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Abstract 

The long term behaviour of primary product prices has been a central issue 

underlying projections of commodity price series. Against the background of the 

Prebisch Singer Hypothesis, the presence, magnitude and direction of a secular 

trend in commodity price series have themselves become the subject of a long 

standing debate. 

This study uses the individual commodity price series underlying the Grilli and 

Yang data set and, where possible, extends these data series up to 1998. Deflating 

primary commodity prices by the MUV index, the question of trend components in 

the time series is studied considering evidence from univariate models and 

allowing for trend stationary or integrated data series with drift. In this context the 

impact of serial correlation in finite samples and the impact of wrongly modelling 

a data series as integrated are considered in detail. Further evidence from a trend 

test developed by Vogelsang (1998) is also taken into account. 

In selecting forecast models, the usefulness of unit root pre-testing is assessed 

allowing for interdependence between the inferred order of integration and the 

significance of the trend or drift coefficient estimate obtained. Projections from 

univariate models are obtained for a ten year horizon and Beveridge-Nelson trend 

cycle decompositions are computed to assess the importance of volatility 

surrounding the forecasts. It is found that with regards to the past behaviour of 

primary commodities as well as for the forecasts obtained, the trajectory of primary 

commodity prices relative to the price of developed country manufactures exports 

is not generally characterised by a downwards trend. 
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Chapter 1 

Chapter 1: The Development of Primary Product Prices -a 
Survey of the Literature 

1.1. Introduction 

Any forecast of relative primary commodity prices which is based on an 

extrapolation of historical data series naturally depends on the way in which 

such a time series is modelled. While the short run dynamics are often 

accounted for in autoregressive moving average (ARMA) models of the 

residual, the characterisation of long term developments can crucially depend 

on the presence, direction and magnitude of a trend component in the data 

series. The question of the presence and sign of a deterministic trend in series 

of primary commodity prices relative to manufactured goods prices have been 

the object of a long standing controversy. During the time after the second 

World War this debate has been centred around the Prebisch Singer 

Hypothesis. 

During the early 1950s, Raul Prebisch and Hans W. Singer questioned some of 

the then prevailing paradigms on the process of economic development (cf. 

Singer (1950) and Prebisch (1959)). The core arguments of Prebisch and Singer 

predicted a secular decline in the relative price of primary commodities and 

therefore in the net barter terms of trade of developing countries. The present 

chapter will survey the debate surrounding the evidence in favour of the 

presence of a deterministic trend against this background. The remainder of the 

chapter is organised as follows: in section 1.2 the Prebisch Singer Hypothesis 

(PSH) and its immediate theoretical background are briefly reviewed. Section 
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1.3 surveys the debate surrounding the empirical evidence to date and addresses 

some of the methodological developments. Section 1.4 concludes. 

1.2. The Role of Primary Commodities in the Development Process 

1.2.1. The changing role of the agricultural sector 

It is a well documented fact that the agricultural sectors of modem developed 

economies have shown a general tendency to decline in relative importance, 

both in terms of their participation in national income as well as in terms of 

employment in these sectors (cf. Ingersent and Rayner (1999), Antle (1988) and 

Anderson (1987)). These developments are generally in line with what should 

be expected by what has become known as Engel's Law, i. e. the observation 

that income elasticities for food products -or for agricultural products more 

generally- take lower values at higher income levels and that as a consequence 

the income share of primary commodities should be expected to decline at 

higher per capita income levels (cf. Ingersent and Rayner op. cit. ). Engel's 

Law' as such does not make predictions about expected relative price 

developments between the agricultural and the manufacturing sector, as indeed 

it is formulated for a ceteris paribus change under a constant price assumption. 

In so far as resources shift into the non-primary sector one should of course 

expect a fall in the relative price of primary commodities to provide the price 

incentive, at least under full employment conditions. Anderson (1987)2 and 

Antle (1988) give a more detailed account of the driving forces underlying this 
1 In its most basic forms, of course, Engel's Law does little more than describe the falling share 
of individual households' income that is spend on agricultural food products. In this sense, links 
to the evolution of per capita income throughout the economy, and conclusions on relative 
price developments or demand for non-food agricultural products are extensions of the basic 
theory. 
2 Anderson (op. cit. ) also shows how the relative price of agricultural products can increase in 
some extreme cases. 
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relative price change and show that technological change biased towards the 

industrial sector will tend to accentuate the relative price decline. 

Interestingly, this decline in the relative price of primary commodities 

compared to manufactured goods is contrary to the price expectations originally 

postulated: Ricardo (1951) expected the relative price of agricultural 

commodities (he quotes corn as an example) to increase as successively less 

fertile farm land is brought into production. The relative price of manufactures 

on the other hand was expected to decrease as innovations improved 

productivity, thus putting downwards pressure on manufacturing prices. (This 

at least would be the outcome in a sufficiently competitive market. ) 

This original expectation on the development of relative prices of agricultural 

commodities is of course dependent on a number of restrictive assumptions. 

The underlying assumption on the prevailing supply conditions -with arable 

area acting as a binding constraint on agricultural production- have been 

compensated by large productivity increases (e. g. through the use of artificial 

fertilisers, tractors etc. 3) in the agricultural sector. Demand conditions at higher 

levels of income such as the low income elasticities implied by Engel's Law 

and the low price elasticities of demand for agricultural products considered by 

Prebisch (1959) and Singer (1950) further provide the conditions that can 

justify expectations of falling relative primary commodity prices. 

1.2.2. Non agricultural primary commodity prices 

The supply conditions in non-agricultural primary commodity sectors -as in 

agriculture- are characterised by natural resource constraints as well as 

developments in production technology, affecting the importance of given 
3 On this point, see Ingersent and Rayner (op. cit. Ch. 2) for examples in Europe and the USA. 
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resource constraints as production or extraction limits. What tends to be 

systematically different here is the nature of demand. Demand in 

non-agricultural sectors is often derived demand linked to industrial activities4 

and will therefore depend on activity levels in the relevant industries as well as 

on efficiency gains and raw material saving technological progress'. One 

crucial aspect of the long run development of demand for these products is 

therefore that the main price determinants are not as easily modelled in terms of 

income and population growth, but should be seen in the context of a larger 

number of factors which develop in a less predictable way. 

Nevertheless, relatively low demand elasticities and a consistent improvement 

in the efficiency of raw material utilisation have been advanced as reasons for a 

priori expectations of a secular relative price decline of non-agricultural raw 

materials (cf e. g. Borzenstein et. al. (1994)). However, this viewpoint may 

overlook other medium to long term developments which can dominate these 

trends or have done so in the past. Among these, the development of new 

industries or technologies as well as economic transition processes in 

individual countries can have a crucial impact on price developments. From a 

more backward looking perspective, events like the two world wars of the 20th 

century have had strong effects on world primary commodity markets over 

several years (see for example Worldbank (2000)). 

4 This study excludes oil prices throughout, since in the oil sector price developments are often 
influenced by OPEC supply decisions. 
5A number of authors have commented on this point. For Copper markets see for example Vial 
(1992) and Worldbank (2000) for more a general account of commodity price developments. 
Bloch and Sapsford (2000) point out that a sustained downward trend in relative commodity 
prices can be obscured by temporary accelerations of industrial growth. 

4 



Chapter 1 

1.2.3. Relative commodity price developments and the role of primary 
sectors in economic development. 

Even though the primary sectors of an economy are unlikely to provide 

sufficient potential for the development process in the long run, they can play a 

crucial role in mobilising resources in so far as they can secure foreign 

exchange earnings that facilitate the acquisition of modem production 

technology and machinery. Export financed domestic investment can be seen as 

desirable -and as more desirable than foreign investment- not least because it 

does not give rise to the issue of future profit repatriation. It may also be 

favoured for political reasons, for example in view of the ownership and 

control of domestic industrial facilities. 

If primary sector based export earnings are to provide a basis for economic 

development, then the secular development of export prices relative to import 

prices are clearly an issue of concern. Where the trade relationship of interest is 

one between primary commodity exporting developing countries and 

industrialised economies exporting manufactured products, this reduces to a 

general concern over the development of primary commodity prices relative to 

manufactured goods prices. 

The Prebisch-Singer Hypothesis: The Prebisch-Singer Hypothesis contradicts 

the classical prediction of an improvement in the relative price of primary 

commodities. Singer (1950) and Prebisch (1959) focus on a situation in which 

developing countries as a group are mainly dependent on primary commodity 

exports (i. e. their sector of comparative advantage) while developed countries 

as a group export mainly manufactured products. The critique which has 

become known as the Prebisch-Singer Hypothesis postulates that the gains 
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from trade are distributed disproportionately in favour of developed countries 

as a consequence of a bias in the terms of trade that favours manufactured 

commodities. According to this hypothesis, this bias was present not only in the 

then prevailing terms of trade but also in their development over time'. 

Prebisch quoted British terms of trade data in support of this latter point (as 

mentioned in Spraos (1980)). The theoretical explanation for this phenomenon 

rests upon the assumption that primary commodities are traded in competitive 

international markets where they face low price and income elasticities (Singer 

(1950), Myrdal (1989) and Prebisch (1959)) while the market for manufactured 

goods faces higher demand elasticities and is seen as far less competitive and 

therefore dominated by mark-up pricing (cf also: Bloch and Sapsford (1997)). 

This process is reinforced by raw material saving technological innovations in 

developed economies which further reduce the demand for developing 

countries' exports. Low price elasticities for primary commodity exports 

immediately imply that it is difficult to improve the income terms of trade by 

increasing the trade volume. 

Singer (1950) observed that international trade and the incentives arising from 

the operation of market forces are unlikely to provide a basis for domestic 

investment in industrial development. It is assumed that such investment needs 

6 As pointed out by Gandolfo (1994) it is necessary for a trade equilibrium, in addition to the 
comparative cost advantage itself, that the terms of trade lie within 
(PLDC/MLDC)<(PT/MT)<(PDc/MDC), where P and M are the prices of primary commodities and 
manufactures respectively and the subscripts indicate the price in developing countries (LDC) 
developed countries (DC) and in international trading relations (T) respectively. This condition 
implies in principle that the point to which the relative price can fall at any point in time is at 
least bounded by the domestic price ratio in the economy with a comparative advantage in the 
production of primary products, i. e. the developing country. 

Net Barter Terms of Trade are here understood to be a ratio of export to import prices 
(primary product prices deflated by manufactured goods prices in the general case underlying 
the PSH). Income Terms of Trade are here defined as the total value of exports deflated by an 
index of import prices. The income terms of trade clearly depend on export volumes as well as 
relative prices. 
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to be undertaken on the basis of foreign currency earnings', not least to enable 

the purchase of foreign made capital goods. The availability of foreign 

exchange is in turn assumed to be mainly a function of trade so that the change 

in a period's foreign exchange earnings following a fall in the price of exports 

can be expressed, in very simple terms, as9: 

[1.3.1] dY, = dPxX (1 + lix), 

where dY, is the change in foreign exchange earnings, dPx is the change in the 

price of exports, X the quantity of exports and i the demand elasticity for 

exports. Recalling that qx is negative, it is then obvious that a fall in Px can be 

expected to lead to a fall in foreign exchange (and export) earnings if IiI <1. 

A low demand elasticity for primary commodities therefore tends to reinforce 

the symptoms of the secular decline in primary commodity prices as well as the 

impact of temporary price fluctuations. 

In an economy which is dependent on trade in primary commodities a 

significant surplus of foreign exchange over subsistence expenditure and 

associated imports for consumption is therefore most likely to be available 

during a cyclical rise in the relative price of primary commodities. (It should be 

remembered that under the Prebisch Singer Hypothesis such relative price 

increases are bound to be cyclical since in the long run the prevailing market 

structure and raw material saving technical progress produce a secular decline 

in developing countries' terms of trade. ) This characteristic of foreign exchange 

availability would imply that the means for investment are available precisely 

8 Singer (1950) is aware of the possible role for foreign direct investment, but argues that foreign investment projects fail to integrate with the domestic economy in developing countries, 
and therefore don't contribute to the local industrial infrastructure. 
9 See Appendix I. i for the derivation of this expression. 
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when price incentives temporarily favour investment in primary sectors in spite 

of the fact that those sectors are in long run decline (Singer (1950)). 

The conclusions concerning the limited potential of the primary sector and the 

market's inability to provide foreign exchange for domestic industrial 

investment led to strong policy conclusions favouring development strategies 

based on import substitution. (Myrdal (1989) and Prebisch (1959) were 

particularly outspoken in their advocacy of these policy measures). If insights 

into the development of primary commodity prices are to form the basis of any 

decision on policy interventions, a well established conclusion on the available 

empirical evidence is needed. The following section will look into the ongoing 

debate on the evolution of developing countries' terms of trade and primary 

commodity prices. 

1.3. A Survey of the Debate on the Empirical Evidence for a secular 
decline in the Commodity Terms of Trade of LDCs. 
1.3.1. The developing discussion of the Prebisch-Singer Hypothesis. 

The Prebisch-Singer Hypothesis has been subject to criticism on various 

grounds from an early date. As in the case of inflation, price measurements in 

trade fail to account for quality improvements, a factor that may have 

contributed to the overestimation of prices of manufactured products (see for 

example Spraos (1980), Grilli and Yang (1988) or Bleaney and Greenaway 

(1993)). Another issue that has been raised is the development of transport 

costs. It has been alleged that a decline of transport costs could be at least 

partially responsible for the fall in the price of primary commodities, although 

this development is unlikely to have been a major determinant of terms of trade 
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developments (Spraos 1980)10. One should also bear in mind that relative price 

developments merely provide information on the development of the barter 

terms of trade and it can be argued that the extent to which trade is beneficial 

for developing countries mainly depends on the income terms of trade rather 

than relative product prices. There is at least some evidence that in spite of low 

demand elasticities, and in spite of the fact that supply expansions seem to have 

been a contributing factor in the observed price developments, a number of 

developing countries have succeeded in stabilising their income terms of trade 

in spite of adverse developments in the barter terms of trade (Borzenstein and 

Reinhart (1994), Borzenstein et. al. (1994)). More generally, various authors 

-not least Singer (1958) and Singer (1975)- have focused on other 

characteristics of developing countries' economies. After his initial hypothesis 

on product price developments, Singer gradually shifted his focus towards the 

role of technological innovation and the impact of rising debt burdens on the 

economic performance of underdeveloped countries (Singer (1975)). 

Other critics concentrated on issues of statistical measurement. The problems 

arising from aggregating across different primary products have been 

highlighted early by Kindleberger (1958) who pointed out that important 

differences exist between different product groups as well as between different 

geographical regions. This issue is still present in the ongoing discussion of the 

empirical evidence and is treated in some detail by Grilli and Yang (1988), 

Cuddington (1992) and Leon and Soto (1997) among others. Yet other critics 

10More precisely, Spraos (1980) points out that commodity prices -if recorded at an 
international commodity exchange located in a developed country- tend to quote import prices 
c. i. f. and export prices f. o. b. In this case it is possible in principle, that a terms of trade 
deterioration for developing countries could be recorded when in fact a fall in transport costs has lead to lower prices. 
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questioned the data used by Prebisch in his original study and the estimates he 

arrived at. Prebisch used British terms of trade data which he regarded as 

representative of developed country terms of trade vis a vis developing 

countries (Spraos (1980)). Spraos (op. cit. ) further elaborates on criticism on 

the ground that the data used are not as representative as supposed in Prebisch' 

study, and also tend to exaggerate the magnitude of the inferred negative trend 

in primary commodity prices. 

Substantial research has also been undertaken into the relationship between 

relative commodity prices and developing countries' terms of trade. This is one 

of the issues highlighted early on in the debate by Kindleberger (1958). Among 

other studies, Grilli and Yang (1988), Bleaney and Greenaway (1993), Powell 

(1991), Lutz and Singer (1994) and Lutz (1999b. ) have assessed the 

relationship between relative commodity prices and developing country terms 

of trade. Leon and Soto (1995) concentrate on the terms of trade of Latin 

American countries. Interestingly, Leon and Soto (1995) do not find empirical 

support for a secular decline of country specific terms of trade, although they 

confirmed the existence of a negative trend for 17 out of the 24 commodity 

price series in the Grilli and Yang data set (cf. Leon and Soto (1997)). A similar 

contrast is found in Grilli and Yang (1988). A detailed treatment of this topic is 

beyond the scope of this study, although some of the statistical issues involved 

are relevant here as well. 

1.3.2. Terms of trade developments during the 1970s and 1980s 

In their work, Prebisch and Singer were confined to using data up to the early 

post-war years and the question naturally arises whether the hypothesised 

10 
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sustained decline in the barter terms of trade has been observed in subsequent 

years. Views on this issue differ. 

Spraos (1980) argues that an extended data set which covers the 1970s makes 

the hypothesis of a secular decline more difficult to sustain. Considering a yet 

larger time horizon, Maizels (1992) takes a different view, and states that 

developing countries' terms of trade recovered temporarily during the 1970s, 

but then fell sharply during the 1980s when the price deterioration reached 

dramatic proportions. This view of a continued deterioration in developing 

countries' barter terms of trade during the 1980s is also supported by 

Borzenstein et al. (1994). A number of economic factors have been identified 

as causes of the decline in primary product prices. Demand for primary 

commodities in developed countries declined during the recession in the early 

1980s as well as in consequence of raw material saving technological 

innovations (Maizels 1992). This decline in demand was reinforced by supply 

side developments: Borzenstein and Reinhart (1994) as well as Maizels (1992) 

point out that developing countries increased their supply of primary 

commodities to compensate for the fall in the barter terms of trade and in order 

to meet rising foreign denominated debt servicing requirements. The world 

supply of primary commodities further increased after 1989 when the transition 

economies of the former Soviet Union increased the volume of their primary 

sector exports (Borzenstein and Reinhart (1994)). 

There seems to be at least some evidence on the general pattern of the terms of 

trade development during the 1970s and 1980s. It is desirable, though, to look 

into the data over a longer time horizon if one wishes to obtain information on 

the presence of a long run trend. If policy conclusions are to be drawn from the 
11 
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observed developments a more detailed investigation is also required. The 

following subsections provide a discussion of the results of a number of long 

term studies, which have used various approaches to time series modelling. 

1.3.3. Long run studies of terms of trade movements 

A major problem in investigating the evolution of primary product prices and 

developing countries' terms of trade arises from the lack of available 

continuous long run data series. One of the longest as well as the most 

frequently used data set in the present discussion is the one compiled by Grilli 

and Yang (1988)11. The Grilli and Yang Commodity Price Index (GYCPI) 

covers the period 1900-1986 using price data for 24 primary commodities and 

has recently been extended to cover the period up to 1992 (cf. Leon and Soto 

(1997))12. The index uses annual average price series from World Bank 

sources. To proxy developing countries' terms of trade, the GYCPI is usually 

deflated by the United Nations Manufacturing Unit Value index (MUV). This 

index is available over a long time period, although for the periods 1914-1920 

and 1939-1947 the MUV had to be completed by interpolation (Grilli and Yang 

(1988)). 

While several studies have extended the Grilli and Yang data set, Bleaney and 

Greenaway (1993), who also extended the data series to 1991, truncate the 

series before 1925 to remove the influence of inferred volatile price 

1tA 
comprehensive listing of the data sources and series used by various authors is given in 

Appendix Lii, Appendix I. iii gives further details. 
12 Since the relevant commodity price data are updated regularly, the index can be extended 
further, at least for the majority of the commodities covered. 
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movements13 around 1920-1921 and higher than normal commodity prices 

during the 1920s. 

Shorter intervals are targeted by Reinhart and Wickham (1994) who work with 

quarterly data for a total of four primary commodity groups, although the 

corresponding data series is available only for the period 1957-1993. 

Borzenstein and Reinhart (1994) also use quarterly data, covering the period 

1971-1992. 

1.3.3.1. Estimation methods used 

The most intuitively appealing approach towards measuring the size and 

presence of a secular downward trend in the net barter terms of trade obviously 

consists in simply regressing a relative price index on a linear trend using an 

estimation technique such as OLS or Maximum Likelihood estimation. In this 

case the estimating equation would be of the form: 

[1.3.2] p, =a+ßt+ut 

where p, is the price index, aa constant, ß the coefficient on the time trend t, 

and u1 the error term. The difference stationary equivalent would be: 

[1.3.3J (1 -L )pi =9+v, 

where ß now represents the drift term, L denotes the lag operator and v, is the 

residual. In either case, dummy variables may be included to account for 

structural breaks and the error term is either taken to be white noise or is 

adjusted for serial correlation or more generally modelled as an autoregressive 

moving average process. 

13 One should recall here that Leon and Soto (1997) attribute the apparent break in the GYCPI 
around 1920/21 to an aggregation problem and that this phenomenon is not consistently 
observed at lower levels of aggregation or for individual price series. 
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This is the approach adopted by Spraos (1980), Sapsford (1985) and also by 

Grilli and Yang (1988). Spraos (op. cit. ) and Sapsford (1985) do not test their 

series for the presence of unit roots although, given the early date of their 

studies, this should come as no surprise. Grilli and Yang (1988) do apply the 

Dickey Fuller test and find no evidence for the presence of unit roots. While 

Spraos (1980) finds no significant negative trend, Sapsford (1985) and Grilli 

and Yang (1988) do, providing estimates of -1.29% p. a and -0.59% p. a. 

respectively. Some doubts about these estimates do, however, remain. Aside 

from the issue of structural instabilities discussed below, one should bear in 

mind the temporary recovery of primary commodity prices during the 1970s 

when assessing the results of Spraos (1980) and Sapsford (1985). Spraos used a 

data set providing data up to 1970 and obviously could not take account of the 

pronounced decline during the 1980&. 

A number of studies based on structural models have been conducted by Bloch 

and Sapsford (cf. Bloch and Sapsford (1991/1992), Bloch and Sapsford (1997) 

and Bloch and Sapsford (2000)). In all these studies the Grilli and Yang 

commodity price index deflated by the MUV index for the period after 1948 is 

used to represent the commodity terms of trade. Bloch and Sapsford 

(1991/1992) and Bloch and Sapsford (1997) explain the overall development of 

primary commodity prices in terms of Prebisch and Singer effects. In this 

context, the Prebisch effect is identified in terms of different price setting 

behaviour in developed and developing economies: Prices in developing 

countries or for developing country products are assumed to be set in 

competitive markets whereas prices in industrialised economies are set through 

14Sapsford (1985) did extend some of the data used by Spraos up to 1980 and 1982. 

14 



Chapter 1 

mark up pricing. The Singer effect refers to differing pattern of productivity 

development with factor neutral technological change in the primary sector and 

raw material saving and labour saving technological change in the 

manufacturing sector. Bloch and Sapsford (1991/1992) and Bloch and Sapsford 

(1997) present empirical estimates in order to quantify the incidence of the 

underlying causal factors in the development of relative primary commodity 

prices. Bloch and Sapsford (2000) finally adopt a similar methodology and also 

emphasise the role of growth in the manufacturing sector. They conclude that 

the tendency towards an overall decline in primary commodity prices has been 

obscured by periods of faster than normal manufacturing growth after world 

war two. In all these studies the commodity and manufactured goods price 

series are identified as a difference stationary. 

The majority of studies, however, is based on pure time series estimates of the 

barter terms of trade. Among these studies, Ardeni and Wright (1992) and 

Sapsford et. al. (1992) find evidence of a deterministic downward trend in the 

commodity terms of trade. Ardeni and Wright (op. cit. ) put their estimate at 

between -0.14% to -1.6% p. a. While Sapsford et. al. (1992) estimate a 

downward trend of between -0.2% and -0.7% p. a. Helg (1991) includes 

dummies for a segmented trend and finds a small but significant negative trend 

after 1920. Leon and Soto (1997) arrive at trend estimates of around -1.5% for 

those commodities where negative trends have been found, although the point 

estimates for some price series differ substantially. 

A cointegrated model is estimated by Lutz (1999a. ) who estimates an overall 

decline of 0.89% p. a. for the overall commodity price index excluding fuel, a 

decline of 0.43% and 0.44% for the food and non food agricultural product 

15 



Chapter 1 

indices respectively and an average annual decline of 0.88% for metals15. 

Powell (1991) also estimates a cointegrated model and accounts for structural 

breaks by introducing a variable that absorbs the cumulative impact of 

fluctuations in structural breaks. On this basis, Powell (1991) attributes the 

decline in relative commodity prices to three discrete shocks in 1921,1938 and 

1975. von Hagen (1989) also opts for a cointegrated representation as an 

alternative to a trend stationary model and fails to reject the null hypothesis of a 

zero trend coefficient. 

Cuddington and Urzüa (1989) estimate a downwards trend of -0.6% p. a., 

however, this can only be sustained if a structural break in 1920/21 is ignored, 

and the drift coefficient for the difference stationary alternative model is not 

significant. Newbold and Vougas (1996) are also less certain about the 

evidence in favour of a deterministic trend. They emphasise the uncertainty 

surrounding the issue of unit roots and the importance of conclusions about the 

presence of unit roots for subsequent inference about the significance of a trend 

coefficient estimate. Similar results are reported by Newbold et. al. (2000) for 

two commodity price series (Wheat and Maize)"'. Bleaney and Greenaway 

(1993) finally attribute most of the decline in primary commodity prices to a 

one-off drop in 1980, if high commodity prices prior to 1925 are excluded from 

the sample. Grilli and Yang (1988), Helg (1991) and Sapsford et. al. (1992) test 

for and reject the presence of unit roots. 

15 It is certainly interesting that the decline of the overall index exceeds that of any of its 
component parts. This may lead one to doubt the extent to which such a composite index is 
representative of individual commodity price series. 
16A bivariate model has also been considered by Newbold et. al. (2000). In this case conclusions 
on the presence of a trend vary depending on the deflator used. 
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1.3.3.2. The implications of price volatility and of inference regarding the 

order of integration of time series 

Real commodity prices have been characterised by sustained volatility as well 

as by an overall decline in the price level. It therefore appears relevant to 

consider both of these characteristics. If one wishes to respond to this change in 

price pattern with targeted policy interventions, the appropriate measures in 

response to an increase in price volatility as opposed to a sustained price 

decline would, of course, be different. 

Where a secular decline may have seemed to call for long term strategic 

industrial policy measures, the presence of short term fluctuations would be 

more likely to motivate short term measures such as the use of stabilisation 

funds to insulate earnings from primary commodity exports from exogenous 

price fluctuations. The adequacy of this kind of intervention does depend on a 

number of conditions. When price interventions are undertaken to stabilise 

private earnings, one needs to act on the assumption that private individuals are 

not sufficiently capable of making the required intertemporal expenditure 

adjustments unaided. As Borzenstein et. al. (1994) argue, the ability of private 

agents in this respect has frequently been underestimated, in particular with 

respect to developing countries, and the welfare improvements resulting from 

such a policy move may therefore appear dubious. Another motive for 

stabilising intervention can be the desire to stabilise foreign exchange earnings 

on a national level, or to stabilise the income of public entities which are 

directly dependent on these export earnings. In such a case too, the usefulness 

of stabilising policy interventions would still be dependent on the long run 

behaviour of primary commodity prices. A number of studies by the IMF 
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(Cashin et. al. (1999b), Cashin and Patillo (2000) and Cashin and McDermott 

(2001)) have investigated the trajectory of commodity prices focusing mainly 

on variations in the price series. Cashin and McDermott (2001) in particular 

conclude that volatility rather than a consistent decline is the main 

characteristic of the intertemporal behaviour of primary commodities. Other 

studies, discussed below, have addressed the issues of shock persistence and 

volatility in the context of studies of deterministic or stochastic trend 

components. 

If the observed volatility merely represents fluctuations around a stable mean, 

stabilisation policies can, at least in principle, be suitable in compensating the 

effects of transitory price instability, so long as price shocks are sufficiently 

short lived. If however the fluctuations occur around a secular trend the 

situation is likely to be different. If stabilisation measures in such a case aim at 

fixing earnings or prices at a stable level, they are bound to be ineffective in the 

long run. Furthermore, where fluctuations are indeed merely a short term 

phenomenon, stabilisation measures which enforce mean reversion can be 

expected to have only a short term impact on the market process -even where, 

and in so far as, they distort prevailing price signals. If the presence of a secular 

trend is disregarded, however, a stabilising policy strategy would aim at fixing 

either prices or earnings at a level which is increasingly diverging from the 

equilibrium position. This would not only lead to a misallocation of public 

funds which is likely to be unsustainable in the long run but may also establish 

persistent distortions of investment incentives and support prolonged 

investment in sectors which are in long run decline. 
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In assessing the stationarity or trend characteristics of a time series one should 

therefore consider not only the presence of unit roots and take care to 

distinguish difference stationary processes from trend stationary processes. It is 

also essential to identify drift terms in difference stationary models, as these 

would indicate that in the case of mean reverting shocks the price level they 

would revert to does not remain constant. (In other words, mean reversion is 

defined with respect to the mean rate of change rather than some equilibrium 

price level. ) Some authors go further than this and attempt to distinguish the 

permanent and automatically mean reverting components of stochastic shocks. 

Such a distinction would be relatively easy to make in a trend stationary time 

series where cyclical disturbances can be identified as temporary deviations 

from the deterministic trend. If the time series is subject to a stochastic trend, 

however, the issue is more complex. 

A number of authors such as Cuddington and Urzüa (1989), Cuddington (1992) 

and Reinhart and Wickham (1994) 17 use the Beveridge-Nelson decomposition 

method to distinguish the cyclical and permanent components of a time series 

following a stochastic trend. Following this approach, the permanent 

component of a stochastic trend is the part of an innovation which can be 

assumed to persist in the absence of further shocks. The cyclical component in 

contrast would be expected to die out after a number of periods. In the studies 

mentioned, the authors employ trend-cycle decompositions in order to assess 

the scope for stabilising policy measures. Cuddington (1992: 217) states 

explicitly that: "A good understanding of the cyclical behavior of commodity 

prices is... essential when considering countercyclical stabilization policies... " 

17 Reinhart and Wickham (1994) also use the Kalman filter. 
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Reinhart and Wickham also emphasise that instruments such as stabilisation 

funds are better suited to dealing with transitory disturbances of short duration. 

Accordingly, they focus on the cyclical behaviour and volatility characteristics 

of relative commodity prices in their study. 

Leon and Soto (1997) criticise the use of the conventional persistence measures 

usually employed with the Beveridge and Nelson method and use a variance 

ratio statistic to assess persistence instead. Leon and Soto (1997) argue that the 

conventional parametric estimate of shock persistence tends to overstate the 

duration of shocks. Inferring shorter shock duration from the variance ratio 

statistic, they point to the understated scope for stabilising intervention, if the 

Beveridge Nelson decomposition is relied on. It is not generally clear though 

which mistake is more costly. The cost of misguided stabilising intervention is 

likely to accrue in form wasted exchange reserves and possibly accumulating 

public sector debts. The cost of precipitated adjustment to a transitory shock 

perceived as permanent would consist in the adjustment costs, which would 

differ by sector and in function of local market conditions. Moreover, the time 

period considered for mean reversion is quite large. (Leon and Soto (1997) 

recommend a period of up to half the sample size, to evaluate shock 

persistence. ) 

The presence of unit roots in time series on primary commodity prices is of 

importance not only in drawing conclusions on the scope for stabilising policy 

intervention, but also when estimating the presence and magnitude of a secular 

trend. It is also important to consider in this context that conclusions 

concerning the presence of unit roots are not always possible with a high degree 

of certainty. Newbold and Vougas (1996) and Newbold et al. (2000) show how 
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conclusions on the presence of unit roots depend on relatively minor changes in 

the significance levels employed in tests. Newbold and Vougas (1996) find a 

significant negative trend of around -0.8% p. a. when estimating a trend 

stationary model of the relative price of primary commodities (specified as 

GYCPI/MUV). When estimating a difference stationary model, the trend 

coefficient estimate has a similar magnitude but is statistically insignificant. 

Similar results are reported in Newbold et. al. (2000) where a downward trend 

of approximately 0.9-1% per year is estimated for Wheat and Maize prices. 

These estimates appear significant in trend stationary but not in difference 

stationary models. 

Leon and Soto (1997), contrasting their results with Cuddington (1992), 

identify a larger number of trend stationary series and also identify a larger 

number of statistically significant trend coefficient estimates -most of them in 

trend stationary models. 

Other authors are also somewhat cautious in their conclusions on the presence 

of unit roots. Cuddington and Urzüa (1989) estimate trend stationary models 

and difference stationary models. After applying Perron's test for a unit root in 

time series with changing mean, Cuddington and Urzüa conclude that a 

difference stationary model is more appropriate but nevertheless also estimate 

the trend stationary model to allow for comparisons with other studies that have 

proceeded similarly. In this case, the authors find no evidence of a secular 

downwards trend for either the difference stationary or the trend stationary 

specification so long as structural breaks are accounted for in the trend 

stationary model. (i. e. the trend coefficient estimate in the trend stationary 

model does appear significant if the dummy variable is not included. The drift 
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coefficient estimate is shown to be insignificant whether or not a dummy 

variable is included in the difference stationary model. ) 

Sapsford et. al. (1992) follow the same unit root pre-testing procedure as 

Cuddington and Urzua (1989) for a modified data set. Based on their test result 

they opt for a trend stationary model and find evidence in favour of a 

significant trend coefficient estimate when a dummy variable is included in the 

trend stationary model. 

What the studies surveyed above illustrate is that different conclusions on the 

presence of trend coefficients often seem to be strongly influenced by the 

assumed order of integration. A large number of studies base their analysis on a 

priori conclusions from unit root tests. The tests employed range from simple 

Dickey-Fuller tests (e. g. in the case of Grilli and Yang (1988)) to tests 

accommodating a structural break (e. g. in Cuddington (1992) and Leon and 

Soto (1997)). Ahrens and Sharma (1997) even approach the subject with a set 

of 4 different unit root tests in their study of US commodity prices18. While 

there does not seem to be a consensus as to which unit root test ought to be 

employed in studies of relative commodity prices, the importance of a priori 

conclusions regarding the order of integration is widely accepted. 

1.3.3.3. The impact of structural breaks 

Conclusions on the presence of a deterministic negative trend in real primary 

commodity prices can also depend on the impact of structural breaks. A related 

issue is the appropriate starting point for the data period under investigation, 

since mistaken conclusions on long run trends can be drawn if estimation is 

18 It appears though that Ahrens and Sharma take the presence of trends as given and merely 
attempt to distinguish stochastic and deterministic trends. 
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based on a data set with the earliest data points at unusually high or low levels. 

This issue is emphasised by Bleaney and Greenaway (1993) who truncate the 

Grilli and Yang data set before 1925 to account for high relative commodity 

prices before this date. The disagreement between Spraos (1980) and Sapsford 

(1985) is mainly based on the impact of a possible structural break in 1950. 

While Spraos (1980) rejects the hypothesis of the presence of a deterministic 

negative trend in the relative price of primary commodities, Sapsford (1985) 

shows that a significant downwards trend of -1.29 % p. a. can be identified if a 

structural break in 1950 is accounted for. Among the studies using the Grilli 

and Yang data set, the study by Cuddington and Urzüa (1989) highlights the 

importance of structural breaks. (Cuddington and Urzüa (op. cit. ) find a 

significant downward trend only when disregarding the structural break in the 

data series in 1920/1921). The presence of this structural break also leads the 

authors to infer the presence of unit roots on the basis of Perron's test. This is 

crucial, since their estimates for a difference stationary model provide no 

evidence for a significant trend. In their critique of Cuddington and Urzüa 

(op. cit. ), Sapsford et. al. (1992) focus on the extent of the structural break in 

1920/1921. Using a modified data set with reduced structural instability at this 

point in time19 they reject the difference stationary model and estimate a trend 

stationary model with a significant downwards trend. In yet another study based 

on the Grilli and Yang index Helg (1991) concludes that the presence of a trend 

can be confirmed but that the slope of the trend line changes after 1920. 

19 The MUV index used by Grilli and Yang (1988) had to be completed by interpolation for the 
periods 1914-1920 and 1939-1947, where data were missing. Sapsford et. aL (1992) use British 
terms of trade data to fill the 1914-1920 gap. 
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It has been mentioned above that Bleaney and Greenaway (1993) find support 

for a deterministic downward trend to be substantially weakened if data prior to 

1925 are omitted from the sample. They further show that part of the remaining 

fall in relative commodity prices can be attributed to a structural break in 1980. 

Evidence in favour of a deterministic downward trend is further weakened if 

the period prior to 1980 is accounted for by a dummy variable. 

Aside from this direct impact, the consequences of structural instabilities of 

time series data can become manifest in a more indirect fashion through the 

link between structural breaks and the validity of unit root test results. 

Conclusions on the presence of unit roots depend not only on the significance 

levels employed in unit root tests, but also on the presence of structural breaks 

in the data series in question. It has been established by Perron (1989) that 

conventional unit root tests have very low power in data series with a structural 

break. This implies that in those studies in which no structural breaks are found 

and conventional unit root test such as the augmented Dickey-Fuller (ADF) test 

are employed to test for unit roots, any conclusions on the presence of unit 

roots are conditional on the validity of the underlying assumptions on the 

presence of structural breaks. The issue of structural breaks is also of concern 

in the case of Ardeni and Wright (1992) who are aware of a possible structural 

break in 1921 and reject the unit root null hypothesis using the ordinary 

Dickey-Fuller test while noting that the Augmented Dickey-Fuller test fails to 

reject the null hypothesis of a unit root. They conclude that the evidence for 

non-stationarity is weak and show that their results are robust to estimating a 

trend stationary model for a sample truncated before 1922. A number of studies 

(Cuddington (1992), Cuddington and Urzüa (1989), Reinhart and Wickham 
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(1994) and Sapsford et. al. (1992)) use a modified unit root test developed by 

Perron (1989) to correct for the impact of structural breaks. 

The issue of the presence of structural breaks in commodity price series is 

problematic, since there still seems to be substantial uncertainty concerning the 

presence as well as the number and position of structural breaks in the terms of 

trade data used. The presence of a structural break is often reported in 

1920/1921, for the Grilli and Yang data set. This is not accepted by all authors, 

however. Ardeni and Wright (1992), Leon and Soto (1997) and Sapsford et. al. 

(1992) have doubts about the empirical relevance of this assumed structural 

break, though Sapsford et. al. (1992) are only able to mitigate the extent of the 

structural break in the original Grilli and Yang data set after substituting data 

for Britain's terms of trade for the period 1914-1920. Ardeni and Wright (1992) 

have doubts about the 1920/1921 structural break and finally resort to 

estimating a truncated data series (it will be recalled that a similar truncation 

was imposed by Bleaney and Greenaway (1993)). Leon and Soto (1997) aim to 

account for endogenously inferred structural breaks in their unit root testing 

procedure for individual commodity price series. Grilli and Yang find no 

significant evidence of a structural break while Newbold and Vougas (1996) 

confirm a sharp drop in the data series in 1920 but allow for the possibility of 

this representing a single outlier rather than a level shift in the data series. 

Sapsford (1985) and Sapsford et al. (1992), finally, report a structural break in 

1950.20 

20 Sapsford (1985) reports a structural break for 1950 rather than 1920/21 using a different data 
set from Sapsford et. al. (1992). Sapsford et. al. (1992) report the presence of structural breaks 
in 1950 as well as in 1920/21. 
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1.3.3.4. Disaggregated data series 

While many of the studies reviewed above have treated aggregate commodity 

price and terms of trade series, there are a number of authors who considered a 

separate treatment of disaggregated data series. The inadequacy of aggregate 

terms of trade data series for an assessment of the development implications of 

international commodity price developments had been recognised as early as 

1958 by Kindleberger (op. cit. )21. Among more recent treatments of the 

problem, Grilli and Yang (1988) considered the developments in the relative 

prices of a number of commodity groups. They distinguish four main 

commodity groups: 1. Food [GYCPIF] (and within this group tropical 

beverages and other food items), 2. non food agricultural commodities 

[GYCPINF] and 3. metals [GYCPIM]. They find an overall negative trend of 

-0.36% p. a. for food prices but within this group, prices for tropical beverages 

(i. e. Coffee, Tea and Cocoa) show a positive trend of around 0.63% p. a. while 

for other food22 prices the trend is of -0.54% p. a. This is significant for LDCs 

in so far as tropical beverages are exported almost exclusively by LDCs while 

among the other food items developed countries' exports, and in particular 

developed countries' exports to LDCs, play a significant role (Grilli and Yang 

(op. cit. )). For non food agricultural commodities they find a negative trend of 

-0.84% p. a., while the measured downwards trend for metal prices is of -0.82% 

p. a. 23 

21 The assumption homogeneous time series behaviour of relative commodity price series is 
often referred to as comovement or excess comovement. This assumption of commodity price 
comovement was criticized more recently and in a different methodological context by Cashin 
et. al. (1999a. ). 
22 They report a somewhat larger negative trend of -0.68% p. a. for cereals. 
23 In interpreting this result the authors observe that metal prices followed a positive trend for 
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Reinhart and Wickham (1994) infer negative trends for all three commodity 

groups (beverages, food and metals). Cuddington (1992) looks into the trends 

of the 26 individual primary commodity price series (including fuel prices) 

underlying the Grilli and Yang data set. He finds negative trends in four cases, 

five series are found to follow positive trends while the remaining 17 price 

series do not provide significant evidence of a trend in either direction. These 

results are in marked contrast with those obtained by Leon and Soto (1997). 

Using an extended version of the Grilli and Yang data set for 24 commodities, 

they infer the presence of a negative trend in 17 cases while four series seem to 

follow a positive trend. They find no evidence of a trend for three of the 

commodity price series. 

As was the case for studies of aggregate price indices, the presence of unit roots 

is an issue in estimating individual commodity price series. Cuddington (1992) 

finds unit roots for 13 of the 26 price series considered. He accordingly 

estimates 13 difference stationary and 13 trend stationary models, with the 

results reported above. Leon and Soto, in contrast, find a smaller number of 

unit roots, and estimate 20 trend stationary and four difference stationary 

processes. Newbold et. al. (2000) follow the methodology in Newbold and 

Vougas (1996) when estimating the relative price trends of individual 

commodity price series for Wheat and Maize. Like Newbold and Vougas they 

find similar (negative) trend estimates for both commodities using either trend 

stationary or difference stationary models, although as in the case of the 

aggregate series used in Newbold and Vougas (op. cit. ), there are large 

the period 1942-1986 in spite of productivity improvements. 
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differences in the significance levels for the trend coefficients obtained for 

different models. 

As for aggregate price series, structural breaks are again an issue for individual 

relative price series. In contrast to the case of aggregate primary commodity 

price series where a number of authors found structural breaks in either 1950 or 

1920/21, results in the case of individual commodity price data differ much 

more. Grilli and Yang (1988) find a structural break in 1940 for their metal 

price index and report none for the other price indices. Cuddington (1992) finds 

structural breaks for only two individual price series: for coffee in 1950 and for 

oil in 1974. Leon and Soto (1997) report structural breaks in a number of 

different years, but none for 1921. 

The structural break in 1920/1921 observed for the GYCPI has been frequently 

reported for the aggregate index but not for the sub-indices or individual 

relative price series. These results obviously cast some doubt on the usefulness 

of aggregate price indices in general. What implications a global trend in 

relative commodity prices would have for the development prospects of less 

developed countries depends crucially on whether certain commodities can 

generally be identified as exports from LDCs to DCs or the other way around. 

(This may be the case for tropical beverages and cereals respectively, as pointed 

out by Grilli and Yang op. cit. ) In the case of individual developing economies 

one should however look into the development of particular price series for 

which the relevance for an individual country's trade balance can be assessed. 
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1.4. Conclusion 

Various studies have been dedicated to the development of relative primary 

commodity prices. Among these studies, univariate models incorporating a 

linear trend are frequently used, as is the Grilli and Yang Commodity Price 

Index (GYCPI). In so far as there is an area of consensus in the use of 

univariate models, more recent contributions use trend stationary and difference 

stationary models allowing for autoregressive and, in some cases, moving 

average components in the residual process. In addition to the question of trend 

detection itself, there remains an interlinked set of controversial points 

comprising a. ) the presence, number and position of structural breaks, b. ) the 

suitability of composite indices or subindices and c. ) the reliability of unit root 

pre-tests in this particular context. It is obvious from the survey of a number of 

studies which either use composite indices at different levels of aggregation 

(e. g. Grilli and Yang (1988) and Leon and Soto (1997)) as well as studies using 

individual commodity price series (e. g. Cuddington (1992), Leon and Soto 

(1997) and Newbold et. al. (2000)) that the recorded evidence on structural 

breaks changes with the level of aggregation. The structural break in 1920/21 

which has been recorded frequently for the overall GYCPI, does not appear to 

be frequently observed when data series are disaggregated. It has further been 

observed that assumptions regarding the presence of structural breaks are 

linked to the reliability of unit root pre-tests. 

Studies like Newbold et. al. (2000) and Newbold and Vougas (1996) further 

suggest that there may be a systematic link between inference regarding the 

order of integration of a data series and subsequent conclusions on the presence 
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of a statistically significant trend or drift term. This impression is further 

strengthened by a comparison of the studies of Cuddington (1992) and Leon 

and Soto (1997). In both cases models are estimated for individual commodity 

price series. It is also the case though, that Leon and Soto (1997) identify a 

larger number of trend stationary models than Cuddington (1992), while 

simultaneously finding a larger number of significant trend estimates. Such a 

link would of course come as no surprise in the simple case of spurious 

rejections when a difference stationary series is modelled as trend stationary. A 

question that remains is whether standard errors are higher for drift coefficient 

estimates when modelling a trend stationary series as difference stationary. 

Such an interdependence of conclusions regarding the trend or drift component 

and a priori assumptions on trend stationarity or difference stationarity would 

be of importance in its own right, since the mean reverting characteristics and 

trend movements of commodity price series can provide crucial background 

information for policy decisions. Moreover, conclusions regarding the presence 

of trend terms -or drift components in an integrated series- are clearly important 

for forecasts of the price series. This study will also attempt to identify the 

presence of trend or drift components in the series without relying on unit root 

test results as a priori assumptions. It will further be attempted to identify the 

most appropriate forecast model and obtain information on shock persistence, 

considering alternative options for the underlying order of integration of the 

data generating process. 

The remainder of this study is structured as follows. Chapter 2 provides a 

general description of the data used, the transformations undertaken and of the 

general econometric methodology. Chapter 3 will investigate whether the 
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presence of larger standard errors for the drift coefficient estimate -compared 

with the trend coefficient estimate in a trend stationary model- is a general 

characteristic of the constituent data series of the GYCPI. It will also be 

investigated whether the inclusion of possible structural breaks does 

substantially alter the results obtained. Chapter 4 provides further insights into 

the relationship between model specification and the conclusions reached on 

the presence of a trend term. It also shows the results of applying a testing 

procedure for trend coefficient estimates, developed by Vogelsang (1998), 

which is designed to be insensitive to misspecifications of the order of 

integration, so long as the data series is either 1(0) or I(1). Forecast models are 

selected in Chapter 5 where the forecasts obtained are also presented. Chapter 6 

presents trend cycle decomposition results for all the price series considered. 

Chapter 7 concludes. 
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Appendix 1. i. The Change of Foreign Exchange 
Earnings in Response to a Change in Export Prices 

Foreign currency revenues arising from trade can be written as follows: 

I. 1. i. Yr = rPXX- PMM, 

This is equal to the trade balance in foreign currency terms, where Yr denotes 

foreign currency earnings, r is the exchange rate, Px the price and X the quantity of 

exports, PM the price and M the quantity of imports. Without loss of generality, one 

can normalise r=1. It is further assumed that Px and PM are independent and that: 

[I. i. ii. ] äp 
=O 

This assumption appears justified given the focus on countries specialising in the 

production and export of primary commodities. The rate of change of Yr in 

response to a change in Px is then: 

[I. i. iii] 
ýp' 

=X+PxddY 
xx 

Multiplying both sides of this equation by x 
=1 gives: 

[I. i. iv. ] dPdY, X=X+ dPX XX 

=X+X? lx 
=X(1+, x) 

Multiplying this by dPx gives the actual change in foreign currency earnings: 

[I. i. v. ] dYr = dPxX(1 +'ix) 

(Another way of looking at the export price Px is to interpret it as the relative price 

of exports with the import price set constant at PM=1. Since the variable of interest 
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is obviously some sort of real price, using an independent import price as deflator 

should be appropriate in this context. Formally one could substitute 

[I. i. vi. ] Px =P Pm 

for Px above, where obviously pX = Px if PM = 1. In the absence of a systematic 

relationship between export prices and import prices this relative price formulation 

should moreover improve the general applicability of the results presented here: an 

exogenous variation in the price of imports affects the purchasing power of export 

revenue. Under the relative price interpretation presented above, we have: 

pxX= 
PXX 
P M 

i. e. the income terms of trade. (correspondingly, dYr represents the change in the 

income terms of trade if pz is substituted for Px). The above results for a change in 

the export price would then continue to hold for a given level of import prices, 

while the (income and net barter) terms of trade would be affected by exogenous 

changes in P. 
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Appendix I. H. Data Sources Used in the Literature 

Table I. ii. i. Data sources used in various studies 

Author Data sources used 
(and year of publication) 

Ahrens and Sharma Commodity price data from various sources 
(1997) deflated by PPI 
Ardeni and Wright GYCPI and MUV 
(1992) 
Bleaney and Greenaway GYCPI deflated by MUV, data are extended to 
(1993) 1991 and truncated before 1925. 
Bloch and Sapsford GYCPI and MUV updated as in Bleaney and 
(2000) Greenaway (1993), for the period after 1948. 
Bloch and Sapsford GYCPI and MUV as in Grilli and Yang, for 
(1997) the period after 1948 
Bloch and Sapsford GYCPI and MUV as in Grilli and Yang, for the 
1991/92 period after 1948 

Borzenstein and Reinhart Quarterly primary product price data from the 
(1994) IMF's International Financial Statistics 

(1971-1992), deflated by the US GNP deflator. 
Cuddington (1992) Data as for the GYCPI for 24 individual 

commodities and data for oil and coal prices, 
MUV as deflator 

Cuddington and Urzüa GYCPI and MUV as in Grilli and Yang 
(1989) 
Grilli and Yang (1988) Grilli and Yang Commodity Price Index 

(GYCPI) from annual US$ values of 24 
primary commodities base weighted to their 
1977-79 average. 
(Also: several variations on this, using different weights 
and one index using fuel prices). 
For manufactured goods: the UN index of 
Manufacturing Unit Values (MUV) completed 
for missing data periods. 
(Also: the US wholesale price index of industrial 
commodities USMPIO). 

Hel (1991) GYCPI deflated by MUV 
Leon and Soto (1997) GYCPI and MUV as in Grilli and Yang, 

updated to 1992 from IMF commodity price 
database. 
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Author Data sources used 
(and year of publication) 

Lutz (1999a. ) GYCPI deflated by MUV and updated to 1995 
from IMF/IFS and UN Monthly Bulletin of 
Statistics 

Newbold et. al. (2000) Wheat and Maize price series as in GYCPI 
(WPI and MUV as deflator). 

Newbold and Vougas GYCPI and MUV as in Grilli and Yang 
(1996) 
Powell (1991) GYCPI deflated by MUV. 
Reinhart and Wickham Quarterly data from 1957-1993 for four primary 
(1994) commodity groups. 
Sapsford (1985) As Spraos (1980), extended coverage 
Sapsford et. al. (1992) GYCPI deflated by MUV, UK terms of trade 

data in place of some of the MUV. 
Spraos (1980) Variants of League of Nations data (annual 

1921-1938), United Nations data (annual 
1900-1970), World Bank and UNCTAD data 
(annual, from 1950 up to 1977). 

von Hagen (1989) GYCPI deflated by MUV 

Note: in the case of studies based on structural models, only the data sources for 
commodity price series are given here. 
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Chapter 2: Data Series and Methodology 

2.1. Description of the Data Series Used 

2.1.1. The original data sets 

The data used in this study are an extension of the data set used originally by Grilli 

and Yang (1988) to compile a composite commodity index, which has since 

become known as the GYCPI'. The original Grilli and Yang data covered a total of 

24 non-fuel commodity price series for the following commodities: Coffee, Cocoa, 

Tea, Rice, Wheat, Maize, Sugar, Beef, Lamb, Bananas, Palm Oil, Cotton, Jute, 

Wool, Hides, Tobacco, Rubber, Timber, Copper, Aluminium, Tin, Silver, Lead 

and Zinc. 

The data set provides annual averages of commodity price data for the period 

1900-1986. The data are in US$ and are indexed to the 1977-1979 average of the 

original current price data. Grilli and Yang used the United Nations Manufacturing 

Unit Value Index (MUV) and the United States Manufacturing Price Index 

(USMPI) as alternative deflators for the indexed primary commodity price series. 

In the present study, only the MUV is used. As a composite index, the MUV-G5 is 

compiled on the basis of trade flows from the leading five industrial countries to 

lower income countries': 

1 GYCPI stands for Grilli and Yang Commodity Price Index (cf. Grilli and Yang (1988)). Grilli and 
Yang use several versions of the index with different manufactured commodity price series in the 
denominator and for subgroups of the overall commodity index as well as an index including fuel 
prices. 
2 The MUV-G5 index described here is alternatively referred to as MUVUN (as in Grilli and Yang) 
or simply MUV in the literature. Here, MUV will be used, aside from the specific references to the 
current definition of the MUV-G5 in this chapter. 
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"The MUV index is a composite index of prices for 

manufactured exports from the five major (G-5) industrial 
countries (France, Germany, Japan, the United Kingdom, and 
the United States) to low- and middle-income economies, 
valued in U. S. dollars. The index covers products in Standard 
International Trade Classification (SITC) groups 5-8. To 
construct the MUV G-5 index, unit value indexes for each 
country are combined using weights determined by each 
country's export share. " (Worldbank, World Development 
Indicators 2000). 

The fact that the MUV-G5 is constrained to exports from the leading industrial 

countries to low and middle income countries, rather than merely relying on price 

or unit value data for the above mentioned SITC categories, makes the MUV-G5 

as a deflator more representative of developing countries' Net Barter Terms of 

Trade. More specifically, it avoids the inclusion of manufactured products in the 

later stages of the product life cycle. Some of these products can be more typical of 

developing countries' economies and their prices may show characteristics more 

representative of the commonly assumed behaviour of primary commodities than 

of those associated with manufactured exports from developed economies. (Sarkar 

(1997) for example works on this assumption, Kaplinsky (1999) provides some 

empirical support. ) (The problems of attempting to link commodity categories to 

structural features such as comparative advantage or factor endowments, even for 

very high digit SITC categories, has been extensively documented in the context of 

the debate on the impact of trade on labour markets. (cf. Wood (1994)). 

With respect to the purpose of identifying the pressure on developing countries' 

terms of trade from the development of relative primary commodity prices there is 

also no reason to expect the MUV index to be inferior to the USMPI. On the 
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contrary, in the case of those developing countries whose trade is not strongly 

dominated by the USA, the use of the MUV as a deflator should make the relative 

commodity price series obtained more relevant to developing countries' terms of 

trade. In the discussion concerning the Prebisch Singer Hypothesis, no case seems 

to have been made in favour of using the USMPI rather than the MUV and the 

MUV has been the most frequently used deflator for the GYCPI so far3. 

Data quality and alternatives 

Grilli and Yang compile their commodity price index in preference over earlier 

composite price indices. Among the previously established commodity price 

indices, the Lewis index' does not extend beyond 1938. The Economist commodity 

price index, by far the longest composite index available, goes back to 1851 and is 

updated regularly. However, some of the earlier data series are incomplete, it has 

been subject to various revisions and is based on trade weights of industrialised 

countries (cf. Grilli and Yang (1988)). 

While there are reasons to aim for a new commodity index, the Grilli and Yang 

index has problems of its own. Aside from the required interpolations for the 

MUV, there are some reasons to doubt the adequacy of part of the data series used. 

Current Worldbank commodity price data are obtained from a variety of sources, 

covering not only c. i. f and f. o. b. prices but also prices recorded at auctions. 

Clearly, these differences give rise to some concern in itself (e. g. regarding the role 

of transport costs). Yet one advantage of the Worldbank series arises from the fact 

3A detailed listing of data sources used in various studies can be found in Appendix I. H. 
4 The Lewis index and other early commodity price indices are reviewed in some detail by Spraos 
(1980), Cashin et. al. (2001) cover the Economist Index in some detail. 
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that the price data are generally averaged over month, years and, where appropriate 

over auctions. 

While averages -as opposed to individual data points- are not ideal from a 

statistical point of view they tend to be preferred with respect to their economic 

interpretation if they are taken as representative for one particular period. Average 

prices, both in the intertemporal sense and in the sense of accounting for fixed 

factors, should be more representative of prevailing price incentives than 

individual price quotations which may merely be indicative of the marginal price 

prevailing for one particular transaction. There is a possibility that this problem 

may be relevant for the earlier Grilli and Yang data. Grilli and Yang (1988) say 

little about the origin of their commodity data while Cuddington (1992) describes 

them as "free market commodity price quotations". This could be a reference to 

recorded marginal prices. 

A further problem is that of the characteristics of the aggregate index and its 

component parts. The GYCPI, as well as the Lewis index' show signs of structural 

instability around 1920/1921. This is not observed in any of the sub-indices or 

individual commodity price series. Cuddington (1992) suggests that this may be 

due to the mixed incidence of integrated and stationary series in the index and 

quotes further research linking aggregation problems to the use of arithmetic rather 

than geometric averages in the construction of the index. 

These problems then provide further cause to guard against the use of a composite 

index. In spite of the possible problems with earlier recorded data, it remains one 
5 And the Economist index with respect to its imputed rate of decline (see Cashin et. aL (2001)). 
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of the attractions of the Grilli and Yang data set that a large number of individual 

price series is available over a long common time horizon. 

Further commodity data from the World Bank 

Further commodity data for a number of primary commodities were obtained in 

current dollar terms and deflated by the MUV index. The data series covered the 

period from 1960-1995. Where possible6, these data were further extended to cover 

the years 1996-1998 and to update the data for 1995, where there were 

discrepancies at the two digit level and where data were available. The main data 

series used were the primary commodity price data from the World Bank 

('pinksheet'). These data were available in current US$ terms and were deflated 

using the MUV. Price data for Tobacco were obtained from table 6.5 of the World 

Development Indicators (Primary commodity prices)'. 

Chaining the Series 

Both data series overlap for the period 1960-1986. The World Bank data series in 

current US$ can be converted to fit the CYCPI by applying the following formula: 

100 [2.1.1] Gy -Base 

where Gy is the value of the GYCPI in year i, C, the commodity price in current 

US$ in year i and Base the arithmetic mean of the relevant commodity's price for 

the years 1977-1979. New data for the MUV, which were indexed to base year 

6 This was not possible for Tea and Tobacco, where data series did not extend beyond 1997 and in 
the case of Hides were no new data were available after 1995. 

Data sources are listed separately in the Bibliography. The Pinksheet gives data for Robusta and 
Arabica Coffee and in the case of Timber for logs from Malaysia and Cameroon. Data for Coffee 
were extended from data for Robusta Coffee and in the case of Timber from price data for 
Malaysian logs. In both cases a closer correspondence was obtained for data during the period 
1960-1986 where data were available for the original data set and the new data. 
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1990, were likewise indexed to their 1977-1979 average. After indexing the 

commodity price series and the MUV index to their 1977-1979 averages, 

commodity price series were updated from the more recent world bank data series 

from 1960 onward, so as to incorporate more recent revisions where discrepancies 

between the original and more recent data series exist. 

This yielded a continuous version of the Grilli and Yang commodity price data 

relative to the United Nations Manufacturing Unit Value index, and indexed to 

their 1977-1979 average as in the original study by Grilli and Yang. Finally, 

natural logarithms were taken of the chained series. (The data series obtained are 

listed in appendix II. i. ). 

2.1.2 Description of the Data Series 

To gain an initial impression of the data series obtained, some basic numerical 

measures of concentration and dispersion were calculated. Table 2.1. reports the 

Arithmetic Mean and Standard Deviation as well as the first and last observation 

and the minimum and maximum values for each commodity's sample data. 
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Tnhh 111C.,.., r., arv Tlata fnr Relative Commodity Price Series 

Commodity Average Std 
Dev. 

First Obs. Last Obs. Min. Max. 

Coffee -0.794 0.427 -1.157 -0.926 -1.698 0.350 
Cocoa -1.016 0.506 -0.485 -1.319 -1.864 0.222 
Tea 0.015 0.387 0.253 -0.672 -1.078 0.700 
Rice 0.153 0.431 0.444 -0.583 -0.861 0.915 
Wheat 0.279 0.391 0.333 -0.618 -0.618 1.088 
Maize 0.304 0.419 0.138 -0.602 -0.743 1.212 
Sugar 0.230 0.515 0.821 -0.540 -0.910 1.611 
Beef -0.868 0.680 -1.607 -0.816 -1.906 0.473 
Lamb -0.858 0.697 -1.823 -0.306 -2.075 0.149 
Banana 0.217 0.233 -0.116 -0.077 -0.314 0.782 
Palm Oil 0.002 0.454 0.126 -0.463 -1.264 1.341 
Cotton 0.197 0.405 0.151 -0.689 -0.837 0.888 
Jute 0.145 0.435 -0.050 -0.941 -0.942 0.956 
Wool 0.495 0.566 0.665 -0.738 -0.869 1.339 
Tobacco -0.251 0.432 -1.162 -0.898 -1.162 0.754 
Hides 0.057 0.468 0.217 -0.762 -1.287 1.031 
Rubber 0.569 0.922 2.029 -0.931 -0.931 2.629 
Timber -0.427 0.394 -1.070 -0.282 -1.114 0.572 
Copper 0.046 0.357 0.397 -0.522 -0.588 0.938 
Aluminium 0.419 0.599 1.411 -0.394 -0.592 1.843 
Tin -0.835 0.397 -1.117 -1.441 -1.644 0.045 
Silver -0.749 0.402 -0.517 -0.825 -1.472 0.859 
Lead -0.323 0.331 -0.265 -1.033 -1.319 0.262 
Zinc 0.024 0.260 -0.130 -0.117 -0.581 1.012 

Data for Tea and Tobacco are for the period 1900-1997 only, Data for Hides were available only 
until 1995. All other data series cover the period 1900-1998. All Data series give commodity prices 
relative to MUV in natural logarithms on an annual basis. 
Std Dev.: Standard deviation, Obs.: Observation, Max.: Maximum, Min.: Minimum. 

These rather crude descriptive statistics can be complemented by graphical 

illustrations of the time path of relative primary commodity prices. Appendix Il. ii. 

contains Graphs for all the relative commodity price series in the sample, showing 

their development between 1900 and 1998 (or 1997 for Tea and Tobacco, 1995 for 

Hides). In the cases of Tea and Tobacco, it was has not been possible to extend the 

data series beyond 1997, and for Hides no data were available after 1995. Since the 

series for Hides have not been updated for a prolonged period of time, it is likely 
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that no updated values will be available for the evaluation of forecasts at a later 

stage. The series is therefore dropped from the study, except for those parts of 

Chapter four, where its inclusion is of interest in the context of tests for the 

significance of the trend coefficient. 

The time series graphs for some commodities do indeed give the impression of a 

long run trend, although in some cases, such as Timber, this appears to be positive. 

The notion of a secular trend does seem plausible for Hides, Rubber, Timber and 

Aluminium. For other commodities such as Coffee, Cocoa and Zinc there is no 

obvious evidence of a trend and it appears plausible that these series follow a 

volatile but stationary time path. In yet other cases, the picture is even less clear. 

For some series like Tea, Rice Wheat, Maize, Beef, Lamb, Cotton and Palm Oil 

the presence of an underlying trend as well as stationarity around a structural break 

seem to be possible scenarios, in yet other cases (Banana, Tobacco, Jute, Wool, 

Sugar, Tin, Silver, Lead and Copper) the series do not appear stationary but there is 

no indication of a clear pattern of trends or discrete shifts either. 

The one common feature which the time series covered do share is a high degree of 

volatility over time. Even in those cases where the presence of a trend is strongly 

suggested by a plot of the data (e. g. Timber and Hides) volatility around this trend 

is a salient feature illustrated by the time series graph. Zinc, the one price series 

which most clearly appears to be stationary, is clearly subject to extensive 

fluctuations. 

Decisions on the presence of a deterministic trend in the data generating process 

underlying the series as well as decisions as to how those data series should best be 
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modelled should be taken with care. The questions of the presence of secular 

trends is clearly important in the context of forecasting as well as in commenting 

on those issues in trade policy discussions for which the assumption of a secular 

trend is crucial. 

2.2 Basic Econometric Methodology 

This section outlines the basic methodology employed in modelling time series and 

in testing for stationarity in levels allowing for the presence of a deterministic trend 

(hereafter referred to as trend-stationarity). Deviations from and extensions to this 

basic methodology will be discussed in later chapters as they are used. 

2.2.1. Modelling univariate time series. 

In modelling univariate time series in the stationary case, the time series in 

question can be represented as an ARMA(p, q) process of the form: 

P9 
[2.2.1] y1 =E ýIYJ-, ý OjCt j+ 81 

where p corresponds to the number of autoregressive lags and q to the number of 

moving average terms, and where 

[2.2.2] EtN(0, ci ) 

and the definition of stationarity in the sense of 'weak' or covariance stationarity 

requires that for a stationary series: 

1. the mean of the variable under consideration is constant over time, 

2. the residual variance is finite and constant over time 
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3. the covariance between two observations y, and y, _, 
depends only on the time lag 

between those observations not on the point in time when the observations in 

question occur (cf. Granger and Newbold (1986)). 

An alternative way of expressing the ARMA(p, q) process identified in equation 

[2.2.1 ] is given by: 

P9 
[2.2.3] yI = ug, ur -y, Oiur-i = Ei E Oje11 

so that 

[2.2.4] y, =E b; ut-, -O cr-l + 81 

Since by [2.2.3] it is generally the case that ye_; = u, _, 
[2.2.1] can be obtained from 

[2.2.4] by substitution. 

The stationarity assumption is not fulfilled if one or more of the autoregressive 

parameters take a value of one (i. e. if there is a unit root in the characteristic 

equation (cf. Johnston and Dinardo (1997)). The case can be illustrated for the case 

of a first order autoregressive process: 

[2.2.5] yt _ cyt-1 +e 
For such an AR(1) process with zero mean8, the variance is: 

[2.2.6] Ply, ) = y(O) = E(Yi ) 

Since [2.2.3] can be shown, by a process of consecutive substitution, to be 

equivalent to: 

00 [2.2.5'] Yt ='tb'Et-r 

8 The variance expression can be generalised to a case of non zero mean as shown in Johnston 
Dinardo (1997), p. 57f' 
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[2.2.6] is equivalent to: 

Y(0) = 
E1--o 

226' '0 ['] 021E(E2 i) 

Go 
= . 2021 

this can in turn be written as: 

[2.2.7] Y(O)_ (1 
_2 

02) 

For the case where 0 =1 one may then consider a time series for a finite period of 

T observations with yý0, so that E" ý2' =T and [2.2.6'] becomes: 

[2.2.8] v(vi) = y(0) =TQ2 

while [2.2.7] is not defined for this case. The variance expression for 0=I is 

clearly dependent on time and thus violates the above stationarity assumptions. 

Equation [2.2.5. ] would here express the pure random walk case if 5 =1: 

[2.2.9] ys = yr-1 + et 

or, rearranging 

[2.2.9'] Ay, = (1- L)y, = er 

One should thus consider the possibility that a series which is not stationary in 

levels may be stationary in first differences, i. e. integrated of order one (I(1)). For 

the more general ARIMA(p, l, q) case this would be: 

[2.210] Dyc = v1, vi -E 01vr-; = ei ýE ej¬, 

which, substituting for yr and rearranging can be expressed as: 
P 

[2.2.11] tYr=E 0, v, -, 
fO,, 

+ei 
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and, with iy, _j = vt_, this can be expressed as: 

P9 
[2.2.12] eyr =E 0iAyl-i ýE Oje,; +e, 

Considering a data generating process characterised by a constant and deterministic 

linear trend, the simplest case is: 

[2.2.13] yt = a+ßt+et, ElN(O, a, ) 

The equivalent for an I(1) data generating process with trend then corresponds to 

the first differenced version of [2.2.3], i. e. random walk plus drift case, which is: 

[2.2.14] (1-L)y, =ß+Er 

since obviously a first differenced constant is eliminated from the expression and a 

first differenced linear trend reduces to a constant. 

