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ABSTRACT

The productivity of two spatial arrangements of a perennial pigeonpea/groundnut
agroforestry system was examined in relation to the capture and use of light and
water and alterations in microclimatic conditions. Line planted (5.4 m alleys) and
dispersed arrangements (1.8 x 1.2 m spacing) of pigeonpea were compared, using
populations of 0.5 plants m? for pigeonpea and 33 plants m? (0.3 x 0.1 m spacing)

for groundnut in both treatments. Sole pigeonpea and groundnut treatments were
included for comparison.

The experiment was conducted between July 1989 and March 1991 on a 0.6 ha plot
of Alfisol at ICRISAT Center, Andhra Pradesh, India, using a randomised block
design with four replications. The first groundnut harvest took place in October
1989, while pigeonpea was harvested for grain and fodder in January 1990, and was
cut to a height of 0.5 m during the 1990 dry season and again in August 1990 after

a second groundnut crop was sown. The second groundnut harvest took place in

November 1990 and the final pigeonpea grain harvest was in January 1991.

Light interception, soil and leaf temperatures and saturation deficit were continuously
monitored in all treatments and at various distances from the pigeonpea in the line
and dispersed treatments, whilst windspeed was monitored at a single location in
each treatment. Regular destructive samples of groundnut were used to establish
effects on growth and development and the results were considered in relation to the

concurrent physical measurements to determine the environmental factors influencing

productivity.

In order to establish a water balance, rainfall records were maintained, runoff plots

were installed and soil moisture content was measured regularly throughout the

drying cycle. Transpiration by pigeonpea was monitored using a heat balance

technique, while transpiration by groundnut and soil surface evaporation were

estimated from micrometeorological data.

As pigeonpea 1s initially slow growing, there was little reduction in groundnut yield
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in either the line or dispersed treatments in 1989 and there was a slight intercrop
advantage in overall biomass production when expressed in the terms of the land
equivalent ratios. In 1990, groundnut pod yield was reduced by 20 and 44 % in the
line and dispersed treatments relative to the sole crop, despite substantial increases
in the light conversion coefficient for the shaded groundnut. The lower pod yield
resulted from the delayed onset of pod initiation and a slower rate of development,
and was mainly due the effects of shading by the pigeonpea canopy, although mild
water stress may have been a minor contributory factor. The small reductions in
saturation deficit and soil and leaf temperatures experienced by the shaded groundnut
had a negligible effect on growth and development. There was a considerable
increase in overall biomass production in the line and dispersed treatments as
compared with 1989 due to rapid pigeonpea growth, which reflected an increase in
overall resource use rather than in the light conversion coefficient or water use ratios

of the systems.

The influence of spatial arrangement on the growth and productivity of pigeonpea
became apparent after the 1990 dry season. Biomass production by pigeonpea in the
dispersed treatment was approximately double that of the line planting between
August 1990 and January 1991. This was entirely due to increased transpiration by
the dispersed pigeonpea as a result of greater utilisation of stored soil moisture and
reduced losses by surface evaporation and deep drainage. There was no difference
in the water use ratio. To examine further the mechanisms responsible for the
differences in productivity and water use by the line and dispersed pigeonpea, trench
profile methodology was used to examine the root systems in December 1990. The
root system of the dispersed pigeonpea was distributed over the entire 2.0 m depth
x 2.7 m width exposed soil profile, whilst that of the line arrangement occupied no

more than 50 % of the same area.

The results of this work are discussed in relation to previous studies of resource use
and productivity in intercropping and agroforestry systems, and possible applications
and future developments are considered. Finally, the major physical and socio-
economic factors determining the potential of perennial pigeonpea/groundnut

agroforestry systems for adoption by farmers in semi-arid India are discussed.
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Chapter 1: INTRODUCTION

1.1 CONSTRAINTS TO FARMING IN THE SEMI-ARID TROPICS

Whilst population pressure has made it necessary to forego the traditional fallow
pertods, farmers face an ever-increasing challenge to maintain the productivity of
intensively farmed areas within the constraints of the tropical environment (Dennett,
1984). Physical, chemical and biological deterioration leads to a rapid decline in the
fertility and structure of tropical soils (Young, 1976), resulting in a progressive
depletion of renewable resources and rapid land degradation. Extensive deforestation
1s causing further land degradation and destroying water-sheds, leading to increased
risk from droughts and floods (Rocheleau er al., 1988). The energy crisis in India
and elsewhere, which has led to the commercialisation of fuelwood (Dendukun et
al., 1993), 1s accelerating this process. In addition, the scarcity of fuelwood forces

the rural poor to use animal dung and crop residues for fuel which might otherwise

have been used to improve the soil.

In the semi-arid tropics (SAT), the limited cropping period- creates additional
problems, such as scarcity of fodder during the dry season and labour shortages
during peak periods. Not only is crop production generally confined to the rainy
season, but periods of drought at this time may cause major yield reductions
(Sinclair, 1988). There 1s also a risk of extensive damage by pests and diseases.
Thus, it is necessary to adopt agricultural practices that maintain Or ncrease
productivity and also stabilise yields during the poorest years. In traditional farming

systems, the risk of complete crop failure may be reduced by using mixed cropping
systems (Ruthenberg, 1980).

