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Abstract

This thesis consists of two parts, connected by one central theme: the dynamics of the
“shape of space”. To give the reader some inkling of what we mean by “shape of space”,
consider the fact that the shape of a triangle is given solely by its three internal angles; its
position and size in ambient space are irrelevant for this ultimately intrinsic description.
Analogously, the shape of a 3-dimensional space is given by a metric up to coordinate
and conformal changes. Considerations of a relational nature strongly support the de-
velopment of such dynamical theories of shape. The first part of the thesis concerns the
construction of a theory of gravity dynamically equivalent to general relativity (GR) in
3+1 form (ADM). What is special about this theory is that it does not possess foliation
invariance, as does ADM. It replaces that “symmetry” by another: local conformal invari-
ance. In so doing it more accurately reflects a theory of the “shape of space”, giving us
reason to call it shape dynamics (SD). Being a very recent development, the consequences
of this radical change of perspective on gravity are still largely unexplored. In the first
part we will try to present some of the highlights of results so far, and indicate what we
can and cannot do with shape dynamics. Because this is a young, rapidly moving field, we
have necessarily left out some interesting new results which are not yet in print and were
developed alongside the writing of the thesis. The second part of the thesis will develop
a gauge theory for “shape of space”–theories. To be more precise, if one admits that the
physically relevant observables are given by shape, our descriptions of Nature carry a lot
of redundancy, namely absolute local size and absolute spatial position. This redundancy
is related to the action of the infinite-dimensional conformal and diffeomorphism groups
on the geometry of space. We will show that the action of these groups can be put into
a language of infinite-dimensional gauge theory, taking place in the configuration space
of 3+1 gravity. In this context gauge connections acquire new and interesting meanings,
and can be used as “relational tools”.
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Chapter 1

Introductory remarks

1.1 A tale of two theories

Probably one of the most regurgitated quotes of theoretical physics is Minkowski’s 1908
address at the 80th Assembly of German Natural Scientists and Physicians:

Henceforth space by itself, and time by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent
reality.

By the time Minkowski pronounced the now famous words, the experimental and theo-
retical bases for relativity were on solid ground. The experimental absence of the ether
had been explained away, and the 4-dimensional unification of electricity and magnetism
was one of the theoretical triumphs of the early 20th century. The foundation was laid
for one of the great edifices of modern physics: general relativity.

In a different part of the world of physics, simultaneously with these advances, the
apparently completely different field of thermodynamics and heat emission had given
birth to the quantum. The infant came into the scene dissipating the second of Lord
Kelvin’s famous “clouds” over physics: the then experimentally disproved law of black-
body radiation.1 The newborn was destined for greatness, and it did not disappoint.
Under the teenage guise of quantum mechanics, and its later adult incarnation, quantum
field theory, it dominated much of modern theoretical and experimental physics.

Both fields grew up side by side basking in glory after glory, with relativity perhaps
reaching its maturity earlier than quantum mechanics, being put into its present form
already in 1916. After the teenage years, under the auspices of Schrödinger, Klein,
Gordon, and most prominently Dirac, the two met and the encounter evolved quantum
mechanics into quantum field theory, arguably the most successful theory ever developed.
On the other hand, general relativity remained largely unmoved by quantum mechanics.

As it stands however, quantum field theory is not the final word in this tale. It
incorporates at best a sterile version of general relativity, one in which quantum fields
are not allowed to feed back into the geometry of space-time. At worst, it still requires
a structure that allows one to separate space-time into space and time, thereby foiling
Minkowski’s grandiose prediction.2 In spite of valiant attempts by many physicists over

1Both Rayleigh-Jeans’and Wien’s, for different ends of the spectrum.
2In other words, unless the background metric has a global time-like Killing vector, one cannot canoni-

cally define a vacuum or ground state, as the concept of a vacuum is not invariant under diffeomorphisms.
In general, under a diffeomorphism, the mode decomposition of the transformed eigenfunctions will con-
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the past 80 years, it remains true that the two theories are not completely on talking
terms.

Our objective in the present thesis is to give an alternative view of gravity, one which
breaks away from space-time – indeed breaks space-time – into space and time. This
might seem at first like a step back. But as we will see, many other conceptual challenges
are resolved by the approach advertised in this thesis. In so doing we hope to remove
the most glaring point of conceptual disagreement between our two protagonists: the
different notions of time each one clings to. Or, being a little more conservative, we hope
to at least smooth out the issue to the point where a compromise can be reached and
gravitational phenomena be made more sympathetic to quantum mechanics.

1.2 The problem of time

It is no secret that time plays very different roles in quantum field theory and general
relativity. In the former time is part of an absolute framework with respect to which
dynamical operators (or states) are defined, but in the latter everything is dynamical.
This mismatch is the source of many great difficulties encountered in the attempts to
create an overarching unified framework of quantum gravity [1].

In the canonical formulation, more amenable to a standard quantum theoretical treat-
ment, space-time is essentially ‘sliced-up’, and Einstein’s equations are described as an
evolution of the geometry of spatial slices through time. In effect, one attempts to revert
to separate notions of space and time as much as possible to be able to apply the Hamilto-
nian analysis. It is in this formulation that we can see most clearly some of the problems
that relativistic “time” creates in the quantization of gravity. The ADM formulation of
the Einstein equations [2] leads directly to constraints. These constraints are such that
they are associated with “symmetries” of the system, symmetries whose action generate
certain transformations of the physical description of the Universe.

One set of constraints, known collectively as the momentum constraint, is associated
with foliation-preserving 3-diffeomorphisms. In other words, its action preserves the
“slicing”, and thus the separation of space-time into space and time remains intact.
This action has a well defined group representation on phase space, which simplifies its
treatment considerably. Only a single initial configuration of the Universe is needed to
obtain the resulting final configuration under the action of the symmetry. Moreover this
is valid for the finite (as opposed to infinitesimal) action of the group, a property which
does not hold for the remaining constraints, as we will see. These characteristics make
it fairly simple to quotient out the symmetry associated to the momentum constraint,
eliminating its related unphysical degrees of freedom. The resulting quotient space, called
superspace, parametrizes initial data obeying the constraint, and is the proper physical
arena that eliminates the redundancy generated by that symmetry.

The other set of constraints, which we denote by S(x), is called the Hamiltonian
constraint, and it generates evolution of the spatial variables. Already at the classical
level a severe problem immediately arises. Because there is an S(x) constraint at each
space point, generating evolution independently, the time evolution is “many fingered”,
which means that the spatial slices can be made to evolve at arbitrarily chosen different
rates at different points. In contrast to the action of 3-diffeomorphisms, this “symmetry”
changes the original decomposition of space-time into space and time. By generating

tain negative frequencies even if they were positive before the transformation.
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Figure 1.1: Because there is no distinguished definition of simultaneity in general relativ-
ity, a spacetime can be sliced in many different ways. This slicing, or foliation, freedom
leads to many different representations of the spacetime by curves in superspace. Two
slicings and corresponding curves in superspace are shown.

different foliations of space-time, it yields curves in phase space that bear no simple
relationship to each other (see figure 1.2). Unlike the momentum constraints, it does
not, by itself, have a group action on phase space, and one cannot straightforwardly
quotient phase space. Dirac, when speaking about the difference between the constraints
(in the setting of quantum theory) phrased it in the following simple way [3]: “Thus we
have the situation that we cannot specify the initial state for a problem without solving
the equations of motion. The formalism is thus not suitable to dealing with practical
problems.” And therein lies the problem: to quotient out the symmetry and obtain the
physical configuration space, one must basically solve the equations of motion.

1.3 A tale of two parts

A theory of space and time

Our objective in the first part of the thesis will be to develop a theory of gravity that
is indeed a theory of space and time. Furthermore, it has a different symmetry group
than general relativity and carries a “proper” group action on the gravitational variables.
As we put it, in shape dynamics (SD) we are in the business of symmetry “trading”. It
will be a theory of gravity in the sense that the solutions of a particular gauge fixing of
general relativity are equivalent to the solutions of a particular gauge fixing of the new
symmetry in the present theory. The new symmetry is that of 3-dimensional conformal
transformations,3 i.e., transformations that change local scale. These transformations act
truly as a symmetry group in the phase space of general relativity. Their simple linear
action allows us to easily track the effect of the symmetry transformations and eliminate
their associated redundancy (i.e., we can quotient by their action).

We thus obtain the space of physical configurations called conformal superspace, or,
more lyrically, shape space. It is the natural setting for a description of the Universe
which relies solely on the “shape of space”. In such a description, spatial angles take

3Transformations that either preserve the total volume in the case that the Universe is closed and
without boundary, or respect given boundary conditions if the Universe is spatially asymptotically flat.
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the forefront, while local size is relegated to a quantity measured only with respect to an
arbitrary local scale.

In this new formulation, we replace evolution generated by infinitely many local Hamil-
tonian constraints by evolution generated by a unique single global constraint H0. Time
evolves rigidly, in step everywhere. We believe this squarely addresses issues related to
the problem of time, and offers real hope of a definitive solution to it. This part will be
based on the papers: [4, 5, 6, 7].

A geometrical gauge-theory setting.

Since in Shape Dynamics we have a “proper” group action on phase space, the question
of how far one can pursue the gauge-theoretic scenario of usual gauge theories, such as
electrodynamics, immediately becomes relevant. In the second part of this thesis, we will
describe such a gauge setting, with connection forms, gauge choices and the like, for both
the 3-diffeomorphism group and the 3-conformal group as actions on Riem. Both the
actions of the groups and their algebras are perfectly well-defined and correspond exactly
to their finite-dimensional counterparts. This part is entirely based on paper [8].

This thesis is formed from two separate but deeply related subjects: the construction
of a theory of gravity embodying a different symmetry principle, called shape dynam-
ics (SD), and the construction of a gauge theory for the configuration space of general
relativity (GR).

1.4 Notation and other warnings.

1.4.1 Other warnings

We try to pursue our proofs to the point where only subtle technical functional-analytic
matters, such as domains in Frechét spaces etc, start to appear. Even though we do not
present full mathematical proofs to the bitter end taking these issues into account, we
give strong plausibility arguments of why they should go through without a hitch.

This thesis is a merger of two independent but very much interrelated lines of research.
One is the construction of the theory of shape dynamics, which takes a leading role and
is very prominent in the present work. The other is the working out of specific geometric
gauge theoretic structures in the configuration space of GR. The former is a self-contained
theory, with a robust conceptual background. The latter is a conceptual framework, or
the development of a set of tools, that can be applied in the future to, among other
things, the theory of shape dynamics itself.

We have chosen in this thesis to keep the background material for the two sections
separate. It seemed more pedagogic to distinguish the technical background necessary for
each part, and only after both edifices have been constructed to bridge them, although of
course by then the reader will already see a clear connection between the two parts. This
approach has its drawbacks; it is not always possible to keep the two parts completely
separate. In particular, we have three cases where one section must borrow from the
other, or vice-versa. One of these instances happens when we explain Barbour’s best-
matching ideas, and find that the ideal way to explain them is to use almost exclusively
the technical material present in Part II, defining gauge structures in Riem, the space of
3-metrics (chapter 8). A second instance is that we use the Fredholm alternative when
studying the asymptotically flat case of shape dynamics in chapter 5. Lastly, we give an
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intuitive geometrical picture of shape dynamics, and we must also mention the use of a
section for the conformal bundle, presented also in chapter 8. For this item, we had no
option but to include it in the first part of the thesis. We could have as easily included
the first and last items in Part II of the thesis and made reference to part I, or vice-versa,
but although they might be less displaced technically if placed in Part II, we find them
conceptually better situated in Part I.

1.4.2 Notation

We explicitly mention only a few of the items individually, those that may be more
confusing to the reader without further explanations.

Concerning the 3-metric g.

One important difference between the usual notation and the one utilized in this thesis
has to be mentioned here at the beginning. Since we will focus mostly on the 3+1 picture
of gravity, we will use gab to denote the 3-dimensional Riemannian metric, and not the
four-dimensional Lorentz one. Whenever we write

√
g we mean of course the square root

of the determinant of the metric. But we will also use g for the determinant itself, or
for the metric as an argument of some function(al), such as f(g, π). This does not mean
that f is a function of the determinant of the metric and the trace of the momenta, but
of the full metric and full momenta. The distinction should be clear from the context.
At some points, when it is convenient to use index-free tensor notation, we will adopt a
boldface g for the metric tensor.

Throughout the paper semi-colon denotes covariant differentiation, and we will, when
it is convenient, use abstract index notation (parentheses denote symmetrization of in-
dices, and square brackets anti-symmetrization). Also, again when it is convenient, we
shall use ∇a to denote the intrinsic Levi-Civita covariant derivative related to the 3-
metric, and Da the one related to the 4-dimensional one.

The one parameter family of natural metrics on the tangent space to Riem (the
configuration space of all 3-metrics) is taken to be given by [9]:

Gβ(u, v)g =

∫
M

Gabcd
β uabvcddµg, (1.1)

where, for tangent vectors u, v ∈ Tg(Riem), the generalized DeWitt metric is defined as

Gabcd
β := gacgbd − βgabgcd (1.2)

with inverse
Gβ
abcd := gacgbd − λgabgcd, (1.3)

where by inverse we mean Gabnm
β Gβ

cdnm = δac δ
b
d. The relation between β and λ is that

λ = β
3β−1

. The usual DeWitt metric is G1. We briefly note that the DeWitt metric is

usually taken to be (
√
g/2)(gacgbd + gadgbc − 2gabgcd), but if we are only dealing with

symmetric two-valence tensors, its action amounts to the one we have used, apart from
the
√
g factor, which we input on the volume form.
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Functional dependence, brackets, function spaces.

We employ square brackets for functional dependence, as F [g] for example, and Kuchař’s
notation for mixed functional and local dependence, F [g, x) for a functional of g that
yields a local function. Sometimes, when there is more than one functional dependence
and still local dependence, we separate the functional arguments by commas and the local
dependence by semi-commas F [g, π : x).

We will use bras and kets both for the mean of quantities, such as 〈f〉. This is not to
be confused to its use when separated by a comma, for a given contraction between dual
vector spaces and the vector spaces themselves, such as 〈v, w〉.

Another non-standard notation we will be employing is that of f ≡ g, for some given
function f : Γ → C∞(M). This is meant to signify that f(x) = g(x) strongly, i.e., over
all of phase space Γ and for every x ∈M .

The space of smooth functions over the manifold M will be denoted by C∞(M). The
space of smooth sections over a given vector bundle E will be given by Γ∞(E).

Conformal transformations

The acronym vpct signifies volume-preserving-conformal-transformation and we shall em-
ploy it widely. The calligraphic Tφ is the notation for the conformal transformation map,
and should not be confused with TxM , meaning the tangent space to M at x ∈ M , nor
with Txf : TxM → Tf(x)N which is the tangent map to f : M → N at x. It should also
not be confused when we denote the general linking theories in Chapter 3 by TL.
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Part I

Shape Dynamics
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Chapter 2

Introducing Shape Dynamics

We will now introduce the main subject of this thesis: the theory of shape dynamics (SD).
The first aim of this chapter is to provide the reader with an outline of the theory, that
is, its motivations and main results so far. It will serve the purpose of pointing north,
and the rest of Part I will guide us there and hopefully, once we have arrived, indicate
some interesting directions to explore.

2.1 Technical Background

Before actually presenting an introduction to the main subject of this thesis, we have to
present some technical baggage without which it makes little sense. In other words, this
section will be an introduction to the introduction of shape dynamics. The theory itself
will be constructed in the next few chapters (chapter 3 through 5).

We will start by giving a streamlined view of constrained dynamics, which suffices
for our purposes. The main result which we wish to present in the first section is that
for systems without a “true Hamiltonian” a complete description of the dynamics can be
made by separating first and second class constraints (section 2.1.3) and strongly solving
the second class constraints. We also give a more geometric view of the whole Dirac
analysis, including that for systems possessing a “true Hamiltonian”.

In 2.1.5, we then present the ADM 3+1 decomposition, which is the starting point
of almost all canonical approaches to gravity, finishing with the ADM constraints and
the Dirac algebra in section 2.1.6. After introducing these theoretical constructs, we will
be able to discuss work that led to the construction of shape dynamics, such as York’s
method for solving the initial value problem of general relativity and Barbour et al’s first
principles derivation of those equations.

2.1.1 Constrained dynamics

Lagrangian dynamics

In this thesis we are mainly concerned with a dynamical formulation of physical systems.
That means we will focus on how such systems develop through time, a view in some
aspects different from the usual 4-dimensional covariant field theory.

In the Lagrangian formulation of mechanics, one is given a Lagrangian L(qα(t), q̇α(t)),
where qα are the coordinates of the system, q̇α are their time derivatives, and α is an
index that parametrizes them. For example, for a single particle in R3, α runs from 1 to

13



3.1 As the coordinates qα describe every possible configuration of the system, the space
of coordinates parametrize what is called the configuration space of the system, Q.

With the Lagrangian, one forms an action functional

S[qα(γ)] =

∫ t2

t1

L(qα(γ(t)), q̇α(γ(t)))dt (2.1)

by integrating the Lagrangian over a given path γ : [0, 1] → Q. Now, upon variation
and integration by parts, assuming that the system is fixed at both initial and final
configurations, one obtains from the least action principle δS = 0 the Euler–Lagrange
equations:

d

dt

δL

δq̇α
=

δL

δqα
. (2.2)

We chose to use the notation δF
δqα

as opposed to ∂F
∂qα

because this generalizes the partial
derivatives directly to functional derivatives in the infinite dimensional case, just as the
sum indicated by repeated indices generalizes to integrals.

If we use the chain rule for the d
dt

derivative, we get from (2.2):

q̈β
δ2L

δq̇βδq̇α
+ q̇β

δ2L

δqβδq̇α
=

δL

δqα
. (2.3)

From this it becomes clear that the accelerations are uniquely determined by the positions
and velocities if and only if the matrix Mαβ := δ2L

δq̇βδq̇α
is invertible. If it isn’t, our system

possesses some kind of redundancy in its description, and this is indicative of gauge
symmetries.

Although the Euler–Lagrange equations derived from variation of the Lagrangian
completely describe the dynamics of the system, it is a rather cumbersome ordeal to obtain
directly from them information about redundancy in the description of the system. The
more suitable method to unravel such information is to use the Hamiltonian formalism.

2.1.2 Hamiltonian dynamics

For Hamiltonian dynamics, we seek to perform a change of variables (qα, q̇α)→ (qα, pα),
where

pα :=
∂L

∂q̇α
. (2.4)

In other words, one defines the action of the Legendre transform as LT : TQ→ T ∗Q. Here
TQ denotes the tangent space to the configuration space. This is the space parametrized
by the doubles (q̇α, qα), where q̇α denotes an element of the tangent space to qα, i.e., the
tangent of a curve at the point qα. Thus we say that q̇ ∈ TqQ. The space T ∗Q is obtained
by replacing the tangent space at each point by the cotangent space, i.e., by the vector
space consisting of linear functionals on TqQ, for each point q.2 The momenta pα are
not elements of the tangent space, but of the cotangent space. That means that we can
define their action on the tangent vectors q̇α without the need of an inner product. In

1 For two particles in R3 for example, it is convenient to subdivide the 6 values of α into two subsets
of three, parametrized by the particle to which they belong: α = (β, i) | β ∈ {1, 2, 3}, i ∈ {1, 2}.

2These are all simple examples of vector bundles over Q, the trivializing charts being induced by the
tangent map of the original charts of Q.
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fact, we have to define these elements of T ∗qQ by the way in which they act on elements
of the tangent space.

Thus we characterize the map LTq(v) ∈ T ∗qQ by defining it to act on w ∈ TqQ as

〈LTq(v), w〉 =
d

dt
L(q, v + tw) (2.5)

As an example, let us set L(q, v) = m
2
F (q)gabvavb + V (q). Then

d

dt
L(q, v + tw) = mF (q)gabvawb,

and we can see that the linear functional, at v, is just given bymF (q)gabva, which is indeed
an element of the cotangent space, and parametrizes the momenta with the position and
velocity vectors.

As it happens however, under usual assumptions the map LT might not be injective
nor surjective. In particular the full T ∗Q might not be accessible to the dynamical
system. However, this is far from being a disadvantage of the Hamiltonian approach.
Quite the contrary, a dynamical system may possess some redundancy in its description
– one is in fact “over-parametrizing” it – and this property of the Hamiltonian approach
is a warning sign that the system has this feature. Let us see how this is related, in the
Lagrangian approach, to the unique determination of the accelerations from the velocities
and positions.

The condition for the map LT to be (at least locally) an isomorphism is that the block
diagonal matrix [

Id 0

0 δpα
δq̇β

]
(2.6)

be invertible. Since one of the blocks contains the identity Id (this is just the matrix
δqα

δqβ
), we arrive at the same condition imposed from equation (2.3) that such a situation

reflects the fact that
δ2L

δq̇βδq̇α
=
δpα
δq̇β

= Mαβ (2.7)

has to be invertible. The constraints on T ∗Q that we get usually form submanifolds of
T ∗Q (this relies on our assumption that the rank of Mαβ is constant)) and can thus be
put in the form of functionals of T ∗Q, let us say χI(q, p) = 0, which implicitly define the
said manifolds (see the regular value theorem 2).

The regularity assumption of constant rank and the further assumption that the
constraints are irreducible3, implies again from theorem 2 that the χI form a complete
coordinate system in phase space for the complement of the constraint surface. For
example, if we had a 4-dimensional phase space with two sets of irreducible constraints,
theorem 2 guarantees that we can find coordinates in phase space, x, y, z, w, such that
x, y parametrize the constraint surface and z, w are given by the two constraint functions.
This has the strong consequence that a vector X is tangent to the constraint surface if
and only if X[χI ] = 0. The fact that X is tangent to the constraint surface already
implies the “if” part, since χI = 0 on the entire constraint surface it doesn’t change along

3We assume that all the χI are linearly independent, i.e., that the one forms dχI are linearly inde-
pendent, i.e., that we have an irreducible set of constraints. If they were not, we would have to choose
a basis for the constraints.
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X. The “only if” part is a result of writing everything in a coordinate system and on the
fact that indeed we have a complete coordinate system as mentioned above.

Such constraints, arrived at from the sole definition of the momenta, are called pri-
mary, in allusion to the fact that the equations of motion need not be used to derive
them. In Lagrangian variables, these relations are merely identities, as we will see in
practice in section 3.1.2. It follows that the inverse transformation from the momenta to
the velocities, even when we restrict ourselves to the constraint surface, is multi-valued.
Given a point in phase space that fulfills the constraints, the “inverse image” through LT
is not unique, and in order to render it single-valued, and thereby indicate the location
of the velocities q̇ on the inverse manifold, one needs to introduce extra parameters in at
least the same number as there are primary constraints. These parameters will appear
as Lagrange multipliers in the Hamiltonian formulation.

Thus we can see that we do not fully characterize dynamical redundancy solely by
restricting ourselves to the constraint surface. Dynamical redundancy, or symmetry, is
present in the Lagrangian characterization of the system as much as in the Hamiltonian.
The transform LT being injective signifies that a restriction to the constraint surface (the
image of LT) still “includes” the full Lagrangian characterization, symmetries and all.
Part of the power of the Hamiltonian formulation is exactly that it gives us a starting
point to study redundancy in the description of dynamical systems, so let us get to it.

The canonical Hamiltonian is defined as

H0 := pαq̇α − L. (2.8)

If we compute the variation of (2.8), we get

δH0 = δpαq̇α + pαδq̇α − δq̇α
δL

δq̇α
− δqα δL

δqα

= δpαq̇α − δqα
δL

δqα
. (2.9)

As the total variation depends only on the variation of p and q, this means that q̇α enters
H0 only in the precise combination that gives pα, and thus the non-trivial dependence of
the Hamiltonian can be set to be just H(q, p(q, q̇)).

Since the system can only access the surfaces in T ∗Q defined by χI(q, p) = 0, and
the Hamiltonian is a function of (q, p), one would be inclined to conclude that we may
arbitrarily extend the Hamiltonian in T ∗Q out of the surface:

H1 = H0 + ρIχ
I(q, p) ≈ H0, (2.10)

where we introduced the notation ≈ to mean weak equality ; i.e., equalities that are valid
only over the constraint surface. Here we are summing over the I index, and ρI is an
arbitrary coefficient. These extra parameters could then be seen as coordinates on TQ
that determine the exact position (a “height”) over the inverse images of the momenta.
However, such a conclusion would be hasty. The issue, which will be explained better in
section 2.1.4 below, is that the dynamics does not depend on the value of the Hamiltonian
itself, but on its flow, or gradient. In fact, it is true that we can amend the Hamiltonian
in such a way (for first class constraints), but for a different reason than the one stated
above.
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From (2.9) and (2.10) we get

q̇α =
δH0

δpα
+ ρI

δχI

δpα
(2.11)

− δL
δqα

= ṗα =
δH0

δqα
+ ρI

δχI

δqα
. (2.12)

The equations of motion (2.11)-(2.12) can be derived from the variation of the Legendre
transform of the action with generating function H:

δ

∫
dt
[
q̇αpα −H − ρIχI(q, p)

]
= 0 (2.13)

subject to the boundary conditions that the variations vanish at the endpoints. If we are
able to explicitly solve the constraints, i.e., if we can impose the conditions χI(q, p) ≡ 0,
then we can use the simpler variational principle subject to the conditions

δ

∫
dt [q̇αpα −H] = 0. (2.14)

2.1.3 Poisson brackets and symplectic flows

It is through (2.11)-(2.12) that we choose to introduce Poisson brackets into the dynamical
analysis, as these equations generalize by the chain rule to arbitrary functionals of the
dynamical variables (q, p) to

Ḟ [q, p] =
δF

δqα
δH

δpα
− δF

δpα

δH

δqα
=: {F,H}, (2.15)

where a sum over the index α is understood, and the usual notation for Poisson brackets
{·, ·} was introduced. One can immediately see the value of Poisson brackets for evolution
through a Hamiltonian, but they can be generalized beyond that, to signify the evolution
of any constraint under the action of another. This is completely necessary when one
starts talking about symmetries, as one would like to know if one or another constraint
is invariant under its action.

First- and second-class constraints

A more geometric picture of the workings of both first- and second-class constraints will
be given below. For now we give a more pragmatic approach to the classifications of
constraints. A set of constraints χI will be called first class if their Poisson bracket
vanishes weakly on the constraint surface, i.e. CIJ = {χI , χJ} = aKχ

K ≈ 0. In contrast,
a set will be called second class if CIJ does not vanish on the constraint surface. A given
constraint χ1 will be said to be first class with respect to this set if C1J ≈ 0.

It can easily be seen that for a set of N second-class constraints for which the N ×N
matrix CIJ is not of maximal rank on the constraint surface, i.e., det(CIJ) ≈ 0, there
exists at least one linear combination of the constraints that is first class with respect to
all of the rest. By definition, there exists a vector (or an N-tuple) aI for which aIC

IJ = 0.
Then clearly aIχ

I is still first class. By iterating this procedure we arrive at a set of purely
first-class constraints Ψi, and purely second-class ones χI . The Poisson bracket matrix is
then given by (

{Ψi,Ψj} {Ψi, χI}
{χJ ,Ψj} {χJ , χI}

)
≈
(

0 0
0 CIJ

)
, (2.16)
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where CIJ is invertible.
Second-class constraints cannot be interpreted as gauge generators, or, even indeed

as generators of any transformation that is physically significant. Because it does not
preserve the constraints its symplectic flow will take us out of the allowed surfaces for
dynamics. So what does one do with second class constraints? We use the invertibility of
the matrix of purely second class constraints to define a projection of the dynamics into
the constraint surface. That is, we define the Dirac bracket:

{·, ·}DB := {·, ·} − {·, χI}C−1
IJ{χJ , ·} (2.17)

As can easily be checked, {χI , ·}DB = 0. I.e. the symplectic flow (defined on Section 2.1.4)
of any of the second class constraints automatically vanishes with this bracket. The Dirac
brackets effectively project the dynamics to the constraint surface and thus reduce the
degrees of freedom of the theory (again, see Section 2.1.4). This obligatory projection of
the dynamics implies that the constraints are imposed strongly : the constraints should
be taken to be zero everywhere (since we are forcefully projecting dynamics to the surface
where they are zero). In relatively simple cases one or more pair of conjugate variables can
be found such that the purely second class constraints can be solved for them in terms of
the other variables. Considering such variables as coordinates in phase space, these values
define surfaces in T ∗Q. We can then completely project dynamics to the surface thus
defined by completely eliminating said variables (using the second class constraints as
definitions) and reverting to the usual Poisson brackets. In this simple case we eliminate
the degrees of freedom of the system that refer to these constraints and move our analysis
to the projected surface. In other words, using the second-class constraints equations as
definitions we reduce our phase space, and hence our Poisson bracket, to the remaining
variables only, expressing all quantities in terms of the remaining variables. If we cannot
find a way to express all second class constraints in such a manner the dynamics must
be formulated using the Dirac bracket, whereby one keeps the second class constraint in
their implicit form and all variables are retained.

As a matter of fact, one of the main aspects of the present work is based exactly on
what is described here: separate a first class constraint from the purely second class ones
and then solve the latter for a pair of conjugate variables.

Gauge fixings

In the absence of a true Hamiltonian, i.e., a Hamiltonian not entirely made up of con-
straints,4 the presence of primary first-class constraints is associated with gauge symme-
try. The associated gauge freedom indicates that there is more than one set of canonical
variables that corresponds to a given physical state. In practice it is sometimes desir-
able to eliminate this freedom by imposing further restrictions on the canonical variables.
This should eliminate part (partial gauge fixing) or all of the arbitrariness in the choice
of canonical variables representing the same physical states. The inclusion of such ex-
tra conditions in the formalism is permissible because they only remove unobservable
elements of the system and do not impinge on the gauge-invariant properties.

For a certain extra (imposed) constraint G(p, q) = 0 to be considered a gauge fixing,
we must demand two properties of gauge transformations as related to the fixing:

4As a matter of fact, recent work shows that Dirac’s conjecture, namely that all primary first-class
constraints generate gauge symmetries, holds only in the absence of a time labeling. It does not need to
hold for a constraint that generates time reparametrization, any more than it does for a true Hamiltonian
[10].
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• Existence: The particular choice of gauge that the condition G(p, q) = 0 imposes
has to be reachable from any point on the constraint surface through a gauge
transformation that this condition purports to fix, i.e., there has to exist a gauge
transformation that fixes the gauge to satisfy G(p, q) = 0.

• Uniqueness: There must be only one gauge transformation that fixes the variables
to satisfy the gauge-fixing condition G(p, q) = 0.

These conditions can be similarly formulated in the language of fiber bundles by the
concept of a section (see section 8).

2.1.4 Geometric interpretations and the case of a true Hamil-
tonian

Interlude: geometric interpretation

We will try not to give too technical an account of the introduction of symplectic geometry,
but aim to give merely a pedestrian approach to the meaning of Poisson brackets of general
functions on phase space. If one looks closely at equation (2.15), one can see that indeed
it is a derivation, i.e. it obeys Leibiniz’s rule:

{f, gh} = g{f, h}+ {f, g}h,

which indicates that we can see the linear operator {f, ·} as a kind of vector field in phase
space. We then generalize what was done for the Hamiltonian and define the symplectic
flow of a given phase-space function f as vf := {f, ·}. It will act on other functions as a
directional derivative vf [h] and measure how much h changes in the direction of vf . That
is, it measures how other phase-space functions change under “evolution” through the
action of the corresponding phase-space function f . Now, as we have already mentioned
in section 2.1.2, the phase-space function f implicitly defines a surface through the regular
value theorem 2 provided certain regularity assumptions. In the presence of a metric,
one would usually say that the differential one-form df is “perpendicular” to the surface
f−1(0), because its dual vector field df ] is defined as X[f ] = df(X) =: g(df ], X), which
obviously vanishes for any vector field tangent to f−1(0). In the case of symplectic
geometry, one does not define the analogous operation through the use of a metric but a
symplectic two-form, usually denoted by ω. Explicitly,

ω(vf , ·) := df (2.18)

and furthermore
ω(vf , vh) = {f, h}. (2.19)

Now, just as a vector field can be tangential to a given manifold, so can symplectic
flows. Suppose then that a surface N in phase space is given by the intersection of regular
manifolds defined by the inverse values of the functions χI , i.e., N := {(q, p) | χI(q, p) =
0 ∀I}. Then N will be said to be first class if: for all phase-space functions f such
that f vanishes on N , i.e. df(X) = 0 for all X ∈ TN , then vf [χ

I ](p, q) = 0 for all
I and (p, q) ∈ N . The statement is equivalent to the much simpler statement that
{f, χI} = aJχ

J , since this will indeed be zero whenever we are on the surface. The
geometric translation is indeed very simple: all symplectic flows vf of functions f that
vanish on the surface N are tangent to the surface.
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By contrast, we can define a second-class manifold (or set of regular functions χI) if
all symplectic flows (of functions that vanish on the surface) take us out of the surface
(i.e. are not tangent to it).