It has been illustrated, for the AR(l) case, in equations [2.2.5'] to [2.2.8] that a pure 

autoregressive process can be inverted to yield a moving average process 

regardless of stationarity characteristics. It is not the case, however, that a pure 

moving average process is always invertible. More specifically, this will not be the 

case if in an equation like: 

[2.2.1 5] Yt =S Oiel-t + ei 

One or more of the 0f parameters take a value of one, i. e. if at least one of the 

moving average parameters has a unit root. Considering the MA(1) process 

[2.2.16. ] yr = eer-t + 81 

so that 

[2.2.17] yt 1 =Oe_2+ei_� and 

[2.2.18] eyl-I = 028t-2 + OeI-I 
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This can be solved for Oct-land substituted back into [2.2.161. Repeated 

substitution will then yield: 

00 [2.2.19] yt =-E (-9)'E, 
_; + E, 

1=l 

clearly, where the value of the moving average parameter is within the range 

0: 5 0<1 the autoregressive coefficients obtained by inversion will approach zero 

for larger lags. For the case of 0=1, however, the autoregressive terms will not 

converge on zero as the number of lags goes to infinity. A Moving average process 

is therefore not invertible if at least one of the moving average parameters takes a 

value of one or above. 

2.2.2. Testing for unit roots 

The question of the order of integration of a time series is of crucial importance 

when considering the question of a deterministic trend or drift term and when 

attempting to assess the statistical significance of the estimated trend or drift 

coefficient. It is a well documented result (cf. Newbold and Granger (1974)) that 

ordinary t-tests reject the null hypothesis of a zero trend coefficient too frequently 

when the data generating process? is I(1) and a trend stationary model for an 1(0) 

process is fitted. 

It is therefore common practise to pre-test the data series in question for the 

presence of unit roots in the autoregressive component to decide on the order of 

integration. In the present case of relative primary commodity prices in logarithms 

one can expect the series to be integrated of either order 0 or 1. The most common 

9 Throughout, l(l) is used to refer to difference stationary processes, 1(0) to refer to data series that 
are stationary in levels, possibly around a trend. 

50 



Chapter 2 

way of testing for the presence of unit roots is the application of the Augmented 

Dickey Fuller (ADF) test, in this case including a constant and trend, to the data in 

levels. The ADF testing equation allowing for a linear trend and constant takes the 

form: 

[2.2.20] oyi = a+ßt+pyr_, +E y, oyt_, +Et 

Where the coefficients for the trend and constant are as before, p is the coefficient 

on the lagged dependent variable and the yi are the coefficients on the lagged 

differenced terms. The number of lagged differenced terms should be large enough 

to avoid the occurrence of serial correlation in the error term. The true number n of 

autoregressive lags can generally be identified if the initial testing equation has a 

number of m>n lags and insignificant lagged terms are then successively 

eliminated until either the last term remains significant, or the testing equation 

reduces to an ordinary Dickey-Fuller test including a trend and constant. 

The null hypothesis of a unit root would then be tested by evaluating the t-ratio on 

the estimate of the autoregressive coefficient P, and testing Ho :p=0 using a set of 

critical values provided by Dickey and Fuller (these values are quoted e. g. in 

Enders (1995) and Johnston and Dinardo (1997)). 

To test for the presence of unit roots in a first differenced data series allowing for a 

trend, the ADF testing equation now takes the form: 

[2.2.21 ' 2y' =ß+ pAyr-i +E Y, '2yr-, + 81 

where a constant is included to allow for a linear trend. One would then proceed as 

above in determining the number of autoregressive lags and evaluating the 
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significance of p using the appropriate set of critical values, which is different from 

the one for [2.2.20] (cf. again Johnston and Dinardo (op. cit. )). 

Since unit root tests are commonly used to make a priori decisions on stationarity 

and the order of integration of a time series for subsequent analysis, and since the 

results obtained subsequently depend crucially on the inference on unit roots made 

previously (cf. Newbold and Vougas (1996) and Newbold et al. (2000)), the issue 

of a priori testing should not be taken lightly. One fundamental problem with 

Dickey-Fuller type tests -as with significance tests in general- is the essentially 

arbitrary nature of the significance level chosen. Indeed in the case of testing for 

unit roots -or, by implication, for stationarity- it is not at all clear in principle, how 

the null and alternative hypotheses should be specified. In the case of stationarity 

tests, such as the one developed by Leybourne and McCabe (1994), Leybourne and 

McCabe (1999) and the one developed by Kwiatkowski et. al. (1992) the null and 

alternative hypotheses are effectively reversed when compared to unit root tests. 

There are further problems with the application of unit root tests. Perron (1989) 

pointed out that unit root tests have low power if a structural break is not 

accounted for in an otherwise stationary series. For this case, Perron proposes the 

inclusion of dummy variables to account for the presence of a structural break. 

This procedure is well established for the case of a single exogenously determined 

structural break. There does not appear to be a generally accepted method for 

dealing with multiple or endogenously inferred structural breaks though. 

Finally, it has been shown by Agiakloglou and Newbold (1992) that rejections of 

the null hypothesis of a unit root occur too often if a moving average coefficient 
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close to one is present in the data generating process. This problem can be dealt 

with in the test by Leybourne and McCabe (1994) which is also reported to be 

robust against overfitting in terms of autoregressive terms in the testing equation. 

(Cf. Leybourne and McCabe (1994), the Leyboume McCabe test is discussed in 

detail when it is used in Chapter 4. ) 

One approach (adopted e. g. by Ahrens and Sharma (1997) and Leon and Soto 

(1997)) is to anticipate the problems mentioned above as far as possible and to 

select the most appropriate unit root test for a priori testing. The selection of the 

most appropriate pre-test is itself not always unproblematic though and any 

mistaken inference at the pre-test stage can be expected to influence the later 

analysis. Given the overall uncertainty surrounding a priori testing and the 

possibly far reaching consequences of mistaken inferences at this stage, the present 

study will give extensive consideration to models based on the assumption that the 

data generating process is stationary as well to those that assume an I(1) process. 

2.2.3. Model estimation and selection 

The ARIMA(p, d, q) models with d=0,1 for all commodity price series were 

estimated using exact Maximum Likelihood estimation, as implemented in the 

time series package for GAUSS. The general model specification adopted for the 

model in levels was: 

P9 
[2.2.22] yr = a+ßt+ u,, ur -E b; ur-, = e, ä Oje, j 

where the residual, u,, follows an ARMA(p, q) process and a trend and constant 

term are included in the main equation. The equivalence of pure ARMA processes 
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with the autoregressive terms expressed in terms of either the residual or the 

dependent variable was demonstrated above in equations [2.2.1] to [2.2.4]. One 

should note here that no such equivalence holds for the values of the constant and 

trend coefficients. It is straightforward to show that for an ARMA(p, q) model of 

form [2.2.1 ] including constant and trend, 

Pq 
[2.2.1'] yt=a+bt+F0, y, _, -2; Ojej j+-I i=t 

, 
j=1 

The constant and trend coefficients would correspond to those in [2.2.22] as in 

b= (1-E 1 0, )ß and a= (1-ErI q, )a+ßEi-l i0;. For the difference stationary 

model, the basic specification adopted was: 
P9 

[2.2.23] Ay, = ß+ v,, vt -E *b1vr-t = el E 61St I 

Where the residual process for the series in first differences is again modelled as an 

ARMA(p, q) process. If the difference stationary model were to be represented as in 

[2.2.12] but including a constant term, i. e. 

[2.2.12'] Ay! =b +E O, Ayj-, E 9; E, j +et 

it would again be the case that b= (1- E 1O, )ß as above. The optimal 

representation of the time series was then selected as follows: for all 1(0) and I(1) 

series, all possible ARIMA(p, d, q) specifications with p+qS5 were estimated. 

The optimal model specification was then inferred from the lowest value for the 

Schwarz Bayesian Information Criterion (SBC). 

In principle, the appropriate ARIMA model specification can be selected by, at 

least, either the Akaike Information Criterion or the SBC. Harvey (1993) defines 

the AIC as: 
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[2.2.24] AIC= -2 InL(yr) + 2n, 

where 1nL(yr) is the value of the maximised likelihood function and n the number 

of estimated coefficients in the estimating equation. The SBC is defined as: 

[2.2.25] SBC= -21n L(V) +n ln(T) 

where T is the number of useable observations in the sample and the remaining 

components of the equation are as in [2.2.24]. In either expression, inclusion of the 

negative of the maximised log likelihood function assures that the value of the test 

statistic tends to be lower for model specifications with a closer fit. The 2n and 

nln(T) terms respectively result in the test statistic tending towards lower values 

for more parsimonious model specifications. Both test statistics are designed to 

select ARIMA models on the basis of a trade-off between goodness of fit and 

parsimonious specification. The AIC, however, is known to consistently select 

overparameterized models (cf. Harvey op. cit. ) so that in the present study the SBC 

is used as the selection criterion. 

2.2.4. Further considerations for the formulation of forecast models 

It has been pointed out by Granger and Newbold (1986) that optimal predictions 

from a univariate ARIMA(p, d, q) model can be obtained if the correct model 

corresponding to the data generating process has been identified. It should be clear 

from the preceding discussion that such a correct model identification can not be 

taken for granted. Uncertainty about the accuracy of forecasts therefore arises from 

uncertainty about model selection as well as from the standard errors obtained with 

the coefficient estimates in the selected forecast model. No attempt will be 

undertaken here to quantify the uncertainty associated with the question of 
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appropriate model selection -once a forecast model has been decided upon. The 

influence of standard errors for the estimated coefficients in the forecast model can 

be incorporated through confidence intervals for the forecasts obtained. It is worth 

bearing in mind that the imputed order of integration of the data generating process 

has an immediate impact here. The confidence intervals for forecasts from a 

difference stationary model will widen for longer forecast horizons, while the 

confidence intervals for forecasts from trend stationary models will not. In the 

context of uncertainty about the order of integration, this raises the additional issue 

of the lowest cost of misspecification. (This lower cost tends be attributed to the 

difference stationary alternative. Chapter 5, contains a more detailed treatment of 

this issue. ) 

It has been repeatedly pointed out that the incorporation of trend or drift terms in 

the estimated ARIMA models can be decisive for the values of the forecasts 

obtained. In data series which are characterised by substantial volatility as well as 

the presence of trend or drift components the importance of the trend term or even 

the desirability of its inclusion can depend on its magnitude. This question will be 

taken up in Chapter 5, where the impact of correctly including trend or drift terms 

of different magnitude is reviewed in more depth. 

Finally, it should be desirable to quantify the persistence of shocks to the data 

series. In so far as forecast models are entirely or mainly characterised by their 

ARMA parameterisation, such a measure of shock persistence should give a basis 

for assessing the importance of predicted mean reverting movements. While a 

distinction of trend and cyclical components is straightforward for stationary or 
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trend stationary series, this distinction is more complex in the case of difference 

stationary data series. Chapter 6 will therefore present computations of the 

Beveridge-Nelson trend cycle decomposition for those data series where a 

difference stationary forecast model has been considered. 

2.3 Conclusion 

In this study, the individual commodity price series underlying the Grilli and Yang 

commodity price index, deflated by the MUV Manufacturing Unit Value index 

will be used to evaluate the presence of a trend term in long run primary 

commodity price series and to obtain forecasts for primary commodity prices. For 

this purpose the series have been updated to cover the period 1900-1998 where 

possible. 

The estimates will be based on univariate ARIMA models allowing for the 

presence of a trend or drift term. In contrast to most previous studies on the topic 

the problems surrounding unit root pre-testing motivate the consideration of 

stationary and difference stationary model alternatives for the evaluation of 

possible trend components in the series. Forecast models will be selected taking 

these findings into account, and trend cycle decompositions will be computed to 

assess the incidence of permanent shock components. 
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Appendix Il. i. Average Annual Commodity Price 
Series Deflated by MUV. 

This appendix lists the annual average price series for relative primary commodity 

prices deflated by the Manufacturing Unit Value Index (MUV) and indexing the 

data series to their 1977-1979 average as described in Chapter 2. (n. a. indicates 

where no data are available. ) 

Year Coffee Cocoa Tea* Rice Wheat 
1900 0.315 0.616 1.288 1.559 1.395 
1901 0.260 0.610 1.298 1.477 1.410 
1902 0.226 0.631 1.414 1.468 1.659 
1903 0.230 0.635 1.077 1.857 1.659 
1904 0.312 0.633 1.257 1.506 1.879 
1905 0.332 0.622 1.221 1.695 1.839 
1906 0.303 0.605 1.016 1.890 1.473 
1907 0.234 0.697 0.946 1.930 1.622 
1908 0.323 0.523 0.945 2.160 2.069 
1909 0.342 0.448 1.034 1.700 2.168 
1910 0.404 0.421 1.065 1.697 1.910 
1911 0.548 0.444 1.074 2.221 1.890 
1912 0.606 0.458 1.059 2.497 1.899 
1913 0.493 0.509 1.072 1.955 1.550 
1914 0.459 0.479 1.130 1.942 2.043 
1915 0.373 0.628 1.065 1.915 2.526 
1916 0.333 0.432 0.861 1.429 2.219 
1917 0.269 0.286 0.921 1.035 2.969 
1918 0.276 0.271 0.887 0.971 2.423 
1919 0.509 0.369 0.804 0.985 2.289 
1920 0.367 0.252 0.603 1.083 2.287 
1921 0.236 0.171 0.620 1.469 1.698 
1922 0.364 0.227 0.974 1.821 1.590 
1923 0.377 0.187 1.245 1.729 1.381 
1924 0.543 0.187 1.273 1.880 1.642 
1925 0.616 0.230 1.244 1.863 2.101 
1926 0.588 0.293 1.414 2.111 2.025 
1927 0.521 0.426 1.471 2.066 2.111 
1928 0.647 0.345 1.295 1.869 1.925 
1929 0.640 0.291 1.311 1.938 1.986 
1930 0.381 0.234 1.248 1.558 1.436 
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1931 0.317 0.181 1.139 1.066 1.051 
1932 0.461 0.185 0.818 1.130 1.067 
1933 0.354 0.165 1.101 0.859 1.114 
1934 0.365 0.165 1.258 0.944 1.277 
1935 0.299 0.162 1.213 1.261 1.460 
1936 0.319 0.221 1.250 1.238 1.615 
1937 0.361 0.267 1.410 1.284 2.251 
1938 0.242 0.158 1.265 1.128 1.608 
1939 0.254 0.160 1.202 1.193 1.090 
1940 0.223 0.155 1.123 1.312 1.061 
1941 0.334 0.217 1.351 1.378 0.998 
1942 0.341 0.219 1.518 1.305 0.964 
1943 0.305 0.196 1.218 1.217 1.407 
1944 0.268 0.172 1.045 1.069 1.318 
1945 0.264 0.167 1.018 1.041 1.382 
1946 0.355 0.213 0.952 1.185 2.238 
1947 0.424 0.536 1.092 1.571 2.154 
1948 0.422 0.597 1.137 1.630 1.894 
1949 0.543 0.347 1.292 1.502 1.681 
1950 0.852 0.566 1.265 1.392 1.636 
1951 0.849 0.528 1.339 1.241 1.598 
1952 0.803 0.516 1.094 1.316 1.642 
1953 0.837 0.564 1.365 1.533 1.551 
1954 1.156 0.898 2.014 1.416 1.379 
1955 0.891 0.576 1.890 1.255 1.317 
1956 0.982 0.402 1.752 1.164 1.263 
1957 0.958 0.446 1.591 1.155 1.213 
1958 0.712 0.653 1.664 1.210 1.204 
1959 0.612 0.539 1.652 1.124 1.247 
1960 0.617 0.472 1.699 0.990 1.245 
1961 0.588 0.382 1.598 1.079 1.237 
1962 0.536 0.354 1.585 1.200 1.332 
1963 0.528 0.435 1.532 1.139 1.361 
1964 0.651 0.391 1.529 1.070 1.402 
1965 0.642 0.281 1.480 1.050 1.224 
1966 0.574 0.384 1.391 1.240 1.252 
1967 0.528 0.438 1.387 1.599 1.292 
1968 0.535 0.534 1.154 1.560 1.246 
1969 0.514 0.635 1.019 1.362 1.100 
1970 0.632 0.446 1.081 0.961 0.973 
1971 0.519 0.338 0.986 0.805 1.038 
1972 0.529 0.370 0.903 0.857 1.077 
1973 0.569 0.562 0.784 1.676 1.862 
1974 0.494 0.636 0.853 2.428 1.964 
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1975 0.440 0.457 0.758 1.442 1.465 
1976 0.949 0.740 0.829 0.977 1.289 
1977 1.419 1.248 1.320 0.956 0.911 
1978 0.857 0.974 0.934 1.139 0.980 
1979 0.805 0.832 0.812 0.911 1.086 
1980 0.666 0.600 0.767 1.089 1.067 
1981 0.549 0.477 0.690 1.213 1.076 
1982 0.600 0.405 0.672 0.731 1.002 
1983 0.579 0.506 0.828 0.705 1.006 
1984 0.648 0.584 1.257 0.652 0.995 
1985 0.651 0.545 0.715 0.548 0.880 
1986 0.734 0.424 0.590 0.440 0.631 
1987 0.390 0.372 0.476 0.461 0.565 
1988 0.440 0.276 0.464 0.556 0.677 
1989 0.349 0.217 0.528 0.603 0.795 
1990 0.273 0.210 0.503 0.517 0.602 
1991 0.253 0.194 0.446 0.548 0.559 
1992 0.183 0.171 0.464 0.480 0.630 
1993 0.203 0.174 0.434 0.423 0.586 
1994 0.415 0.210 0.411 0.464 0.604 
1995 0.386 0.199 0.340 0.513 0.659 
1996 0.327 0.212 0.385 0.568 0.809 
1997 0.534 0.249 0.511 0.537 0.656 
1998 0.396 0.267 n. a. 0.558 0.539 

* Data for Tea only until 1997 

Year Maize Sugar Beef Lamb Banana 
1900 1.148 2.272 0.201 0.162 0.891 
1901 1.549 1.938 0.211 0.170 0.972 
1902 2.049 1.592 0.217 0.175 1.034 
1903 1.461 1.705 0.207 0.175 1.070 
1904 1.525 2.209 0.211 0.170 1.078 
1905 1.612 2.361 0.211 0.170 1.116 
1906 1.346 1.702 0.201 0.162 1.096 
1907 1.450 1.703 0.186 0.150 1.080 
1908 2.041 2.110 0.206 0.159 1.206 
1909 1.991 2.077 0.206 0.166 1.167 
1910 1.673 2.241 0.205 0.165 1.195 
1911 1.791 2.489 0.204 0.165 1.272- 
1912 1.962 2.096 0.200 0.161 1.293 
1913 1.779 1.566 0.197 0.159 1.276 
1914 2.127 2.234 0.203 0.164 1.369 
1915 2.172 2.728 0.424 0.366 1.300 
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1916 1.978 2.911 0.373 0.307 1.091 
1917 3.361 2.583 0.312 0.285 1.052 
1918 2.688 1.952 0.345 0.297 1.048 
1919 2.510 2.201 0.404 0.336 0.893 
1920 2.092 4.860 0.244 0.243 0.939 
1921 0.986 1.493 0.223 0.218 1.024 
1922 1.210 1.512 0.149 0.129 1.090 
1923 1.599 2.716 0.161 0.203 1.153 
1924 1.875 2.062 0.162 0.255 1.196 
1925 1.981 1.189 0.200 0.293 1.350 
1926 1.514 1.241 0.201 0.205 1.497 
1927 1.846 1.560 0.192 0.226 1.578 
1928 2.088 1.288 0.237 0.278 1.545 
1929 2.074 1.056 0.261 0.265 1.616 
1930 1.860 0.770 0.240 0.242 1.651 
1931 1.430 0.848 0.488 0.495 1.913 
1932 1.017 0.654 0.428 0.458 2.187 
1933 1.188 0.799 0.358 0.466 1.998 
1934 1.635 0.828 0.244 0.414 1.672 
1935 2.095 1.124 0.265 0.696 1.724 
1936 2.154 1.231 0.273 0.799 1.664 
1937 2.595 1.225 0.381 0.861 1.562 
1938 1.315 0.966 0.323 0.712 1.540 
1939 1.318 1.100 0.337 0.638 1.762 
1940 1.390 0.906 0.389 0.596 1.760 
1941 1.599 1.058 0.427 0.578 1.713 
1942 1.628 1.366 0.475 0.517 1.527 
1943 1.802 1.175 0.449 0.494 1.424 
1944 1.736 1.045 0.388 0.443 1.337 
1945 1.741 1.211 0.378 0.417 1.358 
1946 2.403 1.444 0.429 0.446 1.523 
1947 2.513 1.616 0.343 0.351 1.321 
1948 1.145 1.394 0.278 0.249 1.320 
1949 1.823 1.464 0.235 0.234 1.562 
1950 2.162 1.925 0.178 0.135 1.793 
1951 1.929 1.849 0.150 0.133 1.513 
1952 1.643 1.332 0.156 0.126 1.502 
1953 1.647 1.136 0.183 0.173 1.566 
1954 1.630 1.110 0.180 0.147 1.644 
1955 1.349 1.091 0.210 0.179 1.605 
1956 1.368 1.123 0.348 0.322 1.559 
1957 1.249 1.649 0.304 0.307 1.624 
1958 1.262 1.130 0.329 0.310 1.517 
1959 1.222 0.959 0.751 0.506 1.354 
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1960 1.168 1.031 0.948 0.868 1.356 
1961 1.217 0.939 0.863 0.765 1.293 
1962 1.336 0.943 0.886 0.823 1.207 
1963 1.450 2.742 0.844 0.855 1.559 
1964 1.453 1.861 1.045 0.952 1.552 
1965 1.422 0.666 1.088 0.970 1.440 
1966 1.484 0.565 1.225 0.897 1.353 
1967 1.232 0.609 1.227 0.849 1.375 
1968 1.224 0.602 1.291 0.820 1.331 
1969 1.275 0.970 1.381 0.896 1.318 
1970 1.300 1.016 1.385 0.829 1.292 
1971 1.233 1.162 1.356 0.839 1.046 
1972 1.085 1.753 1.369 1.037 1.094 
1973 1.639 1.960 1.605 1.161 0.968 
1974 1.812 5.007 1.036 0.975 0.887 
1975 1.477 3.081 0.782 0.910 1.069 
1976 1.369 1.716 0.919 0.952 1.100 
1977 1.057 1.095 0.797 0.940 1.069 
1978 0.970 0.917 0.983 1.045 0.972 
1979 0.983 1.000 1.171 1.006 0.972 
1980 0.972 2.705 1.022 1.116 1.032 
1981 1.011 1.587 0.912 1.055 1.088 
1982 0.858 0.804 0.895 0.930 1.031 
1983 1.092 0.827 0.935 0.773 1.208 
1984 1.115 0.520 0.890 0.786 1.064 
1985 0.913 0.402 0.836 0.749 1.086 
1986 0.605 0.508 0.689 0.741 0.925 
1987 0.476 0.517 0.716 0.678 0.867 
1988 0.626 0.727 0.704 0.704 0.983 
1989 0.658 0.918 0.723 0.683 1.132 
1990 0.610 0.853 0.683 0.740 1.060 
1991 0.587 0.596 0.694 0.635 1.072 
1992 0.546 0.577 0.613 0.682 0.869 
1993 0.536 0.638 0.656 0.761 0.816 
1994 0.545 0.747 0.563 0.752 0.781 
1995 0.577 0.756 0.426 n'l t A ýzn 
1996 0.812 0.713 0.417 0.805 

v. /JV 

0.807 
1997 0.605 0.715 0.458 0.875 0.912 
1998 0.548 0.583 0.442 0.736 0.926 
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Year Palm Oil Cotton Jute Wool Hides* 
1900 1.134 1.163 0.952 1.945 1.243 
1901 1.133 1.233 0.899 1.721 1.263 
1902 1.229 1.309 0.888 1.919 1.305 
1903 1.250 1.596 0.972 2.069 1.243 
1904 1.196 1.492 0.982 2.160 1.320 
1905 1.175 1.390 1.296 2.636 1.643 
1906 1.254 1.454 1.560 2.466 1.766 
1907 1.287 1.401 1.328 2.312 1.325 
1908 1.164 1.446 1.058 2.139 1.348 
1909 1.225 1.652 0.889 2.495 1.811 
1910 1.491 1.950 1.010 2.317 1.593 
1911 1.471 1.698 1.385 2.032 1.648 
1912 1.373 1.499 1.397 2.223 1.963 
1913 1.473 1.648 1.763 1.945 2.055 
1914 1.699 1.505 1.924 2.160 2.417 
1915 1.736 1.386 1.407 2.531 2.805 
1916 2.015 1.679 1.675 2.421 2.458 
1917 2.481 2.201 1.786 3.798 2.452 
1918 3.824 2.246 1.467 3.626 1.551 
1919 1.941 2.356 1.641 3.349 2.550 
1920 1.270 1.735 1.136 2.815 1.762 
1921 0.836 1.349 0.871 1.772 0.812 
1922 0.990 1.908 1.253 2.919 1.213 
1923 1.017 2.429 1.092 3.293 1.035 
1924 1.097 2.360 1.290 3.293 0.983 
1925 1.223 1.875 2.167 3.191 1.150 
1926 1.192 1.535 2.029 2.806 1.084 
1927 1.172 1.622 1.603 2.812 1.638 
1928 1.186 1.826 1.653 2.965 1.981 
1929 1.248 1.705 1.623 2.603 1.424 
1930 1.009 1.281 1.036 2.059 2.153 
1931 0.908 0.953 0.937 2.081 0.961 
1932 0.868 0.971 0.884 1.873 0.767 
1933 0.776 1.194 0.885 2.388 1.148 
1934 0.932 1.299 0.841 2.468 0.904 
1935 1.358 1.375 1.003 2.309 1.055 
1936 1.376 1.392 1.060 2.833 1.209 
1937 1.483 1.199 1.153 3.070 1.537 
1938 1.123 0.933 0.981 2.017 1.027 
1939 1.264 1.090 1.462 2.615 1.306 
1940 1.189 1.110 1.270 2.767 1.254 
1941 1.506 1.447 1.134 2.953 1.373 
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1942 1.592 1.612 0.918 2.780 1.240 

1943 1.027 1.505 1.093 2.459 1.107 
1944 0.902 1.369 1.169 2.179 0.972 
1945 0.878 1.492 1.110 2.103 0.946 

1946 0.867 1.889 1.372 1.812 1.103 
1947 1.485 1.781 1.847 1.809 1.437 
1948 1.781 1.656 2.190 2.347 1.363 
1949 1.404 1.708 1.701 2.533 1.293 
1950 1.399 2.231 2.070 3.332 1.644 
1951 1.868 2.095 2.600 3.817 1.648 
1952 1.093 1.824 1.526 2.285 0.843 
1953 1.007 1.730 1.263 2.493 0.869 
1954 1.055 1.753 1.516 2.512 0.716 
9955 1.085 1.737 1.359 2.070 0.679 

1956 1.200 1.614 1.369 1.915 0.756 
1957 1.204 1.556 1.621 2.230 0.734 
1958 1.152 1.593 1.432 1.655 0.765 
1959 1.168 1.543 1.412 1.698 1.187 
1960 1.075 1.134 2.529 1.399 0.910 
1961 1.074 1.151 1.679 1.365 1.051 
1962 0.982 1.105 1.351 1.329 1.125 
1963 1.029 1.097 1.336 1.594 1.374 
1964 1.089 1.082 1.636 1.633 1.504 
1965 1.230 1.047 1.849 1.356 1.238 
1966 1.028 0.979 2.152 1.444 1.277 
1967 0.964 1.038 2.017 1.241 0.973 
1968 0.735 1.084 1.903 1.304 0.846 
1969 0.749 0.930 1.905 1.017 0.965 
1970 1.011 0.910 1.717 0.862 0.742 
1971 0.963 1.012 1.701 0.768 0.553 
1972 0.735 0.994 1.632 1.232 0.745 
1973 1.103 1.466 1.361 2.274 1.761 
1974 1.604 1.257 1.365 1.334 1.231 
1975 0.936 0.928 1.290 0.896 0.729 
1976 0.865 1.333 1.014 1.099 0.927 
1977 1.026 1.115 1.002 1.050 1.004 
1978 1.010 0.980 1.081 0.964 0.956 
1979 0.972 0.930 0.927 0.994 1.036 
1980 0.790 1.027 0.673 0.945 0.882 
1981 0.770 0.922 0.600 0.874 0.631 
1982 0.610 0.811 0.631 0.815 0.609 
1983 0.703 0.963 0.683 0.773 0.526 
1984 1.044 0.947 1.226 0.797 0.573 
1985 0.712 0.694 1.336 0.766 0.515 
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1986 0.310 0.472 0.525 0.604 0.539 
1987 0.376 0.670 0.571 0.751 0.729 

1988 0.447 0.530 0.610 0.899 0.832 
1989 0.361 0.639 0.620 0.835 0.635 
1990 0.283 0.657 0.642 0.601 0.448 
1991 0.323 0.593 0.585 0.511 0.332 
1992 0.360 0.433 0.471 0.545 0.363 
1993 0.346 0.435 0.404 0.419 0.276 
1994 0.467 0.578 0.425 0.522 0.369 
1995 0.513 0.644 0.485 0.604 0.467 
1996 0.454 0.562 0.631 0.540 n. a. 
1997 0.493 0.585 0.443 0.589 n. a. 
1998 0.629 0.502 0.390 0.478 n. a. 

*For Hides GYCPI data extend until 1960 since current Worldbank data are only 
available from 1961. The data series for Hides only extends to 1995. 

Year Tobacco* Rubber Timber Copper Aluminium 
1900 0.313 7.605 0.343 1.487 4.100 
1901 0.335 7.059 0.336 1.560 4.361 
1902 0.363 7.037 0.338 1.098 4.483 
1903 0.384 8.971 0.357 1.318 4.483 
1904 0.362 9.792 0.329 1.241 4.626 
1905 0.349 10.468 0.328 1.510 4.626 
1906 0.347 10.324 0.335 1.771 4.489 
1907 0.342 9.063 0.331 1.748 5.367 
1908 0.391 7.896 0.333 1.245 3.693 
1909 0.406 11.363 0.339 1.224 2.831 
1910 0.399 13.860 0.358 1.201 2.870 
1911 0.411 11.179 0.358 1.167 2.587 
1912 0.414 10.553 0.367 1.501 2.758 
1913 0.428 8.585 0.385 1.403 2.959 
1914 0.460 6.786 0.421 1.317 2.458 
1915 0.469 6.693 0.578 1.629 4.388 
1916 0.396 6.412 0.738 2.073 6.315 
1917 0.462 5.229 0.875 1.739 4.471 
1918 0.631 3.377 0.931 1.298 2.416 
1919 0.665 2.857 0.701 0.930 2.180 
1920 0.958 2.846 0.611 0.812 1.943 
1921 0.863 1.288 0.453 0.689 1.595 
1922 0.823 1.531 0.440 0.826 1.577 
1923 0.778 2.609 0.507 0.891 2.142 
1924 0.724 2.300 0.455 0.804 2.276 
1925 0.781 6.290 0.493 0.853 2.254 
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1926 0.720 4.514 0.455 0.883 2.358 

1927 0.730 3.653 0.483 0.873 2.344 

1928 0.712 2.157 0.500 0.975 2.205 
1929 0.727 2.056 0.503 1.272 2.292 

1930 0.718 1.049 0.487 0.930 2.328 
1931 0.750 0.765 0.387 0.709 2.779 
1932 0.694 0.517 0.379 0.586 3.351 
1933 0.724 0.795 0.412 0.662 2.998 
1934 0.934 1.473 0.436 0.671 2.347 
1935 1.127 1.434 0.400 0.704 2.278 
1936 1.078 1.915 0.436 0.771 2.278 
1937 1.004 2.193 0.555 1.049 2.184 
1938 0.983 1.587 0.481 0.762 2.081 
1939 0.772 2.080 0.542 0.913 2.274 
1940 0.608 2.168 0.714 0.861 1.946 
1941 0.697 2.264 0.847 0.845 1.614 
1942 0.697 1.986 0.805 0.728 1.265 
1943 0.938 1.772 0.748 0.649 1.128 
1944 0.993 1.557 0.731 0.570 0.991 
1945 0.943 1.516 0.611 0.555 0.965 
1946 0.998 1.496 0.663 0.643 0.889 
1947 0.830 1.155 0.614 0.807 0.736 
1948 0.765 1.186 0.733 0.831 0.808 
1949 0.810 1.010 0.546 0.773 0.934 
1950 0.924 2.598 0.644 0.939 1.069 
1951 0.921 3.151 0.782 0.903 0.968 
1952 0.901 2.016 0.800 0.885 0.968 
1953 0.991 1.320 0.717 1.098 1.087 
1954 1.032 1.316 0.710 1.156 1.159 
1955 1.006 2.155 0.783 1.444 1.246 
1956 0.956 1.804 0.764 1.545 1.210 
1957 1.034 1.628 0.764 1.081 1.267 
1958 1.057 1.482 0.700 0.951 1.250 
1959 1.066 1.930 0.647 1.152 1.245 
1960 2.125 2.140 0.745 1.220 1.255 
1961 1.881 1.622 0.759 1.122 1.212 
1962 1.657 1.491 0.819 1.119 1.113 
1963 1.615 1.406 0.814 1.144 1.071 
1964 1.759 1.300 0.682 1.685 1.103 
1965 1.484 1.328 0.784 2.229 1.134 
1966 1.792 1.198 0.796 2.554 1.095 
1967 1.456 0.980 0.840 1.878 1.105 
1968 1.362 0.969 0.864 2.068 1.142 
1969 1.194 1.208 0.796 2.317 1.153 
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1970 1.087 0.922 0.831 2.102 1.145 
1971 0.999 0.714 0.791 1.524 1.096 
1972 0.944 0.654 0.690 1.387 0.916 
1973 0.856 1.154 0.985 1.996 0.911 
1974 0.923 1.050 0.970 1.889 0.856 
1975 1.032 0.705 0.721 1.021 0.910 
1976 1.208 0.959 0.970 1.140 1.009 
1977 1.134 0.919 0.888 0.971 1.077 
1978 0.991 0.966 0.812 0.880 0.970 
1979 0.905 1.092 1.252 1.128 0.968 
1980 0.801 1.124 1.312 1.131 1.045 
1981 0.814 0.882 1.033 0.899 0.902 
1982 0.913 0.684 0.994 0.776 0.720 
1983 0.968 0.869 0.957 0.854 1.069 
1984 1.037 0.799 1.113 0.755 0.949 
1985 0.964 0.628 0.857 0.771 0.784 
1986 0.833 0.566 0.828 0.634 0.734 
1987 0.783 0.629 1.097 0.749 0.910 
1988 0.656 0.706 1.018 1.018 1.382 
1989 0.848 0.582 0.973 1.123 1.064 
1990 0.859 0.491 0.856 0.993 0.846 
1991 0.867 0.459 0.905 0.853 0.658 
1992 0.817 0.459 0.949 0.798 0.607 
1993 0.642 0.444 1.771 0.671 0.553 
1994 0.608 0.580 1.348 0.781 0.692 
1995 0.558 0.752 1.034 0.917 0.781 
1996 0.386 0.694 1.068 0.751 0.682 
1997 0.407 0.535 1.066 0.786 0.765 
1998 n. a. 0.394 0.755 0.593 0.674 

"' Data tor 'l obacco are available until 1997 only. 

Year Tin Silver Lead Zinc 
1900 0.327 0.597 0.767 0.878 
1901 0.193 0.604 0.801 0.858 
1902 0.318 0.550 0.774 1.049 
1903 0.333 0.565 0.806 1.124 
1904 0.323 0.587 0.797 1.040 
1905 0.362 0.619 0.871 1.208 
1906 0.436 0.650 0.994 1.210 
1907 0.397 0.604 0.888 1.106 
1908 0.331 0.528 0.757 0.940 
1909 0.334 0.514 0.769 1.099 
1910 0.383 0.534 0.802 0.962 
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1911 0.475 0.533 0.796 1.082 
1912 0.505 0.592 0.785 1.361 
1913 0.484 0.582 0.767 1.100 
1914 0.396 0.562 0.714 1.067 
1915 0.434 0.496 0.841 2.680 
1916 0.395 0.530 0.999 2.097 
1917 0.471 0.552 1.075 1.228 
1918 0.557 0.540 0.746 0.905 
1919 0.375 0.586 0.548 0.758 
1920 0.268 0.497 0.708 0.777 
1921 0.196 0.366 0.478 0.559 
1922 0.240 0.442 0.676 0.770 
1923 0.314 0.424 0.858 0.889 
1924 0.369 0.437 0.956 0.853 
1925 0.419 0.444 1.047 1.008 
1926 0.498 0.421 1.029 1.023 
1927 0.518 0.404 0.873 0.919 
1928 0.406 0.467 0.814 0.888 
1929 0.378 0.394 0.917 0.996 
1930 0.271 0.289 0.756 0.712 
1931 0.255 0.266 0.708 0.693 
1932 0.276 0.311 0.640 0.661 
1933 0.439 0.347 0.697 0.828 
1934 0.495 0.404 0.589 0.721 
1935 0.489 0.554 0.632 0.768 
1936 0.451 0.389 0.733 0.869 
1937 0.515 0.378 0.914 1.131 
1938 0.384 0.349 0.690 0.765 
1939 0.500 0.345 0.804 0.927 
1940 0.453 0.281 0.755 1.053 
1941 0.444 0.264 0.793 1.166 
1942 0.383 0.251 0.765 1.110 
1943 0.341 0.261 0.685 0.990 
1944 0.300 0.229 0.601 0.870 
1945 0.292 0.259 0.586 0.847 
1946 0.302 0.395 0.721 0.885 
1947 0.358 0.293 1.080 0.881 
1948 0.446 0.297 1.300 1.116 
1949 0.476 0.307 1.182 1.064 
1950 0.504 0.347 1.124 1.336 
1951 0.565 0.353 1.248 1.463 
1952 0.525 0.329 1.151 1.292 
1953 0.435 0.344 0.983 0.902 
1954 0.426 0.352 1.046 0.906 
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1955 0.435 0.363 1.115 1.032 
1956 0.446 0.355 1.130 1.085 
1957 0.419 0.352 1.024 0.908 
1958 0.419 0.348 0.855 0.829 
1959 0.449 0.357 0.862 0.921 
1960 0.472 0.364 0.669 1.077 
1961 0.517 0.361 0.585 0.918 
1962 0.512 0.416 0.502 0.778 
1963 0.529 0.500 0.578 0.909 
1964 0.708 0.497 0.907 1.365 
1965 0.801 0.493 1.030 1.301 
1966 0.711 0.476 0.820 1.139 
1967 0.650 0.565 0.709 1.090 
1968 0.621 0.789 0.750 1.057 
1969 0.646 0.625 0.857 1.098 
1970 0.651 0.582 0.848 1.062 
1971 0.590 0.482 0.672 1.055 
1972 0.577 0.482 0.733 1.182 
1973 0.64 0.631 0.901 2.302 
1974 0.895 0.953 1.020 2.751 
1975 0.676 0.805 0.645 1.484 
1976 0.736 0.782 0.679 1.403 
1977 0.954 0.756 0.857 1.060 
1978 0.988 0.768 0.798 0.924 
1979 1.046 1.392 1.288 1.021 
1980 1.036 2.361 0.881 0.955 
1981 0.871 1.199 0.704 1.057 
1982 0.801 0.920 0.537 0.945 
1983 0.830 1.355 0.428 0.992 
1984 0.799 0.985 0.455 1.223 
1985 0.748 0.737 0.399 1.031 
1986 0.339 0.557 0.351 0.842 
1987 0.333 0.650 0.470 0.812 
1988 0.329 0.565 0.482 1.176 
1989 0.401 0.479 0.497 1.583 
1990 0.270 0.397 0.567 1.366 
1991 0.243 0.325 0.382 0.987 
IYYL U. 2D4 U. 3U4 0.355 1.050 
1993 0.216 0.333 0.267 0.817 
1994 0.220 0.395 0.348 0.817 
1995 0.231 0.358 0.370 0.780 
1996 0.240 0.374 0.475 0.812 
1997 0.232 0.373 0.404 1.100 
1998 0.237 0.438 0.356 0.890 
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Appendix II. ii. Graphical Illustrations of the Relative 
Commodity Price Series 

The commodity price series described in chapter two are illustrated here. The 

figures below show the trajectory of relative primary commodity prices in natural 

logarithms over time. 
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Coffee: Average Annual Prices 1900-1998 
Prices relative to MUVIn natural logarithms 



Cocoa: 

Cocoa: Average Annual Prices 1900-1998 
Prices relative to MUV In natural logarithms 
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Tea: Average Annual Prices 1900.1997 
Prices relative to MUV in natural logarithms 



Rice: 

Rice: Average Annual Prices 1900-1998 
Prices relative to MUV in natural logarithms 
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Wheat: Average Annual Prices 1900-1998 
Prices relative to MUV in natural logarithms 
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Maize: 
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Beef: Average Annual Prices 1900-1998 
Paices relative to MW In natural toganthms 
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Banana: Average Annual Prices 1900.1998 
Prices relative to MUV to natural logarithms 
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Cotton: 

Cotton: Average Annual Prices 1900-1998 
Prices relative to MUV In natural logarithms 
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Jute: Average Annual Prices 1900-1998 
Prices relative to MUV In natural logarithms 
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Wool: 
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Tobacco: 

Tobacco: Average Annual PrIces 1900-1997 
Prices relative to MUV In natural logarithms 
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Timber: 
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Copper: Average Annual Prices 1900-1998 
Prices relative to MUV in natural 1oaarithms 
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Aluminium: 
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Silver: Average Annual Prices 1900-1998 

Lead: Average Annual Prices 1900-1998 
Prices relative to MW to natural logarithms 
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Zinc: Average Annual Prices 1900.1998 
Prices relative to MUV In natural logarithms 
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Chapter 3: Estimation Results for the Trend 
Coefficient 

3.1. Inference on stationarity 

It is standard practice in applied econometric research to test time series data for 

stationarity using conventional unit root tests such as the Dickey-Fuller test or the 

Augmented Dickey Fuller (ADF) test (cf. Enders (1995)). The ADF test with an 

appropriate number of autoregressive lags was applied to all commodities other 

than Hides', using general to specific testing as recommended in Enders (1995). 

The initial testing equation included a total of five lags for all commodities. 

Insignificant lags were then eliminated one at a time, and the equation was 

re-estimated with the reduced number of lags. This process was repeated until the 

last lag in the testing equation was significant or the testing equation reduced to the 

ordinary Dickey Fuller test allowing for trend and constant. 

As a result of this testing procedure, only five commodities (Sugar, Lamb, Timber, 

Aluminium and Zinc) are classified as trend stationary, while the remainder 

(Coffee, Cocoa, Tea, Rice, Wheat, Maize, Beef, Bananas, Palm Oil, Cotton, Jute, 

Wool, Rubber, Tobacco, Copper, Tin, Silver and Lead) are identified as stationary 

in first differences. (Details of the test results for the commodities mentioned 

above are given in appendix III. i). 

It is pointed out in Enders (op. cit. ) that the above mentioned testing procedure will 

identify the correct lag length if the lag length for the most general initial Dickey 

Fuller testing equation contains at least the correct number of lagged terms or 
This series has been dropped since data are not available after 1995. 
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more, and if the true generating process is purely autoregressive. However, neither 

of these two conditions should be taken for granted. Even if the generating process 

is purely autoregressive, the number of lags one can in practice include in the 

equation is often limited by the size of the data set available. In this context it has 

been shown by Agiakloglou and Newbold (1992) that a large number of 

autoregressive lags can lead to an unnecessary loss in power. Another serious 

problem in practice is the possibility of large moving average components in the 

generating process. Agiakloglou and Newbold (1992) show that a moving average 

parameter close to the invertibility boundary, can lead to spurious rejections of the 

null hypothesis. If a deterministic trend term is included in the testing equation, 

this problem can occur even for relatively low absolute values of moving average 

coefficients (see Agiakloglou and Newbold (1996)). 

As discussed in Chapter 2 and in Newbold and Vougas (1996), there are reasons to 

be sceptical about the quality of inferences on stationarity solely on the basis of 

unit root tests. For this reason, no ex ante model selection is made here on the basis 

of ADF or other unit root tests. Rather, trend and difference stationary models will 

be estimated for all the commodities under consideration, a method which should 

also allow for an assessment of the impact of model specification on conclusions 

concerning the significance and magnitude of trend estimates. 
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3.2 Estimation Results for ARIMA models 

For all the commodities for which adequate data coverage was available', 

univariate series for all possible configurations with ARMA(p, O, q) such that 

p+q<5, were estimated in levels using exact maximum likelihood estimation. In 

addition to a linear trend term, a constant was included in all models. Among these 

estimates, models were selected assuming the lowest value for the 

Schwarz-Bayesian Criterion (SBC) to indicate the most adequate model 

configuration. For the difference stationary case, ARIMA(p, 1, q) models with 

p+q55 were estimated, again using exact maximum likelihood methods as above. 

Inferences about the drift term are in this case made from the estimated coefficient 

on the constant for each commodity. As in the previous case, the Schwarz 

Bayesian Criterion was used for model selection. Full estimation results for the 

selected estimates are reported in appendix III. ii for the trend stationary models and 

appendix III. iii for the difference stationary models3. 

An interesting result with respect to the debate concerning the Prebisch-Singer 

Hypothesis as well as with respect to a possible extrapolation of price 

developments is the evidence on the presence of significant trend terms. The 

present chapter therefore concentrates on estimates giving evidence in favour of 

the presence or absence of secular trends as well as on possible indications of the 

2 The series for Tea and Tobacco extend over the period 1990-1997, whereas the remaining 21 data 

series cover the period 1900-1998. The data series for Hides could only be obtained for the period 
1900-1995, and has been omitted from most of the present study since there would be little scope 
for comparison with the remaining data series. 
3 These estimation results provide evidence of overdifferencing in two cases (Aluminium and Zinc). 
Since no a priori conclusions on the order of integration are used for model selection at this stage, 
the issue of overdifferencing will be taken up later in Chapter 5. 
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magnitude of such trends. Estimated coefficients and t-ratios for the linear trend 

and for the drift term in difference stationary models are listed in Table 3.2.1. 

Table 3.2.1. Estimates of trend and drift coefficients 
Commodity Trend 

coefficient 
t-ratio Coefficient 

on the drift 
term 

t-ratio 

Coffee 0.004 1.131 0.002 0.093 

Cocoa -0.003 -0.556 -0.009 -0.457 
Teat -0.007 -1.879 -0.010 -0.573 
Rice -0.011 -5.223 -0.012 -2.423 
Wheat -0.011 -6.866 -0.010 -1.154 
Maize -0.010 -4.180 -0.010 -1.341 
Sugar -0.011 -4.108 -0.012 -0.844 
Beef 0.014 2.295 0.008 0.387 
Lamb 0.018 5.102 0.015 0.715 
Bananas -0.001 -0.346 0.000 0.043 
Palm Oil -0.010 -4.332 -0.007 -0.429 
Cotton -0.010 -3.328 -0.008 -0.765 
Jute -0.007 -1.566 -0.008 -0.665 
Wool -0.016 -4.652 -0.014 -1.850 
Tnbaccot 0.005 0.574 0.003 0.189 
Rubber -0.028 -6.764 -0.030 -1.041 
Timber 0.011 7.321 0.008 0.493 
Copper -0.004 -1.097 -0.009 -0.490 
Aluminium -0.019 -8.997 -0.019 -7.931 
Tin 0.001 0.202 -0.003 -0.172 
Silver 0.000 0.050 -0.003 -0.229 
Lead -0.006 -2.166 -0.008 -0.414 
Zinc 0.001 0.369 0.000 0.184 

t Data Series from 1900-1997 only. 

The results in table 3.2.1. suggest that trend stationary and difference stationary 

models tend to yield similar values for the estimate of a secular trend. The 

differences in estimated coefficients on linear trend terms in trend stationary 

models and drift terms in difference stationary models tend to be moderate and the 

signs of the estimated coefficients are the same in all but three cases: Bananas, Tin 
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and Silver. The estimated trend coefficient on Banana prices is negative if the 

relative price series is modelled as trend stationary and positive if it is modelled as 

difference stationary. For Tin and Silver prices the estimated coefficient for the 

trend is positive in the trend stationary model and negative in the difference 

stationary model. However, in all those three cases the estimates from either model 

are highly insignificant. 

It is with respect to significance levels that the estimates produced by trend 

stationary and difference stationary models differ strongly. With the exception of 

the t-ratio on the -insignificant- estimate of the trend coefficient for Silver the 

absolute values of the t-ratios for all estimated trend coefficients are lower in the 

difference stationary than in the corresponding trend stationary case. The fall in 

significance levels is often very pronounced, in many cases leading to a change 

from very high significance levels to levels low enough to suggest that coefficient 

estimates are entirely insignificant. Among the coefficient estimates from trend 

stationary models, the estimated coefficient is shown to be significant in 13 out of 

23 cases at the 5% significance level. The coefficient estimates from the difference 

stationary model show coefficients to be significant at the 5% level in only two 

cases (Rice and Aluminium) and even in those cases the significance level has 

fallen noticeably. The estimated trend coefficient on Wool remains significant at 

the 10% level. 

This discrepancy highlights the importance of the issue of using unit root tests to 

decide on model specification a priori. Using this methodology, it would have 
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appeared that all but one of the price series identified as trend stationary had 

significant trends, when estimating the models for the relevant price series in 

levels. On the other hand, no significant trend term would have been found in any 

of the price series identified as difference stationary, with the exception of Rice, 

where the models for all these price series would have been estimated in first 

differences only. (Another possible exception is Wool, where the drift coefficient 

would have remained significant at a 10 percent level. ) Comparing both possible 

specifications for the price series identified as trend stationary through a priori 

testing, the evidence in favour of significant trend estimates is weakened 

considerably: only one of these series (Aluminium) retains clear evidence in favour 

of a significant trend term under the difference stationary specification, while four 

of the five series presumed trend stationary now have no significant drift terms. On 

the other hand, nines of the 18 price series identified as difference stationary would 

have significant trend parameters when modelled as trend stationary6. 

3.2.1. Evaluating trend estimates by commodity groups 

Bearing in mind the uncertainties surrounding the validity of unit root tests, as well 

as the strong implications of test results for conclusions on the significance of 

trend estimates, it should nevertheless be possible to proceed towards a tentative 

4 The one exception is Zinc, while Sugar, Lamb Aluminium and Timber are shown to have 
significant trend coefficients. 
s These are Rice, Wheat, Maize, Beef, Cotton, Wool, Palm Oil, Rubber and Lead. 
6 Higher order ARIMA models may be considered for commodities with large supply response lags 
(e. g. Coffee, Cocoa, Palm Oil or Timber). Re-selecting models by SBC subject to p+qS9 only 
yields a different model parameterisation for Cotton (ARMA(4,2)). For the four commodities 
mentioned previously higher parametrisations could be justified on the basis of their ACF and 
PACF plots. This would affect inference on the trend coefficient only for the stationary model of 
Timber, where the drift coefficient estimate is now significant for ARIMA(0,1,14). 
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interpretation of the results obtained so far. The price series of the three cereals 

covered in the data set (Rice, Wheat and Maize) are identified as difference 

stationary in the unit root tests. They show significant negative trends in the trend 

stationary model but the evidence on the drift term for the difference stationary 

alternative is less clear. Table 3.2.2. summarises the results for these three 

commodities, giving trend estimates as well as standard errors and 95% confidence 

intervals'. 

Table 3.2.2. Trend Estimates for Cereal Prices 

Commodity Trend Stnd. 95% Drift Stnd 95% 
Coeff. r o Conf. Coeff. Error Conf. 
(*100) 

=, 
o oj Interval * 100 * 100 Interval 

Rice -1.110* 0.212 [-1.526, -1.181* 0.487 [-2.136, 
-0.693 -0.226 

Wheat -1.051* 0.153 [-1.351, -0.977 0.847 [-2.637, 
-0.751 0.682 

Maize -1.015* 0.243 [-1.490, -0.974 0.727 [-2.399, 
-0.539] 0.450] 

Estimates significant at the 5% level are indicated thus: `*'. Coeff: Coefficient, Stnd: Standard, 
Con£ Confidence 

It can be seen that only the estimated trend for Rice remains significantly different 

from zero at the 5% critical level in the difference stationary model. The 

coefficients for Wheat and Maize, however, would still remain significant at levels 

of 25.1% and 18.3% respectively. These coefficients would suggest an average 

annual decline of around one percent p. a. in the price of the three cereals relative to 

the price of manufactured commodities. 

7 Throughout the text, confidence intervals are defined with respect to `two-tailed' critical values. 
90% confidence intervals are listed in appendix IIl. vii. 
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Among other food commodities, Palm Oil and Sugar show a significant trend of 

-1.04% and -1.07% respectively. However, of these two commodities only Sugar is 

identified as trend stationary by the unit root test and the significant trend does not 

persist when the model is estimated in first differences. As mentioned above, 

Banana prices do not show a significant trend in either case. 

The estimated trend coefficients for Beef and Lamb are consistently positive, 

regardless of whether the relative price series is modelled as trend stationary or as 

difference stationary. The coefficient estimates follow the overall pattern though in 

so far as they are not significant in the difference stationary model. Trend estimates 

for food commodities other than cereals or tropical beverages are shown in table 

3.2.3. 

Table 3.2.3. Trend Estimates for Prices of Other Food Commodities 

Commodity Trend Stnd. 95% Drift Stnd. 95% 
Coeff. Error Conf. Coeff. Error Conf. 
(*100) * 100 Interval * 100 

-(*100) 
Interval 

Sugar -1.067* 0.260 [-1.577, -1.215 1.439 [-4.035, 
-0.558 1.606 

Beef 1.356* 0.591 [0.198, 0.807 2.083 [-3.276, 
2.514 4.889 

Lamb 1.827* 0.358 [1.125, 1.548 71.476 [-2.696, 
2.5291 

, 
5.792 

Bananas -0.107 0.311 [-0.717, 0.040 0.922 [-1.768, 
0.502 1.848] 

Palm Oil -1.036* 0.239 [-1.504, -0.713 1.662 [-3.970, 
-0.567 2.544 

Estimates significant at the 5% level are indicated thus: `" '. Coeff: Coefficient, Stnd: Standard, 
Conf: Confidence 

In the case of tropical beverages, there does not appear to be any significant overall 

trend for the group as a whole. When estimating in levels, the estimate for the 

coefficient on Tea prices appears to be significant at a 10% significance level. This 
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estimate would suggest a decrease of 0.74% p. a. For the remaining tropical 

beverages, however, trend estimates do not appear to be significant. The closest 

result to a significant trend estimate for the remaining two commodities would be 

the estimated trend coefficient on Coffee prices for the trend stationary model. This 

would suggest an average annual increase of 0.43% at aa significance level of 

26.1 %. The estimated trends for tropical beverages are given in table 3.2.4. 

Table 3.2.4. Trend Estimates for Tropical Beverages 

Commodity Trend Stnd 95% Conf. Drift Stnd 95% Conf. 
Coeff. Error Interval Coeff. Error Interval 

* 100 * 100 (*100) 
-(*100) Coffee 0.431 0.381 [-0.328, 0.236 2.545 [-4.829, 

1.190 5.301 
Cocoa -0.309 0.556 [-1.415, -0.922 2.016 [-4.933, 

0.797] 3.089 
Teat -0.744 0.396 [-1.520, -0.954 1.664 [-4.215, 

0.032] 2.307] 
Estimates significant at the 5% level are indicated thus: T Data Series from 1900-1997 only. 
Coeff: Coefficient, Stnd: Standard, Conf: Confidence 

In the case of agricultural non-food commodities negative and significant trends 

are present in the trend stationary model in almost all cases (with the exception of 

Jute and Tobacco where no significant trend is present in either the trend stationary 

or different stationary model). In most cases, the estimated coefficients for the drift 

term are clearly insignificantly different from zero in the difference stationary 

model. The possible exceptions in this case are Wool and Rubber, where 

significance for the drift term remains at levels of 6.7% and 30% respectively. 

Table 3.2.5. lists estimated coefficients for the trend of non food agricultural 

commodities in trend stationary and difference stationary models. 
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Table 3.2.5. Trend Estimates for Non-food Agricultural Commodities 

Commodity Trend Stnd. 95% Drift Stnd. 95% Conf. 

Coeff. Error Conf. Coeff. Error Interval 

* 100 * 100 Interval * 100 * 100 

Cotton -0.984* 0.296 [-1.563, -0.786 1.026 [-2.797, 
-0.404 1.226] 

Jute -0.696 0.444 [-1.566, 1 -0.800 1.204 [-3.159, 
0.1751 1.559] 

Wool -1.571 * 0.338 [-2.232, 1 -1.450 7.836 [-2.986, 
-0.9091 0.086 

Tobacco + 0.468 0.817 [-1.131, 0.272 1 1.436 [-2.543, 
2.0691 3.087] 

Rubber 2.838* 0.420 [-3.660, -3.020 2.900 [-8.704, 
-2.015 2.664 

Timber 1.137* 0.155 [0.833, 0.805 1.633 [-2.396, 
1.4421 4.0051 

Estimates significant at the 5% level are indicated thus: Data Series from 1900-1997 only. 
Coeff: Coefficient, Stnd: Standard, Conf: Confidence 

For metals finally, there does not appear to be any clear evidence of a common 

trend for the commodity group. Trend estimates for the relative prices of metals are 

shown in table 3.2.6. 

Table 3.2.6. Trend Estimates for Metals 
Commodity Trend Stnd. 95% Drift Stnd. 95% Conf. 

Coeff. Error Conf. Coeff. Error Interval 
* 100 (*100) Interval * 100 * 100 

Copper -0.418 0.381 [-1.165, -0.938 1.912 [-4.685, 
0.329 2.809 

Aluminium -1-871* 0.208 [-2.279, -1.916* 0.242 [-2.390, 
-1.463 -1.443 

Tin 0.096 0.476 [-0.836, -0.330 1.921 1 [-4.094, 
1.0291 3.434 

Silver 0.022 0.448 [-0.856, -0.331 1.447 [-3.166, 
0.9011 2.5051 

Lead -0.598* 0.276 [-1.139, -0.784 1.895 [-4.498, 
-0.057 2.931 

Zinc 0.059 0.161 [-0.256, 1 0.036 0.198 [-0.352, 
0.3741 0.425 

Estimates significant at the 5% level are indicated thus: `*'. Coeff: Coefficient, Stnd: Standard, 
Conf: Confidence 

Only the estimated trends for Copper, Aluminium and Lead appear to be 

consistently negative. The trend estimate for Zinc prices is consistently positive 
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though -like the estimated trend for Copper- also consistently insignificant. For the 

other two consistently insignificant estimated trends (i. e. the ones for Tin and 

Silver) the sign of the trend estimate is actually reversed when the price series are 

modelled as difference stationary rather than trend stationary. This difference in the 

sign of point estimates, against the background of the low t-ratios obtained for the 

coefficient estimates independently of stationarity assumptions, is of course 

consistent with an insignificant trend coefficient estimate. 

It is also worth noting that, although the estimated trend for Zinc is consistently 

insignificant, the value of the estimated trend coefficient is also rather small, 

regardless of whether the model is estimated in levels or first differences, and the 

confidence interval of this estimate is comparatively small. This latter point 

distinguishes the estimate for Zinc from those for Tin and Silver where, although 

the estimated coefficient values are small also, the width of their respective 

., confidence intervals indicates that there is still substantial uncertainty surrounding 

the estimates. In the case of Zinc, one would thus be tempted to infer that the true 

value of any trend coefficient could indeed be close to zero or at least 

comparatively small. 

3.3. Structural Breaks 

When discussing the presence of a secular trend one should pay attention to the 

issue of structural instability for a number of reasons. When assessing the 

evolution of a data series over time on the basis of trend estimates, the impression 

of a persistent trend can easily be produced by structural shifts in particular years: 

it need not be obvious, when calculating the average annual decline in the relative 
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price of a commodity that part of the overall decline was produced by a single 

discrete shift rather than a continuous downward trend. On the other hand, a 

continuous negative trend may be counteracted by a discrete positive shift in a 

particular year. In graphical plots of the data, the presence of a structural break may 

be disguised by strong fluctuations of the annual values of the data series around a 

broken trend. Furthermore, the presence of structural breaks can lead to mistaken 

inferences on stationarity by reducing the power of unit root tests. In cases, where a 

single structural break is exogenously inferred, a unit root test which takes account 

of structural instability has been proposed by Perron (1989). The issue of 

accounting for endogenous structural breaks in unit root tests is, however, 

unresolved at present. 

In the present case, outliers -and hence possible structural breaks- were inferred 

endogenously for those years where the residuals from the selected ARIMA 

models lay outside an interval off three sample standard deviations. 

What needs to be borne in mind when discussing structural instability in the 

context of this study is the rather provisional treatment given to it here. In 

structural models there may be good reasons to model structural breaks separately 

if particular events are deemed not to be representative of the workings of the 

causal mechanism under investigation, or where the pattern of the data suggests the 

possible presence of unrepresentative shocks. There may not be an established 

consensus as to whether breaks and outliers in structural models should be inferred 

exogenously or endogenously as a property of the data series itself, but the a priori 
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possibility of events that should be discounted from the observed data enjoys wide 

acceptance. 

This is somewhat different in the case of descriptive, univariate data models. 

Discounting endogenous structural breaks, and multiple structural breaks in 

particular, corresponds at least partly to a process of adjusting the data to fit the 

model. For this reason, the treatment of structural breaks and outliers is here 

confined to the present Chapter and is undertaken only to gain an impression of 

how far the overall conclusions on trend components and the discrepancies 

observed over alternative assumptions regarding the order of integration are 

influenced by the elimination of more extreme variations in the data. 

The years with outliers in trend stationary models are presented in table 3.3.1. 

Table 3.3.1. Outliers among the Residuals from Trend Stationary Models 

Commodity Years with outliers Commodity Years with outliers 
Coffee 1976 Jute 1986 
Cocoa 1947 Wool 1973 
Teat 1985 Tobacco t 1920,1960,1996 
Rice 1973 Rubber 1921,1925,1950 
Wheat 1973 Timber 1993 
Maize 1921 Copper none 
Su az 1963,1974,1980 Aluminium 1915 
Beef 1915,1931,1959 Tin 1986 
Lamb 1915,1931,1950 Silver 1979,1980 
Banana none Lead 1979 
Palm Oil 1986 Zinc 1915,1973 
Cotton none 

' Data series for 1900-1997 only 

Similar tests as for trend stationary models were performed for residuals from 

difference stationary models selected on the basis of the Schwarz Bayesian 
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Criterion. The results are given below in table 3.3.2. One should note, moreover, 

that in table 3.3.2. an outlier corresponding e. g. to the year 1901/1902 is entered as 

1902. 

Table 3.3.2. Outliers among the Residuals from Difference Stationary Models 

Commodity Years with outliers Commodi Years with outliers 
Coffee 1976 Jute 1986 
Cocoa 1947 Wool 1973 

Teat 1985 Tobaccos 1960,1996 
Rice 1973 Rubber 1925,1950 
Wheat 1973 Timber 1993 
Maize 1921 Copper 1975 
Sugar 1921,1963,1974 Aluminium 1915 
Beef 1915,1931,1959 Tin 1986 
Lamb 1915,1931 Silver 1979 
Banana none Lead none 
Palm Oil 1986 Zinc 1915,1973 
Cotton none 

I Data Series from 1900-1997 only. 

Information on outliers was then used to decide for which years to include dummy 

variables for the data series and then re-estimate the models allowing for 

re-selection using the minimum Schwarz Bayesian Criterion. Dummy variables 

were specified in such a way as to allow for single additive outliers as well as 

permanent structural shifts. For single additive outliers, the dummy variable takes 

the value one in the year in which the outlier occurred and zero in all other years. 

For structural breaks the dummy takes a value of zero in all years preceding the 

year for which the outlier was observed and a value of one for all subsequent years. 

For re-estimation of the difference stationary models, dummies were included in 

first differences. 
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3.3.1 The impact on trend estimates 

It is to be expected, that unaccounted for structural instability can distort estimates 

of secular trends by either exaggerating them or -possibly- by dampening them 

when the unobserved structural shift is counteracting the secular trend. Table 3.3.3. 

details estimated coefficients for trends from ARIMA models in levels and first 

differences after structural breaks and single additive outliers have been accounted 

for. The full details of the estimates for ARIMA models including dummy 

variables are given in appendix III. iv for the estimates in levels and in appendix 

III. v. for estimates in first differences. 
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Table 3.3.3. Estimates of trend and drift coefficients after accounting for 
n»tliare 

Commodity Trend 
coefficient 

t-ratio Coefficient 

on the drift 
term 

t-ratio 

Coffee -0.006 -0.773 -0.010 -0.402 
Cocoa -0.022 -4.726 -0.021 -1.146 
Teat -0.000 -0.181 -0.002 -0.112 
Rice -0.021 -3.636 -0.021 -1.112 
Wheat -0.010 -4.227 -0.015 -1.349 
Maize -0.011 -3.259 -0.005 -0.641 
Sugar -0.016 -3.261 -0.010 -0.583 
Beef -0.019 -3.554 -0.016 -0.954 
Lamb 0.011 1.601 0.003 0.137 
Bananas -0.001 -0.346 0.000 0.043 
Palm Oil -0.006 -2.930 -0.005 -2.187 
Cotton -0.010 -3.328 -0.008 -0.765 
Jute 0.000 0.147 -0.000 -0.021 
Wool -0.013 -3.411 -0.015 -0.826 
Tobacco -0.003 -0.488 0.000 0.009 
Rubber -0.035 -12.203 -0.051 -1.972 
Timber 0.011 6.136 0.005 0.302 
Copper -0.004 -1.097 -0.004 -0.234 
Aluminium -0.026 -5.272 -0.030 -1.514 
Tin 0.010 4.045 0.005 0.284 
Silver 0.003 0.463 -0.015 -0.854 
Lead -0.001 -0.439 -0.008 -0.414 
Zinc -0.004 -0.952 -0.008 -2.049 

I Data Series from 1900-1997 only. 

As was the case with estimates of ARIMA models which did not account for 

structural breaks, there is again a general tendency for t-ratios to decrease 

noticeably as one moves from trend stationary to difference stationary models. As 

before, changes in estimates of the trend coefficient tend to be much smaller. 

Reversals of the sign of the estimated trend coefficient now occur for three 

commodities (Bananas, Silver and Jute) and for Tobacco. As before, significant 

trend estimates are given for 13 of the 23 data series, when estimates are made in 
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levels. When estimating in first differences, there are now three price series, with 

significant drift terms, although the affected price series now are Zinc, Rubber and 

Palm Oil. In the case of Palm Oil, the t-ratio on the trend coefficient changes 

remarkably little between the estimates from trend stationary and difference 

stationary models. In the case of Zinc, the drift term appears significantly different 

from zero at the 5% significance level when estimates are made in first differences. 

In contrast to the general pattern observed, however, the estimated coefficient on 

the trend term for zinc is shown to be statistically insignificant if estimated in 

levels. 

The overall evidence in favour of the presence of secular trends seems not to have 

changed much. It appears to be worthwhile, however, to compare the impact of 

structural instability on the trend estimates for individual commodities in several 

subgroups in detail. 

3.3.2. Evaluating the impact of outliers on trend estimates by commodity groups 

For the three cereals covered in the data series there still appear to be significant 

negative trend estimates when estimating in levels, although the estimates now 

appear insignificant for all estimates in first differences, including Rice. The 

estimated trends for these commodities are shown in Table 3.3.4. 
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Table 3.3.4. Trend Estimates for Cereal Prices 

Commodity Trend Stnd. 95% Drift Stnd. 95% Conf. 

