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Abstract 

Super-resolution mapping is becoming an increasing important technique in remote 

sensing for land cover mapping at a sub-pixel scale from coarse spatial resolution 

imagery. The potential of this technique could increase the value of the low cost coarse 

spatial resolution imagery. Among many types of land cover patches that can be 

represented by the super-resolution mapping, the prediction of patches smaller than an 

image pixel is one of the most difficult. This is because of the lack of information on the 

existence and spatial extend of the small land cover patches. Another difficult problem 

is to represent the location of small patches accurately. This thesis focuses on the 

potential of super-resolution mapping for accurate land cover mapping, with particular 

emphasis on the mapping of small patches. Popular super-resolution mapping 

techniques such as pixel swapping and the Hopfield neural network are used as well as a 

new method proposed. Using a Hopfield neural network (HNN) for super-resolution 

mapping, the best parameters and configuration to represent land cover patches of 

different sizes, shapes and mosaics are investigated. In addition, it also shown how a 

fusion of time series coarse spatial resolution imagery, such as daily MODIS 250 m 

images, can aid the determination of small land cover patch locations, thus reducing the 

spatial variability of the representation of such patches. Results of the improved HNN 

using a time series images are evaluated in a series of assessments, and demonstrated to 

be superior in terms of mapping accuracy than that of the standard techniques. A novel 

super-resolution mapping technique based on halftoning concept is presented as an 

alternative solution for the super-resolution mapping. This new technique is able to 

represent more land cover patches than the standard techniques.   
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1. Introduction 

1.1. Overview 

The mosaic of land cover types that occur on the Earth‟s surface is a key variable in a 

range of environmental systems (Falcucci et al., 2007; Lucas et al., 2007). For example, 

the landscape mosaic impacts on a large and diverse array of issues that include the 

aesthetic appeal of a region, its biodiversity and its climate. Land cover and land cover 

change are, for example, critical variables affecting ecological systems (Ruelland et al., 

2010; Brink and Eva, 2009; Serra et al., 2008). Information on land cover is, therefore, 

required in a range of studies, with some, especially those associated with landscape 

ecology, requiring information on the nature of landscape patches (e.g. their size, shape 

etc). Remote sensing has considerable potential as a source of information on land cover 

at a range of spatial and temporal scales (Boyd and Foody, 2011; Addink et al., 2010; 

Buermann et al., 2008). 

Although remote sensing is widely used as a source of land cover information 

for ecological studies (Newton et al., 2009) there are many factors that limit the 

accuracy of derived land cover information (Foody, 2002). These include the 

classification algorithm and pre-processing methods used as well as the temporal and 
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spatial resolution of the data. The latter is the key focus of attention in this thesis, with 

the accuracy may be characterised known to be a function of the spatial resolution of the 

imagery and minimum mapping unit used (Saura, 2002). 

The land cover mosaic of a region typically comprises a set of patches of 

relatively homogenous cover that can be considered as objects within a remotely sensed 

image. To characterise objects accurately it is important that the image spatial resolution 

or pixel size is smaller than the typical size of the objects (Woodcock and Strahler, 

1987). This may require use of imagery with a fine spatial resolution. 

 Spatial resolution can be treated as a variable in sensor selection for a project and 

needs to be determined in relation to the project‟s specific goals and sensing systems 

properties (Warner et al., 2009). Imagery with a fine spatial resolution have been 

acquired from space for many years, notably through military systems such as  the US 

Keyhole (KH) or CORONA series of satellites from the late 1950s to early 1970s 

(McDonald, 1995; Toutin, 2009). A large number of fine and very fine spatial resolution 

systems have also been developed in recent years. There are ~36 satellite systems in 

orbit or scheduled for launch that are able to provide imagery with a spatial resolution of 

< 3 m (Toutin, 2009). These systems have revolutionised aspects of remote sensing with, 

for example,  the new fine spatial resolution sensing systems now allow mapping at 

scales ~1:5,000 from ~0.6 m resolution QuickBird imagery (Topan et al., 2009). The 

main drawback to the use of these systems is the cost of the imagery (Toutin, 2009). For 

example, Toutin (2009) suggests that even relatively basic image products from fine 

spatial resolution sensors costs ~US$20 km
-2

 and more highly processed products may 

be several times more expensive still. Imagery from slightly coarser spatial resolution 
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systems such as Système Probatoire d'Observation de la Terre High Resolution 

Geometry (SPOT HRG) (spatial resolution ~4-10 m) costs only ~US$3-5 km
-2

. 

Moreover, the extent of the imagery from SPOT HRG is much larger than from 

IKONOS; some 36 IKONOS images would be required to cover the same area as a 

single SPOT HRG image (Toutin, 2009). There have also been many major 

developments in medium-coarse spatial resolution systems (Goward et al., 2009; Justice 

and Tucker 2009) and, critically, these can provide inexpensive imagery of relatively 

large areas. Projects may often be constrained to use such relatively coarse spatial 

resolution imagery for pragmatic reasons. 

Often the spatial resolution of a remote sensor is too coarse for the intended 

application and inappropriate for optimal mapping. Land cover data derived in such 

circumstances should be used with care. The errors and uncertainties in land cover 

derived from remote sensing may sometimes go unrecognised and can greatly impact on 

the characterisation of landscapes (Shao and Wu, 2008). One major problem arising 

from the use of coarse spatial resolution imagery is mixed pixels (Fisher, 1997). A 

mixed pixel contains more than one land cover class and cannot be appropriately 

represented by the standard „hard‟ allocation process used in conventional image 

classification algorithms (one pixel – one class). Unfortunately mixed pixels may be 

common and the proportion of mixed pixels tends to increase with an increase in pixel 

size, with mixed pixels typically vastly dominating imagery acquired at a coarse spatial 

resolution.  

There are four common land cover mosaic scenarios that could cause mixed 

pixel (Fisher, 1997) (Figure 1.1). They are: (1) sub-pixel sized patches: the size of a land 
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cover class captured within a pixel is smaller than the size of the pixel, thus allowing a 

space within the pixel for another land cover class; (2) boundary pixel: the size of two or 

more land cover classes on the ground may be bigger than the size of the pixel, but parts 

of their boundaries lie in a single pixel; (3) inter-grade: a pixel allocates a space for a 

transition from a cluster of one class to a cluster of another class; and (4) linear sub-

pixel: the length of a land cover class may be longer than a pixel but its width is thinner, 

and the land cover class runs through a pixel.   

A popular adaptation of the standard approach to land cover mapping that allows 

for mixed pixels is the use of a fuzzy or soft classification (Foody, 1996). The latter 

allows a pixel to have multiple and partial class membership and outputs typically a set 

of fraction images, each showing the proportion of the pixel‟s area that is covered by a 

specific land cover class. Although attractive in reducing the mixed pixel problems a 

concern is that the soft classification does not show the spatial distribution of the sub-

pixel class fractions limiting its value as a source of information on landscape objects 

(Atkinson, 1997).  

An alternative way to address the mixed pixel problem is to adopt some form of 

spatial resolution enhancement technique to increase the spatial resolution of imagery 

(i.e. to reduce the effective pixel size). For example, methods based on image 

sharpening, especially if the sensor operates at more than one spatial resolution (Mather, 

2004) or super-resolution analyses (Tatem et al., 2001a; Lu and Inamura, 2003; Ling et 

al., 2010). The aim of the latter is to effectively decrease the pixel size, allowing  
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

Figure 1-1 Four causes of mixed pixel: (a) sub-pixel sized patches, (b) boundary pixel, 

(c) inter-grade, and (d) linear sub-pixel (adapted from Fisher, 1997). 
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interpretation of sub-pixel scale features. Approaches adopted are typically based on 

either super-resolution restitution or super-resolution mapping (Ling et al., 2010) and 

their use can add value to relatively inexpensive image data sets.  

 A variety of super-resolution mapping techniques have been used in remote 

sensing and related research (Tatem et al., 2001a; Verhoeye and De Wulf, 2002; 

Mertens et al., 2003, 2004; Foody et al., 2005; Farsiu et al., 2006). Typically these 

techniques have been applied with a single coarse spatial resolution image as their input. 

Although the technique may be used to derive a land cover map at a finer spatial scale 

than the input imagery, there are many concerns with their use. One is that small 

isolated patches of a land cover class are often not represented or only inaccurately 

(Kasetkasem et al., 2005). Additionally the use of a single input image may limit the 

accuracy of land cover representation and the use of multiple coarse resolution images 

may offer an ability to enhanced accuracy. Given that coarse spatial resolution systems 

often have a relatively fine temporal resolution it may be possible to derive multiple 

images of the same site over a short period of time as input to a super-resolution analysis. 

The images in the time series may differ in subtle ways, with the location of pixels 

varying slightly due to, for example, minor orbital translations of remote sensing 

satellites. The slight differences between images can be exploited by combining a time-

series coarse spatial resolution images into an integrated image which may contain more 

information than a single coarse spatial resolution image (Packalen et al., 2006). 

Exploiting the fine temporal resolution that is characteristic of many coarse spatial 

resolution remote sensing systems (Ling et al., 2010) may, therefore, facilitate super-

resolution analyses. 
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1.2. Objectives 

The work reported in this thesis focuses on the representation of small land cover 

patches. As illustrated graphically in Figure 1.1 that there are four cases that cause the 

mixed pixel problem. Many of the current super-resolution mapping techniques are able 

to solve the „boundary pixel‟, „inter-grade‟ (e.g. Tatem et al., 2001a), and „linear sub-

pixel‟ (Thornton et al., 2007) cases. However, there is lack of comprehensive research 

study on the „sub-pixel‟ sized patches case (Zhan et al., 2002). The attention of this 

thesis is on the „sub-pixel‟ case, which the size of the land cover patches is smaller than 

a pixel.  

 The key thrust of this thesis is on the derivation of accurate land cover map using 

super-resolution mapping techniques. In particular, the thesis focuses on two key issues. 

First the accuracy with which the area of small patches is estimated. Second the 

accuracy with which the small patches are located geographically. 

   The main objective of this thesis is to improve current super-resolution mapping 

techniques as well as to develop a novel super-resolution mapping techniques in order to 

solve the two challenges listed above.  

 The improved or new super-resolution mapping techniques should be able to 

represent small land cover patches accurately. The latter will be demonstrated using a 

range of measures of accuracy (e.g. site specific, landscape parameter accuracy, object 

based accuracy, and positional accuracy) and compared with current super-resolution 

mapping techniques. The improved or new super-resolution mapping techniques should 
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help to keep the cost of acquiring remotely sensed images as low as possible. This 

would increase the value for the coarse spatial resolution imagery.  

  In order to achieve the objectives listed above, experiments reported in this 

thesis were undertaken using synthetic image and real image (e.g. MODIS 250 m image 

and a fusion of a time series MODIS 250 m images as well as Landsat ETM+ 30 m is 

used as a ground data for benchmark comparison). Attention is focused on a real-world 

application: the mapping of high latitude lakes (Smith et al., 2005). Landscape mosaic 

that is made up of lakes of varying shape, size and spatial configuration is used as it may 

contain all the four cases of the mixed pixels, which is highlighted in Figure 1.1, 

although the attention of the thesis is on the „sub-pixel‟ sized patches case.   

 

1.3. Thesis structure 

This thesis is organised into eight chapters, including the present chapter. A brief 

summary of the other chapters is provided below. 

 Chapter 2 provides an overview of super-resolution techniques including super-

resolution restitution (reconstruction) and super-resolution mapping; the differences 

between these two concepts will be addressed. A brief overview on soft classification 

techniques is included as they become pre-requisite for many super-resolution mapping 

techniques. This chapter also provides an overview of different assessment methods for 

evaluating results of super-resolution mapping techniques such as confusion matrix for 

site specific accuracy, landscape indices for spatial pattern analysis, object based 
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analyses for shape characterization and positional accuracy to determine the fitting of 

the boundary line between land cover patches.  

Chapter 3 details the fundamental principles of two standard super-resolution 

mapping techniques based on a Hopfield neural network (HNN) and pixel swapping 

techniques. A section that details the fundamental principle of a fuzzy c-means 

technique will be presented as it can be used to derive soft classification from mixed 

pixels, which will be used as input for both of the super-resolution mapping techniques. 

Remote sensing images containing various spatial patterns are used. Sets of coarse 

spatial pattern images are derived by spatially aggregating the original images. Analyses 

on these techniques are focused on the site specific accuracy and spatial pattern 

variogram. This chapter serves as a pilot chapter, which aim to explore the standard 

techniques. Results of this chapter confirmed the advantages and limitations for each 

technique and help define the research direction.        

Chapter 4 highlights the limitations of the standard HNN and pixel swapping in 

representing small land cover patches. The parameter setting of the HNN and pixel 

swapping are evaluated in a series of experiments using a single coarse spatial resolution 

image. In these experiments, the optimum values of the parameters that can represent 

small land cover patches are obtained.  

Chapter 5 highlights the spatial variability of patch location from the use of the 

standard HNN and pixel swapping algorithms. It is demonstrated in this chapter that 

high spatial variability may lead to decreasing accuracy of the site specific assessment. 
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Using multiple sub-pixels shifted image observations, the spatial variability can be 

reduced, which lead to accurate localization of small land cover patches.  

Chapter 6 outlines an enhanced HNN and pixel swapping methods and 

demonstrates their application in representing a landscape mosaic that is made up of 

lakes of varying shape and size from MODIS 250 m images. A fusion of time series 

MODIS imagery is also presented. A series of assessment such as site specific accuracy, 

landscape indices, object based characterization and positional accuracy are 

implemented in order to evaluate the representation of the lakes.   

Chapter 7 presents a novel super-resolution mapping technique based on 

halftoning concept. This new technique provides an alternative to the current super-

resolution mapping techniques in which the spatial frequency of the initial distribution 

of hard classifier at a sub-pixel scale of mixed pixels could be exploited.  

Finally in Chapter 8, the conclusions of the research in this thesis are gathered 

and recommendations for future works are presented.  

 

  



  

 

 

2. Background 

This chapter reviews the background to super-resolution mapping to gain an 

understanding required for this thesis. Subjects reviewed include the super-resolution 

restitution, super-resolution mapping, soft classification, as well as accuracy assessment 

methods.  

  

2.1. Super-resolution restitution  

Super-resolution restitution or reconstruction is a technique to construct a fine spatial 

resolution image from a multiple coarse spatial resolution images by recovering the 

high-frequency component of image content (Yang and Huang, 2011). Super-resolution 

restitution consists of image registration from a set of coarse spatial resolution images 

and image restitution (reconstruction).  During the restitution process, this technique 

combines non-redundant information contained in the coarse spatial resolution images 

and generate a fine spatial resolution image.  This section reviews different approaches 

of the super-resolution restitution.  
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2.1.1. Frequency domain approach 

The super-resolution concept was first introduced by Tsai and Huang (1984). Given 

several coarse spatial resolution images, a fine spatial resolution image is constructed in 

the frequency domain. The frequency domain is obtained through the transformation 

from the spatial domain using the Fourier transform. Their approach is based on the 

principles of the shifting property of the Fourier transform. The aliasing relationship 

between continuous Fourier transform of the original image and the discrete Fourier 

transform of the observed coarse spatial resolution images is considered. This technique 

assumes that the original fine spatial resolution is band-limited. It was assumed that the 

observations of the coarse spatial resolution images sequence are free from degradation 

and noise.   

Kim et al. (1990) restored a fine spatial resolution image from noisy and blurred 

images. They used a recursive algorithm made up from a combination of two steps of 

filtering and reconstruction in the frequency domain. The filtering operation is used in 

the image registration to compensate the degradation and noise, and the reconstruction 

operation estimates the fine spatial resolution image. Every coarse spatial resolution 

observation image is assumed to have similar blur and noise characteristics. Later, Kim 

and Su (1993) made an improvement in this method by considering different amounts of 

blur for each coarse spatial resolution image. Tikhonov regularization (Tikhonov and 

Arsenin, 1977) is used to obtain a solution for inconsistent set of linear equations.  

The major advantage of this approach is the theoretical simplicity in term of 

describing the relationship between coarse images and fine image in the frequency 
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domain. However, every coarse image is assumed to be affected by a translational 

motion and a linear space invariant blur. This is seemed as a limitation of the frequency 

domain approaches to handle various situations. Moreover, it is difficult to apply a 

priori knowledge in this domain because the data are uncorrelated in the frequency 

domain (Park et al., 2003).  

 

2.1.2. Spatial domain approach 

A method to reconstruct a finer spatial resolution image in the spatial domain was 

proposed by Stark and Oskui (1989) known as projection onto convex sets (POCS). The 

method is an extension of a convex projection theory used in computed tomography for 

one-dimensional signals (Oskui and Stark, 1988). The POCS method constructs a finer 

resolution image by scanning or rotating the image with respect to image-plane detector 

arrays. Prior information can be incorporated in this method to increase the quality of 

the image. This method considers the effect of noise in the data. This method requires 

iterative computation, thus slow convergence is one of its limitations. In addition, 

because POCS optimizes a purely constraint based objective, it does not converge to a 

unique solution (Park et al., 2003). 

 The concept of reconstruction of a 2-D object from its 1-D projection in 

computed tomography also inspired Irani and Peleg (1991) to reconstruct a fine spatial 

resolution image. The super-resolution problem is formulated as an Iterative Back-

Projection (IBP) procedure. This method starts with an initial guess of a fine spatial 

resolution image. A set of coarse spatial resolution simulated images are created 
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corresponding to an observed coarse spatial resolution input image. The simulated 

images are created by shifting the pixels of the observed input image in the horizontal 

and vertical directions. The difference between the simulated images and the observed 

image is computed to improve the initial guess of a fine spatial resolution image. This 

algorithm projects the difference values backward and includes it while updating the 

desired fine spatial resolution image. This process is repeated iteratively to minimize the 

error function. For a single image, the super-resolution process, which is designed for 

sequences of images, is reduced to a problem of de-blurring an image. This technique 

converges quickly by fixing stable pixels. When a pixel has the same value or nearly the 

same value in two successive iterations, the pixel would not be considered in the next 

iteration, helping to accelerate the convergence process.  Unlike the POCS method, the 

IBP procedure does not involve prior constraints. Both POCS and IBP methods are not 

restricted to have a specific motion characteristic. They are able to work with smooth 

motion, linear space variant blur, and non-homogeneous additive noise.  

 

2.1.3. Motionless super-resolution 

All the previous methods assume that there is small relative motion in the image 

sequences, however, Elad and Feuer (1997) demonstrated that motionless super-

resolution reconstruction could be made possible from a sequence of coarse spatial 

resolution images which are spatially aggregated caused by a series of transformations 

such as geometrical warping, blurring, noisy. A hybrid algorithm is proposed from a 

combination of maximum likelihood (ML) estimator and the POCS algorithm. This 
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technique exploits the advantages of the simple ML estimator and the ability of the 

POCS to incorporate non-ellipsoids constraints. This technique, however, assumes a 

linear space variant blur, and an additive Gaussian noise.  

 

2.1.4. Recognition based super-resolution 

Baker and Kanade (2002) suggested incorporating super-resolution technique with other 

module in order to overcome several constraints in conventional super-resolution 

techniques, especially for a case of input image that is too coarse. Increasing the 

resolution of image containing human face could be implemented with a combination of 

Bayesian MAP super-resolution and a face recognition technique. This technique is 

known as recognition-based super-resolution or hallucination. The drawback of this 

algorithm is it only works with images containing a face.  Results of this technique on 

image not containing faces showed an outline of a face, which has been hallucinated 

into the image even though there is no face in the input image.  

 

2.1.5. Super-resolution restitution in remote sensing 

Super resolution restitution techniques have also been applied in remote sensing 

applications to reconstruct a fine spatial resolution image from a set of coarse spatial 

observations. Examples of the application of the super-resolution restitution in remote 

sensing include Akgun et al. (2005), Merino and Nunez, (2007), Hu et al., (2009), and 

Shen et al. (2009).  
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2.2. Super-resolution mapping 

Unlike the super-resolution restitution that only enhances the spatial resolution of 

imagery, super-resolution mapping is a land cover classification technique that produces 

thematic classifications at a sub-pixel scale (Atkinson, 2004). Soft classification may be 

used to estimate the class composition of image pixels but the spatial distribution of 

each class in these mixed pixels cannot be determined. Therefore, the attention of the 

super-resolution mapping is to estimate the location of the component of land cover 

classes within a pixel, with the proportion of the classes determined from a soft 

classification technique. This section first reviews soft classification techniques and then 

followed by a review of a variety of super-resolution mapping techniques.  

 

2.2.1. Soft classification 

The fundamental unit of a remotely sensed image is the pixel. The number of pixels in 

an image depends on the spatial resolution of a sensor. The pixel shows information on 

the spectral response of an area on the ground. The area presented in a pixel is 

determined by the sensor. A pixel may contain more than one thematic class. In such 

situation, the partitions of the thematic classes are mixed within a pixel (Fisher, 1997; 

Cracknell, 1998). The proportion of the mixed pixels depends on the spatial resolution 

of sensor and land cover mosaic on the ground (Foody 2005). The proportion of the 

mixed pixel increases with a coarsening of the spatial resolution and/or with increasing 

the fragmentation of the landscape presented in the image. Conventional hard 

classification method assumes that a pixel is pure, discrete and contains only one 
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thematic class, thus this method is not able to accurately classify mixed pixels. 

Therefore, soft classification methods which are able to perform classification at the 

sub-pixel level have been developed to un-mix the mixed pixel and to determine the 

composition of the pixel, which is not necessarily contain just one thematic class. This 

section reviews a variety of soft classification techniques, which have been used to 

estimate sub-pixel class composition within a mixed pixel.  

 

2.2.1.1. Linear mixture model 

An early method to estimate the sub-pixel class composition in a mixed pixel was 

proposed by Settle and Drake (1993) using a linear mixture model. They determined the 

relative proportion of ground cover components in a mixed pixel by assuming that the 

spectral response of the mixed pixel is a linear weighted sum of spectral responses of its 

component classes. The linear spectral mixture model offers simplicity and accurate 

sub-pixel estimation. However, the use of the least square error criterion in this method 

hinders the un-mixing analysis to solve problems involving outliers. Outlier is defined 

as a pixel with atypical value, which does not belong to any predefined class. Instead of 

using a least square method, Rosin (2001) reduced the outliers‟ effect by using a least 

median square (LMedS) method. Borel and Gerstl (1994) demonstrated that linear un-

mixing model was not suitable for nonlinear mixture problem. As such, non-linear 

mixing models were proposed (Borel and Gerstl, 1994; Foody and Arora, 1997).  
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2.2.1.2. Maximum likelihood classification 

The maximum likelihood (ML) classifier is a supervised statistical classification 

technique that is based on the Bayesian probability framework (Tso and Mather, 2009). 

The ML classifier calculates the probability of a pixel belonging to a predefined set of 

classes, and assigns a class to a pixel that has the highest posterior probability of 

membership. Although the classification of a pixel to one thematic class leads to the 

hard classification problem, the ML classifier can be adapted in the soft classification 

problem by assigning the procedure of the ML classifier at the sub-pixel level (Foody et 

al., 1992). The use of likelihood functions as estimators of mixing is valid if the classes 

of interest are high separable and distributions overlap only slightly (Schowengerdt, 

1995).  

 

2.2.1.3. Fuzzy c-means 

The fuzzy c-means algorithm is an unsupervised data clustering technique in which a 

group of data can be subdivided into c clusters or classes. Every pixel in the dataset 

belongs to every cluster to a certain degree of membership rather than belonging 

completely into just one cluster. For example, a pixel that lies close to the centre of a 

cluster will have a higher degree of membership than another pixel which lies far away 

than the centre of the cluster. This method was developed by Dunn (1973) and improved 

by Bezdek (1981) and Bezdek et al., (1984). Fuzzy c-means starts by assigning pixels to 

classes randomly. Next, every pixel is given a membership degree for each class. Fuzzy 

partitioning is performed iteratively with the update of membership and centre of class. 



   19 

The iteration aims to minimize an objective function that represents the distance from an 

arbitrary pixel in an image to centre of a class weighted by the pixel‟s membership 

grade.  

Fuzzy c-means has been used in remote sensing to derive sub-pixel scale 

thematic information (Fisher and Pathirana, 1990; Foody, 1996; Atkinson et al. 1997; 

Bastin, 1997). Atkinson et al. (1997) reported that fuzzy c-means was more accurate 

than mixture modelling but less accurate when compared with artificial neural network. 

In estimating sub-pixel thematic information from remotely sensed images, (Foody, 

1996; Atkinson et al. 1997; Bastin, 1997; Lucas et al. 2002) the fuzzy c-means has also 

been used in supervised mode. The accuracy of the fuzzy c-means is subject to a value 

of weighting parameter which must be carefully selected by user (Foody, 1996). Fuzzy 

c-means generally produces accurate class composition estimates when all classes have 

been defined and included in the training phase of the classification. However, the 

presence of untrained classes would degrade the estimation accuracy of the fuzzy c-

means; therefore a counterpart of this technique, namely possibilistic c-means is used 

for robustness towards the untrained classes (Krishnapuram and Keller, 1993; 

Krishnapuram and Keller, 1996; Foody, 2000). 

 

2.2.1.4. Feed-forward neural network 

Neural network is a popular solution related to the classification problems because its 

ability to solve nonlinear mixture problems (Carpenter et al., 1999; Foody, 2001; Liu et 

al. 2004). Problems involving data classification in remote sensing have been solved 
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using a variety of feed-forward neural network such as multi-layer perceptron (MLP), 

radial basis function, and probabilistic neural network. Each of them is constructed from 

a fundamental unit of processing element or neuron, which is arranged in a layered 

network. The way the neuron is arranged in a network and the activation functions used 

differentiate all the three aforementioned models. Given enough training data and a 

priori knowledge, neural network can be an effective non-parameter solution.  

Mixed pixels can be included in the feed-forward neural networks during the 

training stage. The trained networks can be used to predict the class membership 

properties for other pixels in the data set. In addition to the feed-forward neural 

networks, a neural network based on adaptive resonance theory (ART) has been used 

and known as ARTMAP. The ARTMAP learning is faster and more stable than ML 

classifier, MLP, or k-nearest neighbour techniques. Another advantage of the ARTMAP 

is that the learning process can be performed online for recognition and prediction tasks. 

A major drawback of neural network techniques is their lack of ability to explain 

physical system being modelled (Liang et al., 2008).  

 

2.2.1.5. Support vector machine 

Support vector machine (SVM) is a supervised classification and regression methods 

based on statistical learning theory (Vapnik, 1995). SVM is fundamentally a binary 

classifier, which treats input data as two sets of vector in an n-dimensional space. SVM 

constructs a separating hyper-plane in that space to maximize margin between the two 

data sets. Large margin decreases generalization error of the classifiers. Brown et al. 
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(2000) showed that a constrained least squares linear spectral mixture model is 

equivalent to a linear SVM. Linear SVM uses linear discrimination to separate classes 

which are linearly separable. Linear SVM is able to select support vectors automatically 

from a larger database and is more appropriate for empirical mixture modelling. The 

accuracy of the SVM classification is not dependent on large datasets in the training and 

a complete description of each class in feature space but on the most useful and 

informative sample data. Using the MLP, Foody (1999) showed that the most 

informative samples lie at the edge of class distribution and between the distributions of 

two or more classes in feature space. These samples are known as support vectors. 

Mathur and Foody (2008) used an intelligent approach to identify support vectors based 

on ancillary information. Although SVM is generally easier to implement than neural 

networks, it contains no prior knowledge of the problem. To gain benefits from prior 

information, Tipping (2001) presented an alternative technique known as relevance 

vector machine (RVM), which is based on a Bayesian framework and provides posterior 

probabilistic outputs.   

  

2.2.2. Super-resolution mapping 

Super-resolution mapping can be divided into two main groups (Boucher, 2009). The 

first group exploits the spatial correlation of the fine scale attribute by assuming that 

observations that close together tend to be more alike than observations that further 

apart (Matheron, 1965). In this group, the spatial correlation is maximized by means of 
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several techniques. The second group utilizes knowledge based information or a priori 

spatial model, such as a variogram.  

 

2.2.2.1. Knowledge based procedure 

Knowledge-based procedures depend on the accurate identification of boundary features 

that split the mixed pixels into pure components at fine spatial resolution. Schneider 

(1993) used a knowledge-based analysis to locate field boundaries down to sub-pixel 

scale. It comprises of pre-processing and land classification steps. In the pre-processing 

step, straight boundary features in Landsat Thematic Mapper (TM) were used as the 

knowledge in this technique. In the classification step, two classes of land cover were 

determined. However, the objective of this technique is only limited to localize large 

and homogenous fields with straight boundaries.   

 

2.2.2.2. Linear optimization  

Sub-pixel mapping can also be formulated as a linear optimization solution (Verhoeye 

and De Wulf, 2002). This technique utilizes spatial dependence within and between 

coarse pixels where it gives priority on nearby observations more than distant 

observations. As such, isotropic variogram is derived from coarse resolution image. 

Then, the variogram results are used for spatial interpolation or kriging. This technique 

produces artefact, but can be eliminated by applying mode filter. However, the filtering 

process tends to eliminate isolated sub-pixels.  
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2.2.2.3. Feed-forward neural network 

Feed-forward neural network has been used as a super-resolution mapping module 

together with a fusion of spatial and spectral information to enhance the spatial 

resolution of hyperspectral images (Gu et al., 2008; Mianji et al., 2011). Further 

information on the possibilities and limitation of the feed-forward neural network for the 

derivation of super-resolution mapping is given by Nigussie et al. (2011).   

 

2.2.2.4. Hopfield neural network 

A Hopfield neural network (HNN) technique (Hopfield, 1982) is used to design a super-

resolution mapping technique by Tatem et al. (2001a). The structure of a Hopfield 

neural network is formulated as a 2D lattice, representing an image grid, in which one 

neuron of the network receives input from the corresponding sub-pixel of the image. 

Hopfield neural network is an optimization tool that maximizes the spatial correlation 

between sub-pixels while maintaining the class proportion at the pixel level. Initially, 

the solution of the HNN is only limited to binary classes, such as target land cover class 

on a background, but later is extended to multiclass applications (Tatem et al. 2001b).  

The solution of the HNN for super-resolution mapping can be used to represent 

land cover if the size of land cover size is larger than a coarse spatial resolution image 

pixel. Later, Tatem et al. (2002) extended this method by including a priori information 

in a form of variogram in order to estimate spatial pattern of land cover patches in which 

the size of the patches may be larger, equal or smaller than an image pixel. The prior 
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information needs to be derived from a finer spatial resolution image of a same site with 

a coarser image.  

All the previously mentioned HNN for super-resolution mapping techniques 

only take input from a single coarse spatial resolution image. Later, additional 

information, which is finer than the main coarse spatial resolution imagery, is 

incorporated to the input of the HNN in order to obtain higher thematic classification 

accuracy than by using a single image. For example, data from light detection and 

ranging (LIDAR) with spatial resolution of 0.8 m is incorporated into optical data at 4 m 

spatial resolution (Nguyen et al., 2005); multispectral (MS) bands of the IKONOS with 

spatial resolution of 4 m is fused with its 1 m panchromatic band (Nguyen et al., 2006); 

and a 2.56 m QuickBird MS image is fused with a 0.64 m PAN image (Nguyen et al., 

2011). 

Apart from acquiring additional information that is finer that the main imagery, 

time series imagery with the same spatial resolution may be fused to increase the 

accuracy of the HNN (Muad and Foody, 2010). This approach is applicable when the 

data in the time series is shifted at a sub-pixel scale. Ling et al., (2010) demonstrates 

that the thematic accuracy can be increased subjected to the increment of the coarse 

spatial resolution imagery in the time series, although their result is based on simulated 

coarse spatial images derived from a finer spatial resolution image.  
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2.2.2.5. Neural network predicted wavelet coefficients 

In order to solve sub-pixel mapping problem, Mertens et al. (2004) assumed spatial 

dependence of image pixels among adjacent pixels. Unlike previous super-resolution 

mapping techniques, this technique expresses spatial dependence by neighbourhood 

dependence of wavelet coefficients (Daubechies, 1992; Mallat, 1989). More than one 

neural network is used, depending on the number of the coefficient used. Neural 

networks then are trained to estimate the wavelet coefficients. In this implementation, to 

enforce spatial dependence, a 3×3 pixels consisting centre pixel and its eight neighbours 

from a fraction image is fed to a feed-forward back-propagation neural network whereby 

each network producing an output for either horizontal, vertical, or diagonal coefficient 

for the Haar wavelet. Haar filter is used in the wavelet transformation since it is the 

simplest filter having only two coefficients. For a pixel, fraction of land cover classes 

needs to be determined. If the pixel is not pure, a pixel which constitutes more than one 

land cover class, then the three different types of networks are assigned for each class. 

The neural network of the diagonal coefficient tends to produce less accurate prediction 

than the network of the horizontal and vertical coefficients. A major disadvantage of this 

technique is that it requires a large datasets to be trained with neural network.  

 

2.2.2.6. Markov random field 

The Markov random field (MRF) is a technique that can be used to model contextual 

information (Geman and Geman, 1984). Kasetkasem et al., 2005 used the MRF to 

generate super-resolution for land cover mapping in remote sensing imagery. Every map 
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is assumed to have Markov property. This approach is based on an assumption of spatial 

dependence within and between pixels, in which two adjacent pixels are more likely to 

belong to the same land cover class. Homogeneous regions of the land cover are more 

likely to be mapped by this model than isolated pixels. As a result, the isolated pixels 

tended to be ignored. Unlike many other super-resolution mapping techniques, the MRF 

based super-resolution is not dependent on a soft classification technique. Therefore, the 

MRF based method is not affected by inaccuracy of the soft classification.  

 

2.2.2.7. Pixel swapping 

Pixel swapping is an algorithm that calculates the attractiveness of each sub-pixel to a 

particular class. The algorithm was first developed by Atkinson (2005) for binary case. 

The algorithm starts after an image has been soft classified by a supervised fuzzy c-

means algorithm (Bezdek et al., 1984; Thornton et al., 2006). The attractiveness of the 

pixel swapping algorithm is a function that measures the summation of weighed distance 

between a sub-pixel of interest and its neighbours. For a binary image case, the least 

attractive sub-pixel is a sub-pixel with a value “1” and surrounded mainly by sub-pixels 

with value “0”, and the most attractive sub-pixel is a sub-pixel with a value “0” and 

surrounded mainly by sub-pixels with value “1”. The swapping process between two 

sub-pixels occurs only if the spatial correlation of the sub-pixels can be increased, 

otherwise no swap is made. The swapping of the sub-pixels only occurs within a pixel, 

not between pixels. One sub-pixel within a pixel is swapped per iteration. The algorithm 

runs until no swaps are made or until it reach a specified number of iterations.  
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Mathematical morphology, a technique of analysing and processing geometric 

structures based on set theory, topology and random functions (Serra, 1984), was used 

by Thornton et al. (2006) to remove speckled pattern, which arises due to 

misclassification in the output of the pixel swapping method. The prediction of linear 

features is improved by including an anisotropic modelling component (Thornton et al. 

2007). The pixel swapping increases classification accuracy compared to random 

allocation of sub pixels. The concept of the pixel swapping method is simpler and its 

computation is less extensive than the HNN method. The pixel swapping algorithm 

assumed that the soft classification is perfect. Therefore the classification accuracy of 

the pixel swapping algorithm is heavily dependent on the accuracy of the soft 

classification.  

 

2.2.2.8. Geo-statistics indicator 

Boucher and Kyriakidis (2006) treated the super-resolution mapping problem as an ill-

posed problem, therefore, prior information must be included in order to constrain the 

spatial pattern. The prior model was in the form of parameter indicator variogram 

models. Based on the information about the coarse resolution fractions and a sparse set 

of class labels at fine pixels, indicator cokriging is used to approximate the probability 

that a fine pixel belongs to a particular class. Unlike other previous super-resolution 

mapping methods that rely on single input image, this technique takes multiple images 

of varying degree of spatial resolution scale from the same scene. This technique is fast 

because no iterative procedure is involved.  
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2.3. Accuracy assessment 

Results of any super-resolution mapping technique should be assessed in order to 

determine their accuracy. In this thesis, the assessment was undertaken using site 

specific accuracy using the confusion matrix, texture variables, object based 

characterization and positional accuracy. 

