as

the creation of configuration solution, meaning it will only be triggered if all

involved agents trigger it. However, the response will have to wait for all solutions to

be found, before actually providing the results to the system integrator. After the

system integrator chooses its system, the reply to all agents in all solution is

performed to communicate if their solution was successfully accepted or rejected.

The type of this protocol is a proposal, while the result will come under the form of

acceptance or rejection type. The definition of the content of these messages is quite

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

132

straightforward only the solution ID is required for the exchanges. The detailed

sequence diagrams for the Requirements Agents where these protocols are invoked

can be found in the Appendix B.

6.2.2 Equipment Module Agent Communication Protocol

The equipment module agent plays a pivotal role in the whole configuration

methodology. Therefore, this agent needs to execute a wide range of communication

protocols, which are the most complex. Because the communication protocols for the

requirements agent have been already defined, these will not be covered in this

description since it would be a mere mirror of the previously described protocols.

The biggest amount of interaction in the proposed configuration methodology occurs

between different equipment module agents. The several stages of these interactions

can be found in chapter 5, while in this chapter the specific problems of each of

these stages will be detailed.

The Establish Collaboration protocol is the first one that is required for the

interactions between different equipment module agents. The importance of the

protocol is quite clear since it provides the formal means to establish a preliminary

collaboration. The basis for the decision on whether or not to establish collaboration

will be defined in the operational description of the equipment module agent. The

protocol however, only requires the description of the options and how to proceed in

relation to them. The description provided in chapter 5 tells us that the equipment

module agent will use an updated version of the requirements definition that includes

the original requirements minus what the agent will contribute. Therefore there is a

clear definition for the content of the message. This protocol falls clearly under the

request category, where the agent requests other agents for collaboration based on a

given set of requirements. The answer to this is either an acceptance or rejection of

the request. The nature of this protocol is to provide a preliminary collaboration,

therefore it is designed to achieve simply that, and it is self-contained because it

result is a list of collaboration, which is a self-contained result.

The next step of the configuration methodology requires the equipment module

agents to exchange information that contain the individual descriptions of all the

members involved in a given collaboration. This step requires that all agents

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

133

involved in collaborations have provided this information before the individual

equipment module agents can proceed to the next step. Therefore this requires an

Exchange Module Information protocol, which once triggered, it is only complete

upon the arrival of all the information. The definition of the type of protocol is quite

straightforward, since it is a mere request. However, the contents of the reply need to

be clearly defined. In chapter 4 a model for the description of equipment modules is

present and can be used in this exchange. An important note is the restriction that

upon this request equipment module agent always needs to provide an answer,

otherwise the configuration method might freeze. Also within this protocol and based

on the described models, the request for the equipment module information will only

occur if a preliminary collaboration exists. However, the protocol should cater for the

eventuality of this request being performed by an agent that does not have a

preliminary collaboration established. In this situation, the agent should reply an

invalid request, to ensure the overall described behaviour.

The following step is the establishment of formal collaborations which requires a

more complex configuration protocol. The reason for this is the fact that different

Equipment Module Agents have different beliefs on what is the best solution, which

leads them to making different decisions. In this step the agents are required to

establish formal collaborations which are based in their internal assessment model.

The problem with these decisions is that according to the model, agents only refuse

formal collaborations if their collaboration quota has been fulfilled, as defined in

chapter 5. Therefore, opposite decisions might lead to stalemate situations where the

agents are in an infinite wait state. Figure 6.2 provides an example of this where

agents A, B and C want to select conflicting collaborations, therefore creating a

stalemate situation as described above.

Figure 6.2 - Example of Stalemate Situation

3
1

Agent

Environment

2

6

B 7

5

9

8

A

4

C

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

134

To avoid stalemate situations the Establish Formal Collaboration protocol has a

timer. The timer period reflects the valuation that each individual equipment module

agent has of a given configuration solution. The idea is that the higher the valuation

the more time the agent is willing to wait for it. This is important for the protocol

because the Equipment Module Agent drops the formal collaboration request, and it

has to inform all involved members through a cancellation message. Besides this,

there are two other outcomes for this protocol to finish, either all have accepted the

formal collaboration or in the case of one rejection this collaboration is dropped. The

content of the exchanged messages requires only the ID of the configuration.

Once the configurations are established, the equipment module agents proceed to the

validation phase. In this phase an Expert Validation Request protocol is required

for the interactions with the MAS expert agent. The information that needs to be sent

to this agent consists on the configuration description, which follows the model

presented in chapter 4. Similarly to the previous defined protocols, this is a request

where an answer is mandatory. The answer might confirm the validity and

completeness of the solution or provide a new set of requirements, which again will

follow the models presented in chapter 4.

The creation and deployment of performance simulation agents is quite

straightforward, and the creation process allows for the transferring of a lot of the

information required. However, because these agents were designed to be reused, the

connections that it establishes are sent in the Request for Simulation protocol. It is

important to note that only the owner of the agent can request this, therefore if other

agents try to request a simulation the agent will return an invalid request answer. So

the trigger for this protocol is a request by the equipment module agent to the

performance characteristic agent that contains the connectivity information. The

answer for this request is either the failure to perform simulation, which will occur

when a performance simulation agent cannot be reached, or the results for

simulation. The content for these replies use either the results of the simulation or

provides the information of which agent or agents could not be reached to perform

the simulation.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

135

The kill order is processed in a separate protocol to ensure the clear separation

between the different actions. This protocol is named Kill Order, which consists of

an order type message that returns a confirmation.

The final protocol that detailed interactions between different equipment module

agents is the Establish Unique Collaboration protocol. This protocol follows the

same approach as the one previously described to establish formal collaborations to

avoid stalemate situations. Therefore this protocol is triggered by a request for a

unique collaboration which merely needs to provide the ID of the configuration

solution. The reply might be a rejection or an acceptance, with the safeguard of the

possibility of the cancelation of the request. The detailed sequence diagrams for the

Equipment Module Agents where these protocols are invoked can be found in the

Appendix B.

6.3 Agent Methods to Enable Self-Configuration of Modular

Assembly Systems

The proposed methodology focuses on the concept of distributed decision making.

The hypothesis is that very simple rules distributed across different agents can

produce valid and optimal MAS configurations. Therefore it is crucial to define and

understand the simple rules that will enable the distributed decision making process.

The individual strategies of each of the agents in the proposed multi agent

environment will provide these rules. The majority of the proposed agents are

facilitators that provide extra information for the decision making processes of the

equipment module agent. The configuration solutions will be assessed by the

requirements agent, who is responsible for selecting the best configuration based on

the inputs from the system integrator.

The proposed configuration method works in two stages, the first is a logical

matching between the requirements and the agent capabilities. This means that

agents only show interest in configuration requirements for which they can

contribute. The MAS expert agent acts as a configuration expert who can add more

requirements based on existing configuration patterns internal to them. This means

that the requirements might be enhanced during the configuration process, which will

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

136

enhance the number of logical matches between the requirements and the agent

capabilities.

The second stage of the configuration method is based on the assembly system key

attributes, namely cost, time, quality (repeatability and accuracy) and flexibility. The

attributes need to be combined to assess the results for considered configuration

possibilities. This task is straightforward for attributes that have constant values,

however for variable values a simulation method was built as part of the

configuration method to achieve better results. The Performance Simulation Agent is

responsible for this task and therefore will require methods to enable the simulation

of these attributes.

 Once all the attributes are combined they can be compared across different

configuration solutions, however due to their diversity they cannot be directly

compared with each other. It would not be possible to directly compare a number

that is usually high, like cost, with a number that is usually quite low, like

repeatability. Nevertheless, in order to compare different configuration solutions it is

quite important to take into account the different attributes. Although it is clear that

all aspects will contribute for the decision making process, the question that arises is

in what way? In agent technology a quite common negotiation method is the

presence of some sort of currency, which allows the agents to clearly assess the value

of different offers. This approach has been used extensively in the presence of multi

variable decision making, which is the case of the configuration method. Therefore it

is proposed that the configuration method will use a currency system for which the

currency will be the ultimate configuration value.

The calculation of the ultimate configuration value requires that all values are joined

together. However, as it was previously stated, these values have quite different

scales. Therefore there is a need to normalize these values before progressing to the

calculation of the ultimate configuration value.

There are two aspects that provide uncertainty to the agent environment solutions,

one is the presence of a weight matrix that is provided and adjusted by the module

supplier. This was introduced so that the module supplier has a form of participating

in the decision making process. However it is expected that these values will change

from what it is established when the module is described. Therefore it is proposed to

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

137

include a self adjusting mechanism to the agents that does not interfere with the

weight matrix established by the module supplier. This will happen in the

normalization functions which will allow parameter change to adjust normalizations

based on successful configurations.

These aspects will be described within this sub chapter, and it is hypothesized that

the combination of these in the proposed agent environment will result in the self

configuration methodology.

6.3.1 Performance Characteristics for Modular Assembly Systems

The strategic attributes for assembly systems are provided in the literature as cost,

time, quality (repeatability and accuracy) and flexibility (Chryssolouris [14]). MAS

are a subset of assembly systems and therefore the same attributes are important.

The proposed model in chapter 4 defines the agent environment inputs, which

contains the definition for each of these assembly system attributes. In this chapter

these will be used for normalization.

6.3.2 Mathematical Normalization of Performance Characteristics

The normalization of the attributes is a key aspect in the configuration method. The

diversity of the attribute types would render any combination of values impossible

before normalization. This is one of the issues that highlight the importance of

normalization in order to make decision in the configuration process. However the

proposed solution target also agent’s self-adaptation based on the past configuration

results. Therefore there are two aspects for the normalization, the mathematical

functions that normalize the values, and how these functions can be adjusted over

time.

The first step in normalizing a value is to understand its source and type. Some

values should be maximized and others minimized, this distinction needs to be clear

before establishing any normalization method. The source and type of the attributes

considered provide a clear view on which values are intended to be as low as

possible, or the reverse. In the proposed method both types of values are present,

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

138

time, cost, repeatability and accuracy are values that we want to minimize, while

flexibility (defined as spare capabilities) should be maximized.

The values intended for minimization have straightforward normalization limits. The

lower limit of the normalization is zero since it is the utopian value, meaning it is the

best value achievable but it is not very likely. The upper limit is the provided by the

modular assembly system requirements, since the provided value has been defined as

the maximum possible for this type of attribute. Therefore, the normalization

function will have the lower limit (Ll) and the upper limit (Lu) as its first parameters.

The defined limits allow for an easy normalization if the mathematical function is

defined. Using the two, it is quite straightforward and common to use a mathematical

function type, e.g. a linear function or an exponential function. However, the use of

one of these functions would allow for a unique self adjusting function that can be

transformed as shown in Figure 6.3. This provides the ability to have more realist

normalization, which can be adjusted over time.

Figure 6.3 - Conceptual Assembly Characteristics Variation

The proposed method entails a function that is transformable in terms of concavity.

This enables the adjustment of agent’s normalization function which provides the

ability for the agent to adjust their beliefs in each assembly characteristic. To

achieve this, an exponential function can, in the limit, be transformed into a linear

function. However, to enable the concavity to be regulated based on parameters, it is

suggested the use of a polynomial function of the second degree. The choice of such

mathematical function is supported by the existing parameters. The first two

parameters establish the limits of the normalization function, whereas the other two

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

139

parameters are an intermediate point in the normalization function which should have

a specific normalized value.

The introduction of these two parameters is based on the analysis of the attributes.

The idea is that values that need to be minimised will never reach zero. For example,

cycle time can be reduced to a minimum but it will never reach zero. If a linear

function was used, it would provide linear normalization values. This would result in

a progressive conversion of the cycle time, which would rate nearly impossible

improvements, like near zero cycle times, the same way as reductions near the

established requirements, which are more likely.

On the other hand, the use of an exponential function would resolve this issue,

providing the possibility of having a function that could be adjusted to a limit that

would make it linear. However it would not allow the change of rate for its inverse

based on parameter change and at its limit it could become a linear function.

Moreover, the cost attribute in an initial stage is of the same nature as the cycle time

and it is not likely, when configuring the first system, that modules have a cost of

zero. However, it is important to note that in the case of a reconfiguration of a system

it is probable that the module cost will be close to zero in certain situations.

Therefore it is proposed that the normalization function should be adjustable to rate

values depending on the evolution of the configuration choices.

The simplest way to define the behaviour described above is by setting an

intermediate point for which the mathematical function needs to go to. This point

also makes sense for a simple early definition, since one can say that at the midpoint,

the function should be valued at 50%, or 80% depending on the type. This point also

enables the readjustment of the function, providing two variables, one on each axis.

The final restriction of the normalization function is the need for it to be strictly

descending, which can be guaranteed by its derivative being zero which would mean

no inflexions exist. In sum, the requirements for this mathematical function are as

follows:

 ()

⇒

 ()

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

140

 []

 ()

The following equation provides the result of this normalization function while the

demonstration can be found in Appendix C.

 ()
()

() ()

()

() ()

6.3.3 Formulation of Mathematical Beliefs Readjustment due to

Failed Collaborations

The rationale behind the need for a readjustment of the normalization function is, to

embed in the agents the capability to adjust their beliefs based on their success or

failure. The idea is that the normalization functions can provide insight into trends

that are impossible to predetermine. Towards that end the normalization function

previously described has a variable point that enables its behaviour to be readjusted.

However, there are limitations for this readjustment. A detailed analysis of the

mathematical function shows that it only guarantees the required characteristics if

this point is placed under a certain area. The problem lies in the imposition of the

derivative being zero, which requires the regulation point to fall under a restrictive

set of conditions. Figure 6.4 provides the graphical spectrum for which it is valid to

adjust the point as well as the mathematical formulation that defines this area. The

demonstration of this area can be found in Appendix C. Once the limitation is

considered, it is possible to establish a method for readjusting this point based on

failures or successes. The proposed solution is that the point is readjusted vertically

until it reaches a lower limit, in which case it is adjusted horizontally to re-shift the

working space for readjustment as shown in Figure 6.4.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

141

Figure 6.4 - Graphical Illustration of Operational and Respective Spectrum

The ability to adjust the agent beliefs on the different characteristics of the MAS

enables the definition of an internal method that allows for the adjustment of beliefs

over time supported by success or failure of proposed solutions. This enables the

agents to follow trends in the configuration solutions simply by participating in

potential solutions.

6.3.4 Requirements Agent Operational Strategy

The Requirements Agent has two major operational roles, the advertisement of

requirements and the final ranking of the found solutions. These are supported by

minor operational roles, namely the constant ability to update the system integrator

on current state of the configuration methodology state and the feedback to the

Equipment Modules Agents of the system integrator decision.

In operational terms the minor roles are quite straightforward and do not require

detailed descriptions on the decision making process of the Requirements Agent.

These are information tasks triggered by the system integrator. On the other hand, the

major operation roles of the Requirements Agent require the establishment of clear

rules that enable it to make the necessary decisions for the operation of the self-

configuration methodology.

j1

R
a

n
g

e
 o

f
i

R
a

n
g

e
 o

f
i

j2Shift if lower limit is reached

i

j

22 211 jjij 

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

142

The broadcast of requirements might seem straightforward, however the broadcast

targets need to be available somewhere, considering that some Equipment Module

Agents will be running across different agent platforms. Therefore the

Requirements Agents need to retrieve a list of available agents for the broadcast.

The use of a yellow page service has been extensively used in the literature to solve

similar problems, which would simply require all Equipment Module Agent to

register a couple of their attributes (Sugumaran [124]). Despite the availability of

standard yellow page services in agent platforms, these have a quite significant

restriction in the amount of results they provide. This is a serious problem for the

future scalability of the self-configuration methodology and therefore needs to be

addressed in this work. Therefore, this work introduces the creation of a yellow page

service that has no restriction on the number of results it provides. The service takes

the form of an agent that will have a known location to all agents that take part in the

self-configuration methodology. All agents will register with it, and it will provide

the list of available agents to those who require it. Because this is a technical

adjustment to the agent platform this was not included in the agent model, but it is

important to mention it to understand the source of information for the

Requirements Agent.

The other important operational aspect of the Requirements Agent is the ranking of

the found solutions. To rank the solution this agent uses the information contained in

the requirements definitions, namely in the assembly system targets. The assembly

system targets define both the overall targets and their importance. The ranking of

found solutions will use the importance of the values against the results of the

solutions and determine a value. This operation is the same as the one performed by

the equipment module agents to establish their final ranking; the only difference lies

in the different weighting of the solutions. The mathematical formulation of this

operation is described in the equipment module agent collaboration assessment.

Once all values are calculated, the highest valued solutions are presented for the

system integrator and he will choose the solution that is more suitable according to

its knowledge.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

143

6.3.5 Equipment Module Agent Operational Strategy

The Equipment Module Agent is the key player in the proposed self-configuration

methodology. It is the agent that is ultimately responsible to find configurations’

solutions. In chapter 5 this agent has been broken down into operational states,

which require a series of operational assessments that will be described in this

chapter. This chapter will be broken down into subsections that will focus on the

major assessments, while the minor decisions making rules will be explained briefly.

The first decision point for the Equipment Module Agent occurs upon the arrival of

new requirements. In that situation that agent will execute an assessment of the

requirements and decide on whether or not it is interested. This assessment will be

covered in this subchapter.

In the event of a positive interest in the requirements, the agent needs to start

communicating with other Equipment Module Agents to identify possible

collaboration targets. This implies that the agent needs to query other agents about

their interest to collaborate with them. Once the targets are identified the Equipment

Module Agent needs to assess if it has enough collaboration to establish a solution

that can fulfil the established requirements.

The following operational step of the equipment module agent is to assess each

potential solution, in the collaboration assessment. This will be explained in the

relevant subchapter.

Once configurations are established and evaluated, the MAS expert agent is

contacted for extra inputs to the configurations. The results of this assessment do not

require any extra reasoning from the module agent, since it can simply create

additional requirements that will trigger the prior processes.

The next operational requirement of the equipment module agent is the deployment

of performance simulation agents. This is quite straightforward task, since the agent

already possesses all the necessary information to create these agents. The

information is extracted from the module description, where all the capabilities of the

module are present. Each of these capabilities that are involved in the given solution,

will represent the need for performance simulation agent. On creation, the equipment

module agent needs to provide all the attributes for the given capability, not just the

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

144

capability type. The equipment module agent also needs to relay the configuration

solution so that the performance simulation agents can establish a virtual network

that represents the configuration.

The reception of simulation results triggers the next operational step of the

equipment module agent. Upon arrival of all expected results, the agent will proceed

to select the configuration most advantageous according to the collaboration

selection assessment, which is performed through the established mathematical

model for the agent’s beliefs.

The agreement and subsequent submission of a configuration solution follows the

simple logic of using the highest ranked solutions based on the simulation results.

This is followed by waiting for the final selection results so that the agent can update

their internal models for decision making.

6.3.5.1. Expression of Interest

The identification of interest in the requirements provided by the requirements agent

follows a very simple set of rules. The basic concept is whether the Equipment

Module Agent can execute any of the given set of capabilities. If it can, its interest is

established. However this is the simplification of the problem since the agent might

have multiple interests in the requirements. It is simple to understand that a robot

might be interested in multiple handling tasks, but it is also clear that the same robot

cannot be involved in handling tasks across different workstations.