In addition to the environmental constraints, numerous socio-economic factors
contribute to a lack of security of food supply in many developing countries. These
include political instability, lack of infrastructure to support production and

marketing of agricultural products and policies that focus on export crops (Brady,
1993).



1.2 AGRICULTURAL DEVELOPMENT STRATEGIES IN THE TROPICS

It became clear in the early 1970s that development policies to replace forests and
increase agricultural production were not adequately addressing the problems of the
rural poor (Nair, 1989). For example, although ’green revolution’ technologies had
proved tremendously successful in increasing overall food production in some
countries (Brown, 1970; Simmonds, 1979), resource-poor farmers were not able to
participate. The spectacular success of the green revolution in India has led to self-
sufficiency in food grain production but, whilst considerable efforts were made to
include small scale-farmers (Brady, 1993), those with good physical and biological
farming environments benefitted most (Sharma, 1992). In addition, tree planting
programmes were generally planned by and for the benefit of foresters to produce
economic yield, often at the expense of the natural forest and the rural poor. For
example, in community forestry programmes in India, grazing land is often replaced

by non-browsable species that are planted for cash rather than rural needs (Chambers
et al., 1989).

Whilst early development projects attempted to introduce agricultural technologies,
often developed in temperate regions, there was little research to test the efficacy
and improve the productivity of indigenous agricultural production systems (Nyagah,
1979). Although there may be a case for importing certain universal technologies,
these must be integrated very carefully with indigenous technologies and adapted to
local needs (Wilson, 1993). The linkages between farmers and the many
organisations involved in development must be improved, and an integrated approach
to development adopted. By this means, development strategies which combine

alleviation of poverty with sustainable agricultural production and environmental

protection can be pursued.

1.2.1 Agroforestry

A need for research into land-use technologies that spanned the established
disciplines of forestry and agriculture was recognised in the early 1970s. There are



numerous definitions of agroforestry, but the following description has been
extensively used by the International Centre for Research in Agroforestry (ICRAF,

Nairobi), and has been widely accepted by the research commmunity (Nair, 1989):

‘Agroforestry is a collective name for land-use systems and technologies
where woody perennials (trees, shrubs, palms, bamboos, etc) are deliberately
used on the same land management units as agricultural crops andlor
animals, in some form of spatial arrangement or temporal sequence. In

agroforestry systems there are both ecological and economical interactions

between the different components (Lungren and Raintree, 1982).’

Agroforestry provides the opportunity to apply specialised knowledge and skills to
adapt or develop sustainable rural production systems in the light of new constraints

on production, and to maintain or restore soil and water resources (Rocheleau ez al.,

1988). Agroforestry is also an important technology for addressing the particular

problems of the rural poor because the use of multipurpose trees can meet
subsistence needs, whilst also increasing income and security (Chambers, 1989).

Agroforestry systems may be based upon the skills and traditions of the rural people

and can be successfully adopted within the existing available resources. Successful
agroforestry combines the environmental benefits of tree planting with
complementary tree/crop interactions, to create productive and sustainable systems
that are appropriate to local needs. By providing a viable alternative to existing

agricultural practices, the adoption of agroforestry addresses the wider concerns of

environmental degradation and depletion of energy resources.

Agroforestry is not a new practice, but has been carried out for centuries 1n many
developing countries including India. In the predominantly agrarian economy of
semi-arid and arid India, livestock has an important role in agricultural activities and
multipurpose tree species such as Prosopis cineraria (khejri) and Acacia nilotica are
grown for fodder (Sharma, 1992). Whilst villagers in many areas provide protection
for multipurpose tree species that occur naturally in their cultivated fields, in the and

and semi-arid regions of Rajastan, Gujarat, Punjab and Haryana, multipurpose trees



are dehiberately grown with crops to maintain the productivity of agricultural land,
and also as a contingency in years of crop failure (Shankarnarayan et al., 1989:
Sharma, 1992). Other agroforestry systems such as taungya (growing agricultural
crops 1n a tree plantation for three or four years until the trees become established)
have developed with the emphasis on commercial forestry products. Agroforesty
research provides the opportunity to increase the productivity and economic returns

of these traditional systems, whilst identifying potentially successful agroforestry
systems for wider use.

Some of the earliest formal agroforestry research was carried out in the 1970s by the
International Institute of Tropical Agriculture (IITA, Nigeria) using alley-cropping

systems. ICRAF was established in 1977, and agroforestry research at the

International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) began
in 1984.

1.3 SUSTAINABILITY OF AGROFORESTRY SYSTEMS

The biological success of an intercropping or agroforestry system is assessed by its
productivity and sustainability. Biologically sustainable systems are those which can
maintain productivity by avoiding depletion of natural resources and degradation of
the land on which they are grown. Agroforestry systems can play an important role
In maintaining the productivity of continuously cropped land (Nair, 1989).