As anticipated in section 2.1.2, we now explain with more completeness why we must
add arbitrary summands of constraints to the Hamiltonian function. As we saw, by
the regularity assumptions, a phase-space vector X is tangent to a first-class constraint
surface if and only if X[χI ] = 0 for all the χI making up the said surface. Thus by the
above (2.18), for any such vector

ω(vχ, X) = 0,

meaning that for the pull-back (or, let us say, the projection) of the symplectic form ω
to the constraint surface, ω̃, the directions given by vχ are degenerate, and dynamical
flows are not uniquely defined, i.e., ω̃(vχ, ·) = 0. Thus, as their dynamical effect is not
felt over the constraint surface, we can arbitrarily add summands of χI to the definition
of the Hamiltonian function (2.10) without further consequence.

The case of a true Hamiltonian.

If we have a Hamiltonian that consists of “pure constraints”, as happens in GR, then
after separating the constraints into pure second- and first-class ones, and solving for
the second-class ones (and thereby setting them strongly to zero), we are done, as we
are left with only first-class constraints. Thus all smearings (Lagrange multipliers) in
the total Hamiltonian would propagate all the constraints, making the dynamical system
consistent. But if we have a true Hamiltonian, let us call it H0, we have more work to
do.

As we will not be dealing with this result directly, we but briefly remark on the
Dirac procedure, using the geometric interpretation presented above. What geometrically
happens when we are obliged to add constraints to the theory? Let us start with, say, the
initial primary first-class constraints χI1. We are restricting the domain of the dynamics,

as we said before, to a subsurface of the total phase space, (χI1)
−1

(0), and we must add
the new constraints to the Hamiltonian with some Lagrange multipliers, ρIχ

I
1, as they

will have no observable effect on the dynamics.
Let us call this initial surface J1. We have to check if the Hamiltonian propagates

the corresponding constraints. In the geometric picture, this means we have to find a
subsurface J2 ⊂ J1 to which the symplectic flow of the Hamiltonian is tangent. The
problem is that the flow vH might be tangent to J1 only at the points J2 ⊂ J1, i.e.,
we can only say that the Hamiltonian vector field is contained in the tangent space
TJ2J1 := {v ∈ TqJ1 | q ∈ J2}. It does not need to be tangent to the entirety of J1. Of
course, vH is contained in the “full” tangent space to J1 at those points, and need not
be tangent to the subspace J2 itself (i.e., contained in TJ2). But now we cannot restrict
dynamics to J2 because the Hamiltonian flow will take us out of that surface again.
And thus we must find a subsurface of J2 to which the Hamiltonian flow is tangent, i.e.,
vH ∈ TJ3J2.

We keep on doing this until we finally reach a Jk over which the symplectic flow vH is
tangent to the entire surface. At the end of the algorithm, we will be left with a surface (a
set of constraints χI) over which the extended Hamiltonian H0 + ρIχ

I(q, p) is completely
tangent. Then the dynamics is said to be consistent.
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2.1.5 ADM 3+1 split

General relativity in its original formulation is very elegant and powerful, describing
the physics of space-time simply as 4-dimensional Lorentzian geometry. While this is
indeed a very simple framework, we human beings do not directly observe space-time, but
instead we notice an evolution, or change, of space. Therefore, under some circumstances,
it is very useful to have a more direct translation between experience and theory by
formulating what is called a 3+1 description of general relativity.

Gauss–Codazzi relations

To arrive at the so-called 3+1 description, we have to assume that space-time, (M,4 g),
where M is a four-dimensional manifold and 4g is a Lorentzian metric on it, is diffeo-
morphic to the direct product R × Σ, where Σ is a 3-dimensional manifold representing
space and t ∈ R represents time. Such space-times are called globally hyperbolic and exist
if and only if the primary condition that allows us to split space and time is satisfied.
Namely, we have to assume causality ; that no closed time-like curves5 exist [11]. Of
course, a particular slicing of space-time will still be a matter of choice, not considered
in the standard presentation of GR to be something intrinsic to the world.6 A choice of
such a slicing is equivalent to a choice of a regular function f : M → R (in this case,
this is equivalent to saying that the gradient of f is not zero anywhere) for which ∂µt is
time-like.

Adapted coordinates, shift and lapse.

As we have assumed that the time function is regular, the regular values of f form 3-
dimensional manifolds, which we call Σ(t0) = f−1(t0). Using the submersion theorem,
we can always find a local coordinate system {xµ̄} over the open set U , where, for p ∈ U ,
f(p) = f(x0(p), . . . , x4(p)) = x0(p), and we use barred variables only when we feel we
need to emphasize that we are in an adapted coordinate system.

The one-form df is then given by dx0 and the intrinsic coordinates of each hypersurface
are given by x1, x2, x3. Thus the vectors ∂a := ∂

∂xa
span the tangent space to each

hypersurface, where we used latin indices to denote the adapted spatial coordinates. To
make coordinate independence more transparent, we can express the components of these
vector fields in terms of a general basis {yα} as eν̄ :

∂

∂xν̄
=
∂yα

∂xν̄
∂

yα
=: eαν̄∂α, (2.20)

where eαν̄ can be interpreted as the components of the vector field ∂µ̄ (i.e., as the vector
field itself). As ∂a is tangent to the hypersurfaces and ∂α is a general coordinate vector
field, eαa can alternatively be seen to act as a projection onto the hypersurface Σ [12].

Let vµ be tangent to Σ. As the value of f = x0 is constant over each surface, v[f ] =
vµ∂µf = 0 by definition. In the adapted coordinates, this is just saying v0 = 0. In this
subsection, we will try to keep both notations, f and x0, side by side, so that the reader
does not forget that it is actually an arbitrary function that is defining the hypersurfaces.
Let us pause to note the important geometric fact that in order to define the foliation

5Curves γ : S1 →M such that 4g(γ′, γ′) < 0.
6The main aim of this thesis however is to convince the reader that indeed a natural splitting does

exist.
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we need only a regular function f , which does not require the aid of coordinate systems.
However, when we define the curves parametrized by x0, all other coordinates being held
constant, we have made an arbitrary choice of coordinates and endowed our description
with extra structure. Since df = dx0 is defined independently of this structure, it is not
necessary that the vectors tangent to the chosen coordinate curves x0, ∂0 := ∂

∂x0 have
much to do with the previously existing one-form df . Let us see what this implies.

The superscipt [ usually denotes dualization of a one-form to a vector field by use of
the metric. We adjoint a 4 to it, to make clear that we are using the full four-metric.
Then, using the notation 4[ to mean the metric dual to the one-form dx0, we have the
vector field (not written in components):

(dx0)
4[ := 4g(dx0, ·) = 4g

µν
∂µf ⊗ ∂ν = ∂νf ⊗ ∂ν = 4g

0ν
∂ν . (2.21)

Thus the vector field with components ∂νf , or 4g
0ν

in adapted coordinates, is a (un-
normalized) normal to the hypersurfaces. We call nµ the unit normal to Σ, to which
∂µf is parallel. It is straightforward to find the metric induced norm squared of ∂µf , in
adapted coordinates, using (2.21):

||(dx0)
4[||2 = ||(dx0)||2 = −4g

00
. (2.22)

Of course, for a general 4-metric the metric dual to the one-form dx0 is not equal to
∂0, which is the algebraic dual to dx0 and tangent vector to the xi = const curves. By
(2.21), we can tell that this is the case if 4g

0ν
= δ0ν . Thus we cannot say that the vectors

tangent to the x0 coordinates are orthogonal to the hypersurfaces Σ. We decompose ∂0

into its components parallel to the hypersurface, Nµ, and orthogonal to it Nnµ. In short

∂0 = Nn+ ~N. (2.23)

Since dx0(∂0) = 1 we get from (2.22) that

−N2 = 4g
00
, (2.24)

and we can simply define ~N through ∂0 −Nn.
Alternatively, using the projectors eαa , and abbreviating ∂0 by the vector tα:

tα = Nnα +Naeαa (2.25)

See figure 2.1.5.
The four metric 4g induces a metric on Σ, which is just its restriction to vectors

tangential to Σ. We call this induced metric g and can straightforwardly check that

gµν = 4gµν + nµnν (2.26)

is indeed the induced metric. Using (2.26), we write the orthogonal projection operator
onto Σ as gνµ = δνµ+nµn

ν . It is easy to check that gνµn
µ = 0 and gνµg

µ
ρ = gνρ . Alternatively,

we can use the components eαa := ∂αa as defined in (2.20) to project indices. Thus, in
intrinsic Σ coordinates

gab = eαae
β
b (4g)αβ. (2.27)

Both definitions have their advantages and disadvantages.
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Figure 2.1: The 3 + 1 decomposition of spacetime.

Extrinsic curvature

The extrinsic curvature is a two-form, given by the tangential component of the covariant
derivative of the normal vector. Quite a mouthful, so let us write it out explicitly in
coordinate-free notation:

K(u, v) :=4 g(Dun, v) = −4g(n,Duv) =4 g(Dvn, u) (2.28)

where we define the Levi-Civita covariant derivative associated with 4g as D = 4∇. In the
next to last equality, we used the metric compatibility of the connection and orthogonality
of u and v and, in the last, we noticed that by Frobenius theorem the commutator
[u, v] is tangent to Σ, which enabled us to write −4g(n,Duv) = −4g(n,Dvu). Since n
is normalized, we can also straightforwardly check that K(n, ·) = 0; thus, although it
depends on the normal n, which is not intrinsic to Σ, we can write the extrinsic curvature
with indices in Σ, as Kab. We will denote the trace gabKab = K.

We can split the covariant derivative for vector fields on Σ into normal and parallel
components, defining the intrinsic covariant derivative to Σ as

Duv = K(u, v)n+∇uv. (2.29)

In this way the definition of ∇ is intrinsic on Σ; fact, given that the original covariant
derivative is the Levi-Civita one for (M,4 g) – that it is metric preserving and torsion-free
– it can be shown that ∇ is the Levi-Civita one for (Σ, g).

Gauss–Codazzi relation

Using this decomposition, we can rewrite the 4-dimensional Ricci scalar 4R, and thus the
Einstein–Hilbert Lagrangian density, in terms of the intrinsic geometry of Σ(t) and Kab:

4R = (R +KabKab −K2)− 2(nα;βn
β − nαnβ ;β);α. (2.30)
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The final thing we must do is express
√

4g in terms of our present set of dynamical
variables. The expression for the determinant gives us, since N is precisely the projection
of ∂0 along the normal,

4g00 =
cofactor(4g00)

g
= −N2

we get that
√
−4g = N

√
g. Up to boundary terms, we now have∫

M

d4xR
√
−4g =

∫ t2

t1

dt

∫
Σt

d3x(R +KabKab −K2)N
√
g, (2.31)

where R is the intrinsic 3-dimensional Ricci scalar of g.

2.1.6 Constraint algebra for ADM.

Now, to find the Hamiltonian, we must express (2.31) in terms of the metric velocities
ġab = Ltgab. By definition L∂µ̄∂ν̄ = 0. In particular, using components as in (2.20),

Lteαa = 0.

Using this last equation in (2.27), we have

Ltgab = eαae
β
bLt(

4g)αβ = eαae
β
b (Dαtβ +Dβtα). (2.32)

Using (2.25), we have

Dαtβ +Dβtα = Dβ(Nnα +Nα) +Dα(Nnβ +Nβ)

= 2n(αN,β) + 2ND(βnα) + 2D(αNβ).

Upon projection
ġab = 2NKab + 2N(a;b), (2.33)

or, to put it the other way around,

Kab =
1

2N
(ġab − 2N(a;b)). (2.34)

We first rewrite the integrand of (2.31) as

(R +KabKab −K2)N
√
g = (R +GabcdKabKcd)N

√
g, (2.35)

where Gabcd = gacgbd − gabgcd is the DeWitt supermetric. We get

πab = GabcdKcd
√
g (2.36)

Now, from (2.31) and using (2.33), we get

πabġab = GabcdKab(2NKcd + 2N(c;d))
√
g.

Since

NGabcdKabKcd
√
g = N

Gabcdπ
abπcd

√
g

,
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where Gabcd = gacgbd − 1
2
gabgcd, we finally get

H =

∫ t2

t1

dt

∫
Σt

d3x

(
(
Gabcdπ

abπcd
√
g

−R√g)N − 2πabN(a;b)

)
. (2.37)

Note the important fact that, being a vector field, the shift is originally written as Na,
and thus we should write

−2πabN(a;b) = −2πabN c
;bgca.

We can now consider the constraints. We first have πN = 0, which by the Hamilton
equations means π̇N = δH

δN
= 0. In turn, this enforces the scalar constraint

S(x) :=
Gabcdπ

abπcd
√
g

(x)−R(x)
√
g(x) = 0. (2.38)

Similarly, we obtain the vectorial momentum constraint

Ha := gcaπ
cb

;b = 0, (2.39)

which is many times written in the equivalent form

Ha := πab;a = 0 (2.40)

Both of these can be rewritten using the extrinsic curvature:

R−KabKab −K2 = 0 (2.41)

(Kab − gabK);a = 0. (2.42)

This is the point of departure for a constraint analysis of the 3+1 formulation of
general relativity. We get the constraint algebra calculated in (A.10):

{S(N1), S(N2)} = gabHb(N1∇aN2 −N2∇aN1) (2.43)

{S(N), Ha(ξa)} = −S(LξN) (2.44)

{Ha(ξa), H
b(ηb)} = Ha([ξ, η]a) (2.45)

where we use the notation for smearing S(N) =
∫
d3xN(x)S(x) and

Ha(ξa) =
∫
d3xHa(x)ξa(x), N ∈ C∞(M) and ξa ∈ Γ∞(TM) is a smooth vector field.

Note that (2.43) involves the infamous “structure functions” gab when we use the
correct form of the momentum constraint (2.39).7It is the appearance of the metric in
the original form of the momentum constraint that flushes out the appearance of the
“structure functions”, as opposed to structure constants in the Dirac algebra.

2.2 A brief history of 3D conformal transformations

in standard general relativity

To orient the reader on how the present work originated, we give here, in some detail, an
account of previous work that led up to it. We start with the attempt by Weyl to introduce
some notion of relativity of size into the structure of general relativity, an enterprize very
close in spirit to our own motivations. We then discuss how first Lichnerowicz and then
York successfully developed the 3-dimensional conformal tools to solve the initial-value
problem of GR for almost all initial data.

7Note that ∇aN = dN , which as a one-form, does not involve the metric at all.
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2.2.1 The Weyl connection

In 1918, H. Weyl had a happy thought [13]. If, when generalizing Euclidean geometry
to Riemannian geometry, we need extra information to characterize parallel directions
at different points, shouldn’t we worry about how to characterize “parallel” (or equal)
lengths? The assumption of equal lengths comes from one of the elements of the definition
of the Levi-Civita connection; namely, that it preserves the metric tensor:

Z[g(X, Y )] = g(∇ZX, Y ) + g(X,∇ZY ).

Weyl’s idea was to include in the definition of the connection a one-form θ such that

Z[g(X, Y )] = g(∇ZX, Y ) + g(X,∇ZY ) + θ(Z)g(X, Y ).

In other words, it would no longer be true that ∇g = 0, but ∇g = g ⊗ θ. In this way,
the extra term says that even when we parallel translate the direction of a vector there is
also an infinitesimal change in its length, given by its initial length times the value of the
one form θ in the given direction. This he hoped to be connected to the electromagnetic
U(1) connection Aµ = θµ. However, as Einstein soon pointed out, if θ was non-zero, the
lengths of objects would be path-dependent, something not observed in Nature.

Our construction bears strong similarities to Weyl’s initial attempts, especially as
regards this question: how do we compare lengths at distinct points? According to rela-
tionalist principles, we in fact cannot. One way to get around Einstein’s criticism would
be to limit the Weyl potential θµ to be given by θµ = ∂µφ for some scalar function φ.
In this way we would have an integrable connection and lengths would still be “relative”
but would not depend on the path taken. Unfortunately this solution ceases to be inter-
esting for incorporating electromagnetism, because it obligates the curvature tensor F µν

to be zero. Nonetheless, we are not interested in using conformal transformations for the
coupling of electromagnetism, and Weyl’s enquiries were an important stimulus for the
further work on the meaning of relative size that has culminated in the work presented
in this thesis.

2.2.2 Lichnerowicz and York’s contribution to the initial value
problem.

Conformal transformations are here defined as those transformations that change the local
spatial scale. A priori they have nothing to do with the passage of time and therefore
appear to have nothing in common with the scalar Hamiltonian constraint. Yet, in a study
begun through purely mathematical considerations, the great relativist James York came
to quite a revolutionary conclusion: we can adjust the local scale so as to find appropriate
initial data for GR, i.e. data that solve the scalar and the momentum constraints. He
began his 1973 paper [14] on the conformal approach to the initial value problem by
stating:

An increasing amount of evidence shows that the true dynamical degrees of
freedom of the gravitational field can be identified directly with the confor-
mally invariant geometry of three–dimensional spacelike hypersurfaces embed-
ded in spacetime.[...] the configuration space that emerges is not superspace
(the space of Riemannian three–geometries) but ‘conformal superspace’[the
space of which each point is a conformal equivalence class of Riemannian
three–geometries]×[the real line](ie, the time, T ).”
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Perhaps a more careful choice of words would have been “An increasing amount of ev-
idence suggests”, as, although it was indeed shown by York that one could construct
initial data for GR using three-dimensional conformally invariant initial data, a confor-
mally invariant version of general relativity - with its own sets of conformally invariant
constraints and evolution equations - was not developed. The use of the conformal factor
was input by hand to aid in the solvability of an equation. It did not involve any sort
of canonical analysis and thus did not contain stronger statements about the dynamical
system as a whole.

The first important step towards solving the initial value problem for GR, given by
(2.38) and (2.40), was taken by Lichnerowicz [15]. He did so by realizing that if Kab is
traceless, then the (2.42) means Kab must also be divergenceless, or transverse.

Now, transverse traceless (TT) tensors are equivariant with respect to conformal trans-
formations. That is, if Aab is a TT tensor with respect to g, conformal transformations
act on Aab in such a way that the conformally transformed Aab is TT with respect to the
transformed metric. For more information on this, see section 8.4.1. There we also show
that if gab transforms8 as 4φgab then Aab must transform as −2φAab. A short explanation
for this conformal weighing is that, besides the usual 4φ factor, the 6φ coming from the
density

√
g must be compensated for.

Alternatively, in the language of inner products of metric velocities in Riem (see
Chapter 8), to maintain the conformal invariance of the superspace inner product, one
must demand that the lapse have the conformal weight given in definition (6), section
9.4. Then straightforwardly (2.33) yields the appropriate weight.

A more straightforward procedure is to not use the extrinsic curvature formulation,
but the momentum one. Then, calling σab the traceless part of πab we get the weighting:

σab → e−4φσab

which matches the conformal weight associated with the momenta in the rest of this
work. We shall call σabTT a choice of transverse σab.

Now since a conformal change in the TT tensor will still satisfy the momentum con-
straint (2.42), one can choose an arbitrary one and try to solve for it the modified scalar
constraint, given from (2.38) as

− R̄ +
σabTTσ

TT
ab

g
= 0 (2.46)

where R̄ is the conformally transformed Ricci scalar obtained from (A.3):

R̄ = R[φ4g] = −8φ−5∇2
gφ+R[g]φ−4. (2.47)

It is sometimes useful to rewrite this as:

R[φ4g] = φ−5(−8∇2
gφ+R[g])φ. (2.48)

The scalar constraint thus becomes:

8∇2φ−Rφ+
σabTTσ

TT
ab

g
φ−7 = 0 (2.49)

8Note that Lichnerowicz and York did not use the exponentiated action of the conformal group, which
differs from our treatment. Because of this they had to deal with other questions, such as positivity of
the conformal factor.

27



Of course, (2.46) only makes sense if we can find a conformal transformation that makes
R̄ positive everywhere. Such metrics are said to be in the positive Yamabe class, and this
imposes a restriction on initial data to belong to this class.

In 1970, James York contributed to the program by adding a constant trace term to
the TT momenta πab = σabTT + 1

3
c
√
ggab, where c is a spatial constant. With this simple

addition, the scalar constraint as an equation for the conformal factor becomes:

8∇2φ−Rφ+
σabTTσ

TT
ab

g
φ−7 − 2

3
φ5c2 = 0. (2.50)

As long as c 6= 0, this places no restriction on the scalar curvature ab initio. In [16], York
and OḾurchadha, using Leray–Schauder degree theory, showed that the specific form of

the polynomial in φ, Rφ+
σabTT σ

TT
ab

g
φ−7 − 2

3
φ5c2, implies that, as long as πab 6≡ 0, equation

(2.50) always possesses a unique solution. We will not go into details of the proof, as
it is involved and requires too much background material. The important point is that
the initial value problem was shown to be solvable for any choice of metric, TT tensor,
and non-zero constant c. The initial data that are constructed have constant trace of the
extrinsic curvature and are thus called a constant–mean–curvature (CMC) solution to
the constraints. From the physics point of view, this method, which did not arise in any
way from canonical analysis, has been regarded as a felicitous “device” for solving the
initial–value problem, which distances the LY method from Shape Dynamics. It did not
yield, as stressed in the beginning of the section, a conformally invariant theory. We will
have further comments on the mathematical similarities once we have presented Shape
Dynamics in its full form, at the end of chapter 4.3.

2.2.3 Dirac’s fixing of the foliation.

In 1958, Dirac [3] saw the need to fix the foliation of GR for the Hamiltonian framework,
as a step for quantization. In effect (as we later discovered), he essentially describes the
steps we take in chapter 5 after enforcing the gauge fixing. Indeed, the gauge-fixing that
he attempts to work with, and deems the most natural, is given by π = 0.

Let us briefly review the main steps. After basically (re)constructing the 3+1 de-
composition and the constraints, defining the Dirac bracket, and pinpointing foliation
invariance as the main obstacle to quantizing GR, all in under 4 pages, Dirac recog-
nized that a more powerful approach to quantizing GR would be to fix the gauge of the
scalar constraint, after which it would no longer be required as an operator equation on
a wave-functional. He then proceeded to show how one would go about doing that.

In the general setting of dynamical systems, he abstractly described the method con-
tained in section 2.1.3 and introduced a gauge fixing in a manner which we now describe.
Suppose there are initially χm first class constraints. Introduce Y n, n = 1 · · ·N gauge-
fixing constraints, all second class with respect to the initial constraints. Thus there are
now 2N second class constraints, and we must separate the first and second class sets of
constraints. As “there is no room for second class constraints in the quantum theory”, we
must either use the Dirac bracket, or completely solve for the second class ones. The two
procedures are equivalent. Suppose that N of the second class constraints are of the form
pn = 0 , n = 1 · · ·N , where pn is the momentum conjugate to qn. That means that the
remaining second–class constraints must contain all of the coordinates qn , n = 1 · · ·N
in a linearly independent manner, otherwise there would be at least one pn which would

28



still be first–class.9 This means it might in principle be possible to solve the remaining
second class constraints for qn, i.e.:

qn = fn(qN+1, · · · , pN+1, · · · ) (2.51)

Then using equation (2.51) and pn = 0 we can completely eliminate these variables from
the system (and obviate the need for a Dirac bracket), as they play no effective role. We
will not get to grips with exactly how Dirac effectively performed this fixing with π = 0 in
this section, but leave it for section 5, where a better description and direct comparison
are more natural.

We pause to mention that this procedure basically outlines what we will do with
general relativity to arrive at SD. The major departure from Dirac is that we will introduce
extra degrees of freedom, and thus our equation analogous to pn = 0 will be given by
πφ(x) = 0, and a good part of our efforts will be devoted to proving that we can indeed
solve the remaining second class constraints for φ as a functional of (g, π), culminating
in Theorem 1.

Dirac’s procedure, unlike ours, is not coordinate independent, but if put on a firmer
grounding (in other aspects as well) might well have culminated in our results for asymp-
totically flat SD, of chapter 5. However the manner in which we perform our trading
explicitly maintains conformal symmetry to very significant advantage. Nonetheless,
however unwittingly, Dirac’s attempt implicitly used conformal methods applied to the
quantization of gravity.

2.3 Barbour et al’s work.

The most influential of all previous work on conformal methods however came from
Barbour et al, in work contained in various papers: [17, 18, 19] and especially [20]. We
will try to keep the account of this beautiful body of work to a minimum. We do this
in the interest of brevity, but more importantly, this work is more eloquently described
than what we would be able to achieve here in various sources (for the most updated,
complete and masterfully written account, see [21], whose reading we strongly encourage).
We would fear misrepresenting the area in any attempt to be complete.

2.3.1 Poincaré’s principle.

To introduce some of the main ideas, let us consider a Newtonian system of N particles.
Although it seems completely transparent when expressed in an inertial frame of reference,
from the relational point of view the dynamics are not determined uniquely from initial
interparticle separations and their rates of change. One also needs as extra data the
angular momentum of the entire system, which is not encoded in such data. For a
relationalist, this is disturbing, as was already noted by Poincaré. This discrepancy led
Barbour to formulate what he called the Poincaré principle. We will let Barbour explain
this concept in his own words:

Poincaré, writing as a philosopher deeply committed to relationalism, found
the need for them [the extra data] repugnant [Poincaré 1902, Poincaré 1905].
But, in the face of the manifest presence of angular momentum in the solar

9We basically use the reciprocal argument when we come to equation (3.18).
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Figure 2.2: Shape space for 3 particles. The points on a vertical line correspond to
the different representations in Euclidean space of a shape of the triangle formed by the
particles. The effects of rotation and scaling are shown.

system, he resigned himself to the fact that there is more to dynamics than,
literally, meets the eye.[...]Poincaré’s penetrating analysis [...] only takes into
account the role of angular momentum in the ‘failure’ of Newtonian dynamics
when expressed in relational quantities. Despite its precision and clarity, it has
been almost totally ignored in the discussion of the absolute vs relative debate
in dynamics.[...] For some reason, Poincaré did not consider Mach’s suggestion
[Mach 1883] that the universe in its totality might somehow determine the
structure of the dynamics observed locally. Indeed, the universe exhibits
evidence for angular momentum in innumerable localized systems but none
overall. This suggests that, regarded as a closed dynamical system, it has
no angular momentum and meets the Poincaré principle: [...] a point and a
tangent vector in the universe’s shape space determine its evolution.

Now of course we are faced with the question; what exactly is shape space? To define
it requires some degree of arbitrariness. For example in the case of the N particles,
we could deem shape space to be given by a 3N − 6 dimensional space of Euclidean
coordinates (3N) minus translations and rotations (6), which do not change the inter-
particle separations. Or, if we are more radically relationalist, we can also argue that,
having no absolute ruler, we can only compare distances, and so one of the distances
serves as unity, giving us 3N − 7 dimensions to this space. According to Barbour, this
choice is the only possible in a complete relationalist setting. We will try to translate
these concepts to geometrodynamics soon. We illustrate the concept of shape space as a
quotient of configuration space for the case of a triangle (or just N = 3) in figure 2.3.1.
A quotient space, in pedestrian language, is a space X obtained from some other space
Y by considering certain elements of Y to be equivalent. By using this concept we will
get rid of such extraneous structure. It is to have a theory existing in shape space that
the tool of best-matching was devised.
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2.3.2 Best matching.

One of the keys to understanding Barbour’s ideas is to try to define motion itself in a
relationalist setting, incorporating Poincaré’s principle. How do we know a given object
has moved from one place to another? Well in the relationalist approach, we can only
compare its relative position with respect to some other objects serving as a reference
system. One initial attempt might be to say an object has moved if relative to other
fixed objects it has different coordinates. But suppose we lived in a swarm of bees, how
would we go about defining movements? Barbour explains the problem in the following
excerpt, and gives us a hint of the solution [21]:

We can now see that there are two very different ways of interpreting general
relativity. In the standard picture, spacetime is assumed from the beginning
and it must locally have precisely the structure of Minkowski space. From the
structural point of view, this is almost identical to an amalgam of Newton’s
absolute space and time. This near identity is reflected in the essential identity
locally of Newton’s first law and Einstein’s geodesic law for the motion of an
idealized point particle. In both cases, it must move in a straight line at
a uniform speed. As I already mentioned, this very rigid initial structure
is barely changed by Einstein’s theory in its standard form. In Wheeler’s
aphorism “Space tells matter how to move, matter tells space how to bend.”
But what we find at the heart of this picture is Newton’s first law barely
changed. No explanation for the law of inertia is given: it is a – one is
tempted to say the – first principle of the theory. The wonderful structure of
Einstein’s theory as he constructed it rests upon it as a pedestal. I hope that
the reader will at least see that there is another way of looking at the law of
inertia: it is not the point of departure but the destination reached after a
journey that takes into account all possible ways in which the configuration
of the universe could change.

The answer Barbour came up with is called best matching. To explain it in a simpler
setting than geometrodynamics first, let us consider a system of 3 particles in Euclidean
space Rn. Any three particles form a triangle P1 = (Aa, Ba, Ca) at any given moment
t, and another triangle P2 = (Aa + δAa, Ba + δBa, Ca + δCa) at t + δt. To define
the infinitesimal motion happening during an infinitesimal interval of time, we have to
first find out what would not constitute a motion, i.e., what is deemed to leave the
physical configuration fundamentally untouched. In the example of the triangles, we
could say that any rotation leaves the physical configuration untouched (Aa, Ba, Ca) 7→
(Λa

bA
b,Λa

bB
b,Λa

bC
b). Or we could be more radical, arguing that since all we can ever

really measure are ratios of distances, we should also include dilatations in this group,
(Aa, Ba, Ca) 7→ (λAa, λBa, λCa). Remember this is a world in which only the 3 particles
exist.

The abstract group that one chooses to characterize this “no real change” of configu-
rations of a given system has been recently termed the geometrical group [22]. Let us call
it G for now. Having chosen the geometrical group G, we have to define an “infinitesimal
distance functional” between configurations , dS. This “distance” does not, a priori, have
to be invariant under the action of the geometric group,10 Suppose we have two descrip-

10This fact is what allows best-matching to generalize gauge theory [22]. In fact calling it a distance
functional is also not entirely accurate since for many cases considered in the literature it does not satisfy
the basic postulates required of a norm.
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tions, or configurations, of triangles P1 and P2, lying in Q3 but over different shapes in
the quotient space (see figure 2.3.1). We know that P2 is in fact equivalent to all other
descriptions related to it by the geometrical group. What best matching does is to select
the description of that final state that is closest to P1. Formally,

P ′2 := g′ · P2 where g′ | inf
g∈G
D(P1 − g · P2)

Let us give now the pedestrian approach to the above description: we have two triangles,
P1 and P2, and we move the second one however we like without breaking it (i.e. obeying
the geometric group) until it is “most similar” (i.e. until it minimizes the distance) to
the first one. That is, until it is best matched. See figure 2.3.2 for an illustration of
best-matching in the way described here.

As noticed by the author ([23] and later put into [8]), if the whole construction can
be put in configuration space, with the geometrical group giving an orbit foliation, the
notion of shape space becomes analogous to that of a base space in a principal fiber bundle
given by the whole of configuration space (see section 8). Then it might be that the whole
approach can be put into the same geometrical terms as usual gauge theory. Thus the
Poincaré principle would be equivalent to saying that one has to build a theory on the
quotient space, i.e. the base space of the fiber bundle. And then, if this is attainable,
best matching becomes very reminiscent of the description of the way a connection form
works in gauge theory. It will give a notion of “parallel transport” of coordinates. Both
the Poincaré principle and best-matching can thus be geometrically incorporated in a
principal fiber bundle setting, as we shall explain in the second part of this thesis.

