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Abstract 

 

Previously, acyl derivatives of CoA were shown to antagonise 

human native and recombinant P2Y1 purine receptors. The main 

aim of this thesis was to study the effect of these endogenous 

nucleotide derivatives at endogenous P2Y1 receptors in blood 

vessels. Using isometric tension recordings, CoA, acetyl-CoA and 

palmitoyl-CoA (PaCoA) appeared to show selectivity for P2Y1 

receptors (over P2Y2 and adenosine receptors) in the rat isolated 

thoracic aorta, with PaCoA being the most potent of the CoA 

derivatives used.  

In porcine isolated mesenteric arteries (PMA) and porcine 

isolated coronary arteries (PCA), isometric tension recordings 

indicated that ADP mediated endothelium-dependent and 

endothelium-independent relaxations, respectively. Relaxations 

in PMA were blocked by the P2Y1 receptor antagonist MRS2500 

and PaCoA, whilst these were ineffective against ADP relaxations 

in the PCA.  

A FlexStation was used to monitor calcium responses in native 

HEK293 cells expressing P2Y1 and P2Y2 receptors using ADP 

and UTP, respectively. Responses to UTP were not significantly 

altered in the presence of PaCoA. In contrast, ADP-evoked 
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responses were significantly inhibited in the presence of either 

MRS2500 or PaCoA.  

These data raise the possibility of an endogenous selective 

antagonism of P2Y1 receptors via CoA compounds, irrespective 

of species or cellular environment.   

 

Nicotinamide adenine dinucleotide (NAD) is an intracellular 

nucleotide which has been identified as an agonist at P2Y1, 

P2Y11, P2X and adenosine receptors. NAD evoked endothelium-

independent concentration-dependent contractions of the pre-

contracted PMA, which were unaltered in the presence of PaCoA. 

In contrast, αβ-methylene ATP (a desensitizing P2X receptor 

agonist) significantly reduced these responses suggesting the 

involvement of P2X1-like receptors. 

 

In both RTA and PCA, NAD evoked endothelium-independent 

concentration-dependent relaxations of the pre-contracted 

vessels, which were attenuated by SCH58261, but not PaCoA, 

which suggests the involvement of smooth muscle A2A receptors. 

These results together emphasise the possibility of a tissue and 

receptor-specific role of NAD as an endogenous extracellular 

nucleotide in purinergic signalling. 
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1.1  A Brief Historical Introduction 

 

It was in 1929 when the extracellular signalling function of purine 

nucleotides and nucleosides was first recognized, with the report of 

Drury and Szent-Gyorgi, who showed that adenosine and adenosine 5‟-

monophosphate (AMP) can have potent physiological effects such as 

slowing the heart rate, dilatation of the coronary vessels and inhibition 

of intestinal movements (Drury and Szent-Gyorgyi, 1929). This 

aroused interest in this group of compounds and the work was 

extended by a study of the structure-activity relationships of adenine 

compounds by Gillespie. He showed amongst other things that the 

removal of phosphate from AMP does not lessen its activity so 

markedly as deamination and that the biological activity disappears 

from the compounds when the pentose is split from the purine base 

(Gillespie, 1934). 

 

A number of other studies followed, showing diverse effects of purines 

on the cardiovascular system and were reviewed in 1950 (Green and 

Stoner, 1950). In 1959, Holton was the first to present a role for ATP 

as a transmitter in the nervous system by demonstrating its release 

during antidromic stimulation of sensory nerves supplying the rabbit 

ear artery (Holton, 1959) 
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The interest in this family of compounds expanded to include the 

pyrimidine nucleotides through investigation of the cardiovascular 

effects of uridine triphosphate (UTP), with these early studies showing 

that purines and pyrimidines have characteristic vascular activity 

(Hashimoto et al., 1964, Sakai et al., 1979). 

 

Several purine dinucleotides such as β-nicotinamide adenine 

dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate 

(NADP) have also been shown to have potent actions on diverse 

tissues. NAD was recently shown to be released in a variety of smooth 

muscle tissues during stimulation of sympathetic nerves terminals in 

canine isolated mesenteric artery, blood vessels, urinary bladder and 

murine colonic muscles and was described as a neurotransmitter or 

neuromodulator (Smyth et al., 2004, Smyth et al., 2006, Breen et al., 

2006, Mutafova-Yambolieva et al., 2007).  

 

In 1957 Boettge published an extensive review describing the 

physiological and pharmacological significance of adenyl compounds in 

humans (Boettge et al., 1957). This was followed by a hypothesis 

proposed in 1963 by Berne, which suggested that adenosine was the 

physiological mediator of the coronary vasodilatation associated with 

myocardial hypoxia (Berne, 1963). Burnstock presented an alternative 

hypothesis that ATP released from endothelial cells acts via endothelial 

P2 receptors to cause a release of nitric oxide (NO) which results in 
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vasodilatation, and that adenosine is involved only in the longer-lasting 

component of reactive hyperaemia (Burnstock, 1993). 

 

It was in the early 1960s that non-adrenergic, non-cholinergic (NANC) 

neurotransmission was first noticed and many studies were carried out 

in order to try to identify the nature of this response in different tissues 

such as guinea-pig taenia Coli (Burnstock et al., 1963, Burnstock et al., 

1964, Burnstock et al., 1966, Martinson and Mauren, 1963). Evidence 

was presented that ATP was the molecule released from NANC nerves and 

responsible for NANC neurotransmission. This was followed later with the 

proposal of the term „purinergic‟ stating that adenosine triphosphate or a 

related nucleotide is the transmitter involved in NANC and sympathetic 

neurotransmission in a wide variety of systems (Burnstock et al., 1970, 

Burnstock et al., 1972, Burnstock, 1972). 

 

The purinergic hypothesis met with huge resistance from many 

scientists since ATP was considered unlikely to have this role as an 

extracellular signalling molecule. ATP was known as an intracellular 

molecule and source of energy involved in a variety of metabolic cycles 

(Burnstock, 2006). It was almost 25 years later that the purinergic 

hypothesis became widely accepted (Burnstock, 1997). 

 

Purinergic receptors were first introduced by Burnstock in 1976 

(Burnstock, 1976). In 1978, he set the basis for distinguishing two types 

of purinoceptors. He suggested that these receptors should be classified 
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into two different types; P1 purinoceptors, at which adenosine is the 

primary ligand, and P2 purinoceptors, at which ATP and ADP are the 

principal ligands (Burnstock, 1978). P2 receptors are now known to be 

activated also by UTP, UDP, UDP-glucose and other nucleotide sugars. 

Both P1 and P2 receptors may involved in physiological responses to ATP 

and ADP since adenosine can be derived from them in metabolic 

breakdown. 

 

P1 and P2 receptors for purines and pyrimidines are now known to be 

expressed in a wide range of biological systems including the central 

and peripheral nervous systems, respiratory, gastrointestinal and 

cardiovascular systems and mediate a variety of diverse effects 

including regulation of contractility, neurotransmission, immune 

function and cell migration and proliferation. 
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1.2  Purine Receptors 

1.2.1  P1 Receptors 

 

Four subdivisions of P1 receptors have been identified; namely A1, A2A, 

A2B and A3 (Table 1). All P1 receptors are G protein-coupled receptors 

with 7 transmembrane domains which are connected by extracellular and 

intracellular hydrophilic loops. The seven transmembrane domains are 

composed of hydrophobic amino acids, each having 21-28 amino acids 

combining together to form an α-helix, with the N-terminal lying on the 

extracellular side and the C–terminal lying on the intracellular side of the 

membrane (Ralevic and Burnstock, 1998). Their signal transduction 

mechanism is through multiple intracellular effectors in response to 

nucleoside activation. The main distribution, agonists, antagonists and 

G-protein coupling for each subtype is shown in Table 1. 

 

1.2.2  P2 Receptors 

 

P2 receptors are divided into two classes based on whether they are 

ligand-gated ion channels, named P2X receptors (ionotropic), or are 

coupled to G proteins, named P2Y receptors (metabotropic). This was  
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based on studies of the mechanisms of signal transduction and the 

cloning of receptors (Abbracchio and Burnstock, 1994, Fredholm et 

al., 1994) (Table 1). Unfortunately, pharmacological characterisation of 

endogenous P2 receptors is limited by overlap in their agonist 

selectivities, general lack of selective antagonists and metabolic 

interaction of nucleosides and nucleotides. 

 

Studies of native P2 receptors had shown significant heterogeneity in 

the pharmacological responses indicating the presence of different 

subtypes of P2 receptor. To date, there are seven subtypes of the P2X 

(P2X1–7) family and eight subtypes of the P2Y (P2Y1,2,4,6,11,12,13,14) family; 

the missing numbers represent either receptors having partial 

sequence homology to P2Y receptors but having no functional 

evidence of activation by nucleotides, or they are non-mammalian 

orthologues. The cloning of the first two P2 receptors, P2Y1 and P2Y2 

provided the basis for a revision in receptor nomenclature and a basis 

on which to identify native P2 receptor subtypes (Webb et al., 1993, 

Lustig et al., 1993). The P2Y12 receptor found principally on platelets 

was not cloned until more recently (Hollopeter et al., 2001); it has only 

19% homology with the other P2Y receptor subtypes hence it was 

proposed that it represented one of a subgroup of P2Y receptors, 

including P2Y13 and P2Y14; for this subgroup signal transduction is 

entirely through adenylate cyclase (Abbracchio et al., 2003). Therefore 

it has been suggested that P2Y receptors can be subdivided into two 

subgroups; one that includes P2Y1,2,4,6,11, the other includes P2Y12,13,14; 
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this largely depends on the structural and phylogenetic criteria 

(Abbracchio et al., 2003). 

 

1.2.2.1  P2X Receptors  

 

There are seven P2X receptor subtypes (P2X1-7) that have been cloned. 

P2X receptors are ATP-gated ion channels that mediate rapid and 

selective permeability to cations; Na+, K+ and Ca2+ (North, 1996, Bean, 

1992, Dubyak and el-Moatassim, 1993). This goes with their role as 

mediators of fast excitatory neurotransmission to ATP in the central 

and peripheral nervous systems. The receptor subunits are composed 

of two transmembrane domains, an extracellular loop and two 

intracellular domains. The extracellular loop is composed of 10 

cysteine residues, 14 glycine residues and 2-6 N-linked glycosylation 

sites. The extracellular loop contains the ATP binding site (Jiang et al., 

2000) and a site where a potential antagonist can bind (Garcia-

Guzman et al., 1997). It has a hydrophobic H5 region that is located 

on the entrance to the pore. This area could have a role in the 

regulation and modulation of the channel through various ions such 

as Cu2+, Ca2+, Mg2+ and Zn2+. Disulfide bridges may form the 

structural constraints needed to couple the ATP-binding site to the ion 

pore. 
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The subunits of the P2X receptors can be homomeric (composed of 

identical subunits) or heteromeric (composed of different subunits) and 

their properties vary with each individual subunit. For example it has 

been shown that P2X2 and P2X3 proteins can combine to form a 

functional P2X2/3 heteromeric receptor (Lewis et al., 1995, Ralevic and 

Burnstock, 1998, Radford et al., 1997). Functional P2X receptors appear 

to be composed of three subunits (Stoop et al., 1999, Nicke et al., 1998, 

Jiang et al., 2003). The signal transduction mechanisms for the receptor 

seem to start after the activation of the P2X receptor where a rapid 

nonselective passage of cations (Na+, Ca2+, K+) crosses the cell membrane 

which results in the generation of excitatory junction potentials and an 

increase in Ca2+ levels inside the cell ending in membrane depolarisation 

(Bean, 1992). If this depolarisation reaches a threshold it will lead to the 

activation of L-type voltage gated Ca2+ channels in addition to calcium-

stimulated tyrosine kinases which activate MAP kinases that modulate 

transcriptional processing (Boarder and Webb, 2001a). P2X receptors are 

located in various tissues in the body; smooth muscle cells, nerves, 

endothelial cells in blood vessels, immune cells, glands and glial cells. 

Table 1.1 shows the main distribution, agonists, antagonists and signal 

transduction mechanism for each subtype of P1 and P2 receptor. 
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Table 1.1 Characteristics of purine-regulated receptors. 

Receptor Main Distribution Selective agonists 
Selective 
antagonists 

Principle 
transduction  

P1 
(adenosine)         

A1 Brain, spinal cord, 
testis, heart, 
autonomic nerve 
terminals 

CPA, CCPA, S-
ENBA, 

PSB36, DPCPX, Gi/o   

GR79236 SLV320 

A2A Brain, heart, 
lungs, spleen, 
blood vessels 

CGS21680, 
HENECA, 

SCH58261, 
ZM241385, KW 
6002 SCH442416 

GS  

ATL-146e 

A2B Large intestine, 
bladder, blood 
vessels 

Bay60-6583 PSB603 , 
MRS1754, 
MRS1706, 

GS   

PSB1115  

A3 Lung, liver, brain, 
testis, heart 

2-Cl-IB-MECA, IB-
MECA 

MRS1220, 
VUF5574, 
MRS1523, 
MRS1191  

Gi/o 

P2X 
        

P2X1 Smooth muscle, 
platelets, 
cerebellum, dorsal 
horn spinal 
neurons 

L-βγ-meATP, αβ-
meATP, 

TNP-ATP (non- 
slelective), IP5I, 
NF023, NF449 

Intrinsic 
cation 
channel (Ca

2+
 

and Na
+
) 

BzATP 

P2X2 Smooth muscle, 
CNS, retina, 
chromaffin cells, 
autonomic and 
sensory ganglia 

- - Intrinsic ion 
channel 
(particularly 
Ca

2+
) 

P2X3 Sensory neurons, 
NTS, some 
sympathetic 
neurons 

αβ-meATP, BzATP TNP-ATP (non-
selective), 

Intrinsic 
cation 
channel 

A317491, RO3 

P2X4 CNS, testis, colon - - Intrinsic ion 
channel 
(especially 
Ca

2+
) 

P2X5 Proliferating cells 
in skin, gut, 
bladder, thymus, 
spinal cord 

- - Intrinsic ion 
channel 

P2X6 CNS, motor 
neurons in spinal 
cord 

- - Intrinsic ion 
channel 

P2X7 Apoptotic cells in, 
for example, 
immune cells, 
pancreas, skin 

- Brilliant Blue G, 
A804598, 
A839977, 

Intrinsic 
cation 
channel and 
a large pore 
with 
prolonged 
activation 

decavanadate, 
KN62, A740003, 
A438079 
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P2Y         

P2Y1 Epithelial and 
endothelial cells, 
platelets, immune 
cells, osteoclasts 

2-MeSADP, 
ADPβS, 

MRS2179, 
MRS2500, 
MRS2279, PIT 

Gq/11 

MRS2365  

P2Y2 Immune cells, 
epithelial and 
endothelial cells, 
kidney tubules, 
osteoblasts 

2-thio-UTP, 

UTP S, Ap4A  

- Gq/11 

P2Y4 Endothelial cells UTP S ATP Gq/11 

P2Y6 Some epithelial 
cells, placenta, T 
cells, thymus 

3-Phenacyl-UDP, 
UDP 

MRS2578 Gq/11 

      MRS2567    

P2Y11 Spleen, intestine, 
granulocytes 

ARC67085, NAD, 
NAADP, 

NF157 Gs, Gq/11 

P2Y12 Platelets, glial 
cells 

ADP, 2-MeSADP ATP, ARL66096 Gi/o 

          

P2Y13 Spleen, brain, 
lymph nodes, 
bone marrow 

- MRS2211 Gi/o 

P2Y14 Placenta, adipose 
tissue, stomach, 
intestine, discrete 
brain regions 

MRS2690 - Gi/o 

 

Shown are receptor subtypes for purines and pyrimidines: distribution, agonists, 

antagonists, and transduction mechanisms. BBG, Brilliant blue green; BzATP 2‟- & 3‟-

O-(4-benzoyl-benzoyl)-ATP; CCPA, chlorocyclopentyl adenosine; CPA, 

cyclopentyladenosine; CTP, cytosine triphosphate; IP3, inosine triphosphate; Ip5I, di-

inosine pentaphosphate; 2-MeSADP, 2-methylthio ADP; 2-MeSATP, 2-methylthio ATP; 

NECA, 5‟-Nethylcarboxamido adenosine; PLC, phospholipase C; RB2, Reactive blue 2. 

P2X receptor subtype agonist potencies are based on rat preparations, while P1 and 

P2Y receptor subtype agonist potencies are based on human preparations. Adapted 

from (Burnstock, 2007). 

 

 

 

 



1: General Introduction  

 

11 
 

 

1.2.2.2  P2Y Receptors 

 

P2Y receptors are G protein-coupled receptors composed of 308-377 

amino acids. They have seven transmembrane domains with 

hydrophilic loops connecting them on the extracellular and 

intracellular sides, they have an extracellular N terminus and 

intracellular C terminus which has binding sites for protein kinases. 

There are great levels of homology in the transmembrane-spanning 

region sequences but there is a great structural diversity in the 

intracellular loops and the C terminus between the subtypes which 

leads to a variation in the extent of G protein coupling. Stoichiometric 

investigation of this receptor have indicated that the P2Y1 receptor is 

able to heterodimerise with the A1 receptor (Yoshioka et al., 2002). 

 

Primary sequencing of the P2Y1 receptor and the use of the structural 

homologue rhodopsin has characterised positively charged amino acid 

residues in transmembrane regions 3, 6, and 7 that can be involved in 

ligand binding by electrostatic interactions with the phosphates of ATP 

(and presumably ADP) (Van Rhee et al., 1995, Jiang et al., 1997). 

Mutagenesis of the P2Y2 receptor to convert positively charged amino 

acids in transmembrane regions 6 and 7 to neutral amino acids 

causes a 100- to 850-fold decrease in the potency of ATP and UTP,  
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which indicates a role for these amino acids in binding purines and 

pyrimidines (Erb et al., 1995). 

 

P2Y receptors act via G protein coupling. The G proteins can be 

classified according to their sequence homology and function into 4 

families: Gs, Gq/11, Gi/o, G12/13. Each family binds predominantly to 

different second messenger signalling pathways (Neves et al., 2002). 

 

Although most P2Y receptors act via G protein coupling to activate 

phospholipase C (PLC) (Boyer and Harden, 1989), there are examples 

where the P2Y receptor is coupled to the inhibition of adenylyl cyclase 

(Boyer et al., 1996b, Boyer et al., 1993, Webb et al., 1996, Boyer et al., 

1994, Boyer et al., 1995). The activation of PLC can eventually lead to 

the formation of inositol 1,4,5-trisphosphate (IP3) and mobilization of 

intracellular Ca2+ and the activation of other pathways such as protein 

kinase C (PKC), mitogen activated protein kinase pathways, 

phospholipase A2, nitric oxide synthase and calcium dependent 

potassium channels. Since there are second messenger systems 

and/or ionic conductances mediated by G protein coupling, the 

response time of P2Y receptors is longer than that mediated by P2X 

receptors. 
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P2Y purine receptors have a wide distribution and mediate responses 

in various tissues. For example, P2Y receptors are found in different 

regions of kidney glomeruli, tubules and collecting ducts (Eltze and 

Ullrich, 1996, Dockrell et al., 2001, Cuffe et al., 2000, Bailey et al., 

2000, van Der Weyden et al., 2000, Cha et al., 1998, Huber-Lang et 

al., 1997). P2Y receptors are present in the brain, on both presynaptic 

sites and on glial cells (Webb and Barnard, 1999, Zundorf et al., 2001, 

Moran-Jimenez and Matute, 2000, Moore et al., 2000, Schafer and 

Reiser, 1999, Neary et al., 1999). They are also present throughout the 

cardiovascular system. The main distribution of the different subtypes 

of P2Y receptor is shown in Table 1.1. 

 

1.2.2.2.1  P2Y1 Receptors 

P2Y1 receptors were first cloned from chick brain (Webb et al., 1993). 

Table 2 shows the cloned P2Y1 receptors from different species. While 

the  activation of P2Y1 receptors is mostly associated with an increase 

in PLC activity (Boyer and Harden, 1989), there are examples where 

the P2Y1 receptor is coupled to inhibition of adenylyl cyclase activity 

(Boyer et al., 1993, Boyer et al., 1994, Boyer et al., 1995, Boyer et al., 

1996b). Some studies on glioma C6-2B and C6 cells have shown the 

presence of a P2Y1-like receptor that is coupled to the inhibition of 

adenylyl cyclase but is not effective in the activation of inositol 

phosphate accumulation (Schachter et al., 1996, Schachter et al., 

1997a). This resulted in the proposal that two different types of P2Y1-

like receptors exist; one coupled to PLC and another one coupled to 

adenylyl cyclase. Webb et al. (1996) concluded that a single P2Y1 
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receptor may be involved in different signalling pathways in different 

cell types, and that the two pathways do not coincide with each other 

(Webb et al., 1996).  

 

P2Y1 receptors respond to a variety of agonists: adenosine 5‟-O-

thiodiphosphate (ADPβS), 2-methylthio-ATP (2MeSATP), 2-methylthio-

ADP (2MeSADP) and ADP all have greater potency than ATP. The P2Y1 

receptor  is more sensitive to adenine nucleotide diphosphates than to 

triphosphates, while uridine di- and triphosphates are inactive (Leon 

et al., 1997, Boarder and Hourani, 1998). In contrast, the P2Y2 

receptor is activated by both ATP and UTP, while 2MeSATP and ADP 

have no effect. P2Y4 and P2Y6 receptors show some selectivity for UTP 

and UDP, respectively, while the P2Y11 receptor is selective for ATP but 

not UTP (Boarder and Hourani, 1998, Nicholas et al., 1996b, Webb et 

al., 1998). NAD also was shown to be an agonist at the P2Y1 receptor 

(Mutafova-Yambolieva et al., 2007).  

