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ABSTRACT. 

In this study fluorescent sand tracer techniques were used to 

investigate sediment movement on the foreshore at two sites on the 

south Lincolnshire coast. Working over one tidal cycle, low water 

to low waterl tracer release at different points across the beach 

revealed a complexity of sand movement in this strongly tidal environ- 

ment. It was found that sand moved both at different rates and in 

contrasting dominant directions on different parts of the beach over 

the same tidal cycle. At Gibraltar Point there was confirmation from 

the tracer experiments of the importance of tidal generated currents 

on sand movements on the lower foreshore. 

Tests conducted to study the patterns and rates of movement of 

different grain sizes produced inconclusive results largely due to 

low recovery rates for the tracer. However, from the evidence avail- 

able, it appeared that sorting of sediment was taking place only in 

the sense that finer material was moved away from the release point at 

a faster rate than coarse material and not because different sized 

grains were moved in different directions. 

In a consideration of models for the prediction of longshore sand 

transport two of the most commonly used models were tested using data 

collected during the tracer experiments. The results confirmed the 

success of the two models, one based on the wave power equation and 

the other on an energetics approach, and coefficients produced were 

in close agreement with those obtained by Komar (1969) in a previous 

study. 

Finally, field measurements of a series of variables such as wave 
heighto wave period and longshore current velocity were combined with 

measures of sand movement and direction in a linear multiple regression 

analysis to study the associations present and to produce a simple 



I 

predictive model of sand movement. Using both stepwise and combina- 

torial methods of regression it was found that 801/6 of the variation 

of amount of longshore sand movement could be accounted for by the 

'best' equation. Wave height alone explained 61-3Vo of the variation 

but beach slope, water temperature and longshore current velocity 

were also of importance. 595o' of the variation of average distance 

moved by sand grains normal to the shore was explained by beach slope, 

whilst wave period was seen to be the major factor in determining the 

direction of sand movement onshore or offshore. A set of equations was 

produced which together with longshore current flow direction, could 

be used to predict the average position of tracer on the beach face 

after one tidal cycle. At the same time individual equations could 

be used to model specific aspects of sand movement. 

/ 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1: 1 Introduction 

Beach studies can be grouped into those that emphasise beach 

attributesq those that emphasise processes operating on the beach 

and those that consider both. This study falls into the last category. 

It is concerned with the movement of sand on the beach over one tidal 

cycle and as such involves the consideration of the direction and 

amount of sand movement as a response to measured process variables 

such as wave height and period or longshore current velocity. In 

addition, more specific topics are considered such as the differential 

movements of contrasting grain size and differences between patterns of 

movement on various parts of the foreshore between high and low water 

mark. 

Changes in the morphology of beaches cannot be properly understood 

until details of sediment movement both parallel to and normal to the 

shoreline are themselves understood. Much attention has been given to 

the transport rate of material alongshore because of the importance of 

this particular aspect of movement to coastal engineering and also 
,, Ir,., 

because the amount of sediment movement normal to the shore is/ 
, much less 

than that alongshore, Howeverg in terms of the impact on overall mor- 

phology, movement in both directions is of equal importance. Consequently, 

in this study attention is given to onshore/offshore sand movement as 

well as longshore movement. 

In order to measure the movement of sand directly on the beach, 9 

fluorescent tracers were produced which were used on the beach along two 

profiles established on the south Lincolnshire coast, Figure 1,1, 

Their movement was monitored over one tidal cycle in a series of experi- 

ments between September 1975 and October 1976. Radioactive tracers were 
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rejected on the gTounds of copt and health hazard and general inflexi- 

bility in their usage. As an indirect method of measuring movementl 

bedload traps, were also rejected because of their uncertain efficiency. 

Thornton (1973) estimates their efficiency at between 401, ', and 10011ý,. 

Measurements of selected hydrodynamic and meteorological parameters 

were made whilst the tracer was being dispersed and this information was 

used in a multiple linear regression analysis to gain an insight into 

the relationships present between sand movement responses and processes 

acting in the nearshore. The approach adopted, thereforeq was empirical. 9 

with the least squares regression model being used as an exploratory tool. 

The general approach follows that employed by Harrison et al (1964) with 

the regression equations produced by the analysis being tested in their 

capacity of simple predictive models. 

Harrison (1970) suggests that prediction within the beach/ocean 

system is made very difficult by the following three factors: 

1, Short memory - process variables are constantly changing so 

that in nearly all cases the magnitude of a given process variable 

changes before a full beach response takes place. 

2. Feedback - the 'explanatory' or process variables are inter- 

locked to various degrees, that is, they are interdependent, so that a 

change in one variable induces change in others. 

3. Range of process variables - process variables may fluctuate 

in frequency, magnitude and duration through large ranges and therefore 

a large number of combinations of these variables is possibleg each 

producing a unique beach response. 

However, because this study is not dealing with a geometric property 

of the beach subject to the short memory effects, but rather with the 

net effect of instantaneous responses to processes at workl problems of 

time lag with variables do not occur in the analysis. Nevertheless the 

analysis is subject to the problems of the complexity of the syste. m and 
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hence the predictive efficiency of the models is limited. Despite this 

it is hoped that this exploratory study may form the basis of further 

work and lead to the development of a simulation type model of beach 

sand movement. 

Before considering the characteristics of the study area, the lack 

of standardised nomenclature for the beach environment makes it necessary 

to outline the terminology used in this study. This is done diagrammat- 

ically in Figures 1.2 and 1.3. Moving from the offshore zone inland the 

first dynamic zone encountered is the shoaling wave zone. This is defined 

as that part of the offshore in which waves are feeling' the bottom and 

having a significant effect on sediment movement through the stress 

exerted on the sea bed. The seaward limit of this zone is indeterminate 

as the point at which waves begin to affect the bottom will depend upon 

wave characteristics. As far as this study is concerned, the shoaling 

wave zone will be thought of as the region immediately seaward of the 

breaking wave zone, The breaker zone itself will be defined as the area 

of the nearshore in which waves arriving from the offshore through the 

shoaling wave zone reach final instability and break. Wave character- 

istics and beach form determine the width of this zone. On steep 

beaches the breaker zone may be compressed, whilst on a wide flat beach 

an extended breaker zone may be present. The slope of the beach also 

determines the existence of the surf zone. Beaches with a steep slope 

do not exhibit a surf zone because deep water close inshore allows waves 

to break close to the shoreline and the breakers collapse directly into 

a swash/backwash zone. Gently shelving beaches, on the other hands 

generally exhibit well developed surf zones as waves break some distance 

from the shore, The surf zone, therefore, is that portion of the 

nearshore through which solitary waves in the form of bores pass 

following the breaking of waves, It is an important zone in that long- 

shore currents may develop as a result of wave energy dissipation or rip 
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current cell circulation. Finally, the swash zone is that part of the 

beach face which is alternately covered by the uprush of water and 

exposed by the backwash. It is in this zone that the traditional zigý 

zag motions of water and sediment take place. In addition to these four 

zones Schiffman (19639 1965) has identified a fifth zone known as the 

transition zone in which backwash collides with the oncoming bores of 

the surf zone and forms a band of high energy turbulence. This zone has 

been amalgamated with the surf zone for the purposes of this study. 

The simple picture of dynamic zones depicted in Figure 1.2 is 

greatly complicated by the presence of a medium to large tidal range 

and relatively complex beach topography. In this situation the zones 

are moved backwards and forwards across a wide beach face and, dependent 

upon the beach slope at various points, either change their appearance 

or disappear altogether. The features of the different zones on the 

ridge and runnel beach of Gibraltar Point and Skegness are described 

in Section 1: 5. 

Figure 1.3 gives further divisions of the coastal environment which 

in general are more 1W ely defined and in consequence cause most con- 

fusion. The nearshoreq for example, is an indefinite zone extending 

from M. L. W. mark on the shoreline to a point somewhere within the shoal- 

ing wave zone where waves are changing their form from the sinusoidal or 

trochoidal deepwater form to the shallow water solitary form. In 

addition, more than one name may be given to the same zone in the 

literature, Thus, for example, the foreshore may be known as the beach- 

face and the backshore as the back beach. As far as possible the termin- 

ology used in this study will be that shown in Figure 1,3, 

1: 2 General physical background 

The geological history of eastern Lincolnshire has been outlined by 

Swinnerton and Kent (1949) and Swinnerton (1936). It is a relatively. un- 

, complicated geology with Cretaceous rocks overlain by glacial and post- 
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glacial deposits. The basic structure of the coastal zone comprises 

a wave cut platform cut into the chalk of the Cretaceous with the inland 

margin finding a surface expression in the eastern edge of the Lincoln- 

shire Wolds. Covering the wave cut platform, which is now below sea 

level, having been formed during an earlier interglacial period of lower 

sea level, is a deposit of boulder clay approximately 25m thick. This 

in turn is overlain along the coastal margin by a series of post-glacial 

deposits from a variety of environmentst Figure 1.4. U 

The sequence of events in the post-glacial period is summarised by 

Dugdale (1977) based on Swinnerton's earlier work, Low sea levels at 

the end of the glacial episodes allowed the development of forests on 

the boulder clay. Later sea level rises caused the destruction of these 

forests and the resultant deterioration in the drainage of the coastal 

strip led to the production of peat deposits. Fluctuation in sea level 

during the period 2000-3000 years B. P. created conditions for the develop- 

ment of a series of salt marsh deposits, peat deposits and freshwater 

marsh clays, Swinnerton (1931) suggests that the necessary calm con- 

ditions for the deposition of clays and silts were provided by the 

protection of a morainic barrier located some miles east of the present 

shoreline and which was probably finally destroyed during the stormy 

period of the 14th and 15th centuries, Howeverg recent work by Robinson 

(1968) has cast some doubt on the inference that remnants of the proposed 

barrier are seen in the present day Protector and Theddlethorpe Overfalls, 

2.5 miles east of Theddlethorpeg and the Inner Dowsing Bank, 8 miles 

seaward of Chapel St. Leonardo, Hydrographic surveys indicate that some 

of these banks are more likely to be of marine origin. 

From more recentg historical, times documentary evidence of 

frequent flooding and erosion along the coast has been collected by Owen 

(1952). These problems have not been as severe as on the Holderness 

coast to the north but at least five coastal settlements in Lincolnshire 



-8- 

S 

S 

. 1-s 

ZX 

2ý le 

41 

0 
o1 

[1 

F1 2 

Li 

0 

I 
a 

Li 
I 

lý 

9 



-9- 

have had to develop new sites in the last 700 years and Skegness 

itself has suffered in this way. 

In the last 150 years improved sea defences and reclamation have 

largely curtailed serious property damage but sea incursions are still 

a danger as witnessed by the storm surge flooding of 1953 and more 

recent less serious flooding, 

Today the coastline remains one of erosion between Mablethorpe 

and Skegness with narrow beaches sometimes stripped of sand but from 

Skegness to Gibraltar Point accretion is now the dominant processe 

Accretion in this area appears to have begun in the late 18th and 19th 

centuries since on the Armstrong map of 1779 the coastline between 

Seacroft, a point just south of Skegness, and Gibraltar Point can be 

seen to lie along the line of the present day western dune ridge. 

1: 63360 
Between 1824 and 1870 the O. S. 1st and 2nd edition4maps indicate that 

the present day main eastern dune ridge was developed and between this 

and the older western dune ridge marsh formation took place. Contained 

within the marsh, now known as the Mature Marsh, are low ridge features 

which have been revealed by boring to be shingly beach ridges (Barnes 

and Kingo 1961). These ridges provide evidence of the way in which 

the gently curving sub-parallel beach ridges successively develop with 

strips of salt marsh in between to build out this southernmost section 

of the Lincolnshire coast# 

In contrasto north of Seacroftq the coast has mainly been stabilised 

by the expansion of Skegness itself and the construction of sea defences. 

Howeverv since 18719in sympathy with the movement of a ness of accretion 

(Section 1: 09the beach has shown erosional tendencies and the 

backing dunes have been subjected to destructive attack due to the limited 

amount of protection afforded by the beach. 

Thus the three mile section of coastline between a point just north 

of Skegness pier and Gibraltar Point at the north western corner of the 
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the Wash, which forms the section of coast of particular interest to 

this study, is a zone of transition from erosion in the north to 

accretion in the south. 

1: 3 Waves and wind 

Davies (1964) classifies the east coast of Britain as a medium 

energy wave environment. This classification is confirmed by wave 

records from the Inner Dowsing Lightship which is situated 10-15 miles 

north of Skegness but provides the nearest point to Skegness from which 

deepwater wave data is available (Figure 1.1), A consideration of three 

years' records (1974,1975 and 1976) covering the period of fieldwork 

for this study confirms that "waves in the North Sea are short and that 

high waves are rare" (Draper,, 1968). The range of wave height for the 

three year period was from less than one foot to 25.5 feet but on only 

7 days were waves greater than 16 feet observed. From Figures 1-5.1.6, 

1.7 of percentage exceedence of significant wave height it will be seen 

that waves were less than five feet in height for 7056 of the time and 

were less than three feet for 49% of the time. For 1975 these figures 

were respectively 75/16 and 505/6 whilst in 1976, when much of the fieldwork 

for this study took place, the figures reflect the good summer and are 
S. 

77% and ft%. Waves greater than 8 feet were recorded only 8.7% of the 

time in 19749 7-89/o of the time in 1975 and in 1976 for 6.1% of the time. 

As might be expectedg a seasonal characteristic is present in the 

wave observations with a generally higher frequency of large waves 
I 

occurring in the stormier weather of autumn and winter. In 1974 during 

the months of Mayq Junev Julyq August and September waves of less than 

3 feet accounted for W/o of the period whereas during the rest of the 

year the figure was 38yoo Again in 1975 the waves were less than 3 feet 

for 601/o of the time in the summer whilst in the winter they occurred only 

28% of the time. The contrast is even greater for 1976 when waves were 
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less than three feet in height for 78.9% of the time in summer but 

for only 43Yo of the time in winter. I 

Wave periods for the whole of the time 1974-6 were 5 seconds or 

less except for the odd occasions when large waves had wave periods of 

6 seconds. The 17th November 1975 was the only occasion when 7-8 

second waves were observed and this was in conjunction with the largest 

waves recorded during the three years, of 25.5 feet in height. 

These findings agree with Draper's (1968) reports of wave 

observations from Smith's Knoll Light Vessel in the North Seat 22 

miles E. N. E. of Great Yarmouth. He gives the most common wave conditions 

as being those where the significant wave height was between 2 and 3 

feet and the wave period between 5 and 6 seconds, The highest wave 

recorded at this vessel was 24 feet in height with a period of 8.4 

seconds. Draper also found that most of the waves were of local origin 

and suggested that the absence of waves with periods of 10 seconds or 

more was evidence of the lack of waves which may have been generated in 

distant waters such as the Norwegian Sea. Nevertheless, the Inner 

Dowsing records do show that the largest waves were associated with the 

longest fetch distance between N. W. and N. E. In 19749 of waves larger 

than 9 feet, 75% came from directions between N. W. and N. E. In 1975 

this figure was 67% but for 1976 was only 101/o. The wave direction 

diagrams, Figures 1.59 1. ý and 1.7 indicate the variability of wave 

approach at the Inner Dowsing vessel, 

Howeverg deepwater wave observations are to a certain extent unhelp- 

ful when considering the foreshore between Skegness and Gibraltar Point. 

As may be seen from the map of fetch distances (Figure 1.6) waves may, 

approach this stretch of coastline from directions between N. N. E. and 

0 ME. 
S. S. W., 25 and 2250, with maximum fetches between N. /. and N. E. However 
this map applies only to the period when the tidal plane reaches a level 

such that waves may approach the coast without first breaking on the 
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complex offshore bank system. This protective aspect of the offshore 

banks is considered in the next section but it must be noted here that 

the banks only afford protection to the foreshore at the southern of 

the two experiment sites, the Gibraltar Point site (Figure 1.1). 

Significant breaking wave heights (Hi) actually measured during 

tracer experiments ranged between 0,18m and 0.78m at Gibraltar Point 

and between 0.22m, and 0.76m at Skegness, Breaking wave period for 

Gibraltar Point was between 2.8 and 5-4 seconds and betweenc2.6 and 5.4 

seconds at Skegness. Only on two occasions, 6-10-76 and 23-10-769 were 

tracer experiments conducted when wave records from the Inner Dowsing 

Light Vessel indicated wave heights of more than two metres, On these 

two dates beach wave heights at Gibraltar Point were respectively 0.4 

metres and 0-55 metres, This is an indication of the nature of protec- 

tion afforded by the Inner Knock and other banks just offshore. 

The surface winds for the study area are summarised in the annual 

wind rose diagrams for 1975 and 1976, Figure 1.9. These were compiled 

from readings taken at Gibraltar Point Field Station on equipment 

installed by Binney Ltd. during their feasibility study for the proposed 

Wash Barrage Scheme. The diagrams representing only two years wind 

data cannot reflect long term variability but nevertheless indicate the 

principal features of wind records in this area, A notable character- 

istio is the prevailing southwesterly direction of the winds. King and 

Barnes (1964) have suggested that these winds may have an important 

influence on the changes in the beach morphology. They postulate that 

they may generate onshore bottom currents9 counter currents, and thereby 

encourage onshore sediment movement. They also suggest that these winds 

reduce the height of the constructive northeasterly swellog thus enhanb- 

ing their constructive nature,, An interesting point is the relatively 

low percentage of calm days and very light winds accounting for the 

bracing reputation of this coast& Plate 1.1 
. 
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Plate 1.1. Skegness is bracing. 
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1: 4 The offshore zone 

Offshore bathymetry directly to seaward of the coast between 

Skegness and Gibraltar Point comprises a complex system of tidal banks 

and channels, This area is shown in Figure 1.1. Because of the large 

tidal range on this part of the coasto which may reach 7.5 metres on 

spring tides, the Bandbanks are exposed at low water, The area of 

drying sand varies according to the stage of the fortnightly neap/ 

spring tidal cycle and that found on average spring tides is indicated 

in Figure 1.1. 

This complex offshore zone has an important influence on the 

nearshore zone in three ways: 

1. The bank system provides a great deal of protection from wave 

attack to the lower for shore. Evidence of this is provided by the 

occurrence of very fine silts and mad on the lower parts of the beach, 

in particular around low water spring tide mark (L. W. S. T. ). Furthermore 

direct observation of wave heights on the lower beach gives a measure of 

the protection of the banks. At low water wave heights may be as little 

as 5-10cm but as the tidal plane rises and the depth of water over the 

offshore banks increases so wave height increases until a point is 

reached when waves move directly from deepwater offshore across the sub- 

merged banks without significant deformation and break on the beach, 

For example, during the tracer experiment of 18th March 1976 the signifi- 

cant wave height (Hi) on the beach face increased from 26cm at quarter 

tide to 40cm at half flood tide. On the falling tide the process is 

reversed and breaking waves on the beach decrease in height. 

2, Because of the large tidal ranges strong tidal currents are 

found in the area. Currents flowing north-south along the Wainfleet 

Channel (Figure 1.1), the channel between the beach and the closest 

of the offshore banksq the Inner Knock, affect the lower foreshore since, 

as the tide rises, the flow in the channel impinges more and more on the 
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beach. Measurements of currents taken on the beach close to L. W. S. T. 

mark suggest that tidal currents may reach a maximum velocity of 40 to 

60 cm/sec, Figure A1.9. This represents a value roughly 30/16 of the 

maximum current velocities offshore which in the main occur over the 

sandbanks themselves and are probably associated with large scale 

turbulence effects. Nevertheless these currents may be important in 

terms of sediment movement particularly when considered with turbulence 

possibly caused by wave effects. Evidence from tracer experiments for 

the importance of tidal generated currents on the lower foreshore is 

discussed in Chapter 4. 

3. Recent work by Dugdale (1977) in the development of a descriptive 

model of sediment transport for the offshore zone at Gibraltar Point has 

confirmed earlier suggestions by King (1964) that the flood channel 

between the Skegness Middle bank and the foreshore (Figure 1.1) is a 

major route for sediment migration from the offshore to the foreshore. 

Beach and offshore morphology supports this view. 

Robinson (1966), in a study of the coast of East Anglia, found that 

nesses or bulges on the foreshore were closely associated with tidal 

current ridges extending obliquely from the coast. The channels shore- 

ward of the ridges were found to be routes along which the sand moved 

from the offshore circulation to the nesses, A bulge in the line of the 

foreshore Seemingly related to the Skegness Middle has moved South 

since 1871 in sympathy with the Middle suggesting a situation similar 

to the cases in East Anglia described by Robinson. Purther evidence 

is provided by the Woodhead seabed drifter experiments conducted by 

Robinson (1964) and again by Dugdale in 1975 which showed preferential 

stiandings in the area of the foreshore between Skegness pier and the 

site where the line of the Skegness Middle meets the foreshore. There- 

fore, it seems reasonable to postulate that the accretion of the coast 
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south of Skegness has been the result of this sediment supply from the 

offshore reaching the foreshore along the Skegness Middle and its 

associated channel. Without this supply of sediment it is unlikely 

that the protection of the beach at Gibraltar Point by the offshore 

bank system would by itself have resulted in the outward growth of the 

coast which has taken place. 

As already mentioned (Section 1: 2), at the same time that there has 

been accretion on the beach south of Skegnessq so north of the pier at 

Skegness there has been a tendency for erosion. Although an extension 

of the Skegness Middle bank may be discerned in offshore profiles taken 

seaward along the line of Skegness pier, this only forms a small rise 

on the sea bed and hence cannot afford the same protection for the fore- 

shore as at Gibraltar Point. The comparison between the offshore pro- 

files at Skegness and Gibraltar Point may be seen in Figure 1,10, 

Furthermoreq movement of sediment from the offshore is not aided by 

the offshore bathymetry as at Gibraltar Point and tidal currents on 

the lower foreshore are slower. Measurements of the tidal currents on 

the lower foreshore at Skegness taken on 4th-5th February 1977 show 

them to be of the order of 20-30 cms/secq roughly half of those at 
Ii 

Gibraltar Point, Figure A1.7. 

1: 5 The beach 

The intertidal beach zone of the coast between Skegness and Gibraltar 

Point has a well developed ridge and runnel morphology. The number and 

size of the ridges varies from place to place and on any one profile the 

form and position of the ridges changes with time* In plang the ridges 

south of Skegness diverge slightly from the coast. They also have an 

arcuate form which is related to the stabilisation of the ridges, King 

(1972)9 who has studied the development of the beach morphology in this 

area over the last 25 years, suggests that the plan shape of the ridges 
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is due to their construction by the flatter waves of maxiimim fetch 

approaching from the north and north east. These ridge building waves 

approach the coast at a slight angle after refraction and this is reflec- 

ted in the alignment of the ridges. Because of the general southerly 

movement of the ridges they also appear to move steadily inland on any 

one profile. The part of the ridge nearest the top of the beach becomes 

stabilised first due to protection from wave attack by the growth of 

new ridges on the lower foreshore. Howeverv at the southerrf, distalt 

end of the ridge landward movement continues and this causes the convex 

plan shape of the ridges. King (1971) suggests that the ridges represent 

the attempt by the waves to build up an equilibrium gradient on a fore- 

shore slope which is too flat in overall gradient. Since the supply of 

sand to the foreshore south of Skegness pier is much greater than to the 

north, as discussed in the preceding section, the overall gradient is 

flatter and hence ridges tend to be larger. The average overall gradient on 

the -two main profiles established at Gibraltar Point and Skegness for this 

study were respectively 00 551 and 10 281. However, it appears that a 

surplus of beach sediment is not a prerequisite for ridge growth as 

ridge and runnel morphology is well developed north of Skegness in an 

area susceptible to erosion and with limited sediment supply. 

In cross section the form of the ridge shows a firm, straight slope 

facing the sea. This is the swasý-backwash face constructed by these 

processes in establishing their equilibrium gradient. The ridge crest 

is usually flattened and consists of much less consolidated sand with 

some coarser material, whilst the landward slope is shorter and steeper. 

The landward face may either merge gradually into the next landward 

runnel, as often occurs on the lower foreshoreq or may be very steep as 

a result of gravity, slip-face construction and erosion by the water 

draining from the landward runnel. The bottom of the runnels themselves 
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is composed of very fine sedimentg often with a mean phi size of less 

than 2. Ot and frequently contains assemblages of micro-features ranging 

from wave-formed ripples to current-formed megaripple features, 

In the short term surveys of beach changes reveal a stability of 

features (King91968). Measurements on pegs along a profile every 3-4 

days between March 1961 and August 1962 exhibited a slow and regular 

pattern of changes with slow ridge growth and movement. Only 22 out 

of 582 observations indicated changes in level of over 5cm during the 

summer period whilst this figure was 42 out of 480 observations for the 

winter period. Total changes did not exceed 10cm in the summer period 

and in the main any large changes that occurred were the result of 

runnel formation. 

However, catastrophic changes can also occur in a short period with 

the recurrence of large storms and storm surge conditions. At these 

times much of the beach material is removed to the immediate offshore 

zone and the ridge and runnel morphology disappears. The normal beach 

profile rapidly returns after such events but complete recoveryg 

particularly of the backshore, may take much longer, King and Barnes 

(1955) describe the beach changes along the Lincolnshire coast following 

the 1953 storm surge but conditions of less severity have produced 

similar 'planing away' of the ridge and runnel topography. Where the 

sediment cover is thin, particularly north of Skegness, the clay base 

beneath the beach may be exposed during the catastrophic events. The 

tidal cycle of spring and neap tides was found to have relatively little 

influence on the short term beach changes under normal conditions (Kingg 

1968) but may be related to the more general location of beach ridges. 

On all profiles from Skegness and Gibraltar Point the two main 

ridges present seem related to the mean high spring tide and mean high 

neap tide levels. 

The location of the two profiles used in this study is indicated in 
Figure 1,1 1, Plates 1.2 to 1.7 give, aerial and ground views of the two 



- 24 - 

Plate 1.2. Aerial view of H2 profile, Gibraltar Point, TIay 1978. 
Note trend of ridges and runnels at angle to trend 
of coast. 
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Plate 1.3. View clown the line of profile H2 from backshore, 
March 1978. Note line of breakers on Inner Knock 
bank in middle distance. 

Plate 1.4. View up line of H2 Drof'ile from lower ridge, 
March 197,9. 
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Plate 1.5. Aerial view of F1 profile, Skegness, May 1978. 
Note insignificant effect of groynes. 
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Plate 1.6. View down line of El profile from backshore, March 1976. 

Plate 1.7. View up line of profile F1 from lower rjdgfý, T, 'ýarch 1T03- 
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profiles. A selection of surveys along these profiles at Gibraltar 

Point and Skegness (Figures 1.11 to 1.15) reveal the changes in the 

shape and position of ridges and runnels during the period of studyq 

September 1975 and October 1976. It is difficult to say from the 

limited number of surveys completed on 112 and on El how much the changes 

are due to any cyclical effect, seasonal or tidal, but it seems likely 

that on the longer term trend of steady landward movement of ridges, 

shorter term patterns will be superimposed. C" 

The sweep zones for the two profiles indicate the height and size 

of the ridges and the magnitude of the changes that have taken place 
Figures 1.16 and 1.17. 

over the period. / Some differences between Skegness and Gibraltar Point 

may be discerned but it must be remembered that ridge height is also a 

function of size of material (King, 1971). The average slope of the 

seaward face on the main ridge at Skegness was greater than on the 

upper ridge at Gibraltar Point because much coarser material was involved, 

Table 1.1. Parker (1971), working on a ridge and runnel foreshore at 

Formby Point north of the Mersey Estuary, has described the succession 

of environments across the foreshore during the rise and fall of the 

tide. The morphology of the beachs especially on the lower foreshore, 

is somewhat different to that at either Gibraltar Point or Skegness and 

consequently timing of events may be different, but nevertheless the 

general sequence of events remains roughly the s*e. 

Broadly speaking, during spring tides the period between low water to 

3 hours flood tide on the incoming flood tide sees much of the lower 

ridge covered by the tide as it advances over a surface of plane bed 

and current lineation. Breaker heights generally increase during this 

period at Gibraltar Point and tidal currents are effective on the beach 

near the low water mark, By the third or fourth hour of the flood tide 

water flows up the runnel landward of the lower ridge and begins to 

enter the runnel across the top of the lower southerly part of the ridge. 
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Figure 1.11. H2 profile surveyed on 6.10-75 and 18.3-76. 
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As the water level rises up the swash-backwash face of the lower ridge 

water begins to flow over the higher parts of the ridge crest and into 

the runnel, causing standing waves to develop in the very shallow 

water on the ridge crest* Short lived currents of high velocity occur 

in the runnel as water flows into the runnel filling it rapidly. At 

the Skegness site incipient seaward drainage channels across the less 

massive lower ridge stream the flow into the runnel and very strong 

northward flowing currents are produced for a short period, 

As the breaker zone approaches the ridge crest longshore currents 
0 

are generated in the n/7w completely filled runnel, flowing in a direction 

dependent upon the direction of wave advance. The duration of the 

currents is governed by the continued existence of the breaker zone over 

the ridge seaward of the runnel, which in turn depends upon the 

heights of the incoming waves and their critical depth for breaking. 

The rate of rise of the tide will also play an important part in this. 

Moreover, with large waves or lower tides the dominant breaker zone 

may remain over the lower ridge crest for much of the tidal cycle, with 

a secondary breaker zone formed on the seaward face of the next ridge, 

On the other handl with small waves and on spring tides the breaker zone 

may remain over the lower ridge crest for only thirty minutes before 

the water reaches sufficient depth for the waves to cross the ridge 

without breaking and break on the seaward face of the next ridge, In 

this latter case, when the breaker zone 'jumps' across the runnel the 

currents within the runnel die down. (Figure A1.10). 

During the last two hours of the flood tide the breaker zone gradually 

moves up the face of the upper ridge andq where they existq runnels on 

the upper beach fill slowly from the South* At Gibraltar Point, on the 

H2 profilethe runnel forming the backshore in front of the easternmost 

dunes is often filled on the high spring tides and the breaker zone 

reaches the upper ridge crest. However, it is only under storm conditions 
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or when spring 'tide levels have been raised above predicted height that 

waves break on the dune face. Similarly at Skegness it is only under 

severe conditions that the water level reaches the base of the dunes. 

The origin of H2 profile is located in the easternmost dune line at 

Gibraltar Point and this dune line represents the stabilised crest of 

a recently formed beach ridge. At high spring tides it becomes isolated 

from the main dune line further inland by the filling of the intervening 

strip marsh area. 
(ftcktý 1ý2 ) G 

The ebb tide sees a reversal of the sequence of events with the 

breaker zone gradually moving down the swash/backwash face of the upper 

ridge, crossing to the lower ridge crest and reaching low water mark 

with much reduced wave heights at Gibraltar Point, 

No specific study of the distribution of bedforms on the beach was 

made but from observations during tracer experiments it was apparent 

that at both Gibraltar Point and Skegness the upper flow regime of the 

swash/backwash zone provided the dominant planar bedform. Seaward ridge 

faces exhibited planar bed surfaces and also the whole of the lower 

beach to low water mark. On the other hand, the runnelB frequently con- 

tained a whole suite of both upper and lower flow regime bedforms. Small 

sandwave type features or megaripples were sometimes found,, as for example 

on the 22.9-76. On this occasion these features were very pronounced 

in the main runnel on H2 profile with amplitudes of 35-45cm and chord 

lengths of 6-7 metres. These features are formed by strong currents 

flowing in the runnel. Other smaller asymmetrical ripples formed by 

draining currents were also often present. In addition, small wave- 

generated ripples were sometimes in evidence. The survival of these 

lower flow regime bedforms, in particular the smaller features, is due 

to the protection of the runnel by the ridge to seaward, a process 

termed by Parker (1971) 'topography controlled survival. $ Swash/backwash 

and breaker zones do not affect the runnel when the tide is falling and 
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consequently the lower flow regime bedforms in the runnel are not 

destroyed. The breaker zone 'Jumps' from ridge to ridge very quickly 

because of the depth of water in the runnel which prevents wave breaking. 

Occasionally at Gibraltar Point the repeated occurrence of the 

breaker zone close to the upper ridge crest, given the correct tidal 

height, leads to the formation of cusp like features along the crest 

of the ridge with associated channels down -the ridge facet (Figure 1.18). 

On the 28.2-76, for example# these features had an amplitud6lof 20-30cm 

and an average wavelength of 15-20 metres. Shingle patches were often 

associated with the seaward limit of the ridge face channels and in 

one particular case this lag deposit was 20 metres from the beginning 

of the trough at the ridge crest. 

More frequently occurring were large scale megaripples on the 

landward side of the lower ridge at Gibraltar Point and on the ridge 

crest, Aligned in a longshore direction they reflected the strength 

of alongshore flowing currents on this section of the beach. These 

features were usually present under high energy wave conditions and on 

spring tides. These large scale features were notably absent from the 

lower ridge at the Skegness site E19 reflecting considerably calmer 

conditions at this site, Bedforms on the lower ridge at Skegness con- 

sisted largely of small wave formed ripplesqpresent in Blight 

depressions, and planar bed. 

Studies of sedimentary characteristics at Gibraltar Point by Davies 

(1963) and King (1970) have shown that mean grain size decreases down 

the beach to the low water markq with variations on this general trend 

related to the morphological units of the foreshore. Mean grain size 

for the tracer experiments carried out on profile H2 at Gibraltar Point 

on the seaward face of the upper ridge was 1.65 0 compared with 2.24 0 

for the lower ridge faces On the lower foreshore between MLNT and MLST 

very fine sand occurs with mud and silt also present so that mean grain 
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Figure 1.18. Sketch of cusp features of upper ridge face 

H2 profile during 28,2-76 tracer experiment. 
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Table 1.1 Average figures for grain size and beach slope on H2 and El 

profiles for all tracer experiments. 

GIBRALTAR POINT SKEGNESS 
(112) (El) 

Mean grain size upper ridge 
seaward face 0 1.6457 0.5194 

Mean grain sorting upper ridge 
seaward face 0 0.8615 1.8223 

Mean grain size lower ridge 
seaward face 0 2,2380 2.1412 

Mean grain sorting lower ridge 
seaward face 0 0.8849 0.6538 

Mean beach slope upper ridge 
(degrees) 2,26 3,28 

Mean beach slope lower ridge 
(degrees) 1.36 0-78 
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size may be smaller than 3.0 0. Mud is deposited at low water under 

calm conditions when the offshore bank system provides protection from 

wave attack. Mud and silt are also found in the runnels on the fore- 

shore and here again sediment size may be as fine as 3.0 0. Commonly 

mean grain size on the seaward face of a ridge is coarser than on the 

crest although the difference may only be slight, 

At Skegness on the El profile the contrast between the upper and 

lower ridges in terms of the mean grain size of the seaward face is 

even more striking with much coarser material being found on the 

upper ridge (Table 1.2). Comparisons with Gibraltar Point can also 

be made with Table 1-3. Table 1.1 shows the mean grain size figures 

for the tracer experiments. The coarser material forming thp apper 

ridge at Skegness compared with Gibraltar Point is reflected in the 

steeper average slope of this ridge (Table 1.1) as already mentioned, 

Because of the complex morphology of the beach at both Skegrness 

and Gibraltar Point and the large tidal range of this part of the North 

Sea Coast, it is implied that a complex pattern of sand movements takes 
ra 

place across the foreshore, Parker (1971) has described an open cell- 

like pattern of movement between ridges and runnels based on the idea 

that the ridges axe forms through which sediment passes from one runnel 

to another, With runnels acting as barriers to landward movement of 

material Parker suggests that landward transport paths are generally 

short with most of this movement taking place on the crests of ridges. 

The patterns of sand movement on various parts of the foreshore were 

examined in this study with fluorescent tracer and these will be 

discussed in a later chapter. 

I 
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Table 1.2 Variation of sediment characteristics down El profile, 

Location 
Distance Down Mean Grain Size Sorting 
Profile (m) (0 units) (0 units) 

1 Backshore 0 1.663 0.534 

2 Backshore 22 1.960 0.529 

3 Top of upper ridge 56 -1-706 1.566 

4 Runnel 130 2.115 0.873 

5 Top of lower ridge 162 2.000 r-I 1.009 

6 Low water terrace 264 2.309 1. o66 

7 Low water mark 336 2.798 0.491 

Table 1.3 Variation of sediment characteristics down H2 profile. 

Location Distance Down 
Profile (M) 

Mean Grain Size 
(0 units) 

Sorting 
(0 units) 

I Backshore 25 1.227 1.302 

2 Middle of top runnel 50 2.164 0.540 

3 Landward face of top ridge 60 1.636 1.017 

4 Top of upper ridge 110 01,810 1.522 

5 Seaward face top ridge 160 0.359 1.529 

6 Middle of second runnel 210 2,193 0.593 

7 Seaward face bottom ridge 260 2.034 1.000 
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PART 1. 

Part 1 consists of three chapters. Field methods and the 

production of the fluorescent tracer Band are dealt with in the 

first of these chapters. The discussion is concluded with a brief 

section examining the major problems encountered during fieldwork. 