The question that arises is how the Equipment Module Agent identifies that assembly

processes are in different workstations. The answer is in the requirements

descriptions. For the purpose of this work, Equipment Module Agents can only be

interested in multiple capabilities if these are related to the same workstation in the

requirements definition.

The equipment module agent will manage internally the multiple interests that it has

based on the given set of requirements. It will actuate each of these interests as

parallel interest, and in the end select the one that gives it the best value for being

selected. This means that the agent will have interests in multiple workstations, but

also it will create alternatives for executing one capability, two capabilities, or

whatever number of capabilities. All these will be considered alternatives that the

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

145

agent needs to maintain internally. Figure 6.5 provides an example of a set of

requirements, which is composed by two workstations in which a given conceptual

module has interests. In this example the equipment module agent would create four

parallel configuration processes as described in the Figure 6.5.

Figure 6.5 - Conceptual Example for Multiple Interests in Given Set of Requirements

The identification of the agent interest in a given set of requirements is the first step

in the expression of interest process. This is followed by the need for identification of

potential collaboration partners. This implies that the agent needs to query other

agents about their interest to collaborate with them. The question is how this query

should be executed, and more importantly what is it about. The decision on whether

or not to collaborate is based on having something to gain, thus it is logical to

Modular Assembly System Requirements

Workstation 1 Workstation 2

Operation

1

Operation

2

Assembly

Task 1

Operation

3

Operation

2

Assembly

Task 2

Equipment Module

Skills:

Interfaces:

Description:

Conceptual Equipment

Module

Bay Port

Part Port

Operation 1

Operation 2

Interest

Interest

Interest

Interest

Belongs Belongs

Collaboration Options

Based on Possible

Interests

Workstation 1:

-Operation 1

Workstation 1:

-Operation 2

Workstation 1:

-Operation 1

-Operation 2

Workstation 2:

-Operation 2

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

146

construct a query on the capabilities that the agent cannot execute. Instead of

defining a specific model to exchange information for this collaboration, it is

proposed that the agent uses the model for requirements that is already established

and which all of them already understand. The agent will simply update the

requirements based on its capabilities, namely by removing them and stripping down

all other aspects from the requirements. This exchange will follow a known protocol,

so that agents can make a distinction between these requirements and the ones

provided by the Requirements Agent. It is important to highlight that the decision to

show interest is only made through the established capabilities, all other aspects will

be considered during the later stages of the methodology.

The defined method to identify collaboration targets poses a question highlighted on

the previous chapter, which is the issue of scalability. If there are a high number of

Equipment Module Agents, and if they are allowed to establish as many

collaboration targets as they deem fit, this will result in high computational resource

consumption. Therefore it was proposed in the previous chapter that a limitation

should be introduced, so that one can test what would be the optimal number of

configurations that should be allowed. In operational terms the algorithm works

pretty much in the same way, but it caters for a limitation on the number of possible

collaboration targets that can be identified. The only difference is the need for the

introduction of some randomization of the potential collaborators list. Otherwise the

agents would all contact primarily the same agents which would make certain agents

more important than others.

Once the targets are identified the Equipment Module Agent needs to assess if it has

enough collaboration to tackle the established requirements. If it is not the case, the

agent will contact more agents for collaboration, and repeat the process. The

algorithm that executes the above described operations is presented in Figure 6.6.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

147

Randomise List of

Interested Agents

Analyse

Requirements

Requiremnts>1

Broadcast

Requirements to

Interested Agents

All Replies?

Potential

Solutions?

Store Potential

Solutions

Request

Information from

Specific Number

of Agents

All Replies?

Establish Possible

Combination

Solutions for

Current Agent List

No

Yes

Yes No

No

No

Yes

Create Parallel

Threads for Each

Requirements

Yes

Begin

End

Generate Agent

Requirements

Figure 6.6 - Expression of Interest Decision Making Process

The presented algorithm provides the agent with all possible configuration solutions

based on its network of collaboration targets. Once these are established, the agent

can proceed to the assessment of each possibility, in the collaboration assessment.

6.3.5.2. Collaboration Assessment

The collaboration assessment is executed for all viable configurations. A viable

configuration is defined as a configuration that fulfils all the established

requirements. Therefore the collaboration assessment’s first operation is to identify

which collaborations are viable. However this operation is not straightforward since

the equipment module agent only possessed information on other equipment module

agents and not on specific solutions. Therefore the Equipment Module Agent needs

first to establish the possible solutions based on the information it possesses in order

to assess the number of viable configurations. If no viable configurations are found,

the equipment module agent needs to find more agents to collaborate as defined in

the previous chapter. The procedure for establishing configuration solutions takes

into account what was defined in the expression of interest, therefore it uses those

rules in addition to the internal management method described in Figure 6.7. In a

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

148

nutshell, this method enables each agent to maintain a potential solution table based

on the information it collects from other equipment module agents. This process is

finalised when all the information is acquired, which triggers the suppression of the

incomplete solutions from the internal table.

Figure 6.7 – Equipment Module Agent Collaboration Management Method

Once the set of viable configurations is determined these need to be ranked. The

ranking of configuration solutions is based on the assembly performance

characteristics. However this method is not a simple adding, since some of the

capabilities affect the assembly performance characteristics differently. For example,

capabilities that occur in parallel will affect cycle time differently then capabilities

that occur in sequence. Therefore a clear set of rules needs to be identified in order

for this assessment to take place.

To establish the rules, an analysis is required to understand the assembly

performance characteristics. Flexibility is the simplest characteristic, since it is

defined as additional capabilities. Therefore, it is obtained by simply adding the

spare capacities of any given solution. Cost is also very straightforward since it is

based on the equipment module cost. Additional considerations on assembly

processes cost will be considered by the simulation agent.

Cycle time requires the consideration of capabilities that occur in parallel and in

sequence. The rule is if assembly processes occur in sequence that cycle time is

Begin

Create Solutions

Table

Received All

Information?

Read Equipment

Module

Capabilities

Update Table

Elements Where

Capability Fits

Multiple?

Create New Table

Entry With Missing

Requirements

Execute For Each

Possible

Combination

No Yes

No

Yes

Remove

Incomplete

Solution Elements

End

Received

Information?

No

Yes

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

149

simply added, however if assembly processes happen in parallel then the highest

value is used and the lowest is disregarded.

Finally, accuracy and repeatability will use the classification established in chapter 4

for assessing assembly process type. The type will determine if the values should be

added, replaced, or fixated. Figure 6.8 provides the algorithm for the method that

enforces these rules.

Figure 6.8 - MAS Configuration Assessment Method

Begin

Sum Cost of All

Equipment

Modules

Input Solution

Higher than

Requirements?

Discard Solution

Count Unused

Capabilities In

Configuration

Solution

Lower than

Requirements?

Discard Solution

Qualifying

Process?

Compensate

Process?

Decision

Process?

No

Affect Objects to

Reflect Error

Compensation

Fixating

Process?

No

No

Update Objects

Permanent Error

Yes

Add Relevant

Errors To Objects

No

Yes

Affect Objects to

Reflect Error

Compensation

Yes

Affect Objects to

Reflect Error

Compensation

Yes

Check Assembly

Processes In

Established

Sequence

Checked All?

Create Accuracy

Object for Each

Assembly Process

Start Point

Check Next

Assembly Process

Create Repeat.

Object for Each

Assembly Process

Start Point

Higher than

Requirements?

Discard Solution

Normalize

Performance

Characteristics

Multiply by Weight

Matrix

Record

Configuration

Solution Value

No

Yes

No

Yes

No

Yes

Yes

No

No

End

End

End End

Create Cycle Time

Counter

Check Assembly

Processes In

Established

Sequence

Has Parallel?

Check Parallel

Assembly process

Sequences

Sum All Cycle

Times to Counter

Sum Highest

Cycle Time of

Parallel Assembly

Processes

Sum All Cycle

Times in

sequence to

Counter

Lower than

Requirements?

No

Yes

Yes

No

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

150

The proposed method is performed for all configuration solutions, going through the

assembly characteristics, namely cost, flexibility, cycle time, repeatability and

accuracy, if any of these is outside of the requirements the solution is discarded. The

method is used for the calculation of the assembly characteristics of configuration

solutions, which will enable the decision making capabilities of equipment module

agents. Once all values are determined for each configuration these will be

normalized and valued against the internal weight matrix, which will result in

ranking index value.

6.3.5.3. Collaboration Selection

The collaboration selection comprises the assessment of the results obtained from the

performance simulation agents. These agents will produce results based on Monte

Carlo simulation, which results in a series of results that cannot be directly used. This

means that some treatment of the result is required, meaning that some rules need to

be defined for this.

The first rule says that simulations cannot, at any point, conflict with the

requirements. The idea behind this rule is to guarantee that even in the worst

conditions the requirements are always met. The elicitation of this rule is quite

straightforward since it is just a comparison between the worst values and the

requirements.

Once it is guaranteed that the configurations’ solutions are not in conflict with the

requirements, an assessment needs to be made on the several simulation results. The

first step is to normalize the results to be able to deal with the different characteristics

in a uniform way. Once the values are normalized an average value is determined.

The average value provides the central value for assessing the configuration solution.

Nevertheless, the simulation results produce more insight into the configuration

solution than the mere average value. In fact these raw data allow for the analysis of

the standard deviation of the results. This determines the stability of the achieved

average values. The impact of this result for the decision making process in question

can be described as the entropy of the assembly system, which by definition is the

disorder in the system (Chang [133]). Figure 6.9 provides an overview of the

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

151

standard deviation values, which accounts for 68% of the samples, where in blue one

obtains more entropic result which might be within the establish requirements.

Figure 6.9 - Standard Deviation Example

It is clear that this entropy has a relevant impact because the solution would vary

much more. It is also fairly straightforward to think that disorder should be

penalised; the question is by what measure. This is a question that cannot be

answered by any one individually because it depends on several aspects which are

attributed to the sensibility of the system integrators and module vendors. Therefore

the configuration methodology has defined this as an input value, where the different

module vendors can establish the weight of this disorder in the decision making

process of their Equipment Module Agent. Similarly, the system integrator will

define this weight for the Requirements Agent assessment of the proposed

solutions.

In sum, the final assessment can be described by the process of normalizing the

results, getting the average value, getting the standard deviation of those values and

weight those based on the internal weights that each Equipment Module Agent

possesses. The following equations provide the mathematical formulation for

determining the final configuration solution value, which is the decision factor for

ranking the solutions.

Mean1 11 1

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

152

[

 ()

 ()

 ()

 ()
 ()]

[

]

[

 ()

 ()

 ()

 ()
 ()]

[

]

The final step of the collaboration selection is simply to choose the highest ranked

one.

6.3.6 Performance Simulation Agent Operational Strategy

The Performance Simulation Agent will execute the simulation of a given

configuration. To achieve this goal, two main operational states need to exist, namely

the establishment of the simulation model that represents the configuration solution

and the execution of the simulation, as defined in chapter 5. To that end it is

proposed the use of the syntheses model presented in (Ferreira et al. [128]),

extending it to cater for all performance characteristics. It recognises that the

assembly process accuracy and repeatability, of an assembly system depends upon

two aspects; the physical arrangement of different pieces of equipment and the

logical sequence of operations which they need to jointly execute to achieve their

common assembly objective. Furthermore, the same model can be extended to cater

for identified performance characteristics. Figure 6.10 provides an overview of this

model.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

153

Figure 6.10- Token flow description for an example of MAS

The use of a Petri net based model has been adopted which allows the use of

different token types for components and equipment that are propagated throughout

the assembly process chain. Essentially, a token is being created for each component

which is being assembled. Component tokens are merged into a product token when

the assembly process is of “Fixating” type. However this does not take into account

the modules that are responsible for the assembly processes. These are represented

through module specific tokens which carry the repeatability properties of the

equipment. These are merged into the component token when another module takes

responsibility for the component or a “Fixating” type process occurs.

It is proposed that Performance Simulation Agents emulate this behaviour through

the exchange of messages that contain structured information on equipment tokens

and assembly process tokens. This information consists of updated objects for each

of the performance characteristics, which represent the assembly process tokens, in

conjunction with the last agent that effected the equipment token and the equipment

ID. This way, once the equipment is different, the agent can simply give back the

equipment token to the relevant agent. Therefore the agent is able to perform the two

place holder roles defined in the model.

In addition, the agent is also responsible to perform the necessary operations for the

transition that precedes it, this in effect ensures the emulation of the Petri Net model.

Each Equipment Module Agent will deploy the required Performance Simulation

Agents for a given solution with the specific information on the assembly process

that is executing, plus the equipment responsible for it. In addition to this, the

Process

Place

Holder

Equipment

Place Holder

Process

Type:

 “Fixating”

Attributes:

 Accuracy

Values

...

...

Component

Token

Equipment

Token

...

Final

Product

Token

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

154

Equipment Module Agents also need to provide the required connection for the

execution of the simulation, so that it provides the individual connections that each

Performance Simulation Agent needs to establish. This provides a straightforward

manner to establish the virtual configuration which enables the behaviour model of a

given solution.

Once the behaviour model has been synthesised, it enables the simulation of the

underlying system behaviour based on token passing approach. An unaltered Petri

net, however, does not provide the desired behaviour characteristics and requires a

more specific definition of how the tokens behave in the model through the

established place holders and transitions.

The transitions are responsible for the management of the tokens, making sure tokens

exiting the flow are incorporated into the component token. This is its basic

behaviour if a token is exiting the flow this needs to be passed on to the component

token, otherwise the tokens are simply passed to the next process place holder.

Figure 6.11 describes the operational behaviour of the transitions presented in the

model. This diagram details how the different performance characteristics are

processed in the transitions in order to calculate the results.

Figure 6.11 - Transition Behaviour Algorithm

Begin

Wait for Message

(Tolken)

All Tokens?

Equipment

Token

Leaving?

Stack Up

Equipment Token

Errors to

Component Errors

Check Equipment

Tokens
Multiple?

Update Cycle

Time With

Maximum Among

Option

Add Cycle Time

Stack Up Power

Values

Send Equipment

Back to Start

Trigger Place

Holder Process

Yes No

Yes

Yes

No

No

End

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

155

The process place holders are assembly process specific and thus they incorporate

the process classification, as defined in chapter 4. Their behaviour is driven by the

assembly processes classification which serves as input to establish how to affect the

tokens, namely in the relation to the assembly system errors. Figure 6.12 describes

the process place holder behaviour where it is clearly defined how this model should

react to the different process types. The behaviour of the place holders will be broken

into the four performance simulation characteristics which will require different

actions. The repeatability and accuracy performance characteristics can be broken

down into three types: one for Qualifying, Decision and Compensate processes

which affect the equipment token compensate error matrix which will be

incorporated into the component token once the equipment token leaves the system.

The other type is the fixating processes which merge all tokens present into a new

component type token (or final product). The final type is for any other process types

which simply stack up the equipment token with the relevant error. It is important to

note that only when the equipment token leaves the system will the stack up of

component token errors occur. The power consumption has no compensation

possibility and therefore it is simply stacking the value that all the assembly

processes are consuming in the simulation, which is treated in the transitions

algorithm. The cycle time uses a different approach for the merger of the cycle time

values, if two tokens are to be merged, therefore coming from two different sources

the value that is set is the highest, which again is treated in the transitions algorithm.

Therefore the place holders operate only on the precision aspects as seen in Figure

6.12.

Figure 6.12 - Place Holder Behaviour Algorithm

Begin

Qualifying

Process?

Compensate

Process?

Decision

Process?
No

Affect Eq. Token

Compensate

Matrix

Fixating

Process?
No No

Merge

Components

Tokens Errors and

relevant Eq. Errors

Yes

Add relevant Eq.

Errors when not

already present in

Eq. Token

No

Yes

Affect Eq. Token

Compensate

Matrix

Yes

Affect Eq. Token

Compensate

Matrix

Yes

Send Message To

Next Agent

End

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

156

The synthesis algorithm for the precision characteristics is based on a state transition

approach which is used to construct a 3D parametric model using 4x4 matrix

transformations of all contribution factors and sources of errors leading up to and

during the completion of a full assembly process. The algorithm distinguishes

between processes that contribute to the error, those that do not and those that

compensate errors from previous operations. Each Module/Skill can contribute in 6

Degrees of Freedom to the assembly error of the workstation (3 translations and 3

rotations). Each error is expressed by its variation (upper and lower bound) and the

accuracy of the error value (3 or 6 sigma) which is provided in the equipment module

description. The synthesis algorithm for the remaining characteristics is less complex

since it is a simple value, so no matrix is required, yet the overall behaviour is the

same as the synthesis algorithm for the precision characteristics.

6.3.7 MAS Expert Agent Operational Strategy

The MAS Expert Agent is defined as the expert of MAS configuration and performs

two assessments in the configuration process: the expert configuration assessment

and the performance failure assessment which were defined in chapter 5. Despite

this division, the internal operation of the MAS Expert Agent is quite similar, since

it is based on the existence of patterns and rules for both assembly process

configuration and physical system configuration. Therefore any assessment of the

MAS Expert Agent covers two sub assessments, the assembly process assessment

and the physical assessment. As it was stated before, this agent only contains a

lightweight set of rules that demonstrates the agent potential in the configuration

methodology once more knowledge can be acquired and incorporated into the agent.

The operational behaviour of the MAS Expert Agent for the expert configuration

assessment firstly looks at the completeness of the given solution. The completeness

of a solution assessment is performed in phases. The first looks at predefined system

completeness rules and is followed by the matching with internal patterns for MAS

solutions. The decision of looking firstly to the rules resides in the fact that these can

provide early insight into missing elements in the solutions using minimal effort.

This follows the smallest effort and biggest impact approach, therefore the rules act

as the first tier for the completeness assessment. The rules have to be absolute and

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

157

cannot have any conflicts, while the patterns provide the means to have parallel

solutions.

The rules for the completeness assessment look at both physical aspects and

assembly processes aspects. A set of very basic rules for completeness assessment

are proposed as follows to provide an overview of the impact that these might have

in the configuration methodology:

· Incomplete physical interfaces – The existence of non plugged physical ports

that are not indicated as optional requires the establishment of requirements

based on the global interface definitions where the matching port pair or pairs

are defined.

· Incomplete assembly process parameter interfaces – The existence of

mandatory parameters for an assembly process that are not connected due to

the absent matching parameter port.

If these rules are not breached, that is, if the solution follows the rules, the MAS

Expert Agent performs the matching of existing patterns to the given solution.

Because this is viewed as an evolving agent, in the absence of patterns, as in the

absence of rules, the agent simply assumes that the solution is valid. The patterns

allow for the definition of alternative configuration patterns that indicate what the

necessary elements in a configuration are. The ability to have alternatives is crucial

because the rational is that the solution needs to follow one of the given set of

patterns, and if it does not, the missing element or elements of the closest match

should be established as missing requirements. The patterns can be both physically

related and assembly process related. Figure 6.13 provides a conceptual overview of

pattern structures that the MAS Expert Agent contains. If any pattern exists then the

solutions would be required to fulfil at least one of the defined variants.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

158

Figure 6.13 - Conceptual Overview of Pattern Structures

It is also proposed that the predefined patterns structure cater for definitions that

allow for defining mandatory components of the given variant, while others are

merely optional. This characteristic provides the system with the ability for not very

complex definition since the only constraint that the MAS Expert Agent imposes is

the fact that all alternative patterns need to exist otherwise possible valid solutions

might be disregarded. The model provided in chapter 4 can cater for this description

with a small enhancement for dealing with variants, thus it is proposed its use.