As mentioned in the caption to figure 2.3.2, one can prove that the best-matched
velocity, when induced by a metric in configuration space, always implies that the cor-
rected velocity of the triangle be orthogonal to the orbits, with respect to said metric.
This will be explored more thoroughly in Part II. The statement that best-matching
brings the centers of mass to coincidence and brings the net rotation to zero can be seen
as particular cases of (2.56) below.

2.3.3 Best matching in pure geometrodynamics

Unfortunately, this section requires some of the introductory material contained in chap-
ter 8, but we shall attempt to make it as self-contained as possible.

For the implementation of best matching in “pure” geometrodynamics, we first choose
the geometrical group to be G = Diff(M), the group of 3-diffeomorphisms of the manifold
M and the distance functional to be given by I[g, ġ], some action functional on the
configuration space

Riem(M) := {gab | gab is a 3-dimensional Riemannian metric}

dependent on the metric and metric velocities. To effect the best matching (in the
Lagrangian setting), we first transform all the dynamical variables gab 7→ f · gab, where
f ∈ Diff(M), and the · represents a given action of the diffeomorphisms (which we explain
in Part II). This implies a certain transformation for ġab and so forth, which we will not
make explicit here, since they are discussed extensively in chapter 8. In any case, this is
important in that it will imply a certain transformation property for I[g, ġ], which now
becomes a functional I[g, ġ, f,X] dependent on f and its infinitesimal generating vector
field X.
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Figure 2.3: a) An arbitrary placing of the dashed triangle relative to the solid triangle; b)
the best-matched placing ; c) this part already hints at the fiber bundle description. The
two positions of the triangle configurations on their group orbits in QN . The connecting
velocity is orthogonal with respect to the supermetric on QN . Best matching brings the
centers of mass to coincidence and reduces the net rotation to zero.

Given an initial metric (M, g) and another, (M, g + δg), infinitesimally close-by, best
matching is equivalent to finding the infinitesimal diffeomorphim (change of coordinates)
X ′ that makes the norm of δg with respect to I[g, δg, f,X] an extremum. In this manner,
Barbour argues that subsequent instants in time should have points in their copies of M
identified such that the metrics are “as close as possible”.

As it happens, for any action taken to be the integral of a density, the diffeomorphism
parameter f does not appear. We can thus restrict to the case where the dependence of
I is given solely by I[g, ġ, X]. Looking for a geodesic principle in configuration space that
incorporated the arguments above, Barbour argued initially for an action of the type:

I[g, ġ, X] =

∫
M

FGλ(ġ − LXg, ġ − LXg)dµg (2.52)

where Gλ is the generalized DeWitt supermetric, and F is a positive functional of g. As
argued in [17], for a truly geodesic, timeless picture, where the only notion of time is that
given by change, one should also demand that this “distance” functional be reparametriza-
tion invariant.

For the usual geodesic principle, one usually looks towards minimizing some function
of the type ∫

γ

dt
√
γ′ · γ′ (2.53)

for curves γ, and some inner product ·. This suggests taking a global square root:

I[g, ġ, X] =

√∫
M

FG(δg − LXg, δg − LXg)dµg (2.54)

(for F an undetermined conformal factor to the supermetric) which should be taken
to be extremal with respect to X. This would at least heuristically define a geodesic

33



principle in superspace (see chapter 8 for the definition of superspace, and chapter 9 for
the mathematical difficulties inherent in trying to define an induced metric in superspace).
In the relationalist approach of Barbour this is seen as highly desirable [20].

BSW form of gravity.

Encouragingly, the Einstein-Hilbert action, in the alternative, 3+1 lapse-eliminated BSW
formulation [24], is of the type (2.54) for F = R (the three scalar curvature) and λ = 1,
i.e. Gλ = GDW, but only if we take a local square root:

I[g, ġ, X] =

∫
M

√
RG(δg − LXg, δg − LXg)dµg (2.55)

This however forfeits the geodesic picture, as we no longer have a variational principle
for a functional of the form (2.53).

Let us say a few words about the above action (2.55), called the BSW action. It is
obtained from the ADM action by regarding the metric and metric velocities as funda-
mental variables, i.e. by regarding kab := ġab − LXgab = NKab, where Kab is given in
(2.34) as one of the fundamental variables. Then instead of the primary scalar constraint

(2.38), one gets that the terms involving the lapse N appear as: Gabcdkabkcd
N

−NR. Upon

varying and solving the action with respect to the lapse, one obtains N =
√

T
R

, where

T = Gabcdkabkcd. See section D.3 for more on the propagation of constraints in the BSW
action. As it should, this Lagrangian point of view transforms the scalar constraint into
an identity.

In other words, for these choices of F and G, and a local square root, the action (2.52)
gives GR in the BSW form, which could arguably be said to be a Jacobian timeless form
for GR [25]. 11

The local square root is the source of many (so far) insurmountable mathematical
difficulties [9] in trying to formulate the theory as either a geodesic theory in superspace
or a gauge theory with a metric-induced connection, as in Part II of this thesis (the two
problems are interconnected). However, as we will not need it in the following sections,
and in the interest of brevity we limit its discussion to what has been just said. In the
author’s opinion, there is still no first–principles justification for the local square-root, or
at least not as convincingly as there exists for the other structures present in Barbour’s
relational construction.

2.3.4 Introduction of the conformal group and emergence of
CMC by best matching

Let us go back to the case of the triangle (see figure 2.3.2). Irrespectively of the form of the
distance functional we assume, we can always use the best-matching algorithm. In fact,
if one defines the distance functional simply as any given action S[g] in configuration
space, one has an interesting consequence. To see this, suppose the group G acts on
congiguration space, λ · q where λ designates a general element of G. Then after making
the substitutions in the action, both λ and λ̇ appear in the action. As we show below,
the statement then that the action will be extremized for infinitesimal variations along

11We note however that in this case N is not a lapse potential, in accordance in definition 5.
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the orbit translates to:
δL

δλ̇
= πλ = 0 (2.56)

When one does this for the diffeomorphism group in geometrodynamics, either for the
ADM or the BSW action, one automatically recovers the momentum constraint (2.40),
whereas for the full conformal group one recovers the maximal slicing constraint π = 0.
Albeit straightforward, we will not show this now, as it is contained in its general form
in chapter 3, and in its particulars, in chapters 4, 5 and 9.

Let us quickly present an alternate view however, which is not presented in the main
text and which can be shown to be equivalent to (2.56) by an application of the chain
rule. Recall first of all equation (2.5). Given v, w ∈ TqQ, the Legendre map will give us
momenta defined by:

〈LTq(v), w〉 =
d

dt
L(q, v + tw) (2.57)

Thus, In accordance with the best-matching ansatz, we would like the action to be an
extremal with respect to all possible infinitesimal velocity displacements along the orbit
of the group:

〈LTq(v), w〉 =
d

dt
L(q, v + tw) = 0 for all w = Tλ(u) (2.58)

where u ∈ g, the Lie-algebra of G. This means that we require all the conjugate momenta
to annihilate the tangent space to the orbits (represented here by w). The rhs of (2.58)
implies

δL

δw (q,v)
= 0

which implies (2.56).
As a more concrete example, in the case of configuration space given by Riem, and

thus the configurations q being given by three-metrics g and G being the group of 3-
diffemorphisms, we get, upon contraction of the metric conjugate momenta (2.36) with
a tangent vector to the diffeomorphims orbits, assumed for now given by w = X(a;b),
the equation (2.40). Or for that matter, upon contraction 12 with an element of tangent
space to the conformal orbit, of the form φgab, we get π = 0, and finally, with an element
of the tangent space to the volume-preserving-conformal orbit (see section B.3) we get
π − 〈π〉√g.

In [20] Barbour et al, after reaching some obstacles in their attempt to apply full
conformal best-matching to GR [26],13 applied best-matching with respect to the group of
volume-preserving-conformal transformations. After quite a bit of algebra, they correctly
derived the new momentum constraint πφ = π− 〈π〉√g = 0, along with the transformed
scalar constraint – which had the form of (2.50) – and the momentum constraint. Of
course this is one constraint too many, and implies that there is a gauge fixing of the
scalar constraint. They correctly derived the conditions that this implies on the lapse
function (which is roughly our equation (4.18)). But as the scalar constraint is gauge

12Contraction here of course includes integration over M .
13Upon careful scrutiny one can see that these difficulties are related to the non-invertibility of the

corresponding lapse fixing operator. See proposition 1.
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fixed, the interpretation of (2.50) can be only that of an initial value equation, and not
of a constraint imposed at every point.14 Thus they conclude with

Our new principles enable us to derive Hamiltonian GR, the prescription for
solving its initial-value problem, and the condition for maintaining the CMC
condition in a single package.

We will discuss some of the factors that distance this earlier work from Shape Dynamics
in chapter 4. However, needless to say, this work was the foundation stone of the whole
program of Shape Dynamics.

2.4 Results and directions for Shape Dynamics.

2.4.1 Brief statement of results.

We have found a theory of gravity with two physical degrees of freedom that possesses
local scale invariance. Only in a certain conformal gauge it is identical to ADM in constant
mean curvature gauge. The total Shape Dynamics Hamiltonian is given by

HSD = αHgl +

∫
Σ

d3x
(
ρ(x)4(π(x)− 〈π〉√g) + ξa(x)Ha(x)

)
(2.59)

in the ADM phase space Γ parametrized by the usual coordinates (g, π), where α ∈ R,
ρ(x) ∈ C∞(M) is an arbitrary Lagrange multiplier function, and Hgl[g, π] is our unique
global Hamiltonian, which is a non-local functional of gab, π

ab which does not depend on
the point x ∈M . Shape Dynamics possesses the local first class constraints

4(π(x)− 〈π〉√g) , Ha. (2.60)

where 〈f〉 is the global mean of the function f over the 3-manifold M . These are the
generators of volume-preserving conformal transformations and spatial diffeomorphisms,
respectively. The non-zero part of the constraint algebra is given solely by:

{Ha(ηa), H
b(ξb)} = Ha([~ξ, ~η]a)

{Ha(ξa), π(ρ))} = πLξ(ρ)

For the asymptotically flat case we have a similar result, where the conformal generator
is given by π(x) only, and its Lagrange multiplier respects certain asymptotic boundary
conditions.

We have furthermore found how we can extend the treatment that leads to (10.1) to
the electromagnetic, massive and massless scalar fields (see chapter 6), with their usual
Hamiltonians. We also show here that different approximation schemes are available for
the global Hamiltonian, and in this thesis we perform a large volume expansion for it
(chapter 7), obtaining the first three terms. We use this expansion to find the Hamilton–
Jacobi version of the global Hamiltonian, a first step towards quantization. We have

14There is also the question of over-imposing the scalar constraint, since they depart from the La-
grangian formulation, and fix the lapse as in the BSW approach (2.55), turning the scalar constraint into
an identiy already satisfied by what they term as the momenta. This will be more thoroughly discussed
in section 4.
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found that this bears strong resemblance to certain holographic dualities between gravity
and traditional conformal field theories [27].

Shape Dynamics provides the theory that fulfills the requirements of a complete theory
of the gravitational field on conformal superspace. Our results justify York’s intuitive
remarks regarding the configuration space of gravity: conformal superspace is not the
reduced configuration space of general relativity but that of Shape Dynamics. Shape
Dynamics also meets Barbour’s relational arguments for a truly relational theory of the
Universe, encapsulated by the aphorism: “size and motion are relative, and time is given
by change”.

It is also true, although unseen by us at the time of its conception, that SD is the
completion and formalization of Dirac’s 1958 paper [3]. Made explicit and put into context
however, it gains significance way beyond that of a mere “fixation of the coordinates”,
providing truly an alternative description of gravity.

The local constraints are all linear in momenta, being easily implementable in config-
uration space. The true gravitational degrees of freedom are easily found. The constraint
algebra is very simple, making it possible that the attempts at the quantization of grav-
ity that encounter the obstacle posed by structure functions being present in the algebra
of constraints (as opposed to structure constants) might be more successful in Shape
Dynamics.
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Chapter 3

Linking theory for Shape Dynamics

This chapter is based on the paper [5]. It is aimed at introducing the general mechanism
behind Shape Dynamics. If the reader feels it has become too abstract we recommend
following the explicit example given in the next chapter.

3.1 General trading of symmetries

Before introducing Shape Dynamics (SD) per se, we will present in this short chapter
a general mechanism that relates equivalent gauge theories. The central concept in this
mechanism is that of a linking gauge theory. Roughly speaking, a linking gauge theory
between two gauge theories A,B with first class constraints A and B, respectively, both
existing on the phase space parametrized by (q, p), is a gauge theory possessing additional
fields and corresponding additional first class constraints. Such a gauge theory qualifies
as a linking gauge theory if it yields theories A and B under two distinct gauge fixings of
the additional fields. We show that whenever there is a linking gauge theory that links
two gauge theories then these two gauge theories are equivalent.

The method by which we proceed can be said to be closely analogous to the Stuck-
elberg mechanism [28], whereby one adds a fictitious field to a given system in order to
reveal some hidden properties it might possess. This is the main aim of our actual usage
of the linking theory in GR, through a fictitious addition of a ”conformal” field, we reveal
a hidden conformal invariance present in ADM.

3.1.1 Linking Theories

A gauge theory can be denoted by data T = (Γ, {., .}, {χi}i∈I , {Ψj}j∈J ), where Γ denotes
the phase space carrying the Poisson structure {., .}, the set {χi}i∈I denotes first class
constraints and the set {Ψj}j∈J denotes second class constraints. We shall from the start
restrict the study to a class of theories with no explicit Hamiltonian (it can be included in
the set of first class constraints as the constraint H−ε that enforces energy conservation)
and no second class constraints. The initial value problem of T is given by finding the
space C = {x ∈ Γ : χi(x) = 0∀i ∈ I} and the canonical equations of motion are given
by the Hamilton vector fields vH(λi) defined through the action on smooth phase space
functions f as

vH(f) = {f,
∑
i∈I

λiχi}, (3.1)
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where the λi are arbitrary Lagrange multipliers. Furthermore, one is able to impose
(partial) gauge-fixing conditions {σi}i∈I0 , such that (some of) the Lagrange multipliers
λi are determined by the condition that vH is tangent to Cgf = C∩{x ∈ Γ : σi(x) = 0 ∀i ∈
I0}. Hence, gauge-fixing conditions turn (some of) the first class constraints into second
class constraints and transforms the initial value problem into a gauge-fixed initial-value
problem Cgf.

There can exist a nontrivial physical equivalence between gauge theories, based on
the observation that physical quantities are gauge-invariant. To be precise, we call two
gauge theories T1, T2 equivalent, if there is a (partial) gauge-fixing Σ1 = {σ1

i = 0}i∈I0
1

of

T1 and another partial gauge fixing Σ2 = {σ2
i = 0}i∈I0

2
of T2, such that the initial value

problems C1

gf = C2

gf and the (partially) gauge-fixed Hamilton-vector fields coincide.

Let us define a general linking gauge theory L = (TL,Σ1,Σ2), where

TL = (ΓEx, {., .}, {χi}i∈I)

is a gauge theory as described before and Σ1 = {σ1
k}k∈K and Σ2 = {σ2

l }l∈L are two sets
of partial gauge-fixing conditions such that Σ1 ∪ Σ2 is a (partial) gauge-fixing condition
for TL and we assume that we can split the set X = {χi}i∈I of first class constraints into
three independent subsets: X1,X2 and X0, where X1 is gauge fixed by Σ1, X2 is gauge
fixed by Σ2 and X0 is not gauge fixed by either Σ1 or Σ2.

Given a linking gauge theory, we can construct two equivalent gauge theories:

T1 = (ΓEx, {., .},X0 ∪ X2, {ρj}j∈J ∪ Σ1 ∪ X1) (3.2)

T2 = (ΓEx, {., .},X0 ∪ X1, {ρj}j∈J ∪ Σ2 ∪ X2) (3.3)

These are equivalent gauge theories, because both can be gauge-fixed to

(ΓEx, {., .},X0, {ρj}j∈J ∪ Σ1 ∪ Σ2 ∪ X1 ∪ X2).

This construction becomes nontrivial if we construct the Dirac-bracket and reduced
phase space for T 1

L and T 2
L. In particular, in the important case where the phase space ΓEx

is a direct product of Γ with another phase space Γ̃, which we assume to be coordinatized
by a canonically conjugate pair {φi, πiφ}i∈I for simplicity. Moreover, let us assume a
special set of first class constraints χ1 , χ2, which are equivalent to (define the same
constraint surface as) the constraints:

χ̃1 := φi − fi ≈ 0
χ̃2 := πiφ − gi ≈ 0,

(3.4)

where fi, gi are functions on Γ for all i ∈ I.1 By equivalence between χ1 , χ2 and χ̃1 , χ̃2

we mean solely that the constraints χ1 , χ2 can be solved for certain values of φi and πiφ.
Moreover, we assume special gauge-fixing conditions

Σ1 = φi = 0, Σ2 = πiφ = 0 (3.5)

for all i ∈ I. Note that Σ1 completely fixes the gauge of χ2 to zero and vice-versa.
The special form of the constraints and gauge fixing conditions allows us to perform the

1The functions fi and gi obey certain conditions so that χ̃1 and χ̃2 are equivalent to the first class
constraints χ1 and χ2. These conditions do not play any role since we will start already from explicitly
first class χ1 , χ2. See last paragraph of this subsection.
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phase space reduction explicitly. That is, we use the equations (3.4) as definitions and
completely eliminate the variables φi and πiφ from the system together with the second
class constraints, reverting to the usual Poisson bracket in the reduced phase space, as
mentioned in Section 2.2.3.

To see this is indeed equivalent to using the Dirac bracket, consider functions Fr on
ΓEx that are independent of {φi, πiφ}I∈I , which are in one-to-one correspondence with
functions on Γ, and we construct their Dirac bracket {., .}D for the gauge-fixing φi ≈ 0:

{F1, F2}DB = {F1, F2}+ {F1, φi}{πiφ − gi, F2} − {F1, π
i
φ − gi}{φi, F2} = {F1, F2}, (3.6)

where Einstein summation over i is assumed, and we used the facts that {φi, gj} = 0
and that φ, πφ are canonically conjugate. The Dirac bracket thus reduces to the Poisson
bracket on the reduced phase space Γ ⊂ ΓEx and as χ2 is completely gauge-fixed to zero,
the remaining first class constraints are

fi ≈ 0 for all i ∈ I. (3.7)

Performing the analogous phase space reduction for the gauge-fixing condition πiφ ≈ 0,
we arrive at

Proposition 1. Given a gauge theory on a phase space ΓEx = Γ×Γ̃ with special first class
constraints which are equivalent to constraints of the form (3.4), and special gauge fixing
conditions of the form (3.5) then T1 = (Γ, {., .}, {fi}i∈I ∪X0) and T2 = (Γ, {., .}, {gi}i∈I ∪
X0) are equivalent gauge theories.

Note that this proposition only assumes that the constraints can be formally written
in the form (3.4). However, any set of constraints that can in principle be solved for φi
and πiφ on the respective gauge fixing surface as in (3.4) suffices for the construction of
the phase space reduction.

3.1.2 A Construction Principle for Linking Theories

We will now give a simple construction principle for special linking theories linking a
known gauge theory to a desired gauge theory with different symmetry. For this purpose
we consider elementary degrees of freedom qi whose dynamics is governed by an action
S[q] :=

∫
dtL(q̇, q). If the dynamical system is consistent, then the Legendre transform

to the canonical system will yield first and second class constraints, however we ignore
second class constraints in this subsection (as they will not appear in such a fashion in
the model we will be studying) and assume we have a conjugate pair (qi, p

i) of canonical
degrees of freedom that coordinatize our phase space Γ and a purely first class system of
constraints:

χρ(q, p) ≈ 0. (3.8)

In the Lagrangian picture, we extend our configuration space to include auxiliary degrees
of freedom φα, but still with the Lagrangian L(q̇, q), which implies that the Legendre
transform yields a phase space with an additional canonically conjugate pair (φα, π

α)
and with additional first class constraints

Cα = πα =
δL

δφ̇α
≈ 0, (3.9)
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whose Poisson-brackets with the original constraints (3.8), as well as with any f(p, q),
and among themselves, vanish strongly by construction. Let us now apply a point trans-
formation

Tφ : qi → Qi(q, φ) (3.10)

parametrized by the auxiliary degrees of freedom φα, such that Qi(q, 0) = qi, which reverts
the system to the original Lagrangian. This transformation is a canonical transformation
generated by the generating functional

F = Qi(q, φ)P i + φαΠα. (3.11)

Using the shorthand M i
j =

∂Qj
∂qi

=
∂Q̇j
∂q̇i

as well as Rα
j :=

∂Qj
∂φα

=
∂Q̇j

∂φ̇α
we can denote the

canonical transformation from (qi, p
i, φα, π

α) to (Qi, P
i,Φα,Π

α) generated by (3.11) in
the compact form

qi → Qi = Qi(q, φ)

pi → P i = (M−1)
i
j p

j

φα → Φα = φα
πα → Πα = πα −Rα

j (M−1)
j
k p

k.

(3.12)

Alternatively, we can obtain these formulae from the transformed Lagrangian, eg.,

pi =
∂L

∂q̇i
=

∂L

∂Q̇j

∂Qj

∂qi
= P jM i

j , (3.13)

as Q is the only variable dependent on q. In the same way

πβ =
∂L

∂Φ̇α

∂Φα

∂φβ
+

∂L

∂Q̇j

∂Qj

∂φβ
(3.14)

yields the respective equation in (3.12).
Let us now consider the system of canonically transformed constraints (3.8) and (3.9):

χρ(p, q) → χρ (Q(q, φ), P (p, q, φ)) ≈ 0

Cα → πα −Rα
j (M−1)

j
k p

k ≈ 0,
(3.15)

which is of course still first class. Notice that the previously (almost) trivial constraints
Cα now take a quite nontrivial form. To construct a special linking theory, we now
assume that we can split the constraints χρ (Q(q, φ), P (p, q, φ)) into two sets χ1

α(q, p, φ)
and χ2

µ(q, p, φ), where the first set can be solved for φα and the second (weakly) Poisson
commutes with πα. So we can write the constraints (3.15) equivalently as

0 ≈ φα − φ0
α(q, p)

0 ≈ χ2
µ(q, p, φ)

0 ≈ πα −Rα
j (M−1)

j
k p

k,

(3.16)

which is of the form needed for a special linking theory. We can thus impose the two sets
of gauge fixing conditions

πα = 0 and φα = 0, (3.17)

which gauge-fix the first and (respectively) last line of (3.16).
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The gauge fixing conditions φα = 0 can be worked out easily. Since φα commutes
with the two first lines of (3.16), it imposes no further conditions on these. Hence the
union of these two sets of constraints is still χρ (Q(q, φ), P (p, q, φ)). Now

{φα, πβ −Rβ
j

(
M−1

)j
k
pk} = δβα.

Thus it completely gauge fixes the constraint Cβ = πβ −Rβ
j (M−1)

j
k p

k, whose Lagrange-
multiplier is constrained to vanish for propagation. In other words, we set the two
(sets of) second class constraints φα and Cβ strongly to zero, using these equations
as definitions for φα and πα. One can thus perform the phase space reduction by
setting (φα, π

α) = (0, Rα
j (M−1)

j
k p

k). Since πα appears nowhere but in Cα, which is
used solely as a definition of πα itself, phase space reduction reduces the constraints
χρ (Q(q, φ), P (p, q, φ)) to χρ (q, p) and reverts us to the original gauge theory.

Let us now examine the gauge fixing conditions πα = 0. They clearly do not (weakly)
Poisson commute with the constraints χ1

α, because these can be written as φα− φ0
α(q, p).

In fact, the assumption that the remaining constraints are not gauge fixed by πα = 0 is
redundant. Given constraints of the form of (3.16) we can prove that πα = 0 does not
gauge fix any further constraint(s). For this we assume that there is a subset σρ of the
constraints χ2

µ and Cα that is gauge-fixed, which implies that the matrix {χ1, χ1} {χ1, π} {χ1, σ}
{π, χ1} {π, π} {π, σ}
{σ, χ1} {σ, π} {σ, σ}

 ≈
 0 A 0
−A 0 b
0 −b 0

 (3.18)

is invertible. The block containing A is invertible by assumption and hence the determi-
nant of the entire matrix vanishes, since the conjugate block vanishes identically. This lies
in contradiction with the assumption, which stated that the matrix was invertible. This
was to be expected, because we can write one of the constraints as φ− f(g, π), it makes
its Poisson Bracket with the gauge fixing automatically invertible and thus completely
exhausts the gauge fixing.

It follows that πα = 0 can just gauge fix the χ1
α. Thus, to perform the phase space

reduction we trivialize the constraints χ1
α and set (φα, π

α) = (φ0
α, 0). On the reduced

phase space this then gives the first class constraints

0 ≈ χ2
µ (q, p, φ0(q, p))

0 ≈
(
Rα
j (M−1)

j
k

)
(q, p, φ0(q, p)) pk =: Dα,

(3.19)

and thus we have effectively traded the constraints χ1
α for Dα.

In summary we have shown the following proposition

Proposition 2. Given a dynamical system with first class constraints χµ and a point
transformation qi → Qi(q, φ) parametrized by auxiliary degrees of freedom φα such that
a subset χ1

α of the constraints can be solved for φα as a function of (q, p) after applying
the canonical transformation that implements the point transformation, then the above
construction provides a linking theory that provides equivalence with a theory in which
the χ1

α are replaced by the constraints Dα as defined in equation (3.19).

Conversely, the phase space reduction of a linking theory can be viewed as an embed-
ding of the equivalent gauge theories in the linking theory. In this picture one has two
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embeddings iorig. and idual that embed the original resp. dual gauge theory in the linking
theory by

iorig. : (q, p) 7→ (q, p, 0, π0
φ)

idual : (q, p) 7→ (q, p, φ0, 0),
(3.20)

where we wrote π0
φ = Dα to bring out the similarity between the two embedding. It

should be noted however that in spite of the apparent similarity, there is an important
formal asymmetry. Namely, whereas setting φ = φ0 will influence the reduced dual system
(3.19), as πφ does not figure anywhere in the original system, setting its value to some
given function Dα does not influence the reduced system (see paragraph following the
paragraph of equation (3.16)).

3.1.3 Diagram of trading

We started by showing how an equivalence of gauge theories follows from the existence of
a linking gauge theory on an extended phase space Γ×Γ̃. One can sketch the construction
of a pair of equivalent gauge theories A and B on a reduced phase space Γ as follows

partial gauge fixing partial gauge fixing
theory A ←− linking theory −→ theory B

on Γ× Γ̃ φI = 0 on Γ× Γ̃ πIφ = 0 on Γ× Γ̃
↓ ↓

reduced reduced
theory A theory B

on Γ on Γ
−→ Dictionary ←−

on Γred,
(3.21)

where φI and πIφ is a canonical pair coordinatizing Γ̃ and the “Dictionary”is a further
gauge fixing of the two equivalent theories such that the two theories coincide. The
dictionary can be used to easily identify trajectories of the equivalent theories with one
another.

To summarize the procedure in plain words and notation: we start with a theory
A which possesses some explicit symmetry a, but which we suspect might possess some
hidden symmetry b. We then artificially introduce a field parametrizing symmetry b
into the system A, producing a system LTA even more redundantly parametrized. The
outcome of the introduction of b however, is not the presence of the symmetry b, but
of some other symmetry c. In some very restricted set of cases, upon very particular
gauge fixings of LTA (namely setting either φb or its conjugate momenta to zero), one
may obtain a system which explicitly possesses symmetry b.

We stress that in most cases, the procedure outlined above is not applicable, i.e. one
obviously cannot trade any two given symmetries. If for example the theory already
possesses the symmetry we are trying to trade the two gauge fixings coincide and there is
no gain in the procedure. In the majority of cases though, what will happen is that the
system produced through the gauge fixing will entail a tower of constraints, rendering it
inconsistent.
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Chapter 4

Trading GR for SD: compact closed
Σ case

Summary of this chapter

In this section we will apply the method of the linking theory presented in the previous
chapter to a specific extension of ADM gravity for compact closed space. After extending
ADM to include certain scalar fields representing conformal transformations and their
conjugate fields, a linking theory in the sense of the diagram (3.21) will be presented. One
gauge fixing of the linking theory will then eliminate conformal freedom but retain lapse
freedom, resulting in ADM, and another will fix the lapse freedom but retain conformal
freedom, resulting in Shape Dynamics. The most difficult technical steps will be taken in
section 4.3, where we will split the constraints into first and second class and show that
the second class constraints can be uniquely solved for the extra variables. This chapter
is based in [4, 5], but contains more detailed (and somewhat different) proofs of the main
propositions.

4.1 Construction of the Linking Theory

We start with the equivalent of (3.8) and denote the usual ADM constraints as

S =
πabπab− 1

2
π2

√
g

−√gR
Ha(ξa) =

∫
d3xgabLξπab.

(4.1)

where for ease of manipulation we wrote the smeared version of the diffeomorphism
constraint.

Following the method described in the previous chapter, we will embed the original
system into an extended phase space. This extended phase space is chosen to include the
auxiliary variables (φ, πφ). The scalar function φ ∈ C∞(M) will parametrize conformal
transformations of the system. We denote the space of conformal transformations by C.
The nontrivial canonical Poisson brackets are

{gab(x), πcd(y)} = δ
(cd)
ab δ(x, y)

{φ(x), πφ(y)} = δ(x, y).
(4.2)

The extended phase space for these fields is now given by:

(gij, π
ij, φ, πφ) ∈ ΓEx := ΓGrav × ΓConf

44



with the additional constraint analogous to (3.9):

πφ ≈ 0 (4.3)

We will explore the space of volume-preserving conformal transformations acting as
canonical transformations in ΓEx. Given any conformal transformation φ we can define a
surjection into a volume-preserving one φ 7→ φ̂ as follows:

φ̂(x) := φ(x)− 1

6
ln〈e6φ〉g (4.4)

where we use the mean

〈f〉g :=
1

V

∫
d3x
√
|g|f(x)

and 3-volume Vg :=
∫
d3x
√
g. We will abuse notation and extend the use of the mean

〈·〉 to densities by dividing out by the appropriate power of
√
g. For example, instead of

writing
〈
π/
√
g
〉
, we will just redefine the mean for this scalar density as:

〈π〉g :=
1

V

∫
d3xπ

We denote the space of volume-preserving conformal transformations as C/V , and it is
redundantly parametrized by C. One can check that the redundancy, i.e the equivalence
relation, is given by φ̂ ≡ φ̂′ if and only if φ′ = φ + c where c is a spatial constant. We
also note that

{
∫
πφ(x)d3x, φ̂} = 0

This can be derived from (B.18), with f = 1. Thus we have

{f(g, π, φ̂, πφ),

∫
πφ(x)d3x} = 0.

As we will see, this deviation from the simplest case of unconstrained conformal
transformations is necessary in order to have some combination of the linking theory scalar
constraint {TφS(x), x ∈ Σ} that is not fixed by (remains first class wrt) the condition
πφ = 0. This will allow shape dynamics have a unique non-zero global Hamiltonian and
be matched to ADM in something other than the frozen lapse regime.

Following (3.11), we construct the generating function

Fφ :=

∫
Σ

d3x
(
gab(x)e4φ̂(x)Πab(x) + φ(x)Πφ

)
, (4.5)

where capitals denote the transformed variables. We find the canonical transformation
analogous to (3.12) operating in extended phase space:

gab(x) → Tφgab(x) := e4φ̂(x)gab(x)

πab(x) → Tφπab(x) := e−4φ̂(x)
(
πab(x)− gab

3

√
g〈π〉(1− e6φ̂)

)
φ(x) → Tφφ(x) := φ(x)
πφ(x) → Tφπφ(x) := πφ(x)− 4(π(x)− 〈π〉√g).