Coeff. Error Conf. Coeff. Error Interval 

* 100 (*100 Interval (*100) * 100 

Rice -2.093* 0.576 [-3.221, -2.136 1.921 1 [-5.902, 
-0.9651 1.6301 

Wheat -0.950* 0.225 [-1.391, -1.468 1.088 [-3.601, 
101 0.665 

-Maiz-e--7 -1.054* 0.323 [-1.688, -0.548 0.856 [-2.225, 
-0.4201 1.129] 

Estimates significant at the 5% level are indicated thus: `*'. Coeff: Coefficient, Stnd: Standard, 

Conf Confidence 

The estimated trend coefficients for Rice and Wheat in difference stationary 

models still would remain significant at the 26.9% and 18.1% significance levels 

respectively, while the estimated trend coefficient for Maize for the model in first 

differences appears to be clearly insignificant. For Rice, the absolute value of the 

estimated negative trend now has increased from around I% p. a. to ca. 2% p. a. on 

average. This can be attributed to the net effect of a positive level shift in 1973 

which has been accounted for through the inclusion of a dummy variable. For 

Wheat, none of the included dummy variables seems to be statistically significant 

at the 5% level for the model in levels. When re-estimating in first differences, the 

coefficient for a positive structural break is significant at the 5% level, while the 

negative coefficient for a single additive outlier is not. Yet, while the estimated 

downward trend for the model in levels is less pronounced than in the original 

estimate, the estimated drift coefficient for the model in first differences including 

dummies actually decreases (i. e. it takes a larger negative value). In the case of 

Maize, the negative impact of a structural break in 1921 appears to be significant at 

the 10% level when the model is estimated in first differences. This is reflected in a 
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decrease of the estimated average annual decline of the price series from -0.97% 

p. a. to -0.55% p. a. When re-estimating the model in levels, the negative coefficient 

estimate for a single additive outlier appears to be significant, while the positive 

estimated coefficient on a structural break does not. The estimated downward trend 

falls slightly from an initial estimate of -1.02% p. a. when outliers are not taken 

into consideration to -1.05% p. a. It remains true that the estimated coefficient on 

the trend term in the trend stationary model is statistically significant while the 

estimated coefficient on the drift term is not. In so far as the small change in the 

magnitude of the trend coefficient deserves attention, it appears to contradict the 

observed change in the estimate of the drift coefficient when dummy variables are 

included. Given the small magnitude of the change as well as the remaining 

uncertainty about the significance of the estimates concerned, this result remains 

difficult to interpret. 

Within the overall group of food commodities further consideration may be given 

to the sub -categories of tropical beverages and other food commodities. Estimates 

of the trend coefficients for tropical beverages are summarised in table 3.3.5. 

below. 
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Table 3.3.5. Trend Estimates for Tropical Beverages 

Commodity Trend Stnd. 95% Drift Stnd. 95% 
Coeff. Error Conf. Coeff. Error Conf. 

(*100) * 100 Interval * 100 (*100) Interval 

Coffee -0.577 0.745 [-2.037, -0.978 2.433 [-5.747, 
0.884 3.790 

Cocoa -2.189* 0.463 [-3.097, -2.131 1.859 [-5.775, 
-1.281] 1.512 

Teat -0.043 0.236 [-0.504, -0.177 1.581 [-3.275, 
0.4191 2.9211 

Estimates significant at the 5% level are indicated thus: Data Series from 1900-1997 only. 
Coeff. Coefficient, Stnd: Standard, Conf: Confidence 

In the case of tropical beverages, there now is evidence for a negative trend of 

around -2% p. a. for the price of Cocoa, when the net effect of a positive level shift 

in 1947 is accounted for. The estimate of the drift term for the difference stationary 

model is not statistically significant at a level of 5% but would be significant at a 

significance level of 25.5%. For Coffee, there is still no evidence of a significant 

trend regardless of whether estimates are made in levels or first differences. 

For Tea, the estimated trend coefficient is still insignificant if the model is 

estimated in either levels or first differences. Compared with the previous estimate 

-which did not account for dummies- the absolute value of the estimated 

coefficient is low, and the width of the pertinent confidence interval has decreased. 

It would thus appear that in this case the incorporation of dummies for structural 

breaks and outliers strengthens the case for a zero or very small trend coefficient 

value. 

For other food products, outliers and structural breaks also have an impact on the 

estimated trend coefficient. The coefficient estimates after accounting for the effect 

of outliers are summarised in table 3.3.6. 
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Table 3.3.6. Trend Estimates for Other Food Commodities 

Commodity Trend Stnd. 95% Drift Stnd. 95% Conf. 

Coeff. Error Conf. Coeff. Error Interval 

* 100 (*100) Interval (*100) (*100) 

Sugar 1.563* 0.479 [-2.502, -1.020 1.750 [-4.450, 
-0.623 2.409 

Beef -1.857* 0.522 [-2.880, -1.580 1.656 [-4.825, 
-0.833 1.666 

Lamb 1.144 0.714 [-0.256, 0.265 1.938 [-3.534, 
2.543 4.065 

Bananas -0.107 0.311 [-0.717, 0.040 0.922 [-1.768, 
0.502] 1.848 

Palm Oil -0.560* 0.191 [-0.934, -0.481 * 0.220 [-0.913, 
-0.1851 -0.0501 

Estimates significant at the 5% level are indicated thus: `*'. Coeff Coefficient, Stnd: Standard, 
Conf: Confidence 

The absolute value of the estimated negative coefficient on the trend for Sugar 

prices increases in the trend stationary model when the positive net effects of 

single additive outliers in 1963,1974 and 1980 are accounted for. Estimating in 

first differences, the estimate of the downward trend is reduced somewhat from the 

originally estimated decline of around 1.22% p. a. This can be attributed to the 

combined effects of a large and significant8 structural break in 1921 and positive 

breaks in 1963 and 1974. 

In the case of Beef, the consideration of structural breaks and single additive 

outliers appears to have particularly strong effects. The positive trend estimate of 

around 1.36% p. a. which had initially been inferred when estimating in levels is 

now replaced by a negative trend estimate of -1.86% p. a after the net positive 

impact of level shifts in 1915,1931 and 1959 has been accounted for. Estimating 

8 The coefficient on the corresponding dummy is marginally insignificant at the 5% level, with a 
t-ratio of -1.927, but significant at the 10% level. 
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in first differences, a similar reversal of coefficient signs is produced by the same 

sequence of structural breaks. 

The residuals for Lamb indicate the presence of outliers in three years, however, 

only the coefficient estimate for one of them (a structural break in 1915) is shown 

to be significant when the series is re-estimated in levels including dummies. The 

impact of the positive breaks reduces the estimate for the positive annual trend 

coefficient on lamb prices from its original value of 1.83% p. a to around 1.14% 

p. a. The residuals from estimates in first differences show outliers to be present in 

two years (1915 and 1931) both of which produce evidence of positive structural 

breaks in the re-estimated model. The effect is again to reduce the value of the 

estimated positive trend coefficient, which falls from an initial 1.55% p. a. to a 

more modest average annual increase of 0.27%. 

The residuals from the estimates on the relative price series for Bananas show no 

outliers and the corresponding estimated trend coefficients therefore remain 

unchanged. In the case of Palm Oil, however, a single structural break in 1986 

reduces the absolute value of the estimated coefficient for the negative trend from 

the initial estimates of -1.04% p. a. and -0.71% p. a., obtained by estimating in 

levels and first differences respectively, to the values given in table 3.3.6. 

Turning next to non-food agricultural commodities, the results for re-estimated 

trend coefficients when accounting for outliers are given in table 3.3.7. 
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Table 3.3.7. Trend Estimates for Non-food A gricultural Commodit ies 
Commodity Trend Stnd. 95% Drift Stnd. 95% Conf. 

Coeff. Error Conf. Coeff. Error Interval 

* 100) 100 Interval (*100) (*100) 

Cotton 0.984* 0.296 [-1.563, -0.786 1.026 [-2.797. 
-0.404 1.226 

Jute 0.045 0.307 [-0.557, -0.044 2.078 [4.229, 
0.648] 4.140 

Wool -1.316* 0.386 [-2.072, -1.545 1.870 [-5.210, 
-0.5601 1 2.120 

Tobaccos -0.303 0.621 [-1.519, 0.011 1.228 [-2.396, 
0.914 2.418 

Rubber -3.482* 0.285 [-4.042, -5.076 2.574 [-10.120, 
-2.9231 - 

0.031 

Timber 1.093* 0.178 [0.744, 0.456 1.508 [-2.501, 
1.441 3.412 

Estimates significant at the 5% level are indicated thus: 
t Data Series from 1900-1997 only. 
Coeff: Coefficient, Stnd: Standard, Conf. Confidence 

There was no evidence of outliers in the price series for Cotton, so the estimates in 

this case are unchanged. As for Jute, the original estimate of a significant negative 

trend now appears to be due to a negative level shift in 1986. Accounting for this 

structural break, the trend estimates (with a sign reversal between estimates in 

levels and first differences) now are shown to be highly insignificant. 

Re-estimating the series for Wool in first differences gives a somewhat higher 

estimate for the absolute value of the drift term when the effects of a positive 

single additive outlier and break are taken into consideration. When re-estimating 

the model in levels, however, the absolute value of the estimated negative trend 

coefficient is actually reduced. This phenomenon may be the net result of the joint 

presence of a positive single additive outlier and a negative -albeit insignificant- 

structural break. 

The residuals from the original estimates for the price series of Rubber suggested 

the existence of outliers in 1921,1925 and 1950 (when estimated in levels) or 1925 
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and 1950 when estimated in first differences. Re-estimating in levels, this indicates 

the presence of a negative structural break in 1921 and of positive structural breaks 

in 1925 and 1950. Estimates for single additive outliers in these years are positive 

(though insignificant). The net effect is a larger absolute value for the estimated 

negative trend coefficient and a markedly higher t-ratio of -12.203. The 

re-estimated model in first differences shows positive and significant estimates of 

the coefficients on structural breaks in both years and a positive and a negative 

estimate for the coefficients on single additive outliers in these years; the two 

estimated coefficients for single additive outliers are of similar magnitude with 

values of 0.281 for 1925 and -0.244 for 1950. The net impact on the estimated 

trend coefficient is an increase in the absolute value of the estimated coefficient 

when compared with the estimate which did not account for outliers. The estimated 

coefficient on the drift term now falls from an estimated -0.03 to -0.05 and the 

P-value for the null hypothesis is now just above 5%, taking a value of 0.516. 

Re-estimating the model for Tobacco in levels, the presence of positive structural 

breaks in 1920 and 1960 combined with a negative structural break in 1996 result 

in a negative estimate for the trend coefficient. When the model is re-estimated in 

first differences the presence of a positive structural break in 1960 and a negative 

structural break in 1996 reduce the positive trend coefficient estimate to a very low 

value. 

Re-estimating the model for Timber shows a structural break in 1993 slightly 

depressing the value of the estimated positive trend coefficient to a value of 0.0109 

from an initial 0.0114 for the estimate in levels. The re-estimated model in first 
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differences shows an estimated drift coefficient of 0.0046 where the original 

estimate for the drift coefficient was 0.0081. 

Considering metals, re-estimation after accounting for the effects of outliers does 

affect estimation results, but does not provide any more coherent evidence 

concerning the presence of a trend in this commodity group. Trend coefficient 

estimates obtained after re-estimating the models for metals are shown in table 

3.3.8. 

Table 3.3.8. Trend Estimates for Metals 

Commodity Trend Stnd. 95% Drift Stnd. 95% 
Coefficient Error Conf. Coefficient Error Conf. 

(* 100) (*100) Interval * 100 (*100) Interval 

Copper -0.418 0.381 [-1.165, -0.431 1.841 [-4.039, 
0.329 3.176 

Aluminium -2.608* 0.495 [-3.577, -2.990 1.974 [-6.860, 
-1.638 0880 

Tin 0.972* 0.240 [0.501, 0.504 1.776 [-2.977, 
1.4421 3.985 

Silver 0.257 0.555 [-0.831, -1.492 1.746 [-4.915, 
1.344 1.931 

Lead -0.085 0.193 [-0.463, -0.784 1.895 [-4.498, 
0.293 2.931 

Zinc -0.409 0.429 [-1.250, -0.849* 0.414 [-1.661, 
0.432 -0.037] 

Estimates significant at the 5% level are indicated thus: ̀ *'. Stnd: Standard, Conf Confidence 

Since -when modelling the series as trend stationary- there is no evidence for the 

presence of outliers in the case of Copper the model has been re-estimated only in 

first differences. This yields negative coefficient estimates for both a single 

additive outlier and a negative structural break in 1975. The coefficient on the 

single additive outlier seems to be clearly insignificant, while the coefficient 

estimate on structural break is only marginally insignificant at the 5% level -i. e. it 
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would be significant at a 5.72% significance level. The estimated coefficient on the 

drift term nevertheless increases from an original -0.0094 to -0.0043. 

Considering the overall positive effect of a structural break in 1915, the estimated 

trend coefficient for Aluminium decreases from -0.0187 to -0.0261. When the 

model is re-estimated in levels. Re-estimating the model in first differences, the 

structural break leads to a fall in the estimated coefficient on the drift term from 

-0.0192 to -0.0299, although the result also differs from the initial estimate in so 

far as the estimate is no longer significant at the 5% level but merely would retain 

significance at a level of 13.3%. In the case of Tin, the presence of a negative 

structural break now leads to a higher estimated coefficient value for the estimate 

in levels (cf tables 3.3.8 and 3.2.6. ) while for the re-estimated model in first 

differences the initial negative coefficient estimate on the drift term is now 

replaced by a positive, though still insignificant, estimated coefficient of 0.005. 

Residuals for the initial estimate in levels indicate two outliers for Silver (in 1979 

and 1980), while residuals from the corresponding estimate in first differences only 

show an outlier for 1979. Re-estimation in levels indicates the presence of only one 

significant coefficient among the included dummies9. This identifies a positive 

single additive outlier in 1979. The value of the estimated trend coefficient 

increases somewhat but remains insignificant. For the re-estimated model in first 

differences, there appears to be a significant positive coefficient for a structural 

break as well as a significant coefficient for the single additive outlier, although the 

latter now takes a negative sign. The parallel presence of a positive trend 

9 There are insignificant negative coefficients for two structural breaks and a positive insignificant 
coefficient for a single additive outlier. 

108 



Chapter 3 

coefficient for the trend stationary model and a negative drift coefficient for the 

difference stationary model are maintained after accounting for outliers with the 

estimate of the drift coefficient falling further in value to -0.0149 from an initial 

level of -0.0033. 

When the price series for Lead is re-modelled in levels to account for a potential 

outlier in 1979 the re-estimated equation indicates the presence of a negative and 

significant coefficient on the structural break dummy as well as a positive and 

significant coefficient for a single additive outlier. The net result appears to 

weaken the extent of the previously estimated downward trend (the coefficient 

increases from -0.006 to -0.001). It should be noted though that the trend 

coefficient estimate in the re-estimated model is no longer significant. For the 

model in first differences there were no outliers and no re-estimation has been 

necessary. 

The series for Zinc was re-estimated including dummy variables for outliers for the 

years 1915 and 1973. When re-estimating in levels, the coefficients on all the 

dummy variables took positive signs but were insignificant. (Only the coefficient 

on what could be a structural break in 1915 was marginally insignificant for a 10 

percent critical value. ) The previous, positive estimate of 0.0006 for the trend 

coefficient now takes a value of -0.0041 but -given a t-ratio of 0.95- still appears to 

be insignificant. When re-estimating the model in first differences, the estimated 

coefficient on the dummy variable suggesting a structural break in 1915 is 

statistically significant and positive, while the estimated coefficient for the dummy 

variable indicating a structural break in 1973 is also positive and significant at a 10 
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percent significance level. As in the trend stationary model, the coefficient estimate 

for the drift term now takes a negative value. In contrast to the trend stationary 

model this estimate now appears to be significant, however. 

3.3.3. Overall evidence on secular trends 

If one were to take the results obtained above without further caution, i. e. if one 

were to decide on the order of integration of the relative price series covered a 

priori, relying on the outcome of unit root tests, then it would seem that a 

significant trend has been established for four of the five commodities identified as 

trend stationary. (The commodities in question are Sugar, Lamb, Timber and 

Aluminium. ) Of these, Lamb and Timber have positive and significant trend 

coefficients. These general results remain mostly unaltered when outliers and 

structural breaks are taken into consideration though the estimated trend coefficient 

on Lamb prices now becomes insignificant. Among those commodities, for which 

the unit root null hypothesis could not be rejected, a significant drift coefficient 

estimate has been obtained for Rice only, while the one for Wool would be 

significant at a 10% level. For the remaining price series identified as stationary in 

first differences (and for Zinc among the series presumed trend stationary), there is 

no significant trend or drift coefficient estimate at all when structural breaks are 

not accounted for. 

It has been mentioned above that exclusive reliance on unit root tests may well 

lead to mistaken inference on the order of integration of a data series. It will also 

be recalled that this is due not only to the possible impact of a large moving 

average component in the residual process but that similar problems may arise if 
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one fails to account for structural instability. While it has been attempted here to 

take account of structural breaks under different model alternatives there is no 

guarantee that the number of structural breaks considered is complete. (On the 

other hand, the occurrence of insignificant coefficient estimates for some of the 

included dummy variables, casts doubts on the endogenously inferred outliers and 

structural breaks. ) Furthermore, the incorporation of dummies for possible 

structural breaks does not resolve the issue of uncertainty about the true order of 

integration of the series. 

It should be obvious then that a test which attempts to establish the order of 

integration a priori leaves a considerable degree of uncertainty in the interpretation 

of test results. (In the present study, unit root tests have only been conducted 

without accounting for structural instability. Since structural breaks have been 

inferred endogenously, and since there is so far no consensus as to how to account 

for endogenous structural breaks, it appears to be advisable to remain agnostic on 

the issue for the time being. ) 

It can be argued that there is a further motive for caution in interpreting the present 

results since the reliability of t-tests to asses the significance of coefficients 

depends not only on stationarity but on the presence of normally distributed 

residuals. Appendix III. vi reports the results of Bowman-Shelton normality tests on 

the residuals obtained. It can be shown that there are significant departures from 

normality for some of the price series, although there is some improvement when 

outliers are taken into account (cf. Appendix III. vi for details). 
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While t-tests may provide information on the statistical significance of positive or 

negative trend estimates one should be aware of the limitations of such a test 

statistic. In particular, it is worth noting that by testing whether or not an estimated 

coefficient is significantly different from zero significance tests are implicitly 

providing information on the likelihood of the true coefficient having a positive or 

negative sign. While the question of sign determinacy is crucial in an attempt to 

infer the presence or absence of a secular trend one should not overlook the more 

general question of the precision of the point estimate. It is therefore worth 

considering confidence intervals as well as point estimates and t-ratios. 

A careful interpretation of the present results should at least not be conditional 

upon any pre-established premise on the order of integration of the individual data 

series. Consideration should therefore be given to estimation results in both levels 

and first differences when considering the evidence on the presence of a secular 

trend. On these premises, there seems to be no clear evidence in favour of a 

generalised negative trend among relative primary commodity prices -neither for 

individual price series nor for most commodity groups. While consistently negative 

point estimates are obtained for the trend coefficients for some commodities and 

for cereals as a group, there is still uncertainty surrounding the significance of 

these estimates. 

3.4. Comparison with Other Studies 

A number of other studies have investigated the evidence in favour of a significant 

negative trend using composite indices of primary commodity prices and often 

relying on the GYCPI which served as a basis for this study. The original study by 
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Grilli and Yang (1988) as well as later articles by Cuddington (1992) and Leon and 

Soto (1997) looked into the evolution of disaggregated price series. The present 

section will focus initially on the results for commodity subgroups reported in 

Grilli and Yang (1988) and then turn to the results reported by Cuddington (1992) 

and Leon and Soto (1997) for individual relative price series. 

3.4.1. A comparison with the results obtained by Grilli and Yang (1988) 

Grilli and Yang estimate trends for four main commodity groups: food prices, 

non-food agricultural commodities and metal prices. They estimate an ordinary 

least squares regression of the group index on a constant and trend, modelling all 

price series as trend stationary'o 

Food prices are reported to follow a negative trend of - 0.36% p. a. Within this 

category a `strong positive trend' (of 0.63% p. a. ) is reported for the relative price 

of tropical beverages. A strict comparison is made difficult by the fact that in the 

present study, estimates were made for individual commodity price series, while 

Grilli and Yang only disaggregated to the level of sub-indices of their overall 

composite index. Moreover, the original data series used by Grilli and Yang only 

extended as far as 1986, while the present study covers average annual price data 

up to 1998". However, some informal comparisons should be possible. The 

estimated trend coefficients from estimates in levels do indeed show a number of 

significant, negative trend coefficient estimates for relative food prices. These tend 

to be of a magnitude of around one percent or more in absolute value but are 

loGrilli and Yang (1988) also report that they used a Maximum Likelihood procedure to correct for 
serial correlation. 
"Except for the data series for Tea and Tobacco, where data are available up to 1997 only. 
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counterbalanced to some degree by positive trend estimates for some commodities 

(e. g. Lamb and Beef). Commenting further on this sub-index, Grilli and Yang also 

report a `strong positive trend' for tropical beverages, for which no evidence has 

been found in this study, regardless of whether the model was estimated in levels 

or first differences. Rather it appears that the only potentially significant trend 

estimate in this category (i. e. the one for Tea) is negative. Furthermore, when 

taking structural breaks into consideration, the relative price series for Cocoa 

appears to follow a significant negative trend when estimated in levels. 

The estimate of an average annual decline of about 0.84 percent for non-food 

agricultural prices still seems to be reasonably similar to the results obtained here, 

however a negative trend of around 0.82 percent for the relative price of metals 

appears to be difficult to accept as representative for the results obtained here, 

given that no clear evidence of a persistent, common trend for the commodities in 

this group has been obtained. Even when the series are modelled in levels no more 

than two price series (Aluminium and Lead) show strong evidence in favour of a 

negative trend. 

3.4.2. A comparison will: the results obtained by Cuddington (1992) 

Cuddington (1992), worked with 26 data series on individual primary commodity 

prices from the original data set used by Grilli and Yang, including fuel and 

covering the period 1900-1983. Trend estimates were obtained by first testing for 

stationarity using unit root tests12 and then deciding on the order of integration. 

Subsequently, relative prices of primary commodities were estimated by regression 

12 Cuddington uses the Said Dickey test and Perron tests as appropriate. 
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on a constant and trend, allowing for an autoregressive moving average process for 

the residual. If assumptions on the order of integration had been formed 

exclusively on the basis of unit root tests for those commodities covered by 

Cuddington (1992) as well as in the present study, then inferences about 

stationarity would agree with those made by Cuddington in all but eight cases: 

Aluminium, Coffee, Rice, Wheat, Maize, Palm Oil, Tin and Lead. Aluminium was 

identified as 1(0) in the present study and as I(1) by Cuddington. Coffee, Rice, 

Wheat, Maize, Palm Oil, Tin and Lead appeared to be I(1) in the present study but 

are described as 1(0) by Cuddington. In the case of Coffee Cuddington (op. cit. ) 

includes a dummy for 1950, while in the present case an outlier, identifying a 

structural break, was found for 1976. Again the scope for comparison is somewhat 

limited as the data-sets used in both cases are not exactly identical, with the 

data-set for the present study covering a longer period and being chained to the 

original GYCPI from 1960. Table 3.4.1. compares estimated trend coefficients 

from the present study and Cuddington (1992). Comparisons are made for 

estimates obtained here. Cuddington's inferences on the order of integration are 

reported together with his trend coefficient estimates in column two of table 3.4.1. 
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Table 3.4.1. Trend estimates from the present study and Cuddington (1992) 

Commodity Trend 
(Cuddington) 

Trend 
(no dummies) 

Drift 
(no 

dummies) 

Trend 
(with 

dummies) 

Drift 
(with 

dummies 

Coffee 0.000 ( TS) 0.004 0.002 -0.006 -0.010 
Cocoa -0.001 ( DS) -0.003 -0.009 -0.022 -0.021 
Tea -0.005 (DS) -0.007 -0.010 -0.000 -0.002 
Rice -0.006 (TS) -0.011 -0.012 -0.021 -0.021 
Wheat -0.007 (TS) -0.011 -0.010 -0.010 -0.015 
Maize -0.007 (TS) -0.010 -0.010 -0.011 -0.005 
Sugar -0.007 (TS) -0.011 -0.012 -0.016 -0.010 
Beef 0.019 (DS) 0.014 0.008 -0.019 -0.016 
Lamb 0.019 (TS) 0.018 0.015 0.011 0.003 
Bananas 0.004 (DS) -0.001 0.000 -0.001 0.000 
Palm Oil -0.006 

(TS) -0.010 -0.007 -0.006 -0.005 
Cotton -0.002 

(DS) -0.010 -0.008 -0.010 -0.008 
Jute -0.001 (DS) -0.007 -0.008 0.000 -0.000 
Wool -0.010 

(DS) -0.016 -0.014 -0.013 -0.015 
Tobacco u. u lib u. uu) u. uus -u. uus u. uuu 
Rubber -0.025 ( DS) -0.028 -0.030 -0.035 -0.051 
Timber 0.011 ( TS) 0.011 0.008 0.011 0.005 
Copper -0.005 (DS) -0.004 -0.009 -0.004 -0.004 
Aluminium -0.015 (DS) -0.019 -0.019 -0.026 -0.030 
Tin 0.012 (TS) 0.001 -0.003 0.010 0.005 
Silver 0.010 (DS) 0.000 -0.003 0.003 -0.015 
Lead -0.001 (TS) -0.006 -0.008 -0.001 -0.008 
Zinc 0.000 (TS) 0.001 0.000 -0.004 -0.008 

TS: trend stationary series, DS: difference stationary series. 

There does not appear to be any general pattern in comparative coefficient size 

suggesting systematic over- or underestimation by one or the other approach. In the 

majority of cases, the same sign has been obtained for the estimated coefficients. 

Although there are partial discrepancies13 in the cases of Bananas, Tin and Silver. 

3.4.3. A comparison with the results of Leon and Soto (1997) 

Leon and Soto (1997) extended the data underlying the Grilli and Yang commodity 

Price Index up to 1992 and estimate trends for the composite indices covered by 

13 For Coffee, Beef, Jute, Tobacco and Zinc different coefficient signs are obtained only when 
dummy variables are included in the model. 
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Grilli and Yang as well as for individual commodity price series. They aim to 

allow for endogenously inferred structural breaks in Unit Root testing (using the 

recursive Zivot Andrews test (cf. Leon and Soto (1997, pp. 353-354)) and classify 

20 out of 24 series as trend stationary. The estimates for the price series are trend 

stationary or difference stationary univariate models allowing for ARMA errors as 

in the case of Cuddington (1992) and including dummy variables in a number of 

cases. 

As was the case in comparing the results of Cuddington (1992) with the estimates 

obtained here, there does not appear to be any systematic pattern of differences in 

the magnitude or the sign of trend or drift coefficients obtained in the study by 

Leon and Soto and the coefficient estimates obtained here. Again, the signs of the 

coefficient estimates obtained agree in most cases. The exceptions now occur for 

Coffee, Jute and Wool were the trend and drift coefficients take different signs and 

Tin, Silver and Bananas, where different signs have been obtained for the drift 

coefficient estimate14. The trend or drift coefficient estimates obtained by Leon and 

Soto together with the inferred order of integration are reported in Table 3.4.2 

below. The trend and drift coefficient estimates obtained for various models in the 

present study are again given in columns three to six. 

Regarding the inferred order of integration of the series, the unit root test employed 

by Leon and Soto (1997) identifies a larger number of trend stationary series than 

either Cuddington (1992) or than has been found here. All the series classified as 

trend stationary by the ADF test used here are also classified as trend stationary by 

14 Among the models incorporating dummies different coefficient signs to the ones reported by 
Leon and Soto (1997) were obtained for Beef and Zinc. 
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Leon and Soto. The series modelled as difference stationary by Leon and Soto 

(Cocoa, Beef, Bananas and Silver) would also be classified as difference stationary 

by the ADF test results reported here. In all the remaining cases, the test results of 

Leon and Soto indicate trend stationary series, while the ADF test results reported 

here suggest that the remaining series should be classified as stationary in first 

differences. 

Table 3.4.2. Trend estimates from the present study and Leon and Soto (1997) 

Commodity Trend 
(Leon and 

Soto) 

Trend 
(no dummies) 

Drift 
(no 

dummies) 

Trend 
(with 

dummies) 

Drift 
(with 

dummies) 

Coffee -0.005 ( TS) 0.004 0.002 -0.006 -0.010 
Cocoa -0.550 ( DS) -0.003 -0.009 -0.022 -0.021 
Tea -0.001 ( TS) -0.007 -0.010 -0.000 -0.002 
Rice -0.012 (TS) -0.011 -0.012 -0.021 -0.021 
Wheat -0.009 ( TS) -0.011 -0.010 -0.010 -0.015 
Maize -0.008 ( TS) -0.010 -0.010 -0.011 -0.005 
Sugar -0.005 (TS) -0.011 -0.012 -0.016 -0.010 
Beef 0.020 ( DS) 0.014 0.008 -0.019 -0.016 
Lamb 0.017 ( TS) 0.018 0.015 0.011 0.003 
Bananas -0.013 (DS) -0.001 0.000 -0.001 0.000 
Palm Oil -0.006 (TS) -0.010 -0.007 -0.006 -0.005 
Cotton -0.001 (TS) -0.010 -0.008 -0.010 -0.008 
Jute 0.002 (TS) -0.007 -0.008 0.000 -0.000 
Wool 0.001 (TS) -0.016 -0.014 -0.013 -0.015 
Tobacco 0.004 TS 0.005 0.003 -0.003 0.000 
Rubber -u. u i i -u. uha -u. usu -u. uua -u. ub 1 
Timber 0.008 ( TS) 0.011 0.008 0.011 0.005 
Co er -0.012 (TS) -0.004 -0.009 -0.004 -0.004 
Aluminium -0.027 (TS) -0.019 -0.019 -0.026 -0.030 
Tin 0.010 (TS) 0.001 -0.003 0.010 0.005 
Silver -0.002 (DS) 0.000 -0.003 0.003 -0.015 
Lead -0.010 (TS) -0.006 -0.008 -0.001 -0.008 
Zinc 0.000 (TS) 0.001 0.000 -0.004 -0.008 

TS: trend stationary series, DS: difference stationary series. 

It is worth noting that in the case of Cocoa, where the difference in the magnitude 

of the trend coefficient reported by Leon and Soto is large, a constant and trend 
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term were incorporated in the difference stationary model estimated by Leon and 

Soto. The estimated coefficient on the constant is -0.200, while the coefficient 

estimate for the trend term takes the value of -0.550 reported in the table above. 

3.5 Conclusion 

In this chapter, it was confirmed that conclusions on the statistical significance of 

trend and drift coefficient estimates and conclusions on the order of integration of 

the underlying data generating process are interdependent. One should also 

consider the possibility that this may be so not only in the familiar case where 

trend stationary models are fitted to integrated series but also in cases where a 

trend stationary series is wrongly treated as difference stationary. 

The outliers observed among the residuals from the estimates and subsequent 

estimates incorporating dummy variables suggest the possibility of structural 

breaks in a number of the relative price series. This provides further reasons to be 

cautious about a priori unit root tests, as the results of these can be influenced by 

structural breaks. However, the incorporation of dummy variables to account for 

structural breaks does not resolve the existing uncertainty about the presence of 

trend or drift components. 

Against the background of the problems discussed so far it has not been possible to 

reach a definite conclusion on the presence of trend and drift components in 

relative primary commodity price series. The following chapter will therefore turn 

to a more detailed investigation of the evidence in favour of trend components in 

the presence of sustained uncertainty surrounding the order of integration of the 

data series. 
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Appendix Iil. i. Unit Root Test Results 

The Augmented Dickey-Fuller Tests 

This appendix gives results for the Augmented Dickey Fuller (ADF) test. The tests 

were conducted for the data series in levels including up to five lagged differenced 

terms, a constant and a trend term. Lagged differenced terms were eliminated using 

general to specific testing, eliminating lagged terms which appeared statistically 

insignificant at the 5% level and re-estimating one by one. (This assures, that the 

ADF test reduces to the normal Dickey-Fuller test with constant and trend where 

none of the lagged terms are significant. ) For those commodities, for which the 

null hypothesis of a unit root could not be rejected in this testing procedure, ADF 

tests were also conducted for the first differenced series, again employing general 

to specific testing, and including a constant only in the testing equation. Following 

Enders (1995), the 5% critical value for the ADF test including constant and trend 

for 100 observations' is ±3.45 the corresponding value for the ADF equation 

including a constant only is ±2.89. 

The results obtained for the ADF test for series in levels are detailed below. The 

general format for the ADF test equation is: 

s 
, &p'= a+ßt+ p*p, -i +E YjOpj-r 

where standard errors are given in parentheses below the estimated coefficient 

values, and the t-ratio on the lagged dependent variable (z) is reported separately. 

Generally, p, _; 
is the price of the commodity in question in period t-i, a is the 

1 The series for Tea and Tobacco only contain 98 observations before differencing. The remaining 
data series have 99 observations. For this sample size and the estimates reported here, the precise 
critical value should be put at +/- 3.46. This does not affect the conclusions reached. 
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intercept term, ß the trend coefficient and p* the coefficient for the Dickey-Fuller 

test and yj the coefficient on the ith lagged differenced term. The trend term is 

omitted in cases where the estimated coefficient value is zero when rounded to 

three digits. 

Coffee: 

Opt - (0.080) 
0+ 00001 t -0 190 p !_t 

-3.121 

Cocoa: 

Op, =-0.137 - 0.114 p, _1 +0.135 Opi-I -0.256 API-2 (0.075) (0.053) (0.100) (0.101) 

T= -2.158 

Tea: 

Op, =0.039 - 0.001 t -0.10 8 p, _ 1 (0.036) (0.001) (0.048) 

z= -2.248 

Rice: 

Op, =0.170-0.003 t-0.224pi_1+0.337Apr_1-0.210Apr-2 (0.061) (0.001) (0.068) (0.097) (0.102) 

z= -3.271 

Wheat: 

Opt = 0.220 - 0.003 t -0.247 p, _, +0.243 Ap, _t -0.1414p, _2 (0.083) (0.001) (0.090) (0.107) (0.109) 

+0.128 Opt-3 -0.262 Apt-4 (0.103) (0.105) 

z= -2.740 
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Maize: 

Apt = 0.238 - 0.003 t -0.239 p, _1 +0.003 Opt_1-0.217 Op: _2 (0.095) (0.001) (0.097) (0.117) (0.114) 

-0.0561 p: _3 -0.226 ept_4 
(0.106) (0.103) 

r= -2.468 

Sugar: 

Apt = 0.244 - 0.004 t -0.339 pr_i (0.087) (0.001) (0.077) 

z=-4.391 

Beef: 

Opt 0.119 + 0.001 t -0.085 pr_t (0.089) (0.001) (0.045) 

Z= -1.876 

Lamb: 

Avg _-0.312 + 0.003 t-0.181 pt-1 +0.087 Ap, _1 +0.058 Ap1_2 
(0.105) (0.001) (0.051) (0.099) (0.099) 

+0.092 Opt_3 +0.426 Op, --4 (0.099) (0.099) 

z=-3.535 

Bananas: 

tlp, =0.054-0.001 t-0.102pr_i 
(0.023) (0.000) (0.040) 

z= -2.521 

Palm Oil: 

Apt = 0.134 - 0.003 t-0.224 pr_i +0.155 Opt_l -0.255 'pt_2 (0.062) (0.001) (0.075) (0.100) (0.101) 

i= -2.991 
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Cotton: 

Op, =0 . 1058)46 - 0.0002 t -0 1166 p, _i +0.0.100)73 4p1-1 -0.26.1004 Apr-2 

z= -2.553 

Jute: 

Apt =0.104 - 0.002 t -0.127 pt_1 +0.009 Opt-1-0.267 AA-2 
(0.054) (0.001) (0.063) (0.103) (0.102) 

z= -2.027 

Wool: 

Op, =0.251 -0.004 t -0.155 pt_i -0.078 Ap, _1-0.313 Opt-2 
(0.108) (0.001) (0.073) (0.109) (0.108) 

-0.082 Ape-3 -0.252 Op, -4 
(0.103) (0.103) 

z =-2.137 

Tobacco: 

Opt =0.054 - 0.001 t -0.022 p, _1 +0.017 Apt_, +0.009 Opt_2 
(0.050) (0.001) (0.051) (0.112) (0.112) 

-0.050 /pt_3 -0.259 Apt-4 
(0.111) (0.111) 

z=-0.437 

Rubber: 

Op! = 0.357 - 0.005 t-0.197pt_1 
(0.132) (0.002) (0.061) 

z =-3.217 

Timber: 

Apt=-03183 +0.155 (0.118) 
0pt_I-00050p! _2+0.2160pI-3 

r= -3.925 
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Copper: 

Op, = 0.017 - 0.139 pe_1 (0.038) (0.054) 

T= -2.600 

Aluminium: 

Apt =0.324 - 0.005 t -0.255 p, _1 +0.301 Apt_, 
(0.090) (0.001) (0.062) (0.099) 

z=-4.128 

Tin: 

Ap, =-0.081 -0.103pg_, (0.064) (0.050) 

z= -2.062 

Silver: 

Apr =-0.087 - 0.092 pt_' +0.087 0pi-t -0.265 API-2 (0.058) (0.049) (0.101) (0.101) 

z= -1.866 

Lead: 

Opt =0.001- 0.001 t -0.200 p1_1 (0.037) (0.001) (0.063) 

z =-3.169 

Zinc: 

Apr =0.005 -. 3 pr-i +0.221 Apt-, 

r=-5.106 
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For those series which could not be identified as trend stationary, further unit root 

tests were conducted for the series in first differences, to confirm that the first 

differenced series are indeed stationary. The general format for the ADF test for 

the differenced data series was as follows: 

s 
02pr = a+ p*L pr-i +E Y, 02pr-i 

where 02 indicates a second difference, and the remaining elements of the equation 

are as before. The results obtained were as follows: 

Coffee: 

02pß =0.007 -1.313 Apt-1 +0.233 02pt_I 
(0.025) (0.148) (0.103) 

-8.897 

Cocoa: 

02pt =-0.012 - 1.234 Apt-1 +0.317 A2pr-1 
(0.025) (0.135) (0.099) 

i= -9.146 

Tea: 

02p, 0.014 -1.240 Apr-1 +0.258 A2pt-1 
(0.017) (0.145) (0.103) 

-8.557 

Rice: 

O2p, 0.014 - 1.393 Apt-1 +0.632 t2pt-1 +0.229 02pt_2 +0.221 i2p, _3 (0.017) (0.202) (0.164) (0.128) (0.102) 

z= -6.893 
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Wheat: 

L2p1 0.020 - 1.950 Apt-1 +1.040 i2pr_1 +0.672 A2pt_2 +0.711 &2p, _3 (0.017) (0.297) (0.256) (0.213) (0.182) 

+0.290 02p, -4 +0.276 02pr-5 
(0.141) (0.105) 

i= -6.566 

Maize: 

02p, 0.019 - 1.913 Apt-1 +0.773 02pr_1 +0.423 &2pt_2 +0.284 02pr_3 
(0.021) (0.247) (0.202) (0.150) (0.101) 

z= -7.739 

Beef: 

02p, =0.007 - 0.953 z\pi_1 
(0.021) (0.102) 

z=-9.297 

Bananas: 

02pt =-0.001 - 0.939 Opel 
(0.009) (0.102) 

r=-9.208 

Palm Oil: 

02p, _-0.014-1.686LpI1+0.72402p1_, +0.33402pl-2 (0.023) (0.283) (0.244) (0.204) 

+0.260 O2pi_3 +0.210 A2p, _4 (0.147) (0.107) 

i= -5.961 

Cotton: 

O'pr --0.01216)- 1o33ß5 Apt-' +0 ö 
80 

&2pr-t 

z= -9.575 
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Jute: 

Alp, =-0.013 - 1.552 Api_1 +0.547 i\2p! _1 +0.164 02p1_2 +0.236 02pr_3 
(0.023) (0.238) (0.201) (0.149) (0.105) 

z= -6.522 

Wool: 

02pt 0.028 - 1.884 4pr_1 +0.737 A2p, --1 +0.369 02p1_2 +0.267 A2pr_3 (0.020) (0.253) (0.208) (0.154) (0.103) 

i= -7.451 

Tobacco: 

E2p, =0.003 - 1.186 Eps_I +0.231 A2p, _I +0.261 A2pt_2 +0.233 02p, _3 (0.015) (0.205) (0.179) (0.149) (0.108) 

T= -5.798 

Rubber: 

E2p1= - 0.029 - 0.958 Ape-1 (0.030) (0.103) 

z= -9.304 

Copper: 

Alp, 0.007 - 1.143 Apt +0.207 e2pt_1 
(0.019) (0.139) (0.101) 

z= -8.241 

Tin: 

A2pi =0.002 - 0.944 Apr-1 
(0.019) (0.098) 

i= -9.609 

Silver: 

02pt =-0 . 004 -1.2370 ip`-i + . 
ä91g3 

&2pr-i 

z= -9.241 
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Lead: 

02p, 0.011 -1.316 Apt +0.292 02p, _1 +0.205 A 2p1_2 
(0.019) (0.184) (0.146) (0.104) 

z= -7.143 
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Appendix III-ii. Estimation Results for Relative Primary 
Product Price Series in Levels -minimum SBC 
specifications 

This appendix gives details of the estimation results for relative primary 

product price series. The price series are natural logarithms of the primary 

commodity price series shown relative to the Manufacturing Unit Value 

(MUV) index. Price series were modelled for a constant and a linear trend 

allowing for a general ARMA specification for the error term, i. e. 

pt=a+ßt+u, 

and 

UI-0 I ut- -... - Opllt_p -OgCi-q 
where pt is the relevant price series, a the coefficient on the constant, /3 the 

coefficient on the linear trend term, q; the coefficient on the relevant 

autoregressive error term (u,., ), 0, the coefficient on the ith moving average term 

(s, 
_, 
). The subscript t indicates time period t and t-i the i'' lag. ARMA models 

were estimated for all ARIMA(p, O, q) specifications such that p+q<5 and the 

preferred model was identified by SBC. The estimation results were obtained 

using the ARIMA. SRC procedure in GAUSS, and are listed below. 

The results shown are the estimated models (with standard errors shown in 

parentheses) as well as the corresponding value for the Schwarz Bayesian 

Criterion, and the Ljung Box Q statistic' for 12 autocorrelations. P-values for 

' Johnston and Dinardo (1997) argue that the Ljung Box Q statistic is more appropriate than 
the Box Pierce statistic as a measure of serial correlation in finite samples. However, they also 
point out that this test statistic is defined for pure ARMA processes. Given that the present 
model contains a trend, some caution is in order in interpreting the values obtained. 
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the Ljung Box Q statistic are given in parentheses after the value of the test 

statistic. (On this basis and adopting a threshold value of 5% for the test there 

would be evidence of autocorrelation for the residuals for Cotton and Jute. ) 

Commodity: Coffee 
Model: ARIMA(1,0,0), with constant and trend 
SBC = 11.208, Ljung-Box Q(12): 9.168 (0.606) 
Degrees of freedom: 96 

p, _-1.029+0.0041+ut (0.224) (0.004) 

u, -0.803ur-1= Et (0.060) (0.241) 

Commodity: Cocoa 
Model: ARIMA(1,0,0), with constant and trend 
SBC = 17.961, Ljung-Box Q(12): 16.716 (0.117) 
Degrees of freedom: 96 

p, =-0.848-0.003t+u1 (0.331) (0.006) 

u, -0.870u, -1= et (0.049) (0.249) 

Commodity: Tea 
Model: ARIMA(1,0,0), with constant and trend 
SBC = -68.336, Ljung-Box Q(12): 13.624 (0.255) 
Degrees of freedom: 95 

pt =0.354 - 0.007t +uI (0.233) (0.004) 

u, -0.883ur_t= Er (0.048) (0.160) 

Commodity: Rice 
Model: ARIMA(1,0,1), with constant and trend 
SBC = -64.827, Ljung-Box Q(12): 7.576 (0.670) 
Degrees of freedom: 95 

p, = 0100-001lt+u, 

us-0.609u, -1= e, + 0.563E_1 
(0.092) (0.161) (0.098) 
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Commodity: Wheat 
Model: ARIMA(0,0,3), with constant and trend 
SBC = -73.142, Ljung-Box Q(12): 6.647 (0.674) 
Degrees of freedom: 94 

p1=0.794-0.01lt+ur (0.089) (0.002) 

ur = ei + 1.030Er_i + 0.566E1_2 + 0.394Er_3 
(0.152) (0.096) (0.135) (0.099) 

Commodity: Maize 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -17.792, Ljung-Box Q(12): 13.534 (0.260) 
Degrees of freedom: 96 

pt =0.785 - 0.010t +ut (0.141) (0.002) 

ut -0.720ut-1= et (0.071) (0.209) 

Commodity: Sugar 
Model: ARIMA(1,0,1) with constant and trend 
SBC = 64.951 , Ljung-Box Q(12): 11.939 (0.289) 
Degrees of freedom: 95 

p, =0.761 -0.011t+u, (0.150) (0.003) 

us -0.425ur_1= Es + 0.413Et_1 
(0.130) (0.311) (0.132) 

Commodity: Beef 
Model: ARIMA(1,0,0), with constant and trend 
SBC = -22.121 , Ljung-Box Q(12): 10.679 (0.471) 
Degrees of freedom: 96 

pt=-1.602+0.014t+ut (0.350) (0.006) 

ut -0.905ut-1= Et (0.044) (0.203) 

Commodity: Lamb 
Model: ARIMA(5,0,0), with constant and trend 
SBC = -16.512, Ljung-Box Q(12): 3.376 (0.848) 
Degrees of freedom: 92 

p, 10 2079 +0 018t +u, 

u, -0.897ur_1 + 0.028u1_2 - 0.033U1_3 - 0.321u1. + 0.406u, _5= er (0.094) (0.128) (0.129) (0.130) (0.096) (0.194) 
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Commodity: Bananas 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -181.839, Ljung-Box Q(12): 8.438 (0.674) 
Degrees of freedom: 96 

pt =0.207 - 0.001 t +u1 (0.189) (0.003) 

ut -0.926ur-1= Er (0.037) (0.091) 

Commodity: Palm Oil 
Model: ARIMA(1,0,1) with constant and trend 
SBC = -13.339, Ljung-Box Q(12): 11.709 (0.305) 
Degrees of freedom: 95 

pi=0.516-0.010t+u1 (0.139) (0.002) 

ur -0.591u! _1= E, + 0.405Eg_1 
(0.102) (0.209) (0.117) 

Commodity: Cotton 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -67.885, Ljung-Box Q(12): 20.823 (0.035) 
Degrees of freedom: 96 

p, =0.647 - 0.010t +u, (0.173) (0.003) 

u, -0.833u1_1= Et (0.057) (0.162) 

Commodity: Jute 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -5.261 , Ljung-Box Q(12): 20.732 (0.036) 
Degrees of freedom: 96 

p, = 0228-0007)t+u, 

u, -0.848u, -t= Et (0.057) (0.222) 

Commodity: Wool 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -33.017, Ljung-Box Q(12): 7.895 (0.723) 
Degrees of freedom: 96 

pr =1.234 - 0.0ä6t +u1 

us-0.824u, -i= Er (0.058) (0.193) 
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Commodity: Tobacco 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -92.171, Ljung-Box Q(12): 11.081 (0.436) 
Degrees of freedom: 95 

pt=-0.713+0.0051+u1 (0.439) (0.008) 

ur -0.953u, -1= Et 
(0.041) (0.141) 

Commodity: Rubber 
Model: ARIMA(1,0,0) with constant and trend 
SBC = 36.437, Ljung-Box Q(12): 9.500 (0.576) 
Degrees of freedom: 96 

p, =1.986 - 0.028t +u1 (0.246) (0.004) 

us -0.796u1_1= E, (0.061) (0.274) 

Commodity: Timber 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -83.095, Ljung-Box Q(12): 8.208 (0.695) 
Degrees of freedom: 96 

pt=-1.006+0.01lt+ut (0.090) (0.002) 

u, -0.680ut-1= Ef (0.078) (0.150) 

Commodity: Copper 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -42.081 , Ljung-Box Q(12): 6.542 (0.835) 
Degrees of freedom: 96 

pt =0.243 -0 004t +u, 

ug-0.856u, _1= ei (0.052) (0.184) 

Commodity: Aluminium 
Model: ARIMA(1,0,1) with constant and trend 
SBC = -78.002, Ljung-Box Q(12): 2.760 (0.987) 
Degrees of freedom: 95 

ps=1.326-00ä9t+u, 

u1-0.650u1-1= e, + O. 472Er-1 
(0.090) (0.151) (0.107) 
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Commodity: Tin 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -39.073, Ljung-Box Q(12): 4.271 (0.961) 
Degrees of freedom: 96 

p1=-0.944+0.001t+u, (0.279) (0.005) 

u1-0.886u, -i= Er (0.050) (0.187) 

Commodity: Silver 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -41.772, Ljung-Box Q(12): 14.702 (0.197) 
Degrees of freedom: 96 

pl=-0 
2489+0000t+ur 

ur -0.884u, _1= at 
(0.046) (0.184) 

Commodity: Lead 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -47.206, Ljung-Box Q(12): 9.140 (0.609) 
Degrees of freedom: 96 

pl=-0.047-0.006t+ut (0.161) (0.003) 

ur -0.795u, -1= et (0.063) (0.180) 

Commodity: Zinc 
Model: ARIMA(1,0,1) with constant and trend 
SBC = -26.825, Ljung-Box Q(12): 6.370 (0.783) 
Degrees of freedom: 95 

pt=-0.009+0.00lt+u, (0.093) (0.002) 

u, -0.427= e+0.3 81 e, _ 1 (0.134) (0.196) (0.139) 
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Appendix III-iii. Estimation Results for Relative Primary 
Product Price Series in First Differences -minimum SBC 
specifications 

This appendix gives details of the estimation results for relative primary 

product price series. The price series are natural logarithms of the primary 

commodity price series shown relative to the Manufacturing Unit Value 

(MUV) index. Price series were modelled including a constant and allowing for 

a general ARMA specification for the error term, i. e. 

Apr=ß+v, 

and 

VI-0IVt-1-... -bpVt_p=Et-OlCI-1-... -Oq i-q 

where Apt is the relevant price series in first differences, 8 the coefficient on 

the constant (i. e. the drift term), q the coefficient on the relevant autoregressive 

error term (v, _, ), 0, the coefficient on the Ph moving average term (eh, ). The 

subscript t indicates time period t and t-i the it' lag. ARIMA models were 

estimated for all ARIMA(p, 1, q) specifications such that p+q<5 and the 

preferred model was identified by SBC. The estimation results were obtained 

using the ARIMA. SRC procedure in GAUSS, and are listed below. Ljung Box 

Q statistics for 12 autocorrelations are again reported with P-values in 

parentheses. (At a 5% significance level this would indicate autocorrelation for 

Wheat and Lamb, although this is not the case for the more highly 

parameterised difference stationary models presented below in Appendix IV. i 

for Chapter 4. ) 
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Commodity: Coffee 
Model: ARIMA(0,1,0) with constant 
SBC = 11.518, Ljung-Box Q(12): 11.933 (0.451) 
Degrees of freedom: 97 

Op, =0.002 +v1 (0.025) 
Vr = Er 

(0.252) 

Commodity: Cocoa 
Model: ARIMA(2,1,0) with constant 
SBC =12.852 , Ljung-Box Q(12): 3.927 (0.916) 
Degrees of freedom: 95 

Op, =-0.009+v, (0.020) 

v, -0.082v, _1 + 0.311vl 2= e, (0.097) (0.097) (0.244) 

Commodity: Tea 
Model: ARIMA(0,1,0) with constant 
SBC = -72.034, Ljung-Box Q(12): 17.578 (0.129) 
Degrees of freedom: 96 

Op, =-0.010+v, (0.017) 
yr= Er 

(0.164) 

Commodity: Rice 
Model: ARIMA(1,1,2) with constant 
SBC = -61.045, Ljung-Box Q(12): 8.037 (0.530) 
Degrees of freedom: 94 

Apt 0.012 +v, 

v, -0.551v, _1= E, - 0.3496, _1 - 0.54201_2 
(0.140) (0.164) (0.131) (0.093) 

Commodity: Wheat 
Model: ARIMA(0,1,2) with constant 
SBC = -71.394, Ljung-Box Q(12): 21.786 (0.016) 
Degrees of freedom: 95 

Apt=-00$0+v1 
yr = E, + O. 1 O2Et-1 - O. 5826t-2 

(0.158) (0.084) (0.085) 
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Commodity: Maize 
Model: ARIMA(0,1,2) with constant 
SBC = -21.473, Ljung-Box Q(12): 11.805 (0.298) 
Degrees of freedom: 95 

Opt=-0.010+vr 
(0.007) 

ve = St - 0.218Er_I - 0.441Er_2 
(0.205) (0.093) (0.093) 

Commodity: Sugar 
Model: ARIMA(0,1,2) with constant 
SBC = 68.118, Ljung-Box Q(12): 10.349 (0.410) 
Degrees of freedom: 95 

Opt=-0.012+v1 
(0.014) 

yr = e, - 0.148E, _1- 0.422Ct_2 
(0.324) (0.093) (0.093) 

Commodity: Beef 
Model: ARIMA(0,1,0) with constant 
SBC = -27.798, Ljung-Box Q(12): 10.553 (0.568) 
Degrees of freedom: 97 

Apt =0.008 +vt 
vi = Er 

(0.206) 

Commodity: Lamb 
Model: ARIMA(0,1,0) with constant 
SBC = -20.161 , Ljung-Box Q(12): 23.390 (0.025) 
Degrees of freedom: 97 

Op, =0.015 +v, 
Vi = Er 

(0.214) 

Commodity: Bananas 
Model: ARIMA(0,1,0) with constant 
SBC = -187.437, Ljung-Box Q(12): 10.778 (0.548) 
Degrees of freedom: 97 

Apr =0.000 +v, 

yr= e, 
(0.091) 

137 



Appendix Ill. iii 

Commodity: Palm Oil 
Model: ARIMA(2,1,0) with constant 
SBC = -12.793, Ljung-Box Q(12): 7.186 (0.618) 
Degrees of freedom: 95 

Opt=-0.007+vt 
(0.017) 

v, -0.052vt_l + 0.360vt_2= E1 (0.096) (0.096) (0.214) 

Commodity: Cotton 
Model: ARIMA(2,1,2) with constant 
SBC = -73.914, Ljung-Box Q(12): 9.176 (0.328) 
Degrees of freedom: 93 

Apt 0.008 +v, 
(0.010) 

vg -1.303vt_1 + 0.758vr_2= er -1.649e .+0.964e _2 (0.077) (0.076) (0.149) (0.061) (0.065) 

Commodity: Jute 
Model: ARIMA(0,1,2) with constant 
SBC = -12.668, Ljung-Box Q(12): 13.184 (0.214) 
Degrees of freedom: 95 

Opt=-0.008+v, 
(0.012 ) 

v1 = E, - 0.053Er_1 - 0.399Er-2 
(0.214) (0.095) (0.095) 

Commodity: Wool 
Model: ARIMA(0,1,2) with constant 
SBC = -40.754, Ljung-Box Q(12): 3.771 (0.957) 
Degrees of freedom: 95 

Op, =-0.014+vi (0.008) 
yr = Er - 0.172Et-t - 0.4208, -2 (0.186) (0.094) (0.094) 

Commodity: Tobacco 
Model: ARIMA(0,1,0) with constant 
SBC = -100.611 , Ljung-Box Q(12): 12.338 (0.419) 
Degrees of freedom: 96 

Opt =0.003 +v, 
Vi = Er 

(0.141) 
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Commodity: Rubber 
Model: ARIMA(0,1,0) with constant 
SBC = 37.095, Ljung-Box Q(12): 12.619 (0.397) 
Degrees of freedom: 97 

Opt=-0.030+vt (0.029) 

vt = Et 
(0.287) 

Commodity: Timber 
Model: ARIMA(0,1,0) with constant 
SBC = -75.495, Ljung-Box Q(12): 10.397 (0.581) 
Degrees of freedom: 97 

Apt=o. OO8+vt 
(0.016) 

Vt = Er 
(0.162) 

Commodity: Copper 
Model: ARIMA(0,1,0) with constant 
SBC = -44.589, Ljung-Box Q(12): 8.658 (0.732) 
Degrees of freedom: 97 

Apt =-0.009 +vt (0.019) 

vi = Et 
(0.189) 

Commodity: Aluminium 
Model: ARIMA(1,1,2) with constant 
SBC = -74.292, Ljung-Box Q(12): 2.965 (0.966) 
Degrees of freedom: 94 

Ap, =-0.019+vt (0.002) 

v, -0.679= es - 0.537er_1- 0.463sß_2 
(0.103) (0.152) (n. a. ) (n. a. ) 

Commodity: Tin 
Model: ARIMA(0,1,0) with constant 
SBC = -43.686, Ljung-Box Q(12): 5.395 (0.943) 
Degrees of freedom: 97 

Apr=-0.003+v, (0.019) 

Vi = E, 
(0.190) 

Appendix III. iii 
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Commodity: Silver 
Model: ARIMA(2,1,0) with constant 
SBC = -46.430, Ljung-Box Q(12): 8.089 (0.620) 
Degrees of freedom: 95 

Opt=-0.003+v, (0.014 ) 

vr -0.041vt_1 + 0.307v12= Er (0.098) (0.098) (0.181) 

Commodity: Lead 
Model: ARIMA(0,1,0) with constant 
SBC = -46.299, Ljung-Box Q(12): 13.818 (0.312) 
Degrees of freedom: 97 

Opt = -0.008 +vt (0.019) 
Vt = Et 

(0.188) 

Commodity: Zinc 
Model: ARIMA(1,1,2) with constant 
SBC = -22.495, Ljung-Box Q(12): 6.374 (0.702) 
Degrees of freedom: 94 

Opt =0.000 +vg 
(0.002) 

vr -0.478v, _1= e, - 0.639Er_1 - 0.361Er_2 
(0.138) (0.197) (n. a. ) (n. a. ) 

140 



Appendix Ill. iv 

Appendix Ill. iv. Estimation Results for Relative 
Primary Product Price Series in Levels -minimum SBC 
specifications including dummies 

This appendix gives details of the estimation results for relative primary 

product price series when outliers and structural breaks are taken into 

account. The price series are natural logarithms of the primary commodity 

price series shown relative to the Manufacturing Unit Value (MUV) index. 

Dummies were included for years with residuals beyond ± three standard 

deviations allowing for level shifts as well as single additive outliers. Price 

series were modelled for a constant and a linear trend allowing for a general 

ARMA specification for the error term, i. e. 

p, = a+ßt++a), IDt, 19x +W2lD2,19xx + """"+wlmDm, l9xx +W2mD2,19xx+Ut 

and: 

ut-q5lur-l-... -OPUtP=Et-B1El-1-... -OgCl_q 

where p, is the relevant price series, a the coefficient on the constant, ß the 

coefficient on the linear trend term, .; the coefficient on the relevant 

autoregressive error term (u, _, ), 0, the coefficient on the it' moving average 

term (&. r). cv/r is the coefficient on the m`h single outlier, with D1,19, ß taking a 

value of one in the relevant year 19xx and zero otherwise. w2,,, is the 

coefficient on the level shift dummy D219ix marking a structural break in the 

relevant year 19xx. The subscript t indicates time period t and t-i the i`'' lag. 

ARMA models were estimated for all ARIMA(p, O, q) specifications such 

that p+q55 and the preferred model was identified by SBC. The estimation 

results were obtained using the ARIMA. SRC procedure in GAUSS, and are 
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listed below. Ljung Box Q statistics for 12 autocorrelations are reported 

with P-values in parentheses. (As for the models without dummies possible 

autocorrelation is indicated for Cotton. ) 

Commodity: Coffee 
Model: ARIMA(1,0,0), with constant and trend 
SBC =14.027 , Ljung-Box Q(12): 7.296 (0.775) 
Degrees of freedom: 94 

p, 0.792 - 0.006t -'. 272 D1,1976 +0.916D2.1976 +u, 
(0.399) (0.007) (0.238) (0.326) 

ur -0.900ur-1= e, (0.045) (0.235) 

Commodity: Cocoa 
Model: ARIMA(1,0,1), with constant and trend 
SBC = 6.076, Ljung-Box Q(12): 9.383 (0.587) 
Degrees of freedom: 93 

p, 0.648 - 0.022t - 0.456 D1,1947 +1.403 D2., 1947 + u, (0.162) (0.005) (0.203) (0.261) 

u, -0.621u, _t= e, + 0.347E, _1 (0.101) (0.223) (0.123) 

Commodity: Tea 
Model: ARIMA(1,0,1), with constant and trend 
SBC = -79.279, Ljung-Box Q(12): 9.507 (0.485) 
Degrees of freedom: 92 

pr =0.153 -0.000t+ 0.152 D1,1985 -0.844 D2,1985 + u, (0.121) (0.002) (0.130) (0.171) 

u1-0.682u, _1= e, + 0.336E, _1 (0.091) (0.144) (0.120) 

Commodity: Rice 
Model: ARIMA(1,0,1), with constant and trend 
SBC = -59.409, Ljung-Box Q(12): 8.029 (0.626) 
Degrees of freedom: 93 

p, =0.915 - 0.021 t-0.391 D 1,1973 +0.900 D2,1973 + u1 (0.301) (0.006) (0.160) (0.261) 

u, -0.870ut_1= e+0.393ci_1 (0.054) (0.159) (0.101) 
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Commodity: Wheat 
Model: ARIMA(0,0,3), with constant and trend 
SBC = -66.547, Ljung-Box Q(12): 5.396 (0.798) 
Degrees of freedom: 92 

pt =0.767 - 0.01 Ot + 0.167 D 1,1973 -0.090 D2,1973 + ut (0.098) (0.002) (0.111) (0.145) 

u1= Eý + 1.024 Et-1 +0.552 Et-2 +0.375 E1-3 
(0.151) (0.098) (0.137) (0.101) 

Commodity: Maize 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -17.486, Ljung-Box Q(12): 15.963 (0.143) 
Degrees of freedom: 94 

p, =0.787 - 0.011t - 0.497 D1,1921 +0.027 D2,1921 + uý (0.153) (0.003) (0.192) (0.211) 

u, -0.732 ui-1= Er (0.073) (0.202) 

Commodity: Sugar 
Model: ARIMA(1,0,0) with constant and trend 
SBC = 59.824, Ljung-Box Q(12): 9.638 (0.563) 
Degrees of freedom: 90 

pý =0.867 - 0.016 t+0.597 D1,1963 +0.305 D2,1963 +0.670 D1,1974 
(0.183) (0.005) (0.269) (0.270) (0.279) 

+0.219 D2,1974 +0.908 D 1,198o -0.249 D2,1980 + u, (0.307) (0.271) (0.293) 

ur -0.650 ut_i = Cg (0.084) (0.278) 

Commodity: Beef 
Model: ARIMA(2,0,1), with constant and trend 
SBC = -58.291 , Ljung-Box Q(12): 5.036 (0.83 1) 
Degrees of freedom: 88 

p, 1.435 - 0.019 t+0.200 D1,1915 +0.461 D2,1915 +0.094 D1,1931 (0.081) (0.005) (0.129) (0.127) (0.133) 

+0.611 D2,1931-0.593 D1,1959 +1.729 D2,1959 + ur (0.144) (0.146) (0.182) 

u, -1.752 ug_1 +0.837 Ur-2 = E, -1.000 61_1 (0.078) (0.071) (0.145) (n. a. ) 
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Commodity: Lamb 
Model: ARIMA(1,0,4), with constant and trend 
SBC = -26.942, Ljung-Box Q(12): 4.151 (0.762) 
Degrees of freedom: 86 

p, 2.124 + 0.011 t-0.008 D1,1915 +0.785 D2,1915 +0.227 D1,1931 
(0.326) (0.007) (0.145) (0.222) (0.146) 

+0.244 D2,1931 -0.239 D1,1950 -0.260 D2,1950 + u1 (0.229) (0.154) (0.234) 

us-0.847u, -, = 8t + 0.185 Et_1-0.008 Er_2 +0.008 Er_3 +0.525 c (0.068) (0.165) (0.104) (0.109) (0.108) (0.108) 

Commodity: Bananas 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -181.839, Ljung-Box Q(12): 8.438 (0.674) 
Degrees of freedom: 96 

pt =0.207 - 0.001 t+ u1 (0.189) (0.003) 

u, -0.926 u, _1= E1 (0.037) (0.091) 

Commodity: Palm Oil 
Model: ARIMA(1,0,1) with constant and trend 
SBC = -25.496, Ljung-Box Q(12): 5.698 (0.840) 
Degrees of freedom: 93 

pt 
(0 

. 037977 
- 0(. 0006 t -0.047 D 1,1986 -0.698 D2,1986 + u, 

u1 -0.414 uf_1 = E, + 0.417 Er_t (0.138) (0.190) (0.139) 

Commodity: Cotton 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -67.885, Ljung-Box Q(12): 20.823 (0.035) 
Degrees of freedom: 96 

p, =0 647-0 0030t+u1 

u, -0.833 uß_1 = E, (0.057) (0.162) 

Commodity: Jute 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -20.694, Ljung-Box Q(12): 15.672 (0.154) 
Degrees of freedom: 94 

pt =0.230 + 0.000 t -0.032 D 1,1986 -0.949 D2,1986 + ut (0.161) (0.003) (0.191) (0.216) 

ut -0.760 ut-1 = et (0.067) (0.198) 
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Commodity: Wool 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -41.624, Ljung-Box Q(12): 5.916 (0.879) 
Degrees of freedom: 94 

pt =1.173 - 0.013 t+0.697 D1,1973 -0.241 D2,1973 + ur (0.181) (0.004) (0.175) (0.219) 

u1-0.807 UI-, = Et (0.063) (0.178) 

Commodity: Tobacco 
Model: ARIMA(3,0,2) with constant and trend 
SBC = -115.239, Ljung-Box Q(12): 4.208 (0.755) 
Degrees of freedom: 85 

pt =-0.727 - 0.003 t+0.053 D1,1920 +0.314 D2,1920 +0.093 D1,1960 
(0.341) (0.006) (0.104) (0.150) (0.102) 

+0.572 D2,1960 -0.003 D1,1996 -0.363 D2,1960 + ut (0.145) (0.107) (0.160) 

u1 -2.373 u, _1 +2.356 UI-2 -0.959 ut_3 = Et - 1.421 E1_1 +Et_2 (0.040) (0.052) (0.034) (0.102) (n. a. ) (n. a. ) 

Commodity: Rubber 
Model: ARIMA(2,0,1) with constant and trend 
SBC = 9.402, Ljung-Box Q(12): 9.721 (0.374) 
Degrees of freedom: 88 

pt =2.439 - 0.035 t+0.214 D1,1921-1.374 D2,1921 +0.214 D1,1925 
(0.057) (0.003) (0.208) (0.242) (0.192) 

+0.754 D2,1925 +0.004 D 1,195o +0.769 D2,1950 + ur (0.215) (0.179) (0.127) 

u, -1.674 u, -1 +0.791 UI-2 = Ei - E1-1 (0.064) (0.060) (0.204) (n. a. ) 

Commodity: Timber 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -88.961 , Ljung-Box Q(12): 10.407 (0.494) 
Degrees of freedom: 94 

p, =-0.993+0.011 t+0.434D1,1993 +0.036D2,1993 +Ut (0.098) (0.002) (0.139) (0.157) 

u, -0.720 us-1 = Er (0.075) (0.141) 
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Commodity: Copper 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -42.081 , Ljung-Box Q(12): 6.542 (0.835) 
Degrees of freedom: 96 

pt=0.243-0.004t+u1 (0.225) (0.004) 

u, -0.856 ur-t = Er (0.052) (0.184) 

Commodity: Aluminium 
Model: ARIMA(1,0,1) with constant and trend 
SBC = -76.272, Ljung-Box Q(12): 6.497 (0.772) 
Degrees of freedom: 93 

p, =1.050 - 0.026 t -0.303 D 1,1915 +0.848 D2,1915 + u1 (0.285) (0.005) (0.148) (0.239) 

ur -0.874 ut-I = ar + 0.367 e1_1 (0.054) (0.146) (0.105) 

Commodity: Tin 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -57.994, Ljung-Box Q(12): 8.810 (0.639) 
Degrees of freedom: 94 

p, _ -1.194 + 0.010 t+0.123 D I, 1986 -1.009 D2,1986 + u, (0.125) (0.002) (0.158) (0.173) 

u, -0.741= c, (0.069) (0.164) 

Commodity: Silver 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -46.721 , Ljung-Box Q(12): 13.712 (0.249) 
Degrees of freedom: 92 

pl =-0.744 + 0.003 t +O. 659 D, 1979-0.099 D2,1979 +0.108 D 1,19so (0.265) (0.006) (0.176) (0.252) (0.169) 

-0.147 D2,1980 + ut (0.232) 

ut -0.891 ut-1 = Et (0.052) (0.167) 

Commodity: Lead 
Model: ARIMA(2,0,0) with constant and trend 
SBC = 51.996, Ljung-Box Q(12): 4.087 (0.943) 
Degrees of freedom: 93 

pi =-0.187 - 0.001 t+0.699 D1.1979-0.517D2,1979 + ut 
(0.090) (0.002) (0.144) (0.136) 

u1-0.827 u, _1 + 231 ui-2 = 61 (0.102) (0.102) (0.166) 
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Commodity: Zinc 
Model: ARIMA(1,0,0) with constant and trend 
SBC = -13.208, Ljung-Box Q(12): 11.972 (0.366) 
Degrees of freedom: 92 

p, =0.069 - 0.004 t+0.128 D1,1915 +0.322 D2,1915 +0.026 D1,1973 
(0.127) (0.004) (0.192) (0.197) (0.193) 

+0.088 D2,1973 + ut (0.198) 

ut -0.664 ut_t = Et (0.078) (0.199) 
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Appendix Ill. v. Estimation Results for Relative Primary 
Product Price Series in First Differences -minimum 
SBC specifications including dummies. 