The other assessment performed by the MAS Expert Agent is the perform failure

assessment as defined in chapter 5. The introduction of this assessment is supported

by the possibility that certain failures in solutions can be compensated, namely the

MAS repeatability and cycle time. However the form on how to compensate the

failure of these is expert knowledge that requires a wide understanding of MAS.

It is proposed that the MAS Expert Agent contains a set of rules that indicates how

a given failed configuration can be salvaged, or if in fact it is impossible. To

Assembly

Task 1
Variant 1

Operation

2

Operation

1

Variant 1

Operation

2

Operation

1

Variant 1

Operation

2

Operation

1

Feeding

Workstation

Variant 3

Feeder Base Frame

Conveyor

Robot

Variant 2

Feeder Base Frame

Conveyor

Variant 1

Feeder Base Frame

Conveyor

Robot

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

159

establish these rules one needs to look at the assembly characteristic at fault and find

the source of the problem. While for cycle time the source is normally a bottleneck,

the repeatability is more of a stacking up problem. Therefore the rules for dealing

with these two aspects are quite different and require a separation. So the first thing

the MAS Expert Agent needs to assess is the type of failure, and verifies if rules

exist to compensate for this error. The power consumption which is associated with

the running cost of the system and accuracy do not have rules to compensate for it.

Nevertheless a future iteration of this agent might provide extra definition of rules for

these aspects. For this work it is proposed two sets of rules, one for compensating for

cycle time, and another for repeatability.

The proposed rule for dealing with the cycle time failure is quite straightforward, if

the bottleneck station cost is inferior to the maximum cost minus current cost, then

requirements for a parallel station are formulated, otherwise there is no means for

compensating.

The proposed rule for dealing with repeatability needs to look at the type of assembly

processes being performed. In chapter 4 a classification for process types was

introduced and it is used for the implementation of this rule. The only way one can

compensate for error is before the fixating processes, since after these, the error is

permanent. Therefore these processes need to be found to determine which ones

produced the biggest error impact to the solution. Once these are identified, the MAS

Expert Agent establishes new requirements for a qualifying process that should

occur before the fixating process with most impact. However this qualifying process

needs to occur when compensation can still occur, as such it should be placed before

the previous handling process.

In the event of multiple failures, that are both aspects failed, the approach of the

MAS Expert Agent is to verify cycle time first, since it is the rule that is more likely

to not produce compensation options. The rules are internal to the agent, however it

is expectable that in the future a rule engine should be incorporated into this agent.

Chapter 6 – Local Behaviour of Distributed Self-Configuration Methodology

160

6.4 Reconfiguration of Existing Modular Assembly Systems

The emergent configuration methodology that results from the combination of

chapter 4, chapter 5 and chapter 6 not only provides the means to configure the

system but also to reconfigure it. The definition of reconfiguration has been given as

the enhanced configuration problem. The only difference between configuring and

reconfiguring MAS can be summed up as added constraints (Ferreira et al. [134]).

What this work theorizes, is that if an equipment module is available already it will

have zero cost, therefore this will produce a huge impact in the decision-making

process leading near zero cost modules to be the best solution the majority of the

times. In fact, only when a specific capability is not present in the current system will

external modules have a real chance for a participation in a system solution. Even so,

if external solutions are better for some reason, the method will use them.

Finally, the possibility of mandatory equipment modules being defined in the

requirements definition, provides the system integrator with the tools to ensure that a

given set of modules is used. In sum, it is not required to change any aspect in the

configuration methodology for it to be able to cater for reconfiguration solutions. The

only difference is in the definition of the requirements.

6.5 Chapter Summary

This chapter provides the methods and formal descriptions of the decision making

characteristics that enable the emergence of configurations from the proposed agent

architecture. It formally describes the required agent protocols which enable agent

interaction in the context of MAS configuration. The decision making process

methods are proposed, providing an innovative bottom up approach for the

establishment of configuration solutions. In this chapter it was also presented an

innovative performance simulation model, which can be executed by agents or other

technologies, which can cater for the variable characteristics of MAS.

Chapter 7 – Illustration and Validation

161

7 Illustration and Validation

7.1 Introduction

In this chapter the application of the proposed methodology will be illustrated and

validated. The aims and objectives of this work target a domain that is quite

extensive. The validation of this work will focus on a set of representative scenarios

that reflect the key problems and characteristics in the domain of MAS configuration.

The complete validation of the proposed methodology for the whole domain is

outside of the scope of this work.

This work has been broken down into three core contributions that will be validated

independently in this chapter given a set of scenarios that will be illustrated also

within this chapter. The illustrative scenarios will target the verification and

validation of the models and methods while enabling the demonstration of their

operation.

The first target of this chapter is the validation of the MAS configuration model that

provides the inputs for the self-configuration methodology. The model was

embedded into a manual MAS definition and configuration tool, which will be used

for its validation. This tool was developed to be used in the EUPASS project which

highlights the applicability and relevance of this model within the MAS domain.

Furthermore, the use of the tool by MAS experts in the context of this project is

viewed to provide the necessary validation of the proposed model.

Chapter 7 – Illustration and Validation

162

The second core contribution of this work is the agent architecture that enables the

creation of a distributed environment that is able to provide a bottom up

configuration methodology for MAS. In this chapter the implementation of such

architecture is assessed and its behaviour is validated accordantly to the proposed

architectural definition. Furthermore, results on the computational effort required for

achieving configurations will be provided for both memory and processing time.

These results will also provide insight into the scalability issues for the MAS

configuration problem.

Finally the operational demonstration of the self-configuration methodology will be

shown for a given scenario. This will contain the analysis if the results achieved by

the methodology and their validity. The self-configuration methodology also

proposed a new method for the simulation of performance characteristics. This new

method will also be demonstrated and validated for a given scenario.

7.2 Validation of Model for Agent-Based Self-Configuration

of Modular Assembly Systems

The model for agent-based Self-configuration of MAS provided in Chapter 4 was

implemented in the background of the manual configuration tool. This tool allowed

for expert users, namely system integrators and module providers, to define the two

main inputs for the MAS configuration problem, the MAS requirements and the

equipment modules. The tool provides the means to manually configure a given

MAS system for a given set of requirements. Finally, and most importantly for this

validation, the tool is able to generate the instances for the MAS requirements, the

equipment module descriptions and the configuration solution according to the

proposed model, which can be imputed into the self-configuration methodology.

In this subchapter a complete configuration scenario used for the EUPASS project

will be presented. The scenario will be broken down into the three main aspects of

the proposed model, namely the MAS requirements, the equipment descriptions and

the solution of a manual configuration process. These will provide insight into the

important aspects of the proposed model, while demonstrating its validity to

represent the available data.

Chapter 7 – Illustration and Validation

163

7.2.1 Validation Scenario

The validation scenario described in this subchapter has the main objective of

validating the proposed MAS configuration model. Additionally the scenario intends

to illustrate and benchmark the configuration process which is fairly complex, with a

series of constraints that mostly sit on the head of the expert user. The development

of a tool to capture this, demonstrated the benefit of having an automatic

configuration process.

Figure 7.1 – Overview of the EUPASS Final Demonstrator

The validation scenario for the model for agent-based self-configuration of MAS is

extracted from the EUPASS project final demonstrator. This demonstrator is

composed of three workstations that assemble the two main components of a valve

for Festo Figure 7.1. The proposed model does not cover the product description,

thus for the purposes of the validation, the definition of the product is outside of the

scope of this work. As such, the validation scenario starts with the definition of the

assembly process requirements and is followed by the assembly system requirements

definitions. The requirements definition process will also cover the definition of the

business aspects related to the required MAS System. The creation of MAS

requirements is preceded by the task of creating the definitions for equipment

module. These are stored in an equipment module library and will be used for the

manual configuration process which will use them for the fulfilment of the given set

of requirements. Figure 7.2 provides an overview of the whole process for the

definition of this validation scenario.

The assembly process requirements defined take into account the product

requirements. These are defined by establishing what is seen to be required for an

assembly of the given product. The assembly processes’ library, as described in

Chapter 7 – Illustration and Validation

164

chapter 4, provides an extensive list of possible assembly processes to use as

requirements. Another important aspect is the level of granularity of the assembly

processes, which can define very restrictive requirements, e.g. specifying the lower

level assembly processes that will be required, or a higher level, leaving it up to the

configuration process to define the specifics of the lower levels. In the EUPASS

project, the system integrator that defined the requirements established very strict

requirements, since the equipment module pool was not very wide. As such, the

assembly process requirements are quite detailed, which obviously facilitates the

manual configuration process.

Figure 7.2 – Overview of the EUPASS project configuration process

M
o

d
u

le

R
e

p
o

s
it
o

ry

M
o

d
u

le

R
e

p
o

s
it
o

ry
K

n
o

w
le

d
g

e

M
o

d
e

l

K
n

o
w

le
d

g
e

M
o

d
e

l
E

v
a

lu
a

ti
o

n

T
o

o
ls

E
v
a

lu
a

ti
o

n

T
o

o
ls

S
y
s
te

m

E
n

g
in

e
e

ri
n

g

S
y
s
te

m

E
n

g
in

e
e

ri
n

g
R

e
q

u
ir
e

m
e

n
ts

E
n

g
in

e
e

ri
n

g

R
e

q
u

ir
e

m
e

n
ts

E
n

g
in

e
e

ri
n

g

Product Configuration

Product Configuration Product Configuration

Product Configuration

Product Definitions

Physical

Configuration

Knowledge Definitions

Simulation Expert

System

Configuration

Process

Configuration

Product

Configuration

System Integrators

Module Suppliers

Cost

Evaluation

Tool

Simulation

Tool

System

Requirements

Knowledge Contributors

File

Reposit

ory

Blue

Print

File

Equipment

Module

Chapter 7 – Illustration and Validation

165

The validation of the proposed model requires a break down into the three aspects of

the configuration process, namely the definition of equipment modules, the definition

of the MAS configuration requirements and finally the configuration solution

description. Therefore these aspects will be covered individually in the following

sub-chapters.

7.2.2 Instantiation of Equipment Modules for Illustrative Scenario

The instantiation of equipment modules for the given EUPASS scenario consists of

several equipment modules. However, for the validation of the proposed model one

only requires the definition of one of these modules, since the other modules would

be a repetition of this process. Therefore the validation of the equipment module

description provided in Chapter 4 will provide a conceptual description of one of the

equipment modules present in the scenario, followed by its representation given the

proposed model.

The equipment module chosen for instantiation was the manipulator, which is one of

the most complex equipment modules available. This equipment module in terms of

MAS configuration consists of physical aspects and logical aspects. In physical terms

this module fits in a given bay structure. Therefore, its description requires the

definition of an interface that is composed of two physical ports, which represent the

equipment and the bay structure where it fits. This provides the connectivity of the

module to the system. Following the proposed model, the interface library would

have to contain the description of this interface, and one of its ports has to be part of

this equipment module. The other physical port required for this equipment module

is one that allows for its connection to the gripper. Again, for this definition to be

valid, the respective interface needs to be defined. However, the equipment module

considered the manipulator and the gripper as a whole due to restrictions on levels of

granularity, which resulted in the final port physical part which is the component

port, which again is part of a defined interface.

The restrictions on the equipment module granularity have an impact on the logical

description of this equipment module. In this case, this resulted in a high level ability

to handle products or components. This is a complex assembly process that combines

moving and gripping, which enables the equipment module to pick, handle and place

Chapter 7 – Illustration and Validation

166

components. The definition of these assembly processes required an assessment of

which assembly processes contained in the assembly process library reflect the

capability of this module. The equipment module provider was invited to establish its

equipment module capabilities based on an existing assembly process library. The

result of this equipment module was described to have a handling operation which

contains the standard control ports, which enable the triggering of this capability, and

one parameter port that enables the definition of a destination point. In addition to

this assembly process, the equipment provider also identified the ability of the

module to execute a pick operation and a place operation. Figure 7.3 shows a

conceptual view of these assembly processes and their respective ports.

Figure 7.3 - Conceptual Definition of Assembly Processes

The definition of equipment module also contained the physical port descriptions as

well as other control specific aspects. It is important to note that these are not

relevant for the MAS Self-Configuration methodology since they focused on specific

implementation problems. Figure 7.4 provides a conceptual overview of the full

equipment module description and its relations with the existing libraries.

Figure 7.4 - Conceptual Manipulator Unit Description

Control Ports

(Outputs)

Parameter

Port (Inputs)

Handling

Operation

Interrupt

Start Finished

Error

Reference

Point

Pick Operation

Interrupt

Start Finished

Error

Place

Operation

Start Finished

ErrorInterrupt

Control Ports

(Inputs)
Control Ports

(Inputs)

Control Ports

(Inputs)

Control Ports

(Outputs)

Control Ports

(Outputs)

Manipulation Unit

Skills:

Interfaces:Description:

Manipulator is able to

handle components in

given space.

Bay Port

(Male)

Component Port

(Male)

XML

Module

Description

Assembly

Process Library Interface Library

Assembly

Process

Types

Descriptions

(XML)

Interface

Types

(XML)

Uses

Uses

Uses

Handling

Operation

Pick Operation Place Operation
Uses

Uses

Chapter 7 – Illustration and Validation

167

The definition of this module using the model proposed in Chapter 4 uses the XSD

file for the equipment module for the generation of a template. This template already

contains the restrictions for using only ports that are present in the interfaces library

and only the assembly processes contained in the assembly process library. This

ensures that the important aspects for the configuration methodology used the same

terminology as the MAS requirements definition which also adheres to definitions

contained in these libraries. Furthermore, a template also enables the obligation to

define certain aspects, namely the ones that enable the decision-making capabilities

for the configuration methodology. Figure 7.5 provides an XML grid overview of

this equipment module description.

Figure 7.5 - Grid Overview of Manipulator Unit XML Description

7.2.3 Instantiation of MAS Requirements for Illustrative Scenario

The definition of MAS requirements defined, within the context of EUPASS

demonstrator, are quite extensive and detailed. The requirements were broken down

into product requirements, process requirements and system requirements. The

business requirements were kept separate from this and were the first aspects to be

defined. The proposed model does not cater for product requirements, therefore this

description will only focus on the process requirements, system requirements and

business requirements.

Chapter 7 – Illustration and Validation

168

This scenario targets the assembly of the final components of a valve. This is

important to understand the assembly process requirements, since these are based on

the product requirements. The assembly process requirements at high-level require

the definition of assembly processes for the loading of the two components into the

system and their assembly. The assembly involves a gluing process that binds the

two components together to form a product. The final stage is of course the

extraction of the final product from the system. Figure 7.6 provides an overview of

the conceptual high-level requirements already using the terminology contained in

the assembly process library.

Figure 7.6 - EUPASS Demonstrator Conceptual High Level Assembly Process Requirements

The high-level assembly requirements can be broken down into lower level assembly

process requirements using the concepts described in the proposed model. These

enable several levels of granularity which can be used for more detailed

requirements. Figure 7.7 provides the details for preparing the top cap of the valve.

Figure 7.7 – Detailed View of Preparation Task (Assembly Process)

The definitions of the assembly processes requirements can contain several

characteristics which are important for the MAS self-configuration methodology as

Loading

Task

Logistics

Operation

Loading

Task

Preparation

Task

Joining

Task

Logistics

Operation

Unloading

Task

Logistics

Operation

Bottom

Cap

Top Cap

Glue

Transport

Operation

Pick

Operation

Handle

Operation

Handle

Operation

Handle

Operation

Dispensing

Glue

Operation

Preparation Task

Chapter 7 – Illustration and Validation

169

defined in Chapter 4. The details of these will be introduced based on the developed

requirements definition tool.

Figure 7.8 shows an overview of the assembly processes defined for the EUPASS

demonstrator. This contains several assembly processes with different levels of

granularity, namely tasks and operations. Also present are the supply chain processes

which are defined in a different colour to emphasize their difference.

Figure 7.8 - Overview of Process Requirements Specification Front End

The process requirements definition details can be found in Appendix D, were the

overview of the requirements definition tool is detailed.

The definition of assembly process requirements is followed by the definition of the

system requirements. In the case of the considered demonstrator, system

requirements are quite detailed since they targeted also the introduction of new

concepts like the bay structure for the assembly line. This also facilitated the

configuration process since it was a manually driven process.

The system requirements for the last demonstrator established four workstations that

enabled the distribution of the high-level assembly process requirements across the

Chapter 7 – Illustration and Validation

170

different workstations. In addition to the workstations, some transport units have also

been introduced between certain workstations to demonstrate the potential of the

modular approach. It is important to note that these requirements were very specific

to demonstrate different aspects of modular systems. Figure 7.9 provides a

conceptual view of the system requirements and their assigned assembly process

responsibilities.

Figure 7.9 – EUPASS Demonstrator System Requirements Overview and Assigned Assembly

Process Responsibilities

The definition means that the specific workstations will be responsible for the task

they have been associated with. For the instantiation of these requirements the

system requirements tool was used. The tool is similar to the assembly process

requirements definition and allows for the conceptual assembly system design

process which defines an assembly system concept which in turn fulfils the set of

requirements. Figure 7.10 provides a screen shot of this tool where the conceptual

system for the valve is shown.

The export of the MAS requirements into the proposed model was done using the

XSD file with all the constraints defined in chapter 4. The use of this file allows for

the validation of its content, including the use of the require terminology for the

Loading

Task

Logistics

Operation

Loading

Task

Preparation

Task

Joining

Task

Logistics

Operation

Unloading

Task

Logistics

Operation

Bottom

Cap

Top Cap

Glue

System

Transport Unit Transport Unit
Loading

Workstation

Loading

Workstation

Joining

Workstation
Transport Unit

Unloading

Workstation

Chapter 7 – Illustration and Validation

171

assembly processes and interfaces. This export functionality was used for exchanging

requirements with other tools and experts user within the context of the EUPASS

project. Figure 7.11 provides an XML description overview of the requirements.

Figure 7.10 - Overview of System Requirements Specification Front End

Figure 7.11 – EUPASS Demonstrator Grid Overview of MAS Requirements

Chapter 7 – Illustration and Validation

172

The overview does not provide much information on the main descriptions of the

physical system requirements and the assembly process requirements due to the

amount of information it contains. Nevertheless it is important for the model

validation to expand the descriptions focusing on certain aspects of the defined

requirements. Figure 7.12 provides an overview of the XML description for the

assembly process requirements, where it is clearly shown that it is composed of a set

of assembly processes as seen in Figure 7.6.

Figure 7.12 - EUPASS Demonstrator Grid View of XML Description of High Level Assembly

Process Requirements

The high level assembly processes were broken down into lower level ones. This

highlights the flexibility of the proposed model for describing several levels of

granularity. The high level assembly process described in Figure 7.7 resulted in the

XML description seen in Figure 7.13.

Similarly the physical requirements that are described in Figure 7.9 are provided in

the XML format using the model proposed in chapter 4, and can be seen in Figure

7.14.

Chapter 7 – Illustration and Validation

173

Figure 7.13 – Detailed Grid View of Preparation Task (Assembly Process) XML Description

Figure 7.14 - EUPASS Demonstrator Grid View of XML Description of System Requirements

Chapter 7 – Illustration and Validation

174

7.2.4 Instantiation of Configuration Solution Output

In order to assess the configuration solution output one needs to provide a solution.