(4.6)

Again, although slightly more inconvenient, one can find essentially the same set of
transformations from the first line of (4.6) through a Lagrangian analysis, as in (3.13).
We explicitly check that this transformation is indeed canonical in section B.2.
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The three sets of constraints that we now have are the transformed scalar and diffeo-
morphism constraints of GR as well as the transform of πφ,

TφS = Tφ(
πabπab− 1

2
π2

√
g

−√gR)

TφHa = Tφ(∇bπ
ab)

Q = πφ − 4(π − 〈π〉√g)

(4.7)

where we have used the shorthand πabgab = π and the notation Q to denote the analogous
constraint of (3.15) in Chapter 3, where we used the notation Cα. We write down here
explicitly the form of the transformed scalar constraint, but note that it will not be
explicitly used until section 7.

Tφ
S
√
g

=
1

ge12φ̂

(
πabπab −

π2

2
− 〈π〉

6
(1− e6φ̂)2g +

〈π〉
3
π(1− e6φ̂)

√
g

)
+ 2Λ− R− 8(|∇φ|2 +∇2φ)

e4φ̂
. (4.8)

The transformed diffeomorphism constraint will be worked out below, in (4.10).
Any functional of the original phase space variables, when transformed by Tφ, strongly

commutes with Q, as

0 = {f(gab, π
cd), πφ(x)} = Tφ{f(gab, π

cd), πφ(x)} = {Tφf(gab, π
cd), πφ(x)−4(π−〈π〉√g)}.

(4.9)
Thus it is clear that on the original phase space, π−〈π〉√g generates infinitesimal volume-
preserving conformal transformations. This can be seen more clearly if we use the fact
that π − 〈π〉√g is invariant under the transformation (4.6) to rewrite (4.9) as:

{Tφf(gab, π
cd), πφ(x)}φ=0 = Tφ{f(gab, π

cd), 4(π−〈π〉√g)}φ=0 = {f(gab, π
cd), 4(π−〈π〉√g)}

which can be checked explicitly as well.1

The diffeomorphism constraint in the linking theory, TφHa(ξa), can be explicitly cal-
culated as follows (in smeared density form):

ξaTφH
a = (πab − gab

3

√
g〈π〉(1− e6φ̂))Lξgab + 4(π − 〈π〉√g(1− e6φ̂))Lξφ

= πabLξgab −
2

3

√
g〈π〉(1− e6φ̂)ξa;a + πφLξφ+ 4e6φ̂√g〈π〉Lξφ

=̇ πabLξgab + πφLξφ (4.10)

where we have used integration by parts and the fact that the constraint Q vanishes on
the image of Tφ strongly. Thus the constraint (in smeared density form) πabLξgab+πφLξφ
explicitly generates diffeomorphisms in extended phase space.

We define the total Hamiltonian

HTotal =

∫
d3x[N(x)TφS(x) + ξa(x)TφHa(x) + ρ(x)Q(x)] (4.11)

We do not explicitly topologize phase space for now and only later assume that we can
turn it into a Banach space compatible with the Poisson bracket. This completely defines

1 One can fairly easily visualize how this comes about by just considering how π(x) generates infinites-
imal conformal transformation. That is {gab(x), π(ρ)} = ρ(x)gab(x) and {πab(x), π(ρ)} = −ρ(x)πab(x).
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the linking TL as contained in the previous section. We define the linking theory as the
gauge theory defined in this section together with the two sets of gauge-fixing conditions
and constraint sets

Constraints : X1 = Q and X2 = φ− φ0 and X0 = TφHa ∪ 〈N0TφS〉
Gauge fixing : Σ1 = {πφ(x) = 0}x∈Σ and Σ2 = {φ(x) = 0}x∈Σ, (4.12)

where φ0 and N0 will be specified shortly in a way that ensures that φ − φ0 combined
with 〈N0Tφ0S〉 is equivalent to TφS(x) on the surface πφ ≡ 0.

4.2 Recovering General Relativity for compact closed

manifolds

The only non-vanishing Poisson bracket of the gauge fixing condition φ(x) = 0 with the
constraints of the linking theory is

{φ(x),Q(ρ)} = ρ(x), (4.13)

which determines the Lagrange-multiplier ρ(x) = 0, and effectively eliminates πφ from
the theory. We can thus perform the phase space reduction by setting the two second
class constraints strongly to zero:

φ(x) ≡ 0 (4.14)

πφ(x) ≡ 4(π − 〈π〉√g)(x) (4.15)

This eliminates both of the extra conjugate variables, and makes the constraint Q(0)
empty. Moreover, for phase space functions independent of φ, πφ one finds in the same
way as in (3.6) that the Dirac-bracket coincides with the canonical Poisson bracket.
Since πφ does not appear anywhere else but in equation Q = 0, which is now seen as its
definition, the constraints on the reduced phase space are

S(x) and Ha(x) (4.16)

The resulting gauge theory is thus ADM gravity.

4.3 Recovering Shape Dynamics for compact closed

manifolds.

Our main aim in this subsection will be to prove that part of the scalar constraints can
be written in the form φ−φ0(g, π) ≈ 0 on the gauge-fixing surface πφ ≡ 0, in a particular
way that will be useful for us, and then use the results section 3.1.

The only weakly non-vanishing Poisson-bracket of the gauge-fixing condition πφ(x) =
0 with the constraints of the linking theory is

{TφS(N), πφ(x)} = 4Tφ{S(N), π(x)− 〈π〉√g(x)}, (4.17)

which leads to (calculated in the appendix, see (A.16)):

4{S(N), π(x)−〈π〉√g(x)} = 8(∇2− 1

4
√
g
〈π〉π−R)N(x)−8〈∆N〉−6S(x)N(x). (4.18)
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In (4.18) ∆ is the differential operator appearing in the first term:

∆ := ∇2 − 1

4
√
g
〈π〉π −R. (4.19)

This is the important operator of the theory for compact closed manifolds, and we will
have to make small detour to study some of its properties. We leave this diversion to
later, namely to Proposition 1. For now let us assume the end result of the proposition:
∆ has a unique fundamental solution (i.e. it is an invertible operator).

First of all, ∆ is an elliptic linear second order differential operator on a compact
manifold. Merely from ellipticity, a fundamental solution (or Green’s function) always
exists, in the sense that there exists a distribution Gy(x) such that

∆Gy(x) = δ(x, y).

However for our purposes it is not sufficient that the fundamental solution exist; it needs
also to be unique, which is what we for now assume, and later on, in Proposition 1,
proceed to prove.

If this is so, then if ∆N = 0 the only solution is N ≡ 0. Thus to solve (4.18) non-
trivially, all we require is that ∆N = c, where c is any non-zero spatial constant. This
fact allows us to escape integral-differential equations and just stick to very simple partial
differential ones. We then adjust this constant so that 〈N0〉 = 1 for our lapse smearing.
To be able to do this we must prove that there exists a c′ such that the solution obeys
〈N0〉 6= 0. This is done in Proposition 2. By scaling c′ appropriately to get 〈N0〉 = 1, we
fix the ambiguity and get the unique kernel N0 such that:

∆N0[g, π, x)− 〈∆N0[g, π, x)〉 = 0
〈N0〉 = 1

(4.20)

for each (g, π).
Thus, by the canonical transformation properties and (4.17), the solution to

{TφS[N ], πφ(x)} ≈ 0

is N0[Tφg, Tφπ, x), which always exists uniquely provided πab(x) 6≡ 0. We thus have one
linear combination among the infinitely many TφS(x) constraints that remains first class
with respect to all the other constraints and is also not gauge fixed by πφ = 0. This
constraint no longer has a spatial index, as it carries an integration. We denote this
global constraint by

Hgl := TφS(N0). (4.21)

Now, we do not fix the lapse gauge to be given by N0, but we separate the constraints
into a first class part, given by

First class: { Hgl, {Q(x), x ∈ Σ}, {TφHa(x), x ∈ Σ} }

and a purely second class part, given by

Second class: { {T̃φS(x) := TφS(x)−Hgl

√
g, x ∈ Σ}, {πφ(x), x ∈ Σ} }.

We will discuss the affirmation that T̃φS is indeed purely second class in the next subsec-
tion.
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4.3.1 Constraint Surface for Shape dynamics in compact closed
manifolds.

Now we show that the constraint T̃φS is equivalent to a constraint of the form φ−φ0(ΓGrav),
the form necessary for the workings of proposition 1 already anticipated in (4.12).

We have
T S(x) : Γ× T ∗(C/V)→ C∞(M), (4.22)

Since this map does not depend on πφ, we can fix πφ(x) = f(x). Then

T S(x)πφ=f(x) : Γ× C/V → C∞(M). (4.23)

where we note that in fact TφS(x) depends solely on C/V . Furthermore, everything said
here using C∞(M) as the domain can (and should) be extended to the square-integrable2

domain [29].
Consider the linear operator:

δCTφS(g0, π0, π
0
φ)|φ=0 : T0(C/V)→ C∞(M).

where TxN denotes the tangent space at x ∈ N , and, as in usual partial derivatives,
one holds the coordinates (g, π, πφ) fixed. We will omit from now on the “initial” point
(g0, π0, π

0
φ) where we take the derivative. One can explicitly check (see (B.18) in the

appendix) that the tangent space to C/V at 0, T0(C/V), is given by smooth functions of
the form [f ] := f(x) − 〈f〉, i.e. it is the linear version of the surjective ‘ ˆ ’ map (4.4),
which redundantly parametrizes the elements of C/V by elements of C∞(M).

The tangent map is given by:

δCTφS|φ=0 :=
δTφS(x)

δφ(y) |φ=0

= {TφS(x), πφ(y)}|φ=0 = ∆(x)δ(x, y)− ∆(x)

V
(4.24)

where ∆ is given by (5.10). Contraction of (4.24) with N(x) yields ∆N − 〈∆N〉. Here
we have denoted the derivative in the second coordinate, the one parametrized by φ,
by a subscript C. We note that contraction in the x variable requires us to use the
adjoint δCTφS∗|φ=0 (see (D.10)), and as this is not a self-adjoint operator the distinction
is important. Thus

(δCTφS)∗ ·N = ∆N − 〈∆N〉

If we then use (D.10), we get from

{TφS(N0), πφ(ρ)} = 〈(δCTφS) · ρ,N0〉C∞(M) + 〈TφS, δC(N0) · ρ〉C∞(M)

≈ 〈(δCTφS) · ρ,N0〉C∞(M) = 〈(δCTφS)∗ ·N0, ρ〉C∞(M) = 0 (4.25)

for all ρ ∈ T0(C/V) which means that under this inner product Im(δCTφS) is perpendicular
to N0. 3 By uniqueness, N0 generates the whole annihilator of Im(δCTφS).

Let Ker(W ) denote the annihilator of the subspace W ⊂ V . There exists an isomor-
phism between Ker(W ) and the dual to V/W [30]. Now put V = C∞(M) and W = N0.

2We assume that, for all practical purposes, we can carry on as if all our spaces were Banach. The fact
that they are not does not impose great obstacles for our approach, since we can use the constructions
of section 8 (Sobolev lemma and the such) to regularize the domains.

3In fact, we should take N to be a test function over M in the square-integrable domain and not
necessarily in C∞(M). This affects none of our arguments (see [29]).
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This, together with the fact that the space generated by N0 is a closed linear subspace
of the dual, tells us that

C∞(M)/N0 ' Im(δCTφS) (4.26)

which is what we’ll need. Thus from now on assume C∞(M)/N0 ' Im(δCTφS).
As N0 is a closed one-dimensional linear subspace of C∞(M), the tangent space to

C∞(M)/N0 is isomorphic to C∞(M)/N0 at each point. Now we construct a modification
of TφS(x) such that it has the same tangent map but its range must be such that:

T̃φS(x)πφ=f(x) : Γ× C/V → Im(δCTφS). (4.27)

As predicted, this modified map is given by T̃φS(x) = TφS(x)−Hgl

√
g, since as one can

readily check the tangent map indeed stays the same and:

〈T̃φS,N0〉 = T̃φS(N0) = TφS(N0)−Hgl = 0

where we must use the fact that we chose
∫
N0
√
gd3x = 1 (otherwise we would have a

numerical factor between the two elements of T̃φS).
For a heuristic explanation of what we are doing, in the language of linear algebra,

smearing functions can be viewed as a choice of a linear combination of the (continuously
infinite) set of constraints. It follows from (4.21) that (5.15) has a kernel: the linear
combination given by the smearing N0. We thus take a set of constraints that is linearly
independent of (4.21) given by T̃φS = TφS −Hgl

√
g.

We have not yet proven that δCT̃φS is a topological linear isomorphism. We have
shown that it is a surjective linear map, but we must still prove injectivity. We must still
show that if for some ρ0 ∈ C ' C∞(M),

〈(δCT̃φS)∗ ·N, ρ0〉C = 0 (4.28)

for all N ∈ C∞(M) then [ρ0] = 0, i.e. ρ(x) = 〈ρ〉, which would mean we have a zero

kernel of the linear map δCT̃φS.
The differential operator ∆ is invertible, possessing a Green’s function. Thus for any

function f there exists some Nf for which ∆Nf = f . Since (δCTφS)∗ ·N = ∆N − 〈∆N〉,
if (4.28) holds, we must have 〈f − 〈f〉 , ρ0〉 = 0 for any function f .

Suppose then that ρ0(y) 6= 0 for some y ∈ M . Let us take fy(x) = δ(x, y)ρ0(x) (i.e.

we take the point source of the field ρ0).4 Then fy(x)− 〈f〉y = δ(x, y)ρ(x)− ρ(y)
V

and

〈fy(x)− 〈fy〉 , ρ0〉 = ρ2
0(y)− ρ0(y) 〈ρ0〉 = 0

which means ρ0(y) = 〈ρ0〉 and thus [ρ0] = 0. By the canonical transformation properties
of Tφ, one can extend this construction to arbitrary φ. We have thus proven

Proposition 3. The linear map given by δCT̃φS(x) : T0(C/V)→ Im(δCTφS) ' C∞(M)/N0

where T̃φS(x) = TφS(x) − Hgl

√
g, is a toplinear isomorphism for all (φ, g, π) provided

πab 6≡ 0.

4We note that f is here a locally integrable function, and not a smooth one. We could have done
everything in this section appropriately in this setting (see [31] and [32] for the appropriate versions
of the theorems used), but as this would introduce too many complications to this already involved
construction we decided to leave it out.
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We have shown that it is a linear continuous bijection, and hence a topological linear
isomorphism [33]. �.

Thus not only can we form the Dirac bracket using {T̃φH(x), πφ(y)}−1, but we can

now use the implicit function theorem for Banach spaces for the function T̃φS(x)πφ=f(x) :
Γ× C/V → Im(δCTφS) ' C∞(M)/N0 to assert (with the caveat of footnote 2) that

Theorem 1. There exists a unique φ̂0 : Γ̄ → C/V, where Γ̄ is the restriction of phase
space to πab(x) 6≡ 0, such that

(T̃φS)−1(0) = {(gij, πij, φ̂0[gij, π
ij], πφ) | (gij, π

ij) ∈ ΓGrav}.

In other words, we can find the solution to T̃φS(g, π, φ, πφ) = 0 for all (g, π, πφ), πab 6= 0,
by setting φ = φ0. �.

4.3.2 Constructing the theory on the constraint surface

We now have a surface in ΓEx, defined by πφ = 0 and φ = φ0, on which T̃H = 0, and
whose intrinsic coordinates are gij, π

ij. Furthermore, the Dirac bracket on the surface
exists, and on the constraint surface we now have the symplectic structure

{·, ·}|reduced := {·, ·}ΓEx
DB = {·|φ=φ0,πφ=0, ·|φ=φ0,πφ=0}. (4.29)

Equivalently, for phase space functions independent of φ, πφ, analogously to (3.6):

{F1(x), F2(y)}ΓEx
DB |φ=φ0,πφ=0 =

{F1(x), F2(y)}+{F1(x), (φ−φ0)(x′)}{πφ(x′), F2(y)}−{F1(x), πφ(x′)}{(φ0−φ)(x′), F2(y)}
= {F1(x), F2(y)} (4.30)

where the repeated variable x′ is integrated over. As a last corollary of the use of the
Dirac bracket we have:

Corollary 1. For any phase space functional f(g, π), the transformed functional Tφ0[g,π]f(g, π)
is volume-preserving-conformally invariant (vpct-invariant).

To prove this, we must merely use (4.17):

{Tφf(y), πφ(x)}DB = 4{Tφf(y), π(x)− 〈π〉√g(x)}DB = 0 = 4{Tφ0f(y), π(x)− 〈π〉√g(x)}
(4.31)

One can immediately see from (4.29) that the first class constraints 4(π − 〈π〉√g), TφHa

and 〈TN0S〉 remain first class. Alternatively, for the diffeomorphism constraint, we can
directly observe from (4.10) that setting πφ = 0 effects TφHa → Ha, yielding the usual
diffeomorphism constraint. We thus find the total Shape Dynamics Hamiltonian

HSD = N〈Tφ0N0S〉+

∫
Σ

d3x (ρ(x)4(π(x)− 〈π〉√g) + ξa(x)Ha(x)) (4.32)

in the ADM phase space Γ with the first class constraints

〈Tφ0N0S〉 , D := 4(π − 〈π〉√g) , Ha. (4.33)
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We have thus effectively fixed the gauge N = N0 at the surface φ = φ0. We have lost
the freedom to fix the lapse, but retained the freedom to choose the conformal Lagrange
multiplier ρ.

The non-zero part of the constraint algebra is given by:

{Ha(ηa), H
b(ξb)} = Ha([~ξ, ~η]a)

{Ha(ξa), D(ρ))} = D(Lξρ) (4.34)

which substantially simplifies the algebra of constraints of gravity if compared to the
ADM constraint algebra (A.10). Now we have two subalgebras, and the commutator of
the two does not contain any structure functions.

Further fixing of the gauge

As an explicit check to see whether we indeed have the same theory, we can further gauge
fix both ADM and Shape Dynamics to a system which possesses exactly the same gauge
fixed Hamiltonian. To do this, we merely input further gauge fixings: S(x) = 0 in Shape
Dynamics and D = 0 in ADM. On the Shape Dynamics side, we have that restriction to
the gauge fixing surface implies that we are over (g, π) for which φ0(g, π) = 0. On the
GR side, we have CMC slicing, which requires that N = N0, and thus we arrive explicitly
at GR in CMC gauge from both sides and have thus verified that the trajectories of the
two theories are the same.

Closing remarks on the procedure.

Let us briefly summarize some of the key questions that might arise from our presentation
of SD. First of all, it should be noted that imposing the gauge fixing S = 0 in the shape
dynamics side will only fix a volume-preserving conformal transformation. The argument
is the following: for it to be a gauge fixing, we should be able to take any initial data
(g, π) to one that satisfies the gauge-fixing condition. We know that there exists a vpct
such that we can bring any (g, π) to one that satisfies S = 〈S〉, i.e. that brings the scalar
constraint to a constant value. But the global constraint Hgl demands that this constant
be zero. So the gauge fixing S = 0 is (in Shape Dynamics) weakly equal to the constraint
S − 〈S〉.

What we mean by this is that gauge fixing the SD constraint does not solve the entire
LY equation (2.50), but the LY equation with an inhomogeneous term. This permits the
rest of the scalar constraint to be accounted for by our global Hamiltonian, whose action
indeed can and does change the volume.

In SD, the actual gauge fixing is, analogously to π−〈π〉 = 0, S−〈S〉 = 0. The gauge
fixing S − 〈S〉 completely gauge fixes the vpct constraint, because the Dirac bracket is
invertible between these two conditions. So we can always find a unique vpct factor so
that S − 〈S〉 = 0, and this is of course also φ0(g, π). But in the gauge fixation of SD, we
get the complete fixation of the Lagrange multiplier (or the velocity of the vpct facto)
ρ = 0, due to the invertibility of the bracket.

4.3.3 Properties of N0

We now show that indeed we have the invertibility properties that we need from the
operator ∆ and that N0 is unique and such that 〈N0〉 = 1. First of all, ∆ is an elliptic,
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linear, self-adjoint second order differential operator on a compact manifold. The setting
for the analysis of its properties could not be more convenient. Ellipticity and linearity
already guarantee a fundamental solution (or Green’s function) [32], in the sense that
there exists a distribution Gy(x) such that

∆Gy(x) = δ(x, y).

However for our purposes it is not sufficient that the fundamental solution exist; it also
needs to be unique, which we required to solve for φ0 using the implicit function theorem.
Thus we need to show that for our purposes no non-zero homogeneous solution exists,
i.e., ∆N = 0⇒ N ≡ 0.

First, one should note that we require solvability of (4.18) only on the surface πφ = 0,
which reduces Q to D = π− 〈π〉√g. Now, let us rewrite the operator ∇2− 1

4
〈π〉π−R in

the form of (A.17) already using D:

∆ = ∇2 − 1

4
〈π〉2 − πabπab

g
+

1

2
〈π〉2 = ∇2 +

1

4
〈π〉2 − πabπab

g
(4.35)

Now we further split πab = σ̄ab
√
g + 1

3
gabπ using its traceless part σab = σ̄ab

√
g. Then

−π
abπab
g

= −σ̄abσ̄ab −
1

3g
π2

Substituting this back in (4.35) gives

∆ = ∇2 − 1

12
〈π〉2 − σ̄abσ̄ab. (4.36)

Thus our operator ∆ can be written as ∆ = ∇2 − f [g, π;x) where f [g, π;x) := σ̄abσ̄ab +
1
12
〈π〉2 ≥ 0.
This already implies that the only homogeneous solution ∆N = 0 is N(x) = 0 [32].

To see this in a simple way, suppose that there exists an x such that N(x) < 0. Then
since Σ is compact, it follows that N attains a minimum, let us say at x0. Then

0 < ∇2N(x0) = f(x0)N(x0) < 0,

a contradiction. The same reasoning applies for N(x) > 0. Thus we are guaranteed
not only existence but uniqueness of Green’s functions for this case. For a complete
proof taking into account the appropriate domains as square integrable functions, etc,
see Theorem 2.8 in [31]. We thus have proven

Proposition 1. If πab(x) 6≡ 0,5 the operator ∆ appearing in (4.17) has a unique Green’s
function associated with it.

Using the fact that Tφ is a canonical transformation, this also means that we can find
a unique solution away from φ = 0 whenever Tφπab(x) 6≡ 0. In its turn, this would require
that

πab(x)− gab(x)

3

√
g(x)〈π〉(1− e6φ̂(x)) = 0

5Of course, if πab = 0 in vacuum, then by the scalar constraint the scalar curvature also vanishes,
which all but trivializes the range of such static solutions.
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which upon contraction with gab and integrating yields 〈π〉 = 0, which means again
πab(x) = 0.

As stated in section 4.3, we can choose the spatial constant ∆N ′ = c′ such that
N ′(x) > 0 for every x. Suppose then that c′ < 0 (here the primes have nothing to do
with derivatives). From the above argument it follows that if N ′ were negative anywhere,
then at the minimum x0, we would have N ′(x0) < 0 and ∇2N ′ ≥ 0. Thus ∆N ′ > 0
everywhere, which would imply c′ > 0; a contradiction. Thus N ′ is non-negative. By the
linearity in N , we can now scale the constant c′ → c so that 〈N〉 = 1. We have

Proposition 2. There exists a unique constant c < 0 such that the solution ∆N = c
implies N ≥ 0 and 〈N〉 = 1.

Satisfaction of the exceptional requirements for the functioning of our mech-
anism.

We briefly pause here to call attention to the fact that had we attempted to use not
volume-preserving-conformal-transformations (vpct’s), but full conformal ones, the cor-
responding operator one ends up with instead of (5.10) is given by

(∇2 +R)N = 0

which not only does not possess the same good invertibility properties, but even when
invertible implies a frozen lapse. This fact, alluded to in the introductory section 2.2.2,
is one of the reasons why it is of such fundamental importance that we use the volume-
preserving ansatz. It allows a good definition of the theory everywhere on phase space
(except for a trivial subset) and it allows the system to evolve, i.e. time to progress.

Furthermore, for our usage of the implicit function theorem and overall workings of
the theory, we utilized many times and in diverse situations the fact that the gauge
fixing πφ is conjugate to a simple Lie transformation. These threefold requirements; i)
that it be a partial gauge fixing of S(x) (owing to the good properties of the operator
(4.36)), ii) that it still allows for time-evolution (owing to its leftover global constraint),
and iii) that it generates a symmetry (owing to the fact that indeed D generates a first
class constraint and true Lie group, see B.4) are each extremely non-trivial demands.
For example, a given gauge-fixing might leave an infinite amount of scalar constraints
unfixed, which would be an unlikely advantage in the description of gravity. Or it might
leave none, which would not leave room in the theory for time evolution. Alternatively,
it might have led to an infinite chain of constraints, leading to an inconsistent system.
Moreover, it might have been impossible to eliminate the extra variables simultaneously
with solving the second class constraints. Moreover, we might have been able to exchange
all but one of the scalar constraint with some other constraint, but this constraint could
have been such that no real gain in simplicity would have been gained, as for instance if it
was not linear in the momenta. These are the main factors that obstruct the construction
of such symmetry trading in general.

4.4 Construction of the section in T ∗Riem

In section 4.3.1 we focused our attention on the operator δCT S. There our primary
objective was to use the implicit function theorem to solve the second class constraints
and eliminate the additional variable φ. Now that we have established the properties of
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φ0 in proposition 1, we consider the whole construction in T ∗Riem. After the elimination
of the auxiliary variables (φ, πφ), what we have is that there exists a unique functional
φ0 : T ∗Riem→ C/V such that

S(Tφ0[g,π]gab, Tφ0[g,π]π
ab)

√
g

(x) =
1

V

∫
d3yS(Tφ0[g,π]gab, Tφ0[g,π]π

ab)(y)N0[Tφ0[g,π]gab, Tφ0[g,π]π
ab](y)

(4.37)
where we have established the properties of N0 in propositions 1 and 2. We now investi-
gate the slightly peripheral question of whether φ0 yields a section of a bundle.

In section 8.4.1 we shall see that T ∗Riem indeed forms a bundle under conformal
transformations as a gauge group. Furthermore, we can apply the extended version of
theorem 4 (see theorem 1.6 in [34]) to the conformal group. The extension to which
we refer also guarantees the existence of a section for C/V whenever V forms a normal
subgroup of C. Volume-preserving conformal transformations are particular instances
of conformal transformations, but they do not form a group. Since they depend on the
metric g, we only have the more primitive notion of a groupoid.6 Nonetheless, as the map
(4.4) induces the equivalence relation in C: φ1 ∼ φ2 ⇔ φ1 = aφ2, we have a quotient by the
normal subgroup (since the group is abelian) of constant functions: C/R. Since the action
of the group and the groupoid are both smooth, uniqueness and existence of φ̂0 implies
that this defines a “section” also for the volume-preserving conformal transformations.
In [35] it is shown more explicitly how one can extend the notion of a principal bundle
to the smooth action of groupoids, we will not get into the technicalities and from now
on assume we have the existence of a “section” under the volume-preserving conformal
transformations.

So is φ0[g, π] a “section”? We note that we already have existence and uniqueness
of an element of each orbit O(g,π) for each (g, π). Leaving aside the technical issue of
whether one can define a section for a groupoid (see above), we should prove that under
volume-preserving conformal transformations the “section” stays the same, i.e.:

(Tφ0[g,π]gab, Tφ0[g,π]π
ab) = (Tφ0[Tλg,Tλπ]Tλgab, Tφ0[Tλg,Tλπ]Tλπab) (4.38)

This would imply that we can see the section as a function from the quotient space
T ∗Riem/(C/V) to T ∗Riem which intersects orbits once (uniqueness) and transversely
(existence, which implies that every orbit is intercepted by the section). Furthermore,
from (4.31),

{Tφ0f(y), π(x)− 〈π〉√g(x)} = 0 (4.39)

for any phase space functional f [g, π](x), in particular for the canonical variables. Since
π(x) − 〈π〉√g(x) generate vpct’s, we indeed have (4.38). To see this immediately from
(4.39), let λ(x)t be a one-parameter family of Lagrange multipliers for the vpct symmetry.
Then

d

dt |t=0
Tφ0[Tλtg,Tλtπ]Tλtgab =

∫
d3xλ′(x){Tφ0gab(y), π(x)− 〈π〉√g(x)} = 0

where λ′(x) = d
dt |t=0

λ(x)t.

Pictorial representation.

This enables us to use the picture shown in figure 4.1.

6We have already established that the projection of C under the “hat” map (4.4) acts as a subgroup
for each g in section B.4.
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Figure 4.1: The definition of Hgl. The Hamilton vector field Hgl is defined by the value of
S[g, π] on the surface S̃ = 0: Hgl[g, π] := S[Tφ0g, Tφ0π]. We show the constraint surface
D = 0 intersecting S̃ = 0 along the gauge fixing surface and illustrate the vector flow of
Hgl[g, π] along D = 0.

This provides us with an illustration of the relation between GR to SD. Both theories
are defined by constraint surfaces on the ADM phase space. There is a subset, S̃, of S,
defined as

S̃[g, π, x) := S[g, π, x)− S(N0)[g, π]
√
g(x). (4.40)

We then have a manifold7 defined by:

S̃−1(0) = (Tφ0[g,π;x)gab(x), Tφ0[g,π;x)π
ab(x)). (4.41)

That is, for each (g, π) there is a single element in the vpct-class of (g, π) that be-
longs to S̃−1(0). It is a section of T ∗Riem under the group of vpct transformations
(it intersects once each orbit). Thus by exploring the symmetry of D we can solve
all but one linear combination of the scalar constraints, the global scalar constraint:
Hgl[g, π] = S[Tφ0g, Tφ0π].

4.4.1 Possibility of bypassing the linking theory construction

The crucial result in the intrinsic T ∗Riem view is that there exists a partial gauge fixing
(D = 4(π − 〈π〉√g) ) of the scalar constraint that is also a generator of symmetry. This

relies heavily on the fact is that one can invert the Poisson bracket {D, S̃} for a certain
linear combination of the scalar constraints: S̃. Furthermore, this gauge fixing leaves

7One could attempt to use the fact that our surface, defined by (4.37), could now also be defined
by the regular value theorem and with the aid of proposition 6. However one must remember here
that in general the rhs of (4.37) is a spatial constant that depends on the point [g, π]. So we want to
regard the inverse value of the whole real line R. One would have to use the transversality theorem
to prove that S−1(R) is a manifold. This amounts to proving that the composite map pr ◦ δ(g0,π0)S :

T(g0,π0)(T
∗Riem)→ C∞(M)/R (where we have used the abbreviation (g0, π0) = (Tφ0[g,π]gab, Tφ0[g,π]π

ab),
and pr : C∞(M)→ C∞(M)/R is the projection), is surjective and its kernel splits. We will not attempt
to prove this in this thesis, as we already have an alternative proof.
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just one independent constraint Hgl. But could we have done everything straight off in
T ∗Riem, without the introduction of the extended phase space (φ, πφ)?

Here the reader must be careful. For indeed we could have found S̃ directly from the
picture in T ∗Riem. But to findHgl we exploited the conformal transformations, eventually
finding a functional φ0 which solved for S̃ and thus yielded our global Hamiltonian Hgl.
At the end of the process, we got rid of the extra variables together with the second
class constraints, expressing everything independently of the gauge fixing function and
its conjugate (πφ and φ respectively).

We could attempt to forego the extended phase space and Linking Theory in the
construction, by just considering D as a gauge-fixing in T ∗Riem. But the way would
have to have been a little more roundabout. To follow the Dirac analysis properly, we
now make explicit the steps we would have to take, writing in parentheses the ones we
already took in the construction of SD.

Step 1: impose D(x) = 0 as a gauge-fixing in ADM (impose πφ = 0). Step 2: we
would first have to explicitly find the variable canonically conjugate to D(x), let us call it
qD (this is just φ in our case). Step 3: then we would have to find variables that Poisson
commuted with both D(x) and its canonical conjugate, qD. These would already be vpct
invariant variables (in our case these were just (g, π)). Step 4: find the purely second
class combination of the constraints with respect to D = 0. This is given by S̃. (in

our case this part is exactly analogous, ours being given by T̃φS). Step 5: Finally, show
that indeed we could solve all but one of the original scalar constraints S(x) for qD as a
function of the remaining variables (this is our φ0[g, π, x), given in Proposition 1).