The second chapterg Chapter 3. describes the laboratory techniques 

employed in sample analysis and the mode of presentation of the 

data. The simple numerical descriptors of the tracer dispersion 

used in the study are also outlined, Finally, in the third chapter 

a qualitative consideration of the results of the tracer experiments 

is made, Specific experiments designed to test particular aspects 

of sand movement are examined together with more general features 

arising from the field studies. 
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rTTAIYPIM 9 

DATA COLLECTION 

2: 1 Introduction 

Following Ingle and Gorsline (1973), methods of employing 

fluorescent tracer in the nearshore and foreshore environments can be 

divided into three broad categories: 

1, 
IThe 

time-integrationt or Eulerian, method. This involves the 

release of a known quantity of tracer sand at a point source and the 

contiXiuous sampling of the moving bed load at a certain distance from 

the source, The variation of tracer concentration with time at the 

sampling point is then analysed to give an estimate of the velocity of 

grain movement. 

2. The dilution method. Tracer grains are injected at a constant 

rate such that the concentration of tracer grains as sampled at a point 

'downstream' will become stabilised. Velocity of grain movement can 

then be calculated from the distance to the sampling point and the time 

taken for tracer concentrations to become stabilised, 

3. The space integration, or Lagrangian, method. A known quantity 

of tracer grains is released and areal sampling is carried out over the 

resultant tracer cloud. Movement of the centre of gravity of the tracer 

cloud in a given time period can then be used to calculate the velocity 

of tracer grains. 

Discussing these methods in more detailq Crickmore and Lean (1962A9 

1962B9 1966) describe their use in flume experiments, 

A notable disadvantage of both the time integration and dilution 

methods is that they are, in effect, linear methods aince they are suitable 

only for assessing rates of sand transport in one general direction. On 

the other hand space integration methods are more flexible being, by 

definitiong of an areal nature. They facilitate the study of tracer 
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dispersion patterns and other features of grain movement in addition to 

the calculation of transport rates. Because of this a variant of the 

space integration method was the technique eventually employed in this 

study. 

In all 23 successful tracer experiments were carried out in the 

period Septemberg 1975 to October# 1976. In the light of experience 

gained from each experimento especially the earlier studiest the field 

techniques used were gradually developed and experimental rýdesign took 

place as the series of tests progressed, This chapter will consider the 

field procedure adopted for the later experiments in the series, the 

procedure found to provide the most useful results, Any relevant major 

variations from this procedure will also be discussed. 

2: 2 Tracer production 

The primary requisite of a sediment tracer is that it must be phyai- 

cally similar to the grains occurring at the study site in the field or 

in the wave tank in order that it reproduces as closely as possible the 

transport characteristics of the unmarked particles. Artificial materials 

such as pulverised coal9 broken brick and magnetic concrete, which have all 

been used in sediment movement studies, are unlikely to fulfil this 

requirement. Apart from the fortuitous cases in which naturally occurring 

tracers can be used, such as heavy minerals as used by Cherry (1966) in 

his study of longshore movement of sand on part of the Californian coastq 

tagged natural grains are used as tracers in most present day studies of 

sediment movement* 

There are two main approaches to tagging natural sandq using radio- 

active isotopes or fluorescent paint. Induced radioactivity brings with 

it problems of safety risk and lengthy preparation times in addition to 

the high cost of production of such tracers. Perhaps the most serious 

of these problems is the length of time radioactive tracer production 
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takes. The sand requires careful preparation beforeq and a lengthy 

cooUng period after, bombardment in an atomic pile, There is thereforet 

a considerable time lag between removal of sand from the study area and 

its reintroduction as radioactive tracer, Since there is a constant 

change in foreshore sand and grain size distribution the tracer released 

may bear little resemblance to in situ sand in terms of grain size and 

sorting characteristics because of the time lag,, On the other hand one 

major advantage of radioactive isotope tagging is that small grains can 

be marked successfully whereas fluorescent paint can only be used on 

coarse silts and coarser grains. Howeverg because of the problems 

involved with radioactive tracer methods briefly outlinedt fluorescent 

tracer was used in this study. 

Fluorescent tracers are defined by Teleki (1966) as "clastic particles 

coated with selected organic or inorganic substances which upon excitation 

of 36501 or 2537% wavelengths ultraviolent light emit fluorescence of 

variable wavelength and intensity in the visible region of the spectrum. " 

Teleki goes on to describe several methods of producing these tracers 

using a variety of combinations of colouring matter and coating materials. 

Yasso (1965) also provides details of several coating formulations and 

the results of laboratory tests on these coatings. A summary of many of 

these techniques is given in Ingle (1966). Ingle also lists the following 

advantages which all fluorescent dyeing methods have over radioactive 

techniques: 

1. Naturally occurring coarse siltq sand or gravel from a study site 

can be readily marked. 

2. The majority of dyes employed present no legal or hoalth hazards, 

Different fluorescent hues can be used to differentiate between 

successive tests at one locality or to trace the movement of different size 
fractions. 

The solubility of binding media can in some cases be adjusted no 
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that it will adhere to grains for a period of from several days to many 

months, 

5. The cost of dyeing is relatively low. 

6. Dyeing can be accomplished anywhere and can in fact be carried 

out at the study site. 

7, The time required for dyeing sand is often short sometimes 

entailing only minutes. 

8, The sand to be dyed in most instancee does not reqdire special 

preparation other than drying. 

9. The sensitivity of the fluorescent technique is at least equivaý 

lent to radioactive techniques. 

10. Dyes do not appear to affect the hydraulic character of labelled 

sand grains. 

in the experiments carried out in this study a variation of the 

coating formulations put forward by Yasso (1965) was employed, Three 

parts of Day-Glo spray or brush fluorescent paint were mixed with two 

parts of xylol solvent. This was then mixed with the natural beach sand 

taken from the selected study site. The only preparation of the sand 

prior to dyeing was a thorough drying. Attempts to tag the sand whilst 

it was still wet were notably unsuccessful. A small concrete mixer was 

used to gain a complete coating of all grains. The use of the mixer also 

speeded up the drying process after coating and largely eliminated the 

problem of Iclumpingle 

Aggregation of individual particles during the coating proceseq or 

I clumping' 9 was much less of a problem with the coating formulation des- 

cribed because a binding agent was not used. Many of the techniques 

developed by Yasso and others involve the use of a resin binding agent 

to attach the fluorescent coating firmly to the grains, This undoubtedly 

lengthens the life of the coating but also causes serious 'clumping' 

problems. Since the tracer coating on grains used in this study was 
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required to last only a maxim= of two tidal cycles the binding agent was 

found to be unnecessary. 

Yasso (1965) found that the thickness of a single coat using the 

method followed in this study was 0.000591 mm on grains between 0.84 and 

0,99 mm in diameter. He also found that the percentage weight loss due 

to abrasion, simulated by rolling marked material in a 24 oz screw cap 

jar at 120 r. p. m. for 18 hours, was 0.15P/o. Similar tests carried out 

during this study also revealed little significant loss of grain coating. 

Noweverg such tests on coating loss due to abrasiong tend to be inconclus- 

ive as it is virtually impossible to simulate adequately the abrasive 

processes at work in the nearshore. Nevertheless field tests did indicate 

that grains coated by the method described retained some if not all of 

their coating for much longer periods than actually required in the tracer 

experiments. Tracer immersed in the sea for two weekag in generalg main- 

tained its fluorescent coating but it is not possible to state that all 

grains remained perfectly coated during this period. 

As a further test of the effect of coating the grains a mechanical 

sieve analysis was made of sand samples before and after coating. It can 

be seen from the average cumulation percentage curves(Figure 2.1)that 

there is a slight upward shift of the distribution throughout the range of 

sizes. This is the effect of the coating itself, albeit very thing on 

each individual grain and the clumping of grains during the coating 

process. The larger shift of the curve at the fine end of the range, that is 

greater than 3.0 O, refleots the inefficiency of fluorescent coating 

techniques for fine grain sizes due to aggregation of the individual 

grains. These effects of coating on the grain size distribution were 

unavoidable but when carefully minimised were deemed sufficiently small 

to be acceptable. 

A wide range of colours is available in the Day-Glo spray 

and brush paint ranget but it was found that many of the colours, although 
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Pigure 2.1. Effect of tracer coating on natural sand grains. 
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distinctly different in ordinary daylight were quite similar in their 

fluorescent colour in ultra-violet light. Teleki (1967) discussed this 

problem of overlap of transmission curves for fluorescent dyes in connec- 

tion with the difficulties which may arise in distinguishing between 

several colours of tracer in the same sample. By careful selection two 

colours when choseng SaturnYellow and Aurora Pink which fluoresce yellow 

and orange respectively. These were found to be quite easily distinguish- 

able when present in the same sample. 

A third colour, blue, was also used in some grain size tests but this 

was in the form of commercially produced fluorescent sand. This colour 

was used sparinglyp howeverg since it was sometimes difficult to distin- 

guish between this tracer and naturally occurring blue fluorescing 

particles on the beach such as for example skeletal remains of marine organisms, 

Commercially produced sandt available from British Industrial Sandt was 

not used for the main tracer experiments in this study because of the lack 

of agreement between the grain size distribution and hydrodynamic charac- 

teristics of this sand and the sand of the test sites. Figure 2.2 and 

Table 2.1 give a good example of these differences for the experiment of 

28.2-76. The high cost of the industrial sand was also a factor In its 

rejection for this study. 

Table 2.1 Grain size characteristics for experiment: 28.2-76. and 
comparison with commercially produced tracer sand. 

Standard 
Mean Deviation Skewness Kurtosis 

28.02.76 
1.673 1.032 -1-155 3.285 Upper Ridge 

28.02-76 2.431 0.577 -1-443 11.020 Lower Ridge 

Industrial 
Sand 1.891 0.634 -0-054 2,954 
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In order to minimise the change in grain size characteristics 

between collection, coating and reintroduction of sand onto the beach 

face the sand was collected so as to leave as short a time as possible 

between collection and reintroduction as tracer, In some experiments 

this period was as short as two tidal cycles, that is 24 hours (17.1-76, 

28,2.769 18.3-76)9 but in others it was a matter of several days, 

However, in all experiments the tracer released contained large propor- 

tions of the predominant sand grains at the field site. Prd'blems 

arising from areal differences in foreshore grain size distributions 

were avoided by collection of sand for each experiment from as near as 

possible to the selected tracer release point. 

2: 3 Preliminary experimental procedure 

The majority of tracer experiments were carried out on two selected 

beach profiles (Figure 1.1) but a third profile (H3) was located approxi- 

matelY 500 metres north of H2 at Gibraltar Point, Before the tracer was 

placed on the beach the profile in use was surveyed using an Autoset Level 

or Dumpy Level and metre staff so that the position of the tracer injec- 

tion points could be fixed for later analysis, The profile survey also 

allowed estimates of beach slope in the vicinity of the release points to 

be madee In early experiments a slope pantometer was also used to 

measure slope angles on the beach but this was discontinued as the 

accuracy of the pantometer was found to be low especially under difficult 

handling conditions, notably in strong winds. 

While the profile was being surveyed a line of marker pegs was placed 

in the beach down the line of the profile with the central peg marking 

the injection point. The pegs were spaced at five metre intervals and 

usually seven pegs were used (Pigure 2-3). In addition Pegs were inserted 

perpendicular to the top and bottom pegs of the profile line at a distance 

of 10 metres. All these pegs were put in as a guide for the layout of the 

sampling grid at a later stage in the experiment, Since sampling took 
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Figure 2.3. Layout of guide pegs for sampling grid. 
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place during the night the pegs were found to be particularly useful 

in maintaining the regularity of the sampling grid shape. 

In addition to this the pegs placed in the beach face also served as 

marker points for the places at which depth of disturbance of the upper 

layers of the beach was measured. The importance of these measurements 

is discussed in the next section but the techniques of measurement will 

be briefly described here. 

In early experiments the method formulated by King (1951) was 

employed. This involved the formation of a hole 10 cm deep in the beach 

surface with a piece of dowelling of 1 cm radius. The hole was then 

filled with sand coated with indian ink so that a core of black sand 10 cm 

long was produced. Figure 2.4 indicates the means by which the effects 

of the sequence of sedimentary events taking place during the tidal cycle 

can be measured. As erosion takes place the top of the sand core is 

removed to a depth consistent with the total depth of erosion, 2 cm in 

Figure 2.4. With final deposition a layer of clean sand covers the top 

of the core. Therefore,, the length of the black sand core remaining gives 

an indication of the amount of erosion, bearing in mind that its original 

length was 10 cm, and the amount of clean sand on top of the core represents 

the final amount of deposition. The net change at that point is the 

difference between the two. 

However, it was found that this method was not altogether satisfactory. 

It had two main drawbacks. Firstly, it was found to be very time-consuming 

locating and measuring the core lengths especially since great care was 

necessary to avoid damaging the cores. Secondly, and more importantly, 

the cores could not be used at all on particularly damp sections of the 

beachv where the water table was very close to the beach surface. This 

was because the thixotropic character of the sand in these locations 

prevented successful emplacement of the cores. 

As a result of these difficulties an alternative method was sought 
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and eventually a technique outlined by Otvos (1965) was employedg using 

steel rods and washers. The rod is pushed into the beach plane to a 

marked depth, Figure 2.4. and a washer then placed over the rod to lie 

on the beach surface and also level with the mark on the rod. With 

erosion the metal washer falls down the rod and the depth of erosion is 

given by the distance from the mark on the rod to the washer. Deposition 

during the tidal cycle covers the washer and hence the amount of accre- 

tion is given by the distance from the washer to the new beich surface. 

This method was found to be more reliable than that using sand cores 

since finding the rodsl even at night, was a simple matter and in addition 

it could be employed in damp areas of the beach. The rodsq painted to 

prevent rust, were between 15 and 20 cm long and were tapped into the 

beach face to a depth such that 4-5 cm was visible above the surface. 

Despite this scour was not a problem and a test of the two methods showed 

that comparable results were obtained. Some rods were lost 

under particularly severe wave conditions but nevertheless the retrieval 

rate was better than with the cores. 

With the completion of the profile survey and the introduction of 
the depth of disturbance cores or rods the next stage in the preliminary 

experimental procedure was to put down the tracer, As tracer release was 

at low water and not directly into the surf zone this was a relatively 

straightforward matter but nevertheless certain precautions had to be 

taken. In particular the tracer was well wetted before laying on the 

beach surface. Stuiver and Purpura (1968) point out that if the tracer 

material is not wetted it will float on top of the water due to surface 

tension and this may cause misleading results. Consequentlyq the tracer 

was mixed in a bucket with detergent and water to break down the surface 

tension. A section of the beach surface was then removed over an area of 

about 0.75 sq. metres and to a depth of two to three aentimetres. ' The 

wetted tracer was placed in the resultant depression and the surface levelled' 
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(plate 2.1). 

to the surface of the surrounding beach face. /This was done so that as 

little disturbance as possible was caused to the overall beach face. 

Only one injection point was used for each grid in order to cut down 

sampling area but several experiments were conducted (e. g. 18.3-76, 

6.10-76) in which more than one part of the beach was studied over the 

same tidal cycle and two or three injection points and grids were 

established. 

The amount of tracer released at each injection point varied between 

20 and 40 kgtalthough when several colours were being used in studies of 

specific grain size fractions quantities as small as 0.5 kg were used for 
I 

some of the colours. No more than three different colours were used in 

a single tracer release in order to avoid the problems of differentiation 

as discussed earlierg (Section 2: 1). Where small quantities of different 

colours of tracer were used these were mixed in with the main bulk of the 

tracer sand containing all beach grain sizes coated with the same colour. 

2: 4_. Measurement of process variableS 

During the period from just before the time the tracer release point was 

covered by the incoming tide to approximately one hour af ter thist measure- 

ments of selected 'process' variables were made. 
I Wave height was measured using a metre staff held in the surf zone, 

Trough-to-crest distances of a series of between 20 and 30 breaking waves 

were read off on the staff and from these the significant wave height, H 

calculated, Values of Rý ranged from 0.18 to 0.79 metres although 

individual wave heights were sometimes in excess of one metre. 

Wave period was measured by counting the number of waves passing a 

fixed point in a given time period. Values of wave period range from 2.6 

to 5.4 seconds for all the experiments. 

Wave height and period were measured in this relatively crude fashion 

for all tracer experiments but for some of the later experiments (eega 
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Plate 2.1. Fmplacement of tracer 
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6.10-769 23-10.76) attempts were made to improve the accuracy of such 

data and increase the length of record through the introduction of 

electrical staff wave gauges, Designed and constructed by members of 

the Geography and Eleotrical Engineering Departments, including the 

authorg these gauges were not available in time to facilitate use of the 

results from them in this study, Details of these gauges may be found 

in Appendix 1, 

Following Krumbein's (1961) statement that the angle of-wave approach 

measured in the sea area between initial refraction and final breaking 

would provide a more meaningful value of wave angle than deep 

water wave direction, measurements were taken just beyond the breaker and 

surf zones, This was done as accurately as possible using a compass and 

ranging rodg but Galvin and Savage (1966) suggested that this method may 

easily produce an error of +2 degrees. Such variability can result in 

considerable error in calculation of sediment transport as well as long- 

shore current velocity given the importance of angle of wave approach in 

predictive equations* Galvin and Savage also estimated a+ 25% accuracy 

for purely visual methods of wave height measurement, 

Longshore currents were measured by means of drogues or fluorescein 

dye. In early experiments a plastic bottle filled with sea water to give 

it slight buoyancy was used as a drifter and timed over a measured 

distance. Howeverjthe bottle proved too heavy and too susceptible to 

surface winds to act as a satisfaotory"drogue and fluorescein due was 

used instead. The dye was placed in a polythene bag which was partially 

filled with sea water to create a concentrated solution. This was then 

released in the surf zone and the resultant dye patch timed over 

distance of between five and fifteen metreso Repeating this procedure at 

least four timestan average velocity for longshore current was calculated. 

The average values thus obtained ranged from 5 to 84 cm/sec. It must be 

remembered that these values represent surface current velocities and 
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hence reflect wind effects as well as wave generated currents. 

Attempts were also made to improve the methods of measuring nearshore 

currents using automatic current recording devices. These instrumentst 

again developed in the Geography Department at Nottingham Universityg 

were designed for use in the offshore zone after several tests were 

found to be unsuitedt in their present form# for the measurement of long- 

shore currents. They did, howeverg provide valuable proof of the existence 

of relatively strong tidal currents on the lower foreshore at various 

stages in the tidal cycle. Purther details of these current gauges can 

be found in Appendix 1. 

Water temperature was also measured for each experiment with measure- 

ments taken in the surf zone showing a range of between 20C and 21 0 C. 

The upper end of this range reflects the heat gained by the shallow water 

of the surf zone from the warm sand of the beach face, as well as seasonal 

temperature changes. Initially it was hoped that the temperature data 

could be used in conjunction with water density estimates as this has been 

shown to be an important factor in suspended sediment movement (Harrison 

and Krumbeing 1964). However,, at a later date the study was restricted to 

bedload movement and water density measurementst which had been relatively 

unsatisfactory anyway, were discontinued. 

Meteorological datat in particular wind speed and direction was 

obtained from the weather station located at the Lincolnshire Trust and 

Nature Conservancy Reserve Field Station at Gibraltar Point, Wind records 

from this station were supplemented by measurements made with a hand hold 

anemometer at the test site as the tide was coming in, 

Other measurements, which were taken for only a proportion of the 

experiments and hence could not be used fully in later analysis, included 

swash/backwash velocity and wave thrust through the surf zone. 

It was found that the procedure outlined so far in the preceding ýwo 

sections took some three hours to complete with two people involved although 
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this time would vary a little dependent upon weather conditions and 

transport availability. 

2: 5 Sampling techniques 

Sampling procedure was one of the fieldwork aspects of this study 

that passed through a process of development and improvement as the study 

progressed. Initially during the preliminary experimental procedure, as 

described in Section 2: 3ta complete Bampling grid was laid out around the 

tracer injection point using marker pegs, The pegs laid out along the 

profile, aB described earlierformed the middle column of the sampling 

nett with the injection point the central pointg and further columns of 

pegs* spaced at five metre intervalev were laid out, The rectangular grid 

pattern so formed was aligned so that the longest side was parallel 

to the low water mark* However, it was quickly discovered, after early 

tracer tests9 that this procedure was unsatisfactory as the sampling grid 

invariably did not cover the whole of the dispersed tracer cloud. This 

was because the grid was laid down without prior knowledge of the dominant 

direction of tracer movement and many sampling points were wasted being 

located in the opposite direction to tracer movement. A good example of 

this problem can be seen in Figure 2-59 the tracer map for the experiment 

of 6.10-75 showing the truncated tracer cloud and blank map area to the north 

of the injection point. 

Since prediction of direction of tracer movement could not be per- 

formed with any confidence a new sampling procedure was devised which 

allowed construction of a sampling framework after dispersion of the tracer, 

that is immediately prior to the physical sampling. This procedure necenni- 

tated the construction of a portable ultra-violet lamp, Plate 2.2. The 

lamp was constructed from an adapted fluorescent lamp fitting attached to 

a wooden handle9with power supplied from a 12-volt car battery or dry cell 

rechargeable pack whic 
Ih 

could be carried in a heavy duty plastic bucket. 
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Plate ý1.2. Portable ultra-violet lamp. 
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Pigure 2-5. Tracer map for 6,, 10,, 75 H2,, 
an example of poor sampling caused by pre- 
determined grid layout. 
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The fluorescent tube was replaced with an ultra-violet tube of similar 

dimensions and the lamp then used at nightq that is during the low water 

period after tracer dispersion. With a little field experience the limits 

of dispersion could be roughly established in a matter of minutes, The 

extremities of the tracer cloud were then marked with flashing yellow 

hazard lamps. Using the marker pegs laid out along the profile line 

during the setting up of the experiment, four flashing lamps were aligned 

in a straight line along the beach perpendicular to the profile line, 

Samples were then taken along the line of lamps at intervals dependent 

upon the rate of decrease in surface tracer concentrationt estimated whilst 

using the ultra-violet lamp. When all samples had been taken along this 

line the lamps were moved up or down the beach and aligned again, Samples 

were again taken and the whole procedure repeated until a grid of samples 

had been taken covering the whole area of the dispersed tracer cloud. 

This was found to be a far more efficient method of sampling than 

that involving fixed grids established at the time of tracer injection. 

Much greater flexibility was achieved in the layout of the grid in terms 

of sampling interval such that a highly concentrated patch of tracer, 

identified with the ultra-violet lamp, could be sampled on a finer mesh 

than the less concentrated areaso Furthermore, sample collection in areas 

with no tracer present could be avoided - this being especially true of 

the collection of samples on the 'wrongl side, the updrift sideq of the 

tracer release pointo From field experience with this sampling procedure 

it was found that the simplest method to adopt was first of all to sample 

over a coarse rectangular meshp with sample interval of five or ten metrýs 

and then infil with more sampling points on af iner mesh in areas of rela- 
tively high concentrationt usually close to the injection point. Figure 

2.6 indicates the typical sample plan. The greater the dispersion the 

coarser the initial grid. In certain cases tracer dispersion was more than 
100 metres alongshore and hence a 10 metre sample interval was used, The 
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number of samples collected per grid varied between 40 for the early 

'fixed grid' experiments and 140 for the later tests. 

A regular rectangular sampling plan was used because of the relative 

ease of location of points on the ground and later on a map, A random 

sampling pattern is very difficult to locate accurately at night. Other 

types of sampling plan which have been used in tracer studies include the 

radial net as used by Boon (1968) but this was thought to be less flexible 

than the rectangular mesh, 

Thus# sampling at night with a portable ultra-violet lamp proved to 

be the most satisfactory method for this study but nevertheless was not 

always successful. 

The map of tracer dispersion for the experiment on the 21.9-76 on 

the lower ridge at Skegness (Figure 2-7) shows that mistakes were some- 

times made and some of the tracer cloud not sampled. Difficulties chiefly 

arose when weather conditions were poor during sampling or when the beach 

surface was very wet causing problems of tracer identification due to 

reflected blueg ultra-violet light. 

To turn to the actual method of collection of individual eamplen in 

to bring into consideration the question of collecting a representative 

sample and the question of depth of tracer dispersion in the surface 

layers of the beach. 

Ingle and Gorsline (1973) outline three basic methods of sample 

collection: 

1, "In situ" analysis of tracer material by scanning the sediment 

surface with ultra-violet light (see Section 3: 2). 

2* Collection of bulk samples either by grab, if in the offshore 

zoneg scoop or small corer. 

3- Collection of surface and near surface grains onlyq utiliaing 

grease-coated cards or plastic strips. 

Howeverv as methods 1) and 3) refer only to surface concentrations 
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and disregard the concentration of tracer with depth, they should not be 

used where quantitative analysis is to be carried out. James (1970) 

describes the distribution of tracer with depth in the following way 

"the concentration on the surface is finite but not ma imal. The concen- 

tration increases with depth to some point where a maximum is reached and then 

diminishes in a long-tailed fashion. " Therefore, with this complex depth/ 

tracer concentration relationship it is unlikely that purely surface 

sampling will produce meaningful results. Depth samples must be taken 

and in addition constancy of sample size by weight, area or volume is 

often useful in quantitative studies. 

The most commonly used method of collecting depth samples in tracer 

studies involves the use of corIng devices. Komar (1969)9 murray (1967), 

Yasso (1965) and Boon (1968) all used corers of greater or lesser sophisti- 

cation, Howeverg cores were not taken in this study because of the slow- 

ness of collection and the large number of samples collected in each 

experiment. Instead the technique adopted was simply to sample using a 

stainless steel laboratory shovel of side 2j cm and approximately 100 eq, cm 

in area. Although a crude way of collecting depth samples the method was 

used because of the speed with which large numbers of samples could be 

collected. Chief among the disadvantages of this simple method is the 

relative lack of ability to control sample depth. As sampling too deep 

can cause dilution of the tracer concentration the ability to control 

the depth of sampling is crucial, Nevertheless, with praotice, a reason- 

able amount of accuracy can be achieved. 

One other drawback of the sampling technique which must be noted is 

that of sample contamination due to small amounts of sand adhering to the 

shovel during the sampling process. This can be reduced to a minimum by 

thorough cleaning of the shovel between each sampling station. 

With two people,, sampling time varied from two to four and a half 

houreg dependent upon the amount of tracer dispersion and the number of 
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grids being sampled. Weather conditions also affected the length of 

time taken for sampling. 

2: 6 Problems and efficiency of field procedure 

A significant problem encountered in using the tracer techniques 

described in the previous sections of this chapter was the lack of inform- 

ation on the amount of tracer actually dispersed from the injection point. 

During any one experiment this will depend upon the following factors: 

1. mode of injection of tracer 

2. severity of wave conditions 

cycle of erosion and deposition. 

Several methods of placing the tracer on the beach face are described 

in the literature. Most commonly the tagged sand is laid either in a 

trench across the beach or at a single pointq patcho location# in a 

shallow hole, Since it is important that the sand surface remains 

'natural' over the beach face simply building a mound of tracer is not 

satisfactory, Equallyq raking the tracer into the beach surface layers 

would appear to cause unacceptable disturbance. However, if, as in this 

studyl the tracer is placed in a hole in a patch 2-3 cm thick and levelled 

with the surrounding beach face the tracer may be covered by clean sand 

by the incoming tide and hence not removed in large enough quantities 

during the tidal cycle. Wave conditions will play a large part in deter- 

mining the exact amount set in motion, Under very slight wave conditions 

the depth of disturbanceg that is the depth to which the surface layers 

of the beach are affected by the waves, may be small and as a result little 

tracer moved. On the other handq severe wave conditions may cause the 

whole of the released tracer body to be moved and dispersed over a very 

wide area. Complete loss of the tracer occurred during the experiment 

of 31-1-76 at Gibraltar Point when waves were 66 cm in height and again 

on the 23-8-76 when wave heights were more than 80 cm on average, 
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Otvos (1965) and Strahler (1966) outlined three main phases of 

tidal cycle sedimentary changes: initial awash depositiong scour in the 

face of awash and backswash and step deposition under the breaker zone. 

As can be seen from Figure 2.8 the phases are reversed on the outgoing 

tide. This sequence was confirmed by Schwartz (1967) in a depth inte- 

grated tracer study, Thusq if the erosional phase of the cycle is not 

very significant then only a small part of the tracer may be moved over 

the beach. Sinceq according to Strahler's model#the amount of scour and 

deposition will decrease down beachg the point at which tracer is released 

with respect to the height of the tide will also be important in deter- 

mining how much tracer is actually released. Close to the high water 

mark only small amounts of erosion may take place and hence release only 

small amounts of tracerv whilst larger scale changes may occur closer to 

the low water m k. 

However, it must be pointed out that Strahler's cycle of beach 

changes was suggested for the equilibrium beach and for beaches with 

simple morphology. Beaches not in equilibrium, that is experiencing 

erosion or accretiont and beaches with complex morphology, may exhibit Cý 

considerably more unbalanced sequence of events. Also under these circum- 

stances the amount of tracer dispersed might vary a great deal. On a 

prograding beach deposition may cover the tracer for the majority of the 

tidal cycle and allow only a small amount of tracer to be dispersed, Low 

tracer concentrations may then make the results unsuitable for analysis, 

On the other handq low sample tracer concentrations may be caused by the 

complete removal of tracer from the area on a rapidly eroding foreshore. 

Despite these problems it was found that usable results were obtained 

from sampling on 90% of occasions and as a test of the overall procedure 

two experiments were conducted in which sampling was undertaken over two 

consecutive tidal cycles. Assuming relatively constant environmental 

conditions the movement of sand on the beach should follow the same pattern 
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and with the same magnitude for two tidal cycles. Therefore, if the 

tracer is acting as a good surrogate of the in situ sand similar tracer 

patterns should be obtained. 

On 17/18 March 1976 two injections of different coloured tracer 

were made and both sampled at the same time, whilst in the experiment 

of 7/8 September 1976 the same tracer was sampled twice, On both 

occasions wave and weather conditions remained relatively constant for 

the two days. Figures 2.9 - 2.12 show the results of these experiments 

and reveal encouraging similarities. The distance moved by the centre of 

gravity of the tracer cloud for one tidal cycle on 17/18 March was 27.67 

metres and was 57-52 metres for two tidal cycles. Again on the 7/8 

September the figures were respectively 9.6 metres and 13.5 metres. For 

both tests dominant vectors of motion were the same over both time 

periods. 
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CHAPTER 3 

DATA ANALYSIS AND PRESMATION 

3: 1 Introduction 

This chapter describes the methods of laboratory analysis of the 

data collected by the procedures outlined in Chapter 2. Also included 

are details of the graphical methods used to display the relationships 

present in the data. Howevert the numerical and computational aspects 

of the methods of analysing these relationships are dealt with in a 

later chapter. 

One of the advantages of radioactive tracer techniques is that 

sampling and subsequent laboratory analysis to produce tracer concentra- 

tion estimates are unnecessary. Direct measurements of tracer concentra- 

tions can be taken in the field with a scintillation or Geiger-Muller 

counter. Some workers have attempted to devise similar methods for use 

with fluorescent tracer, with varying degrees of success. 

Yasso (1962). for exampleg developed a photometric technique using 

the principle of measuring visible light emission from coated particles 

under ultra-violet excitation. Laboratory calibration of the battery- 

operatedq portable photometer constructed for use in the field indicated 

that 5% differences in areal concentrations of marked partioles at a 

given sampling location could be determined. Initially this instrument 

was designed for field use in darknessq but in later work Yasso (1965) 

outlined modifications to facilitate its use in daylight. Sensitivity 

adjustments and changes for shallow and deep-water use were also suggested. 
3 

on a less sophisticated level, Camber (1971) used a portable ultra- 

violet lamp at night simply to count fluorescing grains an the beach 

surface. Field experience in this study suggests that this scanning 

procedure must inevitably produce inaccurate results since it was found 

to be very difficult, to distinguish individual tracer grains on the beach 

surface even under the most favourable conditions. 
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Tests were also made of a third method of field countingg the use nf 

standard sample cards. Again problems of discrimination between dtfferent 

concentrations were encountered but variation of tracer concentration with 

depth also invalidated the use of this method, which deals exclusively with 

surface concentrations. Thus9field counting procedures were rejected anrl as 

described in the previous chapter samples were collected for subsequent 

laboratory analysis* 

3: 2 Tracer fjain counts 

The laboratory methods of producing estimates of fluorescent grain 

concentrations can be placed into three broad categories: 

1. Automatic counting procedures. Most electronic counting instru- 

mentation involves the principle of photometric counting whereby light 

from an ultra-violet light source is passed through a filter cutting out 

all but the ultra-violet wavelengthst 4.5 x 16-5 cm to 107 
6 

cm, This is 

then incident on the sand grains as they pass in a stream of one grain 

thickness, Pluorescent light of the required frequency dependent upon 

the colour is then emitted by the grains and this Is passed back through 

a further filter to a photomultiplier. The signal is then treated elec- 

tronically and a -counter activated, A good example of an instrument 

incorporating this principle is the Automatic Fluorescent Particle Counter 

(A. F. P, C, ) as described by Teleki (1967). This machineg developed by the 

Coastal Engineering Laboratory of the University of Florida and the Budd 

Company of New Yorkt allows the simultaneous counting of several coloura 

of tracer particles. In additiong size analysis of the camples la ca"Ied 

out during the counting process, It is claimed that the A. F. P, C, can 

handle sand grains with a median grain size of 250 microns at a rate of 

55,000 particles/second and can count specially distinct fluornacent 

colours at a maximum rate of 200 particlea/colour/second. 

Not all automatic counters are as sophisticated as the A. F. P. C. 
Yasso's photometer, described in the previous sectiongia a simpler example 

and de Vries (1973) gives details of a similar instrument, However, apart 
from the relatively high cost of such counters one drawback of the photo- 
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multiplier system is that stringent environmental conditions have to be 

maintained for effective operation due to the sensitivity of photomulti- 

pliers to changes in temperature and humidity. Despite thisgautomatic 

counting methods can alleviate a major problem inherent in tracer studiest 

that of keeping sample analysis in step with field work. In this study, 

because automatic counting methods were not available it was found that 

experiments in the field had to be conducted before analysis of samples 

obtained during the course of previous experiments had been made andg 

therefore, the use of information gained from these earlier experiments 

was inhibited. 

2. Standard samples. This involves the use of a series of cards 

possessing a known tracer concentration in comparison with collected eand 

samples. As mentioned in the previous sectiong this method was tested as 

a field procedure but was found to be unsatisfactory. Purthermareq other 

workers have discovered that this technique may lead to inaccurate results 

even under laboratory conditionag because in general the human eye in 

unable to discriminate between different concentrations accurately, Do 

Vries (1973) estimates that it is only possible to discriminate visually 

between concentrations which differ by a factor larger than about two, 

The problems are compounded when more than one colour of tracer is used. 

3, Direct counting. Various procedures for the counting of fluor- 

eacent grains by eye have been devised, Murray (1967)9 for examplaq 

counted the total number of grains in each equal volume sample by placing 

the sample in a beaker of water which was kept agitatedg thus putting the 

grains in suspension. The water-sediment mixture was then passed out of 

the bottom of the beaker through a valve and then over a rippled pan. 

The fluorescent grains were then counted as they moved past and the con- 

centration expressed as the number of grains per sample. 

on the other hand, Boon (1968), simply removed each fluorescent grain 

from split core samples using a fine brush and expressed these concentrations 
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as tracer grains per specific volume. More recently, Komar and Inman 

(1970) expressed tracer concentrations in terms of grains per kilogram 

of sample by spreading out volume samples to a thickness of one grain 

layer on a dull black table and scanning with a hand held ultra-violet 

light* 

All the direct counting procedures are necessarily time-consuming 

and possibly inaccurate especially where more than one tracer colour is 

contained in each samplev where the number of dyed grains present is high 

or where the mean grain size of the sample is small. Teleki (1967) points 

out that 11 ... while it is possible to see one tracer grain among ten 

million natural sand particles it becomes quite difficult for the eye to 

perceive accurately concentrations of 10-4 and higher. " He also estimates 

that the $ability of keen differentiation' between different colours of 

tracer in the same sample will cease upon the addition of a fifth or 

sixth colour. Small grain size exacerbates the difficulties, 

DeBpite the problemaq a direct counting method was used in this 

study, although unsuccessful attempts were also made to develop a semi- 

automatic photographic counting procedure. The actual counting method 

used is outlined by Dugdale (1977). The initial weight of each sample was 

taken after air drying. A square sheet of black sugar paper with an area 

of 22 cm 
2 

was sprayed with "Spray 7711 adhesive and the Sample was then 

passed over the paper. The surplus sand was then tipped off the paper 

square leaving a thin coating of sand attached to the paper. The remain- 

ing sand was re-weighed in order to give the weight of the sand on the 

paper, 

After drying a grid was laid over the paper square and the number of 

grains in the whole ofq or a part ofq the grid was then counted whilst 

scanning with a Hanovia Fluorescence 16 hand-heldtultra-violet lamp. 

When the number of dyed grains visible was greater than f if ty only a part 

of the grid was used and a uniform distribution of tracer over the square 
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assumed. The concentration of tracer grains was then expressed as grains 

per gram of sample with a slight correction being made for the difference 

in area between grid and paper. The whole procedure, which assumes a 

thorough mix of tracer grains within each sample, is shown in Plates 3.1 

to 3.6. 