Furthermore for the purposes of understanding the configuration methodology it is

useful to follow the steps of the manual configuration process. For simplicity this

illustration will focus on one of the three available workstations.

The configuration process essentially consists of two parts; the selection and

configuration of available equipment modules into possible physical system solutions

and the configuration of the control logic. The physical configuration of the system

focuses on the selection of appropriate equipment modules based on their capabilities

and interconnection constraints and connecting them together. The process logic

focuses on defining the sequential order between the skills of the equipment modules

selected for a system configuration.

Figure 7.15 shows an overview of the main interface used by the assembly system

configuration tool. The illustrated example shows a possible workstation

configuration for the placing and gluing of a valve top cap onto the main assembly.

The interface shows the hierarchical structure of the configuration and the physical

interrelationships between the modules. All equipment modules are integrated by

reference only into the underlying assembly system configuration model. The main

objective of the tool is to find the most suitable modules and connect them to each

other.

The configuration of assembly system solutions is a bottom up approach. The tool

does however create an empty system structure based on the associated assembly

system concept to maintain the consistency of the models. This structure is strictly

speaking generated in a top down fashion but remains empty until it is being

populated with detail from the lowest level (bottom up). Details on the configuration

process using the assembly system configuration tool can be found in Appendix E.

The next step of the MAS configuration process is the configuration of the logical

aspects of the system, namely the definition of the possible assembly process

sequences for a specific system configuration. The configuration tool allows the

configuration of assembly processes contained in the system which are provided by

the equipment module descriptions files.

Chapter 7 – Illustration and Validation

175

Figure 7.15 - Overview of Physical Configuration Front End

Figure 7.16 shows an overview of the main interface used for the process

configuration. The illustrated example shows a process configuration for the

proposed workstation configuration for the placing and gluing of the valve top cap

onto the main assembly. The interface shows the sequential structure of the

configuration as well as the control interfaces between the processes. The main

objective of the tool is to find the best possible process configuration for a given

system and convey it to the line configurator.

The Assembly Process Configuration tool is intrinsically related with the System

Configuration since the base structure for process configuration is generated from the

system configuration structure in a top down approach and it remains empty until it

is being populated with detail from the lowest level (bottom up). Further details on

the Assembly Process Configuration tool can be found the Appendix E.

Chapter 7 – Illustration and Validation

176

Figure 7.16 - Overview of Assembly Process Configuration Front End

The final stage of the configuration process is to export MAS configuration solution

which uses the model defined in chapter 4. The output of the tool is validated

against the XSD model to determine its validity according to the model. The model

builds on the requirements model filling in the missing elements as they are

configured. As such, the important aspect to focus on is the lower level elements. In

the considered demonstrator the assembly process requirements are quite specific,

thus the focus of the configuration output analysis is on the added equipment

modules and the assembly processes they have been assigned to configure. Figure

7.17 provides an overview of the joining workstation configuration highlighting the

assembly processes responsibilities of some equipment modules.

Chapter 7 – Illustration and Validation

177

Figure 7.17 - Grid View of Joining Workstation XML Description of the EUPASS Demonstrator

7.2.5 Analysis of Validation Results of Model for Agent-Based Self-

Configuration of Modular Assembly Systems

The proposed model was used under the EUPASS project, were it was tested under

the scope of the project. The model proved to be useful particularly in the exchange

of structure data between different tools and partners. The available data was

accurately represented by the model and was used for the development of the

attributes included in the model. The validation description provides an overview of

the stages of the configuration process and the importance of the proposed model for

capturing structured information that is required across the whole configuration

process. It is important to note that this model was developed with the collaboration

of EUPASS project partners.

The proposed model was considered suitable by academic and industrial experts

involved in the EUPASS project which targeted the advancement of MAS, therefore

the proposed model is viewed as a good contribution for the development of the

MAS domain.

Chapter 7 – Illustration and Validation

178

7.3 Operational Validation of Agent Architecture for

Distributed Self-Configuration Methodology for Modular

Assembly Systems

The operational validation of the proposed agent architecture for distributed self-

configuration methodology provides insight into the projected interactions between

agents and verifies that the execution of the overall architecture behaviour, which is

expected to provide configuration solutions using a bottom up approach. With this in

mind an agent environment that implements the proposed architecture was developed

using the JADE platform.

The verification that all agents operate according to the projected overall behaviour

is the first validation step of the proposed architecture. If the agents overall

behaviour is not as expected, then the proposed architecture is obviously flawed. To

achieve this verification a simple scenario should be followed so that the interactions

between agents are restricted to a limited number for better clarity of the results.

A second aspect that needs to be verified is how the proposed solution behaves when

the solution pool grows. It was theorized that if the solution pool grows, the

computational effort will also grow exponentially. Therefore, a scenario for large

solution pool should be developed and the behaviour of the agent environment

should be assessed in terms of computational effort. Another important aspect to

consider is the number of messages exchanged between agents in the time it takes to

find the configuration, since it provides an indicator for the communication effort.

These indicators will be used to assess how the agent environment behaves with a

growing number of solution possibilities.

The proposed architecture established the possibility to restrict the number of

contacts between equipment module agents. This restriction was introduced for the

verification of the impact this limitation would have on the quality of the solutions.

Despite the fact that the calculation of the quality of the solution will be verified in

the next subchapter, the results are important here for the validation of the overall

architecture, since this is expected to reduce significantly the computational effort,

the time to find a solution and the number of message exchanges between agents.

Chapter 7 – Illustration and Validation

179

Finally, perhaps the most important validation element is the distribution of the

agents across different computers to assess the impact of this distribution. Towards

that end a scenario needs to be defined so that the results are clear in terms of the

distributed behaviour of this architecture.

7.3.1 Validation Scenarios

The analysis of the validation aims defined previously clearly identifies the need for

the definition of three validation scenarios. The first scenario should be quite simple

to clearly demonstrate the overall behaviour of the proposed architecture. Therefore,

this scenario will consist of a workstation configuration with a very limited number

of equipment module agents. By using this simple scenario it is easier to follow the

overall agent behaviour which in turn provides better clarity of the results.

The requirements for this scenario will be a workstation that is able to feed in a

component and place it in a pallet. Figure 7.18 provides a conceptual overview of

the assembly process requirements, including the business requirements and the

weights for assessing the configuration solutions.

Figure 7.18 - Conceptual MAS Requirements Overview

The available equipment modules will be four feeders, three grippers, two

manipulators and finally a vision system. The agents will all have the same weights

for assessing solutions as the ones established in the requirements to minimize

entropy in the system. Table 7.1 provides overall descriptions for these equipment

modules.

Feeding

Operation

Pick

Operation

Handling

Operation

System Cost

Cycle Time

Flexibility

Accuracy

Repeatability

10000 €

60 s

0

0.05 ± 0.01mm

0.05 ± 0.01mm

0.3

0.2

0.1

0.2

0.2

Characteristic System Targets
Assessment

Weights

Chapter 7 – Illustration and Validation

180

Table 7.1 - Overview of Equipment Module Description

Equipment

Module Capabilities Cost

Cycle

Time Accuracy Repeatability

Feeder 1 Feeding Operation 2500 3 0.001 0.001

Feeder 2 Feeding Operation 3000 2 0.0001 0.0001

Feeder 3 Feeding Operation 2000 3 0.001 0.001

Feeder 4 Feeding Operation 4500 2 0.0001 0.0001

Gripper 1 Pick Operation 1000 0.5 0.001 0.001

Gripper 2 Pick Operation 700 0.5 0.001 0.001

Gripper 3 Pick Operation 500 0.5 0.01 0.01

Manipulator 1 Handling Operation 4500 5 0.01 0.01

Manipulator 2 Handling Operation 3500 10 0.01 0.01

Vision System Measuring Operation 1500 0.2 0.0001 0.0001

The second scenario consists of an enhanced version of the previous one. Because

the description of equipment modules would take a long time, a random generator of

equipment modules of these types was developed. This method enables us to define

equipment modules of these types with a certain variation on the attributes that is

random, or provides a hardcoded variation in the required number of modules. That

is one could not evaluate the solution quality if the equipment module characteristics

were not constant. In this scenario growing numbers of equipment modules should be

put into the environment to assess the performance of the environment based on

computational effort, time to achieve a solution and number of exchanged messages

between agents. Furthermore, this scenario is also suitable to test the performance of

the environment under different interactions restrictions between equipment

modules.

The final scenario can use the previous scenario as a base. The idea is using this

scenario in an agent environment distributed across different computers one could

assess the performance of the architecture. Figure 7.19 provides an overview of the

distribution of the architecture across three computers, where the requirements agent

runs on a separate computer and the other agents are distributed between two other

computers.

Chapter 7 – Illustration and Validation

181

Figure 7.19 - Overview of Architecture Distribution

7.3.2 Operational Verification of Architectural Design

The execution of the first validation scenario provides a quite complex interaction

diagram between all agents. Nevertheless, the results clearly show that the agents are

able to execute their intended roles as defined in chapter 5. This is the first step

towards achieving the proposed configuration methodology.

The verification of all agent interactions would be quite unreadable and not suitable

for a written document. Therefore, the illustration of the interactions focuses only on

interactions between two equipment module agents. Further details on interactions

can be generated using the developed software environment. Figure 7.20 provides a

snapshot of interactions between three equipment modules which are obtained using

a sniffer agent that is part of the JADE platform (Bellifemine et al. [135]). It

highlights the types of messages exchanged between the agents, namely the requests

for information, which is answered with the sending of information, or the rejection

of a proposal that is followed by another proposal, etc. This provides the evidence

that the developed system behaves according to the designed architecture.

JADE Platform 1

JADE Platform 2

JADE Platform 3

Chapter 7 – Illustration and Validation

182

Figure 7.20 – Equipment Module Agent Interactions Screenshot

The agent environment reached configuration solutions as expected. The details of

the quality of the solutions will be covered in the operational validation of distributed

behaviour in Sub-chapter 7.4. Nevertheless, the procedure using the local behaviour

was repeated five times, always with the same results to ensure the validation of the

architecture operation, while also ensuring the repeatability of the methodology.

Figure 7.21 provides an overview of the possible solutions and highlights the ones

selected by the configuration methodology. It is a quite complex diagram, and for a

better understanding of it one should focus on one of the equipment modules as a

fixed point. Table 7.2 provides such a view, namely focusing on the manipulator 2

potential solutions.

Chapter 7 – Illustration and Validation

183

Figure 7.21 – Conceptual Overview of Potential MAS Configuration Solutions

7.3.3 Verification of Architecture Overall Behaviour Performance

The verification of the performance of the proposed overall architecture behaviour

will focus firstly on an exhaustive assessment of all configuration solutions. This

happens when there is no limitation to the number of interactions that equipment

modules can have between each other. The set of available modules from the simple

scenario will be duplicated using the equipment module generation method. This

procedure of duplication will be repeated and repeated and the results for the

performance will be registered.

The results for the performance of the environment are broken down into two sets.

On one side, the computational effort which requires an expert tool to assess the

computer's memory consumption during the configuration process. Figure 7.22

provides the screenshots of the memory consumption for the growing number of

equipment modules. It clearly shows the impact of having larger numbers of

equipment modules in the computational memory resources. The derived results

highlight the scalability problem of the proposed solution, using only one computer

and without any restrictions on the number of interactions agents are allowed to

perform. A final important note for these results is that for more than 160 equipment

Feeder 1

Feeding

Operation1

Manipulator

2

Manipulator

1
Gripper 3Gripper 2Gripper 1Feeder 4Feeder 2 Feeder 3

Feeding

Operation2

Feeding

Operation3

Feeding

Operation4

Pick

Operation1

Pick

Operation2

Pick

Operation3

Handling

Operation1

Handling

Operation2

Chapter 7 – Illustration and Validation

184

modules, the agent platform running on a single computer became unstable and some

of the agents crashed which made the results unusable.

Figure 7.22 – Memory Consumption for no Limitation on Agent Interactions

The other performance results are provided directly by the agent environment and

consist of the time to reach a solution, how many messages were exchanged between

agents and the value of the configuration. The analysis of these results focuses on its

limits, namely the minimum and maximum time to achieve the configuration

solution and the number of messages exchanged between agents for those solutions.

The value of the solution is not only assessed in its limits but also provides an

average value. Furthermore relations between these aspects should be created for a

better assessment of the results. Figure 7.23 details the relevant results achieved

under the same conditions used for the computational assessment.

Chapter 7 – Illustration and Validation

185

Figure 7.23 - MAS Configuration Performance Results for no Limitation on Agent Interactions

The results provide very interesting insight into the inner working of the

methodology. The fact that the number of messages exchanged increases in a linear

fashion, for both first and last solutions found, more or less doubling the previous

value, indicates that the methodology does not put too much stress on the network

due to agent interactions. The time for the first configuration is somewhat linear,

despite growing slightly more than what one would expect from linear functions.

However, the last configurations increment significantly more, demonstrating a

behaviour closer to exponential. This was expected considering that agents only

reject a configuration once they established one, which means the last agents have to

wait for the domino effect that is triggered by the rejection process, to finish before

making their last decisions. This results in a wait for exploring other options which

Chapter 7 – Illustration and Validation

186

has an impact on the increment of the time variance. Another interesting number

extracted from these results is the fact that the increase from 20 to 40 equipment

modules only produces an increase of 25% in the time per configuration solution,

while the next increment has an almost doubling effect. This alone provides a good

indication for the number of agents running on individual computers. Finally, it is

important to note that the solutions are valid and repeatable, however the

performance results vary slightly as expected in any computational intensive task.

The second verification uses the same approach but restricts the number of

interactions between different equipment module agents to 10. As expected, the

computational effort was significantly reduced as showed by results in Figure 7.24.

Figure 7.24 - Memory Consumption for Agent Interactions Restriction of 10

The results for computer's memory consumption with restriction on the number of

interactions allowed for each agent to provide a significant improvement

comparatively to the results shown in Figure 7.22. The comparison of the results for

160 equipment modules, which is the worst case in the presented scenario, shows 10

times less memory consumption, which is a huge impact.

Chapter 7 – Illustration and Validation

187

The other performance results for this scenario are seen in Figure 7.25, and

demonstrate not only the impact in the performance of the methodology but also the

quality of the solutions in terms of their ranked value.

Figure 7.25 - MAS Configuration Performance Results for Agent Interactions Restriction of 10

The comparison of these results and the results with no interaction restrictions will be

presented later in this subchapter. Nevertheless, it is important to highlight a few

aspects of the results shown in Figure 7.25. The most meaningful result is the loss of

a potential solution for 160 equipment modules. Despite the results of these solutions

being expected to vary, since there is a random element on the agent iterations, the

Chapter 7 – Illustration and Validation

188

lack of one or two potential solutions was constantly obtained, when the restriction to

10 interactions was enforced to the methodology. Another interesting result is the

fact that the number of messages and the time per solution actually decreased as the

number of equipment modules increased. This is an interesting result since it

indicates that under these conditions, the more variety exists, the faster and more

effective configuration solutions are found.

The scenario of the computational performance limited to 20 interactions per agent is

shown in Figure 7.26. The comparison of these results with the results provided in

Figure 7.24 show a small increase in memory consumption but not very significant.

Figure 7.26 - Memory Consumption for Agent Interactions Restriction of 20

On the other hand, the impact of restricting the agent interactions to 20 on the

performance characteristics, as seen in Figure 7.27, do provide an indication of some

improvements in relation to the restriction of 10 interactions.

Chapter 7 – Illustration and Validation

189

Figure 7.27 - - MAS Configuration Performance Results for Agent Interactions Restriction of 20

The results achieved for the restriction to 20 interactions provided the same trends in

terms of time per solution and message per solution as the results for the restriction

to 10 interactions. However, there was a significant improvement, which is the

number of potential solutions was always reached during all the performed tests.

The comparison among different results offers an overview of the performance and

the overall behaviour of the architecture. This is particularly important when the

number of potential solutions is high, therefore the analysis should focus on the

datasets for 40, 80 and 160 equipment modules. Figure 7.28 provides us with the

Chapter 7 – Illustration and Validation

190

comparison of different results using the environment with and without restrictions in

the number of agent interactions.

Figure 7.28 –Results Comparison for Tested Interaction Restriction in Agent Environment

The comparison of the results clearly shows that the restriction of the number of

interactions has a positive impact in the memory consumption required by the self-

configuration methodology. Moreover, it has also a positive impact on all the

analysed performance characteristics except for one, the solution value. The

performance of the methodology does increase significantly, but at the cost of not

finding the best solutions. Nevertheless, the solution value per time clearly indicates

that the impact of the reduction in quality is clearly surpassed by the impact on time.

Chapter 7 – Illustration and Validation

191

The fact is for slightly better solutions the time cost is quite significant. This is more

important for the last configuration solutions found in the system, since these take

significantly longer with no restrictions.

7.3.4 Verification of Architecture Overall Behaviour Performance in

Distributed Environment

The verification of the architecture overall behaviour performance in a distributed

environment provides us with the results that enabled the conclusions on distributing

the computational load of the configuration methodology. Moreover, it provides the

technical validation that the architecture works in a distributed environment.

The biggest impact on distributing the computational load is the ability to execute

more computational operations in a given timeframe. This would have a very

positive result in the exhaustive approach, since it has the biggest computational

load. This means that the impact of the distribution of the environment across

different computers will be significantly higher in the worst case scenario

considered. Therefore the verification of the performance in a distributed

environment will focus on the scenario with no interaction restrictions. Figure 7.29

provides an overview of the computation effort results for 160 modules for one of the

computers in the defined scenario of distribution across three computers.

Figure 7.29 - Memory Consumption on One of the Computers used in the Distributed Scenario

Testing (for 160 Equipment Module Agents distributed across two computers)

The comparison of these results with the ones obtained in Figure 7.22 clearly shows

that the distributed environment has a positive impact on the performance of the

methodology. However, by comparing these results with the results provided in the

no restrictions on interactions seen in Figure 7.22, it is clear an increase in time to

reach all solutions. This increase can be justified by the use of a wireless network as

a basis for these experiments, but also because the messaging across different

Chapter 7 – Illustration and Validation

192

computers uses http which takes longer than normal messages between agents

running in the same platform (FIPA [103]; FIPA [104]).

7.3.5 Analysis of Operational Validation Results of Agent Architecture

for Distributed Self-Configuration Methodology for Modular Assembly

Systems

The proposed agent architecture has demonstrated the ability to reach configuration

solutions through the defined agent interactions. Therefore it is clear that the bottom

up approach to achieve MAS configurations is viable through the use of this

architecture. Furthermore, the architecture design caters for the future scalability of

MAS, through the ability to distribute the load across different computers or by

restricting the agent interactions.

The results of running the methodology with no interactions limitations and in a

single computer have shown the expected exponential growth in the memory

consumption when the pool of available agents increases. This highlights the need

for options to cater for this as the main challenges of this approach. The architecture

design does provide the means to deal with this issue, which was also tested.

The results for the restriction of the interactions between agents does result in the

containment of the growth of the memory consumptions and has a positive impact on

the speed solutions are found, however, this is done at the cost of the quality of the

configuration solutions. As expected, the bigger the limitation on the interaction the

faster solutions are found, but lesser is their value in relation to the potential best

solutions. It is important to notice that results do show a significant reduction in time,

but not a significant loss of quality of the solutions. This suggests that the approach

is quite suitable.