 

2.3.1. Confusion matrix 

Confusion matrix is used to assess the thematic accuracy or site specific accuracy of 

estimated land cover mapping when compared with ground data (Congalton and Green, 

2009). It may be used to provide a measure of agreement between the estimated land 

cover maps with the ground data. From the confusion matrix, commission and omission 

errors can be calculated. A commission error occurs when an area is included in an 

incorrect category, while an omission error occurs when an area is excluded from the 

category to which it belongs.  

 

2.3.2. Texture variables 

The structure of the spatial configurations of land cover mosaic can be quantified using 

texture measures based on gray-level co-occurrence matrix (GLCM) (Haralick, et al., 

1973). Fourteen measures of texture can be derived from the GLCM. In this thesis, four 

texture measures were used: homogeneity, contrast, inverse difference moment, and 
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entropy. The four texture measures were selected because they can be used to interpret 

landscape heterogeneity (Benson and MacKenzie, 1995). Heterogeneous landscapes 

required the measurement at a fine spatial resolution scale (Nellis and Briggs, 1989), 

and in the case of this thesis, at a sub-pixel scale. Thus, the texture measures may be 

used to compare the representation of spatial configurations at a sub-pixel scale derived 

from different land cover mapping techniques.  

Tso and Mather (2009) provide an example to compare the difference of texture 

measures on two different texture pattern images as shown in Figure 2.1. The texture 

information can be calculated at angle 0
o
, 45

o
, 90

o
, and 135

o
.  

 

2.3.2.1. Homogeneity 

Homogeneity or the angular second moment measures spatial closeness of the 

distribution of the GLCM. A high value of homogeneity is produced when the 

distribution of the frequency  ,p i j is concentrated on the diagonal of the matrix. A low 

value of homogeneity is produced when the value of the frequency in the matrix are 

almost similar, in which the distribution of the frequency in the matrix is uniform. The 

equation for the homogeneity is given in Equation 2.1. 

 Homogeneity  
2

,
i j

p i j     (2.1) 
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(a) 

 

(b) 

0.242 0.010 0.009 0.008 

0.010 0.230 0.007 0.010 

0.009 0.007 0.219 0.009 

0.008 0.010 0.009 0.195 
 

0.026 0.070 0.078 0.075 

0.070 0.026 0.075 0.078 

0.078 0.075 0.028 0.068 

0.075 0.078 0.068 0.023 
 

(c) (d) 

 

Figure 2-1 Illustration of two different texture patterns. (a) A coarse texture pattern. (b) 

A fine texture pattern.  (c) GLCM computed from Figure 2.1a. (d) GLCM computed 

from Figure 2.1b (adapted from Tso and Mather, 2009).   

 

 

2.3.2.2. Contrast 

Contrast indicates local variation in the image. It measures the difference intensity 

between a pixel and its neighbours. More weight is assigned to the  ,p i j  that is away 

from the diagonal of the GLCM than the  ,p i j  on the diagonal. When the intensity 
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difference is large, the contrast increases. For example, the contrast for Figure 2.1a tends 

to be lower than the contrast of the Figure 2.1b.   

 Contrast  
1

2

0 1 1

,
g g gN N N

n i j

i j n

n p i j



  

 

 
 

  
 
 

   (2.2) 

where gN is the number of distinct gray levels, and 2n is used to indicate the difference 

between the gray tone i and the gray tone j. This measure is suitable for images with 

gray-tone values rather than image containing land cover classes. For binary land cover 

classes, the measurement of the contrast considers the transition between two classes 

times two (Benson and MacKenzie, 1995). 

 

2.3.2.3. Inverse difference moment 

Inverse difference moment (IDM) is a measurement used to indicate that an image may 

contain large homogeneous patches. Such image gives higher weight for the  ,p i j  on 

the diagonal of the GLCM and lower weight for the  ,p i j  that are distant from the 

diagonal. For example, the inverse difference moment for Figure 2.1a tends to be higher 

than that of the Figure 2.1b.  

 Inverse difference moment 
 

 2

1
,

1i j

p i j
i j


 

  (2.3) 
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2.3.2.4. Entropy 

Entropy indicates the complexity of the image by measuring the randomness of the 

elements of the co-occurrence GLCM. The value of the entropy is at maximum when 

the elements of the matrix are equal, but turn to 0 when all the elements are different. 

Therefore, this makes entropy and homogeneity are negatively related.  For example, the 

entropy for Figure 2.1a is lower than the entropy for Figure 2.1b.  

 
Entropy    , log ,

i j

p i j p i j      (2.4) 

 

2.3.3. Object based characterization 

The shape of objects may be characterized by several measures such as area, perimeter, 

compactness, length and orientation. Figure 2.2 illustrates an example of shape 

characterization for an object (shown in black). The area of an object can be determined 

by measuring the quantity of pixels assigned for the object, while the number of pixels 

at the boundary of the object determines its perimeter. Both of the measurements are in 

pixel units. To suit with different types of the remotely sensed imagery, the 

measurements in pixel unit were multiplied with the spatial resolution of the imagery 

used.   
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Figure 2-2 Object characterization. 

 

The compactness of an object is calculated by  

 
2

4 A

P


   (2.5) 

where A is area and P is perimeter. The index ranges from 0 to 1, where values 

approaching 1 indicate that the shape is circular while values approaching 0 are for 

linear shape. The orientation of an object is calculated using Hough transform (Hough, 

1962; Duda and Hart, 1972).  

 cos sinr x y    (2.6) 

 
o90    (2.7) 
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2.3.4. Positional accuracy  

The evaluation of the positional accuracy compares the boundary of the represented land 

cover patches with the boundary of the corresponding patches from ground data. To 

generate boundary position, the boundary of the land cover patches is vectorised. The 

vector difference of the boundary positions between the represented land cover patches 

and the ground data is expressed in root mean squared error (RMSE), which provides a 

statistical measure of the positional accuracy of land cover patches.  

 

2.4. Conclusions 

This chapter provided a review on different approaches for super-resolution analysis. 

Various approaches of super-resolution techniques have been proposed in various 

applications to increase the spatial resolution of image. Generally, super-resolution can 

be divided into super-resolution restitution and super-resolution mapping. Super-

resolution restitution techniques have been used widely in image processing and 

computer vision communities, while super-resolution mapping techniques have been 

used in remote sensing community. In addition, soft classification techniques, which are 

generally used before the processing stage of many super-resolution mapping techniques, 

are also presented in this chapter. Brief discussions on a series of accuracy assessments 

are also included as these assessments will be used to evaluate the accuracy of different 

super-resolution mapping techniques throughout this thesis.  
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In order to represent land cover mapping at a sub-pixel scale, the focus of this 

thesis is on the super-resolution mapping techniques rather than the super-resolution 

restitution. Although the mapping of land covers from the results of the super-resolution 

restitution can be performed using a concept of “restitution then classification” (Ling et 

al., 2010), there are several disadvantages using this approach. Many of the super-

resolution restitution techniques only focus on enhancing the spatial appearance of the 

objects contained in a spatially enhanced image. Issues related with the mixed pixel 

problems, such as the number of land covers and their spatial location inside a mixed 

pixel, have not been fully addressed. In contrast, many of the super-resolution mapping 

techniques focus on solving the mixed pixel problems. Many of the super-resolution 

mapping techniques have a mechanism that can decompose the mixed pixel. With the 

attention of going beyond the size of a pixel, sub-pixel sized land cover patches could be 

represented and their location could be predicted with super-resolution mapping.  

 

 

 

 

 

 



  

 

 

3. Super-resolution analysis for mapping patterned 

landscapes 

This chapter presents the fundamental concepts of two standard super-resolution 

mapping techniques: Hopfield neural network and pixel swapping. Both techniques can 

use a single coarse spatial resolution image as their input to produce spatially enhanced 

output images. Since these two techniques rely on input from soft classification output, a 

section on soft classification is included. Experiments to evaluate the techniques were 

conducted using images of a „shrubby‟ region acquired from Google Maps. This pilot 

chapter analyses super-resolution land cover mapping techniques applied on different 

spatial pattern from shrubby images.  

 

3.1. Fuzzy c-means soft classification 

Many super-resolution mapping techniques used soft classification techniques to 

estimate the sub-pixel level class compositions within a pixel of an image. The soft 

classified image is used as an input for super-resolution mapping. In this thesis, the class 

composition was estimated using an unsupervised fuzzy c-means clustering algorithm 

(Bezdek, 1984) which has been widely used in remote sensing (Foody, 1996).  
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The description of the fuzzy c-means algorithm is explained in this section. A set 

of random data  1 2, , , nX x x x  in a vector space dR , where d is a dimension of the 

space, can be clustered into several classes by mapping them into a matrix U  with its 

dimension is c n . For problems related with image classification, c is the number of 

clusters or classes and n is the number of pixels. Each entry of the matrix is denoted as 

iku  with the range of its value must be between 0 and 1.  

  0,1iku   (3.1) 

The iku  represents the membership value of pixel k for class i . Pixel k may be 

assigned into several clusters, usually more than 1 and the maximum is c. Each cluster 

has a membership value that determines the probability of pixel k towards that cluster. 

The total summation of the membership values for clusters of pixel k must be 1 as 

specified in Equation 3.2.  

 
1

1, for all
c

ik

i

u k


  (3.2) 

The clustering task of the data is performed by minimizing a generalized least 

square error function 

     
2

1 1

,
n c

m ik k i

k i

J U V u x v
 

   (3.3) 

where  1 2, , , cV v v v is the vector of cluster centres, which often been represented as 

the mean of the clusters. The membership weighting exponent, m determines the 

fuzziness level of the clustering and its range is between 1 m  .  
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Initially, a random value is assigned to the entry iku . The value of the iku is 

updated iteratively until the error function 
mJ reaches a local minimum by calculating 

the entry as in Equation 3.4.  

 
 2 1

1

1
for allik m

c
k i

j k j

u k

x v

x v






 
   



 

(3.4) 

and the mean of the i
th

 cluster is calculated from  
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
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





 (3.5) 

Throughout this thesis, the number of clusters was set to two (i.e. c = 2) to 

differentiate between two land cover classes in the image. The algorithm‟s weighting 

parameter, m, which determines the degree of fuzziness was set, after a series of trial 

analyses, to 2.0. This value is widely used in many works (Foody, 2000; Foody, 1996; 

Krishnapuram and Keller, 1993) and within the interval between 1.5 and 2.5 as 

suggested by Nikhil and Bezdek (1995).   

 

3.2. Hopfield neural network 

Hopfield neural network (HNN) is a recurrent type artificial neural network which is 

designed for solving optimization problems (Hopfield, 1982; Hopfield 1984). The 

fundamental structure of the network consists of a single layer of neurons and the output 
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of each neuron is fed back to all other neurons input except its own input. Figure 3.1 

shows an example of an HNN consisting of 3 neurons. HNN is an optimization tool 

defined by an energy function (Hopfield, 1984) that can be formulated to represent 

problems that need to be solved. The energy function often comprises goals and 

constraints.   

The energy function of the HNN is defined as: 

 
1 1

1

2

N N

ji i j

i j

E w x x
 

    i j  (3.6) 

where wij is the weight from neuron i to neuron j, xi is the output of the i
th

 neuron in the 

network, and N is the number of neuron. In the discrete HNN, values for j
th

 neuron xj 

can be in either binary (1/0) state or in bipolar (+1/-1) state.   

A set of N-dimensional vectors, denoted by  | 1,2, , M    can be stored 

into a synaptic weight. The ,i  denotes the i
th

 element of the fundamental 

memory  .The synaptic weight from neuron i to neuron j is defined by 

 , ,

1

1 M

ji j iw
N

 


 


   (3.7) 

To ensure convergence to a stable state, Hopfield (1984) set the weights symmetric with 

no-self connection between a neuron.   

 ij jiw w  (3.8) 

 0iiw   (3.9) 
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The Hopfield neural network updates the element of state vector x(n) into a state 

of x(n+1) asynchronously according to the rule  

    
1

N

j ji i j

i

v n w x n b


   (3.10) 

where vj is an induced local field of neuron j, bj is a bias. Neuron j updates its state xj 

according to a deterministic rule 

 

Figure 3-1 An example of an architecture of a Hopfield neural network consisting of 3 

neurons (adapted from Haykin, 1999). 
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  
 
 

1 if 0
1

0 if 0

j

j

j

v n
x n

v n

 
  


 (3.11) 

for an unipolar case, or 

  
 
 

1 if 0
1

1 if 0

j

j

j

v n
x n

v n

 
  

 
 (3.12) 

for a bipolar case. This relation may be written in the compact form as 

    
1

1 sgn
N

j ji i j

i

x n w x n b


 
   

 
  (3.13) 

where “sgn” is the signum function.  

As an alternative to the Equation 3.13, the state of a neuron for an input u can 

also be updated with a nonlinear activation function using a hyperbolic tangent, “tanh” 

function as formulated in Equation 3.14.  

   
1

1 tanh
2

j jv u   (3.14) 

If the value for the gain, is high, the activation function in Equation 3.14 

approaches a step function. Figure 3.2 shows a hyperbolic tangent “tanh” function with 

different values for the . High values of the  tend to produce a unit step function.          
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Figure 3-2 Hyperbolic tangent “tanh” function with different values of gain, = 1, = 

5, and  

 

Differentiating the energy function of the HNN in Equation 3.6 would derive the 

rate of the energy, E  

 
1

N

ji j

ji

E
w x

x



 

   (3.15) 

And the rate of energy, E is proportional to the rate of change of the neuron idu .  

 
i

i

du E

dt x




   (3.16) 
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3.2.1. Hopfield neural network for super-resolution mapping 

The optimization capability of the HNN has been used for problems that use images as 

the main input source, such as image restoration (Paik and Katsaggelos, 1992), feature 

tracking from satellite imagery (Cote and Tatnall, 1997) and image segmentation (Shen 

and Ip, 1997). HNN can also be used to map land covers at a sub-pixel scale accuracy 

from coarse spatial resolution images (Tatem et al., 2001a).   

 For the super-resolution mapping, each pixel of a coarse spatial resolution image 

is sub-divided into z×z sub-pixels, where z is the scale factor of the spatial resolution 

increment. Initially, sub-pixels of a pixel will take a value from their respective pixel 

(Fisher, 1997). The construction of the Hopfield neural network requires the 

consideration of the spatial resolution of the output image that will be produced. In such 

a case, the number of neurons and their arrangement is designed to accommodate all the 

sub-pixels of the image. For example Figure 3.3 shows an illustration of an arrangement 

of neurons of an HNN for the super-resolution mapping application. Let g be an 

observed coarse spatial resolution image having P×Q pixels and f be an up-sampled 

image from g having zP×zQ pixels. Parameter z is a zoom factor of super-resolution 

mapping, which determines the spatial resolution increment from the original observed 

image, g to the fine spatial resolution image f. Given the coarse spatial resolution image, 

a fine spatial resolution image, f is generated as shown in Figure 3.3. The arrangement 

of neurons in the HNN is corresponding to an arrangement of pixel grid in the two-

dimensional fine spatial resolution image, f. Each neuron, uij will be referred to 

coordinate notation of its corresponding pixel in the fine resolution image, fij. The 

network receives an input uij and produces an output vij, where i and j represent 
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coordinate of a neuron in row i and column j of the grid. Each neuron output will has 

either a value “1” to represent “on” or “0” to represent “off”.  

Careful construction of the energy function may help Hopfield neural network to 

converge to its targets (Tso and Mather, 2009). The energy function that represents the 

problem of super-resolution mapping generally comprised of two parts: a goal and a 

constraint (Cote and Tatnall, 1997), as defined as   

 Energy = goal + constraint (3.17) 

The goal function considers the spatial correlation between observations. The function 

considers a neuron together with its closest neighbours, rather than to treat a particular 

 

Figure 3-3 A 2×2 pixels coarse spatial resolution image and representation of input 

neurons arrangement for the HNN derived from the sub-dividing pixels of the coarse 

spatial resolution image (adapted from Tatem et al., 2001a). 
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neuron as an independent unit. The constraints specify the context of the available data 

by adding costs to the objective.  

By assuming that the spatial dependence between a neuron and its adjacent 

neurons is higher than that of neurons that are further apart, Tatem et al. (2001a; 2001b) 

represented the energy function by combining spatial clustering goal function and area 

proportion constraint as defined by Equation 3.18.   

 Energy = Goal function + Area proportion constraint (3.18) 

The energy function can be formulated mathematically as in Equation 3.19 

  1 2

ON OFF

ij ij P ij

i j

E k G k G k P     (3.19) 

where E is the network energy, ON

ijG and OFF

ijG are the goal functions at a neuron  ,i j , 

ijP is the area proportion constraint, k1, k2, and kP are the weight constant for the goal 

functions and the area proportion constraint respectively The rate of change for the 

energy function for a neuron at location  ,i j is defined by Equation 3.15 

 1 2

ON OFF

ij ij ij ij

P

ij ij ij ij

dE dG dG dP
k k k

dv dv dv dv
    (3.20) 

The goal functions maximize the spatial correlation of nearby neurons that have 

similar values. The functions receive input from neuron  ,i j  and its eight surrounding 
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neurons. Two goal functions are required to derive the output into two binary states: on 

and off. In Equation 3.19, the two goal functions are denoted as ONG and OFFG .  

The first goal function ONG increases the output of the centre neuron  ,i j  to 1 if 

the average value of its eight surrounding neurons is greater than a threshold value, T. If 

the average of the surrounding neurons is less than the threshold value, the goal function 

becomes 0. The value of the threshold value T is set to 0.5 as it is in the middle between 

0 and 1. The conditions of this function can be formulated mathematically as shown in 

Equation 3.21. 

  
11

1 1

1 1
1 tanh 1

2 8

ON ji
ij

kl ij
k i l jij

k i l j

dG
v T v

dv




   

 

  
  

      
  
  

   (3.21) 

In this equation, the tanh function is used to activate the two conditions of the function. 

Gain  determines the steepness of the tanh function. Increasing the neuron output 

corresponds to producing a negative gradient. The  1ijv  function controls the 

magnitude of the negative gradient output.  

The second goal function decreases the output of the centre neuron  ,i j to 0 if 

the average value of its eight surrounding neurons is less than T. If the average of the 

surrounding neurons is greater than T, the second function increases the output of the 

centre neuron to 1. Decreasing the neuron output corresponds to producing a positive 

gradient. The vij controls the magnitude of the positive gradient output.  
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1 tanh

2 8

OFF ji
ij

kl ij
k i l jij

k i l j
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v T v
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



   

 

  
  

     
  
  

   (3.22) 

The area proportion constraint regulates the energy equation by retaining the 

pixel class proportion, xya  derived from soft classification. The area proportion 

constraint is formulated in Equation 3.23. The threshold value of 0.5 is to define a sub-

pixel belong to a class. If the area proportion of the estimate for the original pixel 

 ,x y is lower or greater than the target area, the output values of the neurons are 

increased or decreased to solve the problem. Zero gradients is produced when the Pij 

equals zero 

   
11

2

1
1 tanh

2

yz zxz z
ij

mn xy

m xz n yzij

dP
v T a

dv z


  

 

 
    
 

   (3.23) 

The ordinary differential equation for the rate of the HNN energy in the Equation 

3.20 is included into Equation 3.16 to determine the rate of change for the HNN neurons. 

The value for each neuron in the HNN can be updated numerically using a Euler method 

(Press et al., 2007) and is expressed as 

    
 ij

ij ij

du t
u t t u t t

dt
     (3.24) 

which advances a solution from state  iju t  to state  iju t t  with t as time step. The 

Equation 3.24 runs iteratively until     ij ij

ij

u t t u t     , where  is a small value.  
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3.2.2. Incorporating prior information into HNN 

The goal functions in the HNN energy function in Equation 3.19 is only capable 

of solving super-resolution mapping for features larger than a size of one pixel. To 

estimate the pattern of features smaller than a size of pixel, Tatem et al. (2002) used 

semi-variance values in place of the goal functions. The semi-variance is a prior 

knowledge of the spatial landscape pattern derived from finer spatial resolution images. 

Thus, the new composition of the energy function is defined by Equation 3.25.  

 Energy = Semi-variance value + Area proportion constraint (3.25) 

Its mathematical form is given in Equation 3.26. The energy function consists of a 

summation of several semi-variance values for zoom factor of z and an area proportion 

constraint.   

  1 21 2ij ij z ij P ij

i j

E k S k S k Sz k P       (3.26) 

Constants k1 to kz are weighting factors for the output values for z
th

 semi-variance values, 

S1ij to Szij, while kP is the weighting factor the proportion constraint, Pij. Accordingly, 

the energy change at neuron (i,j) can be written in a compact form as 

 
1

z
ij ij ij

n P

nij ij ij

dE dSn dP
k k

dv dv dv

 
   
 
  (3.27) 

in which the first part of the equation corresponds to the semi-variance values while the 

second part is for the area proportion constraint.  
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Prior knowledge about spatial pattern in a finer spatial resolution can be 

modelled using a semi-variance function calculated by Equation 3.28.   

  
 

 
 

2

,

1, 1

1

2

N h

ij i h j h

i j

h f f
N h

  

 

   (3.28) 

 h  is the semi-variance at lag h, and N(h) is the number of pixels at lag h from the 

centre pixel (i,j). ijf is a pixel of a fine spatial resolution image that is assumed to be 

available for deriving the prior information.  

On one side, target centre neuron  
ij

v c  is modelled by using a quadratic 

equation. 

  
2 4

2ij
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v c

a

  
  (3.29) 

where  2a N h , 
 

,

1, 1
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i h j h
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 
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,

1, 1

2
N h

i h j h

i j

c v N h h 

 

  . On the other 

side, the actual neuron output ijv  is compared to the target centre neuron. 

The values for the actual neuron output and the target centre neuron are 

compared as in Equation 3.30.  

  ij

ij ij
ij

dSn
v v c

dv
   (3.30) 

In Equation 3.30, a negative gradient is produced when the output of neuron vij is lower 

than the target value, v(c)ij. The declination of the gradient increases the neuron output. 

On contrary, when the neuron output is higher than the target value, a positive gradient 
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is produced, which corresponds to decreasing of the neuron output. A zero gradient 

occur when both the actual neuron and the target centre are identical. The calculation of 

the semi-variance values in Equation 3.30 is performed for lags 1, ,n z .   

 

3.2.3. Multiclass land cover mapping 

The goal and semi-variance values are used for mapping binary land cover 

classes. For multiclass land covers, an additional constraint is included in the energy 

function and named as a multiclass constraint (Tatem et al., 2001b). The objective of 

this constraint is to ensure that there is no spatial overlap between different land cover 

classes during the representation of land cover mapping. The multiclass constraint is 

used when there are more than two classes that need to be classified. For example, 

Figure 3.4a shows an image containing five different types of classes consisting of four 

different land cover patches: C1, C2, C3, and C4, and background C5. Each of the patches 

in the image is segmented and separated from other patches in a binary image containing 

one patch as the foreground and other non-patch as the background. Figure 3.4b shows 

four binary images, each with particular patch, derived from the image in Figure 3.4a. 

Then, every binary image is arranged sequentially to construct a 3-dimensional matrix 

structure as shown in Figure 3.4c.  

To ensure that class of patch from binary image 1f  does not map into other 

binary image, the multi-class function is formulated by Equation 3.31 to ensure that the  
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sum of the outputs of each set of neuron at point  ,i j  equals one. This is to avoid a 

formation of new class resulting from overlapping process of two or more classes from 

different binary images.  

 
1

1
C

kij

kij

kkij

dM
v

dv 

 
  
 
  (3.31) 

 

Figure 3-4 Multi-class constraint (a) an image showing five different types of classes 

including background, (b) Each class can be decomposed and assigned into four binary 

images, and (c) an arrangement of binary image of each band image creating a 3-dimensional 

matrix.  
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In the Equation 3.31, c represents the number of class to be predicted. If the 

output sum equals one, a zero gradient is gradient is produced. If the sum of the outputs 

for each classes at point  ,i j is less than 1, a negative gradient is produced which 

corresponds to an increase in neuron output. If the sum of the outputs for each classes at 

point  ,i j is greater than 1, a positive gradient occurred which corresponds to a 

decrease in neuron output. The energy function of the HNN for the multiclass land cover 

mapping is represented by Equation 3.32 

  1 2

ON OFF

kij kij P kij M kij

k i j

E k G k G k P k M      (3.32) 

where kM is a weighting constant for the multiclass constraint function.  

 

3.3. Pixel swapping 

Pixel swapping is a technique that calculates the attractiveness of each sub-pixel to a 

particular class of land cover. The technique was first developed by Atkinson (2005) for 

binary case. Contrary to its name, pixel swapping is a technique that swaps sub-pixels 

contained in a pixel of a coarse spatial resolution image. This technique starts after an 

image has been soft classified. Pixel swapping uses an attractive function to measure an 

attractiveness level of a sub-pixel i related to its neighbours 1, ,j J as given in 

Equation 3.33 that measures the summation of weighed distance between a sub-pixel of 

interest and its neighbours. 
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    
1

x x
J

i i ij j

j

A z


  (3.33) 

where  x jz  is the binary class of the thj sub-pixel at location x j , and ij is a non-

linear distance weighted function calculated as 

 exp
ij

ij

h




 
  

 
 (3.34) 

where ijh is the distance between sub-pixel x i and sub-pixel x j , and  is a parameter for 

the exponential function.  

The attractiveness of each sub-pixel in a coarse spatial resolution pixel is 

measured and ranked. For a binary image case, the least attractive sub-pixel is a sub-

pixel with a value “1” and surrounded mainly by sub-pixels with value “0”. 

     
x

arg min x x x 1
i

i i iA z   (3.35) 

The most attractive sub-pixel is a sub-pixel with a value “0” and surrounded mainly by 

sub-pixels with value “1”.  

     
x

arg max x x x 0
j

j j jA z   (3.36) 

If the attractiveness of the least attractive sub-pixel x i is less than that of the 

most attractive sub-pixel x j , then the classes of these sub-pixels are swapped.  
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The swapping of the sub-pixels only occurs within a pixel, not between pixels. One sub-

pixel within a pixel is swapped per iteration. The algorithm runs until no swaps are 

made or until it reaches a specified number of iterations.  

 

3.4. Experimental analysis 

Four images of areas of different types of land cover mosaic were acquired from the 

Google Earth at various locations of olive farms in Granada, Spain (Figure 3.5). The 

four types of the spatial pattern are termed here: sparsely populated, densely populated, 

globally heterogeneous, and inter-grade, each is shown in order in Figure 3.6a to Figure 

3.6d. The original size of each image is 256×256 pixels. To generate coarse spatial 

resolution image, the spatial resolution of each image in Figure 3.6 was down-sampled 

by factor of 8 to a size of 32×32 pixels, shown in Figure 3.7. For each coarse resolution 

image, the spatial resolution was increased and the spatial pattern of the land cover was 

estimated in order to produce estimation result as closely as its own target image as 

shown in Figure 3.8. The binary target or ground reference images were obtained by 

performing hard classification based on k-means clustering (Duda et al., 2001) on the 

original images. White pixels in the target images represent the olive trees in the original 

images, while black pixels in the target images represent the land surface in the original 

images.  



   55 

 

Figure 3-5 Location of Granada, Spain. 

 

Representation of the land cover of each site were derived and compared using a 

number of different types of land cover classification. For naive land cover estimation, 

three techniques were used: the k-means hard classification as shown in Figure 3.9, two 

simple interpolations: bilinear and bicubic (Keys, 1981) and the results were hardened 

using the k-means technique (Figure 3.10 and 3.11).  

For super-resolution mapping land cover representation, another three techniques 

were used: HNN that used the goal function, HNN that used the semi-variance and the 

pixel swapping. All the super-resolution mapping techniques used inputs of proportion 

images derived from fuzzy c-means soft classification. An HNN consisting of goal 

functions and area proportion constraint was used as in Equation 3.19 to produce 
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estimations of land covers shown in Figure 3.12. The weighting constants for the goal 

functions and the area proportion constraint, k1, k2, and kP were all set to 1.0 to give 

equal emphasis between the goal functions and the constraint. The choice of the values 

for the weighting constants is a standard practice in other works (Tatem et al., 2001a; 

Ling et al., 2010). If the strength of the goal functions is higher than that of the area 

proportion constraint, then the predicted shape of land cover would become too large 

and irregular. If the strength of the area proportion constraint is higher than that of the 

goal functions, then the output of the HNN would not be able to produce values of either 

0 or 1, rather ranges of value between 0 and 1 would be produced, therefore, no land 

cover could be represented. However, by setting the equal value of the weights, the 

effects of the goal functions and the area proportion constrain may not be equal. For 

instance, the effect may be equal when a weighting of 1000000 for the area proportion 

constraint is paired with a weighting of 0.001 for the goal functions.  

The number of the neurons in the Hopfield neural network depended on the 

number of the sub-pixel of the image. Since, the size of the coarse pixel was 32×32 

pixels and the magnification factor required was 8, there were 256×256 sub-pixels in the 

image. Therefore, the arrangement of neurons in the HNN was designed to 

accommodate 256×256 sub-pixels in one layer. jThe value for each neuron in HNN was 

updated until 1000 iterations at which the energy function appear to reach its optimum 

level.   

The other HNN used the semi-variance and the area proportion constraint and its 

estimation on land covers are shown in Figure 3.13. As the down-sampling factor was 8, 

the number of semi-variance values in the HNN was also set to 8. The weighting 
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constant for each of the semi-variance values in the Equation 3.26, k1,...,k8, was set 

equally to 1.0. The weighting constant for the area proportion constraint was also set to 

1.0. The selection of these weight values would provide equal value between the semi-

variance and the area proportion constraint. Again, equal value of the weights may not 

produce equal effect on the semi-variance and the area proportion constraint. The 

arrangement of neurons in this HNN was also designed to accommodate 256×256 sub-

pixels in one layer. The HNN also updated iteratively until 1000 iterations, at which the 

energy function of the HNN reached a stable state.  

For the pixel swapping super-resolution mapping technique, the iteration 

requires to reach a stable state was faster than that of both the HNN techniques. Here the 

number of iteration for pixel swapping was set to 100 iterations at which the pixel 

swapping appear to reach its stable state.  The results of land cover estimation are shown 

in Figure 3.14.   

Results of land cover estimations for each technique were compared in terms of 

thematic accuracy and spatial pattern. The site specific thematic accuracy for each 

technique was assessed using all 65536 (256×256) sub-pixels in each image. A 

confusion matrix was generated for each classification technique and its accuracy was 

expressed by overall proportion correct and kappa coefficient, summarized from Table 

3.1 to Table 3.4 for four different land cover mosaics.  

From the results, the hard classification and the interpolation technique tends to 

produce lower accuracy than the three super-resolution mapping techniques in all four 

images. Of the three super-resolution mapping techniques, the HNN that used semi-
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variance produced the highest thematic accuracy in all the images, while the HNN that 

used goal functions was slightly higher accurate than that from the use of the pixel 

swapping approach.  

Results in the Table 3.1 to 3.4 also indicate that the accuracy of land cover 

estimation was affected by the spatial configuration of land cover. All of the techniques 

tended to produce higher accuracy estimation for the sparsely populated pattern than the 

other patterns. The trend showed in the results was because the sparsely populated 

pattern had large land cover patches and the gap of the land surface between patches 

was also large. In contrast, the accuracy for all the techniques was low when estimating 

the densely populated pattern because the densely populated pattern had small land 

cover patches and the gap of the land surface between patches was also small.  

To evaluate spatial pattern estimation, the semi-variance was used to measure the 

spatial variance between points that are spaced at a constant distance apart or lag shown 

in variogram in Figure 3.15 until 3.18. Each figure represents variogram plots for the 

various land cover estimation techniques on a particular land cover pattern. For each 

figure, a variogram for the particular target image was also plotted as a benchmark. 

Further, the sum squared error (SSE) between the variogram of the target image and the 

variogram of the estimated image was calculated. The SSE was calculated to provide a 

statistical measure of the difference between a variogram of the ground data and a 

variogram of land cover mapping image derived from different classification techniques. 

Results for the SSE for the four different spatial pattern of the land cover were presented 

in Table 3.5 until Table 3.8. 
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(a) (b) (c) (d) 

Figure 3-6 Original images of different spatial pattern of olive farms. (a) Sparsely 

populated, (b) densely populated, (c) globally heterogeneous, and (d) inter-grade. The 

size of each image is 256×256 pixels.  

 

 

(a) (b) (c) (d) 

Figure 3-7 Degraded images from the original images in Figure 3.6. The size of each 

image is 32×32 pixels.  

 

 

(a) (b) (c) (d) 

Figure 3-8 Target images. 
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(a) (b) (c) (d) 

Figure 3-9 Estimation results of hard classification technique. 

 

 

    

(a) (b) (c) (d) 

Figure 3-10 Harden classification of bilinear interpolation technique. 

 

 

    

(a) (b) (c) (d) 

Figure 3-11 Harden classification of bicubic interpolation technique. 
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(a) (b) (c) (d) 

Figure 3-12 Estimation results of HNN technique that used goal functions. 

 

 

    

(a) (b) (c) (d) 

Figure 3-13 Estimation results of HNN technique that used semi-variance. 

 

 

    

(a) (b) (c) (d) 

Figure 3-14 Estimation results of pixel swapping technique. 
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Table 3-1 Thematic accuracy comparison between different land cover mapping 

classification techniques for a sparsely populated land cover pattern 

Classification 
Proportion 

correct 

Kappa 

coefficient 

Hard classification 0.7986 0.5494 

Bilinear 0.8817 0.7020 

Bicubic 0.9005 0.7414 

HNN that used goal functions 0.9179 0.7744 

HNN that used semi-variance  0.9670 0.9107 

Pixel swapping 0.8986 0.7249 

 

 

 

Table 3-2 Thematic accuracy comparison between different land cover mapping 

classification techniques for a densely populated land cover pattern 

Classification 
Proportion 

correct 

Kappa 

coefficient 

Hard classification 0.7352 0.3596 

Bilinear 0.6955 0.3711 

Bicubic 0.7097 0.4022 

HNN that used goal functions 0.7377 0.4408 

HNN that used semi-variance  0.8873 0.7706 

Pixel swapping 0.7321 0.4317 
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Table 3-3 Thematic accuracy comparison between different land cover mapping 

classification techniques for a globally heterogeneous land cover pattern 

Classification 
Proportion 

correct 

Kappa 

coefficient 

Hard classification 0.8186 0.6136 

Bilinear 0.8075 0.6087 

Bicubic 0.8204 0.6355 

HNN that used goal functions 0.8245 0.6417 

HNN that used semi-variance  0.9156 0.8284 

Pixel swapping 0.8095 0.6112 

 

 

 

Table 3-4 Thematic accuracy comparison between different land cover mapping 

classification techniques for an inter-grade land cover pattern 

Classification 
Proportion 

correct 

Kappa 

coefficient 

Hard classification 0.7715 0.5562 

Bilinear 0.8151 0.6275 

Bicubic 0.8366 0.6693 

HNN that used goal functions 0.8481 0.6900 

HNN that used semi-variance  0.9241 0.8471 

Pixel swapping 0.8312 0.6549 
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Figure 3-15 Variogram of different land cover estimation techniques for the sparsely 

populated land cover pattern. 

 

Table 3-5 SSE for variogram of different land cover estimation techniques applied on a 

sparsely populated land cover pattern. 

Classification SSE 

Hard classification 0.1264 

Bilinear 0.0428 

Bicubic 0.0265 

HNN that used goal functions 0.0008 

HNN that used semi-variance  0.0096 

Pixel swapping 0.0061 
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Figure 3-16 Variogram of various land cover estimation techniques on a densely 

populated land cover pattern. 

 

Table 3-6 SSE for variogram of different super-resolution mapping methods applied on 

a densely populated land cover pattern. 

Classification SSE 

Hard classification 0.4254 

Bilinear 0.0558 

Bicubic 0.0285 

HNN that used goal functions 0.0145 

HNN that used semi-variance  0.0065 

Pixel swapping 0.0098 
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Figure 3-17 Variogram of various land cover estimation techniques on a heterogeneous 

land cover pattern. 

 

Table 3-7 SSE for variogram of different super-resolution mapping methods applied on 

a heterogeneous land cover pattern.  

Classification SSE 

Hard classification 0.0098 

Bilinear 0.0219 

Bicubic 0.0110 

HNN that used goal functions 0.0032 

HNN that used semi-variance  0.0032 

Pixel swapping 0.0027 
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Figure 3-18 Variogram of various land cover estimation techniques on an inter-grade 

land cover pattern. 

 

Table 3-8 SSE for variogram of different super-resolution mapping methods applied on 

an inter-grade land cover pattern. 