As all the quantities would be expressed in terms of variables that Poisson commuted
with D(x) we would automatically have a vpct invariant theory without going into ex-
tended phase space. In the author’s opinion, this is roughly what Dirac had in mind
in [3], albeit solely from a gauge fixing point of view, i.e. not involving a “conformal
transformation” conceptual background, and also limiting the analysis to asymptotically
flat space. We will discuss this a bit further at the end of chapter 5.

Thus we come to the conclusion that without all the baggage presented in this chapter,
in particular the use of the linking theory and extended phase space, the picture presented
in figure 4.1 is of very limited value. It does not in itself present how the dynamics are
made consistent. Nonetheless it is a powerful pictorial representation of the end result.

4.5 Comparisons with earlier work

Now that we have explicitly constructed the theory of Shape Dynamics (SD) we will
present it against the backdrop of two its three main sources, leaving the comparison
with Dirac to the next chapter.

4.5.1 Comparison with earlier work: Barbour et al

In [20] Barbour et al implemented best matching with respect to volume-preserving-
conformal transformations (vpcts). By doing so they were able to derive the constraint
π − 〈π〉√g = 0 and came indeed close to arriving at the same theory we present in this
thesis (SD). The main issue that blind-sighted them was that they used the Lagragian
BSW formalism (2.55). This means they never sought to distinguish between the first-
and second-class sets of constraints, but were solely concerned with propagating D. Thus
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they indeed found the transformed version of equation 4.18, but could not possibly have
found our global scalar constraint (4.32). Furthermore, the Lagrangian BSW formalism
gives the scalar constraint as an identity (see section 2.3) so that there is no place for the
trading of constraints we have in Shape Dynamics. There is also some confusion over the
fact that they attempt to interpret the transformed constraint TφS(x) = 0 as an equation
for φ. Even if we are willing to grant this, more importantly the extra variables (φ, πφ)
are never seen as an extension of the phase space, so that the initial degrees of freedom
are not extended and no extra constraint gained. The solvability of equation TφS(x) = 0,
which is the LY equation, is then interpreted as defining a physical scale for each metric.
Of course if this is the case there is no room for admitting scale-invariance, as in SD.

In summary, [20] constituted a very important initial step towards SD, but fell short
of finding a theory that contained vpct-invariance and a global scalar constraint.

4.5.2 Comparison with earlier work: York

We have already stressed in section 2.2.2 the fact that, although it did not arise from
canonical analysis of any sort, the York conformal method must be physically conceived
as just that: a method for solving the initial value problem of general relativity. From the
purely mathematical point of view, the form of the defining equation for Shape Dynamics
is not too far removed from the Lichnerowicz-York equation (2.50). The main difference
in the form of the equations is that our principal result, contained in Theorem 1, requires
the solution of a non-homogeneous version of (2.50), i.e. containing a 0-th order term in
φ. It is not yet clear whether we can apply the same arguments presented in [16] to such
an equation, which is why we resort to the implicit function theorem. We furthermore
remark that it was not possible in the case of the paper [16] to apply such methods to the
solvability of (2.50) for two main reasons. First, the LY equation (2.50) in [16] did not
arise from a gauge-fixing. This gauge fixing has to satisfy the fundamental requirement
of also being a symmetry generator for the implicit function theorem to aid us in solving
for the second class constraint. Secondly, even if one did try to use the generator of pure
conformal transformations (without the volume-preserving condition of Shape Dynamics),
the corresponding version of the linear operator given in (4.36) would not be invertible
everywhere on phase space.
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Chapter 5

Trading GR for SD: asymptotically
flat case

Let us now apply proposition 1 and the construction leading to proposition 2 to General
Relativity to extend the results of section 4.3 to asymptotically flat Cauchy surfaces. One
of the leading differences is that it now makes no sense to talk about “volume-preserving”
as the volume is infinite. To recall, the volume-preserving condition is what allowed us to
find the purely second class part of the scalar constraint and invert the Poisson bracket
formed between itself and the gauge fixing. A similar role will be played by an asymptotic
fall-off condition on the conformal factor, as we will see.

5.1 Constructing the Linking Theory

To construct the linking gauge theory on a Cauchy-surface Σ = R3, we must first properly
define the appropriate setting. We fix a Euclidean global chart (with radial coordinate
r) and impose asymptotically flat boundary conditions. We implement this through the
fall-off conditions of the 3-metric gab, its conjugate momentum density πab, the lapse N
and shift Na in the limit r →∞:

gab → δab +O(r−1), πab → O(r−2),
N → 1 +O(r−1), Na → O(r−1).

(5.1)

We call C the space of functions on Σ with the fall-off rate ascribed to N . We should
note that these conditions are not of utmost importance in what follows, it is only the
fall-off conditions on φ that we ascribe below that is of relevance.

We start with the equivalent of (3.8) and denote the usual ADM constraints as

S =
πabπab− 1

2
π2

√
g

−√gR
Ha = ∇bπ

ab.
(5.2)

As before, we now embed the original system in an extended phase space that includes
the auxiliary variables (φ, πφ). In accordance with the boundary conditions we assume
the scalar φ falls off as

e4φ → 1 +O(r−1) (5.3)

for r → ∞ and that its conjugate momentum density πφ falls off sufficiently fast at
r → ∞. We call the space of such φ Cr. The nontrivial canonical Poisson brackets are
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still given by (4.2). Again have an extended phase space with (φ, πφ), with the additional
constraint (3.9) πφ ≈ 0 determined by our embedding.

Following (3.11), we construct the generating function

Fφ :=

∫
Σ

d3x
(
gab(x)e4φ(x)Πab(x) + φ(x)Πφ

)
, (5.4)

where capitals denote the transformed variables. Note the lack of hatted variables in this
case. We find the canonical transformation analogous to (3.12):

gab(x) → Tφgab(x) := e4φ(x)gab(x)
πab(x) → Tφπ

ab(x) := e−4φ(x)πab(x)
φ(x) → Tφφ(x) := φ(x)
πφ(x) → Tφπφ(x) := πφ(x)− 4π(x)

(5.5)

and again subsequently use these transformed variables to construct three sets of con-
straints: the transformed scalar and diffeomorphism constraint of GR as well as the
transform of πφ,

Q = πφ − 4π. (5.6)

Using a scalar Lagrange-multiplier ρ, which is required to fall off as O(r−1) as r →∞,
we define the total Hamiltonian1

HTotal =

∫
d3x[N(x)TφS(x) + ξa(x)TφHa(x) + ρ(x)Q(x)] (5.7)

This completely defines the linking TL as contained in section 3.1.2 in an analogous
fashion to the compact closed case treated in the previous section (see (4.12)).

5.2 Recovering General Relativity in the asymptoti-

cally flat.

Again the only nonvanishing Poisson-bracket of the gauge fixing condition φ(x) = 0 with
the constraints of the linking theory is

{φ(x), Q(ρ)} = ρ(x), (5.8)

and everything follows in the same way: we can follow through from (4.12), and, in the
language of Proposition 1, arrive at ρ ≡ 0 and fi ≈ 0 equivalent to S(x) ≈ 0. We have
lost the freedom to fix ρ, but retained the freedom to fix the lapse.

5.3 Recovering Shape Dynamics in the asymptoti-

cally flat case

Our main aim in this section will be to prove that part of the scalar constraints can again
be written again in the form φ− φ0(g, π) ≈ 0 on the gauge-fixing surface πφ ≡ 0.

1We should for general purposes add a regularizing boundary term to the total Hamiltonian, as it
diverges in the present form. However since this does not impinge on either the equations of motion nor
on the constraints, we omit it in order to avoid cluttering the paper.
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The only weakly non-vanishing Poisson-bracket of the gauge-fixing condition πφ(x) =
0 with the constraints of the linking theory is {TφS(N), πφ(x)} = 4Tφ{S(N), π(x)}, which
leads to

{S(N), π(x)} = 2(∇2N −NR)
√
g − 3

2
NS ≈ 2

√
g(∇2 −R)N (5.9)

The differential operator
∆ = ∇2 −R (5.10)

is an elliptic, second order, self-adjoint operator, invertible for the given boundary condi-
tions. So for the boundary conditions given in (5.1), we have the unique kernel

N0[g, π] 6≡ 0 (5.11)

Thus, by the canonical transformation properties, we have a unique solution for {TφS[N ], πφ(x)} =
0, TφN0.

Again, as in (4.21), we denote the one linear combination, among the infinitely many
TφS(x) constraints, that remains first class with respect to all the other constraints by

Hgl := TφS(N0). (5.12)

Again, we separate the constraints into a first class part, given by

First class: { Hgl, {Q(x), x ∈ Σ}, {TφHa(x), x ∈ Σ} }

and a purely second class part, given by

Second class: { {T̃φS(x) := TφS(x)−Hgl

√
g, x ∈ Σ}, {πφ(x), x ∈ Σ} }.

5.3.1 Constraint Surface for Shape Dynamics

Now we again show that, even for the asymptotically flat case, the constraint T̃φS is
equivalent to a constraint of the form φ− φ0(ΓGrav).

We have that
TφS(x) : Γ× T ∗(Cr)→ C∞(M), (5.13)

Since these equations do not depend on πφ, we can fix πφ(x) = f(x). Then

TφS(x)πφ=f(x) : Γ× Cr → C∞(M). (5.14)

Thus
δCTφS|φ=0 : Cr → C∞(M).

We thus take the set of constraints that is linearly independent of (4.21), which is given

by T̃φS. Clearly T̃φS(N0) = 0, which means indeed it lives in the dual space of the
quotient of C by N0. Effectively, we must subtract from any N ∈ C the function N0 given
by (5.11).

Consider the linear self adjoint elliptic operator we presently have:

δCTφS|φ=0 :=
δTφS(x)

δφ(y) |φ=0

= {TφH(x), πφ(y)}|φ=0 = ∆(x)δ(x, y) (5.15)

If we then use (D.10), we again have

{TφS(N), πφ(ρ)} ≈ 〈(δCTφS) · ρ,N〉 = 〈(δCTφS)∗ ·N, ρ〉 (5.16)
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Then from the Fredholm alternative (Theorem 2) and self-adjointness

C∞(M) ' Im(δCTφS)⊕Ker(δCTφS)∗ = Im(δCTφS)⊕Ker(δCTφS) (5.17)

The splitting is then given by

Im(δCTφS)⊕Ker(δCTφS) = Im(δCTφS)⊕N0 (5.18)

Thus the appropriate versions of both Proposition 3 and Theorem 1 work in the
asymptotically flat case. It is important that there is a non-zero homogeneous solution to
the ∆ operator, so we are left with a first class component of TφS. This is the reason for
using not full conformal transformations in the compact case, but only those that preserve
the total spatial volume. The analogous restriction arises from the fall-off conditions in
the present case.

The construction of the theory on the constraint surface and the further fixing of
the gauge therefore proceeds in the same manner as was shown in the constant mean
curvature case. Of course instead of having constant mean curvature slicing, we now
have the maximal slicing π = 0.

5.3.2 Comparison with Dirac’s work

As mentioned already in section 2.2.3, and followed up in section 4.4, in 1958 Dirac already
anticipated much of the constructions present in shape dynamics in the asymptotically
flat case. We pick up from the end of section 2.2.3. After setting π(x) = 0 as a gauge-
fixing condition, he noticed that it will be second class only with respect to the scalar
constraint S(x). Then he finds that there exists a variable canonically conjugate to π(x),
namely ln(g1/3), where (g1/3) is a tensor density of weight 2/3 (his equation 28). He
then changed variables to consider the metrics with unit determinant g̃rs (a coordinate-
dependent statement), and the tensor density of weight 2/3: π̃rs := (πrs − 1

3
πgrs)g1/3,

both of which have zero Poisson bracket with π(x) and its conjugate variable. Then he
assumed that one can solve the scalar constraint by fixing the value of the variable ln(g1/3)
as a function of the tilded variables. After one does this, one has completely eliminated
π(x), its conjugate and the scalar constraint. Although Dirac never mentions it, since
the remaining variables all commute with π(x) we have a conformally invariant theory.
Of course, as we are taking Poisson brackets between tensor densities whose density does
not add up to 1, these statements are all coordinate-dependent, which is why he later
mentions that one would have to also fix the spatial coordinates.

This indeed bears a strong resemblance to the work presented in this section, and
indeed with the method we use for the Hamilton–Jacobi equation (section 7). Even if we
disregard the spatial coordinate-dependence of the procedure Dirac outlined, there are
still several disparities with what we did. One, as we mentioned at the end of section 4.4,
is that Dirac heuristically went through the entire procedure from a gauge fixing point of
view, and not as a symmetry trading, one of the main selling points of SD which he never
considered or mentioned. Furthermore, Dirac falls into a bit of contradiction, as he retains
a non-zero global (which he calls “main”) Hamiltonian (his equation 32). But without
boundary considerations (which he did not seem to have for these particular equations),
solving the scalar constraint (his equation 30) would set the “main” Hamiltonian (his
equation 17) also to zero. Lastly, of course, he never showed whether one can indeed
solve the scalar constraint in terms of the variable canonically conjugate to π(x) (the
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specific case of (2.51)). Had he done so, we would have also anticipated the work of York
et al [16] (see section 2.2.2).

Concluding, although there are several enticing hints and interesting directions, that
original paper falls reasonably short of actually defining Shape Dynamics in the asymp-
totically flat case.

5.4 Lagrangian Picture

Let us consider the Lagrangian of the linking gauge theory in an attempt to relate the
local degrees of Shape Dynamics with those of General Relativity. The local degrees
of freedom of standard General Relativity are given by the ADM-decomposition of a
4-metric, i.e. a 3-metric, shift vector field and lapse field, while shape dynamics is a
local theory of a 3-metric, a shift vector field, the conformal field φ and the conformal
Lagrange-multiplier ρ. While the 3-metric and shift vector field are naturally identified,
one needs the Euler–Lagrange equations to investigate further.

Using D(ξ) =
∫
d3xHa(x)ξa(x), C(ρ) =

∫
d3xQ(x)ρ(x) and the supermetric Gabcd =

gacgbd − 1
2
gabgcd we can write the action for the linking theory in canonical form as

S =
∫
dt
(
d3x

(
ġabπ

ab + φ̇πφ

)
− (TφS[N ] +D[ξ] + C[ρ])

)
=

∫
dtd3x

(
1

4N
Gabcd(ġab − Lξgab − ρgab)(ġcd − Lξgcd − ρgcd) +NTφR

)
,

(5.19)

where we used the equations of motion

ġab = 2NπcdGabcd + Lξgab + ρgab
φ̇ = −ρ− Lξφ

(5.20)

to eliminate the momenta. Coming purely from the Lagrangian one could now think
that it would be possible to find an equation that relates the lapse and the conformal
Lagrange multiplier. This basically would mean we could relate the local speed of time to
local speed of scale. To see that this is not possible, we consider the general construction
principle for linking theories as explained in section 3.1.2. We start with the Gauss-
Codazzi split of the Einstein-Hilbert action

S =

∫
dtd3x

√
|g|
(

1

4N
(ġab − (Lξg)ab)G

abcd (ġcd − (Lξg)cd) +NR[g]

)
(5.21)

and use the transfromation gab(x) → Tφgab(x) := e4φ(x)gab(x), which again yields the
action for the linking theory, i.e. the second line of (5.19), with −ρ replaced by φ̇ as it
should be

S =

∫
dtd3x

(
1

4N
Gabcd(ġab − Lξgab + φ̇gab)(ġcd − Lξgcd + φ̇gcd) +NTφR

)
. (5.22)

It is quite easy to show that the constraint Q comes out as a primary constraint from the
Legendre transform of this Lagrangian, as it was to be expected from section 3.1.2. How-
ever, there is no relationship possible between the Lagrange multiplier ρ of the conformal
constraint and the lapse N , neither in the linking theory (where both Lagrange multipliers
are free), nor in Shape Dynamics (where the lapse is fixed but ρ is free). One could now
argue that one can write a relationship between N and φ, φ̇ by imposing the constraint
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πφ = 0. But this choice, as we showed in the previous section, fixes φ = φ0, φ̇ = φ̇0. We
thus find for this case that the Lagrangian for Shape Dynamics is written as the second
line of equation (5.19) with φ = φ0 and −ρ = φ̇0, which admits no dynamical relation
anymore.
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Chapter 6

Causal Structure and coupling to
different fields

One of the outstanding features of Shape Dynamics (SD), is that it contain one single
global Hamiltonian constraint which generates evolution. As this theory no longer pos-
sesses many fingered time, or Lorentz invariance for that matter, it becomes a crucial
concern of the program to establish its causal structure. The natural way to do this,
which is what we pursue in this section,is to study propagation of a scalar field.

6.1 General criteria for coupling.

When we try to couple different fields to gravity, we will have to face basically one
question: how does one scale fields? What exponent shall we choose in ψ → enφ̂ψ? This
is an important issue because if the scaling is not correct we could encounter two difficult
obstructions.

The first obstruction is that if we are dealing with a field that possesses some kind
of gauge symmetry it might not be possible to find a constraint Q, as in (4.7), that is
first class with respect to the gauge constraint. The second is that the conserved charge
(which we call D) implicit inside Q that defines the foliation might depend on the field.
In this case, there might be an even worse consequence if the field possesses some sort of
gauge symmetry (like electromagnetism). For then the charge could turn out to depend
on the gauge potential. This could be the case even if we can find a field-dependent
D that is first class with respect to the gauge generator of the field. Indeed with any
other choice of scaling than the one chosen in the text, this is what happens with the
electromagnetic field, where the generator of the gauge symmetry is the Gauss constraint.
We will not show it, but it is possible to make a scaling choice different from the one we
make in the following section, but still such that the Gauss constraint is propagated. But
what happens then is that the charge is U(1) gauge dependent.

So any of the couplings that we choose should pass these two hurdles. As it turns out,
the solution exists only when we require the fields to have trivial scaling with respect to
the conformal factor, ψ → ψ.

6.1.1 Coupling to the scalar field.

The most natural way to approach the coupling of a scalar field is not to try to develop
it directly in SD, but to make use of the linking theory to facilitate its introduction. We

65



shall concentrate on the case of the closed spatial manifold without boundary.
Let us define the fields we shall be working with. The usual Hamiltonian density for

a scalar field ψ is given by

Hψ =
π2
ψ√
g

+ gab∇aψ∇ψb
√
g (6.1)

where πψ is the momentum conjugate to the scalar field. The original gravitational
constraints amended by the constraints arising from the coupling to the scalar field can
be written as

S =
πabπab− 1

2
π2+π2

ψ√
g

−√g(R− gab∇aψ∇ψb)
Ha(ξa) =

∫
d3x(gabLξπab + ψLξπψ)

(6.2)

where for ease of manipulation we wrote the smeared version of the diffeomorphism
constraint.

We now embed the original system in an extended phase space including the auxiliary
variables (φ̂, πφ̂) in the same way. The new nontrivial canonical Poisson bracket is

{ψ(x), πψ(y)} = δ(x, y). (6.3)

The extended phase space for these fields is now:

(gij, π
ij, ψ, πψ, φ, πφ) ∈ ΓEx := ΓGrav × ΓScalar × ΓConf

with the additional constraint :
πφ ≈ 0 (6.4)

We construct the generating function

Fφ :=

∫
Σ

d3x(gab(x)e4φ̂(x)Πab(x) + φΠφ + ψΠψ) (6.5)

and find the previous canonical transformations and two new ones:

ψ(x) → Tφψ(x) = ψ(x)
πψ(x) → Tφπψ(x) := Πψ = πψ

(6.6)

We again use the transformed variables to construct three sets of constraints: the trans-
formed scalar- and diffeomorphism-constraint of GR as well as the transform of πφ,

TφS; TφHa; Q := πφ − 4(π − 〈π〉√g) (6.7)

It can again be shown that the Q constraint restricts the functions in ΓEx to be in a one
to one relation with the functions on the embedding of ΓGrav × ΓScalar independent of πφ
(equivalently Q holds on the image of Tφ as applied to functions dependent solely on the
original phase space coordinates). The fact that

TφHa(ξa) ≈
∫
d3x(gabLξπab + ψLξπψ + φLξπφ) (6.8)

can also be explicitly computed using Q. We will refrain from doing these calculations
as they do not differ from the vacuum case.
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The linking theory gravitational Hamiltonian is:

HTotal =

∫
d3x[N(x)TφS(x) + ξa(x)TφHa(x) + ρ(x)Q(x)] (6.9)

Now we use the gauge fixing πφ = 0, and find that it weakly commutes with all constraints
except for TφS. We get from equation (A.21), the modification of the ∆ operator (5.10):

∆scalar = (∇2 − π〈π〉
4
√
g
−R + gab∇aψ∇bψ) (6.10)

To show that this has the desired properties, we must again show that the linear term
−π〈π〉

4
√
g
−R+ gab∇aψ∇bψ is non-positive. To do so, we use the scalar constraint to get the

equation in the form of (A.17):

∆scalar = −
Gabcdπ

abπcd − π2
ψ√

g
− 1

4
π 〈π〉+

√
g∇2 (6.11)

which allows us to use the same decomposition as in (4.36). Since the extra term −π2
ψ is

negative, we still have uniqueness and existence of the solution N0[g, π, πψ].

We then define the gauge-sfixed part of TφS as T̃φS = TφS − TφS(N0). It can be

shown that T̃φS can be written as φ−φ0(g, π, ψ, πψ) in the same way as was done in (1).
This constraint exhausts the gauge fixing πφ = 0 (they have invertible Poisson bracket),
and as second class constraint can be set strongly to zero alongside πφ to eliminate the
extra variables and allow us to use the usual Poisson bracket instead of the Dirac ones.

The two outstanding features of the coupling are that the constraint Q does not
depend on the scalar field ψ and that one can still uniquely solve the lapse fixing equation
for a functionalN0[g, π, πψ] such that 〈N0〉 = 1. We thus have well defined shape dynamics
coupled to a scalar field given by the first class constraints:

〈Tφ0SN0〉; {Ha(x), x ∈ Σ}; {D(x) := 4(π(x)− 〈π〉√g(x)), x ∈ Σ} (6.12)

where we have used that with the reduction TφHa → Ha.

Adding a cosmological constant

We now show that our proof only works for a certain range of the cosmological constant.
If the new (modified) scalar constraint is given by adding Λ

√
g, it is trivial to see that this

will contribute with a term 3
2
ΛN
√
g to the Poisson bracket {S(N), π}. Thus to complete

the −3
2
S(x) term, we must add and subtract 3Λ

√
g getting the modified version of (5.10):

∆Λ = (∇2 − π〈π〉
4
√
g
−R +

3

2
Λ) (6.13)

But if we now use the scalar constraint to get the equation in the form of (A.17), we
obtain:

∆Λ = −Gabcdπ
abπcd

√
g

− 1

4
π 〈π〉+

√
g(

Λ

2
+∇2) (6.14)

Using the same techniques as before (section 4.3.3), we only have guaranteed uniqueness
and existence for Λ ≤ 2σ̄abσ̄ab + 1

6
〈π〉2. We note that for asymptotic de Sitter, Λ = 3 ≤

6 = 2σ̄abσ̄ab + 1
6
〈π〉2. It is still interesting that such a bound exists. Adding a massive

potential term to the scalar field in the previous section, of the form ψ2√g, puts the
same bound on the density of such a field. The set of conditions in which a field initially
respecting this bound will evolve to one that does not is still under study.
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6.1.2 Coupling to the electromagnetic field.

In coupling the electromagnetic constraints we have one more ingredient than in the
scalar field case. Namely, now we must also remember to include the Gauss constraint.

The Hamiltonian density for electromagnetism is

HEM = −A[a,b]A[c,d](x)gac(x)gbd(x)
√
g(x) +

Ea(x)Eb(x)gab(x)
√
g

(x) (6.15)

where Ea is the vector density canonically conjugate to Aa (and not a vector field). The
constraints are

S =
πabπab− 1

2
π2

√
g

−√g(R +HEM)

Ha(ξa) =
∫
d3x(gabLξπab + AaLξEa)

G = ∇aĒ
a

(6.16)

where Ēa√g = Ea defines the electric vector field Ēa. We then replace the last equation
of (6.3) by

{Aa(x), Ec(y)} = δcaδ(x, y)

The generating functional is

Fφ :=

∫
Σ

d3x(gab(x)e4φ̂(x)Πab(x) + φΠφ + AaEa), (6.17)

The new transformations are

Aa(x) → TφAa(x) = Aa(x)
Ea(x) → TφEa(x) := Ea(x) = Ea(x)

(6.18)

The new constraints are

〈TφSN0〉 ; {TφHa(x), x ∈ Σ} ; {D(x) := 4(π(x)−〈π〉√g(x)), x ∈ Σ} ; {e−6φ̂(x)G(x), x ∈ Σ}
(6.19)

Here we used

∇aĒ
a =

1
√
g
∂a
√
gĒa =

1
√
g
∂aE

a

Now, we reproduce (4.36) for electromagnetism. We get from equation (A.24), the
modified ∆ operator of (5.10):

∆EM = (∇2 − π〈π〉
4
√
g
−R +

HEM

2
√
g

) (6.20)

To show that this has the desired properties, we must again show that the linear term
−π〈π〉

4
√
g
−R+ HEM

2
√
g

is non-positive. To do so, we use the scalar constraint to get the equation

in the form of (A.17):

2(−Gabcdπ
abπcd

√
g

− 1

2
HEM −

1

4
π 〈π〉+

√
g∇2) (6.21)

which allows us to use the same decomposition as in (4.36). Since the extra term −1
2
HEM

is negative, we still have uniqueness and existence of the solution N0[g, π, A,E].
In the same way as with the scalar field, we now have well defined shape dynamics

coupled to vacuum electromagnetism, given by the first class constraints:

〈Tφ0SN0〉; {Ha(x), x ∈ Σ}; {D(x) := 4(π(x)− 〈π〉√g(x)), x ∈ Σ}; {G(x), x ∈ Σ}
(6.22)
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6.2 Emergence of the causal structure.

General Relativity is a theory of the spacetime metric, but the physical interpretation of
this metric arises through a clock and rod model. Terms like light-cone put the operational
meaning of geometry to the forefront. Shape Dynamics does not immediately provide a
spacetime metric, but a spacetime interpretation of Shape Dynamics comes from a clock
and rod model in the same way as in General Relativity. The simplest one of these is a
multiplet of free scalar fields, which we will consider in this section. For this we assume
that the field strength ψi(x, t) of the i components of a scalar multiplet and conjugate
momentum density πiψ(x, t) can be prepared at every point x ∈ Σ and initial time t, and
that both are measurable at later times. Moreover, we assume that the fields can be
prepared as test fields, i.e. the field strength and momentum density is small enough, so
that the back-reaction on gravity can be neglected. To recover the spacetime metric at
a point (x0, t0) we first consider the equations of motion for test fields with Hamiltonian
(6.1):

Hψ =
π2
ψ√
g

+ gab∇aψ∇ψb
√
g,

which are:
{S(N), ψ} = 2

2Nπψ√
g

{S(N), πψ} =
√
ggab∇a∇bψ

. (6.23)

We now prepare the first six components of the scalar multiplet around a given point
xi0 = 0 (in some chart) as

ψ(ab)(x) = ψ(ab)(x0) + δiaδ
j
bxixj +O(x3) (6.24)

This determines through (6.23) the metric at point x0 up to
√
g. The initial velocity of

the field is prepared such that
ψ̇(x0) = 1 (6.25)

which translates into πψ =
√
g and thus we get from (6.23) the lapse N(x0). We thus can

recover the ADM-decomposition of the metric by inverting this system for the components
of the ADM metric.

6.2.1 Testing different actions with the reconstruction of the
metric.

The shape dynamics Hamiltonian, given byHgl, is a complicated beast, given implicitly by
an inverse elliptic operator. Suppose however that we would like, from first principles, to
come up with a Hamiltonian that still obeys the symmetries of SD and that furthermore
matches general relativity to some given approximation, what would be a reasonable
form? In answer to this question, let us once again consider the smeared form of the
scalar constraint: ∫

d3xN

(
πabπab − 1

2
π2

√
g

−√g(R− 2Λ)

)
(6.26)

The most straightforward attempt to make something that is volume-preserving-conformally
invariant out of this is to have a gauge fixing: gab 7→ eλ[g,x)gab where λ : Riem → C/V
is a section of the fiber bundle Riem with gauge group C/V . The most natural one, for
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which the gauge fixing properties are known to work is the so called Yamabe gauge [31].
For this gauge, the scalar curvature is a constant:

R(eλ[g,x)g)(x) = R0 (6.27)

To make it diffeomorphism invariant, we integrate over each term with the constant
smearing N = 1. Since our gauge freedom does not involve the volume, in the end we get
the following Hamiltonian, separated by the powers of volume involved in the conformal
weight of each term:

H3 :=

(
2Λ− 3

2
〈π〉2

)
−
〈
R[e4λ[g,x)g]

〉
V 2/3

+
1

V 2

〈
σ̄abσ̄ab
e6λ[g,x)g

〉
(6.28)

where σ̄ab = (V )
2
3
(
πab − 1

3
〈π〉 gab√g

)
is the traceless part of πab, and λ[g, x) is the

Yamabe functional, chosen so that we keep vpct invariance of each term. There are
of course other choices of vpct invariant actions. Interestingly, upon making a formal
volume expansion of the SD Hamiltonian we get H3 as the first three terms appearing
(see section 7), which is why we labeled this Hamiltonian as H3. This guarantees that at
least to the allowed order in volume H3 agrees dynamically with general relativity.

In the same way, we can use the construction principle for the Hamiltonian of the
gravitational field coupled to a scalar field presented in the previous section. For an
interesting comparison with general relativity, we can now use the reconstruction of space-
time presented in section 6.2, replacing Hgl with H3.
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Chapter 7

Volume expansions and
Hamilton-Jacobi approach.

In this section, we give an explicit perturbative construction of SD in a large-volume
expansion. This was our first attempt at an approximation scheme to the global Hamil-
tonian of SD. More fruitful schemes are being carried out at present, but will not be
contained in this thesis.

The comparison with earlier work in the classical HJ approach to GR [36, 27] brings
to light at least one great practical advantage of SD over GR: the ability to implement
all local constraints of SD, as in SD we are able to work out all local degrees of freedom
due to the linearity in the momenta of the constraints. Remarkably, this construction
provides a rigorous classical correspondence between gravity at very large volumes and
conformal field theory (CFT).

The SD Hamiltonian can be explicitly constructed by solving an elliptic differential
equation whose coefficients are local phase space functions. The nonlocality of the solution
of this differential equation introduces nonlocality into SD. However, we will show that,
with some caveats, it is possible to construct explicit solutions in a large volume expansion
at least to third order.

This analysis may be of interest for the semiclassical dS/CFT-correspondence. The
AdS/CFT-correspondence [37, 38], which relates the asymptotic wavefunction of quantum
gravity in the bulk to the partition function of a CFT on the boundary, has generated
an incredible amount of interest. The correspondence applies strictly to special limits of
Type IIB string theory and N = 4 super Yang–Mills theory, but has lately been cast
as an example of a more general gauge/gravity duality. In rough terms, the AdS/CFT
dictionary relates radial evolution in AdS space with renormalization group flow of a
conformal field theory on the boundary.

The results of this section can be tentatively interpreted in terms of the correspon-
dence. As it stands however, the connection is not direct and we will refrain from drawing
too many parallels. Heuristically, by considering a CMC trajectory that approaches a ho-
mogeneous spacetime at large volume so that the spatial volume becomes an asymptotic
clock, the correspondence would arise from interpreting “volume time” as the “Renor-
malization Group (RG) time” of an Euclidean CFT partition function. The advantage
of SD over GR in this setting is the following: in GR, the implementation of all local
constraints is complicated by the nonlinearity of the constraints [36]; whereas, in SD,
one can determine the local physical degrees of freedom because the local constraints are
linear in the momenta.
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7.1 A practical way to calculate the global Hamilto-

nian.

The defining characteristic of our global Hamiltonian is the non-local functional φ0, given
by Proposition 1. A more pragmatic approach to calculating the global Hamiltonian
together with the functional φ0 is to use equation (4.37), which we reproduce here for
convenience:

S(Tφ0[g,π]gab, Tφ0[g,π]π
ab)

√
g

(x) =
1

V

∫
d3yS(Tφ0[g,π]gab, Tφ0[g,π]π

ab)(y)N0[Tφ0[g,π]gab, Tφ0[g,π]π
ab](y).