 The distribution of the environment across different computers does also produce

the expected impact in the reduction of memory consumption. However, it comes

with the negative side effect of a slight increase of the time to find solutions. This

was expected since the messaging between agents on different platforms requires

extra software libraries that do consume time in the making of the messages.

Therefore, despite this being a solution to deal with the memory consumption

problem, it is only thought to be the solution if time to reach solution is not a

Chapter 7 – Illustration and Validation

193

problem. Considering the current configuration process time which takes weeks, the

issue of time is not that significant. Nevertheless, if this becomes an issue in the

future, one can use a combination of the distribution with the limitation of the agent

interactions, since the architecture caters for this as well.

7.4 Operational Validation of Distributed Behaviour

The operational validation of the distributed behaviour will focus on the individual

agent’s behaviour. This entails the description of the agent decision making

capabilities, which are triggered by the architectural defined interactions. The core of

the configuration methodology lies in the equipment module agents. Therefore, this

is the most important local behaviour for enabling the configuration architecture.

The requirements agent uses the same calculation model as the equipment module

agents for ranking the configurations solutions. The difference lies in the established

beliefs, which in the case of the requirements agent are defined by the system

integrator. Because of this the verification of the local behaviour of the requirements

agent can be seen as part of the verification of the equipment module agent’s local

behaviour. The difference lays in who defines the beliefs, which in the case of

equipment module agents is the equipment supplier. So a step-by-step assessment of

the decision-making process of an equipment module agent will provide the

necessary results to validate both its operation in the requirements agent.

The other two agents provide support for the configuration decision-making process

which is carried out by the equipment module agents. Because this task can be

decoupled out of the methodology, its verification requires a scenario where more

equipment module agents are involved, which would make the validation quite

complex. Therefore, the verification of their contributions to the configuration

methodology will be decoupled through the creation of an independent scenario

where the potential for their use is highlighted.

7.4.1 Validation Scenario

The analysis of the operational validation of the distributed behaviour’s objectives

identifies the need for two scenarios. The first scenario is a subset of the scenario

presented in Sub-chapter 7.3.1. The scenario is the same as defined there, however

Chapter 7 – Illustration and Validation

194

here the focus will be on the perspective of one of the ten equipment modules.

Manipulator 2 has been selected for a step-by-step decision-making verification of its

behaviour. The use of the same scenario is intended to provide clarity on the overall

decision-making process. All the other agents will have similar decision-making

processes varying according to the interaction in their established beliefs.

The second scenario is quite different and it will focus on one of the performance’s

characteristics assessment, the repeatability. This choice provides a scenario to test

both the performance simulation agent and the MAS expert agent using the

characteristic that provides a more complex behaviour of the performance simulation

method. The scenario consists of a workstation which is composed of three central

modules: a feeder module, a conveyor module and a manipulator module. The

workstation has an optional vision system module to demonstrate the results of the

repeatability synthesis for two different setups, which will be suggested by the MAS

expert agent. For simplicity’s sake, the repeatability of the workstation will be

treated as a two dimensional problem for this example. Figure 7.30 provides an

overview of this conceptual solution.

Figure 7.30 - Overview of Conceptual MAS Workstation

For this verification process, the manipulator module has been assumed to use a

vacuum gripper and has a movement repeatability of: ∆y=±0.01 and ∆z=±0.01. It is

also worth noting that due to the gripper type this equipment module compensates

values only in the z axis. The feeder module supplies component A with a

repeatability of: ∆y=±0.05. The conveyer module supplies component B with a

repeatability of: ∆y=±0.01 and ∆z=±0.01. Finally the vision system module

determines the location of the component A on the y axis with an accuracy of:

∆y=±0.001. The workstation will assemble the two components following the

 Manipulator

Module

Table

Feeder Module

Conveyor

Module

Vision System

Module

Component B

Component A

Dy=±0.01 Y

Z

Chapter 7 – Illustration and Validation

195

assembly process sequence which highlights the assembly process classification

proposed in chapter 4. This is shown in Figure 7.31.

Figure 7.31 - Assembly Process Sequence Including the Required Information for Simulation

This scenario consists of a situation where the assessment of the performance

characteristic fails to achieve the requirements after simulation due to the required

repeatability. The equipment module agents involved in the configuration solution

would contact the MAS Expert Agent which recommends, based on its knowledge,

adding a measuring assembly process which would serve to compensate for the error

in the repeatability. Then the equipment module agents would identify new

collaborations for this new requirement. Once a new configuration solution that

fulfils these extended requirements is available, the agents would be sent for

simulation by the performance simulation agent.

Responsibility
Component

B
Conveyor

Fix Workpiece Carrier

Responsibility
Component

B
Conveyor

Transport Workpiece Carrier

Responsibility
Component

A
Feeder

Feed Component A

Responsibility
Component

A
Manipulator

Pick-Up Component A

Responsibility
Component

A

Vision

System

Measure Component A Position

Responsibility
Component

A & B

Manipulator

/Conveyor

Fixate Component A

Responsibility
Final

Product
Conveyor

Release Workpiece Carrier

Responsibility
Final

Product
Conveyor

Transport Workpiece Carrier

Responsibility
Component

A
Manipulator

Arrange Component A

Chapter 7 – Illustration and Validation

196

7.4.2 Verification of Equipment Module Agent Local Behaviour

The verification of the equipment module agent local behaviour is done through the

analysis of its interactions and decision-making process. This will provides insight

into how the agent establishes collaborations and makes decisions. This was done

using the Sniffer agent provided by the JADE platform in conjunction with debug

tools.

The results for the simple scenario from the perspective of manipulator 2 show the

reception of MAS configuration requirements. This was followed by the internal

method to establish if the equipment module has any interest in his requirements.

The agent identifies that it has an interest in data handling assembly process

requirement, thus it expresses its interest to the requirements agent. Once this is done

the manipulator 2, equipment module agent, waits for the requirements agent to send

the list of potential interested agents.

The reception of the list with all interested agents is followed by the internal method

that generates new requirements, which are the original requirements minus what this

agent can do. In this scenario the results show that the agent generated requirements

that maintain requirements for the feeding assembly process and gripping assembly

process.

After the generation of the requirements this agent randomized the list of interested

equipment module agents. The agent then checks the number of allowed contacts,

which in this case comprises them all since the list is rather small. Nevertheless the

agent follows the same procedure which verifies its behaviour under conditions that

establish limits on the amount of contacts it can establish. This is followed by the

sending of the new requirements to these agents and waiting for their answer. For

each positive answer the agent updates an internal table that combines the different

capabilities to assess if the original requirements are achievable. Table 7.2 provides

the core of the internal table for this agent after all agents have replied as well as the

details for the value of each of the potential configuration solutions.

Chapter 7 – Illustration and Validation

197

Table 7.2 - Manipulator 2 Equipment Module Agent Solution Table

After all agents have replied the internal table is trimmed to remove incomplete

solutions. This is followed by the request detailed information on the equipment

module characteristics for each of the potential solutions. Once this information

arrived, the agent proceeded with the calculation for the value of each solution

according to its beliefs. This calculation involves the calculation of the assembly

characteristics for each configuration solution, which is outside of requirements and

makes the agent discard the potential solution. This is followed by the ranking

method which for this very simple case selects all possibilities.

The agent then validates the potential solutions with MAS Expert agent, which for

the given example validates them as “OK”. This is followed by the formal

establishment of collaboration with all the agents in the potential configurations

solutions. Once this is done the agents interact to deploy the performance simulation

agent and provide them with descriptions for the simulation. Once the results were

obtained the agent ranks the solutions based on the information received and its

internal beliefs, as shown in Table 7.2.

Solution Value Rejections By:

Manipulator 2 Feeder 2 Gripper 1 2.700133333 Gripper 1

Manipulator 2 Gripper 1 Feeder 1 2.901 Gripper 1

Manipulator 2 Feeder 1 Gripper 2 2.51

Manipulator 2 Feeder 2 Gripper 2 2.309133333

Manipulator 2 Gripper 1 Feeder 3 2.716 Gripper 1

Manipulator 2 Feeder 3 Gripper 2 2.325

Manipulator 2 Gripper 1 Feeder 4 3.055133333 Feeder 4/Gripper 1

Manipulator 2 Gripper 2 Feeder 4 2.664133333 Feeder 4

Manipulator 2 Feeder 1 Gripper 3 2.608

Manipulator 2 Feeder 2 Gripper 3 2.407133333

Manipulator 2 Feeder 3 Gripper 3 2.423

Manipulator 2 Gripper 1

Manipulator 2 Gripper 2

Manipulator 2 Feeder 4 Gripper 3 2.762133333 Feeder 4

Manipulator 2 Feeder 1

Manipulator 2 Feeder 2

Manipulator 2 Feeder 3

Manipulator 2 Feeder 4

Potential Solution Table

Chapter 7 – Illustration and Validation

198

The agent then contacts all agents in its top rank solution while putting on hold

responses to requests of unique collaboration. In the given example, Manipulator 1,

Gripper 1 and Feeder 4 agree on a collaboration therefore rejecting the collaboration

requests made by Manipulator 2, as seen in Table 7.2. This means that Manipulator

2, equipment module agent, is rejected from his top rank solutions, which

subsequently results in its configuration solution being only its seventh top choice.

Once he gets a confirmation of all agents he contacts the requirements agent for

proposing the configuration solution.

A final note for results was the omission of all intermediate steps information to the

requirements agent.

7.4.3 Verification of Performance Simulation Model

The verification of the performance simulation model starts with the creation of the

virtual Petri Net style network that is able to represent the given scenario. To do this

the first step is the determination of the number of start tokens for the given

workstation and assembly process. In this case two tokens are generated for the two

assembly process flows as two component tokens. Each component token will be

generated with an error matrix which will accumulate all the errors throughout the

different process steps. The next step is to generate all the process placeholders,

transitions and tokens for the equipment. The repeatability characteristics are

assigned to the equipment tokens and process placeholders respectively. At the end

of this process the complete repeatability performance simulation network for the

given system is completed. The full network based on the model presented in

Chapter 6 can be seen in Figure 7.32. This already includes the network with the

vision system as an optional assembly process. A brief analysis of the model

provides us with a clear correlation with the assembly process sequence. It is

important to note the classification of the processes within the model to understand

its behaviour. The bases for the execution of the model are the transitions and the

place holders. The behaviour of these is described in Chapter 6. For the purpose of

simplification a section of the model has been highlighted for the description of these

behaviours in Figure 7.32.

Chapter 7 – Illustration and Validation

199

Figure 7.32 - Simulation Model for Given Scenario

In this description there is the correlation between the model and the physical

system. Firstly component A is fed and thus moved to the pickup position. This is

then followed by the pick up process performed by the manipulator. The underlining

logic of the model requires the existence of a feeder token to enable the feed process

and the manipulator token to enable the pick up process. Table 7.3 goes through the

different steps for this small section showing what the tokens contain and the

different stages. The first transition requires the component A token and the feeder

token. Once they are present both tokens move through to the feed place holder. In

this place holder the relevant values are activated in the feeder token, for this

example the y axis accuracy deviation.

Table 7.3 - Token Behaviour through Component First Steps

Step \ Token Feeder Token Component A
Token

Manipulator Token

Transition 1 ∆y=±0.05 ∆y=±0.0 ∆y=±0.01

Feed ∆y=±0.05 ∆y=±0.0 ∆y=±0.01

Transition 2 ∆y=±0.05 ∆y=±0.05 ∆y=±0.01

Pick Up ∆y=±0.05 ∆y=±0.05 ∆y=±0.01

Transition 3 ∆y=±0.05 ∆y=±0.06 ∆y=±0.01
Active Token Inactive Token Token Regeneration

Conveyor

Feeder

Manipulator

Measuring

TransportFeed

Pick Up

Measure

Arrange

Fix

Workpiece

Fixate

Release

Workpiece
Transport

Component

A

Component

B

Feed, Arrange, Transport, Release

Workpiece:

 Other/ Non-compensating Process

Pick up:

 Other/Compensating Process

 (z axis)

Measure:

 Measuring Process

Fix Workpiece:

 Other/Compensating Process

 (z and y axis)

Fixate:

 Fixating Process

Product

Chapter 7 – Illustration and Validation

200

The next transition requires the tokens from the feed place holder and the

manipulator token. The manipulator token which was dormant is activated while the

feeder token is stacked into the component error. Once the error has been passed on

to the component, the feeder token is regenerated to enable the next component A.

The pick up place holder operates in a similar fashion to the feed place holder. The

manipulator token is affected and once this is done, this will trigger the next

transition.

Once the system behaviour model is available, it can be run with random error values

to simulate the emerging repeatability of the MAS configuration. The component

tokens are passed through the model to accumulate all the errors until they are finally

combined into one assembly represented by the product token. The results for both

the repeatability of the workstation with and without the measurement system are

given in Figure 7.33. Assuming that the output is required with six sigma accuracy,

the derived repeatability of the workstation in y-direction is ± 13 µm and ± 52 µm

with and without measurement system respectively.

Figure 7.33 – Repeatability Simulation Results for y-direction

These results are then supplied to the individual equipment module agents, which use

these in their models as described in Chapter 6, which finally result in the ranking of

the configuration solutions.

0

20

40

60

80

100

120

140

160

180

200

-0.035 -0.019 -0.013 -0.006 0.000 0.007 0.013 0.020

N
u

m
b

e
r

o
f

o
c
c
u

rr
e
n

c
e
s

Repetability Deviation

Compensating System

No Compensation System

Chapter 7 – Illustration and Validation

201

7.4.4 Analysis of Operational Validation of Distributed Behaviour

The distributed local behaviour shows the implementation of the behaviours

described in chapter 6. The results show that the implementation of the designed

behaviour does provide the configuration methodology with the necessary decision

making means to achieve solutions using the different scenarios. It is important to

note that the results contained in Subchapter 7.3 were obtained using the same

distributed behaviour as the one described in this section. In this section, the results

focused on important aspects of the proposed distributed local behaviour to better

understand the inner workings of the proposed approach. In that sense the results

clearly shown how decisions are reached using only local knowledge.

For the Equipment Module Agent it clearly shows how it needs to adjust to

rejections of its preferred configuration solution, which is only possible due to the

built in mechanisms not to discard potential solutions until it has made decisions.

The performance simulation results are presented in a non agent format to highlight

the independence of the proposed model. The simulation of performance

methodology was designed to work also outside of the configuration methodology in

a standalone fashion. This provides it with the potential to be used in the current

manual configuration process; the difference would only be in the deployment as the

results show. The results focus on the repeatability aspects since this is the aspect

that requires the highest complexity in the local behaviour. The results show the

potential of this simulation methodology for early assessment of MAS configuration

which can provide a big impact early in the configuration process to avoid mistakes

at latter stages that are harder to correct.

7.5 Chapter Summary

In this chapter the validation scenarios and results of the Model for Agent-Based

Self-Configuration of Modular Assembly Systems, Agent Architecture for

Distributed Self-Configuration Methodology for Modular Assembly Systems and

Behaviour of Distributed Self-Configuration Methodology are presented.

The Model for Agent-Based Self-Configuration of Modular Assembly Systems was

validated using academic and industrial experts in the field, through its incorporation

Chapter 7 – Illustration and Validation

202

in an expert tool as part of the EUPASS project. An illustrative example of this is

presented in this chapter, which emphasises the potential of this model.

The chapter provides illustrative example of how the proposed Self-Configuration

Methodology for Modular Assembly Systems works, while highlighting the impact

of the restriction or non restriction of the number of agent interactions. The results

for the performance of the methodology are presented and analysed.

Finally the chapter provides the details on the inner workings of the agents,

providing illustrative examples of both the potential and the operation of the agents

under the proposed configuration methodology.

Chapter 8 – Conclusion and Future Work

203

8 Conclusion and Future

Work

8.1 Introduction

In this chapter the conclusions for the work contained in this thesis are presented.

The knowledge contributions will be highlighted and analysed. The chapter will also

contain a perspective on future work as well as an overall future perspective of MAS.

This work targeted a main knowledge gap of the absence of a comprehensive

approach for an automatic self-configuration methodology for MAS. Therefore the

purpose of this work was to provide an automatic configuration methodology for

MAS. To achieve this, a bottom-up approach using distributed decision making

methods that enable the overall behaviour of finding MAS configuration solutions

was developed. Moreover, it was identified that Agent Technology was the most

suitable solution to fulfil this objective. The best practice codes of the use of agent

technology have identified that the definition of the agent architecture is the basis for

a successful solution. Subsequently, this work proceed as so, by designing an agent

architecture that is described in chapter 5, where the overall behaviour of the agent’s

environment is defined, as well as the agent types, roles and overall interactions.

The specific models and methods for the local behaviour of each agent were also

developed and are presented in chapter 6. These enable the actual decision making

method for the agents to achieve configuration solutions. Furthermore, a new

methodology was also introduced for early performance simulation of MAS

Chapter 8 – Conclusion and Future Work

204

characteristics that can be used in conjunction with the configuration methodology or

as a standalone contribution.

The achievement of an automatic configuration methodology also required a formal

model that is able to accurately represent the requirements for any configuration

methodology. This was addressed with the introduction of such a model contained in

chapter 4.

Finally it is important to recap the main hypotheses of this work:

· If a structured and transparent model can be defined which formalises the

physical and assembly process constraints of equipment model and a model

that enables the definition of MAS requirements using the same concepts, it

will be possible to establish automatic configuration methods. - The model

described in Chapter 4 was used and it enabled the creation of an automatic

configuration method.

· The self-configuration of MAS is better achieved through the use of a

distributed bottom up approach.

· By creating a multi-agent solution for the bottom up solving of configuration

problems, it will maximise the parallel computation and take advantage of

negotiation protocols to achieve goal-oriented behaviour of the overall

configuration environment.

· The collaboration of the agents using basic rules will enable the emergence of

complex solutions.

8.2 Key Knowledge Contributions

The first fully distributed Model for Agent-Based Self-Configuration of Modular

Assembly Systems was introduced, which caters not only for the definition of all the

information required for the automatic configuration of MAS but also it establishes

clear, structured and transparent means to describe MAS configuration solutions.

This contribution enabled the development of the automatic configuration

methodology but also has proved valuable in the current manual configuration

process. It provides the means to exchange information between different tools if

Chapter 8 – Conclusion and Future Work

205

required, namely in terms of early assessments of potential configuration solutions

within the scope of the EUPASS project.

A new Agent Architecture for Distributed Self-Configuration Methodology for

Modular Assembly Systems was introduced as a solution for a bottom up approach

that enables the automatic configuration of MAS. This resulted from the analysis of

the configuration process which led to the design of agents which accurately

represent the different actors that are involved. The idea was to create virtual

representation of the involved actors and define specific roles that they will carry out.

This required a clear definition of agent types and individual roles for the creation of

a multi agent environment that was able to provide solutions for the configuration of

MAS. Furthermore, in the architecture it was also introduced a new agent

organization model for MAS, as well as agent interactions that enable the overall

behaviour of finding configuration solutions based on a set of requirements.

Moreover, the possibility to restrict the number of interaction between agents was

built into the solution, which enabled the approach to have either exhaustive or

heuristic solutions that result in a huge increase in the performance at the cost of the

quality of the configuration solutions.