This appendix gives details of the estimation results for relative primary 

product price series. The price series are natural logarithms of the primary 

commodity price series shown relative to the Manufacturing Unit Value 

(MUV) index. Dummies were included for years with residuals beyond ± 

three standard deviations allowing for level shifts as well as single additive 

outliers. Price series were modelled including a constant and allowing for a 

general ARMA specification for the error term, i. e. 

Opt =ß+w11AD 1,19xx+(021AD2,19xx+""""+(0lmADm, l9xx+C02mAD2,19xx+Vi 

VI-Olvt-1-----OPV%P=E1-0181-1-... -89Ei-9 

where dp, is the relevant price series in first differences, 8 the coefficient on 

the constant (i. e. the drift term), ýi the coefficient on the relevant 

autoregressive error term (v, _, ), B, the coefficient on the Ph moving average 

term (s, _, ). cv, m is the coefficient on the first difference of the m`h single 

additive outlier. wem is the coefficient on the first difference in the level 

shift dummy D2,19, ß marking a structural break in the relevant year 19xx. 

The subscript t indicates time period t and t"i the i`h lag. ARIMA models 

were estimated for all ARIMA(p, 1, q) specifications such that p+q<5 and 

the preferred model was identified by SBC. The estimation results were 

obtained using the ARIMA. SRC procedure in GAUSS, and are listed 

148 



Appendix Ill. v 

below. Ljung Box Q statistics for 12 autocorrelations are reported with 

P-values in parentheses. (At the 5% significance level this now indicates 

possible autocorrelation for Wheat and Jute as well as Tobacco. ) 

Commodity: Coffee 
Model: ARIMA(0,1,0) with constant 
SBC = 7.772, Ljung-Box Q(12): 8.687 (0.729) 
Degrees of freedom: 95 

Apt=-0.010-0.412AD1,1976 +1.190AD2,1976+V1 
(0.024) (0.240) (0.341) 

vt = Et 
(0.238) 

Commodity: Cocoa 
Model: ARIMA(2,1,0) with constant 
SBC = 7.622, Ljung-Box Q(12): 7.704 (0.658) 
Degrees of freedom: 93 

Opt =-0.021 - 0.385 AD1,1947 +1.170 LD2,1947 + vt 
(0.019) (0.220) (0.325) 

v, -0.058 vi-1 +0.330 vt_2 = Et (0.098) (0.098) (0.229) 

Commodity: Tea 
Model: ARIMA(0,1,0) with constant 
SBC = -76.904, Ljung-Box Q(12): 16.098 (0.187) 
Degrees of freedom: 94 

Opt =-0.002 + 0.191 AD 1,1985 -0.754 \D2,1985 + VI (0.016) (0.155) (0.220) 
vt = Et 

(0.154) 

Commodity: Rice 
Model: ARIMA(1,1,1) with constant 
SBC = -64.595, Ljung-Box Q(12): 6.870 (0.738) 
Degrees of freedom: 93 

Opt =-0.021 - 0.485 äD1,1973 +1.117 iD2,1973 'f' vt (0.019) (0.154) (0.261) 

vi +0.547 vt_1= Et + 0.841 Et-1 (0.163) (0.159) (0.108) 
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Commodity: Wheat 
Model: ARIMA(0,1,2) with constant 
SBC = -69.333, Ljung-Box Q(12): 22.965 (0.011) 
Degrees of freedom: 93 

Apt =-0.015 - 0.108 ODI, 1973 +0.492 OD2,1973 +vt 
(0.011) (0.137) (0.223) 

Vi = e, + 0.153 es-i -0.479 Et-2 (0.155) (0.092) (0.092) 

Commodity: Maize 
Model: ARIMA(0,1,2) with constant 
SBC = -23.026, Ljung-Box Q(12): 15.672 (0.109) 
Degrees of freedom: 93 

Opt = -. 0.005 - 0.264 AD 1,1921 -0.365 LD2,1921 +v1 (0.009) (0.186) (0.215) 

v, = E, - 0.237 e_ 1-0.356 E1_2 
(0.196) (0.099) (0.100) 

Commodity: Sugar 
Model: ARIMA(0,1,2) with constant 
SBC = 59.473 , Ljung-Box Q(12): 8.033 (0.626) 
Degrees of freedom: 89 

tsp, 0.010 - 0.205 AD 1,1921 -0.744 OD2,1921 + 0.43 60D1,1963 
(0.017) (0.264) (0.386) (0.252) 

+0.220 AD2,1963 +0.585 AD 1,1974 +0.324 AD2,1974 + v1 
(0.364) (0.258) (0.383) 

v1= Et + 0.005 Et_1-0.447 C1_2 (0.278) (0.102) (0.103) 

Commodity: Beef 
Model: ARIMA(0,1,0) with constant 
SBC = -57.689, Ljung-Box Q(12): 10.451 (0.576) 
Degrees of freedom: 91 

Op, _-0.016 + 0.111 LD1,1915 +0.638 AD2,1915 +0.116 AD1,1931 (0.017) (0.160) (0.227) (0.160) 

+0.609 AD2,1931 -0.250 AD 1,1959 +1.091 AD2,1959 + VI 
(0.227) (0.160) (0.227) 

yr= a$ (0.159) 
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Commodity: Lamb 
Model: ARIMA(0,1,0) with constant 
SBC = -31.749, Ljung-Box Q(12): 13.031 (0.367) 
Degrees of freedom: 93 

Opt =0.003 + 0.178 OD1,1915 +0.624 AD2,1915 +0.081 L1D1,1931 
(0.019) (0.189) (0.269) (0.189) 

+0.633 A D2,1931 + V1 
(0.269) 

Vr = Er 
(0.188) 

Commodity: Bananas 
Model: ARIMA(0,1,0) with constant 
SBC = -187.437, Ljung-Box Q(12): 10.778 (0.548) 
Degrees of freedom: 97 

Op, =0.000 +v, 

yr= er (0.091) 

Commodity: Palm Oil 
Model: ARIMA(1,1,2) with constant 
SBC = -20.492, Ljung-Box Q(12): 6.644 (0.674) 
Degrees of freedom: 92 

Apt 0.005 - 0.008 AD 1,1986 -0.782 OD2,1986 + yr 
(0.002) (0.199) (0.291) 

v1-0.510 vr_1= at -0.625_ i -0.375 E(_2 (0.147) (0.192) (n. a. ) (n. a. ) 

Commodity: Cotton 
Model: ARIMA(2,1,2) with constant 
SBC = -73.914, Ljung-Box Q(12): 9.176 (0.328) 
Degrees of freedom: 93 

Op, =-0008+v, 
v, -1.303 v, _1 +0.758 v, _2 = E, - 1.649 et-1 +0.964 e1_2 (0.077) (0.076) (0.149) (0.061) (0.065) 

Commodity: Jute 
Model: ARIMA(0,1,0) with constant 
SBC = -17.824, Ljung-Box Q(12): 21.972 (0.038) 
Degrees of freedom: 95 

Op, 0.000 - 0.085 AD 1,1986 -0.849 týD2,1986 + vt (0.021) (0.210) (0.299) 
Vi = E1 

(0.209) 
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Commodity: Wool 
Model: ARIMA(0,1,0) with constant 
SBC = -43.814, Ljung-Box Q(12): 10.315 (0.588) 
Degrees of freedom: 95 

Opi =-0.015 +0.518 LD1,1973 +0.110 AD2,1973 +Vl 
(0.019) (0.184) (0.262) 

v1 = 91 
(0.183) 

Commodity: Tobacco 
Model: ARIMA(0,1,0) with constant 
SBC = -120.842, Ljung-Box Q(12): 28.186 (0.005) 
Degrees of freedom: 92 

Apt =0.000 + 0.122 OD1,1960 +0.568 OD2,1960 
(0.012) (0.119) (0.169) 

-0.054 OD 1,1996 -0.315 AD2,1996 + VI 
(0.119) (0.169) 

Vi = Et 
(0.118) 

Commodity: Rubber 
Model: ARIMA(0,1,0) with constant 
SBC = 23.822, Ljung-Box Q(12): 15.660 (0.207) 
Degrees of freedom: 93 

Op, 0.051 + 0.281 AD1,1925 +0.776 OD2,1925 -0.244 OD1,195o (0.026) (0.251) (0.357) (0.251) 

+1.239 AD2,1950 + VI (0.357) 

Vi = Er 
(0.249) 

Commodity: Timber 
Model: ARIMA(0,1,0) with constant 
SBC = -85.915, Ljung-Box Q(12): 11.695 (0.470) 
Degrees of freedom: 95 

Opt =0.005 + 0.277 LD1,1993 +0.342 AD2,1993 + Vg (0.015) (0.149) (0.211) 
Vi = Et 

(0.148) 
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Commodity: Copper 
Model: ARIMA(0,1,0) with constant 
SBC = -46.908, Ljung-Box Q(12): 14.206 (0.288) 
Degrees of freedom: 95 

Apt _-0004-0 i 15ED1,1975-04586OD2,1975+yr 

yr= It 
(0.180) 

Commodity: Aluminium 
Model: ARIMA(0,1,1) with constant 
SBC = -81.302, Ljung-Box Q(12): 6.385 (0.846) 
Degrees of freedom: 94 

Apt =-0 02300-0 0.4 97 0D1,1915 +1.101 QD2,1915 +V 

v, = Er + 0.309 e1_1 
(0.149) (0.100) 

Commodity: Tin 
Model: ARIMA(0,1,0) with constant 
SBC = -53.899, Ljung-Box Q(12): 9.804 (0.633) 
Degrees of freedom: 95 

Apr =0 005 +0 020 AD 1,1986 -0 8497 AD2,, 986 + Vi 

Vt = Et 
(0.174) 

Commodity: Silver 
Model: ARIMA(0,1,0) with constant 
SBC = -57.199, Ljung-Box Q(12): 18.105 (0.113) 
Degrees of freedom: 95 

Opt 0.015 - 0.543 AD 1,1979 +1.153 AD2,1979 + VI 
(0.017) (0.172) (0.245) 

Vi = E1 
(0.171) 

Commodity: Lead 
Model: ARIMA(0,1,0) with constant 
SBC = -46.299, Ljung-Box Q(12): 13.818 (0.312) 
Degrees of freedom: 97 

tpt=-0008+v, 
vt = Et 

(0.188) 
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Commodity: Zinc 
Model: ARIMA(1,1,2) with constant 
SBC = -10.568, Ljung-Box Q(12): 5.923 (0.748) 
Degrees of freedom: 90 

Opt =-0.008 + 0.005 &D1,1915 +0.356 AD2,1915 
(0.004) (0.169) (0.175) 

-0.089 AD1.1973 +0.3 84 AD2,1973 + VI (0.181) (0.216) 

v, -0.538 vi-1= Et - 0.709 El_I -0.291 E: _2 (0.154) (0.195) (n. a. ) 
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Appendix IlI. vi Normality Tests for Residuals from 
ARIMA Estimates of Relative Primary Commodity 
Prices with and without Dummy Variables. 

To assess whether the residuals obtained from the ARIMA estimates 

reported in the main text are normally distributed, Bowman Shelton 

normality tests were conducted for the residuals from the selected ARIMA 

models in levels and first differences, before and after outliers have been 

accounted for. Following Newbold (1995), the Bowman- Shelton test 

Statistic is defined as follows: 

B n[(Skewness)2 + 
(Kurtosis-3)2 

=6 24 

and Skewness is defined as: 
n 

Skewness = ``' S3 

and for Kurtosis: 

n 

, 
(X, -X-)4/n 

Kurtosis = rl 
S4 

where B is the Bowman-Shelton test statistic, n the number of observations, 

x; the ith observation for variable x and x is the average value of variable x. 
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The test results obtained for ARIMA models without dummies are given in 

table III. vi. i below. 

Table Ill. vi. i. Bowman-Shelton Test Statistics for (no dummies) 

Commodity Normality test for 
model in levels 

Normality test for 
model in first 

differences 
Coffee 2.784 5.9691 
Cocoa 8.0391 10.938! 
Tea 9.9881 12.5811 
Rice 13.9911 7.054' 
Wheat 10.3501 12.272' 
Maize 16.0321 15.5601 
Sugar 91.814! 38.743' 
Beef 69.8571 88.9801 
Lamb 65.033! 53.623' 
Banana 0.033 0.014 
Palm Oil 3.559 17.5631 
Cotton 0.033 0.268 
Jute 15.0761 2.270 
Wool 4.622' 4.9291 
Tobacco 166.304' 125.0401 
Rubber 21.056! 29.884' 
Timber 26.292" 15.431 ! 
Copper 0.458 1.651 
Aluminium 45.254' 39.851' 
Tin 31.543' 39.2981 
Silver 44.813' 8.9901 
Lead 0.350 0.044 
Zinc 156.732' 100.771' 

Values of the Bowman-Shelton test statistic indicating non-normality are indicated by ! 

Given a five percent critical value of 4.29 for the rejection for the null 

hypothesis of normality, the residuals of 17 of the 23 commodities covered 

in the estimates in levels appear to be distributed non-normally. For the 

estimates in first differences, a total of 18 residual series are shown to be 

non-normally distributed. 
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If outliers are accounted for, a larger number of ARIMA models seem to 

have normally distributed residuals. The Bowman-Shelton test results for 

residuals from ARIMA models with dummies are summarised below in 

table Ill-vi-ii. 

Table III. vi. ii Bowman-Shelton Test Statistics (including dummies) 

Commodity Normality test for 
model in levels 

Normality test for 
model in first 

differences 
Coffee 0.295 3.820 
Cocoa 0.752 1.594 
Tea 1.969 14.471 
Rice 7.361' 4.271 
Wheat 2.472 1.424 
Maize 5.6451 6.771' 
Sum 9.158' 4.153 
Beef 2.152 14.505' 
Lamb 15.120" 29.9161 
Banana 0.033 0.014 
Palm Oil 6.115' 1.935 
Cotton 0.033 0.268 
Jute 2.611 2.251 
Wool 0.171 2.808 
T_L____ 1 '240 .7 -- ^, %I 
IUUaGt+V ". �vv I. JVL 

Rubber 0.175 3.867 
Timber 2.981 1.391 
Copper 0.458 1.982 
Aluminium 9.801' 14.639" 
Tin 3.682 4.6201 
Silver 37.2401 17.565' 
Lead 2.837 0.044 
Zinc 107.4331 70.141 s 

Values of the Bowman-Shelton test statistic indicating non-normality are indicated by 1 

It can be seen from table III. vi. ii. that when outliers are accounted for, only 

eight of the 23 residual series are shown to be non-normally distributed for 

ARIMA estimates in levels. For residuals from estimates in first 

differences, the distributions appear to be non-normal at the 5 percent 

significance level in nine cases. 
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Appendix III. vii Confidence Intervals for Coefficient 
Estimates 

This Appendix lists 90% and 95% confidence intervals for the coefficient 

estimates reported in the main text for the models with and without dummy 

variables. Table III. vii. i. provides the confidence intervals, assuming that the 

asymptotic properties of the estimator hold and the 90% confidence interval is 

comprised between ±1.65 standard deviations around the sample mean. As in the 

main Chapter, the values of the interval limits are multiplied by 100. 

Table IIl. vii. i. 90% Confidence Intervals for Coefficient Estimates. 

Commodity Trend 
(Levels) 

(No Dummies) 

Drift 
(First 

Differences) 
(No Dummies) 

Trend 
(Levels) 

(Incl. Dummies) 

Drift 
(First 

Differences) 
Incl. Dummies 

Coffee [-0.198,1.060] [-3.964,4.436] [-1.806,0.653] [-4.993,3.036] 
Cocoa [-1.226,0.608] [-4.247,2.404] [-2.953, -1.425] [-5.199,0.936] 
Teat [-1.398, -0.091] [-3.699,1.791] [-0.431,0.346] [-2.785,2.431] 
Rice [-1.460, -0.759] [-1.985, -0.377] [-3.043, -1.143] [-5.306,1.034] 
Wheat [-1.303, -0.798] [-2.374,0.420] [-1.321, -0.579] [-3.263,0.327] 

Maize [-1.415, -0.614] [-2.173,0.225] [-1.587, -0.520] [-1.960,0.864] 
Sugar [-1.496, -0.639] [-3.589,1.160] [-2.354, -0.772] [-3.908,1.867] 
Beef [0.381,2.331] [-2.630,4.243] [-2.718, -0.995] [-4.312,1.153] 
Lamb [1.236,2.418] [-2.025,5.121] [-0.035,2.322] [-2.933,3.464] 
Banana [-0.621,0.406] [-1.482,1.562] [-0.621,0.406] [-1.482,1.562] 
Palm Oil [-1.430, -0.641] [-3.455,2.029] [-0.875, -0.245] [-0.845, -0.118] 
Cotton [-1.472, -0.496] [-2.479,0.908] [-1.472, -0.496] [-2.479,0.908] 
Jute [-1.429,0.037] [-2.786,1.186] [-0.462,0.553] [-3.567,3.478] 
Wool [-2.128, -1.013] [-2.743, -0.157] [-1.952, -0.679] [-4.630,1.541] 
Tobaccot [-0.878,1.816] [-2.097,2.641] [-1.327,0.722] [-2.016,2.037] 

Rubber [-3.530, -2.145] [-7.805,1.765] [-3.953, -3.012] [-9.322, -0.829] 
Timber [0.881,1.394] [-1.890,3.499] [0.799,1.386] [-2.033,2.945] 
Copper [-1.047,0.211] [-4.092,2.217] [-1.047,0.211] [-3.468,2.606] 
Aluminium [-2.214, -1.528] [-2.315, -1.517] [-3.424, -1.791] [-6.248,0.268] 
Tin [-0.689,0.882] [-3.499,2.839] [0.575,1.368] [-2.427,3.434] 
Silver [-0.717,0.762] [-2.718,2.056] [-0.659,1.172] [-4.373,1.390] 
Lead [-1.054, -0.142] [-3.911,2.343] [-0.403,0.234] [-3.911,2.343] 
Zinc [-0.206,0.324] [-0.291,0.364] [-1.117,0.2991 [-1.532, -0.165] 
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Aside from the somewhat narrower interval width -which is to be expected in this 

case- most confidence intervals on the trend or drift coefficients imply the same 

conclusions on statistical significance as were reported in the main text for t-tests 

with nominal 5% critical values. There are two exceptions to this, however. The 

trend coefficient for Tea, when modelling the series without accounting for 

structural breaks, is identified as negative with 90% confidence. Likewise, the drift 

coefficient for Wool, again modelling the price series without accounting for 

outliers or structural breaks, would be shown to be negative if inferences were 

based on 10% critical values or 90% confidence intervals, while the coefficient 

sign would be indeterminate for the 95% confidence interval reported in the main 

text. 

One could argue that given the degrees of freedom observed for the regression 

models obtained through use of the SBC it would be more appropriate to use 

critical values of ±1.99 for two tailed tests with a 5% rejection region and ±1.66 

for two tailed tests with a 10% rejection region. This would of course have 

repercussions on the exact limits of the confidence intervals obtained. The 95% 

confidence intervals for the estimated trend and drift coefficients would in this case 

be given by the intervals in the table below: 
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Table III. vii. ii. 95% Confidence Intervals for Coefficient Estimates (exact 
interval width). 

Commodity Trend 
(Levels) 

(No Dummies) 

Drift 
(First 

Differences) 
(No Dummies) 

Trend 
(Levels) 

(Incl. Dummies) 

Drift 
(First 

Differences) 
Incl. Dummies 

Coffee [-0.328,1.190] [-4.829,5.301] [-2.060,0.907] [-5.820,3.863] 

Cocoa [-1.415,0.797] [-4.933,3.089] [-3.111, -1.2671 [-5.831,1.568] 

Teat [-1.532,0.044] [-4.265,2.357] [-0.511,0.426] [-3.323,2.968] 

Rice [-1.532, -0.687] [-2.151, -0.211] [-3.238, -0.947] [-5.959,1.688] 

Wheat [-1.355, -0.746] [-2.662,0.708] [-1.398, -0.503] [-3.633,0.697] 

Maize [-1.498, -0.532] [-2.420,0.472] [-1.697, -0.410] [-2.251,1.155] 

Sugar [-1.585, -0.550] [-4.078,1.649] [-2.517, -0.609] [-4.502,2.462] 

Beef [0.180,2.531] [-3.338,4.951] [-2.896, -0.817] [-4.875,1.716] 

Lamb [1.114,2.540] [-2.761,5.857] [-0.278,2.565] [-3.592,4.123] 
Banana [-0.727,0.512] [-1.796,1.875] [-0.727,0.512] [-1.796,1.875] 

Palm Oil [-1.511, -0.560] [-4.020,2.594] [-0.940, -0.180] [-0.919, -0.043] 
Cotton [-1.572, -0.395] [-2.828,1.257] [-1.572, -0.3951 [-2.828.1.257] 

Jute [-1.580,0.188] [-3.195,1.596] [-0.567,0.6571 [-4.293,4.204] 

Wool [-2.242, -0.899] [-3.009,0.110] [-2.084, -0.548] [-5.266,2.176] 
Tobaccot [-1.156,2.094] [-2.586,3.130] [-1.538,0.933] [-2.433,2.455] 
Rubber [-3.672, -2.003] [-8.791,2.7511 [4.050, -2.9141 [-10.197,0.046] 
Timber [0.828,1.447] [-2.445,4.054] [0.738,1.447] [-2.546,3.458] 
Copper [-1.177,0.340] [-4.742,2.867] [-1.177,0.340] [-4.094,3.231] 
Aluminium [-2.285, -1.457] [-2.397, -1.435] [-3.592, -1.623] [-6.919,0.939] 
Tin [-0.851,1.043] [-4.152,3.492] [0.494,1.449] [-3.031,4.038] 
Silver [-0.870,0.914] [-3.210,2.548] [-0.847,1.361] [-4.967,1.984] 

Lead [-1.148, -0.049] [-4.555,2.987] [-0.468,0.299] [-4.555,2.987] 

Zinc [-0.260,0.379] [-0.358,0.431] [-1.263,0.445] [-1.673, -0.024] 
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The corresponding 90% confidence intervals would be: 

Table III. vii. iii. 90% Confidence Intervals for Coefficient Estimates (exact 

interval width). 

Commodity Trend 
(Levels) 

(No Dummies) 

Drift 
(First 

Differences) 
(No Dummies) 

Trend 
(Levels) 

(Incl. Dummies) 

Drift 
(First 

Differences) 
Incl. Dummies 

Coffee [-0.202,1.064] [-3.989,4.461] [-1.814,0.661] [-5.017,3.060] 

Cocoa [-1.231,0.614] [-4.267,2.424] [-2.958, -1.420] [-5.217,0.955] 

Teat [-1.401, -0.087] [-3.716,1.808] [-0.434,0.348] [-2.801,2.447] 

Rice [-1.462, -0.757] [-1.990, -0.372] [-3.048, -1.137] [-5.325,1.054] 

Wheat [-1.305, -0.797] [-2.383,0.428] [-1.324, -0.577] [-3.274,0.338] 

Maize [-1.418, -0.612] [-2.181,0.232] [-1.597, -0.517] [-1.968,0.872] 

Sugar [-1.499, -0.636] [-3.603,1.174] [-2.359, -0.767] [-3.925,1.884] 

Beef [0.375,2.337] [-2.651,4.264] [-2.724, -0.989] [-4.328,1.169] 

Lamb [1.233,2.422] [-2.047,5.142] [-0.042,2.329] [-2.952,3.483] 

Banana [-0.624,0.409] [-1.491,1.571] [-0.624,0.409] [-1.491,1.571] 
Palm Oil [-1.432, -0.639] [-3.472,2.045] [-0.877, -0.243] [-0.847, -0.116] 
Cotton [-1.475, -0.493] [-2.489,0.918] [-1.475,0.493] T[-2.489,0.9181 

Jute L-1.433, u. V4LJ L-h. IYÖ, i. 11CJ 1-U. 463, U. 5561 [-3.589,3. SUUl 

Wool [-2.131, -1.0101 [-2.751, -0.1491 [-1.956, -0.675] [-4.649,1.559] 
Tobaccot [-0.887,1.824] [-2.112,2.656] [-1.333,0.728] [-2.028,2.037] 
Rubber [-3.534, -2.1411 [-7.834,1.794] [-3.956, -3.009] [-9.348, -0.803] 
Timber [0.879,1.395] [-1.906,3.515] [0.797,1.388] [-2.048,2.960] 

Copper [-1.051,0.214] [-4.111,2.2361 [-1.051,0.214] [-3.487,2.6241 
Aluminium [-2.216, -1.526] [-2.317, -1.5151 [-3.429, -1.787] [-6.267,0.287] 
Tin [-0.694,0.886] [-3.518,2.858] [0.573,1.370] [-2.445,3.452] 
Silver [-0.722,0.766] [-2.732,2.071] [-0.664,1.178] [-4.391,1.407] 

Lead [-1.057, -0.140] [-3.930,2.362] [-0.405,0.235] [-3.930,2.362] 
Zinc [-0.207,0.326] [-0.293,0.366] [-1.121,0.304] [-1.536, -0.161] 

Again there are generally no differences aside from the predictably somewhat 

larger interval width. The only exception here is the confidence interval for the 

drift coefficient of Rubber prices when the price series is modelled as difference 

stationary including dummy variables for structural breaks and outliers. This 

confidence interval now includes zero implying that the coefficient estimate should 

be regarded as statistically insignificant if a conventional t-test is applied. It is 
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worth noting though that the confidence interval was rather wide under the 

assumption that the asymptotic properties hold and that the upper limits of the 90% 

and 95% confidence intervals were close to zero in any case. Against this 

background, and considering the fact that this was the only case were conclusions 

on the significance of the coefficient estimate were affected, no problems are 

expected if asymptotic critical values are used for t-tests at this point and in 

subsequent chapters. 
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Chapter 4 

Chapter 4: Further Attempts at Assessing the 
Significance of Trend Coefficient Estimates 

As pointed out in chapter 3, it is generally the case that the estimates for trend and 

drift coefficients' for the commodity price series reported above are reasonably 

similar, while the differences in the absolute values of the corresponding t-ratios 

are noticeably larger. In the present chapter, those series for which significant trend 

coefficients were obtained under the trend stationary specification while the 

corresponding estimate for the drift coefficient in the difference stationary model 

turned out to be insignificant are further investigated. In addition, different general 

approaches towards model specification and trend testing are undertaken for all the 

commodities covered. As a first step in this investigation the model specifications 

selected previously under the Schwarz-Bayesian criterion (SBC) were used to 

generate simulated data series to which the competing models in levels and first 

differences were fitted subsequently. This was done in all those cases where 

conclusions about the presence of a trend depended on assumptions about the order 

of integration of the series. 

1 It should be recalled that, where reference is made to a drift term in contrast to a trend coefficient, 
the term trend coefficient is used to refer to the estimated magnitude for a secular trend obtained 
from a trend stationary model, while the term drift coefficient is used in reference to the estimated 
magnitude of the average change of a series obtained from a difference stationary model. 
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4.1. Simulated Data Series for Selected Commodities 

4.1.1. Simulation Methodology 

The simulated series were compiled using a 32-bit pseudo random number 

generator to generate a series of random numbers with a standard normal 

distribution2. The generated random numbers were then placed in a rxl column 

vector, where r is the number of rows, and were subsequently multiplied by the 

standard error of the residuals of the generating model, to obtain a vector of 

simulated residuals e. In the case of the trend stationary models the residual 

variances were computed from the residuals from the original fitted model reported 

in chapter 3. The residual variance was obtained as usual under the formula: 

n 
Ej 

[4.1.1 ] Q2 = DF 

where a2 is the estimated residual variance, ej the residual value corresponding to 

observation "t", n the sample size and DF are the degrees of freedom in the 

original fitted model. The standard error of the residuals can then be obtained by 

simply computing: 

[4.1.2] Q= QZ 

In the case of a generating model in first differences the original model identified 

under the SBC was re-estimated without the drift term3 and the standard error of 

the residual was thus obtained, again using [4.1.1] and [4.1.2]. Data series from a 

2 More precisely, the random numbers were generated using the rndn command in GAUSS. 
3 Obviously, where the model without drift would have been a pure random walk re-estimation 
without a drift term is not possible. On the other hand there are then also no coefficients which 
could be affected in the pure random walk series. 
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difference stationary data generating process were then constructed under the null 

hypothesis, Le. without a drift term. 

The simulated data series were generated using the same model specification from 

which the standard error of the residual had been obtained. The ARIMA (p, d, q) 

process was modelled by using the vector of simulated residuals e and the 

estimates for the 4, ... 4p and 61 ... 9q coefficients obtained by fitting the ARIMA 

(p, d, q) model, selected by SBC, to the original data series (details of the estimates 

are reported in appendices III. ii to III. iii). Where the selected model specified a 

residual process containing an autoregressive or moving average component, the 

residual vector was set to 200x1 with the first p values for u, _P set equal to zero. 

Since, by the high number of rows in the vector, a hundred random values are 

placed before the simulated data series itself, it can then be expected that the 

simulated series would follow a genuine ARMA pattern by the time the 100`' value 

has been reached. Thus, the simulated series for the trend stationary models are 

based on: 

[4.1.3] pt=a+ßt+ug, 

with 

[4.1.4] Ui=q5iur-i+t2Ui-2+... +qSpUt-p-B1Er-1-O2 2-... -Ogeg_q+c, 

where e =e[1,1 + b], e is the vector of simulated residuals, b=0 if there were no 

autoregressive or moving average components in the residual process (i. e. p=q=0) 

and b=100 if autoregressive or moving average components were present. An 

analogous procedure was employed where models were given for series in first 

differences, compiling the simulated series as: 

165 



Chapter 4 

[4.1.5] A =pr-1 +yr 

where the c, is specified as above, v, follows an ARMA(p, q) process analogous to 

[4.1.4] above and p, is the first value in the original data series, so that: 

[4.1.6] P2 =pi +v2 

for the simulation of an I(1) series without drift. 

4.1.2. Fitting ARIMA Models to the Generated Data Series. 

Having constructed data series according to equations [4.1.3] and [4.1.5], both 

trend stationary and difference stationary models, were fitted to either series. In any 

of these cases the construction of simulated data series and subsequent model 

estimations were repeated 10,000 times. For those commodities where the inferred 

significance of the trend or drift coefficient estimate depends on stationarity 

assumptions as identified in chapter 3, models in levels and first differences were 

then fitted to the trend stationary data series generated by [4.1.3]. Table 4.1.1 

below reports rejection probabilities for the null hypothesis that the trend or drift 

coefficient ß is equal to zero as measured by the relative frequency of the 

rejections obtained among the 10,000 replications. In testing for the significance of 

the asymptotic 5% critical value for a two tailed test takes a value of ±1.96. 

Columns two and four give the rejection rates for the relevant commodity and 

model, while columns three and five specify the model for which the rejection rate 

has been given in the preceding column. 
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Table 4.1.1: Probability of rejecting the null hypothesis of Ho: ß=O for 

simulated data series, generated from a tren d stationary mode l. 
Commodity Proportion of 

Rejections 
ARIMA 
(p, O, q)* 

Proportion of 
Rejections 

ARIMA 
(p, l, q)* 

Beef 0.790 1,0,0 0.000 0,1,0 
Cotton 0.938 1,0,0 0.346 2,1,2 
Lamb 0.998 5,0,0 0.000 0,1,0 
Lead 0.668 1,0,0 0.000 0,1,0 
Maize 0.987 1,0,0 0.116 0,1,2 
Palm Oil 0.990 1,0,1 0.000 2,1,0 
Rubber 1.000 1,0,0 0.000 0,1,0 
Sugar 0.983 1,0,1 0.512 0,1,2 
Timber 1.000 1,0,0 0.000 0,1,0 
Wheat 1.000 0,0,3 0.724 0,1,2 
Wool 0.996 1,0,0 0.061 0,1,2 

n Number of autoregressive 1aas. a: num ber of moving- average terms- ß: trend coefficient. 
* Fitted model 

It should not come as a surprise that there is a high proportion of rejections of Ho 

for the fitted trend stationary models since the data series are trend stationary and ß 

is non zero by construction. What is surprising, however, are the results obtained 

under difference stationary model specifications. Only Sugar and Wheat have high 

rejection rates for the null hypothesis while Cotton, Maize and Wool have rejection 

rates notably in excess of zero but well below the high rejection rates obtained 

under the trend stationary model specification. For six of the 11 commodities, 

however, the proportion of rejections takes a value of 0.000. Generalising 

somewhat, this phenomenon seems to be particularly frequent when the trend 

stationary model is ARIMA(1,0,0) and the difference stationary model 

ARIMA(0,1,0). In those cases, in the present sample, where the percentage of 

rejections in difference stationary models is noticeably in excess of zero, by 

contrast, it appears that the error process contains a second order moving average 

component. 
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The relationship between the precise model parameterisation and the rejection rates 

obtained has, of course, not been investigated systematically and comprehensively 

here. Any generalisation should therefore be treated with caution. The particular 

issue of ARIMA (1,0,0) vs. ARIMA (0,1,0) model specifications is, however, 

treated in more detail below. 

Table 4.1.2 reports the corresponding results for the models fitted to the data series 

generated from the difference stationary model as in [4.1.5]. Again the proportion 

of cases where Ho: ß=O has been rejected is reported in columns two and four, 

while columns three and five contain the ARIMA(p, d, q) model specifications. The 

last row of table 4.1.2 reports average rejection rates for those four commodities 

(Beef, Lead, Rubber and Timber) for which the fitted trend stationary models took 

an ARIMA (1,0,0) specification, while the fitted difference stationary models were 

ARIMA (0,1,0). Not surprisingly, the rejection rates for the ARIMA(0,1,0) models 

for the four commodity price series in question are rather similar and this is also 

the case for the rejection rates corresponding to the ARIMA(1,0,0) models fitted to 

data generated by a pure random walk. 
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Table 4.1.2: Probability of rejecting the null hypothesis of Ho: ß=O 
for simulated data series, generated from a difference stationary 
model without drift. 

Commodity Proportion of 
Rejections 

ARIMA 
(p, d, q)* 

Proportion of 
Rejections 

ARIMA 
(p, d, q)* 

Cotton 0.146 2,1,2 0.637 1,0,0 
Lamb 0.051 0,1,0 0.552 5,0,0 
Maize 0.178 0,1,2 0.634 1,0,0 
Palm 011 0.036 2,1,0 0.633 1,0,1 
Sugar 0.156 0,1,2 0.659 1,0,1 
Wheat 0.136 0,1,2 0.769 0,0,3 
Wool 0.145 0,1,2 0.620 1,0,0 
BeeflLead/ 
Rubber/Timber 

0.055 0,1,0 0.531 1,0,0 

p: Number of autoregressive lags, q: number of moving average terms, 9: trend coefficient. 
* Fitted model. 

For random walk plus drift models, the rejection rates are close to 0.05, or 5%. The 

rejection probability for the ARIMA(2,1,0) model in the case of Palm Oil is even 

lower, taking a value of 0.036. For ARMA(0,1,2) models as well as in the case of 

the ARIMA(2,1,2) model for Cotton, rejection probabilities are noticeably higher 

with values of between 0.14 and 0.18. The rejection probabilities observed for 

ARIMA(0,1,0) models are what one should expect for a data series where x'8-0 by 

construction, so long as the residuals are normally distributed. The rejection rates 

in the case of those models containing an MA(2) component are above what 

should be expected given the nominal 5% probability implied by the critical value. 

One should also note the fact that the null hypothesis is rejected in a markedly 

larger proportion of cases if a trend stationary model is fitted to the data series. 

Where the data generating process (DGP) is a pure random walk, the fitted trend 

stationary models reject Ho: ß=0 for about 50% of the simulated series, in spite of 

the fact that the generating model is known not to contain a drift term. Rejection 
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probabilities appear to be higher where the DGP has higher parameterisations even 

if an ARIMA(1,0,0) model is fitted in levels. 

Concerning the results in table 4.1.2., it is well known that spurious rejections of 

the null hypothesis occur if a trend stationary model is fitted to a data series that is 

integrated of order one (cf. Newbold and Granger (1974)). More generally, the case 

where the generating process is a pure random walk, i. e. 

[4.1.7] A'` - e` 

pr =Pr-t +Et 

can be considered a special case of the form: 

[4.1.8] pr = npr-t + 8,, 

where i takes a value of one. To supplement the well documented case of spurious 

rejections when rrl, further simulations were conducted here, to establish whether 

similar results are obtained if the true value of r) lies within the range of 

0.7 5 t7: 5 0.99. Simulated data series were obtained by generating a series of 100 

normally distributed random numbers with unit variance, according to equation 

[4.1.8] and allowing for coefficient values of ; 7=0.7,0.75,0.8,0.85,0.9,0.95 and 

0.99. For each of the generated series, the first value was defined as: 

J1 -n2 

The trend stationary model 

a+ ßt + u,, with 

ur - our-1 = Er 
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was then fitted subsequently to the simulated series. After 10,000 replications, the 

percentage of times that Ho : ß=O was rejected at the nominal 5% level was obtained 

for each of the coefficient values used for il in the generating equation. The 

corresponding empirical 5% critical values for the t-ratio of the trend coefficient 

were obtained by ranking the observed t-ratios by numerical value, and then 

retaining the t-ratios corresponding to the top and bottom 2.5% of the vector. (The 

critical values are represented by the lowest and highest number in these 2.5% 

sequences if the t-ratios are sorted separately in ascending order. ) The simulation 

results are summarised below in table 4.1.3 with rejection rates in the first row and 

critical values for the t-ratios in the second row. (Given the fact that the residuals 

used in the simulation are symmetrically distributed by construction, the absolute 

values of the upper and lower critical value were averaged to obtain the values 

reported in table 4.1.3. ) 

Table 4.1.3: Rejection probabilities for the null hypothesis of Ho: ß=O in an 
AR(1) model fitted to simuiateu uata se ries generatea from t= t_I+Et 
r- 'n 1 0.7 0.75 0.8 0.85 0.9 0.95 0.99 

Rejection 0.103 0.114 0.127 
Rate 

0.148 0.189 0.280 0.457 

Critical 2.46 2.50 2.65 
Value 

2.87 3.29 4.29 6.89 

ii : Autoregressive coefficient, p,, p, _, dependent and lagged dependent variable, Er: error term, 
ß: trend coefficient. Values reported are absolute values of critical values. 

It can be seen that the proportion of rejections of the null hypothesis increases from 

above 0.1 from a coefficient value of about r1=0.7, and comes closer to the value of 

around 0.5 obtained for data generated from a pure random walk as the value of r) 

approaches one. The absolute values of the implied critical values remain around 
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2.5 for autoregressive coefficients below 0.8 but then quickly approach higher 

values until they take values of around 6.89 as the autoregressive coefficient 

approaches unity. 

Thus, it would appear that, even where the generating process is not strictly 

difference stationary, a conventional t-test for the significance of the trend 

coefficient can reject the null hypothesis Ho: (3=0 too often in moderately sized 

samples with autoregressive processes where the value of a positive autoregressive 

coefficient is large. 

The situation is somewhat different where the true generating model is stationary 

in levels around a linear trend, as was the case with the process underlying table 

4.1.1, where the rejection rates for the drift term in random walk models are found 

to be extremely low. Some approximate calculations can be used as a basis for 

exploring the underlying causes of this phenomenon. One may consider a first 

order autoregressive stationary process with a trend coefficient 8 such that: 

[4.1.11] pr=a+ßt+ur, ur-ýur_1 =Er, andet-iid(O, QE) 

Since by [4.1.11 ] we can write u, = p, -a- ßt equation [4.1.11 ] can alternatively 

be written as: 

(1-ýL)(pl-a-fit) =e1 

First differencing [4.1.11] and defining 

[4.1.13] Zf = pr -pr-i, t=2,3, ..., T 

yields the model: 

ß+v,, 0- ýL)v, = (1- L)E j 
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Keeping in mind that, from [4.1.14] it is true that v, = Z1 -ß this can then be 

written as: 

[4.1.15] (1- qL)(Zj - ß) =0- L)E j 

Testing Ho: ß=O at the nominal 5% level would then involve evaluating the test 

statistic 

[4.1.16] T-1 
I SZ I> 

11.961, 

where Sz is the estimated standard error of Z, assuming wrongly that v, = e,, so that 

the estimated standard error would be calculated as: 

(zý_z)2 
[4.1.17] Sz= TFýý- _2 

It is known that in fact, accounting for the true structure of the residual process on 

the basis of [4.1.12] and [4.1.14], v, can be written as: 

0 -L) Er (1-cL) 

It should be worthwhile then to look into the implications of the mistaken 

assumptions about the residual process for the estimated variance of 4 and the 

more general consequences of the assumptions concerning v, for the evaluation of 

the statistical significance of the estimated trend coefficient ß. 

Given the sample size in the present case, it can be assumed that the asymptotic 

properties of the variance estimator approximately hold, so that 

[4.1.19] SZ -º Qi = Qv 

It is also known that the random variable 2 has mean ß so that, assuming 

normality, we have: 
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[4.1.20] Z N(%3, a! ), 

where a is the variance of 2. Since in the present case the error terms are serially 

correlated, the variance of 2 has to be calculated taking covariances over time into 

account. The variance of 2 is given by: 

T 
E Zf 

vZ = Var h2 
ýT- 1) 

[4.1.21] 
T 

Var(Zg) +2 Cov(Z, Z1+i) +2 Cov(Z, Z1+2) + ... + 2Cov(ZZZT) 
(T-1) 

Since, in a stationary series, the values of covariances depend on the length of the 

time lag and not on the point in the time series, these summations can be rewritten 

as follows: 

2 (T-1)yo 2(T-2)yi +2(T-3)y2+"""+2yr I 
[4.1.22] 

ýZ (T-1)2 + (T-1)2 

- 
yo 2(T-2)yI +2(T-3)y2 +... +2yT-l 

(T- 1)+ (T- 1)2 

Following Box and Jenkins (1976) the variance for a first order autoregressive - 

first order moving average process is given in general by: 

1+02-2¢0 2 [4.1.23] yo = 1- c52 ore 

Since in the present case 0=1, this reduces to: 

2(1- )Qt 
Yo= 1-q2 

[4.1.24] =_ 
2(1 - )a 

(1-0)(1+0) 

_ 
2c 

=1+¢ 
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It is further shown in Box and Jenkins (op. cit. ) that for an ARMA(1,1) model in 

general 

[4.1.2$] 0ý)(ý - 6)a2 
1-02 

which in the present case, where 0=1 reduces to: 

(1-ý)(ý-1)o 

[4.1.26] 
vý _ (1-ý)(1 +¢) 

_(-1)o - 1+0 

and that for all r; with 1z1: 

[4.1.27] 1'=Q' Iy", f=1,2,..., T-1 

Substituting back into [4.1.22] then yields: 

2 Yo 2[(T-2)Yi +(T-3)gyl +... +OT-3yi ý2 - T-1 + (T-1)2 

[4.1.28] = 
Yo 

+ 
2YiE(T-2)+(T-3)q5+ "" +OT-3 

- T-1 (T-1)2 

= 
Yo 

1 +? 2 
T, (T-2-i)o' 

(T- -1) 0-o 

To evaluate the probability of [4.1.16] being true one then has to evaluate: 

[4.1.29] P SZ > 1.96 +P 
(T- 

SZ 
1) 

< -1.96 

Focusing initially on the first term of [4.1.29] and bearing in mind that SZ -- Qi and 

that vi = a' one can write the corresponding probability as: 

PI SZ1 2>1.96] 
= P[ T-1 2> 1.96a ] 

[4.1.30] P 
T-1Z- T-1ß 1.96o - T-lß 

T-1a T-1 a2 

_P 
Z-ß 

> 
1.96a - T-1 ß 

az T-1 a2 
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Given that E(Z) =ß and defining: 

[4.1.31] e= 
Q2 

z 

it should be obvious, that with 2 distributed as 2 1V ß, a! ,e is distributed as 

[4.1.32] e--N(o, 1), and that 

( T--l 
Si 

1Z1.96o - T-1 [4.1.33] PI > 1.96 
]-Pe> 

l T-1 Qi 

Arguing along similar lines, it can be shown furthermore, that 

[4.1.34] P[ 
T-1 Z<-1.96 

=P e<-1.96Qv - T-1 ß 
S2 T-1 a2 ' 

where e is defined as above. 

The total probability of rejecting the null hypothesis when wrongly imposing an 

ARIMA(0,1,0) model on a trend stationary AR(l) process is then obtained by 

summing the probabilities given by [4.1.33] and [4.1.34]. Table 4.1.4 below 

summarises the rejection probabilities obtained for different combinations of 

AR(1) coefficients, 4 and drift coefficient values. 
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Table 4.1.4. Rejection probabilities for the t-test on the drift coefficient in 

differenced first order autoregressive time series. 
Phi Beta P Phi Beta p 

1 0.00 0.050 0.8 0.00 0.000 
0.05 0.079 0.05 0.000 
0.10 0.168 0.10 0.000 
0.20 0.508 0.20 0.359 

0.95 0.00 0.000 0.7 0.00 0.000 
0.05 0.001 0.05 0.000 
0.10 0.015 0.10 0.000 
0.20 0.496 0.20 0.233 

0.9 0.00 0.000 0.6 0.00 0.000 
0.05 0.000 0.05 0.000 
0.10 0.001 0.10 0.000 
0.20 0.462 0.20 0.118 

Calculations for rejection probabilities were made for a series with 99 observations and an error 

variance of one. Rejection probabilities are reported for t-tests at the nominal 5% level. 

The results in Table 4.1.4 show lower rejection probabilities in the differenced 

model at lower autoregressive coefficient values in the generating model. As the 

autoregressive coefficient in the generating model falls by a comparatively small 

amount (from 1 to 0.95 and then to 0.9) the calculated rejection probabilities 

decrease dramatically. For q=0.95 the rejection probability for a zero trend 

coefficient in the generating process fall from the nominal 5% level to 0.000, for a 

small trend coefficient value of 0.05 the rejection probability falls to 0.001 from an 

initial probability of 0.079. As the autoregressive coefficient falls to 0.9, the 

rejection rate falls to 0.000 even for a trend coefficient of ß=0.05 and takes a 

value of 0.00 1 for a trend coefficient of ß=0.10. These large falls in the rejection 

probabilities obtained may seem surprising. One should note then that, in spite of 

the rather crude nature of the above approximations, these results are well borne 

out by simulation evidence for comparable generating and fitted models presented 

below in Table 4.1.6. 
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This result suggests that significance tests on the drift coefficient lack power, when 

serial correlation in overdifferenced series is not accounted for. This is also 

reflected in the rejection probabilities calculated for Beef, Lead, Rubber and 

Timber, the four commodities in table 4.1.1. where the alternative trend and 

difference stationary representations are ARIMA (1,0,0) and ARIMA (0,1,0) 

respectively. In all four cases, the rejection probabilities calculated on the basis of 

the estimated model parameters and using [4.1.33] and [4.1.34], take a value of 

zero at the four digit level. The trend coefficients for these commodity price series 

can be normalised by dividing them by the standard error of the residual. A direct 

comparison with the theoretical results in table 4.1.4 (and the simulation results 

presented later on in table 4.1.6. ) is then possible by making reference to both the 

normalised trend coefficient and the estimated autoregressive coefficient. 

Table 4.1.5. estimated AR(1) and normalised trend coefficients for 
selected commodities. 

Commodity AR(l) Trend Coefficient 
Beef 0.910 0.067 
Lead 0.800 -0.033 
Rubber 0.800 -0.104 
Timber 0.680 0.076 

The low rejection probabilities in table 4.1.6. below correspond to what one should 

expect from the predictions in table 4.1.4., and the rejection probabilities predicted 

from tables 4.1.4 and 4.1.5 are consistent with the results in table 4.1.1. 

Estimation and test results may improve if serial correlation in the form of 

autoregressive as well as moving average processes is allowed for in difference 

stationary models, through a more elaborate parameterisation. This would also 
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make the result in table 4.1.1. appear plausible, where higher rejection rates were 

associated with ARIMA models which contained moving average terms. Table 

4.1.6. gives the results obtained when first order autoregressive trend stationary 

series are generated by Monte Carlo Simulation and difference stationary models 

of type ARIMA(0,1,0) and ARIMA(1,1,1) fitted to the generated series 

subsequently. The trend stationary model simulated was of the form: 

[4.1.35] yr =a +ßt+ ur, ur - Ou1_1 =et 

with the trend coefficient taking values between 0 and 0.2 while the values for the 

AR(1) coefficient were confined to the range 0.6-1. For each simulated model, 

5,000 replications were used to obtain the rejection rates for Ho :ß=0 evaluated at 

the asymptotic critical value of +/-1.96. The results are given in Table 4.1.6. below. 
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Table 4.1.6. Empirical rejection rates for trend and drift coefficients 
evaluated at the nominal 5% critical level. 

ARIMA 1,0,0 ARIMA 0,1,0 ARIMA 1,1,1 
0.00 0.528 0.049 0.107 
0.05 0.580 0.083 0.142 
0.10 0.673 0.185 0.248 
0.20 0.895 0.511 0.543 

0.95 0.00 0.265 0.000 0.028 
0.05 0.484 0.001 0.069 
0.10 0.834 0.017 0.172 
0.20 0.997 0.496 0.612 

0.90 0.00 0.186 0.000 0.025 
0.05 0.643 0.000 0.118 
0.10 0.972 0.002 0.301 
0.20 1.000 0.465 0.711 

0.80 0.00 0.120 0.000 0.022 
0.05 0.925 0.000 0.352 
0.10 1.000 0.000 0.648 
0.20 1.000 0.398 0.893 

0.70 0.00 0.098 0.000 0.022 
0.05 0.997 0.000 0.645 
0.10 1.000 0.000 0.871 
0.20 1.000 0.294 0.972 

0.60 0.00 0.087 0.000 0.000 
0.05 1.000 0.000 0.853 
0.10 1.000 0.000 0.964 
0.20 1.000 0.216 0.998 

q5 : value of the autoregressive coefficient, ß: value of the trend coefficient in the data generating 
process. The null hypothesis tested is Ho :ß=0. 

It is apparent from table 4.1.6. that, at least for low values of the autoregressive 

coefficient, the rejection rates for the null hypothesis of a zero trend coefficient are 

high, often close to one for both ARIMA (1,0,0) and ARIMA (1,1,1) models. 

These rejection rates fall as the value of the autoregressive coefficient approaches 

one and also for lower values of the trend coefficient in the data generating 

process. For those data series which were generated under the null hypothesis, i. e. 

with 0=0, it is also apparent that the observed rejection rates increase as the value 
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of the autoregressive coefficient approaches 1. This again confirms the results 

presented in table 4.1.3. It can be seen throughout that the rejection rates for the 

ARIMA(1,1,1) model are consistently above those for the simple random walk 

with drift specification. There is, however, some danger of spurious rejection of 

the null hypothesis when the ARIMA(1,1,1) specification is used since the 

rejection rates obtained for I(1) series under the null still amount to 10.7% when 

testing at the nominal 5% level. On the other hand, rejection rates for ARIMA 

(1,1,1) models are still noticeably lower than for the corresponding trend stationary 

model for large values of the autoregressive coefficient. T-tests on the drift 

coefficient estimate in ARIMA (1,1,1) models can thus be seen to be more 

powerful than in the simple random walk plus drift specification. Although the 

probability of wrongly rejecting the null hypothesis increases somewhat, the 

ARIMA(1,1,1) model specification seems to offer a better balance between the risk 

of incurring Type I or Type II errors4 compared to the simple random walk plus 

drift model as an alternative to the trend stationary model specification. Type II 

errors remain a problem at low drift coefficient values and for highly persistent 

serial correlation. Even for near integrated series though, there are substantial 

improvements over the random walk plus drift alternative. 

It thus seems desirable to obtain a higher parameterisation for the difference 

stationary models fitted to the commodity price series in the sample. The above 

scenario of ARIMA(1,0,0) models being selected by SBC for the model in levels 

while the difference stationary minimum SBC model is a simple random walk with 

4A rejection of the null hypothesis when it is in fact true is referred to as Type I error, whereas the 
term Type II error refers to the possibility of accepting the null hypothesis when it is false. 
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drift is given in ten cases. Table 4.1.7. shows the results of an attempt to correct 

selection by SBC for underparameterisation. Columns two and three give the drift 

coefficient estimates and t-ratios for ARIMA(p, l, q) models which have been 

selected by minimum SBC subject to the constraints that p+q55, pz1 and q>_ 1. 

The values in column four (labelled t-ratios (SBC)) are the t-ratios obtained for the 

original model selected by SBC without constraining p and q as in the present case. 

Column five gives the new minimum SBC model for the difference stationary case. 

The additional constraints limit the most parsimonious model selection possible to 

ARIMA(1,1,1) in order to avoid the low power observed in the case of simple 

random walk plus drift models'. 

Table 4.1.7. Drift Coefficients and t-ratios for higher parametarisations of the 
Difference Stationary Model Selected by SBC. 

Commodity Drift 
coefficient 

t-ratio t-ratio 
(SBC) 

ARIMA 
1 

Coffee 0.005 0.380 0.093 1,1,1 
Teat -0.011 -1.113 -0.573 1,1,2 
Beef 0.008 0.365 0.387 1,1,1 
Lamb 0.016 0.722 0.715 1,1,1 
Bananas 0.000 0.044 0.043 1,1,1 
Tobaccos 0.003 0.268 0.218 3,1,2 
Rubber -0.029 -6.540 -1.041 1,1,2 
Timber 0.011 1.942 0.493 1,1,1 
Copper -0.008 -0.702 -0.490 1,1,2 
Tin -0.004 -0.178 -0.172 1,1,1 
Lead -0.005 -0.917 -0.414 1,1,1 

I Data series from 1900-1997 only. Minimum SBC models have been constrained to p+q<=5, 
p, q >=1. 

s It will be observed that the models selected for Tea, Tobacco and Copper by SBC using the 
additional constraints are not ARIMA(1,1,1) models. However when ARIMA(1,1,1) models are 
fitted, they do not indicate the presence of significant drift terms either. The t-ratios on the drift 
coefficient estimate are -0.111,0.180 and -0.457 for Tea, Tobacco and Copper respectively Cf. 
Appendix IV. i). 
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Imposing the above constraint on the minimum SBC selection, it appears that 

Rubber now has a statistically significant trend coefficient, while this was not so 

under the pure random walk plus drift specification. The drift coefficient of 

another commodity, Timber, now appears significant at the 10% level, and the 

t-ratios for the coefficients of other price series (Coffee, Tea, Copper and Lead) 

have increased somewhat, but not sufficiently for the coefficients to be significant 

at the 5% or 10% levels. The t-ratios on the remaining drift coefficients in table 

4.1.7. have changed little for the higher SBC specification. 

Strictly speaking, the above simulation results only demonstrate the empirical 

superiority of ARIMA(1,1,1) models over the alternative of ARIMA(0,1,0) models 

when the data generating process is ARIMA(1,0,0). It remains to be seen how 

more elaborate models perform in general. To allow for less parsimonious model 

specifications for a number of data generating processes, the Akaike Information 

Criterion can be used, instead of the SBC employed so far, to allow more generally 

for the possibility of underparameterised difference stationary models. Since the 

SBC is known to select more parsimonious model specifications than the AIC, 

model selection by AIC may in the present case serve to safeguard against 

selecting underparameterised difference stationary models and thus avoid the 

associated problems of low powered hypothesis tests. The coefficient estimates and 

t-ratios from models selected by AIC are listed in columns two and three of table 

4.1.8. The t-ratios corresponding to the minimum SBC models reported in chapter 

3 are reported in column four, while the model specification for selection by 
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minimum Akaike Information Criterion is reported in column five. (Details for the 

estimation results underlying Tables 4.1.7. and 4.1.8. are given in appendix IV. i. ). 

Tr., h1a Al R! drift enefficients for ARIMA(n. 1. a) models selected by AIC. 

Commodity Drift / 
minimum 

AIC 

t-ratio t-ratio 
(SBC) 

ARIMA 
(p, 1, q) 

Coffee 0.003 0.154 0.093 0,1,2 
Cocoa -0.009 -0.457 -0.457 2,1,01 
Teat -0.011 -1.017 -0.573 0,1,2 
Rice -0.012 -2.423* -2.423* 1,1,2# 
Wheat -0.011 -1.923 -1.154 0,1,4 
Maize -0.010 -1.341 -1.341 0,1,2" 
Sugar -0.011 -3.322* -0.844 0,1,5 
Beef 0.008 0.387 0.387 0,1,0# 
Lamb 0.015 0.585 0.715 4,1,1 
Bananas 0.000 0.043 0.043 0,1,01 
Palm Oil -0.010 -1.119 -0.429 0,1,3 
Cotton -0.007 -0.641 -0.765 2,1,3 
Jute -0.008 -0.665 -0.665 0,1,2' 
Wool -0.014 -1.850 -1.850 0,1,2# 
Tobaccos 0.003 0.268 0.189 3,1,2 
Rubber -0.029 -6.540* -1.041 1,1,2 
Timber 0.012 8.297* 0.493 0,1,5 
Copper -0.008 -0.702 -0.490 1,1,2 
Aluminium -0.019 -7.931* -7.931* 1,1,2" 
Tin -0.003 -0.172 -0.172 0,1,01 
Silver -0.003 -0.229 -0.229 2,1,0" 
Lead -0.008 -1.158 -0.414 0,1,4 
Zinc 0.000 0.184 0.184 1,1,2" 

t Data Series from 1900-1997 only. * Significant coefficient at the 5% level. # Model selected does 

not change when using AIC instead of SBC. 

For a number of commodities (Cocoa, Rice, Maize, Beef, Bananas, Jute, Wool, 

Aluminium, Tin, Silver and Zinc), the selected model does not change when the 

AIC rather than the SBC is used for model selection. Of the drift coefficient 

estimates shown, five: those for Rice, Sugar, Rubber, Timber and Aluminium, now 

appear to be statistically different from zero. Of these, the coefficients for 
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Aluminium and Rice appeared to be significant previously, when models where 

selected by SBC (and the same models were selected). In the cases of Rubber, 

Timber and Sugar, selecting a more elaborately parameterised model does indeed 

change the t-statistic on the drift coefficient. For a number of other commodities 

(Coffee, Tea, Wheat, Palm Oil, Tobacco, Copper and Lead), the t-ratio on the 

coefficient estimate obtained increases in absolute value but this change is not 

sufficient to affect the results of the hypothesis test on the drift coefficient at the 

5% level. In the case of Wheat, the t-ratio on the drift coefficient estimate falls 

from -1.154 to -1.923 which is just above the asymptotic 5% critical value of -1.96. 

Given that the fall in the t-ratio is observed after introducing a more elaborate 

model parameterisation and given that it is very close to the required critical value 

(as well as being clearly below the 10% critical value of -1.65) the drift coefficient 

obtained when selecting the model for Wheat by AIC6 is considered significant. In 

the cases of Lamb and Cotton the absolute value of the t-ratio actually falls when 

the model in first differences is re-selected using the AIC. The assumption that 

evidence for a trend has been obscured because the absolute values of the 

t-statistics obtained have been understated by excessively parsimonious model 

selection therefore receives empirical support only for the price series of Sugar, 

Rubber, Timber and Wheat. 

6 In view of the relatively high rejection rates obtained for Wheat in Table 4.1.1., one may ask, how 
much importance should be attached to the higher t-ratio recorded when re-selecting by AIC. 
Additional simulations -following the above methodology- show that the rejection rate recorded for 
the model selected by AIC is noticeably higher at 0.980. The probability of spurious rejections is 
also somewhat higher at 0.184. 
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4.2 A Priori Inference on Unit Roots on the Basis of a Stationarity 
Test. 

The discrepancies in the inference about the presence of a significant trend term 

depending on the model fitted underline the importance of distinguishing trend and 

difference stationary processes. It has been shown above how the reliability of the 

hypothesis test can be improved if the difference stationary model is more 

adequately specified. In the case of Lead, the ARIMA(1,1,1) model estimated as an 

alternative to the random walk model selected by SBC shows signs of 

overdifferencing, since the estimate of the moving average parameter is on the 

invertibility boundary. Against this background, a comparison of the unit root test 

results with the results from a stationarity test appears to be of interest. While a 

fully satisfactory solution to the problem of pre-testing is not available for the 

present case, there are some problems which can be accounted for if a different 

testing procedure is used. 

It is known that Dickey-Fuller type tests tend to reject the null hypothesis of a unit 

root too frequently in the presence of a moving average component where the 

absolute value of the moving average coefficient is at or near to the invertibility 

boundary (cf. Agiakloglou and Newbold (1992)). The test employed to allow for 

this possibility in the present case is the Leybourne McCabe test, a stationarity test 

which is reported to be robust to the presence of a large moving average coefficient 

as well as to overfitting of autoregressive lags (Leybourne McCabe (1994)). 

The Leybourne McCabe test is a stationarity test which, like the test developed by 

Kwiatkowski et. al. (1992), tests the null hypothesis of stationarity against the 
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alternative hypothesis of a unit root, by modelling a time series as the sum of a 

deterministic trend, a random walk and a white noise residual term (Kwiatkowski 

et. al. (op. cit. )). 

The testing procedure used here follows Leybourne and McCabe (1994) and uses 

the modified variance estimator and implementation procedure outlined by 

Leybourne and McCabe (1999). The time series in levels is modelled as: 

[4.2.1. ] (D(L)p, =a+ ft+at+Ei 

with, a1= a! -i + 77, 

the random walk component, ßt the deterministic trend and coefficient as before, a 

a constant and c, a white noise error term. The dependent variable is p,, the relative 

price of the relevant primary commodity in natural logarithms. Given ao =0 and 

ri-iid(0, a) it follows that the null hypothesis of stationarity implies that 

Qn = 0, so that at = 0. The above time series model can be represented in first 

differences as: 

[4.2.2. ] (D(L)O- L)p, = ß+ (1- BL)C, 

from where it can be seen that the null hypothesis Ho : Qn =0 implies that p, is 1(0) 

and 0 =1, while it follows from Hl :a>0 that 0<1. Since for a (trend) 

stationary series equation [4.2.2.1 would be overdifferenced, it is expected that the 

moving average coefficient in the estimated model would have a value close to one 

(see also [4.1.14 ff. ]), and vice versa that it takes a value below unity if the data 

generating process is not either stationary or trend stationary in levels. 

To test for the trend stationarity of an autoregressive time series, allowing for p 

autoregressive terms and a first order moving average term, the following equation 
187 



Chapter 4 

was estimated by exact maximum likelihood estimation, using the GAUSS' time 

series package (cf. Leybourne and McCabe (1999) for the implementation of the 

testing procedure): 

[4.2.3. ] Apr = a+ Oi Ap: -i + 520pr-2 + ... + gaAP1 n+ Cl - OCt-i 

from which Q2, in the levels equation can be inferred from: QE = vC 9, i. e. as the 

product of the maximum likelihood estimate of the moving average parameter and 

the residual variance from the testing equation (Leybourne and McCabe (1999)). 

The number of autoregressive parameters was chosen through general to specific 

testing starting with p=5 and testing at the 10% significance level. Instead of the 

t-ratio on the p" autoregressive coefficient' the Z statistic Z= OP9ý-n, with O' the 

autoregressive coefficient estimate on the p`h lag, 0 the moving average coefficient 

estimate and n the number of observations in the differenced series. Following 

Leybourne and McCabe (1999), this should identify the true autoregressive order 

of the generating process so long as pZp, where p is the starting value of the 

number of lagged differenced terms and p the true number of autoregressive lags. 

After estimating equation [4.2.3], the original data series were filtered using the 

estimated Oi coefficients as in: 

[4.2.4. ] Pi 

The least squares residual vector E, " = pj* -a -Qt was then obtained by first 

regressing p, * on a constant and linear trend using OLS and subtracting the 

7 The GAUSS time series package computes the autoregressive terms for the residual rather than 
for lagged dependent variables. The estimates for the ARMA coefficients should be identical 
though. 
8 Leybourne and McCabe highlight the fact that there are potential problems in computing standard 
errors when the moving average coefficient is at or near the invertibility boundary. 

188 



Chapter 4 

predicted from the filtered values. In order to obtain the Leybourne McCabe test 

statistic, a further matrix, V, was computed such that the i; jt element of this matrix 

takes value i if i<j, value j if j<i and value i =j if i =j. Given subsequent pre- and 

post multiplication with the least squares residual vector c, the matrix V needs to 

be symmetric, so that a TxT version of matrix V would take the form: 

11(... ) 1 
12(... ) 2 

[4.2.5] V= .. 
12(... ) T-1 
12(... ) T 

Given V, e *, and a. 2, where as is computed as specified above, the 

Leybourne-McCabe test statistic for the test including a trend, "sß(p), can then be 

obtained as: 

E*ýVE* 
[4.2.6] sß(p) = N2 , at T2 

where p is the number of autoregressive lags in the testing equation. The general to 

specific methodology adopted to determine the number of autoregressive lags in 

the testing equation above asymptotically identifies the correct number of 

autoregressive lags only if the maximum number of lags is at least as large as the 

true number of autoregressive lags in the data generating process. For this reason, 

it appears desirable to arrive at any empirically determined number of 

autoregressive lags from an initial higher number of lags in the testing equation. 