Then our aim is basically to simultaneously solve the two equations. We assume a priori
that there exists a unique solution (see theorem 1):

TφS√
g

(x) = Hgl (7.1)〈
e6φ
〉

= 1 (7.2)

for φ and Hgl.

Proposition 1 allows us to assume that there exists a φ such that (7.1) implies
TφS√
g

is

a spatial constant. Thus we can take the mean without further consequences:
〈
Tφ S√

g

〉
=

TφS√
g

= Hgl. This will be our main tool in calculating the effective global Hamiltonian.

Let us rewrite the conformally transformed scalar constraint (4.8) with a slightly more
convenient notation here:

TφS√
g

=
1

gΩ12

(
πabπab −

π2

2
− 〈π〉

6
(1− Ω6)2g +

〈π〉
3
π(1− Ω6)

√
g

)
+ 2Λ− R

Ω4
+ 8
∇2Ω

Ω5

(7.3)
where Ω = eφ eliminates the divergence squared term from (4.8).

Before going on, we will consider a slightly different SD Hamiltonian, where the dif-
ference is however “pure gauge”. We do this as follows: as

TφS√
g

is first-class wrt πφ −D,

where D = 4(π − 〈π〉√g), we can choose a different basis of first class constraints made
up of

TφS ′(x) := TφS(x)− f [g, π, φ, πφ;x)(πφ −D)(x) , and πφ(x)−D(x) (7.4)

We can check that if we Poisson commute

{TφS ′, πφ} ≈ {TφS, πφ} (7.5)

which thus implies we can follow through the proof of Proposition 1 by merely substituting
TφS by TφS ′ wherever it appears.

Thus by setting πφ strongly to zero, we see that instead of using (7.3) to solve (7.1)
we can use

TφS ′√
g

=
1

gΩ12
σabσab −

〈π〉2

6
+ 2Λ− R

Ω4
+ 8
∇2Ω

Ω5
≈ 0 (7.6)

In the above expression, we have defined the traceless momenta σab as

σab = πab − 1

3
〈π〉 gab√g. (7.7)
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For convenience we will also define:

P =
2

3
〈π〉 . (7.8)

From now on, we will use
TφS′√
g

instead of
TφS√
g

but drop the prime for convenience.

The last preparatory result is that, assuming again that a unique solution exists
(Theorem 1), we can exploit the conformal invariance and thus go to the Yamabe gauge
(see section E.0.7). This relies on the result that all closed manifolds are conformally
constant curvature. For this, one needs to show that a constant R0 can be found such
that

R0 = R(e4λ̂[g,x)g) (7.9)

for some non–local functional λ̂[g, x) of g. The restriction
〈
e6λ̂
〉

= 1 selects a unique

value of R0 and determines the metric representative (up to a diffemomorphism).

7.2 Large volume expansion

To perform this expansion we write the SD Hamiltonian as a power series in V −2/3, where
V denotes the total spatial volume. To expand Hgl in powers of V −2/3, the explicit V
dependence of Hgl must be isolated. This can be done using the change of variables
(gab; π

ab)→ (V, ḡab;P, σ̄
ab) given by

ḡab =

(
V

V0

)− 2
3

gab, V =

∫
d3x
√
g, (7.10)

σ̄ab =

(
V

V0

) 2
3
(
πab − 1

3
〈π〉 gab√g

)
, P =

2

3
〈π〉 . (7.11)

where V0 =
∫
d3x
√
ḡ is a fixed reference volume. One can easily verify that V and

P , defined in (7.8), are canonically conjugate: {V, P} = 1. Furthermore {P, ḡab} ={
P, σ̄ab

}
= 0, so that the barred variables are independent of V (as they were designed

to be). Note that ḡab and σ̄ab are not canonically conjugate. Exploiting the fact that
the unique solution for the conformal factor implies we can use vpct invariance, we will
consider all the variables to be taken in the Yamabe gauge (E.2) from now on.

Then Hgl is found by simultaneously solving the equations

H0
gl =

(
2Λ− 3

8
P 2

)
+

(
8∇̄2

0 − R̄0

)
Ω

(V/V0)2/3Ω5
− σ̄abσ̄ab

(V/V0)2Ω12ḡ0

(7.12)〈
Ω6
〉

= 1, (7.13)

where barred quantities are calculated using ḡ0
ab and the (super)subscript 0 in this section

denotes the Yamabe gauge.
The large V expansion is

Hgl =
∞∑
n=0

(
V

V0

)−2n/3

H(n), Ω6 =
∞∑
n=0

(
V

V0

)−2n/3

ω(n). (7.14)

The restriction (7.13) is trivially solved by
〈
ω(n)

〉
= 0 for n 6= 0 and

〈
ω(0)

〉
= 1. We can

solve for the H(n)’s by inserting the expansion, taking the mean, and using the fact that
R̄0 is constant.
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The complete solution up to order V −2is calculated in section C.2. It is

H0
gl = 2Λ− 3

8
P 2 − R0

V 2/3
+

1

V 2

〈
σ̄abσ̄ab
ḡ0

〉
+O((V/V0)−8/3) . (7.15)

A couple of comments are in order. First, we note that each term in the expansion is
diffeomorphism invariant but vpct gauge dependent. Thus we conformally covariantize
it, so that it coincides with the above equation over the Yamabe section. We get:

Hgl = 2Λ− 3

8
P 2 − R[e4λ[g]gab]

V 2/3
+

1

V 2

〈
σ̄abσ̄ab
ē12λ[g]g

〉
+O((V/V0)−8/3) . (7.16)

Second, note that to first order in V the evolution generates just global conformal trans-
formations. This does not mean of course that at asymptotic large volumes the Universe
itself is homogeneous, which would indeed exclude all interesting asymptotic solutions
of GR. It means only that evolution becomes homogeneous, or that in a sense evolution
“freezes out” at asymptotically late times.

7.3 Hamilton-Jacobi equation for large volume.

In the case of unconstrained systems, the Hamilton-Jacobi theory provides a bridge be-
tween classical and quantum mechanics. As we have all first class linear local constraints
here, we also have a classical Hamilton-Jacobi formulation of the theory for our case. With
non-linear first class constraints, one is simply not able to implement the constraints at
the level of Hamilton’s principal function (see [39], section 5.4.4). The principal function
is of course very different from the large volume expansion studied in the previous section.
First of all, we must choose an initial metric, then the Hamilton-Jacobi functional of a
metric g is considered to be the action of a solution connecting the initial metric and
g. The value of the action can in principle change if there are more than one solution
between the two points. In the case of first class constraints, which generate gauge sym-
metries, this does not happen. That is the fundamental reason why it is not possible to
implement second class constraints in the HJ approach as opposed to first class ones.

We can now solve the HJ equation for SD in the large volume limit. Again making
use of our gauge principles, our point of departure will be the gauge fixed (7.15), as
opposed to the gauge invariant (7.16). After performing the necessary calculations in
this particular gauge we will “covariantize” the results to a general one.

First we recall that ḡab and σ̄ab are not canonically conjugate; the barred variables
defined in (7.10) were only specifically designed to be independent of V . We show that the
canonical Poisson brackets between the barred variables and V and P vanish in section
C. Hence we can obtain the HJ equation from making the substitutions in our volume
expanded Hamiltonian (7.15):

P → δS

δV
πab → δS

δg0
ab

, (7.17)

where S = S(g0
ab, α

ab) is the HJ functional that depends on the metric g0
ab and paramet-

rically on integration constants αab. These constants αab are symmetric tensor densities
of weight 1: they parametrize the non-gauge part of the initial conditions (or the initial
point in the constraint manifold) in the Hamilton-Jacobi approach. We will fix our initial
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point to be given by asymptotic de Sitter, which translates into defining a homogeneous
separation constant. These conditions are compatible with asymptotic (in time) dS space,
which has maximally symmetric CMC slices. The treatment of other separation constants
is currently under investigation. Unlike the usual (A)dS/CFT correspondence, this is not
the most general case that can be considered within our framework (the generalization
to the Euclidean AdS case is trivial, requiring the scalar constraint to be expressed as a
radial, instead of a time, evolution operator).

We can express σ̄ab in terms of δS
δgab

and use the chain rule to write the result in terms

of δS
δV

and δS
δḡab

. We prove that the V derivatives drop out of the final expression in (C.9).
The final expression for σ we use is

σ̄ab → δS

δḡab
− 1

3

〈
ḡab

δS

δḡab

〉
ḡab
√
ḡ. (7.18)

Let us note that in the gauge fixed version, the variations of R0 can be found using
the standard variations of R. The S(n)’s can be found recursively using our solution for
S(0) and by collecting powers of (V/V0)−2/3. The equation we are then trying to solve is:

2Λ− 3

8

(
δS

δV

)2

− R0

V 2/3

+
1

V 2

〈(
δS

δḡ0
ab

− 1

3

〈
ḡ0
ab

δS

δḡ0
ab

〉
ḡ0
ab

√
ḡ0

)
ḡ0
acḡ

0
cd

(
δS

δḡ0
ab

− 1

3

〈
ḡ0
ab

δS

δḡ0
ab

〉
ḡ0
ab

√
ḡ0

)〉
+O(V −8/3) = 0 .

(7.19)

The expansion we are going to use, still of course in powers of V −2/3, to solve this is

S = S0V + S1V
1/3 + S2V

−1/3 +O(V −1) (7.20)

We then insert this expansion into the HJ equation obtained using the substitutions
above. as mentioned, to obtain a complete integral of the HJ equation, S(0) can be taken
of the form S(0) =

∫
d3xαabg0

ab. The linear constraints determine αab to be transverse and
with covariantly constant trace. The leading order HJ equation determines the value of
the trace of αab, as we will see. This restricts the freely specifiable components of αab

precisely to the freely specifiable momentum data in York’s approach [14]. To encode an
initial point that is asymptotically deSitter, we restrict ourselves to separation constants
with vanishing transverse traceless part.

To be explicit , the first terms (reinstating V0 from the calculations done in section
C.2.1, are

S(0) = ∓
√

16

3Λ
V0 (7.21)

S(1) = ∓
√

3

Λ
R0 V0 = ∓

√
3

Λ

∫
d3x
√
g0R0, (7.22)

S(2) = ±
(

3

Λ

)3/2 ∫
d3x
√
ḡ

(
3

8
R̃2 − R̃abR̃ab

)
. (7.23)

Note that S(0) and S(1) are the only terms with positive dimension. Gauge invariant
solutions can be obtained by restoring the λ[g, x) dependence of the tilded variables. To
draw a contrast of this result with that of [36, 27], we briefly note that these terms all
solve the local HJ constraints of SD in asymptotic dS space.
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Part II

Gauge Theory in Riem.
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Chapter 8

Riem as a principal fiber bundle

In this Chapter we will build the technical tools to be used in Chapter 9. Most of the
content of the present Chapter can be found in [40] and [34], albeit in slightly different
language.

8.1 Introduction

Gauge theory, needless to say, has a long and rich history, and it is probably not an
exaggeration to state it has by now permeated all areas of theoretical physics as an
essential tool for existing frameworks and guide for future developments. It describes
systems which possess some inherent symmetry in their parametrizations, and for classical
fields over spacetime it has a well-developed geometrical understanding through the use
of principal fiber bundles.

Geometrodynamics, as championed by Wheeler, is the study of gravitation through a
primary focus on space and changes therein rather than on space-time itself. Space-time
is essentially ‘sliced-up’ and described as an evolution of the geometry of these spatial
slices through time. It is fundamentally a dynamical view of GR, technically taking form
as its constrained canonical, or ADM formulation [2].

Although widely regarded as a gauge theory (since all of its constraints are first class
and thus interpreted as symmetry generating), there is no specific description of ADM
as a gauge theory in the geometric, fiber bundle sense, making use of connection forms,
sections and so forth. This is in part because a connection over configuration space seems
to be far removed from reality. What would such a connection do? This is one of the
questions we aim to answer in this part.

As is well known, the unconstrained configuration space for General Relativity is
defined as

M := Riem(M) = the space of all 3-Riemannian metrics over M

The Hamiltonian dynamics thus takes place on (a constraint submanifold of) T ∗Riem(M).
By a geometrical setting of gauge theory, mathematically we mean the existence of a
principal fiber bundle and, most importantly, a connection form on it. The first inkling
of a connection form in Riem(M) arose in [9, 41], where the mention of horizontal and
vertical components of metric velocities first appears. It is however our understanding
that the concept was not fully explored, and one of the purposes of the present work,
at least from the mathematical standpoint, is to investigate exactly what constitutes a
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Figure 8.1: A section in a principal fiber bundle over space-time.

connection over configuration space. That is, what are the properties such a connection
has to satisfy and how can we construct one both formally and explicitly. In doing so we
would like to shed light on explicit infinite-dimensional geometrical gauge theories over
configuration space, a point of view so far as we know original. From the physical point
of view, this may be connected with a richer history of relational ideas (see section 2.3).

A second reason why this approach has not been attempted before is because of the
difficulties in interpreting the action of the Hamiltonian constraint as a group action, and
other issues related to the infamous “problem of time” [1]. As in the first part of the thesis
we have shown that it is possible to have a theory of gravity which no longer possesses
the scalar (or Hamiltonian) constraint, and thus no refoliation invariance. Unlike what
is the case in ADM, the constraints of this dual theory then form subalgebras, reflecting
the kind of group structure suitable for an exhaustive principal fiber bundle formulation.
This points in a new direction for the development of gauge theoretic tools for gravity
and sets the stage for applying more standard methods for the quantization of gravity as
a gauge theory.

Motivated by the possibility of now describing the symmetry groups of general rela-
tivity in a full geometrical gauge-theoretic setting, we will attempt to make explicit the
gauge connections relating to the action of these two groups; the group of three dimen-
sional diffeomorphisms, which we denote by D, and that of three-dimensional conformal
transformations C. Both C and D groups have right actions on the natural configuration
space M. We will constrain our attention to the case of M being compact and closed,
which is of more interest to the relational approach for various reasons [17].

8.1.1 Principal fiber bundles and gauge theory.

Here we will briefly introduce the concept of a principal fiber-bundle, depicted in figure
8.1.1. We will first present the formal definitions and
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Definition 1. A principal fiber bundle with smooth structural group G is a smooth man-
ifold P on which G acts G × P → P and for which the action of G is smooth and free.
By a free action we mean that

Gp = {h ∈ G | hp = p} = {Id}

That is, the isotropy group of every point is the identity.

One then constructs a projection

pr : P → P/G =: B (8.1)

where the base manifold B is defined with the quotient topology with respect to the
equivalence relation p ' q ⇔ p = h · q, for some h ∈ G. We call an orbit of p ∈ P (or of
pr(p) = x ∈ B) a fiber, and also denote it by Ox := pr−1(x).

For finite-dimensional manifolds, by the freedom of the group action, we can see that
the orbits are isomorphic to the group G, but have no preferred identity element.1 A
smooth choice of identity element in each fiber coincides with the definition of a local
section:

Definition 2. Let U be an open set in B. We define a local section of P over U as a
submanifold Σ of P such that for every x ∈ U , Σ is transversal to the orbits, TpΣ⊕TpOx =
TpP , and Σ intersects orbits over U at a single point; i.e. for p ∈ Σ then Op ∩ Σ = {p}

In rough terms, this means that a section i) never has a component along the orbits
and intersects every orbit (transversality) ii) that it intersects each orbit once. These
facts are enough to show that we can completely characterize an element of P over U
by its location on the base and an element of the group which says where it is wrt the
section. A choice of section is also called a choice of local gauge. One can prove from
this definition that in finite dimensions there always exists a slice for our definition of a
principal fiber bundle (definition 1) (see [42]2). Indeed, it is using the same outlines of
that proof that we are able to show that a section for the action of different groups on
Riem exists (see section 8.3). A slice implies that P has a local product structure that we
can patch together to form an atlas of the manifold, and that all slices over the same open
set are diffeomorphic. These sections are then equivalent to the concept of a gauge, and
transition maps from one gauge (or section) to the other can be shown to be functions
ΨUU ′ : U ∩ U ′ → G.

Example: the bundle of bases.

The simplest and most telling example of a principal fiber bundle, is the one of all linear
bases of TM , for a given manifold M . The group GL(n) acts smoothly and has trivial
isotropy, meaning it doesn’t act trivially on any base. There is no preferred identity
element (a preferred basis of each tangent space), and yet we can take every base to
every other base by an action of GL(n), making each fiber isomorphic to GL(n). It is
useful for us to already preview the concept of a connection in this setting. Given a base
e over the point x ∈ M and a vector v ∈ TxM , a connection will basically tell us which
base corresponds to e in that given direction, i.e., how to define parallel transport of the
basis e in each direction.

1Such objects are in modern mathematical language called G-torsors.
2Or see Theorem 19 in [43] for a detailed proof in the language used in section 8.3.
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8.2 The 3-diffeomorphism group.

Let E = S2T ∗ := TM∗ ⊗S TM∗ denote the symmetric product of the cotangent bundle,
and Γ∞(S2T ∗) the space of smooth sections over this bundle3. The space of positive
definite smooth sections of S2T ∗ is what we callM. i.e. M = Γ∞+ (S2T ∗), it is a positive
open cone over the vector space S2T ∗ (meaning that adding two metrics with positive
coefficients is still a metric).

Let us also review the following general facts, which characterize the action of what
will play the role of a Lie algebra and Lie group [40]:

• The set D := Diff(M) of smooth diffeomorphisms of M is an infinite dimensional
Lie group, and it acts on M on the right as a group of transformations by pulling
back metrics:

Ψ :M×D → M
(g, f) 7→ f ∗g

an action which is smooth with respect to the C∞-structures of M and D4. We
call Ψg : D → M, the action for fixed g ∈ M, the orbit map. It is clear that two
metrics are isometric if and only if they lie in the same orbit,

g1 ∼ g2 ⇔ g1, g2 ∈ Og := Ψg(D)

• The derivative of the orbit map Ψg : D →M at the identity is

αg := TIdΨg : Γ(TM) → TgM
X 7→ LXg (8.2)

where X is the infinitesimal generator of a given curve of diffeomorphisms of M .
The spaces Vg, tangent to the orbits will be called vertical and are defined as:

Vg := Tg(Og) = {LXg | X ∈ Γ(TM)}

Since M is compact, every X ∈ Γ(TM) is complete and Γ(TM) forms an infinite
dimensional Lie algebra under the usual commutator of vector fields, [X1, X2] ∈
Γ(TM).

The quotient M/D is known to be a stratified manifold whose singular sets correspond
to the diffeomorphism classes of metrics with non-discrete isometry groups:

Ig(M) := {f ∈ D | f ∗g = g} ⊂ D

which are always groups of dimension at most 6. The singular sets are nested according
to the dimension of Ig(M).

When dealing with the space of metrics with no symmetriesM′, the space S ′ =M′/D
is indeed a manifold and the existence of a section [40] allows us to construct its local
product structure π−1(Uα) ' Uα × D through bundle charts for Uα and open set of
the quotient and properly define M′ as a principal fiber bundle (PFB). With the PFB

3It is a Frechét space (Metrizable Complete Locally Convex Topological Vector space).
4The natural action is on the right since of course (f1f2)∗g = f∗2 f

∗
1 g.
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D ↪→ M′ π→ M′/D = S ′ we have the usual constructions of gauge theory working
properly, as we will see.

There are other ways to resolve the singularities in the stratified structure of M/D
than the one adopted here, which has the disadvantage of excising metrics with high
degrees of symmetry such as the ones used to find explicit solutions of the Einstein
equations. To excuse ourselves from that obvious criticism, we remark that only a meagre
set of initial data will reach such boundaries, that our arguments are of a generic nature
and that we can always approximate as well as we like any of those symmetric states.
One of the other ways to resolve the singularity involves assuming that the topology of
the underlying manifold does not allow for any continuous symmetry group, so called
wild topologies, which are infinite in number. Another involves slightly modifying the
group D one works with, to D{x} the diffeomorphism which leaves point x fixed. But
perhaps the most useful route is to consider not M but M× F (M), where F (M) is the
bundle of oriented frames over M . Since the action of D can be seen to be free over this
space, the quotient is indeed a manifold, and it is also a principal fiber bundle over said
space. Our view here though is to be minimal with respect to the structures we use.

8.3 Gauge structures over Riem: Slice theorem.

The important result for a gauge theory in M′ is the Ebin-Palais slice theorem [40]. It
is analogous to the usual slice theorem, and it is that which reveals the principal fiber
bundle structure in S ′. We describe necessary material for the construction of a principal
connection in M′, with the main aim being achieved in Theorem 3. But to see why the
analogy between the free action of the D group on M′ and finite-dimensional principal
fiber bundles is more than an analogy we refer the reader to [35].

To a certain degree the material in the first section follows [40], but for the reader’s
convenience we give a description in our language of the material that we need, i.e., the
material necessary for the rigorous definition and construction of the connection through
the use of a metric in M.

8.3.1 Constructing the vertical projection operator for the PFB-
structure of M′

The constructions here include technicalities needed in order to define the spaces we
work with as proper Hilbert manifolds, in order that we can use certain theorems only
applicable in that domain. If the reader is happy that we can make certain restrictions in
M and D so that we have Hilbert manifolds, on which a Riemannian metric is defined,
she can skip the first two subsections. We use these Hilbert spaces and the Riemannian
metric in the third subsection, to define the structure of the D orbits in M. It is here
that we define and use the Fredholm alternative most intensely. The bundle normal to
the orbits (called the horizontal bundle in the main text) and the orthogonal projection
with respect to such a decomposition is constructed. Hence this is the section used in
the following chapter in the construction of the principal connection ω on M′, based
on the existence of a metric on the Hilbert completion Ms (see below). Although the
constructions here are based in Ms, it can be shown that they can be later transported
to our merely C∞ setting of M′ [40]. Lastly we state and sketch the remaining steps in
the proof of the slice theorem, on which the whole gauge apparatus is based.
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Hs-manifolds. Sobolev Lemma and all that

Suppose that E is a vector bundle over a smooth closed manifold M ; πE : E →M .

• Let Γk(E) be the space of k-differentiable sections of E, this is a Banach space with
topology of uniform convergence up to k derivatives.

• Let Js(E) be the s-th jet bundle of E, which we endow with (for now) any Rie-
mannian structure 〈·, ·〉s. For a fixed volume element of M , let us call it d3x, we
get the inner product on the space of sections Γ∞(Js(E)) by

(a, b)s =

∫
M

〈a, b〉sd3x

Since there is a natural linear map from Γ∞(E) to Γ∞(Js(E)) (basically given by
successive linearizations), this also defines an inner product on Γ∞(E). Now we
define

Hs(E) is the completion of Γ∞(E) with respect to (·, ·)s

As such it is a Hilbert space whose norm depends on the choices of inner product
and volume form, but whose topology does not. In local coordinates, this is the
space of sections of E which in local coordinates have partial derivatives up to order
s square integrable, i.e. for f ∈ Hs(E) the norm is given in local coordinates by

||f ||s =
∑

0≤α≤s

||∂αf ||L2 =
∑

0≤α≤s

√∫
M

|∂αf |2d3x

We note in passing that for p 6= 2 the above is not a Hilbert space for the Lp norm.

Now to construct the appropriate manifolds, we will need the following

Lemma 1 (Sobolev Lemma). For n = dim(M), if s > k + n/2 we have that Hs(E) ⊂
Γk(E) and the inclusion is a linear continuous map.

Note that the lemma is very far from trivial, since, of course we always have Γk+1(E) ⊂
Γk(E), but the s-th completion of the Γ∞(E) sections could have elements that were not
smooth.

8.3.2 Defining Ms, a Riemmanian structure for Ms, and an exp
map.

Let E = S2T ∗ := T ∗M ⊗S T ∗M , the symmetric product of the cotangent bundle. The
space of positive definite smooth sections of S2T ∗ is what we callM. i.e. M = Γ∞+ (S2T ∗).
Abusing notation, let Γ0(M) := Γ0

+(S2T ∗) ⊂ Γ0(S2T ∗) be the space of merely continuous
metrics on M , which is an open subset of Γ0(S2T ∗). The set Γ0(M) still is only endowed
with a topology. To make it into the appropriate Hilbert manifold, we define

Ms := Hs(S2T ∗) ∩ Γ0(M)

Now, by the Sobolev lemma, the inclusion ι : Hs(S2T ∗) ↪→ Γ0(S2T ∗) is continuous for s >
1 in n = 3. Since Γ0(M) is an open subset of Γ0(S2T ∗), we have thatMs = ι−1(Γ0(M))
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is an open set in Hs(S2T ∗) and hence a Hilbert manifold. A similar construction is
available to transform the group of diffeomorphisms D into a Hilbert manifold Ds, but as
we will not get into the intricacies of the last part of the proof of the Ebin-Palais section
theorem, we will not need it, and hence just use the generic Γ(TM) as the tangent space
to the identity of D.

For each point of the Hilbert manifold γ ∈Ms we have that γ, being an inner product
on TM , induces an inner product in all product bundles over TM , and hence we have
an induced inner product on S2T ∗, which we call 〈·, ·〉γ. It furthermore induces a volume
form, and thus we have the induced inner product on each TγMs ' Hs(S2T ∗) 3 α, β.

(α, β)γ =

∫
M

〈α, β〉γdµγ (8.3)

Since Ms ⊂ Γ0(M), (·, ·)γ induces the H0 topology on Hs(S2T ∗), there might be se-
quences in Hs(S2T ∗) that converge with respect to (·, ·)γ but not to an element Hs(S2T ∗).
This is what we mean when we say that (·, ·)γ is merely a weak Riemannian metric on
Ms.5

For f ∈ D, as extensively used in the main text, f ∗ : Ms → Ms acts linearly,
so furthermore Tγf

∗ = (f ∗)∗ = f ∗ : Hs(S2T ∗) → Hs(S2T ∗). From the properties
〈Tf ∗α, Tf ∗β〉f∗γ = 〈α, β〉γ ◦ f and dµf∗g = f ∗dµg it is straightforward to show that
(·, ·)γ is D-invariant.

8.3.3 The orbit manifold and splittings

Consider now the map

Ψ :Ms ×D → Ms

(g, f) 7→ f ∗g

As in the previous section, the image of Ψg, Og = Ψg(D) is called the orbit of D through
g. We have that the derivative of the orbit map Ψg : D →M at the identity, which we
will call αg:

αg := TIdΨg : X 7→ LXg = ıX(L·g) (8.4)

where X ∈ Γ(TM) is the infinitesimal generator of a given curve of diffeomorphisms of
M . We may also write αg as αg(X) = (T(g,Id)Ψ) · (0, X), which may make the meaning of
the map more clear. It takes each element of the Lie algebra into its fundamental vector
field, i.e. it gives directions along the orbits corresponding to certain directions along the
group.

We want to calculate what TfΨ is with respect to TIdΨ. For η, f ∈ D and rf the right
action of diffeomorphisms (for which T (rf ) = (rf )∗ : Γ(TM)→ Γ(TM)), we have,

f ∗ ◦Ψ(g, rf−1(η)) = f ∗ ◦Ψ(g, η ◦ f−1) = f ∗(η ◦ f−1)∗(g) = Ψ(g, η)

therefore
Ψ = f ∗ ◦Ψ ◦ rf−1 (8.5)

and thus

TfΨ = Tgf
∗ ◦ TIdΨ ◦ (rf−1)∗ = f ∗ ◦ α ◦ (rf−1)∗ : TfD → Hs(S2T ∗) (8.6)

5 This sort of lack of metric convergence in Hs, poses certain issues when objects are only implicitly
defined by the metric.
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This equation is of course equivalent to saying that at f

TfΨg(X ◦ f) = f ∗αg(X)

Since the maps above are isomorphisms, we conclude from (8.6) that TfΨ(TfD) is
isomorphic to TIdΨ(TIdD) = TIdΨ(Γ(TM)), and thus all tangent spaces to the orbits are
isomorphic.

For a finite dimensional vector space E, we can always algebraically split a subspace
F1 from its complement F2 = FC

1 . For infinite-dimensional vector spaces, a closed finite-
dimensional subspace also always has a closed complement subspace. In the general
case of closed infinite-dimensional subspaces though, the complement FC

1 of F1 is not
necessarily closed, and upon closure it might not be in the complement (see Section
E.0.4).

Now we have to show that the tangent space to the orbits splits. I.e. that not only is
the image of TIdΨ = α a closed linear subspace of Hs(S2T ∗), but also that it has a closed
complement Imα)C and thus Hs(S2T ∗) ' Imα⊕ (Imα)C. We will do this in the following
detour through functional analysis.

Splitting of TM by TO.

In local charts of E and F , for E and F vector bundles over M , a k-th order differential
operator D : Γ∞(E)→ Γ∞(F ), acting on f ∈ Γ∞(E) can be written as 6:

D(f) =
∑

0≤|i|<kai

ai
∂|i|f

∂xi1 · · · ∂xin

where i = (i1, · · · , in), n =dimM and |i| =
∑
in and ai(x) ∈ L(Ex, Fx).

For each x ∈ M and for p ∈ T ∗xM , the symbol of an operator D is a linear map
σp(D) : Ex → F ∗x . Basically what one does, in local coordinates, is to replace the highest
order partial derivatives by the components of p: ∂/∂xi → pi. The symbol of a differential
operator will be said to be injective if the resulting linear operator is injective.

The k-th order differential operator D : Γ∞(E) → Γ∞(F ) trivially extends uniquely
to a continuous linear map between the Hilbert spaces D : Hs(E) → Hs−k(F ). If inner
products 〈·, ·〉E, 〈·, ·〉F in E and F respectively, together with a measure for M are given,
we call (·, ·)E, (·, ·)F the inner products induced in Hs(E) and Hs−k(F ) respectively. By
the Riesz representation theorem, there then exists a unique adjoint for any such D:

(a,Db)E = (D∗a, b)F for a ∈ Hs(E), b ∈ Hs−k(F ) (8.7)

Now, a well-known theorem in functional analysis tells us that, if a differential operator
is elliptic it possesses the splitting property :

Theorem 2 (Fredholm Alternative). Let D be an elliptic differential operator of k-th
order,7 then

Hs−k(F ) = Im(D)⊕KerD∗ (8.8)

6Here we use f to make the analogy with vector-valued functions in local charts more transparent
7 There are subtleties here regarding the order s of the Sobolev spaces in each side [40], but these do

not concern us here. For the avid reader, the order of the spaces can be worked out by the Regularity
theorem , which states that for an elliptic operator of order k, and f ∈ L2(E), D(f) ∈ Hs−k implies
f ∈ Hs. The Weyl lemma, stating that if the Laplacian (which is an elliptic operator) of an L2 function
is zero (and zero is in Hs for any s) then the function f is C∞, is an immediate corollary of the regularity
theorem.
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This stems from the more general fact, that for any linear densely-defined (i.e., having
a domain of definition that is dense in H) operator A, not necessarily bounded, we have
the splitting property:

A = Im(A)⊕Ker(A∗) (8.9)

where the overline denotes closure. We will not dwell on the proof, we merely mention
that the necessary ingredients are norm bounds in the presence of elliptic operators to
show that Im(D) is closed, and that Im(D)⊥L2KerD∗ implies an Hs splitting. For a
different take on the Fredholm alternative, see [44].

The operator αg : Γ(TM) → Hs(S2T ∗) : X 7→ X(i;j) can easily be shown to have
injective symbol, since for p ∈ T ∗xM , v ∈ TxM such that ξ = g(v, ·) we have

σp(α)(v) = ξ ⊗S p

where again the subscript S stands for the symmetrized tensor product. Furthermore,
since σ(D∗◦D) = σ(D)∗◦σ(D), it follows that if σ(D) is injective, then for positive definite
inner product we automatically have σ(D∗) surjective and Ker(σ(D∗)) ∩ Im(σ(D)) = 0
(trivial, see proof of Proposition 3). Then σ(D∗◦D) is an isomorphism, which by definition
makes D∗ ◦D, or in our case, α∗ ◦ α an elliptic operator. Applying the above equation
(8.8) to α∗ ◦ α we arrive at

Γ(TM) = Im(α∗ ◦ α)⊕Ker(α∗ ◦ α)

from which we conclude that α∗ ◦ α : Im(α∗ ◦ α)→ Im(α∗ ◦ α) is an isomorphism.
We will now sketch how under the present conditions, using ellipticity of α∗ ◦ α, a

similar splitting automatically applies for D = α.