New Local Behaviour Models for Distributed Self-Configuration Methodology

were equally introduced and presented for the different agents defined in the

architecture in Chapter 6. The main contribution of this chapter was the introduction

of a formal method to establish the value of a given MAS configuration using

performance characteristics. This method used a weighted approach which enabled

different valuing of systems based on the knowledge of the different actors involved

in the configuration process. The ability for changing the valuing of the system was

viewed as one of the most important advantages of using a distributed approach,

since different agents will have different beliefs and will act according to those. This

method was incorporated into a new configuration method that was based on the

exchange of information between agents and the establishment of a value for each of

the configuration solutions which, in turn, are the basis for the decisions made by the

each individual agent. Additionally a new normalization method for MAS

characteristics was introduced, where it is possible to adjust the normalization

function to reflect changes in trends, or successful solutions. This introduced a new

approach to incorporate into the agents the ability to self-adjust its internal

Chapter 8 – Conclusion and Future Work

206

mathematical model (beliefs) based on its prior experiences. Furthermore, this

method also introduced a more accurate normalization, since it provided the

possibility to have linear or exponential functions for normalizations

A new Performance Simulation Methodology was introduced which simulated

repeatability, accuracy, cycle time and power consumption of MAS. This new

methodology offered the basis for evaluation of these aspects to support the

configuration and reconfiguration of MAS. In addition, a Petri net based model was

adapted for the synthesis and simulation of a systems’ behaviour.

8.3 Areas of Application

The results of this work are expected to be relevant for a wide range of applications

in the MAS domain. The proposed models and methodology are likely to provide a

big benefit for system integrators during the design and configuration of MAS. The

models for describing the domain provide transparent means of exchanging

information, which ultimately benefits all stakeholders of the MAS configuration

process. This model has been already extensively used during the European project

EUPASS and it is expected that its partners will continue to use this model on other

endeavours.

The proposed configuration methodology is expected to be integrated in other MAS

supporting tools. The literature clearly identifies that advances in supporting tools are

expected in the near future. The openness and adaptability of the proposed method

will allow it to be integrated into automatic configuration and deployment of

solutions in the control domain.

The proposed MAS configuration methodology proposes an agent architecture that

can be used on other modular domains to address configuration problems. Therefore

it is expected that new input models will be developed to enable the use of the

architecture concepts in other domains.

The proposed performance simulation methodology is expected to have a big impact

in the early assessment of MAS configurations, since it can be used as a standalone

methodology to support the current manual driven configuration process.

Chapter 8 – Conclusion and Future Work

207

8.4 Critical Review

The work presented in this thesis provides a bottom up configuration methodology

for MAS. This methodology was used and tested in a contained validation scenario

and requires a wider dissemination to assess its true potential. The main drawback of

using this methodology is the need for a common model that is shared by all

involved parties, namely the system integrators and the equipment suppliers, which

despite the current progress is still not a reality. Nevertheless, the introduction of

such methodologies will provide better support to achieve a common model, since it

provides a clear benefit.

The other drawback of this work is the fact that it targets a wide and complex

domain, which makes it impossible for any person to establish a detailed model that

covers all aspects. For the realisation of the vision of such system a conjoined effort

from several people is required. The EUPASS project provided a step forward in this

direction and all the work developed there also provides better support for the future

of MAS. This is an area that has managed to bring together a variety of academics

and industrialists sharing the same vision.

The main difficulty of doing research in this field is the aversion to change that one

may encounter, even in unexpected places. Academics at times are as adverse to

change as industrialists; this was one of the greatest learned lessons during this

process.

Through experience the author realises that, it is highly recommended the discussion

of ideas with other people, there is no better way to see the merit of an idea than to

discuss it with others. This work has sparked several discussions, and yet, in insight

one must conclude that more discussions would have helped to avoid mistakes. In the

beginning of this work the lack of confidence prevented the posing of certain

questions, or make suggestions which could have saved time and effort. This

conclusion has led to the biggest lesson learned in this process; all ideas have merit,

even if the merit is seeing the limitations of an idea. All in all, a PhD is supposed to

make one think, and help one make others think. One should not be afraid to of

criticism, good or bad, the more criticism, the better the chances to produced high

Chapter 8 – Conclusion and Future Work

208

quality work. A big part of the quality of the work presented in this thesis is due to

constructive criticism, which always leads to a constant improvement.

8.5 Future Work

The reported research provides a methodology for the self-configuration of MAS

which is designed to be open to enhancements. Therefore it is only logical that the

creation of this methodology provided a deep insight into potential future

developments.

The introduction of the MAS Expert agent into the approach was only briefly

addressed in this work to highlight its potential. The capture of expert knowledge and

its incorporation into this agent is viewed as one of the things that will have the

biggest impact in the future performance enhancement of the proposed configuration

methodology. This will avoid the exploration of inaccurate solutions but also provide

solutions to deal with problems affecting given sets of solutions, therefore salvaging

solutions that otherwise get lost.

The possibility to restrict the number of interactions introduces the possibility to

introduce criteria for interactions. This means the establishment of the concept of

neighbourhoods into the agents which means the creation of preferential clusters.

This is viewed as a possible avenue to explore for achieving better solutions once the

solution’s pool increases. However, it is not clear at this stage that this is the way

forward; nevertheless it should be further investigated.

The scope of this work only allowed for restricted number of tests, therefore it is

important to test the methodology further to better assess the proposed solution.

Furthermore, future tests will provide a better understanding into the real impact of

the agents’ ability to adjust its internal beliefs, based on successful and unsuccessful

solutions, in affect learning from past experience. It is expect that this work can be

further tested within the context of the IDEAS project targets advancements in this

domain (IDEAS [33]).

The proposed configuration methodology should be further tested to consider its

performance with other industrial solutions. Further tests on the distribution of the

Chapter 8 – Conclusion and Future Work

209

approach should be brought forward and the methodology should be extensively used

in the MAS domain to further prove its value.

The integration of the proposed configuration methodology into multi level

configuration approach, in affect breaking down the requirements into parts, might

produce positive impact in achieving configuration solutions. Therefore it will be

beneficial to explore this possibility in future works.

The performance simulation agent should be extended to include results on

kinematics, namely collision assessments, work envelop operations, etc.

The MAS performance simulation should be explored as standalone solution, and

should be further tested. Furthermore it should also be analysed against other

simulation solutions to assess its true impact in the simulation domain.

8.6 Concluding Remarks

This work was motivated by the growing trend towards modular assembly system

which is supported by the existence of a European project EUPASS which targeted

such systems. The participation in this project was also quite valuable for the

definition of the main knowledge gap, the lack of an automatic MAS configuration

method. The analysis of the modular concept provided a clear possibility for the

creation of a methodology that was able to cater for this. Furthermore, it was also

clear that a lack of formal description for such systems was still a big concern in the

domain. This led to the conclusion, that in order to have a MAS configuration

method, one would need to formalise the required information for such a

methodology. It was clear if that information could be formalized then it would be

possible to analyse the configuration process to create an automatic solution.

The definition of a model to capture the required information was one of the

challenges of the EUPASS project. In the project a more comprehensive model was

required due to project aims and objectives. The model proposed in this work is a

lightweight model that was built using the knowledge obtained throughout the

participation in the project and the interaction with all its partners. The model was

used and proved useful for the exchange of information between different

stakeholders in the project, which provides, in my opinion, the best validation

Chapter 8 – Conclusion and Future Work

210

possible for such a model. Furthermore, the creation of this model was the main

enabling factor for the definition of a MAS configuration methodology as stated in

the research hypothesis.

The analysis of the MAS concept clearly identified a problem of complexity and

future scalability. On one hand, the complexity of the domain made it quite

complicated to come up with an overall top down solution. In addition to this, the

fact that the domain is in constant evolution would render any top-down solution

potentially useless. Therefore it was decided that a bottom up approach would be

better to tackle the problem. Furthermore, the nature of modular system is quite in

line with this type of approach.

The use of agent technology was the natural way forward to implement the concepts

of a bottom up approach. Agent technology has been extensively used in literature to

tackle a series of different problems, as described in Chapter 2. An analysis of this

lead to the identification of an appropriate multi agent environment design

methodology. This led to the breakdown of the problem into the agent architecture

and the distributed local behaviour. The proposed architecture was designed to cater

for future enhancements, since the domain is expected to evolve.

The research hypothesis states that the multi agent solution would be able to provide

a bottom up self-configuration methodology for MAS. In line with the hypothesis,

this work provided a first approach to create a solution for the configuration of MAS

using a multi agent solution. Furthermore, this work was designed in order to cater

for future enhancements. Subsequently, this was always viewed as an evolving

approach as one could expect from an evolving domain. Importantly, this work

provided the first steps in the creation of a comprehensive MAS configuration

methodology that is able to deal with all aspects of the MAS domain.

The proposed work is viewed to have a big impact on the MAS configuration

process, which is still mostly a manual process. This work provided the means to

support the process by providing possible configuration solution and ranking them

based on the weights the system integrator attributes to the system performance

characteristics. This is deemed as a big step forward speciality considering the

growing number of available equipment modules, which makes the task of checking

all possibilities manually virtually impossible.

Chapter 8 – Conclusion and Future Work

211

The choice for a distributed approach and the use of agent technology does, however,

pose a limitation to the system, which is the need for agent platforms running agents

across computers. Ideally these computational resources would be supplied by

equipment module vendors running their agents; however this is not a reality at the

moment. In fact the implementation of such a system would require addressing a lot

of security issues that agent technology has. Nevertheless, it is still possible to run

such a system in places where the security of the network is not essential, and the

methodology will provide the necessary support for the configuration of MAS.

The solution presented did not analyse all aspects of the configuration process but it

is viewed as a significant contribution for the reduction of the MAS configuration

process time, which is significantly important with the growing number of equipment

modules.

References

212

References

1. Shen, W., D.H. Norrie, and J.-P.A. Barthès, Multi-Agent Systems for

Concurrent Intelligent Design and Manufacturing. 2001, London and New

York: Taylor & Francies.

2. Koren, Y., et al., Reconfigurable Manufacturing Systems. CIRP Annals -

Manufacturing Technology, 1999. 48(2).

3. Arai, T., et al., Holonic assembly system with Plug and Produce. Computers

in Industry, 2001. 46: p. 289-299.

4. EUPASS. Evolvable Ultra-Precision Assembly Systems. 2008 [cited;

Available from: http://www.eupass-fp6.org/.

5. NACFAM, Potentially disruptive Advanced Manufacturing Technologies.

2003, NACFAM.

6. Kratochvíl, M. and C. Carson, Growing Modular. 2005, Berlin: Spinger

7. Onori, M., et al., European precision assembly roadmap 2012. The

Assembly-Net Consotium, 2002.

8. Hollis, R.L. and A. Quaid, An Architecture for Agile Assembly, in Proc. Am.

Soc. of Precision Engineering. 1995: Austin.

9. Alsterman, H. and M. Onori. Process-Oriented Assembly System Concepts -

The MarklV Approach. in ISATP 2001. 2001. Fukuoka, Japan.

10. Gaugel, T., M. Bengel, and D. Malthan, Building a mini-assembly system

from a technology construction kit. Assembly Automation, 2004. 24(1): p.

43-48.

11. Jennings, N.R. and M.J. Wooldridge, Applications of intelligent agents.

Agent Technology: Foundations, Applications, and Markets, ed. E. N.R.

Jennings and M.J. Wooldridge. 1998: Springer

12. Bi, Z.M., et al., Reconfigurable manufacturing systems: the state of the art.

International Journal of Production Research, 2007. 46(4): p. 967-992.

13. Bi, Z.M., et al., Development of reconfigurable machines The International

Journal of Advanced Manufacturing Technology, 2007.

14. Chryssolouris, G., Manufacturing Systems - Theory and Practice. Second

Edition ed. 2006, New York: Springer.

15. Bi, Z.M., L. Wang, and S.Y.T. Lang, Current status of reconfigurable

assembly systems. International Journal of Manufacturing Research, 2007.

2(3): p. 303 - 328.

16. Bellgran, M. and C. Johansson, A method for the design of flexible assembly

systems. International Journal of Production Economics, 1995. 41: p. 93-102.

17. Bukchin, J., E.M. Dar-El, and J. Rubinovitz, Team-oriented assembly system

design: A new approach. European Journal of Operational Research, 1997.

156: p. 326-352.

18. Onori, M. and J. Oliveira, Outlook report on the future of European assembly

automation. Assembly Automation, 2010. 30: p. 7 - 31.

http://www.eupass-fp6.org/

References

213

19. Mehrabi, M.G., A.G. Ulsoy, and Y. Koren, Reconfigurable manufacturing

systems and their enabling technologies. Int. J. Manufacturing Technology

and Management, 2000. 1(1): p. 114–131.

20. Edmondson, N.F. and A.H. Redford, Generic flexible assembly system

design. Assembly Automation, 2002. 22(2): p. 139 - 152.

21. Yusuf, Y.Y., M. Sarhadi, and A. Gunasekaran, Agile manufacturing: the

drivers, concepts and attributes. International Journal of Production

Economics, 1999. 62: p. 33-43.

22. Michelini, R.C., et al., Computer-Integrated Assembly for Cost Effective

Developments, Computer-Aided Design, Engineering and Manufacturing –

Systems techniques and applications, Vol. II: Computer Integrated

Manufacturing Boca Raton, FL. 2001: CRC Press LLC.

23. Weber, A., Is Flexibility a Myth? Assembly, 2004. May: p. 50-59.

24. Tichem, M., Position report on flexible assembly automation. Laboratory for

Production Engineering and Industrial Organisation Delft University of

Technology, Landbergstraat 3, NL-2628 CE Delft. The Netherlands, 2000.

January.

25. Feldmann, K. and S. Slama, Highly flexible assembly – scope and

justification. Annals of the CIRP, 2001. 50(2): p. 489–498.

26. Bodine, W.E., Making agile assembly profitable. Manufacturing Engineering,

1998. 121(4): p. 60–68.

27. Ulrich, K., The role of product architecture in the manufacturing firm.

Research Policy, 1995. 24(3): p. 419-440.

28. Martin, M.V. and K. Ishii, Design for Variety: Developing Standardized and

Modularized Product Platform Architectures. Research in Engineering

Design 2002. 13: p. 213-233.

29. Gunnar, E., Modular function deployment – a method for product

modularisation. 1998, Royal Institute of Technology: Stockholm.

30. Blackenfelt, M. and R.B. Stake. Modularity in the context of product

structuring – a survey. in The Second Nord Design Seminar, KTH,

Stockholm. 1998.

31. Bi, Z.M. and W.J. Zhang, Concurrent optimal design of modular robotic

configuration. Journal Robot Systems, 2000. 18(2): p. 77–87.

32. Heisel, U. and M. Meitzner, Process in reconfigurable manufacturing

systems, in Second International CAMT Conference. 2003: Wroclaw. p. 129-

136.

33. IDEAS, Instantly Deployable Evolvable Assembly Systems. 2010.

34. Arai, T., et al., Agile Assembly System by “Plug and Produce”. CIRP Annals

- Manufacturing Technology, 2000. 49(1): p. 1 - 4.

35. Vyatkin, V., IEC 61499 Function Blocks for Embedded and Distributed

Control Systems Design. 2007: ISA.

36. Boër, C.R., et al., Integrated Computer Aided Design for Assembly Systems.

Annals of the CIRP, 2001. 50(1): p. 17-20.

37. Chen, I.-M., Rapid response manufacturing through a rapidly reconfigurable

robotic cell. Robotics and Computer Integrated Manufacturing, 2001. 17: p.

199-213.

38. Giusti, F., et al., A Reconfigurable Assembly Cell for Mechanical Products.

Annals of the CIRP, 1994. 43(1): p. 1-4.

References

214

39. EasterBrook, S.M., Elicitation of Requirements from Multiple Perspectives,

in Imperial College of Science, Technology and Medicine. 1991, University

of London: London.

40. Hirani, H.J., Knowledge Based Requirements Specification for

Reconfigurable Assembly Systems, in M3. 2005, University of Nottingham.

41. Faulkner, D., B. Levy, and T. Garner, Open-architecture platforms. Circuits

Assembly, 1999. January: p. 50-55.

42. Grondahl, P. and M. Onori, Standardised flexible automatic assembly -

evaluating the mark IV approach. Assembly Automation, 2000. 20(3): p.

243-253.

43. Gardan, N. and Y. Gardan, An application of knowledge based modelling

using scripts. Expert Systems with Applications, 2003. 25: p. 555-568.

44. Lohse, N., Towards an Ontology Framework for the Integrated Design of

Modular Assembly Systems. 2006, University of Nottingham.

45. Perremans, P., Feature-based description of modular fixturing elements: the

key to an expert system for the automatic design of the physical fixture.

Advances in Engineering Software 1996. 25(1): p. 19 - 27

46. Tsai, Y.-T. and K.-S. Wang, The development of modular-based design in

considering technology complexity. European Journal of Operational

Research., 1999. 119: p. 692–703.

47. Levin, M.S., Towards combinatorial analysis, adaptation, and planning of

human-computer systems. Applied Intelligence, 2002. 16(3): p. 235 - 247

48. Hong, N.K. and S. Hong, Entity-based models for computer-aided design

systems. Journal of computing in civil engineering, 1998. 12(1): p. 30 - 41.

49. Watson, I., Case-based reasoning is a methodology not a technology.

Knowledge-Based Systems, 1999. 12(303 - 308).

50. Paredis, C.J.J. and P.K. Khosla, Serial link manipulators from task

specifications. Int. Robot. Res., 1993. 12(3): p. 274–287.

51. Chen, I.-M. and J.W. Burdick. Determining task optimal modular robot

assembly configurations. in IEEE International Conference on Robotics and

Automation. 1995. Nagoya, Aichi, Japan.

52. Sims, K., Evolving virtual creatures, in International Conference on

Computer Graphics and Interactive Techniques. 1994. p. 15 - 22.

53. Parunak, H.V.D., Workshop Report: Implementing manufacturing agents, in

Sponsored by the SFA project of NCMS in conjunction with PAAM’96. 1996,

NCMS.

54. Bi, Z.M., On Adaptive Robot Systems for Manufacturing Applications. 2002,

University of Saskatchewan: Canada.

55. Son, S.Y., Design principles and methodologies for reconfigurable

machining systems. 2000, University of Michigan: Ann Arbor.

56. Spicer, J.P., A design methodology for scalable machining systems. 2002,

University of Michigan Ann Arbor.

57. Tang, L., et al., Concurrent Line-Balancing, Equipment Selection and

Throughput Analysis for Multi-Part Optimal Line Design. The International

Journal for Manufacturing Science & Production 2004. 6: p. 71-81.

58. Zhao, X., K. Wang, and Z. Luo, A stochastic model of a reconfigurable

manufacturing system Part I, a framework. International Journal of

Production Research, 2000. 38(10): p. 2273–2285.

59. Ohiro, T., et al. A stochastic model for deciding an optimal production order

and its corresponding configuration in a reconfigurable manufacturing

References

215

system with multiple product groups. in International Conference on Agile,

Reconfigurable Manufacturing. 2003. Ann Arbor.

60. Oliveira, J.A.B.d., Coalition Based Approach for Shop Floor Agility:

MultiAgent Approach. 2005, Amadora: Edições Orion.