Classification SSE 

Hard classification 0.1128 

Bilinear 0.2276 

Bicubic 0.1193 

HNN that used goal functions 0.0399 

HNN that used semi-variance  0.0117 

Pixel swapping 0.0170 
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For the sparsely populated land cover pattern, the conventional hard 

classification technique produced the most error. All the three super-resolution mapping 

techniques produced less error compared to the two interpolation techniques. Of all the 

three super-resolution mapping techniques, HNN technique that used goal functions 

produced the least error as its variogram was closely resembled to the variogram of the 

target.  

For densely populated land cover pattern, conventional hard classification 

produced the most error. All the three super-resolution mapping techniques produced 

less error compared to the two interpolation techniques. The HNN that used the semi-

variance functions and the pixel swapping techniques tended to produce less error than 

that of the first HNN that used the goal functions.  

For the heterogeneous land cover pattern, the two interpolation techniques 

produced more errors compared to other techniques. The errors produced by the two 

HNNs were almost identical but the error produced by the pixel swapping slightly less 

than that of the two HNNs.  

For inter-grade land cover pattern, all the super-resolution mapping techniques 

produced less error than the hard classification and the interpolation techniques. The 

HNN that used the semi-variance produced the least error.  

From the two types of accuracy analyses: the site specific thematic accuracy and 

the variogram, in general,  the HNN that used semi-variance tended to produce higher 

accuracy than the other super-resolution mapping techniques in estimating land cover  
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and its spatial configuration of the land cover. The higher accuracy produced in the 

results of this HNN is contributed to the exploitation of prior knowledge in its 

formulation. There are advantages and disadvantages on relying on the prior knowledge. 

The advantages of using prior information had been demonstrated in the analyses on the 

site specific accuracy and variogram, which produced the most accurate results 

compared to the other techniques. On contrary, the disadvantages of relying on prior 

knowledge are that the prior information needs to be available before super-resolution 

mapping process begins. Prior information on one particular area also cannot be used on 

another area. Prior information on one area is only suitable for that particular area and 

not on other areas. For example, an analysis was performed on a coarse spatial 

resolution image of heterogeneous land cover pattern (Figure 3.19a) using this HNN 

 

 (a) 

 

(b) 

 

(c) 

Figure 3-19 ‘Mismatch classification‟ of using HNN that used semi-variance with 

different prior information. (a) Coarse spatial resolution of heterogeneous cover, (b) 

a priori knowledge from finer spatial resolution of densely populated land cover 

pattern, and (c) result of HNN that used semi-variance for super-resolution mapping.  

 



   70 

technique. A priori information was derived from a finer spatial resolution of densely 

populated land cover pattern (Figure 3.19b). Result produced by the HNN that used 

semi-variance is shown in Figure 3.19c, which demonstrates that the spatial pattern 

estimated appeared to be more similar to the prior information than the actual pattern.  

In this chapter, shrubby images of different spatial configuration were used with 

different land cover mapping techniques. Apart from these images, other images can be 

used for various applications, such as vegetation mapping, deforestation, water bodies 

and land classification. From the results, it appears that one of the major limitation of 

the standard super-resolution mapping techniques was the low accuracy when the size of 

land cover patches were small than an image pixel. In addition, if the gap between the 

patches was also smaller than a pixel, all the standard super-resolution mapping 

techniques tended to produce less accurate results.  

 

3.5. Conclusions 

The fundamental concept of two standard super-resolution mapping techniques: HNN 

and pixel swapping were discussed in this chapter. Both techniques were formulated to 

map land cover at a sub-pixel scale given only a single coarse spatial resolution image. 

As the fuzzy c-means is an unsupervised clustering technique, it is suitable for fully 

automated super-resolution mapping procedure and was used here to derive the soft 

classification input required by the super-resolution mapping techniques. 
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This chapter used two sets of HNN and a pixel swapping technique to represent 

land cover mosaic of different spatial configurations. All of the super-resolution 

mapping techniques generally gave accurate representation of land cover. The use of 

prior information may contribute to an increase in land cover mapping accuracy, but in 

every super-resolution mapping process, this approach requires availability of prior 

information such as a finer spatial resolution of a particular area. In addition, the 

accuracy of land cover mapping is also affected by the different spatial configurations of 

land cover pattern. Generally, all of the land cover mapping techniques evaluated in this 

chapter produced high accuracy estimation on the sparsely populated pattern, which has 

large land cover patches. All of the techniques, however, tend to produce low accuracy 

estimation on densely populated pattern, which has small land cover patches. In 

Chapters 4 and 5, improvement on the HNN and pixel swapping will be discussed with 

particular attention on the representation of small land cover patches.  



  

 

 

4. Super-resolution mapping for small land cover 

patches 

 

In Chapter 3, the potential of the HNN and pixel swapping techniques for super-

resolution mapping were demonstrated on images of different land cover mosaics. As 

the size of land cover patches varies, the potential value of the standard HNN and pixel 

swapping also varies, especially when the size of the patches is smaller than an image 

pixel. The difference in accuracy between the sparsely populated pattern image and the 

densely populated pattern image was due to the size difference of land cover patches in 

both images. The HNN and pixel swapping techniques generally produced high 

accuracy when the size of land cover patches was large, but the accuracy was low when 

the size of the patches was small. This chapter highlights limitations of the HNN and 

pixel swapping in representing various sizes of land cover patches with particular 

attention on small land cover patches. These limitations are tackled through appropriate 

parameter settings in the super-resolution mapping techniques.  
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4.1. Introduction 

Research of the super-resolution mapping techniques that used the HNN demonstrates 

its flexibility more than by using the pixel swapping technique. In the HNN, additional 

source of information can be incorporated into the main input imagery. The additional 

source can be acquired from different type of imagery with different spatial or spectral 

resolution. For example, a priori information in the form of a semi-variance values 

derived from a finer spatial resolution image is incorporated with main imagery with 

coarser spatial resolution (Tatem et al., 2002); data from light detection and ranging 

(LIDAR) with spatial resolution of 0.8 m is incorporated into optical data at 4 m spatial 

resolution (Nguyen et al., 2005); and multispectral (MS) bands of the IKONOS with 

spatial resolution of 4 m are fused with its 1 m panchromatic band. In contrast, the 

applications of the pixel swapping (Atkinson, 2005) for super-resolution mapping are 

limited to a single type of image such as 2.6 m spatial resolution Quickbird imagery 

(Thornton et al., 2006); and 0.25 m aerial photography (Thornton et al., 2007) in which 

each image is used independently.  

 The flexibility of the HNN to use a combination of different information is 

facilitated by its energy function (Tatem et al., 2001a) that can be formulated in order to 

consider different type of resources used. Depending on the applications, the energy 

function can consist of different constraints. These constraints are designed to put 

emphasis on spatial clustering goal and area proportion (Tatem et al., 2001a); multiple 

land cover classification (Tatem et al., 2001b); semi-variance (Tatem et al., 2002); 

height constraint that is used in the LIDAR elevation data (Nguyen et al., 2005); and 
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panchromatic reflectance constraint (Nguyen et al., 2006). These constraints can be 

weighted differently to give different emphasis on the outcome of the HNN.  

However, in the previous works of the HNN for super-resolution mapping, the 

determination of the weight constraints lack quantitative analysis that can justify the 

value of the weight. In Tatem et al. (2001a), the weight for the constraints is determined 

on the basis of a hypothetical situation. The strength of the two goal function constraints 

and the area proportion constraint is assumed to be equal, thus the weights for all the 

constraint are all set to 1.0. In Tatem et al. (2002), the weight for each of the seven 

semi-variance values are set to 0.2 on each one of them, while the weight for the area 

proportion constraint is set to 1.4. In Nguyen et al. (2005) the weights for the two goal 

function constraints are both set to 150 and the weight for the area proportion constraint 

is set to 200. In Nguyen et al. (2006) the weights for all the constraint in one experiment 

are all set to 70, while in another experiment, the weights for the goal function 

constraints are both set to 70 and the area proportion constraint weight is set to 100.  

 Additionally, in the previous works of the HNN, the land cover patches are 

generally larger than an image pixel because the spatial clustering goal function of the 

HNN was never intended to be applied to small land cover patches. Only in Tatem et al. 

(2002) that the land cover patch size is smaller than a pixel, but the method used 

requires a priori information derived from a fine spatial resolution image, which may 

increase the cost of the image acquisition.  

 In contrast, pixel swapping requires less complex parameter settings than the 

HNN (Atkinson, 2005), although research on utilizing multiple input sources for the 
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pixel swapping are relatively limited compared to the HNN. In addition, pixel swapping 

is faster than the HNN in term of iteration required to reach a stable state and so less 

computational time is required for the use of the pixel swapping.  

In this chapter, the representation of land cover patches smaller than an image 

pixel using the basic HNN (Equation 3.19) and the pixel swapping (Equation 3.33) for 

super-resolution mapping techniques were presented. This chapter extends the 

application of the two techniques from Chapter 3 in order to represent small land cover 

patches. Simple simulated scenarios for patches were created. As the HNN requires 

more complex parameter settings than the pixel swapping, the attention of this chapter 

was focused more on the HNN, but analyses on the pixel swapping were also included. 

Critically, correct parameter settings may ensure that the HNN and pixel swapping can 

be exploited in order to represent small land cover patches. For both the HNN and pixel 

swapping, the representation of the land cover patches was demonstrated and compared.  

 

4.2. Sub-pixel patches in a mixed pixel 

One of the four causes of the mixed pixel problem is the existence of small land cover 

patches in a pixel (Fisher, 1997) as shown in Figure 1.1a. While the other three 

problems: boundary pixel, inter-grade and linear sub-pixel, have been solved by many 

super-resolution mapping techniques, there is a lack of attention focusing on the solution 

of the sub-pixel sized patches in a mixed pixel. As the size of the sub-pixel patches is 

smaller than an image pixel, inability to represent the patches also highlights the 

limitation of the current super-resolution mapping techniques.  
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Figure 4-1 Two white land cover patches on black land cover background. 

 

Figure 4-2 Two white land cover patches overlaid with coarse spatial resolution grid 

image. The size of the patch A is larger than a coarse pixel while the size of the patch 

B is smaller. 

 

Figure 4-3 Degradation of the image in Figure 4.1 by spatial aggregation into a 

coarse spatial resolution image. 
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To evaluate the limitation of super-resolution mapping techniques, two different 

sizes of land cover patches were used. Figure 4.1 shows an example of a fine spatial 

resolution image with two identical land cover classes: white (1.0) and black (0.0); the 

black class can be regarded as background. The image contains two patches of the white 

class. Patch A is of a size larger than a pixel while patch B is smaller than a pixel. The 

relationship with the spatial resolution between a fine image and a coarse image is 

shown in Figure 4.2 in which the grid of the coarse spatial resolution image was overlaid 

onto the fine spatial resolution image.  

The image in Figure 4.1 was degraded by spatial aggregation into a coarse 

spatial resolution image as shown in Figure 4.3.  In the degraded image, pixels 

containing boundaries of the land cover patch A would appear in grey indicating that the 

pixels are mixed with different land cover classes and the values of these pixels are in 

the range of 0 and 1. Light grey indicates that the proportion of white class is greater 

than the proportion of black class. Dark grey indicates that the proportion of black class 

is greater than the proportion of white class. Other pixels that remain in either white or 

black indicate that the pixels are pure pixels which contain only single land cover class. 

In the degraded image, only one pixel represents the land cover patch B. This pixel is a 

mixed pixel and located in isolation because it is surrounded with black pixels. It also 

appears that the size of the actual land cover patch B is smaller than the size of a coarse 

pixel.  

The solution of the HNN super-resolution mapping would employ an energy 

function as an optimization tool to produce the prediction of land cover mapping at a 

sub-pixel scale. The basic formulation of the energy function consists of two goal 
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functions and an area proportion constraint function as given in Equation 3.19. This 

formulation allows land cover to be predicted at a sub-pixel scale if the size of the land 

cover is larger than a coarse spatial resolution pixel. In the coarse spatial resolution 

image, the boundaries of the land cover will become mixed pixels. Using super-

resolution mapping techniques, such as HNN and pixel swapping, at least two different 

land covers in the mixed pixel would present. The value of each coarse pixel was 

assumed to be the value of land cover proportion in that pixel and would be the input for 

the super-resolution mapping techniques. Examples in the following sections will 

demonstrate the effectiveness of the HNN to represent land cover patches when the size 

of the land cover patch is larger than a coarse pixel, and more importantly highlighting 

the limitation of the HNN when the size of the land cover patch is smaller than the size 

of an image pixel. For comparative purposes, representation of land cover patches using 

pixel swapping is also included.  

 

4.3. Large land cover patches 

The formulation of the standard HNN (Equation 3.19) has been proven in a number of 

studies (e.g. Tatem et al., 2001a; Nguyen et al., 2005) to represent land cover patches 

that are larger than a pixel such as patch A in Figure 4.1. To illustrate the conceptual 

framework of the HNN for super resolution mapping, Figure 4.4a shows an example of 

a 3×3 block of pixels in coarse spatial resolution image. This image can be used to 

represent parts of the boundaries of large land cover patches. A gray pixel at the centre 

was a mixed pixel because it contains a mixture of two different land covers: white and 
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black. The mixed pixel was surrounded by pure pixels in white and pure pixels in black. 

The land cover proportion in the mixed pixel was expressed by soft classification. Here, 

the value of the soft classification in the mixed pixel was 0.50 while 1.0 for white pixels 

and 0.0 for black pixels. In Figure 4.4b, the spatial resolution of the coarse image was 

increased by a factor of eight by decomposing a pixel into 8×8 sub-pixels. For the mixed 

pixel, based on its soft classification value, 32 sub-pixels belong to white land cover 

class while the other 32 sub-pixels belong to black class. Initially, the spatial distribution 

of these sub-pixels was allocated randomly within region represented by the mixed pixel 

as shown in Figure 4.4b.  

All the sub-pixels in the image were fed into input neurons of the HNN in which 

24×24 neurons were used to process all the sub-pixels simultaneously. Using the 

hypothetical assumption that the emphasis between the goal constraint function and the 

area proportion constraint was equal, the weights for the goal constraint, 1k and 2k , and 

the weight for the proportion constraint, Pk  were all set to 1.0. The calculation of the 

HNN was optimized for 1000 iterations at which the energy of the HNN (Equation 3.19) 

became stable.   

During the optimization process of the HNN, the white sub-pixels in the mixed 

pixel were attracted towards adjacent pure white pixels, while black sub-pixels towards 

adjacent pure black pixels. In the output neurons, the optimized HNN could represent a 

land cover and separated it with other land covers such as the background. As a result, a 

diagonal boundary line was created inside the mixed pixel as shown in Figure 4.4c. The  
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(a) 

 

(b) 

 

(c) 

Figure 4-4 Super-resolution mapping of land cover using the standard HNN. (a) A 

coarse spatial resolution with 4 white pure pixels, 4 black pure pixels and 1 mixed 

pixel. The soft classification value in the mixed pixel is 0.5. (b) Decomposition of 

coarse pixel into 8×8 sub-pixels with initial random allocation of white and black 

sub-pixels in the mixed pixel. (c) Estimation of land cover represented from HNN 

showing the boundary between two land cover classes (white and black) crossing 

inside the mixed pixel.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 4-5 Super-resolution mapping of land cover using the standard HNN. (a) A 

coarse spatial resolution with 4 white pure pixels, 4 black pure pixels and 1 mixed 

pixel. The soft classification value in the mixed pixel is 0.2. (b) Decomposition of 

coarse pixel into 8×8 sub-pixels with initial random allocation of white and black 

sub-pixels in the mixed pixel. (c) Estimation of land cover represented from HNN 

showing the boundary between two land cover classes (white and black) crossing 

inside the mixed pixel.  
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number of the white sub-pixels estimated by the HNN in the mixed pixel was 33. This 

result suggested that the proportion of the white land cover inside the mixed pixel was 

0.52 (from 33/64), making the magnitude of an error between the actual land cover 

proportion and the estimated land cover proportion within the mixed pixel only 0.02. 

  

4.4. Small land cover patches 

To illustrate the capability of the HNN to represent small land cover patches, such as 

patch B in Figure 4.1, a simple example was demonstrated as in Figure 4.6a that shows a 

3×3 block of pixels in a coarse spatial resolution image. A gray pixel at the centre is a 

mixed pixel because it contains a mixture of two different land cover classes: white and 

black; the other 8 pixels all belong fully to the black land cover class. The soft 

classification value of the mixed pixel in the centre was 0.50. Initial random allocation 

of the two land covers is shown in Figure 4.6b. Using the standard HNN, a small land 

cover patch was produced in Figure 4.6c, which contains 27 white sub-pixels. This 

result suggested that the proportion of the white land cover class inside the mixed pixel 

was 0.42, making the magnitude of an error between the soft classification input and the 

proportion of the estimated land cover to 0.08; slightly larger than the errors produced 

when the size of the land covers are larger than a coarse pixel.  

When the value of the soft classification of the mixed pixel is low for example 

0.20, the HNN may not be able to represent small land cover patch inside the mixed 

pixel. For example, the soft classification value of a mixed pixel in a 3×3 block of pixels  
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(a) 

 

(b) 

 

(c) 

Figure 4-6 Super-resolution mapping of land cover using the standard HNN. (a) A 

coarse spatial resolution with 8 black pure pixels and 1 mixed pixel. The value of 

soft classification in the mixed pixel is 0.5. (b) Decomposition of coarse pixel into 

8×8 sub-pixels with initial random allocation of white and black sub-pixels in the 

mixed pixel. (c) Estimation of land cover represented from HNN showing a land 

cover that smaller than the size of the mixed pixel. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4-7 Super-resolution mapping of land cover using the standard HNN. (a) A 

coarse spatial resolution with 8 black pure pixels and 1 mixed pixel. The soft 

classification value in the mixed pixel is 0.2. (b) Decomposition of coarse pixel into 

8×8 sub-pixels with initial random allocation of white and black sub-pixels in the 

mixed pixel. (c) Estimation of land cover derived from HNN showing that no land 

cover could be represented.   
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in a coarse spatial resolution image (Figure 4.7a) was set to 0.20. Figure 4.7b shows an 

initial random allocation of white and black sub-pixels. Result of the HNN was shown 

in Figure 4.7c. In the result, the value of each sub-pixel in the mixed pixel was 0.02. 

Here the HNN was unable to represent a land cover patch, which supposedly constituted 

from sub-pixels with each of them has a value of 1.0. Instead, all the sub-pixels were 

given a value of 0.2, which equivalent to the input value. This example suggested that if 

the value of the soft classification in isolated mixed pixel is low, no discrete land cover 

patch could be represented. This situation may occur in some landscapes depending on 

the relationship between the size of the land cover patches and the spatial configuration 

of the image.  

 

4.5. Experimental evaluation 

The effectiveness of the HNN in representing land cover patches can be analysed using 

the two previous scenarios: patches that are larger than an image pixel and patches that 

are smaller than the pixel. As the value of the soft classification determines the size of 

the land cover patches that can be represented, the value of the soft classification in the 

mixed pixel was varied.  

For the larger land cover patches, 20 coarse spatial resolution images were 

generated similar to Figure 4.4a and 4.5a. The value of the soft classification in the 

mixed pixel of the images was varied starting from value 0.05 until 1.00 with an 

increment of 0.05 on each image. For the small land cover patches, 20 coarse spatial 

resolution images were also generated similar to Figure 4.6a and 4.7a with the value of 
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the soft classification in an isolated mixed pixel of the images was varied starting from 

value 0.05 until 1.00. If the value of the soft classification is 1.00, the size of a patch is 

equal to the size of a pixel.  

Each coarse spatial resolution image was used as input for HNN and was treated 

independently. In each image, the HNN may or may not be able to represent land cover 

patches at a sub-pixel scale, as these possible scenarios were already shown in the 

example in Figure 4.7. When the HNN managed to represent a land cover patch, the area 

of the represented land cover patch in each image was measured. To determine the 

accuracy of the HNN in retaining the proportion of land covers in mixed pixels, a ratio 

between output and input of the HNN was calculated. The input of the HNN was soft 

classification value in a mixed pixel, and the output of the HNN was the area of land 

cover patch represented in a mixed pixel. The ratio represented the input and output 

response of the HNN and used to describe the relationship between the area of the land 

cover patch derived from a super resolution mapping technique and the value of the soft 

classification in a mixed pixel. For a coarse spatial resolution image pixel with the value 

of the soft classification i, the ratio   is given by  

 
output of HNN

input to HNN
i   (4.1) 

 

If the value of the ratio is 0.0, it means that no land cover could be represented 

by the HNN. If the value of the ratio is 1.0, it indicates an exact estimation, in which the 

area of the represented land cover patch is equal to the actual area proportion of the land 
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cover in the mixed pixel. If the value of the ratio is less than 1, the area of the land cover 

patch is under estimated and if the ratio is larger than 1, the land cover patch is over 

estimated. The average of the ratios derived from all the images in the analysis was 

calculated to show the overall estimation of the HNN for super-resolution mapping in 

representing land cover patches.  

 

4.6. Representation of large land cover patches with HNN 

This section demonstrates analyses on the HNN in producing parts of large land cover 

patches. Results of differentiating the weights for the goal functions and the area 

proportion constraint, as well as the number iteration used were discussed.  

 

4.6.1. Weight settings  

Three sets of HNNs were formulated; each using different goal function weights and 

area proportion constrain weight as given in Equation 3.19. The first set of the HNN 

assumed that the strength of the goal functions and the area proportion constraints were 

equal. The setting of the weights what was suggested by Tatem et al., 2001a and other 

researchers (Nguyen et al., 2005; Ling et al., 2010). Thus, the weights for the goal 

functions, k1 and k2, and the weight for the area proportion constraint, kP were all set to 

1.0. For simplification, a notation HNN(E) was used to indicate that the HNN placed 

equal emphasis between the goal functions and the area proportion constraints.  
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To examine the different emphasis between the goal functions and the area 

proportion constraint, the weights for the functions and the constraint were varied. The 

second HNN placed more emphasis on the goal functions than the area proportion 

constraint. Here, the strength of the area proportion constraint was reduced to 10% of 

the strength of the goal functions. Thus, the weights for the goal functions, k1 and k2 

were set to 1.0, while the weight for the area proportion constraint, kP was set to 0.1. 

The notation used for this HNN was HNN(G) to indicate the emphasis on the goal 

functions.  

Finally, the third HNN placed more emphasis on the area proportion constraint 

than the goal functions. The strength of the goal functions was reduced to 10% of the 

strength of the area proportion constraint. Thus, the weight of the area proportion 

constraint, kP was set to 1.0, while the weights of the goal functions, k1 and k2 were set 

to 0.1. The notation used for this HNN was HNN(A) to indicate the emphasis on the 

area proportion constraint.  

For the cases of the HNN(G) and the HNN(A), the values for these weights were 

selected as an initial attempt to examine the effects of the different emphasis between 

the goal functions and the area proportion constraint. The same weight values were also 

used in Tatem et al. (2001a) to emphasis these two cases. Later in this section, a series 

of different weight values for the goal functions and the area proportion constraints will 

be analyzed.  

The number of iteration for the three HNNs was set to 10,000 to ensure that the 

energy of the HNN could reach an equilibrium state and the output neurons of the HNN 
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could produce discrete value of either 1 or 0. These discrete values were used to 

differentiate between land cover patches, which normally appear as white foreground (1), 

and the background of the image, that normally appear as black surface (0). If the 

iteration is low, the HNN may not reach an equilibrium state, and the output neurons 

could not produce discrete value of either 1 or 0. As a consequence, land cover patches 

may not be able to be represented. If the iteration is high, no improvement on the HNN 

output could be enhanced further, thus, may potentially waste the computational 

resources. Later in this chapter, the number of iterations that can optimize the output of 

the HNN will be analyzed.  

Results of the three HNNs in representing large land cover patches are shown in 

Figure 4.8. The graph shows a relationship between input and output of the HNNs. The 

input of the HNN was the soft classification value inside a mixed pixel and the output of 

the HNN was the representation of land cover patches. The area of the represented 

patches was measured and used to describe the relationship of the input and output of 

the HNN. As a benchmark, a line illustrating an ideal relationship between input and 

output of the HNN is also shown in a dashed line.  

For the HNN(E), the average ratio for the relationship of the output and input 

was 0.8265, indicating slight underestimation of patch size. The SSE for this 

relationship was 0.0487. The HNN(E) could recover part of the area of a land cover 

patch when the minimum soft classification value in a mixed pixel was 0.20.  

For the HNN(G), the results tended to show a  slight overestimation of patch size 

with its average ratio for the relationship of the output and input was 1.0066. This result  
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Figure 4-8 Relationship of the input and output of HNN in representing large land 

cover patches using  HNN(E), HNN(G), and HNN(A). The number of iteration for 

each HNN was 10,000. 

 

was due to the effect of the high emphasizing on the goal functions that leads to the 

expansion of represented land covers area larger than the actual area of the land covers 

(Tatem et al., 2001a). The SSE for this relationship was 0.0636, larger than the HNN(E), 

suggesting that the precision of the HNN(G) was low. However, the HNN(G) could 

recover part of the land cover patch area when the minimum value of soft classification 

in a mixed pixel was 0.05.  

For the HNN(A), its average ratio for the relationship of the output and input 

was 0.8666, suggesting slight underestimation of patch size. The SSE for this 

relationship was 0.0207, more accurate than the results of the HNN(E). The minimum 

soft classification value in a mixed pixel required to recover part of the land cover patch 

was 0.15, slightly less accurate than the HNN(G) but more accurate than the HNN(E) in 
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representing part of land cover patches from mixed pixel with low soft classification 

values.  

All the three graphs of the HNN(E), HNN(G), and HNN(A) are highly correlated 

with each other. This trend suggested that the effect of differentiating the emphasis 

between the goal functions and the area proportion constraint may not be a significant 

factor that could affect the representation of parts of the large patch boundaries, 

although slight variations may occur in the results in terms of different level of 

underestimation and overestimation of the size of land cover patches.  

 

4.6.2. Number of iterations 

Different number of iterations was set to each of the three HNNs. In each of the HNN, 

20 coarse spatial resolution images were generated similar to Figure 4.4a and 4.5a. The 

value of the soft classification in the mixed pixel of the images was varied starting from 

value 0.05 until 1.00 with an increment of 0.05 on each image. Each of the HNN was 

calculated numerically for 1000, 2000, 5000, 10,000, and 15,000 iterations.  Figure 4.9 

to Figure 4.11 show results of the relationship between output and input of the three 

HNNs to represent part of large land cover patches for a series of iteration. The average 

of the ratio   for each HNN was summarized respectively in Table 4.1 until Table 4.3. 

The SSE was also included to provide a statistical measure of difference between output 

and input of the HNNs.  
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Figure 4-9 Relationship of output and input of the HNN(E) using different numbers of 

iteration on a large land cover patch. 

 

 

Table 4-1 Average ratio of the output and input of the HNN(E) as a function of iteration 

on the representation of a large land cover patch from 20 coarse spatial resolution 

images. 

Iterations Average   SSE 

1000 0.8086 0.0554 

2000 0.8239 0.0513 

5000 0.8162 0.0525 

10,000 0.8265 0.0487 

15,000 0.8162 0.0546 
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Figure 4-10 Relationship of output and input of the HNN(G) using different numbers of 

iteration on a large land cover patch. 

 

 

Table 4-2 Average ratio of the output and input of the HNN(G) as a function of iteration 

on the representation of a large land cover patch from 20 coarse spatial resolution 

images. 

Iterations Average   SSE 

1000 1.0221 0.0286 

2000 0.9999 0.0365 

5000 1.0138 0.0351 

10,000 1.0185 0.0380 

15,000 0.9927 0.0703 
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Figure 4-11 Relationship of output and input of the HNN(A) using different numbers of 

iteration on a large land cover patch. 

 

 

 

Table 4-3 Average ratio of the output and input of the HNN(A) as a function of iteration 

on the representation of a large land cover patch from 20 coarse spatial resolution 

images. 

Iterations Average   SSE 

1000 0.000 7.1750 

2000 0.1447 4.4669 

5000 0.8490 0.0307 

10,000 0.8666 0.0207 

15,000 0.8733 0.0190 
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Results of the HNN(E) (Figure 4.9) underestimated the patch size as presented in 

Table 4.1. Increasing iteration of the numerical calculation of the HNN only produced 

slight changes in the results. Therefore, the number of iteration used was not a major 

factor that could enhance the results of the HNN.  

 For the HNN(G), the estimation results were mixed. From Table 4.2, at 1000, 

5000 and 10,000 iterations, the results overestimated the patch area, while at 2000 and 

15,000 iterations; the results underestimated the patch area. Although the graph in 

Figure 4.10 appeared to be unstable compare to the graph of the other two HNNs, results 

of the HNN(G) were more accurate. The HNN(G) was able to map the land cover even 

when the minimum value for the soft classification was 0.05. This value was smaller 

than that of the HNN(E) (0.20). Like the HNN(E), the number of iteration did not 

produce significant effects in the results of the HNN(G).  

For the HNN(A), the number of iteration used can significantly determine the 

representation of land cover patches, as shown in Figure 4.11. With the low number of 

iterations, the HNN(E) was unable to represent land cover. At the 1000 iteration, no land 

cover could be represented. At the 2000 iterations, land cover could only be represented 

when the soft classification value inside the mixed pixel was at least 0.90. As the 

number of iteration increased, the effectiveness of the HNN(E) to represent land cover 

was also increased. Although, results at 5000, 10,000 and 15,000 iterations 

underestimated the patch area (Table 4.3), the errors produced were decreasing. 

Therefore, as the result suggested, the HNN(E) required high number of iteration in 

order to represent land cover patches.  
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For the representation of large land cover patches, the number of iteration used 

did not significantly improve the results of the HNN when the strength of the goal 

functions and the area proportion constraint were set equal such as HNN(E), or when the 

weight of the goal functions is stronger than the weight of the area proportion constraint 

such as HNN(G). The graphs that show the relationship of the output and input for both 

of the HNNs were highly correlated at different number of iterations. This trend 

suggested that a low number of iterations, such as 1000 iterations, land cover patches 

can sufficiently represented with the HNN(E) and HNN(G).   

However, when the weight of the area proportion constraint is stronger than the 

weight of the goal functions, such as HNN(A), the representation of land cover patches 

could not be achieved at the 1000 iterations. Only when the iteration reached 2000, land 

cover patches could be represented. Increasing the number of iteration further could 

increase the accuracy of the HNN(A) to represent land cover patches.  

 

4.7. Representation of small land cover patches with HNN 

This section demonstrates analyses on HNN in representing land cover patches smaller 

than an image pixel. Results of differentiating the weights for the goal functions and the 

area proportion constraint, as well as the number iteration used were discussed.  

 



   95 

4.7.1. Weight settings 

Similar to the example in Section 4.6, three sets of HNNs were formulated with the 

weights used in the three HNNs were set identical to the weights in that example. The 

number of iteration for the three HNNs was also set to 10,000. Results of the HNN in 

representing small land cover patches are shown in Figure 4.12. Although the value of 

the weights used in the three HNNs were identical to the setting used in the previous 

example, the results of the HNN on the small land cover patches produced different 

patterns. One noticeable difference was that all the HNNs underestimated the patch size.  

For the HNN(E), the average ratio of the output and input of the HNN(E) was 

0.5389. The HNN(E) required that the soft classification value inside the mixed pixel 

was at least 0.45 in order to represent land cover patches. Similar trend can be seen in 

the results produced by the HNN(G), but its estimation is lower than the estimation in 

the HNN(E). The average ratio of the output and input of the HNN(G) was 0.3207. The 

HNN(G) required that the land cover proportion inside the mixed pixel was at least 0.55 

in order to represent land cover patches. For the HNN(A), its average ratio for the 

relationship of the output and input was 0.8489, suggesting more accurate estimation 

than from the other two HNNs. The HNN(E) can also map land cover even the 

proportion of the land cover inside the mixed pixel was as low as 0.15.  

Results of differentiating the emphasis between the goal functions and the area 

proportion constraint for the HNN demonstrated different trends for the cases of large 

land cover patches representation (Figure 4.8) and small land cover patches  
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Figure 4-12 Relationship of the response of input and output of HNN in representing 

small land cover patches using HNN(E), HNN(G), and HNN(A). The number of 

iteration for each HNN was 10,000. 

 

representation (Figure 4.12). For the large cover patches representation case, 

differentiating the strength of the goal functions and the area proportion constraint did 

not produce significant different in the results of the HNN(E), HNN(G), and HNN(A) at 

10,000 iterations.  

In contrast, differentiating the strength of the goal functions and the area 

proportion constraint of the HNN at 10,000 iterations demonstrated significant 

difference between HNN(E), HNN(G), and HNN(A) for the representation of small land 

cover patches. The trend of the graphs in Figure 4.12 suggested that emphasizing more 

strength on the area proportion constraint than the goal functions was more preferable 

for a HNN in representing small land cover patches.  
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4.7.2. Number of iterations 

Different number of iterations was set to each of the three HNNs. In each of the HNN, 

20 coarse spatial resolution images were generated similar to Figure 4.6a and 4.7a. The 

value of the soft classification in the mixed pixel of the images was varied starting from 

value 0.05 until 1.00 with an increment of 0.05 on each image. Each of the HNN was 

calculated numerically for 1000, 2000, 5000, 10,000, and 15,000 iterations.  Figure 4.13 

to Figure 4.15 show results of the relationship between output and input of the three 

HNNs to represent part of large land cover patches for a series of iteration. The average 

of the ratio   for each HNN was summarized respectively in Table 4.4 until Table 4.6. 

The SSE was also included to provide a statistical measure of difference between output 

and input of the HNNs.  

For the  HNN(E) (Figure 4.13), the results underestimated the patch size. The 

minimum soft classification value inside the mixed pixel that could be used to represent 

a small land cover patch was 0.40. Increasing the number of iteration only produced 

slight changes in the results. Therefore, the number of iteration used was not a major 

factor that could enhance the results of the HNN(E).  

 For the HNN(G) (Figure 4.14), the estimation results were even lower than the 

results produced from the HNN(E). The minimum soft classification value inside the 

mixed pixel that could be used to represent a small land cover patch was 0.45; that was 

achieved after 15,000 iterations. Similar to the HNN(E) scenario, increasing number of 

the iterations in the HNN(G) calculation only contributed to less significant effect in 

term of the representing small land cover patches.  
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Figure 4-13 Relationship of output and input of the HNN(E) using different 

numbers of iteration on a small land cover patch. 

 

 

Table 4-4 Average ratio of the output and input of the HNN(E) as a function of 

iteration on the representation of a small land cover patch from 20 coarse spatial 

resolution images. 

Iterations Average   SSE 

1000 0.5633 0.4435 

2000 0.5280 0.5938 

5000 0.5575 0.4572 

10,000 0.5389 0.5676 

15,000 0.5723 0.4324 
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Figure 4-14 Relationship of output and input of the HNN(G) using different numbers 

of iteration on a small land cover patch. 

 

 

Table 4-5 Average ratio of the output and input of the HNN(G) as a function of 

iteration on the representation of a small land cover patch from 20 coarse spatial 

resolution images. 

Iterations Average   SSE 

1000 0.3090 1.7783 

2000 0.3055 1.8104 

5000 0.2921 1.9547 

10,000 0.3207 1.6917 

15,000 0.3356 1.5725 
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Figure 4-15 Relationship of output and input of the HNN(A) using different numbers 

of iteration on a small land cover patch. 

 

 

Table 4-6 Average ratio of the output and input of the HNN(A) as a function of 

iteration on the representation of a small land cover patch from 20 coarse spatial 

resolution images. 

Iterations Average   SSE 

1000 0.0469 6.1789 

2000 0.6458 0.2624 

5000 0.8216 0.0488 

10,000 0.8489 0.0274 

15,000 0.8439 0.0299 
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Significant effect of the increasing number iteration was demonstrated in the 

results of the HNN(A) in Figure 4.15. At the 1000 iteration, a small land cover patch 

could only be produced if the soft classification value inside the mixed pixel was at least 

1.00, in which indicate that the size of the patch was identical to an image pixel. 

Consequently, no land cover patch smaller than a pixel could be represented. As the 

number of iterations increased, small land cover patches could be represented with the 

decreasing values of soft classification inside the mixed pixels. The minimum soft 

classification value that could be used to represent a patch was as low as 0.15.  