 

Heterogeneity in ligand binding at purine receptors includes both 

agonist and antagonists binding profiles. Pyridoxal-phosphate-6-

azophenyl-2′,4′-disulphonic acid (PPADS) acts as an antagonist at the 

P2Y1 receptor. In contrast, the P2Y2 receptor was shown to have 

species variation in sensitivity to this compound (Rayment et al., 

2007a). Recombinant P2Y1 receptors cloned from different species and 

tissues show different relative potencies to ATP and ADP as do their 

endogenous counterparts (Ralevic and Burnstock, 1998) (Table 1.2). 
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In blood vessels, P2Y1 receptors are found mainly on the endothelium, 

where they cause vasorelaxation through Ca2+-dependent activation of 

endothelial nitric oxide synthase (NOS) and generation of 

endothelium-dependent hyperpolarizing factor (EDHF) (Ralevic and 

Burnstock, 1998) (Figure 1.1). In contrast, contractile P2Y1 receptors 

are expressed in vascular smooth muscle cells (Pacaud et al., 1995, 

Erlinge et al., 1998), since P2Y1 receptors act primarily through 

activation of Gq/11 G-proteins which will lead to the elevation of [Ca2+]i 

and lead to smooth muscle contraction, rather than relaxation. 

 

Although ADP has been shown to produce a direct endothelium-

independent vasodilatation in varius tissues such as rabbit hepatic 

artery and human pulmonary artery, it is not clear whether this 

occurs through the P2Y1 receptor (Kennedy and Burnstock, 1985, 

Brizzolara and Burnstock, 1991, Liu et al., 1989, Burnstock and 

Warland, 1987). A study investigated the mechanism of ADP-induced 

relaxation of porcine coronary artery and suggested that ADP mediates 

relaxation via a novel mechanism that involves adenine nucleotide 

evoked adenosine release and the subsequent activation of A2A 

receptors (Rayment et al., 2007b). NAD has also been reported to 

evoke the release of adenosine in rat vas deferens, guinea-pig taenia 

coli and guinea-pig bladder (Stone, 1981). 
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P2Y1 receptors are colocalized in some cells with P2Y2 receptors; while 

ATP is a common agonist, the receptors may be distinguished as ADP 

is selective for the P2Y1 receptor, and UTP acts only at the P2Y2 

receptor. Endothelial cells express P2Y1 and P2Y2 receptors and may 

express P2Y4 receptors at which UTP is also an agonist (Burnstock, 

2004). It was concluded that more than one subtype of P2Y receptor 

can regulate responses in an individual endothelial cell (Boarder and 

Hourani, 1998). 
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Table 1.2 Cloned P2Y1 receptors. 

 

cDNA library source Agonist activity References 

Human brain 2MeSATP > ATP >> UTP Schachter et al., 1996 

Human prostate and ovary 2MeSATP > ATP = ADP Janssens et al., 1996 

Human placenta ___________ Le´on et al., 1995, 1997 

Human HEL cells ___________ Ayyanathan et al., 1996 

Bovine endothelium 2MeSATP = ADP > ATP >> UTP Henderson et al., 1995 

Rat insulinoma cells 

2MeSATP > 2Cl-ATP > ATP (αβ-meATP 

inactive) Tokuyama et al., 1995 

Rat ileal myocytes 

2MeSATP= 2ClATP > ADP >ATP (UTP 

inactive) Pacaud et al., 1996 

Mouse insulinoma cells ____________ Tokuyama et al., 1995 

Turkey brain 2MeSATP > ADP >ATP (UTP inactive) Filtz et al., 1994 

Chick brain 2MeSATP > ATP > ADP (UTP inactive) Webb et al., 1993b 

 

 

Adapted from Ralevic and Burnstock, 1998. 
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In pancreatic β cells, P2Y1 receptors are involved in insulin secretion 

(Loubatieres-Mariani and Chapal, 1988). P2Y1, P2Y12 and P2X 

receptors have been identified in platelets (Kunapuli and Daniel, 

1998). P2Y1 receptors are present on non-myelinating Schwann cells 

while P2Y2 receptors are found on myelinating Schwann cells (Mayer 

et al., 1998). 

 

P2Y1 and P2Y2 receptors have also been reported to be present on the 

membranes of rat liver isolated mitochondria and it was hypothesized 

that P2Y1 and P2Y2 receptors played a role in internal mitochondrial 

signalling and may contribute to calcium homeostasis (Belous et al., 

2004, Belous et al., 2006). ATP was shown to act intracellularly 

through the mitoKATP channel, ATP-regulated Ca2+ channels and ATP-

dependent anion channels (Belous et al., 2004, Brookes et al., 2004). 

It has also been shown that P2Y1, P2Y2 and P2Y12 receptors are 

present in mitochondria of rat astrocytes and glioma C6 cells 

(Krzeminski et al., 2007). Whether these intracellular P2Y receptors 

contribute to signalling by extracellular ATP has not yet been 

identified. 

 

Desensitization of P2Y1 receptors have been reported to involve 

phosphorylation by protein kinases and uncoupling from the 

associated G protein (Hardy et al., 2005, Rodriguez-Rodriguez et al., 

2009). Studying P2Y1 receptors in turkey erythrocyte membranes 

showed that desensitization with a t1/2 of 15 minutes occured which 
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was heterologous and involved multiple mechanisms, but not PKC or 

intracellular Ca2+ (Galas and Harden, 1995). 

 

1.3 Therapeutic significance of P2Y receptors 

 

It was suggested in several studies that modulators of members of the 

P2Y family of receptors can have therapeutic potential for the 

treatment of a variety of disorders such as cancer, cystic fibrosis, 

diabetes, and treatment of ischemia-reperfusion injury (Abbracchio 

and Burnstock, 1994, Burnstock and Williams, 2000). 

 

For P2Y1 receptors, their distribution and biological effects has 

revealed considerable information about their physiological 

significance. P2Y1 receptors are widely spread among human organs 

(Janssens et al., 1996). They have been identified on microglia 

(Norenberg et al., 1994), and on astrocytes (Salter and Hicks, 1995). 

Extracellular ATP activates microglia and astrocytes through P2Y1 

receptors and leads directly to the release of inflammatory mediators . 

(Fischer and Krugel, 2007) and astrocytes are believed to play a role in 

the progression of Alzheimer's disease and other CNS inflammatory 

disorders like multiple sclerosis and stroke. 
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P2Y1 receptors mediate many other effects including glycogenolysis in 

rat hepatocytes (Keppens and De Wulf, 1991), insulin secretion from 

pancreatic -cells (Bertrand et al., 1987, Hillaire-Buys et al., 1991, 

Hillaire-Buys et al., 1993, Hillaire-Buys et al., 1994), gluconeogenesis 

in renal cortical tubules (Cha et al., 1995), and renin secretion in 

renal cortical slices (Churchill and Ellis, 1993a, Churchill and Ellis, 

1993b, Jin et al., 1998) 

Platelets are known to express P2Y1, P2Y12, and P2X1 receptors 

(Hollopeter et al., 2001). P2Y1 receptors mediate platelet shape change 

and aggregation (Daniel et al., 1998, Hechler et al., 1998). There are 

established therapeutic drugs targetting purinergic antithrombotic 

drugs. The purinergic antithrombotic drugs clopidogrel and ticlopidine 

reduce the risks of recurrent strokes and heart attacks, especially 

when combined with aspirin (Kunapuli et al., 2003, Kam and Nethery, 

2003, Boeynaems et al., 2005). These drugs are antagonists at the 

P2Y12 receptor that mediates platelet aggregation (Gachet, 2001, 

Matsagas et al., 2003). A highly potent and selective antagonist for the 

P2Y1 receptor, MRS2500, has been shown to have antiaggregatory 

activity on human platelets (Cattaneo et al., 2004).  

 

ATP, ADP, UTP, and adenosine are released from platelets and 

endothelial cells by a variety of mechanisms (Kunapuli, 1998, 

Lazarowski et al., 2003). ATP and ADP are released in the heart during 

ischemia from cardiac myocytes, endothelial cells, red blood cells, 

platelets and sympathetic nerves (Gordon, 1986, Burnstock, 1989, 

Ralevic and Burnstock, 1998, Burnstock, 1993). The distribution of 
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P2Y1 receptors on the vascular endothelium indicates a role in the 

regulation of vascular tone, Figure 1. The administration of an 

intravenous injection of MRS2179 (a selective P2Y1 antagonist) was 

reported to result in prolonged bleeding time and inhibition of rat 

platelet aggregation in response to ADP (Baurand et al., 2001). In 

addition, mice treated with MRS2179 and P2Y1-deficient mice both 

showed a significant decrease in arterial thrombosis (Lenain et al., 

2003). Olivecrona et al. (2004) showed that in vivo adminstration of 

MRS2179 in pigs caused a selective inhibition of the P2Y1 receptor and 

of the 2-MeSADP mediated coronary flow increase. They showed that 

MRS2179 significantly reduced the increase in coronary flow caused 

by 2-MeSADP or reactive hyperemia in coronary arteries with no 

significant differences in blood pressure (Olivecrona et al., 2004).  
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Figure 1.1 Purinergic signaling controlling vascular tone. 

 

 

Figure 1.1 Purinergic signalling controlling vascular tone. A diagram illustrating 

the main receptor subtypes for purine and pyrimidines in blood vessels. 

Perivascular nerves release ATP as a cotransmitter: ATP is released with NA and 

neuropeptide Y (NPY) from sympathetic nerves to act on smooth muscle P2X1 

receptors resulting in vasoconstriction. P1(A1)-purine receptors on nerve 

terminals of sympathetic nerves mediate adenosine (arising from enzymatic 

breakdown of ATP) modulation of neurotransmitter release. Endothelial cells 

release ATP and UTP during shear stress and hypoxia to act on P2Y1, P2Y2, and 

P2Y4 purine receptors, leading to the production of NO and EDHF and 

subsequent vasodilatation. ATP, following its release from aggregating platelets, 

also acts on these endothelial receptors. Platelets possess P2Y1 and P2Y12 ADP-

selective purine receptors as well as P2X1 receptors.  For clarity, adenosine 

receptors on platelets and the smooth muscle have been omitted. 
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1.4 Acyl CoA derivatives as endogenous modulators 

 

Fatty acids and related lipids are engaged in cellular metabolism as 

acyl-CoAs. CoA and its acyl derivatives are essential cofactors in all 

living organisms (Leonardi et al., 2005).  Long-chain acyl-CoA esters 

can act as both substrates and intermediates in metabolism and as 

regulators of various intracellular functions. The structure of CoA, and 

its similarity to ADP, is shown in Figure 1.2. In the case of acetyl-CoA 

(AcCoA) (Figure 1.2b), palmitoyl-CoA (PaCoA) (Figure 1.2c) and oleoyl-

CoA (OlCoA) (Figure 1.2d) cleavage of the thioester bond of the CoA 

group yields acetic acid (2:0) (number of carbons/number of double 

bonds), palmitic acid (16:0) and oleic acid (18:1), respectively. Palmitic 

acid is the starting substrate for the synthesis of longer chain fatty 

acids and unsaturated fatty acids into triglycerides, phospholipids and 

cholesterol esters. 

 

Long chain acyl-CoAs are synthesized on the cytosolic face of many 

intracellular membranes resulting in a cytosolic pool where they are 

involved in various processes in the cell. Furthermore, fatty acid 

transport proteins (FATPs) have intrinsic acyl-CoA synthetase activity 

(Uchida et al., 1996, Steinberg et al., 1999a, Steinberg et al., 1999b, 

Coe et al., 1999). Acyl-CoA levels vary significantly in different 

metabolic condition such as diabetes, fasting, fat/glucose feeding and  
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digestion of hypolipidaemic drugs; it was suggested that 20-40% of the 

total fatty acyl pool is cystolic (Oram et al., 1975). The total cellular 

concentration of long chain acyl CoA esters was shown to be in the 

range of 5-160 µmol/L, and acyl CoA binding proteins (ACBPs) and 

fatty acid binding proteins (FABPs) keep the levels of free acyl CoA 

derivatives in a range of 0.1-200 nM intracellularly (Knudsen et al., 

2000).  
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Figure 1.2 Coenzyme A and its derivatives. In blue is the 

fraction of the Coenzyme A structure that is similar to adenosine 

diphosphate (ADP). 

 

 

 

 

 

 

 a. Coenzyme A b. Acetyl CoA c. Palmitoyl CoA d. Oleoyl CoA 

R1= H Acetate Palmitate Oleate 

Molecular 

Weight 

[g/mol] 

767.53 832.56 1005.94 1031.98 

Molecular 

Formula 

C21H36N7O16P3S C23H38N7NaO17P3S C37H66N7O17P3S C39H68N7O17P3S 
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Acyl-CoA is the ligand of acyl-CoA binding protein (ACBPs) that bind 

C14-C22 acyl-CoA esters with high affinity and specificity (Mogensen 

et al., 1987, Kragelund et al., 1999). ABPs were shown to mediate the 

intermembrane transport of acyl-CoAs (Rasmussen et al., 1994). 

ACBPs bind acyl-CoA with 3-4 times higher affinity than that of fatty 

acid binding proteins (FABPs) (Faergeman and Knudsen, 1997, 

Schroeder et al., 2008). Knockdown of ACBP in different cell lines 

caused disturbances in particular cellular functions such as growth 

arrest, impairment in adipocyte differentiation and lethality (Neess et 

al., 2011). In addition, overexpression of ACBP resulted in 

accumulation of triacylglycerol and some other lipid classes in the 

liver of transgenic mice (Neess et al., 2011). Furthermore, ACBPs were 

shown to affect the pool size of acyl-CoA (Schroeder et al., 2008). In 

malignant oesophageal tissue, ACBP genes were shown to be localised 

to endothelial cells in arteries within the connective tissue, while they 

were absent from these cells in the normal oesophageal submucosa 

(McCabe and Innis, 2005).  

 

Palmitoyl CoA hydrolase is an enzyme which utilizes acyl-CoAs as 

substrates and may affect the intracellular concentration of these 

compounds. The enzyme catalyzes the hydrolysis of acyl-CoAs from 6-

18 carbons. In the brain, long-chain acyl-CoA hydrolyzing activity of 

acylCoA hydrolase is much higher than that in any other organ in the 

body (Kurooka et al., 1972, Katoh et al., 1987, Kuramochi et al., 

2002). The catalytic and molecular properties of the long-chain acyl-
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CoA hydrolase present in rat and human brain was clarified (Broustas 

and Hajra, 1995, Broustas et al., 1996, Yamada et al., 1999b). In 

addition, the genomic organization of the human brain acyl-CoA 

hydrolase has also been described (Yamada et al., 1999a). It was 

found that the long-chain acyl-CoA hydrolase present in the brain is 

well-conserved in man and the rat (Yamada et al., 1999a). Although 

the potency of acyl-CoA hydrolases in the modulation of intracellular 

concentrations of acyl-CoAs may provide a regulatory mechanism for 

various cellular functions, the significance for any physiological 

function of brain acyl-CoA hydrolase is still unclear (Yamada, 2005). 

 

Long chain acyl-CoA esters were reported to have high affinity for 

membrane phospholipid bilayers (Powell et al., 1985). Acyl-CoAs were 

shown to associate with cell membranes by insertion of the fatty acyl 

chain into the bilayer core (Boylan and Hamilton, 1992, Peitzsch and 

McLaughlin, 1993). In this regard, PaCoA may be classified as other 

membrane associating surfactants such as lysolipids (Requero et al., 

1995b). The equilibrium partitioning of PaCoA into membranes is 

described by the partition constant Kp which is for PaCoA in the order 

of 1x105 M-1 (Peitzsch and McLaughlin, 1993, Requero et al., 1995a). 

The membrane partitioning of acyl-CoAs has previously been studied 

and OlCoA was shown to have no transbilayer movement in egg 

phosphatidylcholine vesicles (Boylan and Hamilton, 1992). Banhegyi 

et al. showed that PaCoA permeabilized rat liver microsomal vesicles 

(Banhegyi et al., 1996), however, other studies found no solubilization 



1: General Introduction  

 

28 
 

or leakage of egg phosphatidylcholine vesicles by PaCoA (Requero et 

al., 1995b). 

It was found that the oleoyl chain (18 carbons) effectively anchors the 

large CoA molecule to the phospholipid bilayer, while the octanoyl 

chain (8 carbon) results in only weak and transient binding of the CoA 

so it was suggested that the length of the acyl chain can control the 

affinity of the acyl-CoA compounds for membranes, and also their 

residence time in these membranes (Boylan and Hamilton, 1991).  

 

There are no reports describing the presence of acyl-CoA 

extracellularly, although it has been shown that PaCoA synthetase is 

present on the external surface of rat isolated hepatocytes (de Groote 

et al., 1996). However, in certain pathophysiological conditions such 

as heart ischaemia, endurance training, diabetes and acute ischaemic 

stroke (van Breda et al., 1992, Pelsers et al., 1999, Sambandam and 

Lopaschuk, 2003, Wunderlich et al., 2005), the cellular expression of 

FABPs is increased, leading to an overflow of these proteins into the 

blood such that the presence of these FABPs have been suggested to 

be markers of cellular damage. This raises the possibility that the 

FABP may also release the bound ligand into the serum. It was also 

reported that in certain pathophysiological states, high levels of acyl-

CoA accumulate and can cause irreversible damage to cellular 

membranes such as in heart muscle after ischemia and in liver during 

starvation (Bortz and Lynen, 1963, Whitmer et al., 1978). 
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The significance of studies on the effect of acyl-CoAs in vitro and their 

relevance to the situation in vivo has been questioned in some reports, 

where it was postulated that the effects of these compounds on 

cellular functions are caused by their detergent-like properties, 

resulting in rather nonspecific effects, without acting as direct 

homeostatic modifiers of enzymes (Srere, 1965, Taketa and Pogell, 

1966, Shafrir and Ruderman, 1974). However several other later 

reports have contradicted this and shown that acyl-CoA may play a 

regulatory role in vivo under certain circumstances (as shown below). 

Fatty acyl-CoA derivatives have been reported to be potent modulators 

of a variety of cellular functions, activity of transporters, receptors and 

enzymes (Schmidt, 1989). Acyl-CoA compounds were shown to inhibit 

adenine nucleotide translocation through inhibiting the adenine 

nucleotide translocase activity which was reported in heart and liver 

(McLean et al., 1971, Pande and Blanchaer, 1971, Shug et al., 1971, 

Lerner et al., 1972, Harris et al., 1972, Woldegiorgis et al., 1982). This 

can result in lowering of the energy charge of the cell, which may 

affect both muscle contraction and electrical conduction in heart 

(Shug et al., 1975).  

Furthermore acyl-CoAs modulate the activity of some other enzymes, 

receptors and transporters such as glucokinase (Tippett and Neet, 

1982b, Tippett and Neet, 1982a), carnitine palmitoyltransferase I 

(Agius et al., 1987), glucose-6-phosphatase (Fulceri et al., 1993a) and 

the nuclear thyroid hormone receptor (Li et al., 1990). PaCoA inhibited 

the activity of long chain acylCoA synthetase in a reversible manner 
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(Pande, 1973). Both secreted and cellular proteins of the endoplasmic 

reticulum require acyl-CoA derivatives for their acylation (Olson et al., 

1985, Simonis and Cullen, 1986). This reaction appears to have an 

important role in intracellular membrane trafficking (Pfanner et al., 

1989). Acyl-CoA derivatives were also shown to bind to the orphan 

nuclear hormone receptors hepatocyte nuclear factor-4α (HNF-4α) 

which may influence expression of HNF-4α-controlled genes (Hertz et 

al., 1998).  

 

Deeny et al. (1992) showed that acyl-CoA derivatives have a role also 

in the intracellular handling of Ca2+ (Deeney et al., 1992). They 

showed that long-chain acyl-CoA derivatives have a role in the 

cytosolic balance of free Ca2+ by the activation of ATP-dependent Ca2+ 

accumulation (Deeney et al., 1992). It was also shown that acyl-CoA 

derivatives reduced the GTP-induced Ca2+ release from liver 

microsomes (Comerford and Dawson, 1993). CoA and its fatty acyl 

derivatives were also shown to mobilize Ca2+ and play a role in 

regulating Ca2+ fluxes from the intracellular pool in liver (Fulceri et al., 

1993b).  
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1.4.1 Acyl-CoA in pathophysiological states 

Normally fatty acids are mainly used in well-oxygenated hearts (Neely 

et al., 1972, Neely and Morgan, 1974); during ischemia, the 

myocardium is forced to use anaerobic oxidation to oxidize glucose 

and stores fatty acids as triglycerides (Scheuer and Brachfeld, 1966). 

This suggests that a decrease in fatty acid oxidation after myocardial 

ischemia would lead to an accumulation of long chain acyl-CoA esters 

in heart muscle. Schwartz et al. reported that the failure of myocardial 

cells to oxidise large amounts of fatty acids in ischaemic heart can be 

noticed by the rise in acyl carnitine and acyl-CoA concentration in the 

mitochondria, while in the cytoplasm, the increase in acyl-CoA 

concentration can be caused by free carnitine deficiency in ischaemic 

myocardium (Schwartz et al., 1973).   