61. Maturana, F., W. Shen, and D.H. Norrie, MetaMorph: an adaptive agent-

based architecture for intelligent manufacturing. International Journal of

Production Research, 1999. 37(10): p. 2159 - 2173.

62. Nwana, H.S., Software Agent: An Overview. Knowledge Engineering

Review, 1996. 11(2): p. 205 - 244.

63. Ferber, J., Multi-Agent Systems: An introduction to distributed Artificial

Intelligence. 1999, London: Addison-Wesley.

64. Shen, W., et al., Applications of agent-based systems in intelligent

manufacturing: An updated review. Advanced Engineering Informatics 2006.

20(4): p. 415 - 431

65. Jennings, N.R., J.M. Corera, and I. Laresgoiti. Developing industrial multi-

agent systems. in Proc. of ICMAS’95. 1995. San Francisco, CA, .

66. Shen, W. and D.H. Norrie, Agent-based systems for intelligent

manufacturing: a state-of-the-art survey. KAIS 1, 1999. 2: p. 129–156.

67. Wooldridge, M. and N. Jennings, Intelligent agents: Theory and practice, .

The Knowledge Engineering Review 1995. 10(2): p. 115–152.

68. Deen, S.M., Agent-Based Manufacturing – Advances in the Holonic

Approach. 2003, Heidelberg, Germany Springer-Verlag.

69. Azevedo, A., C. Torscano, and J.P. Sousa. An order planning system to

support networked supply chains. in Proc. of PRO-VE’02. 2002.

70. Barry, J., et al. NIIIP-SMART: an investigation of distributed object

approaches to support MES development and deployment in a virtual

enterprise. in Proc. of EDOC’98. 1998. La Jolla, CA.

71. Fox, M.S., J.F. Chionglo, and M. Barbuceanu, The integrated supply chain

management system, Internal Report. 1993, Univ. of Toronto.

72. McEleney, B., G.M.P. O’Hare, and J. Sampson. An agent-based system for

reducing changeover delays in a job-shop factory environment. in Proc. of

PAAM’98. 1998. London, UK.

73. Peng, Y., et al., A multi-agent system for enterprise integration, in Proc. of

PAAM’98. 1998: London, UK. p. 155–169.

74. Sadeh, N., D.W. Hildum, and D. Kjenstad, Agent-based e-supply chain

decision support. Journal of Organizational Computing and Electronic

Commerce, 2003. 33 (3–4): p. 225–241.

75. Shen, W., F. Maturana, and D.H. Norrie, MetaMorph II: an agent-based

architecture for distributed intelligent design and manufacturing. Journal of

Intelligent Manufacturing, 2000. 11(3): p. 237-251.

76. Yen, B.P.C. and O.Q. Wu, Internet scheduling environment with market

driven agents. IEEE TSMC-A 2003. 34(2): p. 281–289.

77. Butler, J. and H. Ohtsubo, ADDYMS: Architecture for distributed dynamic

manufacturing scheduling, in Artificial Intelligence Applications in

Manufacturing, A. Famili, D.S. Nau, and S.H. Kim, Editors. 1992, The AAAI

Press. p. 199–214.

78. McDonnell, P., et al., A Cascading Auction Protocol as a Framework for

Integrating Process Planning and Heterarchical Shop Floor Control.

International Journal of Flexible Manufacturing Systems, 1999. 11(1): p. 37-

62.

References

216

79. Parunak, H.V.D., A. Baker, and S. Clark. The AARIA agent architecture:

From manufacturing requirements to agent-based system design. in Working

Notes of the ABM Workshop. 1998. Minneapolis, MN.

80. Shen, W. and D.H. Norrie, Dynamic manufacturing scheduling using both

functional and resource related agents. ICAE, 2001. 8(1): p. 17–30.

81. Lu, T.-P. and Y. Yih, An agent-based production control framework for

multiple-line collaborative manufacturing. International Journal of

Production Research, 2001. 39(10): p. 2155 - 2176.

82. Usher, J.M., Negotiation-based routing in job shops via collaborative agents.

Journal of Intelligent Manufacturing, 2003. 14(5): p. 485-499.

83. Wang, C., W. Shen, and H. Ghenniwa, An adaptive negotiation framework

for agent-based dynamic manufacturing scheduling, in IEEE SMC 2003, P.o.

2003, Editor. 2003: Washington DC, USA. p. 1211–1216.

84. Bremer, C.F. and W.M. Molina, Global virtual business – a systematic

approach for exploiting business opportunities in dynamic markets. IJAM,

1999. 1(12).

85. Nigro, G.L., et al., Coordination policies to support decision making in

distributed production planning. RCIM 2003. 19(6): p. 521–531.

86. Hao, Q., et al., Towards an Internet enabled cooperative manufacturing

management framework, in Proc. of PRO-VE’03. 2003: Lugano, Switzerland.

p. 191–200.

87. Parunak, H.V.D., A.D. Baker, and S.J. Clark, The AARIA Agent Architecture:

From Manufacturing Requirements to Agent-Based System Design Integrated

Computer-Aided Engineering 2001. 8(1): p. 45 - 58

88. Camarinha-Matos, L.M.A., H.; Rabelo, R. J., Infrastructure developments for

agile virtual enterprises. Journal of Computer Integrated Manufacturing,

2003. 16(4 - 5): p. 235-254.

89. Leeuwen, E.H.v. and D. Norrie, Holons and holarchies. Manufacturing

Engineer, 1997. 76(2): p. 86-88.

90. Bussmann, S., An agent-oriented architecture for holonic manufacturing

control, in Proc. of IMS1998. 1998: Lausanne, Switzerland. p. 1–12.

91. Burke, P. and P. Prosser, The distributed asynchronous scheduler, in

Intelligent Scheduling,, M. Zweben and M.S. Fox, Editors. 1994, Morgan

Kaufman Publishers: San Francisco, CA p. 309–339.

92. Fischer, K., The design of an intelligent manufacturing system, in Proc. of

CKBS’94. 1994: University of Keele, England,. p. 83–99.

93. McGuire, J., et al., SHADE: Technology for knowledge-based collaborative

engineering. CEAR, 1993. 1(3).

94. Petrie, C., et al., Next-Link: An experiment in coordination of distributed

agents, in Position paper for the AID-94 Workshop on Conflict Resolution.

1994: Lausanne, Switzerland,.

95. Ouelhadj, D., C. Hanachi, and B. Bouzouia, Multi-agent system for dynamic

scheduling and control in manufacturing cells, in Working Notes of the ABM

Workshop. 1998: Minneapolis, MN. p. 96–105.

96. Shen, W. and J.-P. Barthès, An experimental multi-agent environment for

engineering design. IJCIS, 1996. 5(2–3): p. 131–151.

97. Babayan, A. and D. He, Solving the n-job 3-stage flexible flowshop

scheduling problem using an agent-based approach. International Journal of

Production Research, 2004. 42(4): p. 777 - 799.

References

217

98. Kraus, S., Strategic negotiation in multiagent environments. 2001,

Cambridge: MIT Press.

99. Lesser, V.R., Reflections on the Nature of Multi-Agent Coordination and Its

Implications for an Agent Architecture Autonomous Agents and Multi-Agent

Systems, 1998. 1(1).

100. Rosenschein, J.S. and G.Z. Zlotkin, Rules of encounter: designing

conventions for automated negotiation among computers. 1994, Cambridge:

MIT Press.

101. Fatima, S.S., M. Wooldridge, and N.R. Jennings, An agenda-based

framework for multi-issue negotiation. Artificial Intelligence, 2004. 152.

102. Finin, T., Y. Labrou, and J. Mayeld, KQML as an agent communication

language, in Conference on Information and Knowledge Management 1994,

ACM: Gaithersburg.

103. FIPA, F.f.I.P.A., FIPA ACL Message Structure Specification. 2002, FIPA:

Geneva.

104. FIPA, F.f.I.P.A., FIPA Abstract Architecture Specification. 2002, FIPA:

Geneve.

105. Krothapalli, N.D., Abhijit Design of Negotiation Protocols for Multi-Agent

Manufacturing Systems. International Journal of Production Research, 1999.

37(7).

106. Smith, R.G., The contract net protocol: high-level communication and

control in a distributed problem solver. IEEE Transactions on Computers,

1980. C-29(12): p. 1104–1113.

107. Duffie, N.A. and R.S. Piper, Non-hierarchical control of manufacturing

systems. JMS 1986. 5 (2): p. 137–139.

108. Parunak, H.V.D., Manufacturing experience with the contract net, in

Distributed Artificial Intelligence, M.N. Huhns, Editor. 1987, Pitman. p. 285–

310.

109. Ow, P.S. and S.F. Smith, A cooperative scheduling system, in Proc. of the

First International Conference on Expert Systems and the Leading Edge in

Production Planning and Control. 1988. p. 43–56.

110. Shaw, M.J., Dynamic scheduling in cellular manufacturing systems: A

framework for networked decision making. Journal of Manufacturing

Systems, 1988. 7(2): p. 83-94.

111. Saad, A., et al., Evaluation of contract net-based heterarchical scheduling for

flexible manufacturing systems, in Proc. of Intelligent Manufacturing

Workshop at IJCAI’95. 1995: Montreal, QC. p. 310–321.

112. Baker, A.D., Manufacturing control with a market-driven contract net. 1991,

Rensselaer Polytechnic Institute: NY, USA.

113. Lin, G.Y.-J. and J.J. Solberg, INTEGRATED SHOP FLOOR CONTROL

USING AUTONOMOUS AGENTS. IIE Transactions, 1992. 24(3): p. 57 - 71.

114. Matos, N., C. Sierra, and N.R. Jennings. Determining Successful Negotiation

Strategies: An evolutionary Approach. in Proceedings of the 3rd

International Conference on Multi-Agent Systems 1998: IEEE Computer

Society

115. Rahwan, I., et al., Stratum: A methodology for designing heuristic agent

negotiation strategies. International Journal of Applied Artificial Intelligence,

2007. 26.

References

218

116. Guan, Z., et al., Application of decentralized cooperative problem solving in

dynamic flexible scheduling, in Proc. of SPIE. 1995: Bellingham, WA, . p.

179–183.

117. Henderson-Sellers, B.G., Paolo, Agent-Oriented Methodologies. 2005,

Hershey, USA: Idea Group Publishing.

118. Bernon, C., et al., Engineering Adaptive Multi-Agent Systems: The ADELFE

Methodology, in Agent-Oriented Methodologies, B. Henderson-Sellers and P.

Giorgini, Editors. 2005, Idea Group Publishing: London, UK. p. 172-202.

119. Cossentino, M., From Requirements to Code with the PASSI Methodology, in

Agent-Oriented Methodologies, B. Henderson-Sellers and P. Giorgini,

Editors. 2005, Idea Group Publishing: London, UK. p. 79-106.

120. Garijo, F.J., J.J. Gomez-Sanz, and P. Massonet, The MESSAGE Methodology

for Agent-Oriented Analysis and Design, in Agent-Oriented Methodologies,

B. Henderson-Sellers and P. Giorgini, Editors. 2005, Idea Group Publishing:

London, UK. p. 203-235.

121. Iglesias, C. and G. Mercedes, The Agent-Oriented Methodology MAS-

CommonKADS, in Agent-Oriented Methodologies, B. Henderson-Sellers and

P. Giorgini, Editors. 2005, Idea Group Publishing: London, UK. p. 46-78.

122. Padgham, L. and M. Winikoff, Prometheus: A Practical Agent-Oriented

Methodology, in Agent-Oriented Methodologies, B. Henderson-Sellers and P.

Giorgini, Editors. 2005, Idea Group Publishing: London, UK. p. 107-135.

123. Zambonelli, F., N.R. Jennings, and M. Wooldridge, Multi-Agent Systems as

Computational Organizations: The Gaia Methodology, in Agent-Oriented

Methodologies, B. Henderson-Sellers and P. Giorgini, Editors. 2005, Idea

Group Publishing: London, UK. p. 136-171.

124. Sugumaran, V., Application of agents and intelligent information

technologies. 2007, Oakland University, USA: Idea Group Publishing.

125. Inohira, E., A. Konno, and M. Uchiyama, Layered Multi Agent Architecture

with Dynamic Reconfigurability, in loternational Conference on Robotics &

Automstion. 2003: Taipei.

126. Ryu, K., Y. Son, and M. Jung, Modeling and Specification of Dynamic

Agents in Fractal Manufacturing Systems. Computers in Industry 2003. 52

(2): p. 161 - 182

127. FIPA, F.f.I.P.A., FIPA Ontology Service Specification. 2001, FIPA: Geneve.

128. Ferreira, P., N. Lohse, and S. Ratchev, Repeatability synthesis methodology

for modular ultra-precision assembly systems, in IEEE International

Symposium I.A.a. Manufacturing, Editor. 2009. p. 280 - 285

129. Snedecor, G.W. and W.G. Cochran, Statistical Methods. 1989, Iowa, USA:

Wiley-Blackwell.

130. Maffei, A., Evolvable production systems: A new business environment, in

IEEE International Symposium on Assembly and Manufacturing (ISAM).

2011: Tampere

131. Ferreira, P., N. Lohse, and S. Ratchev, Multi-Agent Architecture for Self-

Configuring Modular Assembly Systems, in 9th International IFAC

Symposium on Robot Control. 2009: Gifu, Japan.

132. Kennedy, J. and R.C. Eberhart, Swarm Intelligence 1st ed. 2001, London,

UK: Morgan Kaufmann.

133. Chang, R., Chemistry 9th ed. 2006: McGraw-Hill.

References

219

134. Ferreira, P., N. Lohse, and S. Ratchev, Multi-agent Architecture for

Reconfiguration of Precision Modular Assembly Systems, in Precision

Assembly Technologies and Systems. 2010, Springer Boston. p. 247-254.

135. Bellifemine, F., et al., Jade Administrator's Guide. Last update: 08-April-

2010: Boston, MA.

Publications

220

Publications

Ferreira, P., N. Lohse, and S. Ratchev, Multi-Agent Architecture for Self-

Configuring Modular Assembly Systems, in 9th International IFAC Symposium on

Robot Control. 2009: Gifu, Japan.

Ferreira, P., N. Lohse, and S. Ratchev, Repeatability synthesis methodology for

modular ultra-precision assembly systems, in IEEE International Symposium I.A.a.

Manufacturing, Editor. 2009. p. 280 – 285

Ferreira, P., N. Lohse, and S. Ratchev, Multi-agent Architecture for Reconfiguration

of Precision Modular Assembly Systems, in Precision Assembly Technologies and

Systems. 2010, Springer Boston. p. 247-254.

221

Appendixes

Appendix A - XSD Model Source Code

222

A XSD Model Source Code

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2010 (http://www.altova.com) by jack (un) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="AssemblyProcess">

 <xs:annotation>

 <xs:documentation>Assembly Process XSD definition</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ControlPorts">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="ControlPort" minOccurs="4" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ParameterPorts">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="ParamenterPort" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element ref="Composed"/>

 <xs:element name="AssemblyProcessType">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:anySimpleType">

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="AssemblyProcessTypeID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 <xs:attribute name="ProductRelatedClassification" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="ConfigurationCharacteristics ">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="RuningCost"/>

 <xs:element name="Time"/>

 <xs:element name="Accuracy"/>

 <xs:element name="Repeatability"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Belongs">

 <xs:complexType>

Appendix A - XSD Model Source Code

223

 <xs:choice>

 <xs:element name="AssemblySystemID"/>

 <xs:element name="WorkStationID"/>

 <xs:element name="PhysicalEquipmentModuleID"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="AssemblyProcessID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="ControlPort">

 <xs:complexType>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute ref="ControlPortID" use="required"/>

 <xs:attribute ref="InterfaceTypeID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="ParamenterPort">

 <xs:complexType>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="Description" use="required"/>

 <xs:attribute ref="ParameterPortID" use="required"/>

 <xs:attribute ref="InterfaceTypeID" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:attribute name="ParameterPortID"/>

 <xs:attribute name="ControlPortID"/>

 <xs:attribute name="InterfaceTypeID"/>

 <xs:element name="Composed">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Composition" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Connections">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Connection" maxOccurs="unbounded">

 <xs:complexType>

 <xs:choice>

 <xs:element name="ParameterPorts">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ParameterPortID" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ControlPorts">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ControlPortID" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

Appendix A - XSD Model Source Code

224

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="AssemblyProcesses">

 <xs:complexType/>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Interface">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Ports" minOccurs="2" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="PortType" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="InterfaceID" use="required"/>

 <xs:attribute name="InterfaceType" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="PhysicalPort">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="RefrenceFrame" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="X" use="required"/>

 <xs:attribute name="Y" use="required"/>

 <xs:attribute name="Z" use="required"/>

 <xs:attribute name="RX" use="required"/>

 <xs:attribute name="RY" use="required"/>

 <xs:attribute name="RZ" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="PhysicalPortID" use="required"/>

 <xs:attribute name="PortType" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="EquipmentModule">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ModuleCapabilities">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="AssemblyProcess" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Appendix A - XSD Model Source Code

225

 <xs:element name="ModuleStructure">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="PhysicalPort" maxOccurs="unbounded"/>

 <xs:element name="Weight"/>

 <xs:element name="Volume"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="BusinessInformation">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="OwnerName"/>

 <xs:element name="ModuleManufacturerID"/>

 <xs:element name="Cost">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Buy"/>

 <xs:element ref="Lease"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ModuleAvailability"/>

 <xs:element name="DeliveryTime"/>

 <xs:element name="PreferableCollaborations ">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PreferableCollaboration" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="AddedValue" use="required"/>

 <xs:attribute name="ModuleManufacturerID" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element ref="ConfigurationStrategy"/>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="EquipmentModuleID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="AssemblySystemRequirements">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="AssemblySystemTargets"/>

 <xs:element ref="PhysicalSystemRequirements"/>

 <xs:element ref="AssemblyProcessRequirements"/>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="RequirementsID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="AssemblyProcessRequirements">

 <xs:complexType>

Appendix A - XSD Model Source Code

226

 <xs:sequence>

 <xs:element ref="AssemblyProcess"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="PhysicalSystemRequirements">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="AssemblySystem">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="WorkStation" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="PhysicalEquipmentModule" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="PhysicalConnections" minOccurs="0"/>

 <xs:element name="PhysicalPorts">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="PhysicalPort" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="WorkStationID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element ref="PhysicalConnections"/>

 <xs:element name="SpareEquipmentModules">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="PhysicalEquipmentModule" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="AssemblySystemID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="AssemblySystemTargets">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FixedTargets">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Time">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="CycleTime"/>

 <xs:element name="CommissioningTime "/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Appendix A - XSD Model Source Code

227

 <xs:element name="Accuracy"/>

 <xs:element name="Cost">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="Buy"/>

 <xs:element ref="Lease"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:element name="Repeatability"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element ref="ConfigurationStrategy"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Buy">

 <xs:complexType>

 <xs:attribute name="Value" use="required"/>

 <xs:attribute name="Currency" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Lease">

 <xs:complexType>

 <xs:attribute name="Currency" use="required"/>

 <xs:attribute name="ValuePerMonth" use="required"/>

 <xs:attribute name="DevalueBuyCostPerMonth" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="ConfigurationStrategy">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PercentageForCost"/>

 <xs:element name="PercentageForTime"/>

 <xs:element name="PercentageForFlexibility"/>

 <xs:element name="PercentageForAccuracy"/>

 <xs:element name="PercentageForRepeatability"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="PhysicalConnections">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Connection" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Connects">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PhysicalPortID" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="ConnectionID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

Appendix A - XSD Model Source Code

228

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="PhysicalEquipmentModule">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PhysicalPorts">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="PhysicalPort" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" use="required"/>

 <xs:attribute name="PhysicalEquipmentModuleID" use="required"/>

 <xs:attribute name="Description" use="required"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Appendix B - Sequence Diagrams of Interaction Protocols

229

B Sequence Diagrams of

Interaction Protocols

Figure B.1 - Sequence Diagram for the Broadcast of Requirements Protocol

Figure B.2 - Sequence Diagram for the Express Interests in Requirements Protocol

Requirements Agent Equipment Module AgentEquipment Module Agent Equipment Module Agent...