Boon (1969) using a similar method found that with care counting 

error could be kept to less than three per cent and although difficult to 
tS 

estimate i)d ýý thought that counting error was reasonably low in this 

study, Most error was present in counts of samples with high concentra- 

tions. The time taken to deal with each individual sample was three to 

four minutes from initial weighing to completion of counting but where 

large concentrations of tracers and two or more tracer colours were 

present counting times alone were as much as six to eight minutes. In allq 

more than 2,500 samples were analysed over a period of three months, 

After drying, certain samples collected during each field test were 

also sieved to ascertain grain size characteristics. Mean grain sizeq 

sorting,, skewness and kurtosis were calculated from the following formulae 

based on the method of moments and described by McBride (1971)z 

Mean -x fm Eq 3.1 

Sorting S1E fm 2 
Eq- 3.2 

100 

E fm3 _2-3 3 X0 E fm + 2x 
Skewness Sk lou 100 Eq. 3-3 

S 

E fm4 _ 
4x 22 i-, fm3 +6xE fm -3 

Kurtosis K 100 100 TO-0 Xý 
Eq. 3. 

sA 
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Plate 3.1. Spray glue and black sugar pappr used in counting 
procedure for each sample. 

L 

Plate 3.?. Spraying thf, Paper with thin coat of 



4w 

Plate 3.3. Sample tipped onto spray-i 

Imam.. 

40, 

Plate ý. 4. .;, tnd residue removed. 
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Plate 5. ý. Paper square with t1iiii coating of , arolý Cr-(ývi 

U 

_____ j 

Plate 3.6. Fluorescent prains -oiAnt,, (,, rotton PTid 
and Hanovia hand-held ultra-violet lamp. 
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where f= weight (% frequency) in each size class; 

m= mid point of each class in phi (0) units. 

n= total number in sample (100 when f in %). 

All grain size measures were expressed in phi (0) units. 

3: 3 Data presentation 

The way in which tracer dispersion can be described depends initially 

upon the recovery rate of dyed grains and the number of samples collected. 

Yasso (1965). in his field tests at Sandy Hookq New Jerseyq found that 

particle recovery was lowq 0.059% of tracer emplaced, and was insufficient 

to produce contour maps of the dispersion pattern. Insteadq he produced 

boundary lines of dispersion by linking the point at which the tracer was 

placed on the Iteach with the nearest and furthest points of the tracer cloud. 

These were referred to as minimum and maximum transport vectors. The 

angles between the surveyed profile line on which the tracer was laid and 

the two vectors weregrespectively9the minimum and ma. imum transport angles, 

and the angle between the two vectors was defined as the dispersion angle 

(Figure 3-1). This series of vectors and angles represents a minimum two 

dimensional expression of the tracer dispersion, At the other extreme# 

Boon (1968) used trend surface analysis to treat the concentration data 

more objectivelyq producing second and third order trend surface maps. 

This was made possible by good tracer recovery and a relatively large 

number of samples (40). 

Where sampling results allowq the most commonly used form of represent- 

ation of tracer patterns is the hand-drawn or machine-drawn contour mapo 

Since tracer recovery was adequate in the majority of cases. as evidenced 

by the contour values on the maps themselveaq contouring was used in this 

study and contour maps were produced using automated computer mapping 
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Figure 3-1, Boundary line presentation of tracer dispersion 
used by Yasso (1962), 
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techniquese Programag developed principally by Dr. P. M. Matherg consis- 

ted of interpolationg contouring and plotting routines@ 

Field sampling was carried out on a rectangular grid pattern in all 

cases but sampling distances and areal extent of the grids varied for 

each grid. Frequentlys as outlined in Section 2: 3, sampling point 

patterns consisted of a coarse sampling mesh supplemented by infil 

sampling on a finer mesh, Figure 3.2a. In order to produce a regular 

pattern for the contouring routine with equal sampling interval in both 

X and Y directionag spatial interpolation was necessary. 

The main aim of all methods of two-dimensional interpolation is to 

produce a smootht acceptable representation of a surfaceg assuming the 

surface is knownt from any set of data points either regularly or irregu- 

larly distributed over the surface. Problems are increased where data 

is irregularly spaced or of variable density and the major consideration 

of most methods is computation time as a function of ease of calculation 

and efficiency of algorithm* 

Crain (1970) in a review of spatial interpolation methods defines 

two broad groups of methods: those which generate surfaces for which a 

closed mathematical expression exists and numerical methods which generate 

a surface from an algorithm whose end product is a numerical array of 

values. of the mathematical methods$ piecewise procedures# involving the 

fitting of a low-order polynomial to parts of a surface and combining 

them to produce a continuous surface are often preferred to the direct 

use of continuous surface fitting. At the same timeg weighted 

averaging procedures provide advantages of speed of calculationg ease of 

programming and acceptable results with many types of data. In this 

study an algorithmo subroutine SFCFITq developed * Akima, (1974A & B)q 

was used. This employs local or piecewise procedures and involves the 

generation of a local third order polynomial in X and Y direotioneq based 

on the thirteen closest data pointaq for each rectangle of the grid* The 
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Basic Grid 

a) 

Major Grid Point 

o Minor Grid Point 

Tracer Source 

5x5 

Figure 3.2a. Basic grid of data points before interpolation* 

Expanded Grid 

b) 
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A 

Figure 3.2b. Expanded grid of data points after interpolation. 
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polynomial is then used to determine values of Zp at any point (X 
p0YP 

within that rectangle, The individual rectangles or patches of the 

interpolating surface are then forced to join smoothly giving a continuous 

surface. This method was found to provide visually the most pleasing 

results when compared with other methods tested. 

Therefore, using the primary grid, that is consisting only of the 

major grid pointay Figure 3.2ag without the intercalated points near the 

injection points a finer mesh grid was producedq Figure 3.2b. For 

examples in the case of a7 (rows) x 12 (columns) sampling grid of five 

metre sampling interval with infil sampling at 2.5 metres, the expanded 

matrix would have an overall size of 13 (rows) x 23 (columns) with 

additional point estimates at 2.5 metre intervals where these were 

lacking. Unwanted values generated because of minimum interpolation 

conditions included in the algorithm were removed. Alsov where possible 

the interpolated points were replaced by intercalated values so that all 

concentration values gained from sampling were used. Problems due to 

irregular point spacing were not encountered in this study, 

Akimals interpolation algorithm was chosen in preference to other 

possible methods on the grounds of relative simplicity and subjective 

appraisal of the results. An algorithm described by McLain (1972) based 

on a distance-weighted least-squares approach was also tested. in this 

method each interpolated point was computed from a weighted linear com- 

bination of all known values. However$ purely on an intuitive basis, the 

values produced by this globelfitting method were less reasonable than 

those produced by the Akima algorithm, 

Once interpolated, each data set was mechanically contoured using 

a procedure based on the method previously published by Heap (1974A & 'B) 

and Heap and Pink (1969), The basic method was to take each selected 

contour height in turn and trace it through the data mesh using inverse 

linear interpolation to find the points where the contour crossed the mosh 
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lines. Ambiguity as to which way the contours turn on entering a mesh 

rectangle was avoided by the generation of further surface heights at 

the centre of each rectanglev (Pigure 3-3) by assuming simply that the 

height at the centre of the grid was equal to the average of the heights 

of the four corners., Heap's (1974A & B) basic algorithm was extended 

by Dr. P. M. Mather to provide for numerical annotation of the contour 

lines and the addition of specific items of information to the resulting 

maps, 

3: 4 Numerical description of sand movement 

In later analyses attempts to predict the direction and amount of 

grain movement were made (Chapters 6 and 7). It was therefore necessary 

to describe numerically the relevant characteristics of the patterns dis- 

played by the contour maps. Simple average measures were adopted despite 

the problems arising from generalisation which can occur when spatial 

information is expressed in a single number or series of numbers, 

Direct use of the contour maps themselvesg such as in the calculation 

of contour areas, was avoided because of the problems of contour closure 

and complex contour shape, Insteadq calculations were carried out an the 

matrix of concentration values from which the maps were produced. 

The centre of gravity or weighted mean centre, of the diepersed tracer 

was calculated using the following equation: 

ExW 
xw 

wi 
Eqo 3-5 

i 

E7W 
YW 

Ew 
Eq. 3.6 

where x and y=X and Y coordinates of data points 

wi= tracer concentration at each data point 

n= number of data points (ie samples) 
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Pigure 3,3, Generation of mid point grid values 
for mesh rectangles in contouring 
procedure. 
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This pointg indicated on all the tracer maps, may be interpreted as the 

net position of all individual particle movements from the injection 

pointq in all directions and over all distances. The fact that this is 

the weighted mean centre of the tracer cloud implies that it will Buffer 

from the disadvantages of the mean. Therefore,, for example, its position 

could mask two strong movements of tracer in opposite directions. This 

can be clearly seen in the map of the experiment conducted at Skegness 

on the lower ridge on the 22.10-76, Figure 4.25. Neverthelesag in moot 

cases the centre of gravity provides an adequate summary of the tracer 

dispersion direction and am unt. The distance between the injection 

point and the oentre of gravity of the tracer cloud is a commonly used 

figure in transport rate studies when it is used to give an indication 

of average speed of sediment movementg Section 5: 5- In this study, 

howevert this distance, calculated by simple coordinate geometry and 

Pythagoras, was used to represent the average amount of movement in the 

dominant direction of movement. 

The mean direction of movementq as indicated by the position of the 

centre of gravity with respect to the injection point, was calculated by 

trigonometric methods from the X and Y coordinates of the two points. 

This wa's also calculated using orientation statistics in order that a 

measure of the dispersion might also be gained. Batschelet (1965) provides 

an excellent description of orientation statistics and a brief summary 

of some of the methods is also given by Noroliffe (1977). 

In analysing the datal each data matrix derived from the field 

sampling was treated as an empirical circular distribution by centering 

a set of coordinates on the injection point with the origin (00+ 3600) 

coinciding with -the feasting' of conventional compass directions, By 

means of trigonometric functions the rectangular coordinates were re- 

expressed as polar coordinates. The X and Y components of the mean vector 

of the coordinates were calculated from: 
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cos aiWi Eq. 3.7 
X=- wi 

sin aiWi i= 19 n 'Eq. 3-8 
y=- 

w 

where ai= angle between the line from the mean centre to each data 

point and the East line, measured in an anticlockwise 

direction. 

tracer concentration at each data point; 

n= number of data points (ie samples). 

with r) the length of the mean veotorbeing found from: 

r= (x2 +y2)i Eq. 3-9 

Since the direction of the mean vector with components X and Tis 

uniquely determined by the configuration of the massesq i. e, weighted 

data pointog on the circular distribution it may be regarded as the mean 

direction* Henceq the polar angle of the mean vector calculated from 

either: 

x 
Cos C, 

r 

or s in ay r 

Eq. 3.9 

Eq. 3.10 

can be regarded as the mean angle. Continuing# the concentration or 

dispersion of vectors around the mean vector, that is angles around the 

mean angle,, is given by: 

8= (2(1-r)) Eq. 3.11 

where B= mean angular deviation in radians. 

Clearlyq this measure depends upon the value of r which ranges 

between 1 and 0. When r-1 the total mass is concentrated in one 

point on the circle, Figure 3-4a, and s then takes the value 0. At 

the opposite extreme, when r= 09 no mean direction exists, Figure 3-4bt 
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a) 

Figure 3-4a. Extreme values for length of mean vector r 
and angular deviation a: maximum concentration. 

, 81-03 

b) 

Figure -3-4b, Extreme values for length of mean vector r 
and angular deviation s: maximum dispersion. 
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and s takes its maximum value (2)1 radians or 81.029 o" This value 

has no intuitive meaning. 

In addition to the simple mean direction of, and mean distance 

moved by, the centre of gravity a separate index was used to quantify 

relative amounts of onshore or offshore sand movement, This index was 

adapted from an index devised by Murray (1967) in his study of the 

effects of grain size and wave state on particle dispersion in the 

shoaling wave zone. Murray proposed a dimensionless parameter T 

determined by: 

it ii= 
19 109 100 contour Eq. 3.12 

A I. Ci 
of tracer concentration 

where Ai= total area contained by ith contour 

Ait 
= component of the total area of the ith contour 

landward of a line drawn through the tracer source 

and parallel to the wave crest line, 

Ci= concentration of the ith contour. 

As this index depends on the calculation of contour areas it couldhot be 

adopted directly for reasons mentioned earlier (p. 89). Because of this 

a slightly modified version of the index was used employing data point 

values rather than contour arease Therefore: 

iý' WDn total no. of points 

n%n Eq. 3.13 
1: WD i=1 iiL no, of points to landward 

where EWiD the sum of distance weighted concentration values 

landward of a line drawn through the grain source 

and parallel to shoreline orientation (i. e. along- 

shore side of sampling grid) 

ZW, iDi total distance weighted concentrations. 

N. B. Values along the line through the tracer source were omitted. 
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Therefore T becomes the ratio of the sum of the landward distance 

weighted concentrations to the sum of all distance weighted concentrations 

for each map and so defined varies between 0 and 1, If all grain 

movement is landward from the source T=1 and if it is all seaward 

T=0. Values of T between 0 and 0.5 indicate a net seaward 

movement of the grains whilst values between 0-5 and 1.0 indicate a 

not landward movements This implies that decreasing values of T 

indicate an increasing tendency for seaward motion. In this way the 

relative strength of onshore/offshore movement could be quantified. 

Other measures were investigatedg in particular the standard devia- 

tional ellipse, The calculation of this two dimensional figure which 

produces a series of measures and was devised originally by Lefever (1927) 

is discussed by Yuill (1971) and Ebdon (1977)- It involvesq principallyt 

the summary of dispersion in weighted point patterns in terms of an 

ellipse fitted around the mean centre. It holds an advantage over more 

commonly used measures of dispersion such as standard distance, in that 

the variation in spread of points in different directions around the 

centre of gravity is taken into account. In effect, the standard devia- 

tional ellipse provides a two dimensional standard deviation which means 

that the orientation of the fitted ellipse as expressed by the orienta- 

tion of the long axis of the ellipse gives the direction of dominant 

dispersion from the mean centre, The area of the ellipse, which gives 

a relative measure of the total amount of dispersion, is calculated from: 

ab Eq - 3.14 

where a= half the length of the major axis 

b= half the length of the minor axis 

In adaition the eccentricity of the ellipse, cq as given by: 

Eq. 3.15 
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I 
where c= length of the focus or minor axis 

a*= length of the major axis 

may be used as an indication of the shape of the dispersion pattern# 

reflecting the dominance of unidirectional movement away from the release 

point. 

Howeverg after extensive appraisal of the results produced by these 

measures they were found to be unsuitable for this study. Problems of 

inaccurate description of dispersion pattern characteristics arose largely 

because of the use of the weighted mean centre as origin for the fitted 

ellipse rather than the tracer source, Nevertheless, the measures provided 

frequent cause for checking of results and in this respect were extremely 

useful. 

3: 5 Data rejection 

Apart from early testag thirty separate tracer experiments were 

conducted at the Gibraltar Point and Skegness sites during the fieldwork 

period of this studyq September 1975 to October 1976. On three occasions 

sea and weather conditions were such that all the tracer was removed from 

the site and hence no samples were taken. On three other occasioneq 

although samples were taken, the results could not be used because process 

measurements were unsatisfactory. Pinallyq confusion of sand sample 

labelling and poor process measurements meant that data from one other 

experiment could not be used. 

From the remaining 23 experiments good field data was gleaned and 

this produced a total of 34 grids which could be mapped. This figure 

arises from the fact that on several occasions more than one tracer 

injection was made along the beach profile. For example, three sources 

of tracer were placed on different parts of the profile H2 during the 

experiment of the 18-3-76 at Gibraltar Point, 

t 
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Of the 34 finished maps, five of these were rejected for further 

quantitative analysis either because the tracer cloud had not been 

sampled properlyv as shown by Figure 2.5 and mentioned in the 

previous Chapteror because too little of the tracer was found to remain 

when the map was produced. This latter case is illustrated by Figure 4.22 

which shows the small amount of tracer recovered for the experiment on 

the upper ridge at Skegness on the 21.9-76. Visual inspection of the 

contour patterns and their values provided sufficient discrimination for 

the rejection of maps on the grounds of insufficient tracer recovery. 

Thereforeq in all 29 maps were used in later numerical analysis 

although some of the five rejected maps were used in purely descriptive 

sections of the study. 

During some of the field experiments tests of the effects. of grain 

size on the particle movement were also made through the use of quantities 

of different grain sizes coated with different tracer colouraq Section 4: 2. 

This data was not used in quantitative analysis because of very low tracer 

recovery rates, The low recovery rates were themselves due largely to 

the small volume of the quantities of tagged grains actually used, Of 

five such specific grain size tests only one produced good results. 
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CHAPTER 4 

TRACER EXPERIMENT CASE STUDIES 

4: 1 Introduction 

As pointed out in Chapter 1. previous tracer work on ridge and 

runnel type beaches is limited. Ingle (1966) found that ridges and* 

runnels of varying depth and width, which were common features of the 

test sitesq had varying effects on tracer patterns, Narrow and shallow 

runnels of less than two feet deep had essentially no detectable effect 

on the direction and rate of tracer movement but a deeper cobble-lined 

runnel present during a tracer test on Santa Monica beach had a marked 

effect. The runnel acted as a sink for the tracer which was swept along- 

shore and out of the runnel by low velocity runnel currents and the turbu- 

lence from the slopping of wave bores into the runnel. In one of the few 

other pieces of work on irregular nearshore morphology, Zenkovitch (1960, 

1967) has established that maximum sand transport on undulating foreshore- 

inshore surfaces commonly takes place on topographic highs in conjunction 

with breaking waves, 

In this chapter the tracer experiments conducted for this study are 

considered as separate case studies. Most of the experiments were 

designed to test specific aspects of sand movement in addition to pro- 

viding a larger data set for further analysis. Some of the experiments 

were conducted to compare rates of movement and dispersion patterns on 

different parts of the beach profile during a single tidal cycle whilst 

others were specific to the study of the effects of tidal currents on 

the lower part of the foreshore. The results of these experiments are 

considered in the next sectiont 4: 29 with respect to the two beach sites 

at Gibraltar Point and Skegness, Figure 1.1. Comparisons between the two 

sites are also made and possible reasons for the major differences put 

forward. Other experimentsq attempting to study the effects of grain 
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size on tracer sand dispersion, are discussed in Section 4: 3. 

4: 2 Cross beach differences and Gibraltar Point/Skegness comparisons 

It was expected thatq because of the complex nature of the beach 

morphology at both Gibraltar Point and Skegness sitesq there would be 

some variation in patterns and rates Of sand movement across the beach' 

width. Furthermore it has also been suggested that tidal currents play 

an important role in sediment movement on the lower foreshoreq Section 

2: 5. In order to gain some insight into these aspects of beach sand 

movement as far as possible different positions on the beach profiles 

were chosen for each experiment and also several experiments were conduc- 

ted in which two or more injections of tracer were made across the beach 

face on the same tidal cycle. For example on the 25.6-76 tracer was laid 

on the upper ridge seaward face and on the lower ridge seaward face on 

the profile at Skegness, Figure 4.1 and similarly on 18.3-76 tracer was 

released from three locations along profile H2 at Gibraltar Pointq 

Figure 4,2, 

Gibraltar Point 

A consideration of the results of the tracer experiments at Gibraltar 

Point provides some interesting evidence of differences in sand movement 

rates and patterns of dispersion between the upper and lower beach ridges 

and between different points on the same ridge. The experiment of 18-3-76 

gave results which highlight the contrasts on both these scales. Figure 

4.2 indicates the position of the tracer injection points on the profile 

H2 and the resultant tracer patterns are shown in Figures 4-39 4-49 2.9 

and 2,10* The most landward release point, 19 Figure 4.2. was located on 

the landward face of the upper beach ridge, on the gently dipping slope 

from the crest of the ridge down into the shallow runnel at the back of 

the beach. Source 2 was placed on the much steeper seaward ridge face 

of the upper ridge whilst the third tracer injection, 3. was made on the 



- 100 - 

-J S 

U) 
x Ic 

S 

1) 

co 
N. 

w -j 

J 
0i 
3i 

K'UL3N*a*O OMW 

to mmm in m 19 In ge 
u; j ei 44 ei -#0 «44 wil 



- 101 - 

S 

-J 

r 

PN 

Co 

Co 9-4 

IB 
.i 

ai fuw 
w -i b-4 
LL 
CD 

6 
.j 
(A 
3i 

N 

M"" *0'0 SMIN 

awa 
.4 W4' di I 



- 102 - 

C'%j 

f -03 

'A 

>- 

C\j 

Lli 
m 

cr: 
CD 

(Y') 

CC) 
V-4 

li 

(I) 
im 

LD 

LL 
0 

LLJ 

Lij 
u 

0 
h- 
711 
k--4 
CD 

a- 

C: ) 

LU 



- 103 - 

. rl 

LLJ cl: 
cc 
LD 

4 LL- 
cc CD 

Lli 
LLJ 
: 3: "4 Z: 
CD LLJ 

-i 
u 

cr) 
ED 

C) 

LE) C) 
CC) CL 

Zý 
CD 

(Y) 
u 

00 LLJ 

0 

Z: 
e--4 



- 104 - 

seaward face of the lower ridge at a distance of about 320 metres from 

the top of the beach, The predicted tide height was 3-75m O. D. (7-5m C. D, ) 

which was one of the largest spring tides of the year. 

The tracer pattern emanating from release point 1 mapped in Figure 

4.3 illustrates the calm conditions which prevailed at this location and 

the influence of very slight runnel currents. Breaking waves did not 

directly affect this tracer source as the breaking wave zone was situated 

at the crest of the upper ridge at the maximum point of the tide. The 

contours show that little movement of tracer took place and indeed the 

tracer injection patch was seen to be little disturbed when sampling was 

carried out. Most of the tracer was left at the injection point and was 

still quite clearly visible despite a thin covering of clean sand. The 

low-energy nature of this runnel was confirmed by the existence of mud 

deposits slightly to the south of the profile line. It is only on the 

very high spring tides, above about 3.5m O. D. (7.25m C. D. ), or in con- 

ditions producing abnormally high tidesq that this runnel does become 

filled with water and even then only for one or two hours, Waves rarely 

cross the runnel to break on the dune face and in fact very often the 

runnel is filled gradually from the south rather than by water entering 

the runnel across the seaward ridge crest. The line of profile cuts 

across the runnel 10 metres from its northern end and consequently the 

depth of water in the runnel at this location cannot be in excess of 

30-40 cms, except under the combination of storm conditions and a high 

spring tide, The low value contours on the map indicate some tracer was 

moved south along the runnel by currents draining the runnel in this 

direction. On the other hand the high value contours close to the tracer 

source also reveal an onshore trend, which would be imparted by the land- 

ward surge of the occasional surf bore passing across the tracer source 

from waves breaking to seaward and enhanced by the slight landward slope 

into the runnel. Dispersion southwards and onshore are the main movement 
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directions. The position of the centre of gravity in relation to the 

injection point indicates well the dominant movement direction of 

the tracer but on the other hand the average distance moved by the 

grainspwhich this also shows9perhaps slightly over-exaggerates the 

true picture. 

The pattern revealed by Figure 2.9 for Grid 2 on the seaward side 

of the upper ridge is very different from that of Grid 1, Much more 

dispersion is evident from the tracer pattern, the scale of the map 

being half that of Figure 4*-3 and a dominant direction of movement along 

the beach face in a southerly direction is clearly shown. A little 

onshore/offshore diffusion of tracer is also present but the overall 

pattern is consistent with that which might be expected to occur as a 

result of the combined effect of wave drifting and longshore currents. 

The southerly sawtooth effect of the swash-backwash drift of material 

was probably caused by the relatively oblique, 11 0. angle with the line 

of the ridge face, at which the waves broke, Furthermore, the longshore 

current generated in the runnel to the seaward of the ridge face was 

also flowing southwards at a velocity of roughly 6 cm/see and this, 

therefore, would enhance the southerly movement of sand grains. An 

indication of the amount of movement of individual particles is given 

by the average distance moved which was over 25 metres in a longshore 

directiong Table 6.2. 

The unidirectional nature of the tracer movement is reflected in 

the value of 21.4 09 Table 4.1 for the mean angular deviation which indi- 

cates a very narrow spread of dispersion around the mean direction of 

movement. When this is converted to the 0-1 index the value is 0.93, 

Table 4.1 again indicating the high degree of concentration of vectors 

of movement in one dominant direction. 

This strong southerly movement of tracer on the upper ridge face is 

not repeated on the lower ridge face, indeed the position of the centre 
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Table 4.1. Mean angle, mean angular deviation and index of 

concentration (r) for all tracer experiments* 

GIBRA 

Mean Angle 

LTARP01N 

Mean Angular 
Deviation 

T 

Concentration 
Index (r) 

2.11-75 Total UR 42.2 42.6 0.72 

2,11-75 2$ UR 44.6 23.0 0,92 

2.11-75 2$ UR 43.5 22.2 0,92 

17.1-76 Total UR 174.9 16.3 o. 96 

17.1-76 2ý UR 175.8 15.6 o. 96 

17.1-76 2ý UR 173.8 15.4 0.96 

28.2-76 Pink LR 99.6 51.0 0.60 

28,2-76 Blue LR 78.1 58.2 0.48 

18-3.76 Grid 1 UR 129.9 36.6 0.80 

18-3.76 Grid 2P UR -178-1 21.4 0.93 

18.3-76 Grid 3 LR -018 57.3 0-50 

17.5-76 LR 1.6 45-58 0.68 

30.6-76 LR -166.4 28.8 0.87 

15.7-76 LR -0-51 49.6 o. 63 

10.8-76 LR -177.4 67.6 0.30 

7.9-76 H3 UR -94.6 73.5 0.18 

7.9-76 H3 LR 136.7 30.7 0.86 

22.9-76 UR 179.8 34.2 0.82 

22.9-76 LR Y -177.6 17.7 0.95 

22.9-76 LR P -18.9 49.1 o. 63 

6.10-76 UG -12.6 19.2 0.94 

6.10-76 LG 6.9 54.1 0.55 

23-10-76 H2 LR -1.7 9.8 0.99 

23-10-76 H3 LR -6.9 26.3 0.89 

I 

Continued overleaf 
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Table 4.1 continued. 

SKBGNESS 

Mean Angle 
Mean Angular 

Deviation 
Concentration 

Index (r) 

18.5-76 LR 179.5 73.9 0.17 

1,. 7.76 UR -118.9 57.7 0.49 

14.7-76 LR 174.1 20.4 0.94 

12,8-76 LR 179.5 42,1 0.73 

25.8.76 UR 163.6 63.4 0.39 

25.8-76 LR 164-9 30.9 0.86 

8.9-76 UR 140,2 31.2 0.30 

21.9-76 UR 63.9 67.8 0-30 

21.9-76 LR 130.0 49.8 0.62 

7.10-76 UR 42.9 32.6 0.84 

7.10-76 LR -177.9 29.9 o. e6 

22.10-76 UR 5.7 22.4 o, 92 

22-10-76 LR -109.9 74.5 0.15 

N. B. Concentration index vectoral re-expression of angular deviation. 
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of gravity for the dispersed tracer cloud from release point 3 reveals a 

net movement to the north. The contour pattern of Grid 3 shown in Figure 

4.4 has a very pronounced linear shape with onshore-offshore movements 

very restricted. This pattern suggests the existence of a current- 

dominated environment and its position on the beach, close to the low- 

water mark, allows the possibility of its tidal current generation to be 

considered. This seems to be confirmed by the way in which tracer has 

dispersed in both directions alongshore since this pattern would be 

expected to occur with a reversing current. Longshore currents generated 

in the nearshore zones could not have produced the pattern of Figure 4.4 

in one tidal cycle as they would produce movement in one major direction 

only as in the pattern displayed by Grid 2. Purthermoreq longshore current 

velodties measured during this experiment on this section of the beach 

were found to be very low. Although tidal currents were not measured 

during this particular experimentg Figure 0.8 gives an idea of the veloc- 

ities which can be achieved on this lower part of the beach. The tidal 

currents shown in FigureA1*8'were in fact recorded on a lower tide than 

that of 18.3-76 and hence it may be that the currents affecting tracer 

release point 3 were even stronger than those represented. 

It has certainly been observed that strong winds blowing longshore can 

cause a significant quickening of tidal current velocities. The longer 

durationg albeit lower velocity of the ebb current in the Wainfleet 

Channel flowing to the north would explain the net movement of tracer to 

the northgaBsuming that current velocities were sufficient to exceed the 

critical velocity and actually cause movement, Dugdale (1977) has found 

that tidal current velocities at the sea bed in the Wainfleet Channel are 

sufficient to cause sand movement and so the above explanation is a strong 

possibility. The only alternative explanation of the contour pattern dis- 

played in Figure 4.4 with a strong movement in both longshore directions, 

is a complete change in wave and weather conditions during the tidal cycle 
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but this may be quickly rejected. Weather records showed that no 

dramatic change took place, winds remaining light and from the east, 

and no large changes in wave conditions during the incoming tide were 

observed, 

Thus, the three maps of tracer dispersion for the experiment of 

18-3.76 show that over the same tidal cycle a complex series of sand 

movements is taking place on different parts of the foreshore above L. W. M. 

and that net sediment movements on particular parts of the beach can be 

highly contrasting. Also it seems that under low energy wave conditionsq 

significant wave height for Grid 3 of the experiment on 18.3-76 was 

measured at 0.26 metresq sediment movement on the lower beach can be 

dominated by tidal current flows. However, under higher wave energy 

conditions or with lower velocities of tidal currents, wave parameters 

might be expected to be the dominant process and if this is so similar 

patterns of tracer movement might be expected for both the upper and lower 

ridges. This seems to be confirmed by the experiment of 22.9-76 on 

profile H2. Two tracer injections were madeq Figure 4.59 one on the 

upper ridge face and one on the lower ridge. Breaking wave heights were 

measured as 0.79m at the lower ridge site and 0-55m at the upper ridge 

site and under these relatively severe conditions large movements of sand 

took place, Average figures for depth of erosion were 3.26cm on the 

upper ridge and 4.97cm on the lower ridge compared with a mean of just 

over 2.7cm for all the experiments at Gibraltar Point. Distances moved along- 

shore by the centre of gravity of the tracer cloud were respectively 18.59 

metres and 43.95 metres for the upper and lower ridges, Table 6.1. Wave 

approach was from the north at an angle of 11 0 to the line of the beach 

at both sites and the effect of this may be seen in the dominant southerly 

movement of tracer alongshore on both ridges, The two-directional movement 

of the Grid 3 map for 18.3-76 is absent from the lower ridge map of 22.9-769 

Figure 4.69 and it seems that on this occasion the flood tide current to I 
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the south was complemented by the very strong wave generated southerly 

flowing longshore current and by wave drift such that any ebb effect is 

not apparent in the final pattern. However, this experiment was also 

specifically designed to study the influence of tidal currents on the 

lower beach and two injections of tracer were made at the same spot on 

the lower ridge, 

The first tracer release was made as usual at low water and the 

results of this have just been discussed. The second was made at high 

water, when the tidal currents slacken and reverse. This was achieved 

by driving a boat out through the surf and breaker zones, lowering a 

weighted bucket of tracer to the submerged beach surface and then tipping 

out the tracer onto the beach face by means of ropes attached to the 

bucketq Figure 4-7. 

Release Of some tracer into the water column by this method was 

unavoidable but was considered acceptable in the absence of more efficient 

methods of tracer release in this situation, An abortive attempt was 

made to lay the tracer by digging it into the beach face at low water and 

then covering it with a wooden box hammered firmly into the beach surface 

which was to be removed at the appropriate time, Howeverg this method 

proved totally unsuccessful because of the difficulty of keeping the 

tracer covered. 

It was hoped that the tracer released at the turn of the tide would 

respond to ebb tidal current and hence move northwards, thus confirming 

the fact that tidal currents do influence sand movement high up the lower 

beach. The resultant tracer dispersion does indeed show a dominant move- 

ment northwards with the centre of gravity having a mean angle of 341 0 

Figure 4.8. This map contrasts strongly with the map of dispersion of 

the tracer released for the whole tidal cycle which, as stated, reflects 

the strong southerly longshore currents and southerly wave drift caused 

by the large waves 9 mean 0-79m, together with the southerly flood current. 
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Rop 
Sur 

Tracer - 

Sinking 

Weight Rope 

Figure 4-7,, Tracer release equipment for injection 
at high water 22.9-76 experiment. 
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It is difficult to say how much the dispersion of tracer in Figure 4.8 

overemphasises the actual bedload movement of sand by the ebb tidal 

current. Tracer grains suspended in the water column for any consider- 

able time after release would be rapidly moved northwards by the accelera- 

ting ebb current but at the same time it is likely that these finer grains 

would have moved a long way outside the sampling area and hence would not 

be considered in calculations, The much greater overall dispersion of 

tracer reflected in the concentration index of 0.63 is probably the result 

of the method of release. Despite the problems, though, Figure 4.8 does 

show that tidal currents do affect sand movement on the lower foreshore. 

Their importance in relation to other processes is difficult to assess 

and requires much more study, 

It is interesting that there is seemingly no ebb tidal current effect 

on the tracer released at low water, Figure 4-8, but this may partly be 

explained by the model of the sequence of erosional and depositional 

events during a tidal cycle described in Section 2: 6* During the time when 

the influence of the ebb current might be expected to be at its greatest,, the 

tracer source was probably covered by accretion and effectively cut off. 

Any tracer available for movement northwards would already have moved 

south from the tracer source and hence probably would not actually move 

back past the release point. Although erosion was considerable during 

this experiment because of the large waves# accretion was equally large 

and resultant net changes were relatively small. The comparable 

figures for the 18.3-76 experiment when the tracer was dispersed in both 

longshore directions, presumably by the tidal currentt reveal that erosion 

was much greater than accretion and hence the tracer probably remained a 

source throughout the whole of the tidal cycle. 

Although the overriding vector of movement is alongshore in both the 

maps for the upper and lower ridges of the 22,9-76 experimentia difference 

in dispersion pattern can be discernedt Figures 4,9 and 4.6. The contours 
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on the lower map are more definitely elliptical and suggest longshore 

movement whilet more of a circular pattern is evident for the upper 

ridge map, This is reflected in the angular deviation and concentration 

index figuresq Table 4-1, which reveal a more unidirectional pattern for 

the lower ridge map. Greater current effect on the lower ridge is 

probably the cause of the differences. 

Similar differences have also been noted earlier for the 18-3.76 

experiment but because of the bimodal nature of the vectors of sand 

motion on the lower ridge the angular dispersion figures do not repre- 

sent the differences very well. 
(V 

Parker (197/) has postulated that on the crests of ridges on a 

multi-barred foreshoreq location and swash are dominant processes causing 

a landward movement of material whilst on the seaward faces of ridges 

swash and backwash are most important and lead to predictable directional 

dependence on wave approach. Results of two tracer experiments conducted 

at Gibraltar Point to test these ideas seem to suggest that they may 

be an oversimplification of a complex situation. 

Figures 4.11 and 4.12 are the maps for the 6.10-76 experiment in 

which two lots of tracer were released on the lower ridgeq Figure, 

4-10- Comparison of these two maps reveals a conflict with Parker's 

(197A 
(I 

suggestions. Both show strong longshore movements to the 

north caused by the southerly wave approach and northward flowing 

longshore current of 40.5 cm/sec but the map of tracer released from 

the lower of the tiýo injection points is the one which has a strong 

onshore component and not the upper ridge crest map. Indeedq the 

tracer map for the upper release point has a slight offshore tendency 

rather than the landward component predicted by Parker's thesis, 

However, it must be noted that the upper release point was located 

just below the ridge crest on the seaward face and not actually on the 

crest itself# Figure 4-10. Movement alongshore was much greater on the 
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lower part of the ridge than from the upper release point as evidenced 

by the scales of the two maps and this might again be the result of a 

tidal current factor. 

The patterns of movement for the experiment carried out on profile H3 on 

7.9-76 conform more closely to Parker' s ideas, Figure 4.14 and 2,11, The 

two maps are quite contrasting, with the dispersion from the upper 

release pointg on the landward side of the ridge crest, showing a circu- 

lar diffusion pattern. This is indicated by the angular deviation of 

73-50, concentration index of 0.189 for the map, The centre of gravity 

would appear to show very slight offshore movement but this represents 

the 'resolved' position of the two main arms of movement diagonally on- 

shore and offshore shown by the contours themselves. 

Thusq landward movement took place on the ridge crest but a. 

slightly stronger offshore movement occurred which may possibly be 

explained by the presence of the rippled surface of the beach in the 

vicinity of the release site. Inman and Bowen (1963) found that in deep 

water a strong current superimposed on near-bottom water motions produced 

by waves reduced the symmetry of ripples by increasing effective onshore 

orbital velocity and decreasing orbital velocity in the offshore direction, 

The resulting asymmetric ripples generated asymmetric vortices and when 

these were thrown up from the bottom the stronger vortices became directed 

in an offshore direction. A similar mechanism may well have caused the 

offshore vectors of sand movement in Figure 4-14- 

The tracer dispersion pattern seen in Figure 2.11 shows a strong long- 

shore component but also has a strong landward tendency. This onshore 

tendency is difficult to explain in terms of wave approach since the angle 

of the breaking waves to the line of the beach was obliqueg at about 260. 