Proposition 3. If D∗◦D elliptic and the restricted inner products (·, ·)E|Im(D)
and (·, ·)F|Im(D∗)

are non-degenerate, then Ker(D∗ ◦D) = KerD and Im(D∗ ◦D) = ImD∗ which implies

Hs(S2T ∗) = Im(D)⊕Ker(D∗) (8.10)

for D = α.

Proof. That Ker(D∗ ◦ D) ⊃ KerD is clear. Now suppose a ∈ Hs(E), c ∈ Hs−k(F ),
then if D∗ ◦Da = 0, we have (Da,Db)F = 0 for all b ∈ Hs(E) which implies Da = 0 if
the inner product restricted to Im(D) is non-degenerate. This shows Im(D)∩KerD∗ = 0.

Also Im(D∗ ◦ D) ⊂ ImD∗ from the outset. To show Im(D∗ ◦ D) ⊃ ImD∗, since
Hs−k(E) = Im(D∗ ◦ D) ⊕ Ker(D∗ ◦ D) and Ker(D∗ ◦ D) = KerD we have merely to
show that Im(D∗) ∩ KerD = 0. Suppose b ∈ Im(D∗) ∩ KerD, i.e. b = D∗c and Db = 0,
then (D∗c,D∗d)E = 0 for all d ∈ Hs−k(F ). Then if the inner product in E restricted
to Im(D∗) is non-degenerate, D∗a = b = 0. Thus we have proved the first part of the
proposition.

Now for the second part we already have Im(D)∩KerD∗ = 0; to show that Hs(S2T ∗)
is generated by Im(α) + Ker(α∗) we write:8,

Hs(S2T ∗) = (D∗)−1(Im(D∗)) = (D∗)−1(Im(D∗ ◦D)) = (D∗)−1(D∗ ◦D(Hs(TM))

Since Im(D) ∩KerD∗ = 0

(D∗)−1(D∗ ◦D(Hs(TM))) = Hs(S2T ∗) = Im(D)⊕Ker(D∗) �

8Even though we have only shown the above direct sum exists in the linear algebraic sense, the closed
graph theorem guarantees it extends to the topological domain (see section E.0.4).
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Note that, in the first part of the proposition, Im(D∗ ◦ D) ⊃ ImD∗ is equivalent to
Ker(D∗ ◦D) = KerD, if the inner product in Hs(E) is positive-definite. And of course,
if D is injective, this is equivalent to Ker(D∗) ∩ Im(D) = 0, which is the usual equation
to define the orthogonality relation (but not a projection).

Now it is relatively straightforward to show that (8.8) is valid for D = α, which
shows that for M′, the map orbits are injective immersions. To show that they are also
embeddings requires more work, which again we will not go through since it does not
contribute anything to our constructions. Thus omitting the prof we shall, for g ∈ M′s,
take Ψg : Og →M′s to be an embedding.

8.3.4 The normal bundle to the orbits and construction of the
vertical projection operator.

The bundle orthogonal to Og is defined as

ν(Og) := {n ∈ TMs
|Og | (n, v) = 0, for v ∈ TOg} (8.11)

Given a Riemannian structure onMs, the bundle orthogonal with respect to it would au-
tomatically be a smooth subbundle, however we possess so far merely a weak Riemannian
metric, and so must put in a little more effort.

From the previous subsection we have seen that for any g ∈ M′, there exists an
isomorphism

TgM' Hs(S2T ∗) ' Imα⊕Ker(α∗) (8.12)

Hence, since for v ∈ Ker(α∗) it follows that (α(X), v) = 0 and Im(αg) ' Tg(Og) we have
that ν(Og)h = Ker(α∗h).

We shall thus define a smooth, surjective map: P : TMs
|Og → TOg, such that

Ker(P ) = Ker(α∗) = ν(O) which will turn out to be exactly the vertical projection
V̂ we need for the definition of the principal connection ω. Before proceeding we note
that in finite dimensions an orthogonal projection operator can be easily defined from a
basis, but that in the present case an orthogonality relation does not automatically define
a projection, even for a positive definite inner product.

From Proposition 3 we have Im(α∗ ◦ α) = Im(α∗); hence for each point g ∈ M,
α∗(Hs(S2T ∗)) = α∗◦α(Γ(TM)). From the above consideration we can regard α∗◦α|Im(α∗)

as a map from Im(α∗α) to itself, which, from self-adjointness and ellipticity, means it is
in fact an isomorphism, having thus a smooth inverse. Hence we define:

P := α ◦ (α∗ ◦ α)−1 ◦ α∗ : Hs(S2T ∗)→ Hs(S2T ∗) (8.13)

It is clear that P 2 = P , that ν(Og)h = Ker(α∗h) = KerPh, and that for a vertical vector,
i.e. v = α(X), we get P (v) = α ◦ (α∗ ◦ α)−1 ◦ α∗α(X) = α(X), hence the projection
acts as the identity on the vertical space. Thus the following decomposition holds9:
W = ImT ⊕KerT . and thus:

Hs(F ) = Ker(P )⊕ Im(P )

All that is left to do is check the transformation properties of P .

9 Again, to go from merely algebraic decomposition to topological decomposition, one must use the
closed graph theorem, which says that for Banach spaces A,C then for a continuous linear operator f
such that f(A) is a closed subspace, then there is a closed complement B, such that C = f(A)⊕B.
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Let us recall first of all that α = TIdΨ, and from (8.6)

αf = f ∗ ◦ α ◦ ((rf )∗)
−1 and α∗f = (rf )∗ ◦ α∗ ◦ (f ∗)−1

thus we can prove the equivariance of P :

αf ◦ (α∗f ◦ αf ) ◦ α∗f = f ∗ ◦ α ◦ ((rf )∗)
−1((rf )∗α

∗ ◦ α ◦ ((rf )∗)
−1)(rf )∗ ◦ α∗ ◦ (f ∗)−1

= f ∗(α ◦ (α∗ ◦ α)−1 ◦ α∗)(f ∗)−1 (8.14)

Since αf is automatically smooth, all that is left to check is that α∗f is smooth, since
α∗f ◦αf is an isomorphism and the inverse map in the restricted Banach space is smooth.
We shall not perform this calculation, which stems directly from the construction of the
adjoint. Thus we have proven the following theorem10

Theorem 3. Given a D invariant positive definite metric in M′, the operator

P := α ◦ (α∗ ◦ α)−1 ◦ α∗ : Γ∞(S2T ∗)→ Γ∞(S2T ∗) (8.15)

has the following properties:

• D-equivariant.

• P 2 = P and Hs(F ) = Ker(P )⊕ Im(P )

• P (α(X)) = α(X).

• ν(Og)h = Ker(α∗h) = KerPh.

So we call it the vertical projection operator for this metric.
Let us go through the exact structures that were needed for this theorem (and were

implied by positive-defiteness of the Hs(E) and Hs(F ) inner products ).

• The adjoint of the operator α exists and is smooth (in the main text α = TIdΨ
where Ψ : D ×M′ →M′ is the group multiplication operator).

• α∗ ◦ α is elliptic (which can be checked by its symbol). Then from self-adjointness
and the decomposition (8.8) we concluded that α∗ ◦α|Im(α∗◦α)

was an isomorphism.

• Im(α∗ ◦ α) = Im(α∗), which allowed us to regard α∗ ◦ α|Im(α∗) as a map from

Im(α∗α) to itself, which meant α∗ ◦ α|Im(α∗) was in fact an isomorphism, having
thus a smooth inverse. Note that for this, from Proposition 3, we needed only that
Ker(α∗) ∩ Im(α) = 0 and 〈·, ·〉E be positive definite. Thus the injectivity of α,
combined with the previous item says Ker(α∗h) = KerPh.

• The metric in Hs(T ∗M⊗T ∗M) is D invariant. We used to derive the transformation
properties of P .

10We have actually proven it for the Hilbert extensionMs, but it is shown in [40] how these construc-
tions can be more or less straightforwardly translated to the C∞ setting.
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8.3.5 The Slice Theorem

Since we have come this far into the constructions in a reasonable degree of detail, we
now state

Theorem 4 (Slice forM/D, [40]). For each g ∈M there exists a contractible submani-
fold Σ of M containing g such that

1. f ∈ IgM ⇒ f ∗Σ = Σ

2. f /∈ IgM ⇒ f ∗Σ ∩ Σ = ∅

3. There exists a local cross section τ : Q ⊂ D/Ig(M) → D where Q is an open
neighborhood of the identity, such that

F : Q× Σ → Ug (8.16)

(f, s) 7→ τ(f)∗s (8.17)

where Ug is an open neighborhood of g ∈M, is a diffeomorphism.

For M′ the space of metrics with no symmetries, the space S ′ = M′/D is indeed a
manifold and the existence of a section above allows us to construct its local product
structure π−1(Uα) ' Uα ×D through bundle charts and properly define M′ as a PFB.11

With this in hand, the usual properties of a principal fiber bundle are proved as in finite
dimensions.

Remaining gaps in the proof

For the convenience of the reader we point out the leftover gaps in the proof of the
slice theorem. The steps that we have omitted are i) to take better care of the isotropy
group, which we have largely ignored by restricting our attention to the subset of metrics
without symmetries (see the notes [45] for a more thorough topological treatment of this
subset); ii) the actual construction of a tubular neighborhood for each fiber using the
properties of the exponential map. However, since we have indeed addressed the major
issues that separate the finite-dimensional case to the present infinite dimensional one,
these remaining steps are closely analogous to the usual finite-dimensional proofs.

Regarding i), the isotropy group at g ∈M is defined as Ig := {f ∈ D | f ∗g = g}. As Ig
is a finite-dimensional, and hence splitting, subspace of D, all major infinite-dimensional
difficulties are more or less easily dissolved. Since the Lie bracket of vector fields over M
commutes with the pull-back by diffeomorphisms, the distribution of the spaces tangent
to {If∗g | f ∈ D} ⊂ D is involutive. Hence, using the Frobenius theorem, we can construct
the quotient manifold D/Ig and a section for πD : D → D/Ig on a neighborhood of the
identity, χ : U ⊂ D/Ig → D. Now define Φg : D/Ig →M by Φg(Ig ◦ f) = f ∗g. Basically
we must now replace our results about orbit embeddings for Ψ by the same results for
the effective action, Φ, which is the embedding.

Regarding ii), given a Riemannian metric on a Hilbert manifold, there exists a unique
Levi-Civita connection (which respects both metric compatibility and the no-torsion con-
dition). As we mentioned before, existence of certain objects implicitly defined by a weak
metric is not guaranteed, for these objects might lie in the Sobolev completion of the Hs.

11In the MK sense. See [35] for an appropriate way to formulate the usual theorems of calculus in this
infinite-dimensional setting.
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Thus uniqueness, but not existence is guaranteed for the Levi-Civita connection. From
the two usual coordinate-free Levi-Civita conditions, using the Jacobi identity one gets
for X, Y, Z vector fields on Ms:

(∇XY, Z)γ =
1

2
(X(Y, Z)γ − Z(X, Y )γ + Y (X,Z)γ)

We then explicitly calculate the formula above for three arbitrary vector fields, and upon
isolation of the Z vector field on the right hand side find an explicit expression for the
Levi-Civita connection. We will not perform this calculation, which can be checked in
[46]. After this construction we have a smooth exponential map exp : TMs →Ms that
is furthermore a local diffeomorphism around the zero section (for fixed base points).
Combining this with the invariance of the metric we get

f ∗(∇XY|γ) = ∇f∗(Xγ)f
∗(Yγ) (8.18)

exp ◦Tf ∗ = f ∗ ◦ exp (8.19)

These relations are instrumental in the building of a section for the action of D/Iγ.
We have thus constructed an exponential map for a Hilbert manifold, and we call the

map Exp := exp|ν(Og) the normal exponential. It can be seen to be a diffeomorphism onto
a neighborhood of the zero section as follows: the tangent space at a zero normal vector
over any point can be given the direct sum decomposition T(g,0)(νOg) ' TgOg ⊕ νgOg.
Over a fixed fiber of TM, i.e. for v ∈ TgM , Exp(g, v) = expg(v). We have, taking
(w, u) = ξ ∈ TgM,

T(g,0)Exp(ξ) =
d

dt
|t=oExp(γ(t), 0) +

d

dt
|t=oExp(g, tu) =

d

dt
|t=o(γ(t), 0) +

d

dt
|t=o expg(tu)

= (w, 0) + (0, u) = ξ

So we have shown that T(g,0)(Exp) = Id|TgM which by the inverse function theorem for
Hilbert manifolds makes the normal exponential a local diffeomorphism that respects the
normal decomposition.

Thus all we now have to do is find a small enough neighborhoods of the zero section
of the normal bundle such that the D-transported exponential of some neighborhood of
zero on νh(Og) satisfies the first and second item of Theorem 4. Finding an appropriate
section χ : U ⊂ D/Ig → D of the isotropy group such that the last property is satisfied
requires only a small amount of extra work, but it is enough to make it too much of
a detour on the purpose of this section. We refer the reader to [40] for the remaining
details.

It is important to notice that by exponentiating the horizontal subspace at TgM one
does not necessarily obtain a horizontal submanifold even for the simple positive defi-
nite D-invariant metric we have used here. If this were so, there would exist a section
in which the connection could be set to zero and thus the curvature of the connection
would automatically vanish. We can see this is not the case since the tool in maintain-
ing orthogonality through the push-forward of exponential map, the Gauss exponential
lemma, only works if one of the vectors is radial. In other words, in general notation
〈Tv expp v, Tv exppw〉expp(v) = 〈v, w〉p but 〈Tv expp u, Tv exppw〉expp(v) 6= 〈u,w〉. Thus sup-
pose w is vertical; then it will keep its orthogonality with the radial vector along the
exponential, but it will not necessarily keep orthogonal to the exponential push-forward
of another horizontal vector u ∈ Hg. It will do this only if the connection has no curvature.
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8.4 The conformal bundle.

We now give a brief description of the action of the conformal group C, since it has much
nicer mathematical properties and seems to be given a new importance in recent dual
approaches to general relativity described in the first part of this thesis.

Basic results.

Let P be the multiplicative group of positive smooth functions on M . We denote by

C := D × P the space of conformal transformations of M

with group structure (f1, p1) · (f2, p2) = (f1 ◦ f2, p2(p1(f2))) where p2(p1(f2)) just means
scalar multiplication at each x ∈ M as p2(x)(p1(f2(x))). As with D, C is an infinite-
dimensional regular Lie group and it acts onM on the right as a group of transformations
by:

ξ : C ×M → M
((f, p), g) 7→ pf ∗g

For more information on the mathematical properties of conformal superspace and the
analogous constructions of Ebin [40], see [34]. For instance, it is fairly easy to prove in the
same fashion as done in section 8.3 that a slice theorem exists also for C (see theorem 1.6
in [34]). Here however, if we want to form properly a principal fiber bundle, we would have
to regard the manifoldM′′ consisting of metrics with no non-trivial conformal isometries.
It can be shown that this restriction does not have serious topological implications [45].

The derivative of the orbit map ξg : C →M at the identity is given by

τg := T(Id,1)ξg : Γ(TM)× C∞(M) → TgM
(X, p′) 7→ LXg + p′g (8.20)

where p′ ∈ C∞(M) and which can be easily evaluated from d
dt t=0

(tp′ + 1)(ft)f
∗
t g, where

ft = exp(tX).

8.4.1 York splitting.

As a last auxiliary result for the main text we here state and sketch the York splitting
theorem for the action of the conformal group of transformations.

From the demonstrated good behavior of the orthogonal projection operators in sec-
tion 9.4, in all cases of interest (i.e. for all β), we have a well defined normal bundle (see
(8.12)) and thus a slice for the action of CD. This means that we can write

TgM = Kerτ ∗ ⊕ Imτg = TgΣg ⊕ Tg(CD · g) (8.21)

where Σg is the section of CD, given, for the canonical supermetric (DeWitt for λ = 0),
by the exponentiation at g ∈ M of the kernel of τ ∗ (9.30). This kernel is composed of
divergenceless (transverse) traceless tensors (TT tensors), which we denote by STT

2 ⊂ S2T
∗

and can be by definition decomposed further into

STT2 = SD2 ∩ ST2 ,
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where SD2 ∈ S2T
∗ are the transverse (or divergenceless) tensors and S2

T ∈ S2T
∗ are the

traceless tensors. Exponentiated these spaces respectively form the section ΣDg for D we
used in the subsection 8.3.5, and the space of constant volume forms

Ndµ := {g ∈M | dµ(g) = dµ},

where dµ(g) is the volume form associated to g.
Equation (8.21) is said to be an integrable decomposition in the sense that the tangent

space at any point g on the lhs, is the direct sum of tangents to two submanifolds on the
rhs. What is more interesting to us though, is that the second factor in (8.21) admits
two sets of integrable decompositions. One of the sets of suborbits, is the natural one
given already by the action of the group written as D × C, as mentioned above. As we
are excluding the conformal Killing metrics, i.e. Ker τ = 0, the action of the algebras
also clearly splits:

Im(Γ(TM))⊕ Im(C∞(M)) = Tg(CD · g)

and it is easy to see that the orbit C ·g is a submanifold [34], and thus as we already know
this is also true for the D group (see section 8.3.3) we have an integrable decomposition.

The other can be seen by splitting the image of τ in its traceless and trace part:

h = hTT + LXg +Ng = hTT +
1

3
(2Xa

;a + 3N)g + (LXg −
2

3
Xa

;ag)) (8.22)

TgM = Tg(Σg)⊕ Tg(CD · g) = Tg(Σg)⊕ Tg(C · g)⊕ Tg(CD · g ∩Ndµ(g)) (8.23)

For the preceding decomposition to be true in the integrable sense written above (8.23),
we only need to check wether Kg := CD · g ∩ Ndµ(g) is actually a manifold. One can see
this since

Kg = dµ−1(g) ∩ CD · g

where dµ : M → V is just the operator that assigns volume forms to metrics (and V
is the space of volume forms). Thus Kg is a manifold, since it is given by an inverse
regular value, as can be deduced from Tgdµ · h = tr(h)dµ(g), which, for h = LXg + Ng,
is surjective. I.e. Kg = dµ̃−1(g) where dµ̃ :MCD·g = CD · g → V . In the end we have the
decomposition:

TgM = Tg(Σ
D
g ∩Ndµ(g))⊕ Tg(C · g)⊕ Tg(CD · g ∩Ndµ(g)) (8.24)

or in words, we can decompose the space into “the volume–form–preserving–divergenceless
directions + the scaling–of–the–metric direction + the diffeomorphisms–that preserve–
the–volume–form directions”.
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Chapter 9

Connection Forms

In the following we have provided a natural extension of the construction of a principal
fiber bundle structure to Riem. That next step is of course, the construction and inter-
pretation of connections for infinite-dimensional groups acting on Riem, and that is the
topic of this chapter.

9.1 Introduction

It is a much repeated story that in a diffeomorphism invariant theory points lose their
meaning, their individuality becoming dissolved by the active interpretation of these
global “coordinate changes” [47].1 In fact, since we will be dealing exclusively with
global, and thus active, diffeomorphisms, we will use the expression ”change of labeling”
to distinguish the nomenclature from that of the passive, local “coordinate changes”.

It is the case that in pure gravity only the metrics over the manifolds attribute any
real significance to the spatial points of M . We indicate this dependence by Mg, a family
of diffeomorphic manifolds parametrized by g.

In the canonical analysis, the 3+1 decomposition of the four dimensional metric in-
volves a ‘shift’ vector field and a lapse scalar, which parametrize the diffeomorphism from
a globally hyperbolic space-time to M ×R. This entails in our notation a one-parameter
family of diffeomorphic manifolds Mg(t).

The lapse encodes the temporal distance element in the embedding of the one parame-
ter family of hypersurfaces. The ’shift’ vector field effectively already requires some iden-
tification between the points of “neighboring” Mg(t)’s. The shift itself is an infinitesimal
deviation from the background identification of Mg(t) and Mg(t+δt) by vectors orthogonal
to Mg(t) with respect to the ambient Lorentzian metric. If we propose here to at least
momentarily disregard four dimensional embedding, specially in view of the first part of
this thesis, then the shift vector field loses its meaning, and we must find a new way to
string together the Mg(t)’s along time.

The need to somehow identify points of our manifolds along time, naturally brings
us to the concept of best-matching [17], and forces us to introduce a form of “parallel
transport” of point labels. From this concept it is a small step to see this parallel transport
as taking place in the gauge setting, where the structural group should be D, since it
is this group that parametrizes the ways with which we can connect Mg0 and Mg1 . It
is this concept and its generalization that we will study in this chapter. We regard this

1In a sense then our notion of space is nothing but a D-torsor (see footnote 8.1.1).
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Figure 9.1: A given evolution of the Universe making a trajectory in shape-space, and
a given lift to a representation by 3-metrics. A connection will act by extracting the
vertical component of each infinitesimal segment of the line, but it exists on the whole
bundle. We’ll take it as orthogonally induced by a metric on Riem, but in principle it
could be given by other means.

construction as an elaboration of the concept of best-matching, as spelled out in section
2.3.

Our aim is not just to construct the decomposition TgM = Hg ⊕ Vg of the principal
fiber bundle, but to explicitly construct the Lie algebra valued one form ω. This does not
in fact require the introduction of new mathematical apparatus, but it certainly implies
a shift in the way one views gauge theory over these configuration spaces towards indeed
an original perspective. The connection form then has a very physical interpretation, as
something that acts on metric velocities and yields vector fields. Its interpretation is that
it yields a preferred infinitesimal “label change” from each infinitesimal metric change.
It is the general study of such connections and what they imply (as for example wrt
locality) that this chapter is devoted. In principle, a connection could be derived from
a more general action over the whole of Riem(M), including curvature forms. As this
requires more work to be made sense of, we start with a certain type of metric induced
connections, yielding equation (9.18) as our main result.

9.2 Connection forms: basic properties

Let us first of all define a connection form for a finite-dimensional principal fiber bundle
P :

Definition 3. In finite-dimensions a connection form is defined as a Lie-algebra-valued
one form ω ∈ Γ(T ∗P ⊗ g) which acts on vertical vectors as: ω(TIdµ(X)) = X, where
X ∈ g and µ : P ×G→ P is the group action. The connection must also transform as
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Rhω = Ad(h−1)ω

In the above Rh is the push-forward right action: Rhω(v) = ω((µh)∗v) where v ∈ TpP
and µh : P → P is the right action by the group element h. The adjoint acts on the
algebra as

Ad(h)X =
d

dt |t=0

(
h ◦ exp(tX)h−1

)
where exp : g → G is the group exponential. Let us also define equivariance as a term
that encompasses both the covariant and contravariant denominations. Different spaces
might have different equivariance properties. For instance the usual Yang-Mills curvature
form transforms equivariantly in the adjoint representation, but the local expression for
the connection does not, as it does not transform homogeneously.

The connection form in our present infinite-dimensional setting will then be a Lie-
algebra valued linear functional on TM (metric velocities). Since technically the Lie
algebra here is just the space of infinitesimal diffeomorphisms of M , the connection form
turns out to be a vector-field-valued distribution, taking metric velocities as test func-
tions. We are thus led to the meaning of a gauge connection over M′ as representing a
Machian notion of relational space, since it relates spatial points along time in a manner
depending on the dynamics of the entire Universe (depending strictly and globally on
the metric velocities). The connection form is not an empty mathematical construct.
Its interpretation as yielding parallel transportation of spatial points2 is suggestive and
interesting (especially from a relational point of view).

9.2.1 An equivariant splitting.

A choice of connection form in P amounts as usual to choosing an equivariant decompo-
sition

TgM′ = Hg ⊕ Vg. (9.1)

where by equivariant we mean that the decomposition is maintained by the group action.
In the infinite-dimensional case, we have to separate the requirement of the direct

sum in three separate conditions:

Vg and Hg are closed
Vg ∩Hg = {0}

span{Vg ∪Hg} = TgM′
(9.2)

We will shortly discuss the mathematical instruments and conditions required for these
conditions. The physical purpose of the decomposition is so that we can distinguish what
is a label change, which would be given by projection of metric change along the orbits,
and the remnant of the metric change, which could be identified with pure geometrical
change.

This amounts to defining an equivariant projection on the vertical space, which we
call V̂ : TP → V , having the properties V̂ ◦ V̂ = V̂ and equivariance: f ∗ ◦ V̂ = V̂ ◦ f ∗.
But to be able to construct the actual connection form we need more than just the
equivariant direct sum decomposition, but also conditions on the representation of the

2The connection form for the conformal group would then yield a notion of parallel transport of local
scale.
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algebra (that it forms a fundamental vector field with the correct equivariance properties).
This is necessary to derive the correct transformation properties of the connection itself
Rfω = Ad(f−1)ω. We also include this criterion and show that indeed such a connection
has these properties.

9.2.2 The connection form obtained from the vertical projec-
tion

The vertical sub-bundle, the bundle tangent to the orbits, is given by Vg := {LXg | X ∈
Γ(TM)}, where LX is the Lie derivative. The canonical representation of the diffeomor-
phism group on Γ(TM) is the adjoint representation:

Ad(f)(X) =
d

dt
(f ◦ exp(tX) ◦ f−1) = f∗(X ◦ f−1).

Now, for the representation of the Lie algebra on itself, we have adX = [X, ·] since
[X, Y ] = d

dt |t=0
Ad(exp(tX))Y which is an element of Γ(TM). Hence the Lie algebra

bracket is just the vector field commutator.
If we have a right action of a Lie group on any manifold N (N is allowed to be

infinite-dimensional) Ψ : N × G → N , for X ∈ g we define the fundamental vector field
ζX ∈ Γ(TN ) by

ζX(x) = (T(x,Id)Ψ) · (0x, X) =: TIdΨx(X), (9.3)

where we redundantly keep the subscript x in Ox, to remind ourselves that this is the
zero vector at the point x ∈ P .

Lemma 2. A fundamental vector field must satisfy the following properties for f ∈ G:

1. ζ : g→ Γ(TN ) is linear.

2. Tx(Ψf )(ζX(x)) = ζAd(f−1)X
(Ψ(x, f))

3. [ζX , ζY ] = ζ[X,Y ]

where we have denoted, for fixed f , in the same way as in (9.3):

Tx(Ψf ) := (T(x,f)Ψ) · (·, 0f ) : TxN → TΨ(x,f)N (9.4)

Let us explicitly check property 2 for the D action onM. To make the actions clearer
we expand f ∗g = Ψ(f, g) and so we have that, according to (9.4), for f ∈ D and g ∈M,

Tg(Ψf ) := (T(g,f)Ψ) · (·, 0f ) : TgM→ TΨ(f,g)M (9.5)

and
TIdΨg := (T(g,Id)Ψ)(0g, ·) : Γ(TM)→ TgM. (9.6)

Using rf for the right action of the group on itself we also have:

Ψ(g, rf ◦ h) = Ψ(f ∗g, conjf−1(h)) (9.7)

for any h ∈ D, where conjf is the conjugate action of the group on itself: conjf (h) =
f ◦ h ◦ f−1, and again ◦ is composition of maps (in this case diffeomorphisms).
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Using (9.6) and (9.5) we have:

Tg(Ψf )(LX(g)) = (T(g,f)Ψ) · ((T(g,Id)Ψ) · (0g, X), 0f )

= (T(g,f)Ψ) ·
(

(T(g,Id)Ψ) · (0g,
d

dt |t=0
exp(tX)), 0f

)
= (T(g,f)Ψ) ·

(
d

dt |t=0
Ψ(g, exp(tX)), 0f

)
=

d

dt |t=0
(Ψ (Ψ(g, exp(tX)), f)) =

d

dt |t=0
(Ψ(g, exp(tX) ◦ f))

=
d

dt |t=0

(
Ψ(f ∗g, conjf−1 exp(tX))

)
=

d

dt |t=0
(Ψ(f ∗g, exp(tAdf−1X)))

= LAd(f−1)X
(f ∗g), (9.8)

where we used (9.7) to go from the fifth to the sixth line.
We can then identify ζX in Lemma 2 with LX and verify that it automatically

satisfies the first and third identities required for a fundamental vector field. So the key
properties of the action of the Lie algebra on the bundle are satisfied by the Lie derivative
of vector fields, a fact that is of utmost importance for our treatment and that allows us
to take the “gauge analogy” to be not merely an analogy.

We then define the Lie-algebra valued connection form:

Definition 4. Given a tangential decomposition as in (9.2), if we can construct a vertical
projection V̂ : TP → V satisfying V̂ ◦ V̂ = V̂ and3 f ∗ ◦ V̂ = V̂ ◦ f ∗, we then define the
vector field valued connection form as:

ωg = (TIdΨ)−1
g ◦ V̂g : TM′ → Γ(TM) (9.9)

Since αg := TIdΨg is an isomorphism over its image, i.e. over the vertical space, we
can take inverses.

Clearly we then have that

V̂g[ġ] = αg ◦ ωg[ġ] = Lωg [ġ]g (9.10)

where ġ ∈ TgM. Thus vertical projection of a velocity is equal to the Lie derivative of
the metric along the preferred direction ω[ġ].

By the transformation properties of the Lie derivative (see (9.8)) and equivariance of
the vertical projection we have the usual transformation property:

f ∗ω = Ad(f−1)ω (9.11)

confirming that this can indeed be interpreted as a connection form.
Because D admits the exponential map, we have not only uniqueness, but also exis-

tence of a D-equivariant smooth parallel transport. This means that we can integrate
forward from some initial labeling, finding some relative preferred identification of spa-
tial point along time.4 To be more explicit, let us consider a heuristic example. Let us

3 We pause to note that for usual push-forward and pull-back maps for “constant” diffeomorphisms,
we could have used extra “∗”’s: (f∗)∗ : TgM→ Tf∗gM. This is the exact analogous of the tangent left
translation lg∗ in the usual action of Lie groups. In this setting this is superfluous since due to the vector
space structure of S2M , we have f∗∗ = f∗. From now on we will omit the double star notation.

4We do note for completeness that it is well known that the exponential map of D is not surjective
on any neighborhood of the identity. We however abstain from speculating on the relevance of this fact
for our approach.
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suppose we describe (supposing we could observe the entire Universe) a time evolution of
the metric, i.e. a one-parameter family g(t). Given an initial labeling of the manifold at
t = 0, we can then integrate the connection along time to find the preferred point that is
“equilocal” to x(0):

x(0) 7→
∫

[0,1]

expω[ġ(t)](x)dt. (9.12)

Interlude: interpretation of non-trivial holonomy.

So what would it mean to have two paths in shape space [g1(t)] and [g2(t)] (this hypothet-
ical situation then by definition already falls outside of the domain of classical physics),
starting from the same shape [g0], such that their horizontal lifts gH1 (t) and gH2 (t), al-
though arriving at the same shape [gH1 (1)] = [gH2 (1)], fall on different places on the orbit
gH1 (1) 6= gH2 (1)? For the diffeomorphism group, it would mean that best matched ob-
servers who agree on the “location” of points initially would, through (9.12), disagree on
their location in the end. We leave a thought her for the reader: what would it mean for
the conformal group?

9.2.3 Locality of connection forms.

Another factor of extreme importance is the question of local representability of the
connection form. That is, ω at each g is an element of T ∗gM⊗ Γ(TM). However, since
we are dealing with infinite-dimensional spaces, we cannot a priori identify the space of
linear functionals acting on TgM′ ' Γ(S2T

∗), which we call T ∗gM′, with Γ(TM⊗STM) =
Γ(S2T ).

As an initial attempt to construct such a local representation, we could choose a
partition of unity of M , defined by the characteristic functions {χα} of the open sets
{Uα ∈M}. Then for an element λg ∈ TgM′ by linearity we have:

λg[ġ] =
∑
α

λg |Uα
[ġ|Uα ]

where in this section we have denoted functional dependence by square brackets. In the
limit, this would come to:

λg[ġ] =

∫
M

λabg (x)ġab(x)dµg (9.13)

for λg ∈ Γ(TM ⊗S TM).
In fact, what we have is that elements of TgM are tensors with compact support, which

can thus be considered as a space of test functions (or more precisely, test tensors5). We
have that the space T ∗gM′ is of course a space of distributions on TgM, and the space
defined above by elements of the simple form of (9.13) are dense inside T ∗gM.