Furthermore, in pathological conditions such as type 2 diabetes and 

obesity, high circulating levels of free fatty acids lead to accumulation 

of acyl-CoAs in the cytosol (Golay et al., 1986, Reaven et al., 1988, 

Corkey et al., 2000), indicating that this class of compounds may 

contribute to the pathophysiology of obesity and susceptibility to type 

2 diabetes (Riedel and Light, 2005). Chronic free fatty acids exposure 

results in increased levels of acyl-CoAs within β-cells, adding to the 

decreased insulin output through many proposed mechanisms 

(Corkey et al., 2000) including that acyl-CoAs increase KATP channel 

activity (Larsson et al., 1996, Branstrom et al., 1997, Riedel et al., 

2003).  
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1.4.2 Effects of chain length and degree of 

saturation on acyl-CoA activity 

 

Branstorm et al. reported acyl-CoAs as potent activators of the KATP 

channel in human pancreatic β-cells; they also studied the effect of 

chain length of acyl-CoA and found that that only acyl-CoAs with 12 

carbons or more were active and reported a maximal activation of KATP 

channel by PaCoA (C16:0) and noted that there was no further 

increase following addition of OlCoA (C18:1). They also found that long 

chain acyl-CoA stimulated KATP channel activity in human pancreatic 

β-cells in both the inside-out and whole cell preparations which led 

them to the conclusion that these compounds can have an important 

modulatory role of human β-cell electrical activity under both 

physiological and pathophysiological conditions (Branstrom et al., 

2004). 

 

Some other reports studied the effect of side chain length and the 

degree of saturation of acyl-CoAs and found that increased acyl-CoA 

side-chain length and saturation led to increased KATP channel 

activity. They concluded that it is possible that dietary fat composition 

may affect the severity of impaired glucose-stimulated insulin 

secretion via differential activation of β-cell KATP channels (Riedel and 

Light, 2005).  
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Back in 1976, acyl-CoA was reported to inhibit ADP-induced platelet 

aggregation (Lin et al., 1976). A number of CoA derivatives were 

investigated in this study; PaCoA 16:0 and other 14:0, 180, 18:1 and 

18:2 derivatives; all these derivatives were more potent than CoA. 

OlCoA and other acylCoA derivatives were also reported to inhibit ADP 

and thrombin-induced platelets aggregation (Lascu et al., 1988). A 

more recent study has investigated  in more details the effects of CoA 

derivatives of different chain length and saturation in platelets 

(Manolopoulos et al., 2008) and this is discussed in the next section 

on modulation of P2Y1 purine receptors by acyl-CoA. 

 

1.4.3 Modulation of P2Y1 purine receptors by acyl-CoA 

 

The structural similarity between the endogenous P2Y1 receptor ligand 

(ADP) and CoA compounds (Figure 2) made it interesting to investigate 

the effect of these compounds on this receptor. Coddou et al., (2003) 

studied whether CoA and CoA derivatives, endogenously derived from 

fatty acids (CoA, AcCoA and PaCoA) or from metabolism of drugs 

(nafenopin-CoA (NafCoA), ciprofibroyl-CoA (CipCoA)), were antagonists 

at recombinant human P2Y receptors expressed in Xenopus laevis 

oocytes (Coddou et al., 2003). CoA was found to antagonize the ATP-

gated currents evoked via the P2Y1 receptor in a concentration-

dependent manner. They also found that of all the CoA compounds 

investigated, NafCoA was the most potent antagonist. In their study, 

they suggested from the structures of the CoA derivatives a possible 



1: General Introduction  

 

34 
 

interaction of the CoA moiety with the P2Y1 purine binding site. In 

addition, they suggested an additional binding site; a hydrophobic 

pocket close to the ligand-binding domain which may involve 

hydrophobic amino acid residues to interact with the hydrophobic 

acyl-substituent. It was reported that the purine binding site for P2Y1 

receptors has several amino acids on the transmembrane domains 3, 

6, 7 and charged amino acids that are part of the extracellular loops 2 

and 3 (Jiang et al., 1997, Hoffmann et al., 1999). Furthermore Major 

et al. (1999) reported the possibility of a hydrophobic pocket close to 

the the P2Y1 receptor ligand binding site; they  found that increasing 

the size of substituents at the C2 or C8 adenine in ATP ligands 

enhanced the affinity of these ligands towards the P2Y1 receptor 

(Major et al., 1999). 

 

In the Coddou et al. (2003) study, they also concluded that both 

higher hydrophobicity and higher bulkiness (lesser flexibility) are 

important for higher antagonist potency. This explains why the 

addition of only two carbons to CoA, as in AcCoA, does not increase 

the potency much compared to CoA because of the lack of bulkiness. 

This importance of the side chain length and hydrophobicity on the 

potency of acyl-CoAs agrees with some other previous reports which 

looked at the effects of side chain length and the degree of saturation 

of acyl-CoAs and found that increased acyl-CoA side-chain length and 

saturation led to increased potency of acyl-CoA compounds at 

different functions, such as in the activation of KATP channel (Riedel 

and Light, 2005).  
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Coddou et al. also tested the selectivity of acyl-CoA derivatives against 

P2X and P2Y2 receptors and showed that none of the CoA derivatives 

interacted with these receptors. They also investigated the action of 

these compounds against 5-HT2 receptors, since both the P2Y1 and 

the 5-HT2 receptors are coupled to Gq/11 and activate a Ca2+ dependent 

chloride channel, and concluded that these compounds probably 

interact with the P2Y1 protein rather than with the signaling pathway 

(Coddou et al., 2003). This study was done on human recombinant 

P2Y1 receptors. 

 

Other studies examined the effect of a number of CoA derivatives at 

endogenous P2Y1 and P2Y12 receptors on platelets; they studied the 

effect of PaCoA (16:0) in depth and showed that PaCoA is an 

antagonist mainly at P2Y1, but also at P2Y12 receptors (Manolopoulos 

et al., 2008). Furthermore, they studied the effect of chain length and 

saturation and found that compounds with saturated acyl groups 

containing 16-18 carbons were the most effective. It was concluded 

that acyl-CoA compounds may contribute as endogenous modulators 

of platelet function (Manolopoulos et al., 2008). The conclusion of 

Manolopoulos et al. about the effects of chain length on acyl-CoA 

activity also agrees with previous literature (Coddou et al., 2003, 

Riedel and Light, 2005). 

 

The effects of acyl-CoA at endogenous P2Y receptors in blood vessels 

are unknown.  
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There are a number of selective antagonists described for the P2Y1 

receptor, such as MRS2179 (Figure 1.3a), which has an IC50 of 0.3 M 

at P2Y1 receptors (Moro et al., 1998), MRS2279 with an IC50 of 51.6 

nM (Boyer et al., 2002) and MRS2500 (Figure 1.3b) with an IC50 value 

of 0.95 nM (Hechler et al., 2006). Nevertheless, it would still be useful 

to identify new compounds which may possess a greater half life in 

vivo and have a greater selectivity and potency at the P2Y1 receptor. It 

is interesting to note that, like CoA and its derivatives, the P2Y1 

receptor antagonists MRS2179, MRS2279 and MRS2500 have 

structural resemblance to the endogenous P2Y1 receptor agonist ADP. 

 

 

 

 

 

 

 

 

 

 



1: General Introduction  

 

37 
 

Figure 1.3 Chemical structure of MRS2179 (a) and MRS2500 (b), 

potent and selective antagonists of the P2Y1 receptor. 

 

a                                        b 
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Aims and Objectives 

The aim of present study was to investigate the effect of the 

endogenous “nucleotide”, PaCoA, on P2Y1 purine receptor-mediated 

responses in blood vessels of different species, namely the rat thoracic 

aorta (RTA), porcine mesenteric artery (PMA), porcine coronary artery 

(PCA), and in human embryonic kidney (HEK) cells using ADP as 

agonist. The effect of CoA and  acyl-CoA, AcCoA and OlCoA, were also 

tested. In addition, the present study aimed to test the selectivity of 

these compounds at these P2Y1 receptors. Furthermore, it was aimed 

to investigate the effect of another endogenous nucleotide, NAD, on P1 

and P2 receptors in RTA, PMA and PCA. Unlike ATP and ADP, the 

effect of NAD on purine receptors is not well explored. 

 

 

 



 

 
 

 

 

 

 

 

Chapter Two 

Effects of acyl-CoA on P2Y receptor-mediated 

vasorelaxations in rat thoracic aorta  

 

 

 

 

 

 

 

 

 

 

 

 

 



2: Effects of acyl-CoA in rat thoracic aorta 

 

39 
 

2.1 Introduction 

 

The effect of coenzyme A (CoA) and CoA derivatives were investigated 

and shown to be antagonists at recombinant human P2Y receptors 

expressed in Xenopus laevis oocytes (Coddou et al., 2003). CoA 

derivatives were found to antagonize the ATP-evoked currents 

mediated through the P2Y1, but not the P2Y2, receptor in a 

concentration-dependent manner (Coddou et al., 2003). Coddou et al. 

also found that of all the CoA compounds investigated (CoA, 

nafenopin-CoA, ciprofibroyl-CoA, acetyl CoA (AcCoA) and palmitoyl 

CoA (PaCoA)), nafenopin CoA was the most potent antagonist. This 

experiment was conducted using human recombinant P2Y1 receptors. 

Another study examined the effect of acyl-CoA at endogenous P2Y1 

and P2Y12 receptors on human platelets and concluded that PaCoA 

acted mainly at P2Y1, but also evoked a partial antagonism at P2Y12 

receptors and that it may function as an endogenous modulator of 

platelet function (Manolopoulos et al., 2008). The effects of these 

compounds at endogenous P2Y receptors in blood vessels are 

unknown. 

 

ADP induced relaxations are mediated by P2Y1 receptors on the 

endothelium of the rat thoracic aorta (Bultmann et al., 1998). The 

present study investigated, using the rat thoracic aorta, whether the 

relaxation mediated by ADP through the P2Y1 receptor in this tissue 

can be blocked with CoA and its derivatives, AcCoA and PaCoA. 
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Furthermore, it aimed to test the selectivity of these compounds for 

P2Y1 receptors, given that it has previously been shown that P2Y1, 

P2Y2 and A2 receptors are expressed on the endothelium of the rat 

thoracic aorta (Rose'Meyer and Hope, 1990, Hansmann et al., 1997). 
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2.2 Materials and Methods 

 

2.2.1 Rat thoracic aorta preparation and isometric tension 

recording of ADP and UTP responses 

 

Male Wistar rats (200-250 g), obtained from Charles River (England, 

UK), were used in this study. After stunning, they were killed by 

cervical dislocation. The rat thoracic aorta (RTA) was removed and 

placed in oxygenated Krebs-Henseleit solution (composition mmol/l: 

NaCl 118.4, KCl 4.7, MgSO4 1.25, CaCl2 1.2, NaHCO3 24.9, KH2PO4 

1.2, glucose 11.1) in order to rinse off any blood. RTA were then 

placed on a paraffin plate and covered with fresh Krebs-Henseleit 

solution and fine dissection was carried out to remove any excess 

connective tissue. Vessels were then cut into rings (3-4 mm in length). 

Sections from similar locations on each of the vessels used were taken 

each time for consistency. 

 

The rings were mounted gently (to make sure not to damage the 

endothelium) between two stainless steel wire supports one of which was 

attached by a cotton thread to an isometric force transducer (Abingdon, 

Oxfordshire, UK) which measured the tension in the vessels through its 

connection to a Power Lab bridge amplifier (AD instrument, Abingdon, 

Oxfordshire, UK). The other wire was linked to a glass support.  
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Rings suspended on the wire supports were put in water-jacketed 

organ baths which were maintained at a temperature of 37 °C by a 

circulating water heater. Baths were previously filled with 15 ml 

oxygenated (95% O2 and 5% CO2) Krebs-Henseleit buffer solution. 

Mounted rings were initially tensioned to 1 g and allowed to 

equilibrate for 30 min after which a further 1 g of tension was added 

and the rings left to equilibrate for another 30 min. 

 

After the equilibration period, KCl (60 mM) was added and the 

contraction noted once it reached a plateau (usually 15 min). The 

rings were then washed and left for 20 min to relax, after which, the 

same process was repeated. After contraction to the second exposure 

to KCl, the rings were washed and left for 1 h to relax. Only tissues 

which contracted to KCl to at least 0.4 g were used. The second 

contraction to KCl is the only one that was measured. 

 

After the 1 h relaxation period and in order to investigate the relaxant 

properties of the agonists used, the rings were preconstricted with 

methoxamine (0.3-2.0 µM) (Sigma Chemical Company) to a tension of 

55-75 % of the KCl contraction. Stepwise cumulative addition of 

agonist (ADP, UTP) (Sigma Chemical Company) to the preparations 

was then carried out. Each concentration of agonist was left in contact 

with the tissue for 3-6 min to reach a point where no further  
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relaxation was seen. At this point, the next concentration of agonist 

was added. 

 

For checking whether the responses were endothelium dependent or 

endothelium-independent, denudation was achieved by rubbing the 

lumen gently with forceps, and acetylcholine (100 nM) was used to 

assess success in removing the endothelium. Any vessel with a 

relaxation in response to acetylcholine of less than 10% of the 

methoxamine contraction was considered a denuded vessel.  

 

Time control experiments were performed using the same protocol; 

after contracting vessels with methoxamine they were left for an hour 

to check for any loss of tone. 

 

2.2.2 Effect of CoA and acyl-CoA on responses to ADP and UTP 

 

To investigate the possible antagonistic effects of PaCoA, AcCoA, CoA 

(Sigma Chemical Company) and MRS2179 (Tocris) on responses to ADP 

or UTP, these compounds were added after the 1 h relaxation period 10 

min before methoxamine addition. Relaxation–response curves to ADP 

and UTP were then generated as described previously. Only a single 

antagonist was investigated in any one blood vessel ring. 
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In studying the reversibility of the PaCoA antagonism, rings were 

tensioned, equilibrated, KCl added and preconstricted using the same 

protocol described above. Three rounds of addition of ADP (100 µM)  

were performed. In the first round, in the absence of PaCoA, ADP (100 

µM) was added and the response was recorded, after which rings were 

washed out and left for 1hr. Then PaCoA (10 µM) was added 10 min 

before reconstricting with methoxamine, then ADP (100 µM) was 

added to the organ bath and responses were recorded again. The rings 

were then washed again and left for 1 hr after which they were 

reconstricted with methoxamine again and the response to the same 

concentration of ADP was recorded to check the reversibility of the 

PaCoA antagonism. Control experiments were performed using a 

similar protocol, but in the absence of PaCoA. 

 

In separate experiments to check for any direct effect of PaCoA, 10 µM 

was added after contracting the vessels with methoxamine and left in 

the organ bath for 1 hr. Readings were taken every 6 min to check for 

any change in tone.     
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2.2.3 Materials 

The supplier for all chemicals in this work was British Drug Houses 

(BDH, UK) unless otherwise stated. Drugs were dissolved in distilled 

water.  

 

2.2.4 Statistical analysis 

The data were viewed and recorded using Chart for Windows v4.1. 

Results are expressed as mean ± SEM. Two way ANOVA was used for 

statistical comparisons with Bonferroni post-hoc test. A P value < 0.05 

was taken as statistically significant.  

 

 

 

 

 

 

 

 

 

 

 



2: Effects of acyl-CoA in rat thoracic aorta 

 

46 
 

2.3 Results 

 

Addition of KCl (60 mM) produced a sustained contractile response of 

RTA. The mean tissue response to KCl addition was 0.88  0.02 g 

(n=39). Methoxamine caused a sustained contraction to 55-80% of the 

KCl response. The mean bath concentration of methoxamine required 

to produce this level of contraction was 1.3  0.11 M (n= 39). 

 

2.3.1 Effect of ADP and UTP in rat thoracic aorta 

 

ADP and UTP (0.1 µM- 1mM) were added to the organ bath 

cumulatively. Both elicited concentration dependent relaxations in 

aortic rings precontracted with methoxamine (Figure 2.1). 

 

Figures 2.1a and 3 show the relaxation of rat aorta to ADP; trying to 

use 2 site curve fitting (Prism) to fit lines to the data was 

unsuccessful. One site curve fitting indicated a complete reversal of 

the methoxamine contraction by ADP with maximal relaxation 

observed typically at concentrations of 300 µM or greater. The 

response to ADP did not reach a maximum, but almost fully reversed 

the methoxamine-induced precontraction so approximate values of 

Rmax (103 ± 4), pEC50 (6.00 ± 0.12) and Hill slope (0.81 ± 0.07) (n=19) 

were calculated. Removing the endothelium caused a significant 

inhibition of the ADP-induced responses (Figure 2.1a). 
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In contrast, the response to UTP was biphasic with a peak relaxation 

at 3 µM; concentrations greater than this caused a reduced relaxation 

of the aortic rings (Figure 2.1b). As noticed from the curve, the slope 

was very steep unlike the case with ADP. Non linear analysis for 

responses up to a concentration of 3 M of UTP resulted in Rmax values 

of 94 ± 5, a pEC50 value of 6.64 ± 0.04 and Hill slope of 2.02 ± 0.20 

(n=8).  

Acetylcholine (100 nM) was used to assess endothelium removal. Any 

relaxation in response to acetylcholine of less than 10% of the 

methoxamine contraction was considered a success. There was a very 

slight relaxation (2 ± 0.4 %, n = 6) in response to acetylcholine in 

denuded vessels compared to the profound relaxation evoked in 

controls (65 ± 0.4 %, n = 10).  

 

 

 

 

 

 

 

 

 



2: Effects of acyl-CoA in rat thoracic aorta 

 

48 
 

Figure 2.1. Responses of the rat thoracic aorta evoked by a. adenosine 

diphosphate (ADP), in endothelium-intact and -denuded vessels, and b. 

uridine triphosphate (UTP) in endothelium-intact vessels. Vessels were 

precontracted with methoxamine. Data for ADP and UTP are mean  SEM 

(n=6-19, n= 8, for a and b, respectively). 
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2.3.2 Effect of CoA, acyl-CoA and MRS2179 on relaxations to ADP 

 

In the presence of PaCoA (10 µM), AcCoA (10 µM) and CoA (10 µM), the 

mean bath concentrations of methoxamine required to elicit 55-75% of 

the KCl contraction were unchanged when compared to the control (P> 

0.05, one way ANOVA): 1.42  0.18 M, n= 13; 1.56  0.16 M, n= 12; 

1.39  0.17 M, n= 11, for PaCoA, AcCoA and CoA, respectively. 

 

There was a trend for a rightward by CoA to the 

concentration:relaxation response curve to ADP (Figure 2.2a). 1 M, 3 

M and 10 µM CoA did not cause significant shift in the response to 

ADP (Table 2.1). Higher concentrations of CoA were not used due to 

cost considerations. 

 

AcCoA also caused a rightward shift in the concentration:relaxation 

response curve to ADP (Figure 2.2b). Analysis showed that a 

concentration of 10 µM AcCoA caused a 5-fold shift in the relaxations 

to ADP (Table 2.1). Concentrations of 1 M and 3 M CoA had no 

significant effect on the response to ADP. 

 

For PaCoA, a concentration dependent rightward shift in the 

relaxation response curve to ADP was found (Figure 2.2c, 2.3). Schild 

analysis showed that concentrations of 1, 3, 10 M PaCoA caused 
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shifts of 18-, 55- and 331-fold of the response to ADP, respectively 

(Table 2.1).  

 

Figure 2.2d shows the Schild plot for PaCoA; the calculated slope was 

1.73  0.4 with pA2 value of 6.44 ± 0.12 .A log pKB value of 5.32 ± 0.25 

for AcCoA was calculated (n =5). 

MRS2179 (1 M) caused a 29-fold rightward shift of the ADP response 

(Figure 2.4, Table 2.1), allowing calculation, using the Gaddum 

transformation, of an apparent pKB value of 7.32 ± 0.17 (n= 5). 

 

We tested the reversibility of the PaCoA (10 µM) inhibition of the 

response to ADP (100 µM), which was shown to be reversible (Figure 

2.5). The direct effect of PaCoA was assessed and it was shown that 

PaCoA had no direct effect on the RTA when compared to time 

controls (Figure 2.6). 
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Figure 2.2 Adenosine diphosphate (ADP) -evoked relaxation of the rat 

thoracic aorta in the presence of a. coenzyme A (CoA), b. acetyl CoA (AcCoA) 

and c. palmitoyl CoA (PaCoA). d. shows the Schild plot for these curves. 

Vessels were precontracted with methoxamine. Data are shown as mean  

SEM (n= 5-6, n= 6-7, n= 7, respectively). In figure (a) and (b) the data for 1µM 

CoA and AcCoA were removed for clarity. 
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Table 2.1. Effect of coenzyme A (CoA), acetyl CoA (AcCoA), palmitoyl CoA 

(PaCoA) and MRS2179 on ADP evoked relaxations of the rat thoracic aorta. 

Results are mean   SEM. 