For small land cover patch applications, results produced by the HNN(A) were 

similar to the representation of the large land cover applications. Both applications 

required high number of iteration in the calculation of the HNN(A) in order to represent 

land cover patch although the soft classification value inside the mixed pixel was low. In 

contrast, increasing the number of iteration did not produce significant improvement on 

the results of the HNN(E) and the HNN(G). 

For the representation of small land cover patches, the number of iteration used 

did not significantly improve the results of the HNN when the strength of the goal 

functions and the area proportion constraint were set equal, such as HNN(E), or when 

the weight of the goal functions is stronger than the weight of the area proportion 

constraint, such as HNN(G). The graphs that show the relationship of the output and 

input for both of the HNNs were highly correlated at different number of iterations. The 

effect of increasing the number of iterations for small land cover representation case 

demonstrated similar trends with the large land cover patches representation case in 

Section 4.6.2. For both cases, increasing the number of iterations did not improve the 
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result significantly. The difference between the results of both cases was that the 

representation of small land cover patches was severely underestimated compared to the 

representation of large land cover patches. This trend suggested that placing more equal 

emphasis between the goal functions and the area proportion constrain, or placing more 

emphasis on the goal functions than the area proportion constraint of a HNN would not 

be able to represent small land cover patches even with the increment of the number of 

iterations.  

However, when the weight of the area proportion constraint is stronger than the 

weight of the goal functions, such as HNN(A), similar trend was demonstrated between 

the representation of small land cover patches and large land cover patches as explained 

in Section 4.6.2. With the HNN(A), small and large land cover patches could be 

represented better with the increment of the number of iterations used.  

Figure 4.16 demonstrates an example of the HNN(A) in representing a small 

land cover patch from a mixed pixel. Figure 4.16a shows a 3×3 block of pixels in a 

coarse spatial resolution image with one mixed pixel at the centre of the image. The 

other 8 pixels are pure black pixels. The soft classification value of the mixed pixel was 

0.20. The weights for the goal functions of the HNN(A) were 1 2 0.1k k   and for the 

area proportion constraint was 1.0Pk  . Figure 4.16b shows random initialization. 

Results of the land cover representation at 1000, 2000, 5000, 10,000, and 15,000 

iterations are shown in Figure 4.16c-g. At least 5000 iterations was required for the 

HNN(A) to represent small land cover patch.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

 

 

 

(i) 

Figure 4-16 The outputs of HNN(A) with the weight settings were 1 2 0.1k k  , 

1.0Pk  . (a) Input from soft classification. The value of soft classification = 0.20. 

(b) Random initialization. Results after (c) 1000 iterations, (d) 2000 iterations, (e) 

5000 iterations, (f) 10,000 iterations, (g) 15,000 iterations, and (h) final mapping. (i) 

Intensity scale used to represent the soft classification value in a mixed pixel. 
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4.8. The impact of weight settings on the HNN for the representation of small 

land cover patches  

Two sets of HNNs were configured differently to analyse the effect of weight setting on 

the goal function and the area proportion constraint of the HNN for the representation of 

small land cover patches. Twenty coarse spatial resolution images were generated 

similar to images in Figure 4.6a and 4.7a with the value of the soft classification in an 

isolated mixed pixel of the images was varied starting from value 0.05 until 1.00. For 

the first HNN, the value for the goal function weights were set to constant, 1 2 1k k  .0, 

while the weight for the area proportion constraint, Pk  were varied from 0.1 to 1.0. For 

the second HNN, the weight for the area proportion constraint was constant at 1.0, while 

the weights for the goal function were varied from 0.1 to 1.0. The number of iteration 

for both of the HNN was set to 10,000.  

 Figure 4.17 shows relationship of the output and input of the first HNN. Table 

4.7 summarized the result of the estimation and the errors. When the weight for the goal 

functions were set constant, varying the value of the weight for the area proportion 

constraint did not produce significant variation in the trend of the HNN results. Small 

land cover patch could only be represented when the land cover proportion inside the 

mixed pixel was at least 0.44. This derivation was obtained using Pk  = 0.6, 0.7, and 0.8. 

When Pk = 0.1, 0.2, and 0.3, the minimum land cover proportion inside the mixed pixel 

that could be derived was 0.55. This scenario suggested that for the representation of 

small land cover patches, the HNN with strongly weighted goal function was slightly 

more accurate than the HNN with weak emphasis on the goal function.  
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Figure 4-17 Relationship between output and input of the HNN to represent small 

land cover patches with the weight of the goal function was set constant at 1.0, and 

the weights for the area proportion constraint varied. The number for the iteration 

was set to 10,000. 

 

 Table 4-7 Average ratio of the output and input of the HNN as a function of 

varying the weight of the area proportion constrain and setting the weight of the 

goal functions constant at 1.0.  

Pk  Average   SSE 

0.1 0.3207 1.6917 

0.2 0.3622 1.3835 

0.3 0.3777 1.3176 

0.4 0.4325 0.9359 

0.5 0.4342 0.9659 

0.6 0.4718 0.7543 

0.7 0.5282 0.5366 

0.8 0.5271 0.5442 

0.9 0.5242 0.5955 

1.0 0.5389 0.5676 
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Figure 4-18 Relationship between output and input of the HNN to represent small 

land cover patches with the weight for the area proportion constraint was set 

constant at 1.0, and the weights for the goal functions varied. The number for the 

iteration was set to 10,000.  

 

Table 4-8 Average ratio of the output and input of the HNN as a function of 

varying the weights of the goal functions and setting the weight of the area 

proportion constraint constant at 1.0. 

1 2,k k  Average   SSE 

0.1 0.8489 0.0274 

0.2 0.8215 0.0503 

0.3 0.7757 0.0654 

0.4 0.7383 0.1096 

0.5 0.6884 0.1724 

0.6 0.6349 0.2781 

0.7 0.5909 0.4017 

0.8 0.5827 0.4168 

0.9 0.5523 0.4784 

1.0 0.5389 0.5676 
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Figure 4.18 shows relationship of the output and input of the second HNN. Table 

4.8 summarized the result of the estimation and the errors. When the weight for the area 

proportion constraint was set constant, varying the weight of the goal function 

demonstrated significant variation. As the weights for the goal function decreased, the 

effect of the area proportion constraint was increased in the HNN calculation, leading to 

the accuracy increase of the HNN for the representation of small land cover patches. An 

optimum result was achieved when 1.0Pk   and 1 2 0.1k k  . This scenario suggested 

that for the strongly weighted area proportion constraint HNN, setting low values for the 

goal function weights would increase the accuracy of the HNN to represent small land 

cover patches. 

The value of the weights chosen for the analyses in this section was limited from 

0.1 to 1.0. From the results in this section and section 4.7, setting the value of the 

weights equally between the spatial clustering goal functions and the area proportion 

constraint may not necessarily produce equal effect. For example, when the values of 

the weights for the goal functions and the area proportion constraint were set equally to 

1.0, small land cover patches could not be represented, as the result was appeared to be 

dominated by the effect of the area proportion constraint more than the effect of the goal 

functions. When the value of the goal functions was set lower than that of the area 

proportion constraint, such as  1 2 0.1k k   and 1.0Pk  , the effect seems to be equal. 

Different results might possibly be obtained for weights other than the value chosen.  
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4.9. Representation of large land cover patches with pixel swapping 

For comparative purposes, the representation of land cover patches was performed with 

pixel swapping technique. Although require less parameter setting than the HNN, the 

effect of the different number of neighbours used in the Equation 3.33 may deliver 

different results (Atkinson, 2005). In this section, pixel swapping was used to represent 

large land cover patches. The number of the neighbours was varied between 1 and 5, 

leading to a formation of five sets of pixel swapping. In each set, 20 coarse spatial 

resolution images were generated similar to Figure 4.4a and 4.5a. The value of the soft 

classification in the mixed pixel of the images was varied starting from value 0.05 until 

1.00 with an increment of 0.05 on each image. Each coarse spatial resolution image was 

used as input for pixel swapping. The number of iteration for each set of pixel swapping 

was set to 100 as it is sufficient to achieve a stable state. The area of the represented 

land cover patch in each image was measured. Similar to the analysis on the HNN, a 

ratio   depicting a relationship between output and input of the pixel swapping was 

calculated using Equation 4.1.  

 Figure 4.19 shows a relationship between input and output of the pixel swapping 

in representing large land cover patches. As a benchmark, a line illustrating an ideal 

relationship between input and output of the pixel swapping is also shown in a dashed 

line. Only the plot of the pixel swapping with neighbour 1 is shown because pixel 

swapping with neighbour 2-5 produced estimation as exactly as the pixel swapping with 

the neighbour 1, which is confirmed in the results of the estimations and errors in Table 

4.9.  
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Figure 4-19 Relationship of the response of input and output of pixel swapping in 

representing large land cover patches. 

 

 

Table 4-9 Average ratio of the output and input of the pixel swapping as a function of 

different number of the neighbours on the representation of a large land cover patch 

from 20 coarse spatial resolution images. 

Neighbour Average   SSE 

1 0.9963 0.0004 

2 0.9963 0.0004 

3 0.9963 0.0004 

4 0.9963 0.0004 

5 0.9963 0.0004 
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Overall, the average estimation of the pixel swapping was 0.9963, indicating a 

slight underestimation of patch size. These results suggested that the pixel swapping was 

more accurate than the HNN in representation large land covers. For the simple images 

(as in Figure 4.4a and Figure 4.5a), varying the number of neighbours of the pixel 

swapping did not produced any effect.  

 

4.10. Representation of small land cover patches with pixel swapping 

Analyses in Section 4.9 were repeated for the representation of small land cover patches 

with pixel swapping. Twenty coarse spatial resolution images were generated similar to 

Figure 4.6a and 4.7a.  

Figure 4.20 shows a relationship between input and output of the pixel swapping 

in representing small land cover patches from isolated mixed pixels. As a benchmark, a 

line illustrating an ideal relationship between input and output of the pixel swapping is 

also shown in a dashed line. Only the plot of the pixel swapping with neighbour 1 is 

shown because pixel swapping with neighbour 2-5 produced estimation as exactly as the 

pixel swapping with the neighbour 1, which is confirmed in the results of the 

estimations and errors in Table 4.10.  

Results of the representation of small land cover patches in this section were 

similar with the results of the representation of large land cover patches in Section 4.9. 

For the both cases: large and small land cover patches, the accuracy of the pixel  
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Figure 4-20 Relationship of the response of input and output of pixel swapping in 

representing small land cover patches. 

 

 

Table 4-10 Average ratio of the output and input of the pixel swapping as a function 

of different number of the neighbours on the representation of a small land cover 

patch from 20 coarse spatial resolution images. 

Neighbour Average   SSE 

1 0.9963 0.0004 

2 0.9963 0.0004 

3 0.9963 0.0004 

4 0.9963 0.0004 

5 0.9963 0.0004 
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swapping was higher than that of the HNN in retaining the proportion of the area of a 

land cover inside a mixed pixel.  

These results also suggested that the pixel swapping was better than HNN in 

representation land covers smaller than the size of coarse spatial resolution pixel. Using 

the HNN(A), the minimum soft classification value that could be used to represent a 

land cover patch was 0.15 (Figure 4.15), whereas using the pixel swapping, the 

minimum soft classification value was only 0.05. Therefore, smaller size of land cover 

patches could be represented using pixel swapping than by using the HNN(A).  

 

4.11. Representation of different mixed pixel scenarios 

Further evaluation of the HNN and pixel swapping in representing land cover patches 

was performed using images that represent the mixed pixel problem as highlighted by 

Fisher (1997). Three problems were evaluated: (1) boundaries of the patches at a sub-

pixel scale (Figure 4.21); (2) linear patch at a sub-pixel scale (Figure 4.22); and (3) 

small patches at a sub-pixel scale (Figure 4.23).  

Images in Figure 4.21a, 4.22a, and 4.23a are fine spatial resolution images with a 

size of each of them is 80×80 fine resolution pixels. Image in Figure 4.21a contains two 

patches touching one another. Image in Figure 4.22a contains a diagonal patch. Image in 

Figure 4.23a contains a cluster of small patches. All the three images were degraded by 

spatial aggregation into 10×10 coarse resolution pixels images as shown in Figure 4.21b, 

4.22b, and 4.23b.  
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Two sets of HNN were used. First, HNN(E) with the weights for the goal 

functions and the area proportion constraint were all set to 1.0. Second, HNN(A) with 

the weights for the goal functions, k1 and k2 were set to 0.1 and the weight for the area 

proportion constraint, kP was set to 1.0. The number of neurons in each HNN was set to 

80×80, identical to a size of the fine spatial resolution image. Each of the HNN was 

calculated numerically for 10,000 iterations. HNN(G) was not used because this 

technique produced the least accuracy estimation than the other two HNNs in 

representing small land cover patches (Figure 4.12).  

 Two sets of pixel swapping were also used. First, pixel swapping with the 

number of neighbour used was 1. For simplification, a notation used for the first pixel 

swapping was PS(1). Second, pixel swapping with the number of neighbours used was 5 

and the notation used was PS(5). Each pixel swapping technique was calculated 

numerically for 100 iterations.  

 Results of the land cover patches representation using the HNN(E) are shown in 

Figure 4.21c, 4.22c, and 4.23c. Results of the land cover patches representation using 

the HNN(A) are shown in Figure 4.21d, 4.22d, and 4.23d. Results of the land cover 

patches representation using the PS(1) are shown in Figure 4.21e, 4.22e, and 4.23e. 

Results of the land cover patches representation using the PS(5) are shown in Figure 

4.21f, 4.22f, and 4.23f. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4-21 Representation of land cover patches concerning on a problem of boundary 

of the patches at a sub-pixel scale. (a) Original fine spatial resolution image. (b) 

Degraded image. Super-resolution mapping using (c) HNN(E), (d) HNN(A), (e) PS(1), 

and (f) PS(5).   

Patch 1 Patch 2 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4-22 Representation of land cover patches concerning on a problem of a linear 

patch at sub-pixel scale. (a) Original fine spatial resolution image. (b) Degraded image. 

Super-resolution mapping using (c) HNN(E), (d) HNN(A), (e) PS(1), and (f) PS(5).   

 

Patch 3 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4-23 Representation of land cover patches concerning on a problem of small 

patches at a sub-pixel scale. (a) Original fine spatial resolution image. (b) Degraded 

image. Super-resolution mapping using (c) HNN(E), (d) HNN(A), (e) PS(1), and (f) 

PS(5).   

 

X 
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Table 4-11 Area measurement on patches  (unit sub-pixels) 

Patch Ground 

data 

HNN(E) HNN(A) PS(1) PS(5) 

1 1049 1042 

(-7) 

1051 

(2) 

1047 

(-2) 

1050 

(1) 

2 953 930 

(-23) 

953 

(0) 

938 

(-15) 

952 

(-1) 

3 957 950 

(-7) 

952 

(-5) 

914 

(-43) 

955 

(-2) 

Total 

error 

 
37 7 60 4 

 

Table 4-12 Perimeter measurement on patches (unit sub-pixels) 

Patch Ground data HNN(E) HNN(A) PS(1) PS(5) 

1 123.71 120.30 

(-3.41) 

122.37 

(-1.34) 

138.85 

(15.14) 

128.47 

(4.76) 

2 134.85 124.88 

(-9.97) 

131.85 

(-3.00) 

145.12 

(10.27) 

139.02 

(4.17) 

3 178.56 174.25 

(-4.31) 

179.84 

(1.28) 

191.94 

(13.38) 

184.42 

(5.86) 

Total 

error 

 
17.69 5.62 38.79 14.79 

 

Table 4-13 Positional accuracy of the boundary of the land cover patches (unit 

sub-pixels) 

Patch  HNN(E) HNN(A) PS(1) PS(5) 

1 13.43 7.45 15.61 5.19 

2 9.92 8.36 14.01 6.83 

3 3.78 5.31 14.89 4.84 

Total error 27.13 21.12 44.51 16.86 
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Table 4-14 Number of patches. 

Ground data 34 

HNN(E) 4 

HNN(A) 24 

PS(1) 31 

PS(5) 22 

 

The shape of the land cover patches was characterized in order to evaluate the 

results of land cover patch representation from different super-resolution mapping 

techniques. The measurements of the area and perimeter for patches represented by the 

super-resolution mapping techniques were presented in Table 4.11 and Table 4.12. As a 

benchmark, the measurements of the area and perimeter of patches from the original fine 

spatial resolution image were also provided as ground data. Numbers in the bracket 

indicate the difference of the area and perimeter measurements between the patches 

represented by the super-resolution mapping techniques and the patches in the ground 

data. Positive values indicate overestimation, while negative values indicate 

underestimation of patch proportion.  

For the area measurement, in average, the PS(5) and HNN(A) produced better 

area estimation compared with the HNN(E) and PS(1). For the perimeter measurement, 

in average the HNN(A) produced the smallest error while the PS(1) produced the largest 

error.   

The boundary of the land cover patches was vectorised in order to evaluate the 

positional accuracy of the land cover patches. As a benchmark, the boundary of the 
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patches from the original fine spatial resolution image was also vectorised. The 

difference between these boundaries was expressed in RMSE as presented in Table 4.13.  

In average, the PS(5) produced the lowest positional error with the RMSE 16.86 

sub-pixel, while the PS(1) produced the highest error (44.51 sub-pixels). Comparison 

between the HNN demonstrated that the HNN(A) produced RMSE 21.12 sub-pixels, 

which is smaller than that of the HNN(E) (27.13 sub-pixels).  

 Table 4.14 provides information about the number of patches in images in 

Figure 4.23. In the original fine spatial resolution image, there are 34 patches of varying 

size, but only one of them is larger than a coarse spatial resolution image pixel as 

annotated with symbol „x‟.  The rest of the patches are smaller than the coarse pixel. 

Comparison between the two HNNs demonstrated that the HNN(A) represented 24 

patches, which is more than that of the HNN(E) (4 patches). Comparison between the 

two pixel swapping demonstrated that the PS(1) represented 31 patches, which is more 

than that of the PS(5) (22 patches).  

Apart from the patch representation using the HNN(E) in Figure 4.23c, visual 

comparison between results of the small land cover patches representation in Figure 

4.23d-f demonstrate that the patch representation using the PS(5) is tended to be bigger 

than the patch representation using HNN(A) and PS(1). The existence of a number of 

small features may or may not be regarded as land cover patches, because pixel 

swapping may produce speckled pattern in its results (Thornton et al., 2006). Using the 

PS(1) and the HNN(A) more small land cover patches could be represented.  
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The application of the PS(1) on large land cover patches demonstrated poor 

estimation on the area, perimeter and positional accuracy. This technique produced the 

highest errors compared with other techniques in the three measures: area, perimeter, 

and positional accuracy (Table 4.11-12). Contrast trends were demonstrated by the PS(5) 

when it produced the lowest errors compared with other techniques.   

The HNN(A) demonstrated more accurate representation of small and large land 

cover patches than the HNN(E) when producing lower errors in the estimations of area, 

perimeter, and positional accuracy. Also, more small land cover patches were presented 

in the result of the HNN(A) than in the result of the HNN(E).  However, when the 

patches contain high proportion of mixed pixel, such as diagonal shape in Figure 4.22, 

the RMSE of the positional accuracy for the patch represented by the HNN(A) was 

higher than that of the patch represented by the HNN(E), as given in Table 4.13. This 

scenario demonstrated that, for a case of high proportion of mixed pixel, the shape of 

land cover patches representation using HNN(E) was more compact when compared 

with the patches represented by the HNN(A), PS(1), and PS(5) which tended to be 

irregular at the boundary of the patch.   

In general, results in this section demonstrated that both the HNN and pixel 

swapping can be used to represent land cover of different sizes from different mixed 

pixel scenarios. The representation of land cover patches with the HNN(A) was more 

accurate than the other techniques in all of the scenarios. For the pixel swapping, the 

representation of small land cover patches with the PS(1) was more accurate than the 

PS(5), but the PS(5) was more accurate than the PS(1) in representation of large land 

cover patches.  
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4.12. Conclusions 

Analyses in this chapter focus on the optimum parameter setting for the HNN 

and pixel swapping for super-resolution mapping of large and small land cover patches. 

The attention focused more on the HNN because it requires more complex setting than 

that of the pixel swapping. Placing more strength on the area proportion constraint than 

the goal functions of the HNN, and with the high number of iterations on the HNN 

numerical calculation, different sizes of the land cover patches could be more accurately 

represented. Analyses in this chapter suggested that with the correct setting of the HNN 

parameters, the applications of the HNN could be extended and not limited to the size of 

the land cover especially when the size is smaller than an image pixel.  

In this chapter, results of the representation of the small land cover patches 

suggested a requirement of increasing the number of iterations of the HNN. Further 

work in this research need to consider of reducing the number of iterations as it would 

lead to the reducing of processing time, especially for remote sensing imagery, in which 

the size of the images are normally large.  

In summary, pixel swapping was better than HNN in retaining the proportion of 

land cover from mixed pixels. Large land cover patches could be represented using the 

HNN(E), HNN(G), and HNN(A). For the pixel swapping, large land cover patches 

could be represented by the PS(1) and the PS(5), but the boundary of the patches 

represented by the PS(1) tended to be irregular and not as compact as the boundary of 

the patches represented by the PS(5). For the small land cover patches, the 

representation of the HNN(A) was more accurate than that of the HNN(E) and the 
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HNN(G). More small land cover patches could be represented with the PS(1) than the 

PS(5). In Chapter 5, issues related with the prediction of spatial location of the small 

land cover patches will be addressed.   

 

 

 

 

 



  

 

 

5. Increasing the accuracy of land cover patch location 

In Chapter 4, the representation of small land cover patches by super-resolution 

mapping with the HNN and pixel swapping was demonstrated. Attention focused on the 

accuracy of patch representation, notably in term of patch area and perimeter. The 

limitations of these techniques regarding the spatial location of the patches were not 

addressed. The focus of this chapter is to highlight the limitation of the super-resolution 

mapping techniques in predicting the spatial location of the land cover patches. An 

approach that exploits the sub-pixel shifts from multiple observations was used to 

increase the accuracy of patch location.  

 

5.1. Introduction 

As shown in Chapter 4, using the appropriate parameter setting for both the HNN and 

pixel swapping techniques may ensure the representation of small land cover patches. 

The effectiveness of these super-resolution mapping techniques in representing small 

patches may produce highly accurate land cover mapping. However, the accuracy of the 

land cover mapping is also a function of the positional accuracy of land cover patch 

prediction. If the small patches can be represented but not allocated accurately, the 
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accuracy of the non-specific accuracy assessment may increase but not necessarily if 

assessed on a site specific basis (Congalton and Green, 2009).  

A conceptual example that demonstrates the shortcoming of mis-location of the 

small patches of land cover mapping can be illustrated graphically in this section using 

synthetic images and not necessarily based on real data. Figure 5.1a shows a 531×522 

pixels synthetic image of a reference image with a large patch and 5 small patches. The 

reference image shows a total of 15556 pixels unit of the patches. Figure 5.1b is a 

synthetic image that shows an example of a land cover mapping result when only the 

large path that can be represented. The total area of the patch in Figure 5.1b is 14063 in 

pixel unit. The total area differs by 1493 pixels unit with the reference image. Figure 

5.1c is a synthetic image that shows an example of a land cover mapping result 

containing a representation of a large patch and 4 small patches. The allocation of the 

small patches is slightly off position than the location of their corresponding patches in 

Figure 5.1a. The total area of the patches in Figure 5.1c is 15842 in pixels unit, and 

differs only by 286 pixels unit. All the images in the Figure 5.1 contained land cover 

class of the same category, although the land cover patches in Figure 5.1a were shown 

in red while the land cover patches in Figure 5.1b and 5.1c were shown in green. The 

difference in the colour scheme was only intended for a comparison purpose between 

land cover patches in the reference image and the land cover patches in the other images. 

Figure 5.2 shows spatial correspondence between patches in Figure 5.1b and 5.1c with 

the reference image in Figure 5.1a.  
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Table 5.1 and 5.2 provide site specific assessment in a form of confusion matrix 

for land cover mapping in Figure 5.1b and 5.1c, respectively. Using the site specific 

assessment, the accuracy of the land cover mapping in Figure 5.1b is 98.20%, which is 

higher than that of the mapping in Figure 5.1c (96.91%). It is noticeable that the results 

of the site specific assessment are not parallel with the results of the non-site specific 

assessment that calculate the number of patches and measure the total area of the 

patches. Although the accuracy of the non-site specific assessment of land cover 

mapping in Figure 5.1c is higher than that of the mapping in Figure 5.1b, the mis-

location of the small patches in Figure 5.1c could give misleading information about the 

representation of the land cover mapping if one is only relying on the site specific 

assessment. Furthermore, the representation of the land cover mapping might get 

different results if assessed in an object basis.      

The commission and omission errors in Table 5.1 and 5.2 also confirmed that the 

mis-location of the small patches could reduce the site-specific accuracy. In Table 5.1 

only the omission error of the patch produces substantial amount of errors with 

10.6752% compared with other errors. This omission error of the patch indicates that the 

small patches are omitted from the representation of land cover mapping in Figure 5.1b. 

In Table 5.2 the omission and commission errors of the patch produce substantial 

amount of errors with 9.2063% and 10.832 %, respectively. These errors rise due to the 

mis-location of the small patches in Figure 5.1c. The representation of the small patches 

at the wrong locations give rise to the commission error, while the location that the 

patches missed give rise to the omission error.  
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(a) 

 

(b) 

 

(c) 

Figure 5-1 Illustration of the effect of mis-location of small patches in land cover 

mapping. (a) Reference image. (b) Land cover mapping with only a large patch 

represented. (c) Land cover mapping with a large patch and only four small patches 

represented. The locations of the small patches are slightly offset from the location in the 

reference image.   

 

 

(a) 

 

(b) 

Figure 5-2 Spatial correspondences between patches in (a) Figure 5.1b with the 

reference image, and (b) Figure 5.1c with the reference image. 

 

 



   127 

Table 5-1 Confusion matrix for land cover mapping in Figure 5.1b 

 Reference Class  

Estimated Class Patch Background ∑ Error (C) 

 

 Patch 13865 174 14039 1.2394% 

 Background 1657 86056 87713 1.8891% 

 ∑ 15522 86230 101752  

 Error (O)  10.6752% 0.20179%   

Kappa = 0. 92756 Overall accuracy = 98.20% 

 

 

Table 5-2 Confusion matrix for land cover mapping in Figure 5.1c 

 Reference Class  

Estimated Class Patch Background ∑ Error (C) 

 Patch 14093 1712 15805 10.8320% 

 Background 1429 84518 85947 1.6627% 

 ∑ 15522 86230 101752  

 Error (O) 9.2063% 1.9854%   

Kappa = 0.8815 Overall accuracy = 96.9131% 

 

Figure 5.3a is a synthetic image that shows an example of a land cover mapping 

result containing a representation of a large patch and 4 small patches. The spatial 

correspondence between patches in Figure 5.3a with the reference image is shown in 

Figure 5.3b. The degree of the mis-location of the small patches in Figure 5.3a was low; 

therefore provide high agreement of the spatial correspondence between patches in 

Figure 5.3a and patches in the reference image. The total area of the patch in Figure 5.3a 

is 15539 pixels unit. The total area differs only by 17 pixels unit with the reference 

image. Similar to the Figure 5.1c, the accuracy of the non-site specific assessment of the 

land cover mapping in Figure 5.3a was higher than that of the Figure 5.1b.  



   128 

 

Table 5-3 Confusion matrix for land cover mapping in Figure 5.3a 

 Reference Class  

Estimated Class Patch Background ∑ Error (C) 

 Patch 15065 439 15504 2.8315% 

 Background 457 85791 86248 0.5299% 

 ∑ 15522 86230 101752  

 Error (O) 2.9442% 0.5091%   

Kappa = 0.9659 Overall accuracy = 99.1194% 

 

Site specific assessment for land cover mapping in Figure 5.3a is summarized in 

Table 5.3, which demonstrated that the overall accuracy (99.1194%) is higher than that 

of the accuracy of land cover mapping in Figure 5.1b as given in Table 5.1. The 

omission and commission errors of the patches were low because the agreement of the 

spatial correspondence between the represented patches and the patches in the reference 

image was high.  

 

 

(a) 

 

(b) 

Figure 5-3  (a) Land cover mapping with a large patch and small patches represented. 

(b)  Spatial correspondences between patches in Figure 5.3a with the reference image. 
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The scenarios presented in this section suggested that mis-location of the 

represented small land over patches could affect the accuracy of the site specific 

assessment although producing high accuracy for the non-site specific assessment. 

Improving the accuracy with which the small patches are located could increase both of 

the site and no-site specific assessments. Therefore, in this chapter, the improvement of 

the small land cover patches location will be discussed.  

 

5.2. Mis-location of small land cover patches   

The problem of mis-location of small land cover patches represented by super-resolution 

mapping techniques can be illustrated in a simple example in Figure 5.4. Figure 5.4a 

shows a 24×24 pixels fine spatial resolution image. The image was a synthetic image 

that did not represent real data, but used to provide a graphical explanation. The image 

contains a land cover patch with an area of 9 white fine pixel units. Figure 5.4b is a 3×3 

pixels coarse spatial resolution aggregated from the fine image in Figure 5.4a by a factor 

of eight. It makes a coarse spatial resolution pixel constituted by 8×8 sub-pixels. Since 

the area of the land cover in Figure 5.4a is less than 64 sub-pixels unit, the aggregation 

process would produce a mixed pixel at the centre of the coarse spatial resolution image 

(Figure 5.4b) with the value of the soft classification in the mixed pixel is 9/64 = 0.14. 

Figure 5.4c shows an example of super-resolution mapping land cover representation, 

which mis-locates the patch inside the mixed pixel. Here, the centre of the represented 

patch is denoted by a red star symbol, while the centre of the actual patch in Figure 5.4a  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5-4 Mis-location of small land cover patch representation inside a mixed 

pixel. (a) Land cover patch in a fine spatial resolution image. (b) A 3×3 pixels 

coarse spatial resolution image with a mixed pixel at the centre. The soft 

classification value = 0.14. (c) An example of land cover patch representation. The 

red star symbol is the centre of the land cover, while the green triangle is the centre 

for the corresponding land cover in Figure 5.4a. The displacement vector between 

the two centres of gravity is 3.5573 unit pixels. (d)-(f) Possible locations of the 

patch.  
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is highlighted by a green triangle symbol. The displacement vector between the two 

centres of the patches was measured to determine the displacement resulted from the 

mis-location of the represented patch. In Figure 5.4c, the displacement vector was 

approximately 3.5573 in sub-pixels unit. The mis-location of the patch could occur 

anywhere inside the mixed pixel, such as images in Figure 5.4d-f, resulting in different 

displacement values. Consequently, the mis-location of the patches could contribute to 

the increasing spatial variability of super-resolution mapping.  

 

5.3. Image fusion from multiple observations 

The predicted location of a sub-pixel sized land cover patches may vary greatly. In 

order to reduce the spatial variability of the represented land cover patches, multiple 

observations of the remote sensed imagery could be exploited by fusing them together 

to help locate patch accurately. This approach could potentially be useful because of the 

availability of the coarse but fine temporal resolution of several remote sensing systems 

such as AVHRR, MODIS and MERIS.  

Due to the Earth‟s rotation and slight orbital position of remote sensing satellites, 

shifts at a fraction of a pixel between images may occur in the time series data. These 

images may look similar but they are different. In detail the contents of the images may 

look translated from one image to another, assuming that there are no significant 

changes that occur on the land. The sub-pixel shift could be inversely shifted to the 

exact position as the position of a reference image in the time series using image 

registration techniques (Zitova and Flusser, 2003).  
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(a) 

 

(b) 

 

(c) 

Figure 5-5 Decomposition of a coarse pixel into quadrants. (a) A coarse spatial 

resolution image of the k-th frame of a time series data. (b) A coarse spatial resolution of 

the k+1 –th frame. (c) Overlaying the image k and k+1 resulted in partitions Q1, Q2, Q3, 

and Q4 in a pixel (adapted from Ling et al., 2010).  
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At the pixel level, the corresponding pixels from different images can be 

combined into a fused pixel. With the sub-pixel shift normally occur in the time series 

images, overlaying all the corresponding pixels tend to produce several partitions, with 

the scale of each partition are usually smaller than a size of the fused pixel (Ling et al., 

2010). Figure 5.5 shows a simple graphical representation of sub-pixel shift between 

pixels of two synthetic coarse spatial resolution images in the k-th frame (Figure 5.5a) 

and k+1-frame (Figure 5.5b). These two images were assumed to be translated linearly 

at horizontal, x  and vertical, x  positions. Both x and y were smaller than a size of 

a coarse spatial resolution pixel. Figure 5.5c shows that the two images were overlaid. 

The overlaying process can be performed when one image is registered to another image.  

Pixel ,x ya of image k is overlaid with parts of pixels 1,x ya  , ,x ya , 1, 1x ya   , and , 1x ya  of 

image k+1. The four partitions derived from the overlaying are called quadrants.   

The size of a quadrant was smaller than a pixel but bigger than a sub-pixel. 

Example in Figure 5.5c shows four quadrants were created. Each quadrant may have 

different value depending on the combination of the images. For example, soft 

classification values of the two corresponding pixels from the two coarse spatial 

resolution images could be combined and assigned into the quadrants as given by 

  
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If there is K number of images, a quadrant i derived from a combination of the 

images was given by 

  
1

, , ,

k k K

x y x y x y

i

a a a
p Q

K



     
  (5.5) 

where  ,x y  is a coordinate of a pixel for image k+1, k+2, ..., or K that overlaid with a 

pixel  ,x y of a reference image k. p  is an average value of soft classification from 

pixel of several images that overlaid on a quadrant. The difference in the p values was 

used to rank the quadrant. Quadrant with the highest p value indicates that the quadrant 

has the highest possible location of the small land cover patches.   If there are four 

quadrants in a pixel, a set the quadrants in the pixel was given by {p(Q1), p(Q2), p(Q3), 

p(Q4)}. In this set, the rank of the quadrant was sorted in a descending order. To 

simplify the explanation, it was assumed that the rank of the quadrant was p(Q1) > 

p(Q2) > p(Q3) > p(Q4). It was also assumed that the size and shape of the quadrants in a 

pixel are equal. 

Based on the rank of the quadrant, a soft classification value of a reference 

image in a time series images was divided among the four quadrants based upon the 

rank of each quadrant that contain the location of small land cover patches. For the 

quadrant with the highest rank, the soft classification value in the quadrant was  
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min , Q Q

Q Q

a z z z z
Q

z z
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 


 (5.6) 

Here, the spatial resolution of the pixel was increased by decomposing it into z z  sub-

pixels. The size of a sub-pixel is given by SP SPz z . The size of a quadrant was 

constituted from Q Qz z  number of sub-pixels, where Q SPz z z  .  

It was assumed that the value of soft classification in the coarse pixel is a 

proportion of the number of two hard binary classes (e.g. white and black) at a sub-pixel 

level. Therefore, the number of white sub-pixels in the coarse pixel was a z z  , where 

a is the soft classification value of the pixel in the range between 0 and 1. Equation 5.6 

describes a filling process of the white sub-pixels into quadrant, Q1 by assuming that the 

quadrant Q1 posed the highest possible location of the small land covers. The maximum 

number of white sub-pixel that can be filled in the quadrant Q1 was  
2

Qz  number of 

sub-pixels.  

In the quadrant Q1, if the number of the white sub-pixel is less or equal than the 

maximum allocation,  
2

Qz , then the total number of white sub-pixel in the quadrant 

equals to the total number of white sub-pixel in the coarse pixel, which is given by 

a z z  . The value of the soft classification in the quadrant was normalized to ensure 

the range of the soft classification is in between 0 and 1. Since the value of the soft 

classification in the first quadrant is equal to the value of the soft classification in the 

pixel, then the values of the soft classification in other remaining quadrant Q2, Q3 and 

Q4 were zero.  
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However, if the number of white sub-pixel allocated in the quadrant Q1 was 

greater than the maximum number of sub-pixels that can be assigned into the quadrant, 

then the first quadrant, Q1 would only take Q Qz z number of white pixels. The 

allocation of remaining white sub-pixels would be concentrated on the second quadrant, 

Q2, which has the second highest rank from the set. In the second quadrant, the number 

of white sub-pixel that can be allocated is the minimum value of either the remaining 

between the number of white sub-pixel in the first quadrant, or the maximum allocation 

space for sub-pixels in the second quadrant as given by  

 
    1

2

min , Q Q

Q Q

a z z Q z z
Q

z z
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 


 (5.7) 

Likewise, the number of white sub-pixel in the third quadrant or fourth quadrant 

would take the minimum value of either the remaining between the number of white 

sub-pixel in the previous quadrants, or the maximum allocation space in the third 

quadrant or fourth quadrant as given by  
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To simplify the description of the algorithm, suppose that the value of soft classification 

in a coarse spatial resolution image pixel was 0.56. If there were two classes in the  
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(a) 

 

(b) 

 

(c) 

Figure 5-6 The assignment of sub-pixels within a coarse spatial resolution pixel based 

upon the rank of quadrants. (a) Random allocation of the sub-pixels within a coarse 

spatial resolution pixel. (b) Four quadrants inside a pixel with the rank is p(Q1) ≥ p(Q2) 

≥ p(Q3) ≥ p(Q4). (c) An example of the assignment of four quadrants inside the pixel. 