Since in the present study, general to specific testing was undertaken from an 

imputed maximum number of 5 lags, tests with a higher maximum number of lags 

were undertaken for all those commodities, were the final number of 
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autoregressive lags was found to be 5. Testing from a maximum number of 8 lags, 

this yielded different final results only in the case of Rice, where now a total 

number of eight AR lags appears significant?. (Allowing for five lags only, the 

moving average coefficient for Rice appeared to be on the invertibility boundary 

and the Leybourne-McCabe test statistic took a value of 0.0323, so that the 

stationarity hypothesis could not be rejected. With a higher number of 

autoregressive lags, the coefficient on the moving average term is no longer equal 

to one though it still takes a value of 0.791. The null hypothesis of trend 

stationarity can be rejected in this case. ) 

The test statistics obtained together with the values and significance levels of the 

moving average parameter and the number of autoregressive lags in the testing 

equation are reported in table 4.2.1 below. Kwiatkowski et. al. (1992) report an 

upper 5% critical value of 0.146 for this type of stationarity test when a trend term 

is included (A fuller listing of the critical values and the full specifications for the 

final testing equations are given in appendix IV. ii. ) 

It has been pointed out by Ahrens and Vijaya (1997) that ordinary ADF tests can 

perform sufficiently well if the coefficient on the moving average component is not 

significantly different from zero. The Leybourne McCabe test furthermore is based 

on the assumption that the moving average coefficient is constrained to 0<0: 5 1 

(cf. Leybourne and McCabe (1999)) while a number of the estimated moving 

average coefficients reported below have negative signs. Thus the Leybourne 

McCabe test results are taken into consideration only for those cases where the 

9 These eight autoregressive lags were selected again when general to specific testing for the series 
for Rice was performed from a maximum number of 10 autoregressive lags. 
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estimated moving average coefficient was significantly different from zero as well 

as positive. (Indeed, in those cases where the moving average coefficient takes a 

negative value, the estimated residual variance äe would, somewhat nonsensically, 

take a negative value, since it is inferred on the basis of the moving average 

coefficient. This would, moreover result in a negative value for the overall test 

statistic. ) 

Based on the above, the null hypothesis of stationarity can be rejected in five cases: 

Rice, Maize, Cotton, Jute and Wool. In a further eight cases (Coffee, Wheat, 

Lamb, Palm Oil, Rubber, Aluminium, Lead and Zinc) the null hypothesis can not 

be rejected. In all these cases, the estimated moving average coefficient is on the 

invertibility boundary, so that no reliable estimates can be obtained for the t-ratios. 

(One therefore may proceed on the assumption that the coefficient on the MA 

statistic be statistically significant if the Leybourne McCabe test is to be applied in 

these cases. Since an MA coefficient close to one is expected in the case of 

stationary time series this assumption is maintained for estimated coefficient 

values on the invertibility boundary. ) In all the remaining cases, the estimated 

moving average coefficients take values below zero and are -with the exception of 

the price series for silver- not significantly different from zero. Leybourne and 

McCabe (1999) explicitly formulate their model for the case where 0<0: -, 1 so 

that, for negative values of 0, the test would not be applicable in any case. 
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Table 4.2.1. Stationarity Test Results for the Leybourne McCabe Test 

Commodity S MA t-MA p 
Coffee 0.0351 1 1 
Cocoa -11.237 -1 1 

Tea -25.028 -1 1 
Rice 0.520 0.791 4.591 8 

Wheat 0.0431 1 5 
Maize 0.884 0.779 6.715* 2 

Su ar -5.262 -0.592 0.318 5 
Beef -46.940 -0.055 -0.. 535 0 

Lamb 0.0301 1 5 
Bananas -35.573 -0.538 -0.871 1 
Palm Oil 0.0251 1 3 
Cotton 0.610 0.783 4.428* 1 
Jute 0.740 0.818 5.328* 1 
Wool 1.101 0.817 6.768* 1 
Tobacco -46.253 -0.706 -1.943 5 
Rubber 0.0331 1 1 
Timber -1.144 -1 3 
Copper -9.483 -0.504 -0.716 1 
Aluminium 0.0251 1 3 
Tin -40.747 -0.066 -0.644 0 
Silver -27.148 -0.968 -10.666* 3 
Lead 0.088t 1 I 
Zinc 0.0841 1 2 

Sß: Leybourne McCabe Test Statistic, MA: estimated coefficient on the moving average parameter, 
t-MA: the t-ratio for the estimated coefficient on the moving average parameter, p: autoregressive 
order underlying the Leybourne McCabe test. 
I Value below the critical value of the test statistic for rejection of the null hypothesis of stationarity. 
* Statistically significant coefficient for the moving average coefficient at the 5% level. 
(... ) t-ratio is not reported since the MA root is on the boundary. 

In the cases of Coffee and Lead", where there was evidence of overdifferencing 

when fitting an ARIMA (1,1,1) model, the Leybourne McCabe test does indeed 

indicate stationarity where the ADF test did not. For several of the remaining price 

series the ADF and Leybourne McCabe test also lead to opposite conclusions. 

10The same could be said for Rubber when considering the ARIMA(1,1,1) model estimated for the 
Leybourne McCabe test. In this model too, the estimate of the moving average coefficient is on the 
invertibility boundary. 
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Table 4.2.2 below summarises the different stationarity conclusions from the 

Augmented Dickey Fuller test and the Leybourne McCabe test. 

Table 4.2.2. Conclusions on the Order of 
Integration Based on Unit Root and 

Stationarity Tests 

Commodity ADF LMC 
Coffee DS TS 
Rice DS DS 
Wheat DS TS 
Maize DS DS 
Lamb TS TS 
Palm Oil DS TS 
Cotton DS DS 
Jute DS DS 
Wool DS DS 
Rubber DS TS 
Aluminium TS TS 
Lead DS TS 
Zinc TS TS 
ADF: Augmented Dickey Fuller Test, 
LMC: Leybourne McCabe Test 
DS: Difference Stationary, TS: Trend Stationary 

In the cases of Coffee, Wheat, Palm Oil, Rubber and Lead, the inference of trend 

stationarity from the Leybourne McCabe test is in opposition to the stationarity 

conclusions that would be obtained from the Augmented Dickey-Fuller test with 

trend. The series for Lamb, Aluminium and Zinc are identified as trend stationary 

by both tests while either test identifies the price series for Rice, Maize, Cotton, 

Jute and Wool as difference stationary. Among those series identified as trend 

stationary by the ADF test, the ones for Sugar and Timber are the only ones to 
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which the Leybourne McCabe test is not applicable since the estimated moving 

average coefficient is negative. 

If one were to follow a strategy of pre-testing, the Augmented Dickey Fuller test 

could be applied in those cases where the estimated coefficient on the moving 

average term in the Leybourne McCabe testing equation is insignificant or negative 

while one may use the Leybourne McCabe test, where the estimated coefficient on 

the moving average term is either significant or on the boundary of the invertibility 

region. Proceeding thus, the commodity price series that would be classified as 

trend stationary would be Coffee, Wheat, Sugar, Lamb, Palm Oil, Rubber, Timber, 

Aluminium, Lead and Zinc. The remaining commodities (Cocoa, Tea, Maize, 

Beef, Banana, Cotton, Jute, Wool, Tobacco, Copper, Tin and Silver) would be 

classified as difference stationary time series. 

The Leybourne McCabe test can overcome the problems which the ADF test is 

subject to if there are large moving average coefficients in the testing equation, so 

long as the number of autoregressive lags is not underspecified. Other problems 

associated with pre-testing such as the possible impact of structural breaks or the 

appropriate specification of the null hypothesis and of significance levels in testing 

procedures do, however, remain. A further problem suggested by the above 

simulation results is that simple t-tests on trend coefficient estimates can still be 

subject to small sample distortions from large positive autoregressive components. 

In the following section, the pre-test results obtained so far are combined with a 

number of methods which aim at accounting for the impact of first order 
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autocorrelation in the data generating process. A modified approach to pre-testing 

is also used. 

4.3 Modified Testing Methods for a Deterministic Trend in First Order 
Autoregressive Time Series 

Various methods of testing for the presence of a deterministic trend in first order 

autoregressive time series have been used in a study by Sun and Pantula (1999). A 

number of these will be employed here to assess the evidence in favour of a 

deterministic trend in those of the present data series where an AR(1) 

representation was found to be adequate for the data series in levels, and where the 

t-test statistic identifies the trend coefficient estimate as statistically significant at 

asymptotic critical values. Sun and Pantula use a number of estimation methods 

such as OLS, Maximum Likelihood estimation and Conditional Maximum 

Likelihood to estimate the trend coefficient and assess the evidence in favour of its 

statistical significance, relying on previous inferences on the presence of unit roots. 

They then proceed to obtain simulation evidence on the adequate critical values 

after adjusting the value of the estimated autoregressive coefficient for an imputed 

estimation bias. The authors applied all estimation and testing methods to the 

original data series as well as to data series adjusted for first order autocorrelation. 

In the present study, some of these methods were applied to the commodity price 

series used, employing OLS and Maximum Likelihood estimation only. The data 

series used are those for which an ARIMA (1,0,0) model has been selected by SBC 

in chapter 3. Assumptions on stationarity are formed on the basis of the ADF and 

Leybourne McCabe test results reported above. 
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4.3.1. OLS with adjusted t-ratios 

The first variety of what Sun and Pantula refer to as the pre-test method is based on 

calculating initially an adjusted t-statistic which is then compared with the 

appropriate critical values depending on whether or not the time series in question 

has been identified as trend stationary or difference stationary. Sun and Pantula 

start from a trend stationary model with first order autoregressive residuals of the 

form: 

[4.3.1. ] YY =a+ fit +u,, and ut = q5u, 
_1 +c, 

which is clearly equivalent to the AR(1) model considered here. The statistical 

significance of the estimated trend coefficient is then assessed on the basis of the 

adjusted t-statistic: 

[4.3.2. ] tön =1- 
ýoL 

tocs, 
1+ýocs 

where ý is the OLS estimate of the first order autoregressive coefficient and toys is 

the conventional, unadjusted t-statistic (cf. Sun and Pantula (op. cit. )). For the case 

where 4=1, Sun and Pantula obtained, by simulation, a critical value of +/-7.65 for 

100 observations. In the case where 4<1, the conventional critical value of +/-1.96 

was deemed appropriate by Sun and Pantula. 

In the present case, simulations were conducted to verify the critical value for the 

unit root case, i. e. data series were generated for the model in equation [4.3.1. ] 

under the null hypothesis that 4=l and ß=0. The autoregressive residual series 

were constructed using normally distributed random numbers for 99 observations 

(again following the basic methodology outlined in section 4.1.1. ). The full trend 
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stationary model [4.3.1. ] was then fitted to the generated series and the t*-ratios for 

the estimated coefficient were retained over 10,000 replications. Averaging the 

top and bottom 2.5% values for the t*-ratios of five simulation runs yielded an 

empirical critical value of +/-7.682. This value appears to be reasonably close to 

the critical values of +/-7.88 for 50 observations and +/-7.65 for 100 observations 

obtained by Sun and Pantula (who also used 10,000 replications in this case), so 

that the ±7.682 critical value obtained here is taken as representative for the 

present case. 

In the light of the above findings on the properties of the asymptotic t-statistic in 

moderately sized samples, the conventional 5% critical value of ±1.96 has not been 

considered appropriate in the present case. To evaluate the implications of large 

autoregressive coefficient values in terms of spurious rejections of the null 

hypothesis and in order to compute the implied critical values, simulations" 

equivalent to the ones presented in table 4.1.3. for Maximum Likelihood 

estimation were conducted estimating 4.1.8 by OLS rather than Maximum 

Likelihood and correcting the t-ratio for the trend coefficient estimate as in [4.3.2. ] 

above. The results obtained for data series with 100 observations are reported in 

table 4.3.1. below. Critical values were obtained as before by retaining the top and 

bottom 250TH t-ratio from the series of 10,000 t-ratios after these had been sorted in 

ascending order. Since the simulated random errors are again normally distributed 

and therefore symmetric by construction, the upper and lower critical values have 

been averaged to yield the values reported in the second row of table 4.3.1. 

11 Here and in the remainder of the present chapter, the methodology adopted for simulating 
integrated or correlated residual series generally follows the methodology outlined in section 4.1. 
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Table 4.3.1: Rejection probabilities for the null hypothesis of Ho: ß=O in an 
OLS model with AR(1) errors fitted to simulated data series generated from 

0.7 0.75 0.8 0.85 0.9 0.95 0.99 

Rejection 0.086 0.095 0.107 0.122 0.149 0.199 0.337 
Rate 
Critical 2.31 2.39 2.50 2.67 2.93 3.45 5.42 
Value 

': Autoregressive coefficient, p,, p,., dependent and lagged dependent variable, c,: error term, /f: 

trend coefficient. The reported critical values are absolute values. 

As can be seen from table 4.3.1. rejection rates and implied absolute critical values 

for the trend coefficient are somewhat lower in the OLS than in the Maximum 

Likelihood case for the given sample size. 

The results obtained are close to simulation results on the basis of estimated 

coefficients from fitting first order autoregressive models for the three trend 

stationary commodity price series to the original data series by OLS. (See Table 

4.3.2. below. ) Here the empirical critical values for the trend stationary case were 

obtained by first estimating ý in the AR(1) model fitted to the original data series: 

as in Sun and Pantula (1999) the dependent variable was first regressed on a trend 

and constant. The residuals from this regression were then regressed on their 

lagged values to obtain ý. It is worth bearing in mind that, as should be apparent 

from the results above, the inferred critical values depend on the magnitude of the 

autoregressive coefficient in the original data generating process, and that 

underestimation of the AR(1) coefficient will in turn lead to understated absolute 

critical values in the simulation results. Sun and Pantula (op. cit. ) state that 

estimates of the autoregressive coefficient are subject to downward bias regardless 
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of whether OLS or Maximum Likelihood estimation is used (a suggested method 

for bias correction is explored below). 

To obtain the lower and upper critical values for the commodities in question, 

simulations were performed under the null hypothesis of a zero trend coefficient 

for 99 observations and over 10,000 replications. Simulations were run five times 

for each commodity and the absolute values of the 5% critical values obtained 

were averaged subsequently. The absolute critical values obtained for each 

commodity price series and the estimated autoregressive parameters used in the 

simulation are reported in table 4.3.2 below. (Upper and lower critical values have 

again been averaged. As the residuals used in the simulation are normally 

distributed by construction here and throughout the remainder of the section, this 

will also be done for later simulation results. ) 

Table 4.3.2. Empirical Critical Values and AR(1) 
Coefficients for Selected Commodity Price Series 

Commodity CV 
Rubber 2.546 0.803 
Timber 2.328 0.685 
Lead 2.544 0.799 
CV: Critical Value, 0: estimated autoregressive coefficient, The 
reported critical values are absolute values. 

The critical values in Table 4.3.2. increase consistently with the value of the 

autoregressive coefficient in the data generating process. This is very much in line 

with the above findings on empirical rejection rates for near integrated first order 

autoregressive processes presented in tables 4.1.3 and 4.3.1. 

This complication should be borne in mind when any inference on the significance 

of the trend coefficient is attempted. One can, however, venture some preliminary 
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conclusions at this stage. After pre-testing for stationarity using the ADF test and 

Leybourne McCabe test as described above, only two commodities identified as 

trend stationary (Rubber and Timber) are shown to have statistically significant 

trend terms. Another trend stationary commodity price series (for Lead) and all of 

the difference stationary commodity price series with fitted first order 

autoregressive models have trend terms which are statistically insignificant. The 

estimated trend coefficients together with their t-ratios and, in those cases where 

the estimated autoregressive coefficient takes a value below unity, the simulated 

OLS critical value are reported in table 4.3.3. below, 

Table 4.3.3. Estimated Trend Coefficients, t-ratios and Empirical 5% Critical 
Values for Selected Primary Commodity Price Series. 

Commodity Trend t-ratio* for Critical Value 
Beef 0.017 2.242 7.682 
Cotton -0.010 -3.416 7.682 
Lead -0.005 -1.792 2,544 
Maize -0.010 -4.476 7.682 
Rubber -0.027 -5.728 2,546 
Timber 0.011 7.222 2,328 
Wool -0.016 -4.664 7.682 

P: Estimated Trend Coefficient, *t-ratios are adjusted for first order serial correlation. The reported 
critical values are absolute values. 

Had inferences on trend stationarity and difference stationarity been made on the 

basis of ADF tests alone, Rubber would have been classified as difference 

stationary, and its trend coefficient estimates would have been classified as 

statistically insignificant at the reported critical value of +/-7.682. It is also worth 

noting, however that the t-ratio for Timber -which takes a value of 7.222- is close 

to the reported 5% critical value for the I(1) case. 
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4.3.2. Maximum Likelihood Estimation Results 

The above estimations were repeated using Maximum Likelihood estimation 

instead of OLS. Sun and Pantula (op. cit. ) re-express the equation for the AR(1) 

model [4.3.1. ] to yield: 

[4.3.3. ] Y, = bo +bit+¢Yt_1 +Eg 

with t=2,3,... T, bo = a(1- ¢)+ß¢ and b1 = (1- ¢)ß. 4 is identical to the 

autoregressive parameter in the specification of the AR(1) residual process u,. It is 

worth noting moreover, that when setting q=1, both [4.3.1. ] and [4.3.3. ] will 

reduce to a random walk with drift. 

In the present study, Maximum Likelihood estimations were again performed for 

the original model [4.3.1. ]. Critical values for the null hypothesis of a zero trend 

coefficient for an I(1) price series were obtained by simulation. Again, normally 

distributed random numbers were used to construct random walk residual series for 

99 observations and over 10,000 replications following the methodology outlined 

above. The average lower and upper 2.5% critical value for the t-ratios obtained by 

Maximum Likelihood estimation is +/-8.319, compared with a value of +/-7.55 

quoted by Sun and Pantula (op. cit. ). 

The observed critical values from simulations conducted for the trend stationary 

price series, using the same methodology as above, are given in table 4.3.4. As in 

the previous case, the critical values obtained vary depending on the magnitude of 

the estimate of the autoregressive coefficient in the data generating process. 
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Table 4.3.4. Empirical Critical Values and AR(1) 
Coefficients for Selected Commodity Price Series 

Commodity CVs / Trend 

Rubber 2.603 0.796 
Timber 2,378 0.680 
Lead 2.574 0.795 
CV: Critical Value, ¢: estimated autoregressive coefficient. The 
reported critical values are absolute values. 

The estimates for the trend coefficient and the pertinent t-ratios are of course the 

same as those given in table 3.2.1. of chapter 3. These estimates together with the 

estimates for the absolute critical values obtained from the simulations above are 

reproduced in table 4.3.5. 

Table 4.3.5 Estimated Trend Coefficients, t-ratios and Empirical 5% Critical 
Values for Selected Primary Commodity Price Series. 

Commodity Trend t-ratio for Critical Value 
Beef 0.014 2.295 8.319 
Cotton -0.010 -3.328 8.319 
Lead -0.006 -2.166 2.574 
Maize -0.010 -4.180 8.319 
Rubber -0.028 -6.764 2.603 
Timber 0.011 7.321 2.378 
Wool -0.016 -4.652 8.319 

P: Estimated trend coefficient. The reported critical values are absolute values. 

Of these estimates, the trend coefficients for Rubber and Timber appear to be 

statistically significant, although this would not have been so had the price series 

been modelled as stationary in first differences. All other price series do not appear 

to have a trend term significant at their relevant critical values. This is true even for 

the price series for Lead when the effect of serial correlation in moderately sized 

samples is taken into account although the coefficient would appear significant at 

the asymptotic normal critical value of +/-1.96. 
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4.3.3. Generalised Least Squares Estimators for the Trend Coefficient 

An additional estimation method proposed by Sun and Pantula is a Generalised 

Least Squares regression of the form: 

Ci - ý2) Yl 

[4.3.4. ] 1'2 Y1 (1-ý) [2-0(2-1)] 1a 

b 

where, in the present case, both OLS and Maximum Likelihood estimates of 4 have 

been used. It is obvious from equation [4.3.4. ] that the EGLS (Estimated 

Generalised Least Squares) model reduces to a simple random walk with drift 

when 0 =1. Setting 0 =1 in the data generating process, the empirical 5% critical 

value is given by +/-8,408 when 4 is estimated through maximum likelihood and 

simulations with 10,000 replications are conducted for 99 observations under the 

null hypothesis of a zero trend coefficient". This is reasonably close to Sun and 

Pantula's reported value of +/-8.42 for 100 observations. Using OLS to estimate 

the autoregressive parameter, the empirical upper and lower critical value is 

+/-8.891 compared to the critical value of +/-8.93 reported by Sun and Pantula. 

As in the previous cases, the presence of large, positive autoregressive coefficients 

in the generating process results in non asymptotic critical values for the t-test 

statistic on the trend coefficient, for the given sample size. Table 4.3.6. below 

details the observed critical values obtained from simulations with 10,000 

12 t-ratios were obtained for the trend coefficient estimate obtained from fitting the EGLS model as 
in [4.3.41 and critical values were again inferred from the upper and lower 2.5 percentiles of the 
ranked t-ratios obtained by simulation. 
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replications each, for those commodities identified as trend stationary by either the 

Leybourne-McCabe test or the Augmented Dickey-Fuller test. 

Table 4.3.6. Empirical Critical Values and AR(1) Coefficients for Selected 
(`nmmnriity Price Series 

Commodity CVs / OLS OLS CVs / ML ML 
Rubber 2,679 0.803 2,621 0.796 
Timber 2,363 0.685 2,369 0.680 
Lead 2,624 0.799 2,602 0.795 

CV: Critical Value, 0: estimated autoregressive coefficient. The reported critical values are absolute 
values. 

Results based on simulations where the autoregressive coefficient has been 

estimated by OLS are given in columns two and three. The corresponding results 

for the case where the autoregressive coefficient has been obtained by Maximum 

Likelihood estimation are presented in columns four and five of table 4.3.6. above. 

It is not surprising that in those cases where the value of 4 in the data generating 

process is one, and where consequently the EGLS model reduces to a random 

walk, the observed critical values are close to those obtained from previous 

simulations for the random walk case. 

The 95% critical values for the adjusted data series with 4<1 are also still above 

the asymptotic normal critical value of ±1.96, in fact, these values are also close to 

those obtained above by simple OLS or Maximum Likelihood estimation 

respectively. 

Table 4.3.7. below reports the results of fitting the EGLS model to the original data 

series, estimating the autoregressive coefficient by OLS. 
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Table 4.3.7. Estimated Trend Coefficients, t-ratios and Empirical 5% Critical 

Values for Selected Primary Commodity Price Series. 

m modity Trend b t-ratio for b Critical Value 

0.013 2.137 8.891 

n -0.01 0 -3.787 8.891 

r 

-0.006 -2.123 2,647 

e -0.010 -4.563 8.891 
Rubber -0.029 -6.478 2,601 

er 0.011 7.084 2,374 
Wool -0.016 -5.352 8.891 
Estimated Trend Coefficient, Data series are adjusted for first order serial correlation 

Estimation Method for 4: OLS. The reported critical values are absolute values. 

The corresponding results for the case where the autoregressive coefficient is 

estimated by Maximum Likelihood estimation are given below in table 4.3.8: 

Table 4.3.8. Estimated Trend Coefficients, t-ratios and Empirical 5% Critical 
Values for Selected Primary Commodity Price Series. 

Commodity Trend b t-ratio for b Critical Value 

Beef 0.014 2.347 8.408 
Cotton -0.010 -3.341 8.408 
Lead -0.006 -2.152 2,619 
Maize -0.010 -4.066 8.408 
Rubber -0.029 -6,680 2,575 
Timber 0.011 7.204 2,348 
Wool -0.016 -4.817 8.408 

b: Estimated Trend Coefficient, Data series are adjusted for first order serial correlation 
Estimation Method for 4: Maximum Likelihood. The reported critical values are absolute values. 

Again, the estimated trend coefficients for Rubber and Timber appear to be 

significant while those for Lead and the remaining difference stationary 

commodities do not. The t-ratio on the trend coefficient for Lead is close to the 

critical value obtained previously for moderately sized samples and above the 

asymptotic standard normal critical value of +/-1.96. 

It seems then, that the finite sample correction of critical values for t-test statistics 

is not only a frequent problem in the case of serially correlated residuals, it also 
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appears that the magnitude of this problem is difficult to assess. This in turn is 

related to the persistent underestimation of the AR(l) coefficient in the data 

generating process when fitting trend stationary models to a data series. 

4.3.4. Adjusting for estimation bias in first order autoregression 

To account for the observed downward bias in the estimation of ý, Sun and Pantula 

(op. cit. ) propose a bias adjustment for the estimated coefficient, which is 

implemented as: 

[4.3.5. ] 0i=0r+n+21 

The Generalised Least Squares estimates described above are then re-estimated 

using the bias adjusted autoregressive coefficient 0. (Sun and Pantula suggest that 

in those cases where 0z1, the autoregressive coefficient in the EGLS equation 

should be set to one. In the present case however, this has not been relevant when 

the bias adjusted model was fitted to the original data series, since no values for 

in excess of one were obtained. ) The subscript i refers to estimation by either OLS 

or Maximum Likelihood. The results obtained are summarised in table 4.3.9. 

below. Columns two and four list the estimated autoregressive coefficients for 

OLS and Maximum Likelihood estimation respectively, while the corresponding 

bias adjusted values are reported in columns three and five. 
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Table 4.3.9. Estimated and bias adjusted estimates for the 

coefficient, using OLS and Maximum Likelihood estimation. 
autoregressive 

Commodity 

Beef 0.914 0.953 0.905 0.944 
Cotton 0.807 0.844 0.833 0.870 

Lead 0.799 0.835 0.795 0.831 
Maize 0.685 0.719 0.720 0.754 
Rubber 0.803 0.840 0.796 0.832 

Timber 0.685 0.719 0.680 0.714 
Wool 0.801 0.838 0.824 0.861 

ý0& Estimate for the autoregressive coefficient, obtained by OLS. ¢oLs bias adjusted estimate of 
Dors. AML: Estimate for the autoregressive coefficient, obtained by ML. OML bias adjusted estimate 

of ýML. ML: Maximum Likelihood. 

Table 4.3.10. below reports the estimated trend coefficients and t-ratios obtained 

using EGLS with the bias adjusted estimate for the autoregressive coefficient. 

Columns two and three give the trend coefficient and t-ratio respectively for the 

OLS results, while the results from maximum likelihood estimation are reported in 

columns four and five. 

Table. 43.10. Estimated trend coefficients and t-ratios (hias adjusted method). 
Commodity bOLS t-ratio bML t-ratio 

Beef 0.012 1.254 0.012 1.461 
Cotton -0.010 -3.143 -0.010 -2.681 
Lead -0.006 -1.820 -0.006 -1.850 
Maize -0.010 -4.082 -0.010 -3.566 
Rubber -0.029 -5.469 -0.029 -5.680 
Timber 0.011 6.342 0.011 6.466 
Wool -0.016 -4.493 -0.016 -3.938 

6: estimated trend coefficient. ML: Maximum Likelihood 

For the difference stationary time series, the critical value of +/-8.408 reported 

above can be employed here. For the trend stationary series, the implied empirical 

critical values were obtained by simulation. To conduct the simulations, data series 

where obtained constructing first order autoregressive residual series on the basis 
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of normally distributed random numbers and using the adjusted value 0 described 

above. Subsequently trend stationary models were fitted to the simulated series and 

the adjusted value 0 was obtained as before. Again, 0 was set to one in each 

replication where the value obtained exceeded one. Following this, the value of ON 

used in each replication was used to fit an EGLS model (according to [4.3.4. ]) and 

retaining the t-ratio for the trend coefficient estimate obtained. Critical values were 

obtained as the top and bottom 2.5 percentiles of the t-ratios obtained by 

simulation and ranked in ascending order. The critical values obtained were 

+/-2.437 for Lead, +/-2.445 for Rubber and +/-2.267 for Timber when estimating q5 

by OLS. The corresponding results when 0 is obtained by Maximum Likelihood 

estimation are +/-2.415 for Lead, +/-2.413 for Rubber and +/-2.191 for Timber. 

Among the difference stationary series there are again no statistically significant 

trend coefficients. The trend coefficients for Rubber and Timber do again appear to 

be significant, at the asymptotic critical value of +/-1.96 as well as at the critical 

values obtained by simulation, the estimated trend coefficient for Lead does not 

appear significant at either the asymptotic normal critical value, or at the empirical 

critical value of +/-2.425 obtained by simulation. 

4.3.5. An alternative approach to a priori testing for the order of integration 

In addition to the EGLS model shown in [4.3.4] and the bias adjusted estimate for 

the autoregressive coefficient according to [4.3.5] Sun and Pantula introduce a 

modified approach to pre-testing for unit roots. 
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Using the bias adjusted estimates for the first order autoregressive coefficient and 

the values obtained from augmented Dickey-Fuller tests, Sun and Pantula define 

a decision rule on the basis of which one may either assume that the data series in 

question is integrated (i. e. I(1)) or, alternatively, that the bias adjusted estimate of 

the AR(1) coefficient may be employed with or without further corrections, 

depending on the value of r obtained in the unit root test. 

More precisely, it is proposed that be adjusted according to: 

[4.3.6. ] ¢, = C+ (1- C)0p 

where the subscript i indicates estimation of 0 by either OLS or Maximum 

Likelihood and C is defined as in: 

10 ifz, s-4.5, 
[4.3.7. ] C=- 4.5 +'c, -4.5 < z, < -3.5, 

1 z, z -3.5 

with t, the Dickey Fuller test statistic obtained using either OLS or Maximum 

Likelihood estimates. It is obvious that for C=1 the autoregressive coefficient from 

[4.3.6. ] will take a value of 1 also, while for C=O the original bias adjusted 

estimate is retained. 

Where the estimated autoregressive coefficient had to be adjusted further, the 

pertinent critical value was again obtained by simulation for 99 observations using 

10,000 replications". Critical values were again obtained as the top and bottom 2.5 

percentiles of the t-ratios obtained by simulation and ranked in ascending order. 

13 The simulation methodology followed was mainly as in 4.3.4. above although on this occasion 0* 
the adjusted version of the bias corrected AR(1) coefficient estimate was used in the data 

generating process. 
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The ADF test statistics obtained using OLS have been taken from the results 

presented in Appendix III. i. and are shown in table 4.3.11. below together with ý 

obtained by OLS, the corresponding bias adjusted values and the final corrected 

values of the estimated autoregressive coefficient. 

Table 4.3.11. Adjusted values for the OLS estimate of the autoregressive 
rnefficient 

Commodity 
Iý 

001-11? 1 
N 

001.1? tom Onts 

Beef 0.914 0.953 -1.876 1 
Cotton 0.807 0.844 -2.553 1 
Lead 0.799 0.835 -3.169 1 
Maize 0.685 0.719 -2.468 1 
Rubber 0.803 0.840 -3.217 1 
Timber 0.685 0.719 -3.925 0.881 
Wool 0.801 0.838 -2.137 1 

: OLS estimate of the AR(1) coefficient, q 01s: Adjusted coefficient value, rQl s: ADF test 

statistic ¢OLs : Coefficient adjusted according to rois 

It can be seen from table 4.3.11, that a difference stationary process would be 

inferred for all price series other than Timber, for which case the coefficient value 

would be adjusted further. This result is in accordance with the stationarity 

conclusions resulting from the Dickey Fuller test results reported in Chapter 3. The 

EGLS model represented by equation [4.3.4. ] collapses to a random walk if the 

autoregressive coefficient is defined to be one and the corresponding OLS 

estimation results for all the AR(1) commodity price series other than Timber are 

listed in table 4.3.12. To obtain these results the data series in first differences were 

regressed on a constant. 
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Table 4.3.12. OLS and ML results for the EGLS model with 4=1 

Commodity t-ratio Commodity t-ratio 

Beef 0.008 0.387 Maize -0.008 -0.338 
Cotton -0.009 -0.510 Rubber -0.030 -1.041 
Lead -0.008 -0.414 Wool -0.014 -0.711 

b: estimated trend coefficient. The results for OLS and Maximum Likelihood are identical. 

It is evident from table 4.3.12. that none of the estimated drift coefficients would 

be regarded as significant at the conventional critical value of +/-1.96 which 

should be appropriate in this case. For Timber the estimated trend coefficient was 

0.881 with a t-ratio of 2.785. This would suggest the presence of a statistically 

significant trend term at the conventional critical value of +/-1.96 as well as at the 

critical value at the empirically determined critical value of 2.635, which had again 

been obtained by simulation using the same methodology as above (again for 99 

observations over 10,000 replications). 

Table 4.3.13. finally lists the original estimates of q5, the adjusted estimates and the 

ADF test statistics obtained using Maximum Likelihood estimation. (Details about 

ADF test results obtained using maximum likelihood estimation are given in 

appendix IV. iii. ) 
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Table 4.3.13. Adjusted values for the Maximum Likelihood 

autoregressive coefficient 
estimate of the 

Commodity zML lý 

Beef 0.905 0.944 -1.876 1 

Cotton 0.833 0.870 -1.835 1 

Lead 0.795 0.831 -2.105 1 
Maize 0.720 0.754 -2.210 1 

Rubber 0.796 0.832 -3.104 1 

Timber 0.680 0.714 -3.550 0.986 
Wool 0.824 0.861 -2.137 1 

OMt : Maximum Likelihood estimate of the AR(1) coefficient, cML: Adjusted coefficient value, 

T, wL : ADF test statistic 
OMA : Coefficient adjusted according torML 

Again, all commodities other than Timber are classified as difference stationary. 

Regressing the first differenced commodity price series on a constant yields 

estimates identical to the ones reported in table 4.3.12. Estimating the EGLS 

equation for Timber using Maximum Likelihood estimation for 0 yields an 

estimated trend coefficient value of 0.008 and a t-ratio of 0.702. The trend 

coefficient for Timber does not appear to be significant from this estimate at either 

the asymptotic critical value or the empirically determined value of +/-4.901. 

Furthermore, the estimated coefficient value is in accordance with the value of the 

drift coefficient reported in table 3.1 in chapter 3. The t-ratio is somewhat higher 

than the one in the difference stationary model selected by SBC. In contrast to the 

equivalent EGLS model estimated by OLS the adjusted value of the autoregressive 

coefficient is now closer to one than in the case of the OLS estimate reported 

above. 

The methods used by Sun and Pantula (1999) allow for a more gradual approach in 

inferring the order of integration of a series, and in conjunction with simulation 

experiments allow one to give detailed consideration to the finite sample impact of 
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serial correlation in the residual process. However, the method as considered here 

and in Sun and Pantula (op. cit. ) is limited to rather simple model 

parameterisations, and does not resolve the problems associated with a priori 

assumptions on the order of integration in general. 

4.4. An Alternative Testing Procedure for the Significance of a Trend 
Coefficient 

In view of the above problems regarding significance tests for trend coefficients a 

testing procedure that is not sensitive to the presence of serial correlation or 

specific assumptions about the order of integration of the data generating process 

would greatly facilitate decisions on the presence of a trend term. Vogelsang 

(1998) proposes a test which reportedly is insensitive to serial correlation and 

adequate for data series which are either 1(0) or I(1) even if the exact order of 

integration is not known. 

4.4.1. Vogelsang's test for a trend coefficient 

The starting point for Vogelsang's test is the simple trend stationary model: 

yj=a+ßt+u, 

where estimates of the coefficients a and ß can be obtained by regressing y, on a 

linear trend and constant. One should also note that it is not assumed here that the 

error term u1 is white noise. As a second step for the test, the partial sums 

Z, = IT 1 y, and St =E j=1 u, form part of the model: 

[4.4.2] zt = at + ß* [? (t2 +t)] +S, 

which again can be estimated by OLS. In the following, the coefficient vectors for 

[4.4.1. ] and [4.4.2. ] will be referred to as ß and ß* respectively, likewise, the 
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regressor matrices for [4.4.1. ] and [4.4.2. ] are referred to as Xl and X2 

respectively. Also, extensions to models [4.4.1. ] and [4.4.2. ] are calculated in such 

a way as to add higher order trend polynomials to the basic OLS equations 

specified above. The resulting models are: 

,. m 
[4.4.3. ] yr=a+ßt+E y; t'+u, 

and, for the regression of partial sums, [4.26]: 

[4.4.4. ] z, = at+ß*[? (t2 +t)]+E y; t'+S, 

NN 

Analogous to the case for equations [4.4.1. ] and [4.4.2. ] ß, and ß2are used to refer 

to the vectors of coefficient estimates from [4.4.3. ] and [4.4.4. ] respectively14. One 

can then compute the OLS Wald statistics for [4.4.3. ] and [4.4.4. ] to test the 

hypothesis that y2 = y3 = ... = y, � =0for [4.4.3. ] and y3 = ya = ... = ym =0 for 
N 

[4.4.4. ]. Formulating the restriction as Rip, = r, one would then need to specify 

0o10 """ 0 
[4.4.5. ] R3= 

0001::: 0 

0000 """ 1 

where the required dimensions of matrix Ri would be R1 for [4.4.3. ] and m-lx m+I 

R2 for [4.4.4. ]. Defining the regressor matrix for [4.4.3. ] as Xla and the m-2 xm 

regressor matrix for [4.4.4. ] as X2a the OLS Wald statistic then takes the form: 

(Rißr 
- r)' [Ri(Xia'Xia)-tRi' ]-1 (Rip- 

r) r) [4.4.6. ] Wald(i) _ a2 J 

14i. e. the vector of coefficient estimates for the and ß* coefficients as well as the estimated y; 
coefficients in equations [4.4.3.1 and [4.4.4. ]. 
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with i=1,2, j=yt, z, and the restriction 'r' is defined to be r=0 in the present study. 

Normalising the Wald statistic over the number of observations (i. e. multiplying by 

T-', where in the present case T=99) yields the adjusted Wald statistic JT(m). 

Vogelsang (1998) then proposes two types of test statistic, the first of which can be 

written as: 

7" (cß" -r)1[c(X X2)_'c'1-'(cß� -r) [4.4.7. ] PST - Sz exp(bJT(m)) 

where r is here set to r --O as above and -since the interest is in testing the 

significance of the trend coefficient- c is set to take the form c=[ 01]. Equation 

[4.4.7. ] then reduces to: 

'-1d-i *2 
[4.4.8. ] PST = S2 exp(bJý(m))' 

t 1,2 

here d2-1 is the (2,2) element of the 2x2 matrix (XXX2)-' and b is a constant. Both 

variants of the test use regressor matrix X2 but PST includes JT(m), while PST 

makes use of JT(m). Vogelsang (1998) states that the asymptotic distributional 

characteristics of the normalised Wald test statistic PT(m) can be employed to make 

the test statistic specified in [4.4.8. ] yield asymptotically equivalent results for 

series which are either 1(0) or I(1), if the value of the constant b is specified 

appropriately". Vogelsang (op cit. ) provides values for b for different significance 

levels obtained by simulation. In the present study, the values for b chosen were 

b=1.966 for PST, and b=0.286 for PST. These values are appropriate for a test with 

"More precisely, the distribution of the PST test statistic becomes right skewed for l(l) data series. 
This can be counter balanced as exp(bJ'T(m)) takes on suitably large values (cf. Vogelsang (1998) 
pp. 130-131). 
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95% confidence in either case. The value of m was set at m=9 throughout, since the 

test is shown to have high power at this value (cf. Vogelsang (op cit. )). 

The second type of test statistic takes the general form: 

[4.4.9. ] PSWT- 
(cý-r)I [c(XiX1)-'c, ]-ß(cß-r) 

[T-110OS2 exp(bJ 1. (m))] i=1,2 

where, as before, c=[ 01] and r=0. So that for the present study, [4.33] reduces 

to: 

1^2 
[4.4.10. ] PSW .='ß i= 1,2 [T-1100sZ exp(bJT(m))]' 

where now d-11 is the (2,2) element in the 2x2 matrix (X 'X l )-' . For PSW T, the 

normalised Wald statistic JT(m) has been used with m=9 and b=2.085 for a test 

with 95% confidence. Correspondingly, JT(m) has been used for PSW T, where 

m=9 as well and the constant b now takes a value of b=0.305. 

In order to assess the performance of the Vogelsang test, simulations have been 

conducted for a number of different AR(l) coefficient and trend values in the data 

generating process in a manner akin to the simulation experiment undertaken for 

ARIMA(1,0,0), ARIMA(0,1,0) and ARIMA (1,1,1) models in section 4.1 (cf table 

4.1.6. ). The simulation results for the Vogelsang Test, again using 5000 

replications, are reported below in table 4.4.1. 
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Table 4.4.1. Rejection Rates for Vogelsang Test Statistics, evidence from 

simulations with 5000 replications 
PSI PS2 PSW1 PSW2 

1 0.00 0.048 0.046 0.047 0.047 
0.05 

r 

0.058 0.063 0.058 0.060 
0.10 0.078 0.074 0.077 0.072 
0.20 0.130 0.111 0.128 0.111 

0.95 0.00 0.025 0.034 0.025 0.032 
0.05 0.050 0.061 0.050 0.062 
0.10 0.107 0.105 0.108 0.104 
0.20 0.226 0.184 0.224 0.181 

0.90 0.00 0.021 0.036 0.021 0.034 
0.05 0.093 0.103 0.096 0.104 
0.10 0.234 0.211 0.238 0.212 
0.20 0.441 0.328 0.438 0.323 

0.80 0.00 0.026 0.041 0.025 0.042 
0.05 0.327 0.301 0.346 0.312 
0.10 0.661 0.500 0.674 0.498 
0.20 0.874 0.642 0.869 0.635 

0.70 0.00 0.027 0.044 0.028 0.042 
0.05 0.660 0.529 0.682 0.535 
0.10 0.926 0.724 0.930 0.721 
0.20 0.989 0.834 0.990 0.827 

0.60 0.00 0.028 0.042 0.029 0.042 
0.05 0.889 0.687 0.908 0.698 
0.10 0.991 0.847 0.992 0.844 
0.20 1.000 0.920 1.000 0.917 

¢: value of the autoregressive coefficient in the data generating process, ß: value of the trend 
coefficient in the data generating process, PSI (4,537), PS2 (2,784), PSW1 (1,013) and PSW2 
(0,612) are the Vogelsang test statistics (critical values are given in parentheses). 

The simulation results show that, at least in the case of a first order autoregressive 

data generating process, the test has high power for large trend coefficients and 

does not suffer from the spurious rejection problem observed in ordinary trend 

stationary models for first order integrated and near integrated series. However the 

power of the Vogelsang test can be observed to fall substantially as the value of the 

trend coefficient decreases and for higher values of the autoregressive coefficient. 

For autoregressive coefficient values equal to or close to one, rejection rates for 
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non-zero coefficients fall to very low levels. For the kind of low coefficient values 

obtained above for the GYCPI series the rejection rates for the l(l) case and for the 

case where ý=0.95 fall to values of around 5% and below. In view of the observed 

downward bias in estimating the autoregressive coefficient the possibility of low 

powered Vogelsang tests should therefore be borne in mind even in those cases 

where the estimated coefficients take values of around 0.9. 

4.4.2. Results of the Vogelsang Test 

Applying the Vogelsang test to the commodity price series underlying the GYCPI 

yielded the results given in table 4.4.2. Columns two to five list the values obtained 

for the test statistic identified in the header row. Those values which identify a 

trend coefficient as significant at the 5% level are identified by an asterisk. The 5% 

critical values differ by test statistic and are 4.537 for PSI, 2.784 for PS2,1.013 for 

PSW1 and 0.612 for PSW2. The only two commodities for which a trend term is 

identified as unambiguously significant are Hides and Timber. (The series for 

Hides has been dropped in the remaining parts of this study since the series was no 

longer updated after 1995. Estimation results for ARIMA models for Hides are 

given in Appendix IV. iv. ) There is, moreover, mixed evidence in favour of a trend 

for Lamb, where the PSW2 and PS2 statistics are significant, and for Aluminium, 

where the PSWI and PSI statistics suggest the presence of a significant trend term. 

For Wheat and Sugar, only the PSWI statistic would suggest that the trend 

coefficient is significant. 
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Table 4.4.2 Test Results for the Vogelsang Test statistics 
Commodity PS1 PS2 PSW1 PSW2 

Coffee 0.631 1.348 0.048 0.108 
Cocoa 0.000 0.000 0.000 0.000 

Tea 0.000 0.000 0.001 0.000 
Rice 2.295 0.659 0.923 0.242 
Wheat 3.423 0.349 1.238* 0.108 

Maize 0.589 0.000 0.255 0.000 
Su ar 3.391 1.271 1.031* 0.360 

Beef 0.837 2.217 0.132 0.365 
Lamb 3.087 9.886* 0.608 2.080* 

Bananas 0.000 0.000 0.000 0.000 
Palm oil 0.428 0.000 0.181 0.000 
Cotton 0.215 0.005 0.089 0.001 

Jute 0.000 0.000 0.004 0.000 
Wool 
__. . 

0.079 
w4 IAi 

0.000 
/ /A/i 

0.025 
A AA A. L 

0.000 
A I1AAJr 

niaes 0.100 U. Vý 4.7z-. º I. J44 
Tobacco 0.001 0.000 0.000 0.00 
Rubber 2.677 0.001 0.590 0.00 
Timber 48.875* 48.287* 11.461* 11.265* 
Co er 0.000 0.000 0.000 0.000 
Aluminium 12.860* 1.845 2.700* 0.338 

Tin 0.026 0.004 0.000 0.000 
Silver 0.000 0.000 0.000 0.000 
Lead 0.077 0.008 0.112 0.010 
Zinc 0.191 0.053 0.013 0.003 

cion fra�t values for the test statistic in auestion are identified by *. The 5% asvmntotic critical 
values for the four test statistics in the table are: 4.537 for PSI, 2.784 for PS2,1.013 for PSW 1 and 
0.612 for PSW2. 

Bearing in mind that the trend coefficients obtained for the GYCPI series often 

take low values, a possible failure of the Vogelsang test to reject the null 

hypothesis of no trend for a non zero trend term should be considered. The results 

also don't provide evidence that would tempt one to classify one of the test 

statistics in question as inherently superior: for Aluminium, the null hypothesis is 

rejected by PSI and PSWI but not by PS2 or PSW2, while for Lamb the null 

I hypothesis is rejected by PS2 and PSW2 but not by PSI or PSW1. 
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4.4.3. Simulation evidence on the Vogelsang Test Statistics 

To further assess the performance of the Vogelsang test for the commodities 

covered, simulation experiments were conducted for the commodity series in 

question1'. Table 4.4.3. lists the rejection rates for the four Vogelsang test statistics, 

when data series where simulated for a model in levels without trend and the 

Vogelsang Test was applied subsequently to the simulated series over 5,000 

replications. 

16 The simulation methodology used is again as described in 4.1. Coefficient estimates and residual 
standard errors used in the simulations were obtained from the ARIMA models selected by SBC as 
specified in column one of each table showing simulation results for the Vogelsang test. 
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Table 4.4.3. Rejection Rates of the Vogelsang Test Statistics When Series are 
Generated by a t renuiess i u rrocess. 

Commodity ARIMA PS1 PS2 PSW1 PSW2 

Coffee 1,0,0 0.024 0.037 0.023 0.038 
Cocoa 1,0,0 0.028 0.041 0.027 0.041 
Tea 1,0,0 0.019 0.030 0.018 0.030 
Rice 1,0,1 0.022 0.038 0.021 0.035 
Wheat 0,0,3 0.024 0.045 0.024 0.047 
Maize 1,0,0 0.027 0.041 0.026 0.043 
Su ar 1,0,1 0.027 0.043 0.026 0.042 
Beef 1,0,0 0.025 0.033 0.026 0.034 
Lamb 5,0,0 0.005 0.018 0.004 0.019 

Bananas 1,0,0 0.025 0.038 0.025 0.037 
Palm oil 1,0,1 0.024 0.038 0.023 0.04 
Cotton 1,0,0 0.027 0.036 0.027 0.036 
Jute 1,0,0 0.024 0.037 0.022 0.036 
Wool 1,0,0 0.024 0.035 0.023 0.032 
Hides 1,0,0 0.020 0.038 0.019 0.035 

Tobacco 1,0,0 0.030 0.039 0.030 0.038 
Rubber 1,0,0 0.027 0.035 0.027 0.035 
Timber 1,0,0 0.023 0.034 0.023 0.031 
Copper 1,0,0 0.023 0.040 0.023 0.039 

Aluminium 1,0,1 0.019 0.033 0.019 0.033 
Tin 1,0,0 0.023 0.035 0.023 0.033 

Silver 1,0,0 0.023 0.034 0.022 0.033 
Lead 1,0,0 0.021 0.034 0.021 0.032 
Zinc 1,0,1 0.028 0.045 0.029 0.043 

t ne )-/o asymptotic critical values tor the tour test statistics in the table are: 4.537 for PSI, 2.784 
for PS2,1.013 for PSW 1 and 0.612 for PSW2. Simulations were conducted over 5000 replications. 

Likewise, simulating from a difference stationary model without drift and 

subsequently computing the Vogelsang test over 5,000 replications yields the 

rejection rates given in table 4.4.4. 
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Table 4.4.4. Rejection Rates of the Vogelsang Test Statistics When Series are 
Generated by a n I(I) rrocess witnout u rnt. 

Commodity ARIMA PS1 PS2 PSW1 PSW2 

Coffee 0,1,0 0.046 0.050 0.045 0.047 
Cocoa 2,1,0 0.077 0.055 0.075 0.054 
Tea 0,1,0 0.055 0.055 0.055 0.055 
Rice 1,1,2 0.017 0.012 0.017 0.012 
Wheat 0,1,2 0.141 0.082 0.140 0.079 
Maize 0,1,2 0.214 0.119 0.216 0.117 
Sugar 0,1,2 0.191 0.102 0.189 0.099 
Beef 0,1,0 0.050 0.054 0.049 0.052 
Lamb 0,1,0 0.048 0.057 0.049 0.055 

Bananas 0,1,0 0.053 0.053 0.053 0.053 
Palm oil 2,1,2 0.097 0.064 0.097 0.062 
Cotton 0,1,2 0.105 0.045 0.104 0.045 
Jute 0,1,2 0.141 0.081 0.143 0.079 
Wool 0,1,2 0.168 0.100 0.168 0.096 
Hides 1,0,1 0.157 0.129 0.160 0.132 

Tobacco 0,1,0 0.052 0.053 0.050 0.053 
Rubber 0,1,0 0.051 0.054 0.050 0.055 
Timber 0,1,0 0.055 0.055 0.053 0.055 
Copper 0,1,0 0.051 0.057 0.050 0.055 
Aluminium 1,1,2 0.129 0.104 0.127 0.103 

Tin 0,1,0 0.051 0.055 0.051 0.053 
Silver 2,1,0 0.085 0.061 0.085 0.060 
Lead 0,1,0 0.046 0.049 0.045 0.047 
Zinc 1,1,2 0.028 0.045 0.026 0.042 

The 5% asymptotic critical values tor the tour test statistics in the table are: 4.537 for PSI, 2.784 
for PS2,1.013 for PSW 1 and 0.612 for PSW2. Simulations were conducted over 5000 replications. 

Tables 4.4.3. and 4.4.4. show that generally, the Vogelsang test tends to correctly 

fail to reject the null hypothesis of a zero trend coefficient when series are 

generated from a process without trend or drift coefficient regardless of whether 

the generating process is 1(0) or I(1). Rejection rates for the case where a trendless 

series is generated by an l(l) process are somewhat higher than in the stationary 

case except in the case of Rice, where they are somewhat lower, and in the case of 
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Zinc where rejection rates are very close. It can also be observed that rejection 

rates are higher for I(1) models with an MA 2 component, where they take values 

around 10% or above. In most of the remaining cases, however, the rejection rates 

obtained remain reasonably close to a value of 5%. 

It should be interesting then, to see how the test performs if data series are 

simulated including a trend using the coefficient and variance estimates obtained 

from fitting minimum SBC ARIMA models to the GYCPI data as above. The 

simulation results from doing so for trend stationary models with 5,000 

replications are reported in table 4.4.5 below. 
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Table 4.4.5. Rejection Rates of the Vogelsang Test Statistics When Series are 
Generated by an 1(0) Process with Trend. 

Commodity ARIMA PSI PS2 PSW1 PSW2 

Coffee 1,0,0 0.060 0.078 0.064 0.082 
Cocoa 1,0,0 0.028 0.047 0.029 0.045 

Tea 1,0,0 0.311 0.251 0.311 0.249 
Rice 1,0,1 0.715 0.612 0.739 0.614 
Wheat 0,0,3 0.920 0.784 0.933 0.788 
Maize 1,0,0 0.562 0.467 0.584 0.470 
Sugar 1,0,1 0.706 0.598 0.741 0.621 
Beef 1,0,0 0.130 0.139 0.132 0.140 
Lamb 5,0,0 0.263 0.431 0.273 0.439 

Bananas 1,0,0 0.033 0.044 0.033 0.043 
Palm oil 1,0,1 0.626 0.546 0.655 0.556 
Cotton 1,0,0 0.286 0.265 0.297 0.273 
Jute 1,0,0 0.088 0.102 0.091 0.106 
Wool 1,0,0 0.441 0.364 0.452 0.366 
Hides 1,0,0 0.800 0.619 0.821 0.628 

Tobacco 1,0,0 0.656 0.411 0.638 0.399 
Rubber 1.0.0 0.675 0.508 0.682 0.506 
Timber 1,0,0 0.883 0.685 0.889 0.685 
Copper 1,0,0 0.056 0.072 0.054 0.072 

Aluminium 1,0,1 0.889 0.716 0.895 0.715 
Tin 1,0,0 0.023 0.037 0.022 0.036 

Silver 1,0,0 0.025 0.037 0.023 0.037 
Lead 1,0,0 0.169 0.183 0.179 0.188 
Zinc 1,0,1 0.036 0.054 0.037 0.053 

The 5% asymptotic critical values for the tour test statistics in the table are: 4.537 for PSI, 2.784 
for PS2,1.013 for PSW 1 and 0.612 for PSW2. Simulations were conducted over 5000 replications. 
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The corresponding results when simulating from an l(l) series with drift, again 

over 5000 replications, are given in table 4.4.6. 

Table 4.4.6. Rejection Rates of the Vogelsang Test Statistics When Series are 
( nPratPrl by nn i(11 Process with Drift. 

Commodity ARIMA PSI PS2 PSW1 PSW2 

Coffee 0,1,0 0.053 0.058 0.056 0.056 
Cocoa 2,1,0 0.095 0.068 0.096 0.069 

Tea 0,1,0 0.057 0.059 0.059 0.058 
Rice 1,1,2 0.599 0.452 0.612 0.456 
Wheat 0,1,2 0.288 0.149 0.291 0.148 
Maize 0,1,2 0.414 0.204 0.417 0.202 
Sugar 0,1,2 0.262 0.131 0.262 0.131 
Beef 0,1,0 0.052 0.050 0.052 0.050 
Lamb 0,1,0 0.069 0.068 0.067 0.066 

Bananas 0,1,0 0.052 0.056 0.051 0.056 
Palm oil 2,1,2 0.103 0.069 0.102 0.069 
Cotton 0,1,2 0.140 0.058 0.139 0.057 
Jute 0,1,2 0.176 0.101 0.178 0.100 
Wool 0,1,2 0.461 0.219 0.466 0.217 
Hides 1,0,1 0.100 0.112 0.101 0.115 

Tobacco 0,1,0 0.050 0.054 0.051 0.052 
Rubber 0,1,0 0.075 0.078 0.075 0.076 
Timber 0,1,0 0.055 0.057 0.054 0.056 
Copper 0,1,0 0.056 0.063 0.056 0.061 
Aluminium 1,1,2 0.853 0.704 0.858 0.702 

Tin 0,1,0 0.052 0.052 0.051 0.050 
Silver 2,1,0 0.085 0.062 0.083 0.058 
Lead 0,1,0 0.058 0.056 0.059 0.055 
Zinc 1,1,2 0.029 0.044 0.028 0.045 

The 5% asymptotic critical values for the four test statistics in the table are: 4.537 for PSI, 2.784 
for PS2,1.013 for PSWI and 0.612 for PSW2. Simulations were conducted over 5000 replications. 

Rejection rates for a large number of trend stationary series are rather low often 

taking values equivalent to around 5% and surpassing 50% only for some 

commodities. Where the data generating process is difference stationary, higher 

rejection rates generally occur in models with an MA(2) component. There also 
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appear to be differences in the rejection rates depending on the order of integration 

of the data generating process. Rejection rates for simulations with difference 

stationary data generating processes are generally somewhat lower than in the case 

of simulations where the DGP is 1(0). Exceptions to this rule are the results for 

Cocoa, Bananas, Tin and Silver, where rejection rates are higher. Very close values 

for the observed rejection rates occur in the cases of Copper and Aluminium, for 

the PS2 and PSW2 values of Jute and the PSI and PSW1 values for Wool. 

Rejection probabilities, which are consistently above 0.5 are obtained for Rice and 

Aluminium. In the cases of Maize, Wheat, Sugar, Palm Oil, Hides, Rubber and 

Timber rejection probabilities are consistently above or at least close" to 0.5 when 

the DGP is stationary in levels and fall substantially below this value for difference 

stationary models. These observed differences in the rejection probabilities 

obtained seem to contradict Vogelsang's assertion that the test proposed is 

insensitive to the order of integration so long as the data generating process is 

either I(1) or 1(0). At the very least, it appears that the test is sensitive to different 

model parameterisations rather than merely the significance of the trend 

component. 

To further compare the simulation results for specific commodity series with the 

rejection rates given in table 4.4.1 the estimated trend or drift coefficient values 

can be divided by the standard error of the residual. This should facilitate 

comparison with the results in table 4.4.1 since for these a residual variance of 1 

has been imposed on the data generating process. The adjusted trend coefficients 
17 Rejection probabilities somewhat below 0.5 are obtained for the PS2 and PSW2 statistics for 
Maize in the 1(0) case with trend. 
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are given below in table 4.4.7. They were obtained using trend coefficient 

estimates and standard errors of the residuals from the minimum SBC models in 

levels. 

Table 4.4.7. Normalised Values for Trend Coefficients 
Commodity Trend 

Coefficient 
Commodity Trend 

Coefficient 
Coffee 0.018 Jute -0.031 
Cocoa -0.012 Wool -0.081 
Teat -0.046 Hides* -0.049 
Rice -0.069 Tobaccot 0.033 
Wheat -0.069 Rubber 

-0.104 
Maize -0.049 Timber 0.076 
Sugar -0.034 Copper -0.023 
Beef 0.067 Aluminium -0.124 
Lamb 0.094 Tin 

-0.005 Bananas -0.012 Silver 
-0.001 

Palm Oil -0.049 Lead -0.033 Cotton -0.061 Zinc 0.003 
tData up to 1997, *Data available up to 1995 

Just over half of the adjusted coefficient estimates take absolute values 

corresponding to coefficients of around 0.05 or below in table 4.4.1. The remaining 

adjusted coefficient estimates fall mostly into the range of 0.5 to 0.1, although the 

normalised trend coefficient estimates for Aluminium and Rubber take values of 

-0.124 and -0.104 respectively. It can be concluded from the simulation results in 

table 4.4.1, that low rejection rates between 0.05-0.10 can be expected for first 

order integrated or near integrated series with coefficient values of this magnitude. 

However, for rigorous comparisons along these lines, one should concentrate on 

those cases for which the data generating process in the above simulation 

procedures is identified as ARIMA (1,0,0) by the Schwarz Bayesian Criterion. 

Table 4.4.8 below summarises the adjusted trend coefficient values as presented in 
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table 4.4.7 above as well as the estimated values for the first order autoregressive 

coefficient from fitted ARIMA(1,0,0) models. 

Table 4.4.8. Normalised Trend Coefficients and estimated AR(1) coefficient 

values for first order autoregressive price series. 
Commodity AR(1) Trend 

Coefficient 
Commodity AR(1) Trend 

Coefficient 
Coffee 0.803 0.018 Tobaccot 0.953 0.033 
Cocoa 0.870 -0.012 Hides* 0.633 -0.049 
Teat 0.883 -0.046 Rubber 0.796 -0.104 
Maize 0.720 -0.049 Timber 0.680 0.076 
Beef 0.905 0.067 Copper 0.856 -0.023 
Bananas 0.926 -0.012 Tin 0.886 -0.005 
Cotton 0.833 -0.061 Silver 0.884 -0.001 
Jute 0.848 -0.031 lead 0.795 -0.033 
Wool 0.824 -0.081 

tData up to 1997, *Data available up to 1995 

Considering the estimates for the AR(1) coefficients, the simulation results 

obtained for the commodity price series covered seem to correspond closely to the 

results presented in table 4.4.1. Given the frequent combination of relatively low 

trend coefficient values and high positive autoregressive coefficients in the 

estimated trend stationary models, most series have rather low rejection rates for 

the Vogelsang test, ranging from values equivalent to around 0.3-0.4 in the case of 

Bananas to values of 0.8 and above for commodities such as Hides and Timber. In 

any cases rejection rates are well below 0.5 for most of the above series. 

Exceptions are Maize, where the estimated AR coefficient takes a value of 0.72 

and Rubber, where the normalised trend coefficient with -0.100 takes a 

comparatively high absolute value. Indeed Hides and Timber, the two series for 

which the Vogelsang test unambiguously indicates the presence of a trend, and for 

which high rejection rates were obtained also, are characterised by their relatively 
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low AR(1) coefficient values of 0.63 and 0.68 respectively, while the normalised 

trend coefficient estimates take values of 0.49 and 0.7 respectively". 

This role of the AR(1) coefficient is crucial, in particular when comparing with the 

rejection rates for I(1) series. It can be seen immediately that the rejection rates 

even for the relatively large drift coefficient value of 0.2 scarcely surpass 0.10, 

(being close to 0.13 for the PSI and PSW1 test statistics). For drift coefficient 

values of 0-0.05% rejection rates remain close to 0.05, rising to no more than ca. 

0.07-0.08 for drift coefficient values around 0.1. The ratios of coefficient values 

and the standard error of the residual for the difference stationary models identified 

by minimum SBC are given in table 4.4.9. below. 

Takle 4.4.9. Adiusted values for drift coefficients 
Commodity Drift Coefficient Commodity Drift Coefficient 

Coffee 0.009 Jute -0.037 
Cocoa -0.038 Wool -0.078 
Teat -0.058 Hides* -0.043 
Rice -0.072 Tobaccot 0.019 
Wheat -0.062 Rubber -0.105 
Maize -0.048 Timber 0.050 
Sugar -0.038 Copper -0.050 
Beef 0.039 Aluminium -0.126 
Lamb 0.072 Tin -0.017 
Banana 0.004 Silver -0.018 
Palm Oil -0.033 Lead 

-0.042 
Cotton -0.053 Zinc 0.002 

tData up to 1997, *Data available up to 1995 

Strict comparisons with the simulation results in table 4.16 are again only possible 

for those commodity series where the difference stationary model selected by 

minimum SBC is ARIMA (0,1,0). It is apparent, however, that almost all the 

1sit may be worth noting that the minimum SBC specifications for Hide identify a significant trend 
and drift term. The ARIMA(1,0,0) model specifies a trend coefficient of -0.012 with a t-ratio of 
-5.149, while the ARIMA(1,1,1) model -which is selected without imposing additional constraints- 
returns a drift coefficient estimate of -0.011 and a t-ratio of -2.827. 
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absolute coefficient values fall within the range 0-0.1. The exception is the 

normalised drift coefficient for Aluminium (-0.125) for which the l(l) ARIMA 

model is ARIMA (1,1,2). Nevertheless, in those cases where direct comparisons 

are possible, the low adjusted coefficient values lead one to expect low rejection 

rates within a 0.05-0.10 range or below. This is also confirmed by the rejection 

rates obtained for the simulations for the different commodity price series 

presented in table 4.4.6. 

The implication of these simulation results is then that in those cases where there is 

a close correspondence between the rejection rates for the I(1) and 1(0) models 

containing a trend term, the rejection rates for the series generated under the null 

and alternative hypotheses are rather close as well. This in turn implies that, under 

these circumstances, Vogelsang's test provides no basis on which to form 

predictions as to the presence of a significant trend term with a great degree of 

confidence, at least not in moderately and small sized samples. In those cases, 

where rejection rates for trend stationary models are high while those for I(1) 

models with drift are low, one is again faced with the necessity of deciding a priori 

on the order of integration. While spurious rejections are not a major problem 

when the Voglesang test is fitted to either stationary or difference stationary 

processes, low power in testing for significant drift terms remains an issue. 

Given this difference in performance, one may then assess the Vogelsang test 

against the background of unit root pre-test results. Among the 24 commodities, 

those identified as trend stationary by ADF tests are Sugar, Lamb, Timber, Zinc, 

Aluminium and Hides. Among these, higher rejection rates, i. e. rejection rates 
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noticeably above 50%, are obtained for Sugar, Timber, Aluminium and Hides 

when simulating from a stationary data generating process with trend. It is worth 

remembering then that the two commodities for which the Vogelsang Test 

unambiguously indicates the presence of a trend, Timber and Hides, have rejection 

rates between 0.6 and 0.9 when simulations are based on trend stationary series. 

The corresponding rejection rates for Lamb are 0.263 and 0.273 for the PSI and 

PSW1 statistics respectively, while the rejection rates for the PS2 and PSW2 

statistics are 0.431 and 0.439 respectively. It is, not surprisingly, on the basis of the 

PS2 and PSW2 statistic, that the Vogelsang Test tends to indicate the presence of a 

trend for Lamb. In the case of Aluminium, however, only the PSI and PS WI test 

statistics take values supportive of a trend, while the Vogelsang test statistics have 

rejection rates of 0.889 and 0.895 for the PSI and PSW1 statistics respectively and 

values of 0.716 and 0.715 for the PS2 and PSW2 statistics (again, when the DGP is 

stationary in levels). For sugar, only the PSW2 statistic seems to indicate the 

possible presence of a trend, although the rejection rates obtained for simulations 

from a trend stationary model yield values of 0.706 and 0.741 for the PSI and 

PSW1 statistics respectively and 0.598 and 0.621 for the PS2 and PSW2 statistics. 

For Zinc, finally, the Vogelsang test provides no support for the presence of a 

deterministic trend. 

Considering further those price series identified as trend stationary by the 

Leybourne McCabe test, high rejection rates of 0.50 or above are obtained for 

Wheat, Rubber and Palm Oil when simulating from a trend stationary model. For 

Lead finally, rejection rates fall to within 0.16-0.19, while for Coffee they fall to 
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values of around 0.06 to 0.08. Among these models, the only case where 

Vogelsangs Test gives at least some weak indication in favour of a significant 

trend is in the case of Wheat, where the PSWI statistic is significant. 

As pointed out above, rejection rates for difference stationary series with drift are 

below 50% in most cases and tend to fall below 0.10 for random walk plus drift 

models. 

4.5 Conclusion 

Giving further consideration to the issue of trend measurement in primary 

commodity price series and the order of integration of these series, different 

conclusions on stationarity can be arrived at if a stationarity test is applied. Using 

the Leybourne McCabe test the price series for Coffee, Wheat, Palm Oil, Rubber 

and Lead can now be classified as trend stationary while they would be identified 

as difference stationary on the basis of the ordinary ADF test. It should be noted 

though that some fundamental problems of uncertainty surrounding a priori testing 

in general still persist in this case. The Leybourne McCabe test, while accounting 

for large moving average roots, does not remove the fundamental problems of 

essentially arbitrarily specified critical values for any test statistic. The issue of 

possible structural instability and multiple structural breaks also remains 

unresolved. 

Aside from the issues of uncertainty surrounding a priori testing, it was shown that 

spurious rejections of the null hypothesis of a zero trend coefficient are a problem 

in near integrated time series with first order autoregressive coefficients as low as 

0.7. Some progress can be made in the case of AR(1) series, if one attempts to 
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correct the critical values used in hypothesis tests for the effect of serial 

correlation, yet there remain problems due to the fact that estimates of the first 

order autoregressive coefficient tend to be biased. 