 

Table 1 pEC50 Rmax Hill slope 

ADP (control) (n=5) 6.37 ± 0.06 104 ± 6 0.99 ± 0.15 

ADP+ CoA (1µM ) (n=6) 6.19 ± 0.10 111 ± 4 0.87 ± 0.19 

ADP+ CoA (3µM) (n=6) 6.44 ± 0.11 102 ± 5 1.21 ± 0.20 

ADP+ CoA (10µM ) (n=6) 5.74 ± 0.29 106 ± 7 0.84 ± 0.16 

ADP (control) (n=6) 6.19 ± 0.07 101 ± 4 1.0 ± 0.16 

ADP+ AcCoA (1µM) (n=7) 6.00 ± 0.14 98 ± 6 1.06 ± 0.18 

ADP+ AcCoA (3µM) (n=7) 5.54 ± 0.50 112 ± 6 1.07 ± 0.17 

ADP+ AcCoA (10µM) (n=7) 5.51 ± 0.15* 102 ± 14 0.70 ± 0.11 

ADP (control) (n=7) 6.09 ± 0.20 113 ± 7 0.97 ± 0.30 

ADP+ PaCoA (1µM) (n=7) 4.84 ± 0.36* 128 ± 7 0.64 ± 0.08 

ADP+ PaCoA (3µM) (n=7) 4.35 ± 0.26** 122 ± 7 0.81 ± 0.07 

ADP+ PaCoA (10µM ) (n=7) 3.57 ± 0.31*** 127 ± 16 0.80 ± 0.12 

ADP (control) (n=5) 6.37 ± 0.37 125.1 ± 10 0.71 ± 0.21 

ADP+ MRS2179 (1µM) (n=5) 5.07 ± 0.26* 102.3 ± 9 1.07 ± 0.07 
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Figure 2.3. A representative trace for the response of the rat thoracic 

aorta to adenosine diphosphate (ADP) in the absence and presence of 

palmitoyl coenzyme A (PaCoA). Vessels were precontracted with 

methoxamine.  
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Figure 2.4. The effect of MRS2179 on the relaxation of the rat thoracic aorta 

by adenosine diphosphate (ADP). Vessels were precontracted with 

methoxamine. Data are mean  SEM, (n=5). 
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Figure 2.5. Reversibility of PaCoA-mediated inhibition of ADP-evoked 

relaxation of the rat thoracic aorta.  After a control ADP relaxation and 

washout (round 1), ADP was added in the presence of palmitoyl CoA (PaCoA) 

(round 2) and after the washout of PaCoA (round 3). Control experiments 

were performed in the absence of PaCoA. Vessels were precontracted with 

methoxamine. Data are shown as mean  SEM (n= 8). 
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Figure 2.6. The effect of palmitoyl coenzyme A (PaCoA) in the rat 

thoracic aorta compared to time control. Readings were taken every 6 

minutes. Vessels were precontracted with methoxamine. Results are 

shown as mean  SEM (n= 4-5). 
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2.3.3 Effect of CoA, acyl-CoA and MRS2179 on relaxations to UTP 

 

In order to examine the selectivity of CoA analogues, UTP was 

employed as a vasorelaxant. When analyzing the data, this was done 

up to the concentration of 3 M of UTP (at higher concentrations UTP 

started to elicit contraction). 

 

Statistical analysis using two way ANOVA indicated that neither CoA 

(10 µM) nor AcCoA (10 µM) had a significant effect on the relaxation 

response to UTP (Figure 2.7a, b). 

 

For PaCoA, a concentration-dependent rightward shift in the 

relaxation response curve to UTP was observed (Figure 2.7c). There 

was no significant effect of 3 µM PaCoA, while 10 µM PaCoA caused a 

3-fold shift at concentrations of 0.3 and 1.0 µM of UTP. 

 

MRS2179 (1 µM) caused no significant shift in the UTP relaxation 

response (two way ANOVA, Figure 2.7d). 
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Figure 2.7. The response of the rat thoracic aorta to uridine 

triphosphate (UTP) in the presence of a. coenzyme A (CoA), b. 

acetylCoA (AcCoA), c. palmitoyl CoA (PaCoA) and MRS2179 (n= 6-8, n= 

6-8, n=8-10, n=8-12, respectively). Vessels were precontracted with 

methoxamine. Results are shown as mean  SEM. (**) indicate 

significant shift. 
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2.4 Discussion 

 

In the present study, agonists for P2Y1 and P2Y2 receptors, ADP and 

UTP respectively, were used to examine effects of acyl-CoA derivatives 

on the relaxation of preconstricted RTA. The results indicate that, of 

the three acyl CoA derivatives used in this study (CoA, AcCoA and 

PaCoA), the most potent CoA derivative is PaCoA acting as an 

antagonist with apparent selectivity for the P2Y1 receptor in RTA. 

 

2.4.1 Effect of ADP and UTP in rat thoracic aorta 

 

Concentration-dependent relaxation was produced in the presence of 

ADP or UTP. It was previously shown that UTP produced relaxation 

through P2Y2 receptors on the endothelium of the rat thoracic aorta 

(Dol-Gleizes et al., 1999) and in the rat mesenteric arterial 

bed.(Buvinic et al., 2002) This contrasts with the conclusions of Guns 

et al. 2006 investigating mouse thoracic aorta, where they suggested 

that the P2Y2 receptor had no major role in UTP-evoked relaxation and 

that the vasodilator effect of UTP was probably mediated mainly by a 

P2Y6-like receptor (Guns et al., 2006).  

 

ADP was shown to induce relaxations mediated by P2Y1 receptors on 

the endothelium of the rat thoracic aorta (Dol-Gleizes et al., 1999), rat 

mesenteric bed (Ralevic et al., 1995) and mouse aorta (Guns et al., 
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2005). In the current study, we confirmed that the response to ADP 

was endothelium-dependent, since removing the endothelium evoked 

a significant inhibition of these relaxations. 

 

The relaxations mediated by ADP, as shown in Figure 1a, were shallow 

and obviously different from relaxations mediated by UTP which were 

very steep (Figure 1b). This suggests that these two ligands mediate 

relaxations via different receptors, consistent with evidence that ADP 

acts as an agonist at P2Y1, P2Y12 and P2Y13 receptors and that UTP is 

active at P2Y2, P2Y4 and P2Y6 receptors (von Kugelgen, 2006). 

 

In the present study, the pEC50 value of ADP was found to be 6.00, 

similar to the pEC50 value of 6.2 reported for the rat thoracic aorta 

previously (Dol-Gleizes et al., 1999). It is also similar to that found in 

mouse thoracic aorta (6.22) (Guns et al., 2005).  

 

Responses evoked by UTP were biphasic, which may indicate that 

there are multiple elements for this response. The agonist potency 

(pEC50) of UTP in the current study was 6.64. A pEC50 value of 5.83 

was reported for UTP in the rat thoracic aorta (Dol-Gleizes et al., 

1999); in the mouse thoracic aorta, a pEC50 value of 6.46 was found 

(Guns et al., 2006). The authors suggested that responses were 

mediated through P2Y2 and P2Y6 receptors, respectively.  In the former 

study (Dol-Gleizes et al., 1999), non-selective agonists and antagonists 

were used to define the nature of the receptor, while P2Y2 receptor-
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null mice allowed a more defensible identification in the latter 

investigation (Guns et al., 2006). In the current study the 

pharmacology of the UTP responses was not analysed further. 

Whether UTP is acting through P2Y2 or P2Y6 receptors could be 

confirmed by the use of the P2Y6 receptor-selective antagonists, 

MRS2578 or MRS2567 (Mamedova et al., 2004). 

 

At concentrations higher than 3 µM, UTP-evoked relaxations were 

reversed; this may be due to an action on P2Y2 receptors on the 

smooth muscle (Eltze and Ullrich, 1996). This response of UTP was 

not investigated in the current study and all the analysis of the effects 

of antagonists on the UTP response was performed up to the 

concentration of 3 µM. This response for UTP can be tested by 

removing the endothelium to check the effect on these responses. 

Although AR-C118925XX is an example from the literature of a 

selective P2Y2 receptor antagonist with submicromolar activity 

(Meghani, 2002), there are no commercially available P2Y2 antagonists. 

 

2.4.2 Effect of acyl-CoA on concentration-dependent relaxation 

observed with ADP 

 

Antagonism evoked by PaCoA was found to be reversible, which agrees 

with what was reported in Xenopus laevis oocytes (Coddou et al., 

2003). PaCoA was found to have no direct effect on the RTA, 

suggesting there was no tonic activation of the target receptor or 
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activation by PaCoA of other targets in the absence of ADP. PaCoA was 

more potent than CoA and AcCoA as an antagonist at P2Y1 receptors. 

This agrees with the findings in Xenopus laevis oocytes and human 

platelets (Coddou et al., 2003, Manolopoulos et al., 2008). 10 µM 

PaCoA caused an approximately 330-shift of ADP-evoked relaxations, 

while there was a 4- and 5-fold shift in the presence of 10 µM CoA and 

AcCoA, respectively. This increase in potency appears to be due to the 

increase in hydrophobicity from CoA, AcCoA to PaCoA (Coddou et al., 

2003).  The nucleotide moiety of the CoA compounds exhibits 

structural similarities with ADP, which suggests a ligand binding 

domain focussed on the purine binding site. In addition to this 

binding site, it may be that there is a second binding site, a 

hydrophobic pocket adjacent to the purine binding site to 

accommodate the lipophilic acyl-substituent; this pocket would help 

stabilize the interaction of the antagonist with the receptor (Coddou et 

al., 2003) (Chapter One). This could be tested using site-directed 

mutagenesis where alanine scanning could be performed to identify 

the site of action of PaCoA (as well as CoA and other CoA derivatives). 

 

MRS2179 (1 µM) is a selective competitive antagonist at the P2Y1 

receptor (Boyer et al., 2002, Buvinic et al., 2002). In the presence of 

MRS2179, relaxations to ADP were significantly inhibited. The pKB 

value for MRS2179 obtained (7.32) is similar to the one reported in 

human recombinant P2Y1 receptors expressed in Xenopus laevis 

oocytes where it was reported to be 7.7 (Coddou et al., 2003). The pKB 

value calculated was higher than the one reported for turkey 
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erythrocytes (pKB = 6.46 (Boyer et al., 1996a); 6.99 (Boyer et al., 1998). 

In the rat mesenteric arterial bed, a value of 8.03 for the pKB was 

reported (Buvinic et al., 2002). The differences in affinity are 

presumably due to differences in the species or tissues used.  

Methodological differences may also be influential, since the study in 

turkey erythrocytes assessed adenine nucleotide-promoted inositol 

phospholipid hydrolysis response of turkey erythrocyte membranes; in 

the rat arterial mesenteric bed, changes in perfusion pressure were 

measured; while ATP activated currents were studied in Xenopus 

laevis oocytes. 

 

2.4.3 Effects of acyl-CoA on concentration-dependent relaxations 

to UTP 

 

CoA (10 µM) and AcCoA (10 µM) had no significant effect on the UTP 

relaxations, while PaCoA (10 µM) caused a significant rightward shift 

of these relaxations. This shift was small (3-fold) when compared to 

the 330-fold shift PaCoA caused to the ADP-evoked relaxations via 

P2Y1 receptors. This indicates that these compounds are reasonably 

selective for P2Y1 versus P2Y2 receptors. This is consistent with the 

effect of these compounds at recombinant P2Y1 and P2Y2 receptors in 

Xenopus oocytes (Coddou et al., 2003).  
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MRS2179 had no significant effect on UTP-evoked relaxations, 

consistent with responses to UTP acting through a target other than 

the P2Y1 receptor (Buvinic et al., 2002).  

 

2.4.4 Acyl-CoA as an endogenous modulators 

 

The relevance of in vitro studies of acyl-CoA to the situation in vivo has 

been questioned in some reports because of its detergent-like 

properties, which can result in rather nonspecific effects (Srere, 1965, 

Taketa and Pogell, 1966) (Chapter One). However, several other later 

reports have contradicted this and shown that acyl-CoA may play a 

regulatory role in vivo under certain circumstances since many 

enzymes are inhibited by acyl-CoA below the critical micelle 

concentration at which they have detergent-like properties (Harris et 

al., 1972, Lerner et al., 1972, Tippett and Neet, 1982b, Agius et al., 

1987, Li et al., 1990, Hertz et al., 1998, Boylan and Hamilton, 1992) 

(Chapter One).  

 

This maintenance of low concentrations of acyl-CoA is achieved via the 

fact that long chain acyl-CoA have high affinity for phospholipid 

bilayers; this helps to keep low levels of acyl-CoA (Powell et al., 1985) 

(Chapter One). In addition, acyl-CoA binding proteins (ACBPs) and 

fatty acid binding proteins (FABPs) keep the level of free acyl-CoA low 

(Chapter One). It was found that the length of the acyl chain can 

control the affinity of the acyl-CoA compounds for membranes, and 
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also their residence time in these membranes (Boylan and Hamilton, 

1992) (Chapter One). It is possible that this can explain the higher 

potency of PaCoA as an antagonist at membrane P2Y1 receptors 

compared to AcCoA and CoA. 

 

There is no evidence about whether acyl-CoA is present extracellularly 

under normal physiological conditions although it has been shown 

that PaCoA synthetase is present on the external surface of rat 

isolated hepatocytes (de Groote et al., 1996). However in certain 

pathophysiological conditions such as heart ischaemia the cellular 

expression of FABPs is increased, leading to an overflow of these 

proteins into the blood and may also release the bound ligand into the 

serum (Chapter One). In addition, it was also reported that in certain 

pathophysiological states such as fasting, ischaemia and hypoxia, 

high levels of acyl-CoA accumulate and can cause irreversible damage 

to cellular membranes (Bortz and Lynen, 1963, Whitmer et al., 1978) 

(Chapter One). This indicates that this class of compounds may 

contribute to some pathophysiological conditions (Chapter One). The 

possibility that these compounds may be released during 

pathophysiological conditions was also reported (Glatz et al., 1993, 

Vork et al., 1993a, Vork et al., 1993b). Once released, it is possible 

that acyl-CoA derivatives will act as endogenous modulators on many 

levels such as platelet function and vascular regulation (through P2Y1 

receptors) which may implicate a key role of these compounds. The 

present study considered only the effect of CoA and its derivatives on 

P2Y1-mediated blood vessel relaxation, but the vascular P2Y1 receptors 
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is also involved in regulation of endothelium proliferation and 

migration (Shen and DiCorleto, 2008). 

 

CoA and its acyl CoA derivatives were shown to be antagonists at 

human recombinant P2Y1 receptors expressed in Xenopus laevis 

oocytes. (Coddou et al., 2003). Also the effect of acyl derivatives of CoA 

compounds was examined at endogenous P2Y1 and P2Y12 receptors on 

platelets leading to the conclusion that PaCoA is an antagonist at P2Y1 

and has a partial antagonism at P2Y12 receptors and that it may 

function as an endogenous modulator of platelet function 

(Manolopoulos et al., 2008). The effect of chain length has been 

studied and it was found that increased acyl-CoA side-chain length 

increased the potency of these compounds as antagonists at P2Y1 

receptors (Coddou et al., 2003, Manolopoulos et al., 2008, Chapter 

One). The effect of the degree of saturation of acyl-CoAs chain was also 

studied and it was reported that the higher the degree of sauration the 

higher the potency will be for these compounds (Riedel and Light, 

2005 Manolopoulos et al., 2008, Chapter One). In the present study, 

PaCoA was shown to have higher potency as an antagonist at P2Y1 

receptors compared to the shorter-chain acyl-CoAs used, AcCoA and 

CoA, in RTA. This agrees with the above reports about the effect of 

chain length of these compounds. The present study also supports 

suggestions that these compounds can act as endogenous modulators 

of cell-surface receptors. 
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Looking at previous findings of effects of acyl-CoA derivatives (Chapter 

One), and looking at our findings of the effect of PaCoA in blood 

vessels it is clear that these compounds modulate several cellular 

functions, receptors, enzymes and other cellular processes and should 

be considered for further investigations trying to determine their 

patho/physiological significance. In blood vessels it may be especially 

relevant to consider the role of these compounds in pathophysiological 

conditions such as hypertension and they may prove to be relevant in 

the design of novel compounds that degrade or bind and inactivate 

acyl-CoA compounds.   
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Chapter Three 

Effect of palmitoyl CoA on ADP-evoked 

vasorelaxations in porcine isolated coronary 

and mesenteric arteries  
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3.1 Introduction  

In the rat thoracic aorta, using isometric tension recording, we 

examined the effects of CoA, AcCoA and PaCoA at vasorelaxant 

endothelial P2Y1 receptors and showed that these compounds are 

antagonists at P2Y1 receptors with PaCoA being the most potent 

(Chapter 2). It is known that species differences can affect both 

agonist and antagonist potencies. For example PPADS was shown to 

be inactive at smooth muscle P2Y1-like receptors in rabbit mesenteric 

artery (Ziganshin et al., 1994), but it blocked those in the rat 

mesenteric arterial bed (Ralevic and Burnstock, 1996). Also significant 

pharmacological differences concerning the antagonist potencies 

between the human and rat P2X4 receptors were identified (Garcia-

Guzman et al., 1996). Therefore, we wanted to investigate whether 

PaCoA would have a similar antagonistic effect in other different 

species and different vessels, so we moved on from rat to pig tissue 

and used two different vessels, specifically porcine mesenteric artery 

(PMA) and porcine coronary artery (PCA).  

 

ADP mediates endothelium-dependent vasodilatation via activation of 

P2Y1 receptors (Nicholas et al., 1996a, Guns et al., 2005); such as in 

rat and mouse mesenteric arteries (Buvinic et al., 2002, Harrington et 

al., 2007). Little is known about P2Y1 in PMA. Endothelial P2Y1 

receptors have also been shown to mediate responses to ADP in PCA 

(Olivecrona et al., 2004). PCA are also reported to express A1, A2A and 

A2B receptors (Merkel et al., 1992, Abebe et al., 1994, Monopoli et al., 

1994, Balwierczak et al., 1991). In a variety of species, coronary 
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arteries express vasorelaxant P2Y receptors on the smooth muscle 

cells (Keef et al., 1992, Corr and Burnstock, 1994, Simonsen et al., 

1997).  

 

In both tissues (PMA and PCA), we started first by generally 

characterising P2Y1 receptors using ADP as an agonist. Then a 

selective P2Y1 antagonist (MRS2500) was used to confirm or exclude 

any involvement of P2Y1 receptors (Kim et al., 2003). Also, by removing 

the endothelium in both PMA and PCA, it was hoped to identify 

whether the receptor involved was located on the endothelium or 

smooth muscle.  

 

The main aim of the present study was to expand our findings in the 

rat thoracic aorta by showing that PaCoA acts as an antagonist of 

P2Y1-mediated, ADP-evoked relaxations in another species and in 

different vessels, specifically in PMA and PCA. Therefore we aimed to 

characterise the effect of ADP on PMA and PCA and to investigate 

whether PaCoA can block the responses mediated by ADP in these 

tissues.  
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3.2 Materials and Methods 

3.2.1 Porcine mesenteric artery and porcine coronary artery 

preparation and isometric tension recordings of ADP responses 

 

Porcine mesenteries and hearts, obtained from a local abattoir (Woods 

abattoir, Clipstone, Mansfield, Nottinghamshire), were placed in 

oxygenated Krebs-Henseleit solution at 4°C before being transported 

to the laboratory. First order porcine mesenteric arteries (PMA) or the 

interior descending branch of the coronary artery (PCA) were dissected 

out, placed in oxygenated Krebs-Henseleit solution in order to rinse off 

any blood, and kept overnight at 4˚C. The next day, the vessels were 

placed on a paraffin plate and covered with fresh Krebs-Henseleit 

solution and fine dissection was carried out to remove any excess 

connective tissue. Vessels were then cut into rings (3-4 mm in length). 

Sections from similar locations on each of the vessels were taken each 

time for consistency. 

 

PMA and PCA rings were mounted for isometric tension recording as 

described in Chapter Two. Mounted rings were tensioned to 10 g, left 

to relax for 1 h before KCl (60 mM) was added and the contraction 

recorded once it reached a plateau. The rings were then washed and 

left for 20 min to relax, after which, the same process was repeated. 

After contraction to the second exposure to KCl, the rings were 

washed and left for 1 h to relax. Only tissues which contracted to KCl 
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to at least 4.0 g on the second exposure were used. Only values for the 

second contraction to KCl are reported. 

 

For preconstriction, U46619 (11α, 9α-epoxymethano-PGH2 (a 

thromboxane A2 analogue) was used (30- 763 nM) to achieve a tension 

of 50-75% of the KCl-induced contraction. Stepwise cumulative 

addition of agonist (ADP, 0.1 µM- 1 mM) (Sigma Chemical Company, 

UK) to the preparations was then carried out as described in Chapter 

Two. 

 

Endothelium denudation was achieved by rubbing the lumen gently 

with forceps; any vessel with a relaxation in response to substance P 

(10 nM, Sigma Chemical Company) of less than 10% of the U46619-

evoked contraction was considered a denuded vessel. In control 

vessels, substance P caused a rapid, transient relaxation that was 

absent in denuded vessels. Time control experiments were performed 

with the same protocol; after contracting with U46619, vessels were 

left for an hour to check for any loss of tension. Blood vessel tension 

was measured every 6 minutes.    

 

3.2.2 Effect of PaCoA on responses to ADP  

To investigate the possible antagonistic effects of PaCoA (10 µM, Sigma 

Chemical Company) and MRS2500 (1 µM, a selective P2Y1 receptor 
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antagonist, Tocris-Cookson, UK) on responses to ADP, these 

compounds were added 10 min before U46619 addition. 

 

To check for any direct effect of PaCoA, 10 µM was added after 

contracting the vessels with U46619 and left in the organ bath for an 

hour. Blood vessel tension was then measured every 6 minutes.    

 

3.2.3 Immunohistochemical Staining  

 

Porcine mesenteric and coronary arteries were dissected and cleaned 

from any excess connective tissue and cut into 4-5 mm rings. Blood 

vessel rings were fixed in 4% paraformaldehyde and kept overnight at 

4oC. The rings were then washed in phosphate-buffered saline (PBS) 

(Sigma Chemical Company) and frozen with a few drops of OCT 

mounting solution and 10 µm thick slices were created using a 

microtome and transferred to slides and stored at -80oC. 