 

coarse pixel, 56% of the area in the pixel belongs to class white and the remaining 44% 

belongs to class black. The spatial resolution of the coarse pixel was increased by 

decomposing it into z z sub-pixels. The value of z was set to 8. Of the 64 sub-pixels in 

the coarse pixel, 36 sub-pixels were classified as white while the other remaining 28 

sub-pixels were black. Using only single coarse image, the location of these sub-pixels 

was merely distributed randomly as shown graphically using synthetic image in Figure 

5.6a. For simplicity, the rank of quadrant was assumed to be p(Q1) ≥ p(Q2) ≥ p(Q3) ≥ 

p(Q4) as show in Figure 5.6b. Therefore, the first 16 white sub-pixels were allocated in 

the first quadrant, Q1. The other 16 white sub-pixels were allocated in the second 

quadrant, Q2. The remaining four white sub-pixels were allocated randomly in the third 



   138 

quadrant, Q3. Figure 5.6c shows an example of the allocation of sub-pixels according to 

the rank of quadrants.  

 

5.4. Sub-pixel shift estimation 

To determine the sub-pixel shift between images, an image registration technique based 

on a phase correlation (Reddy and Chatterji, 1996) was used. This technique allows 

linear transformation such as translation and rotation to be detected even under different 

radiometric conditions and corrected in a new registered image. For many of the popular 

coarse spatial resolution imagery systems, such as AVHRR, MODIS, and MERIS, the 

degree of deformation in one image to another in one system is relatively low. Moreover, 

the translation between images is also linear. Therefore, this image registration 

technique for 2D rigid translation is typically sufficient for a time-series remote sensing 

images. 

For the case of a translation between two coarse spatial resolution images, the 

relationship between these images can be written as 

    1 2
ˆ ˆ, ,g x y g x x y y    (5.9) 

where x̂ and ŷ  are the shifts at a pixel scale.  

Similarly, the relationship between these two images can be described in the 

frequency domain using Fourier shift theorem (Barrett and Myers, 2004). 
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where N and M are the image dimensions and (*) indicates complex conjugate. The 

cross correlation between the images is the summation of all image pixels.  
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 (5.11) 

The magnitude of relative shift between the two images can be determined by locating 

the maximum point of an impulse peak in the cross correlation spectrum, 
1 2g gr . Up-

sampling the spectrum allows the determination of the impulse peak‟s location at a sub-

pixel scale for both the x and y  (Sicairos et al., 2008;  Soummer et al., 2007).  

The approach of sub-pixel registration of image pairs can be extended to a time 

series of multiple coarse spatial resolution images by using one image as a reference for 

each of the other images in the time series. 

      1 2 1,2 1,2 1, 1,
ˆ ˆ ˆ ˆ, , ,k k kg x y g x x y y g x x y y        (5.12) 

where 1,2x̂  and 1,2ŷ  are the pixel shifts between a reference image, g1 and image g2, 

while the 1,
ˆ

kx  and 1,
ˆ

ky  are the pixel shifts between the reference image and image gk.  

Up-sampling of all the coarse spatial resolution images in the time series would 

produce finer spatial resolution images as give by  
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      1 2 1,2 1,2 1, 1,
ˆ ˆ ˆ ˆ, , ,k k kf i j f i i j j f i i j j        (5.13) 

where 1,2î  and 1,2ĵ  are the sub-pixel shifts between a reference image, f1 and image f2, 

while the 1,
ˆ

ki  and 1,
ˆ

kj  are the pixel shifts between the reference image and image fk; and 

i xz , j yz  where z is an up-sampling factor.  

Because the image registration technique is able to measure the relative 

translation between two images at sub-pixel accuracy, the correction of an image‟s 

translation towards the reference image can be made at a fraction of a pixel. This would 

allow the proportion image derived from a soft classification of each image in the time 

series to be fused at a scale smaller than a pixel (Ling et al., 2010) and was normalized 

by the total number of imagery used.  

    1, 1,

1

1 ˆ ˆ, ,
K

Fused k k k

k

f i j f i i j j
K 

    (5.14) 

where 
kf is the k

th
 registered image in the sequence of the time series, 

Fusedf is the result 

of the image fusion, and K is the number of the images in the time series. For a reference 

image, f1, 1,1 1,1
ˆ ˆ 0i j  .  

 

5.5. Incorporating a fusion of multiple observations into super-resolution 

mapping 

The algorithm that exploited the fusion of sub-pixel shift multiple observations between 

one image and another can be implemented in the HNN and pixel swapping for super-
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resolution mapping. For the HNN, a modification of the standard algorithm in Equation 

3.19 was on the area proportion constraint component. Instead of retaining the class 

proportion inside a coarse pixel (Equation 3.23), Equation 5.15 retains the class 

proportion inside a quadrant. Here the size of the quadrant Q is less than a coarse spatial 

resolution pixel, a . 

   
  1 1

,2

1
1 tanh 0.5

2

Q Q Q Q Q Q

Q Q

Q Q

x z z y z z

ij

mn x y

m xz n yzij Q

dP
v Q

dv z


   

 

      (5.15) 

For the pixel swapping, instead of performing the swapping process within a 

coarse pixel as in Equation 3.33 until Equation 3.36, the pixel swapping was executed 

within a quadrant.  

 

5.6. Spatial variability analysis 

Two analyses were performed for the representation of land cover patches using the 

modified HNN and the pixel swapping. The images used for the evaluation were similar 

to the images in Figure 5.4a. The proportion of the area of the patch inside the grid of a 

coarse pixel at the centre of the image was measured as a soft classification value. The 

size of the patch was gradually increased. The increment of the size of the patch was 

equal to the increment of the soft classification values from 0.10 to 0.90, which increase 

by 0.10 in each increment. Soft classification value at 1.00 was not used because the size 

of the represented land cover patch would equal to the size of a pixel, thus the centre of 

the patch is highly likely identical or close to the centre of the pixel, thus, the 
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displacement between the two centres is very small. Moreover, the attention of the 

analysis is on the location prediction of small land cover patches, which are derived 

from pixels with low soft classification values.  

In each increment of the patch size, the location of the patch was randomly 

assigned inside the coarse pixel. The allocation of the patch inside the pixel was 

repeated 10 times, thus, generating 10 fine spatial resolution images in each path size 

increment. The size of these images was 24×24 fine spatial resolution pixels. Each of 

the fine spatial resolution images was degraded by spatial aggregation into a 3×3 pixels 

coarse spatial resolution image, similar to the image in Figure 5.4b. These images were 

used as input images for the HNN and pixel swapping techniques.  

 As explained in Chapter 4, small patches can be represented when the area 

proportion constraint of the HNN is weighted stronger than the goal functions (Equation 

3.19). The weight of the area proportion constraint, kP was set to 1.0, while the weights 

for the goal functions, k1 and k2, were all set to 0.1. In each of the patch representation, 

the number of iteration for the HNN was set to 10,000, in which the HNN would 

become stable and small patches could be represented. The input of the HNN was 

constituted of 24×24 neurons to accommodate all the sub-pixels of a coarse spatial 

resolution image. The displacement between the centres of the represented patches and 

the actual patch was acquired. The displacements from the 10 analyses were used to 

derive the spatial variability of the HNN in representing small land cover patches. For 

each of the patch representation process, the HNN only received a single coarse spatial 

resolution image. The procedure here was to evaluate the spatial variability of the HNN 

when using only a single coarse spatial resolution image.  
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 For the pixel swapping, the number of neighbour (Equation 3.33) was set to 1 as 

this setting was more able to represent small patches than higher number of neighbour 

(Section 4.11). The number of iterations of the pixel swapping approach was set to 100 

as this value was sufficient for the pixel swapping to reach a stable state in representing 

the patches. Similar to the HNN analysis, the displacement between the centres of the 

represented patches and the actual patch was taken to derive the spatial variability of the 

pixel swapping.  

The spatial variability of the HNN using a single coarse spatial resolution image 

is shown in Figure 5.7. The spatial variability of the predicted patch location from the 

HNN depended on the value of the soft classification inside the mixed pixel. When the 

value of the soft classification was low, the spatial variability of the patches was high. 

With the low soft classification values, the size of the patches that could be represented 

by the HNN was smaller as compared when the values of the soft classification were 

high. The displacement of the small patches tended to be larger than the displacement of 

the bigger patches. Table 5.4 summarized the mean and variance of the spatial 

variability of the HNN for the soft classification values ranging from 0.10 to 0.90. The 

total variance was 5.3709.  

Figure 5.8 shows the spatial variability of the predicted patch location from the 

pixel swapping using only a single coarse spatial resolution image. Table 5.5 

summarized the mean and variance of the spatial variability of the pixel swapping for 

the soft classification values ranging from 0.10 to 0.90. The total variance was 9.4966. 

In general, the spatial variability for the HNN was lower than that of the pixel swapping 

when using only single coarse spatial resolution image.  
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Figure 5-7 Spatial variability of the HNN using only a single coarse spatial resolution 

image. 

 

Table 5-4 Statistics of the spatial variability of the HNN using only a single coarse 

spatial resolution image. Mean and variance were measured from 10 displacements of a 

patch in every increment of soft classification value in a mixed pixel.  

Soft classification value in a mixed pixel Mean Variance 

0.10 2.5659 1.4223 

0.20 2.7923 1.3961 

0.30 2.2159 0.7362 

0.40 1.8540 0.6891 

0.50 1.4451 0.5484 

0.60 1.1485 0.2767 

0.70 0.9979 0.2018 

0.80 0.6525 0.0717 

0.90 0.2684 0.0286 
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Figure 5-8 Spatial variability of the pixel swapping using only a single coarse spatial 

resolution image. 

 

Table 5-5 Statistics of the spatial variability of the pixel swapping using only a single 

coarse spatial resolution image. Mean and variance were measured from 10 

displacements of a patch in every increment of soft classification value in a mixed pixel. 

Soft classification value in a mixed pixel Mean Variance 

0.10 3.6432 3.2124 

0.20 3.1580 2.6678 

0.30 2.6292 1.3698 

0.40 2.1456 0.9691 

0.50 1.6977 0.5984 

0.60 1.2941 0.3447 

0.70 0.9951 0.2021 

0.80 0.7608 0.1018 

0.90 0.2722 0.0305 
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Figure 5-9 Spatial variability of the HNN using multiple coarse spatial resolution 

images. 

 

Table 5-6 Statistics of the spatial variability of the HNN using multiple coarse spatial 

resolution images. Mean and variance were measured from 10 displacements of a patch 

in every increment of soft classification value in a mixed pixel. 

Soft classification value in a mixed pixel Mean Variance 

0.10 1.5943 0.1122 

0.20 0.9333 0.4524 

0.30 0.6578 0.1179 

0.40 0.8134 0.1054 

0.50 1.0633 0.0925 

0.60 1.0020 0.1193 

0.70 0.6139 0.0525 

0.80 0.5714 0.0196 

0.90 0.1531 0.0088 
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Figure 5-10 Spatial variability of the pixel swapping using multiple coarse spatial 

resolution images. 

 

Table 5-7 Statistics of the spatial variability of the pixel swapping using multiple coarse 

spatial resolution images. Mean and variance were measured from 10 displacements of 

a patch in every increment of soft classification value in a mixed pixel. 

Soft classification value in a mixed pixel Mean Variance 

0.10 1.7473 0.5090 

0.20 0.9833 0.4666 

0.30 0.7367 0.1648 

0.40 0.8368 0.0898 

0.50 1.0633 0.0925 

0.60 0.9348 0.1082 

0.70 0.5242 0.0465 

0.80 0.4803 0.0182 

0.90 0.1818 0.0164 
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To evaluate the effectiveness of the incorporation of sub-pixel shifted multiple 

observations into super-resolution mapping techniques, procedure similar to the HNN 

and pixel swapping using only single coarse spatial resolution image was repeated. 

However, the degradation of a fine spatial resolution image produced several coarse 

spatial resolution images, which were translated randomly at a sub-pixel scale between 

one another. Five coarse spatial resolution images were generated. One image was 

generated without shifting from the fine spatial resolution image. The other four images 

were generated from the fine spatial resolution image by shifting at the up, bottom, left 

and right directions at a sub-pixel scale. The sub-pixel shifts between images were 

determined using Equation 5.9-5.11. All the coarse spatial resolution images were 

combined using Equation 5.14 to produce a fused image.  

For the HNN, the fused image was fed into a HNN that employed a modified 

area proportion constraint as in Equation 5.15. In the modified constraint, instead of 

placing the area constraint within a pixel, the constraint was focused within a quadrant. 

For the pixel swapping, the fused image was used as an input for this technique, in 

which the operational of this technique was performed using Equation 3.23-3.36 but 

instead of performing the operation within a pixel, the pixel swapping algorithm was 

performed within a quadrant.   

The spatial variability of the HNN using multiple coarse spatial resolution 

images is shown in Figure 5.9. Table 5.6 summarized the mean and variance of the 

spatial variability of the HNN for the soft classification values ranging from 0.10 to 0.90. 

The total variance was 1.0806. Figure 5.10 shows the spatial variability of the pixel 

swapping using multiple coarse spatial resolution images. Table 5.7 summarized the 
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mean and variance of the spatial variability of the pixel swapping for the soft 

classification values ranging from 0.10 to 0.90. The total variance was 1.5120. 

The incorporation of the multiple sub-pixel shifted coarse spatial resolution 

images into the HNN and pixel swapping demonstrated the decreasing of the spatial 

variability for both technique especially when the values of the soft classification were 

low. Critically, at the low soft classification values, the spatial variability of the 

predicted patch location from the HNN and pixel swapping tended to be high as the size 

of the represented patches were generally small, thus making the displacement vector 

between the centre of the represented patch with the centre of the actual patch appear to 

be high. At high soft classification values, the size of the represented patches were 

slightly big, making the displacement vector appears to be low.  

 

5.7. Land cover patches representation using multiple coarse spatial resolution 

images 

Further evaluation of an approach that used multiple sub-pixel shifted coarse spatial 

resolution images was performed using the HNN and pixel swapping. The image in 

Figure 5.11a is a fine spatial resolution image with its size was 96×96 fine resolution 

pixels. The image contains a cluster of small patches. The image was degraded by 

spatial aggregation into a 12×12 coarse resolution pixels image as shown in Figure 

5.11b.  
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Using only the coarse spatial resolution image, the representation of the patches 

was evaluated with the HNN and pixel swapping techniques. To represent the small 

patches, a HNN with weights for the goal functions, k1 and k2 were set to 0.1 and the 

weight for the area proportion constraint, kP was set to 1.0 (Equation 3.19). The 

justification of the value of the weights was provided in Chapter 4. The number of 

neurons in each HNN was set to 96×96, identical to a size of the fine spatial resolution 

image. Each of the HNN was calculated numerically for 10,000 iterations. For the pixel 

swapping, the number of neighbour used was set to 1 (Equation 3.33). The pixel 

swapping technique was run for 100 iterations.  

Result of the HNN using only a single coarse spatial resolution image is shown 

in Figure 5.11c and the site specific assessment is summarized in a confusion matrix in 

Table 5.8. The site specific accuracy was assessed using all 9216 (96×96) sub-pixels in 

the image represented by the HNN. Overall, the accuracy of the site specific assessment 

was 92.7843%. Result of the pixel swapping using only a single coarse spatial resolution 

image is shown in Figure 5.11d and the site specific assessment is summarized in a 

confusion matrix in Table 5.9. Overall, the accuracy of the site specific assessment was 

91.8403%.  

The analyses of the HNN and pixel swapping that used only a single image were 

repeated using multiple sub-pixel shifted coarse spatial resolution images. These images 

were fused and fed into the input of the HNN and pixel swapping. Result of the HNN is 

shown in Figure 5.11e and the site specific assessment is summarized in a confusion 

matrix in Table 5.10. Overall, the accuracy of the site specific assessment was  
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(a) 

 

(b) 

 

(c)  

 

(d)  

 

(e)  

 

(f) 

Figure 5-11 Small patches representation. (a) Original fine spatial resolution image. 

(b) Degraded image. Super-resolution mapping (c) HNN using a single coarse 

spatial resolution image, (d) pixel swapping using a single coarse spatial resolution 

image, (e) HNN using multiple coarse spatial resolution images, and (f) pixel 

swapping using multiple coarse spatial resolution images.  
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Table 5-8 Confusion matrix for land cover mapping represented by HNN using a single 

coarse spatial resolution image. 

 Reference Class  

Estimated Class Patch Background ∑ Error (C) 

 

 Patch 284 319 603 52.9022% 

 Background 346 8267 8613 4.0172% 

 ∑ 630 8586 9216  

 Error (O)  54.9206% 3.7154%   

Kappa = 0.4220 Overall accuracy = 92.7843% 

 

Table 5-9 Confusion matrix for land cover mapping by pixel swapping using a single 

coarse spatial resolution image. 

 Reference Class  

Estimated Class Patch Background ∑ Error (C) 

 

 Patch 254 376 630 59.6825% 

 Background 376 8210 8586 4.3792% 

 ∑ 630 8586 9216  

 Error (O)  59.6825% 4.3792%   

Kappa = 0.3594 Overall accuracy = 91.8403% 

 

Table 5-10 Confusion matrix for land cover mapping represented by HNN using a time 

series coarse spatial resolution images. 

 Reference Class  

Estimated Class Patch Background ∑ Error (C) 

 

 Patch 461 166 627 26.4753% 

 Background 169 8420 8589 1.9676% 

 ∑ 630 8586 9216  

 Error (O)  26.8254% 1.9334%   

Kappa = 0.7140 Overall accuracy = 96.3650% 
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Table 5-11 Confusion matrix for land cover mapping by pixel swapping using a time 

series coarse spatial resolution images. 

 Reference Class  

Estimated Class Patch Background ∑ Error (C) 

 

 Patch 459 169 628 26.9108% 

 Background 171 8417 8588 1.9912% 

 ∑ 630 8586 9216  

 Error (O)  27.1429% 1.9683%   

Kappa = 0.7099 Overall accuracy = 96.3108% 

 

 

96.3650%. Result of the pixel swapping is shown in Figure 5.11f and the site specific 

assessment is summarized in a confusion matrix in Table 5.11. Overall, the accuracy of 

the site specific assessment was 96.3108%. This analysis demonstrated that by using the 

multiple sub-pixel shifted coarse spatial resolution images, the site specific accuracy of 

the HNN increased by 3.5807% and for the pixel swapping, the accuracy increased by 

4.4705% compared to using a single coarse spatial resolution image.  

High omission and commission errors in Table 5.8 and 5.9 were due to the mis-

location of the represented of the small patches. As explain in Section 5.1, the 

representation of the small patches at the wrong locations could increase the commission 

error; in turn the location that the patches missed could increase the omission error. For 

the HNN, using only a single coarse spatial resolution image, the omission error of the 

patches was 54.9206% and the commission error of the patches was 52.9022% (Table 

5.8). Using multiple sub-pixel shifted coarse spatial resolution images, these errors were 

reduced to 26.8254% for the omission error and 26.4753% for the commission error 
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(Table 5.10). For the pixel swapping, using only a single coarse spatial resolution image, 

the omission error of the patches was 59.6825% and the commission error of the patches 

was 59.6825% (Table 5.9). Using multiple sub-pixel shifted coarse spatial resolution 

images, these errors were reduced to 27.1429% for the omission error and 26.9108% for 

the commission error (Table 5.11).  

Analyses in this section demonstrated that the spatial variability of the 

represented patches could contribute to the uncertainty of the HNN and pixel swapping 

in predicting the location of small land patches. The uncertainty was related with the 

accuracy of the site specific thematic assessment. Using a fusion of multiple coarse 

spatial resolution images, could potentially increase the accuracy of the prediction of the 

small patch location, thus improving the accuracy of the site specific thematic 

assessment.  

The limitations of the algorithm were that the size of all the quadrants was 

assumed to be equal, and the shape of each quadrant was square, with the sub-pixel 

shifts at the horizontal, x  and vertical, x  are equal. Future works will be focused on 

different sizes and shapes (e.g. rectangle) of the quadrant.  

 

5.8. Conclusions 

Super-resolution mapping aims to locate sub-pixel land cover fractions within the area 

represented by a pixel. One problem that has been highlighted for small land cover 

patches is that the predicted location is very uncertain. As a result if an analysis was 
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repeated, for example, there would be great variability in the predicted location of small 

land cover patches.  

Analyses in this chapter focus on reducing the spatial variability of the predicted 

location of land cover patches from the use of the HNN and pixel swapping approaches 

for super-resolution mapping. This chapter presents an algorithm that fused multiple 

sub-pixel shifted coarse spatial resolution image. Multiple coarse spatial resolution 

images could be acquired from time series remotely sensed imagery. At a pixel level, 

four quadrants were generated resulted from the overlaying of the multiple images. Each 

quadrant has rank order of containing the location of small land cover patches. The 

operational of the HNN and pixel swapping was performed at a quadrant scale. The 

accuracy of the image registration techniques is also essential in order to ensure the 

success of this approach.  

Using a fusion of time series data of the coarse spatial resolution images, the 

spatial variability of land cover patches can be reduced compared when using only 

single coarse spatial resolution image. Consequently, the location of the small land 

cover patches can be accurately predicted. Several issues associated with the statistical 

significance of the results will be considered in the future. The algorithm proposed in 

this chapter will be used to improve the super-resolution mapping techniques for use 

with real coarse spatial resolution images, which will be discussed in Chapter 6.  

 



  

 

 

6. Super-resolution mapping for landscape patches 

using a fusion of time series imagery 

Having investigated the effect of variation on the parameters settings of the HNN and 

pixel swapping and improving the location with which small land cover patches are 

predicted, attention is now focused on the representation of real landscape patches (lakes) 

from popular coarse spatial resolution remotely sensed imagery. In this chapter, brief 

reviews on the MODIS and Landsat ETM+ imagery are presented, before a novel, two 

step HNN technique that exploits the best features of two HNNs with different 

parameters settings was implemented on a time series MODIS images. 

 

6.1. Introduction 

Remote sensing systems acquire observations of the Earth‟s surface while orbiting the 

Earth. The frequency of the observation on a same site depends upon the revisit interval 

characteristic of satellites. Often, the revisit interval is inversely proportional with the 

spatial resolution of remotely sensed images (Toutin, 2009; Goward et al., 2009; Justice 

and Tucker, 2009). Moreover, the relationship between the sensor spatial resolution and 



   157 

the cost of the sensor is also often proportional. So, there is possibility to acquire 

multiple spatial resolution images inexpensively.  

Additional information, normally at a finer spatial resolution image can be 

incorporated into the super-resolution mapping to increase the accuracy of land cover 

mapping and to decrease the uncertainty of locating the land cover. Amongst the 

additional information that have been used in the super-resolution mapping are LIDAR 

(Nguyen et al., 2005), geo-statistical data (Boucher and Kyriakidis, 2006), fused images 

(Nguyen et al., 2006) and panchromatic (PAN) imagery (Atkinson, 2008: Nguyen et al., 

2011). Fine spatial resolution remote sensing systems such as SPOT HRG, IKONOS 

and QuickBird provide both multispectral and panchromatic imagery. The panchromatic 

images usually have finer spatial resolution than the multispectral images, which often 

used as main imagery.  

However, not all remote sensing systems are able to acquire finer spatial 

resolution image along with the main imagery. Coarse spatial resolution remote sensing 

systems such as the Moderate-resolution Imaging Spectroradiometer (MODIS), Medium 

Resolution Imaging Spectrometer (MERIS) and Advanced Very High Resolution 

Radiometer (AVHRR) are not designed to capture panchromatic images. One of the 

aspects from these systems that could be utilized is their fine temporal resolution as the 

revisit interval of these systems is normally on a daily basis (Justice and Tucker, 2009). 

Exploiting the fine temporal resolution of these systems may solve the problem of 

acquiring additional information for the image fusion.  
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During remote sensing observations, a sample-scene phase scenario may occur 

(Park and Schowengerdt, 1982), which may be perceived as a limitation during the 

observation. However, this discrepancy can be exploited as the imagery of a site 

acquired on different dates typically differs in subtle ways, with the location of pixels 

varying slightly due to, for example, minor orbital translations of remote sensing 

satellites. The slight differences between images can be exploited by combining a time-

series coarse spatial resolution images into an integrated image, which may contain 

more information than a single coarse spatial resolution image (Packalen et al., 2006; 

Shen et al., 2009). Acquisition of several coarse spatial resolution images is also a basic 

premise for spatial resolution enhancement in many super-resolution image restitution 

techniques (Park et al., 2003; Yang and Huang, 2011) but quite unexplored in the 

context of super-resolution mapping (Ling et al. 2010).  

Although some papers in the literature provided the application of super-

resolution mapping technique that used several coarse spatial resolution images (Lu and 

Inamura, 2003; Ling et al. 2010)., the imagery used were not real, rather generated by 

spatial degradation from finer spatial resolution images. Therefore, in this chapter, the 

application of super-resolution mapping using time-series MODIS images will be 

investigated.  

 

6.2. Moderate Resolution Imaging Spectroradiometer 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor designed for 

NASA‟s Earth Observing System (EOS) on board the Terra and Aqua satellites (Justice 
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and Tucker, 2009). The applications of MODIS include land, ocean, and atmospheres 

observations and provide understanding of the Earth system processes at global, 

continental, and regional scales. The Terra and Aqua orbit is approximately at 705 km, 

and gives a swath width as wide as 2330 km and global near-daily coverage. There are 

36 spectral bands in the MODIS allowing it to cover wavelengths from the visible 

(0.415 m) to infrared (14.235 m) spectrum. Two bands are at 250 m spatial resolution, 

five bands are at 500 m resolution and 29 bands are at 1 km resolution. The first seven 

bands are designed explicitly for land surface applications (Friedl et al., 2002) with the 

spatial resolution of 250 m for band 1 (red, 0.620-0.670 m), and band 2 (near infrared, 

0.841-0.876 m), and 500 m for bands 3 to 7 (0.459-0.479, 0.545-0.565, 1.230-1.250, 

1.628-1.652, 2.105-2.155 m, respectively).  

 

6.3. Landsat ETM+ 

The main instrument carried by Landsat 7 is the Enhanced Thematic Mapper Plus 

(ETM+). This instrument maintains the essential characteristics of Thematic Mapper 

carried by Landsats 4 and 5. Ground resolution for ETM+ data remains unchanged at a 

spatial resolution of 30 m, except for the thermal band in which the resolution increased 

from 120 to 60 m. A panchromatic band with 15 m resolution is also added for 

rectification and image sharpening. Landsat 7 provides data with a swath width of 185 

km and a repeat coverage interval of 16 days (Goward et al., 2009).  
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Table 6-1 Landsat 7 ETM+ bands 

Band number Spectral range (µm) Ground resolution (m) 

1 0.450 – 0.515 30 

2 0.525 – 0.605 30 

3 0.630 – 0.690 30 

4 0.750 – 0.900 30 

5 1.550 – 1.750 30 

6 10.400 – 12.500 60 

7 2.090 – 2.350 30 

Panchromatic 0.520 – 0.900 15 

 

 

 

6.4. Test site and data 

The study area covers approximately a 26 km × 28 km area located in Quebec province, 

Canada. It is situated between latitudes 54
o
26‟24”N and 54

o
12‟10”N and between 

longitudes 85
o
26‟15”W and 85

o
01‟22”W. The area contains a landscape mosaic that is 

made up of lakes of varying size and shape. Figure 6.1 shows the location of the study 

area. Not only do the lakes provide a challenge for super-resolution mapping there is a 

desire for more information on such features in high latitude regions as they appear to be 

disappearing (Smith et al., 2005).  The disappearing of the lakes may be caused by the 

shrinking of the size of the lakes until they vanished and converted the land cover into 

vegetation. The disappearing of the lakes may also have impacts on the ecological and 

environmental systems on that region.  
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Figure 6-1 Test site 

 

 

(a) 

 

(b) 

Figure 6-2 Datasets (a) one of the MODIS 250 m near IR images acquired on 5 July 

2002 and (b) Landsat ETM+ 30 m near IR image taken on 10 July 2002 that was used 

as ground data. 
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 Cloud free image  Reference image  Landsat image 

Figure 6-3 Temporal coverage of a time-series daily MODIS 250 m. A MODIS image 

acquired on 5 July 2002 was used as a reference image for a time series image 

registration. Landsat image acquired on 10 July 2002 was used as a ground data as a 

means to set the orientation of the MODIS image correctly.  

 

Two sets of image data were used. First, a time series of coarse spatial resolution 

imagery acquired by the MOD09GQ (MODIS surface reflectance product) MODIS 250 

m spatial resolution sensor onboard Terra was acquired between 13 June 2002 and 19 

August 2002 because land cover is largely static at this time scale. During this period, 

the site was clear from cloud, snow and haze. Only the data acquired in the near infrared 

band (0.841-0.876 µm) were used because land and water are highly separable in this 

part of the spectrum. MOD09GQ is a level 2 data of MODIS which has not been 
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gridded into a map projection as in Level 3 data of composite MODIS images (Vermote 

et al. 2002), thus allowing further processing to be determined by users, such as sub-

pixel shifts measurement. The MODIS images were projected from Sinusoidal 

projection into a Landsat Universal Transverse Mercator (UTM) projection at zone 16. 

The MODIS images were provided by the USGS Land Processes Distributed Active 

Archive Center (LP DAAC) website (https://lpdaac.usgs.gov/). An example of a 

MODIS image acquired on 5 July 2002 is shown in Figure 6.2a.  

 Second, a Landsat ETM+ of the region acquired on 10 July 2002 was used 

to provide ground data on lakes. These data have a spatial resolution of 30 m and the 

mosaic of lakes is visually evident in the image (Figure 6.2b). Only the near infrared 

band image (0.750-0.900 µm) was used because land and water are very separable 

within this band. The Landsat image was provided by the U.S Geological Survey 

(USGS) Global Visualization Viewer website (http://glovis.usgs.gov/).  The Landsat 

image lies in the middle of the set of dates over which the MODIS data set was acquired. 

The MODIS image acquired on 5 July 2002 was used as a reference image for time 

series image registration because its date of acquisition is the closest temporally to that 

of the Landsat ETM+ image and lies in the middle of the set of dates over which the 

MODIS data set was acquired. Figure 6.3 illustrates graphically the position of the 

reference and ground data images relating to the temporal coverage of the time series 

MODIS images. 
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6.5. Sub-pixel shift estimation in the time series MODIS images 

In the daily MODIS time series images, the level of change in one image to another is 

relatively low because they are acquired on a same site and the duration of the 

acquisition is only two months, thus no significant changes that occur to the shape of the 

lakes. As explained in Section 5.4, the sub-pixel shifted between images in a time series 

can be estimated provided that the relative translation between one image to another is 

linear. The sub-pixel shift between images in the MODIS time series was measured 

using a phase correlation technique (Sicairos et al., 2008; Soummer et al., 2007; Reddy 

and Chatterji, 1996). The phase correlation technique is based on fast Fourier transform 

(FFT), which allows linear transformation between one image to another such as 

translation and rotation to be detected even under different radiometric conditions and 

corrected to produce a new registered image.  

Table 6.2 shows relative translation between the MODIS reference image and 

the rest of the MODIS images in the time series. The measurement was taken at the x 

and y directions. Measurement of the relative translation below 100% indicates that the 

translation occurred at a fraction of a pixel. Note that the scale of the translation at the x 

direction was larger than that at the y direction. This situation can be related with the 

whiskbroom scanning mechanism of the Terra on-board MODIS sensor whereby the x 

direction refers to cross-track while the y direction refers to in-track (Schowengerdt, 

2007). Here, based on the Table 6.2, the movement of the Terra satellite along the cross-

track is more apparent compared to the movement along the in-track. 
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Table 6-2 Relative translations at sub-pixel scales between a reference MODIS 

image acquired on 5 July 2002 and the rest of the images in the time series daily 

MODIS images.  

No. MODIS image (Time of acquisition) x (%) y (%) 

1 13 June 2002 87.5 -25.0 

2 21 June 2002 62.5 -75.0 

3 23 June 2002 75.0 -100.0 

4 25 June 2002 -12.5 -87.50 

5 27 June 2002 137.5 -62.5 

6 28 June 2002 37.5 12.5 

7 29 June 2002 112.5 -50.0 

8 30 June 2002 50.0 -87.5 

9 4 July 2002 187.5 -12.5 

10 16 July 2002 100 -12.5 

11 6 August 2002 12.5 -62.5 

12 8 August 2002 12.5 -25.0 

13 19 August 2002 25.0 -62.5 

 Average translations 68.3 -50.0 

 

 

6.6. A two-step HNN for super-resolution mapping 

A new technique for super-resolution mapping is proposed that combines two HNN 

super-resolution mapping techniques: a HNN that placed equal emphasis between the 

goal function and the area proportion constraint (HNN(E)), and a HNN that placed 

emphasis on the area proportion constraint over the goal functions (HNN(A)). Results in 

Chapter 4 demonstrated that the HNN(A) was more accurate than the HNN(E) to 

represent small land cover patches (Section 4.7). However, when the proportion of 
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mixed is high, the boundary of the patch represented with the HNN(A) tended to be 

irregular and not smooth, leading to the increasing of the RMSE value for the boundary 

fitting (Section 4.11).  

In contrast, the patch representation using the HNN(E) tended to have smooth 

boundary representation when the proportion of mixed pixel is high, leading to the low 

value of the RMSE (Section 4.11).  However, the HNN(E) was less accurate than the 

HNN(A) to represent small land cover patches (Section 4.7 and 4.11).  

The aim of the proposed technique was to combine the best features of the 

HNN(E) and HNN(A). The first HNN was based on HNN(A) used to represent small 

land cover patches, while ignoring large patches by using morphology filter. The second 

HNN was based on HNN(E) used to represent large land cover patches, and ignoring 

small patches. Therefore, this approach is called 2-step HNN and a notation used for 

simplicity was HNN2. 

The proposed technique only considered the HNN technique and not the pixel 

swapping. Although pixel swapping was effective in retaining the proportion of land 

cover from mixed pixels (Section 4.9 and 4.10), results of the pixel swapping tended to 

be dominated by speckled pattern (Thornton et al., 2006). This pattern may wrongly be 

classified as land cover patches. The removal of the speckled pattern may also eliminate 

small land cover patches.  
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6.7. Experimental analysis 

Two types of images were used to evaluate the HNN, pixel swapping, and the proposed 

techniques in representing lakes. First, a single MODIS image was used. Second, a 

fusion of a time series MODIS images was used as Chapter 5 (Equation 5.14) illustrated 

the potential of such an approach for land cover mapping.  

 

6.7.1. Single MODIS image 

The MODIS image acquired on 5 July 2002, which consist of 109×117 pixels, was used 

as an input image to produce thematic map of land cover classification using several 

different techniques. A conventional k-means hard classification (Duda et al., 2001) was 

applied to the input image. Using the same input image, a proportional image was 

produced by fuzzy c-means soft classification (Bezdek et al., 1984). The fuzzy c-means 

algorithm was explained in Section 3.1. The number of cluster, c was set to 2 to 

differentiate between lakes and land surface, while the weighting parameter that 

determines the degree of fuzziness, m, was set to 2.0.  The spatial resolution of the 

proportional image was increased by magnification factor of eight. Specifically, a pixel 

of the proportional image was sub-divided into 8×8 repetitive sub-pixels, making 

872×936 sub-pixels in the image. Each sub-pixel then was rescaled to a spatial 

resolution of 30 m, which is equal to the spatial resolution of a Landsat ETM+ pixel. 

Two pixel swapping techniques were implemented on the proportional image. 