A similar but more extreme example of this onshore movement can be seen 

in Pigure 4.16 of the tracer experiment on the lower ridge on 28.2-76 and 

once again satisfactory explanation of the pattern is difficult, In 
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Figure 4.16 some longshore dispersal is apparent and this interestingly 

is in both directions. This perhaps is another example of the tidal 

current effect but the pattern lacks the strong linearity which might 

be expected of a current caused pattern and which is present in Figure 4-18 

The major component of the pattern in Figure 4.16 thoughq is the landward 

movement. Angle of wave approach was small, 40. with waves from the 

north-east which probably reduced wave drift9and longshore currents were 

relatively slight with a speed of just over 16 cm/secq but there is no 

obvious cause of the dominant landward vector of movement other than the 

wave type and other wave characteristics. Causes of onshore/offshore 

movement are considered further in a later chapter. 

The complexity of interaction of the processes causing the tracer 

dispersion patterns is evidenced by the fact that with a very similar 

combination of conditions on 15.7-76 the tracer map# Figure 4.189 of dis- 

persion from the single lower ridge release point gives a markedly differ- 

ent picture than that for the 28.2-76 experimentq Figure 4.16. 

Skegriess 

Fewer experiments were conducted at the Skegness site and 13 

successful maps were produced. On four occasions tracer was laid on both 

the beaoh ridges simultaneously and these experiments provide some inter- 

esting results. 

The two maps for the experiment of the 25-8-760 Figures 4.19and 4.20, 

show relatively similar patterns, at least in terms of the dominant vectors 

of movement, The position of the centre of gravity relative to the tracer 

injection point on both maps has an onshore direction of about 20 0 but the 

subsidiary southerly alongshore components of movement are also present 

on both maps and in particular the upper ridge map. The amount of diB- 

persion appears larger on the lower ridge with a greater displacement of 

the centre of gravity and this contrasts with findings from other experi- 

ments at Skegness in which the greater dispersion'was usually on the upper 
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ridge. Howeverg on this occasion wave heights were slightly higher on 

the lower ridge and longshore currents markedly stronger, 32.4 cm/sec 

compared with 4.7 cm/sec and this probably accounts for the anomalous 

situation. 

On the 21.9-76 wave conditions were relatively severe with Hi of 

O-75cm and these large waves led. to considerable dispersal of tracer on 

both ridges. Indeedq much of the tracer on the upper ridge was lost 

completelyq Figure 4.22.,, whilst on the lower ridge 9 Figure 2,, 7, landward 

transport was the dominant trend of a widely diffused pattern* Again on 

22,10-76 under smaller wave attack9dispersion on the upper ridge was 

considerably greater than that on the lower ridge as evidence clearly by 

the scales of the two maps, Figures 4.24 and 4.25, and the relative distances 

moved by the centre of gravities. The upper ridge/lower ridge contrast 

in dispersion and amount of grain movement was also repeated for the 

experiment of 7.10.76 when Ri was 0.36m on the upper ridge and 0-32m an 

the lower ridge and longshore currents were respectively 9,1 cm/sec and 

13.3 cm/sec. When tests were being made with the standard deviational 

ellipse as a measure of overall dispersion, the area of the fitted 

ellipse for the upper ridge was 82 compared with 35 for the lower ridge. 

In generalt thereforeq it appears that at Skegness the dispersion 

and rates of grain movement are greater on the upper ridge face than on 

the lower ridge. This may in part be due to the length of time that the 

more turbulent zones of the nearshore operate on a particular part of the 

beach but further consideration will be given to this later in this section. 

Not only do contrasting amounts of dispersion take place on the two 

ridges but directions of movement also showed significant differences and 

eveng sometimesq completely opposite vectors. For exampleg the maps of 

the experiment of 7.10-76, Figures 4.27 and 4A9reveal immediate differences. 

The overall direction of movement was to the north on the upper ridge and 

to the south on the lower, A secondary landward vector is evident on the 
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Figure 4.28. 
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lower ridge where the mean angle indicates a longshore average direction 

of movement, whilst on the upper ridge the mean vector of movement is 

diagonally onshore. These contrasts would appear to be the result of 

progressive refraction of waves across the beach with the rising phases 

of the tide. Wave approach was from the north-east on the lower beach, 

resulting in the southerly trend of the tracer, With the rise of the 

tide over the lower ridge, refraction of the wave fronts caused them to 

meet the upper ridge face at a very slight angle. Since longshore 

currents were weak, 9 cm/secv it seems awash backwash wave drift was 

responsible for the northerly components of movement on the upper ridge. 

A similar explanation may be applied to the experiment results of 

25.8-76 when a stronger onshore trend was apparent on the lower ridge 

than the upper. Howeverg the maps produced from the experiment of 

22.10-76, Figures 4.24and 4,259provide problems of explanation, 

The maps show quite different patterns of tracer movement on differ- 

ent scales, On the upper ridge a strong longshore and slightly offshore 

movement took place, probably caused by wave drift, but on the lower 

ridge two dominant arms of movement are present diagonally landward and 

seaward. A diffusion of grains in all directions away from the release 

point has taken place on the lower ridge as indicated by the angular 

deviation of 74.5 0t 0-15, Table 4.1 9 and current effects seem to have 

been minimal* A similar pattern can be seen in Figure 4-30 for the 

12.8-76 experiment on the lower ridge, which was produced even though 

much stronger longshore currents were measured, 41.3 cm/sec. This type 

of pattern was found by Murray (1967) in his experiments in the shoaling 

wave zone and is typical of work in deeper water offshore. It would 

appearl therefore, that the. patterns in Figures 4Z and 4.30 are largely 

the result of shoaling wave zone processes, On both occasionsq more than 

three metres of water covered the release point at high water and thereforet 

given significant wave heights of 33.9cm abd 33-5cm respectively, the 
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tracer would certainly have been affected by shoaling waves for a major 

part of the tide. 

Discussion 

At both sites, onshore/offshore and longshore movement of sand, as 

indicated by the respective components of the centre of gravity of the 

dispersed tracer cloud and average speeds of particle movement, were 

greater on the upper ridge than the lower ridge, Table 4,2* Howeverg 

wave heights on both ridges at the two sites are similar and, indeed# at 

Skegness the lower ridge wave heights were on average slightly larger 

than on the upper ridge. Furthermore, the steep seaward face of the 

upper ridge at both Gibraltar Point and Skegness provided relatively 

deeper water close inshoret restricting surf zone development, and hence 

much weaker longshore currents were measured during the upper ridge 

experiments. Because of these factors it might have been expected that 

lower ridge sand movements would have been the greater, but this was not 

the case largely because of the variation in the length of time processes 

were operating on different parts of the beach width. 

The lower beach is affected by the breaker zone for a relatively 

short period as this zone crosses the more gently shelving lower foreshore 

rapidly on both the incoming and outgoing tides. This is particularly 

true at Skegness. Only topographical highs on the lower foreshore, such 

as the beach ridges, remain under the influence of the more turbulent 

breaker and surf zones, until the tidal plane has risen sufficiently to 

allow the waves to cross without breaking. The steeper upper beach ridge 

face suffers wave attack for a much longer period as the water level 

rises causing greater sand movements, Actual lengths of time the near- 

shore zones operate on different parts of the beach will depend upon the 

stage of the fortnightly spring/neap cycle and wave heights as discussed 

in Chapter 1. 

In comparing results from Gibraltar Point and Skegness, generally 
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Table 4.2 Mean figures for sand movement and selected variables 

for tracer experiments at Gibraltar Point and Skegness. 

Gibraltar 
Point Skegness 

Mean movement of centre of gravity: 

all experiments (m) 16.12 7.15 

Mean movement of centre of gravity longshore: 

all experiments (m) 14-78 6.12 

Mean longshore component of movement: 

upper ridge (m) 20.92 8.62 

Mean longshore component of movement: 
lower ridge (m) 12.50 3.90 

Mean onshore/offshore component of movement: 
all experiments (m) 1.85 3.04 

Mean onshore/offshore component of movement: 
upper ridge (m) 2.26 5.46 

Mean onshore/offshore component of movement: 
lower ridge (m) 1.72 1.31 

Mean speed of grain movement: 
all experiments (cm/sec) 0.129 0.029 

Mean speed of grain movement: 
upper ridge (cm/sec) 0.17 0.046 

Mean speed of grain movement: 
lower ridge (cm/sec) 0-087 0.014 

Significant wave height Ili: 

all experiments (m) 0.45 0,39 

Significant wave height Hý: 
upper ridge (m) 0.47 0.41 

Significant wave height hi: 
lower ridge (m) 0.45 0.38 

Mean longshore current velocity: 
all experiments (cm/sec) 36-71 26-56 

Mean longshore current velocity: 
upper ridge (cm/sec) 12-55 18.18 

Mean longshore current velocity: 
lower ridge (cm/sec) 44-11 41-14 
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speaking. there was more longshore movement and less movement normal to 

the beach at Gibraltar Point than Skegness, Table 4,2. The stronger long- 

shore movements on the upper ridge at Gibraltar Point compared with 

Skegness, despite only slightly different wave heights and longshore 

current velocitiesq probably-reflect the effects of a larger average 

angle of wave approach at Gibraltar Point and a coarser average grain 

size at Skegness. The angle of wave approach determines the amount of 

longshore sand movement to a certain extent through the action of long- 

shore driftq and the greater the angle the greater the sweep of particles 

alongshore. The mean angle on the upper ridge at Gibraltar Point was 90 

compared with 50 at Skegness. At the same timeq coarser beach material at 

Skegness would not be expected to move as far as the finer material at 

Gibraltar Point, given the same conditions, although some studies show that 

coarser material moves faster than finer as will be seen later. 

The very low longshore movements measured on the lower ridge at 

Skegness were partly the result of the duration of process operation as 

discussed earlierg but also partly the result of the much weaker tidal 

currents in this vicinity, Chapter 1. These factors would also account 

for the smaller upper ridge/lower ridge differences at Gibraltar Point 

despite higher absolute values for longshore movement. 

Movements normal to the shore were greatest on the upper ridge at 

Skegnessq which reflects the effect of refraction in causing wave approach 

to be much more parallel to the beach face. The steepness of this partic- 

ular seaward ridge face was also probably important# although strong off- 

shore vectors of motion were less common. The low value for the average 

onshore/of f shore component of movement for experiments on the lower ridge 

at Skegness is partially a function of the shortcomings of the use of 

centre of gravity as a measure of movement. Relatively strong onshore/ 

offshore movements of material were masked by the balancing of nearly 

equal tendencies. As mentioned earlier, the experiments on this ridge 

show strong evidence of shoaling wave effects and diffusion of grains in 
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in all directions away from the release point, 

Lower values for shoreward or seaward transport of material at 

Gibraltar Point are undoubtedly the result of the stronger alongshore 

acting processes in this area. 

Much more work is required on the contrast in sand movement patterns 

between the Skegness area and Gibraltar Point site and in particular the 

simultaneous release of tracerg at both places, on both ridges, would 

provide valuable information. This type of experiment was attempted in 

this study but shortage of manpower meant that no worthwhile results were 

achievedo 

4: 3 Sorting and the movement of different grain sizes 

The movement of different grain sizes is the basis of the process of 

sortingg which involves the rearrangement of particles of varying size 

on a sloping beach face in response to particular physical parameters such 

as wave height or current velocity. The sorting of grains of differing 

diameter and/or specific gravity ultimately dictates the basic changes 

and indeed the existence of any given sand beachq Ingle and Gorsline (1973). 

As a result, the differential movement of various grain sizes may be con- 

sidered a fundamental process in beach formation and development. 

Fluorescent tracers lend themselves very well to the study of differ- 

ential grain movement because of the many colours available and their 

ease of application to a wide range of particle sizes, In an effort to 

investigate the effects of grain size on the patterns of sediment movement, 

several experiments were conducted in this study in which different grain 

sizes were tagged with different fluorescent colourse Two approaches were 

adoptea: 

Bicolour tests* Sand was collected from the beach and then dry- , 
sieved into two fractions, less than 2$ and greater than 209 The 2ý cut 

off was chosen because it represents the boundary between fine sand and 
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medium sand'on the phi scale of grain size description. Thus all grains 

coarser than fine sand were labelled with one colour and all grains of 

fine sand and smaller were coated with a second colour. This follows a 

method used by Ingle (1966) although a slight change was that in this 

study no attempt was made to equalise the weight of sand in each fraction, 

whereas Ingle used equal weights. It was felt that this slight change 

was more likely to make actual grain numbers in each fraction equal, since 

the number of grains in a particular weight increases rapidly with 

decrease in grain size. 

2. Specific size tests. Small amounts of sand within a narrow size 

range were coated with different colours in such a way that roughly equiv- 

alent numbers of grains were placed on the beach, Murray (1967), working 

in the shoaling wave zone, stated that the area over which a quantity of 

a particular grain size tracer will spread is a function of the initial 

concentrationg so that to compare movements of different grain sizes all 

sizes should initially have an equal number of grains, Assuming sphericityg 

the number of grains of one size in a specific weight of sand will vary 

inversely as the cube of the radius and hence the weight of sand released 

should take account of this relation. in certain experiments in this study, 

this was achieved by using particular amounts of sand in each grain size 

selected and thus correcting the sampled concentration by multiplying by 

particular factors* For example, in the experiment of 7.10.76 conducted 

on the upper ridge at Skegness 1. Okg of sand in the range 0.6 0.71mmo 

0.5kg in the range 0.42 - 0,6mm and 0,, 25kg in the range 0,25 0,355mm were 

used. The concentration of the medium sized sand, tagged blueq were 

multiplied by 1.75 and those of the largest fractiong tagged pink, multi- 

plied by 2.5, The smallest grains were coated orange. 

Two successful bicolour tests were conducted on 2.11-75 and 17.1-76 

both at Gibraltar Point, The grain size distribution was split at 24 (0.25mm. ) 

but for the 2.11-75 experiment the mean size of the coarse fraction was 
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0.389ý and of the fine fraction 2.3710 whilst for 17.1-76 these values 

were 1.3410 and 2-422ý respectively. Therefore, for the earlier experi- 

ment each fraction was coarser. The results of these tests as shown in 

Figures4-31 to 4.36 illustrate the fact that spatial sorting was not 

taking place as a result of different vectors of motion for different 

grain sizes, Dominant vectors of motion for the two halves of the grain 

size distribution were similar in each experiment. Howeverg in both 

tests the average distance moved by the finer grains and overall disper- 

sion of the finer grains was greater than for the coarser fraction and 

in this way sorting did occur. The average distance moved by the coarse 

fraction for 2.11-75 and 17-1.76 experiments were 4m and 24-5m compared 

with 6m and 30M for the fine fraction, This probably reflects the move- 

ment of finer particles partly in suspension and partly as bedload 

leading to larger distances and areas covered whilat the coarser fraction 

moved more as bedload and hence distances of movement are shorter, 

Howeverg these results conflict with Koma 18 (1977) findings for long- 

shore transport rates of different grain sizes. He found that average 

distances moved were greater for the coarser grains and decreased for 

the finer sizes. Following Evans' (1939) work on transportation and 

sorting of material in the awash zone. Komar suggested that the finer 

material moved more slowly because it awashes higher up the beach face 

whilat coarse grains remain nearer the breaker zone and hence are trans- 

ported by strongerg steady longshore currents. Komar's measurements were 

made at El Morenog Baja Californiag Mexico wherel because of the steep 

beach facep an intense awash zone is found and hence swash transport 

forms a higher proportion of total transport than on Inormall Atlantic 

type beaches with a wider surf zone. The average beach slope was 80 

compared with 2.53 0 and 2.48 0 for the two tests of this study and this 

morphological difference and the resultant hydrodynamic differences 

probably account for the contrast in findings, 
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Figure 4.33- 
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The significant difference between average distances moved for both 

fractions of the two tests is a reflection of the stronger conditions 

prevailing for the 17-1.76 experiment compared with the 2.11-75 and also 

perhaps the difference in average grain size between the two tests as 

already noted, Significant wave heights were 0.18m for 2.11-75 and 0-39m 

for 17.1-76 whilst longshore current velocities were 6 and 12 cm/sec 

respectively. 

The usefulness of this type of bicolour test is limited since each 

division of the grain size distribution contains a wide range of sizes 

and variation in the position of the split in the distribution will 

affect the average distance figures for each division* Consequently the 

tests with more specifieg narrower size ranges were made. However, 

because only small quantities of each fraction were used recovery rates 

from these experiments were very low and in the majority of cases too 

low to reveal significant trends. Only the 7.10-76 experiment on the 

upper ridge at Skegness provided results which could be realistically 

contoured and these are shown in Figures 4.37,4*38 and 4-39. The finest 

fraction. 0-3mm displays a stronger onshore vector of movement whilet the 

coarser fractions show more alongshore components. Comparison of the 

three maps of the different fractions with Figure 4.27, the map of the 

whole die tributionv suggests that the finer fractions in fact form a 

major constituent of the overall pattern. It is interesting to note 

that average distances moved by each fraction confirms the findings of the 

bicolour tests that the finer grains move furthest. In fact average 

distances moved alongshore are very similar but the medium fraction 0-46m 

moved furthest at 12m compared with 10,25m for the 0-3mm fraction and 

9-75m for the coarsest size 0.65mm- 

Results of all the other specific grain size tests wsre mapped on 
dot type maps with actual numbers of grains counted per fraction of 

sample entered at each sample site. Although in the main little can be 
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gained from these the general pattern revealed by some maps shows 

interesting features. For example contamination of the tracer site from 

previous experiments is clearly visible on the upper part of the map for 

12.8-76 experiment at Skegness with pink tracer for the 0-5mm fraction 

(Figure 4.40) and on the lower part of Figure 4.42, the map for 7,10,76 

lower ridge with yellow tracer for the 0.3mm fraction. Such contamination 

reflects the efficiency of grain coating and also the calmness of con- 

ditions between some field tests but may also, of course, constitute a 

sampling problem. From the series of maps Figures 4.40 to 4.44 it will 

be seen that recovery of finer grains was usually greater than for 

coarse simply because of the larger number of grains in a particular 

weight of each fraction, In general the dot maps confirm the findings 

of the bicolour tests in that very different dominant directions of 

movement are not distinguishable for different size fractions, 

The distinct lack of success of the specific grain size testa was 

due to the use of quantities of tracer too small to give sufficiently 

large recovery rates. Because of the experimental timetable this fact 

was not discovered until laboratory analysis of all test samples had 

been completed. In future tests larger quantities would be necessary 

but an alternative technique used by Koma (1977) would give more 

information, This method involves using a single colour for all grain 

sizes in the beach sedimentosieving each sample collected into selected 

size fractions and then counting the number of tracer grains present in 

each fraction. In this way data on the movement of nearly all grain 

sizes on the beach can be gained rather than for just two or three sizes 

tagged with different colours and in addition the different size fractions 

are in their correct proportions since the complete grain size distribution 

is coated. 

Previous work on sorting and differential grain movements 

using fluorescent tracers has produced conflicting results although the 



160 - 

Figure 4.40# 
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Pigure 4.42. 
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Pigure 4.44. 
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bulk of the evidence from field tests suggests differential rates of 

movement forms the main mechanism by which sorting takes place and not 

directional factors. Boon (1966) used trend surface analysis to describe 

the tracer patterns from an experiment he conducted in the British West 

Indies. Assuming synchronous areal distributions he suggested that any 

tendency for grains to be sorted into, and travel along in, discrete 

bands parallel to the shore would be reflected in distinctly different 

isopleth patterns for the trend surfaces. Howeverg testing the orienta- 

tion of orthogonals to the trend surface contours he found that over a 

tidal cycle no clear cut differences developed between the patterns of 

tracer particle distribution representing different sizes and shapes. 

Similarlyq Ingle and Schnack (1971) reported from work carried out at 

Moss Landing Beachq Californiag that with major grain size fractions of 

greater than 0.35mmt 0-35mm, to 0.25mm and less than 0.25mm mean vector 

paths were essentially the same over short time periods, They also found, 

though,, that grains finer than 0.25mm left the sampling areas 20-50% 

faster than grains 0.35mm and coarser. Howeverg Ingle's (1966) earlier 

work indicated a tendency for coarser grains to move seaward out of the 

surf zonet whilBt the finer grains remained within the surf zone producing 

sorting in this way. Yasso (1962) also had previously found that grains 

of varying diameter exhibited a variety of ma imum. and minimum onshore 

transport vectors in experiments at Sandy Hook# Virginia. Working in 

the shoaling wave zone Murray (1967) found that under the same hydrodynamic 

conditions the finer grain sizes have a greater tendency to move offshore 

than coarser grains and that,, in generaig finer grains disperse into 

quasi-circular concentration contours while coarser grains form more 

elongated isopleths. 

Miller and Zeigler (1958) built up a model of sediment patterns in 

the shoaling wave zone, the breaking wave zone and the awash/backwanh 

zone based upon the differential movement of different grain sizes as 

" -1 
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the mechanism of sorting. In the shoaling wave zone they concluded that 

sand movement was in accordance with a modified form of Cornaglia's null 

point theory. This theory states that there are two opposing forces 

acting on sediment in shallow water: 

1. the onshore drift associated with wave motion and 

2. the offshore gravitational forces produced by the bottom slope. 

For each grain of a given densityt size and shape there is a line of 

equilibrium between the opposing forces whose net movement onshore/ 

offshore is zero. The larger the particle the closer to shore the null 

point, Shoreward of the null point a particle will move onshore, whilst 

offshore of itg it will move seaward. If many different sizes are 

present, only one of the sizes can be at its null point. Using Ippen and 

Eagleson's (1955) empirically-derived equations for null pointag Miller 

and Zeigler suggested that median sediment size increases towards the 

shore and sorting improves in the same direction, in the shoaling wave 

zone. Gravity was. assumed to play little part in moving material of f- 

shore. In the breaker zone, improved sorting and larger mean grain 

size was postulated as a result of turbulencet causing winnowing of the 

finer sediment from the coarser fraction. On the other handq in the 

swash/backwash zone they expected a band near the top of this zone to 

show a rapid increase in size on a traverse downslope and a rapid 

improvement in sorting, Continuing downslope they envisaged a regular 

rise in median size but poor sorting and an irregular contour pattern, 

Field observations at Falmouth beacht Massachusettsq confirmed the model 

but only in the situation where wave crests advanced parallel to the 

shoreline over a plane bottom with a gentle seaward slope. In addition, 

the study area was small to reduce the effect of longshore currents, 

and strong tidal currents were absent. In later 'Work9 application of 

the model to more complex beach topography and strong current action 

proved much more difficult. 
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For the tidal situationg, Miller and Zeigler suggested that as the 

tide rises the well sorted band of finer material is continually erased 

or covered and appears higher on the beachq while the other zones take 

over a larger portion of the beach. With the fall of the tide the well 

sorted band of finer sediment increases in width, reaching a maximum at 

low tide. 

Ingle (1966) extended the Miller and Zeigler model by postulating 

additional sorting processes for the surf zone. He suggested that for 

any given slope and spectrum of bottom velocities active beneath the 

surf zoneg a relatively wide band of oscillating equilibrium would 

exist for particular grain diameters. These grains he envisaged as 

being most susceptible-to transport by longshore currents and hence 

would exhibit the strongest vectors of longshore movement. At the same 

time, grains of lower than a critical diameter would travel in suspension 

with the greatest density in the swash/surf boundary area and the breaker 

zone, whilat larger grains would move in a sheet flow towards the 

breaker zone or towards the awash/surf boundaryt depending on their 

point of origin. This simple schemeg which it was acknowledged would 

be greatly modified by irregular topography and rip currents9 was 

partially confirmed by Ingle's (1966) bicolour grain size tests but 

later more detailed work produced results not in agreement with it, 

The results of the grain size tests of this study indicate the 

complexity of the problem of modelling differential grain movements. 

Given simple beach topography and steady state wave and tidal conditions 

it seems likely that an equilibrium sand surface in terms of grain 

sorting and size patterns would develop, but the inherent variability 

of hydrodynamic and sediment characteristics means that the actual 

surface at any given moment probably represents a dynamic equilibrium. 

Furthermoreq in the strong tidal environment this dynamic equilibrium 

becomes a transient, oscillating feature related to the movement of 

----. 
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different nearshore zones backwards and forwards across the beach with 

the rise and fall of the tide. With the inclusion of complex beach 

topography the picture is even more complicated and its description in 

any type of model even more difficult. Thereforeq from the tracer 

dispersion patterns mapped in this study, representing the net effect 

of a series of sorting processes operating throughout the tidal cycle, 

it is likely that particular sorting patterns would be indistinguishable. 

Multiple sampling of tracer dispersion at different times throughout 

the tide might be expected to yield more information on the processes 

of grain sorting, but even this approach has not produced consistent 

resultsq as indicated by Ingle's conflicting results. 

A consistent feature of the grain size tests conducted in this 

study was the greater dispersal of the finer sizes and the larger 

distances moved by these grains. On the other hand, examples of differ- 

ences in dominant direction of movement were few. Onshore-offshore 

sorting patterns were not present because of the strong longshore 

operating processes, but sorting alongshore was evident in the differen- 

tial rates of movement. Purther analysis of selected sets of samples 

from this study may throw more light onto the problem of sorting patterns 

and differential movements, One approach already noted would be to sieve 

each sample collected into different size fractions and count the number 

of tracer grains present in each fraction. However, as previously 

suggested, multiple sampling might provide better results in future field 

tests. 

4: 4 Note of caution 

Price (1969) introduces a note of caution into the interpretation or 

tracer maps, in particular with reference to the onshore-of f shore oediment 

transport. In a simple arithmetic modelg Price has shown that on a stable 

beach on which, by definitiong no net transport of material normal to- the 

beach is occurring, an apparent net transport may be indicated by a tracer 
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map using the usual Icentroid' or centre of gravity method of analysis. 

By looking at sand movement in terms of the exchange of particles between 

ripples, the apparent movement is shown to be due to the tendency of 

tracer to move towards the area of maximum diffusion in the breaker zone. 

Pigure 4.45 is a diagrammatic representation of the model. 

Beginning with two tracer sources of 1,, 000 particlesp one seaward 

and one landward of the breaker zoneq the number of particles exchanged 

between ripples for each wave stroke is shown. It is assumed that because 

wave orbits and general lack of turbulence are greater as the breaker zone 

is approachedt so seaward of the breaker zone the number of particles 

exchanged between successive ripples increases in the onshore direction. 

In the diagramt 40 grains are exchanged with the next ripple seaward or 

the tracer and 50 shoreward. With each successive wave stroke, more 

tracer is moved onshore than offshore but there is no net transport 

since the particles are replaced by untagged grains. Thust despite the 

fact that the centroid of the tracer distribution is moving onshore from 

A and offshore from B indicating a net transportq there is no net 

transport and the beach is stable, 

Applying the model to the tidal situation, Price contends that the 

misleading tracer results for the part of the beach between high and low 

water become time dependent. The dispersion with tides is shown in 

Figure 4.46. On the part of the beach below low water the dispersion 

activity will increase towards the breaker zone. Shorewards of the low 

water levelq because the time at which water stands at the various levels 

decreases when moving from low water to high water, the cumulative effect 

of the dispersion also decreases* This means that tracer placed seaward 

of the low water level will move landwarýsq while that placed choreward 

will move seaward. 

It is difficult to say how well this model can be applied to the 

tracer dispersion maps discussed in this chapter, Onshore and offshore 
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Figure 4.46, The Price (1969) model applied to the tidal situation. 

movements of material are indicated by the maps from locations in the 

zone between the high and low water levels and some of these movements 

are quite strong, which does not conform to the tidal version of the 

model. Howeverv Price (1969) does point out that such a simple model 

could not represent the movement of beach material completely. 

Neverthelessq the model is valuable in that it demonstrates how 

misleading tracer results could be if care is not taken in interpreta- 

tion. In particular,, caution must be exercised before not movements of 

material are proposed on the basis of tracer dispersions, An example 

of the usefulness of Price's model in explaining seemingly anomalous 

sand movements is to be found in Ingle's (1966) tracer results. Some 

of these tests were conducted on stable beaches on the Californian coast 

on which it was known that no accretion or erosion was taking place, 

The tracer maps indicated consistent onshore/offshore movements but 

virtually no profile changes occurred. However, if no net movement is 

assumed from the map evidence the anomaly may be explained. 
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PART 2. 

In the four chapters of Part 2a more quantitative approach to 

the results of the tracer experiments is adopted. The first of the 

chapters, Chapter 5. is a brief consideration of some of the aspects 

of the mechanics of sediment movement together with physical models 

proposed by previous workers. Two of the most popular models of long- 

shore sand transport are field tested with data from this study. 

Following this the remaining chapters deal with the use of multiple 

linear regression techniques to construct a statistical model of sand 

movement, 

Regression techniques were adopted because of the complexity of 

the interrelationships in the system under study but at the same time 

data inadequacies introduced an element of caution. Since the sample 

of observations on the variables involved totalled 29 the wide range of 

possible combinations of the variables has not been covered. In addition, 

the quality of data in terms of measurement error may also be open to 

improvement and strong interrelationships between independent variables 

caused problems of interpretation of results. Nevertheless, an a search 

procedure multiple regression method can be of great value and in this 

case of particular usefulness since little field data is available on 

short term sand movements and the system involved is far from being well 

understood. Krumbein (1976) points out that the standard statistical 

models such as stepwise regression help the geologist "to identify the 

more important variates to be included in his conceptual model. ', 

In this study regression techniques are used to describe and predict 

the amount and direction of sand movement., Although it is possible to 

consider these two aspects as distinct response or dependent variables 

directional and magnitude components of process variables are difficult 

to separate without considerable Partitioning of the data set. Therefore, 
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the two basic parts of the sand movement model took the form 

1) Amount of sand movement =f (magnitude of processes) + 

f (direction of processes); 

2) Direction of sand movement =f (direction of processes) + 

f (magnitude of processes). 

The model is further split into onshore/offshore and longshore aspects 

and for example individual consideration is given to the average 

distance moved by grains normal to the line of the beach and also 

along the beach. 

Linearity does not always occur in the relationships between 

variables but in the absence of any theoretical basis for relationships 

the general linear model is the simplest of many possible hypotheses. 

Prom the point of view of interpretation of results and the computa- 

tional aspects of the regression techniqueg the linear model is least 

complex, Purthermoregnon-linear models are often intractablet no 

general method for their calculation and use is available and they 

are often only suited to particular situations. However, the linear 

approach can provide a first step towards further non-linear analysis 

and indeed it is hoped that the exploratory nature of the use of 

regression in this study may form the basis of further modelling work, 
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CHAPTER 5 

MODELS OF SkND MOVEMENT 

5: 1 Introduction 

Before going on to develop a model of sand movement based upon 

regression techniques a brief consideration is made in this chapter of 

some aspects of the fundamental mechanisms of sediment motion and also 

of some of the previously proposed models, Sediment movement is of 

interest to research workers in a wide range of disciplines, including 

hydraulic engineeringg coastal engineeringg geologyO hydrology and 

geography and as a result there is a profusion of published material. 

It is not attempted to review this literature here but rather to deal 

with particularly relevant work. 

In general most attention has been focussed on the problem of pro- 

viding an efficient formula for the rate of sediment transporto usually 

as bedloadq caused by moving fluid* Less success has been achieved for 

the coastal environm6nt than for the fluvial iargely due to the complexity 

of interaction of the many processes operating in the littoral, zone. The 

tendency has been to concentrate on the longshore movement of sand on 

beaches because of the implications for coastal engineering construction 

but in morphological terms sand movements orthogonal to the beach are 

equally important. 

Section 5: 2 of this chapter deals with the initiation of sediment 

movement, This is the starting point of most of the theoretical work on 

the mechanics of sediment motion and involves the examination of flow 

characteristics, shear stresses and friction factors, Following this in 

Sections 5: 3 and 5: 4 the processes involved in some of the models of sand 

movement normal to the shore and alongshore are considered. Finally in 

Section 5: 5 data from this study is applied to two of the most well known 

equations of longshore sand transport on beaches. These equations have 
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only recently been field tested by Komar (1969). He states that "additional 

measurements are required from other beaches when waves are small enough or 

tidal range is sufficiently large that measurements of sand transport 

include the breaker zone as well as the surf zone. " Thus the use of these 

equations with data from this study to a certain extent achieves this and 

provides a reflection of their general applicability and efficiency. 

5: 2 Initiation of sediment motion 

One of the first questions to be asked when dealing with sediment 

movement caused by a moving fluid is: when does the sediment start to 

move? Water flowing over a loose boundary, that is a cohesionless gTan- 

ular bed on which the particles are available for transportq will exert 

forces on that boundary. As these forces are increased a stage is reached 

at which they are sufficient to cause particles to move from the bed and 

be transported. This stage is variously known as the threshold of sedi- 

ment movement or the critical stage for erosion or entrainment, The 

forces acting on the particles, produced by the flowing waterg give rise 

to shear stresses between the particles in motion and those forming the 

stationary boundaryq with the fluid between the particles taking part in 

the shearing. (Raudkivi, 1967). This shearing force is known as the 

boundary shear stress and the critical boundary shear stress is the level 

of the threshold of sediment motion, Also the water flow related to the 

boundary shear stress has a velocity known as the shear velocity. 

Instead of using the critical shear stress alone to define the thresh- 

old of movement it is more usual to employ a dimensionless form of the 

stress. Often this takes the form of Shields Criterion (Shields, 1936) 

a widely accepted, though still empiricalg criterion which determines the 

initiation of sediment motion on a plane-bed under unidirectional steady 

flow. The relationship is as follows: 

0 (crit, ) = 
Ir (crit. ) 

Eq- 5-1 
(ps-p)gD 

where (crit. ) = dimensionless threshold criterion; 
(crit') = critical boundary shear stress; 

9= constant of gravitation; 
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D grain diameter; 

PB = density of sediment; 

density of water. 

Fluid and sediment properties are taken into account as well as flow 

characteristics as can be seen and equation 5: 1 expresses the critical 

value of the ratio of entraining forces to stabilising forces acting on 

a sediment grain in the sediment/fluid interface. 

The Shields Criterion has general applications so long as the sediment 

is cohesionless and the fluid rlow is unidirectional and steady. In the 

nearshore beacn environmentq however, oscillatory flows are experienced 

due to wave action and under these conditions determination of a general 

criterion for the onset of sand movement is more difficult, 

Many equations have been put forward. Silvester and Mogridge (1971) 

present thirteen different equations from the literature but these equa- 

tions are largely of limited applicability, The main problem encountered 

is the correct evaluation of the boundary shear stress which depends upon the 

use of friction factors or drag coefficients and which are themselves 

difficult to evaluate. Under steady current conditions boundary shear 

stress9 T0, may be derived from the Darcy-Weisbach relationshipt 

T= 
fpu 2 E4.5.2 

08 

in which U= depth-averaged current velocity; 

f= Darcy-Weisbach friction factor; 

p= water density, 

In this relationship the drag coefficient, f, is a function of the 

Reynold's number of the flow and the relative roughness of the boundary. 

Boundary effects are assumed to, extend over the full depth of the flow, 

Howeverv under oscillatory flow, boundary effects are confined to the 

region immediately above the bottom and hence a different relationship 

is required. Other friction factors which have been used include ChezyI8 
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c and Manning$ Bn and in 1968 Jonsson introduced the concept of a 

wave friction factor, f (w)* Using this, which is anaiogous to the 

Darcy-Welsbach f, the magnitude of shear stress exerted on the bottom, 

T is calculated from: 
om 

T 
om =1 f(w) PU2 

Eq& 5.3 
2b 

where U2. maximum fluid velocity relative to tne bed 
b 

jusz outside the boundary layer. 

Madsen and Grant (197b) devised a Modified Shields Criterion for use 

under oscillatory flow conditions based on this rormula. However, all 

the friction factors have been determined in laboratory experiments and 

have been round to be fixed under certain flow conditions and for particu- 

lar bed configurations, mostly flat bed. On the other hand, under natural 

conditions zotal roughness May be comprised of effects not only from 

grain roughness but also from otner eiements Such as ripple marics and 

iarger scale bednowa sucn as megaripples and sand waves, Little is known 

of the influence of bedflows on snear stresses and the operation of 

friction coefficients but Carstens et al (1969 and Silvester and Mogridgo 

(1971) do proviae some experimental evidence to suggest that threshold 

conditions may be lower on a rippled bed than a flat bed, Since both 

the Shields Criterion and Madsen and Grant's modified version of it, apply 

only to flat bed situations their use under rippled bed conditions may 

well produce misleading results. 

In the offshore zone large scale bedforms may be encountered and here 

drag coefficients fall outside the narrow range of experimental conditions. 

Ludwick (1974)t for exampleg found that with a movable bed and bedforma 

as large as sandwaves the drag coefficient ranged through four orders 

of magnituae. Because of the problems involved in the use of friotion 

factors Ludwick concludes that 11 ... it appears that velocity profile 

methods are required for the accurate evaluation of boundary shear atreno 



- 176 - 

in the ocean. " These methods involve the use of velocity-defect formulae 

from which it is possible to infer shear stress without the direct use of 

a friction coefficient. However, these formulae are also empirically 

derived. 

Dugdale (1977) provides a good example of the velocity profile 

methods in the calculation of shear stresses. Using tidal current 

velocities measured over the submerged sandbanks and intervening channels 

offshore from Gibraltar Pointq Figure 1.1 , he calculated boundary shear 

stress from the parabolic form of the velocity defect law (Hamaq 1954) 

U-u 9.6 (, _ 
d2 

U* D) Eq. 5.4 

where U = velocity of flow at surfac e; 

U = flow velocity at distance d above the bed; 

u* = shear velocity; 

D boundary layer thickness (water depth for fully 

developed flow)* 
#A 

This gaveAf* which was then substituted in equation 5-5: 

2 
To = U*p Eq. 5.5 

Critical values of shear stress could then be ascertained from a Shields 

curve for Skegness and from this it was ascertained that sediment motion 

occurs at all states of the tide except for a short period around low and 

high water, ]Dugdale concluded that tidal currents at Gibraltar Point were 

competent to transport available sediment for a minimum of 75 per cent 

of the time. 