Whole-mount segments of porcine coronary and mesenteric arteries 

were stained using the standard indirect immunofluorescence 

technique, where the slides were removed from -80oC freezer and 

allowed to equilibrate at room temperature for 30 min. Triton X (Sigma 

Chemical Company) was used as a permeabilizing agent in PBS + 

0.1% bovine serum albumin (BSA) and left for 20 min. Rings were 

then washed out 3 times using PBS+ 0.1% BSA after which human 

serum (Sigma Chemical Company) was used to block any non-specific 

binding in the samples at room temperature for 30 min. After that 
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human serum was aspirated and slices were washed out 3 times, then 

50 µl primary rabbit antibody anti-P2Y1 was added at (1:50) dilution in 

human serum. Samples were incubated overnight at 4ºC. Then they 

were washed with PBS+0.1 % BSA 3 times. The secondary antibody 

anti rabbit IgG (FITC) (1:50) (Sigma Chemical Company) was diluted in 

PBS+0.1% BSA and added to the tissue slices for P2Y1 receptor 

detection. Then the slides were incubated at 37oC for 30 min, followed 

by washing with PBS+ 0.1% BSA 3 times. The slices were then covered 

with vector shield mounting solution and glass cover slips. Samples 

were visualized using fluorescence microscopy using an objective 

magnification of 40X. A parallel set of controls for each slide was 

performed, in the control slides there was no addition for the primary 

antibody.   

 

3.2.4 Materials 

The supplier for all chemicals in this work was British Drug Houses 

(BDH, UK) unless otherwise stated. Antibodies were obtained from 

Calbiochem/Merck Biosciences (Nottingham, UK, anti-A2A Ab) and 

SIGMA (UK, anti-P2Y1 Ab). 

 

3.2.5 Statistical analysis 

Results are expressed as mean ± SEM. Two way ANOVA was used for 

statistical comparisons with Bonferroni post-hoc test. A P value < 0.05 

was taken as statistically significant.  
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3.3 Results 

 

Addition of KCl (60 mM) produced a sustained contractile response of 

PMA and PCA segments; the mean tissue response to KCl addition 

was 8.9  0.32 g (n=25) and 10.2  0.62 g (n=30), respectively. 

 

3.3.1 Effect of ADP in porcine precontracted mesenteric (PMA) 

and coronary arteries (PCA) 

ADP (0.1 µM-1 mM) elicited a concentration dependent relaxation of 

PMA (Figure 1a); maximal relaxation by ADP was observed at a 

concentration of 100 µM. Concentrations of ADP greater than this 

caused a reduced relaxation of the PMA rings (Figures 3.1a, 3.2). Non 

linear analysis of these responses resulted in an estimates of Rmax of 

54 ± 8 %, with a pEC50 value of 6.91 ± 0.19 and Hill slope of 2.0 ± 0.21 

(n=8). Removing the endothelium abolished the ADP induced 

responses (Figure 3.1a). In the absence of endothelium a small 

contractile response was observed at the highest concentrations of 

ADP (Figures 3.1a, 3.2). 

 

ADP (0.1 µM-1 mM) elicited a concentration dependent relaxation of 

PCA (Figure 3.1b); maximal relaxation by ADP was observed at the 

highest concentration (1 mM). Non linear analysis for these responses 

resulted in estimates of Rmax of 94 ± 7, with a pEC50 value of 4.57 ± 

0.25 and Hill slope of 1.30 ± 0.12 (n=10). Removing the endothelium 
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had no significant effect on the ADP induced responses in this tissue 

(Figure 3.1b). 

 

In both PMA and PCA, endothelium removal was assessed using 

substance P (10 nM). Any relaxation in response to substance P of less 

than 10% of the U46619 contraction was considered a success with 

regard to endothelium removal. In denuded PMA and PCA, substance 

P evoked relaxations of 1.43 ± 0.84 % (n = 9) and 3.05 ± 1.26 % (n = 

7), respectively. While in endothelium intact PMA and PCA substance 

P elicited relaxations of 54 ± 3 % (n = 8) and 50 ± 4 % (n = 10), 

respectively. 
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Figure 3.1. Response evoked by adenosine diphosphate (ADP) in a. 

porcine mesenteric artery, b. Porcine coronary artery. Responses were 

evaluated in endothelium intact vessels (Control, n = 8-10) and in 

those in which the endothelium had been removed (Denuded, n = 7-9). 

Vessels were precontracted with U46619. Results are mean  SEM. 
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3.3.2 Effect of PaCoA on responses to ADP in porcine mesenteric 

arteries (PMA) 

 

PaCoA (10 µM) abolished the relaxation response to ADP in mesenteric 

arteries (Figure 3.2, 3.3a). MRS2500 (10 µM), a selective P2Y1 

antagonist, also abolished the ADP evoked relaxation (Figure 3.3b).  

 

The possible direct effect of PaCoA (10 µM) on vessel tone was 

investigated in the U46619-contracted PMA and was found to be 

without significant effect compared to the time control (Figure 3.5). 

 

U46619 caused a sustained contraction to 56  4 % (n=8) of the KCl 

response. In the absence of antagonists, the concentration of U46619 

required to produce this level of contraction was 36  4 nM (n= 8). In 

the presence of PaCoA (10 µM) and MRS2500 (10 µM) the U46619-

induced contraction was 61 %  2 (n=10) and 65 %  9 (n=4), 

respectively, of the KCl-induced responses. The concentration of 

U46619 required to induce precontraction was unchanged (P > 0.05, 

one way ANOVA). For the direct effect and time control experiments, 

the U46619-induced contraction was 51 %  9 (n= 4) and 56 %  7 (n= 

4), respectively, of the KCl-induced response. The concentration of 

U46619 required to induce precontraction was unchanged compared 

to the control in both time control and direct effect experiments (P > 

0.05, one way ANOVA).  
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 3.3.2.1 Immunohistochemical localization of P2Y1 receptors in 

PMA 

 

Since the ADP-mediated relaxations were blocked by P2Y1 receptor 

antagonists in PMA, the expression of P2Y1 receptors  was investigated 

using immunohistochemistry. P2Y1-like immunoreactivity was 

observed in PMA on the endothelium and smooth muscle (Figure 3.4).  
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Figure 3.2. A representative trace for the response of the porcine 

mesenteric artery to adenosine diphosphate (ADP) in the absence and 

presence of palmitoyl coenzyme A (PaCoA). Vessels were precontracted 

with U46619.  
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Figure 3.3 The response of the porcine mesenteric artery to adenosine 

diphosphate (ADP) in the presence of a. palmitoyl coenzyme A (PaCoA), 

b. MRS2500. Vessels were precontracted with U46619. Results are 

shown as mean  SEM (n=8-10, n=5-4, respectively).  
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Figure 3.4. P2Y1- like immunostaining of the first order porcine 

mesenteric arteries on a. longitudinal sections and c. cross sections of 

the vessels accompanied by a control which had no primary antibody 

to P2Y1 receptors in b. longitudinal section and d. cross section of the 

vessels. Smooth muscle (SM) and endothelial cells (EC) are indicated. 

Scale bar = 100 µm. 
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Figure 3.5. The effect of palmitoyl coenzyme A (PaCoA) on contractile 

responses of the porcine mesenteric artery compared to a time control. 

Readings were taken every 6 minutes. Vessels were precontracted with 

U46619. Results are shown as mean  SEM (n= 4, n=4). In the time 

control group, error bars fall within the symbol. 
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3.3.3 Effect of PaCoA on relaxations to ADP in porcine coronary 

artery segments 

 

Although PaCoA (10 µM) failed to evoke a significant effect on the 

response to ADP (Figure 3.6, 3.7a), there was a trend for a rightward 

shift in the ADP response curve in the presence of PaCoA. MRS2500 

(10 µM), a selective P2Y1 antagonist, also had no significant effect on 

the ADP evoked responses (Figure 3.7b).  

 

 

The direct effect of PaCoA (10 µM) was investigated and it was found 

that PaCoA caused a significant vasorelaxation of the U46619-

contracted PCA compared to the time control (P < 0.05, two way 

ANOVA) (Figure 3.9). The PaCoA direct effect was slow; it took around 

20 min to evoke significant relaxations in response to PaCoA 

compared to the time control. 

 

U46619 in the coronary artery caused a sustained contraction to 59  

4 % (n=8) of the KCl response. The mean bath concentration of 

U46619 required to produce this level of contraction was 13.0  2.5 

nM (n= 8). In the presence of PaCoA (10 µM) and MRS2500 (10 µM), 

the mean bath concentration of U46619 required to elicit 53  4 % 

(n=10) and 56  7 % (n=4), respectively, of the KCl contraction was 

unchanged (P >0.05, one way ANOVA).  
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For the direct effect and time control experiments the U46619-induced 

contraction was 60 %  4 (n= 8) and 50 %  8 (n= 4), respectively, of 

the KCl-induced response. The concentration of U46619 required to 

induce precontraction was unchanged compared to the control in both 

time control and direct effect experiments (P > 0.05, one way ANOVA). 

 

 

  3.3.3.1 Immunohistochemical localization of P2Y1 receptors in 

PCA 

 

The expression of P2Y1 receptors in PCA was investigated using 

immunohistochemistry, and immunoreactivity for P2Y1 receptor was 

observed in PCA on the smooth muscle (Figure 3.8).  
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Figure 3.6. A representative trace for  the response of the porcine 

coronary artery to adenosine diphosphate (ADP) in the absence and 

presence of palmitoyl coenzyme A (PaCoA). Vessels were precontracted 

with U46619.  
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Figure 3.7. The response of the porcine coronary artery to adenosine 

diphosphate (ADP) in the presence of a. palmitoyl coenzyme A (PaCoA), 

b. MRS2500. Arteries were precontracted with U46619. Results are 

shown as mean  SEM (n=10, n=4, respectively). 
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Figure 3.8. P2Y1- like immunostaining of porcine coronary arteries a. 

longitudinal sections and c. cross sections of the vessels accompanied 

by a control which had no primary antibody to P2Y1 receptors in b. 

longitudinal section and d. cross section of the vessels. Smooth 

muscle (SM) and endothelial cells (EC) are indicated. Scale bar = 100 

µm. 
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Figure 3.9. The effect of palmitoyl coenzyme A (PaCoA) in the porcine 

coronary artery compared to time control, readings were taken every 6 

minutes. Vessels were precontracted with U46619. Results are shown 

as mean  SEM (n=8, n=4, for PaCoA and time control data, 

respectively). *** P < 0.001. 
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3.4 Discussion  

PaCoA was used to characterise the effects of ADP on the PMA 

and PCA. We found that PaCoA and the selective P2Y1 receptor 

antagonist MRS2500 abolished the ADP-evoked relaxations 

through the P2Y1 receptor in PMA. In contrast, PaCoA and 

MRS2500 had no significant effect on ADP-evoked responses in 

PCA. 

 

3.4.1 Effect of PaCoA and MRS2500 on ADP evoked 

responses in porcine mesenteric arteries 

In the current study, ADP was observed to cause an 

endothelium-dependent vasorelaxation at concentrations up to 

100 µM, after which there was a reduced vasorelaxation in PMA. 

A pEC50 value of 6.9 was calculated for ADP in the PMA, which is 

similar to the value calculated for ADP activation of P2Y1 

receptors (6.8) in the rat mesenteric arterial bed (Buvinic et al., 

2002). The involvement of P2Y1 receptors was indicated since 

MRS2500 (1 µM) abolished the ADP evoked relaxations. To 

characterise further these ADP responses, PaCoA (10 µM) was 

used; it abolished the ADP-evoked relaxations in the PMA 

indicating that these relaxations were mediated through P2Y1 

receptors. There was no direct effect of PaCoA on these vessels. 
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This is consistent with our finding in the rat thoracic aorta 

where PaCoA acted as a potent P2Y1 antagonist (Chapter 2).  

 

Relaxations to ADP in the PMA were abolished by removal of the 

endothelium. ADP acts as an agonist at endothelial P2Y1 

receptors producing vasodilatation in several blood vessels 

(Ralevic and Burnstock, 1998), while ATP acts as a partial 

agonist at P2Y1 receptors and as an agonist at P2Y2, P2Y6 and 

P2X receptors (Ralevic and Burnstock, 1998). Buvinic et al. and 

Guns et al. showed that, in rat mesenteric arteries and mouse 

thoracic aortae, respectively, the vasodilator effects of ADP, but 

not ATP, were abolished by the P2Y1 receptor antagonist 

MRS2179. On that basis, they suggested that ADP activates 

endothelial P2Y1 receptors in these blood vessels, while ATP does 

not (Buvinic et al., 2002, Guns et al., 2006). 

 

In our study, the ADP evoked vasorelaxation was endothelium 

dependent, consistent with the literature, showing that as in 

most vessels ADP relaxations were mediated through P2Y1 

receptors on the endothelium. Although not studied here, the 

mechanism of endothelium dependent vasorelaxation to ADP is 

likely to involve nitric oxide and EDHF, as shown for endothelial 

P2Y1 receptors in rat mesenteric arteries (Malmsjo et al., 1999, 

Buvinic et al., 2002). 
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In endothelium-denuded vessels, there was a trend for a modest 

contraction in response to ADP. This may indicate 

contamination with ATP, possibly activating a receptor on the 

smooth muscle which may be P2X1, since it is unlikely for ADP 

to act directly at P2X1 receptors (Mahaut-Smith et al., 2000, Vial 

et al., 2003) (Figure 3.1a). This likely accounts for the reduced 

vasorelaxation observed in endothelial-intact vessels at high 

concentrations of ADP. Contamination by ATP could be 

investigated by using an enzyme such as hexokinase which 

selectively hydrolyzes ATP (for example, (Harper et al., 1998)), 

checking the purity of the ADP (HPLC) or using a selective P2X1 

receptor antagonist such as NF449 (Braun et al., 2001).  

 

Similar responses were noticed by Harrington et al. (2007) who 

showed that, in mouse mesenteric arteries, ADP caused a 

dilatation followed by contraction at concentrations 10 µM and 

above; the dilator effects were endothelium dependent, 

indicating that they were P2Y receptor-mediated while the 

constrictor effects were endothelium independent and mediated 

by P2X1 receptors. They concluded the latter response was 

caused by contamination with ATP (Harrington et al., 2007). 

 

There was still a trend, although not significant, for a 

contraction of the PMA at concentrations of 300 µM ADP or 
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above in the presence of PaCoA, similar to what was seen in the 

control ADP responses, which may also indicate that these 

contractile responses are mediated through a distinct target and 

may be caused by ATP contamination activating (most likely) 

P2X1 receptors (as discussed above). The fact that PaCoA did not 

significantly affect these P2X-like contractile responses is also 

consistent with the fact that PaCoA did not act as an antagonist 

at recombinant P2X1 receptors (Coddou et al., 2003).  

 

In an effort to detect P2Y1-like expressed in PMA, using 

immunohistochemistry, P2Y1-like immunoreactivity was 

observed in PMA. However immunoreactivity was observed on 

both endothelium and smooth muscle. This may indicate a lack 

in functional effects of P2Y1 receptors on smooth muscle as our 

results indicate that the ADP-mediated relaxations were 

endothelium dependent and were blocked by P2Y1 antagonists. 

 

In summary, our study in the PMA showed that ADP evokes 

endothelium-dependent vasorelaxation which was abolished by 

PaCoA and MRS2500 and is mediated through P2Y1 receptor. 

PaCoA had no direct effect on PMA. At higher concentrations, 

ADP evoked vasoconstriction which may be mediated through 

contaminating ATP, although this needs to be confirmed using a 

selective P2X1 receptor antagonist.   
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3.4.2 Effect of PaCoA and MRS2500 on ADP-evoked 

responses in porcine coronary arteries 

We have studied the effect of PaCoA on P2Y1 receptor-mediated 

ADP evoked relaxations in rat thoracic aorta and porcine 

mesenteric artery, where PaCoA inhibited these responses in 

both tissues. In this Chapter, we also studied the effect of PaCoA 

on the ADP evoked responses in the PCA. 

ADP elicited a concentration dependent endothelium 

independent relaxation of the PCA. ADP evokes relaxations 

through endothelial P2Y1 receptors in a variety of species and 

blood vessels. In this study, the potency of ADP (pEC50 4.6) in 

PCA was much lower than that observed in the PMA (pEC50 = 

6.9) and to that in the rat thoracic aorta (pEC50= 6.0); in both 

the PMA and the RTA, the ADP response is clearly mediated via 

an endothelial P2Y1 receptor. The ADP potency in PCA observed 

here is similar to previous findings from this laboratory, where 

ADP potency was found to be 5.3 in the PCA (Rayment et al., 

2007b). The maximum response obtained here (94%) was also 

similar to the maximal response previously observed (89%) 

(Rayment et al., 2007b). The small difference in pEC50 values 

could be due to differences in age or sex of the animals between 

the studies. It was reported that ADP mediates endothelium-

independent relaxation via a novel mechanism involving release 
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of adenosine and activation of A2A receptors independently of 

P2Y1 receptors in the PCA (Rayment et al., 2007b). This 

indicates that the PCA is different from other vessels in that ADP 

does not exert vasorelaxation through endothelial P2Y1 receptors 

as it does in other blood vessels, including the RTA and PMA 

studied here. This may explain the difference in the pEC50 

values we found in PMA, RTA and PCA. 

 

Another possibility, other than that ADP may be triggering the 

release of adenosine which then activates A2A receptor (Rayment 

et al., 2007b), is that ADP may be broken down to adenosine 

which then mediates vasorelaxations through A2A receptors 

known to be expressed on PCA (Merkel et al., 1992). This 

possibility was tested by Rayment et al. (2007b) in the PCA 

using a variety of enzyme inhibitors, after which they concluded 

that there was no role for extracellular hydrolysis of ADP in the 

generation of adenosine. In addition, Rayment et al showed that 

relaxations to the hydrolysis-resistant analogue of ADP, ADPβS, 

were insensitive to MRS2179 (a selective P2Y1 receptor 

antagonist) and were blocked by A2A receptor antagonists, 

ZM241385 and SCH58261 (Rayment et al., 2007b). 

 

As part of the characterization of these ADP-evoked relaxations, 

we investigated the effect of PaCoA, which failed to affect these 

responses, indicating that they are not mediated through P2Y1 
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receptors. To confirm this, MRS2500 was used, a better 

established P2Y1 receptor antagonist, was used, which also had 

no significant effect on these relaxations.  

 

In an attempt to detect P2Y1 receptors expressed in PCA, using 

immunohistochemistry, P2Y1-like immunoreactivity was 

observed in PCA. Immunoreactivity was observed on the smooth 

muscle. Rayment et al. reported the expression of P2Y1 receptors 

on the PCA smooth muscles (Rayment et al., 2007b). Since 

activation of smooth muscle P2Y1 receptors is thought to lead to 

the activation of Gq/11 G-proteins which will elevate [Ca++]i, this 

is expected to lead to smooth muscle contraction, unlike 

relaxation seen when this receptor is activated on the 

endothelium (Rayment et al., 2007). Our findings in PCA agree 

with their findings that the ADP- mediated relaxations in PCA 

are not mediated via P2Y1 receptors. This may indicate a lack of 

functional P2Y1 receptors in PCA as our results indicate that the 

ADP-mediated endothelium independent relaxations were not 

affected with P2Y1 antagonists. P2Y1-like receptors were also 

reported to be expressed in human coronary artery smooth 

muscle in cultured cells (Strobaek et al., 1996). 

 

 

Interestingly, PaCoA significantly relaxed the U46619-contracted 

PCA in the absence of adenine nucleotides. The response was 
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slow (20 min), compared to the time needed for ADP to cause 

relaxations (3-5 min), perhaps suggesting a direct action on the 

smooth muscle. Although the mechanism by which PaCoA 

mediated these relaxations was not investigated, acyl CoA 

compounds have been reported to evoke responses in other 

tissues; for example, in the rat hippocampus, fatty acyl-CoAs 

enhance glutamate release (Zhang et al., 2000). Additionally, 

fibrates, which are metabolized either as acyl-CoA derivatives or 

as glucuronide conjugates, were reported to have an effect on 

coagulation by inhibiting hepatic fibrinogen synthesis; an effect 

thought to be mediated by PPARα (peroxisomal proliferator-

activated receptors) (Kockx et al., 1999). PPAR-evoked 

relaxations have been described in a number of smooth muscle 

preparations (see (O'Sullivan et al., 2009) for a review of 

endocannabinoids acting at PPARs).  The mechanism of this 

direct, tissue-dependent relaxatory effect of PaCoA awaits 

further characterization. It should be noted that combining 

PaCoA and ADP in the PCA, did not result in augmentation of 

the relaxation to ADP (see Figure 3.4a); instead it was slightly 

reduced. 

 

In summary, therefore, ADP evoked an endothelium 

independent relaxation of the PCA, which was not mediated 

through P2Y1 receptors since neither PaCoA nor MRS2500 

significantly affected these responses. PaCoA directly relaxed the 
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precontracted PCA, although the mechanism of this action is yet 

to be identified. 

 

3.4.3 Responses in porcine mesenteric and coronary arteries 

 

The characteristic endothelium-dependent vasorelaxation to 

ADP observed in the PMA through P2Y1 receptors is in contrast 

with the atypical response to ADP in the PCA which was 

endothelium-independent, independent of P2Y1 receptors and 

likely to be through enhancing the release of adenosine which 

then acts through A2A adenosine receptors (Rayment et al., 

2007b). Since two vessels from the same species (pigs) were 

being compared, then these differences cannot be due to species 

differences, but rather due to differences in the vessels 

themselves.  

 

In the majority of literature ADP-evoked relaxations are 

mediated by P2Y1 receptors located on the endothelium; 

activation of endothelial P2Y receptors was reported to lead to 

vasodilatation, while activation of P2Y receptors on the smooth 

muscle evokes vasoconstriction (Boarder and Hourani, 1998, 

Kunapuli and Daniel, 1998, Ralevic and Burnstock, 1998, von 

Kugelgen, 2006). In PCA there are also a number of reports of 

adenine nucleotide-evoked relaxation through smooth muscle 

P2Y receptors, especially in coronary arteries in different 
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species; Keef et al. reported P2Y mediated relaxation in guinea 

pig and rabbit coronary artery on the smooth muscle (Keef et al., 

1992), Saetrum Opgaard and Edvinsson reported relaxatory 

responses in human coronary artery via P2Y receptors on 

smooth muscle (Saetrum Opgaard and Edvinsson, 1997). This 

kind of relaxatory response via smooth muscle P2Y receptors 

was also noticed in rabbit and lamb coronary artery (Corr and 

Burnstock, 1994, Simonsen et al., 1997). Rayment et al. (2007b) 

speculated in their report that the endothelium-independent 

action of ADP to evoke the release of adenosine may be a 

common property in the coronary arteries of these species.  