First the number of neighbours (Equation 3.33) was set to 1. Second the number of 

neighbours was set 5. The choice of the number of neighbours for the pixel swapping 
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may determine the size of the lake that can be represented. These two pixel swapping 

were calculated for 100 iterations, at which a stable state of estimation should be 

reached.  

Three types of the standard HNN (Equation 3.19) were used. First the HNN with 

the equal strength of the goal function and area proportion constraints (HNN(E)). The 

weights, 1 2,k k  and 
Pk  were all set to 1.0. Second, the strength of the area proportion 

constraint was emphasized more than the goal function constraint (HNN(A)). Thus, the 

weights for the goal function 1k and 2k were set to 0.1, while the weight for the area 

proportion constraint, Pk  was set to 1.0. These weight values were chosen because as 

they give the best result for the HNN in representing small patches, as demonstrated in 

Chapter 4. The two HNNs were calculated numerically for 10,000 iterations each to 

enabling representation of small patches. Third, a combination of the two earlier HNNs, 

the HNN2, as described in Section 6.6, was used. Each of the HNN comprised of 

872×936 neurons to support the number of sub-pixels of the proportional image that was 

used as an input image. The HNN that placed more emphasis on the goal functions than 

the area proportion constraints, HNN(G), was not used because this technique produced 

the least accurate estimation than the HNN(E) and HNN(A) in representing small land 

cover patches (Figure 4.12). 
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6.7.2. Time series MODIS images 

A proportional image for each image in a time series MODIS image was derived using 

the fuzzy c-means soft classification technique. All the proportion images derived from 

the time series were fused using Equation 5.14. Experiments similar to the analyses of 

the HNN and pixel swapping in Section 6.7.1 were repeated using the fused image.  

 

6.7.3. Notations 

To simplify the explanation throughout this chapter, notation for each super-resolution 

mapping techniques were used as shown in Table 6.3.  

Table 6-3 Notations for different super-resolution mapping techniques. 

Super-resolution 

mapping technique  
Description 

PS(1) Pixel swapping with 1 neighbour  

PS(5) Pixel swapping with 5 neighbours  

HNN(E) HNN with equal emphasis between the goal function constraint 

and the area proportion constraint 

HNN(A) HNN with emphasis on the area proportion constraint 

HNN2 A combination of HNN(E) and HNN(A) 

 

 

6.8. Results and discussions 

The 5 different techniques (Table 6.3) were used to map land cover for a single MODIS 

image and a fusion of time-series MODIS images. Figure 6.4 shows the classification of 



   170 

the Landsat data that was used as ground data. The image shows binary land cover 

mapping classification showing land (white) and lakes (black). The image was used as a 

comparison benchmark against outputs of different land cover mapping techniques. 

Results of the land cover mapping were evaluated using visual assessment, site specific 

thematic accuracy assessment, landscape parameters, texture variables, characterization 

of the shape of the lakes, and positional accuracy.  

 

6.8.1. Single MODIS image 

Result of the hard classification on a MODIS image is shown in Figure 6.5. It provided a 

very blocky and unrealistic representation of the lakes and failed to represent many of 

the small lakes. Result of the soft classification is shown in Figure 6.6. The soft 

classification provided a richer representation but was also unable to provide a realistic 

representation of the actual distribution of the land and lakes. 

Results of the two pixel swapping, PS(1) and PS(5) are shown in Figure 6.7a and 

6.7b, respectively. The two pixel swapping outputs were appeared to be dominated by a 

speckled pattern, which existed in black and white colours. The presence of the speckled 

features may arise due to misclassification in the soft proportion image (Thornton et al., 

2006). This error was suppressed using median filter (Pitas, 2000) with a 3×3 operator 

and the results are shown in Figure 6.8a and 6.8b. The 3×3 operator is the smallest 

operator for the filter, which can remove a considerable amount of small speckled 

features while leaving the large lakes mainly intact.  
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Figure 6-4 Ground data. 

 

Figure 6-5 Hard classifier. 

 

 

 

 

 

Figure 6-6 Proportional image derived from fuzzy c-means soft classification. 
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(a)  

 

(b) 

Figure 6-7 Application of a MODIS image into (a) PS(1) and (b) PS(5). 

 

 

 

 

(a)  

 

(b) 

Figure 6-8 Application of a MODIS image into (a) PS(1) and (b) PS(5). Results of both 

techniques were filtered with a 3×3 median filter. 
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(a)  

 

(b) 

Figure 6-9 Application of a MODIS image into (a) PS(1) and (b) PS(5). Results of both 

techniques were filtered with a 5×5 median filter.  

 

 

 

(a)  

 

(b) 

Figure 6-10 Application of a MODIS image into (a) HNN(E) and (b) HNN(A).  
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Figure 6-11 Application of a MODIS image into HNN2 approach. 

 

As the speckled features were still present, as can be seen in lakes in Figure 6.8a 

and 6.8b, a 5×5 operator was applied to the outputs of the pixel swapping as shown in 

Figure 6.9a and 6.9b. The implementation of the larger median filter operator removed 

the speckle features but a considerable number of small lakes were also eliminated. 

From the Figure 6.9a and 6.9b, the number of lakes is less than that of the number of 

lakes in the ground data. It also appeared that the boundary of lakes is irregular and 

serrated as compared to the boundary of lakes depicted in the ground data.  

  Results of the three HNN are presented in Figure 6.10 and Figure 6.11. It 

appears that the number of small lakes in the HNN(A) and the HNN2 was higher than 

that of the HNN(E). Unlike the pixel swapping, the speckled pattern is not apparent in 

the images produced by the three HNNs. Therefore, pre-processing steps, such as 

median filtering, were unnecessary. The avoidance of the pre-processing steps was vital 

in order to ensure that small lakes remain intact and not to be misclassified as the 

speckled pattern and eliminated. Similar to the pixel swapping, the number of lakes 
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detected in all the HNN techniques is less that the number of lakes in the ground data, 

while the boundary of the lakes is also appeared to be irregular, serrated and not smooth.   

 

6.8.1.1. Site specific thematic accuracy assessment 

The site specific thematic accuracy for each technique was assessed using all 

816192 (872×936) sub-pixels in each image. A confusion matrix was generated for each 

classification technique and its accuracy was expressed by overall proportion correct, 

kappa coefficient, and per-class commission and omission errors. Results of the land 

cover mapping using different techniques are presented in confusion matrices in Table 

6.4 until Table 6.13. In general, certain super-resolution mapping techniques produced 

slightly higher accuracy than the conventional hard classifier, but there were also certain 

techniques that produced less accurate results. Both the PS(1) and PS(5) that used a 5×5 

median filter operator and the HNN(E) were of higher accuracy than the hard classifier. 

The PS(1) and PS(5) techniques that applied without the median filter and, the PS(1) 

and PS(5) that used a 3×3 median filter, HNN(A), and HNN2 produced less accurate 

results than that of the hard classifier. Overall, the differences of the accuracy produced 

from various super-resolution mapping techniques were marginal to approximately less 

than 2%.  

 For the pixel swapping, when the number of the neighbour was set to 1, the 

overall accuracy was increased with the increment of the median filter operator. 

However, only when the size of the operator set to 5×5 (Table 6.7) did the pixel 

swapping produces accuracy higher than that of the hard classifier (0.29% more). 
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Similar trend was demonstrated when the number of the neighbour of the pixel 

swapping was set to 5. Only the pixel swapping with the median filter operator set to 

5×5, the overall accuracy of the pixel swapping was higher than that of the hard 

classifier with 0.33% increment as presented in Table 6.10.  

Detailed analyses on the implementation of the median filter can be observed in 

the commission errors of the lakes and the omission errors of the land in confusion 

matrices in Table 6.5 until Table 6.7 for the PS(1), and Table 6.8 until Table 6.10 for the 

PS(5). Here, the white speckled features may be misclassified as land and falsely located 

in the lakes. As the size of the median filter increased, a considerably amount of the 

white speckle features decreased, leading to the decreasing of the commission errors of 

the lakes, suggesting better representation of the lakes at the right locations. 

The usage of the number of neighbour used in the pixel swapping demonstrated 

a marginal difference in the site specific accuracy between the PS(1) and the PS(5) with 

the PS(5) tended to be more accurate. The implementation of the median filter also may 

remove a considerably number of lakes, which may be misclassified as speckled 

features. This scenario is shown by a decreasing number of total sub-pixels that were 

estimated as lakes from Table 6.5 to 6.7 for the PS(1) and from Table 6.8 to 6.10 for the 

PS(5).  

For the HNN techniques, only the HNN(E) produced higher accuracy than that 

of the hard classifier with 85.34% as presented in Table 6.11. The other two HNN 

techniques, however produced less accurate results compare to the accuracy of the hard 

classifier as presented in Table 6.12 for the HNN(A) and Table 6.13 for the HNN2.  
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The commission error of the lakes for the HNN(E) (Table 6.11) was lower than 

the commission error of the lakes for the HNN(A) (Table 6.12) and the HNN2 (Table 

6.13) because in the HNN(E), a considerable number of lakes were not represented, 

especially small lakes. This scenario was confirmed by the lower number of total sub-

pixels that were estimated as lakes in HNN(E) compared to the number of sub-pixels in 

the HNN(A) and the HNN2.  

Results from the confusion matrices also highlighted that, in general, all the 

techniques were not able to represent the lakes at all rather than to represent the lakes at 

the wrong locations. From all the confusion matrices (Table 6.4 to 6.13), the omission 

errors of the lakes were higher than the commission errors of the lakes. This scenario 

suggested that many lakes were not represented at all as they may be too small (~0.03 

km
2
); instead the location of these lakes was represented by land surface. This scenario 

was more apparent than the representation of the small lakes at the wrong locations. In 

addition, the uncertainty in term of the accuracy of the soft classification may affect this 

scenario.  
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 Table 6-4 Confusion matrix for hard classifier applied on a MODIS image 

 Reference Class  

Estimated Class Water Land ∑ Error (C) 

 Water 124047 40561 164608 24.64% 

 Land 82908 568676 651584 12.72% 

 ∑ 206955 609237 816192  

 Error (O) 40.06% 6.66%   

Kappa = 0.5714 Overall accuracy = 84.87% 

 

 

Table 6-5 Confusion matrix for PS(1) without median filter applied on a MODIS image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 122039 47609 169648 28.06% 

 Land 84916 561628 646544 13.13% 

 ∑ 206955 609237 816192  

 Error (O) 41.03% 7.81%   

Kappa = 0.5439 Overall accuracy = 83.76 % 

 

 

Table 6-6 Confusion matrix for PS(1) with a 3×3 median filter applied on a MODIS 

image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 122699 41623 164322 25.33 % 

 Land 84256 567614 651870 12.93 % 

 ∑ 206955 609237 816192  

 Error (O) 40.71% 6.83 %   

Kappa = 0.5628 Overall accuracy = 84.56 % 
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Table 6-7 Confusion matrix for PS(1) with a 5×5 median filter applied on a MODIS 

image   

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 121971 36138 158109 22.86 % 

 Land 84984 573099 658083 12.91 % 

 ∑ 206955 609237 816192  

 Error (O) 41.06% 5.93 %   

Kappa = 0.5748 Overall accuracy = 85.16 % 

 

 

Table 6-8 Confusion matrix for PS(5) without median filter applied on a MODIS image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 123350 46292 169642 27.29 % 

 Land 83605 562945 646550 12.93 % 

 ∑ 206955 609237 816192  

 Error (O) 40.40 % 7.60 %   

Kappa = 0.5530 Overall accuracy = 84.09 % 

 

 

Table 6-9 Confusion matrix for PS(5) with a 3×3 median filter applied on a MODIS 

image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 124131 41166 165297 24.90 % 

 Land 82824 568071 650895 12.72 % 

 ∑ 206955 609237 816192  

 Error (O) 40.02 % 6.76 %   

Kappa = 0.5701 Overall accuracy = 84.81 % 
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Table 6-10 Confusion matrix for PS(5) with a 5×5 median filter applied on a MODIS 

image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 123437 37301 160738 23.21 % 

 Land 83518 571936 655454 12.74 % 

 ∑ 206955 609237 816192  

 Error (O) 40.36 % 6.12 %   

Kappa = 0.5778 Overall accuracy = 85.20 % 

 

 

Table 6-11 Confusion matrix for HNN(E) applied on a MODIS image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 121423 34123 155546 21.94 % 

 Land 85532 575114 660646 12.95 % 

 ∑ 206955 609237 816192  

 Error (O) 41.33 % 5.60 %   

Kappa = 0.5781 Overall accuracy = 85.34% 

 

 

Table 6-12 Confusion matrix for HNN(A) applied on a MODIS image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 123795 42045 165840 25.35 % 

 Land 83160 567192 650352 12.77 % 

 ∑ 206955 609237 816192  

 Error (O) 40.18 % 6.90 %   

Kappa = 0.5663 Overall accuracy = 84.66% 
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Table 6-13 Confusion matrix for HNN2 applied on a MODIS image 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 124695 42121 166816 25.25 % 

 Land 82260 567116 649376 12.67 % 

 ∑ 206955 609237 816192  

 Error (O) 39.75 % 6.92 %   

Kappa = 0.5699 Overall accuracy = 84.76 % 

 

 

6.8.2. Time series MODIS images 

A proportional image derived from a fusion of a time series MODIS images is shown in 

Figure 6.12. Results of the two pixel swapping, PS(1) and PS(5) are shown in Figure 

6.13a and 6.13b, respectively. Similar to the case of using a single MODIS image, the 

implementation of the pixel swapping produced the speckled pattern which arises due to 

mis-classification in the soft proportion images (Thornton et al., 2006). With a 5×5 

median filter, both images in Figure 6.13a and 6.13b were filtered and the results are 

shown in Figure 6.14a and 6.14b, respectively. Visual comparison on the two filtered 

images shows that the lake boundaries in PS(1) are irregular, serrated and not as smooth 

as the lake boundaries  in the PS(5).  

 Results of the three HNN techniques are shown in Figure 6.15 and Figure 6.16. 

Similar to the case of a single MODIS image, the number of small lakes in the HNN(E) 

is less than that of the HNN(A) and the HNN2. However, the application of the time 

series MODIS images produced different results than by using a single MODIS image. 

For the time-series MODIS images, the lake boundaries in the HNN(E) tended to be 



   182 

smoother and less irregular when compared to the lake boundaries in the HNN(A). This 

trend is not apparent in the single MODIS image case in which both the HNN(E) and the 

HNN(A) produced irregular lake boundaries. The advantage of the HNN(E) in retaining 

the smoothness of lake boundaries and the advantage of the HNN(A) in representing 

small lakes were exploited by combining the these two techniques in the proposed 

HNN2 technique as shown in Figure 6.16.  

The number of lakes represented by all the super-resolution mapping techniques 

from either the single MODIS image or the fusion of the MODIS images appears to be 

less than the number of lakes in the ground data. Although some techniques, such as 

PS(1) , HNN(A) , and HNN2 were suitable to represent small lakes, the number of lakes 

in those images were far less than that in the ground data. In addition, the complexity of 

the spatial distribution of the lakes in the results of super-resolution mapping techniques 

was less than that in the ground data. These scenarios may be because the coherence 

between the MODIS images and the Landsat image, which was used as a ground data, 

was not perfect. Therefore, there were tendency of mismatch between the results derived 

from the MODIS images and the ground data.  
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Figure 6-12 Proportional image derived from a fusion of proportional images of a 

MODIS time series. 

 

 

(a) 

 

(b) 

Figure 6-13 Application of a fused time series MODIS images into (a) PS(1) and (b) 

PS(5). 
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(a) 

 

(b) 

Figure 6-14 Application of a fused time series MODIS images into (a) PS(1) and (b) 

PS(5). Results of both techniques were filtered with a 5×5 median filter. 

 

 

 

(a) 

 

(b) 

Figure 6-15 Application of a fused time series MODIS images into (a) HNN(E) and (b) 

HNN(A). 
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Figure 6-16 Application of a fused time series MODIS images into HNN2 approach. 

 

6.8.2.1. Site specific thematic accuracy assessment 

The site specific thematic accuracy for each technique on a fusion of time series 

MODIS images was assessed using all 816192 (872×936) sub-pixels in each image. A 

confusion matrix was generated for each classification technique and its accuracy was 

expressed by overall proportion correct, kappa coefficient, and per-class commission 

and omission errors. The results are presented in confusion matrices in Table 6.14 until 

Table 6.18. All the super-resolution mapping techniques produced more accurate results 

than the conventional hard classifier.  

For the pixel swapping technique, only results that were filtered with the 5×5 

median filter operator were assessed in confusion matrices in Table 6.14 and 6.15. The 

difference of the overall accuracy between the two pixel swapping techniques was 

marginal with the accuracy of the PS(1) was 86.66 % and PS(5) was 86.95 %.  
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Table 6-14 Confusion matrix for PS(1) with a 5×5 median filter applied on a fused time 

series MODIS images 

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 128625 30554 159179 19.20 % 

 Land 78330 578683 657013 11.92 % 

 ∑ 206955 609237 816192  

 Error (O) 37.85 % 5.02 %   

Kappa = 0.6185 Overall accuracy = 86.66 % 

  

 

Table 6-15 Confusion matrix for PS(5) with a 5×5 median filter applied on a fused time 

series MODIS images   

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 130672 30223 160895 18.78 % 

 Land 76283 579014 655297 11.64 % 

 ∑ 206955 609237 816192  

 Error (O) 36.86 % 4.961 %   

Kappa = 0.6279 Overall accuracy = 86.95 % 

 

 

Table 6-16 Confusion matrix for HNN(E) applied on a fused time series MODIS 

images  

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 126887 25280 152167 16.61 % 

 Land 80068 583957 664025 12.06 % 

 ∑ 206955 609237 816192  

 Error (O) 38.69 % 4.15 %   

Kappa = 0.6264 Overall accuracy = 87.09 % 
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Table 6-17 Confusion matrix for HNN(A) applied on a fused time series MODIS 

images  

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 124722 41255 165977 24.86 % 

 Land 82233 567982 650215 12.65 % 

 ∑ 206955 609237 816192  

 Error (O) 39.76 % 6.77 %   

Kappa = 0.6264 Overall accuracy = 87.09 % 

 

 

Table 6-18 Confusion matrix for HNN2 applied on a fused time series MODIS images  

 Reference Class  

Estimated Class Lake Land ∑ Error (C) 

 Lake 133075 37549 170624 22.07 % 

 Land 73880 571688 645568 11.44 % 

 ∑ 206955 609237 816192  

 Error (O) 35.70 % 6.16 %   

Kappa = 0.6172 Overall accuracy = 86.35 % 

 

For the HNN technique, the accuracy produced by the HNN(E) and the HNN(A) 

were equal and they were slightly more accurate than the pixel swapping techniques. 

Although the overall accuracy produced by the HNN2 was the least, the omission error 

for the lakes representation with this technique was the lowest among all the super-

resolution mapping techniques. This trend suggested that the HNN2 was more accurate 

than the other techniques in representing small lakes. Mis-location of those lakes may 

contribute to the higher commission error of the lake when compared with commission 

errors of other techniques. Moreover, the total number of sub-pixels that was estimated 
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as lakes in Table 6.18 was higher compared to the total number of those sub-pixels in 

Table 6.14 until 6.17.    

Results from all the confusion matrices in this section also demonstrated higher 

overall accuracy compared with the overall accuracy from confusion matrices in Section 

6.8.1.1. These results suggested that by fusing a time series MODIS images, the overall 

accuracy of site specific assessment could be increased compared when using only a 

single MODIS image regardless of super-resolution mapping techniques being used.   

 

6.8.3. Texture variables 

Analyses on the landscape parameters considered the results of different super-

resolution mapping techniques on a single MODIS image and a fused time series 

MODIS images. Table 6.19 provides comparison of several texture variables. Values of 

the texture measures such as homogeneity, contrast, inverse difference moment (IDM), 

and entropy were derived from the gray-level co-occurrence matrix (GLCM). At the 0
o
, 

45
o
, 90

o
, and 135

o
 degrees, the values of each of the texture variables were derived. The 

average value from those angles of each texture measure was presented in Table 6.19. 

Numbers in the brackets indicate the difference of the texture variables with the ground 

data. Positive values indicate overestimation, while negative values indicate 

underestimation. The measurements of the texture variables at 0
o
, 45

o
, 90

o
, and 135

o
 

degrees are shown in Figure 6.17 until Figure 6.20.  



   189 

 From analyses on both the single MODIS image and the fused time series 

MODIS images, results produced by the HNN2 provide the least difference error for 

estimating the percentage of the water when compared to the other techniques. The 

differences of the percentage of water were -4.92% for the single MODIS image and the 

differences of the percentage of water were -4.46% for the fused time series MODIS 

images.  

On landscape parameter assessment, the HNN(A) applied on a single MODIS 

image was more accurate than the other techniques in estimating the number of lakes 

and the average area of the lakes. However, the HNN2 technique applied on a single 

MODIS image was more accurate than the other techniques in estimating the average 

perimeter of lakes.  

Assessment on the homogeneity measurement demonstrated that the difference 

percentage of all the techniques ranges from 15.29 % to 21.89 %. The proposed HNN2 

applied on a fused image produced the least error while the HNN(E) on a fused image 

produced the largest error. Assessment on the homogeneity illustrated that the 

homogeneity differences between the HNN2 on the single MODIS image was 0.0896, 

while on the time series MODIS images was 0.0853. Figure 6.17 shows that at 0
o
, 45

o
, 

90
o
, and 135

o
 degrees, homogeneity results produced by the HNN2 using the fused time 

series MODIS images were closer to the homogeneity of the ground data than that of the 

other techniques. This situation occurred because a considerable amount of small lakes 

are apparent in the output images derived from the proposed technique. The presence of 

the small lakes in the output images tended to decrease the homogeneity values. In 

contrast, the homogeneity of the HNN(E) using both the single MODIS image and the 
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fused time-series MODIS images tended to be high because of the decreasing amount of 

small lakes in those images. The homogeneity measurements for all the techniques 

demonstrated that at the angle 0
o
 and 90

o
, the measurements were slightly higher that the 

measurement at the 45
o
 and 135

o
.  

 Assessment on the contrast measurement demonstrated that the difference 

percentage of all the techniques ranges from 57.89 % to 75.58 %.  The use of the 

HNN(A) on a fused image produced the least error while the HNN(E) on a fused image 

produced the largest error. All the techniques produced lower contrast measurement than 

that of the ground data because they contain relatively large lakes compare to the lakes 

in the ground data. Because many of the small lakes in the images produced by all the 

techniques were missing, the difference between neighbouring pairs of the GLCM 

becomes small, leading to the decreasing of the contrast measurement. The HNN(A) 

tended to produce higher contrast measurement than that of the other techniques because 

more small lakes were presented. Although the HNN2 also presented a considerable 

amount of small lakes, the boundary of the lakes appeared to be less irregular when 

compare with the boundary of the lakes in the HNN(A) images. This factor may be 

contributed to the slightly higher contrast measurement in the HNN(A) images than the 

measurement in the HNN2 images. Figure 6.18 shows that the contrast measurements at 

0
o
, 45

o
, 90

o
, and 135

o
 degrees. For all the techniques, the contrast measurements at the 

angle 45
o
 and 135

o
 were slightly higher than the measurements at the 0

o
 and 90

o
.  
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Table 6-19 Comparison of landscape parameters and texture variables from various super-resolution mapping techniques. 

Results shown in bold indicate that the prediction is the closest to the ground data. 

 

 Single image Fused image 

Parameter GD HC PS (1) PS (5) HNN (E) HNN (A) HNN2 PS (1) PS (5) HNN (E) HNN (A) HNN2 

Percent water 25.36 20.17 

(-5.19) 

19.37 

(-5.99) 

19.69 

(-5.67) 

19.06 

(-6.30) 

20.32 

(-5.04) 

20.44 

(-4.92) 

19.50 

(-5.86) 

19.71 

(-5.65) 

18.64 

(-6.72) 

20.34 

(-5.02) 

20.90 

(-4.46) 

Number of 

lakes 

5016 183 

(-4833) 

484 

(-4532) 

428 

(-4588) 

273 

(-4743) 

966 

(-4050) 

941 

(-4075) 

566 

(-4450) 

350 

(-4666) 

164 

(-4852) 

899 

(-4117) 

879 

(-4137) 

Average lake 

area (km2) 

0.0371 0.8095 

(0.7724) 

0.2940 

(0.2569) 

0.3380 

(0.3009) 

0.5128 

(0.4757) 

0.1545 

(0.1174) 

0.1596 

(0.1225) 

0.2531 

(0.2160) 

0.4137 

(0.3766) 

0.8351 

(0.798) 

0.1662 

(0.1291) 

0.1747 

(0.1376) 

Average lake 

perimeter (m) 

235.63 2583.10 

(2347.50) 

1209.8 

(974.17) 

1339.90 

(1104.30) 

1656.70 

(1421.10) 

630.34 

(394.71) 

576.48 

(340.85) 

1130.70 

(895.07) 

1541.40 

(1305.80) 

2608.00 

(2372.4) 

711.41 

(475.78) 

616.74 

(381.11) 

Homogeneity 0.5578 0.6559 

(0.0981) 

0.6644 

(0.1066) 

0.6610 

(0.1032) 

0.6712 

(0.1134) 

0.6482 

(0.0904) 

0.6474 

(0.0896) 

0.6620 

(0.1042) 

0.6633 

(0.1055) 

0.6799 

(0.1221) 

0.6479 

(0.0901) 

0.6431 

(0.0853) 

Contrast 0.0684 0.0226 

(-0.0458) 

0.0237 

(-0.0447) 

0.0231 

(-0.0453) 

0.0203 

(-0.0481) 

0.0287 

(-0.0397) 

0.0278 

(-0.0406) 

0.0245 

(-0.0439) 

0.0205 

(-0.0479) 

0.0167 

(-0.0517) 

0.0288 

(-0.0396) 

0.0266 

(-0.0418) 

IDM 0.9658 0.9887 

(0.0229) 

0.9881 

(0.0223) 

0.9884 

(0.0226) 

0.9898 

(0.0240) 

0.9857 

(0.0199) 

0.9861 

(0.0203) 

0.9877 

(0.0219) 

0.9898 

(0.0240) 

0.9916 

(0.0258) 

0.9856 

(0.0198) 

0.9867 

(0.0209) 

Entropy 1.1608 0.8722 

(-0.2886) 

0.8624 

(-0.2984) 

0.8662 

(-0.2946) 

0.8388 

(-0.3220) 

0.9062 

(-0.2546) 

0.9048 

(-0.2560) 

0.8692 

(-0.2916) 

0.8529 

(-0.3079) 

0.8106 

(-0.3502) 

0.9072 

(-0.2536) 

0.9083 

(-0.2525) 

 

HC = hard classifier;  GD = ground data 
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Figure 6-17 Texture values for different land cover mapping techniques as a function 

of angle for homogeneity. Low homogeneity indicates high number of small lakes 

presented in an image, such as image in the ground data.  

 

 

 

Figure 6-18 Texture values for different land cover mapping techniques as a function 

of angle for contrast. High contrast indicates high number of small lakes presented in 

an image, such as image in the ground data. 



   193 

 

Figure 6-19 Texture values for different land cover mapping techniques as a function 

of angle for inverse difference moment (IDM). High IDM indicates that more large 

lakes are presented in an image than small lakes. The high number of small lakes in 

the ground data decreases the IDM value as in the ground data.  

 

 

Figure 6-20 Texture values for different land cover mapping techniques as a function 

of angle for entropy. High entropy indicates that the complexity of the spatial 

distribution of lakes is high in an image, such as image in the ground data.   
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Assessment on the IDM measurement demonstrated that the difference 

percentage of all the techniques ranges from 2.05 % to 2.67 %.  The HNN(A) on a fused 

image produced the least error while the HNN(E) on a fused image produced the largest 

error. All the techniques produced higher IDM measurement than that of the ground data 

because they contain relatively large lakes compared to the lakes in the ground data. The 

presence of the large lakes in the images tended to generate high values on the main 

diagonal of the GLCM, leading to the increasing of the IDM measurement. The HNN(A) 

on a fused image produced the least error because of its ability to represent small lakes 

compared to the limitation of the HNN(E) that to tended to miss those lakes. Figure 6.19 

shows that the IDM measurements at 0
o
, 45

o
, 90

o
, and 135

o
 degrees. It appeared that 

angle did not have significant effect on the value of the IDM measurements for all the 

techniques.  

Assessment on the entropy measurement demonstrated that the difference 

percentage of all the techniques ranges from 21.75 % to 30.17 %. All the techniques 

produced lower entropy measurement than that of the ground data because the 

complexity of the spatial distribution of lakes they presented was less than the 

complexity of the spatial distribution of lakes in the ground data. The proposed HNN2 

on a fused image produced the least error while the HNN(E) on a fused image produced 

the largest error. Figure 6.20 shows that the entropy measurements at 0
o
, 45

o
, 90

o
, and 

135
o
 degrees. For all the techniques, the entropy measurements at the angle 45

o
 and 135

o
 

were slightly higher than the measurements at the 0
o
 and 90

o
.  
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6.8.4. Characterization of the shape of lakes 

The shape of the lakes was characterized using standard measures: area, perimeter and 

compactness.  The compactness is a ratio of the area and the perimeter (Equation 2.5). 

Here the lakes were treated as objects. Figure 6.21 shows 30 lakes of varying sizes and 

shapes were selected and annotated from the ground data. Corresponding lakes in the 

images of land cover mapping derived from different techniques were compared with 

the ground data. Table 6.20 summarized the comparison for area. Table 6.21 

summarized the comparison for perimeter, and Table 6.22 summarized the comparison 

for compactness.  

As the HNN2 technique was a combination of the HNN(E) and HNN(A), several 

results of the HNN2 technique in the Table 6.20 until 6.22 may identical or close to the 

results of the HNN(E) and HNN(A). The HNN(A) technique was used to represent lakes  

≤ 0.0625km
2
, which is a size of an area of a MODIS 250 m pixel, while the HNN(E) 

was used for lakes >  0.0625km
2
. Since the 30 selected lakes were bigger than the size 

of the MODIS pixel, most of the results of the HNN2 were identical or close to the 

results of the HNN(E).  

Overall, the proposed HNN2 applied on the fused MODIS time series images 

produced the lowest error for the area measurement with the average error was 0.1290 

km
2
, while the PS(5) applied on a single MODIS image produced the highest error with 

0.2009 km
2
. By using the fused image, all the techniques demonstrated decreasing in the 

error for the area measurement of the lakes.  
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Figure 6-21 Selected lakes used for object based analysis. 

 

For small lakes, such as lakes 10, 15, 17, and 20, in which the size of the lakes 

are ~0.3 km
2
 , the HNN2 applied on the fused image produced the lowest error on the 

area measurement with the average error was 0.0379 km
2
. Other technique that 

produced the second lowest error was the HNN(E) technique that was applied on the 

fused image with the average error was 0.0641 km
2
. The hard classification technique 

produced the highest error with the average error was 0.1025 km
2
.  

For big lakes, such as lakes 6, 13, 19, 25, and 28, in which the size of the lakes 

are > 2.6 km
2
, the HNN(E) applied on the fused image produced the lowest error on the 
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area measurement with the average error was 0.3319 km
2
. The HNN2 that was applied 

on the fused image produced an average error of 0.3417 km
2
. The hard classification 

technique produced the highest error with the average error was 0.4327 km
2
.  

 For the perimeter measurement, the PS(5) applied on the fused image produce 

the lowest error with 0.6732 m, while the HNN2 applied on the fused image produced 

0.7218 m error. The HNN(A) that was applied on a fused image produced the highest 

error with 1.4164 m. For both cases of the single MODIS image and the fused image, 

the HNN(A) tended to produce high error because the representation of the boundary of 

the lakes appear to be irregular, serrated and not smooth.  

For the small lakes (lakes 10, 15, 17, and 20), the HNN2 applied on the fused 

image produced the lowest error on the perimeter measurement with the average error 

was 0.1127 m. Other technique that produced the second lowest error was the HNN(E) 

technique that was applied on the fused image with the average error was 0.3230 m. The 

HNN(A) technique that was applied on the fused image produced the highest error with 

the average error was 0.7020 m.  

For the big lakes (lakes 6, 13, 19, 25, and 28), the PS(5) applied on the fused 

image produced the lowest error on the perimeter measurement with the average error 

was 0.9782 m, while the HNN2 applied on the fused image produced 1.5248 m error. 

The PS(1) technique that was applied on the fused image produced the highest error 

with the average error was 2.3963 m.  
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Table 6-20 Comparison of area, (km
2
). Bold and underlined results indicate predictions closest to the ground data. 

  Single image Fused Image 

Lake GD HC PS (1) PS (5) HNN (E) HNN (A) HNN2 PS (1) PS (5) HNN (E) HNN (A) HNN2 

1 1.8440 1.9018 1.9627 1.9488 1.9663 1.9468 1.9663 2.0336 2.0705 2.0117 1.9607 2.0117 

2 1.5986 1.3833 1.3726 1.3807 1.3653 1.3889 1.3653 1.3010 1.3115 1.2464 1.3917 1.2464 

3 0.5352 0.5762 0.5919 0.5966 0.5930 0.6056 0.5930 0.6658 0.6776 0.6370 0.6056 0.6370 

4 0.5774 0.5762 0.5996 2.4824 2.4943 2.4840 2.4943 0.5556 0.5726 0.5416 2.4831 0.5416 

5 1.4457 1.0947 1.1269 1.1440 1.1376 1.1430 1.1376 1.4564 1.5011 1.4177 1.1424 1.4365 

6 5.9101 6.0493 6.0531 6.0720  6.0465 6.0913 6.0465 6.3018 6.3529 6.2614 6.0629 6.2614 

7 0.4299 0.4610 0.4201 0.4307 0.4223 0.4429 0.4223 0.3314 0.3410 0.3122 0.4292 0.3122 

8 0.5914 0.4033 0.3736 0.4437 0.3738 0.4524 0.3738 0.5744 0.5718 0.5466 0.4499 0.5466 

9 1.9056 1.9015 1.9160 1.9061 1.9116 1.9119 1.9116 2.0124 2.0780 2.0633 1.9151 2.0725 

10 0.3129 0.2306 0.2491 0.2594 0.2474 0.2607 0.2708 0.2628 0.2800 0.2577 0.2579 0.3480 

11 0.9788 0.6338 0.6040 0.6477 0.6111 0.6154 0.6111 0.6767 0.6922 0.6558 0.6141 0.6558 

12 0.4754 0.6337 0.6586 0.6621 0.6416 0.6665 0.6416 0.5429 0.5482 0.5145 0.6685 0.5145 

13 4.0832 4.6676 4.6482 4.6379 4.5882 4.5872 4.6113 4.7279 4.7588 4.6449 4.5745 4.6692 

14 0.5535 0.6918 0.5453 0.5712 0.5505 0.5621 0.5505 0.5400 0.5376 0.5212 0.5841 0.5212 

15 0.3260 0.4611 0.2350 0.3765 0.3485 0.3544 0.3958 0.3592 0.3842 0.3717 0.3660 0.3717 

16 0.4480 0.4612 0.4710 0.4851 0.4627 0.4968 0.4627 0.4309 0.4295 0.4218 0.4979 0.4218 

17 0.3407 0.5186 0.4691 0.4723 0.4751 0.4860 0.4751 0.4199 0.4441 0.3984 0.4847 0.3984 

18 0.4236 0.5189 0.3656 0.4065 0.3731 0.3377 0.3887 0.4068 0.4218 0.4066 0.4055 0.4066 

19 3.9584 3.6880 3.7010 3.7262 3.7403 3.7203 3.7673 4.0006 4.0160 3.9615 3.7399 3.9858 

20 0.2738 0.2883 0.1555 0.2000 0.2043 0.2067 0.2160 0.1716 0.1908 0.1758 0.2070 0.2606 

21 0.9444 1.0375 0.9702 0.9713 0.9752 0.9713 0.9752 0.9794 1.0101 0.9677 0.9730 0.9677 

22 1.6112 1.8445 1.7565 1.7580 1.7208 1.7664 1.7208 1.8334 1.8818 1.8785 1.7667 1.8785 

23 0.8553 0.6916 0.6764 0.6794 0.7419 0.7543 0.7419 0.7653 0.7722 0.7731 0.7536 0.7731 

24 0.7880 0.9800 0.9042 0.9154 0.9189 0.9125 0.9189 0.8955 0.8892 0.8649 0.9118 0.8649 

25 4.3698 4.8981 4.6351 4.6338 4.6682 4.6479 4.6682 4.8198 4.7982 4.8058 4.6536 4.8058 

26 1.4145 1.4410 1.3761 1.3494 1.3563 1.3646 1.3563 1.4117 1.4754 1.3782 1.3687 1.4067 

27 1.0543 0.9797 0.9996 1.0035 1.0673 1.0169 1.0735 1.0814 1.1102 1.0504 1.0095 1.0824 

28 2.6006 1.9594 2.0331 2.0476 2.0328 2.0559 2.0328 2.2671 2.3279 2.2930 2.0773 2.2930 

29 0.7855 0.7492 0.7853 0.7906 0.7871 0.8051 0.7871 0.8743 0.8710 0.8558 0.7971 0.8558 

30 0.8674 0.9223 0.8406 0.8428 0.8398 0.8513 0.8398 0.8504 0.8710 0.8484 0.8484 0.8484 

Average error  0.1696 0.1471 0.2009 0.1992 0.2006 0.1991 0.1336 0.1425 0.1313 0.1973 0.1290 
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Table 6-21 Comparison of Perimeter, (m). Bold and underlined results indicate predictions closest to the ground data. 