In the case of difference stationary models a frequent problem is a loss of power of 

the conventional t-test if the model selected by SBC is underparameterised. It has 

been attempted to avoid this problem by either fitting an ARIMA(1,1,1) model 

instead of random walk plus drift as an alternative to a first order autoregressive 

trend stationary model, by constraining the minimum SBC values or selecting the 

appropriate model by AIC, with selection by AIC being the more generally 

applicable approach, since it has not been confined to comparing ARIMA (1,0,0) 

with ARIMA(0,1,0) models. This method somewhat increases the danger of 

spurious rejections of the null hypothesis for integrated series19 and yields t-tests 

which are more powerful than t-tests for underparameterised difference stationary 

models. It also avoids the problem of spurious rejection for near integrated series, 

although the t-test on the drift coefficient is still less powerful than for the t-test in 

the trend stationary model selected by SBC. 

An alternative testing procedure proposed by Vogelsang is said to be applicable for 

time series which are either trend stationary or I(1). Application of the test to the 

present data series and further simulation experiments do reveal however, that the 

results obtained are far from unambiguous. Vogelsang's test was shown to have 

low power in integrated and near integrated series and where the estimated 

coefficient values are low. The power of the test is high for AR(l) series with low 

19 This has at least been shown for the case of ARIMA (1,1,1) models. 
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values for the autoregressive coefficient, while avoiding spurious rejections of the 

null hypothesis when the trend coefficient is actually zero. This difference in 

performance does however imply that a priori knowledge of the order of 

integration and knowledge of the value of the autoregressive coefficient in the data 

generating process become important in assessing the reliability of the test. Hence, 

uncertainty about a priori testing for stationarity and the bias in measuring the 

magnitude of the autoregressive coefficient remain an issue with the Voglesang 

test. It has not been clear, moreover, which of the various test statistics proposed 

by Vogelsang is most appropriate, while the test results have not been uniform for 

all commodity price series. 

The main conclusion from the tests conducted then seems to be that no one single 

testing procedure should be relied upon to yield conclusive results. Table 4.5.1. 

summarises the results from various tests on the trend coefficient. 

Column two gives the drift coefficient from the difference stationary model 

selected by AIC. Conclusions on the significance of the trend coefficient from the 

t-ratio from the model in levels selected by SBC are given in column three. 1(0) 

Models with a significant trend coefficient have been listed here only if either they 

were identified as trend stationary through a priori testing or if there was evidence 

in favour of a significant trend or drift coefficient from one of the other tests 

employed. Those series with no evidence in favour of a significant trend or drift 

coefficient have also been omitted from table 4.5.1. Column four summarises 

conclusions on the significance of the drift coefficient based on the t-ratio from the 

difference stationary model selected by AIC. The results of Vogelsang's test are 
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summarised in column five, with the numbers in brackets indicating how many of 

the 4 tests indicated the presence of a significant trend. The column labelled S&P 

indicates if the various tests proposed by Sun and Pantula -other than the one listed 

in the final column- fail to reject the null hypothesis of a zero trend coefficient. In 

the final column labelled S&P2, the results of a test based on a modified pre-test 

method by Sun and Pantula (1999) are listed. This test does not reject the null 

hypothesis of a zero trend coefficient for any of the commodities covered, and 

yields inconclusive results for timber. 

Table 4.5.1. Evidence in favour of a trend or drift coefficient from various 
tests. 

Commodity t-ratio 
SBC/IO 

t-ratio 
AIC/I1 

Vogelsang S&P S&P2 

Aluminium -0.019 * * 2/4 - - 
Hides -0.011" * * 4/4 
Lamb 0.015 * / 2/4 - - Lead -0.008 * / 0/4 / / 
Palm Oil -0.010 * / 0/4 - - 
Rice -0.012 * * 0/4 - - Rubber -0.029 * * 0/4 * / 
Sugar -0.011 * * 1/4 - - Timber 0.008 * * 4/4 * ? 
Wheat -0.011 * 1/4 - - 

if: udL4 for neues enu in iyya, -: not appucame 
*: Significant Trend / Drift coefficient, "/": Trend / Drift coefficient not significant, 
(/): Trend / Drift coefficient marginally insignificant, ?: Test inconclusive 

Following the results presented in the table, one may conclude with reasonable 

confidence, that a significant trend or drift term is present in the price series of 

Aluminium, Hides, Rubber, Sugar and Timber. Evidence in favour of a trend is 

strongest for Timber and Hides. There may be some doubt about this conclusion in 

the case of Rubber, since none of the Vogelsang test statistics rejects the null 

hypothesis, although some of the Sun and Pantula tests do. 
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The case is less clear for Rice, Lamb and Wheat. The Vogelsang test statistics give 

ambiguous results for Lamb and Wheat providing stronger evidence against a trend 

in the case of Wheat. The price series for Wheat is identified as difference 

stationary by the ADF test and as trend stationary by the Leybourne McCabe test. 

The t-ratio on the drift coefficient takes a value of -1.923 when the difference 

stationary model is selected by AIC, thus showing the trend coefficient to be only 

marginally insignificant. For Rice, rejections of the null hypothesis are obtained 

from the t-tests in the trend stationary model and from the difference stationary 

model when the latter is selected by either SBC or AIC. Sun and Pantula's tests are 

not applicable in this case, however, and none of the Vogelsang tests reject the null 

hypothesis. In the cases of Lead and Palm Oil one is tempted to accept the null 

hypothesis of a zero trend coefficient, since only one test -the t-ratio from the trend 

stationary model- identifies the trend coefficient as significant. 

Adopting a cautious attitude, the presence of a trend or drift in the relative price 

series can only be inferred for seven of the twenty four commodities: Aluminium, 

Hides, Rice, Rubber, Sugar, Timber and Wheat. All of these price series also show 

some evidence in favour of a significant drift coefficient in the difference 

stationary model selected by AIC. No one particular test seems to be sufficient for 

conclusions about the significance of the trend coefficient, so that it appears most 

adequate to consider evidence from a variety of testing procedures when deciding 

on the significance of a trend term. When selecting models on the basis of 

information criteria while allowing for a trend or drift term, one should consider 
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the AIC for the selection of difference stationary representations of the data 

generating process while focusing on the SBC in the trend stationary case. 
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Appendix IV. i. Estimation Output for ARIMA Models 

with Higher Parameterisations 

In section 4.1.2. it was outlined why the selection of overly parsimonious model 

specifications by the SBC may lead to mistaken inferences about the presence of a 

drift term and two methods for selecting more elaborate presentations of the 

underlying time series were employed. This appendix provides the full estimated 

equations underlying the summary output in tables 4.1.7. and 4.1.8. 

N. M. ARIMA(p, 1, q) models with p>=1 and q>=1, selected by SBC. 

Table 4.1.7. summarised the estimation results for drift coefficients and t-ratios 

obtained when ARIMA models are selected by the Schwarz Bayaesian Criterion 

while the minimum number of autoregressive lags (p) and the minimum number of 

moving average terms (q) are constrained to be at least one. The full estimated 

equations for the relevant commodities, i. e. those for which an ARIMA(1,0,0) 

model was specified in levels while the same selection process for difference 

stationary models yielded ARIMA(0,1,0) specifications, are specified below. The 

standard errors are again indicated in parenthesis below the coefficient estimates. 

In each case Ljung Box Q statistic for 12 autocorrelations is reported with P-values 

given in parentheses'. 

1 For the ARIMA(1,1,1) models for Lamb (and Tea with 6.6%) this indicates the possible presence 
of autocorrelated residuals. 
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Commodity: Bananas: 
Model: ARIMA(1,1,1) with constant 
SBC = -179.663 , Ljung-Box Q(12): 8.933 (0.538) 
Degrees of freedom: 95 

Opi =0.000 +Vg 
(0.010) 

v, +0.430 vg-1 = e, + 0.538 8g_1 (0.661) (0.092) (0.618) 

Commodity: Tobacco 
Model: ARIMA(3,1,2) with constant 
SBC = -92.650, Ljung-Box Q(12): 6.308 (0.504) 
Degrees of freedom: 91 

Apt =0.003 +v, 

v, -1.272 vi-1 +0.823V$-2+0.1 18 VI-3 = Et - 1.349 E1-1 +E1_2 (0.115) (0.168) (0.111) (0.131) (n. a. ) (n. a. ) 

Commodity: Rubber: 
Model: ARIMA(1,1,2) with constant 
SBC = 41.130, Ljung-Box Q(12): 5.783 (0.761) 
Degrees of freedom: 94 

Apt (öö 
49 

+v1 

v1-0.769 vI_1= Et - 0.827 e _, -0.173 E1_2 (0.104) (0.274) (n. a. ) (n. a. ) 

Commodity: Timber: 
Model: ARIMA(1,1,1) with constant 
SBC = -75.277, Ljung-Box Q(12): 9.000 (0.532) 
Degrees of freedom: 95 

Apr =0.0 11 +v1 

v! -0.848 vI_I = Et - Er-1 (0.149) (0.154) (n. a. ) 
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Commodity: Copper 
Model: ARIMA(1,1,2) with constant 
SBC = -37.411 , Ljung-Box Q(12): 2.916 (0.968) 
Degrees of freedom: 94 

Opt=-0.008+v, 
(0.011) 

v, -0.484 vi-1= Et - 0.467 E, _1-0.237 et-2 (0.288) (0.186) (0.287) (0.113) 

Commodity: Tin 
Model: ARIMA(1,1,1) with constant 
SBC = -34.893, Ljung-Box Q(12): 5.020 (0.890) 
Degrees of freedom: 95 

Apt =-0 . 004 +v, 

v, + 0.07 9v1_1 = eg + 0.144 Er-1 (1.559) (0.192) (1.548) 

Commodity: Lead 
Model: ARIMA(1,1,1) with constant 
SBC = -43.721 , Ljung-Box Q(12): 9.992 (0.441) 
Degrees of freedom: 95 

Op, =-0.005 +v, 
(0.005) 

vi -0.851 vt-1= Et - Et-1 (0.107) (0.181) (n. a. ) 
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IV. i. ii. ARIMA(1,1,1) models 

ARIMA(1,1,1) models are estimated for Tea, Tobacco and Copper, standard errors 

are given in parentheses below the coefficient estimates. 

Commodity: Tea 
Model: ARIMA(1,1,1) with constant 
SBC = -63.689, Ljung-Box Q(12): 17.404 (0.066) 
Degrees of freedom: 94 

Opt=-0.010+v, 
(0.017) 

v, +0.982 vi_1 = Er - Er_1 (0.169) (0.164) (n. a. ) 

Commodity: Tobacco 
Model: ARIMA(1,1,1) with constant 
SBC = -91.787, Ljung-Box Q(12): 10.924 (0.364) 
Degrees of freedom: 94 

Opt 0.003 +v, 
(0.015) 

vi -0.160 v, _1= E, - 0.103 et-1 (1.830) (0.143) (1.184) 

Commodity: Copper 
Model: ARIMA(1,1,1) with constant 
SBC = -36.597, Ljung-Box Q(12): 6.891 (0.736) 
Degrees of freedom: 95 

Apt=-0009+v, 

vj +0.400 vi -I = e, + 0.504 Et-1 (0.744) (0.190) (0.704) 
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W. I. M. ARIMA(p, 1, q) models selected by AIC 

The difference stationary model specifications selected by AIC, which were 

computed for all commodities are as follows (standard errors are again in 

parentheses below the estimated coefficient values): 

Commodity: Coffee 
Model: ARIMA(0,1,2) with constant 
AIC = 7.121 , Ljung-Box Q(12): 6.668 (0.756) 
Degrees of freedom: 95 

Opt =0.003 +v, 

v1= Er - 0.043 e, -0.255 Er-2 (0.247) (0.100) (0.102) 

Commodity: Cocoa 
Model: ARIMA(2,1,0) with constant 
AIC = 5.097, Ljung-Box Q(12): 5.913 (0.823) 
Degrees of freedom: 95 

Opt 0.009 +v1 
(0.020) 

v, -0.082 vi_i +0.311 v1_2 = E1 (0.097) (0.097) (0.244) 

Commodity: Tea 
Model: ARIMA(0,1,2) with constant 
AIC = -77.963, Ljung-Box Q(12): 9.869 (0.452) 
Degrees of freedom: 94 

Apt =-0.011 +v, 
(0.011) 

v, = Er - 0.044 Ef_1-0.300 E1--2 (0.159) (0.099) (0.099) 
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Commodity: Rice 
Model: ARIMA(1,1,2) with constant 
AIC = -71.385, Ljung-Box Q(12): 8.037 (0.530) 
Degrees of freedom: 94 

Apt=-0.012+v1 
(0.005) 

v, -0.551 v, _1 = El - 0.349 E, _1-0.542 C, -2 (0.140) (0.164) (0.131) (0.093) 

Commodity: Wheat 
Model: ARIMA(0,1,4) with constant 
AIC = -84.132, Ljung-Box Q(12): 6.880 (0.550) 
Degrees of freedom: 93 

Ap, =-0.011+v, (0.006) 

Vi = 81 + 0.092 81-2 -0.380 Et-2 -0.068 81_3 -0.308 e, -4 (0.153) (0.100) (0.103) (0.102) (0.102) 

Commodity: Maize 
Model: ARIMA(0,1,2) with constant 
AIC = -29.228, Ljung-Box Q(12): 11.805 (0.298) 
Degrees of freedom: 95 

Apt 0.10 +v, (0.007) 

vi = Ei - 0.218 Er-i -0.441 er-2 (0.205) (0.093) (0.093) 

Commodity: Sugar 
Model: ARIMA(0,1,5) with constant 
AIC = 55.357, Ljung-Box Q(12): 8.316 (0.306) 
Degrees of freedom: 92 

Ap, 0.011 +vt (0.003) 

vt = Ei - 0.064 Et_t -0.52181-2-0- 141 Et-3 +0.024 Ei-4 -0.298 ei-5 (0.306) (n. a. ) (n. a. ) (n. a. ) (n. a. ) (n. a. ) 
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Commodity: Beef 
Model: ARIMA(0,1,0) with constant 
AIC = -30.383 , Ljung-Box Q(12): 10.553 (0.568) 
Degrees of freedom: 97 

Op, =0.008 +vg 
(0.021) 

yr = ci 
(0.206) 

Commodity: Lamb 
Model: ARIMA(4,1,1) with constant 
AIC = -26.276, Ljung-Box Q(12): 4.540 (0.716) 
Degrees of freedom: 92 

Opt =0.015 v, (0.026) 

Vi +0.404 Vi-1 +0.040 v, _2 +0.018 Vi--3 -0.321 v,. = et + 0.455 E f_1 (0.233) (0.107) (0.108) (0.106) (0.205) (0.241) 

Commodity: Bananas 
Model: ARIMA(0,1,0) with constant 
AIC = -190.022, Ljung-Box Q(12): 10.778 (0.548) 
Degrees of freedom: 97 

Opi =0.000 +v t (0.009) 

yr= Er 
(0.091) 

Commodity: Palm Oil 
Model: ARIMA(0,1,3) with constant 
AIC = -21.176, Ljung-Box Q(12): 7.842 (0.550) 
Degrees of freedom: 94 

Opt=-0.010vi 
(0.009) 

v, = E, +0.032Et--1-0.42981_2-0.2108, _3 (0.212) (0.101) (0.091) (0.101) 
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Commodity: Cotton 
Model: ARIMA(2,1,3) with constant 
AIC = -89.016, Ljung-Box Q(12): 5.582 (0.589) 
Degrees of freedom: 92 

Op, 0.007 +v, (0.012) 

v, -1.130 vi-1 +0.595 vt_2 = E, - 1.323 E! _1 +0.408 CI-2 +0.285 81_3 (0.131) (0.130) (0.148) (0.152) (0.243) (0.130) 

Commodity: Jute 
Model: ARIMA(0,1,2) with constant 
AIC = -20.423 , Ljung-Box Q(12): 13.184 (0.214) 
Degrees of freedom: 95 

Op, =-0.008+vr (0.012) 

v1= Et - 0.053 Et_1-0.399 el-2 
(0.214) (0.095) (0.095) 

Commodity: Wool 
Model: ARIMA(0,1,2) with constant 
AIC = -48.509, Ljung-Box Q(12): 3.771 (0.957) 
Degrees of freedom: 95 

Op, =-0.014+v, (0.008) 

vi= Ei -0.172a1-1-0.4206t-2 (0.186) (0.094) (0.094) 

Commodity: Tobacco 
Model: ARIMA(3,1,2) with constant 
AIC = -108.098, Ljung-Box Q(12): 6.308 (0.504) 
Degrees of freedom: 91 

Ap, =0.003+v, (0.013) 

vt -1.272 vg_1 +0.823 Vl_Z +0.118 Vt_3 = Et - 1.349 Ei-1 +Et_2 (0.115) (0.168) (0.111) (0.131) (n"a. ) (n. a. ) 
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Commodity: Rubber 
Model: ARIMA(1,1,2) with constant 
AIC = 30.790, Ljung-Box Q(12): 5.783 (0.761) 
Degrees of freedom: 94 

4p, =-0029+v: 

vt -0.769 vs-1 = Et - 0.827 6, -i -0.173 et-2 (0.104) (0.274) (n. a. ) (n. a. ) 

Commodity: Timber 
Model: ARIMA(0,1,5) with constant 
AIC = -84.650, Ljung-Box Q(12): 2.435 (0.932) 
Degrees of freedom: 92 

Apr =0.001)12 +v, 

v, = at - 0.220 Er_1-0.321 61-2 -0.034 E1-3 -0.183 et-4-0.241 61-5 (0.150) (n. a. ) (n. a. ) (n. a. ) (n. a. ) (n. a. ) 

Commodity: Copper 
Model: ARIMA(1,1,2) with constant 
AIC = -47.751, Ljung-Box Q(12): 2.916 (0.968) 
Degrees of freedom: 94 

Apt =-0008+v, 

vi -0.484 v1_1 = Er - 0.467 Er_i -0.237 et-2 (0.288) (0.186) (0.287) (0.113) 

Commodity: Aluminium 
Model: ARIMA(1,1,2) with constant 
AIC = -84.632, Ljung-Box Q(12): 2.965 (0.966) 
Degrees of freedom: 94 

An, =-00029+v, 

vi -0.679 v1_1= el - 0.537 E, _1-0.463 ei-2 (0.103) (0.152) (n. a. ) (n. a. ) 
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Commodity: Tin 
Model: ARIMA(0,1,0) with constant 
AIC = -46.271 , Ljung-Box Q(12): 5.395 (0.943) 
Degrees of freedom: 97 

Op, =-0.003+v1 (0.019 ) 

yr = Er 
(0.190) 

Commodity: Silver 
Model: ARIMA(2,1,0) with constant 
AIC = -54.185, Ljung-Box Q(12): 8.089 (0.620) 
Degrees of freedom: 95 

Op, =-0.003+v, (0.014) 

v, -0.041 vr_1 +0.307 vt_2 = Er (0.098) (0.098) (0.181) 

Commodity: Lead 
Model: ARIMA(0,1,4) with constant 
AIC = -52.185, Ljung-Box Q(12): 4.736 (0.785) 
Degrees of freedom: 93 

Op, 0.008 +v, 
(0.007) 

vr= Er -0.092E, _1-0.134eg_2-0.246Et_3-0.178 etw (0.180) (0.102) (0.101) (0.101) (0.104) 

Commodity: Zinc 
Model: ARIMA(1,1,2) with constant 
AIC = -32.835, Ljung-Box Q(12): 6.374 (0.702) 
Degrees of freedom: 94 

Opt =0.000 +v1 (0.002) 

vt -0.478 vi-1 = Et - 0.639 e_ 1-0.361 al-2 (0.138) (0.197) (n. a. ) (n. a. ) 
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Appendix W. H. Further Details on the 
Leybourne-McCabe Stationarity Test 

IV. ii. i. Critical Values for Stationarity Tests 

Kwiatkowski et. al. (1992) provide a number of critical values for stationarity tests 

like those developed by Kwiatkowski et. al. (op. cit. ) and Leyboume and McCabe 

(1994) or Leyboume and McCabe (1999). Table IV. ii. i. details the critical values 

for the test statistic for a stationarity test including a trend (ß(p)). 

Table IV. ii. i. Upper tail Percentiles and Critical Values for the (7Sp(p)) Test 
Statistic 
Si nif. Level 0.100 0.050 0.025 0.010 
Critical Value 0.119 0.146 0.176 0.216 

Source: KwiatKOwsKI et. at. 1991 1 esting the ivutt Hypothesis of "Trend Stationarity, Journal of 
Econometrics, Vol. 54, pp159-178 

W. H. H. ARIMA(p, 1,1) Equations used in the Leybourne McCabe Test. 

Table 4.2.1 specifies the final values for the Sp(p) statistic obtained. This appendix 

lists the full specifications for the autoregressive equations used in computing the 

Leybourne McCabe test statistic. (The autoregressive terms are calculated for the 

residual rather than in terms of lagged dependent variables. It was shown in 

Chapter 2 though that the autoregressive and moving average coefficients should 

be equivalent in both cases. ) Along with the estimated equations, the Ljung Box Q 

statistic for eight autocorrelations is given with P-values in parentheses. (Q(8) was 

preferred over Q(6) since the latter does not allow one to compute the P-value for 

testing equations with five autocorrelations or more. For a similar reason, Q(10) is 
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reported in the case of Rice. )' The Z statistic on the last autoregressive parameter 

(as in Leybourne and McCabe (1999)) is also reported where appropriate. 

Coffee: ARIMA(1,1,1), 95 DF, Ljung-Box Q(8): 6.204 (0.401), Z=9.266 

Op, =0.005 +v, 

vg-0.931v, -1= Er - Ct-i (0.172) (0.247) (... ) 

Cocoa: ARIMA(1,1,1), 95 DF, Ljung-Box Q(8): 10.191 (0.117), Z=9.152 

Opt=-0.008+v, (0.026) 

v, +0.920= e, + Cr_t (0.086) (0.252) (... ) 

Tea: ARIMA(1,1,1), 95 DF , Ljung-Box Q(8): 10.500 (0.105), Z=9.726 

Op, =-0.010+v: (0.017) 

v, +0.982v1_1= Er + E, _1 (0.169) (0.164) (... ) 

Rice: ARIMA(8,1,1), 88 DF, Ljung-Box Q(10): 0.801 (0.371), Z---2.117 

Opt=-0.013+v, (0.006) 

v, -0.970v, _t + 0.575vt_2 - 0.319vß_3 + 0.290v, ß (0.184) (0.147) (0.171) (0.162) 

-0.223vr_5 + 0.187vt_6 - 0.233v1_7 + 0.269v,. 
(0.165) (0.157) (0.144) (0.107) 

= El - O. 791ei-1 
(0.164) (0.172) 

1 On this basis autocorrelated residuals are a possible problem in the estimated equations for 
Cotton, Jute and possibly Wheat (with 7.7%). 
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Wheat: ARIMA(5,1,1), 91 DF, Ljung-Box Q(8): 5.136 (0.077), Z=2.986 

Ap, =-0.009+v1 (0.005) 

v, -1.063v1_1 + 0.364v1_2 - 0.272v1-3 + 0.395v, - 0.300vr-5 
(0.146) (0.143) (0.150) (0.144) (0.123) 

= Et - Et-1 
(0.156) (n. a. ) 

Maize: ARIMA(2,1,1), 94 DF, Ljung-Box Q(8): 3.295 (0.655), Z--1.793 

Apt=-0.010+v, 
(0.007) 

vt -0.567v, _1 + 0.231 v, _2= e, - 0.779e _, (0.142) (0.112) (0.206) (0.116) 

Sugar: ARIMA(5,1,1), 91 DF, Ljung-Box Q(8): 2.089 (0.352)1.8735 Z=1.736 

Apt=-0.012+vi (0.018) 

v, +0.649v, _1 + 0.432v, _2 + 0.329v1_3 + 0.235v, ß + 0.295v1_5 
(0.308) (0.119) (0.158) (0.118) (0.101) 

= Er + 0.59281-1 
(0.321) (0.318) 

Beef: ARIMA(0,1,1), 96 DF, Ljung-Box Q(12): 7.272 (0.401), Z= n. a. 

Apr =0.008 +v, 

v, =e+0.055Er_1 (0.207) (0.102) 

Lamb: ARIMA(5,1,1), 91 DF, Ljung-Box Q(8): 1.895 (0.388), Z=-3.883 

Apt 
(. 

mä8+v' 

v, -0.957v, _1 + 0.030vt_2 - 0.032v1_3 - 0.322vi-4 + 0.390v1_5= e- et-1 (0.120) (0.130) (0.131) (0.132) (0.098) (0.197) (... ) 
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Bananas: ARIMA(1,1,1), 95 DF , Ljung-Box Q(8): 3.894 (0.691), Z=2.300 

Opt =0.000 +v, 
(0.010) 

v, +0.430vr_i= E, + 0.53881-1 
(0.661) (0.092) (0.618) 

Palm Oil: ARIMA(3,1,1), 93 DF, Ljung-Box Q(8): 4.648 (0.325), X3.306 

Opt=-0007+v1 

vr -1.032vr_1 + 0.402v1_2 - 0.332v1_3= Et - E, _1 (0.316) (0.139) (0.169) (0.214) (... ) 

Cotton: ARIMA(1,1,1), 95 DF, Ljung-Box Q(8): 17.128 (0.009), Z=4.549 

Apt 0. O009 +vt 

vl -0.584vr_1= Er - 0.783. -1_1 
(0.229) (0.164) (0.177) 

Jute: ARIMA(1,1,1), 95 DF , Ljung-Box Q(8): 12.149 (0.059), Z=5.014 

Apt_-0.009+v, 
(0.011) 

v, -0.616v, _1= E1 - 0.818Er_1 
(0.205) (0.223) (0.153) 

Wool: ARIMA(1,1,1), 95 DF, Ljung-Box Q(8): 5.273 (0.509), X4.290 

Apr=-0.015+v! 
(0.008) 

v, -0.528vr_1= at - 0.817e1_1 
(0.174) (0.190) (0.121) 

Tobacco: ARIMA(5,1,1), 90 DF, Ljung-Box Q(8): 0.636(0.728), Z=1.874 

Apt=0004+v, 

v1 +0.665v, _1 - 0.056v1_2 + 0.008v, _3 + 0.242v, ß + 0.268vt_5 
(0.358) (0.126) (0.126) (0.127) (0.108) 

_ e1 + 0.706E, j (0.140) (0.364) 
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Rubber: ARIMA(1,1,1), 95 DF, Ljung-Box Q(8): 7.060 (0.315), Z=9.165 

AP, - 0.030 +V (0.009) 

v, -0.921vt-1= Er - Ct-1 
(0.137) (0.281) (... ) 

Timber: ARIMA(3,1,1), 93 DF, Ljung-Box Q(8): 5.856 (0.210), Z=2.023 

Apt =0.010 +v, 
(0.012) 

vt +1.105vf_1 + 0.339vt_2 + 0.203v1_3= E1 + Et-1 
(0.186) (0.153) (0.124) (160) (... ) 

Copper: ARIMA(1,1,1), 95 DF, Ljung-Box Q(8): 6.001 (0.423), Z=2.007 

Op, --0.009 +v, (0.021) 

vi +0.400v1_1= Et + 0.504E _1 (0.744) (0.190) (0.704) 

Aluminium: ARIMA(3,1,1), 93 DF, Ljung-Box Q(8): 5.422 (0.247), Z=2.867 

Op, =-0.019+v, (0.009) 

v1-1.187vr-1 + 0.522vt_2 - 0.288vr-3= Et -81-1 (0.246) (0.159) (0.139) (0.158) (... ) 

Tin: ARIMA(0,1,1), 96 DF, Ljung-Box Q(8): 4.126 (0.765), Z= n. a. 

Opi=-0.004+v, (0.021) 

vs = Er + 0.066. -1_1 
(0.191) (0.102) 

Silver: ARIMA(3,1,1), 93 DF , Ljung-Box Q(8): 5.173 (0.270), X2.462 

Op, 0.003 +v, 
(0.015) 

v, +0.896v, _1 + 0.269v1_2 + 0.256v, _3= at + 0.96881_1 
(0.135) (0.134) (0.114) (0.181) (0.091) 

253 



Appendix IV. ii. 

Lead: ARIMA(1,1,1), 95 DF, Ljung-Box Q(8): 4.972 (0.547), Z=8.467 

Op, =-0 ö05+v! 

vi-0.851v1-1= Ei -81-1 (0.107) (0.181) (... ) 

Zinc: ARIMA(2,1,1), 94 DF, Ljung-Box Q(8): 3.890 (0.565), Z=-2.026 

Ap, =0.001 +v, 

vt -0.797v, _1 + 0.204vt_2= at - et_l (0.102) (0.101) (0.198) (... ) 
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Appendix IV. iii. ADF Test Results Obtained Using 
Maximum Likelihood Estimation 

For the modified pre-test method described in Sun and Pantula (1999) ADF tests 

with constant and trend term were calculated using Maximum Likelihood 

estimation, again employing the exact Maximum Likelihood routine for GAUSS 

which has been used in the remainder of this study. As for the OLS case, ADF 

testing equations were calculated with an initial number of five lags. Lagged terms 

were then eliminated where the last lagged term was insignificant at the asymptotic 

critical value of ±1.96. The final ADF testing equations obtained from this process 

are reported below (standard errors are given in parentheses below the estimated 

coefficient values) the ADF test statistic r is listed separately. 

Beef: 

Opt=-0.119+0.00lt-0.085p, _1 + e, (0.089) (0.001) (0.045) (0.204) 

z= -1.876 

Cotton: 

Op, 15 - 0. ý2t - 0.128pt_1 - 0.1454p! 
_i - 0.455Ap, 

_2 (0.070) (0.107) (0.106) 

-0.2870p, _3 - 0.256ept-4 + e, (0.112) (0.116) (0.155) 

z=1.835 
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Lead: 

Op, =0.006 - 0.002t - 0.175p, _1 - 0.130Ap, _1 (0.039) (0.001) (0.083) (0.107) 

-0.1880pt_2 - 0.303Lp, -3 - 0.2960p14 + e, 
(0.108) (0.110) (0.115) (0.184) 

z =-2.105 

Maize: 

Apt =0.216 56 - 0.003t - 0.227pr_i - 0.256Apr_i - 0.4650pi_2 
(0.103) (0.108) (0.110) 

-0.3160pr_3 - 0.4660p1_4 - 0.3100p, _S + E1 
(0.119) (0.120) (0.130) (0.201) 

z= -2.210 

Rubber: 

Apt =0.393 - 0.006t - 0.228pi_1 - 0.072Ap1_, - 0.236Apr_2 - 0.2200pt_3 + E, (0.153) (0.002) (0.074) (0.106) (0.106) (0.108) (0.279) 

z =-3.104 

Timber: 

Apt =-0.384 + 0.005t - 0.427pt_1 - 0.255Apt4 - 0.4034p1_2 
(0.123) (0.002) (0.120) (0.111) (0.114) 

-0.196Apt_3 - 0.3630p, -4 - 0.428zpt_5 + El 
(0.121) (0.124) (0.132) (0.154) 

z= -3.550 

Wool: 

Ap, =0.236 - 0.004t - 0.155pt - 0.2330pt_1 - 0.4690p1_2 
(0.102) (0.001) (0.073) (0.104) (0.107) 

-0.2370pr_3 - 0.4070pß + Ct 
(0.113) (0.114) (0.184) 

z =-2.137 
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Appendix IV. iv. Estimation Results for the Price 
Series for Hides. 

The series of relative prices for Hides has been omitted from the major part of this 

study, since the series has not been updated after 1995. Given the performance of 

this price series in the Vogelsang Test, however, ARIMA models selected by SBC 

have been estimated for comparative purposes. The Results are given here (with 

standard errors in parentheses). As in previous appendeces, the Ljung Box Q 

statistic is reported for 12 autocorrelations with P-values given in parentheses. 

For the 1(0) model: 

Model: ARIMA (1,0,0) 
SBC: 15.983 , Ljung-Box Q(12): 17.022 (0.107) 
Degrees of Freedom: 93 

p, =0.635 - 0.012t +u1 (0.133) (0.002) 

ut -0.633 ut-i = Et (0.080) (0.248) 

For the model in first differences: 

Model: ARIMA (1,1,1) 
SBC: 20.423, Ljung-Box Q(12): 18.390 (0.049) 
Degrees of Freedom: 92 

Apt0.011 +vj 
(0.004) 

vt -0.723 vi-t = E, - et-1 (o. 121) (0.251) (n. a. ) 
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Model in first differences selected by AIC: 

Model: ARIMA(1,1,4) 
AIC: 12.077, Ljung-Box Q(12): 9.040 (0.250) 
Degrees of Freedom: 89 

Apt 0.011 +vt (0.004) 

vs -0.617 vi-1= Et - 0.902 Er_1-0.126 Ct 2 +0.288 E1_3 -0.261 e (0.252) (0.246) (n. a. ) (n. a. ) (n. a. ) (n. a. ) 

ADF test result (testing equation with standard errors in parentheses below the 

estimate, the value of the ADF test statistic r is given separately): 

Op, =0.332 - 0.006 t -0.463 p, _, +0.117 \p, _1 +0.003 Opt-2 +0.248 Op1_3 + E, (0.091) (0.002) (0.109) (0.123) (0.115) (0.107) (0.245) 

z= -4.245 
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Chapter 5: Forecasts of Average Annual Commodity 
Prices Relative to MUV 

Against the background of the evidence presented in the preceding two chapters, it 

should be obvious that conclusions on the order of integration of a series as well as 

inference about the presence of trend or drift components are crucial for the 

selection of forecast models. Where there is substantial uncertainty about the 

correct inference regarding either the order of integration or the presence and 

magnitude of a trend it also appears necessary to evaluate the likely cost of relying 

on the wrong model. 

This chapter will commence with a presentation of the relevant forecast 

alternatives in general terms. After assessing the forecast performance of different 

model alternatives in terms of their forecast errors as well as the likely cost of 

using the wrong model a final selection of the forecast model to be used for each 

commodity price series will be made. 

5.1 Forecast alternatives for the commodity series in the sample 

The forecast model alternatives under consideration are the stationary and 

difference stationary models selected by minimum SBC, including and excluding a 

trend or drift term. In those cases where inference on the drift term changes for 

more extensive parameterisations of the difference stationary alternative, I(1) 

models selected by AIC are considered in addition. Also, ARIMA(1,1,1) models 

are considered as an alternative to random walks. 
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5.1.1 The forecast alternatives 

When forecasting price series for the models in the sample, the possibility of using 

forecast models without trend or drift was considered for all price series. In this 

case, the ARIMA(p, d, q) models identified by SBC previously were re-estimated 

without the trend or constant included. Forecasts can then be obtained by 

extrapolating from the model for future time periods. It is worth noting that in the 

case of a difference stationary model without drift the only information that can be 

incorporated into the forecasts, aside from the last value of the original data series, 

is based on lagged residuals extrapolated via the autoregressive and moving 

average terms. This immediately implies, in the case of a pure moving average 

model, that no information from the historical residual process can be used in 

forecasts more than q periods ahead, since the expected value of the white noise 

residual term is zero if the model is specified correctly. In the case of a random 

walk this is reflected by the fact that the last available observation of the original 

data series provides the best available forecast. Where forecasts are based on a 

model in levels without trend, the forecasts revert to the unconditional mean of the 

series eventually. In the case of an ARIMA(0,0, q) model this occurs after q 

periods, while in those cases where autoregressive components are incorporated 

into the model specification mean reversion takes place more gradually. 

To obtain forecasts from difference stationary models with drift, the minimum 

SBC models with drift, as presented in chapter 3 were extrapolated to future 

periods. An exception to this way of proceeding was given in those cases where 

relative commodity price series were identified as containing a significant drift 

260 



Chapter 5 

only after model selection was repeated using the Akaike Information Criterion 

(AIC). Models with drift or trend were only considered among the alternatives for 

those commodities where there is some indication that a drift might be present. (In 

practice this was the case for the following six commodities: Rice, Sugar, Rubber, 

Timber, Aluminium and Wheat. ) 

The corresponding forecasts in levels are obtained by forecasting from trendless 

models, i. e. ARMA models including a constant, p autoregressive and q moving 

average terms, where once more the models previously selected by SBC were 

re-estimated without trend. As has been pointed out above, this is tantamount to 

using the unconditional mean as a forecast in the long run. Finally, forecasts 

including a trend were considered for all those commodity price series where the 

trend coefficient estimate was at least statistically significant at the standard critical 

values in the 1(0) ARIMA model. Since standard ARIMA forecasting procedures in 

general, and the 'forecast. src' routine in GAUSS among them, do not normally 

incorporate linear trends it has been considered most appropriate to compute the 

projections with trend in a two step procedure: 1. the linear trend vector was 

subtracted from the original data series to obtain a stationary data series as a basis 

for the Box-Jenkins forecast, i. e. the forecast was based on p* =p -ßt, where p is a 

vector containing the original data series, t is the linear trend vector and the scalar 

is the estimated trend coefficient. 2. Box-Jenkins forecasts were then computed 

in the usual way (cf. Granger and Newbold (1986)), using the coefficient estimates 

from the minimum SBC ARIMA model in levels. The product of the estimated 
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trend coefficient and the linear trend vector was then added back onto the forecast' 

and the upper and lower interval values for the forecast obtained. 

Given the number of forecast alternatives still under consideration for each model, 

the use of some kind of selection criterion for the most appropriate forecast model 

is clearly needed. It has been attempted, as far as possible, to decide on the 

presence of a trend or drift component independently of a priori assumptions on 

the order of integration of the data generating process. With respect to forecasting, 

the impact of the assumed order of integration remains an issue though, in its own 

right as well as with respect to any remaining interdependence regarding inference 

on the trend or drift coefficient. In the first instance, subsection 5.12 will explore 

the results of a study on the impact of pre-testing on forecast performance when the 

presence and magnitude of the trend coefficient are known a priori. 

5.1.2. Pre-testing and Forecast Performance 

In Chapter three some of the problems surrounding unit root tests were addressed 

and because of these issues attempts at measuring the magnitude of trend or drift 

coefficients as well as confirming their statistical significance relied only partially 

-if at all- on a priori testing. Nevertheless, and in spite of all the above problems, it 

is reported by Diebold and Killian (2000) that basing forecast model selection on 

ADF pre-tests improves prediction results2. 

The confidence interval for the forecasts obtained therefore does not take account of the standard 
error of the point estimate of the trend coefficient either. 
2 One difference with the analysis undertaken here in previous chapters is that Diebold and Killian 
focus explicitly on the implications for forecast performance when the existence of a trend term is 
known, t. e. the objective here is to identify the best forecast model rather than the correct 
identification of the data generating process per se. 
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Diebold and Kilian (op. cit. ) compare the forecast performance of a consistently 

applied differenced model with that of a model selected by pre-testing for unit 

roots. The differenced model is ARIMA (0,1,0) with drift while alternatively unit 

root pre-testing is used to chose between either an ARIMA (1,0,0) model with 

trend or an ARIMA (0,1,0) model with drift. Diebold and Kilian used Monte Carlo 

simulations with 20,000 replications for the data generating process: 

[5.1.1. ] pr=a+ßt+ur, u, -q5ur-i =e1, c1-N(0, a2) 

which clearly corresponds to the model expressed in [4.1.10]. The parameter 

values used by Diebold and Kilian are a=7.3707, fl=0.0065, a=0.01, and 

0=0.5,0.9,0.97,0.99 or 1. The ratio of mean squared errors for both forecast 

alternatives was then computed and plotted for different sample sizes and forecast 

horizons. The authors find that for anything but autoregressive parameters very 

close to unity, model selection on the basis of pre-testing yields superior forecast 

results to the alternative of using differenced models as a default. For an 

autoregressive parameter value of 0.9 these differences are negligible for small 

sample sizes and at very short forecast horizons. For low autoregressive coefficient 

values (c = 0.5) the pattern of performance differences is reversed: for small 

samples the underperformance of the differenced model alternative relative to the 

forecast model selected by pre-testing actually increases. It is still true though that 

the performance difference is smaller at shorter forecast horizons. 

It was attempted here to replicate the results of Diebold and Kilian for a time series 

sample with 100 observations in a Monte Carlo experiment with 20,000 
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replications'. The alternative autoregressive coefficient values used in the data 

generating process for the simulations were ý =0.7,0.8,0,9 and 1, with the model 

for the DGP as above in [5.1.1]. The coefficient values for the constant and the 

trend coefficient (a and ß) are also those used by Diebold and Kilian. 

Figure 5.1.1. below shows the ratio of mean squared errors from forecasts from 

uniformly applied differenced models to those from forecasts obtained from 

ARIMA models selected by pre-testing. The model alternatives were ARIMA 

(1,0,0) vs ARIMA (0,1,0), including a trend or drift term respectively. The unit 

root testing procedure was the augmented Dickey-Fuller test including trend, 

constant and up to five lagged differenced terms. As in chapter 3, the critical value 

for eliminating lagged differenced terms of the dependent variable was taken to be 

+/-1.96. In each replication of the simulation the forecast error was computed as: 

[5.1.2] e=p-pF, 

were p is the vector of original data, pF the vector of forecasts over h=100 periods. 

The Mean squared errors were then calculated as the arithmetic mean of the sum of 

squares of the forecast errors from individual replications, i. e.: 

En,., ei,, 
n 

n2 Ei=1 e2, ß 
[5.1.3] e=n 

ii eh 2 
,i ,i n 

3 For a general description of the simulation methodology adopted here see Chapter 4. Simulations 
for forecasts were undertaken allowing 100 observations prior to the simulated data series for the 
construction of ARMA residual processes as in Chapter 4. The sample size for forecast model 
estimation was set at T=100 throughout. In each case the data series covered a further h=100 
observations as a reference point for calculating forecast errors. 
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In [5.13] the subscript i refers to the current of the total of n replications, while 

1,2... h denotes the forecast horizon for which the error is being computed. 

Figure 5.1.1 Simulation Evidence: 
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'r' identifies the autoregressive coefficient. The order of AR coefficient values in the 
legend coincides with the position of the respective line in the graph., i. e. the uppermost 
line is obtained for r--0.7 etc. Simulations were run over 20000 replications. 

It can be seen that the Mean Squared Errors obtained from the forecasts based on 

ARIMA (0,1,0) models are consistently above those for the forecasts from models 

chosen by pre-testing. These differences are small for an autoregressive coefficient 

value of 0=0.9, but become larger for coefficient values of 0=0.8 and 0.7, as is 

to be expected given the low power of the unit root test in cases where the 

autoregressive coefficient is close to the stationarity boundary. In a similar 

comparison the model alternatives for the model selection by pre-testing were 

ARIMA(1,0,0) and ARIMA(1,1,1) while an ARIMA(1,1,1) model is consistently 
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applied for forecasts from a differenced model. (The fitted models again contain a 

trend or drift term as appropriate. ) This comparison is of interest in so far as it was 

demonstrated in chapter 4 that the successful detection of significant drift 

components becomes difficult in underparameterised difference stationary models. 

For the case of an ARIMA (1,0,0) data generating process this problem was shown 

to be attenuated by the use of ARIMA (1,1,1) models as the difference stationary 

alternative specification. For some data series an ARIMA (1,1,1) vs ARIMA 

(1,0,0) model specification will therefore be relevant alternatives. More generally, 

a similar problem arises where there is uncertainty between choosing either a 

model in levels or a difference stationary model identified by AIC. 

Figure 5.1.2 Simulation Evidence: 

Ratio of Mean Squared Errors Differenced vs Pre-test 
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Figure 5.1.2. above shows that the general qualitative characteristics of the relative 

forecast performance of the two model selection techniques remain unaltered for 

the modified model alternatives. The extent to which the ARIMA (1,1,1) model 

underperforms the model selected through pre-testing is, however, smaller. The 

ratio of forecast errors is still higher for smaller values of the autoregressive 

coefficient, but the value of that ratio is now lower than the corresponding ratio in 

the case where the difference stationary alternative was a random walk with drift. 

What these simulation results give an indication of is that an ADF test can 

conceivably improve univariate forecast performance in spite of the problems of 

unit root tests outlined above. Some caution should be exercised in interpreting 

these results more generally, since no detailed information is available on how the 

results obtained would change for different model parameterisations. Another 

problem not considered here is the impact of structural instability in the data 

generating process on the quality of forecasts from models obtained by pre-testing 

and on the validity of the pre-test itself. A further limitation of the results presented 

by Diebold and Killian (op. cit. ) is that simulations are undertaken to explore the 

performance of model alternatives in a case where the presence of a trend in the 

data generating process is known. Diebold also refers to Stock (1996) who 

confirms that forecast performance improvements result from the use of unit root 

tests in model selection when it is known that the data generating process does not 

contain a trend or drift component. It has been shown above, however, that the 

inference about the significance of trend or drift coefficient estimates is itself 

closely related to inferences about the order of integration when conventional 
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stationarity and significance testing procedures are being employed. Diebold and 

Killian's statement to the effect that pre-testing for unit roots improves the 

observed forecast performance on average, irrespective of whether the order of 

integration of the data generating process is correctly identified by the testing 

procedure should be seen against this background. The observed performance 

improvements should not be taken for granted if conclusions about the significance 

of the trend coefficient estimate have not been reached in a manner that does not 

directly depend on the assumed order of integration. 

In the following, some additional simulation evidence is used to look into the 

impact of different assumptions regarding the order of integration and the presence 

of a trend or drift on the basis of different alternatives for the data generating 

process. 

5.1.3. Differences in the forecast performance of alternative models 

A study by Clements and Hendry (2001). 

A more general study regarding the impact of the assumed order of integration on 

the magnitude of the prediction error, but abstracting from the issue of pre-testing, 

has been conducted by Clements and Hendry (2001). The authors investigate the 

role of a priori assumptions on the order of integration allowing for parameter 

uncertainty as well as for the case of a known DGP. They further consider the case 

of a fixed sample size as well as forecasts from samples of increasing size. A 

forecast horizon length of up to h=100 as in the present study has been considered. 

Clements and Hendry (op. cit. ) furthermore base their results on theoretical 

calculations as well as Monte Carlo simulations. The authors confirm that, in 
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general, mistaken assumptions on the order of integration of the data generating 

process lead to higher forecast errors regardless of whether the parameter values 

are known or have to be estimated and regardless of whether the sample size is 

fixed or increasing. 

Clements and Hendry do not, however, look into the consequences of omitting or 

including a trend coefficient in the estimated model when the DGP does or does 

not contain a trend or drift component. Neither do they elaborate on the 

interdependence between inference on the order of integration and the presence of 

a trend or drift term. In addition to the impact of different a priori assumptions 

about the order of integration, the issue of inference regarding trend or drift 

coefficients is taken up in the simulation experiments on forecast performance 

described below. 

Simulation results on forecast performance and model parameterisation 

Comparing the performance difference between models with or without a trend or 

drift term one should expect the importance of including a trend or drift component 

to become more important over longer time horizons. Assumptions on the order of 

integration are relevant in so far as a correct representation of the data generating 

process should lead to better forecasts on average. The simulation results outlined 

below will give some indication of the importance of selecting between different 

model alternatives, for the trend coefficient values considered in the present case 

and over a forecast horizon length of up to 100 periods. 

Among the results obtained, the differences in point forecasts from models in 

levels and difference stationary models can be substantial. The point estimates of 
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the trend coefficients obtained are however, often of small magnitude, (the 

implications of this will be discussed in more detail below). It is not clear then how 

substantial the impact of including a trend component in the forecast model is 

under different circumstances and how big the impact on forecast accuracy would 

be. 

Although the forecast results themselves give some indication of the differences in 

the point forecasts obtained from different model alternatives, it is not necessarily 

obvious how the respective models would perform in terms of forecast errors. To 

explore this issue further, simulations were conducted for ARIMA(1,0,0) models 

according to [5.1.1 ] with a =1 and where ßl3 took values between 0 and 0.1 

increasing by values of 0.01. Simulations were conducted over 20,000 replications 

fitting ARIMA(1,0,0) models as well as ARIMA(0,1,1) models with and without 

trend or drift as appropriate and allowing for autoregressive coefficient values of 

q5 = 0.8,0.9 in the data generating process. As before, the sample size was fixed at 

T=100 with forecast horizons up to h=100. Mean squared forecast errors where 

then computed as in [5.1.2]-[5.1.3] above. 

For comparative purposes, further simulations were then conducted for difference 

stationary processes of the form: 

[5.1.4. ] pr =pr-l +ß+vg vi = e1- OEr-l 

where the values used for 0 were 0=0.1,0.2. The values for the drift parameters 

were the same as above and simulations were run over 20,000 replications, again 

Fitting ARIMA(1,0,0) and ARIMA(0,1,1) models with and without drift. Mean 

squared forecast errors were again calculated as above, in the simulations on 
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pre-testing. The retained mean squared errors can be used in a number of ways to 

evaluate the forecast performance of different model alternatives. The results 

obtained should serve the purpose of characterising the performance of different 

forecast model alternatives under different scenarios of shock persistence. 

Computing the mean squared forecast error as above in [5.1.3] it is possible to 

compare the forecast errors arising from different model alternatives fitted to the 

same generating model. For the trend stationary model according to [5.1.1], the 

following ratios of mean squared forecast errors were computed to evaluate the 

performance of various forecast alternatives relative to the generating model: 

1. Allowing for mistaken conclusions on the presence or absence of a trend term 

by comparing the mean squared errors of models in levels with and without 

trend. Generally, this is the ratio of the mean squared forecast error of forecasts 

from the trendless model in levels relative to the forecast error of forecasts 

from a model in levels including trend (i. e. the model corresponding to the 

DGP). The one exception to this is the case where the trend coefficient in the 

generating process takes a value of zero. In this case, the mean squared errors 

of forecasts from a model with trend are indicative of the performance of the 

counterfactual model, while those from a stationary model excluding trend, are 

representative of forecasts from a model corresponding to the DGP. 

2. Considering a misspecification of the order of integration of the data 

generating process. Allowing alternatively for the possibility of modelling the 

data series on the basis of a mistaken inference about the order of integration of 

the series, the second statistic is the ratio of the mean squared forecast error of 
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forecasts from difference stationary models including a drift component 

divided by the mean squared forecast error of forecasts from a stationary model 

including trend. Again, there is a difference in the case where the trend 

coefficient is set to equal zero in the data generating process and where 

correspondingly, the comparison is made between the forecast errors of a 

trendless difference stationary model and the forecast errors from a trendless 

model in levels. 

3. Considering the impact of mistaken inference regarding both the order of 

integration of the data generating process and the presence of a trend: The 

third ratio is computed allowing for misspecifications not only of the order of 

integration but also for mistaken inference regarding the presence of a trend or 

drift term. Where ß=0 by construction, the comparison is made between 

forecast errors from an l(l) model with drift and a model in levels without 

trend. Otherwise, the ratio is computed from the mean squared forecast errors 

from driftiess difference stationary models divided by the mean squared 

forecast error from a trend stationary model. 

A similar comparison was made for the difference stationary data generating 

process outlined in [5.1.4]. Here the ratios used are as follows: 

1. Allowing for mistaken conclusions on the presence or absence of a drift term 

by comparing the mean squared errors of models in first differences with and 

without drift. The mean squared forecast errors in the denominator are those 

corresponding to forecasts from a model with drift while the numerator is 

defined by the mean squared forecast errors from the counterfactual driftless 
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model. Again, the mean squared prediction errors in the numerator are those of 

the counterfactual model, where the data series are generated from a difference 

stationary model without drift. 

2. Considering a misspecification of the order of integration of the data 

generating process. In this case the comparison is once more between models 

including trend or drift as above although the ratio is now inverted since the 

data generating process is difference stationary. For the case where ß=0, the 

ratio is taken between the mean squared forecast errors from trendless and 

driftless models. Accordingly the forecast error ratio is computed from the 

mean squared prediction errors from trend stationary models and difference 

stationary models with drift for cases with a non zero drift coefficient in the 

DGP. 

3. Considering the impact of mistaken inference regarding both the order of 

integration of the data generating process and the presence of a drift term: As 

before, the third ratio is computed allowing for misspecifications not only of 

the order of integration but also for mistaken inference regarding the presence 

of a trend or drift term. Once more, the mean squared error ratio is inverted, 

where ß=0 by construction. In this case the comparison is made between 

forecast errors from an 1(0) model with trend and a model in first differences 

without drift. Naturally, this third aspect is mainly relevant in the case of a zero 

drift coefficient in the data generating process since in this case the possibility 

of wrongly inferring the presence of a trend in a stationary forecast model has 

been shown, in Chapter 4, to be a likely outcome. 
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In the remaining cases the mean squared prediction errors in the numerator of 

the forecast error ratio arise from forecasts on the basis of a trendless stationary 

model while those in the denominator correspond to forecasts from an I(1) 

model with drift4. 

5.1.4. Simulation results for the forecast performance of various model 

alternatives 

To obtain a general impression of how alternative model specifications perform 

under different scenarios, the three ratios defined above can be observed over 

increasing forecast horizons for the four alternative data generating processes 

considered here. Initially, the focus will be on the performance of different forecast 

models fitted to a stationary or trend stationary data generating process. 

DGP = ARIMA(1,0,0) with 0=0.9 

1. Allowing for erroneous inference on the presence of a trend term in the data 

generating process. Considering first the relative forecast performance of 

ARIMA(1,0,0) models with and without trend, when the trend coefficient in the 

data generating process is zero by construction, it can be seen from the ratio of 

mean squared forecast errors that models without trend consistently outperform 

4 Some of the simulation experiments mentioned in Clements and Hendry (2001) are similar to 
those reported here for the case of mistaken inference on the order of integration of the DGP only. 
However, there is one difference in the specification of the counterfactual model applied to various 
DGPs. When simulating a trend stationary DGP Clements and Hendry (op. cit. ) rely on an AR(1) 

model with constant and trend, with an AR(1) coefficient value of 0.9 being closest to the 
experiment considered here. The counterfactual difference stationary model fitted is a random walk 
plus drift as opposed to the ARIMA(0,1,1) model used here. When simulating a difference 
stationary process, Clements and Hendry (op. cit. ) use an ARIMA(0,1,1) model while fitting a 
counter factual trend stationary model with white noise error term, instead of allowing for 
autocorrelated residuals. It is not entirely clear why different model specifications have been used 
for generating and fitted counterfactual models for either order of integration. 
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models with trend over the whole of the forecast horizon. This general pattern 

persists for trend coefficient values of up to 0.02 in the DGP: in all these cases the 

ratio of the mean squared forecast error of models without trend to the mean 

squared forecast error for models with trend takes values below one over the entire 

forecast horizon. From trend coefficient values of 0.03 and above the opposite is 

the case: models including a trend term now yield superior forecast performance. 

This is illustrated in Figures 5.1.3 and 5.1.4 below where the ratios of mean 

squared forecast errors from forecast models with and without a trend term are 

plotted. 

Figure 5.1.3 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with and 
without Trend, ß=0 to ß=0.1 
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DGP is pr =a +ßt + ut, ur - 0.9ur-t = er. Number of replications: 20000. Mean Squared 
Errors for models with trend in the denominator. The Forecast horizon is denoted on the 
X-axis. Values larger than one indicate larger Mean Squared Errors for the counterfactual 
forecast model. Higher positioned lines correspond to a higher value for the trend coefficient 
in the Data Generating Process. 
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The lowest line in Figure 5.1.3 corresponds to a data generating process with a 

zero trend coefficient. For all of the following lines a higher position of the line 

illustrating the ratio of mean squared errors corresponds to a higher trend 

coefficient in the data generating process, with trend coefficient values increasing 

by values of 0.01. Thus the line immediately following the lowest line illustrates 

the ratio of prediction mean squared errors for a trend coefficient of 0.01 in the 

DGP, the line above this corresponds to a trend coefficient value of 0.02 in the 

DGP etc. The next higher line, which is also the first one to be almost consistently 

positioned above the unity line corresponds to a generating trend coefficient value 

of 0.03. Graphs for the mean squared forecast error ratios obtained for trend 

coefficients of magnitude 0-0.03 in the DGP are illustrated separately in Figure 

5.1.4. 

Figure 5.1.4 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with and without 
Trend, 8 =0.00 to 8 =0.03 
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DGP is pr =a+ ßt + u,, u, - 0.9u, = et. Number of replications: 20000. Mean Squared Errors 
for models with trend in the denominator. The Forecast horizon is denoted on the X-axis. 
Values larger than one indicate larger Mean Squared Errors for the counterfactual forecast 
model. Higher positioned lines correspond to a higher value for the trend coefficient in the 
Data Generating Process. 
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The lowest line shows the mean squared forecast error ratio for a zero trend 

coefficient. The line directly above corresponds to a generating trend coefficient 

value of ß=0.01, and the next higher to ß=0.02. It is readily seen that the mean 

squared forecast error of the counterfactual model increases relative to that of the 

correct forecast model, as the trend coefficient value rises. Up to a trend coefficient 

value of 0.02 in the DGP this is reflected by the line illustrating this ratio 

approaching the unity line. For a trend coefficient value of ß=0.03 the 

counterfactual model yields higher mean squared forecast errors for forecast 

horizons of h=4 and beyond. 

2. Comparing forecasts from models where the order of integration has been 

inferred correctly with those where this was not the case. The ratio of mean 

squared forecast errors from models in first differences to the mean squared error 

of forecasts from the corresponding model in levels is here calculated for the case 

where the presence or absence of a trend or drift coefficient has been inferred 

correctly in accordance with the data generating process. Taking the ratio of mean 

squared forecast errors from forecasts without drift to the mean squared error of 

forecasts without trend, the forecast model in levels without trend is seen to have 

smaller forecast errors over the entire forecast horizon. The same general pattern is 

observed for models with trend or drift component. The comparison in this case is 

made taking the ratio of the mean squared forecast errors from an I(1) model with 

drift to those of an 1(0) model with trend. Again, it is seen that lower forecast 

errors result if the order of integration of the data generating process is inferred 

correctly. This holds true for all the coefficient values considered and over the 
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whole 100 period forecast horizon. The superior performance of forecast models 

correctly identifying the order of integration of the DGP is shown in Figure 5.1.5. 

below, where the ratio of mean squared prediction errors from the counterfactual 

model over those corresponding to forecasts from the correct model specification 

is shown to consistently lie above ones. 

Figure 5.1.5 Simulation Evidence: 

Mean Squared Forecast Error Ratios for Trend Stationary 
and Integrated Models: ß=0 to ß=0.1 
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DGP is pr =a+ ßt + ut, u, - 0.9ur = Et. Number of replications: 20000. Mean Squared Errors 
for models in levels are in the denominator. The Forecast horizon is denoted on the X-axis. 
Values larger than one indicate larger Mean Squared Errors for the counterfactual forecast 

model. For ß=0 the comparison is between forecasts from models without trend or drift. 

3. Considering mistaken inference on both the order of integration and the 

presence of a trend term. To allow for the possibility of basing the forecast model 

on mistaken conclusions about the order of integration as well as the presence of a 

trend component, forecasts were compared between an ARIMA(0,1,1) model 

s Of course, the lines illustrating the mean squared forecast error ratios for different trend 
coefficient values in the DGP can not be distinguished individually, but the general pattern should 
be clear. The line in the highest position in Figure 5.1.5 corresponds to the case where ß=0. 
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without drift and the correct specification of an ARIMA(1,0,0) model with trend. 

(Clearly this is relevant as this is close to the forecast error scenario in those cases 

where the wrong order of integration is inferred for a data series and the drift 

coefficient is rejected as insignificant in consequence. ) Again this comparison was 

made taking the ratio of the mean squared forecast error for the ARIMA(0,1,1) 

model excluding drift and the mean squared forecast error for the ARIMA(1,0,0) 

model with trend. The exception occurs again where the trend coefficient in the 

data generating process takes a value of zero so that the comparison is made 

between mean squared forecast errors from an l(l) model with drift and the mean 

squared forecast error from an ARIMA(1,0,0) model without trend. In this case, 

where ß=0 forecast errors are unambiguosly smaller when the correct model 

parameterisation is used as a basis for forecasts. For very small trend coefficient 

values, however, the situation is not as clear. The general pattern is illustrated 

below in Figure 5.1.6. 
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Figure 5.1.6 Simulation Evidence: 

Mean Squared Forecast Error Ratios for Models with Trend 
and without Drift: ß=0 to ß=0.1 
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DGP is p, = a+ßt + u,, u, - 0.9ut = e,. Number of replications: 20000. Mean Squared Errors 
for the correct forecast model specification are in the denominator throughout. The Forecast 
horizon is denoted on the X-axis. Values larger than one indicate larger Mean Squared 
Errors for the counterfactual forecast model. 

The dotted line in Figure 5.6 illustrates the mean squared prediction error ratio for 

the case where the trend coefficient in the DGP takes a zero value and the 

counterfactual model is difference stationary, allowing for a constant. The solid 

lines represent the cases of non zero trend coefficients in the DGP, increasing by 

values of 0.01 from ß=0.01, and with higher lines corresponding to higher values 

for the trend coefficient. It appears that for sufficiently large trend coefficient 

values, correctly including a trend tends to improve forecast performance 

consistently. For small trend coefficient values, however a better forecast 

performance can be inferred for the counterfactual model at long forecast horizons. 

This is illustrated by the lower lines showing mean squared forecast errors taking 
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values below one at large values of h. This property of processes containing small 

trend components is shown separately in Figure 5.1.7. 

Figure 5.1.7 Simulation Evidence: 

Mean Squared Forecast Error Ratios for Models with Trend 
and without Drift, ß =0.01 to ß =0.04 

The lowest line corresponding to a trend coefficient value of ß=0.01, shows that 

in this case forecasts from a trendless difference stationary model have smaller 

forecast errors after a forecast horizon of 23 periods. This lengthens to h=28 

forecast periods for ß=0.02, and h=37 for ß=0.03. (Here again, higher lines 

correspond to higher trend coefficient values. ) As the trend coefficient reaches a 

magnitude of 0.04 and above, smaller forecast errors are associated with the 

forecast model parameterisation corresponding to the data generating process. 
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Thus, although the counterfactual model can yield superior forecasts at very low 

trend coefficient values and for long forecast horizons this does not come to bear 

for most of the duration of the 10 to 20 year horizons considered here. 

DGP = ARIMA(1,0,0) with q5 = 0.8 

1. Allowing for erroneous inferences on the presence of a trend term in the data 

generating process. The method of comparison used is as for the case of qS = 0.9 

and the results obtained are largely similar. One difference worth noting is, that 

forecast models which include a trend now yield superior forecast results for trend 

coefficients of #; 
-> 

0.02 in the data generating process, while a value of ß=0.03 

was needed in the case of 0=0.9. Figure 5.1.8 below shows, how the general 

pattern in this case is similar to the one observed for 0=0.9: 
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Figure 5.1.8 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with and 
without Trend, ß=0 to ß=0.1 

The case for low values of the trend coefficient in the DGP is illustrated separately 

in Figure 5.1.9. below. 

Again, lower lines correspond to lower trend coefficient values in both figures 

5.1.8 and 5.1.9. Models without trend now perform better than models with trend 

only for trend coefficient values of ß=0 and ß=0.01, at values of ßZ0.02 models 

including a trend term have lower mean squared forecast errors than the 

counterfactual model. 
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Figure 5.1.9 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with and without 
Trend, ß =0.00 to ß =0.03 
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DGP is pr = a+ fit +u,, ut - 0.8us =et. Number of replications: 20000. Except for the case 
where ß=0 mean Squared Errors for the correct forecast model specification are in the 
denominator throughout. The Forecast horizon is denoted on the X-axis. Values larger than 

one indicate larger Mean Squared Errors for the counterfactual forecast model. 

2. Comparing forecasts from models where the order of integration has been 

inferred correctly with those where this was not the case. Using the same 

methodology as for q5 = 0.9, it is again observed that better forecast results -lower 

mean squared forecast errors- are obtained when the order of integration of the data 

generating process is modelled correctly. Again, this holds over the entire 100 

period forecast horizon and for all the coefficient values considered. This is 

illustrated in Figure 5.1.10. below, where the ratio of mean squared prediction 

errors from the counterfactual model over those from the model corresponding to 

the DGP consistently takes values above one. 
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Figure 5.1.10 Simulation Evidence: 

Mean Squared Forecast Error Ratios for Trend Stationary 
and Integrated Models ß=0 to ß=0.1 
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DGP is pr =a +ßt + u,, ur - 0.8u1= er. Number of replications: 20000. Mean Squared Errors 
for models in levels are in the denominator. The Forecast horizon is denoted on the X-axis. 
Values larger than one indicate larger Mean Squared Errors for the counterfactual forecast 

model. For ß=0 the comparison is between forecasts from models without trend or drift. 

3. Considering mistaken inference on both the order of integration and the 

presence of a trend term. Here again the methods of comparison adopted are the 

same as for the case where ¢=0.9. Wrongly modelling the trend stationary series 

as ARIMA(0,1,1) without drift now yields smaller forecast errors only when the 

trend coefficient in the data generating process takes a value of ß=0.01 and 

beyond a forecast horizon length of h=56 or above. For all the other trend 

coefficient values considered, the model parameterisation corresponding to the 

data generating process yields smaller mean squared forecast errors over the entire 

100 period forecast horizon. The general pattern is illustrated in figure 5.1.11 

below. 
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Figure 5.1.11 Simulation Evidence: 
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DGP is pr =a+ fit + u1, u, - 0.8u, = et. Number of replications: 20000. Mean Squared Errors 
for the correct forecast model specification are in the denominator throughout. The Forecast 
horizon is denoted on the X-axis. Values larger than one indicate larger Mean Squared 
Errors for the counterfactual forecast model. 

As in Figure 5.1.6 above, the dotted line represents the case of ß=0, and again, it 

is apparent that the correct model specification yields superior results for any but 

very low trend coefficients and at long forecast horizons. This latter case is shown 

in Figure 5.1.12 below. 
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Figure 5.1.12 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with Trend 
and without Drift, 13 =0.01to ß =0.02 

Figure 5.1.12 shows how the counterfactual forecast model can yield superior 

results at ß=0.01 and for hz 56, while for ßZ0.02 consistently superior forecasts 

are obtained from the correct model specification. (Given the long forecast horizon 

required for the counterfactual model with ß=0.01 to yield better results on 

average this phenomenon is not relevant for model selection in the present case 

where models are selected for a forecast period of 10 to 20 years only. ) 

DPG = ARIMA(0,1,1) with 0=0.1 

1. Allowing for erroneous inferences on the presence of a drift term in the data 

generating process. The statistic employed here is the ratio of the mean squared 

forecast error for an ARIMA(0,1,1) model without drift divided by the prediction 
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mean squared error for an ARIMA(0,1,1) model including drift, for all data 

generating processes with a non zero drift term. A ratio above one again indicates 

that the prediction mean squared error is larger for the counterfactual model. 

Where the drift term is zero in the DGP, applying this ratio for the assessment of 

forecast accuracy implies that the counterfactual model now appears in the 

denominator. In this particular case a value of the mean squared forecast error ratio 

below one indicates that the true model yields superior forecasts. The general 

results of this comparison are illustrated in Figure 5.1.13. 

Figure 5.1.13 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with and 
without Drift, ß=0 to ß=0.1 

In Figure 5.1.13, a lower position of the line illustrating the mean squared forecast 

error ratio correspond to a lower drift coefficient value in the data generating 

process. Where the value of the drift coefficient in the data generating process is 
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zero by construction, the correct model parameterisation yields more accurate 

forecasts than the corresponding I(1) model with drift (as illustrated by the dotted 

line in Figure 5.1.13). For non zero drift coefficients below a value of ß=0.09, 

forecasts from a model without drift still yield more accurate forecast results on 

average. As the drift coefficient value reaches 0.09, the ratio of mean squared 

forecast errors stays close to one. For a drift coefficient value of fl=0.1, the 

increased accuracy of the model with drift becomes more pronounced. The ratio of 

forecast errors takes values clearly above one, although only after 13 forecast 

periods. The mean squared forecast error ratios for drift coefficients of 0.09 and 

0.1 in the data generating process are illustrated in Figure 5.1.14, where the mean 

squared forecast error ratio corresponding to ß=0.1 is shown by the dotted line. 