In a similar vein the practical difficulties surrounding the use of 

friction factors caused Komar and Miller (1975) to propose a simpler 

approach to the problem of predicting grain threshold under waves. They 

suggested the use of near bottom velocityq um 9 alone rather than shear 

stress because um can be estimated from wave height and water depth 
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using the following: 

Ir H 
T-si-nh (2irh/L) 

wd 
T 

Eq. 5.6 

where H= wave height; 

wave period; 

water depth; 

d orbital diameter of water motion; 0 

wave length* 

Two equations were put forward to calculaie threshold values for grain 

diameters: below 0.5mm 9 medium sands and finer. equation 5.7 and for 

those grains larger than 0.5mm 9 coarse sands and coarserequation 5.8. 

The critical size 0.5mm is related to the transition from laminar to 

turbulent flow in the boundary layer. 

0 
PUM 

2=0,21 (d 
0 

t- (ps -p) jD 
(LD) 

2 
PUM 

t (p, 
3-p) 

jD 
0.461r( 

do)j 

\D/ 

Eq. 5.7 

Eq. 5.8 

where D= grain diameter. 

Despite the similarity of these equations to the velocity defect relation- 

ship the equations are only of limited value because they assume pure 

sinusoidal wave motion and do not take account of asymmetric wave motiong 

in deep water and shallow water waves. 

This brief discussion of the problems of predicting sediment movement 

thresholds provides ample evidence of the fundamental difficultyq that of 

accurate field observation. Much work has been carried out in the labora- 

tory but the empirical formulae so produced usually cannot be applied to 

the field situation. Models developed under conditions of unidirectiona. 19 

laminar flow are of little value for study of oscillatory turbulent flow 

over a bed composed of ripples or even larger features. More work in the 
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field is required on all aspects of the problem of initiation of sedi- 

ment motion, under 'naturaV conditions. 

5: 3 Onshore-offshore sand movement 

Full and complete models of sand movement normal to the shoreline 

are almost absent from the literature due largely to the complexity of 

the system, A large number of processes and effects is involved and those 

comonly accepted as the most important will now be considerede 

Niederoda (1974)9 in a study of processes operating orthogonal to 

the beachp points out that a sloped sand bed subjected to uniformly 

oscillating wave orbital motions has only the tangential stress component 

of gravity which is capable of producing a net motion of sediment in an 

offshore direction. Under the wave crest the bottom shear stress acting 

up the slope is counteracted by the component of the submerged weight of 

the sand particle acting down the slope but under the wave trough the two 

forces act in the downslope direction. Therefore, a net sediment transport 

offshore might be expected from this asymmetry in the entraining forces, 

Arguing from thisgNiederoda suggests that unless large amounts of material 

are being supplied to beaches in equilibrium by longshore transport then 

most natural beaches must be affected by onshore orthogonal processes if 

constant erosion is not to take place. Wave asymmetry and wave drift are 

put forward as the two processes that function uniformly in apace and are 

capable of producing static equilibrium. 

Wave asymmetry, Wave theory predicts that for a small amplitude 

wave progressing over a horizontal bed there will be a purely sinusoidal 

orbital velocity above the bed. This motion may cause sediment to be 

moved back and forth assuming the threshold velocity is exceeded but no 

net movement occurs. However, if finite amplitudeq that is non-linear 

effects are considered the wave profile is no longer symmetric about the 

mean water levelo Thereforeq for non-linear waves the mean crests become 
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more peakedt higher and steeper, than the wave troughs which become 

shallower and flatter. Figure 5.1. This lack of symmetry is reflected 

in the near-bottom velocities which show a forward velocity of greater 

magnitude, but shorter duration, under the wave crests. and a lower backwards 

velocity of longer duration under the troughs, Figure 5.1. Under these 

conditions the time-average net rate of transport is in the direction of 

wave propagation, The differences in bottom velocities may be greater 

for long period waves than for short period waves but the situation is not 

clearly understood. Madsen and Grant (1976) point out that experimental 

data on the net sediment transport due to wave asymmetry velocity variation, 

is not available and that predictions of these rates by Kamphuis (1973) 

were not encouraging, Howeverg some success has been achieved with an 

equation for sediment transport developed from an approach based on instant- 

aneous near bottom velocities. 

Mass Transport. Longuet-Higgins (1953) discussed Stoke's classical 

treatment of mass transport or wave drift associated with the propagation of 

shallow water waves. When second and higher order terms are introduced it 

was demonstrated that the circular orbits of local water motion caused by 

the propagation of surface waves in deep water are deformed to an open 

geometric form in shallow water. This results in a net displacement of 

the water in the direction of wave movement with the passage of each waveg 

Figure 5.2. Longuet-Higgins then adjusted the model explaining mass 

transport by considering the interaction between the sediment and water 

boundary layer. An analytical solution was developed which provided for 

a mass transport in the direction of wave motion at the surface and along 

the bottom and a return flow at an intermediate levelq Figure 5.2. Russell 

and Osario (1958) conducted wave tank experiments which essentially 

supported the current profile given by the Longuet-Higgins solution but 

their results were obtained with a slightly turbulent flow regime whilst 

Lonquet-Higgins' theoretical investigations were based on assumptions of 

-ttjfl. ") 
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laminar flow. Longuet-Higgins (1968) explained this apparent contra- 

diction by showing that given certain assumptions his model also applied 

to turbulent flows but more recent results reported by Bijker et al (1974) 

have cast doubts on this. Bijker et al conclude that more data are needed on 

mass transportunder turbulent boundary layer conditions, King (1949) 

observed a transport pattern similar to that predicted by the Longuet- 

Higgins model but found that the forward thrust on the bottom was depend- 

ent upon the character of the bed. The forward thrust occurred only when 

the bottom was of smooth sand and disappeared when ripples formed on the 

bed. 

Given the inconclusive evidence of wave tank studies it is difficult 

to state how important mass transport is in the sediment transport picture 

for the nearshore, Indeedq Russell and Osario (1938) noted that when the 

width of the wave tank channel was large compared with the water depth 

there was a tendency to develop a horizontal circulation with a vertical 

axis. Therefore, under these circumstances wave drift would be non- 

existent since the shoreward discharge would not be balanced by a return 

flow at mid depth because continuity would no longer be necessary in two 

dimensions, This type of horizontal circulation would, under 'natural' 

conditionag include longshore and rip current systems, 

Bagnold (1963) developed a model Of sediment transportg based on the 

coupling of wave action with superimposed currentaq which he applied to 

sediment transport beyond the breaker zone as a result of wave drift. 

According to the model the stress exerted by wave motion supports and 

suspends sediment above the bottom without causing net transport since 

the wave orbits are closed. A unidirectional current superimposed on this 

to and fro motion causes the net transport in the direction of current 

flow. A current of any strength will cause net movement since wave power 

provides the cause of sand motion. The immersed weight sediment transport 

rate per unit of bed width, 10q is given by: 
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k'w 71 

u 0 

'Eq. 5.9 

where u horizontal component of orbital velocity at the bed; 
0 

w= wave power; 

90= superimposed current; 

kA= dimensionless coefficient of proportionality. 

The mass transport velocity u is given by Bagnold as being related to 

the orbital velocity close to the bed by the following equation: 

2 U2 10 Eq. 5-10 
4o 

where U0 orbital velocity just above the boundary layer; 

c= phase velocity (wave velocity)l 

H= wave height; 

h= water depth. 

Substituting this into the transport modelt equation 5.9g gives the 

following for wave drift transportg 16: 

10= ko' wU0 /C 

or e` wH /2h 

Eq. 5.11 

where k'" = proportionality coefficient, probably a function of 

wavelength. 

Inman and Bowen (1963) made a wave tank study of this relationship 

but as with King's (1949) results found seemingly anomalous results when 

the sand bottom was rippled. They found that in some tests with rippled 

bed sediment movement was decreased by an increase in the superimposed 

current velocity and in one case there was actually a net transport off- 

shore, opposite to the superimposed current* These results serve to 

indicate the complexity of any solution to the problem of modelling sedi- 

ment transport under combined wave and current systems. 
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Complicating the use of the wave drift model under natural conditions 

is the effect of a surface wind, Bagnold (1963) suggested that this 

'external' variable in the system would affect matters in two ways: 

i. A direct wind drag on the water surface might be expected to 

create a circulation in the vertical plane if sustained such that at the 

surface with an onshore wind an onshore water movement might take place 

with, at the sea bed, a compensatory return flow, The latter seaward 

drift might reduce or even reverse the forward wave drift. Wave tank 

experiments conducted by King and Williams (1949) support this premise as 

does the more recent work by King (1953) at Marsden Bay and of Siebold 

(1963) in the Baltic. Murray (1967)9on the other hand9discounts the 

importance of wind-induced currents. 

ii, Under an imposed surface wind drag the water waves themselves 

have a different character, Considerable turbulence develops from the 

water surface downwards in addition to the turbulence due to friction and 

roughness factors. However,, it is not known what the effect of this might 

be. The effects of wind on sand movement normal to the shore are conaid- 

ered further in Chapter 7- 

As pointed out in Chapter 4# Section 4: 3t the balance of the offshore 

effect of gravity through beach slope and the onshore effect of wave drift 

and wave asymmetry forms the basis of Cornaglia's null point theory* 

Howeverg results of grain size tests in this study and previous work have 

produced conflicting evidence for the applicability of this theory. 

So far the processes and models considered have been largely applic- 

able to the region seaward of the breaker zone that is in the shoaling 

wave zone and beyond. Other orthogonal processes operate in the zones 
landward of the breaker zone and these must also be discussed briefly 

since the tidal fluctuations involved in this study area necessitate a 

consideration of all nearshore zones and the processes operating in them* 
Offshore tendencies imparted to the movement of sand grains are pro- 

vided by the force of gravity acting tangentially to the beach elope but 

I 



- 184, - 

in the swash-backwash zone these tendencies are strengthened by the trans- 

lational water movements, Inman and Bagnold (1963) produced an indirect 

model of sand transport when they applied the energy approach to the con- 

cept of an equilibrium beach slope. The orthogonal effects of swash and 
are considered 

backwash processes/such that the equilibrium slope is a function of the 

ratio of local offshore and onshore dissipation rates (c). At balance 9 they 
r 

suggest, theýe must be an equilibrium between the amount of sand carried 

up and down the beach under wave action. Frictional drag on the swash 

and water percolation into the beach removing water from the return flow 

of the backwash produce a net shoreward movement of sand. This is opposed 

by the local beach slope which through the effects of gravity aids back- 

wash in moving material offshore and hence produces a balancing offshore 

tendency. The relationship given by Inman and Bagnold is: 

tan 0= tar4(T4 
2) Eq. 5.12 

_c 

where tan a= local beach slope; 
tan ý- coefficient of internal friction in shearing of 

granular media = angle of repose of sediment. 

In the surf zone, a highly turbulent zone, if it exists on the foreshore, 

(Section 1: 1),, the dynamic variables involved in causing grain movement 

normal to the shoreline include the shoreward moving bores formed after 

wave collapse and the seaward return flow at the bed. The layered type 

of flow suggested for wave drift is transformed in the surf zone to a 

surface fluid motion with the wave of translation passing through the 

zone from breaker to swash zones and a seaward return flow at the sea bed. 

Field measurements by Schiffman (1965) confirmed the existence of the 

layered flow but it is likely that it only occurs under certain conditions. 

The shoreward fluid motion of the turbulent bore for example must at times 

extend down to the sand surface. Furthermore, as pointed out earlierg 
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horizontal circulation may replace the layered vertical flow. Where 

horizontal circulation is present seaward return flow throughýrip currents 

is an important cause of sand movement perpendicular to the line of the 

beach. 

Finally, it is necessary to point out the importance that has been 

attached by some workers to wave steepness as a factor in orthogonal sand 

movements. The C. E. R. C. Manual (1973) asserts "Onshore offshore transport 

is the result of wave steepnessq sediment size and beach slope. High 

steep waves move material offshore and low waves of long period, (low 

steepness) move material onshore*" Rector (1934) provides an empirical 

limiting relationship between sand size and wave steepneses 

Md /L = 0.0146 H/L 1,23 Eq. 5.13 

where Ma = grain diameter. 

When the ratio of diameter to wave-length is greater than the steepness 

side of the equation sand moves from the offshore to the foreshore whilst 

the reverse is true when the ratio is small, 

Many wave tank studies have been conducted to study the onshore- 

offshore movement of sand and the related profile type associated with 

wave steepness changes, King and Williams (1949) for example found that 

a wave steepness of 0.012 was important in governing the direction of sand 

movement in the surf zone, Howeverg field studies have not provided con- 

elusive evidence of the role played by wave steepness, often because wave 

measurements were not sufficiently accurate. 

The importance of wave steepness and indeed many of the processes 

mentioned briefly in this section will be discussed further in Chapter 

when a regression type model of onshore/offshore sand movement is developed* 

-5: 
4 Longshore sand movement 

The chief causes of longshore sand movement are longshore drift and 
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the effects of longshore flowing currents. Longshore drift is the zig- 

zag, sawtooth pattern of movement produced in the swash-backwash zone 

by oblique wave approach. Longshore currentsvon the other hand, may 

operate in both the surf zone or seaward of the breakers dependent upon 

their mode of generation. Koma (1976) identifies two ways in which 

longshore currents are generated in the surf zone: (1) as part of a 

cell circulation of rip currents and associated feeding longshore currents 

which is normally produced by longshore variation in wave height, and (2) 

through oblique wave approach. In addition to these currents produced by 

various characteristics of the waves themselves. wind stress and tidal 

action may also result in longshore flowing currents in any of the near- 

shore zonest which in turn may result in sediment movements. 

The longshore movement of beach material has been given much attention 

in the past because the ability to predict the amount Of sediment moving 

along a section of beach in a given time or under certain conditions has 

been of major importance in coastal civil engineering projects, One of 

the most frequently used relationships has been an empirical correlation 

of sand drift and wave power which is expressed as follows: 

P sin Eq. 5.14 I' (ECg 
b coo clb clb 

vhere PI = Olongshore wave power' 

EC 
9= wave energy flux at the breaker zone 

ab= angle of breaking waves with shore. 

Because equation 5.14 was based on an intuitive understanding of the 

causes of sand movement in the nearshore zone and not on pure physical 

theory a conflict has arisen over the interpretation of the term OP 
1 

14, 

Komar and Inman (1970)called this term 'the longshore component of wave 

energy flux per unit length of beach' and it has also been referred to 

as Ilongshore power' but Longuet-Higgins (1972) suggested both these 

labels were nonsensical because of the inclusion of the term cos a b* 
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Longuet-Higgins does, however. concede that equation 5.14 represents "the 

pioneers' first intuitive attempt at grasping the quantity H" where H is 

the lateral thrust of waves exerted on water and sediment inside the surf 

zone and is given by: 

H E(C 
9/ 

C) 0013 ab sin ab Eq. 5.15 

when C wave velocity in the surf zone. 

This confusion over the expression 5.14 is perhaps understandable 

for an empirical approach of this nature but it is also unfortunate since 

equation 5.14 has provided the basis of many field and laboratory measure- 

ments of sediment movement. Watts (1953) obtained the first field 

measurements to provide the empirical relationship: 

S. t = 0.0011 0.9 Eq. 5.16 pi 

where SL= longshore volume transport rate of sand 

P. t = wave power, 

Later work by Caldwell (1956) and Savage (1959) which produced similar 

relationships was then combined with Watts' results by Inman and Bagnold. 

(1963) who produced the following equation with a wave power exponent of 

unity: 

125 PL Eq. 5.17 

Following a consideration of Shields'(1936) work on the natural 

threshold of sediment motion Bagnold (1963) put forward a refinement of 

the previously described relationships. By a conversion of the transport 

rate of sediment SI from a volume to an immersed weight basis he developed 

a more efficient formula for longshore sand transport, Therefore: 

Ia i P) gi St 

where I longshore dynamic transport rate; 

I PS density of sand grains; 

p= density of sea water; 

F, q. 5.18 
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g= constant of gravitation; 

A 

a correction factor for pore spaces (taken as 0.6 for 

sand beaches). 

Equation 5-18 has more general applicability than the crude volume trans- 

port rates because it takes into account the density of material actually 

moving. This means that transport rates for beaches composed of sediment 

other than quartz can be used in comparative studies. Furthermoreg because 

II and PZ have similar units of power 5.18 allows the derivation of 

a dimensionless coefficient K in the relationship S, =K Pj. This 

now becomes I. =K Po Despite these physically meaningful adjustments, 

however, the fundamental relationship expressed in 5.14 remains empiric- 

ally derived and intuitive and because of this Longuet-Higgins (1972) has 

attempted to provide a more rational explanation of the relationship by 

applying the thrust of the waves in the longshore direction directly to 

the sand transport. Through careful analysis and using empirical values 

obtained from the fieldhe was able to show that the relationship expressed 

in equation 5.14 does have a fundamental physical basis, 

Howeverg a second model employing a basic approach to the mechanics 

of sand transport has also been developed by Inman and Bagnold (1963). 

This model relates the amount of longshore sand transport to the effects 

of longshore currents and follows Bagnold's (1963) general model mentioned 

earlierv and expressed in equation 5.9* Applying this equation to the 

nearshore zone the following model was produced: 
V 

IK -' (EC 
g)b 

0013 aý u Eq. 5.19 0 

where vk= longshore current velocity; 

u0= orbital velocity at the bed; 

K'* = dimensionless proportionality factor. 

In this mode1v therefore# sand is placed in motion by the dissipation 

I 
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of wave energy in overcoming bed friction and once it is in motion it 

becomes available for transport by the longshore current V., * The factor 

K'* may be considered a coefficient of efficiency as it represents an 

index of the proportion of power dissipated in moving sediment. This 

arises because much of the energy available for sediment movemento 

represented by EC 
9 

is used not in overcoming bottom friction but by 

other effects such as turbulence and viscous dissipation. 

Since, in this model, the quantity of sand moved is a function of 

the energy available for transport the approach has been termed the 

'energetics' approach* Longuet-Higgins (1972) considered this model less 

fundamental than the relationship expressed in equation 5.14. On the 

other hand, Komar and Inman (1970) demonstrated that both relationships 

were equally successful in explaining sand transport rates when field 

data was employed to test the models, but that equation 5.19 was the more 

flexible model. They concluded that both equations were effective because 

in their study the longshore current was generated by the waves through 

the relation: 

vt=2.7 u. ein % Eq. 5.20 

However# where longshore currents were not generated in this way, for 

example when the current was the result of the circulation of rip current 

cells, then the empirical relation 5.14 would not apply but equation 5.19 

could be used successfully. Furtherg since the longahore current is 

introduced as a separate item to the relationship equation 5-19 could also 

be adapted for use in the offshore where tidal currents are important. 

Dugdale (1977) calculated bed-load indices for the offshore circulation 

system off Gibraltar Point using the energetics approach of equation 5.19- 

At the same timeg Komar (1971)9 using the radiation stress concepts 

defined by Longuet-Higgins and Stewart (1964), has derived the empirical 

model, of equation 5-14 for longshore sand transport caused by the sawtooth 
motion of longshore drift in the awash-backwash zone. This is particularly 
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useful where no longshore current exists and equation 5.19 cannot be usedt 

such as for example when waves break close to the shore on a steeply 

shelving beach and no surf zone is present. 

Thust dependent on the circumstances of the particular location# 

one or other of the two models of longshore sand transport can be applied 

to all zones of the nearshore, Equations 5.14 and 5.19 are two of the 

most frequently used models of sand transport and will be considered 

further in the next section when the data collected in this study will 

be used to test their general applicability. Nevertheless they are only 

two of many approaches to the problem of modelling sand transport. For 

details of the other main approaches such as those of Einstein and the 

Berkeley Schoolq reference should be made to Yalin (1972) who also 

provides a detailed technical consideration of the mechanics involved. 

5: 5 Test of the models 

Komar (1969) conducted tracer experiments to test the two models of 

longshore sand transport, equations 5.14 and 5.19, discussed in the 

previous section. Following his approach the two models will be tested 

with the data collected in this study. 

A bulk sand transport rate was calculated from the following 

expression: 

Sb Xb (V d Eq. 5.21 

where b measured thickness of sand movement; 

Xb = width of beach face of experiment; 

VI= mean speed of longshore sand movement. 

The thickness of sand movement was estimated from the depth of disturbance 

measurements taken during each experiment. The amount of erosion indicated 

by the measurements was taken as the average depth of movement. In facto 

it was noted earlier (Chapter 2) that this figure represents an average 
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for the depth of burial of the tracer which will decrease away from the 

injection point because of the length of time available to bury the 

grains diminishes as they move away from the tracer source. 

Vz. the speed of grain movement was calculated as follows: 

V. 
t =dx/t Eq. 5.22 

where dx= longshore component (i. e. in x direction) of distance 

between tracer source and centre of gravity of 

dispersed tracer cloud; 

t= time tracer covered by sea. 

Substituting Sz into equation 5.5 the immersed weight transport rateg 

was then calculated. The density of sand, p, and the density of 
s 

sea water were taken as 2.65 gm/cm 
3 

and 1.2 gm/cm3 , as evaluated by 

Dugdale (1977) from analysis of samples in the Skegnese-Gibraltar Point 

areas. I. was then plotted against Pz and (oCg)b Oos 0b 
vi as shown 

M 

in Figures 5.3 and 5- 4, The data for these plots is given in Tables 5.1 and 5.2. 

In equations 5.14 and 5.19 Cg was calculated from: 

Cg = (2g H b)' = 8.02 Hbi Eq. 5.23 

For all calculations involving breaking wave heightt Hb' the significant 
LK i 

waj heightq H. as derived from field measurement was converted to an 

estimate of H 
rms using: 

H 
rms = H' /1-416 Eq. 5.24 

where H 
rms = root mean square wave height; 

H' = significant wave height, 

This conversion was necessary in order to allow comparison of results with 

Koma Is work and is based on the findings of Longuet-Higgins (1952) con- 

cerning the relationship of these wave parameters, 

Wave energy densityv Eb 9 was . calculated from: 
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pg H 
Eb =8 

rms Eq. 5.25 

and this was used to evaluate u9 the maximum orbital velocityq from: 
m 

2 Ebý 2 

um=- Eq. 5,26 
ph b'j) 

where hb= the trough to bottom distance in front of the breaking 

wave (i, e, water depth), 

Longshore current velocity vI used in the energetics model was obtained 

from field measurements. 

Pigure 5-3 shows the plot of IL against wave power, P. . for the 

data collected at Gibraltar Point and Skegness. Also plotted on the log/ 

log graph are the data points from Komar's (1969) tracer studies at El 

Moreno and Silver Strand beaches on the west coast of America and it will 

be seen that there is a greater scatter of points in the data set from the 

present study but that nevertheless a similar relationship holds. The 

equation of the beat fit line for Komar's data was: 

it = 0.77 Pj 'Eq. 5.27 

where the regression line passes through the origin# The coefficient of 

the best fit line for data from the present study was 0-525. 

Again when II was plotted against the right hand side of the 

'energetics' equation 5.199 similar comparisons were obtained (Figure 5-4). 

The scatter of data points produced by this study was again much greater 

than for Komarts study and the two coefficients were respectively 0.179 

and 0.28. 

The greater data scatter observed in this study, reflected in the 

low R2 values for the beat fit lines of 22% and 32% respectively for 

Pigures 5-3 and 5-4, is probably accounted for by differences in fieldwork 

techniques. More sophisticated equipment was employed by Komar for 

measuring such things as wave characteristics andq furthermore, sampling 

was carried out three or four times during the tidal cycle giving a more 
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accurate picture of tracer movement. Despite this, as has been seen, a 

similar relationship amongst the data points can be identified. 

Where possible comparable methods of calculation were used to 

produce the plotted data. However, one other source of discrepancy was 

envisaged arising from the contrasting nature of the tidal range in the 

study areas. Because of a limited tidal range Komar was able to concen- 

trate solely on the surf and swash/backwash zones in his study. At 

Skegness and Gibraltar Point on the other hand, processes operating sea- 

ward of the breAker zone also affected tracer movement due to the much 

larger tidal range and the positioning of tracer release points. 

Therefore there are slight differences between the values of the constants 

for the two models produced by the data from this study and by Komarls 

earlier work. Howeverg this might well be expected given the differences 

in experimental procedure and the fact that both data sets are only 

samples of the total population. 'The fact that the values of the derived 

coefficients are close confirms the validity of the two models. 

A final point arising from Komar's (1969) test of the two models of 

sand transport concerns the importance of beach slope in the mechanism 

of sand transport. Komar1B two study sites had quite contrasting slope 

characteristics but this did not lead to any significant differences when 

the tests of the transport models were conducted. This was explained 

by the equivalence of the two models given conditions of longshore current 

generation by oblique wave approach, By simultaneous solution of the two 

equations 5.14 and 5.19 Komar obtained the relationship expressed in 

equation 5.20 where 2.7 is the value of the relation K/K'. Substituting 

the values of K and K' obtained from this study into the relation K/K'* 

the value 2.9 was produced, again reasonably close to Komar's result. 

Comparison of equation 5.20 with the following theoretical relationship 

for longshore current generation based on radiation stress concepts, 



200 - 

Longuet-Higgins (1970): 

5 ir tan a 
-- um sin a 
8Cf 

where tan 0= beach slope; 

Cf= drag coefficientq 

Eq. 5.28 

shows that it differs only by the presence of the factor tan Slef * 

From a plot of longshore current velocity with the expression uM sin ab 

it was found that the beat fit straight line closely approximated 2.7. the 

value given by the relation K/K' for the two proportionality coefficients 

of the transport equations. This was taken to indicate that: 

tan 
constant 

cf 

Eq. 5.29 

with the drag coefficient increasing proportionally with an increase in 

beach slope and hence explaining the lack of dependence of transport rate 

on beach slope. Howevert as pointed out earlierg longshore flowing 

current may be generated in several ways and so this lack of dependence 

of sand transport on beach slope may not always be the case. This 

question will be considered further in later chapters in light of regress- 

ion analysis. 

In summaryg it may be said that the results of the test of the two 

sand transport models with data collected from this study have a high 

degree of agreement with the findings of Komar's field tests of the 

models and this may be taken as an indication of the efficiency of the 

two models in predicting longBhore sand transport rates. 
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CHAPTER 

REGRESSION MODEL OF SAND MOVEMENT : AMOUNT 
I 

6: 1 INTRODUCTION 

It was seen in Chapter 5 that much attention has been given to 

the production of longshore sand transport rates. However, in the 

model to be developed the amount of sand transport is not expressed 

as a volume or bulk transport ratet rather in simpler terms, as the 

average distance moved by sand grains during one tidal cycle. This 

is a more fundamental measure and seems to reflect more accurately the 

magnitude of sand grain movements of the small scale tracer experiments. 

Bulk sand transport formulae are based upon some measure of distance 

travelled by sand grains over a given time period but are also sometimes 

made less accurate by the inclusion of nominal or poorly measured 

variables such as disturbance depth or beach face width. For example, 

large errors can be introduced by the inaccurate measurement of the 

depth to which sand movement takes place. The sampling results of 

tracer concentration used in this study do contain some error due to 

non-core sampling methods but this error is not compounded by the separate 

entry of depth of disturbance in a sand transport equation. Since the 

contour maps of tracer concentration exhibit regularities and systematic 

patterns, it is assumed that sampling was generally adequate in defining 

the trend of movement and that any error arising from the lack of complete 

information on depth of disturbance did not have a large effect, 

The distance moved by the centre of gravity of the tracer cloud 

during the tidal cycle is used to provide the measure of average distance 

of sand grain movement and the calculation of this from the tracer maps is 

described in Section 3: 5. As this measure also has a directional component, 

which may be thought of as the average direction of sand grain movement, 
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it may be seen as a vector quantity. As such it may be resolved into 

two orthogonal components which are the x and y coordinates of the 

centre of gravity from the origin, the tracer source. These coordinates 

may then be taken to reflect average alongshore distance travelled by 

the tracer grains and average distance moved orthogonal to the line of 

beach. Thus in this way magnitude of sand movement alongshore and 

onshore/offshore are considered separately. 

Description and prediction of the process-response system concerning 

the amount of sand movement in the two general directions is attempted 

using linear multiple regression techniques. Both stepwise and combina- 

torial multiple regression methods are used. Komar (1976) has criticised 

the use of regression type methods on three counts: 

1 The results of this type of analysis are always dependent upon 

the data base and really apply only to that data; 

2 No physical reasoning goes into their formulation; 

3 The results depend upon the technique employed. 

It is certainly true that extrapolation of predictive-type equations 

produced by regression analysis is dangerous and that the results are 

dependent upon the data base but this applies to every form of analysis 

and is not specific to regression techniques. Similarly, the assertion 

that the actual technique employed affects the results is also a very 

general point and is true of all experimental situations. Furthermoreq 

the use of regression type methods does not preclude physical reasoning, 

Careful seleation of variables for use in the analysis must necessarily 

take account of physical relationships in the interaction of sediment 

and fluid in the foreshore zone* It is also important to stress 

the exploratory role of these methods within the framework of scientific 

reasoning, The regression model is being employed in this study as 

an exploratory tool and any findings should form the basis of 
further study perhaps employing inferential methods, Pinally, Harrison 
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(1964) justifies the use of regression analysis by referring back to 

physical equations. He found that sequential type linear multiple 

regression analysis reasonably duplicated 11 ... the expectable influence 

of combinations of important variables as suggested by theoretical and 

empirical approaches when studied by a straightforward least-squares 

procedure, " (Harrisont 19649 p. 24). 

6: 2 The general regression model 

Regression analysis involves the specification and identification 

of the type and nature of the dependence of a single variable upon a set 

of controlling, predictor or explanatory variables (Mather, 1976, P. 39). 

Underlying regression techniques is the basic postulate that the variations 

in a dependent variable (y term) is made up of two parts, one part of 

which is postulated to be deterministically related to the explanatory 

variables (x terms) and a second part which appears to be random. The 

deterministic part of the relationship may take any form but the linear 

model is the most frequently used, for reasons given in a previous discuss- 

ion (P. 171)o The linear regression model describes the linear relationship 

between a random vector variable [y] and a set of explanatory variables 

IX131 [x 
21 *** 

[XICI, The general form of the relationship is: 

Oo + 01 EX13 + 02 EX21 + **** + Ok lxkl + Ecl Eq. 6.1 

where [C] is the disturbance term or residual term associated with the 

observed values. If [xo) is a unit vector then this equation can be 

rewritten as: 

k 

jý1a il'iil + Ci 192 .... n) Eq. 6.2 

or in matrix notation as: 

lyl = [XI [a] + [C] Eq. 6.3 
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The O's are the parameters of the model which are to be estimated. The 

term $ is the constant term or intercept. This term gives the value 
0 

of y when all the x' a are zero, It is the level of the dependent 

variable in the absence of any control by the explanatory variables. 

The remaining 01a are the partial regression coefficients and they 

give the change in the corresponding x (independent of the level of 

the other x1s) when y is increased by one unit. 

When the regression equation contains an intercept term, 00, the 

regression is said to pass 'through the mean'. However, in certain cir- 

cumstancesq in particular in physical geography, the existence of the 

constant term may not be consistent with the physical explanation of the 
rv, ý or S -, ,I r) C, t 

regression. For example,, in the simple case of/bedload sediment transport 

on fluvial discharge carried out through the meang a strict interpretation 

of this would be that even when fluvial discharge is nil there is a sedi- 

ment transport equivalent to the intercept term. This makes nonsense in 

physical termsv and so the repression must be constrained to pass through 

the origin so that when river discharge is zero the bedload also is nil. 

A similar situation arises in the case of beach sand movement and hence 

the regression model as used in this chapter also excludes the intercept term. 

It is not proposed to enter into a detailed consideration of the 

mathematical and computational aspects of regression analysis in this 

chapter, Many texts have been produced, in a wide range of disciplines, 

on all aspects of regression. For a clear account of the practical 

application of regression techniques the reader is referred to Draper and 

Smith (1966) whilst a more mathematical treatment of linear models is 

given by Seber (1977)- Mather (1976) deals with the computational problems 

of regression and provides many routines and programs. 

Best linear unbiased estimates of the regression coefficients are 

calculated by least-squares methods and then because of scale problems 

these are usually standardised. At various stages tests are carried out 
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to determine how far certain conditions for the successful application of 

the regression model are being met. In general, the following assumptions 

are mad& when the regression model is applied: 

1) The mean of [C] is zero. 

2) The variances of the error terms are independent of the values 

of x. 

3) Explanatory variables are non-random and are measured without error. 

4) The explanatory variables are not perfectly linearly relatedt i. e. 

there is no multicollinearity within the x1s. 

5) The number of observations exceeds the numbers of x1s. 

6) No autocorrelation occurs in adjacent values of y 

7) If statistical tests are to be used the conditional distribution of 

y given x should be approximately normal. 

6: 3 Choosing the 'best' regression 

Two main methods of regression analysis were used In this chapter in 

order to provide the maximum amount of information on the optimum 

regression, These were the combinatorial method and the stepwise method, 

The combinatorial. method involves the computation of all possible 

regression equations including all combinations of the explanatory vari- 

ables. This approach is sometimes known as sequential regression because 

it proceeds by taking the controlling variables one at a time, two at a 

time and so on until all combinations of the explanatory variables are 

included simultaneously. The number of combinations of k variables, 

that is the number of regression equations, it is necessary to calculate 

is 2 k_ 1. Consequently, it is only with the recent development of largeg 

fast computer systems and efficient programs that this approach has been 

made possible. It is a very useful technique which provides a great deal 

of information on the regressions and allows the relative importance of 
individual variables to be traced at each stage. The program for the combina- 

torial regression used in this study is described by Grosenbaugh (1967)- 
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On the other hand the stepwise method is far more economical as 

only selected regressions are calculated. Stepwise regression is in 

fact an improved version of the forward selection procedure whereby 

variables are added to the regression equation based on "partial F,, 

tests". Henceit provides a means of selecting automatically the 'best' 

regression equation containing the 'best' subset of variables. Draper 

and Smith (1966) believe this to be the best of what they term the 

"variable screening" procedures and recommend its use in preference to 

any of the alternative backward or forward elimination methods. Never- 

theless it is not always successful as will be discussed in later 

paragraphs. 

The stepwise procedure begins with the matrix of correlations between all 

the explanatory variables and the dependent variable from which the x that is 

most highly correlated with y is entered into the regression, Using 

partial correlation coefficients the next variable to enter the regression 

is selected and an P-test on the significance of _the regression is calcu- 

lated, At this stage the individual contribution of the included 

variables is examined by means of a partial F test to determine whether 

any should be deleted. This process continues with variables being 

added and/or deleted until a point is reached when next highest partial corre- 

lation in the subset of unentered variables is not statistically significant ane 

no fuither variable is added or deleted. The existing combination of 

variable4then forms the 'best' regression equation. In this study low 

probability values of 2% are used in order to extend the exploratory 

nature of the analysis and increase the number of variables entered into 

the regression equation. Normally a much higher significance level is 

chosen but more information concerning the relative importance of the 

variables can be gained from the use of a low value. 

Screening procedureag including the stepwise method, have been criti-' 

cised by many workers on the grounds that the 'best' equation may not be 
I 
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produced. Grosenbaugh (1967), for example, provides an illustration of 

this criticism and also considers invalid the tests of significance 

applied at each cyle of the procedure. In fact there may not be a single 

'best' equation but several near optimal combinations of x1s, Hauser 

(1974) contends that due to interdependence or multicollinearity amongst 

the independent variables several 'best' equations may exist. Examining 

this problem in detail he suggests that the existence of a number of 

different equations with similar explanatory content may be a serious 

problem when considering the theoretical implications of particular 

equations. On the other hand the problems may not be so serious for 

the derivation of predictive equations. 

However, in the main the choice of the best regression will depend 

upon the details of each particular study and the reasons for the 

regression analysis. Prom a practical point of view the cost of measure- 

ment or ease of measurement of individual variables may be of great 

importance. In this situation it would be advantageous to know all the 

'best' equations so that selection by inspection rather than statistical 

test might be made* 

Computationally the estimation of the optimum regression may depend 

also on the measure of efficiency adopted. R2 or the sums of squares 

criterion is the most commonly used measure of the explanatory value 

of a certain combination of variables. Tt is the test used in the step- 

wise procedure carried out in this study, the program for which is listed 

by Mather (1976). Also known as the coefficient of determination it 

measures the efficiency of each equation in explaining variation in the 

dependent variable (y). Tt is represented by the ratio of the sums of 

squares due to the regression to the total sums of squares and usually 

expressed as a percentage. Howeverg Maddala (1977) points out that 

when regression through the origin is-performed calculations of R2 

may be inaccurate unless the following equation is used: 
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2 xy Eq. 6.4 
s 

yy 

where Sxy = Ex i Yi 

S 
yy = Ey 12 

= regression coefficients. 