 

The direct relaxatory effect of PaCoA observed in the PCA is also 

in contrast with its action in the PMA and RTA where it did not 

cause any significant response. Whether this response is 

mediated through PPARs is unclear and in need of further 

characterization. 

 

In this Chapter, ADP responses in two different blood vessels, 

PMA and PCA, were assessed. PaCoA and MRS2500 abolished 

the ADP-evoked P2Y1 receptor-mediated relaxations in PMA with 

no direct effect of PaCoA on these vessels. In the PCA, ADP-

evoked relaxations were not mediated through P2Y1 receptors 

and PaCoA had no significant effect on ADP-evoked responses, 

although it caused a significant relaxation of the precontracted 
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blood vessels. These findings highlight a significant difference 

between these two blood vessels and re-emphasize the special 

features of coronary arteries. 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

Chapter Four 

Effects of acyl-CoA on P2Y receptor-evoked 

calcium responses in HEK cells 
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4.1 Introduction  

 

Coddou et al. (2003) studied whether CoA and CoA derivatives were 

antagonists at human recombinant P2Y receptors. CoA, drug-derived 

CoA derivatives and CoA derivatives derived from endogenous fatty 

acids were found to antagonize ATP evoked responses at the P2Y1 

receptor, but not at the P2Y2 receptor. Acyl derivatives of CoA were 

also found to act as antagonists at endogenous P2Y1 and P2Y12 

receptors on human platelets (Manolopoulos et al., 2008). Using 

isometric tension recording, we examined the relevance of these 

findings to the regulation of vascular contractility by studying the 

effects of CoA, AcCoA and PaCoA at vasorelaxant endothelial P2Y1 

receptors in the rat thoracic aorta, and showed that these compounds 

are antagonists at P2Y1 receptors with PaCoA being the most potent 

(Chapter 2). In further isometric tension experiments, we tested the 

effect of PaCoA on the ADP evoked relaxation in porcine mesenteric 

artery where PaCoA abolished these relaxations (Chapter 3). 

 

The effect of acyl derivatives of CoA at endogenous P2Y1 receptors in 

human cell lines is unknown. The main aim of the present study was 

to investigate, using HEK cells, whether the increase in intracellular 

calcium mediated by ADP through the P2Y1 receptor can be blocked 

with coenzyme A and its derivatives; AcCoA and PaCoA. Since the 

design of these experiment allowed us to use smaller amounts of the 

test compounds we examined the effect of another CoA derivative, 
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oleoyl CoA (OlCoA), to examine the effect of a longer chain acyl CoA as 

an antagonist at P2Y1 receptors and compare the effect of the number 

of carbons in the acyl residue in AcCoA (acetic acid C2:0), PaCoA 

(palmitic acid C16:0) and OlCoA (oleic acid 18:1) on their antagonistic 

activity; the numbers in brackets indicate the number of carbons and 

double bonds, respectively. Since human embryonic kidney (HEK) 

cells endogenously express both P2Y1 and P2Y2 receptors (Schachter et 

al., 1997b), we were able to test the selectivity of the observed effects 

of ADP at P2Y1 versus effects mediated by UTP at the P2Y2 receptor. 
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4.2 Methods 

4.2.1 Cell Culture 

HEK cells (passages: 27-35, 18-25) taken from the stocks of the 

School of Biomedical Sciences, University of Nottingham were 

grown in Eagle‟s Minimum Essential Medium (EMEM, Sigma 

Chemical Company) supplemented with 10% fetal calf serum 

(FCS, Sigma Chemical Company) and non-essential amino acids 

(Sigma Chemical Company).   

Cells were grown at a temperature of 37°C in a humidified 95% 

air and 5% CO2 atmosphere. All cell culture was carried out 

under sterile conditions in a class ΙΙ laminar airflow cabinet.  

4.2.2 Cell Passage 

 

Cells were maintained in 75 cm2 polystyrene cell culture flasks. When 

confluent, cells were prewashed with 2 ml phosphate buffered saline 

(PBS, Sigma Chemical Company), the PBS was aspirated then 2 ml of 

0.25% trypsin/EDTA (Sigma Chemical Company) was added to the 

cells and incubated for 5 min at 37°C. Eight ml fresh media were then 

added to resuspend the cells, which were transferred to sterile 

universal tubes and centrifuged at 1500 rpm for 5 min. The 

supernatant layer was discarded and the pellet was resuspended with 

5 ml fresh media and the cells transferred to new flasks containing 20 
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ml fresh media at a split ratio of 1:5. Cells were cultured for 48 hours 

until they reached confluency.  

 

4.2.3 Preparation of 96 well cell plates 

 

Black-walled 96 well plates (Costar) were first treated with 100 µl poly-

L lysine (Sigma Chemical Company) for 20 min then washed once with 

PBS. Cells from one confluent flask were used to prepare the plate. 

First the flask was washed with 2 ml of PBS then 2 ml of 

trypsin/EDTA added and incubated for 5 min. Fresh media (8 ml) was 

added and the cell suspension was transferred to a tube and 

centrifuged at a speed of 1500 rpm for 5 min. The supernatant layer 

was discarded and the pellet was suspended in 5 ml fresh media; the 

cells were triturated with a pipette to ensure uniform distribution of 

cells. 1 ml of cell suspension was added to a sterile tube containing 24 

ml of fresh media. The suspension was again triturated many times to 

ensure uniform distribution of cells, using a repeater pipette. 200 µl of 

the cell suspension was transferred to each well. Cell plates were 

cultured for 48 hours to reach confluency. 

 

4.2.4 Measurement of changes in intracellular calcium, [Ca2+]i 

 

Changes in intracellular calcium, [Ca2+]i, were investigated using Fluo-

4-AM (Invitrogen). The culture media was aspirated and replaced with 
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the Fluo-4-AM solution in the presence of EMEM media, 10% FCS and 

2.5 mM probenecid (Sigma Chemical Company); 100 µl was added to 

each well and the plates were incubated at 37°C with this solution for 

45 min.   

 

A loading buffer consisting of 250 mM probenecid in HEPES-buffered 

saline (HBSS) was used to wash out the excess dye after the 45 min 

incubation period; the wells were washed two times with this buffer 

each time using 100 µl. After that 100 µl of loading buffer solution or 

antagonists were added to control or antagonists wells respectively 

and incubated with the cells for 30 min after which intracellular 

calcium responses were recorded using a FlexStation ΙΙ plate reader 

(Molecular Devices, USA).  

 

All antagonist and agonist dilutions were made using the loading 

buffer solution. Fluorescence measurements were made at excitation 

wavelengths of 485 and 520 nm and an emission wavelength of 515 

nm on the FlexStation II at 37°C. 20 µl of agonists were added at 15 s. 

All added drugs remained in the well until the end of each experiment.  

 

4.2.5 Data analysis   

 

All data were first exported from FlexStation software to Excel, then 

analysed using both Prism version 5 and Excel. For analysis of levels 
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of [Ca2+]i, the mean of the initial fluorescence ratios was taken as a 

baseline (0-16 sec) and was subtracted from subsequent fluorescence 

ratios (16-40 sec). Data collected were from 6 or more different 

experiments and are presented as mean ± SEM. 
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4.3 Results 

4.3.1 Modulation of P2Y receptor-evoked elevations of [Ca2+]i 

in HEK cells 

ADP- and UTP-mediated elevations of [Ca2+]i  were investigated in 

HEK cells using Fluo-4 AM. ADP, at 10 µM, caused a transient 

response with a peak of 32585 ± 2364 RFU (relative fluorescence 

units) over basal (n=11), which occurred within 25-30 seconds of 

drug administration. UTP, at 300 µM, evoked a smaller elevation 

of [Ca2+]i with a mean of 16228 ± 2324 RFU (n = 10), with a 

latency of 23-30 seconds. The response to UTP was 49 ± 4 % of 

the response to ADP. These responses were used as controls, 

and effects of the other compounds were expressed as a 

percentage of the controls.  

ADP-evoked responses were significantly inhibited in the 

presence of either 10 µM PaCoA (residual response 45 ± 9 % of 

control, n = 11) or 10 µM MRS2500 (residual response 5 ± 1 % of 

control, n = 7), but not in the presence of 1 µM PaCoA (Figure 

4.1a). Responses to ADP were not significantly altered in the 

presence of either 1 or 10 µM CoA, AcCoA or oleoyl CoA. 

Responses to UTP were not significantly altered in the presence 

of either 1 or 10 µM PaCoA, CoA, AcCoA, OlCoA or MRS2500 

(Figure 4.1b). 
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Figure 4.1. The effect of CoA and its analogues and MRS2500 on 

[Ca2+]i responses to a. adenosine diphosphate (ADP), or b. uridine 

triphosphate (UTP) in HEK cells. Results are mean  SEM of the 

percentage of the response to 10 µM ADP (n= 7-11) or 300 µM UTP (n= 

7-10), respectively. 
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4.3.2 Effect of palmitoyl CoA on adenine nucleotide-evoked 

[Ca2+]i elevation in HEK cells 

 

ADP and ATP (0.1-100 µM) evoked concentration-dependent 

calcium responses in HEK cells with pEC50 values of 6.7 ± 0.1 (n 

= 3) and 5.6 ± 0.1 (n = 3), respectively (Tables 4.1 and 4.2).  

 

PaCoA (0.1-10 µM) caused a concentration-dependent rightward 

shift in the calcium release evoked by ADP (Figure 4.2a). pEC50, 

Rmax and Hill slope  values for PaCoA are shown in Table 4.1. 

Schild analysis of the effects of PaCoA allowed calculation of an 

apparent pA2 value of 7.2 ± 0.2 using ADP as the agonist, with a 

slope of 1.4 ± 0.2 (n = 3, Figure 4.3a).                

 

PaCoA (0.1-10 µM) also produced a concentration-dependent 

rightward shift in the response curve to ATP (Figure 4.2b). 

pEC50, Rmax and Hill slope values are reported in Table 4.2. 

Schild analysis gave a pA2 value of 7.0 ± 0.3 and a slope of 1.6 ± 

0.2 (n = 3, Figure 4.3b). In order to calculate pA2 values, data for 

ADP and ATP were constrained, where the bottom was fixed at 

zero and the top was fixed to the maximum response evoked in 

the absence of antagonist for each individual experiment. 
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A further set of three experiments was carried out with an 

interval of a year after the previous experiments to increase the 

n numbers; in these PaCoA still significantly affected the 

calcium release evoked by ATP and ADP; the responses were 

abolished at a concentration of 1 µM for both ADP and ATP in 

the presence of 10 µM PaCoA, but PaCoA was less potent when 

compared to the first set of experiments. 
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Table 4.1. The effect of palmitoyl CoA on the calcium response evoked 

by ADP (0.1-100 µM) in HEK cells 

Table  pEC50 value Rmax (RFU) Hill slope 

ADP 6.74 ± 0.11 31062± 3706.95 1.17 ± 0.39 

ADP + 0.1 µM PaCoA   6.27 ± 0.11 31062 0.60 ± 0.15 

ADP + 1 µM PaCoA   5.28 ± 0.10 31062 0.94 ± 0.21 

ADP + 10 µM PaCoA 3.65 ± 0.22 31062 0.81 ± 0.12 

 

Data are mean  SEM, n=3. 

 

Table 4.2.  The effect of palmitoyl CoA on the calcium response 

evoked by ATP (0.1-100 µM) in HEK cells  

Table  pEC50 value Rmax (RFU) Hill slope 

ATP 5.56 ± 0.07 26520 ± 1999 1.55± 0.14 

ATP + 0.1 µM PaCoA 5.36 ± 0.02 26520 1.45± 0.25 

ATP + 1 µM PaCoA   4.40 ± 0.11 26520 0.82± 0.12 

ATP + 10 µM PaCoA   2.58 ± 0.55 26520 0.40± 0.13 

 

Data are mean  SEM, n=3. 
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Figure 4.2. Effect of different concentrations of palmitoyl CoA on the 

calcium response of HEK cells to a. ADP, b. ATP. Results are mean  

SEM, n= 6. 
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Figure 4.3. Schild plots for ADP in the presence of palmitoyl CoA (a) 

and ATP in the presence of palmitoyl CoA (b). Data are mean ± SEM, 

n=3.  
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4.4 Discussion 

In this chapter, ADP and ATP were used to examine effects of 

CoA derivatives on the increase in intracellular calcium 

mediated by P2Y1 receptors in HEK293 human embryonic 

kidney cells. To check the selectivity of these compounds, the 

effect of PaCoA on the UTP- (P2Y2 receptor agonist) mediated 

increase in intracellular calcium was examined. The results 

indicate that, of the CoA analogues examined, PaCoA was the 

only CoA derivative that acts as an antagonist with apparent 

selectivity for the P2Y1 receptor. 

 

4.4.1 Effect of ADP, ATP and UTP on the elevation of [Ca2+]i 

in HEK cells 

Concentration-dependent elevation of [Ca2+]i was produced in 

the presence of ADP, ATP or UTP. It was previously shown that 

ADP, UTP and ATP induced an increase in the [Ca2+]i in HEK 

cells which express P2Y1, P2Y2 and P2Y4 (Fischer et al., 2005, 

Bultmann et al., 1998). 

At the P2Y1 receptor, ADP is a more potent agonist than ATP, 

while ATP and UTP have equal potency as an agonist at P2Y2 

receptors and UTP is a more potent agonist at P2Y4 than ATP 

(Ralevic and Burnstock, 1998). 
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In comparing responses to ADP, ATP and UTP, the potency of 

ADP was >10-fold more than that of ATP (pEC50 of 6.7, 5.6, 

respectively). Maximal responses to UTP were 49% of those to 

ADP. These results are consistent with the fact that uridine 

nucleotides are mostly inactive at P2Y1 and that P2Y1 is more 

sensitive to adenine nucleotide diphosphates than to 

triphosphates (Alexander et al., 2006). 

ADP was slightly more potent in HEK cells (pEC50 of 6.7) 

compared to results obtained previously in the rat thoracic aorta 

(pEC50 = 6.0, Chapter 2) and Dol-Gleizes et al. (1999) (pEC50 of 

6.2) (Dol-Gleizes et al., 1999). The difference in agonist potency 

might be caused by species differences. For example certain 

regions of the P2X7 receptor, residues at positions 127 and 284, 

contribute to differences in agonist potency at rat, human and 

mouse P2X7 receptors (Thompson et al., 2001, Young et al., 

2007). It may also be due to the change from vascular tissue to 

cells or methodological differences, since the rat thoracic aorta 

was studied using isometric tension recording experiments while 

the HEK cell experiments involved measurement of changes in 

[Ca2+]i in monolayers using the FlexStation. 

 

4.4.2 Effect of CoA derivatives and MRS2500 

The present study found that PaCoA is a potent and selective 

antagonist of the native human P2Y1 receptor in HEK cells, 
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while CoA and its derivatives AcCoA and OlCoA failed to have a 

significant antagonistic effect at these receptors. In the rat 

thoracic aorta, CoA or AcCoA caused a significant shift (4-fold, 

5-fold, respectively) in the ADP-evoked relaxations through P2Y1, 

although the shift was relatively small (Chapter 2).  

Coddou et al. (2003) suggested that the increase in potency of 

PaCoA, compared to CoA and AcCoA, may be due to possible 

interaction of the lipophilic acyl-substituent with a hydrophobic 

pocket close to the binding site. In addition they suggested that 

while hydrophobicity is important for the added antagonism, 

maybe bulkiness also plays a critical role. Despite having a 

double bond which reduces flexibility and should increase 

potency according to the Coddou et al paper, OlCoA does not 

follow this trend, as it had no significant effect on the ADP 

responses, although it has higher lipophilicity and bulkiness. 

Our findings agree with the conclusion of Manolopoulos et al. in 

platelets were they observed that CoA analogues containing 

saturated fatty acids provided greater inhibition than those with 

unsaturated fatty acids (Manolopoulos et al., 2008).  

 

The selectivity of the CoA derivatives for the P2Y1 receptors was 

confirmed, as responses to UTP were not significantly altered in 

the presence of PaCoA, CoA, AcCoA and OlCoA. This is 

consistent with the conclusion of Coddou et al (2003) at 
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recombinant P2Y1 and P2Y2 receptors, and with the results in 

rat thoracic aorta (Chapter 2). 

The results of Schild analysis for PaCoA showed apparent pA2 

values of 7.2 and 7.0, with slopes of 1.4 and 1.6 using ADP and 

ATP as agonists, respectively. In comparison with our previous 

investigations of the effects of PaCoA in the rat isolated aorta 

using ADP (pA2 6.44, slope 1.73), there is an increase in affinity, 

with a small reduction in slope, which may result from the 

change from a large tissue mass to a monolayer of cells. Species 

differences may also be responsible for such differences. For 

example  several key residues have been identified to be 

responsible for the species differences in antagonist effects at 

the P2X7 receptor between human and rat (Michel et al., 2008). 

MRS2500 is the most potent and selective P2Y1 receptor 

antagonist currently available (Kim et al., 2003). It displays 100-

fold higher affinity compared with MRS2179 (Waldo et al., 2002, 

Kim et al., 2003) at human recombinant P2Y1 receptors and 

inhibits platelet aggregation to ADP with an IC50 of 0.95 nM 

(Cattaneo et al., 2004). In our study, although it was not 

possible to calculate a pKB value for MRS2500 as only a single 

ADP concentration was used, MRS2500 (10 µM) effectively 

blocked the ADP responses (residual response 5%). Responses to 

UTP were not significantly altered in the presence of MRS2500. 
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These results show that PaCoA is a reasonably potent antagonist 

at human native P2Y1 receptors in HEK cells. This raises the 

possibility of an endogenous selective regulation of purinergic 

signalling involving inhibition of P2Y1 receptors via CoA 

compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

Chapter Five 

Effects of NAD on purine receptors-mediated 

responses in rat thoracic aorta and porcine 

isolated coronary and mesenteric arteries  
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5.1 Introduction 

 

Nicotinamide adenine dinucleotide (NAD) (Figure 5.1) is released in a 

variety of smooth muscle tissues during stimulation of nerves 

including those in canine mesenteric artery and human urinary 

bladder (Smyth et al., 2004, Breen et al., 2006). Transporters for NAD 

have been identified that mediate both intercellular and intracellular 

transport of NAD through membranes.(De Flora et al., 2004). NAD has 

been identified as an agonist for P2Y1 receptors in HEK cells 

(Mutafova-Yambolieva et al., 2007), P2Y11 receptors in human 

granulocytes (Moreschi et al., 2006), P2X receptors in human 

monocytes (Grahnert et al., 2009) and can also activate P1 adenosine 

receptors (Burnstock and Hoyle, 1985, Hoyle, 1990). In this chapter, 

responses to NAD in RTA, PMA and PCA were investigated using 

selective P1 and P2 receptor antagonists. In the previous chapters 

PaCoA was shown to act as an antagonist at P2Y1 receptors in rat 

thoracic aorta (RTA) (Chapter Two) (Alexander et al., 2008), porcine 

mesenteric artery (PMA) (Chapter Three) (Alefishat et al., 2010) and in 

HEK cells (Chapter Four) (Alefishat et al., 2009). Hence, we also used 

PaCoA in this Chapter to characterise the responses to NAD in 

different blood vessels, specifically to investigate the possible 

involvement of P2Y1 receptors. 

 

It has previously been shown that vasorelaxant P2Y1, P2Y2 and A2 

receptors are expressed on the endothelium of the RTA (Hansmann et 

al., 1997, Rose'Meyer and Hope, 1990). P2Y1 receptors have also been 
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shown to evoke vasorelaxant responses in PCA (Olivecrona et al., 

2004). PCA are also known to express A1, A2A and A2B receptors 

(Balwierczak et al., 1991, Merkel et al., 1992, Monopoli et al., 1994, 

Abebe et al., 1994). Little is known about purine receptor expression 

in the PMA. However, in Chapter Three, it was observed that ADP 

mediates responses through P2Y1 receptors in the PMA.  

 

The main aim of the present study was to investigate the effects 

of NAD in isolated RTA, PMA and PCA and characterise the 

purine receptors involved in these responses. In addition, the 

effect of PaCoA on these NAD-mediated responses was studied.  

 

Figure 5.1 Chemical structure of nicotinamide adenine dinucleotide. 
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5.2 Materials and Methods 

 

Porcine mesenteries and hearts, obtained from a local abattoir (Woods 

abattoir, Clipstone, Mansfield, Nottinghamshire) and male Wistar rats 

(200-250 g), obtained from Charles River (England, UK) were used in 

this study. PMA, PCA and RTA were dissected out, rings from PMA, 

PCA and RTA were mounted, tensioned, equilibrated, exposed to KCl 

and preconstricted (using methoxamine for RTA and U46619 for PMA 

and PCA) for isometric tension recording as described in Chapters Two 

and Three. Stepwise cumulative addition of agonist (NAD, 0.1 µM- 1 

mM) (Sigma Chemical Company, UK) to the preparations was then 

carried out as described with ADP in Chapters Two and Three. 

 

Endothelium denudation (by gentle rubbing) and time control 

experiments were performed using the same protocol described in 

Chapters Two and Three.  