Figure 5.1.14 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with and 
without Drift, 13 =0.09 to ß =0.1 
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2. Comparing forecasts from models where the order of integration has been 

inferred correctly with those where this was not the case. The comparison made 

here is between forecast models in levels without trend and forecast models in first 

differences without drift for the case where the drift coefficient is zero in the data 

generating process. For all data generating processes with non zero drift 

coefficients the comparison is between forecast models in levels with trend and 

forecast models in first differences including drift. It is observed that forecasts 

from models where the order of integration is specified correctly yield superior 

forecasts throughout. The extent to which forecasts from the correctly specified 

model outperform those from a model in levels diminishes at long forecast 

horizons. This result is shown graphically in Figure 5.1.15 below. 

Figure 5.1.15 Simulation Evidence: 
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Mean Squared Forecast Error Ratios for Trend Stationary 
and Integrated Models, ß=0 to ß=0.1 
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DGP is Apr =ß+v,, v, =e-O. l Er-i . Number of replications: 20000. Mean Squared Errors 
for integrated models are in the denominator. The Forecast horizon is denoted on the X-axis. 
Values larger than one indicate larger Mean Squared Errors for the counterfactual forecast 
model. For ß=0 the comparison is between forecasts from models without trend or drift. 
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3. Considering mistaken inference on both the order of integration and the 

presence of a drift term. In the case where the data generating process does not 

contain a drift component, the comparison is made by taking the ratio of the mean 

squared forecast errors from a forecast model in levels including a trend to the 

mean squared forecast error of forecasts from a difference stationary model 

excluding drift. In the case of a data generating process with a non zero drift 

component the basis of assessment is the ratio of the mean squared error of 

forecasts from a model in levels excluding trend over the mean squared forecast 

error from a difference stationary forecast model with drift. In the driftless case, the 

correct model specification gives the best forecast results, as illustrated by the 

dotted line in Figure 5.1.16. 

Figure 5.1.16 Simulation Evidence: 

Mean Squared Forecast Error Ratios for Stationary Models 
and Integrated Models with Drift, ß=0 to ß=0.1 
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The case of a trend stationary model fitted to a driftless difference stationary 

process is, of course, of interest in the present study since it can be seen as 

representative of the case where the presence of a trend term is wrongly inferred 

for a stationary model when the true DGP is difference stationary. For data 

generating processes with non-zero drift components, however, better forecast 

results can be obtained from a trendless model in levels, where the true drift 

coefficient value is sufficiently small and the forecast horizon is sufficiently large. ' 

In Figure 5.1.16, this is illustrated by the solid lines, where lines in a higher 

position show mean squared forecast error ratios corresponding to larger drift 

coefficient values in the data generating process. 

ARIMA(0,1,1) with 0=0.2 

1. Allowing for erroneous inferences on the presence of a drift term in the data 

generating process. The comparison of mean squared error ratios was as for 

0=0.1 above. Again, the correct model specification yields superior forecast 

results for a data generating process without drift. It is also the case that driftless 

forecast models outperform l(l) forecast models with drift for low values of the 

data generating process. The general pattern is illustrated in Figure 5.1.17 below, 

where the dotted line shows the case of a zero drift coefficient in the DGP and 

generally, lower positioned lines correspond to lower drift coefficient values. 

6 More precisely, the correct model parameterisation yields better forecast results initially, but then 
is outperformed by forecasts from the counterfactual forecast model at a time horizon of h=21 
forecast periods where the true drift coefficient value is ß=0.01. The forecast horizon required for 
this phenomenon to occur then lengthens to h=31 for ß=0.02 and ß=0.03, h=41 for /3 = 0.04, 
h=63 for ß=0.05 and finally h=79 for ß=0.06. At drift coefficient values of ß=0.07 and above, 
the correct forecast model specification yields consistently superior forecasts. 
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Figure 5.1.17 Simulation Evidence: 
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DGP is Apr = ß+ v,, v, = e, - 0.2er-1. Number of replications: 20000. Except for the case 
where ß=0 mean Squared Errors for the correct forecast model specification are in the 
denominator throughout. The Forecast horizon is denoted on the X-axis. Values larger than 
one indicate larger Mean Squared Errors for the counterfactual forecast model. 

The ratio of mean squared forecast errors converges to values close to one at short 

forecast horizons for a drift coefficient of ß=0.08. Even when ß=0.07 the ratio of 

mean squared forecast errors stays close to one at very short forecast horizons but 

then falls to values of 0.95 and below. As the drift coefficient of the DGP reaches 

values of 0.09 and above, the superior forecast performance of the forecast model 

with drift becomes apparent. For ß=0.09, and h57 driftless forecast models still 

yield prediction mean squared errors which are very close to those from a 

difference stationary model with drift. At longer forecast horizons, the ratio of 

prediction mean squared errors rises substantially above one. The case for drift 

coefficient values between ß=0.08 and ß=0.1 is shown below in Figure 5.1.18. 
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Figure 5.1.18 Simulation Evidence: 

Mean Squared Forecast Error Ratios for models with and without 
Drift, It =0.08 to 8 =0.1 

2. Comparing forecasts from models where the order of integration has been 

inferred correctly with those where this was not the case. Using mean squared 

forecast error ratios as above for 0=0.1, it again appears that forecasts from l(l) 

models consistently outperform forecasts from stationary models where the data 

generating process is difference stationary. This holds regardless of the value of the 

drift coefficient, and the extent to which the difference stationary model yields 

superior forecasts diminishes over long forecast horizons. This result is illustrated 

in Figure 5.1.19. 
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DGP is Apr = ß+ vs, yr = et - 0.2-i. Number of replications: 20000. Mean Squared Errors 
for the correct forecast model specification are in the denominator throughout. The Forecast 
horizon is denoted on the X-axis. Values larger than one indicate larger Mean Squared 
Errors for the counterfactual forecast model. Lines in higher positions correspond to larger 
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Figure 5.1.19 Simulation Evidence: 

Mean Squared Forecast Error Ratios for Trend Stationary 
and Integrated Models, ß=0 to ß=0.1 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

DGP is Api = ß+ vr, yr = et - 0.2c -t . Number of replications: 20000. Mean Squared Errors 
for the correct forecast model specification are in the denominator throughout. The Forecast 
horizon is denoted on the X-axis. Values larger than one indicate larger Mean Squared 

Errors for the counterfactual forecast model. 

3. Considering mistaken inference on both the order of integration and the 

presence of a drift term. The possibility of misspecifying both the order of 

integration and the presence of a drift term was again tested as above. It was again 

observed that the correct model specification yields superior forecasts when the 

data generating process does not contain a drift term (i. e. in the case relevant for 

spurious rejections of the zero trend null hypothesis). For drift coefficient values 

between 0.01 and 0.05, it is observed that misspecified models can yield superior 

forecasts at long forecast horizons'. 

7 In more detail, the misspecified model here yields superior forecasts beyond h=33 when ß=0.01, 
h=39 for ß=0.02, h=45 for ß=0.03, h=58 for ß=0.04 and h=82 in the case of /3 = 0.05. For drift 

coefficients of ß=0.06 and above, the correctly specified model yields superior forecasts over the 
entire horizon considered. 
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The results are shown in Figure 5.1.20 below. The dotted line illustrates the case 

for ß=0 in the DGP, where the mean squared forecast error is consistently larger 

for the counterfactual model. The solid lines represent the mean squared forecast 

error results for data generating processes with non zero drift coefficients. Lines in 

a lower position are representative of lower drift coefficient values in the DGP. 

Figure 5.1.20 Simulation Evidence: 

Mean Squared Forecast Error Ratios for Stationary models 
and Integrated Models with Drift, ß=0 to ß=0.1 

Some of the pattern of relative forecast performance that emerge from the 

simulation results above are what one would expect. Correctly identifying the order 

of integration of the data generating process has been shown to consistently 

improve forecast performance. Superior forecasts are also generally obtained when 

a trend or drift coefficient is rightly excluded. Correctly including a trend or drift 

component only leads to better forecast results than excluding it if the trend or drift 
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coefficient value is sufficiently large and the forecast horizon sufficiently long. 

This property appears to be more pronounced for difference stationary than for 

trend stationary models. 

Table 5.1.1 shows the number of forecast periods after which lower forecast errors 

are obtained when a trend or drift term is included in the forecast model. This 

minimum forecast horizon is specified for a number of values of ß as well as for 

the trend and difference stationary data generating processes considered here. 

(Note that the order of integration of the forecast model used corresponds to the 

order of integration of the DGP. The underlying comparisons are between models 

with and without trend or drift component only. ) 

Table 5.1.1 Forecast horizon after which forecasts from models with trend or 
drift have lower forecast errors than forecasts from models without trend or 
drift. 

fl 0 =0.9 =0.8 0=0.1 0=0.2 
0 - - - - 0.01 - - - - 

0.02 - 0 - - 
0.03 4 0 - - 0.04 0 0 - - 0.05 0 0 - - 0.06 0 0 - - 0.07 0 0 - - 0.08 0 0 - - 0.09 0 0 6 4 
0.1 0 0 13 0 

p: value of me trenaarin coenicient in the uu', 0: AR(1) coefficient where the DGP is 
ARIMA(1,0,0), 

0: MA(1) coefficient where the DGP is ARIMA(0,1,1), -': The number of forecast periods 
required exceeds 100. 
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It can moreover be observed that the relative increase in the mean squared error 

resulting from mistaken inference about the presence of a trend coefficient is larger 

than the impact of mistaken assumptions about the presence of a drift term in the 

forecast model. Somewhat counterintuitive results suggesting possible 

improvements from forecast models based on misspecifications of both the order 

of integration and the presence of trend components are practically irrelevant here 

since they are confined to longer forecast horizons than are considered in the 

present case. 

In a final comparison of mean squared forecast errors, an attempt is made to assess 

the relative cost of fitting the wrong model. This is clearly of relevance where 

substantial uncertainty about model selection can not be overcome. For this 

purpose the ratio of mean squared forecast errors for forecasts from a trend 

stationary model fitted to a difference stationary data generating process without 

drift can be compared with the mean squared forecast error for forecasts from a 

difference stationary model without drift fitted to a trend stationary process'. Such 

a comparison indicates that the forecast errors from a wrongly fitted difference 

stationary model without drift are consistently below those from a wrongly fitted 

trend stationary model. The only exception to this occurs at forecast horizons of up 

to two periods where the ratio of forecast errors from a wrongly fitted trend 

stationary model to those from a wrongly fitted model in first differences fall to 

values just below one. 

8 The decision to wrongly include a trend term in the stationary model while omitting a drift term 
from the l(l) model fitted to a trend stationary DGP is obviously motivated by the fact that these 
mistaken inferences are the ones that are likely to occur where conclusions on the presence of a 
trend component in the data series depend on assumptions regarding the order of integration. 
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It has been shown so far that the inferred order of integration as well as inference 

on the trend or drift term have an important influence on the quality of the 

forecasts obtained. It had been shown in chapters three and four above that both 

inferential tasks can be persistently interrelated. In the following, it will therefore 

be investigated if and how Diebold and Killian's conclusions change when 

different magnitudes of the trend coefficient estimate and interdepence of the order 

of integration and the detection of a trend are incorporated into the simulation 

experiment. 

5.1.5 Diebold and Killian Revisited 

The above observations on the relative forecast performance of models with and 

without trend make it seem advisable to look further into the results on the use of 

pre-testing reported by Diebold and Killian (2000). The overall results on 

pre-testing prove to be fairly robust to variations in the size of the trend coefficient. 

The simulation experiment for the replication of the Diebold and Killian results -as 

described above- was here conducted for a number of values for the autoregressive 

coefficient and the trend coefficient again using up to 100 forecast periods and 

20,000 replications. The trend coefficient for the data generating process (i. e. /3) 

was allowed to take values of between zero and 0.13, increasing the coefficient 

values by 0.01 at a time. (The coefficient value imposed in the Diebold and Killian 

experiments is ß=0.0065, or ß/a, - = 0.65 by comparison. ) The values used for the 

autoregressive coefficient are 0.8,0.85,0.9,0.95,0.97,0.99 and 1. The difference 

stationary alternative to the AR(l) model with trend was a random walk with drift 

in all cases. 
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Taking the ratio of prediction mean squared errors for the differenced alternative 

model specification over forecasts from the model selected by pre-testing yields 

very similar results across all trend coefficient values (including ß= 0). For data 

generating processes with autoregressive parameters of phi=0.8 and phi=0.85 

forecasts from the pre-test model outperform those from a continually differenced 

model over all time horizons and over all trend coefficient values. As the 

autoregressive coefficient rises to phi=0.9 this is generally true after the first five 

forecast periods9. For an AR coefficient value of phi=0.95, the ratio of prediction 

mean squared errors converges to one over all trend coefficient values. As the 

value of the autoregressive coefficient rises above phi=0.97 the differenced model 

consistently outperforms the model selected by pretesting, i. e. the prediction mean 

squared error ratio starts dropping below one over the entire forecast horizon for all 

trend coefficient values considered. 

These results are generally in line with the replication of Diebold and Killian's 

results described above. The results therefore seem to be robust to the choice of 

different trend coefficient values. However, one particularly relevant question in 

the present case is that of fitting either a trend stationary model or a difference 

stationary model without drift. These are the alternatives that would tend to arise if 

one relied entirely on pre-testing and the use of standard t-tests on the trend 

coefficient when choosing the forecast model. 

To investigate the impact of using pretests for forecast model selection when the 

alternatives considered are an ARIMA(1,0,0) model including trend and constant 

9 For ß=0.01 this is true after the first four forecast periods 

300 



Chapter 5 

and a difference stationary model without drift a new set of simulation experiments 

was conducted. Simulations were again conducted as above in section 5.1.2, i. e. 

with samples of size T=100, a forecast horizon of up to h=100 and 20,000 

replications. Again the trend coefficients for the data generating process took the 

following values: 0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.11, 

0.12 and 0.13. The values considered for the autoregressive coefficient were again 

as above with phi equal to 0.8,0.85,0.9,0.95,0.97,0.99 or 1. To allow 

comparisons with the results by Diebold and Killian as well a with the more 

general simulation results reported above, the forecast model alternatives 

considered were: ARIMA(0,1,0) without drift, i. e. a random walk, and 

ARIMA(0,1,1) without drift. 

Contemplating the values of prediction mean squared error ratios over forecast 

periods (h) of up to h=100, it can be seen that for both, the ARIMA (0,1,1) and for 

the random walk alternatives, the differenced model consistently outperforms the 

model selected by pretesting for autoregressive coefficient values of phi= 1,0.99 

and 0.97 as before. For 0=0.95, the differenced model dominates10 the pre-test 

model for trend coefficient values within the range 0: 5 P: 5 0.1. As the trend 

coefficient rises beyond 0.1, the pre-test model outperforms the differenced model 

after 83,59 and 41 forecast periods for trend coefficient values of 0.11,0.12 and 

0.13 respectively when the difference stationary model alternative is ARIMA 

(0,1,1). For the case of a random walk, the pre-test model outperforms the 

1 °Le. it has lower mean squared prediction errors than the pre-test model. 

301 



Chapter 5 

differenced model after 84,58 and 41 periods for trend coefficient values of 0.11, 

0.12 and 0.13 respectively. 

As the value of the autoregressive coefficient falls to q5 = 0.9, the difference 

stationary alternative yields superior forecasts over the entire forecast horizon for 

trend coefficient values of 0: 5 P: 5 0.6. Thereafter, the pre-test model performs 

better after a forecast horizon of 56,13,10,8,7,7, and 6 periods for trend 

coefficient values of 0.07,0.08,0.09,0.1,0.11,0.12 and 0.13 respectively in the 

case of the ARIMA (0,1,1) specification for the difference stationary model. For 

the random walk case, the pre-test model achieves lower forecast errors after 

forecast periods of length 56,11,9,9,7,7 and 6 for trend coefficient values of 

0.07,0.08,0.09,0.1,0.11,0.12 and 0.13 respectively. 

At an autoregressive coefficient value of ý=0.85, the random walk model yields 

superior results for 0: 5 P: 5 0.04. For the ARIMA (0,1,1) model, the pre-test model 

has smaller forecast errors on average after two forecast periods for trend 

coefficient values of ß=0.05 and ß=0.06. For higher trend coefficient values, the 

pre-test model dominates over the entire forecast horizon. In the case of the 

random walk alternative, forecasts from pre-test models have smaller prediction 

mean squared errors after one period for all values of /3 > 0.04 considered in the 

simulation experiment. 

At a value of q5 = 0.8 finally, the ARIMA (0,1,1) model outperforms the model 

selected by pre-testing for trend coefficient values of ß=0, ß=0.01 and ß=0.02 

over the entire 100 period forecast horizon. For all other trend coefficient values 

used in the simulations with values of ßZ0.03 the model selected by pre-testing 
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performs better than the consistently applied differenced model over the entire 

forecast horizon. When a random walk is considered as a difference stationary 

alternative model, the model selected by pre-testing yields smaller forecast errors 

for all trend coefficients considered, except ß=0 and ß=0.01. 

It can be concluded that pre-testing for unit roots can in some cases improve the 

forecast performance of a univariate time series model. As before, such an 

improvement is unlikely at values for the autoregressive coefficient close to one. In 

contrast to the results presented initially though, different conclusions can be 

reached for lower values of the autoregressive coefficient if the alternative model 

specification is a difference stationary model without drift and the trend coefficient 

in the data generating process is sufficiently small. In this case, the consistent 

application of differenced models can yield superior forecast results at small trend 

coefficient values as well as at high values for the autoregressive coefficient. 

5.2. Selecting forecast models for different commodities 

It was argued above that the order of integration of the series as well as the trend or 

drift coefficient are crucial in determining the adequate forecast model. (Of course 

this is also true of the forecast model more generally and the value of the AR(1) 

coefficient in particular. ) The following general points should be emphasised: 

" The importance of the order of integration -compared to the presence of 

absence of a trend or drift component- in the data series. Consideration of the 

correct order of integration is important because of the direct influence on the 

forecasts obtained as well as in those cases where it is difficult to reach 
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conclusions on the significance of the trend or drift component independently 

of conclusions on the order of integration of the series. 

" Aside from the presence of a trend or drift coefficient in the data generating 

process, the suitability of using forecast models with trend or drift can be 

shown to depend on the magnitude of the trend coefficient. (This is of 

particular importance for the prediction of integrated processes. ) If there is 

sustained uncertainty about the appropriate model specification and the drift 

coefficient values under consideration take sufficiently low values, the smaller 

cost of fitting the wrong model is likely to arise from fitting a difference 

stationary model without drift. 

" There can be some improvements in forecast performance from pre-testing. At 

very low trend coefficient values and for near integrated series fitting a 

differenced model without trend can still be the superior solution. 

Following these criteria, the selection of forecast models for individual commodity 

price series is made below. It should be remembered though that one should be 

careful in generalising from the simulation results reported above. Results differ 

for the different model parameterisations considered in the simulation experiments 

and further differences are to be expected for yet different model parameterisations 

and at different coefficient values. One cannot therefore generally apply the above 

conclusions unless the estimated model alternatives are very close to those 

considered in the simulations. 

Moreover, where significant drift coefficients are only obtained when selecting the 

difference stationary model by AIC, this criterion will be employed to select the 
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forecast model. Where the optimal forecast model identified in the difference 

stationary case and on the basis of the SBC is a pure random walk or a random 

walk with drift, an ARIMA(1,1,1) specification will be considered alternatively. 

To facilitate a general comparison with the above simulation results, trend and drift 

coefficient estimates for the model alternatives discussed below were normalised 

with respect to the estimated standard error of the residual of the ARIMA model in 

question, i. e. where reference is made to normalised coefficients the coefficient is 

expressed as: 

N 

[5.2.1] ß= Vie, 

where is the normalised trend or drift coefficient, %3 is the original trend or drift 

coefficient estimate and ve is the standard error of the residual in the estimated 

ARIMA model". 

5.2.1. Selected Forecast Models for Individual Price Series 

Focusing initially on those models where the presence of a trend was inferred with 

a high degree of confidence, the selected forecast models are as follows: 

Aluminium: This is identified as stationary in levels by the ADF unit root test as 

well as the Leybourne McCabe test. This stationarity conclusion is strengthened by 

the parameter estimates obtained for the trend stationary and differenced model. 

The point estimates for the trend stationary model are: 

[5.2.2] pt = 1.356 - 0.019t + u,, u, - 0.650u, _i = e, + 0.472E _1 
Differencing this expression and defining (1- L)u, = v1 yields: 

"Of course, for the computation of the actual forecasts, the non normalised value of the trend coefficient 
estimate will be used throughout. 

305 



Chapter 5 

[5.2.3] (1- L)pr = -0.019 + v,, v, = 0.650v1_1 + 0.472Et_I - 0.47201_2 -E j_I + El 

or: 

[5.2.4] Apt = -0.019 + vi, vi - 0.650vt_j = st - 0.528g, -, - 0.472Et-2 

The estimated ARIMA(1,1,2) model for Aluminium is: 

[5.2.5] Apr = -0.019 + V,, v1- 0.679 = Et - 0.537Er_I - 0.46381_2 

The estimated difference stationary model selected by minimum SBC not only 

shows the parameterisation corresponding to an overdifferenced trend stationary 

model, it also has parameter estimates with values very close to those of the 

differenced trend stationary model. More importantly, the estimated moving 

average parameters sum to one in the case of the estimated ARIMA(1,1,2) model. 

The trend component is shown to be significant independently of stationarity 

assumptions with normalised point estimates of -0.124 and -0.126 for the trend and 

drift coefficient respectively. Although the Vogelsang test only provided limited 

support for the presence of a trend and the Sun and Pantula corrections for serial 

correlation are not applicable here, the high value of the t-ratios (-8.997 for the 

trend and -7.931 for the drift coefficient) make it appear likely that coefficient 

estimates would still appear significant if the finite sample impact of serial 

correlation had been quantified for the given model parameterisation. Given the 

magnitude of the point estimates for trend and drift, it is also unlikely that the 

forecast performance will be adversely affected by inclusion of the trend, even 

though the above simulation results can not strictly be generalised. Forecasts are 

therefore made from an 1(0) model with trend. 
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Rubber: Again, the trend and drift coefficients appear statistically significant with 

normalised point estimates of -0.104 and -0.105 respectively12 when the difference 

stationary model is selected by AIC. (It will be recalled from chapter 4 that the 

trend coefficient still appears significant if the corrections suggested by Sun and 

Pantula (1999) are implemented and the price series for Rubber is modelled as 

trend stationary. The result no longer holds though if Sun and Pantula's modified 

pre-test method is employed. ) The ADF test just fails to reject the null hypothesis 

of a unit root, while the Leybourne McCabe test identifies the series as trend 

stationary. Given the magnitude of the trend or drift coefficient estimates and an 

estimated value of 0.796 for the autoregressive coefficient in the ARIMA(1,0,0) 

model the conclusion that would follow from the above simulation results is such 

that pre-testing can be usefully employed to improve forecast performance. On the 

basis of pre-testing alone, the model selection would most likely be made in favour 

of a difference stationary model13 if the ADF test is used, although the Leyboume 

McCabe test fails to reject the stationarity null hypothesis. However, in view of the 

fact that the moving average coefficients in the difference stationary model 

identified by AIC sum to one, there is evidence of overdifferencing, and thus the 

trend stationary model alternative is selected. The selected forecast model for 

Rubber is ARIMA(1,0,0) with trend. 

12 The normalised drift coefficient estimate for the difference stationary model selected by SBC is 
also -0.105. 
13It can generally be said that a unit root null hypothesis is preferable to a stationarity hypothesis in 
the particular case of forecast model selection, since the cost of misspecifying the order of 
integration of the data generating process tends to be lower for differenced models. (Cf. the 
simulation results quoted above. The standard approach of falling back on differenced models has 
also been a motivating factor for Diebold and Kilian's study (Diebold and Kilian (op. cit. )). 
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Sugar: This series is identified as 1(0) by the ADF test and in this case would have 

a significant trend term. The simulation results on the impact of serial correlation 

on critical values in finite samples are not directly applicable to the ARIMA(1,0,1) 

model selected by SBC, but the low value of the AR(1) coefficient estimate (of 

0.425) in conjunction with a t-statistic of -4.108 make a significant trend 

coefficient for the undifferenced model appear plausible. With the point estimates 

of the trend and drift components taking normalised values of -0.034 and -0.038 

respectively, the model in levels could be expected to yield superior forecasts if a 

trend is included while for the I(1) model this may not be true. If the series were 

identified as difference stationary in the first place, the above simulation results 

suggest that better forecast results should be expected from a model without drift, 

even though the standard t-test identifies the drift term as significant when the 

forecast model is selected by AIC. (Naturally, these conclusions should be treated 

with some caution since the model parameterisations here are different. ) 

Given the estimated value of the AR(1) coefficient and the magnitude of the point 

estimate for the trend, it would also seem likely however, that in this case 

pre-testing can be expected to improve forecasts on average, even if there were no 

strong support in favour of a trend or drift coefficient. It is also the case that the 

moving average coefficient estimates for the model selected by AIC sum to one, 

thus providing further evidence of overdifferencing. The selected model therefore 

is an 1(0) model with trend. 

Timber: The price series for timber is identified as 1(0) by the augmented 

Dickey-Fuller test. The moving average coefficient estimates of the difference 
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stationary model selected by AIC sum to one, indicating overdifferencing. Under 

these circumstances and considering the normalised trend and drift coefficient 

estimates of 0.076 and 0.080" respectively it seems plausible that the model in 

levels would yield superior forecasts when a trend is included. If the data 

generating process were assumed to be difference stationary and the model were to 

be selected by AIC, there would now be no clear indication as to whether a drift 

should be included. The selected difference stationary model would be 

ARIMA(0,1,5) with a significant drift term. The simulation results for an 

ARIMA(0,1,1) model with a drift coefficient of comparable magnitude give no 

clear indication as to the whether including a drift term would improve forecast 

performance over the length of the forecast horizon considered. In addition, one 

should be aware that these simulation results are not directly comparable. The 

point estimate for the autoregressive coefficient is 0.680. In view of this value and 

the support for the trend and drift coefficient estimates, pre-testing can be expected 

to lead to improvements in forecast performance on average. Thus the optimal 

choice of forecast model is again a trend stationary specification. In this case the 

ARIMA (1,0,0) model with trend estimated in chapter 3 is chosen. 

In addition to these commodities, where the presence of a trend component has 

been established with a high degree of confidence there are a number of price 

series where one can be confident about the absence of a significant trend term. In 

the following, model selection will be discussed for the commodity price series 

14 The value quoted is for the drift coefficient in the difference stationary model selected by AIC 
which appeared significant. The corresponding value for the model selected by SBC is 0.050. 
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were the absence of a trend or drift component has been established by the testing 

procedures in Chapter 4. 

Coffee: This series -like most of the trendless examples- has been identified as 

difference stationary by the ADF test. In the difference stationary case it would be 

clear that forecasts from models without drift (i. e. a pure random walk, or 

alternatively an ARIMA(1,1,1) model in this case) should yield better results even 

if the point estimates for the drift and trend coefficient (0.009 and 0.018 

respectively if normalised) were significant. It is also likely that model selection 

through pre-testing can improve forecast performance in this case, bearing in mind 

that the selected stationary model is ARIMA(1,0,0) with the autoregressive 

coefficient close to 0.8 in models with and without trend. In any case, the unit root 

and significance testing procedures would lead one to select a difference stationary 

(ARIMA(1,1,1)) model without drift's. 

Cocoa: Again the series identified by unit root and trend coefficient testing is a 

difference stationary model without drift. (ARIMA (2,1,0)). The insignificant 

normalised point estimate for the drift coefficient on Cocoa is -0.038 with the (also 

insignificant) normalised trend coefficient estimate equal to -0.012 (the t-ratios are 

-0.556 and -0.457 for trend and drift respectively). In so far as the simulation 

evidence on the inclusion of trend and drift coefficients can inform the decision on 

"Considering an ARIMA(1,1,1) model instead of the random walk identified by SBC, the 
autoregressive coefficient estimate is 0.931 while the moving average coefficient is on the 
invertibility boundary and remains close to one, though not quite on the boundary, if the drift term 
is excluded. This would seem to be indicative of overdifferencing, a conclusion also supported by 
the Leybourne McCabe test. However, the ARIMA(0,1,2) model selected by AIC fails to indicate 
overdifferencing. The overall situation could then be characterised as one of uncertainty regarding 
the order of integration of the series. It has been argued above though, that in such a case one would 
opt for a differenced model, since this would lead to the smaller increase in forecast errors if the 
wrong forecast model were used. 
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model selection in this case, the difference stationary process again should 

probably be modelled without drift even if the drift coefficient estimate were 

significant. Since the ADF pre-test identifies the price series for Cocoa as 

difference stationary the question whether a model selected by pre-testing should 

be preferred over a differenced model does not arise in this case. The series is 

therefore modelled as ARIMA(2,1,0) without drift. 

Tea: The price series is identified as difference stationary by the Augmented 

Dickey Fuller test. The normalised point estimates for the trend and drift 

coefficients are -0.046 and -0.058 respectively. The point estimates for both the 

trend and drift coefficient are identified as insignificant by a standard t-test with a 

nominal 5% rejection region, although the t-ratio on the estimate for the trend 

coefficient takes a value of -1.879 and thus is not as far from the asymptotic 

critical value of -1.96 as the drift coefficient with a t-ratio of -0.573. Given the 

estimated AR(1) coefficient of 0=0.883 in the ARIMA(1,0,0) model and the point 

estimate for the trend coefficient, improvements in the performance of forecast 

models selected by pre-testing can be expected. It was shown in Chapter 4 that in 

the case of a random walk model selected by SBC in the difference stationary case, 

an ARIMA(1,1,1) parameterisation should be considered as an alternative. In the 

case of Tea, this does not yield a significant drift coefficient estimate and does not 

indicate overdifferencing if the model is re-estimated without drift. (The estimated 

coefficient on the moving average term is on the invertibility boundary though, if 

the drift term is included. ) The price series for Tea is therefore best modelled as a 
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pure random walk with an ARIMA(1,1,1) model without drift considered as an 

alternative. 

Bananas: The normalised point estimates for the trend and drift coefficients for 

Banana prices are -0.012 and 0.004. The t-ratios on the coefficient estimates 

(-0.346 and 0.043) do not allow one to reject the null hypothesis of a zero trend 

coefficient at any of the conventionally employed critical values. In view of the 

Dickey Fuller test results obtained, as well as the estimated AR(1) coefficient value 

of 0.926 in the ARIMA(1,0,0) model selected by SBC, Banana prices seem to be 

best modelled as a pure random walk. Again, an ARIMA(1,1,1) model will be 

considered as an alternative, although there is no evidence of overdifferencing in 

this case. 

Jute: For Jute, the normalised trend and drift coefficient estimates take values of 

-0.031 and -0.037 respectively. Both are insignificant following the standard t-test 

and, naturally would also appear insignificant when t-ratios are adjusted for serial 

correlation following Sun and Pantula (1999). In terms of forecast performance, 

the incorporation of a significant trend coefficient would be expected to improve 

forecast performance while for a drift coefficient of the same magnitude this is less 

likely to be the case. Here again, the estimated ARIMA(1,0,0) model with 

0=0.848 is close to the models used in the simulation experiments while the 

difference stationary alternative is not. It does however seem generally appropriate 

to be reluctant about including small drift coefficients into difference stationary 

forecast models. Given the lack of evidence in favour of a significant trend or drift 

term, this will be omitted from the forecast model. 
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The ADF test and the Leybourne McCabe test identify the series for Jute as 

difference stationary so that the question of selecting between differenced and 

pre-test models does not arise. Thus, the selected forecast model for Jute prices is 

an ARIMA (0,1,2) model without drift. 

Tobacco: The ADF test clearly fails to reject the null hypothesis of a unit root for 

Tobacco. The normalised estimates for the trend and drift coefficient (0.033 and 

0.0 19) are even lower in absolute value than in the case of Jute and both are clearly 

insignificant given t-ratios of 0.574 and 0.189 for the trend and drift coefficient 

estimates respectively. Considering further that the estimate of the autoregressive 

coefficient in the ARIMA(1,0,0) model specification takes a value of 0.953 it is 

obvious that the series is best modelled in first differences. This conclusion is 

supported by unit root test results as well as by the simulation evidence presented. 

The forecast model selected for Tobacco prices is therefore a pure random walk 

with an ARIMA(1,1,1) model considered as an alternative. 

Copper: Again, the null hypothesis of a unit root could not be rejected by the 

ADF-test. The normalised trend and drift coefficient estimates take values of 

-0.023 and -0.050 respectively, with t-ratios of -1.097 and -0.490, while the 

estimated autoregressive coefficient in the ARIMA(1,0,0) model is 0=0.856. 

Clearly, given the test and simulation results presented here, the price series is best 

modelled as difference stationary and without a drift component. In this case the 

selected difference stationary model is a pure random walk, while considering an 

ARIMA(1,1,1) model as an alternative. 
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Tin: The null hypothesis of a unit root can not be rejected for the price series of 

Tin. The normalised trend and drift coefficients for Tin are 0.005 and -0.017 

respectively. Both are clearly identified as insignificant by their low t-ratios, and 

even have opposite signs in the point estimates. The autoregressive coefficient 

estimate for the ARIMA(1,0,0) model is q5 = 0.886. The simulation results on 

pre-testing suggest that pre-testing for unit roots should improve forecasts on 

average, given the clear inference on the trend coefficient. The forecast model 

selected in this case is therefore once more the difference stationary model without 

drift, i. e. a pure random walk, and as before an ARIMA (1,1,1) model will be 

considered as an alternative. 

Silver: The price series for silver is identified as difference stationary by the ADF 

test. The normalised trend and drift coefficients are estimated to take values of 

0.001 and -0.018 with t-ratios of 0.050 and -0.229 respectively. Given the t-test on 

the trend coefficient estimates and the unit root test results, the obvious choice of 

forecast model is again the difference stationary alternative without drift, i. e. in this 

case an ARIMA(2,1,0) model. 

Zinc: The ADF test clearly rejects the unit root null hypothesis here, while the 

Leybourne McCabe test fails to reject the null hypothesis of stationarity. As above 

in the case of Aluminium, there is strong evidence to suggest that the difference 

stationary model chosen by SBC is overdifferenced. The trend stationary model 

chosen by SBC is ARIMA(1,0,1): 

[5.2.6] pt=-0.009+0.001t+ug, ug-0.427ul_I =e, +0.381Ef_1 

Differencing and defining v, = (1- L)ut as above then yields: 
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[5.2.7] Opi = 0.001 + v,, vt - 0.427v, _, = E, - 0.619Er_i - 0.3818, -2 

By comparison, the estimated ARIMA(1,1,2) model identified by SBC is: 

[5.2.81 Apr = 0.000 + vi, v1- 0.478v1_1 = at - 0.63981-1 - 0.361x, _2 

Again, the values are reasonably similar (the point estimate for the drift coefficient 

just rounds to 0.001 in 5.2.7). The estimates for the moving average coefficients in 

the ARIMA(1,1,2) model again sum to one. 

The normalised point estimates for the trend and drift coefficient are 0.003 and 

0.002 -both are clearly shown to be insignificant by the very low value of their 

t-ratios (0.369 and 0.184). The autoregressive coefficient value in the 

ARIMA(1,0,1) model for Zinc is estimated to be 0=0.427. The simulation 

evidence is not directly applicable, but in view of the unit root and stationarity test 

results the ARIMA(1,0,1) model is chosen as a forecast model and re-estimated 

without trend. 

In addition to the price series covered so far, there are a number of further series 

where there remains considerable uncertainty about the significance of the trend or 

drift coefficient. This is most often the case where the result of the standard t-test 

depends on a priori assumptions on the order of integration and where furthermore 

this question is not resolved by the supplementary testing procedures described in 

Chapter 4. 

Rice: Among the various commodities with some remaining uncertainty over the 

significance of the trend coefficient, this is perhaps the case closest to the group for 

which the presence of a trend was inferred with a high degree of confidence. 

315 



Chapter 5 

In the case of Rice, the trend and drift coefficients (with normalised point estimates 

of -0.069 and -0.072 respectively) are identified as significant by their respective 

t-ratios, even if the difference stationary model is selected by SBC. One could 

therefore argue that the original motive for turning to complementary tests should 

be confined to considering the impact of serial correlation if the series is modelled 

in levels. The simulation results and bias corrections proposed by Sun and Pantula 

are not directly applicable here, because of the ARIMA(1,0,1) parameterisation for 

the model in levels. (The t-ratio on the estimated trend coefficient for Rice prices 

(-5.223) is, however, large enough to require highly persistent serial correlation for 

a spurious rejection of the null hypothesis of a zero trend coefficient to be a likely 

problem. ) Vogelsangs test by contrast provides no support for the presence of a 

trend, although this also tends to be the case for a range of series which appear to 

have a trend when judged by any of the other criteria available and may simply 

illustrate the low power of the test in the case of integrated series. 

Regarding the order of integration of the series the evidence from pre-testing 

indicates that a difference stationary model is most appropriate since the ADF-test 

fails to reject the null hypothesis of a unit root and the Leybourne MacCabe test 

rejects the stationarity null hypothesis. There is no evidence of overdifferencing 

from either the difference stationary model selected by either SBC or AIC. Opting 

for a differenced model in the case of persistent uncertainty about the order of 

integration of the data generating process, the selected model is an ARIMA(1,1,2) 

model with drift. 
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Wheat: The price series for Wheat is identified as l(l) by the ADF test. (The 

Leybourne McCabe test fails to reject the stationarity hypothesis, although in such 

a case of uncertain inference about the order of integration, the conservative choice 

-supported by the above simulation experiments- is in favour of a difference 

stationary forecast model. ) 

The normalised point estimates for the trend and drift coefficient are -0.069 and 

-0.062 with t-ratios of -6.866 and -1.154 respectively. Of these, the t-test suggests 

that the coefficient estimate is significant for the model in levels but not for the 

model in first differences (as usual, requiring rejection of the null hypothesis with 

95% confidence in a two tailed test). When the difference stationary model is 

selected by AIC, the evidence against the drift coefficient is weakened 

substantially with the t-ratio on the drift coefficient falling to -1.923. Of the 

Vogelsang test statistics, only one rejects the null hypothesis of a zero trend 

coefficient, while the Sun and Pantula corrections are not applicable here. At the 

point estimates for the trend and drift coefficient, pre-testing would be expected to 

yield improved forecast results for any but near integrated first order autoregressive 

series. The magnitude of the point estimates for the trend and drift coefficients 

make it seem unlikely that omission of the trend coefficient would lead to 

improved forecast results, while this is less clear for difference stationary models. 

(Given the different model parameterisation in this case one should, of course be 

careful in generalising the implications of the simulation results. ) Since the t-ratio 

on the drift coefficient rises substantially in the model selected by AIC vis a vis the 

one in the model selected by minimum SBC and in view of the fact that the t-ratio 
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is close to the 5% critical value, it seems appropriate to select a forecast model 

with drift. The selected forecast model in this case is ARIMA(0,1,4) with drift. 

(The alternative forecast model without drift, selected by SBC is presented in 

Appendix V. ii. ) 

Maize: The point estimates for the normalised trend and drift coefficients for 

Maize are -0.049 and -0.048 respectively. If one were to apply the above 

simulation results on the performance of forecast models with and without trend or 

drift coefficient correctly including a significant trend would be likely to improve 

the forecast performance of a trend stationary model. The trend stationary model in 

this case is ARIMA(1,0,0) with 0=0.720, the difference stationary ARIMA(1,1,2) 

model is much more different from the model parameterisation used in the 

simulation experiment16. The simulation evidence on the difference stationary 

model does suggest however, that models without drift have smaller mean squared 

forecast errors on average. In any case, the t-ratios would identify the trend 

coefficient as significant for the 1(0) model only. 

Neither Vogelsangs test nor the Sun and Pantula results lend further support for 

the incorporation of a trend coefficient. The unit root test supports a difference 

stationary model, as does the Leybourne McCabe test, there is no evidence of 

overdifferencing and a comparison of the forecast errors, on the basis of the 

simulation results quoted earlier, shows that wrongly fitting a difference stationary 
16 The point estimate of the autoregressive coefficient reported here has not been used in the 

simulation experiments for stationary models either. However, the model parameterisation 
corresponds to the one used in the simulation experiments and in so far as inference on model 
performance for different magnitudes of the autoregressive coefficient is possible, it appears that a 
lower trend coefficient estimate is more likely to yield superior forecast results for the lower 
autoregressive coefficient. While one should exercise some caution in generalising the simulation 
results, the inclusion of a trend term would not appear implausible in this case. 
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model without drift tends to lead to a smaller increase in forecast errors than 

wrongly fitting a trend stationary model. In contrast to Wheat, alternative model 

selection by AIC does not yield stronger evidence in favour of a drift coefficient. 

The most appropriate forecast model therefore seems to be an ARIMA(0,1,2) 

model, re-estimated excluding the drift coefficient. 

Beef: Here the normalised point estimates for the trend and drift coefficient are 

0.067 and 0.039 respectively. As in a large number of other cases, the trend 

coefficient would appear significant at the standard critical value for the t-test 

when the model in levels is considered, but not for a random walk plus drift. The 

Augmented Dickey Fuller test identifies the price series as I(1). If critical values 

are modelled in simulation experiments -as in Sun and Pantula (1999) and above in 

Chapter 4- based on the assumption that the underlying data generating process is 

difference stationary, then the t-ratio would no longer suggest that the trend 

coefficient is significant. This conclusion still holds if the series is modelled as a 

trend stationary first order autoregressive process with 0=0.905, since in this case 

the adjusted 5% critical value as in table 4.1.3. would be ±3.29 while the actual 

t-ratio on the trend coefficient is tß = 2.295. 

Given the normalised point estimate on the trend coefficient, including a 

significant trend coefficient should lead to improved forecast performance in a 

trend stationary model. (The ARIMA (1,0,0) model with an estimated AR(1) 

coefficient value of 0.905 allows for a comparison with the relevant simulation 

results, in contrast to the difference stationary case. ) This may not be the case for 

the difference stationary alternative, where better forecasts could be obtained 
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without a drift term even if it was significant. Since the unit root pre-test would 

indicate the selection of a difference stationary model in the present case and since 

there is evidence in support of a trendless model in either case, the most 

appropriate forecast model for relative Beef prices seems to be a pure random 

walk, or an alternative driftless ARIMA(1,1,1) model. 

Lamb: The unit root hypothesis is rejected by the Augmented Dickey Fuller test 

for this series. The normalised point estimates obtained for the trend and drift 

coefficient respectively are 0.094 and 0.072. The t-ratios are 5.102 and 0.715 

respectively. Standard critical values for the t-ratio would suggest a significant 

trend and insignificant drift term. It is moreover worth noting that the point 

estimate for the trend coefficient is larger than the corresponding estimate for the 

drift term. One could therefore expect an improvement in forecast performance 

when correctly including the trend term to be more likely than in the case of the 

drift term, although the model parameterisations for Lamb do not allow for a direct 

comparison with the simulation evidence on forecast performance. The evaluation 

of the significance of the trend component is therefore crucial for the quality of the 

forecasts obtained. The issue is complicated by the fact that the Sun and Pantula 

corrections are not directly applicable, while of the Vogelsang test statistics two 

indicate the presence of a trend while the other two do not. (Given the low power 

of the Vogelsang test in this case, this evidence is however worth considering. ) 

The fact that the ADF test as well as the Leybourne McCabe test provide evidence 

of a stationary model should justify the selection of a stationary forecast model". 

17 If an ARIMA(1,1,1) model is considered as an alternative to the random walk selected by SBC, 
the estimated coefficient on the moving average term is on the invertibility boundary, though this is 
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In view of the large t-statistic on the trend coefficient, the inclusion of a trend 

component also seems appropriate. In spite of the remaining factors of uncertainty, 

an ARIMA(5,0,0) forecast model with trend is therefore selected. 

Palm Oil: The normalised point estimates for the trend and drift coefficients are 

-0.049 and -0.033 respectively. The series is identified as difference stationary by 

the ADF test while the Leybourne McCabe test fails to reject the stationarity 

hypothesis. A t-test at the conventional critical values would again indicate the 

presence of a significant trend coefficient for the model in levels while the drift 

coefficient with a t-ratio of -0.429 would not be considered statistically significant. 

The t-statistic on the trend coefficient is -4.332 and although the Sun and Pantula 

results are not directly comparable, the low first order autoregressive coefficient 

value of 0.591 suggests that the impact of serial correlation is unlikely to raise 

doubts about the adequacy of standard critical values if the series were to be 

modelled in levels. Among the Vogelsang test statistics, there is no support for the 

presence of a significant trend. 

The simulation evidence on the comparative forecast performance of models with 

and without trend is not directly applicable. If one were to judge the issue on the 

basis of the magnitude of the point estimates for trend and drift coefficients, 

however, it would appear that improved forecasts could result from the inclusion 

of a trend term while for the difference stationary alternative models without drift 

would be preferred. (One should remember though that the model parameterisation 

underlying the simulation results is different from the one in the estimated models 

not the case for the difference stationary alternative identified by AIC. This provides some 
additional support for a trend stationary model. 
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for Palm Oil. ) Hence, considering all the evidence available, the selection of the 

most appropriate forecast model should depend either on pre-testing or on the 

lowest cost of a misspecified model. Given the contradictory evidence from unit 

root and stationarity tests and the ensuing uncertainty in inferring the appropriate 

order of integration, a difference stationary model without drift is the preferred 

option here, given the lower expected cost of misspecification as discussed above. 

The forecast model used therefore is an ARIMA(2,1,0) model as identified by SBC 

and re-estimated without drift. 

Cotton: Here the ADF test fails to reject the unit root null hypothesis. The 

normalised point estimates for the trend and drift coefficients respectively are 

-0.061 and -0.053. The t-ratio on the trend coefficient would suggest that the trend 

is significant at standard critical values, although the autoregressive coefficient in 

the ARIMA(1,0,0) model takes a value of ý=0.833 so that the impact of serial 

correlation should be sufficient to be cautious about the use of standard critical 

values even if the series were to be modelled in levels. However, a priori 

conclusions on the order of integration are important here. The t-ratio obtained, 

-3.328 would be significant at standard asymptotic critical values as well as if 

serial correlation is taken into account for the estimated value of the first order 

autoregressive coefficient: the adjusted critical values shown in table 4.1.3 are 

-2.65 for 0=0.8 and -2.87 for 0=0.85. Conclusions on significance would be 

reversed however, if the critical values were to be adjusted for a difference 

stationary process. Thus the choice of model selection once again is crucially 

dependent on pre-testing. 
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The assumption of an integrated series seems appropriate for forecast model 

selection however. The simulation experiments on expected improvements from 

pre-testing suggest that at the given point estimates for the trend and drift 

coefficients performance improvements from pre-testing may be possible (although 

the parameterisation of the difference stationary alternative differs from the one 

used in the simulation experiments, so some caution is in order). A driftless l(l) 

model would obviously also be favoured if a choice had to be made in the presence 

of persistent uncertainty surrounding the use of pre-tests. Given that the ADF test 

as well as the Leybourne McCabe test support a differenced model, this does not 

seem to be a problem here. In so far as the results of the simulation experiments on 

forecast performance with and without trend or drift coefficient can be generalised, 

the inclusion of a trend coefficient is again more likely to be of advantage in the 

trend stationary than in the difference stationary model and the t-ratio on the drift 

coefficient estimate remains well below the standard critical value of ±1.96 for all 

the difference stationary alternatives considered. The forecast model chosen for 

Cotton prices is therefore the ARIMA(2,1,2) model identified by SBC and 

re-estimated without drift. 

Wool: The trend and drift coefficient estimates for this price series have 

normalised values of -0.081 and -0.078 respectively. On the basis of standard 

t-tests, the coefficient estimate for the trend stationary model (with a t-ratio of 

-4.652) would appear significant while the drift coefficient estimate with a t-ratio 

of -1.850 would be seen as insignificant at the conventional critical value of -1.96. 

This latter result should be interpreted with care since the P-value for the t-ratio on 
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the drift coefficient for wool is 0.067, thus being reasonably close to 5%. The 

t-ratio on the trend coefficient in the trend stationary model would not appear 

significant if the critical values are adjusted for an underlying difference stationary 

process following Sun and Pantula (1999). It would however still appear to be 

significant when the estimate of the autoregressive coefficient were to be taken at 

face value with T5 
= 0.824 and an implicit adjusted critical value between -2.65 and 

-2.87 (from table 4.1.3. ). 

The series is identified as l(l) by the ADF test. The magnitude of the trend 

coefficient estimates suggests that the inclusion of a significant trend coefficient 

would improve the forecast performance of a model in levels. (Since the model 

selected on the basis of the SBC is an ARIMA(1,0,0) model with an AR(1) 

coefficient estimate of 0.824, the comparison of the trend stationary model with the 

simulation results is relatively unproblematic. For the case of a model in first 

differences, the situation is less clear, with respect to the simulation results on I(1) 

DGPs as well as because the model parameterisation differs from the one 

employed in the simulation experiments. In the simulation results reported above, 

difference stationary data generating processes with a moving average coefficient 

of 0=0.2 benefit from the inclusion of a significant drift term with a value of 

ß=0.07 and above, from a forecast horizon length of h=2 and beyond. This is not 

the case where 0=0.1, since here the value for the drift coefficient estimate 

required for superior forecasts is of at least ß=0.09, in which case improved 

forecast results will result at a forecast horizon length of h=9 and beyond. 
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The simulation results on pre-testing suggest that improvements could be expected 

from pre-testing for unit roots in this case -regardless on whether the inclusion of a 

trend or drift coefficient depends on stationarity assumptions. Regarding the 

assumed order of integration, it seems again appropriate to use a difference 

stationary forecast model. One remaining problem is of course the continuing 

uncertainty surrounding the inference on the inclusion of a drift term in the 

difference stationary model. There is also some uncertainty as to whether the 

inclusion of a significant drift term would improve expected forecast results given 

the point estimates obtained. 

Once more then, it can be concluded that the most appropriate forecast model is a 

difference stationary model without drift: What conclusions can be drawn from the 

simulation evidence available suggests that difference stationary models are less 

likely to perform well when small drift coefficients are incorporated. It has 

therefore been decided to drop the drift term although some uncertainty remains. 

The selected forecast model is an ARIMA(0,1,2) model re-estimated without drift. 

Lead: The normalised point estimates for the trend and drift coefficient for Lead 

are -0.033 and -0.042 respectively. Thus inclusion of a significant trend term 

should lead to better forecast results for a forecast model in levels but probably not 

for a forecast model in first differences. The estimated ARIMA(1,0,0) model with 

0=0.795 is close to the simulated model, but the difference stationary model (a 

random walk with drift) is not, so that the results on the performance of I(1) 

models with drift should be treated with some caution. The ADF test fails to reject 

the null hypothesis of a unit root, but the Leybourne McCabe test would identify 
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the series as stationary. On the other hand, simulation results show that at the given 

point estimates for the trend and drift and autoregressive coefficients 

improvements in the average forecast performance of the selected model are to be 

expected if a pre-test is used. 

Regarding the question of the significance of the trend coefficient, it should be 

noted that the trend coefficient appears significant only on the basis of a standard 

t-test when the series is modelled in levels. This conclusion no longer holds for the 

model in first differences or on the basis of the Sun and Pantula or Vogelsang tests. 

The trend coefficient estimate also no longer appears significant if critical values 

are adjusted for serial correlation at the estimated value of the autoregressive 

coefficient ý=0.795. There is thus substantial evidence against the inclusion of a 

trend or drift coefficient in the forecast model for Lead. Given the lack of support 

for the inclusion of a trend coefficient and the remaining uncertainty surrounding 

the application of pre-tests in this case it appears appropriate to model the price 

series for Lead as difference stationary without drift. It is possible that the true 

generating process may be stationary in levels in spite of the pre-test results (given 

the outcome of the Leyboume-McCabe test). 

Imposing an ARIMA(1,1,1) model reveals a moving average coefficient estimate 

on the invertibility boundary18 without leading to a substantial drop in the standard 

error on the drift coefficient estimate. (This finding does not support the hypothesis 

that the drift coefficient estimate appears insignificant because the difference 

stationary model alternative is underparameterised. ) The autoregressive coefficient 

18 However this is not the case for the difference stationary model selected by AIC. 
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estimate in the ARIMA(1,1,1) model is clearly significant, considering a t-ratio of 

7.949 while a meaningful standard error on the moving average coefficient 

estimate can not be obtained since the point estimate is on the invertibility 

boundary. 

In conclusion, a case for modelling the price series for Lead as a trendless 

stationary process could clearly be made. However, since the insignificance of the 

trend coefficient estimate has also been established, the absence of a trend 

coefficient can be taken as given when assessing the benefits of unit root 

pre-testing for the selection of the appropriate forecast model. It has been shown 

above that the average performance of a forecast model selected thus should be 

expected to improve in the present case (i. e. given the estimate of the 

autoregressive coefficient and the absence of a trend component regardless of the 

inferred order of integration. ) In addition, it is also to be expected that the cost of 

misspecification is generally lower when a difference stationary alternative is used 

(Cf. footnote 13 above, where model selection for Rubber is discussed). The 

selected forecast model for Lead is therefore an ARIMA(1,1,1) model (considering 

a pure random walk as a possible alternative). 
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5.3. Relative Price Forecasts 

5.3.1. Price forecasts obtained 

An overview of the forecast models selected is given in table 5.3.1 below. The 

forecast results obtained are listed below in tables 5.3.2. to 5.3.7 for a ten period 

forecast horizon and for point forecasts only. Ten period forecasts with 68% 

confidence intervals are listed in Appendix V. i, where confidence intervals are 

calculated on the basis of the estimated forecast model, abstracting from additional 

uncertainty regarding the accuracy of model specification. The graphs presented in 

the text plot forecasts and 68% confidence intervals over 20 years, to show the ten 

year projections in context. 

Tah1e 53.1. Forecast models used for individuni inmmnrlity *, rit cariae 
Commodity Forecast 

model* 
Trend 
/Drift 

Commodity Forecast 
model* 

Trend 
/Drift 

Aluminium 1,0,1 Y Silver 2,1,0 N 
Rubber 1,0,0 Y Zinc 1,0,1 N 
Sugar 1,0,1 Y Rice 1,1,2 Y 

Timber 1,0,0 Y Wheat 0,1,4 Y 
Coffee 1,1,1 N Maize 0,1,2 N 
Cocoa 2,1,0 N Beef 0,1,0 N 
Tea 0,1,0 N Lamb 5,0,0 Y 

Bananas 0,1,0 N Palm Oil 2,1,0 N 
Jute 0,1,2 N Cotton 2,1,2 N 

Tobacco 0,1,0 N Wool 0,1,2 N 
Copper 0,1,0 N Lead 1,1,1 N 

Tin 0,1,0 N 
ARIMA(p, d, q) specitications are given for forecast models. 

In the cases where difference stationary forecast models without drift have been 

selected, Appendix V. iii. lists the re-estimated ARIMA models without drift. In 

those cases where the selected forecast model is a pure random walk, the model 

estimates presented are for an ARIMA(1,1,1) model without drift. 
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One point worth mentioning is that the forecast models selected for Wheat and 

Maize differ more than one might expect, given that the two commodities should 

be substitutes to some degree. Although both price series are identified as 

difference stationary, only the forecast model for Wheat contains a drift term. One 

should remember here that the case for a drift term was far from clear cut but that 

the time series characteristics of the price series for Wheat were such as to 

motivate the inclusion of a drift term. Similar considerations may arise in the case 

of Lamb and Beef. 

Table 5.3.2. below shows forecasts up to ten periods ahead for the four 

commodities for which the presence of a trend or drift coefficient was regarded as 

highly likely. 

Table 5.3.2. Point forecasts for some models with trend or drift 

h 
Aluminium 
ARIMA 1,0 1 

Rubber 
ARIMA 1,0 0 

Sugar 
ARIMA 1 0,1 

Timber 
ARIMA 1,0,0 

0 -0.394 -0.931 -0.540 -0.282 
1 -0.508 -0.826 -0.290 -0.142 
2 -0.529 -0.854 -0.301 -0.043 
3 -0.550 -0.882 -0.311 0.028 
4 -0.569 -0.910 -0.321 0.080 
5 -0.589 -0.938 -0.332 0.119 
6 -0.608 -0.966 -0.342 0.149 
7 -0.627 -0.994 -0.353 0.173 
8 -0.646 -1.022 -0.363 0.193 
9 -0.665 -1.050 -0.373 0.210 
10 -0.683 -1.078 -0.384 0.225 

h: Forecast horizon, h=0 last observation of the original data set, All forecasts are for prices relative 
to MUV in natural logarithms. 

The results reported in table 5.3.2. reflect the presence of a negative trend 

coefficient in the cases of Aluminium, Rubber and Sugar and of a positive trend in 

the case of Timber. The forecast values fall or rise accordingly. The corresponding 
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point forecasts and 68% confidence intervals for a forecast period of 20 years are 

illustrated in Figures 5.3.1 to 5.3.4 below. 

Figure 5.3.1 
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Figure 5.3.2 

Rubber: Forecasts Including Trend 
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Figure 5.3.4: 
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For those commodities for which it was concluded that no trend or drift component 

is present the forecasts for those cases in which the forecast model selected is not a 

pure random walk or ARIMA(1,1,1) model are shown below in table 5.3.3. 

Table 5.3.3. Point forecasts for models without trend or drift 

h 
Cocoa 

ARIMA 2,1 0 
Jute 

ARIMA 0 1,2 
Silver 

ARIMA 2,1,0 
Zinc 

ARIMA 1,0,1 

0 -1.319 -0.942 -0.825 -0.117 
1 -1.363 -0.813 -0.817 -0.131 
2 -1.389 -0.795 -0.866 -0.045 
3 -1.378 -0.795 -0.871 -0.008 
4 -1.369 -0.795 -0.856 0.008 
5 -1.371 -0.795 -0.854 0.015 
6 -1.374 -0.795 -0.858 0.018 
7 -1.374 -0.795 -0.859 0.019 
8 -1.373 -0.795 -0.858 0.020 
9 -1.373 -0.795 -0.857 0.020 
10 -1.373 -0.795 -0.858 0.020 

h: Forecast horizon, h=0 last observation of the original data set, All forecasts are for prices relative 
to MUV in natural logarithms. 
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The trendless, mostly difference stationary forecast models in table 5.3.3. above 

yield forecasts that converge to a constant value after a short horizon. As one 

would expect, this convergence occurs more quickly for pure moving average 

processes than for models containing an autoregressive component. In the case of 

Zinc the forecasts converge on the unconditional mean of the series, while for the 

difference stationary models the constant forecast value obtained finally depends 

on the last observation in the original series and any inference from the ARMA 

components of the model". The forecasts listed in Table 5.3.3 are illustrated over a 

period of 20 years and with 68% confidence intervals in figures 5.3.5 to 5.3.8 

below: 

19 Where the 68% confidence intervals for the forecasts are shown in Appendix V. i. and in this 
Chapter it also becomes apparent that the confidence intervals for forecasts from stationary or trend 
stationary models are characterised by a bounded variance whereas the variance, and hence the 
confidence interval width, for integrated processes increases with the forecast horizon. 
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Figure 5.3.7: 
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Point forecasts from pure random walk models are simply the last observation in 

the original data series at any forecast horizon. Table 5.3.4. lists these values for all 

driftless models which would be modelled as a pure random walk, when selecting 

by SBC. 

Table 5.3.4. Point forecasts from nure random walks 
Commodity Forecast Commodity Forecast 

Coffee -0.926 Tobacco -0.898 
Tea -0.672 Co er -0.522 
Bananas -0.077 Tin -1.441 

All forecasts in the table are from random walk models and are therefore identical for any forecast 
horizon. All forecasts are for prices relative to MUV in natural logarithms. 

Forecasts from random walk models are illustrated in Figures 5.3.9-5.3.13 below. 

(The forecasts for Coffee will be illustrated below when ARIMA(1,1,1) models are 

presented. 
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Banana: Forecasts without Drift 
Prices relative to MUV In logarithms 

Tobacco: Forecasts excluding Drift 
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It was pointed out above in Chapter 4 that random walk models can easily be 

obtained from overdifferenced stationary or trend stationary time series and it was 

further demonstrated that fitting ARIMA(1,1,1) models can yield improved results 

over pure random walks -at least in the case where the trend stationary alternative 

would be an ARIMA(1,0,0) model. In the present case forecasts for ARIMA(1,1,1) 

models without drift are presented in addition to the pure random walk forecasts 

shown above. Forecasts on the basis of ARIMA(1,1,1) models are shown in table 

5.3.5. below. 

Table 5.3.5. Point forecasts from ARIMA(1,1,1) models as an alternative to 

nure random walks 
h Coffee Tea Bananas Tobacco Copper Tin 
0 -0.926 -0.672 -0.077 -0.898 -0.522 -1.441 
1 -0.907 -0.925 -0.079 -0.980 -0.560 -1.439 
2 

M 

-0.891 -0.946 -0.078 -0.985 -0.545 -1.439 
3 -0.877 -0.932 -0.078 -0.986 -0.551 -1.439 
4 -0.866 -0.941 -0.078 -0.986 -0.548 -1.439 
5 -0.856 -0.935 -0.078 -0.986 -0.549 -1.439 
6 -0.848 -0.939 -0.078 -0.986 -0.549 -1.439 
7 -0.842 -0.936 -0.078 -0.986 -0.549 -1.439 
8 -0.836 -0.938 -0.078 -0.986 -0.549 -1.439 
9 -0.831 -0.937 -0.078 -0.986 -0.549 -1.439 
10 -0.828 -0.938 -0.078 -0.986 -0.549 -1.439 

h: Forecast horizon, h=O last observation of the original data set. All forecasts are for prices relative 
to MUV in natural logarithms. Forecast models for Tobacco and Tea have been computed on the 
basis of data up to 1997 only. 

For the alternative ARIMA(1,1,1) models point forecasts vary in the short run and 

then converge to a constant long term forecast value, which in the cases of Tea and 

Tobacco is quite distinct from the random walk forecast. In the case of Coffee, 

where the estimated autoregressive coefficient (0 = 0.93 1) is close to one, the 

convergence process is comparatively slow. 
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It will be recalled that the ARIMA(1,1,1) model was only selected as a forecast 

model for Coffee and Lead, where in both cases the autoregressive coefficient is 

significant while the moving average coefficient estimate is on the invertibility 

boundary. The forecasts for Coffee from an ARIMA(1,1,1) model over a 20 year 

period are shown in figure 5.3.14. 

Figure 5.3.14: 
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In all of the other cases listed in table 5.3.5, neither the coefficient estimate on the 

autoregressive term nor on the moving average term appear statistically significant 

on the basis of a standard t"test (cf the results reported in Appendix IV. i. ). (The 

one exception is Tea, when the model is re-estimated without drift cf. Appendix 
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Thus a pure random walk is the preferred forecast model for all the 

remaining commodity price series covered in tables 5.3.5. and 5.3.4. 

Ten period forecasts for those commodity price series where there was substantial 

uncertainty surrounding a priori conclusions on the presence of a trend or drift 

coefficient are given in tables 5.3.6a and 5.3.6. b. below. Again the forecasts in the 

table are only for those cases in this group where the most appropriate forecast 

model is not a pure random walk. A random walk was chosen as a forecast model 

for Beef. The point forecast from a random walk for Beef is -0.816, and would be 

-1.033 for Lead. The remaining forecasts are: 

Table 5.3.6. a Point forecasts for commodity price series where the 
prese nce of a trenu or urns component is uncertain 

h 
Rice 

ARIMA 111 
Wheat 

ARIMA 014 
Maize 

ARIMA 0,1,2 
Palm Oil 

ARIMA 2,1 0 
0 -0.583 -0.618 -0.602 -0.463 
1 -0.541 -0.586 -0.506 -0.480 
2 -0.561 -0.599 -0.502 -0.568 
3 -0.577 -0.534 -0.502 -0.567 
4 -0.592 -0.512 -0.502 -0.535 
5 -0.605 -0.522 -0.502 -0.534 
6 -0.617 -0.533 -0.502 -0.545 
7 -0.630 -0.544 -0.502 -0.546 
8 -0.642 -0.555 -0.502 -0.542 
9 -0.654 -0.565 -0.502 -0.542 
10 -0.666 -0.576 -0.502 -0.543 

h: Forecast norizon, n=u last observation of the original data set, All forecasts are for prices 
relative to MUV in natural logarithms. Forecasts for series best modelled by a pure random 
walk are not included in the table., Viii. Forecast models included a constant in the cases of 
Rice and Wheat. 
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Table 5.3.6. b Point forecasts for commodity price series where the 

presence of a trend or drift component is uncertain 

h 
Cotton 

ARIMA 2,1 2 
Wool 

ARIMA 0,1,2 
Lamb 

ARIMA 500 
Lead 

ARIMA 1 1,1 
0 -0.689 -0.738 -0.306 -1.033 
1 -0.631 -0.744 -0.308 -0.988 
2 -0.570 -0.662 -0.126 -0.955 
3 -0.534 -0.662 -0.050 -0.931 
4 -0.534 -0.662 -0.073 -0.913 
5 -0.561 -0.662 -0.017 -0.901 
6 -0.596 -0.662 0.099 -0.891 
7 -0.621 -0.662 0.154 -0.885 
8 -0.628 -0.662 0.168 -0.880 
9 -0.618 -0.662 0.213 -0.876 
10 -0.599 -0.662 0.273 -0.874 

h: Forecast horizon, h=0 last observation of the original data set, All forecasts are for prices 
relative to MUV in natural logarithms. Forecasts for series best modelled by a pure random 

walk are not included in the table. The forecast model included a trend in the case of Lamb. 

The forecasts for Rice and Wheat, show the impact of the downward drift which 

has been incorporated into the forecast model. In the case of Lamb the impact of 

the positive trend coefficient estimate can be observed. For the remaining driftless 

difference stationary forecast models the point forecast converges to constant 

values which, except for the case of Palm Oil, lie above the value of the last 

observation in the sample. The convergence to the constant long run forecast is 

rather slow for Palm Oil, Cotton and Lead. In the case of Palm Oil the predicted 

series converges after 12 forecast periods (to a value of -0.543) while for Cotton 

the forecast horizon required for forecasts to converge to a value of -0.593 is of 53 

periods, and the predictions for Lead converge onto a constant value of -0.867 after 

27 forecast periods. The forecasts in Table 5.3.6 are illustrated in Figures 5.3.14 to 

5.3.21 below. 
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Figure 5.3.16: 
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Maize: Forecasts without Drift 

Palmoll: Forecasts without Drift 
Prices relative to MW In logarithms 



Figure 5.3.18: 
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Figure 5.3.20: 
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Lamb: Forecasts Including Trend 
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The forecasts for Beef, where a pure random walk has been identified as the most 

appropriate forecast model are based on the model selected by SBC, without drift, 

yielding a forecast of -0.816. For the reasons given above, these can be compared 

with forecasts on the basis of ARIMA(1,1,1) models without drift as shown in 

table 5.3.7. below. 

Table 5.3.7. Point forecasts from ARIMA (1,1,1) model for 
Beef as an alternative to a pure random walk leef as an alterna tive to a ure random wal k 

h 0 1 23 45 
Beef -0.816 -0.820 -0.819 -0.819 -0.819 -0.819 
h 6 7 89 10 
Beef F -0.819 -0.819 -0.819 -0.819 -0.819 

h: Forecast horizon, h=o last observation of the original data set. All forecasts 

are for prices relative to MUV in natural logarithms. 