 Single image Fused image 

Lake GD HC PS (1) PS (5) HNN (E) HNN (A) HNN2 PS (1) PS (5) HNN (E) HNN (A) HNN2 

1 7.8765 7.7546 7.7544 7.1523 6.4623 7.8290 6.4623 9.8196 7.7493 6.9362 8.4560 6.9362 

2 6.1207 7.7173 7.2277 6.9898 6.5801 7.3301 6.5801 7.3344 6.6440 6.0110 7.2196 6.0110 

3 3.0076 3.3849 3.1028 3.1452 3.0179 3.2507 3.0179 3.9325 3.7071 3.3874 3.2507 3.3874 

4 3.0574 3.3600 3.1752 11.171 10.6710 13.634 10.6710 3.2922 3.0801 2.7728 13.5764 2.7728 

5 7.1720 5.3173 5.2259 4.9092 4.7592 5.0540 4.7592 7.9511 7.2804 6.3753 5.2435 6.7147 

6 12.2050 12.592 12.5140 11.459 10.6930 12.1930 10.6930 14.707 12.1470 11.099 11.4850 11.099 

7 3.6719 3.3600 2.9176 3.1722 2.6631 3.4101 2.6631 3.1319 2.5410 2.2701 2.9725 2.2701 

8 5.6986 2.8924 2.6931 3.6128 2.4882 3.8374 2.4882 4.9516 3.9719 3.2995 3.7774 3.2995 

9 5.7898 7.2621 7.1450 6.3753 6.3877 6.6298 6.3877 7.9160 7.2474 6.6838 6.8390 6.8162 

10 2.4955 2.4124 2.3879 2.1055 2.0331 2.3010 2.3258 2.5876 2.2388 2.2131 2.2555 2.4779 

11 4.4716 3.8649 3.5879 4.0971 3.3479 3.6025 3.3479 4.6580 3.8468 3.6865 3.6243 3.6865 

12 2.8079 3.3724 3.4358 3.4979 3.1979 3.9771 3.1979 3.5198 3.3231 3.0698 4.0971 3.0698 

13 9.4772 13.626 14.678 13.509 12.055 13.2870 12.3030 14.4750 12.7620 10.8190 13.5780 11.059 

14 3.3076 4.8621 3.4546 3.8789 3.4671 3.6213 3.4671 4.3816 3.2776 3.0595 4.3289 3.0595 

15 2.3455 3.3973 2.1561 3.5995 3.1743 3.4122 3.9037 2.6974 2.8637 2.3485 3.4774 2.3485 

16 2.8276 3.8773 3.2571 3.7268 3.1174 4.0743 3.1174 3.7671 3.1452 2.9476 3.8695 2.9476 

17 2.3125 3.3724 3.0004 3.0646 3.0368 3.3843 3.0368 3.9771 3.3376 2.7325 3.4516 2.7325 

18 3.3552 3.8897 2.9476 3.4195 2.6528 2.3755 2.8576 3.2871 3.0604 2.9074 3.6522 2.9074 

19 12.201 12.112 12.286 11.7010 11.407 12.8430 11.9910 13.2130 12.4790 9.8484 13.3960 10.3310 

20 2.4149 2.9173 1.5985 2.0074 1.9431 2.1107 2.0558 2.4158 2.4115 1.8282 2.1179 2.4252 

21 4.3619 5.8097 5.2859 4.8462 4.7759 4.9559 4.7759 5.2289 5.0695 4.0743 5.0026 4.0743 

22 6.0435 9.7491 9.0787 8.3587 7.8362 9.1399 7.8362 8.8678 7.8590 7.1184 9.2102 7.1184 

23 3.9574 4.3449 4.0876 4.0276 4.6216 4.9216 4.6216 4.9165 3.9946 3.5776 4.9383 3.5776 

24 4.2213 5.8470 5.2280 4.6640 4.5462 5.9437 4.5462 4.6568 4.0816 3.8116 6.0483 3.8116 

25 11.9109 13.5767 13.6197 12.8376 12.4848 13.8382 12.4848 14.0307 12.1712 10.4123 14.1112 10.4123 

26 5.7165 7.7421 7.9490 6.5090 6.1498 7.0468 6.1498 7.6841 7.0880 6.0226 7.1162 6.3598 

27 4.7604 5.3173 5.1037 4.9537 5.7080 5.2032 5.9253 6.2429 6.2437 5.1826 5.1607 5.7298 

28 9.5984 9.1821 8.2717 8.0793 7.8598 8.9265 7.8598 10.9484 8.5884 8.0308 9.3002 8.0308 

29 3.9316 4.3573 3.7671 3.7071 3.5922 4.0165 3.5922 4.9537 4.1746 3.7568 3.9916 3.7568 

30 4.8607 5.7973 5.3232 4.8762 4.6713 4.9662 4.6713 5.0210 4.7352 4.0825 5.0210 4.0825 

Average error  1.1223 0.9910 1.0981 1.1394 1.3259 1.1394 1.1766 0.6732 0.7354 1.4164 0.7218 
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Table 6-22 Comparison of compactness. Bold and underlined results indicate predictions closest to the ground data. 

 Single image Fused image 

Lake GD HC PS (1) PS (5) HNN (E) HNN (A) HNN2 PS (1) PS (5) HNN (E) HNN (A) HNN2 

1 0.3735 0.3974 0.41017 0.47874 0.59168 0.39914 0.59168 0.26502 0.43327 0.52545 0.34458 0.52545 

2 0.5362 0.2919 0.3302 0.3551 0.3962 0.3248 0.3962 0.3039 0.3734 0.4335 0.3355 0.4335 

3 0.7434 0.6320 0.7725 0.7578 0.8182 0.7202 0.8182 0.5410 0.6196 0.6976 0.7202 0.6976 

4 0.7762 0.6414 0.74766 0.24998 0.27526 0.16792 0.27526 0.64421 0.75851 0.8852 0.1693 0.8852 

5 0.3532 0.4866 0.51854 0.59651 0.63115 0.56231 0.63115 0.2895 0.35588 0.43833 0.52216 0.40037 

6 0.4985 0.4795 0.48569 0.58106 0.66458 0.51487 0.66458 0.36611 0.54104 0.63869 0.57759 0.63869 

7 0.4006 0.5132 0.62011 0.53779 0.74832 0.47863 0.74832 0.4246 0.66367 0.76128 0.6104 0.76128 

8 0.2289 0.6058 0.64734 0.42718 0.75877 0.38604 0.75877 0.29441 0.4555 0.63098 0.39622 0.63098 

9 0.7144 0.45308 0.47163 0.58932 0.58873 0.54661 0.58873 0.40357 0.49715 0.58038 0.51454 0.56054 

10 0.6313 0.49798 0.5489 0.73537 0.7521 0.61869 0.62906 0.4932 0.70202 0.66187 0.63692 0.71213 

11 0.6151 0.53323 0.58961 0.48486 0.68512 0.59586 0.68512 0.39192 0.58784 0.60637 0.58751 0.60637 

12 0.7577 0.70019 0.70106 0.67996 0.78836 0.52949 0.78836 0.55071 0.62384 0.68604 0.50044 0.68604 

13 0.5713 0.3159 0.27111 0.31936 0.39672 0.32653 0.38285 0.28357 0.36718 0.49867 0.31182 0.47975 

14 0.6358 0.36772 0.57416 0.47704 0.57546 0.53858 0.57546 0.35346 0.62889 0.69973 0.39169 0.69973 

15 0.7447 0.5021 0.6353 0.3652 0.4346 0.3825 0.3264 0.6204 0.5887 0.8469 0.3803 0.8469 

16 2.8276 0.3856 0.5580 0.4389 0.5983 0.3761 0.5983 0.3816 0.5456 0.6100 0.4179 0.6100 

17 0.8005 0.5730 0.6549 0.6319 0.6474 0.5332 0.6474 0.3336 0.5010 0.6705 0.5112 0.6705 

18 0.4728 0.43094 0.5288 0.43683 0.66615 0.75207 0.59813 0.47313 0.56589 0.60444 0.38198 0.60444 

19 0.3341 0.31592 0.30811 0.34198 0.36124 0.28345 0.32924 0.28796 0.32406 0.51326 0.26191 0.46933 

20 0.5900 0.42575 0.76459 0.6238 0.67998 0.58295 0.64224 0.36941 0.41229 0.66109 0.5799 0.55667 

21 0.62378 0.38626 0.43635 0.51973 0.53725 0.49697 0.53725 0.45015 0.49393 0.73257 0.48859 0.73257 

22 0.55435 0.24388 0.2678 0.3162 0.35215 0.26571 0.35215 0.29298 0.38287 0.46587 0.26172 0.46587 

23 0.6863 0.4604 0.5087 0.5263 0.4365 0.3913 0.4365 0.3979 0.6081 0.7590 0.3883 0.7590 

24 0.5557 0.3602 0.4157 0.5288 0.5587 0.3246 0.5587 0.5189 0.6707 0.7481 0.3132 0.7481 

25 0.3871 0.3339 0.3140 0.3533 0.3763 0.3050 0.3763 0.3077 0.4070 0.5570 0.2937 0.5570 

26 0.5439 0.3021 0.2737 0.40026 0.45065 0.34533 0.45065 0.30043 0.36905 0.4775 0.33963 0.43704 

27 0.5847 0.4354 0.4822 0.5139 0.4116 0.4720 0.3842 0.3487 0.3578 0.4915 0.4763 0.4143 

28 0.3547 0.2920 0.3734 0.3942 0.4135 0.3242 0.4135 0.2377 0.3966 0.4468 0.3018 0.4468 

29 0.6386 0.4959 0.6954 0.7230 0.7665 0.6271 0.7665 0.4477 0.6280 0.7620 0.6286 0.7620 

30 0.4613 0.3448 0.3728 0.4455 0.4836 0.4338 0.4836 0.4239 0.4881 0.6396 0.4229 0.6396 

Average error  0.2362 0.2023 0.2089 0.2289 0.2307 0.2257 0.2460 0.1858 0.1932 0.2397 0.1961 



  

 For the compactness measurement, the PS(5) applied on the fused image produce 

the lowest error with the average error was 0.1858, while the HNN(E) applied on the 

fused image produced 0.1932 error and the HNN2 applied on the fused image produced 

0.1961 error. The PS(1) applied on a fused image produced the highest error with the 

average error was 0.2460. This scenario suggested that in comparison with other 

techniques, the shape of the lakes represented by the PS(5) and HNN(E) produced the 

closest appearance to the corresponding lakes in the ground data.   

For the small lakes (lakes 10, 15, 17, and 20), the HNN(E) applied on the fused 

image produced the lowest error on the compactness measurement with the average 

error was 0.0835. Other technique that produced the second lowest error was the HNN2 

technique that was applied on the fused image with the average error was 0.0866. The 

PS(1) technique that was applied on the fused image produced the highest error with the 

average error was 0.2375.  

For the big lakes (lakes 6, 13, 19, 25, and 28), the PS(5) applied on the fused 

image produced the lowest error on the compactness measurement with the average 

error was 0.0637, while the HNN2 applied on the fused image produced 0.1258 error. 

The PS(1) technique that was applied on the fused image produced the highest error 

with the average error was 0.1325.  

Results from the characterization of the shape of the lakes demonstrated 

evaluations on the individual lakes represented by different techniques. Area, perimeter 

and compactness of lakes were measured. Overall, the proposed HNN2 technique 

applied on the fused image was more accurate than the other techniques in predicting the 
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area of the lakes in particular small lakes with the area ~0.3 km
2
. The HNN(E) was 

slightly more accurate than the HNN2 in predicting the area of big lakes (> 2.6 km
2
).  

Overall, the PS(5) applied on the fused image was more accurate than the other 

techniques in predicting the perimeter of the lakes in particular big lakes. However, for 

small lakes, the prediction of the perimeter of the lake with the HNN2 was more accurate 

than the other techniques.  

The PS(5) applied on the fused image was also more accurate than the other 

techniques in predicting the compactness of the lakes in particular big lakes. For small 

lakes, the prediction of the compactness with the HNN(E) was more accurate than the 

other techniques. The HNN2 was the second most accurate technique in predicting the 

compactness of the small lakes.  

 

6.8.5. Positional accuracy 

To evaluate the positional accuracy, the shoreline of the represented lakes produced 

from different land cover mapping techniques was compared with the boundary of the 

corresponding lakes in the ground data image. Several points along the shoreline of a 

represented lake were selected. These points were vectorised and compared with the 

closest points along the shoreline of the corresponding lake in the ground data. As an 

example, Figure 6.22 shows boundary fitting for different land cover mapping 

techniques on lake 25 from the image in Figure 6.21. The boundary of the represented  

 



   203 

 

 

Ground data 

 

 

Hard classifier 

 

 

PS(1) on 1 image 

 

 

PS(5) on 1 image 

 

HNN(E) on 1 image 

 

HNN(A) on 1 image 

 

HNN2 on 1 image 

 

PS(1) on fused 
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PS(1) on fused 

image 

 

HNN(E) on fused 
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HNN(A) on fused 

image 

 

HNN2 on fused 

image 

 

Figure 6-22 Boundary fitting for different techniques on lake 25. The red line indicates the 

boundary of the lake from the ground data image, and the blue line indicates the boundary 

of the represented lake.  
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Figure 6-23 Positional error along the boundary of lake 25.  

 

lakes was overlaid with the boundary of the corresponding lake in the ground data. The 

vector difference between the points along the boundary of the represented lakes and the 

points along the boundary of the corresponding lakes in the ground data was measured 

to produce positional accuracy information, as shown in an example in Figure 6.23.   

 The root mean squared error (RMSE) of the position error of the selected 30 

lakes (Figure 6.21) was calculated and the result is presented in Table 6.23. Again, as 

the HNN2 technique was a combination of the HNN(E) and HNN(A), several results of 

the HNN2 technique in the Table 6.23 may identical or close to the results of the HNN(E) 

and HNN(A).  

 In general, the HNN(E) applied on the fused image produced the highest 

positional accuracy compared with other techniques with the average RMSE produced 

was 82.98 m. The proposed HNN2 technique that was applied on the fused image 
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produced the second highest positional accuracy with the average RMSE was 85.00 m. 

The HNN(A) applied on a single image produced the lowest positional accuracy with 

the average of the RMSE was 145.93 m.  

For the small lakes (lakes 10, 15, 17, and 20), the HNN(E) applied on the fused 

image produced the highest positional accuracy compared with other techniques when 

producing the average RMSE with 65.63 m, while the average RMSE of the HNN2 

applied on the fused image was 71.74 m. The hard classification technique produced the 

lowest positional accuracy as the average RMSE error was 111.23 m. 

For the big lakes (6, 13, 19, 25, and 28), the HNN(E) applied on the fused image 

produced the highest positional accuracy compared with other techniques when 

producing the average RMSE with 77.97 m. Other technique that produced the second 

lowest RMSE was the HNN2 technique that was applied on the fused image with the 

average RMSE was 77.95 m. The hard classification technique produced the lowest 

positional accuracy as the average RMSE error was 119.75 m.  

A general trend was notable from the Table 6.23 that the PS(5), HNN(E), and the 

proposed HNN2 techniques, all were applied on the fused image, tended to produce 

highly accurate positional prediction as the RMSE values from the three techniques 

were relatively low than that of the other techniques. This trend is highlighted in bold 

and underlined results of the Table 6.23. The boundary of the lakes represented by the 

PS(5), HNN(E) and the HNN2 were generally smoother and less irregular than the 

boundary of the lakes represented by other techniques, notably the PS(1) and the 

HNN(A). The  average RMSE of the boundary fitting of the hard classifier was also 
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high because the boundary of the lakes represented appeared to be blocky and jagged. 

The positional accuracy for the represented lakes in the fused image was higher than that 

in the single image. The boundary of the represented lakes in the fused image appears to 

be smoother and less irregular than the represented lakes in the single image. An 

example of this scenario is shown in Figure 6.22.  

In addition, the error of the boundary fitting may also affected by the accuracy of 

image registration between the MODIS images and the Landsat image, which was used 

as a ground data. As the processing of the super-resolution mapping techniques only 

involved the MODIS images and not the ground data, which only used for comparison 

purposes, there were implications of the results that may affect the accuracy of the 

image registration. Notably for the techniques that used only single MODIS image, for 

example images shown in Figure 6.22. The boundary fitting of the results of the single 

MODIS images appear to be less accurate than that of the results of the fused MODIS 

images, suggesting that by fusing the MODIS images, the problem of the image 

registration between the MODIS images and the ground data could be minimized.  

Results in this section demonstrated that the HNN(E) technique applied on the 

fused image was generally more accurate than the other techniques in predicting the 

positional accuracy of the lakes. The HNN2 technique produced the second most 

accurate technique, followed by the PS(5) technique, although the difference of the 

positional accuracy between the two techniques was very small (RMSE 0.38 m). The 

positional accuracy of the lakes predicted with the PS(1), HNN(A) and hard 

classification techniques were generally low (RMSE > 109 m).  
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Table 6-23 Comparison of RMSE on boundary fitting (m). Bold and underlined results indicate predictions closest to the ground 

data. 

 Single image Fused image 

Lake HC PS (1) PS (5) HNN (E) HNN (A) HNN2 PS (1) PS (5) HNN (E) HNN (A) HNN2 

1 104.57 91.40 88.68 86.57 88.09 86.57 90.88 92.62 82.53 92.41 82.53 

2 130.17 114.23 116.03 123.56 129.09 123.56 81.36 80.39 86.57 127.98 86.57 

3 112.02 102.72 101.55 102.48 105.87 102.48 87.79 94.04 84.01 105.87 84.01 

4 131.71 141.26 1061.90 1065.50 1129.60 1065.50 74.10 72.58 71.85 1130.10 71.85 

5 127.02 124.33 107.95 103.60 112.38 103.60 68.19 57.31 59.47 109.55 62.46 

6 116.82 112.81 116.12 113.74 116.98 113.74 86.05 89.35 76.69 112.36 76.69 

7 105.68 109.68 110.23 115.77 101.04 115.77 97.42 91.68 96.62 109.13 96.62 

8 75.02 83.50 89.43 82.01 91.11 82.01 70.17 77.87 67.61 90.75 67.61 

9 119.29 90.38 92.43 92.37 96.17 92.37 107.30 107.75 105.71 96.29 110.30 

10 96.14 94.89 94.60 96.32 98.60 101.77 78.45 77.09 76.08 97.45 80.49 

11 84.84 90.63 114.90 86.63 87.40 86.63 86.80 76.57 84.57 89.95 84.57 

12 114.89 120.70 119.26 113.47 121.97 113.47 82.42 79.61 81.03 120.13 81.03 

13 131.34 129.93 121.64 114.15 118.47 118.70 101.52 104.48 86.86 115.99 88.35 

14 146.19 114.01 126.38 118.42 115.98 118.42 109.00 98.96 105.01 126.26 105.01 

15 122.16 132.94 103.85 138.03 127.72 115.63 83.26 71.97 76.78 119.40 76.78 

16 155.61 149.36 95.88 144.82 162.31 144.82 65.54 68.67 71.68 158.850 71.68 

17 127.64 112.15 109.65 111.10 117.22 111.10 71.04 74.24 55.95 111.55 55.95 

18 118.33 105.39 104.01 109.92 125.76 102.34 80.44 62.94 70.45 107.96 70.45 

19 139.26 131.62 126.24 129.28 129.87 130.85 93.88 96.76 90.44 129.49 88.85 

20 98.99 56.29 83.73 87.32 91.36 92.83 66.39 47.22 53.70 83.764 73.72 

21 97.73 111.01 103.16 104.23 106.65 104.23 79.12 85.05 77.55 105.71 77.55 

22 196.86 173.90 169.85 168.53 169.05 168.53 183.34 186.66 179.25 170.02 179.25 

23 111.54 102.55 100.97 125.10 127.43 125.10 104.27 99.10 93.95 126.35 93.95 

24 130.72 103.93 102.24 105.59 104.41 105.59 61.60 57.39 51.09 109.90 51.09 

25 120.52 94.24 97.91 97.45 104.55 97.45 72.59 67.42 68.05 104.63 68.05 

26 113.62 97.89 97.03 97.10 99.81 97.10 74.66 76.28 68.86 102.11 82.27 

27 119.14 128.00 125.92 148.96 128.21 152.28 186.89 177.18 176.49 126.49 191.44 

28 90.81 81.22 79.81 81.02 78.21 81.02 73.76 63.83 67.81 85.35 67.81 

29 86.96 92.96 92.41 88.79 90.51 88.79 72.80 67.78 68.01 88.61 68.01 

30 97.34 100.94 98.04 102.18 101.97 102.18 62.11 58.69 54.73 103.00 54.73 

Average 
RMSE 

117.44 109.83 138.39 141.80 145.93 141.48 88.44 85.38 82.98 145.25 85.00 
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6.9. Conclusions 

This chapter presents the application of different super-resolution mapping techniques 

on MODIS 250 m imagery. The improved HNN and pixel swapping techniques, which 

have been discussed in Chapter 4 and 5, were applied to the MODIS imagery. Particular 

attention was paid to a combination of two different configurations of the HNN 

techniques. The first HNN emphasis equal strength on effect the goal functions and the 

area proportion constraint (HNN(E)). The HNN(E) was suitable for the representation of 

large lakes. The second HNN weighted the area proportion constraint more than that of 

the goal functions (HNN(A)). The HNN(A) was suitable for the representation of small 

lakes. The best outcomes from the two HNN were combined. The combination of the 

two HNNs was known as a HNN2 technique. For comparative purposes, pixel swapping 

techniques, PS(1) and PS(5) were used. All the techniques were used on a single 

MODIS 250 images and a fused image derived from a time series MODIS 250 m 

images.  

 A series of assessments was used to evaluate results of the different super-

resolution mapping techniques, such as site specific thematic accuracy, texture variables, 

characterization of the shape of the lakes, and positional accuracy. In all of the 

assessments, generally, the use of the fused image in all the super-resolution mapping 

technique provided more accurate results than that of the single image. The HNN(E) and 

the HNN(A) were effective in predicting the site specific thematic assessment. Results 

of the PS(1) and PS(5) were tended to be dominated by speckled pattern, which may 



   209 

wrongly classified as lakes. Therefore, the speckled pattern was removed by median 

filtering. However, the removal of the pattern may also eliminate the real lakes.  

 On the texture variables, four texture variables were measured: homogeneity, 

contrast, IDM, and entropy. The proposed HNN2 was more accurate than the other 

techniques in predicting the homogeneity and entropy of the spatial distribution of the 

lakes, while the HNN(A) was more accurate than the other techniques in predicting the 

contrast and the IDM. Compared to the other techniques, the HNN(A) and HNN2 

techniques were more accurate for the representation of small lakes.  

 On the characterization of the shape of the lakes, standard measures such as area, 

perimeter and compactness were used. In general, the proposed HNN2 technique was 

more accurate than the other techniques in predicting the area of the represented lakes, 

while the PS(5) was more accurate in predicting the perimeter and the compactness of 

the represented lakes.  

 On the positional accuracy, the HNN(E) was more accurate than the other 

techniques as the boundary of the lakes represented was smooth, which resemblance the 

boundary of the lakes in the ground data. The proposed HNN2 technique was the second 

most accurate technique for the positional accuracy prediction.  

 Finally, results derived from the proposed HNN2 technique demonstrated that the 

technique was more accurate than the other techniques in some aspects in representing 

lakes of different sizes, shapes and mosaic. Compared to the other techniques that may 

be suitable either for small or large lakes, the proposed HNN2 was applicable for both 

cases.  



  

 

 

7. Super-resolution mapping using the halftoning 

concept 

This chapter proposes a new super-resolution mapping technique based on halftoning 

concept. The new technique provides an alternative to the existing super-resolution 

mapping techniques. The new technique is based on a combination of several techniques: 

temporal image fusion, halftoning, 2D multiple notch filter, and object based mapping 

using iterative morphological operation. Similar to the super-resolution mapping 

techniques discussed in the previous chapters, the proposed technique exploits the fine 

temporal resolution of coarse spatial resolution of remotely sensed imagery.  Given that 

the proposed technique is new and not described elsewhere, some salient features will be 

given in this chapter.  

 

7.1. Introduction 

Many super-resolution mapping techniques that have been proposed (Tatem et al., 

2001a; Verhoeye and Wulf , 2002; Atkinson, 2005; Mertens et al., 2006). In general, 

super-resolution mapping techniques represent land cover mapping derived from mixed 

pixels. Initially, the mixed pixel is decomposed into sub-pixels. Based on the proportion 



   211 

of the land cover classes inside the mixed pixel, hard classification at sub-pixel scale is 

allocated randomly. Later, using a variety of super-resolution mapping techniques, sub-

pixels of the same class are grouped together to form a land cover mapping class.  

 In this chapter the initial spatial arrangement of the hard classifier at the sub-

pixel scale was arranged systematically in a periodic pattern using a halftoning 

technique (Ulichney, 1987). The systematic periodic pattern would enable non-iterative 

algorithm such as image filtering in order to represent land cover mapping, whereas for 

the random pattern that was commonly employed in the existing super-resolution 

mapping techniques, required iterative algorithms. Figure 7.1 illustrates the difference 

between initial random arrangement (Figure 7.1b) and arrangement derived from the 

halftoning technique (Figure 7.1c). Both of these spatial arrangements were derived 

from a synthetic image (Figure 7.1a) containing a transition from a pure black pixel into 

a pure white pixel. Between these two pixels, there are five mixed pixels with each one 

of them contains a proportion between black and white. The value of the proportion is 

given below every pixel. Every pixel was sub-divided into 50×50 sub-pixels.  

 The periodic pattern of the spatial arrangement of the hard class labels at the sub-

pixel scale allows a frequency that caused the periodic pattern to be detected (Pei and 

Tseng, 1994; Tseng and Pei, 1996).  The detection of this frequency inspired the 

development of inverse halftoning techniques (Venkata et al., 1998; Kite et al., 2000), 

which are able to transform the initial periodic pattern that appears to be dispersed into 

concentrated objects. This concept inspired a novel super-resolution mapping technique 

for the representation of land cover mapping. Further discussion of this concept will be 

provided in this chapter.   
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Figure 7-1 Illustration of the initial spatial arrangement of hard classifier at a sub-pixel 

scale. (a) Several mixed pixels with different proportion of black and white classes. 

Values at the bottom indicate the proportion of the white class. (b) Initial spatial 

arrangement using random technique. (c) Initial spatial arrangement using halftoning 

technique.  
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7.2. Test site and data 

A ~25 km
2
 area located in Quebec province, Canada, was selected for this study (Figure 

7.2). It is situated between latitudes 55
o
08‟35”N and 55

o
06‟05”N and between 

longitudes 77
o
41 53”W and 77

o
36‟27”W. This region contains a variety of lakes of 

differing size and shape that provide a challenge for mapping from remote sensing. 

Lakes are typically spectrally highly separable in the near-infrared wavelengths in which 

commonly used remote sensing systems operate in allowing the study to use data 

acquired in a single waveband to acquire information on important lakes. The 

approaches discussed should, however, be generalisable to other types of objects and 

data sets. 

Two sets of image data were used. First, a Landsat ETM+ near infrared image 

(band 4) of the region acquired on 8 July 2002 was used to provide reference data on 

lakes. These data have a spatial resolution of 30 m and the mosaic of lakes is visually 

evident in the image (Figure 7.2a). As well as being used as reference data, the ETM+ 

data were spatially degraded by averaging pixel values in order to derive a coarse spatial 

resolution representation of the test site (Figure 7.3). Although this approach to the 

simulation of a coarse spatial resolution image is not ideal this approach has the 

advantage of ensuring that the simulated image and reference data sets are perfectly co-

located, avoiding problems with spatial mis-registration that can greatly impact on 

studies by remote sensing (Roy, 2000). Here, coarse spatial resolution images from the 

original 30 m resolution ETM+ image were derived by down-sampling by a factor of 8  
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Figure 7-2 The Landsat ETM+ data of the test site. (a) near-infrared waveband image 

and (b) binary land cover map derived from hard classification. 

 

 

Figure 7-3 A simulated image with a spatial resolution of 240 m derived by spatial 

degradation of the Landsat ETM+ imagery. 
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Figure 7-4 The MODIS images 
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to a spatial resolution of 240 m pixel, broadly similar to the finest spatial resolution 

obtainable from MODIS (250 m).  

 Finally, a time series of coarse spatial resolution imagery acquired by the 

MODIS sensor around the date of the Landsat ETM+ data acquisition was acquired to 

illustrate the applicability of the method to a real data set (Figure 7.4). Seven cloud-free 

daily MODIS 250 m spatial resolution images of the test site acquired between 1 July 

2002 and 18 July 2002 were obtained. Again, only the data acquired in the near infrared 

band were used because of the high separability of land and water in this part of the 

spectrum. Although similar and acquired over a short period of time there are clear 

inter-image differences (Figure 7.4).  

 

7.3. Methods 

The proposed new super-resolution mapping technique is based on a combination of 

several techniques as illustrated graphically in Figure 7.5. This technique exploits the 

fine temporal resolution that is typical of coarse spatial resolution images. The 

proportion of different classes within a mixed pixel in each image was derived using 

fuzzy c-means soft classification (Bezdek et al., 1984).  Every image, then, was fused at 

a sub-pixel scale. A halftoning technique (Ulichney, 1987) was used to allocate hard 

classification at a sub-pixel scale in a halftoned image. This was later followed by 2D 

multiple notch filter (Pei and Tseng, 1994; Tseng and Pei, 1996) to suppress noisy 

frequencies of the halftoned image in a frequency domain using the Fourier spectrum.  
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The filtered image then was inversed into an image domain. Finally, the filtered image 

was segmented using object based mapping using adaptive morphological operation. 

Further details on the proposed method are given in this section      

 

7.3.1. Time series image registration and data fusion 

With the spatially degraded Landsat ETM+ data a time series of images was simulated. 

This was achieved by deriving multiple coarse spatial resolution images from the fine 

spatial resolution image in Figure 7.2a by down-sampling the ETM+ data by a factor of 

8 to a spatial resolution of 240 m pixel. To model the slight orbital translations that 

might be expected to occur with real data, the initial position of an image for the down-

sampling operation was sub-pixel shifted randomly in horizontal and vertical directions 

from one image to another (Lu and Inamura, 2003). Each image differs slightly from the 

others in the time series data and was assumed to be translated linearly (e.g. horizontal 

and vertical) in a sub-pixel scale.  

In the time-series of MODIS data, all the images of the site were also highly 

similar but not completely identical. Due to factors such as slight orbital translations and 

 

Figure 7-5 Diagram of the proposed new super-resolution mapping technique 
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the Earth‟s rotation, the images may not represent the exact same area. In addition, 

atmospheric effects were likely to vary from image to image resulting in variable 

radiometric properties.  

All the images were soft classified using fuzzy c-means clustering technique. 

The number of clusters was set to two (i.e. c = 2) to differentiate between land and water 

in the image. The algorithm‟s weighting parameter, m, which determines the degree of 

fuzziness was set, after a series of trial analyses, to m = 2.0. 

With each coarse spatial resolution data set, the relative translation between 

images was determined based on phase correlation technique (Reddy and Chatterji, 1996) 

at a sub-pixel accuracy using Equation 5.11, which allowed linear transformation such 

as translation and rotation to be detected even under different radiometric conditions and 

corrected in a new registered image. The registered images then were combined into a 

fused image using Equation 5.14.  

  Figure 7.6a shows a proportion image derived from a soft classification of a 

single coarse spatial resolution image derived from the Landsat ETM+ data and the 

result derived from a fusion of multiple proportion images is shown in Figure 7.6b.  

A MODIS image acquired on 7 July 2002 was used as a reference image for time 

series MODIS image registration because its date of acquisition is the closest temporally 

to that of the Landsat ETM+ image and lies in the middle of the set of dates over which 

the MODIS data set was acquired.  
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(a) 

 

(b) 

Figure 7-6 Soft classification on (a) a single coarse spatial resolution image, (b) a 

fusion of multiple coarse spatial resolution images. 

 

7.3.2. Halftoning 

A soft classification provides information about the proportion of different land cover 

classes within a pixel. Assuming that a mixed pixel only contains two classes, many 

super-resolution mapping techniques use the value of the soft classification in the mixed 

pixel to derive a binary class proportions at a sub-pixel level (Tatem et al., 2001a, 

Atkinson, 2005). The analysis typically begins with the location of these classes 

distributed randomly within a pixel before the super-resolution mapping techniques 

begin an iterative process to optimally locate them.  

In this chapter, the initial distribution of binary class proportion at a sub-pixel 

level was distributed in a periodic pattern using a halftoning technique (Ulichney, 1987; 

Lau and Arce, 2001; Mese and Vaidyanathan, 2002). Halftoning is a process of 

converting a continuous tone image to black and white dots; it is widely used in printing 
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technology. The continuous tone image derived from a soft classification was quantized 

into a dispersed dot pattern (Kite, 1998). This dot pattern was created by comparing a 

continuous input image 
Inf  with a threshold image t  where the spatial resolution of 

both images is equal.  

  
   

   

1 , ,
,

0 , ,

In

Halftone

In

f i j t i j
f i j

f i j t i j


 


 (7.1) 

The threshold image was created by arranging a dither matrix (Bayer, 1973) over the 

entire threshold image.  

    , mod , modnt i j D i n j n  (7.2) 

where nD is a dither matrix with a size of n n . For 4n  , the dither matrix is given by  

 
4

6 11 7 10

14 1 15 41

8 9 5 1217

16 3 13 2

D

 
 
 
 
 
 

 (7.3) 

The dither matrix was normalized with 1n n  gray levels.  

The pattern derived from the halftone can offer more usage flexibility than the 

random pattern because through the implementation of inverse halftoning techniques 

(Kite et al., 2000), the dot pattern can be transformed back into a continuous image and 

several noises associated with the dot pattern can be suppressed. The application of 

halftoning can be illustrated in Figure 7.7 that shows the initial class distributions 

derived using random (Figure 7.7a) and halftoning (Figure 7.7b) allocation.  
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The differences between both images can be analysed in Fourier spectrum. A 

Fourier spectrum of the image generated by random dot allocation is shown in Figure 

7.7c. The spectrum displays apparent low frequency component in the middle of the 

spectrum that represents the gray scale image. Other than that, no other frequency 

component is apparent. On contrary, a Fourier spectrum (Figure 7.7d) of the image 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7-7 Initialization of binary class proportions on a sub-pixel scale using (a) 

random dot pattern, (b) dispersed halftoning dot pattern. Correspondence Fourier of (c) 

random dot pattern, (d) halftoning dot pattern. 
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generated by halftoning displays the low frequency component and several notch 

frequencies that are spread over the frequency plan in the spectrum. The reconstruction 

of continuous image can be performed by removing these notch frequencies and will be 

explained in the Section 7.3.3.  

 

7.3.3. 2D multiple notch filter 

A periodic pattern contained in an image can be treated in its Fourier spectrum to 

eliminate unwanted frequencies. A halftoned image may contain periodic or aperiodic 

dot pattern; and this can be observed in its Fourier spectrum (Ulichney, 1987). To 

suppress the periodic dotted pattern a 2D multiple notch filter was used (Pei and Tseng, 

1994; Tseng and Pei, 1996). The Fourier spectrum of the image contains pairs of 

symmetric peak impulses due to the periodic pattern produced by the halftoning. These 

frequencies can be removed by setting a unit gain at all frequencies except at the notch 

frequencies at which their gain is zero. The frequency response for an ideal 2D multiple 

notch filter is given by  

  
     * * * *0 , , and , , 1, ,

,
1

k k k k

Notch

if u v u v u v k n
H u v

if otherwise

    
 


 (7.3) 

where  * *,k ku v are the notch frequencies and n is the number of notch frequency pair. 