R2 is generally most useful when the number of samples is several times 

the number of process variables. As the number of x's measured 

approaches the number of observations or cases, the sum of squares 

criterion tends to be forced closer to 10CP/G and therefore may give the 

impression of explaining a greater part of the variability than is 

correct. Thusq for 10 variables the minimum number of observations 

should be 20-30- In some of the regressions carried out in this study 

a maximum of 16 variables is used with 29 observations. This is on the 

borderline of statistical acceptance and must be borne in mind when 

attaching significance to the results. 

A further problem with R2 is that it must increase with the addition 

of successive variables; it cannot fall in value because it is dependent 

upon the number of variables present. This may lead to difficulties 

when estimating the usefulness of particular regression. Because of 

these problemag the value of R2 is often adjusted to give T29 termed 

IT 
2 

adjusted for degrees of freedom", This alternative measure is calcii- 

lated from: 

R2_k-11_ R2 Eq, 6.5 
n-k 

where number of coefficients; 

n= number of observations. 
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Thus 12 takes account of the number of variables and the degrees 

of freedom and hence does not always increase with the addition of 

more variables. -ý2 rather than R2 should always be used when 

comparing equations with different numbers of independent variables. 
2 -2 Both R and R are calculated for regressions in this study. 

A third measure used in the combinatorial regression procedure 

employed in this study is relative mean squared residual (R. M. S. R. ). 

This is not a monotonic function as is R2 but "fluctuates in an 

unpredictable manner depending upon both the sums of squares and 

degrees of freedom" (Grosenbaughg 1967, p, 12 ). Nevertheless, it is 

still partially related to the number of variables because degrees of 

freedom themselves are dependent upon the number of x1s. R. M. S. R. is 

generated by the calculation of the mean squa ed residuals relative to 

the variance about the dependent variables and its minimum value 

indicates the best combination of variables. 

6: 4 Independent variables 

The variables specified as explanatory variables in the analysis 

were selected on the basis of intuition constrained by the practical- 

ities of field measurement. Fieldwork methods are described in 

Chapter 3- In the main the variables chosen were those found to be 

useful in previous field and laboratory studies. However, with the 

complex nature of the beach-nearshore tidal environment it is virtually 

certain that the variables measured will not account for all the 

systematic variations in any chosen dependent variable. For a variety 

of reasons it is possible that a significant variable will be omitted 

completely or that others that are included will exert little influence 

in the analysis. In this study limited fieldwork capability provided 
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the major constraint on the number of variables included. One 

possibly significant variable not measured was the height of the 

water table in the beach face. Duncan (1964) indicated the importance 

of the water table fluctuations to beach foreshore changes through 

its influence on the amount of erosion and deposition in the swash 

zone, Harrison (1969) attempted to quantify the relationship between 

changes in the water table level and foreshore sand volume and found 

that groundwater head was one of the strongest predictors of deposition 

or removal of foreshore sand over a tidal cycle. Groundwater head 

was defined as the vertical distance between the water table outcrop 

on the foreshore and the still water level in front of the breaking 

waves. In a later study Harrison et al (1971) suggested that the aug- 

mentation or diminution of the swash energy by groundwater flow through 

the lower foreshore or percolation into the upper foreshore must be 

taken into account when considering the available energy for sand grain 

transport. 

In addition to lack of water table measurementsq swash-backwash 

measurements were not taken regularly enough for their inclusion in 

the regression analysis, However, it is not clear how much of the 

explanatory value of these processes would be accounted for by variation 

in significant wave height which is the principal energy source of the 

swash-backwash processes* 

All the variables used in the first series of regression analyses 

are shown in Figure 6.1 which summarises the models, being fitted. 
F1 

Particular attention is drawAto the variables angle of wave approach 

and wind direction. Initially regression analysis was performed with 

these predictors expressed as bearings as measured in the field, Howevert 

due to the nature of directional data such as this and its underlying 
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I 

circular distribution the results of the regressions were found to be 

uninterpretable. To avoid this problem, angle of wave approach and 

wind data were re-expressed. Wave approach was entered in all regress- 

ions as an angle with the line of the beach whilst the wind data was 

transformed according to the dependent variable of the regression. 

For example in the regression of sand movement alongshore three 'wind' 

variables were included: average wind speed in direction of sand 

movement, average wind speed opposite to direction of sand movement 

and wind speed onshore/offshore. To facilitate this wind directions 

were defined as alongshore if having a bearing making an angle of 

less than 20 0 with the bearing of the beach, offshore for a wind with 

a direction deviating ± 200 from a wind vector perpendicular to the 

shore and in an offshore direction and onshore for a wind with a 

deviation + 70 0 from the orthogonal wind vector and blowing in an on- 

shore direction, 

In additiong when dealing with alongshore sand movement9direction 

of longshore current flow was introduced by splitting this variable 

into current flow against sand movement and current flow in same 

direction as sand movement. Only on four occasions was current flow 

opposite to sand movement. When orthogonal sand movement was being 

consideredg no account was taken of longshore current direction of flow. 

More attention will be given to the problem of multivariate analysis 

with directional data in the next chapter. 

In multiple regression analysis it is important that the ratio 

of observations or cases to the number of independent variables is as 

large as possible. It was possible to use the results of only 29 of 

the tracer experiments in this study and with a maximum of 16 predictor 

variables some reduction of these was thought advisable, In this way 
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confirmation of the first phase regressions was felt might be possible 

and hence more reliable results achieved, 

Dimensional analysis provides one means of reducing the number of 

variables in a problem without large information loss. Langhaar (1951) 

defines this technique as a method by which it is possible to deduce 

information about a phenomenon from a single premise that the phenomenon 

can be described by a dimensionally correct equation among certain 

variables. The analysis is conducted through the use of Buckingham's Pi 

Theorem which states that: 

If an equation is dimensionally homogeneous it can be 

reduced to a relationship among a complete set of dimension- 

less products. 

However, a necessary condition of this technique is that all variables 

which influence a particular phenomenon are contained in the equation. 

Consequently this technique could not be used in this study since, as 

mentioned earlier# not all significant variables were measured. Instead, 

an approach retaining the idea of dimensionless variables and used by 

Harrison (1969) was adopted here. Harrison used dimensional analysis to 

produce empirical equations for geometrical foreshore changes over a tidal 

cycle and reduced 15 independent variables measured in a 26-day time-series 

to 8 dimensionless terms. Howeverg it was found that the series of 8 

terms had a commonality of the variable Hb9 mean wave heightg which 

produced problems of multicollinearity between the dimensionless ratios 

when used in regression analysis. 

To overcome this problemt Harrison specified a set of dimensionless 

variables whichq although not part of a dimensionally homogeneous equationg 

were nevertheless dimensionless and were also devised such that common- 

ality was completely removed. The variables were cast as ratios with 

physical significance based on an understanding of the processes involved* 

As an expression of average breaker steepness the dimensionless variable, 
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b/ 
if 

b 
2)j 

was used where Hb and Tb are average wave height and 

average wave period respectively and g is acceleration due to gravity. 

Galvin (1968) used this as an index of 'breaker steepness' in an attempt 

to develop a classification of breaker types on laboratory beaches but 

also included beach slope in the ratio, As it was felt important to 

assess the affect of beach slope itself this was removed from Galvin's 

ratio and entered as a separate variable. A further dimensionless term 

was produced by combining mean trough to bottom distance in front of the 

breaking wave (E) with mean grain size (-D) in the ratio T /Y. it 

was hoped this would reflect the interplay of grain size and awash 

characteristics in the movement of the beach sediment. Angle of wave 

approach and sea water temperature were also included as dimensionless 

variables in themselves. Hence the number of controlling variables was 

reduced to five dimensionless terms. These are shown in Figure 6,2, 

Regression analysis was conducted with these variables in exactly the same 

way as for the 'raw' variables. Results of the analysis are discussed in 

the next two sections. Raw data values for all variables are to be found 

in Tables 6.1 to 6.6. 

6: 5 Alongshore sand movement 

Stepwise and combinational regression analyses were conducted using 

the mean distance of grain movement alongshore as the dependent variable 

(Table 6.2). Sixteen independent variables were included in the stepwise 

procedure but because of computer core capacity limitations only eleven X 

variables could be used in the combinatorial regression, Neverthelesst for 

ease of description the variable numbers shown in Table 6.79 the complete 

list of specific variables included in the stepwise program, were also 

used in the combinatorial method of regression. The omitted variables will 

be discussed later. 

From Table 6.8 it can be seen that the first variable entered into the 
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Table 6.1 Dependent Variables : amount of sand movement 

GIBRALTAR POINT 

Mean Distance Mean Distance 
of Grain of Grain 
Movement Movement 
Alongshore Onshore/Offshore 

(M) (M) 

1 5.61 5.18 1 

2 31.87 1.74 2 

3 0.63 5.62 3 

4 27.65 1.03 4 

5 6.95 0.07 5 

6 7.52 01,10 6 

7 12.82 2.39 7 

a 4.84 0.16 8 

9 7.62 0.26 9 

SKEGNESS 

Mean Distance Mean Distance 
of Grain of Grain 
Movement Movement 
Alongshore Onshore/offshore 

(M) (M) 

3.29 0.64 

6.87 10-54 

4.41 0.85 

3. o6 0.02 

2,22 0.77 

5.55 2.07 

13-53 11-30 

6.97 4.88 

5.93 4.26 
10 0.02 0.58 10 3.25 0.12 

11 8.02 5.33 11 17-59 0.43 

12 18-59 11,10 12 0180 0.6o 

13 43-95 1.77 

14 15-88 2.67 

15 5.89 1.29 

16 35-72 0.74 

17 17.67 1.36 
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Table 6.3 Dimensionless Variables : GIBRALTAR POINT 

Sample Description (If, /gT, ')i 

No. 

1 2,11-75 UR 0.02334 

2 17.1-76 UR 0.03870 

3 28.2-76 LR 0.03008 

4 18.3-76 UR 0.02981 

5 18.3-76 LR 0,02305 

6 17.5-76 LR 0.03399 

7 30.6-76 LR 0.04420 

8 15.7-76 LR 0.03233 

9 10.8-76 LR 0.03588 

10 7.9-76 LR 0.02268 

11 7.9-76 LR 0,02313 

12 22.9-76 tR 0,02629 

13 22,9.76 LR 0.03656 

14 6.10-76 LR 0,02242 

15 6.10-76 LR 0,02313 

16 23-10-76 LR 0.03496 

17 23-10-76 LR 0.03496 

a m t 
T/Z- (angle of (beach water 

wave approach slope) temperature 

1.559 6.0 0.0441 11.5 

0-755 1110 0.0433 6.5 

0.388 4-0 0.0232 6. o 

1.068 9.0 0.0414 6.5 

0,481 1.0 0.0221 6.5 

0.490 110 0,, 0205 15.0 

0.293 8.0 0.0209 23-0 

0-337 4-0 0.0211 21.5 

0-337 26.0 0.0270 20.0 

0.571 26.0 0.0368 19,10 

0.698 26.0 0.0077 19.0 

0.547 1110 0.0280 17-0 

0-331 11.0 0.0300 17.0 

0-393 6. o 0.0312 16.0 

0.433 6. o 0.0154 16.0 

0-360 6.0 0.0249 12.0 

0-383 6. o 0.0277 12.0 

Continued overleaf k 



- 220 - 

Table 6-3. continued. 

Dimensionless Variables : SKEGNESS 

Sample Description (-Hb/gTb2)j -51z- (I t 
No. (angle of (beach water 

- 
wave approach slope) temperature 

1 18-5-76 LR 0-03708 0-556 8110 0-0157 14.0 

2 1.7-76 UR 0.04112 0.685 4,, 0 0.0612 20-5 

3 14-7-76 LR 0.02344 0.743 110 0.0073 19.8 

4 12.8-76 LR 0-03945 0.979 18.0 0.0149 22.0 

5 25.8-76 UR 0-03020 1.653 3.0 0.0463 22.0 

6 25.8-76 LR 0-03229 0.456 16. o 0.0093 23.5 

7 8-9-76 UR 0.02489 2.645 3.0 0.0574 1810 

8 21.9-76 LR 0.02985 0.368 14.0 0.0145 16-5 

9 7.10-76 UR 0-01948 3.800 1.0 0.0679 14.5 

10 7-10-76 LR 0.02344 0.482 13.0 0.0146 14-5 

11 22.10-76 UR 0.02875 1-907 4. o 0-0507 12.0 

12 22.10-76 LR 0.02841 0.620 110 010190 12.0 

k 



- 221 - 

Table 6.4 Wind Speed Variables for Onshore/Offshore Sand 

Movement Regression 

GIBRALTAR POINT SKMNESS 

X(i) X(ii) X(iii) x(i) X(ii) X(iii) 

1 0110 3.5 0.0 1 4.0 0110 4.0 

2 3.0 3.0 3., 0 2 0.0 7.0 0.0 

3 4.0 0110 0.0 3 0.0 4.0 3.0 

4 0.0 5.0 0.0 4 3.8 0.0 2.0 

5 0.0 6. o 010 5 3.5 0.0 0.0 

6 0.0 7.0 7.5 6 4.0 0.0 0.0 

7 0.0 6.0 6. o 7 0.0 9.0 6. o 

8 5.5 5.5 5.5 8 4, -0 010 0.0 

9 6.5 6.5 6.0 9 0.0 5.0 3.5 

10 0110 4.0 1.0 10 0.0 6. o 4.5 

11 0.0 4.0 1110 11 6.5 0.0 3.0 

12 0.0 4.5 010 12 0.0 6.5 4., 0 

13 0.0 5.5 0.10 

14 0.0 13.0 11.0 

15 13.0 0.0 1110 

16 0-0 14.0 10.0 

17 0.0 14.0 1010 

X(i) Mean wind speed onshore/offshore in direction of sand 
movement 

X(ii ) Mean wind speed onshore/offshore against direction of 
sand movement 

X(iii) Mean wind speed alongshore 
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I 

Table 6.5 Wind Speed Variables for Alongshore Sand 

Movement Regression 

GIBRALTAR POINT SKBGNESS 

X(j) X(ii) X(iii) x(i) X(ii) X(iii) 

1 010 0.0 3.5 1 4.0 010 4.0 

2 010 3.0 3-0 2 0.0 0.0 7.0 

3 0-0 0.0 4-, 0 3 0. -0 3.0 4.0 

4 0.0 0.0 5.0 4 2.0 010 3.8 

5 0-0 0.0 6.0 5 0.0 0.0 3.5 

6 7.5 0.0 7.0 6 0.0 0.0 4.0 

7 6.0 0.0 6. o 7 0.0 6.0 9.0 

8 5.5 0110 5.5 8 0.0 000 4.0 

q 6. o 0.0 6.5 9 3.5 0.0 5.0 

10 1.0 01.0 4.0 10 010 4.5 6. o 

11 110 0.0 4.0 11 0.0 3.0 0.0 

12 0.0 0.0 4.5 12 4.0 0.0 6.5 

13 010 010 5.5 

14 11-0 010 13.0 

15 11-0 010 13-0 

16 10.0 0.0 14.0 

17 0110 010 3.5 

X(i) Mean wind speed alongshore in direction of sand movement 

X(ii ) Mean wind speed alongshore against direction of sand 
movement 

X(iii) mean wind speed onshore/offshore 
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Table 6.6 
'LonEshore 

Current Variables for Alongshore 
Sand Movement Regression 

GIBRALTAR POINT 

x(i) k(ii) 

6.0 0.0 

SKEGNESS 

X(i) X(ii) 

30.4 0110 

2 11.9 0.0 2 010 43.1 

3 0.0 16.2 3 0.0 29.0 

4 6.4 010 4 41.3 0.0 

5 6.4 0.0 5 4.7 0.0 

6 23.3 0.0 6 32.4 010 

7 69.0 0.0 7 010 9.6 

8 15.6 0.0 8 51.3 0.0 

9 65.5 010 9 9.1 010 

10 30.1 0.10 10 13.3 000 

11 30.1 010 11 24.4 0.0 

12 25.9 0.0 12 13.7 0.0 

13 70.0 0.0 

14 40.5 0110 

15 38.4 0.0 

16 83.8 0.0 

17 83.8 010 

X(i) Mean longshore current velocity in direction of 
sand movement 

X(ii) Mean longshore current velocity against direction 
of sand movement 
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Table 6.7 IndeRendent Variables in Regressions of Distance 

Sand moved in an Alongshore Direction 

X1 : Mean wave height (m) 

X2 : Wave period (sees. ) 

X3 : Longshore current velocity in direction of sand movement (cm/sec) 

X4 : Longshore current velocity in direction opposite to sand 

movement direction (cm/sec) 

X5 : Mean grain size (phi units) 

A: Mean wave angle (0) 

X7 : Mean wind speed in direction of sand movement (cm/sec) 

X8 : Mean wind speed in direction opposite to sand movement direction 

(cm/sec) 

X9 : Mean wind speed onshore/offshore (cm/sec) 

X10 : Predicted tide height (m) 

X11 : Beach slope angle (0) 

X12 : Length of time tracer covered (hrs) 

X13 : Depth of water at injection point at high water (m) 

X14 : Water temperature CC) 

X15 : Grain sorting (phi units) 

X16 : Trough to bottom depth in front of breaking wave (m). 
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regression equation in the stepwise procedure for regression through the 

origin was mean wave height W). This accounted for 61.3% of the varia- 

tion in the dependent variable and may be interpreted as indicating the 

dominance of wave energy in this particular system. At the second iteration 

variable X14 (Water temperature) was entered with a negative relation- 

ship. This produced an increase of 5.7% in the measure of goodness of 

t-2 fit R. The negative relationship indicates a smaller movement of grains 

alongshore with higher sea temperatures and may be explained through the 

close relationship between water temperature and water density. Harrison 

and Krumbein (1964) found that water density was of some importance in 

sand movement. They postulated that the rate of grain transport would be 

affected by the density of the water through fluid drag, Furthermore, 

wave tank experiments on beach slope modification at the Coastal Environment 

Research Council (C. E. R. C. ) laboratories using warm and cold water have 

revealed that under constant increasing wave energies the slope modifica- 

tion was more rapid under cold water conditions, This implies greater 

sand movements under lower temperature conditions which would appear to 

be confirmed by this regression study. 

Beach slope (xii) was the third variable entered into the equation 

-2 which at this stage had an R value of 68.3%. It is interesting that beach 

slope is picked up early in the procedure indicating a certain amount of 

importance. This conflicts with the findings of previous workersq notably 

Komar (1969)9 who found that the amount of longshore sand transport 

was independent of beach slope but suggested that more refined measure- 

ments would show some relationship of beach slope to the proportionality 

factors introduced into his longshore sand transport formulae (Section 5.4). 

However, in later work Komar (1971) has shown through energetics and 

radiation stress concepts that beach slope does not influence sand transport 

rates. This regression analysis would suggest that there is in fact a 

connection between the two variables. The relationship is positiveg 

I 
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indicating greater mean grain movements alongshore with steeper slopes, 

-2 Although addition of beach slope to the equation increases R by only 

1.3%. its early selection suggests its importance. 

Longshore current velocity in the direction of movement (Xý,, 

or-2 included at the next iteration, adds a further 5.0% to R confirming 

intuitive proposals that the stronger the longshore current the greater 

the mean distance moved. After this iteration the inclusion of a further 

eleven X's adds only another 13-1% to R2 and the procedure is halted 

after the fifteenth iteration with an R2 of 89.3%. -fi2 on the other 

hand continues to rise up to the eleventh iterationt 81.3%t and there- 

after falls despite the addition of more variables. The two variables 

not entered were X5 (mean grain size)and X9 (onshore/offshore wind 

velocityý Grain size is a notable absentee from the regression as this 

might be expected to be important in accounting for the variation in the 

mean distance of grain movement in any direction. It was shown by the 

grain size tests discussed in Chapter 4 that different groups of grain 

sizes produced different average rates of movement. Reference was made 

to Komar's (1977) recent work and Ingle (1966) using tracer techniques 

also found a significant relationship between the alongshore component 

of wave energy, alongshore sand transport and average median grain 

diameter, Howeverg Castanho (1970) points out that in fact the influence 

of grain size on sediment transport is not as straightforward as might 

at first seem and that different conclusions are often reached by workers 

in this fieldtin particular between field and laboratory studies. He 

suggests that much of the conflict in findings stems from the fact that 

the influence of grain size depends upon the flow conditions and how far 

from the beginning of movement attention is centred. For conditions 

near the beginning of sediment motion the grain size effect is working 

through threshold shear stress and bed roughness and hence will be very 

different from the effect of grain sizet through settling velocitieston 
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fully developed movement. Thus the complexity of the problem and the 

fact that coarse average figures are used may explain the lack of depend- 

ence found in the regression. 

A further explanation for the lack of a significant relationship 

between sand movement and grain size which ranges between 0.176mm and 

1.235mm for the tracer testst may be found in the strong correlations 

between this variable and beach slope (X11) and grain sorting (X15). 

These values are respectively 0.84 and 0.93 (Table 6.9). Beach slope 

was entered into the regression equation at the third step in the pro- 

cedure and grain sorting at the sixth and hence may be incorporating 

much of the explanation which might otherwise have been introduced by the 

inclusion of grain size W). However, at the same time the correlations 

between grain size and the alongshore distance moved by the grains is 

- 0.08 and so it would appear that the lack of dependence shown by the 

regression procedure is real. A transformation of this variable may 

improve its contribution to the overall level of explanation of the model. 

Castanhop for example, quotes the work of L. BaJournas and his finding 

that littoral drift should increase with the square root of grain size. 

Information on the relative importance of different variables can 

also be gained from an examination of the P ratio values for each of 

the variable coefficients and in this particular stepwise regression 

the value for wave height remains significant at a relatively high level 

throughout the procedure. This confirms the importance of wave height 

in the model, Beach slope (X11) also maintains a high significance level 

as does water temperature (X14) until the final iterations. Longshore 

current W) on the other hand loses importance with the inclusion of 

variables after iteration six. 

As pointed out at the beginning of this sectiong a maximum of only 

11 independent variables could be used in the combinatorial regression. 

Five variablesq X4. X59 X6, X7, and X9 were omitted from the stepwise 
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regression list. Variables X5 (mean grain size) and X9 (mean wind 

speed onshore/offshore) were not entered into the stepwise equation, 

whilst X4 (mean longshore current velocity against direction of sand 

movement), X7 (mean wind speed alongshore in direction of sand move- 

ment) and X6 (angle of wave approach)were the last three variables entered 

into the equation, Table 6.10 shows the results of the combinatorial 

regression with the eleven remaining variables. The procedure produced 

the best combination of variables at the stage when ten variables are 

taken at a time. The combination of the first ten variables in the list 

of variables had the lowest R. M. S. R. of 0.3816 which represents an R2 of 

81,4yo. This exactly corresponds with the stepwise regression equation 

for the tenth iteration of that program (Table 6.8). Partial regression 

coefficients and their signs are the same for both regressions. 

Wave height, X1, is picked out as the most important single variable 

and remains a constituent of most of the f best' combinations of variable 

throughout the procedure* Up to and including the stage where variables 

are taken six at a time, wave height appears in 9 out of the maximum 

possible 16 combinations when the three best combinations at each stage 

are listed (Table 6.11). This again confirms the intuitive expectation 

that this variable is the dominant variable in the system, providing the 

main energy source for the model. Howeverg as a general rule it is 

dangerous to infer the relative rank of certain combinations of variables 

from the ranks of variables when taken individually. Por example, variable 

X16 (trough to bottom depth in front of the breaking wave) appears as the 

second most important single variable (Table 6.10) but this variable does 

not then reappear in any of the 'beat' combinations until combinations of 

eight are considered* A further point to make at this stage is that one 

might intuitively expect that none of the variables occurring in the 

strongest combinations would appear in the weakest combinations, but this 

may happen. In the case of variable X14, for example, it occurs in as 
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Table 6.10 Results of Combinatorial. Regression for Average Distance of 

Alongshore Sand Movement : All X's minus X4, X5, X6, X7 & X9. 

Best Worst 
Three Combinations Three Combinations 

Iteration of X's R. M. S. R. of X's R. M. S. R 

1 0.7932 a 1.8215 

1 16 0.9001 13 1.3205 

3 0.9370 15 1.2810 

1 14 0.6767 8 15 1.3258 

2 3 11 0.6909 8 13 1.3256 

1 12 0.7352 12 13 1.2851 

3 11 14 0.5922 8 12 13 1.3217 

3 3 11 15 0.5994 12 13 14 1-3155 

1 11 15 0.6186 8 14 15 1.3032 

38 11 15 0.5334 8 12 13 14 1.3481 

4 1 3 11 14 0.5482 8 12 14 15 1.3396 

3 8 11 14 0.5583 8 12 13 15 1.3341 

1 3 8 11 14 0.5150 8 12 13 14 15 1.3750 

5 3 8 10 12 14 0.5158 2 8 13 14 15 1.1789 

3 8 11 14 15 0.5195 2 8 12 14 15 1.1754 

1 8 11 12 13 15 0.4411 2 8 12 13 14 15 1.1690 
6 1 3 8 11 14 15 0.4582 2 8 10 11 13 14 1.0233 

1 3 8 10 12 14 0.4642 2 8 10 13 14 15 0.9755 

1 8 11 12 13 14 15 0.4059 2 8 10 13 14 15 16 0.8996 
7 1 2 3 8 10 12 14 0.4361 2 8 10 12 13 14 15 0.8765 

1 3 8 11 12 13 15 0.4406 2 8 10 11 13 14 16 o. 8696 

1 3 8 11 12 13 14 15 0.3921 1 2 38 10 13 15 16 0.7410 
8 1 8 10 11 12 13 14 15 0.4039 1 2 38 10 11 13 16 0.7254 

1 8 11 12 13 14 15 16 0.4247 1 2 3 12 13 14 15 16 0.7208 

1 3 8 10 11 12 13 14 15 0.3843 1 2 38 12 13 14 15 16 o. 6o66 

9 1 2 8 10 11 12 13 14 15 0.3949 2 3 10 11 12 13 14 15 16 0.6032 
1 2 3 8 10 11 12 13 14 0.4079 2 8 10 11 12 13 14 15 16 0.5991 

1 2 3 8 10 11 1 2 13 14 15 0.3816 2 3 8 10 11 12 13 14 1516 0.4826 
10 1 3 8 10 11 12 13 14 15 16 0.3950 1 2 3 10 11 12 13 14 15 16 0.4815 

1 2 8 10 11 12 13 14 1516 0.3958 1 2 38 10 12 13 14 15 16 0.4754 

All X's 0.3845 



233 - 

Table 6.11 Most Frequently Occurring Variables in the best 

of Combinatorial Regression. Equations 

Frequency of Occurrence in Frequency of Occurrence in 
Three Best Combinations Three Worst Combinations 

Variable of X's of X's 

No. (up to iteration 6 inc. ) (up to iteration 6 inc. ) 

19 

25 

3 12 

88 14 

10 22 

11 11 1 

12 49 

13 1 12 

14 9 10 

15 6 10 

16 1 

c 
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many strong combinations as X1 (Table 6.11) but also occurs frequently 

in the weakest combinations. This variableg water temperatureq was also 

the variable included at the second iteration of the stepwise regression. 

This anomalous state of affairs may arise because the variableg by 

itself, may provide only a slight contribution to the explanation of 

variation in the dependent variableg say 1 or 2%. Although when combined 

with stronger variables its addition maintains the high explanatory 

value of the equationt its contribution to weaker combinations is only 

slight and hence does not raise the total contribution significantly. 

Variable X14 has a R. M. S, R, of 1.2706 which is the fourth worst single 

contribution of the eleven variables in the combinatorial regression, 

The two other most frequently occurring variables are X3 and X11, 

longshore current velocity and beach slope. X3 is in fact the most fre- 

quently occurring variable in the strong combinations of all the eleven 

in the list and also has a R. M. S, R, individually of 0.93709 the third 

'best'. 

Beach slopeg X119 on the other hand, taken individuallyv only has a 

R. M. S, R. of 1.0156 but nevertheless has its importance reflected in its 

inclusion in so many of the beat combinations. The stepwise regression 

results are confirmed but the exact role played by beach slope in 

affecting longshore sand movement remains unclear. 

Some of the unexpected results may perhaps be explained by inter- 

correlations amongst the independent variables as already discovered for 

grain size effects. Examination of the correlation matrix for the varia- 

bles included in the regression (Table 6.9) show several strong linear 

correlations. The largest is that between X15 and X59 grain size and 

grain sorting (-0.93) but several others exceed + 0,7, All those 

correlations greater than + 0-5 are indicated. Where linear relationships 

exist among the explanatory variables it becomes difficult to sort out 

their separate contributions to the sums of squares of the dependent 

/ 
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variable, and the matrix inversions necessary in the technique may 

involve error. Variables X11 and X3 are both involved in three strong 

correlations with other variables and it may be that their seeming 

importance in the regressions is due to their absorption of the explana- 

tory content of the variables with which they are correlated. 

However, although one of the conditions for the use of the linear 

regression model is a lack of multicollinearity amongst the independent 

variables, as mentioned in Section 6*29 there is no direct link between 

the degree of collinearity and the correlation coefficients except in 

the case of perfect (± 1.0) correlation between two variables (Kmenta, 

1971). Hence, it is necessary to calculate a measure of collinearity and 

for each of the combinations in the combinatorial regression this is done. 

The measure ranges from 0-1 and a zero or near zero value indicates 

high collinearity and a null or nearly null correlation matrix of 

independent variables. High coefficient values occurred in this regression 

when few variables were entered but rapidly fell with the introduction of 

several variables. Nevertheless the lowest value for the coefficient 

was 0.35 E-10 with all eleven variables included which is comfortably 

inside the limit beyond which nullity prevents matrix inversion or severe 

errors in computation occur. This limit is roughly where the negative 

exponent is more than double the number of independent variables, There- 

foreq despite the presence of reasonably high multicollinearity which 

may lead to some problems of interpretation the computations were 

relatively easily performed. 

In the main, the results of the combinatorial regression confirm 

the findings of the stepwise regressions and there is almost exact corres- 

pondence between the two procedures at several stages of the two programs. 

The most important variables would appear to be X1 (wave height), X3 

(iongshore current velocity in the direction of sand movement)t X11 (beach 

slope) and X14 (water temperature). 
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Table 6.12 Dimensionless Independent Variables in Regression of 

Distance Sand moved in an Alongshore Direction. 

X1 : Breaker steepness ratio (H 
b/ gTb) 

i 

X2 : Grain size/swash characteristics T/T 

X3 : Angle of wave approach 

X4 : Beach slope 

X5 : Water temperature 

Reducing the number of independent variables to five by the 

creation of dimensionless variables (Table 6.12) produced an -ý2 of 

60.3% with the stepwise regression containing all variables (Table 6,13), 

The first variable selected was the breaker steepness (variable XI) 

accounting for 55% of the explanation. Komar (1969) found that along- 

shore transport rate did not correlate highly with wave steepness and 

suggested that if there is any dependence it is small enough to be masked 

by measurement error. However, this conflict may be partly resolved by 

the fact that Komar used deepwater wave steepness (H. /L. ) whilst in 

this study breaking wave steepness is used. Presumably the strength of 

the wave height variable in accounting for vaxiation in Y is the main 

reason for the importance of this breaker steepness index. It does not, 

howevert account for as much explanation as wave height by itself. At 

step two the water temperature variable (X5) was included, Again with a 

negative relationship this variable adds 6.2% to R2. Beach slope (W 

included at iteration 3, added a further 2.5% but only 1.956 was added by 

the last two variables X3 and X2. 

Again repeating the regressions with the combinatorial method and 

the same dimensionless variables produces a check on the results and 

maximum information. The 'best' combination was found to be X1, X49 X5 

with R. M. S. R. of 0.794 and R2 of 61-3%. Table 6.14 reveals the importance 

of X1 in terms of its frequency of occurrence in the strongest groupings. 
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Table 6.14 Results of Combinatorial RegresBion for Average Distance 

of AlongBhore Sand Movement : Dimensionless Variables 

Beat Worst 
Three Combinations Three Combinations 

Iteration of X's R. M. S. R. of X'S R. M, S. R, 

1 0.9166 2 1.5693 

4 1.1065 3 1.4640 

5 1.2710 

1 5 0-8172 2 3 1-3482 

2 1 4 0.9466 3 5 1.3056 

1 3 0.9503 2 0 5 1-3032 

1 4 5 0.7943 2 3 5 1.3305 

3 1 2 5 0.8415 2 4 5 1.0961 

1 3 5 0.8430 3 4 5 1-0953 

1 3 45 0.7964 2 3 45 0.9639 

4 1 2 45 0-8103 1 2 34 1-0713 

1 2 35 0.8846 

All X's 0.8137 
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It is also the most important variable taken singly (iteration 1). X2 

(the combination of water depth and grain size characteristic) and X3 

(angle of wave approach)were confirmed as the least important of the 

five variables. 

In general terms theng the use of dimensionless variables reduced 

the explanatory value of the regression equation and provided little 

further informationg except to confirm certain previous findings. 

6: 6 Onshore/offshore sand movement 

Following the same procedures and techniques used in the previous 

sectiont the distance moved by sand grains normal to the shoreline was 

investigated. Table 6.1 indicates that in the majority of cases such 

movement was over much shorter distances than in an alongshore direction, 

Average distance moved onshore/offshore for all the experiments was 

2.34m with a standard deviation of 2.88m compared with a mean of 11.19m 

and a standard deviation of 10.92m for average distance alongshore. 

The variables used in the stepwise regression procedure are listed 

in Table 6.15 and the results of this analysis are contained in Table 

6.16. It can be seen that in this case fifteen independent variables 

were included and the first variable entered into the equation was X10, 

beach slope. This has a positive relationship with the Y variable and 

explained 59.2% of its variation. At the second iteration alongshore 

wind velocity (X8) was entered with a negative relationshipq indicating 

an increase in onshore/offshore distance moved with a fall in alongshore 

wind velocity. A physical interpretation of this might be that the 

slower the alongshore wind speeds the slower any consequent longshore 

currents might be and hence sand grain movementinormal to the shore are 

more likely. However, a similar relationship is not found for longshore 

current itself (X3) and indeed this is one of the variables not selected 

for the regression equation. 
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Table 6.15 Independent Variables in ReEessions of Distance Sand 

Moved in Direction Normal to Shoreline 

X1 : Mean wave height' (metres) 

X2 : Wave period (sees) 

X3 : Longshore current velocity (cm/sec) 

X4 : Mean grain size (phi units) 

X5 : Mean wave angle (0) 

X6 : Wind speed normal to shoreline in direction of sand movement 

(cm/see) 

X7 : Wind speed normal to shoreline in direction opposite to sand 

movement (cm/sec) 

X8 : Wind speed alongshore (cm/sec) 

X9 : Predicted tide height 

X10 : Beach slope angle (tanof angle) 

X11 : Length of time tracer covered (hrs) 

X12 : Depth of water at injection point at high water (metres) 

X13 : Water temperature (OC) 

X14 : Grain sorting, (phi units) 

X15 : Trough to bottom depth in front of breaking wave (metrea) 
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Wave height is included at the third step but does not remain in 

the regressiong being removed at iteration 8 when variable X15 (grain 

sorting) is included. The strong correlation between the two variables, 

Table 6.179 is probably responsible for this, X15 taking over the explana- 

tory value of X1. Tide height and length of time the tracer was covered 

raise the coefficient of determination to 61.4% and the procedure was 

halted at the eleventh iteration when R2 had a value of 71.8% and -ý2 

58.4%. 

The only variables to maintain relatively highly significant P 

ratio values throughout the procedure were X10 and X9 suggesting their 

relative importance. It is interesting that beach slope accounts for 

much of the variation in the dependent variable but because of strong 

inter-correlation with other variables such as grain size it is not 

possible to say exactly how important it is. Of the variables not 

entered into the regression equation, variables X3. X49 X6 and X14 were 

omitted from the list of combinatorial regression X's, Henceseleven 

explanatory variables were included and stepwise variable numbers were 

again retained to avoid confusion. 

As can be seen from Table 6.18 the minimum R. M. S. R. value for the 

combinatorial regression procedure was 0.6978 for a combination of five 

variables. This had a corresponding R2 value of 63.6% and the actual 

equation form was: 

Y=0.392 X7 - 0.407 X8 + 0.982 X10 + 1,219 X11 - 2.540 X12 Eq. 6.6 

Taken as a whole there is a marked dissimilarity between the results of 

the stepwise and combinatorial regressions. When selected individually 

in the combinatorial, regression X29 beat accounted for variation in the 

dependent variable* followed by X1 and X9. On the other hand X10, 

which was the first variable selected for the stepwise regression equationg 

was found to be the worst of the variables taken singly and third worst 

in combination with other variables (Table 6.19). X12 (the estimated 
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Table 6.18 Results of Combinatorial Regression for Average Distance of 

Onshore/Off shore Sand Movement : All X's minus X3P X49 X6 & X14. 