As above, the point forecasts converge to a constant long run value distinct from 

the value predicted by the pure random walk model, after some short run variation 

is predicted from the ARMA components, although the difference is moderate in 

this case. For Beef, neither the autoregressive nor moving average coefficient 

estimates appeared significant in the ARIMA (1,1,1) model, and a pure random 

walk had been selected earlier as the most appropriate forecast model. The 

forecasts over 20 years shown in Figure 5.3.22 below are those obtained when 

modelling the price series for Beef as a pure random walk. 
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Figure 5.3.22: 
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5.3.2. Comparison with Worldbank forecasts 

The forecasts obtained here can be compared with updates of the data set used as 

published by the Worldbank (see bibliography for data sources). Commodity price 

updates and projections where re-indexed to their 1977-1979 average as in the 

present case and expressed relative to the MUV index, indexed to the same base 

period and expressed in natural logarithms20. Table 5.3.8. shows the projections 

20Expressing the commodity price series in either constant 1990 US$ or current dollar terms is 
inappropriate in so far as the interest has been in the development of relative prices throughout. 
Expressing the price series in constant dollar terms would make it necessary to take the realisation 
of the of the MUV index as given and interpret the forecasts obtained as simple price projections 
when what has been predicted are relative commodity price series. Reflation to current dollar terms 
would moreover be complicated by the fact that reflation of the Worldbank data would have to be 
accomplished on the basis of a price index which is not publicly available. 
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from the current study as well as updates and projections of the relevant price 

series as published by the Worldbank for the years 1999,2000 and 2001. 

Table 5.3.8. Commodity price forecasts for 1999 to 2001 in comparison with 
World Bank forecasts 

Commodity 1999 2000 2001 1999we 2000wB 2001" 
Coffee -0.907 -0.891 -0.877 -1.189 -1.390 -1.683 
Cocoa -1.363 -1.389 -1.378 -1.709 -1.959 -1.943 
Teat -0.672 -0.672 -0.672 n. a. n. a. n. a. 
Rice -0.541 -0.561 -0.577 -0.785 -1.015 -1.132 
Wheat -0.586 -0.599 -0.534 -0.737 -0.743 -0.633 
Maize -0.506 -0.502 -0.502 -0.761 n. a. n. a. 
Sugar -0.290 -0.301 -0.311 -0.893 -0.651 -0.465 
Beef -0.816 -0.816 -0.816 -0.751 -0.728 -0.752 
Lamb -0.308 -0.126 -0.050 -0.358 -0.380 -0.331 
Bananas -0.077 -0.077 -0.077 -0.351 -0.249 0.091 
Palm Oil -0.480 -0.568 -0.567 -0.895 -1.260 -1.512 
Cotton -0.631 -0.570 -0.534 n. a. n. a. n. a. 
Jute -0.813 -0.795 -0.795 -0.873 -0.894 -0.861 
Wool -0.744 -0.662 -0.662 -0.568 -0.501 -0.496 
Tobaccos -0.898 -0.898 -0.898 -0.340 n. a. n. a. 
Rubber -0.826 -0.854 -0.882 -1.069 -0.999 -1.099 
Timber -0.142 -0.043 0.028 -0.140 -0.149 -0.270 
Copper -0.522 -0.522 -0.522 -0.527 -0.455 -0.500 
Aluminium -0.508 -0.529 -0.550 -0.392 -0.287 -0.273 
Tin -1.441 -1.441 -1.441 -1.465 -1.484 -1.564 
Silver -0.817 -0.866 -0.871 -0.878 -0.951 -1.051 
Lead -0.988 -0.955 -0.931 -1.084 -1.211 -0.046 
Zinc -0.131 -0.045 -0.008 -0.068 -0.046 -0.164 

T The forecast model for these commodities was estimated on the basis of data from 1900 to 1997 
only. All forecasts are for primary commodity prices relative to MUV in natural logarithms. 
WB: Worldbank forecasts are given in italics. n. a.: not available. 

One major complication in comparing the forecast results listed in table 5.3.8., 

aside from a lack of information about the forecast model specification used for the 

Worldbank forecasts, is the short forecast horizon considered. At very short 

forecast horizons, one may expect substantial forecast improvements from the 

consideration of information from structural models as well as ad hoc information 

349 



Chapter 5 

of limited availability. The univariate forecasts developed here may prove most 

valuable at medium to long term horizons. 

Generally speaking, there is no general pattern of correspondence or 

non-correspondence between the forecasts developed here and those of the 

Worldbank. The point forecasts published by the Worldbank do at times lie within 

the 68% confidence intervals of the point forecasts from the present study while on 

other occasions they do note'. 

A comparison in terms of revealed trend movements is equally difficult since the 

impact of autoregressive and moving average terms can easily dominate the 

forecast results at the forecast horizon considered for Table 5.3.8. This is for 

example the case for Wheat, where convergence to the long term negative trend 

appears to suggest an upwards movement during the three forecast periods shown. 

In addition to those commodities for which specific price movements are suggested 

by the forecasts, no such prediction is made from random walk models. If a 

random walk model, or a driftless I(1) model more generally, provides a good basis 

for commodity price forecasts, one should expect the actual future realisations of 

the data series to lie on either side of the forecast value, rather than corresponding 

exactly to it. If the Worldbank forecast data are viewed as a benchmark case 

representative of future realisations of the data series", it would still be 

2' The Worldbank's forecasts that lie within the 68% confidence interval given here in the cases of 
Cocoa, Wheat, Beef, Lamb, Jute, Wool, Rubber, Copper, Tin, Silver and Zinc throughout. 
Furthermore in the case of Aluminium, Maize and Palm Oil for 1999; Coffee for 2000, Sugar for 
2000 and 2001 as well as Timber and Lead for 1999 to 2000. The Worldbank forecasts for Bananas 
and Rice lie outside the 68% confidence interval for the forecasts obtained here throughout. 
22At least the data for 1999, and 2000, should be expected to be close to future consolidated figures 
for these series. 
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unreasonable to expect a pattern of observations corresponding to a random walk 

to emerge over the course of just three observations. 

5.3.3. Assessing in-sample forecasts. 

The quality of the forecast models obtained can be further assessed against the 

background of the observed discrepancy between in-sample forecasts from models 

selected in the present chapter and the actual realisations of the data series over the 

period in question. 

For the purpose of this quality assessment, the selected forecast models were 

re-estimated over the shorter 1900-1983 sample period previously covered by 

Cuddington (1992). The forecast models themselves are those specified in Table 

5.3.1. The models have been re-estimated for the shorter sample period, but since 

the interest here is in the potential of the forecast model as a characterisation of the 

long term properties of the series in question, no re-selection has been undertaken. 

Comparing the data for the 1984-1994 period with the confidence intervals for the 

10 period in-sample forecasts, only a small number of models seems to perform 

reasonably well. The actual data series lie within the interval forecasts for Rubber, 

Aluminium and Copper for the entire forecast horizon and take values beyond the 

confidence intervals in three or less periods in the cases of Jute, Beef, Timber and 

Lamb. 

The data for Palm Oil, Lead and Zinc lie outside the confidence interval at short 

horizons but then converge to it after 3 to 7 periods. The model for Wool performs 

well initially but the data series then diverge from the confidence interval after 6 

periods. The data series for the remaining commodities lie outside the forecast 
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confidence intervals during four or more periods, and for the entire forecast 

horizon in the cases of Tea, Cotton, Wheat, Maize, Rice, Cocoa, Silver and Tin. 

It is important to be aware of the limitations of such a general comparison with the 

interval predictions obtained. Confidence interval width differs across forecast 

models, and is constant only in stationary models while prediction intervals are set 

to widen where the model selected is difference stationary. Moreover, the forecast 

performance of many of the selected univariate models improves substantially if 

the models are re-estimated over the slightly longer 1900-1986 period. 

It is also worth noting that most of the trend stationary models perform rather well. 

It is not clear though that this would also have been so had they not been selected 

after careful consideration of the evidence on the order of integration. There also 

appears to be some vindication of the simulation evidence on the role of drift terms 

in integrated models as the two forecast models including a drift term are among 

the worst performers. 

A further comparison has been made with the results obtained by Cuddington 

(1992) over the same sample period. The ARIMA model parameterisations were 

applied as in Cuddington (1992)23 to obtain forecast models but were re-estimated, 

since the original data set had been updated from 1960 and beyond. 

The forecasts obtained here were compared with those by Cuddington on the basis 

of the difference between the squared prediction errors from either forecast (with a 

larger squared error indicating inferior forecast results). The results are 

summarised in Table 5.3.9. below. 

23For Silver and Wheat Cuddington identifies two second order Moving Average terms each. In 
either case the first of these was assumed to be a first order moving average coefficient. 
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The forecasts obtained in this study have lower prediction errors than those of 

Cuddington in 8 or more forecast periods for a total of 10 price series, while the 

opposite is the case for only three cases. In three further cases identical forecasts 

were obtained, but the remaining results are mixed. 

Table 5.3.9. Comparative performance of Forecast models 
Commodity Period or Range Commodity Period or Range 

Aluminium n =8 Bananas n=3 
Rubber n= 10 Jute h =3 to 10 
Su ar n= 10 Tobacco h=2 to 10 

Timber -= Copper 
Lamb h=2 to 10 Tin h=6 to 10 
Rice h=2 to 4 Silver n= 0 

Wheat h= 1 to 6 Maize h =-2 to 10 
Zinc n=4 Beef 

Coffee h =1 to 3 Palm Oil h=2 to 10 
Cocoa h=3 to 10 Cotton n =1 
Tea n=0 Wool 
Lead n= 10 

The Table compares Forecast results on the basis of models selected here with those from the 

estimates by Cuddington (1992). It is shown for which forecast horizons (h) or number of forecasts 
(n) Cuddington's models yield inferior forecasts. (_) shows that identical predictions were obtained. 

The in-sample evaluation of the forecast results shows that the univariate forecast 

models, selected partially on the basis of information criteria, can offer a basis for 

forecasting but should not be relied upon exclusively. The extrapolation of 

integrated series with drift components seems to require particular care. The 

observed performance differences brought about by small changes in sample 

period and forecast horizon also suggest that the pronounced volatility of some 

data series may itself be one of the main issues to consider. 
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5.4. Conclusion 

It has been shown that projections for relative primary commodity prices should 

only be based on trend or drift terms in a small number of cases. Where trend or 

drift terms are statistically significant they may not improve the performance of 

forecast models unless the point estimate of the trend or drift term is sufficiently 

large. It was furthermore confirmed that the correct specification of the order of 

integration of the data generating process underlying the relative price series in 

question is important for the accuracy of the predictions obtained. While unit root 

pre-tests can on average lead to improved forecast results in a number of cases, it 

may be better to rely on differenced forecast models in the case of near integrated 

series where the power of unit root tests is very low. Conclusions on the usefulness 

of unit-root pre-testing are altered further, if one explicitly accounts for the 

interdependence of the assumed order of integration and the evaluation of 

significance tests on the trend coefficient estimate. In some cases, where unit root 

pre-testing could be expected to lead to improvements in forecast performance if 

the presence or absence of a trend component was known in advance, it may still 

be preferable to rely on a differenced forecast model if the point estimate of the 

trend coefficient is small and inference on the significance of this estimate depends 

on the inferred order of integration of the series. 

On the basis of the results on forecast model selection presented here, a trend and 

two drift terms respectively24 were incorporated in three forecast models where the 

presence of a trend component has been regarded as uncertain in modelling the 

24A trend term was used in the forecasts for Lamb, while a drift term was incorporated in the 
forecast models for Rice and Wheat. 
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available data series. A trend was further included in the case of those four 

commodities where its presence had been inferred with a high degree of confidence 

(i. e. Aluminium, Rubber, Sugar and Timber). For the majority of commodity price 

series, however it would appear, based on the above simulation results, that the 

best predictions are obtained by forecast models excluding trend or drift terms. In a 

number of cases, commodity price series are best modelled as pure random walks 

for forecasting purposes. In any case the overall scenario does not seem to be one 

of generalised secular downwards trends -neither from a backward looking nor 

from a forecasting perspective. 
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Appendix V. i Ten Period Forecasts and Confidence 

Intervals 

This appendix lists ten period ahead forecasts obtained from the forecast models 

identified in Table 5.3.1 together with the upper and lower bounds of the 68% 

confidence intervals corresponding to those point forecasts. The lower bound of 

the confidence interval is identified as Commodity Name-L, the upper bound as 

Commodity Name-U and the point forecast as Commodity Name-F. As before in 

Chapter 5, the first data row of each table contains the last observation in the 

original data series. 

One should take account of the fact that the confidence intervals reported below 

reflect forecast uncertainty on the assumption that the correct model has been used 

for the forecast; no account is taken of any remaining uncertainty surrounding the 

specification of the appropriate forecast model. 

Year Alu-L Alu-F Alu-U Rubber-L Rubber-F Rubber-U 
1998 -0.394 -0.394 -0.394 -0.931 -0.931 -0.931 
1999 -0.657 -0.508 -0.359 -1.279 -0.826 -0.374 
2000 -0.754 -0.529 -0.305 -1.307 -0.854 -0.402 
2001 -0.799 -0.550 -0.300 -1.335 -0.882 -0.429 
2002 -0.829 -0.569 -0.310 -1.363 -0.910 -0.457 
2003 -0.852 -0.589 -0.326 -1.391 -0.938 -0.485 
2004 -0.873 -0.608 -0.343 -1.419 -0.966 -0.513 2005 -0.893 -0.627 -0.361 -1.447 -0.994 -0.541 
2006 -0.912 -0.646 -0.380 -1.475 -1.022 -0.569 
2007 -0.931 -0.665 -0.399 -1.502 -1.050 -0.597 2008 -0.950 -0.683 -0.417 -1.530 -1.078 -0.625 

Year Sugar-L Sugar-F Sugar-U Timber-L Timber-F Timber-U 
1998 -0.540 -0.540 -0.540 -0.282 -0.282 -0.282 1999 -0.707 -0.290 0.127 -0.290 -0.142 0.007 
2000 -0.718 -0.301 0.116 -0.222 -0.043 0.137 
2001 -0.728 -0.311 0.106 -0.164 0.028 0.220 
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2002 -0.738 -0.321 0.096 -0.118 0.080 0.278 
2003 -0.749 -0.332 0.085 -0.082 0.119 0.319 
2004 -0.759 -0.342 0.075 -0.053 0.149 0.350 

2005 -0.770 -0.353 0.064 -0.029 0.173 0.375 
2006 -0.780 -0.363 0.054 -0.010 0.193 0.395 
2007 -0.790 -0.373 0.044 0.007 0.210 0.412 
2008 -0.801 -0.384 0.033 0.023 0.225 0.428 

Year Coffee-L Coffee-F Coffee-U Cocoa-L Cocoa-F Cocoa-U 
1998 -0.926 -0.926 -0.926 -1.319 -1.319 -1.319 
1999 -1.384 -0.907 -0.430 -1.840 -1.363 -0.886 
2000 -1.515 -0.891 -0.266 -2.092 -1.389 -0.686 
2001 -1.590 -0.877 -0.165 -2.174 -1.378 -0.582 
2002 -1.635 -0.866 -0.096 -2.237 -1.369 -0.500 
2003 -1.664 -0.856 -0.048 -2.324 -1.371 -0.419 
2004 -1.684 -0.848 -0.013 -2.408 -1.374 -0.340 
2005 -1.696 -0.842 0.013 -2.479 -1.374 -0.269 
2006 -1.705 -0.836 0.032 -2.543 -1.373 -0.203 
2007 -1.710 -0.831 0.047 -2.606 -1.373 -0.140 
2008 -1.714 -0.828 0.059 -2.667 -1.373 -0.080 

Year Bananas-L Bananas-F Bananas-U Jute-L Jute-F Jute-U 
1998 -0.077 -0.077 -0.077 -0.942 -0.942 -0.942 
1999 -0.167 -0.077 0.014 -1.232 -0.813 -0.395 
2000 -0.204 -0.077 0.051 -1.374 -0.795 -0.216 
2001 -0.233 -0.077 0.080 -1.420 -0.795 -0.170 
2002 -0.257 -0.077 0.104 -1.463 -0.795 -0.127 
2003 -0.279 -0.077 0.125 -1.504 -0.795 -0.087 
2004 , -0.298 -0.077 0.145 -1.542 -0.795 -0.049 
2005 -0.316 -0.077 0.162 -1.578 -0.795 -0.013 2006 -0.332 -0.077 0.179 -1.613 -0.795 0.022 
2007 -0.348 -0.077 0.194 -1.646 -0.795 0.055 
2008 , -0.362 -0.077 0.209 -1.678 -0.795 0.087 

Year Copper-L Copper-F' Copper-U Tin-L Tin-F Tin-U 
1998 -0.522 -0.522 -0.522 -1.441 -1.441 -1.441 1999 -0.709 -0.522 -0.335 -1.629 -1.441 -1.253 
2000 -0.787 -0.522 -0.257 -1.707 -1.441 -1.175 2001 -0.846 -0.522 -0.198 -1.766 -1.441 -1.115 2002 -0.896 -0.522 -0.148 -1.817 -1.441 -1.064 2003 -0.941 -0.522 -0.103 -1.861 -1.441 -1.020 
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2004 -0.981 -0.522 -0.063 -1.901 -1.441 -0.980 
2005 -1.017 -0.522 -0.027 -1.938 -1.441 -0.943 

-1.052 

U U 

-0.522 0.007 -1.973 -1.441 -0.909 
2007 0 -1.084 -0.522 0.040 -2.005 -1.441 -0.876 
2008 -1.114 -0.522 0.070 -2.036 -1.441 -0.846 

Year Silver-L Silver-F Silver-U Zinc-L Zinc-F Zinc-U 
1998 -0.825 -0.825 -0.825 -0.117 -0.117 -0.117 
1999 -1.169 -0.817 -0.465 -0.325 -0.131 0.063 
2000 -1.375 -0.866 -0.357 -0.294 -0.045 0.205 
2001 -1.442 -0.871 -0.300 -0.266 -0.008 0.251 
2002 -1.480 -0.856 -0.232 -0.252 0.008 0.269 
2003 -1.539 -0.854 -0.169 -0.245 0.015 0.276 
2004 -1.601 -0.858 -0.116 -0.243 0.018 0.279 
2005 -1.652 -0.859 -0.066 -0.241 0.019 0.280 
2006 -1.697 -0.858 -0.018 -0.241 0.020 0.281 
2007 -1.742 -0.857 0.027 -0.240 0.020 0.281 
2008 -1.785 -0.858 0.070 -0.240 0.020 0.281 

Year Rice-L Rice-F Rice-U Wheat-L Wheat-F Wheat-U 
1998 -0,583 -0.583 -0.583 -0.618 -0.618 -0.618 
1999 -0.704 -0.541 -0.378 -0.738 -0.586 -0.434 
2000 -0.816 -0.561 -0.306 -0.824 -0.599 -0.374 
2001 -0.861 -0.577 -0.293 -0.784 -0.534 -0.284 
2002 -0.889 -0.592 -0.295 -0.780 -0.512 -0.244 
2003 -0.909 -0.605 -0.301 -0.796 -0.522 -0.249 
2004 -0.926 -0.617 -0.309 -0.811 -0.533 -0.255 
2005 -0.942 -0.630 -0.317 -0.826 -0.544 -0.261 
2006 -0.957 -0.642 -0.326 -0.842 -0.555 -0.268 
2007 -0.972 -0.654 -0.335 -0.857 -0.565 -0.274 
2008 -0.987 -0.666 -0.345 -0.872 -0.576 -0.280 

Year Maize-L Maize-F Maize-U Beef-L Beef-F Beef-U 
1998 -0.602 -0.602 -0.602 -0.816 -0.816 -0.816 
1999 -0.909 -0.506 -0.104 -1.020 -0.816 -0.612 
2000 -1.019 -0.502 0.016 -1.105 -0.816 -0.528 
2001 -1.043 -0.502 0.039 -1.169 -0.816 -0.463 
2002 -1.066 -0.502 0.062_- I--1.224 

-0.816 -0.408 2003 -1.088 -0.502 0.084 -1.272 -0.816 -0.360 2004 -1.109 -0.502 0.105 -1.316 -0.816 -0.316 2005 -1.129 -0.502_10.125 -1.356 -0.816 -0.276 
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2006 -1.149 -0.502 0.145 -1.393 -0.816 -0.239 
2007 -1.168 -0.502 0.164 -1.428 -0.816 -0.204 
2008 -1.186 -0.502 0.183 -1.461 -0.816 -0.171 

Year Lamb -L Lamb-F Lamb-U Palm 
Oil-L, 

Palm 
Oil-F 

Palm 
Oil-U 

1998 -0.306 -0.306 -0.306 -0.463 -0.463 -0.463 
1999 -0.500 -0.308 -0.116 -0.898 -0.480 -0.061 
2000 -0.384 -0.126 0.132 -1.176 -0.568 0.039 
2001 -0.348 -0.050 0.248 -1.241 -0.567 0.107 
2002 -0.400 -0.073 0.254 -1.264 -0.535 0.193 
2003 -0.392 -0.017 0.358 -1.333 -0.534 0.265 
2004 -0.303 0.099 0.501 -1.412 -0.545 0.322 
2005 -0.262 0.154 0.570 -1.470 -0.546 0.378 
2006 -0.256 0.168 0.592 -1.518 -0.542 0.434 
2007 -0.218 0.213 0.644 -1.569 -0.542 0.486 
2008 -0.160 0.273 0.705 -1.620 -0.543 0.534 

Year Cotton-L Cotton-F Cotton-U Wool-L Wool-F Wool-U 
1998 -0.689 -0.689 -0.689 -0.738 -0.738 -0.738 1999 -0.923 -0.631 -0.339 -1.112 -0.744 -0.377 2000 -0.919 -0.570 -0.221 -1.147 -0.662 -0.176 
2001 -0.903 -0.534 -0.165 -1.179 -0.662 -0.144 
2002 -0.918 -0.534 -0.150 -1.209 -0.662 -0.115 
2003 -0.969 -0.561 -0.152 -1.237 -0.662 -0.086 
2004 -1.047 -0.596 -0.144 -1.264 -0.662 -0.060 
2005 -1.132 -0.621 -0.110 -1.289 -0.662 -0.034 
2006 -1.201 -0.628 -0.055 -1.314 -0.662 -0.009 2007 -1.242 -0.618 0.007 -1.338 -0.662 0.015 
2008 -1.261 -0.599 0.064 -1.361 -0.662 0.038 
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Year Lead-L Lead-F Lead-U 
1998 -1.033 -1.033 -1.033 
1999 -1.346 -0.988 -0.629 
2000 -1.420 -0.955 -0.490 
2001 -1.459 -0.931 -0.403 
2002 -1.485 -0: 913 -0.342 
2003 -1.504 -0.901 -0.297 
2004 -1.520 -0.891 -0.263 
2005 -1.534 -0.885 -0.235 
2006 -1.548 -0.880 -0.212 
2007 -1.560 -0.876 -0.192 
2008 -1.573 -0.874 -0.175 

Year Tea-L Tea-F Tea-U Tobacco-L Tobacco-F Tobacco-U 
1997 -0.672 -0.672 -0.672 -0.898 -0.898 -0.898 
1998 -0.992 -0.672 -0.353 -1.174 -0.898 -0.622 
1999 -1.124 -0.672 -0.220 -1.288 -0.898 -0.508 
2000 -1.226 -0.672 -0.119 -1.376 -0.898 -0.420 
2001 -1.311 -0.672 -0.033 -1.450 -0.898 -0.347 
2002 -1.387 -0.672 0.042 -1.515 -0.898 -0.281 
2003 -1.455 -0.672 0.110 -1.574 -0.898 -0.223 
2004 -1.518 -0.672 0.173 -1.628 -0.898 -0.168 
2005 -1.576 -0.672 0.231 -1.678 -0.898 -0.118 
2006 -1.631 -0.672 0.286 -1.725 -0.898 -0.071 
2007 -1.683 -0.672 0.338 -1.770 -0.898 -0.026 
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Appendix V. ii. Forecasts for Wheat Prices from the 

Difference Stationary Model Selected by SBC 

It will be recalled that the model initially selected for Wheat, using minimum SBC 

was a difference stationary model without drift, and that a drift term was 

incorporated only after the t-ratio on the trend coefficient had increased 

substantially when model selection by AIC was considered to correct for 

overdifferencing. In this Appendix, forecasts obtained from the driftless model 

selected by SBC are considered as an alternative. The SBC model re-estimated 

without drift is: 

Model: ARIMA(0,1,2) without constant 
Degrees of freedom: 96, Ljung-Box Q(12)': 21.759 (0.016) 

Opi=v, 
vi = Er + 0.135e, -i - 0.546£, _2 (0.159) (0.086) (0.087) 

The corresponding 10 year forecasts with 68% confidence intervals are given in 

table V. ii. i. below, where as before the first data row contains the last observation 

in the original data series. 

1 The Ljung Box Q statistic is computed for 12 autocorrelations, the number in parentheses is the 
associated P-value, indicating a possible problem of serial correlation in the present case. 
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Table V. ii. i. Ten year forecasts for Wheat based on an ARIMA(0,1,2) model 

without drift. 
Year Wheat-L Wheat-F Wheat-U 

1998 -0.618 -0.618 -0.618 
1999 -0.822 -0.511 -0.200 
2000 -0.952 -0.481 -0.011 
2001 -0.986 -0.481 0.023 
2002 -1.018 -0.481 0.056 
2003 -1.049 -0.481 0.086 
2004 -1.078 -0.481 0.115 
2005 -1.105 -0.481 0.143 
2006 -1.132 -0.481 0.169 
2007 -1.157 -0.481 0.195 
2008 -1.181 -0.481 0.219 

These forecasts and confidence intervals are illustrated for a 20 year forecast 

horizon in Figure V. ii. i. below. 

Figure V. ii. i: 
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Over the 20 Year forecast horizon shown in Figure V. ii. i, the point forecast from 

the model without a constant selected by SBC stay within the 68% confidence 

interval for the forecasts from the model with drift selected by AIC. However the 

point forecasts from the model without drift come close to the upper limit of the 

confidence interval of the counterfactual model towards the end of a 30 year 

horizon. This is illustrated in Figure V. ii. ii below. 

Figure V. ii. ii: 
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Moreover, the point forecasts obtained from both models deviate consistently, as is 

to be expected. Figure V. ii. iii shows the alternative point forecasts from forecast 

models with and without drift. 
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Figure V. ii. iii: 
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Clearly, the difference between forecast values, while moderate initially, becomes 

larger as the trajectory of the point forecasts deviates over longer forecast horizons. 

(The forecast with trend predicts an increase in relative prices to -0.544 over the 

first seven years2, and a further decline thereafter. The initial relative price increase 

appears as a temporary approximation to the forecast from the model excluding 

drift, both forecasts then deviate from 2005 onwards. ) Since, the noticeable 

increase in the discrepancy between forecast values occurs relatively early the 

question of selecting between models with and without trend and the persistent 

uncertainty surrounding this question remains an issue. 

2 The forecasts fluctuate somewhat in either direction, however, it is predicted that a value of 
-0.544 will be reached after seven years, starting from a final observation of -0.618 and that 
forecasts will reflect the downwards drift thereafter. 
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Appendix V. iii. Estimation Results for Relative Primary 
Product Price Series in First Differences -Minimum 
SBC Specifications 

This appendix gives details of the estimation results for those forecast 

models where the trend or constant had been dropped and where 

re-estimation has therefore become necessary without the trend or drift 

term. Except for Zinc, the models in question are difference stationary 

models as selected by minimum SBC, but without the constant. Were 

random walks were selected by SBC, they have been replaced with 

ARIMA(1,1,1) models here, irrespective of whether an ARIMA(1,1,1) 

model or a random walk was selected for forecasting (for obvious reasons, 

since for a pure random walk there would simply be nothing to estimate and 

hence no estimate to report). The difference stationary model adopted is 

now: 

Apt = vt 

and 

v[-ýlvr-1 -... -ýPVI-P=Er-e1Er-1 - 

where Opt is the relevant price series in first differences, c bp coefficient 

on the pT" autoregressive error term (v14), Bq the coefficient on the i`'' 

moving average term (eq.; ). The subscript t indicates time period t and t-i the 

i' lag. The general form of the trend stationary model is correspondingly: 

pr=a+u,, 

with: 

ut-o1ut-1 -... -oput_p =E! -elft-1 -... -8981, 
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where a is the constant, p, the relative price level and cb and 6q are the 

autoregressive and moving average coefficients as above. 

The estimation results were obtained using the ARIMA. SRC procedure in 

GAUSS, and are listed below. As in earlier appendices, the Ljung Box Q 

statistic is reported for 12 autocorrelations, with P-values given in 

parentheses. 

Commodity: Coffee 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 8.516 (0.579) 

Apr = vs 
v, -0.839v, _I= Et - 0.993Er_i 

(0.072) (0.243) (0.077) 

Commodity: Cocoa 
Model: ARIMA(2,1,0) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 5.859 (0.827) 

Opt=v, 
vi -0.083vr_1 + 0.309v, -2= E, (0.097) (0.097) (0.243) 

Commodity: Tea 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 95 , Ljung-Box Q(12): 13.972 (0.174) 

Apr = yr 
yr +0.692vr_1= e1 + 0.797Ef_1 

(0.337) (0.163) (0.284) 

Commodity: Maize 
Model: ARIMA(0,1,2) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 12.588 (0.248) 

Apr = vs 
yr = Er - 0.192c _I - 0.415Er 2 (0.205) (0.094) (0.094) 
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Commodity: Beef 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 10.700 (0.381) 

Apr=vr 
vt +0.341= Er + 0.408e1_1 

(1.231) (0.207) (1.195) 

Commodity: Bananas 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 8.950 (0.537) 

Opt = VI 
v1 +0.430vt_1= et + 0.53 8E, _1 (0.658) (0.091) (0.614) 

Commodity: Palm Oil 
Model: ARIMA(2,1,0) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 7.603 (0.668) 

Apr = vs 
v, -0.053vt_1 + 0.358vt_2= Et (0.096) (0.096) (0.213) 

Commodity: Cotton 
Model: ARIMA(2,1,2) without constant 
Degrees of freedom: 94, Ljung-Box Q(12): 9.089 (0.335) 

Opt = vt 
v, -1.306v, _I + 0.757v, _2= Et - 1.650Et_I + 0.966£1_2 

(0.076) (0.076) (0.149) (0.062) (0.066) 

Commodity: Jute 
Model: ARIMA(0,1,2) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 13.326 (0.206) 

Apr = vi 
yr = e, - 0.046er_1- 0.392Er-2 

(0.214) (0.094) (0.095) 

Commodity: Wool 
Model: ARIMA(0,1,2) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 4.469 (0.924) 

Apt=vi 
vt = Er - 0.135El_1- 0.381EI_2 

(0.188) (0.096) (0.096) 
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Commodity: Tobacco 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 95 , Ljung-Box Q(12): 10.888 (0.366) 

Apr = yr 
v, -0.163v, _1= Er - 0.105E, 1 (1.808) (0.142) (1.823) 

Commodity: Copper 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 6.747 (0.749) 

Apr=vr 
yr +0.399v, _1= Et + 0.504Et_i 

(0.733) (0.189) (0.693) 

Commodity: Tin 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 4.994 (0.892) 

Apr = vi 
v, +0.079v, _1= e, +0.143E, _1 (1.557) (0.191) (1.545) 

Commodity: Silver 
Model: ARIMA(2,1,0) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 8.087 (0.620) 

Apt=vg 
v, -0.042v, _1 + 0.307vr_2= 6t (0.097) (0.097) (0.180) 

Commodity: Lead 
Model: ARIMA(1,1,1) without constant 
Degrees of freedom: 96, Ljung-Box Q(12): 9.735 (0.464) 

Apt=vi 
v, -0.726v1_1= Et - 0.900Er_1 

(0.162) (0.183) (0.113) 

Appendix V. iii 
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Commodity: Zinc 
Model: ARIMA(1,0,1) with constant and trend 
Degrees of freedom: 96, Ljung-Box Q(12): 6.390 (0.781) 

p, =-0.020+ut (0.047) 

ul -0.430= E, + 0.380Et_1 
(0.132) (0.195) (0.138) 

Appendix V. iii 
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Chapter 6: Trend-Cycle Decompositions for 

Individual Commodity Price Series 

Previous chapters have focused on the presence, the magnitude and the sign of 

trend components in relative commodity price series as a basis for formulating 

forecast models. It has been obvious throughout, though, that irrespective of the 

presence of a trend or drift most of these relative price series are characterised by 

substantial volatility. This chapter will provide illustrations of the trend and cycle 

components of the relative commodity price series considered. 

6.1. Trends and volatility in commodity price series 

The incidence and pattern of commodity price volatility has in itself been the 

subject of extensive research. The question of volatility was considered alongside 

the issue of long run trends in Borzenstein et. al. (1994), Reinhart and Wickham 

(1994) and Leon and Soto (1997). A number of recent IMF studies -such as Cashin 

et. al. (1999b), Cashin and Patillo (2000) and more recently: Cashin and 

McDermott (2001)- have considered the question of commodity price fluctuations 

with respect to magnitude, duration and symmetry characteristics. 

While this separate field of research is too extensive to be treated here, it is worth 

remembering that among the studies quoted above Cashin and McDermott (op. 

cit. ), using the Economist Industrial Price Index, confirm that commodity prices 

have fallen over time, although they also argue that the development of the price 

series is more appropriately characterised by large fluctuations. 
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A number of studies looking into the significance and magnitude of trend 

components in commodity price series have also covered trend cycle 

decompositions of the price series used. Cuddington and Urzüa (1989) compute 

the Beveridge Nelson Decomposition for the aggregate Grilli and Yang index, 

while Borzenstein et. al. (1994), using quarterly commodity price data, supply 

Beveridge Nelson decomposition results for sub indices covering Food, Metals and 

Beverages as well as a decomposition for a composite index of all commodity 

price series considered by the authors. Cuddington (1992) finally computed 

Beveridge Nelson decompositions for those of the individual Grilli and Yang 

commodity price series for which a difference stationary specification was chosen 

through a priori testing for unit roots. 

Borzenstein et. al. report relatively low shock persistence for metals and high shock 

persistence for beverages, with food prices taking an intermediate position. 

However, no such general observation can be made on the basis of the results by 

Cuddington (1992): Cuddington (op. cit. ) reports persistence results for a number 

of price series modelled as difference stationary. Although he reports high shock 

persistence for difference stationary metal price series (Aluminium 88.3%, Copper 

100%, Silver 64.1%) similarly high persistence results are recorded for a number 

of food commodities (Beef 100%, Cocoa 64.1% and Tea 72%). Only the shock 

persistence for Banana prices is inferred to be markedly lower with 44.4%. Among 

other commodities shock persistence is high for Rubber (100%), Tobacco (78.1%) 

and arguably Cotton (56.1%). Noticeably lower shock persistence is inferred for 

Jute (40%) and Wool (34.3%). 
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In the present study, Beveridge Nelson Decomposition results are presented for all 

those commodities where a difference stationary model can plausibly be 

considered'. This will be preceded by a brief review of the underlying methodology 

and the computation method employed. 

6.2. Fundamentals of the Beveridge Nelson Decomposition Method 

Following Beveridge and Nelson (1981), an integrated time series can be 

decomposed into a permanent and cyclical component, allowing for a constant and 

general ARMA(p, q) errors in the underlying data generating process. In their 

original article (Beveridge and Nelson (op. cit. )) the authors represent their 

decomposition result in terms of a pure moving average process. This approach 

clearly would encompass the case of inverted autoregressive components. 

However, a formulation involving only a finite number of parameter estimates is 

clearly desirable for the purposes of practical implementation. Furthermore, 

autoregressive components in the residual process of the ARIMA models 

considered have been explicitly modelled as such in previous parts of this study. 

An exact computation method for the Beveridge Nelson decomposition on the 

basis of an ARMA(p, q) representation of the differenced series has been 

introduced by Newbold (1990). It appears desirable with a view not only to 

accurate implementation but also in the interest of consistent presentation, to 

follow the treatment in Newbold (1990) throughout. Thus, for a price series p1: 

[6.2.1] WI=pt -P-I 
1 In the case of some commodity price series where support for a trend stationary or stationary 
representation is very strong the results of a Beveridge Nelson decomposition would merely 
confirm the inadequacy of the difference stationary model. In those cases decomposition or shock 
persistence results will only be mentioned if it is informative to do so for comparative purposes. 
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with residual v, = wt -ß, where ß is as before the constant representing the drift 

term, one obtains- 

[6.2.2] &)(w, -ß) = 6(L)Er 

It then follows immediately from [6.2.1 ] that pj= w1 + pt_1 or, more generally, that 

the value of p in a given time period t+k can be obtained from a past value of p, 

and the sum of the intermittent one period changes in the series, so that forecasting 

from t one has: 

k 
[6.2.3] pr(k) = pr +i K'lýj) 

where p, (k) is the k period ahead forecast of p,, and i1 j) the projected j period 

ahead change in p,. 

The differenced series w, is stationary so long as p, is l(l) and is asymptotically 

linear in k, the length of the forecast horizon. The slope of this function is given by 

the drift parameter ß and its intercept is given by: 

k 
[6.2.4] Pr=p, +kim E w, ýj)-kßJ 

-oao 

Defining the cyclical component as: 

[6.2.5] c, = j5 -Pt 

The original price series is seen -under the Beveridge Nelson definition of the 

cycle- as the difference between the permanent and the cyclical component (i. e. 

pg = p, - c1). As pointed out in Newbold (1991), an intuitively more appealing 

representation follows if one re-expresses the cycle as Ir =-c, and hence the data 

series as the sum of trend and cycle (pr = p, +I, ). 
2 The exposition of the Beveridge Nelson Decomposition method presented here follows the 
summary given in Newbold (1990), although the denomination of the variables involved has been 
amended to maintain consistency with the notation in previous chapters. 
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Two points are worth noting about the Beveridge Nelson decomposition technique: 

First, the cyclical component (c, ) is defined exclusively in terms of the ARMA(p, q) 

parameterization of the residual process and does not refer to any kind of regularity 

which would be expected to have a counterpart in systemic forces of adjustment 

endogenous to a given economic model (cf. Beveridge Nelson (op. cit. ) and 

Newbold (1991) where the adequacy of this definition is also discussed further 

with a view to its statistical properties). 

A second point of interest are the characteristics of the permanent component. In 

spite of its name, it is pointed out by Beveridge and Nelson (op. cit. ) that the 

extracted permanent component does itself follow a random walk, so that the 

permanent value can differ substantially at different values of t. (Of course it also 

follows that the decomposition method can not be applied to a difference stationary 

series that follows a random walk to start with. By definition the Beverdige Nelson 

decomposition would merely return the original data series in such a case. ) As a 

counterpart of this characteristic, the cyclical series c, is stationary by construction. 

This should be obvious from the fact that the Beveridge Nelson definition of the 

cycle excludes the drift term as well as the permanent effect of innovations on the 

original data series. 

The computational method used is the one derived in Newbold (1990), where it is 

shown that the exact value of the cyclical component can be obtained from: 

PP 
EI o& (q-j+1) 

[6.2.6] Cl E Y1(l)+rI ýj r 

1-Eq5, i=1 

374 



Chapter 6 

where yr = wt -ß and y- V) is the corresponding j-step ahead forecast. p and q in 

[6.2.6] refer to the p autoregressive and q moving average parameters respectively. 

In implementing [6.2.6], the q5, have been replaced by the estimated coefficients 

from the appropriate ARIMA(p, l, q) models discussed previously. 

Given the decomposition method's reliance on lagged residual values, some initial 

observations will invariably be lost in the extracted permanent and cyclical 

components. In the present case, the initial five observations have therefore 

uniformly been dropped for all commodity price series in question' for the 

Beveridge Nelson Decomposition results. 

In addition to this decomposition, shock persistence in an integrated series can be 

represented in a steady state gain function, as discussed in Cuddington and Winters 

(1987), where appropriate°. Following Cuddington and Winters (op. cit. ), the 

Steady State Gain Function for each of the difference stationary price series is 

given by: 

.1 
(1-01-02- " -0Q) 6.2.7 ýý-ß 
(1-01-q52- - -Op) 

Et 

where q5j and Oj with i =1,2, ""-, p and j =1,2, """, q are again replaced with the 

estimated 0, and Oj parameters from the ARIMA models presented in previous 

chapters. 

3 In some cases, e. g. where the selected model was ARIMA(0,1,2) as few as two observation would 
have been needed to be dropped. However in the interest of consistent presentation as well as to 
allow some extra observations for models containing autoregressive terms, it was deemed 

appropriate to present decomposition results for data from 1905 onwards. 
4 Use of the gain function is here deemed appropriate where the Beveridge Nelson decomposition 
was, i. e. in those cases where the use of integrated models either for forecasting purposes or for 
backwards looking analysis should be considered. 
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Cuddington and Winters (op. cit. ) refer to Box and Jenkins (1976)5 where it is 

shown that the steady state gain from a pure ARMA or ARIMA process can be 

represented by a ratio of two polynomials of the lag operator. In the context of 

[6.2.7] this implies that this ratio of two polynomials defines the steady state gain 

up to a positive constant, from which it can be seen in turn that: 

[6.2.8] C_ 
(1-01-6i- -6g) 
(1-01-q52- -q5p) 

describes the proportion of a random shock to an ARIMA model which has a 

permanent impact on the gain function. 

6.3. Trend cycle decomposition results for integrated series 

For those models where an ARIMA(p, l, q) representation appears appropriate, 

illustrations of Beveridge Nelson trend cycle decompositions, 
. following the 

methodology outlined above under 6.2. are presented subsequently. Focusing on 

cereals initially, the permanent components and original data series for Rice, 

Wheat and Maize, corresponding to the Beveridge Nelson decomposition for their 

minimum SBC models6 are illustrated in Figures 6.3.1 to 6.3.3: 

The figures reflect the persistence results from the gain function according to 

[6.2.7] and [6.2.8] well. The highest shock persistence among the three cereals is 

noted for Wheat where 52.021% of a shock to the series have a permanent effect, 

while only 34.068% of a shock to the relative price series of Maize are classified as 

permanent. For Rice the permanent component of a shock is even lower with 

s Box and Jenkins (1976), pp. 338-346 
6 It will be recalled that these are ARIMA(l, 1,2) for Rice and ARIMA(0,1,2) for Wheat and Maize. 
Since the evidence for the presence of a drift component in the price series for Wheat was detected 
only after reparameterising the estimated model through selection by AIC, the decomposition 
corresponding to this model specification is given in Appendix VI. i. for comparative purposes. 
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24.247%. In figures 6.3.1 to 6.3.3 this is reflected by the fact that the permanent 

component for Wheat prices is close to the original series, denoting only small 

cyclical fluctuations while the permanent component for Rice appears more stable 

and the cyclical deviations are correspondingly large; figure 6.3.3 finally shows the 

intermediate case for Maize. 

Figure 6.3.1 
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Other primary commodities such as Cocoa and Palm Oil show high shock 

persistence? and, correspondingly, a permanent component -by the Beveridge 

Nelson definition- that closely follows the original data series. The permanent 

component of a random shock to the series is inferred to be 81.365% and 76.457% 

for Cocoa and Palm Oil respectively. The trajectory of the permanent and 

transitory components of both series, which are both modelled as ARIMA(2,1,0), 

are shown in Figures 6.3.4. and 6.3.5. below. 

The case is similar for one series of metal prices: in the case of Silver, which is 

also modelled as ARIMA(2,1,0) the permanent component of a shock to the 

system is estimated to be 79.010%. The permanent and cyclical components are 

illustrated in Figure 6.3.6. 

7 While shock persistence can be described as high for one series compared to another, one needs to 
be aware that shock persistence for a correctly specified model can not be above one or 100%. In 
this sense higher shock persistence as used in this chapter refers to persistence closer to one. 
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Figure 6.3.6: 
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Somewhat lower shock persistence is observed for Jute and Wool. 54.781% of a 

random shock are classified as permanent in the case of Jute and 40.800% in the 

case of Wool. Shock persistence is higher in the case of Cotton, where 69.411% of 

a shock to the series are classified as permanent. The permanent component and 

original data series for Jute and Wool are illustrated in Figures 6.3.7 and 6.3.8 

respectively, the higher shock persistence in the case of Jute compared to Wool can 

be readily appreciated. Figure 6.3.9 shows the permanent component and original 

data for Cotton, in which case shock persistence is relatively high and the 

permanent component follows the original data series closely. 

381 

Silver: Original Data and Permanent Component 



Chapter 6 

Figure 6.3.7: 
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Figure 6.3.9: 
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Among the remaining price series, the permanent component of a shock to the 

series was inferred to be 0.000% for Aluminium and Zinc, further confirming the 

adequacy of the stationary model selected for forecasting purposes. 

Random walks had been selected by SBC for the following series: Coffee, Beef, 

Lamb, Bananas, Rubber, Timber, Copper, Tin, Lead, Tea and Tobacco. 

Superimposing an ARIMA(1,1,1) on these random walks, the absence of a 

permanent shock component is established for Coffee, Lamb, Rubber and Timber, 

while the permanent component of a shock to the series for Lead is estimated to be 

0.003%. In all of these five cases the estimated value of the coefficient on the 

moving average parameter is on the invertibility boundary. Both the low or zero 
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values for the estimated permanent shock component and the point estimates for 

the MA(1) term support the notion of a stationary series. This is much in 

accordance with the preceding analysis in the cases of Rubber and Timber. For 

Lamb, there was substantial uncertainty regarding the order of integration at the 

point of forecast model selection, although the persistence results and the 

parameter estimates on the ARIMA(1,1,1) model do support the notion of a 

stationary model in accordance with the forecast model selection undertaken in 

Chapter 5. In the cases of Coffee and Lead, the calculations of the gain function for 

the ARIMA(1,1,1) model also seem to support the notion of a stationary process, 

although in both cases a difference stationary forecast model had been found to be 

appropriate in the light of the preceding simulation evidence on the benefits of unit 

root pre-testing and the likely cost misspecification of the order of integration in 

forecast models. 

For the remaining series (Beef, Bananas, Copper, Tin, Tea and Tobacco) imposing 

an ARIMA(1,1,1) model would imply a permanent shock component of more than 

100% in all cases. Applying the Beveridge Nelson decomposition and plotting the 

implied permanent component with the original data shows both series to coincide 

almost exactly. (This is illustrated for the case of Copper in Appendix VIA. ) One 

can therefore conclude that the series concerned are indeed best represented as a 

random walk. 
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6.4. Trend and cycle components in stationary and trend stationary 
series 

For the trend stationary series in the sample (Sugar, Lamb, Rubber, Timber and 

Aluminium) the estimated trend line is shown together with the original data series 

below. Figures 6.3.1. to 6.3.3 show the inferred trend lines for Rubber, Timber and 

Aluminium. It is easily seen that, at least in the latter half of the sample period, the 

respective price series are well characterised by the fitted trend line, although there 

is still substantial volatility around it, and deviations from the secular trend have 

lasted for long periods. Large cyclical deviations over five or more years can be 

observed for all three commodity series. 

Figure 6.4.1: 
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Figure 6.4.2: 
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This feature is even more pronounced in the cases of Sugar and Lamb, where 

fluctuations around the secular trend appear to be at least as characteristic a feature 

of the data as the secular trend line itself. This is illustrated in Figures 6.3.4 and 

6.3.5 below. 

Figure 6.4.4: 

2.0 

1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 

Sugar: Trend and Original Data 
Pdces relative to MUV in logarithms, 1900-1998 

387 



Chapter 6 

Figure 6.4.5: 
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The difference in volatility as compared to the trend component is partly reflected 

in the values of the normalised trend coefficients as reported in Chapters 4 and 5. 

The normalised trend coefficient for Sugar takes a value of -0.034 compared to 

0.076 for Timber, -0.104 for Rubber and -0.124 in the case of Aluminium. In the 

case of Lamb, the value of the normalised trend coefficient estimate is relatively 

high with a value of 0.094. Yet a visual inspection of Figure 6.4.5 shows that the 

presence of large and persistent shifts in the data series make the alternative of an 

integrated series appear plausible. This observation is also in accordance with the 

remaining uncertainty regarding inference on the presence of unit roots for this 

series, as discussed above in Chapter 5. Although the price series for Lamb was 

Lamb: Trend and Original Data 
Prices relative to MIJV In logarithms, 1900-1998 
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ultimately modelled including a trend term, this uncertainty should be borne in 

mind when interpreting the relative importance of the estimated trend coefficient 

and the fluctuations around it8. 

In contrast to the model selection undertaken for forecasting purposes in Chapter 5, 

the price series for Lead is modelled as trend stationary here, for the reasons given 

above. Again there is considerable volatility surrounding the overall downwards 

trend, and the illustration provided in Figure 6.4.6 suggests that the impression of a 

downward trend may in part be attributed to a discrete downwards shift of the 

series in 1981. 

Figure 6.4.6: 
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8 Since the alternative of an integrated model may be considered in this case, the Beveridge Nelson 
decomposition for Lamb is illustrated in Figure Vl. iii. i. in Appendix VI. i. 
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Among the series modelled as stationary for forecasting purposes in Chapter 5, the 

series of Zinc prices did not include a trend term and is shown as such in Figure 

6.4.7 below. In any case, the point estimate for the trend coefficient on the relative 

price of Zinc was very low and its inclusion would not make a noticeable 

difference, even over long time horizons. (A plot of the relative price series for 

zinc and the estimated trend is included in Appendix VI. i. ) As was pointed out 

above, the price series for Coffee will also be shown as a stationary series with the 

original data and the mean value illustrated in Figure 6.4.8. 

Again, both series are subject to substantial volatility overall, with the price series 

for Zinc showing occasional large deviations with smaller frequent deviations from 

the mean value. 

Figure 6.4.7: 
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Figure 6.4.8: 
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6.5. Conclusion: The relative importance trend and cycle components 
in relative commodity price series 

The above exposition reaffirms the previous conclusion that only a limited number 

of commodity price series are well characterised by a secular trend term. Even in 

all those cases it can be observed that the volatility surrounding the trend is 

substantial. The estimated coefficients on the trend term imply an annual change of 

around I% for those commodities where a trend term should be considered. (It will 

be recalled though that the 95% confidence intervals' presented in Chapter 3 were 

rather wide). The associated standard errors of the estimating equation are usually 

9 The confidence intervals in percentage terms where [-1.577, -0.558] for the trend coefficient 
estimate in the case of Sugar, [1.125,2.529] for Lamb, [-3.660, -2.015] for Rubber, [0.833,1.442] 
for Timber and [-2.279, -1.463] for Aluminium. 
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much higher taking values around 15-30%10. Thus, where the estimated trend 

coefficients appear to be important in characterising the time path of the data, they 

have that quality mainly with respect to long run developments. In the short run, 

the main feature of virtually all the data series under consideration is pronounced 

volatility. 

In the case of the difference stationary models considered, the overall scenario is 

similar. Inferred shock persistence is usually high, with the permanent data 

component tending to follow the original data series closely. Furthermore, since 

the permanent component is itself a random walk or random walk with drift", 

there is also considerable volatility associated with the permanent component. It 

follows that where a drift term is included and judged to be significant, its 

estimated value, and its adequacy as a characterisation for the trajectory of the data 

series over short time horizons, will still be subject to uncertainty. 

What an evaluation of trend and cycle components of the data series shows 

independently of the assumed order of integration of the series is that the most 

characteristic feature of relative commodity price series over short to medium term 

horizons is pronounced volatility rather than a clear trend movement in any 

direction. 

10This is evident from the data reported in Appendix IIl. ii. The trend coefficients and standard 
errors (I. e. Qe) for some commodities are (with standard errors given in parenthesis): -0.011 (0.311) 
for Sugar, 0.018 (0.194) for Lamb, -0.028 (0.274) for Rubber, 0.011 (0.150) for Timber and -0.019 
(0.151) for Aluminium. The estimated trend values and standard errors for Rice and Wheat, where 
there is some evidence in favour of a significant drift term, are: -0.011 (0.161) for Rice and -0.011 
(0.152) for Wheat. 
11 It will be recalled here that the 95% confidence intervals for the drift coefficient estimates (in 
percentage terms) for Rice and Wheat, as presented in chapter 3 were [-2.136, -0.226] and [-2.637, 
0.682] respectively, the drift coefficient for Wheat in the model identified by AIC was [-2.166, 
0.021]. 
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Appendix V1. i. Further Graphs of Commodity Price 

Series and Trend or Permanent Components. 

This Appendix presents further illustrations of the data series and permanent or 

trend components as discussed in Chapter 6. Figure VI. i. i. below shows the 

original data series and the permanent component of Wheat prices, according to the 

Beveridge Nelson Definition and when the underlying model is selected using the 

Akaike Information Criterion (AIC), i. e. ARIMA(0,1,4): 

Figure Vl. i. i: 

1.25 

1.00 

0.75 

0.50 

0.25 

0.00 

-0.25 

-0.50 

-0.75 

Wheat: Original Data and Permanent Component 
Prices relative to MUV In logarithms. 190&1998 

51 

\/ t 
I I1 

11/ 

1\1 

\I 
`1l 

rrrrrrrm mmI Tri TT nTrnTTTTTT TMTrrrmm rTTTrrr 
1905 1913 1921 1929 1937 1945 1953 1961 1969 

17r 
1985 1993 

The Beveridge Nelson permanent component and the original data series for the 

relative price of Sugar are illustrated in Figure VI. i. ii and of Lamb in Figure VI. i. iii 

below. 

393 



Appendix VU 

Figure VI. i. ii: 

Sugar: Original Data and Permanent Component 
Prices relative to MUV In logarithms, 1905-1998 
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Figure Vl. i. iii shows the permanent component and original data series for the 

price series of Lamb as an alternative to the stationary representation in Chapter 6. 

The large discrepancy between the permanent component and cycle makes the use 

of a stationary model seem plausible, as does the estimated value of 0.99999907 

for the coefficient on the first order moving average term. 

Figure VI. i. iv, for Copper, gives an example for one of several commodity price 

series which are best characterised as a pure random walk, so that the permanent 

component and the original data series coincide almost perfectly when an 

ARIMA(1,1,1) model is imposed on the data. 

Figure VI. i. iv: 
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The small magnitude of the point estimate for the trend on Zinc prices is illustrated 

in figure VI. i. v below. It is readily appreciated that the trend, if it were significant, 

would describe only a minimal component of the overall development of the data 

series, even in the long run. 
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Appendix Vl. ii. Persistence Results for Difference 

Stationary Models 

VI. ii. i. Persistence Results 

This Appendix details inferred shock persistence results according to [6.2.8]. In 

each table the proportion of a random disturbance that is taken to be permanent is 

listed for each commodity together with the number of autoregressive and moving 

average terms in the corresponding ARIMA model selected by SBC. (An 

ARIMA(1,1,1) model has been used in those cases where a random walk had been 

selected as the most appropriate model by SBC). 

Table VI. ii. i. shows shock persistence results obtained according to [6.2.8] for 

those commodity price series where an ARIMA(p, l, q) model with at least 

p*0, or q*0 was selected by SBC', and where there is no evidence of 

overdifferencing. Here and in the following tables, the p autoregressive coefficients 

and q moving average coefficients are presented in columns three and four 

respectively. 

Table VI. ii. i 
Commodity Persistence 

Cocoa 0.814 2 0 
Rice 0.242 1 2 
Wheat 0.520 0 2 
Maize 0.341 0 2 
Sugar 0.431 0 2 
Palm Oil 0.765 2 0 
Cotton 0.694 2 2 
Jute 0.548 0 2 
Wool 0.408 0 2 
Silver 0.790 2 0 

1 For the ARIMA(0,1,4) model selected by AIC for Wheat the inferred shock persistence would be 
0.337. 
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Table VI. ii. ii. shows the persistence results for those cases where there is evidence 

of overdifferencing, or a stationary forecast model had been selected in Chapter 5. 

In those cases where the model selected by SBC was a random walk, an 

ARIMA(1,1,1) model has been imposed on the data series. 

Table VI. ii. ii. 
Commodity Persistence 

Aluminium 0.000 1 2 
Coffee 0.000 1 1 
Lamb 0.000 1 1 
Lead 0.000 1 1 
Rubber 0.000 1 1 
Sugar 0.431 0 2 
Timber 0.000 1 1 
Zinc 0.000 1 2 

With the exception of Sugar, it can be seen that a zero shock persistence is inferred 

throughout'. 

Finally, for those series, which are best modelled as a random walk, persistence 

results obtained when fitting ARIMA(1,1,1) models are shown in table Vl. ii. iii. 

Table VI. ii. iii 
Commodity Persistence 

Bananas 1.075 1 1 
Beef 1.049 1 1 
Copper 1.073 1 1 
Tea 1.009 1 1 
Tin 1.060 1 1 
Tobacco 1.070 1 1 

2 Since the persistence results listed in the tables are not given in percentage terms, the inferred 

persistence for Lead rounds to zero 
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Here the inferred shock persistence is in excess of 100% in all cases. This is most 

appropriately explained by reference to the random walk models originally selected 

as appropriate representations of the data series. 
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VI. ii. ii. A comparison with the persistence results of Cuddington 
(1992) 

Following the comparison in Chapter 3 of trend results with those obtained by 

Cuddington (1992) a further comparison is made here between the persistence 

results obtained here and those of Cuddington (op. cit. )'. By its very nature, this 

comparison, is restricted to those commodities that have been modelled as 

difference stationary in Cuddington (op. cit. ). Table VI. ii. iv lists the persistence 

results of Cuddington (op. cit. ) and those obtained here according to [6.2.8] for the 

relevant commodities. 

Table VI. ii. iv Comparison with Persistence Results from Cuddington (1992) 
Commodity Cuddington (1992) [6.2.81* 
Aluminium 0.883 0.000 

Bananas 0.444 1.000 
Beef 1.000 1.000 

Cocoa 0.641 0.814 
Copper 1.000 1.000 
Cotton 0.561 0.694 

Jute 0.400 0.548 
Rubber 1.000 0.000 
Silver 0.641 0.790 
Tea 0.720 1.000 

Tobacco 0.781 1.000 
Wool 0.343 0.408 

" Persistence computed according to [6.2.8] in Chapter 6. 

In those cases, where a random walk has been found to be the most appropriate 

representation of the data series, its persistence in Table VI. ii. iv is shown as 1 (or 

3 Le6n and Soto (1997) also look into the issue of shock persistence but use a variance ratio statistic 
to assess mean reversion and shock persistence over long time horizons. Since the length of the time 
horizon covered extends over half the sample size (or about 49 years in the present case) the period 
considered for the assessment of the transitory component by Le6n and Soto (op. cit. ) is considered 
too long, given the context of short to medium term forecasts in the present study. 
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100%) rather than the value corresponding to the overfitted ARIMA(1,1,1) model 

which had been listed in Table VI. ii. iii. 

Except for those cases where a random walk has been selected as the appropriate 

model in both studies (i. e. Beef and Copper) the inferred persistence results are not 

exactly equal. Given that the data sets used are of different length and that the 

selected model parameterisations are not always identical, this is to be expected. 

What is remarkable are the different persistence results obtained for Aluminium 

and Rubber. 

These results are likely to be related, not only to the different length of the sample, 

but also to differing inferences on unit roots and different model specifications. 

For Aluminium the selected difference stationary model specifications differ 

between Cuddington and the present Study. (Cuddington uses an ARIMA(0,1,5) 

model in which he dropped the third and fourth moving average term). The data 

series also has been much closer to the estimated trend line during the later part of 

the sample period, which had not been included in Cuddington's case. Thus, 

differences in the selected models and in the sample data may well be important 

factors of influence here. 

In the case of Rubber, the difference stationary model selected by SBC is a random 

walk, as in Cuddington (op. cit. ). Had persistence been inferred for the difference 

stationary model for Rubber thus specified, the results would have been identical 

to those of Cuddington. Since, in light of the evidence on possible overdifferencing 

presented in Chapter 4, persistence results have been computed for the case of an 
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ARIMA(1,1,1) model, the inferred low shock persistence that should be expected 

for a trend stationary process has been obtained. 

This case then confirms the disadvantage of relying on discrete a priori decisions 

regarding the presence of unit roots in moderately sized samples. (Cuddington did 

consider the possibility of non invertible moving average processes as an indicator 

of overdifferencing, and thus did not rely on ADF test results alone. ) It is 

particularly in cases like the one of Rubber, that simulation results on the finite 

sample impact of serially correlated residuals on trend coefficient hypothesis tests 

can provide helpful complementary evidence. 
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Chapter 7 

Chapter 7: Overall Conclusions 

This study has investigated the presence of trends in relative primary commodity 

price series for individual commodities, using trend stationary and difference 

stationary univariate models, and has projected these price series over a period of 

ten years. The data used were those underlying the Grilli and Yang index, 

extending the time period covered up to 1998 for most commodities. Conclusions 

on the presence of trend or drift coefficients were found to depend crucially on the 

inferred order of integration. The explicit consideration of structural breaks, 

however, did little to clarify the results. 

It has been shown that a drop in the significance level of trend coefficient estimates 

can occur in univariate data series when a difference stationary representation is 

used for a trend stationary process. This problem was linked to the occurrence of 

underparameterised difference stationary model alternatives and it was shown that 

the problem can be alleviated by either setting a minimum number of 

autoregressive and moving average lags for the ARMA(p, q) residual 

parameterisation or by preferring the Akaike Information Criterion (AIC) over the 

Schwarz Bayesian Criterion (SBC) if model selection is undertaken by information 

criterion. In the particular case where a random walk, allowing for the presence of 

a drift, is considered as an alternative to an ARIMA(1,0,0) model with trend, 

underspecification should be detected by fitting an ARIMA(1,1,1) model as a 

difference stationary alternative. 
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The contrary result of spurious rejections of the null hypothesis of a zero trend 

coefficient when a stationary model is fitted to an integrated data series is a well 

documented phenomenon (cf. Newbold and Granger (1974)). It was here 

confirmed that the possibility of spurious rejections is still a problem in finite 

samples where serial correlation is taken into account. Simulation experiments 

were undertaken to quantify the finite sample impact of serial correlation in the 

present cases and empirical critical values were obtained for some of the models 

estimated. These were then used to assess the significance of trend estimates 

obtained while considering the impact of serial correlation. In the case of one 

commodity, which could be classified as stationary (viz Lead) it was then shown 

that evidence in favour of a significant trend coefficient is substantially weakened 

if the impact of serial correlation is taken into account. 

In addition, a test for the significance of trend coefficients developed by Vogelsang 

(1998) was applied to the data series in question and was further tested in Monte 

Carlo simulations representing the alternative model parameterisations considered 

here. The test indicated the presence of a trend term in few of the series where a 

trend has been suggested by the other methods employed. Further simulations, 

examining the performance of the test for the different trend stationary and 

difference stationary model alternatives considered in this study did not confirm 

the Vogelsang test as a reliable indicator of trend components in stationary or 

difference stationary series. The Vogelsang test seems to overcome the problem of 

spurious rejections of the null hypothesis of a zero trend coefficient, but the test 
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has been shown to have low power, in' particular where the underlying series is 

integrated. 

In conclusion, strong support for the presence of a trend or drift coefficient was 

found for only seven commodity price series: Aluminium, Hides, Rice, Wheat, 

Rubber, Sugar and Timber. Weaker evidence has been obtained for the presence of 

a trend term in the series for Lamb. Thus, the hypothesis of a statistically 

significant trend or drift term can be supported for up to eight of the 24 relative 

commodity price series considered. Six of the eight trend and drift coefficient 

estimates in question are negative. In particular, a secular decline is most likely for 

Aluminium, Hides, Rubber and Sugar, followed by Rice and Wheat. The negative 

trend estimates imply a decline of around 1.0 to 1.2 percent per year, except for 

Aluminium and Rubber where the estimated magnitude is of 1.9 percent and 2.8 to 

3 percent respectively. Positive trend coefficients have been inferred for Lamb and 

Timber. The estimated rise in the relative price of Lamb is of 1.8 to 1.5 percent per 

year while the corresponding estimate for Timber takes a value of 1.1 to 0.8 

percent per year. 

Regarding forecast model selection, it was shown by Diebold and Kilian (2000) 

that improved forecasts can be obtained when determining the order of integration 

of the forecast model through ADF tests. It was here investigated whether these 

results continue to hold if inference on the presence of a trend term is itself 

conditional upon the inferred order of integration of the series. It was shown that, 

in the case of a trend stationary first order autoregressive data generating process, 

consistently imposed differenced forecast models can outperform models selected 
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by pre-testing if the trend coefficient value is low and if the value of the AR(l) 

coefficient is sufficiently large. (This result implies that in some cases superior 

forecast results were obtained from consistently applied difference stationary 

forecast models, at lower AR(l) coefficient values than would have been the case 

if the presence of a trend coefficient had been correctly inferred in either case. ) 

Additional simulation results confirmed that a lower cost of misspecification is 

generally associated with difference stationary forecast models. It was also shown 

that trend and drift coefficients only tend to improve forecast results from a certain 

minimum magnitude, and that the required magnitude for a drift term is higher 

than that for a trend term in a trend stationary forecast model. Trend terms were 

incorporated into the forecast models for Aluminium, Rubber, Timber, Sugar and 

Lamb. Difference stationary forecast models with a drift term have been selected 

for Rice and Wheat, while the series for Zinc has been the only stationary price 

series forecast without a trend term. Short term forecasts are often dominated by 

the ARMA(p, q) parameterisation of the residual process. Wheat prices for example 

were predicted to rise temporarily before falling consistently in line with the 

negative drift estimate. 

In addition to the forecast results obtained, shock persistence results were 

calculated on the basis of gain functions and a decomposition into transitory and 

permanent components was undertaken using the Beveridge Nelson 

Decomposition. The decomposition results obtained in this way are consistent with 

the shock persistence results obtained from the gain function. The inferred shock 

persistence is often high, although low shock persistence results were obtained for 
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price series where a stationary or trend stationary representation is likely to be 

appropriate. 

The hypothesis of a generally negative trend or of generally homogeneous time 

series characteristics for relative primary commodity prices could not be confirmed 

in this study. It was concluded though that inference on the presence of trend 

components in the data series is more strongly influenced by inference on the order 

of integration of the data series than by attempts to account for structural breaks. 

While conclusions on the presence of the trend could at times be reached 

independently of stationarity assumptions and while some of the problems 

associated with modelling integrated time series with drift could be corrected, the 

inferred order of integration was found to remain important in many cases. 

Negative significant trend estimates were found to be more frequent than 

significant positive trend estimates, although the hypothesis that relative primary 

commodity prices are generally characterised by negative secular trends or even 

secular trends per se can not be upheld. Of the eight trend or drift coefficient 

estimates which are likely to be statistically significant six are negative. 

(Considering point estimates of trend coefficients without regards to significance, 

16 out of 24 coefficients' take negative signs, 8 do not. ) 

Given the differing conclusions on the presence of trend coefficients in the series, 

it should come as no surprise, that the forecasts obtained also tend to differ. 

Extensive price volatility appears to be one of the common features of the 

t It will be recalled, that the series for Hides was considered in Chapter 4 only, since no updated 
figures were available after 1995. 
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commodity price series covered. Inference on shock persistence however differs 

substantially. While for some series shocks were classified as mean reverting there 

is substantial shock persistence for others. 

Given the different time series characteristics of the various relative commodity 

price series in a number of respects, one conclusion suggested by this study is that 

one should be reluctant to generalise with respect to the time series properties of 

primary commodity prices. This casts doubt on the usefulness of aggregate 

commodity price indices frequently used in empirical work on this topic. 

Furthermore, it appears that generalisations about primary commodity price 

behaviour can be misleading even for groups of related commodities, such as 

metals, cereals or tropical beverages. (The opposite conclusions reached on the 

presence of a drift term in the price series for Wheat and Maize, for example, 

highlight this point, as does the marked difference in the long run behaviour of 

Aluminium and Copper prices among metals. ) 

The implied implausibility of generalised assumptions regarding developing 

countries' barter terms of trade based on the time series properties of relative 

primary commodity prices is likely to complicate the analysis of the long term 

behaviour of these terms of trade. There are even fewer long run data series 

available on developing countries' terms of trade than on commodity prices (see for 

example Leon and Soto (1995)). A good understanding of the time series 

behaviour of individual price series however may still contribute towards 

understanding the long run properties of terms of trade series if the main 

participating export commodities are known. How far this conclusion carries over 
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to predictions of terms of trade series, will partly depend on how far the evolution 

of the sectoral composition of developing countries' trade profiles can be 

anticipated. 

The assumption that relative commodity prices are best described as generally 

following a negative trend is not supported by the evidence in this study. In how 

far a careful study of individual price series can complement the available data 

series for individual developing countries' terms of trade is a subject for further 

investigation. 
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