BroadCastMASRequirements(MASREquirements)

Requirements Agent Equipment Module AgentEquipment Module Agent Equipment Module Agent...

ExpressInterestInRequirements(AgentID)

ExpressInterestInRequirements

ExpressInterestInRequirements(AgentID)

ListOfPotentialCollaborators

Appendix B - Sequence Diagrams of Interaction Protocols

230

Figure B.3 - Sequence Diagram for the Creation of a Configuration Solution Protocol

Figure B.4 - Sequence Diagram for the Update of the Configuration Solution Protocol

Figure B.5 - Sequence Diagram for the Delete Configuration Protocol

Requirements Agent Equipment Module AgentEquipment Module Agent Equipment Module Agent...

CreateConfigurationSolution(ConfigurationSolution)

CreateConfigurationSolution(ConfigurationSolution)

CreateConfigurationSolution(ConfigurationSolution)

CreatedConfigurationSolution(ConfigurationSolutionID)

Requirements Agent Equipment Module AgentEquipment Module Agent Equipment Module Agent...

UpdateConfigurationSolution(ConfigurationSolutionID, ConfigurationSolution)

UpdateConfigurationSolution(ConfigurationSolutionID, ConfigurationSolution)

UpdateConfigurationSolution(ConfigurationSolutionID, ConfigurationSolution)

ConfigurationUpdated(ConfigurationSolutionID)

Requirements Agent Equipment Module AgentEquipment Module Agent Equipment Module Agent...

DeleteConfiguration(ConfigurationSolutionID, ReasonForDeletion)

ConfigurationDeleted(ConfigurationSOlutionID)

Appendix B - Sequence Diagrams of Interaction Protocols

231

Figure B.6 - Sequence Diagram for the Assessment of Solution Protocol

Configuration Solution A

Requirements Agent Equipment Module AgentEquipment Module Agent Equipment Module Agent...

AssessConfigurationSolution

AssessConfigurationSolution

AssessConfigurationSolution(ConfigurationSolutionID)

AcceptedConfiguration(ConfigurationSolutionID)

RejectedConfiguration(ConfigurationSOlutionID)

Appendix B - Sequence Diagrams of Interaction Protocols

232

Figure B.7 - Sequence Diagram for the Establish Collaboration Protocol

Equipment Module AgentEquipment Module Agent Equipment Module Agent...Equipment Module Agent

BroadcatUpdatedRequirements(MASRequirements)

EstablishPreliminaryCollaboration(ConfigurationRequirementsID)

RejectPreliminaryCollaboration(ConfigurationRequirementsID)

EstablishPreliminaryCollaboration(ConfigurationRequirementsID)

BroadcatUpdatedRequirements(MASRequirements) BroadcatUpdatedRequirements(MASRequirements)

EstablishPreliminaryCollaboration(ConfigurationRequirementsID)

RejectPreliminaryCollaboration(ConfigurationRequirementsID)

RejectPreliminaryCollaboration(ConfigurationRequirementsID)

BroadcatUpdatedRequirements(MASRequirements)BroadcatUpdatedRequirements(MASRequirements)

EstablishPreliminaryCollaboration(ConfigurationRequirementsID)

RejectPreliminaryCollaboration(ConfigurationRequirementsID)

RejectPreliminaryCollaboration(ConfigurationRequirementsID)

BroadcatUpdatedRequirements(MASRequirements)

EstablishPreliminaryCollaboration(ConfigurationRequirementsID)

RejectPreliminaryCollaboration(ConfigurationRequirementsID)

RejectPreliminaryCollaboration(ConfigurationRequirementsID)

Appendix B - Sequence Diagrams of Interaction Protocols

233

Figure B.8 - Sequence Diagram for the Exchange Module Information Protocol

Figure B.9 - Sequence Diagram for the Establish Formal Collaboration Protocol

Figure B.10 - Sequence Diagram for the Expert Validation Request Protocol

Equipment Module AgentEquipment Module Agent Equipment Module Agent...Equipment Module Agent

RequestModuleInformation(PreliminaryCollaborationID)

ModuleInformation(ModuleDescription, PreliminaryCollaborationID)

ModuleInformation(ModuleDescription, PreliminaryCollaborationID)

ModuleInformation(ModuleDescription, PreliminaryCollaborationID)

Equipment Module AgentEquipment Module Agent Equipment Module Agent...Equipment Module Agent

FormalCollaborationRequest(ConfigurationSolution)

FormalCollaborationRequest(ConfigurationSolution)

AcceptedConfiguration(ConfigurationSolutionID)

AcceptedConfiguration(ConfigurationSolutionID)

FormalCollaborationRequest(ConfigurationSolution)

AcceptedConfiguration(ConfigurationSolutionID)

FormalCollaborationRequest(ConfigurationSolution)

RejectedConfiguration(ConfigurationSOlutionID)

CancelFormalConfiguration(ConfigurationSolutionID)

Equipment Module Agent MAS Expert Agent

AssessmentRequest(ConfigurationSolution)

AssessmentResults(ConfigurationSolutionID, AssessmentResults)

Appendix B - Sequence Diagrams of Interaction Protocols

234

Figure B.11 - Sequence Diagram for the Request for Simulation Protocol

Figure B.12 - Sequence Diagram for the Kill Order Protocol

Figure B.13 - Sequence Diagram for the Establish Unique Collaboration Protocol

Equipment Module Agent
Performance Simulation

Agent

PerformSimulation(ConfigurationSolution)

PerformanceSimulationResults(ConfigurationSolutionID, PerformanceSimulationResults)

PerformSimulation(ConfigurationSolution)

SimulationFailure(ConfigurationSolutionID, FailureDetails)

Equipment Module Agent
Performance Simulation

Agent

KillOrder()

Equipment Module AgentEquipment Module Agent Equipment Module Agent...Equipment Module Agent

UniqueCollaborationRequest(ConfigurationSolution)

AcceptUniqueCollaboration(ConfigurationSolutionID)

UniqueCollaborationRequest(ConfigurationSolution)

RejectUniqueCollaboration(ConfigurationSolutionID)

UniqueCollaborationRequest(ConfigurationSolution)

CancelUniqueCollaborationRequest(ConfigurationSolutionID)

RejectUniqueCollaboration(ConfigurationSolutionID)

AcceptUniqueCollaboration(ConfigurationSolutionID)

Appendix C - Mathematical Normalization Function Deduction and Establishment of

Operational Range

s

235

C Mathematical

Normalization Function

Deduction and

Establishment of

Operational Range

Conditions:

 ()

⇒

 ()

 []

 ()

The number of conditions implies the need for four variables. However this implies a

function of third degree which has more than one zero in its derivative form. If we

try to contain the two zeros by adding an extra variable the degree of the function

would increase and we would have the same problem again. Therefore, the use of a

polynomial function of the second degree was used and its operational range will

have to be established. The function will be of the following type:

 []

The first condition is easily verified:

 []

Appendix C - Mathematical Normalization Function Deduction and Establishment of

Operational Range

s

236

Therefore we have:

 []

Considering the second condition we have:

 [] ()
 ()

Thus, we have:

 []
 ()

Considering the third condition, we have:

 [] ()
 ()

 ()

() ()

() ()

Thus the function that has the required behaviour is:

 ()
()

() ()

()

() ()

The next step is to determine the condition on “i” and “j” for the operation of this

function that verifies the final condition.

 ()

 ()

()

 ()

() ()

()

 ()

() ()

()

 ()

By establishing the upper and lower limit we have:

Appendix C - Mathematical Normalization Function Deduction and Establishment of

Operational Range

s

237

()

 ()

If we reduce this the conditions are as follows

((() () (

) ()))

 ((() ()))

 ((() (

) () ()))

 ((() ()))

 ((() () (

) ()))

By analysing the conditions, we can eliminate some possibilities based on the

requirements. We know that” j” is between zero and one, this means the focus of the

analyses is on:

((() (

) () ()))

We also know that Lu is larger than zero, thus:

((()()))

Therefore the range of operation is contained between the two following functions:

 ()

 ()

A graphical representation is produce in the following figure:

Appendix C - Mathematical Normalization Function Deduction and Establishment of

Operational Range

s

238

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Appendix D - Requirements Specification Tools

239

D Requirements Specification

Tool

This appendix provides a brief overview of the requirements definition process using

the requirements specification tool developed for the EUPASS project (EUPASS

[4]).

The role of the process requirements specification largely consists in the definition of

the assembly processes required to fulfill the specifications of the defined product.

This is done using the skills library which contains the assembly processes and by

configuring them in a structure and sequence that realizes a conceptual assembly of

the product.

Figure D.14 shows an overview of the assembly processes defined for the Valve test

case. This contains several assembly processes with different levels of granularity,

namely tasks and operations. Also present are the supply chain processes which are

defined in a different color to emphasize their difference.

Appendix D - Requirements Specification Tools

240

Figure D.14 - Overview of Process Requirements Specification Front End

The process requirements definition starts with the automatic generation of the

delivery tasks based on the product definition, more concretely using the components

description which includes this information (see Figure D.15). The tool also

provides the empty tasks for each sub-assembly of the product, thus creating the task

structure for the given product. This structure can have several alternative variants

which are defined using the support of the sequence generator.

Appendix D - Requirements Specification Tools

241

Figure D.15 - Deliver Task Definition

The sequence generator provides a guided creation of the process definitions based

on the assembly structure of the product. The user simply chooses which component

is first in the sequence and the tool generates the process responsible for it, this

component is taken out of the options and the user does repeat this step until the end

of the sequence. Figure D.16 is a screen shot of the sequence generator which

includes a visualization of the sub-assembly for a better understanding of the

sequence choices.

Appendix D - Requirements Specification Tools

242

Figure D.16 - Task Sequence Generator

Once this step is concluded the system integrator can edit the created tasks and

connections to change the content if required. Figure D.17 shows an example

specification of an assembling process with one possible task sequence. Each

alternative sequence is created as a separate variant under the assembling process

multi task. This allows the user to assess alternative process sequences and explore

them in more detail if required. It is important to note that this definition of

alternatives always establishes a preferred variant which is the one used for the

exploration of configuration solutions.

Appendix D - Requirements Specification Tools

243

Figure D.17 - Assembling Process and Task Requirements Specification

Appendix D - Requirements Specification Tools

244

Each assembling task in the task sequence can be further broken down into required

operations and their attributes. Some operations can be derived from the product

description and higher level process requirements. Others will only become apparent

once further downstream decisions have been taken regarding the needed system

configuration. Figure D.18 gives an example of how tasks are associated to their

enabling operations. Each task can be defined through a number of alternative

operational requirements much the same as on the assembling process level with

lower level tasks. Consequently, the same definition approach can be used to create

the link between tasks and operations with variants to express the or-junction in the

hierarchy.

Appendix D - Requirements Specification Tools

245

Figure D.18 - Task and Operation Requirements Specification

The system requirements are part of the requirements tool developed for the

EUPASS projects. The tool is similar to the assembly process requirements

definition and allows for the conceptual assembly system design process which

defines an assembly system concept, which in turn fulfils the set of requirements.

Figure D.19 provides a screen shot of this tool where the conceptual system for the

valve is shown.

Appendix D - Requirements Specification Tools

246

Figure D.19 - Example Assembly System Concept for the Valve Test case

The first step is the definition of the system concept, which is followed by the

definition of the conceptual workstations and the conceptual equipment modules (if

required). The tool supports all this as well as the definition of the material flow in

the system which is closely related to the assembly process requirements. The

definition of the system requirements process also provides the link between the

defined conceptual system and the assembly process requirements.

Appendix E - Manual Configuration Tool

247

E Manual Configuration Tool

This appendix provides a brief overview of the manual configuration process using

the manual configuration tool developed for the EUPASS project (EUPASS [4]).

The role of the system configuration tool is to define possible assembly system

configurations that realise the process requirements associated to it by the system

concept. The tool only supports the configuration of compatible equipment modules

descriptions and assumes that they portray their capabilities correctly. The focus in

this section is to give an example of how this method has been implemented in the

virtual assembly system configuration tool.

The configuration essentially consists of two parts; the selection and configuration of

available equipment modules into possible physical system solutions and the

configuration of the control logic. The physical configuration of the system focuses

on the selection of appropriate equipment modules, based on their skill capabilities

and interconnection constraints, and connecting them together. The process logic

focuses on defining the sequential order between the skills of the equipment modules

selected for a system configuration.

Figure E.20 shows an overview of the main interface used by the virtual assembly

configuration tool. The illustrated example shows a possible workstation

configuration for the placing and gluing of the Top Cap of a Valve onto the main

assembly. The interface shows the hierarchical structure of the configuration and the

physical interrelationships between the modules. All equipment modules are

integrated by reference only into the underlying assembly system configuration

model. The main objective of the tool is to find the most suitable modules, connect

them to each other, and trigger the evaluation of the resulting system configuration.

Appendix E - Manual Configuration Tool

248

Figure E.20 - Example Workstation Configuration Overview

The configuration of assembly system solutions is a bottom up approach. The tool

does however create an empty system structure based on the associated assembly

system concept to maintain the consistency of the models. This structure is strictly

speaking generated in a top down fashion but remains empty until it is being

populated with detail from the lowest level (bottom up).

The interface contains in the “Components Library” the list of available modules to

fit in the selected level, meaning that if the selected level is the workstation level

then the shown modules will be the ones that can be used to build the workstation.

This module list is derived from the set of available XML Files and contains all the

relevant information extracted from them allowing for the configuration of the

modules. All suitable modules for a given set of requirements will be listed and made

available to the user to select from.

The module selection is executed by dragging the selected module from the

“Components Library” into the specific place holder, namely a workstation if

working on that level. Figure E.21 shows an example of how the reference or

Appendix E - Manual Configuration Tool

249

Individual of the EUPASS base frame module is added into a workstation

configuration. The information added to the configuration model only establishes a

link to the generic description of the module and replicates individual IDs for its

interface ports (connection point). This is required to allow references to the same

module to be used within the same configuration without losing the ability to

unambiguously connect it. This information is created automatically by the tool

maintaining the system validity and simplifying the configurations procedure.

Figure E.21 - Example Individual of an Equipment Module

This is a workstation configuration in this specific case. Each higher level

configuration definition has two parts in the same way as the system concepts during

the conceptual design. The information directly included in the configuration model

is only a reference to the generic description of the workstation. This allows the same

workstation configuration to be used as part of other configuration without having to

replicate it. Additionally this allows for an easy assessment of the equipment

Appendix E - Manual Configuration Tool

250

similarity within a system solution and between different proposals. Figure E.22

shows the relationships between the different workstation related definitions.

Figure E.22 Example of a Workstation Configuration

Once all the modules have been chosen and added to a higher level configuration,

they need to be connected to each other. The creation of a connection is a simple

process for the user as the tool maintains all the required constraints towards

Appendix E - Manual Configuration Tool

251

achieving a valid system. To establish a connection one needs to tick the

“Connections” check box and proceed to select which modules to plug together.

Figure E.23 shows the window that guides the user after selecting both modules.

The tool only allows for the connection of same interface types, as well as

maintaining the right socket types (male or female).

Figure E.23 – Example of the Connection creation

Once the ports for the connection have been selected the tool creates the connection.

Figure E.24 shows how the connection between two modules is defined. The

connection is added to the definition of the higher level configuration, in this case the

workstation.

Appendix E - Manual Configuration Tool

252

Figure E.24 Example Connection between two Modules

The given illustration is not an exhaustive specification of a whole assembly system.

The main purpose is to illustrate the principle means of defining a system.

The role of the process configuration tool is to define the possible process sequences

for a specific system configuration. The tool allows the configuration of skills

Appendix E - Manual Configuration Tool

253

contained in the system which are provided by the equipment module description

files. This section will provide an example of how this method has been implemented

in the virtual assembly system configuration tool. The instantiation of the actual

assembling process configuration is based on the assembling process requirements

defined by the requirements definition tool. The assembling process requirements

give a framework for the detailed definition of the actual skill sequence required for

the control of a workstation.

Figure E.25 shows an overview of the main interface used for the process

configuration tool. The illustrated example shows a process configuration for the

proposed workstation configuration for the placing and gluing of the Top Cap of a

Valve onto the main assembly shown in the previous section. The interface shows

the sequential structure of the configuration as well as the control interfaces between

the processes. The main objective of the tool is to find the best possible process

configuration for a given system and convey it to the line configurator.

Figure E.25 - Example of Process Configuration Overview

Appendix E - Manual Configuration Tool

254

The Process Configuration tool is intrinsically related with the System Configuration

since the base structure for process configuration is generated from the system

configuration structure in a top down approach and it remains empty until it is being

populated with detail from the lowest level (bottom up). Figure E.26 shows an

example of a higher level relation between the system configuration and the process

configuration.

Figure E.26 - Example of Relation between System Configuration and Process Configuration

Appendix E - Manual Configuration Tool

255

The main interface also contains in the “Components Library” the list of assembly

processes (Skills) available in the selected level which is directly related with the

system configuration. The process configuration starts with the selection of the

processes (Skills) needed to satisfy the requirements. This is executed by dragging

the selected process into the intended place holder. Figure E.27 shows the

instantiated assembly process (Skill) and its relation with the individual assembly

process (Skill) that originates in the equipment module description.

Figure E.27 – Example of a process (Skill) instance

Appendix E - Manual Configuration Tool

256

Once the assembly processes (Skills) have been selected and added one needs to

establish their sequence. This is achieved by connecting the respective input and

output ports of individual process skill. The creation of a connection is a simple

process for the user as the tool maintains all the required constraints imposed by the

process requirements and semantics of the underlying model. To establish a

connection one needs to tick the “Connections” check box and proceed to select

which processes (Skills) to plug together. Figure E.28 shows the window that guides

the user after selecting the source process (Skill) and the target process (Skill)

establishing the control connection and process (Skill) sequence.

Figure E.28 – Example of the Connection creation

Once the control ports for the connection have been selected the tool creates the

connection. Figure E.29 shows how the connection between two processes (Skills) is

defined.

Appendix E - Manual Configuration Tool

257

Figure E.29 - Example Connection between two processes (Skills)

The step following the process configuration is to evaluate the system to assess its

capabilities and validate it against the requirements. Once a whole system or

subsystem has been defined the cost evaluation and simulation tools can be triggered

to provide some feedback on the overall cost of the system and its expected

performance. Cycle times, expected utilisation, and bottle necks in the system can be

identified and used as bases for further fine-tuning or to select alternative system or

subsystem configurations. A number of iterations may be required between all the

tools, depending on the results of the evaluation and validation, to achieve a more

optimal solution.