Best Worst 
Three Combinations Three Combinations 

Iteration of X's R. M. S. R. of X's R, M, S, R, 

2 0.9489 10 1.6390 

110.9500 15 1-5481 
9 1.0028 8 1.4513 

2 12 0.8637 8 9 1.5037 

21 12 0.8959 8 15 1.4863 

2 8 0.9313 12 15 1.4199 

1 11 12 0.8562 8 12 15 1.4579 

32 11 12 0.8588 8 10 12 1.4437 

11 12 15 0.8612 5 8 10 1.4011 

2 7 8 12 0.8247 5 8 12 15 1.4417 

4 1 10 1 1 12 0.8362 5 8 10 12 1.4342 

1 5 11 12 0.8495 7 8 12 15 1.3057 

7 8 10 11 12 0.6978 5 7 8 12 15 1.2942 

5 7 8 11 12 15 0.6987 5 7 8 10 12 1.2771 

2 7 8 11 12 0.7617 5 8 10 11 15 1.1644 

7 8 10 11 12 13 0.7124 5 7 9 10 11 15 1.1971 

6 5 7 8 11 12 15 0.7127 7 9 10 11 13 15 11,1881 

5 7 8 10 11 12 0.7165 5 7 9 10 13 15 1.1768 

5 7 8 9 10 11 12 0.7071 5 a 9 10 11 13 15 1.1622 

7 5 7 8 11 12 13 15 0.7106 2 7 9 10 11 13 15 1.1608 
1 5 7 8 10 11 12 0.7108 1 2 7 9 10 11 13 1.1424 

1 5 7 8 10 11 12 15 0.7190 2 5 7 9 10 11 13 15 1.1629 

8 1 5 7 8 10 11 12 13 0.7203 5 7 8 9 10 11 13 15 1-1465 

2 5 7 8 10 11 12 13 0.7307 1 2 7 9 10 11 13 15 1-1302 

1 5 7 8 10 11 12 13 15 0.7221 1 2 7 89 10 11 13 15 1.1006 

9 1 5 7 89 10 11 12 13 0.7442 1 2 5 79 10 11 13 15 1.0806 
2 5 7 89 10 11 12 13 0.7476 2 5 7 89 10 11 13 15 1.0702 

1 5 7 89 10 11 12 13 15 0.7550 1 2 5 789 10 11 13 15 1.0272 
10 1 2 5 78 10 11 12 13 15 0.7592 1 2 5 79 10 11 12 13 15 0.9406 

1 2 5 789 10 11 12 13 0.7680 1 2 5 789 10 12 13 15 0.8990 

All X, 0 0.7895 
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Table 6.19 Most Frejuentýj Occurring Variables in the Best 

Of the Combinatorial Regression Equations 

Frequency of Occurrence in Frequency of Occurrence in 
Three Best Combinations Three Worst Combinations 

Variable of X's of X's 

No. (up to iteration 6 inc. ) (up to iteration 6 ino. ) 

1 5 

2 6 

5 3 

7 7 6 

8 8 12 

9 1 4 

10 4 9 

11 11 3 

12 14 8 

13 1 2 

15 3 1 
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depth of water at the tracer inspection point at high tide) frequently 

occurs in the strongest variable groupings but as it is often found in 

weak combinations as well its importance is undetermined. Furthermoreq 

it is not one of the variables 'picked up' early in the stepwise regress- 

ion. Of the variables included in the 'best' combination of five 

variables only three XB (alongshore wind speed), X10 (beach slope angle) 

and X11. (length of time tracer covereý were selected in the stepwise 

procedure by iteration five. Comparison of Tables 6.16 and 6.18 shows 

that variables X1 and X9 in the stepwise equation are replaced by X7 

and X12 in the 'best' combination. The grouping of variables included 

at step 5 in the stepwise method gives a R. M. S. R. value of 1.0446 com- 

pared with 0.6978 and 1,2942 minimum and maximum values at this level. 

At the same time, the best regression as suggested by the stepwise program 

containing ten variables has a R. M. S. R. of 0.7867 compared with a minimum 

of 0-7550 and a maximum of 1.0272 where variables were considered ten 

at a time in the combinatorial program. 

Thereforeq despite the inconsistencies it would appear that X10 

(beach slope), X11 (length of time the tracer was covered) and XS(wind 

speed alongshore) are important variables in this regression model with 

X1 (wave height)q X2 (wave period) and X9 (predicted tide height) of 

some lesser significance. 

When the dimensionless variables were used as independent variables 

(Table 6.12) X4 (beach slope angle) was of most value. In the stepwise 

regression program it was selected at the first iteration with an -ý2 0f 

52.6% (Table 6.20) and in the combinatorial technique it had the smallest 

-2 R, M. S. R. of 0-7834 with a similar R value (Table 6.21). The otepwise 

program was terminated at stage two with the addition of X2 and a 

concomitant rise in R2 of only 0.4% but with a fall in -g2 to 51.1%. 

This variable was also of some importance in the combinatorial procedure 

occurring in many of the 'best' groupings but even so its linking with X4 
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Table 6.20 Resillts of atepwise-Regression-of amount of OnshQrelOffshore 

Sand Movement: Dimensionless Variables 

=2 2 
ITERATION EQUATION R R. F PARTIAL F 

1y= 75.64 X4 52.8 52.8 30-18 30-18 
(99.99) 

2Y= 64-53 X4 + 0.404 X2 51.1 53.2 14.77 X4 5.67 
(99.96) (84.4) 

X2 0.23 
(2.8) 

Table 6.21 Results of Combinatorial RejE ession for Average Distance 

of Onshore/Offshore Sand Movement : Dimensionless Variables 

Best Worst 
Three Combinations Three Combinations 

Iteration of XIS R. M. S. R. Of X, 13 R. M. S. R, 

4 0-7834 3 1-3596 

1 2 0-9459 1 1-0469 

5 1.0257 

24 0-8053 13 1,, 0807 

2 34 01,8101 15 1-0539 

45 0.8104 35 1-0444 

234 0-8331 135 1-0728 

3 245 0-8337 235 0.9235 

124 0-8360 123 0.9231 

1245 0.8652 123 5 0-9538 

12340.8657 13450.8699 

23450.8662 

All X, a 0.8999 
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increases R. M. S. R. rather than reduces it and even when taken individ- 

ually is more than 0.15 greater than the minimum R. M. S. R. for X4. 

The increase in R2. albeit small, with its inclusion in the step- 

wise regression equationg indicates the shortcomings of R2 as an 

indicator of the level of explanation, As discussed in Section 6: 3. 

provided the entered variable is significant at the selected probability 

level R2 will always increase as it is related to the number of variables 

in the equation. R. M. S. R. on the other hand need not always increase, 

'Furthermore the sensitivity of R2 to the ratio of the number of variables 

and the number of observations in a particular regression is revealed by 

the difference in R2 for the variable beach slope in the two stepwise 

regressions. As a dimensionless variable it is included with an R2 of 

52.8 whilst when used in the regression with fifteen independent variables 

the R2 figure is 59.2%. As mentioned earlier, this is due to the 

tendency for R2 to be pushed closer to 10OD/o as the number of X's 

measured approaches the number of observations. -ff 2 
is also affected 

in this way as can be seen. 

A further interesting point about the regressions with the dimension- 

less variables is the poor performance of X19(the breaker wave steepness 

index). It is one of the worst of the five explanatory variables in the 

combinatorial regression and is not entered into the stepwise equation, 

Wave steepnessg usually deepwater wave steepness,, has been found to 

be of significance in sand movement normal to the shore by other workers, 

in particular King (1971). However# it has been related more especially 

to direction of movement than amount of movement. This relationship 

will be considered further in the next chapter. 

The levels of explanation for onshore/of f shore sand movement are 

lower than for alongshore sand movement indicating a poorer fit of the 

model to the data. Improvement may be brought about in several ways, 
Some of the variables already included could be transformed to improve 
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their individual contribution. Indeedq more variables could be usedo 

replacing existing variables or simply adding to the list. In partic- 

ular measurements of swash/backwash velocities and related percolation 

rates and water table levels would undoubtedly lead to an improvement 

in the modelq whilet accurate estimates of orbital velocity beneath 

shoaling waves might also help. Alternatively a non-linear model might 

be adopted but interpretation of these models in terms of the physical 

system under study is often hazardous. 

In summary. it can be said that wave height, accounting for 61.3% 

of the variation, appears to be the most important variable in deter- 

mining alongshore sand movement when this was the dependent variable. 

Water temperatureq with a negative relationship, and beach slope were 

also found to be important. On the other hand beach slope emerges as 

the most significant variable in accounting for the amount of onshore/ 

offshore sand movement, Howeverg in this latter case a far more con- 

fused picture is produced by the results of the regression analysis and 

lower levels of explanation are achieved. Strong intercorrelations 

between some of the independent variables provide problems of interpret- 

ation and may account in large part for the absence of mean grain size 

from the 'best' regression equations when intuitively its inclusion 

may have been expected. 



- 251 - 

CHAPTER 

REGRESSION MODRL OF SAND MOVEMENT : DIRECTION 

7: 1 Introduction 

Direction of sand movement should form the second major component 

of any sand transport model. In this chapter an attempt is made to 

account for this component with reference to the results of field data 

collected in this study. 

Direction is not considered as a continuous variable ranging between 

00 and 360 0 because of the problems of handling this type of data in 

regression analysis. Instead, simple distinctions are made between along- 

shore movementp north or south with respect to the beaches under study, 

and onshore or offshore movement. Since alongshore direction of movement 

is predicted more easily, less attention is paid to this aspect. On the 

other hand movement normal to the shoreline is more difficult to account 

for and consequently the greater part of this chapter deals with this 

problem. Initially bivariate relationships arising from previous work are 

discussed in Section 7: 3. Section 7: 4 then deals with the Multivariate 

an lysis conducted with the field data. 

7: 2 Alongshore sand movement 

In the nearshoreq two factors largely determine the direction of 

alongshore sand movement: 

The direction of wave thrust, 

2. The direction of alongshore flowing currents. 

An oblique wave approach is translated into the zig-zag motion of wave 

drifting in the swash-backwash zone and hence produces sand movement in 

the direction of wave thrust, Figure 7-1* Alongshore flowing currents 

can be divided into those found shoreward of the breakers and those found 

to seaward. The longshore currents of the surf zone have been the subject 
4 of much theoretical and empirical study in the last decade but from the 
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many ideas put forward two main mechanisms for their generation have 

been postulated: 

1, Longshore variations in breaker height. 

2. Oblique wave approach. 

It has been suggested that variation in wave height alongshore, caused 

either by wave refraction or edge waves trapped in the nearshore inter- 

acting with swell waves, results in a variation in water levels shoreward 

of the breakers. This in turn causes water to flow from higher water 

levels to lower levels producing the longshore current. Where the water 

flows converge, near the location of the smaller breaking waves, the 

current turns seaward as a rip current, In this way a cell circulation 

is set up. (Figure 7.21). Alternatively it is postulated that currents are 

produced by waves breaking at an angle to the shoreline. (Figure 7.211). 

Several theories have been put forward to account for this, notably those 

based on the shoreward mass transfer of water in solitary waves developed 

by Inman and Bagnold (1963), energy flux and momentum energy flux consider- 

ations suggested by Putnamq Munk and Trayler (1949) and radiation atress 

concepts produced by Lonquet-Higgins and Stewart (1963). Komar (1976) 

deals in some detail with all these approaches and discusses nearehore 

currents in general, He also states that 11 ... of all the equations form- 

ulated for the generation of these currents9 those based on radiation 

stress (momentum flux) concepts have the firmest theoretical basin, " 

(Komart 1975). 

KomA and Inman (1970) proposed that the observed current pattern in 

the nearshore may be the result of a combination of the two mechanisms of 

longshore current generation, This is shown in the bottom diagram 

(Figure 7.2111). However, such a simplified picture may be Complicated by 

irregular beach topography as indicated by the work of Sonu (1972). Never- 

theless, it provides a useful general concept of longshore current generation. 

Thusq generation of longshore currents in the surf zone is a complex 
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problem and it will be seen that, for example, a situation may arise 

where the effects of different mechanisms serve to offset one another and 

produce a small residual current. Equally a strong current may be formed 

when several processes act together. Bowen and Inman (1969) have also 

observed that when a cell circulation pattern does exist in conjunction 

with oblique wave approachg the cell system itself may move slowly along- 

shore. If this is the case then, at any point on the beachg variations in 

current strength with time might be expected, other factors remaining 

constant. 

A further complicating factor which must also be taken into account 

is the wind. Shepard and Inman (1950) postulated that wind might be Bignifi- 

cant in producing longshore currentsv but little empirical work has been 

carried out because of the difficulty of separating wind-generated and 

wave-generated currents. Using Table 7.1. a simple correspondence tablet 

it would appear that wherever longshore current direction and the direction 

of wave thrust do not agree then wind stress may have been the cause of 

the current, On such occasions generation of the current through cell 

circulation is not precluded and measurement of wave and current was not 

detailed enough to allow identification of such cells. 

Seaward of the breaking wave zonevalongshore flowing currents are 

generated by tidal forces. Except in strongly tidal environmentst currents 

formed in this way will affect only the lowest parts of the beach face just 

above low water marko if at all. Where they are important the tidal 

currents may be reversing in direction and hence cause sediment movement 

in both directions alongshore, A possible example of this was discussed 

in Section 4: 2. 

When alongshore flowing currents exist the direction of alongshore 

sand movement can be expected to be in the direction of current flow. 

Howevert where surf zone currents do not exist and tidal currents are 

unimportantq wave approach may become the dominant factor in direction of 

k 
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Table 7.1 Comparison-of general direction of sand movement with 

wave, wind and current characteristics 

GIBRALTAR POINT. 

Experiment 
(Date) 

Sand 
Movement 
Direction 

Longshore 
Current 

Direction 

Direction 
of Wave 
Thrust 

Wind 
Direction 

Alongshore 

2,11-75 1 1 0 1 

17.1-76 0 0 0 1 

28,2-76 0 0 0 1 

18.3-76 LR 1 1 1 - 

18.3-76 UR 0 0 0 - 

17.5-76 1 1 0 1 

30.6-76 0 0 0 - 

15.7-76 1 1 1 1 

10.8-76 0 0 0 0 

7.9-76 LG 0 0 0 

7.9.76 UG 1 0 0 

22,9-76 LR 0 0 0 

22.9-76 UR 0 0 0 

6.10-76 LG 

6.10., 76 UG 1 1 1 

23-10-76 H3 1 1 0 

23-10.76 H2 1 1 0 

Continued. 
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Table 7.1 continued 

SKEGNESS 

Ebcperiment 
(Date) 

Sand 
Movement 
Direction 

Longshore 
Current 

Direction 

Direction Wind 
of Wave Direction 
Thrust Alongshore 

18.5-76 0 0 0 

1.7-76 0 1 1- 

14.7-76 0 0 0- 

12,8-76 0 0 0- 

25.8-76 LR 0 0 0- 

25.8-76 UR 0 0 0- 

8.9-76 0 1 0- 

21.9-76 0 0 0- 

7-10-76 LR 0 0 0- 

7.10-76 UR 1 1 0- 

'22,10-76 LR 0 0 0- 

22,10-76 UR 1 1 0- 

N. B. 

1 refers to northerly movement and 0 to movement to 

the south. 

Direction of wave thrust refers to direction in which 

waves are moving. Wind direction is represented as - 

when wind was dominantly blowing normal to the beach. 

Definition of onshore/offshore wind is as outlined in 

Section 6%4. 
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movement through longshore wave drift of material. This seems to be 

borne out by the results of the tracer experiments shown in Table 7.1 

where on only three occasions are direction of alongshore movement, as 

indicated by the position of the mean centre of the dispersed tracer 

cloud and measured current direction. not in agreement, 

On two of these occasionsq the 7.9-76 experiment on the lower ridge 

at Gibraltar Point and the 1.7-76 experiment on the upper ridge at 

Skegness the tracer patterns reveal the possible influence of current 

flow within the runnels associated with each tracer release point, 

Figures 4.14 and 7.3 . 

The injection point for the 7.9-76 experiment was placed just on the 

edge of a runnel and the longshore component of two arms of movement of 

the tracer map probably represent the effects of currents filling and 

draining the runnel. The centre of gravity indicates an equality of dis- 

persion in two main directions. Much rougher conditions for the 1,7.76 

experiment seem to have caused a wide dispersion of tracerv much of which 

was affected by a southerly draining current emptying the runnel. The 

northerly flowing longshore current was strong at 43.1 cm/sec and the 

effect of this is seen in the northerly element to the map landward of 

the tracer source, It is important to noteg however$ that currents were 

not monitored for the whole tidal cycle during each experiment and hence 

it is difficult to interpret accurately the tracer patterns showing 

unexpected features. Interestingly thoughq on the single occasion when 

runnel currents were measured throughout the tidal cycle it was found that 

currents at a height of approximately 30cms above the bed were unidirec- 

tional and did not reverse as expected,, Pigure Al., 10. 

The third occasion when longshore current direction and sediment 

movement direction were not in accord was on 8.9-76 during the experiment 

on the upper ridge. In this case the main vector of movement was onshore I 

as a result of an almost parallel wave approach to the beach. Slight 
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variation in angle of wave approach, combined with the effect of changes 

of wind direction during this experiment, were probably sufficient to 

override the influence of the slight northerly flowing current. (Figure 7.6). 

Thereforeq despite some slight disagreementv in general longshore 

current direction was found to be a good predictor of longshore sand move- 

ment direction. Although tidal currents were found to be important 

influences on sand movement on the lower beach at Gibraltar Point on some 

occasions, this did not cause serious difficulties in relating current 

and sediment movement direction. 

7: 3 Onshore or offshore : previous findings 

Movement of sediment normal to the shorelinevin a tidal environment 

as outlined in Section 5: 3. represents the net result of a balance of 

many forces, Much less work has been done on this aspect of sediment move- 

ment but investigationsin the field and the laboratory by a number of 

workers have thrown up a series of suggestions which it is possible to 

test with the results of this study. 

Murray (1967)9 dealing with the shoaling wave zone, found that there 

was a direct relationship between the maximum horizontal velocity over 

the bottom as given by: 

um = it H 
Eq. 7.1 

T sin h (2rh/L) 
(see also Eq. 5.6) 

where H= wave height I 

T= wave period ; 

L= wave length ; 

h= water depth 

and his index of net movement normal to the beach (Section 3: 5). He wan 

able to show that least squares lines fitted to the data points had a 

negative slope indicating that as maximum horizontal velocity near the 

bottom increased there was an increasing tendency for offshore movement. 



- 261 - 

-i Z: c4 
:Ez! 

C- 

(D 
r- 

Cý ei) 
06 

ui -j 0-4 
U- 
0 
CC 
0- 

W-4 
ui 

J 
V; 
39 

I 

NI*IA3N*000 SWIN 

C4 



- 262 - 

44 

0- 

I 
LLJ 

LLJ 
CD 

ry- 
ry- 

Li 
n 

(_O 
C*, - 

O) 

00 

0-' 

*ß 

C. n 
«Z* 

cr- 
Cc 

CD 

LL- 
CD 

U-i 

LU 
L. ) 

0 
I- 
2: 

0 

CD 

b--4 



- 263 - 

He also concluded that for any given value of UM the finer grain sizes 

had a greater tendency for seaward motion, Murray explained these con- 

clusions by assuming a mass transport system of currents as suggested 

by Longuet-Higgins (1953). (Figure 5,2). Finer grains thrown higher 

off the bed by the turbulence associated with strong bottom velocities 

would be affected by the offshore mid-depth flow and hence be carried 

offshore or less onshore, 

Murray was concerned solely with sediment movement in the shoaling 

wave zone whilst the results of tracer experiments in this study represent 

the operation of processes in three or four distinct nearshore zones# 

swash-backwashv surf (if present), breaker and shoaling wave zonest 

(Figure 1.2). Consequently comparisons are not very easy. Neverthelesso 

it is interesting to test Murray's findings, 

Because deepwater wave statistics are not available for this study 

equation 7.1 was not used. Instead maximum orbital velocity was sub- 

stituted given by equation 5*26. A plot of this against net movement 

index T as calculated for each of the tracer maps (Table 7*2) is shown 

in Figure 7.7. As will be seeng there is a very wide scatter of points 

and no obvious relationship exists. The best fit line does indicate that 

as the orbital velocity increases there is an increasing tendency for 

offshore movement. Howeverg the correlation coefficient between the two 

variables is very low at 0.145 andt indeed, at the 95% significance level 

it is not significantly different from zero* A slightly more successful 

result was obtained from the plot of T with grain size (Figure 7-B)- 

It was found that the correlation was 0.352 and the beat fit line produced 

by simple linear regression methods explained 12.4% of the variation, 

The slope of the linel howevert is positiveg suggesting that as grain 

size increases there is a greater tendency for onshore movementg agreeing 

with Murray's findings. 

In his model of sand movements under shoaling waves Murray discounts 

the importance of wind induced bottom currents. However#other evidence 
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Table 7.2 Wave Characteristics and Onshore/offshore Index 

of Sand Mavement (T) 

IBRALTARP01NT 

Breaker Breaker Max. Orbital 
Steepness Type Velocity Beneath 
(Hb/L ) Index Bre ; ing Waves n b 

-- . -- - ., 
1 . 0336 . 0402 37.7 0.950 
2 . 0743 . 113 73.5 0.768 
3 . 0471 127 9-7 0.996 
4 -0529 . 0700 68.7 0-367 
5 . 0314 . 0788 42.5 0.444 
6 . 0610 -. 184 72.4 0.436 
7 . 0692 . 305 65.3 0-141 
8 . 0478 . 162 55.0 0-473 
9 . 0641 . 156 79.8 0.382 

10 . 0467 . 0474 86.6 0.975 
11 -0450 218 83.4 0.259 
12 . 0508 . 0805 67.9 0.428 
13 -0718 . 145 106.6 0, -360 14 . 0381 . 0526 64.9 0.985 
15 . 0385 . 113 66.3 0.049 
16 . 0605 . 160 78.4 0.310 
17 . 0605 . 144 77.6 0.249 

SKEGNESS 
1 . 0614 . 164 63.7 0.514 
2 . 0728 1088 84.8 0.193 
3 . 0363 . 246 44,2 0.922 
4 . 0849 . 341 76.6 0.516 
5 . 0505 . 0642 39.0 0.594 
6 . 0360 . 366 52.8 0.823 
7 . 0538 . 0356 8811 0.978 
8 . 0595 . 201 106.4 0.074 
9 . 0369 . 0182 69.4 0.959 

10 . 0360 . 123 53.4 0.515 
11 . 0544 . 0532 67.9 0.510 
12 . 0494 . 139 61.6 0,240 

N. B. Breaker type index: H bl(gm T2 b) when 11 b breaking wave 
heightg m= tan. of beach elope and T breaking wave period. b 
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has been produced which suggests that currents set up by wind stress can 

be important in onshore/offshore transport of sediment. Siebold (1963) 

for examplej in a tracer study off the Baltic Coast, found that onshore 

movement took place during strong offshore winds. He calculated that a 

compensating undercurrent transported sand with a velocity of more than 

5 m/hr in a direction opposite to the wind from depths of 12.2m and 

11.5m toshallower regions. Grains larger than 0.6mm were not removed 

from the original site. 

Much work on the question of effect of wind on the nearshore circula- 

tion has been done by King (1972). Wave tank experiments indicated a 

general seaward drift at lower depths and along the bottom with an onshore 

wind. Combining the effects of wind with wave effects King illustrated 

the importance of wave steepness. For runs in the wave tank made with 

steep destructive waves and a strong onshore wind the seaward sand move- 

ment was found to be much greater in volume at all depths than when no wind 

was blowing, but in particular was much greater inside the break point, 

outside the break point the strong landward transport associated with the 

steep waves dominated the seaward wind current effect. With flatter 

constructive waves and no wind a landward transport of material took place 

at all depths. The introduction of a strong onshore wind caused the 

slight onshore movement of material in the deeper water of the shoaling 

wave zone to be reversed and a slight seaward transport occurred, Closer 

to the break point the landward direction of movement was maintained but 

was much reduced whilst inside the break point a fairly marked seaward 

sediment movement replaced the landward movement of no wind conditions, 

King (1957) has collected evidence from the field to support these 

wave tank findings, At Marsden Bayq co. Durham, beach surveys showed that 

with an offshore wind accretion took place on the upper beach on 13 

occasions, whilst erosion occurred only three times. Similarly, with an 

onshore wind erosion took place 13 times whilst accretion was soon on 
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only four occasions. 

Apart from the direct effect of the wind generated current King 

(1972) also suggested that sand movement will also be influenced by the 

action of the wind on the form of the waves. A strong onshore wind may 

cause steep locally-generated waves and. even without the contribution of 

the wind-generated current. cause offshore sand movement through the more 

-destructive nature of these waves. At the same timeq a strong offshore 

wind may reduce the approaching waves flattening them and causing them 

to be more constructive with the resultant onshore sand movement,, 

By eliminating all the experiments in which general wind direction 

for the tidal cycle was within 25 0 of the alongshore bearing, and hence 

concentrating on experiments with onshore or offshore windsq some of King's 

ideas were tested with the data of this study. The net movement index 

T was also divided into onshore and offshore at the 0-5 value 

for the particular experiments involved and a contingency table was 

constructed. (Table 7-3). 

Table 7.3. 
WIND DIRECTION 

Onshare 0ff%%'hr%vft 

Onshore 

Offshore D 

10 0 

Using the Fisher exact probability test as given by equation 7.2: 

A+B) I (C+D)-t (A+C) I (B+D) t 
Eqo 7,2 

NIAIBtC1Dt 

where A+B C+D etc. are marginal totals, N- number of cases, 
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the hypothesis of no association between the two variables was tested. 

The Chi Square test could not be used because of restrictions on its 

use with expected frequencies less than 5(Siegal, 1956) and this also 

precluded the use of the contingency coefficient C to assess the strength 

of any relationship. Using Eq. 7.2 it was found that there was a probability 

of 0.038 that the null hypothesis, H 
a, 

that. there was no association 

between the two variables, was correct, It would appear, from this 

evidenceg that wind effects are important in determining direction of 

sand movement onshore or offshore. However, it should be pointed out 

that the wind data obtained was not a detailed record of the whole 

tidal cycle and short term wind effects may be important in the water 

and sediment circulation of the nearshore* Nevertheless, In general 

terms it would appear that King's findings are confirmed by this atudy. 

Taking wind speed into account as well as directiong speeds ranged 

from 1.5 to 6.0 cm/sec when winds were blowing normal to the shore, With 

wind speeds at the lower end of the scale sand movementg as indicated 

by the net indexq appearedto be less strongly onshore or offshore. 

Deepwater wave steepness could not be calculated since the necessary 

measurements were not available but breaking wave steepness, possibly a 

more meaningful measure anywayt was calculated in order to look at the 

relationshipp if anyq between wave steepness and sand movement onshore/ 

offshore, 

Breaking wave steepness was calculated from: 

b Eq. 7.3 
Lb 

where Hb= breaking wave height 

Lb= breaking wave length (calculated from a in Ig'& and 

c= L/Tqwhere c= wave celerity. d = water depths 

wave period) 

i 
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Breaker steepness ranged from 0-0314 to 0.0849 for the experiments with 

a mean of 0.0531 (Table 7.2), There is a correlation of 0.332 between 

steepness and the onshore/offshore movement index T but when combined 

with wind direction it was found that the mean of the net movement index 

for the three experiments with steepest breaking waves and a strong 

onshore wind was 0.356. This represents a medium offshore tendency for 

movement. Also the mean of the three experiments with the flattest 

breaking waves and strong onshore wind was 0.556, showing a slight 

tendency for onshore sediment movement, 

Extending this analysis to wave type. the nearshore version of a 

formula for wave classification given by Patrick and Wiegel (1955) and 

used later by Galvin (1968), was employed. This formulat discussed in 

the previous chapter (Section 6: 3)9 was developed in laboratory experi- 

ments on slopes having a tangent of between 0.2 and 0-05. Transitional 

values for the three main types of waves (Figure 7-9) were given as 0.03 

for the surge/plunge division and 0.068 for the plunge/spill transition, 

Plunging breakersgin which the shoreward face of the wave becomes vertical 

curls over and plunges downward onto the beach face as an intact water 

mass. might be expected to be destructive in nature and produce offshore 

movement of sediment whilst surgiWg waves would be more likely to produce 

onshore movement. 

As can be seen from Table 7.2 the calculated values of the breaker 
zn 

type parameter for the tracer experimenteall fall withAthe plunging or 

spilling wave categories, Surging waves, as defined by the Patrick and 

Weigel experiments are absents This is probably duo to the relatively 

low beach slopes encountered during the experiments because generally 

speaking spilling breakers tend to occur on beaches of very low slope 

with waves of high steepness valuep plunging waves on steeper beaches 

with waves of intermediate steepness and surging waves on high ateepnoue 

beaches with low steepness waves. Prom Table 7.2 it will be seen that 

when plunging waves occur the net movement index indicates an onshore 
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Spilling Breakers 

0.068 

foam- 

nearly horizontal beach 

Plunging Breakers 

0-068 <>0,003 

Is ! t!!. p b 
ý. 

t 

Surging Breakers 

f oam 12 
0-003 

very steep 
"ý beach 

Pigure 7.9. Breaking wave types, Transition values 
as given by Hb/gm T2) where If and are bb Tb 

average wave height and average wave period 
and m is beach slope. Arter Calvin (1960). 
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movement of sand whilst on ýhe(, fo%lý occasions when B had a value greater b 
than the plunging/spilling transition value offshore movement of sand was 

indicated by the movement index T. This conflicts with the expected 

results. Alsotwhen combined with wind datatit was found that the mean of 

the net movement index for the combination of a wind blowing onshore with 

plunging waves was 0.509, or slightly onshore tendencyq whilst for an off- 

shore wind with spilling waves the index indicated a slight offshore movementt 

0.480. Again this is in disagreement with King's suggestions (p. 266) but it 

must be emphasised. that in this strongly tidal situation several different 

nearshore zones may cross the tracer sourcee In this case wave effects in 

terms of net direction of sand movement differ, dependent upon the con- 

ditions present in each zone, Further, the length of time each zone affects 

the tracer will be important so that for conditions of steep waves and 

onshore wind the net picture of sand movement may still be onshore and 

not offshore as might be expected because shoaling waves in deeper water 

affect the tracer for a relatively longer period of time and hence form 

the dominant cause of movement, Also the transition values for the 

wave classification put forward by Patrick and Weigol may not be applic- 

able to slopes flatter than 0.05 (Calvin, 1968) and many of the slopes 

encountered in these field experiments were flatter than this figure, 

7: 4 Onshore or Offshore : multivariate approach 

The use of data which consists of observations of a directional nature 

precludes application of standard statistical measures and it is only 

recently that statistical developments in this field have taken place. 

Gould (1969) discussed an analogue of the normal linear regression model 
for circular variables, that is variables in which the data to expreased 
as two dimensional directions, but no regression method for the simultaneous 
handling of angular and non-angular variates in available. Concequently 

when data were expressed in angular terms, that is as a point on the circum- 
ferences of a circle, it was re-expressed, Independent variables were re- 
defined as discussed in Chapter 6 and the concentration index T of onahoro/ 
offshore sand movementv as described in Section 3: 4 and 7: 2. was used to 
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variable X1 is being made redundant by the presence of the other two 

variables in the regression* A further point is that as the regression 

continues the significance of variable X3 declines as indicated by the 

partial P test values and their probability levels. In particular the 

addition of X15 reduces the partial F test on X3 from 6.76, signifi- 

cant at the 89.1% probability levelq to 1.172 which is significant only 

at the 23-99/6 level. Again this is due to the relatively strong correla- 

tion between X15 and X3 (Table 6.17). 

At iteration three X11 (length of time the tracer was covered) was 

added to the regression equation with a positive coefficient. This 

indicates that the longer the tracer is immersed the more likely onshore 

movement isgor the lower offshore movement is likely to be. In a strongly 

tidal location such as this the length of time the tracer is covered 

will also reflect the position of the tracer release point on the beach 

and also the depth of water over the injection point. The lower down 

the beach facev the nearer to the low-water mark the longer the tracer 

will be covered and the deeper the water over the tracer at three-quarter 

and full tide. Under relatively deeper water the tracer is more likely 

to be beyond the breaker zone and hence more susceptible to shoreward 

acting processes. The addition of X11 increases -R2 by 2.9%. 

Beach slope (X10) is the fourth variable entered but only causes an 

increase of 0.5% in -ý 2. The slope variable has a positive relationship 

which provides an unexpected interpretation since it implies that with 

steep beach slopes sand movement is more likely to be onshore or at least 

less offshore. 

After the fourth iteration only a further 5.6% is added to R2, whilst -R2 

reaches a maximum value of 86.5% at iteration 7. The final equation given at 
iteration 13 contains 12 variables and has an R2 Of 90*8 (Table 7.4). of the 

variables included only X10, X29 X14 and X11 maintain relatively signifi- 

cant F test values throughout, whilst variable X8 (wind speed alongshore) 
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undergoes interesting changes. At iteration 7 it is entered for the 

first time with a partial F test of 2.26, significant at the 46.801'o 

level. This falls gradually until with the addition of X7 to the equation 

its F, value falls to 0.2 which is significant only at the 3% probability 

level. The addition of X4 at the next iteration causes X8 to be removed 

because the partial F value is significant only at a level less than 

21/o. Howeverlat the last iteration X8 is re-entered with a marginally 

acceptable significance level. This is a good example of the way in 

which the contribution of a variable already in the regression may be 

duplicated by a second variable and lose its significance when that 

second variable is entered into the regression. The correlation between 

variables X7 and X8 is 0.599 (Table 6.17). 

Three variables were not entered into the regression at all, Xlt X5 

and X6, wave heightq wave angle and wind speed normal to the shoreline in 

the direction of movement. The last of the variables is a predictable 

absentee since winds causing counter currents have been suggested as being 

importantq Section 7: 3. On the other handq the absence of both wave 

height and wave angle from the regressions is quite surprising. When 

combined with wave period in the breaker type variable of the set of 

dimensionless variables, wave heightremains of relative unimportance. In 

the stepwise regression of the five dimensionless variables with the 

onshore/offshore concentration index variable X1 (the breaker type variable) 

is only entered at the fourth and final iteration and adds little to the 

R2 value for the regression equation (Table 7-5). Similarly in the combin- 

atorial regression with the same variables, X1 figures in few of the best 

combinations (Table 7-6). Wave angle(X3) on the other hand, is reiatively 

important in the regressions,, appearing in most of the best groupings in 

the combinatorial regression procedure and being the second variable 

added to the stepwise regression equation, X3 in fact adds 5.3% to the -ý2 

value for the regression equation. It is interesting that wave angle 
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Table 7.6 Results of Combinatorial Regression for Concentration Index 

of OnshoreZOffshore Sand Movement : Dimensionless Variables 

Iteration 
Best Worst 

Three Combinations R. M. S. R. Three Combinations 
of X'S of X's 

R. M. S. R. 

4 1.2149 3 2.5698 

5 1.4327 2 1., 8467 

1 1.4956 

3 4 0.9714 1 3 1.5262 

2 4 5 1.0278 3 5 1.4840 

1 4 1.0802 1 5 1,, 4164 

2 34 0.9592 1 3 5 1.4701 

3 3 45 0.9902 2 3 5 1.0950 

1 34 0.9998 1 2 5 1.0870 

1 23 4 0.9778 1 2 35 11,0890 

4 2 34 5 0.9780 1 2 45 1.0526 

1 34 5 1.0297 

5 All X's 1., 0145 

R. M. S. R. 
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should be important in regression with the dimensionless variables and 

not in the full regression with fifteen independent variables. The 

variable is not strongly correlated with any of the other variables 

(Table 6.17) and so its explanatory content is not being duplicated in 

the full stepwiBe regression. It is significant, howeverv that in the 

dimensionless context it is only important in combination with other 

variables and not by itself. Indeed, in the combinatorial regression 

of dimensionless variables when taken singly it is the worst variable 

with a R. M. S. R, of 2.5698 (Table 7.6). 

The 'best' regression from the combinatorial regression with dimen- 

sionless variables is given as: 

0.106 X2 + 0.016 X3 + 9.417 X4 Eq. 7.4 

with an R2 of 80.97yo and a R, M. S, R. of 0.9592. This agrees with the 

stepwise equation for iteration 3. but it can be seen that only variables 

X3 and X4 have strongly significant partial P values (Table 7-5). 

Water temperature (X5) is of little importance, not entered at all in the 

stepwise equation and occurring in many of the worst combinations in the 

combinatorial regression. Howevers individually in the combinatorial 

regression it is the second best variable. The importance of beach slope 

in the regressions with dimensionless variables is clear from Tables 7.5 

and 7.6. It accounts for 74% of the variation in the dependent variable 

in the stepwise regression and figures in all the best groupings in the 

combinatorial procedure. It appears that in the absence of wave period as 

an independent variable this is the most significant variable determining 

direction of movement normal to the shore. However, this would not be 

immediately obvious from the other regression results (Table 7-4). With 

all fifteen variables beach slope was not entered until the fourth itera- 

tion and even then only added 0.5% to R2. Nevertheless, it is a variable 

which remains significant at a high probability level for the whole step- 

wise procedure which gives an indication of its importance. As has been 
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noted (Section 7-3), the positive relationship of beach slope which is present 

in all regressions is perhaps unexpected since intuitively a greater off- 

shore movement of material may have been envisaged with steeper slopes. 

Returning to regression analysis with the fifteen independent 

variables two combinatorial regressions were conducted with slight 

differences in the variables omitted from the full list (Table 6.15). 