For practical situations, other types of filter such as Gaussian could be used. Thus 

Equation 7.3 can be rewritten as 
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  
       * * * *, , , and , , 1, ,

,
1

High pass k k k k

Notch

H u v if u v u v u v k n
H u v

if otherwise

    
 


 (7.4) 

where the notch filter is a product of multiple high pass filters at which their centre were 

translated to the centre of notch frequencies. For a Gaussian type of filter, HighpassH  is 

given by  

    2 * * 2, 2* *, 1
k kD u v

High pass k kH u v e


   (7.5) 

where D is a distance from point  * *,k ku v , 0D  , and 0D is a cut-off frequency.  

To remove the notch frequencies in the Fourier spectrum in Figure 7.7d, a 2D 

multiple notch filter was designed by setting the gain of these frequencies to 0 as shown 

in Figure 7.8a. In this spectrum, there are 12 notch frequency pairs that need to be 

suppressed. The location of each notch frequency was designed specifically according to 

this pattern  

 , , for 2, 1,0,1,2
4 4

Notch

M N
H c c c

 
   

 
 (7.6) 

except at the middle of the spectrum ,  0,0NotchH . The 2D multiple notch filter was 

multiplied with the Fourier spectrum given by  

      , , ,Filtered NotchF u v H u v F u v   (7.7) 
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(a) 

 

(b) 

Figure 7-8 Image reconstruction using 2D multiple notch filter (a) a 2D multiple notch 

filter, (b) result of the filter derived from Figure 6b.  

 

Then, the filtered image in the Fourier spectrum was inversely transformed into a spatial 

domain to produce a filtered image.  

    1, ,Filtered Filteredf i j F u v  (7.8) 

 

To suppress the remaining high frequency components, a 3×3 Gaussian low pass 

filter was used in the spatial domain and the result is shown in Figure 7.8b. The size of 

the low pass filter was chosen as to minimize blurring effect that may degrade the 

information content of the image.   
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7.3.4. Iterative morphological filter 

The result of the notch filter in Figure 7.8b was hardened using an adaptive thresholding 

technique based on moving average filter (Davies, 2005) to derive a binary land cover 

map. This thresholding technique was used to distinguish between lakes, which appear 

as dark maps in the image, and land (white). But most importantly, this technique was 

used to detect low contrast of small lakes (light grey) that are surrounded by land and to 

ignore artefact that may be caused by previous processing stages. The intensity of the 

grey level for the artefact is closely similar to the grey level intensity of the small lakes, 

but the size of the artefact is too large to be regarded as small lakes.  The size of the 

small lakes to be detected can be limited by the size of the moving average kernel.  The 

size of the kernel was set, after a series of trial analyses, to  
2

10w , where w is the 

spatial resolution of a coarse spatial resolution image. If the size of the kernel is too 

large, artefact may be included, and if the size is too small, the small lakes may be 

ignored.  

Further processing was performed using morphological filtering based on a 

thinning operation (Lam et al., 1992) to acquire accurate area estimation of the lakes. 

But there are two problems with the thinning operation. The first problem is that the 

thinning algorithm is a global operation that is applied to the entire image. This may 

cause all lakes to be eroded at an equal rate of shrinking. Although the treatment on all 

the lakes is equal, this may not be true as some lakes may have already been mapped at 

their actual size. Eroding the lakes further may cause the lakes to be smaller than their 
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actual size. The second problem of the thinning operation is that the rate of shrinkage to 

a desire size on each lake is unknown even if the lake is treated individually.  

As one lake may need different rate of shrinkage than the others, iterative 

thinning operation was performed on each lake individually. Soft classification derived 

from mixed pixels of coarse spatial resolution image was incorporated as a constraint for 

the thinning operation. Initial result of lake mapping from the thresholding technique is 

shown in dashed line that represents the delineation of the lake‟s boundary in Figure 7.9. 

The line is overlaid on coarse spatial resolution pixel grids of a soft classification image 

showing a black object, which represents a lake, on a white background (land). The area 

of the lake derived from the thresholding was measured and denoted as MapA . Coarse 

pixels that are enclosed within the boundary line of the lake were considered including 

the pixels that touches the line. The summation of soft classification values of these 

pixels represents the actual proportion of the area of the lake; therefore need to be 

maintained. The summation is denoted as SoftA . A ratio of Map SoftA A indicates the 

accuracy of the area estimation by the mapping, with perfect estimation when 

1Map SoftA A  . The adaptive thresholding technique tends to map the lakes larger than 

their actual size making the ratio for a lake is > 1. To achieve the ratio 1, the thinning 

operation was applied to shrink the lake and a new delineation of the lake‟s boundary is 

represented by solid line in Figure 7.9. The thinning operation was applied iteratively 

until it immediately stopped when the ratio is equal or smaller than 1. The 

morphological filtering explained in this section only requires a small number of 

iteration for each lake, which is between 1 to 3 iterations.  
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Figure 7-9 An illustration of an iterative morphological thinning filter considers area 

estimation from soft classification of pixels enclosed by the delineation of boundary 

lines to be used as a constraint while shrinking the lake.  

 

 

7.4. Lake characterization 

Attention focused on two main issues: the identification of lakes and the characterisation 

of their shape. Treating the lakes as objects, shape may be characterized in many ways 

(Nixon and Aguado, 2002) with a wide variety of indices used in landscape ecology 

(McGarigal et al, 2002). However, many of the popular landscape indices are correlated 

(Yang and Liu, 2005) and here focus on some standard measures: area, perimeter, length 

along main axis and compactness.  
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The simulated and real coarse spatial resolution data sets were used to derive 

binary land cover maps depicting the classes land and water within the test site from 

which the lakes could be characterised. From each data set, five maps were derived. 

First, a map was derived by a conventional hard image classification based on an 

unsupervised k-means clustering technique (Duda et al., 2001). Second and third, maps 

were derived by interpolation of soft classification from time series images using 

bilinear and bicubic interpolation techniques (Keys, 1981).  Each set of the interpolation 

images were summed, normalized and their results were hardened. These two 

interpolation techniques were used as simplistic methods as a benchmark. Fourth, an 

established super-resolution mapping approach was used based on a standard HNN 

described by Tatem et al. (2001a) as formulated in Equation 3.19. The effect of the goal 

function and the constraint function was assumed to be equal, thus the value of the 

weighting coefficients k1, k2 and kP were set to 1. The HNN was calculated numerically 

for 1000 iterations at which the HNN reach its optimum under the constraint of the 

parameter settings. Fifth, the proposed super-resolution mapping using the halftoning 

concept was used.  

The accuracy with which lakes could be identified and characterised by each 

method applied to coarse spatial resolution imagery was evaluated relative to the 

depiction of the lakes in a standard hard classification of the 30 m Landsat ETM+ data 

(Figure 7.2b). For comparative purposes attention focused on the set of lakes in common 

to each derived map. To aid interpretation a set of specific lakes of interest were 

identified and each given a unique numerical identifier (Figure 7.2b and others). As the 

limitations of hard classification are well known most interest was on the relative 
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performance of the two super-resolution mapping techniques and two interpolation 

techniques. Particular concern is on the representation of the lakes, including small lakes 

and the value of using a time series rather than single coarse resolution image as input. 

 

7.5. Results and discussion 

A set of 5 binary land cover maps was derived from each coarse spatial resolution data 

set: from the hard classification, bilinear and bicubic interpolation of time series soft 

classification images, standard HNN, and the halftoning concept. Each map was 

evaluated against the ground reference data map derived from the 30 m Landsat ETM+ 

data (Figure 7.2b). The evaluation focused on the general representation derived in 

terms of the visual appearance of the lakes and the number of lakes represented as well 

as a more detailed assessment of the shape of the lakes that were common to all of the 

maps derived from the coarse spatial resolution data sets. 

The limitation of the hard and soft classifications to represent land cover was 

evident in the outputs derived from the analyses of the simulated coarse spatial 

resolution data set. The hard classification provided a very blocky representation of the 

landscape and failed to represent many of the small lakes in the region (Figure 7.10a). 

The soft classification provided a richer representation but was also unable to provide a 

realistic representation of the actual distribution of land and water (Figure 7.10b).  

Interpolation and super-resolution mapping techniques provided outputs that 

were much visually closer to the ground data (Figure 7.10c, 7.10d, 7.10e and 7.10f). It 



   230 

was apparent, however, that more lakes, and typically small lakes, were represented in 

the output of the bilinear, bicubic and halftoning, than the HNN. Note, for example, that 

the smallest lake in the HNN output (lake 10) had an area of 0.035 km
2
 (with -0.029 km

2
 

error). In the bilinear output, the smallest lake (20) had an area of 0.010 km
2
 (-0.008 

km
2
), while in the bicubic output the smallest lake (19) had an area of 0.008 km

2
 (-0.006 

km
2
) and with the PRSM output the smallest lake (19) had an area of 0.009 km

2
 (-0.005 

km
2
). The parameter settings of the HNN used in this chapter were based on the 

standard practice, which place equal weights for the goal functions and the area 

proportion constraint of the HNN. Therefore, lakes that are smaller than a size of the 

spatial resolution of the MODIS 250 m could not be accurately represented using the 

HNN.    

The characterization of the smallest lake in each of the output images was 

defined when the lake has the smallest area measurement compare to other lakes in the 

image. To eliminate artefact and not to regard them as lakes, area measurement error 

was calculated between lakes in the output image and their corresponding lakes in the 

ground data. Therefore, the characterization of the smallest lake must consider both the 

measurement of the area and the error. A measurement with the smallest error indicates 

that the map produced is highly accurate as it closely resembled the map in the ground 

data. The positive value of the error indicates over-estimation, which mean that the lake 

is mapped larger than it actual size. The negative error indicates that the lake is mapped 

smaller than its actual size. Based on the comparison on the smallest lakes detected in 

the output images, the halftoning produced more accurate representation of the smallest 

lake than the other outputs.  
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Other notable small lakes were lake 12 (HNN = not detected; bilinear = 0.080 

km
2
 error; bicubic = 0.078 km

2
; halftoning = -0.006 km

2
), lake 13 (HNN = not detected; 

bilinear = 0.060 km
2
; bicubic = 0.069 km

2
; halftoning = -0.008 km

2
; ), lake 15 (HNN = 

not detected; bilinear = -0.009 km
2
; bicubic = 0.003 km

2
; halftoning = -0.009 km

2
), lake 

16 (HNN = not detected; bilinear = not detected; bicubic = -0.009 km
2
; halftoning = 

0.006 km
2
), and lake 21 (HNN = not detected; bilinear = 0.005 km

2
; bicubic = 0.025 

km
2
; halftoning = 0.008 km

2
). In the ground data, all these lakes were smaller than the 

size of a coarse spatial resolution image pixel (0.057 km
2
). For these lakes, the super-

resolution mapping using the halftoning concept was more consistent than other 

techniques in producing highly accurate area estimates when the errors were all < 

±0.010 km
2
.  

The 5 land cover representations derived also varied in the accuracy with which 

they characterised shape of the individual lakes (Table 7.1 and 7.2). Only lakes that 

appear in all of the 5 land cover maps were selected in both tables. Although no one 

method was universally the most accurate some trends were apparent in the results. 

Critically, the super-resolution mapping using the halftoning concept tended to provide 

more accurate area estimates than the other outputs when the average of area estimates 

error was 0.023 km
2
. Both interpolation techniques produced the most accurate 

perimeter estimates with the average error was < 0.600 km. Both interpolation 

techniques also produced the most accurate length estimates with the average error was 

< 0.130 km
2
. Although hard classification produced the least average error in 

compactness estimates with 0.174 errors, the lakes appear to be blocky and were 

associated with some large over-estimates of lake area (e.g. lakes 1, 2, 3 and 6). Other 
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than the hard classification, the halftoning tended to produce lower average error for 

compactness estimates with the error was < 0.235.  

Due to the influence of the spatial clustering goal function, the HNN tend to 

produce convex shape of land cover mapping. The limitation of this scenario is that 

linear features, such as lake 2, that lie diagonally in the image, tended to be split into 

several parts. Using the interpolation techniques, lake 2 can be represented by the width 

of the lake tended to be expanded. Using the halftoning technique and the iterative 

morphological filter, the width of the lake 2 can be retained as close as the width of the 

lake 2 in the ground data.  

Similar general trends are apparent in the results derived from the MODIS 

imagery (Figure 7.11, Table 7.3 and 7.4). Critically, the halftoning included more small  

lakes in its output and appeared visually to provide the most accurate super-resolution 

map of the test site. Note for example, small lakes (e.g. lake 13 in Figure 11f, estimated 

area = 0.011km
2
, reference area = 0.036 km

2
) missed in the output of the HNN, bilinear 

and bicubic are represented in the halftoning output. In terms of the quantitative 

estimates of lake properties the halftoning was slightly less accurate the HNN in 

estimating the area of the lakes. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 7-10 Results of the simulated coarse spatial resolution imagery. (a) the hard 

classification derived from a MODIS image acquired on 7 July 2002, (b) soft 

classification of the MODIS image, and (c) output from bilinear interpolation, (d) output 

from bicubic interpolation, (e) output from HNN, and (f) output from the super-

resolution mapping using the halftoning concept. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 7-11 Results of the real MODIS data. (a) the hard classification derived from a 

MODIS image acquired on 7 July 2002, (b) soft classification of the MODIS image, and 

(c) output from bilinear interpolation, (d) output from bicubic interpolation, (e) output 

from HNN, and (f) output from the super-resolution mapping using the halftoning 

concept. 
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Table 7-1 Lake characterisations of area and perimeter from the simulated coarse spatial resolution imagery; the difference from the 

ground reference data is shown in brackets (positive values indicate over-estimation). 

Lake Area (km2) Perimeter (km) 

 GD HC Bilinear Bicubic HNN Halftoning GD HC Bilinear Bicubic HNN Halftoning 

1 2.440 3.228 

(0.788) 

2.621 

(0.181) 

2.625 

(0.185) 

2.156 

(-0.284) 

2.457 

(0.017) 

15.161 14.979 

(-0.182) 

11.343 

(-3.818) 

11.202 

(-3.959) 

7.700 

(-7.461) 

10.923 

(-4.238) 

2 0.255 0.750 

(0.495) 

0.486 

 (0.231) 

0.484 

(0.229) 

0.052 

(-0.203) 

0.248 

(-0.007) 

4.591 7.237 

(2.646) 

4.630 

 (0.039) 

4.503 

(-0.088) 

0.809 

(-3.782) 

4.105 

(-0.486) 

3 0.102 0.346 

(0.244) 

0.170 

(0.068) 

0.162 

(0.060) 

0.102 

(0.000) 

0.127 

(0.025) 

1.340 4.320 

(2.980) 

1.473 

(0.133) 

1.546 

(0.206) 

1.159 

(-0.181) 

1.386 

(0.046) 

4 0.169 0.230 

(0.061) 

0.251 

 (0.082) 

0.244 

(0.075) 

0.139 

(-0.030) 

0.183 

(0.014)  

2.924 2.400 

(-0.524) 

2.269 

(-0.655) 

2.202 

(-0.722) 

1.609 

(-1.315) 

2.087  

(-0.837) 

5 0.112 0.173 

(0.061) 

0.161 

(0.049) 

0.164 

(0.052) 

0.112 

(0.000) 

0.120 

(0.008) 

1.636 1.932 

(0.296) 

1.581 

(-0.055) 

1.726 

(0.090) 

1.249 

(-0.387) 

1.351  

(-0.285) 

6 0.081 0.346 

(0.265) 

0.152 

(0.071) 

0.152 

(0.071) 

0.068 

(-0.013) 

0.113 

(0.032) 

1.309 3.397 

(2.088) 

1.459 

(0.150) 

1.436 

(0.127) 

0.899 

(-0.410) 

1.384 

(0.075) 

7 0.136 0.173 

(0.037) 

0.220 

 (0.084) 

0.212 

(0.076) 

0.116 

(-0.020) 

0.174 

(0.038)  

1.752 1.932 

(0.180) 

1.803 

 (0.051) 

1.738 

(-0.014) 

1.289 

(-0.463) 

1.554  

(-0.198) 

8 0.066 0.115 

(0.049) 

0.111 

(0.045) 

0.111 

(0.045) 

0.052 

(-0.014) 

0.034 

(-0.032) 

1.312 1.440 

(0.1280) 

1.272 

(-0.040) 

1.284 

(-0.028) 

0.779 

(-0.533) 

0.687 

(-0.753) 

9 0.117 0.115 

(-0.002) 

0.159 

(0.042) 

0.162 

(0.045) 

0.079 

(-0.038) 

0.069  

(-0.048) 

2.199 1.440 

(-0.759) 

1.731 

(-0.468) 

1.676 

(-0.523) 

1.024 

(-1.175) 

1.219  

(-0.980) 

10 0.064 0.173 

(0.109) 

0.113 

(0.049) 

0.116 

(0.052) 

0.035 

(-0.029) 

0.057 

(-0.007) 

1.264 1.932 

(0.668) 

1.306 

(0.042) 

1.302 

(0.038) 

0.639 

(-0.625) 

0.964 

(-0.300) 

Average 

Error 
 0.211 0.090 0.089 0.063 0.023  1.045 0.545 0.578 1.633 0.820 

 

GD = Ground data; HC = Hard classification; HNN = standard Hopfield neural network. 
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Table 7-2 Lake characterisations of length and compactness from the simulated coarse spatial resolution imagery; the difference from 

the ground reference data is shown in brackets (positive values indicate over-estimation). 

Lake Length (km) Compactness 

 GD HC Bilinear Bicubic HNN Halftoning GD HC Bilinear Bicubic HNN Halftoning 

1 3.608 3.729 

(0.121) 

3.325 

(-0.283) 

3.278 

(-0.330) 

8.658 

(5.050) 

3.167   

(-0.441) 

0.133 0.181 

(0.048) 

0.256 

(0.123) 

0.263 

(0.130) 

0.457 

(0.324) 

0.259 

(0.078) 

2 2.069 2.009 

(-0.060) 

2.006 

(-0.063) 

2.019 

(-0.050) 

0.360 

(-1.709) 

1.854  

(-0.215) 

0.152 0.180 

(0.028) 

0.285 

 (0.133) 

0.300 

(0.148) 

1.002 

(0.850) 

0.185  

(0.033) 

3 0.480 0.883 

(0.403) 

0.570 

(0.090) 

0.540 

(0.060) 

0.480 

(0.000) 

0.480 

(0.000) 

0.656 0.233 

(-0.423) 

0.982 

(0.326) 

0.853 

(0.197) 

0.956 

(0.300) 

0.833 

(0.177) 

4 1.170 1.020 

(-0.150) 

1.020 

(-0.150) 

0.960 

(-0.210) 

0.720 

(-0.450) 

0.900  

(-0.270) 

0.248 0.503 

(0.255) 

0.612 

(0.364) 

0.634 

(0.386) 

0.676 

(0.428) 

0.529 

(0.281) 

5 0.510 0.540 

(0.030) 

0.600 

(0.090) 

0.600 

(0.090) 

0.540 

(0.030) 

0.510 

(0.000) 

0.527 0.582 

(0.055) 

0.807 

(0.280) 

0.692 

(0.165) 

0.904 

(0.377) 

0.828 

(0.301) 

6 0.480 1.108 

(0.628) 

0.510 

(0.030) 

0.510 

(0.030) 

0.360 

(-0.120) 

0.480 

(0.000) 

0.593 0.377 

(-0.216) 

0.896 

(0.303) 

0.925 

(0.332) 

1.065 

(0.472) 

0.739 

(0.146) 

7 0.540 0.540 

(0.000) 

0.660 

 (0.120) 

0.660 

(0.120) 

0.540 

(0.000) 

0.600 

(0.060) 

0.558 0.582 

(0.024) 

0.850 

 (0.292) 

0.882 

(0.324) 

0.878 

(0.320) 

0.903 

(0.345)  

8 0.497 0.540 

(0.043) 

0.450 

(-0.047) 

0.450 

(-0.047) 

0.330 

(-0.167) 

0.270 

(-0.227) 

0.484 0.698 

(0.214) 

0.867 

(0.383) 

0.847 

(0.363) 

1.083 

(0.599) 

0.905  

(0.421) 

9 0.913 0.540 

(-0.373) 

0.690 

(-0.223) 

0.690 

(-0.223) 

0.450 

(-0.463) 

0.510 

(-0.403) 

0.303 0.698 

(0.395) 

0.665 

(0.362) 

0.725 

(0.422) 

0.949 

(0.646) 

0.581 

(0.278) 

10 0.390 0.540 

(0.150) 

0.480 

(0.090) 

0.450 

(0.060) 

0.270 

(-0.120) 

0.360 

(-0.030) 

0.503 0.582 

(0.079) 

0.830 

(0.327) 

0.858 

(0.355) 

1.065 

(0.562) 

0.769  

(0.266) 

Average 

Error 
 0.196 0.119 0.122 0.811 0.165  0.174 0.289 0.282 0.488 0.233 

 

GD = Ground data; HC = Hard classification; HNN = standard Hopfield neural network.  
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Table 7-3 Lake characterisations of area and perimeter from the MODIS imagery; the difference from the ground reference data is 

shown in brackets (positive values indicate over-estimation). 

Lake Area (km2) Perimeter (km) 

 GD HC Bilinear Bicubic HNN Halftoning GD HC Bilinear Bicubic HNN Halftoning 

1 2.440 3.303 

(0.863) 

3.159 

(0.719) 

3.225 

(0.785) 

2.158 

(-0.282) 

3.096 

 (0.656) 

15.161 15.844 

(0.683) 

12.221 

(-2.940) 

11.573 

(-3.588) 

9.845 

(-5.316) 

10.471 

(-4.690) 

2 0.255 0.750 

(0.495) 

0.525 

(0.270) 

0.542 

(0.287) 

0.128 

(-0.127) 

0.376 

 (0.121) 

4.591 6.500 

(1.909) 

4.977 

(0.386) 

4.809 

(0.218)  

1.364 

(-3.227) 

3.847  

(-0.744) 

3 0.090 

 

0.125 

(0.023) 

0.148 

(0.046) 

0.150 

(0.048) 

0.056 

(-0.046) 

0.090 

 (0.000) 

1.340 2.000 

(0.660) 

1.496 

(0.156) 

1.399 

(0.059) 

0.879 

(-0.461) 

1.195 

(-0.145) 

4 0.169 0.188 

(0.019) 

0.162 

(-0.007) 

0.181 

(0.012) 

0.087 

(-0.082) 

0.178   

 (0.009) 

2.924 2.000 

(-0.924) 

2.001 

(-0.923) 

1.981 

(-0.943) 

1.149 

(-1.775) 

2.043 

(-0.881) 

5 0.112 0.063 

(-0.049) 

0.110 

(-0.002) 

0.124 

(0.012) 

0.025 

(-0.087) 

0.069  

(-0.043) 

1.636 1.000 

(-0.636) 

1.426 

(-0.210) 

1.329 

(-0.307) 

0.637 

(-0.999) 

1.109 

(-0.527) 

23 0.057 x 0.187 

(0.130) 

0.213 

(0.156) 

0.043 

(-0.014) 

0.154 

(0.097) 

1.174 x 2.216 

(1.042) 

2.336 

(1.162) 

0.814 

(-0.360) 

1.856 

 (0.682) 

11 0.088 0.250 

(0.162) 

0.317 

(0.229) 

0.326 

(0.238) 

0.037 

(-0.051) 

0.209 

(0.121) 

1.242 2.500 

(1.258) 

3.058 

(1.816) 

2.799 

(1.557) 

0.689 

(-0.553) 

2.209 

(0.967) 

Average 

Error 
 0.269 0.200 0.220 0.098 0.150  1.012 1.068 1.119 1.813 1.234 

 

GD = Ground data; HC = Hard classification; HNN = standard Hopfield neural network. 
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Table 7-4 Lake characterisations of length and compactness from the MODIS imagery; the difference from the ground reference data 

is shown in brackets (positive values indicate over-estimation).   

Lake Length (km) Compactness 

 GD HC Bilinear Bicubic HNN Halftoning GD HC Bilinear Bicubic HNN Halftoning 

1 3.608 3.515 

(-0.093) 

3.215 

(-0.393) 

3.120 

(-0.488) 

3.165 

(-0.443) 

2.955 

(-0.653) 

0.133 0.165 

(0.032) 

0.266 

(0.133) 

0.303 

(0.170) 

0.280 

(0.147) 

0.355 

 (0.222) 

2 2.069 1.500 

(-0.569) 

2.172 

(0.103) 

2.126 

(0.057) 

0.510 

(-1.559) 

1.491 

(-0.578) 

0.152 0.223 

(0.071) 

0.267 

(0.115) 

0.295 

(0.143) 

0.864 

(0.712) 

0.319 

 (0.167) 

3 0.480 0.500 

(0.020) 

0.600 

(0.120)  

0.570 

(0.090) 

0.330 

(-0.150) 

0.390  

(-0.150) 

0.656 0.393 

(-0.263) 

0.829 

(0.173) 

0.965 

(0.309) 

0.903 

(0.247) 

0.795 

 (0.139) 

4 1.170 0.500 

(-0.670) 

0.870 

(-0.300) 

0.870 

(-0.300) 

0.510 

(-0.660) 

0.660 

(-0.090) 

0.248 0.591 

(0.343) 

0.509 

(0.261) 

0.579 

(0.331) 

0.853 

(0.605) 

0.536 

 (0.288) 

5 0.510 0.250 

(-0.260) 

0.540 

(0.030) 

0.480 

(-0.030) 

0.240 

(-0.270) 

0.420 

(-0.090) 

0.527 0.792 

(0.265) 

0.683 

(0.156) 

0.881 

(0.354) 

0.766 

(0.239) 

0.670 

(0.143) 

23 0.450 x 0.868 

(0.418) 

0.927 

(0.477) 

0.300 

(-0.150) 

0.690 

(0.240) 

0.522 x 0.480 

(-0.042) 

0.490 

(-0.032) 

0.816 

(0.522) 

0.563 

(0.041) 

11 0.540 1.000 

(0.460) 

1.258 

(0.718) 

1.140 

(0.600) 

0.300 

(-0.240) 

0.990 

 (0.450) 

0.720 0.503 

(-0.217) 

0.425 

(-0.295) 

0.522 

(-0.198) 

1.048 

(0.328) 

0.539 

(-0.181) 

Average 

Error 
 0.345 0.297 0.292 0.496 0.322  0.199 0.168 0.220 0.400 0.169 

 

GD = Ground data; HC = Hard classification; HNN = standard Hopfield neural network 
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7.6. Conclusions 

The potential of a novel super-resolution mapping based on the haltoning concept for 

the representation of lakes has been evaluated. Both super-resolution mapping 

approaches, the proposed technique and the standard HNN, were able to provide land 

cover representations that were typically more accurate and realistic than the standard 

hard classification. The new super-resolution mapping method proposed in this chapter 

also maintained information on small lakes and so was able to identify and characterise 

more lakes than the established method. It was also shown that the use of a series of 

images rather than a single image can increase the accuracy of super-resolution mapping. 

This allows researchers to exploit the typically fine temporal resolution of coarse spatial 

resolution sensors for land cover mapping applications.  

 



  

 

 

8. Conclusions  

This thesis has been concerned with increasing the accuracy of super-resolution 

mapping of land cover from remotely sensed imagery. Two standard super-resolution 

mapping techniques were used: HNN and pixel swapping. Both techniques, especially 

the HNN, have been widely used in representing land cover patches from coarse spatial 

resolution imagery. In addition, a novel super-resolution mapping technique based on a 

halftoning concept is also proposed, developed and compared with the standard 

techniques.  

Representation of land cover patches smaller than an image pixel is a very 

challenging task and poses some crucial problem even for existing standard super-

resolution mapping techniques. There are not many published works about the 

representation of land cover patches smaller than an image pixel. Most of the attention 

of the previous works focuses on land cover patches larger than an image pixel. Not 

only do the existing techniques have difficulty in representing small land cover patches, 

they also have high difficulty in locating the patches  

This chapter presents the main innovations of this thesis by summarizing several 

important findings presented in Chapter 4, 5, 6, and 7.  
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8.1. Summary 

The overall aim of this thesis was to represent land cover patches of different sizes, 

shapes and spatial configuration of landscape mosaic, although the attention is focused 

especially on the small land cover patches. Most previous works assumed that the land 

cover patches are large. For instance, the parameter settings of the HNN only suitable 

for the representation of the large land cover patches. The effects of the parameter 

settings have not been fully investigated. Experiments in Chapter 4 demonstrated that 

the HNN was good for the representation of large land cover patches but poor for the 

small patches. However, the parameter settings for the HNN can be adjusted for the 

small patches. By placing more emphasis on the area proportion constraints than the 

goal functions of the HNN, and setting high iteration number, land cover patches 

smaller than a pixel can be represented.  

 Even when the small land cover patches can be represented, inaccurate spatial 

location prediction may increase the spatial variability of the patches. Consequently, the 

accuracy of the site specific assessment may be decreased, although the non-site specific 

assessment may be increased. This scenario could lead to the misinterpretation in the 

decision making when only one type of assessment is employed. Chapter 5 

demonstrated that by using a fusion of multiple sub-pixel shifted coarse spatial 

resolution images with the HNN and pixel swapping techniques, the representation of 

small land cover patches can be predicted at accurate locations, increasing both the site 

and non-site specific accuracy assessments.  
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 The HNN and pixel swapping algorithms were applied to MODIS 250 m 

imagery in Chapter 6. Here, the best outcomes derived from two different HNN 

configurations were combined. The first HNN placed equal emphasis on the goal 

functions and the area proportion constraint, HNN(E). The HNN(E) was suitable for 

large land cover patches representation. The second HNN placed more emphasis on the 

area proportion constraint than that of the goal functions, HNN(A). The HNN(A) was 

suitable for small land cover patches representation. The combination of the two HNNs 

was called HNN2. This chapter also demonstrated that applications that used a fusion of 

time series MODIS 250 m images tended to produce better results in a series of 

assessments than by using only a single MODIS image.   

 A novel super-resolution mapping technique based on halftoning concept 

presented in Chapter 7 offers a different paradigm than many of the current techniques. 

In this chapter, an orderly initial allocation of the hard classifier at a sub-pixel scale 

inside a mixed pixel leads to the determination of apparent spatial frequency 

components, which could be exploited using frequency domain based techniques such as 

a 2D multiple notch filter. The number of iteration of this technique was lower than that 

in the HNN and pixel swapping techniques. This chapter also demonstrated the 

applications of the novel technique using MODIS 250 m imagery for lake 

characterization.  

 In addition, all the results obtained suggest considerable potential to enhance the 

value of coarse spatial resolution imagery such as MODIS 250 m for land cover 

mapping and patches representation.  The focus of this thesis is on the application of 

representing lakes. Across the Arctic, there are abundance of lakes, but many of them 
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are shrinking and even vanished and turned into vegetation. The extent of the area 

across the Arctic region is wide; therefore observations on this region required remote 

sensing systems with wide coverage, such as MODIS, MERIS, and AVHRR (Weiss and 

Crabtree, 2011). Images of these systems are typically of coarse spatial resolution. 

Using super-resolution mapping on these images may increase the accuracy of earth 

observations.  

 Several parameters estimated from the lakes, such as area, perimeter, and spatial 

configuration of the landscape mosaic can be linked to the evaluation of environmental 

and ecological systems on that region. As water is essential for living creature, such as 

human and animals, the estimation of the area and the length of the shoreline of the 

lakes may provide linkage to the estimation of population of animals and their 

ecological systems in that region. The estimation accuracy of the ecological systems can 

be increased when the characteristics of the lakes is highly accurate.  

 Estimation of the area, perimeter and spatial configuration of landscape mosaic 

of lakes can also be useful to study the disappearing pattern of the Arctic lakes, which 

can be assessed by comparing images of different years or even decades. Based on the 

lakes characterization, the rate of the lake shrinkage can be estimated. This phenomenon 

may have several impacts on the wildlife, the environment, the weather and the ocean 

circulation pattern. The earlier indicator resulted from the shrinking and the vanishing 

phenomenon will be on the migratory of birds, fish and other wildlife. Therefore, the 

advantages of the super-resolution mapping can also be expanded to ecological and 

environmental studies (Cott et al., 2008). 
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8.2. Contributions 

The main achievements of this thesis can be outlined as follows: 

 Highlighting a limitation of the HNN for the representation of small land cover 

patches.  

 Improvement on the standard HNN for the representation of small land cover 

patches. 

 Identifying the best parameters of the HNN for the representation of land cover 

patches of different sizes, shapes and mosaic.  

 Highlighting limitations of the HNN and pixel swapping for predicting the 

spatial location of land cover patches.  

 A novel algorithm based on a derivation of quadrants in a mixed pixel that helps 

to predict the spatial location of the land cover patches.  

 An approach that uses a fusion of time series coarse spatial resolution images as 

input data for super-resolution mapping techniques. 

 A novel technique based on the Halftoning concept that provides low iterative 

solution for the land cover mapping at a sub-pixel scale.  
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8.3. Future works 

Results obtained from this study suggest a considerable potential for extending the 

investigation of the HNN2 and the new super-resolution mapping technique based on the 

halftoning concept. Although the experiments conducted are limited to binary 

classification, the improved HNN and the new super-resolution mapping technique 

based on halftoning concept can be used for multiclass applications provided that 

multiple spectrum bands of remotely sensed imagery are available. The binary class 

representation demonstrated in this chapter also is not limited to the lakes representation, 

but can be extended to binary related situations, such as deforestation, flooding, diseases 

and many more.  However, multiclass super-resolution mapping solution will provide 

more widely applications than the binary super-resolution mapping solution.  In relating 

to the representation of small land cover patches, representing several land cover of 

different classes inside a mixed pixel will ultimately solve one of the mixed pixel 

problem, which is the existence of multiclass sub-pixel sized land cover. Therefore, 

allowing different small land covers, such as small lakes, small area of vegetation, and 

small area of urbanization to be represented using an integrated solution, and not 

representing them separately using the binary super-resolution mapping solutions.  

   Several parameters of the HNN2 and the halftoning based super-resolution 

mapping techniques need further refinements. For the HNN2, the refinements should 

minimize the number of iteration. Low number of iteration would be beneficial 

especially for applications that use large datasets. For the halftoning based super-

resolution mapping technique, the refinements could possibly be on the improvement of 
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the dither matrix, used to create a dot pattern, and the 2D multiple notch filter in order to 

minimize artefacts.   

 The algorithm for the image fusion also needs to cater for images of different 

spatial resolution. Here, the quadrant algorithm in Chapter 5 needs to be improved in 

order to derive quadrants of different sizes and shapes.   

 In this thesis, two types of remotely sensed imagery from two different sensors 

were used. The first was the near infrared band of the Terra MODIS 250 m images with 

the wavelength is 0.841-0.876 µm. Second, the near infrared band of the Landsat ETM+ 

30 m image with the wavelength is 0.750-0.900 µm. The Landsat image was used as a 

ground data. The relative spectral response (RSR) of the MODIS and Landsat ETM+ 

sensors may be different and need to be investigated.  To ensure that the results of 

super-resolution mapping that uses the input MODIS imagery closely resemble the 

mapping of land covers in the Landsat image (ground data), the spectral band of the 

MODIS imagery need to be adjusted with regard to the spectral band of the Landsat 

image in order to provide more accurate cross-calibration between the sensors (Chander 

et al., 2010). This pre-processing stage may increase the accuracy of super-resolution 

mapping. This approach may also be applied to different remote sensing images.     

In wider scale, the HNN2 and the halftoning based super-resolution mapping 

techniques can potentially be applied to the low cost coarse spatial resolution image 

systems to provide information to support global monitoring systems, such as in relation 

to issues such as land cover change and global warming.  Typically, the coarse spatial 

resolution image has fine temporal resolution allowing the monitoring of the dynamic of 
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the land cover such as lakes over a period of time. Historical archived satellite images 

can be compared with contemporary satellite data to monitor ongoing changes of the 

Arctic lakes (Riordan et al., 2006). The changes of the landscape in that region or even 

in other regions may be explored in the future as new directions for the super-resolution 

mapping techniques.  
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