Improvements to soil fertility and structure

In order to maintain crop productivity without increasing inputs, nutrients must be
recycled more rapidly and/or nutrient losses reduced relative to other systems. It is
widely assumed that the root system of the tree component is able to recycle
nutrients from deep in the soil profile and return them as leaf fall or mulch (Young,
1987). Evidence from natural systems indicates that below-ground litter recycling
from root decomposition is also responsible for a large proportion of the transfer of

nutrients from vegetation to soil (Szott er al., 1991). Nutrient loss can be reduced



by minimising erosion, runoff and leaching (considered in detail in Section 1.4.3).
In addition, by using leguminous trees, nutrient inputs to the system can be increased
to an extent which depends upon the soil, climate, species and management practices
(Szott et al., 1991). Soil nutrient status was examined in some detail in alley
cropping experiments at IITA (Kang er al., 1985). For example, Kang et al.,
(1981a) studied the effectiveness of Leuceana leucocephala (Lam.) prunings as a
source of mitrogen for maize in field and pot trials and found that the prunings
significantly increased the N uptake of seedlings and the N percentage in ear leaves
of maize. Kang et al., (1981b) also examined an alley crop of maize and Leuceana
over a three year period at IITA; they found that when the leuceuna prunings were
removed, there was a reduction in extractable soil P, K and Mg, but total soil N
decreased very little. More recent studies at IITA indicate that as much as 193 Kg
N ha” per season can be released by root turnover in Leucaena (Smucker ez al.,
1992), representing a considerable proportion of the total N fixed and taken up by
the trees. However, despite the superior ability of agroforestry systems to retain
nutrients relative to many annual cropping systems, no agricultural system in which
a harvestable product is removed can be truly sustainable unless a proportion of the

material removed is returned in the form of a nutrient-rich input (Sanchez ez al.,
1989).

A high proportion of nutrients are concentrated in the surface horizons of the soil
(Young, 1976) therefore, fertility is substantially reduced when these layers are
removed by wind and water erosion. Erosion may be reduced in agroforestry
systems because the presence of tree roots may increase infiltration rates through

radial growth and consequent improvements in subsoil porosity when deeper roots

decompose (Sanchez er al., 1985). The maintenance of canopy cover throughout the
year may limit water erosion by reducing the kinetic energy of rainfall reaching the

ground (Brady, 1984), and may also reduce wind erosion during dry periods by
decreasing the windspeed at ground level (Jones, 1992).

Some soil types, such as Alfisols, are particularly prone to erosion due to their poor
structural stability at the surface (Vijayalakshmi, 1987). The addition of so1l organic



matter to such soils improves physical properties both directly (by increasing
aggregate stability) and indirectly (by increasing biological activity), thereby
increasing infiltration rates and reducing runoff and erosion (Belsky er al., 1989).
Schroth et al. (1992) studied nutrient release from branches and leaves of pigeonpea
applied as a mulch and found that after 6-7 weeks all macro-nutrients except Ca had

been released. They concluded that, in order to minimise nutrient losses, mulch
should be applied in small quantities as required by the crop. Similarly, Sur ez al.
(1992) found that the effectiveness of mulch in improving soil fertility is highly
dependent on the rate and mode of application. However, despite the obvious
benefits of mulching, it is unlikely to be widely adopted by farmers in the SAT, due
to the acute shortage of fodder.

1.4 PRODUCTIVITY AND RESOURCE UTILISATION OF
INTERCROPPING AND AGROFORESTRY SYSTEMS

Productivity 1s determined by the quantity of a specified resource that is captured
and the efficiency with which it is converted to dry matter. Complementarity of
resource use can occur in mixed cropping systems, such that the component species
make their major demand on resources at different times (temporal
complementanty), or make more efficient use of resources at specific points in time
(spatial complementanty; Willey, 1979b). In practice, there is considerable
interaction between these two types of complementarity.

Complementarity of resource use 1s responsible for the yield advantage observed in
some intercropping systems relative to the corresponding sole crops grown at their
opimum populations (Willey, 1979a). Various methods for assessing such yield
advantages have been developed for intercropping systems. The land equivalent ratio
(LER; Willey, 1985) gives an index of the relative area of land planted under sole
crops that i1s required to produce the same yield, and in the same species
proportions, as the intercrop. The area-time equivalency ratio (Hiebsch and

McCollum, 1987) is an adaptation of LER that takes into account the land that 1s left
unused after harvesting the shorter duration sole crop. The concept of the crop



performance ratio (CPR) (Harris er al., 1987; Azam-Ali et al., 1990) was devised
to compare the biological performance of intercrops relative to their component sole
crops; this concept is applicable to replacement series intercrops, in which a number

of rows of one crop component are replaced by a second component.

1.4.1 Microclimatic modification of plant growth and development

The purpose of this section is to provide an introduction to the role of microclimatic
variables in controlling growth and development, before examining the influence of

limiting physical resources on productivity.

The relationship between growth and development and temperature
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