In the first variables X5, X6, X8 and Xg were omitted and the results 

of the regression are shown in Tables 7.7 and 7.8. With regression 

through the origin the best combination of variables was found to be 

seven with an ff2 of 87.1% and a R. M. S. R. of 0.6131. However, several 

combinations of 6.8 and 9 variables all have R. M. S. R. values below 

0.6400 (Table 7-7). Taken individually X29 X11 and X14 are the best 

variables and X3 the worst, X3 (longshore current velocity) is in fact 

selected second for the stepwise regression but does not retain its 

significance throughout the regression as indicated by the partial F 

values (Tables 7-4). Variables X2 and X11 are the two variables occurr- 

ing most frequently in the best combinations of independent variables 

followed by X10, whilst X4 and X7 occur most in worst combinations 

(Table 7-8). 

There is relatively close agreement between the stepwise and combina- 

torial results although variable X14, entered at iteration 5 in the 

stepwise procedure. has less prominence in the combinatorial groupings, 

occurring only six times in the best combinations. Wave height (X1) again 

is unimportant in the combinatorial regression. Indeed, it does not occur 

in any of the strongest combinations until sets of nine variables are 

taken. Comparing the best combination of variables from the sequential 

regression with the variables included in the stepwise equation at 
iteration 7, it will be seen that two variables are different. Variables 

X3 and X8 in the stepwise are replaced by variables X7 and X12 in 
the combinatorial equation. X3 and X8 are the two variables with lowest 
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Table 7.7 Results Of Combinatorial Regression for Concentration Index Of 

Onshore/Offshore Sand Movement : All X's minus X5. X6v X8 & X9. 

Best Worst 
Three Combinations Three Combinations 

Iteration of X's R. M. S. R. of X's R. M. S. R. 

2 1.0069 3 2.9559 

1 11 1.0452 7 2.8281 

14 1.2464 4 1-8735 

10 11 0.8833 3 7 2.7613 

2 2 3 0.9392 4 7 1-9037 

2 11 0.9432 3 4 1-8977 

2 3 11 0.8006 3 4 7 1.8644 

3 3 10 11 0.8057 3 7 12 1.7718 

2 11 15 0.8081 4 7 15 1.7554 

2 10 11 15 0.7438 1 4 7 15 . 
1-7884 

4 2 3 10 11 0.7741 3 4 7 12 1.6833 

2 3 10 12 0.7751 4 7 12 15 1.6000 

2 10 11 14 15 0.6707 4 7 12 13 15 1-4933 

5 2 4 10 11 15 0-7418 1 4 12 13 15 1-4783 
2 3 10 11 14 0.7471 1 4 7 12 13 1-4770 

2 7 10 11 14 15 0.6323 1 4 7 12 13 15 1-5412 

6 2 3 10 11 14 15 0.6645 1 3 7 10 14 15 1.2949 

2 7 10 12 14 15 0.6720 1 3 4 7 13 15 1.2879 

2 7 10 11 12 14 15 0.6131 1 3 7 10 13 14 15 1.2497 
7 2 3 7 10 11 14 15 0.6494 1 4 7 11 12 13 15 1.1820 

2 7 10 11 13 14 15 0.6555 1 4 7 12 13 14 15 1.1685 

2 3 7 10 11 12 14 15 0.6224 1 3 4 7 11 12 13 14 1.1551 
a 2 7 10 11 12 13 14 15 0.6372 1 3 4 7 12 13 14 15 

2 4 7 10 11 12 14 15 0.6384 1 4 7 11 12 13 14 15 1-0737 

2 3 7 10 11 12 13 14 15 0.6388 1 3 4 7 11 12 13 14 15 1.0961 
9 2 3 47 10 11 12 13 14 0.6463 1 2 3 47 12 13 14 15 1.0500 

1 2 37 10 11 12 14 15 0.6529 1 2 4 7 11 12 13 14 15 1.0274 

2 3 47 10 11 12 13 14 15 o. 6513 1 2 3 47 11 12 13 14 15 1.0419 
10 1 2 37 10 11 12 13 14 15 0.6707 1 2 3 47 10 11 12 13 15 o. 886o 

1 2 347 10 11 12 14 15 0.6800 1 3 4 7 10 11 12 13 14 15 0.8308 

All X's 0.6867 



- 282 - 
/ 

Table 7.8 Most frequentlX occurring variables in #best' combinations' 

of the combinatorial regression, Table 7.7. 

Frequency of Occurrence Frequency of Occurrence 
Variable in Three Best in Three Worst 

No# Combinations of X's Combinations of X's 
(Up to Iteration 6 inc. ) (Up to Iteration 6 inc. ) 

6 

2 14 - 

37a 

41 13 

72 14 

10 11 1 

11 13 - 

12 27 

13 -5 

14 61 

15 7 
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partial F test values and hence least significance in the stepwise 

equation and also X8. of coursev is omitted from the sequential 

procedure. 

In the second combinatorial regression X1 (wave height)was omitted 

and X9 (predicted tide height)reinstated. The results of thist shown 

in Table 7.99 reveal that the change had little effect on the regressions. 

The best combination was exactly as before as were most of the other 

significant combinations. X9 is the second beat variable when the 

variables were taken singly and also occurs in the best bivariate set, 

but thereafter it does not occur. However, the inclusion of X9 instead 

of X1 does appear to have a slight advantage in that the worst combina- 

tions are not quite as bad in terms of their R. M. S. R. values* X1 occurs 

very often in the worst sets of variables (Table 7.10) and its omission 

improves the R. M. S. R. of these combinations. Furthermore, the R. M. S. R. 

of the set of all variables is 0,6797 with Xg but with X1 is slightly 

worse at 0.6867. X99 as indicated by its late inclusion in the stepwise 

equation and the results in Tabl e 7.9, is relatively insignificant. 

Summarieing the findings of this chapter it can be said that, within 

the range of the wave conditions covered by the tracer experiments,, wave 

period was the most important variable in determining direction of sand 

movement normal to the shoreline. It accounted for 78.5% of the variation 

in the dependent variable when StepWiBe regression was conducted through 

the origin with fifteen independent variables and this importance was 

confirmed by combinatorial regression. At the same time, beach slope 

was found to be a significant variable more especially when wave period 

was removed from the regression. Net alongshore direction of sand move- 

ment was found to be largely determined by the direction of longshore 

current flow but the direction of wave thrust through swash/backwash and 
longshore drift had an influence when longshore current was unimportant. 
Although a direct link was found between wind direction and the direction 



Table 7-9 Results of Combinatorial Regression for Concentration index of 

onshore/offshore Sand movement : All X's minus X19 X59 X6 &-X8. 

Best Worst 
Three Combinations Thre e Combinations 

Iteration of X'S R. M. S. R. of X's R. M. S, R, 

2 1.0069 3 2.9559 

1 9 1.0412 7 2.8281 

11 1.0452 4 1.8735 

10 11 O. B833 3 7 2.7613 

2 3 9 0.9230 4 7 1.9037 

9 15 0.9297 3 4 1.8977 

2 3 11 0.8006 3 4 7 1.8644 

3 3 10 11 0.8057 3 7 12 1.7718 

2 11 15 0.8081 4 7 15 1.7564 

2 10 11 15 0.7438 3 4 7 12 1.6833 

4 2 3 10 11 0.7741 4 7 12 15 1.6000 

2 3 10 12 0.7751 3 4 7 15 1.5372 

2 10 11 14 15 0.6707 4 7 12 13 15 1.4933 

5 2 3 10 11 15 0.7418 3 4 7 12 15 1.3499 
2 3 10 11 14 0.7471 3 4 7 13 15 1.3114 

2 7 10 11 14 15 0.6323 3 4 7 12 13 15 1.2209 
6 2 3 10 11 14 15 o. 6645 4 7 11 12 13 15 1.1445 

2 7 10 12 14 15 0.6720 4 7 9 10 13 14 1.1269 

2 7 10 11 12 14 15 0.6131 4 7 11 12 13 14 15 10106 
7 2 3 7 10 11 14 15 0.6494 3 4 7 12 13 14 15 1.1103 

2 7 10 11 13 14 15 0.6555 2 3 7 9 10 13 14 1.1029 

2 3 7 10 11 12 14 15 0.6224 3 4 7 11 12 13 14 15 1 . 0989 
8 2 7 10 11 12 13 14 15 0.6372 3 4 7 9 12 13 14 15 1.0802 

2 4 7 10 11 12 14 15 0.6384 2 3 4 79 10 13 14 1.0534 

2 3 7 10 11 12 13 14 15 0.6388 2 3 4 79 12 13 14 15 110119 
9 2 3 4 7 10 11 12 14 15 0.6463 2 3 4 79 10 13 14 15 1.0052 

2 3 7 9 10 11 12 14 15 0.6516 2 3 4 7 11 12 13 14 15 0.9918 

2 3 4 7 10 11 12 13 14 15 0.6513 2 3 4 79 11 12 13 14 15 0.9252 
10 2 3 7 9 10 11 12 13 14 15 0.6665 3 4 7 9 10 11 12 13 14 15 0.8329 

2 3 4 79 10 11 12 14 15 0.8226 2 3 7 9 10 11 12 13 14 15 0.8226 

All X's 0.6797 
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Table 7.10 Most frequently occurring variables in the best combinations 

of the combinatorial reEessiong Table 7.9. 

Frequency of Occurrence Frequency of Occurrence 
Variable in Three Best in Three Worst 

No. Combinations of X's Combinations of X's 
(Up to Iteration 61nc. ) (Up to Iteration 6 inc. ) 

2 12 - 

3 10 

4 14 

72 15 

921 

10 11 1 

11 12 1 

12 26 

13 -5 

14 51 

15 88 

IIi 
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of sand movement normal to the shorelineq confirming King's (1972) 

suggestions, other analysis concerning breaker type, wave steepness 

and bottom orbital velocities provided conflicting results with previous 

findings. Howeverg this may largely be accounted for by fundamental 

differences between the field tests in this study and those of previous 

studies, especially the fact that movement of sediment, as measured in 

this study, was the product of several dynamic nearshore zones and 

their respective dominant processes rather than one specific zone, 
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CHAPTER 8 

EVALUATION OFTHE MODEL 

8: 1 Introduction 

In the previous two chapters selection procedures have been used 

to produce sets of variables ýihich beat explain the variation in a 

series of dependent variables describing direction and amount of sand 

movement, Amount of sand movement was divided into alongshore and 

onshore/offshore components and direction was also considered on the 

basis of the distinction between onshore or offshore and alongshore 

to the north or to the south with respect to the line of this part of 

the coast. Using the equations produced by the analysis it is possible 

to predict the nature of the various aspects of sand movement given the 

necessary input information. Each aspect can be treated separately so 

that, for exampleg it can be stated whether sand movement will be onshore 

or offshore given certain conditions over a tidal cycle. On the other 

hand, all the separate equations may be used together to predict the 

position of average tracer movement. 

In this chapter the success of the regression equations as predictive 

models will be assessed and tested using data collected independently of 

this study. A summary of findings from the study is given in Section 8: 3 

and a final consideration of the exploratory nature of the study made in 

Section 8: 4. 

8: 2 The predictive model 

A distinction must be made between the prediction based upon theory 

and that based upon empirical modelling such as that employed in this 

study. Physical or mathematical models based on universally valid state- 

ments will predict responses that should arise from the physical processes 

specified in the modelq whilst statistical models will predict responses 
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that areltruel within specified limits. Prediction from a statistical 

model is achieved through interpolation within$ or extrapolation beyondq 

the range of values assumed by the variables within the model. Thus, 

the prediction of beach slope from the regression of this variable on 

mean grain size will only be legitimate within the range of values of 

grain size for that particular sample of points, On the other hand, it 

is possible to predict at what speed a freely falling object will hit 

the ground9after falling from particular heights, for any sample of 

heights because the law of gravity is universally applicable and derived 

from physical theory. Although prediction stemming from statistical 

inference is in some respects a more dangerous and a more limited affair 

it is nevertheless a valid and widely used technique, 

The 'best' equations suggested by the regression analysis of the 

previous two chapters are shown in Table 8.1, It was noted in Section 

6: 3 that practical considerations such as ease of measurement or cost 

of measurement of certain variables may be important factors when con- 

sidering the number or type of variables in a predictor equation and as 

a result equations are also shown in Table 8.1 other than those shown 

on the basis of 52 calculations, Data collected independently of this 

study is-used to teat the predictive efficiency of the models as this 

is probably the most practical and convincing test of significance. 

The data was collected during tracer experiments conducted on the 5.3-77 

and 1.6-77 on the lower part of the beach at SkegneBs and values of 

independent variables were substituted in the listed equations. The 

'best' results of this are shown in Table 8,2 along with the actual 

figures for sand movement as revealed by the dispersion of the tracer. 

In general, all the equations tended to overestimate the amount of 

alongshorp sand movement and underestimate the distance moved normal to 

the shoreline . In particular the alongshore movement for 5.3-77 was 
overestimated but the predictions for 1.6-77 were in the main far closer 
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Table 8.2 Comparison ofbest predictions with observed values 

Observed Best Predicted Confidence 
Value Value Limits (95%) 

Amount of movement 
alongshore (m) 

5.3-77 1.498 11-017 (Eq-8-3) -13-817 35-850 

1.6-77 10-585 16-479 ( I' ) 
- 0.928 33.886 

Amount of movement 
onshore/offshore (m) 

5.3-77 1.175 0.646 (Eq. 6.6) - 4.579 5.872 

1.6-77 3.255 1.433 - 3.949 6.815 

Direction of Movement 
onshore/offshore (Dimensionless) 

5.3-77 0.989 0-945 (Eq. 8.11) 0.298 1.592 

1.6-77 0-951 0.6% (, ) 0.055 1-156 
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to reality. Of the equations for average distance moved onshore/ 

offshore only equation 8.6 gave meaningful results since negative 

values were obtained from the other two equations, The prediction of 

direction in gross terms, onshore or offshore, was correct for both 

experiments when the equations for the index of direction were taken 

except when the stepwise equation with 5 X's was used. Precise values 

of the concentration index wereq however, underestimated. for both 

experiments with all equations. Equation 8.11 provided the closest 

predicted values, It Must be pointed out that in prediction from a 

, statistical model the predicted values should range from PIUB to Minus 

infinity and be normally distributed. Consequently negative values are 

shown in Table 8*2. Howeverp in reality values less than zero are 

meaningless and may be treated. as zero. 

When all the best predictions are combined it is possible to plot 

the predicted position of the centre of gravity of the dispersed tracer 

cloud for each testg Figure 8.1. Using the longshore current direction 

to predict the dominant alongshore vector of sediment motion and the 

concentration index equation 8,11 for the onBhore/offshore direotiont 

the correct quadrant of the graph for the location of the mean point is 

predicted. Howeverg when the predicted average distances of movement 

are used as coordinates for the mean point within the quadrant the amount, 

of error is clearly visible. 

Since the regression model is a statistical one it is possible to 

place confidence limits around the predicted values. The predicted 

values given by the regression equation represent the mean of all possible 

values of the dependent variable given the independent variable inputs. 

Assuming that the forecast error, that is the difference between observed 

and predicted values, is normally distributed, with a mean of 0 then an 

unbiased estimator of the variance of the forecast error, a2 ft is shown 

by Kmenta (1971) to be given by: 



Figure 8.1. 
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S2 = 82 [1 + .1+ (xo 1 (x 1 
X)-l (xo Eq. 6.12 fn 

where s= unbiased estimator of observed Y values. 

Then 

y-y 
0ot n-k Eq. 6.13 

Sf 

where n= number of observationsl and 

number of coefficients j 

can be used to construct a forecast interval with any chosen probability 

level. The results of these calculations for the two sets of test data 

used in this section with the 'best' predictors are incorporated in 

Table 8.2. It will be seen that for all aspects of sand movement 

modelled by regression methods the actual observed value for the two 
cc 

experiments falls well within the 95% confiden/ limits placed around 

the predicted values. This is an indication of the relative efficiency 

of the equation band around any predicted points, At the same time, of 

course, a different sample may produce a different regression equation 

but it would be expected to contain the same explanatory variables with 

roughly the same importance. Improvement of the explanatory and predic- 

tive strength of the regression models would also be achieved through the use 

of more accurate data, that is by reducing the measurement error inherent 

in the -data, In this context the improved methods of measuring some 

of the process variables such as wave height and period and current 

speeds using semi-continuous electronic instrumentation, as mentioned 

in Chapter 2 and described in Appendix 19 would be greatly beneficial 

to further study. 

When dealing with simple linear regression it is usual to conduct 

an analysis of the residuals. Maddala (1977) states that '$One of the 

most important and informative parts of the analysis in regression 
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equations is the analysis of residuals.,, However, with the multiple 

regression model a complete analysis is more difficult. Purthermoret 

since the data used in this analysis is not a time series in the sense 

of being regular observations on particular variables and the amount 

and direction of sand movement will not be affected by preceding values 

of these variables, in time or spaceg as measured in this study, it is 

unnecessary to test for autocorrelation amongst the disturbances, Never- 

theless a plot of the residuals (Y - Y) against the predicted (Y) values 

for each of the three best equations B-3.8.6 and 8.11 shows a random 

distribution of points (Figures 8.2 - 8-4). It would appear from this 

that the equations have been correctly specified and that the linear model 

is appropriate. This is not to say that further rearrangement 

and re-specification of the models could not be carried out. It has 

already been pointed out that some variables were not included because 

they were not measured or could not be measured consistently, Variables 

such as the height of the water table in the beach and swash/backwash 

velocities may add to the power of the models in the presence of the 

included predictors, In addition, the re-expression of some of the exist- 

ing variables may also improve the explanatory content and predictive 

capacity of the equations. For example, the inclusion of a transformed 

grain size variable such as the root of mean grain size may improve the 

contribution of this particular predictor. Also re-expression of the time 

variable may improve the efficiency of the equations, Instead of the 

total length of time the tracer was covered by the tide this could be 

replaced by estimates of the time the tracer SourCe was covered by 

particular dynamic zones. Thus9there is much scope for further 

investigation, 

In a predictive sense it is dangerous to state that the equations 

listed are totally successful on the basis of two sets of test data, 

Nevertheless the models are encouraging as a first step and although the 



- 295 - 
Figure 8.2. 

Residual 
(ý-Y) 

metres 

Figure 8.4. 

20 

is 

10 

5 

0 

-5 

-10 

-15 

-20 
-10 .6 

Residual 

(ý-Y) 

metres 

4 

3. 

2 

1" 

0 

-1 

-2 

-3 

.4 

-5 

-1 

05 10 is 20 25 30 35 40 

Predicted Movement metres 

23456 
Predicted Movement 

metres 



Figure 8,2, 

Residual 
(ý -Y) 

metres 

Figure 8.4. 

Residual 
(-ý - Y) 
metres 

- 295 

20 

15 

10 

5 

0 

-5 

-10 

-15 

-20 
-10 -5 

4 

3 

2 

1 

0 

-1 

-2 

.3 

-4 

-5 

-6 

-1 

5 10 15 20 25 30 35 40 

Predicted Movement metres 

34567 
Predicted Movement 

metres 



- 296 - 

Figure 8-3- 
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equations were developed with data from the Lincolnshire coast this is 

not to say that they could not be applied more generally to beaches in 

other areas with similar conditions of beach morphology, tidal character- 

istics and wave climate. 

Using the three predictor equationsv plus direction of longshore 

current flow to estimate direction of movement alongshore, it is 

possible to derive the average direction and distance of movement of 

sand grains from a particular point on the beach. Further work may lead 

to the development of a simulation-type model of sand movement from these 

initial regression equations. Additionally, particular aspects of sand 

movement may be modelled separately as for example prediction of the net 

direction of movement normal to the shoreline, With respect to direction 

of movement the use of regression type methods with circular data would 

provide interesting comparisons. 

8: 3 Summary offindings 

In this study a specific field procedure was developed for the use 

of fluorescent tracer techniques under macro-tidal conditions with limited 

manpower and equipment. The procedure was tailored to the needs of this 

study in the light of the problems encountered and under different circum- 

stances may not be ideal. Indeed, with greater inputs of manpower and 

equipment two major improvements to the field method would be the use of 

core sampling devices and multiple sampling throughout the tidal cycle. 

One serious drawback to the general tracer method was found to be the 

lack of control over actual amounts of tracer released from the injection 

point due to the unpredictability of erosional and depositional episodes 
during the tidal cycle. Electronic instrumentation was developed to 

provide improved measurements of wave and current characteristics but 

this was not available for the fieldwork conducted in the present study. 
Attention has been focussed solely on bed-load transport because 
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tracers are not amenable to the study of suspended sediment movement in 

the field. The relative importance of each mode of transportation in 

total sediment movement is a matter of controversy but recent direct 

observations over the entire surf zone by Brenninkmeyer (1975) 

suggested that suspended sediment movement is much less important than 

bed-load transport. 

In the first part of this study the results of individual tracer 

experiments and specific tests were considered. Acknowledging any 

limitations of the field technique and working over the fundamental beach 

time unit of one tidal cycle, it was shown that in this strongly tidal 

environment sediment movement patterns across the foreshore were complex, 

Probably because of the differences in the period of operation of partic- 

ular dynamic zones over specific parts of the beach considerable differ- 

ences in the measured rates of sediment movement were discovered across 

the width of the foreBhore. In addition to this it was found that general 

sand movement could be in opposite directions on different parts of the 

foreshore during the same tidal cycle. This was in part explained by 

the influence of tidal currents on the lower beach for which there was 

confirmatory evidence at Gibraltar Point. Morphological effects were 

also important in this respect through wave refraction, In general it 

was found that alongshore components of movement were far stronger at 

Gibraltar Point than further north at Skegness and that sand movement 

both alongshore and normal to the beach was greater on the upper of two 

beach ridges than the lower, 

Tests conducted to study differential grain size movements were 

inconclusive but did show that sorting was not taking place through the 

movement of different sized grains in contrasting directions, Howevert 

different rates of movement were observed for different groups of size 

fractions. Grains of 20 and larger were found to move shorter distances 

on average than finer grains. 
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The data from the tracer experiments was used to test two models 

often employed in the prediction of longshore sand transport rates. The 

results supported Komar's (1969) findings that both wave energy flux and 

Inman and Bagnold's (1963) energetics model were successful in relating 

longshore sand transport to wave and current characteristics. Proportion- 

ality coefficients of 0.525 and 0.179 were produced from this study 

compared with 0.77 and 0.28 from Komar's results, 

In the second part of this study, a more general model of sand 

movement was proposed using multiple regression analysis. This was 

successfully tested with independently collected data. Wave height,, 

accounting for 61.3% of the variation in the dependent variable, was 

found to be the most important variable affecting the average distance 

moved by sand grains alongshore. Water temperature, beach slope and 

longshore current velocity were also found to be of significance. Beach 

slope was found to account for 59,29/o of the variation of average distance 

of sand movement normal to the shoreline but the addition of later 

variables to the regression equation produced only slight improvements. 

The absence of mean grain size from predictor equations was thought to 

be the result of strong intercorrelations between certain independent 

variables but the complexity of the system under study and the complicated 

role of grain size within that system could also account for this. 

Direction of sand movement alongshore was seen to be determined largely 

by the direction of longshore current flow but normal to the shoreline 

wave period was found to account for 78.55t') of the variation in the index 

of net movement, used as an indicator of movement direction onshore/ 

offshore. At the same time beach slope was also found to be important, 

especially when wave period was omitted from consideration. 

The three equations found to be the best predictors based on 

independently collected data were as follows: 

a) Average distance moved by sand grains alongshore: 

i 
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T= 46-460 XI - 0.376 X14 + 418-192 Xll + 0.188 X3 

+ 1*922 X8 16.069 X15 + 2.333 X13 - 1.839 X12 

+ 3.441 X10 1.429 X2 - 29-406 X16 - 0.413 X6 

- 0.644 X7 0.100 X4 Eq. 8.3 

N. B, For list of variables see Table 6-7 

b) Average distance moved by sand grains onshore/offshore: 

Y= 118.709 X10 - 0-091 X8 + 5.252 Xl - 0.744 X9 

0.383 Xll Eq. a. 6 

N. B* Por list of variables see Table 6.5 

c) Direction of movement normal to shoreline: 

Y=0.146 X2 - 0,029 X7 + 21.697 X10 + 0.087 x1l 

0.112 X12 - 0.626 X14 - 1.298 X15 'Eq. 8.11 

N. B. For list of variables see Table 6.5 
equations 

Using these/togethert in conjunction with longshore current direction 

to predict direction of alongshore sand movement, it was found possible 

to roughly predict the average amount and direction of grain movement 

from a particular point on the beach, Alternatively, specific aspects 

of sand movement could be modelled using the individual equations, 

8: 4 Conclusion 

Field data concerning direct - observation of sand movement is 
Sr-A4-C, C 

relatively unqoýfion and in the past tracer techniques have largely been 

used to study individual aspects of sand movement such as, in particular, 

longshore sand transport rates. Alternativelyq specific dynamic zones 

have been studied, Murray (1967) for example considered onshore/offshore ' 

sand movement in the shoaling wave zone and Siebold (1963) was concerned 

with the offshore zone. Inglets. (1966) work covered a wide range 

of topics relating to the various nearshore zones but only simple relation- 

ships were investigated largely in a qualitative manner, In this study 

the net results of processes operating in a succession of dynamic Zones 
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(Figure 8-5) over the whole tidal cycle were observed and, following the 

assumption that the tracers employed were acting as efficient surrogates 

for the beach sand, the results of individual tracer experiments were 

scrutinised and an attempt made to model both amount and direction of 

sand movement. In this attempt the complex relationships of a compli- 

cated system were studied. 

The empirical approach adopted was very much of an exploratory 

nature with multiple regression analysis employed as the means of investi- 

gating relationships within the data Bet. Since the period known as the 

'quantitative revolution' in geography two opposing standpoints have been 

taken by users of multivariate methods and research workers in geography 

generally, On the one hand the use of deductive$ scientific methods has 

been encouraged with investigation proceeding from hypothesis formulation 

based on existing theory, through testing using collected data relevant 

to the hypothesisg to final development of new laws. In this framework 

the role of multivariate analysis is seen as purely confirmatory. However, 

on the other hand the inductive or Baconian approach to scientific 

explanation is also widely used, In this approach empirical regularities 

are sought which can be transformed into postulated universal laws which 

in turn when linked will produce a body of theory capable of predicting 

the observed regularities (Harvey, 1969). Within this procedure, 

commonly used in disciplines where a firm basis of theory has not yet 

been establishedg multivariate techniques are employed in an exploratory 

manner, to suggest rather than confirm hypotheses. For example Krumbein 

(1976) proposes that in the framework of sequential modelling most 

standard least squares techniques are used as search models rather than 

end products. 

The lack of a formal hypothesis as a base in the exploratory approdch 

may in some cases lead to error but Tukey (1967) points out that 11 Oeeo 
no conclusion or inference ever becomes knowledge without risk of error*" 
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Tukey also stresses the need to view the two approaches to scientific 

explanation not solely as competing alternatives but as complementary 

paths to the creation of theory: "Both detection and adjudication play 

crucial roles in the progress of science as in the control of crime. " 

Although much work in physical geography follows the deductive 

model of the scientific method many examples of the valuable use of 

the exploratoryg inductive approach do exist, In coastal studies 

Harrison's predictor equations of various aspects of the beach-ocean- 

atmosphere system produced by regression methods have already been dis- 

cussed (Chapters 6 and 7). Work by Krumbein and others of a similar nature 

has also been mentioned and has played an important role in furthering the 

understanding of these systems. In hydrology the Stanford Watershed Model 

developed by Crawford and Linsley (1966) and the USDAHL model of watershed 

hydrology (Holtan et al. 1975) are just two examples of the results of 

the exploratory approach. The latter model is described by Holtan and 

Lopez as a series of empiricisms selected to provide a mathematical 

continuum from ridgetop to watershed outlet in terms of input information 

readily available to the analyst, " Finallyq Melton (1957) provides an 

example of the exploratory approach in an analysis of relationships 

among elements of climate, surface properties and geomorphology. 

In employing the multiple regression analysis in an exploratory 

design the problem of accounting for sediment movement in terms of amount 

and direction is viewed as a process response type system with complex 

relationships and feedback loops. This allows the sets of variables 

under consideration to be viewed as a whole rather than as a series of 

simpler relationships. Figure 8.5 demonstrates the complexity of the 

overall system and it is this very complexity plus the lack of a 

comprehensive body of theory to explain many of the observed relation- 

ships which suggests the utility of exploratory investigations which 

in turn may lead to the development of theory. 
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Tt is hoped that the exploratory analysis described in this study 

might form the basis of future work on sediment movement problems and 

that refined versions of predictive models may be produced. Dispersion 

of tracer with depth is at present being studied whilst movement of sand 

in suspension should also be considered if a model of total sand trans- 

port is required. This study was largely concerned with understanding 

and modelling the processes involved in short-term sand movements but 

building upon this type of workprobabilistic methods may be used to 

predict more accurately the longer termg larger scale foreshore sediment 

movements which are not only of academic interest but of great practical 

importance both to the engineer and the local community. Prediction of 

future trends at Skegness, for example, are greatly needed in view of 

the plans for the development of the foreshore and the importance of the 

beach as a tourist asset in what is at present an area of foreshore 

erosion* 

Finally, in view of the complexity of the system studied in the 

foregoing discussion and the nature of the work conducted for this 

dissertation it is perhaps pertinent to recall the words of the 

following quotation: 

"I do not know what I may appear to the world; 
but to myself I seem to have been only a boy 
playing on the seashore and diverting myself 
and now and then finding a smoother pebble or 
a prettier shell than ordinary, while the 
great oceans of truth lay undiscovered before 
me. " 

(Newton) 
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APPENDIX 1 

INSTRUMENTATION 

Because of the relative inaccuracy and discontinuous nature of 

wave measurements made with a metre staff held in the breaking wave zone 

an attempt was made to produce a semi-continuous wave recording system 

which would enable accurate measurements of wave height, wave period 

and angle of wave approach to be made. 

The system devised consists of a resin moulded wave polev a synchro- 

niser, a power source and a tape recorder. In the field these are linked 

by a length of three core cablev from the measuring pole at the required 

point on the beach to the tape recorder in a 'dry' position in the dunes, 

at the back of the beach. Power supply for the system is provided by a 

9 volt rechargeable power pack. 

The pole itself is constructed from an inner polypropylene tube 

approximately 2.5 metres long and of 33mm diameter into which 2BA stain- 

less steel bolts are driven at intervals of four centimetres. This 

distance represents the accuracy of wave height measurement and can be 

varied accordingly. The bolts are positioned so that on moulding the 

bolt heads are flush with the resin surface and hence able to act as 

electrical contacts. They are also positioned in rings of three around 

the tube, although again this number may be varied. At intervals. offset 

from rings of bolts inserted to act as 'live' contacts, rings of bolts to 

act as earth contacts are included. The poles built for experiments in 

this study contained 60 rings of live contacts and 10 rings of earth con- 

tacts and consequently were able to measure waves up to about 1-5 metres 

in height. Solid core wire is attached to each ring of bolts and linked 

to the top of the pole through the inner polypropylene tube. Details 

of the pole are shown in Figure A1.1 and also Plate A1.1. 

Once tested the inner tube is then cast in polyester resin in a tube 



Polypropylene 

Bolt Head 
Acts As 
Contact 

; tainless 
ýteel Bolt 

Polyester Resin 

Figure A1.1. Tnternal details of wave pole. 

Plate A1.1. Detail of completed wave pole (foreground). Pole fixed 
to beach face with concrete base and guy ropes (background). 
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Each Of Contacts 
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mould approximately 50cm in diameter and three metres long. The pole is 

completed by the attachment of electronic circuitry enclosed in a sealed 

tube to the top of the pole. Figure A1.2, 

The operation of the system is based upon the differential resistance 

changes occurring at the live contacts when power is passed through the 

pole and the water level around the pole oscillates with the passage of 

waves. The circuitry at the top of the pole electronically counto the 

number of stainless steel sensors under water at any given time. This 

number is converted to a tone and recorded on the tape recorder at a 

remote location, The recorded frequency is later analysed by means of a 

digital decoder to retrieve the original wave height values. The speed 

of operation of the pole, that is the speed at which the sensors are 

countedg can be varied so that the actual shape of the waves passing the 

pole can also be recorded. Output from the digital decoder in the form 

of paper tape is directly available for computer processing, Figure A1.3 

is an example of the plot of wave recordings made with the system, The 

rising trend of the plot indicates the incoming tide upon which is super- 

imposed the wave oscillations themselves. From plots of this nature wave 

height and period calculations can easily be made. 

When in use in the field the pole is linked to the tape recorder 

through a tone synchroniser, Figure A1.2. Its function is to synchronise 

the signals from several poles so that recordings made on different tape 

recorders can be made exactly contemporaneous. This enables information 

on wave approach to be collected. Given a series of wave poles positioned 

accordingly on the beach faceg the arrival of the same wave front at 

different points in space and time can be recorded and an exact time com- 

pariBon made by means of curve comparison,, The mode of operation of the 

synchroniser is to chop the signals from the poles into equal space periods 

and to transmit these periods to tape recorders at exactly the same time. 

The frequency of signal chopping can be varied to accommodate the period 
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of different wave trains. 

All electronic circuitry including custom built circuit boards, was 

assembled in the Geography Department but design of circuitry was assisted 

by Dr, C, Paull of the Electrical Engineering Department. Refinement of 

the system is a continuing process and more recent development will be 

detailed'by E. J. Fraser. 

Use of the system in the field in this study was limited because of 

the considerable development time involved. To maintain consistency for 

all tracer experiments hand measurements of wave characteristics were 

used for analysis, However, when used one of the major difficulties 

encountered was the secure emplacement of the wave pole on the beach 

face. A system of guys and concrete block anchoring points were devised 

which held the pole vertical in a concrete base and socket. (Pigure A1.2). 

Constant attention to guying was found necessary especially under rough 

conditions because of slight movements of the anchoring blocks, In 

severe cases this movement allowed free movement of the pole itself which 

on some occasions resulted in pole collapse. Later changes included the 

replacement of concrete blocks as anchor points with large augur attach- 

ments and these were found to be more successful. 

A second piece of instrumentation developed in the Geography Depart- 

ment but used only infrequently in this particular study was a device 

designed to measure currents. This instrument shown in Figure A1.4 and 

Plate A1.2 was developed principally to measure tidal currents near the 

seabed in the offshore zoneg but was also used to monitor currents on the 

lower beach. The instrument consists of two columnag fixed in a resin blockg 

about 1m longg holding strain gauges. Within the base block electric cir- 

cuitry Is embedded facilitating the operation of the device. When in use 

at sea the instrument on the seabed is linked to a recording system 

contained in a buoy at the surface by three core cable (Figure A1.5). 

The operation of the instrument is based on the movement of the 
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Figure A1.4, Details of straingauge current meter. 

Recording 
Instrumen 
Top Sect io 

Current 
er 

Concrete 
Anchor 

Figure A1.5. Schematic field layout of current meter 
system 
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strain gauges which causes a change in their electrical resistance 

dependent upon the pressure put upon them. The change in resistance is 

converted to a frequency or tone and hence any change in the tone given 

off by a sensor is proportional to the amount of bending of the gauges 

by the currents. Direction of change in frequency is related to the 

direction of pressure and two sensors were used to ensure that direction 

of flow as well as current velocity is measured. The actual recording 

procedure is as described for the wave pole system in that a chopped tone 

is held on cassette tape and then converted to digital form by means of 

a decoder. Because the device was designed to measure relatively slowly 

changing tidal currents intermittent sampling was used with a few seconds' 

burst of recording occurring at selected periods ranging from 2 to 16 

minutes. A more detailed description of the design, construction and 

operation of this instrument can be found in Russell (1978). 

. 
Currents on the lower beach at Skegness and Gibraltar Point were 

recorded with this instrument and the results can be seen in Figures A1.6 

to A1.11. The calibration curve for the instruments relating tone change 

expressed in gms. of force to current speed in cm/sec is shown in Figure 

A1.12 and from this current speeds can be obtained using the directional 

plot of-the current meter records. 
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Figure A1.9, Plot of tidal currents measured on the lower 
foreshore at Gibraltar Point 22-23-11-76. 
Recording height 34cm above the bed. Tidal 
heights 7-4m and 7.4m. Instrument disturbed 
after 4 hours, 
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APPENDIX 2 

Profiles and tracer maps for experiments not specifically 

mentioned in text: Gibraltar Point (H2 and H3 profiles). 



- 321 - 

4 

-J 
4 

S 

S 

c\J 

to 
N 

co 
U9 d 
ilull 

LLJ 
LL- 2 

R! 

S 

-J . 0) 
S 

NIIPM*aoo na3w 

C4 A 



- 322- 

Figure A2.2. 

28 2 76 UPPEB BIDGE H2 Y 

10 METRES 

Injection Point 

Pigure A2.3. 

28 2 76 UPPEB BIDGE H2 B 

Z' 6 tr 
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* Injection Point 

N, B. Comparison with above map shows diff6rence between 

use of 'artificial' tracer (A2.3) and 'natural' tracer 
(A2,2), 
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Figure A2.11. Tracer maps for grain size test 7.9-76 lower ridge 113t 
first sample, one tidal cycle. 
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23-10-76 Lower Ridge H3 Blue 0-21mm 
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Figure A2,18. Tracer maps for grain size test 23.10.76 113. 
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Profiles and tracer maps for experiments not 

specifically mentioned in text: Skegness (El profile). 
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Figure A2.23 Tracer maps for grain size test 
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