 

5.2.1 Effect of PaCoA on responses to NAD  

To investigate the possible antagonistic effects of PaCoA (10 µM, Sigma 

Chemical Company), CGS15943 (an adenosine receptor antagonist) (10 

µM) (SIGMA), SCH58261 (a selective A2A receptor antagonist) (100 nM) 

(a gift from Schering Plough, Milan, Italy), suramin (a P2 receptor 

antagonist) (100µM) (Sigma Chemical Company, UK) and α,βmeATP (a 

P2X receptor agonist and desensitizing agent) (10 µM) (SIGMA) on 
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responses to NAD, these compounds were added 10 min before U46619 

or methoxamine addition. 

 

5.2.2 Immunohistochemical Staining  

 

Porcine coronary arteries were stained using the standard indirect 

immunofluorescence technique as described in Chapter three, 50 µl 

primary rabbit antibody A2A was added at (1:50) dilution in human 

serum was added to the slides. Samples were incubated overnight at 

4ºC. Then they were washed with PBS+0.1 % BSA 3 times. The 

secondary antibody anti mouse IgG (TRITC) (1:50) (Sigma Chemical 

Company) was diluted in PBS+ 0.1% BSA and added to the slides 

where we aimed for A2A receptor detection. Then the slides were 

incubated at 37oC for 30 min this was followed by washing with PBS+ 

0.1% BSA 3 times. The slices were then covered with vector shield 

mounting solution and glass cover slips. Samples were visualized 

using fluorescence microscopy using an objective magnification of 

40X. A parallel set of controls for each slide was performed, in the 

control slides there was no addition for primary antibody.   

 

 

5.2.3 Materials 

The supplier for all chemicals in this work was British Drug Houses 

(BDH, UK) unless otherwise stated. All drugs were dissolved in water 

except for CGS15943 and SCH58261 were dissolved in DMSO. 
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Antibodies were obtained from Calbiochem/Merck Biosciences 

(Nottingham, UK, anti-A2A Ab).  

 

5.2.4 Statistical analysis 

Results are expressed as mean ± SEM. Two way ANOVA was used for 

statistical comparisons with Bonferroni post-hoc test. A P value < 0.05 

was taken as statistically significant.  

 

 

 

 

 

 

 

 

 

 

 

  



5: Effects of NAD in vascular preparations  

 

123 
 

5.3 Results 

 

Addition of KCl (60 mM) produced a sustained contractile response of 

segments of RTA, PMA and PCA. The mean tissue response to KCl 

addition in RTA, PMA and PCA was 0.91  0.08 g (n=35), 9.21  0.43 g 

(n=20), and 9.96  0.20 g (n=32), respectively.  

 

5.3.1 Effect of NAD in precontracted rat thoracic aorta, porcine 

mesenteric artery and porcine coronary arteries 

 

In the RTA, NAD evoked concentration-dependent relaxations (Figure 

5.1a, 5.3). The response to NAD did not reach a maximum response at 

concentrations up to 1 mM, but almost fully reversed the U46619-

induced precontraction allowing the calculation of an approximate 

pEC50 value of 4.24 ± 0.19 (n = 9). Endothelium removal resulted in no 

significant effect on the NAD induced relaxations (two way ANOVA, P> 

0.05) (Figure 5.1a). 

 

In PMA segments precontracted with U46619, NAD evoked 

concentration dependent contractions with a maximal contraction at 

300 µM (Figure 5.1b, 5.5). The highest concentration of NAD used (1 

mM) caused a reduced contraction of the PMA. Non-linear analysis 

allowed computation of an Rmax value of 46 ± 8, pEC50 value of 4.54 ± 
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0.22 and a Hill slope of 1.05 ± 0.12 (n=12). Endothelium removal had 

no significant effect on the NAD-induced responses (Figure 5.1b). 

 

 

 

In PCA segments precontracted with U46619, NAD evoked 

concentration dependent relaxations (Figure 5.1c). The response to 

NAD did not reach a maximum response so Rmax, pEC50 or Hillslope 

could not be calculated. Endothelium removal produced no significant 

effect on the NAD induced relaxations (Figure 5.1c). 

 

In PMA and PCA segments, endothelium removal was assessed using 

substance P (10 nM), while acetylcholine (100 nM) was used to assess 

endothelium removal in the RTA. Any relaxation in response to 

substance P/acetylcholine of less than 10% of the 

U46619/methoxamine contraction was considered a success. In 

denuded PMA and PCA, there was an absence of the transient 

relaxation in response to substance P (6 ± 1 % (n = 6) and 2 ± 1 % (n = 

5), respectively) that was seen in control PMA and PCA segments (60 ± 

1 % (n = 11) and 70 ± 1 % (n = 6), respectively). In RTA there was a 

very slight relaxation (2 ± 0.4 %, n = 7) in response to acetylcholine in 

denuded vessels compared to the profound relaxation evoked in 

controls (65 ± 0.4 %, n = 10). 
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Figure 5.1. The effect of nicotinamide adenine dinucleotide (NAD) in 

segments from: a. rat thoracic aorta (RTA) b. porcine mesenteric artery (PMA), 

c. porcine coronary artery (PCA). Arteries were precontracted with U46619. 

Responses were evaluated in endothelium intact vessels (Control) and in 

those in which the endothelium had been removed (Denuded) in each of the 

RTA, PMA and PCA (n= 7-10, n= 6-11, n= 5-6, respectively). Results are mean 

 SEM. 
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5.3.2 Effect of P1 and P2 receptor antagonists on responses to 

NAD in the rat thoracic aorta 

 

Since NAD is able to act as an agonist at the P2Y1 receptor, PaCoA was 

used to investigate whether NAD activates P2Y1 receptors in PCA. 

PaCoA had no significant effect on the vasorelaxant response to NAD 

(P > 0.05, two way ANOVA) (Figure 2a).  

 

Since NAD is able to act as an adenosine receptor agonist, CGS15943 

(a non-selective adenosine receptor antagonist, 1 µM) was used, which 

significantly inhibited the NAD evoked relaxations (Figure 5.2b). 

SCH58261 (an A2A receptor-selective antagonist, 100 nM) was used, 

which also significantly decreased the NAD evoked relaxations with a 

calculated pKB value of  7.25 ± 0.24 (Figure 5.2c, 5.3). The possible 

involvement of A2B receptors was also investigated using MRS1754 (a 

selective A2B receptor antagonist, 1 µM), which had no significant 

effect on NAD-evoked relaxations (Figure 5.2d). 

 

These experiments in rat thoracic aorta were carried out in 

methoxamine-precontracted tissues. In the absence of antagonists, 

methoxamine caused a sustained contraction to 68  6% (n=13) of the 

KCl response. The bath concentration of methoxamine required to 

produce this level of contraction was 1.4  0.2 µM (n= 13). In the 

presence of PaCoA, SCH58261 and CGS15943, the level of tone was 
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70  6% (n= 6), 74  5% (n = 15) and 59  4% (n= 5) of the KCl 

contraction, respectively. There was no significant difference in the 

percentage of contraction to methoxamine in all used antagonists 

compared to the control (P> 0.05 one way ANOVA). In the presence of 

PaCoA, SCH58261 and CGS15943, the mean bath concentration of 

methoxamine required was unchanged when compared to the control 

(one way ANOVA P>0.05). 
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Figure 5.2. Relaxatory responses in the rat thoracic aorta to nicotinamide 

adenine dinucleotide (NAD) in the presence of a. PaCoA, b. CGS15943, c. 

SCH58261 and d. MRS1754. Vessels were precontracted with methoxamine. 

Results are shown as mean  SEM (n=5-6, n=4-5, n=12-15 and n=4-8, 

respectively). 
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Figure 5.3. A representative trace for the relaxatory responses to 

cumulative addition of increasing concentrations of nicotinamide adenine 

dinucleotide (NAD) in the rat thoracic aorta in the absence and the presence 

of SCH58261. Vessels were precontracted with methoxamine. 
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5.3.3 Effect of P1 and P2 receptor antagonists on responses to 

NAD in porcine mesenteric artery 

 

To test for any involvement of P2 receptors in the NAD-mediated 

contractile response, suramin (a P2 receptor antagonist, 100 µM) was 

used; it had no significant effect except at the highest NAD 

concentration where suramin prevented the reduction in NAD-evoked 

contraction (Figure 5.4a). In contrast, αβ-meATP (a P2X receptor 

desensitizing agonist, 10µM) caused a significant inhibition of the NAD 

evoked responses (Figure 5.4b, 5.5). As α,β-meATP abolished the NAD 

response in some vessels an EC50 value could not be calculated. A 

mean contraction of 45  10 % and 17  7 % (n= 7, n=8, respectively) 

at 300 µM NAD was found in the absence and presence of α,β–meATP, 

respectively. 

 

Since NAD can also act as an agonist at the P2Y1 receptor, the effects 

of PaCoA was investigated. PaCoA at 10 μM had no significant effect 

on the response to NAD (P > 0.05, two way ANOVA) (Figure 5.6a).  

 

Since NAD can also act at P1 receptors, the effects of CGS15943 (a 

non-selective adenosine receptor antagonist, 10 µM) and SCH58261 (a 

selective A2A receptor antagonist, 100 nM) were investigated; neither 

had any significant effect on the response to NAD (Figure 5.6b, c). 
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The above experiments in porcine mesenteric artery were carried out 

in vessels precontracted with U46619. In the absence of antagonists, 

U46619 caused a sustained contraction to 75  4 % (n= 7) of the KCl 

response. The concentration of U46619 required to produce this level 

of contraction was 131  18 nM (n= 7). In the presence of PaCoA, 

SCH58261, suramin and α,β-meATP, U46619 elicited  65  9 % (n= 7), 

63  5 % (n= 4), 50  10% (n= 4) and 58  3% (n= 8) of the KCl 

contraction, respectively, which was not significantly different from the 

control (P>0.05, one way ANOVA). The concentration of U46619 

required to produce these contractions was unchanged (P> 0.05, one 

way ANOVA). In the presence of CGS15943, a higher concentration of 

U46619 (763 ± 259 nM, n = 6) was required to precontract the 

preparations compared to that used in the absence of CGS15943 (531 

± 216 nM, n = 7). There was no significant difference in the level of 

tone elicited in the absence and presence of GCS15943 at 55  6% (n 

= 7) and 49  10% (n = 6) of the KCl contraction, respectively. 
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Figure 5.4. the contractile response of porcine mesenteric artery to 

nicotinamide adenine dinucleotide (NAD) in the presence of a. 

suramin, b. α,β-meATP. The arteries had been precontracted with 

U46619. Results are shown as mean  SEM. (n=4, n= 7-8, 

respectively). 
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Figure 5.5. A representative trace for the contractile response to 

nicotinamide adenine dinucleotide (NAD) of porcine mesenteric artery 

in the absence and presence of α,β-meATP. The arteries had been 

precontracted with U46619.  
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Figure 5.6. The porcine mesenteric artery contractile response to 

nicotinamide adenine dinucleotide (NAD) in the presence of a. PaCoA, b. 

CGS15943, c. SCH58261 (n=7, n=8, n=4, respectively). The arteries had 

been precontracted with U46619. Results are shown as mean  SEM. 
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5.3.4 Effect of P1 and P2 receptor antagonists on responses to 

NAD in porcine coronary artery 

 

Since NAD can act as an agonist at the P2Y1 receptor, PaCoA was used 

to investigate whether NAD activates P2Y1 receptors in PCA. PaCoA 

had no significant effect on the vasorelaxant response to NAD (P > 

0.05, two way ANOVA) (Figure 5.7a).  

 

To characterise the NAD-evoked relaxations, we used CGS15943 

(adenosine receptor antagonist) which, with the exception of the 

response to the highest concentration of NAD (1 mM), abolished the 

NAD evoked relaxations (Figure 5.7b). In the presence of CGS15943, 

contractions were observed at 10-100 µM of NAD. SCH58261 (selective 

A2A receptor antagonist) (100 nM) abolished the NAD-evoked 

relaxations (Figure 5.7c, 5.8).  

 

Since the NAD-mediated relaxations were blocked by A2A receptor 

antagonists, the expression of A2A receptors in PCA was investigated 

using immunohistochemistry; A2A receptor immunoreactivity was 

observed on the smooth muscle in PMA (Figure 5.9).  

 

The above experiments in porcine coronary artery were carried out in 

U46619-precontracted tissues. In the absence of antagonists U46619 

caused a sustained contraction to 60  6% (n=9) of the KCl response. 
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The bath concentration of U46619 required to produce this level of 

contraction was 145  62 nM (n= 9). In the presence of PaCoA and 

SCH58261 U46619 elicited 65  5% (n=5) and 76  2% (n=6) of the 

KCl contraction, respectively, which was not significantly different 

from the control (one way ANOVA P>0.05). The mean bath 

concentration of U46619 required was unchanged (one way ANOVA 

P>0.05).  

 

In the presence of CGS15943, a higher concentration of U46619 was 

required to precontract the PCA preparations; for these experiments 

175 ± 79 nM (n = 7) of U46619 was needed to achieve 57  7% (n = 7) 

of the KCl contraction in controls, while 773 ± 204 nM (n = 6) of 

U46619 was needed to elicit 24  4% (n = 6) of the KCl contraction in 

the presence of CGS15943. Both the level of contraction to U46619 

and the concentration of U46619 required to achieve that level were 

significantly different from the control (P < 0.05, one way ANOVA). 
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Figure 5.7. The porcine coronary artery relaxation to nicotinamide 

adenine dinucleotide (NAD) in the presence of a. PaCoA, b. CGS15943 

c. SCH58261. Preparations were precontracted with U46619. Results 

are shown as mean  SEM (n=5, n=6, n=6 respectively). 
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Figure 5.8. A representative trace for the porcine coronary artery 

relaxation to nicotinamide adenine dinucleotide (NAD) in the absence and 

presence of SCH58261. Vessels were precontracted with U46619.  
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Figure 5.9. A representative A2A receptor immunostaining  of a 

porcine coronary artery in a. longitudinal sections and c. cross 

sections of the vessels accompanied by control which had no primary 

antibody to A2A receptors in b. longitudinal section and d. cross 

section of the vessels. Smooth muscle (SM) and endothelial cells (EC) 

are indicated. Scale bar = 100 µm. 
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5.4 Discussion 

The effects of NAD on the RTA, PMA and PCA were examined. 

NAD evoked vasorelaxations mediated through smooth muscle 

A2A adenosine receptors in the RTA. In the PMA, NAD caused 

vasoconstrictions, which were mediated through P2X receptors. 

In the PCA, NAD evoked vasorelaxation through A2A receptors on 

the smooth muscle. NAD, therefore evokes different effects 

(relaxation or contraction) in different blood vessels acting via 

different receptors. 

5.4.1 Characterisation of NAD-evoked responses in rat 

thoracic aorta  

In the RTA, NAD caused endothelium independent 

vasorelaxations. PaCoA was used to see the effect it had on the 

NAD-evoked relaxations since NAD can act as an agonist at P2Y1 

receptors (Mutafova-Yambolieva et al., 2007). PaCoA had no 

significant effect on the NAD-evoked relaxations. The failure of 

PaCoA to inhibit the NAD-evoked relaxations in the RTA and the 

fact that these relaxations were endothelium independent 

indicates that P2Y1 receptors do not mediate these 

vasorelaxations. 

 

NAD was also shown to act as an agonist at P1 adenosine 

receptors (Hoyle, 1990, Burnstock and Hoyle, 1985), so P1 

receptor antagonists were used to characterise the NAD-
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mediated relaxations. We used CGS15943 (a non selective 

adenosine receptor antagonist) which significantly reduced the 

NAD evoked relaxations indicating the involvement of adenosine 

receptors. To determine which adenosine receptors mediate 

these responses, SCH58261 (a selective A2A receptor antagonist) 

was used. It significantly reduced the NAD-evoked relaxations in 

the RTA. This indicates that NAD-evoked relaxations in the RTA 

are mediated through A2A adenosine receptors. 

 

The relaxations to NAD were not abolished in the presence of 

SCH58261 which may indicate the involvement of other 

adenosine receptors in addition to A2A adenosine receptors. NAD 

has previously been shown to act as an agonist at P1 receptors, 

without specification of which subtype was involved (Burnstock 

and Hoyle, 1985, Hoyle, 1990). Therefore, an A2B adenosine 

receptor antagonist, MRS1754, was used to check for any effect 

on the NAD-evoked relaxations. MRS1754 had no significant 

effect on the NAD-evoked relaxations which excludes the 

involvement of A2B adenosine receptors.   

 

In the RTA, NAD had an approximate pEC50 value of 4.24. This 

is similar to the pD2 value reported by Burnstock and Hoyle 

(1985) for NAD-evoked relaxations in the guinea-pig taenia coli 
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at P1 receptors (4.18), but is somewhat different from the value 

identified by Mutafova-Yambolieva et al. (2007) in HEK cells at 

P2Y1 receptors (6.1). NAD appears to act, therefore, at P1 

receptors, specifically as an A2A receptor-selective agonist. 

 

5.4.2 Characterisation of NAD evoked responses in porcine 

mesenteric arteries  

 

In the current study in the PMA, NAD caused an endothelium-

independent vasoconstriction up to a concentration of 300 µM 

above which it evoked a reduced contractile response.  NAD has 

been identified as an agonist at P2Y1 (Mutafova-Yambolieva et 

al., 2007), P2Y11 (Moreschi et al., 2006), and various P2X 

receptors (P2X1, P2X4, and P2X7) (Grahnert et al., 2009) and can 

also activate P1 adenosine receptors (Hoyle, 1990, Burnstock 

and Hoyle, 1985).  

 

There are no studies in the literature on the effect of NAD on the 

PMA. In the rat mesenteric arterial bed, Ralevic et al. showed 

that NAD, at concentrations above 50 nM, caused biphasic 

responses with a phase of constriction preceding the 

vasodilatation (Ralevic and Burnstock, 1998). It was suggested 

that it is unlikely that P1-purinoceptors mediate the vasodilator 

actions of NAD in rat mesenteric arterial bed; this was based on 

the conclusion of Blackburn et al. and Buss et al. that adenine 
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dinucleotides are largely resistant to degradation (Blackburn et 

al., 1987, Busse et al., 1988, Ralevic et al., 1995).  

 

In this study, the P2 receptor antagonist suramin was used to 

characterise the responses to NAD. It had no significant effect 

except at the highest NAD concentration, where it prevented the 

reduced NAD-evoked vasoconstriction, implying a suramin-

sensitive P2Y receptor-mediated relaxation solely at 1 mM NAD.  

αβ-meATP (a P2X receptor desensitizing agonist) caused a 

significant attenuation of the NAD-evoked contractions, 

suggesting activation of a suramin-insensitive P2X receptor. The 

responses to NAD were not completely abolished in the presence 

of the P2X desensitizing agent (α,β-meATP at 10 μM). It was 

reported previously that rat large mesenteric arteries have 25 - 

100 fold lower sensitivity to αβ-meATP than smaller arteries 

(Gitterman and Evans, 2000). It was also reported that these rat 

large mesenteric arteries are insensitive to the P2 receptor 

antagonist suramin (Gitterman and Evans, 2000). It is likely, 

therefore, that, as relatively large blood vessels were used (first 

order PMA) in this study, that the NAD-evoked contractions were 

mediated through suramin-insensitive P2X receptors on the 

smooth muscle. Whether these responses are mediated through 

P2X1 receptors could be confirmed using a selective antagonist 

such as NF449 (Rettinger et al., 2005). This agrees with the 

conclusion of Grahnert et al. (2009) who showed that NAD acts 
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as an agonist at P2X receptors in human monocytes (Grahnert 

et al., 2009). 

 

Other potential reasons were investigated for the incomplete 

blockade evoked by α,β-meATP of NAD-evoked contractile 

responses in the PMA. Since NAD can also act at P1 receptors, 

CGS15943 and SCH58261 were used. Neither had a significant 

effect on the response to NAD, confirming that these responses 

were not mediated through adenosine receptors. 

 

The reduction in NAD evoked contraction which occurred at the 

highest concentration of NAD (1 mM) was blocked by suramin 

suggesting that it is mediated through P2 receptors. This needs 

further investigation as to whether a contaminant of the NAD, 

for example, ADP or ATP, may be responsible for this relaxation, 

or whether NAD itself activates suramin-sensitive P2Y receptors.  

Evidence from experiments conducted in the presence of PaCoA 

suggested that NAD fails to act through P2Y1 receptors in this 

tissue.  

 

There are no reported potency estimates for NAD acting through 

P2X receptors in the literature. In this study using PMA 

segments, the pEC50 for NAD was 4.54 at P2X receptors. 

Burnstock and Hoyle (1985) reported a pD2 value for P1-
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mediated NAD evoked relaxations in the guinea-pig taenia coli of 

4.18, while Mutafova-Yambolieva et al. (2007) found a pEC50 

value for NAD-evoked calcium responses through P2Y1 receptors 

in HEK cells of 6.1. The potency differences presumably reflect 

simple differences in the receptors being activated.  

 

5.4.3 Characterisation of NAD-evoked responses in porcine 

coronary arteries  

In the current study, NAD caused an endothelium-independent 

vasorelaxation.  Since NAD can act as an agonist at P2Y1 

receptors, the effects of PaCoA on the NAD evoked responses 

were tested. PaCoA had no significant effect on the NAD-evoked 

relaxations, indicating that P2Y1 receptors do not mediate these 

vasorelaxations. 

 

Since NAD can also act as an agonist at P1 adenosine receptors 

(Hoyle, 1990, Burnstock and Hoyle, 1985), adenosine receptor 

antagonists were employed to characterise the NAD-mediated 

responses in the PCA. CGS15943 inhibited these relaxations 

suggesting the involvement of adenosine receptors, without 

allowing identification of the particular subtype. The selective 

A2A receptor antagonist SCH58261 abolished NAD-evoked 

relaxations in the PCA, indicating that NAD evoked relaxations 

in PCA are mediated through A2A receptors. 
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5.4.4 NAD responses in RTA, PMA and PCA 

Recently NAD has been increasingly reported as  an extracellular 

signalling molecule, in addition to its intracellular role (Ziegler, 

2000). The presence of a membrane-bound extracellular NADase 

implies that NAD may function as a physiological modulator of 

central neurotransmission (Khalmuradov et al., 1983, Snell et 

al., 1984). Degradation of NAD yields two second messengers 

that can induce increase of calcium from intracellular stores; 

cyclic ADP-ribose (cADPR) and nicotinic acid adenine 

dinucleotide phosphate (NAADP) (Berthelier et al., 1998, Guse et 

al., 1997). NAD can be cleaved by ectoenzymes. Nucleotide 

phosphodiesterase/pyrophosphatase I (E-NPP, CD203 family) 

allows the production of AMP, which can be hydrolyzed to 

adenosine by ecto-5′-nucleotidase (CD73). 

 

There are a number of shared properties between NAD and ADP.  

They both have significant roles in energy metabolism, they also 

act as substrates for extracellular enzymes which in turn 

generate a number of metabolites that may have signalling 

functions (Ziegler, 2005). For example, NAD serves as a 

substrate for mono-ADP-ribosyltransferases (ARTs) that catalyze 

the transfer of ADP-ribose from NAD to target proteins (Moss et 

al., 1990). NAD can also be used by CD38 and CD157; both 

have NAD-glycohydrolase and ADP-ribose cyclase activity, 
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resulting in the formation of ADP-ribose (ADPR) and cyclic ADP-

ribose (cADPR) (Berthelier et al., 1998). Transmembrane 

transporters were identified for both NAD and cADPR (Bruzzone 

et al., 2001, Romanello et al., 2002, De Flora et al., 2004). These 

transporters mediate intracellular and intercellular trafficking of 

NAD and cADPR that enhances intracellular [Ca2+]i (De Flora et 

al., 2004). 

 

Unlike ADP there are very few reports about intact NAD 

triggering intracellular events through surface receptors. NAD 

was reported to be released on nerve stimulation in blood 

vessels and urinary bladder in human, mouse and dog, and was 

demonstrated to have characteristics of a neurotransmitter 

(Breen et al., 2006, Mutafova-Yambolieva et al., 2007, Smyth et 

al., 2004). NAD was reported to act as an agonist at P2Y11 

receptor in granulocytes (Moreschi et al., 2006). Mutafova-

Yambolieva et al. reported that NAD acts as an agonist at P2Y1 

receptors (Mutafova-Yambolieva et al., 2007). NAD was also 

reported to facilitate Ca2+ influx, pore formation and cell death 

through acting as a substrate for mono-ADP-ribosyltransferase 2 

(ART2), an enzyme that catalyzes ADP-ribosylation of P2X7 

receptors (Seman et al., 2003). An increase in [Ca2+]i in 

responses to extracellular NAD was reported in several cell types 

through the conversion of NAD into cADPR which in turns 

mobilises intracellular Ca2+ (Sun et al., 1999, Verderio et al., 
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2001, Esguerra and Miller, 2002, Romanello et al., 2002, De 

Flora et al., 2004). In human monocytes, exposure to NAD 

resulted in a rapid increase in [Ca2+]i caused by an influx of 

extracellular Ca2+ independent of intracellular Ca2+ (Gerth et al., 

2004); in this tissue, the possibility of NAD acting through a 

degradation product was ruled out using selective inhibitors of 

CD38 and a stable NAD analogue. Interestingly, in this study 

the increase in [Ca2+]i was inhibited in the presence of ATP 

(Gerth et al., 2004). The possibility of NAD acting through an 

ATP receptor was investigated and led to the finding that NAD 

acts as an agonist at P2X receptors, an action inhibited in the 

presence of ATP which led to the speculation that since NAD and 

ATP have a similar mechanism to increase [Ca2+]i it is possible 

that ATP can control the fate of NAD by making it available to 

other pathways (Grahnert et al., 2009). 

 

In this study, NAD appeared to act through distinct receptors in 

different vascular beds.  In the PMA, NAD appeared to act 

through P2X receptors, which agrees with the findings of 

Grahnert et al. (2009) in human monocytes. Pfister et al. (2001) 

analyzed the NAD degradation products in human monocytes, 

and found that NAD was mainly degraded to ADP-ribose, 

nicotinamide, and minor amounts of AMP, ADP, and cADPR 

(Pfister et al., 2001). Adenosine was not detectable. If produced 
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sufficiently, all of these by-products have signalling functions 

mediated through different receptors. Based on this, Grahnert et 

al. (2009) concluded that NAD in human monocytes engages 

with P2X receptors as none of their by-products except ADP 

have been described to interact with P2X receptors. In the 

current study, it is not possible to confirm whether NAD acts 

directly at P2X receptors in the PMA or through its metabolites, 

mainly ADP. This can be confirmed using enzymes such as 

apyrase, a nucleoside diphosphatase that can catalyse the 

removal of the beta phosphate from ADP but fails to hydrolyze 

NAD (Babu et al., 2002).  

 

In the RTA and PCA, it was observed that NAD evoked 

relaxations via A2A receptors. This may be by acting directly at 

A2A receptors, causing the release of adenosine or being broken 

down into adenosine. Blackburn et al. and Buss et al. suggested 

that adenine dinucleotides are largely resistant to degradation 

(Blackburn et al., 1987, Busse et al., 1988). This contrasts with 

the conclusion of Nikiforov et al. that NAD+ needs to be degraded 

outside the cell to serve as precursors of intracellular NAD 

(Nikiforov et al.). This also contrasts with the finding of Bruns 

(1980) who suggested that NAD needs to be broken down to act 

on adenosine receptors in human fibroblasts (Bruns, 1980). 
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These findings in the RTA and PCA agree with observations of 

Burnstock and Hoyle (1985) who reported that NAD acts in the 

guinea-pig taenia coli through P1 receptors. Using dipyridamole 

(a purine nucleoside uptake inhibitor) and 8-phenyltheophylline 

(a P1 receptor antagonist) they showed that the dominant 

mediator of NAD-induced relaxations is adenosine, and they 

reported two possibilities, which were that NAD either induces 

release of adenosine or is broken down to adenosine. They then 

concluded that NAD acts on P1 receptors probably indirectly, 

following its conversion to adenosine. NAD was reported to evoke 

the release of adenosine in rat vas deferens, guinea-pig taenia 

caecia and bladder (Stone, 1981).  

 

NAD evoked endothelium independent vasorelaxation in the RTA 

and PCA through smooth muscle A2A receptors. Whether these 

responses are caused by NAD activating A2A receptors directly, 

by causing a release of adenosine or by being broken down into 

adenosine is in need of further characterisation. The role of 

adenosine could be confirmed by the use of the enzyme 

adenosine deaminase to degrade adenosine to inosine, a much 

less active metabolite. Furthermore, hydrolysis of NAD could be 

investigated using selective inhibitors of CD38 (an NAD-

glycohydrolase), such as β-araF-NAD (Muller-Steffner et al., 

1992). Radiolabelled NAD, such as carbonyl-14C NAD, could also 

be used to check the stability of this compound in contact with 
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vascular tissue. The use of HPLC with mass spectroscopy to 

determine extracellular levels of NAD and it‟s metabolites could 

also be undertaken (Slominska et al., 2006). 

The relaxations evoked by NAD were significantly reduced in the 

presence of SCH58261 in RTA, while SCH58261 abolished these 

NAD-evoked relaxations in PCA which may give an indication 

that in RTA the NAD evoked relaxations may involve other 

receptors that also mediate this relaxatory response. 

In conclusion, there are clear differences in the actions of NAD 

in the PMA compared to the RTA and PCA; in both RTA and 

PCA, NAD acts through P1 receptors, while in PMA it appears to 

act through P2X receptors. The suggestion that NAD may be 

broken down to adenosine to act through P1 receptors may 

indicate higher levels of ectonucleotidases in RTA and PCA.  
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In this project, effects of acyl-CoA derivatives were examined on 

responses mediated by P2 and P1 receptors in RTA, PMA, PCA 

and HEK cells. Table 1 shows vasorelaxant purine receptors in 

the blood vessels used in the previous chapters, as 

characterised in our studies and as reported in literature. It can 

be seen that in the aorta and mesenteric arteries P2Y1 receptors 

are expressed on the endothelium, but in coronary arteries these 

have only been reported on the endothelium in the pig 

(Olivecrona et al., 2004) but this is controversial (Rayment et al., 

2007, Chapter Three, Five). P2Y2 receptors also appear to be 

expressed on the endothelium of aorta and mesenteric arteries, 

but a recent study in mouse aorta raises the possibility that 

these may be P2Y6 receptors (Guns et al., 2006). Nonetheless, 

the expression of at least two different vasorelaxant P2Y purine 

receptors in all three of the blood vessels allowed us to 

investigate the selectivity of CoA and its derivatives as possible 

P2Y1 antagonists. In aorta, coronary and mesenteric arteries A2A 

and A2B receptors are expressed on both EC and SM (Table 6.1). 

 

The present results indicate that, of all the acyl CoA derivatives 

used in this study (CoA, AcCoA, OlCoA and PaCoA), the most 

potent CoA derivative was PaCoA acting as an antagonist with 
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apparent selectivity for the P2Y1 receptor in RTA, PMA and HEK 

cells. 

Acyl-CoAs are essential intermediates in lipid biosynthesis and 

fatty acid metabolism. The possibility that acyl-CoAs play a 

physiologically significant role as endogenous modulators has 

received increasing attention (Chapters One and Two). Despite 

their non-specific effects which are evoked by their detergent 

properties, normally they are kept at low levels intracellularly by 

ACBPs and FABPs and these relatively low concentrations 

specifically and reversibly affect several transport and enzyme 

systems (Chapters One and Two).  

 

Several studies have described different effects of acyl-CoA on a 

variety of cell functions and suggested that acyl-CoA can play a 

key regulatory role under certain circumstances (Chapter Two).  
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Table 6.1. Vasorelaxant purine receptors in aorta, coronary and 

mesenteric blood vessels in various species. 

Vessels Species Receptors location Rferrences 

Aorta guinea-pig A2B EC,SM Hargreaves et al., 1991, Martin, 
1992, Martin et al., 1993b, 
Gurden et al., 1993, Alexander 
et al., 1994 

    
P2Y1, P2Y2, P2Y6, 
P2Y4 EC Kaiser et al., 2002 

  

rat A2A, A2B EC, SM conti et al 1993, Lewis et al., 
1994, Monopoli et al., 1994, 
Prentice and Hourani, 1996, 
Chapter Five 

  

  P2Y1, P2Y2 EC Bultmann et al., 1998, Dol-
Gleozes et al., 1999 Chapter 
Two 

  mouse 
A2A, A2B EC,SM Ponoth et al., 2009,Talukder et 

al., 2002, Ansari et al., 2006 

    P2Y1, P2Y2, P2Y6 EC 
Beny et al., 2004, Guns et al., 
2006  

Coronary   
   

  pig 

A2A, A2B EC, SM Balwierczak et al., 1991, Abeb et 
al., 1994, Monopoli et al., 1994, 
Rayment et al., 2007, Chapter 
Three, Chapter Five 

    P2Y1  EC Olivercrona et al., 2004 

  lamb P2Y EC, SM simonsen et al., 1997 

  mouse A2A, A2B EC, SM 
Feoktistov et al., 1997, Talukder 
et al., 2002 

  bovine A2A ___  Conti et al 1993 

  
guinea-pig 
isolated heart A2A ___  Erga et al., 2000 

mesenteric   
     pig A2A SM Chapter Five 

    P2Y1 EC Chapter Three 

  rat A2A EC, SM Hiley et al., 1995 

    A2B SM Rubino et al., 1995 

    P2Y1, P2Y2, P2Y4 EC Malmsjo et al., 2000 

    P2X SM Ralevic, 2002 

  rabbit A2A EC 
Balwierczak et al., 1991, de Brito 
et al., 2002 

    P1, P2 SM Mathieson and Burnstock, 1985 

  mouse P2X1 EC Harrington et al., 2007 

    P2Y6 EC Koltsova et al., 2009 

 

 



6: General Discussion  

 

155 
 

 

 

The extracellular existence of acyl-CoAs appears unlikely under 

normal physiological conditions. However, they may be released 

during pathophysiological conditions (Chapter Two). In this 

investigation, PaCoA was shown to act as a potent antagonist 

with apparent selectivity for P2Y1 receptors (Chapters Two, 

Three, Four and Five). However, the mechanism by which PaCoA 

acts remains to be clarified. The simplest interpretation is that 

CoA compounds, because of their structural similarity with ADP, 

compete for the same binding site of the P2Y1 receptor at the 

extracellular surface. The possibility of whether PaCoA can 

inhibit these receptors extracellularly and whether there is a 

possibility that transport proteins may move PaCoA to 

extracellular compartments under certain conditions is yet to be 

investigated. Another possibility is that acyl-CoA derivatives may 

act on the intracellular face of the plasma membrane to regulate 

P2Y1 receptor function. In addition, acyl-CoAs were shown to 

associate with cell membranes by insertion of the fatty acyl 

chain into the bilayer (Powell et al., 1985). So whether the action 

of these compounds is facilitated by the fact that these 

compounds are actually integrated into the right place, in 

membranes, which make them available to interact with P2Y1 

receptors is an interesting possibility to investigate. 

Furthermore, it was suggested that in some cases ACBP donates 
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acyl-CoA directly to the site of action (Faergeman and Knudsen, 

1997). However this ability to donate acyl-CoA does not always 

occur since AcCoA bound to ACBP was unable to inhibit AcCoA 

carboxylase (Rasmussen et al., 1994). So whether bound acyl-

CoAs are still available for binding to some specific enzymes or 

even receptors is in need of further investigation. 

The way by which  these compounds act can be tested using 

isolated lipid rafts since P2Y1 receptors have been shown to 

associate with lipid rafts (Volonte et al., 2007). By incubating 

these isolated lipid rafts with tritiated PaCoA and/or CoA, it 

should be possible to check for co-localization of P2Y1 receptor 

with PaCoA which may help to explain the action of PaCoA as an 

antagonist at P2Y1 receptors.  

 

Another approach would be to make use of cells or cell 

fragments that natively express P2Y1 receptors, such as 

platelets, and heterologously-expressed receptors in cells such 

as 1321N1 cells, an astrocytoma cell line that does not express 

endogenous purine receptors. Injecting these cells with a 

calcium-sensitive dye and PaCoA (or CoA, etc.) simultaneously 

and following any change in Ca2+ signalling in response to 

extracellular ADP addition could be compared with the action of 

external PaCoA application on ADP addition. In whole cell patch 

clamp experiments Shumilina et al. have reported in Chinese 

hamster ovary cells and HEK cells the ability of endogenously 
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produced acyl-CoA to modulate the activity of KATP and Kir 

channels (Shumilina et al., 2006).   

 

The use of mice in which the gene encoding for P2Y1 receptors is 

disrupted should allow confirmation of the target of ADP and 

PaCoA. In addition to the action of PaCoA on vascular cell-

surface P2Y1 receptors, it will be useful to test the response of 

these compounds on mitochondrial P2Y1 receptors (Belous et al., 

2004, Belous et al., 2006).  Given intracellular nucleotide levels, 

it appears likely that these receptors are in a continuously 

activated state.  Using isolated mitochondria, it should be 

possible to test the effects of the endogenous ligands, ADP and 

ATP, as well as PaCoA.  It is conceivable that high intracellular 

levels of PaCoA allow the mitochondria to be protected from 

nucleotide-evoked desensitisation, which is only relieved when 

PaCoA is metabolised.  The phenomenon observed of PaCoA-

mediated inhibition of vascular, cell-surface P2Y1 receptors may 

just be a „hangover‟ from the intracellular location and function 

of PaCoA. 

 

In vivo administration of P2Y1 antagonists, MRS2179 and 

MRS2500, has been performed in pigs and mice, respectively, 

which gave further evidence for a role of the P2Y1 receptor in 

post ischemic hyperemia and thrombosis (Olivecrona et al., 
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2004, Hechler et al., 2006). MRS2179 and MRS2500 

significantly reduced the post-ischemic hyperemia and inhibited 

both systemic and localized arterial thrombosis, respectively; 

this supports the concept that targeting the P2Y1 receptor can be 

a reasonable complement or alternative to current clinical 

management of reperfusion injury in the treatment of acute 

myocardial infarction and in antithrombotic therapy (Olivecrona 

et al., 2004, Hechler et al., 2006). PaCoA is an attractive lead for 

assessing these in vivo effects, since it was reported to have 

antiplatelet activity acting mainly at P2Y1 receptors ex vivo and 

to be antagonist at recombinant P2Y1 receptors (Coddou et al., 

2003, Manolopoulos et al., 2008) and, in this study, to be an 

antagonist at endogenous vascular P2Y1 receptors in RTA and 

PMA, as well as at native P2Y1 receptors in HEK cells (Chapters 

Two, Three, Four and Five).  If such actions are reproduced in 

vivo, PaCoA could be used as a lead compound for the 

development of even more selective and potent antagonists and 

possibly radioligands at the P2Y1 receptor.  

 

Although both the mechanism of action and the in vivo effects of 

acyl-CoA derivatives have yet to be clarified, it is an attractive 

field to explore and if these effects can be confirmed in vivo, 

there is a possibility that acyl-CoAs may add to the 

understanding and management of pathophysiological 

conditions such as hypertension, diabetes, thrombosis and 
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many more disorders. Interestingly, the action of PaCoA on 

blood vessels that was found in this study using RTA and PMA, 

where PaCoA was found to block the ADP-mediated relaxations 

at P2Y1 receptors, may indicate a role in the severity of 

hypertension. If this can be demonstrated in vivo, it may suggest 

that CoA compounds could be used as leads in the design of 

molecules that may have the ability to prevent the interaction of 

endogenous PaCoA with P2Y1. On the other hand, the 

antiplatelet action of PaCoA at platelet P2Y1 receptors, if found 

to be relevant in vivo, may suggest the use of PaCoA as a lead 

compound for the design of more potent compounds that can 

also bind and act as antagonists at P2Y1 receptors in platelets 

and exert this antithrombotic activity observed with PaCoA. 

 

In addition to the acyl-CoAs, another endogenous nucleotide 

derivative studied in this project was NAD. NAD is an essential 

coenzyme found in all cells. Intracellularly, NAD acts as an 

essential co-enzyme for the transfer of electrons in redox 

reactions and is also involved in other cellular processes such as 

acting as a substrate for several enzymes. Normally, the 

concentration of NAD depends on the balance between its 

release from cells and its enzymatic degradation. In human 

plasma, and in other extracellular fluids, the NAD concentration 

was reported to be in the range of 40 - 100 nM (Bruzzone et al., 

2001, De Flora et al., 2004). In certain pathophysiological states, 
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such as inflammation, levels of NAD were reported to be 

significantly higher in some tissues compared to those in plasma 

(Smyth et al., 2004, Krebs et al., 2005, Scheuplein et al., 2009). 

Extracellularly, NAD can elicit functional responses by binding 

to specific receptors, namely purinergic receptors and this may 

occur by direct actions of NAD or may involve metabolites 

generated by NAD hydrolysis, or through release of purines. 

NAD has been reported to have different signalling cascades and 

outcomes according to both cell type and environment; for 

example, in human granulocytes, NAD activates P2Y11 receptor 

and results in cell activation (Moreschi et al., 2006). On the 

other hand, in gastrointestinal myocytes, NAD also activates 

P2Y11 receptors and results in cell inhibition (Mutafova-

Yambolieva et al., 2007). In the present study, NAD was found to 

act as an agonist at P2X receptors in PMA evoking 

vasoconstriction and an agonist at A2A receptors in RTA and PCA 

eliciting vasorelaxation (Chapter Five). It is tempting to speculate 

that the actions of NAD at A2A receptors are via adenosine 

generated from hydrolysis of NAD. 

 

Enzymes such as CD38 can hydrolyse NAD and generate several 

metabolites such as ADPR and nicotinamide which may also be 

hydrolysed further into adenosine monophosphate and then 

converted to adenosine (Chapter Five). These metabolites and 
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metabolizing enzymes may also exert some potential 

extracellular and intracellular effects; for example adenosine can 

either bind to A2A receptors or it can be used to reconstitute the 

intracellular nucleotide pool. So the hydrolysis of NAD can 

recycle these metabolites and also regulate signals mediated by 

purine receptors. The possibility that the extracellular pool of 

NAD and its metabolites may affect some intracellular functions 

has been explored in chronic lymphocytic leukemia cells. It was 

suggested that this extracellular network of NAD and its 

metabolites and the modulation of this network by hydrolyzing 

enzymes may contribute to modifying the local environment, 

making it favorable to the neoplastic cells, and that exploring 

this field may change therapeutic strategies for the management 

of lymphocytic leukemia (Vaisitti et al., 2011). 

 

 

In this study, it was not determined whether the NAD responses 

in PMA, mediated through P2X receptors, and in PCA and RTA, 

through A2A receptors, are a result of NAD acting directly at 

these receptors, through its metabolites or by evoking the 

release of nucleosides such as adenosine (Chapter Five). 

Although the reported plasma levels of NAD described above are 

lower than the range of concentrations we have used, levels of 

NAD resulting from cell disruption in some pathophysiological 

conditions may rise to relatively high levels. The action of NAD 

in PMA and PCA gives an indication of a probable application of 
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this compound; the relaxatory response in coronary arteries and 

the contraction in the mesenteric arteries may give a hint that 

these compounds may be used as a lead for compounds that 

may be used in the management of cardiovascular diseases such 

as angina and narrowing of coronary arteries.  
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