We will ignore these subtleties and now express ω (up to discrepancies on sets with
vanishing measure) as the two-point tensor: ω̃ ∈ Γ(TM)⊗ Γ(TM ⊗S TM). Pointwise:

ωg(x, x
′) ∈ (Tx′M ⊗S Tx′M)⊗ TxM ' L(T ∗x′M ⊗S T ∗x′M,TxM)∫

ωab
′c′(ġb′c′(x

′))
√
gd3x′ = ωag [ġ](x) ∈ TxM (9.14)

5Since M is compact, we can take the components of an element of TgM as the test functions.
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where we have used DeWitt’s notation, denoting tensorial character at x′ by primed
indices. In the examples we will find, the connection form will always be given by the
simple form of (9.13).

The geometrical interpretation of the connection form viewed in this way is that, for
each metric g, a given metric velocity ġ(x) at a point x ∈M will contribute for the “best-
matching” vector field at each other point x ∈ M . In this way then, we get a non-local
contribution to the best-matching vector field at each point of M . These contributions
however may come from metric velocities at that and every other point of M . This goes in
line with relational arguments, since this implies that the stringing of points throughout
time (equilocality) are determined by the kinematics of the entire universe.

9.3 Construction of connection forms in M through

orthogonality

Now that we have written down the basic structures that allow a gauge treatment of
labelings using the D group, we will derive explicit formulae for the connection forms
through the use of the orbit maps and their adjoints. Of course in this case a supermetric
fixes the connection, if it exists, once and for all. It is not, as it is in Yang-Mills,
determined by an action principle. So when we consider actions involving such fixed
connections, our system works in analogy to a particle in a fixed electromagnetic potential.

To let the connection be determined through a variational principle, one would require
a term like F [Ω] in the action, where Ω is the curvature form of ω. However, as Ω[ġ, ġ] = 0,
it cannot appear in the ‘classical trajectory inM’ action we are considering. Nonetheless
this can be done for a field theory inM, a treatment which will show up in future work.

Now we shall address the three items in (9.2) and present a direct formula for the
connection form and the pre-requisite conditions on its components. We emphasize that
no mathematical breakthrough is needed in the construction of the vertical projection
The only thing that is mathematically novel in the present work is the use of a connection,
and this is a very direct consequence of i) Γ(TM) forming a Lie algebra and ii) the Lie
derivative of the metric along these fields forming a fundamental vector field on TM.

Nonetheless, the emphasis here is completely different than that of usual treatments,
as it introduces the explicit use of a connection form and focuses on the conditions
necessary for its definition from the basic ingredients. We will generalize the statements
in this section to the case of the conformal group.

9.3.1 Construction through orthogonality and the momentum
constraint

We could initially attempt to define an equivariant direct sum decomposition (9.1) im-
plicitly, through an equivariant inner product in M′, by orthogonality with respect to
the vertical bundle.

In other words, by defining the horizontal subspace H by orthogonality to the canonical
fibers with respect to some D-invariant supermetric 〈·, ·〉:

G[Ĥ[ġ], LZg] =

∫
M

〈ġ − V̂g[ġ], LZg〉dx3 =

∫
M

〈ġ − Lω[ġ]g, LZg〉gdx3 = 0 (9.15)
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For instance, writing the canonical momentum as:

πab =
1

2N
Gabcd(ġcd − Lωgcd)

we obtain that the momentum constraint is written as

Ha =

(
1

2N
Gabcd(ġcd − Lωgcd)

)
;b

= 0 (9.16)

For ω = ωg[ġ] given by (9.10), we have that (9.16) is implicitly exactly of the form of

(9.15), with 〈·, ·〉 = Gabcd

N
:∫
M

1

2N
Gabcd(ġab − Lω[ġ]gab)LZgcddx

3 = 0

which has to be valid for all Z ∈ Γ(TM). This is how the momentum constraint can be
shown to be merely a statement to the effect that the connection is induced by orthogo-
nality to the fibers.

If a horizontal space is well defined with respect to such an invariant supermetric,
the projections should themselves be equivariant, e.g. (f ∗)∗V̂g = V̂f∗g ◦ (f ∗)∗ However,
the fact that one is dealing with (completions in) function spaces obstructs such a direct
approach. In the infinite-dimensional setting one cannot know if for instance H and V
are closed, the first requirement of (9.2). Furthermore, this procedure does not provide us
with an explicit formula for our connection form. Even the vertical projection operator,
which would in the finite dimensional case be defined as P (w) =

∑
i〈vi, w〉vi, for vi an

orthonormal basis for V , requires modification in the present infinite-dimensional case.
We shall proceed differently, and find that there exists a more comprehensive way to

define a vertical projection operator and valid connection explicitly. This includes the
orthogonality criterion. For this we need to use the Fredholm alternative.

9.3.2 Using the Fredholm Alternative

In Subsection 8.3.4 we have shown that if the horizontal bundle is defined as the space
orthogonal to the orbits, i.e. orthogonal to Im(α) (where we remind the reader that α is
the tangent to the orbit map at the identity), H is given by Ker(α∗), (since (α(X), v) = 0
if v ∈ Ker(α∗)).

Taking any supermetric, without further assumptions (see alternative formulation of
Theorem 3):

• The operator α and also its symbol σ(α) are injective. The first of these require-
ments is equivalent to a restriction to configurations that do not possess symmetry
wrt the relevant group. For D for example, it amounts to restricting our attention
to M′;

• A smooth adjoint of α exists with respect to the fiber metrics in TM and T ∗M ⊗S
T ∗M , such that Ker(α∗)∩ Im(α) = 0 and Ker(σ(α∗))∩ Imσ(α) = 0. The condition
Ker(α∗)∩Im(α) = 0 can be seen in fact to be equivalent to requiring the supermetric
on Im(α) to be non-degenerate (see Proposition 3 in section 8.3.1). This is a
condition automatically implemented in the Fredholm alternative that encodes the
criterion for Hg ∩ Vg = 0;
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• The supermetric is D-equivariant.

Then the operator defined by (8.13):

V̂ := α ◦ (α∗ ◦ α)−1 ◦ α∗ : TM′ → TM′ (9.17)

is well-defined and satisfies all required properties of a vertical projection operator:

• V̂ is D-equivariant.

• It is idempotent, V̂ 2 = V̂ .

• V̂ (α(X)) = α(X) for X ∈ Γ(TM).

• The space orthogonal to the orbits (or horizontal) satisfies: H := ν(Og)h =

Ker(α∗h) = KerV̂h and V = Im(V̂ ) and thus TgM = H ⊕ V .

In fact, the invariance of the supermetric is only used in the construction of the V̂
operator in order to find the necessary transformation properties of α∗. It ensures that
the adjoint of (r−1

f )∗, where rf is right translation by f , is indeed (rf )∗ and so α∗ ◦ α
transforms in the appropriate way. It is also worth noticing that the appearance of the
inverse differential operator (α∗ ◦α)−1 in the definition of the vertical projection operator
confirms the non-locality of the connection form explicit in (9.14).

From the vertical projection operator we obtain the connection form in the usual way:

ω := α−1 ◦ V̂ = (α∗ ◦ α)−1 ◦ α∗ (9.18)

Note that if the vertical operator is well-defined, so is α−1
|Vg .

9.3.3 Equivariant metrics

We here first list a wide range of inner products inM which are D-invariant. We are able
to prove equivariance for any supermetric of the form FGβ where Gabcd

β = gacgbd−βgabgcd
is a one-parameter family of supermetrics, weighted by a functional F : M → C∞(M),
which we call lapse potential and define as:

Definition 5. A lapse potential is any functional F :M→ C∞(M) formed from g and
its curvature tensor by means of tensor product, index raising or lowering, contraction
and covariant differentiation.

To prove that the above mentioned class of supermetrics indeed induces an invariant
inner product, one must simply apply a theorem (see for instance Theorem 9.12.13 of [48])
which establishes that, for such a lapse potential F , F (f ∗g) = F (g) ◦ f . Furthermore
it is easy to show that LZg, for any Z ∈ Γ(TM), is a Killing vector for the generalized
supermetric (1.1) [9]. Combining these facts we have:∫

M

1

F (f ∗g)
Gβ(f ∗u, f ∗v)f∗gdµf∗g =

∫
M

(
1

F (g)
Gβ(u, v)g ◦ f)f ∗dµg. (9.19)
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9.3.4 Ellipticity of α∗ ◦ α
We have already shown that α has injective symbol in subsection 8.3.3, furthermore, by
the very definition of M′, it obviously true that α is injective over M′.

Proposition 4. For each g ∈ M′, for the inner products g and Gβ/N in TM and
T ∗M⊗ST

∗M respectively, for β 6= 1 and N any lapse potential, Ker(σ(α∗))∩ Im(σ(α)) =
∅.

Proof. We first calculate the symbol of α∗ (see subsection 8.3.3). For λ ∈ T ∗xM and
v ∈ TxM such that ξ = g(v, ·), we have σλ(α) : TxM → T ∗xM ⊗S T

∗
xM given by

σλ(α)(v) = ξ ⊗S λ = 2v(aλb) (9.20)

From now on we omit the α in the notation. For uab ∈ T ∗xM ⊗S T
∗
xM the adjoint symbol

can be directly defined by:

Gabcd
β

N
uab(σλ(v))cd = (σ∗λ(u))cvc

From this one easily calculates (we also omit the β dependence to avoid cumbersome
notation) σ∗λ : T ∗xM ⊗S T

∗
xM → TxM :

(σ∗λ(u))a =
2

N(x)
(u(ab)λb − βuaaλa) (9.21)

Now inserting uab = σλ(v) = 2v(aλb) for some v, and assuming uab ∈ Ker(σ∗λ), we have

u(ab)λb = βuaaλ
a

1

2
||λ||2va = (β − 1

2
)(vbλb)λ

a

and thus λa = cva, which fed back into the equations can easily be seen to only have a
solution for β = 1. �.

So if we are not approaching β = 1 this part of the requirements for the vertical
projection operator for such supermetrics is satisfied. However, the value β = 1 is the
one present in the canonical 3+1 decomposition of general relativity, and is the one
value for which one retains foliation invariance. However, there exist different approaches
to gravity that encode fixed foliations, such as [49] and the theory of Shape Dynamics
presented in the first part of this thesis. In particular, SD yields a theory even classically
dynamically equivalent to GR which does include a preferred foliation through the use
of the conformal group as a symmetry group.

As we will see, a trivial consequence of using the conformal group is that the equivalent
of α∗ ◦ α is indeed elliptic for all β and lapse potentials.

9.3.5 The intersection Ker(α∗) ∩ Im(α)

There is a potential problem even in the simple implicit orthogonality view, which stems
from the non-definiteness of the deWitt supermetric. If the direct sum decomposition is
to be determined by an orthogonality relation with respect to a metric that is not definite
(it has signature − + + + ++), we could run the risk of having elements of the vertical

101



space that are orthogonal to the vertical space, i.e. v ⊥ Vg such that v = LXg for some
X ∈ Γ(TM), hence v ∈ Vg as well.

The adjoint α∗ is given by:∫
M

1

N
Gabcd
β uabX(c;d)dµg =

(
1

N
(ucd − βgcdua;a)

)
;c

Xd (9.22)

Thus

α∗(ucd) =

(
1

N
(ucd − βgcdua;a)

)
;c

(9.23)

However, even if we simplify the treatment to the case where the functionalN(x; g] = N [g]
is spatially constant, we can already glimpse severe obstructions to Ker(α∗)∩Im(α) having
zero intersection. First note that

gacX(a;b);c =
1

2
gac(Xa;bc +Xb;ac) =

1

2
gac(Rd

abcXd +Xa;cb +Xb;ac)

=
1

2
(Rd

bXd + (Xd
;d);b +∇2Xb)

where ∇2Xb := gac(Xb);ac is the Riemannian Laplacian. Then

α∗ ◦ α(X) = (gacgbd − βgabgcd)(X(a;b));c =
1

2
(RdbXd + (1− 2β)(Xd

;d)
;b +∇2Xb) (9.24)

If one assumes β 6= 1, then the operator is elliptic. However, even for β = 1, it can be
shown that non-trivial 6 sets of solutions (or lack thereof) of (9.24) (which is equivalent
in this case to Ker(α∗) ∩ Im(α) = 0) depend on the metrics g [9]. There are a number
of solutions and domains of validity for the condition Hg ∩ Vg = {0} even for β = 1.
For example, for all Ricci-negative geometries (which always exist for closed M [50]) the
condition holds, as well as for non-flat Einstein metrics. For a more extensive study of
these matters see [9]. We remark though that as this would still not give a splitting of
M′, it would not count as a connection in the sense applied here, which requires it to
exist on the whole principal fiber bundle.

9.4 The conformal diffeomorphism group.

Now we apply the same reasoning as in the previous section to the case of the conformal
group.

The symbol of τg, for λ ∈ T ∗xM, v ∈ TxM and c ∈ R can be seen to be

σλ(v, c) = cgab + λ(avb) (9.25)

Now, take the metric 〈·, ·〉 in T ∗xM ⊗S T
∗
xM to be NGβ. 7 The inner product in TxM ×R

is taken to be g(v1, v2) + c1c2. Then for uab ∈ T ∗xM ⊗S T
∗
xM from the definition of the

adjoint symbol:
NGabde

β uab(σλ(v, c))de = 〈(σ∗λ(u)), (v, c)〉
6Since we have excluded Killing fields from our considerations, trivial solutions to these equations are

the ones for which Xa = 0.
7Note that in our notation the lapse potential here appears multiplying the metric, as opposed to the

usual lapse in ADM which for the kinetic term appears dividing it. This will make it easier to deal with
powers and negative signs.
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we easily find σ∗λ : T ∗xM ⊗S T
∗
xM → TxM

(σ∗λ(u)) =
(
2(u(ab)λb − βuaaλa),−(1− 3β)uaa

)
. (9.26)

Ellipticity of τ ∗ ◦ τ
Now suppose u(ab) = σλ(v, c))ab and (σ∗λ(u)) = (0, 0). Then we have that

cλa + ||λ||2va + λbvbλ
a = 0

3c+ 2λava = 0
⇒ ||λ||2va − c

2
λa = 0

(9.27)

Contracting the last equation with λa and substituting (D.50) in the result yields−2||λ2||c =
0 which only has solution for c = 0, in which case va is also obligatorily zero as well.
Thus we have proven that

Proposition 5. For the given action of C onM, α is an elliptic operator and Ker(σ(τ ∗))∩
Im(σ(τ)) = 0. Thus τ ∗τ is an elliptic operator.

The intersection Ker(τ ∗) ∩ Im(τ)

Since we have gone directly to the calculation of the symbol σ∗(τ), we now write down
the actual operator, for vab ∈ Γ(S2T

∗). First of all, we check that the supermetric defined
by (1.1) is equivariant with respect to the action of ξ (global gauge transformations).
One must merely see that ξ(f, p) acts on the covariant metric tensor gab, as

ξ((f, p), gab) = p−1f−1
∗ gab

Thus for global transformations we have:

G[u, v] =

∫
M

d3x
√
pf ∗gNpf∗gG

abcd
pf∗g(pf

∗u)ab(pf
∗v)ab =

∫
M

d3x
√
gNgG

abcduabvab (9.28)

where for the supermetric to be conformally invariant, N must now not only be a lapse
potential, but also must be further constrained:

Definition 6. A conformal lapse functional is one for which Ng(x) > 0 and

Npf∗g(x) = p−3/2Ng(f(x)) (9.29)

We will give an example of such a lapse potential below.
Calculating the adjoint operator we get:

τ ∗(v) =
(
−2Nvaa ,−(NGabde

β vde);b

)
(9.30)

Since for the kernel of τ ∗β the trace part of vab is zero from the first component of (9.30), we

immediately see that (inputting the β back into the notation for the adjoint) Gabde
β vde =

Gabde
0 vde. Thus Kerτ ∗β = Kerτ ∗0. Hence Ker(τ ∗β ◦ τ) = Ker(τ ∗0 ◦ τ). Thus, under the

supposition that the lapse is a strictly positive function, exactly as the result Ker(α∗0) ∩
Im(α) = 0 contained in Section 8.3 (see also [34]), a result dependent on a positive definite
inner product on both the target and domain spaces, one can show that Ker(τ ∗0)∩Im(τ) =
0. For completeness, the specific equations for elements of Ker(τ ∗0) ∩ Im(τ), are, for
vab = X(a;b) + λgab

Xa
;a + 3λ = 0(

N(X(c;d) + λgcd)
)

;d
= 0

(9.31)
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Equivariance of τ ∗ ◦ τ .
Now all that is left to prove that indeed we have a well-defined connection form for the

conformal group (given implicitly by the generalized metrics inM) is to check wether V̂
transforms equivariantly, or in other words, that τ ∗ ◦ τ is extended to be right invariant.
As one can see from equation (8.14), this is dependent strictly on equation (8.6), which we
now compute for this action. This computation is equivalent to finding out if the action
of the group produces a fundamental vector field, as we did for the diffeomorphism group.

The left hand side of (8.6) gives, for ft the integral diffeomorphism of X:

T(f0,p0)ξg(X ◦ f0, p
′ ◦ f0) =

d

dt |t=0
ξ((ft, pt), g) = f ∗0 (p′g + p0LXg) (9.32)

where ft produces the integral curves of the field X(x) = d
dt |t=0

ft(f0(x)). In its turn the

right hand side gives:

(l(f0,p0))∗ ◦ τ ◦ (r(f−1
0 ,1/(p0(f−1

0 ))))∗(X, p
′) = (l(f0,p0))∗ ◦ (

d

dt |t=0
ξg(ft,

p′t+ p0

p0

(f−1
0 ))

= f ∗0 (p′g + p0LXg) (9.33)

This is equivalent to the following:

T(f0,p0)ξg(X ◦ f0, (p
′ ◦ f0)p0) = p0f

∗
0 τg(X, p

′) (9.34)

Hence we find that for the conformal group every structure works nicely and we have a
metric-induced connection in C ↪→M′′ →M′′/C for every choice of β in the supermetric
and positive lapse potential. The actual equations, writing ω[ġ] = ((ωD[ġ])a, ωP [ġ]) take
the form

(ωD[ġ])a;a + 3ωP [ġ]) = ġaa (9.35)(
N((ωD[ġ])(a;b) + ωP [ġ]gab − ġab)

)
;b

= 0 (9.36)

meaning the corrected velocities are both traceless and transverse with respect to the
positive definite (ultra-local) metric in M given by Gabcd = Ngacgbd.

Thus we have guaranteed existence and uniqueness of solutions for the connection
form for C.

9.4.1 A fully conformally invariant action with two metric de-
grees of freedom.

Horava gravity with detailed balance.

Let us briefly examine one recent gravity theory which breaks foliation invariance and pos-
sesses powerful indications towards conformal invariance. The so-called Horava-Lifshitz
gravity has recently received a great deal of attention, we present its “detailed balance”
formulation [49]:

S =

∫
dt

∫
d3x
√
gN

(
2

κ2
Gabcd
λ KabKcd −

κ2

2w4
CabCab

)
(9.37)

where w and κ are coupling constants. The cotton tensor used here is defined as

Cab := εacd∇c

(
Rb

d −
1

4
δbdR

)
(9.38)
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The Cotton tensor is symmetric, transverse and traceless:

Cab = C(ab) , Cab
;b = 0 , Ca

a = 0 (9.39)

It also homogeneously scales conformally with weight −5/2. Thus under gab → e4φgab we
get Cab → e−10φCab.

We shall not explain the more interesting aspects of why the action (9.37) was intro-
duced in the first place. At this level, it suffices to say that it possesses different numbers of
spatial and time derivatives, making it space-time anisotropic and power-counting renor-
malizable. By the previous work on this section we need not check that the constraints
associated to the action of D and C (the “diffeomorphism” and “conformal” constraints)
propagate, have the right transformation properties, or any of a multitude of laborious
computations; if the system is consistent, we have designed a well-defined gauge system,
in every possible sense. Thus all that is required for conformal invariance is to impose
equations (9.35) and (9.36) for our fixed connection form. The remaining constraint, the
scalar constraint of theory (9.37) is of the form:

2

κ2
Kab
TTK

TT
ab −

κ2

w4
CabCab = 0 (9.40)

where NKTT = ġTT and

ġTTab = (ġab + (ωD[ġ])(a;b) + ωP [ġ]gab) (9.41)

are the traverse traceless metric velocities.
Let us proceed to count the degrees of freedom of the conformally invariant system

we expect to obtain (if the action is consistent). First of all, since we no longer have full
Lorentz invariance, the modified version of the Hamiltonian constraint (9.40), does not
automatically propagate, yielding one further constraint on our variables. Thus we have:
6 + 6 + 1 = 13 (degrees of freedom in gab, ġab and N) minus ‘the equations of motion for
N (or ‘Hamiltonian constraint’) and its propagation equation, which are (at least) 2 in
number, the ‘conformal constraints on corrected velocities’ (9.35) and (9.36) (which gives
4 more), and finally the additional 4 coming from the choice of section for C. Thus we
have 3 remaining degrees of freedom, which is one too little.

A model with the right number of degrees of freedom.

First of all, we see that to make a fully C-invariant theory, we must have a local lapse,
and if so, to get the right number of degrees of freedom the lapse equations of motion
have to be automatically propagated by the other constraints and equations of motion,
which is a very tall order.

An alternative, which we propose here, does not have a lapse, and thus has no Hamil-
tonian constraint and yields a theory with the right number of degrees of freedom (12-4-
4=4). For this we simply choose the following lapse potential, satisfying (9.29):

Ng(x) =
√
Cab(x)Cab(x) (9.42)

Its conformal weight is given by −20+8
2

= −6, and it clearly satisfied all the items of
Definition 5) and thus all our gauge constructions are valid. We thus have the action:

S =

∫
dt

∫
M

√
gd3x

1

w2

√
CabCab(ġ

cd
TT ġ

TT
cd ) (9.43)
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The Hamiltonian for this is given by

H[ξ, ρ] =

∫
M

d3x
Gabcdπ

abπcd√
CabCab

+ πabLξgab + ρπ (9.44)

To stress, this is a fully C-invariant action with the same number of degrees of freedom
as GR, but which does not have a Hamiltonian constraint. Equation (9.43) is furthermore
a purely geodesic-type action in Riem, with just one global lapse and thus one global
notion of time, as such it also possesses inherent value in a relationalist setting.

In the first part of this thesis we were able to see GR fully as conformally invariant
theory. So if any, this formalism has hopes only of recovering this dual formulation of
GR, something which will be investigated further.
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Chapter 10

Conclusions

In this chapter we will briefly sum up our vision of what has so far been achieved and
possible immediate future directions. We repeat some of the statements made in the
introductory chapter, now with more technical detail.

Results and directions for Shape Dynamics.

Brief statement of results.

We have found a theory of gravity with two physical degrees of freedom that possesses
local scale invariance. Only in a certain conformal gauge it is identical to ADM in constant
mean curvature gauge. The total Shape Dynamics Hamiltonian is given by

HSD = αHgl +

∫
Σ

d3x
(
ρ(x)4(π(x)− 〈π〉√g) + ξa(x)Ha(x)

)
(10.1)

in the ADM phase space Γ parametrized by the usual coordinates (g, π), where α ∈ R,
ρ(x) ∈ C∞(M) is an arbitrary Lagrange multiplier function, and Hgl[g, π] is our unique
global Hamiltonian, which is a non-local functional of gab, π

ab which does not depend on
the point x ∈M . Shape Dynamics possesses the local first class constraints

4(π(x)− 〈π〉√g) , Ha. (10.2)

where 〈f〉 is the global mean of the function f over the 3-manifold M . These are the
generators of volume-preserving conformal transformations and spatial diffeomorphisms,
respectively. The non-zero part of the constraint algebra is given solely by:

{Ha(ηa), H
b(ξb)} = Ha([~ξ, ~η]a)

{Ha(ξa), π(ρ))} = πLξ(ρ)

For the asymptotically flat case we have a similar result, where the conformal generator
is given by π(x) only, and its Lagrange multiplier respects certain asymptotic boundary
conditions.

The way to achieve this was to enlarge the original theory by a process akin to the
Stueckelberg mechanism [28], thereby obtaining a theory with more constraints then the
original one, but still without conformal symmetry. By then performing two distinct
preferred gauge fixings on the enlarged gauge theory, we regain either GR in ADM form,
or the theory of Shape Dynamics (SD) outlined above. The technical crux of the matter is
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that the gauge fixing leading to SD leaves a single scalar constraint unfixed, and that the
resulting second class constraints can be fully solved in terms of the formerly introduced
extra fields.

We have furthermore found how we can extend the treatment that leads to (10.1) to
the electromagnetic, massive and massless scalar fields (see chapter 6), with their usual
Hamiltonians. The only thing that changes above is that one has a different Ha (which
nonetheless still generates diffeomorphisms), a different global Hamiltonian Hgl, which is
now also a functional of the added field variables, and, in the case of electromagnetism,
the Gauss constraint is also added to the mix. It should also be said that for the massive
scalar field the algorithm works only up to a certain field density. Here, the only necessary
requirement was that the fields only scale through their coupling to the metric, i.e. the
fields themselves do not scale, only the metric does. Once matter couplings are achieved,
it becomes very simple to regain a causal (and indeed metric) structure of a space and
time.

We also show here that different approximation schemes are available for the global
Hamiltonian, and in this thesis we perform a large volume expansion for it (chapter 7),
obtaining the first three terms. We use this expansion to find the Hamilton–Jacobi version
of the global Hamiltonian, a first step towards quantization. We have found that this
bears strong resemblance to certain holographic dualities between gravity and traditional
conformal field theories [27].

Other interesting results that are not yet ready for print and will not be included in
this thesis are: the 2+1 formulation and quantization of the shape dynamics Hamiltonian,
a second order expansion of the global Hamiltonian around the De Sitter vacuum, and
the formulation of shape dynamics using Ashtekar variables.

Why is this an interesting result?

Here we present the significance of Shape Dynamics in light of previous problems and
research programs, and then point to some promising directions of research in SD.

Shape Dynamics provides the theory that fulfills the requirements of a complete theory
of the gravitational field on conformal superspace. Our results justify York’s intuitive
remarks regarding the configuration space of gravity: conformal superspace is not the
reduced configuration space of general relativity but that of Shape Dynamics. Shape
Dynamics also meets Barbour’s relational arguments for a truly relational theory of the
Universe, encapsulated by the aphorism: “size and motion are relative, and time is given
by change”.

It is also true, although unseen by us at the time of its conception, that SD is the
completion and formalization of Dirac’s 1958 paper [3]. Although his idea was put in a
less developed form, was only valid for asymptotically flat spaces, did not perceive the role
of conformal invariance or symmetry trading, and suffers from a few other drawbacks (as
made explicit in section 5.3.2), the idea behind the mathematical algorithm is basically
the same. Made explicit and put into context however, it gains significance way beyond
that of a mere “fixation of the coordinates”, providing truly an alternative description of
gravity.

The local constraints are all linear in momenta, being easily implementable in config-
uration space. The true gravitational degrees of freedom are easily found. The constraint
algebra is incredibly simple, making it possible that the attempts at the quantization
of gravity that encounter the obstacle posed by structure functions being present in the
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algebra of constraints (as opposed to structure constants) might be more successful in
Shape Dynamics.

As we can now couple matter and have a second order perturbation theory around De-
Sitter space, it also becomes possible to try our hand in perturbative cosmology through
the prism of shape dynamics. The possibility of doing cosmology brings about another
interesting possibility, this time concerning the uniqueness theorems of general relativity.

For 4-dimensionally covariant theories, there exist tight restrictions on the form of
the action. In fact, for an action that is 4-dimensionally covariant, divergenceless, and
only depends on the metric up to second derivatives, Lovelock’s theorem (theorem 11)
tells us that the only action available is indeed the Einstein–Hilbert one. But now we
have a different set of symmetry principles with which to guide us, and thus a different
theory space. We can construct other actions that only match SD (hence ADM in CMC)
in certain limits, whilst still respecting the same symmetry principles. We already have
two natural candidates, one of which is just taking the first three terms in the volume
expansion mentioned above. This has an explicit form, is completely tractable, matches
ADM in CMC for large volumes of the Universe, and by our results in coupling with
matter and regaining a metric structure, can be tested classically against ADM in CMC
(and thus GR). In my personal opinion this is now the most promising new area of
research opened up by Shape Dynamics.

This brings us to another way to gain insight into GR through Shape Dynamics.
Suppose we do not impose the gauge fixing S = 0 in Shape Dynamics, but find solutions
to some other gauge fixing condition an epsilon away from S = 0. We would then have a
modified gravity theory. But, any solution of such a modified theory must have a cousin
which is a solution to GR, a dual. We can then identify what this solution represents by
returning to the linking theory and performing the appropriate gauge transformations.

Summing up, Shape Dynamics definitely provides a completely different view on clas-
sical general relativity, and thus in prospects for its quantization. More than that, it
provides interesting new ways to deform general relativity, breaking general covariance
but not the 3-dimensional conformal covariance.

1There exists a result which can be said to be a 3+1 dimensional version of Lovelock’s theorem
(although it in fact uses Lovelock’s theorem in its proof), [51].
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Appendix A

Variational Formulae

First we establish some preliminary results, being as extensive as possible. We first note
that:

δgcd = −gicgjdδgij (A.1)

We need the variation of the Christoffel symbols. These can be derived from functional
differentiation of both the the no torsion law: ∇a∇bf = ∇b∇af (where f is a smooth
function) and compatibility with the metric: ∇agcd = gcd,a − Γeacged − Γeadgec = 0. The
variation of this last equation is given by:

∇aδgcd − δΓeacged − δΓeadgec = 0

which can then be used together with the symmetry given by the no torsion to yield:

δΓeab =
1

2
gec(δgbc;a + δgac;b − δgab;c) (A.2)

Where we already input the semi-colon notation for the covariant derivative, which we
utilize from now on, and denote ∇bδgac =: δgac;b to distinguish it from δgac;b. From these
equations we can derive the following equation for the variation of the Ricci scalar:

δR = −Rabδgab −∇2δg + δg ;ab
ab (A.3)

where δg = gabδgab and ∇2 = gab∇a∇b. The variation of the metric determinant can be
seen to be δg = ggabδgab. Thus:

δ
√
g =

1

2

√
ggabδgab (A.4)

A.1 Poisson brackets of constraints.

A.1.1 Pure gravity.

The scalar constraint is given by

S(x) =
Gabcdπ

abπcd(x)
√
g

−R(x)
√
g(x) (A.5)
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Its variation is thus:

δS(x)

δgef (y)
=

δ

δgef (y)

(
1

√
g(x)

)
Gabcdπ

abπcd(x) +
πabπcd
√
g

(x)
δGabcd(x)

δgef (y)
−
δ(R
√
g(x))

δgef (y)

=

(
− 1

2
√
g
gefGabcdπ

abπcd +
2
√
g

(πebgbdπ
fd − πefπ

2
)

)
(x)δ(x, y)

−
(

1

2

√
ggefR(x)δ(x, y) +

√
g(x)

δR(x)

δgef (y)

)
=

(
− 1

2
√
g
gefGabcdπ

abπcd +
2
√
g

(πebgbdπ
fd − πefπ

2
)

)
(x)δ(x, y)−

(1

2

√
ggefR(x)δ(x, y)+

√
g(x)(−Ref (x)δ(x, y)− gef (x)∇2δ(x, y) + δ(x, y);ef )

)
(A.6)

The smeared version is∫
d3xN(x)

δS(x)

δgef (y)
=

(
− 1

2
√
g
gefGabcdπ

abπcd +
2
√
g

(πebgbdπ
fd − πefπ

2
)

)
N(y)−

(1

2

√
ggefRN(y)+

√
g(y)(−RefN(y)− gef (y)∇2N(y) +N ;ef (y))

)
(A.7)

Now for the momentum variation:

δS(x)

δπef (y)
= 2

Gefcdπ
cd

√
g

(x)δ(x, y) =
2gecgfdπ

cd − gefπ√
g

(x)δ(x, y) (A.8)

The only non-trivial Poisson bracket for ADM, since as we saw the momentum constraint
generate only 3-diffeomorphisms, is {S(x), S(y)}. Using (A.7) and (A.8) this is very easily
calculated. For the smeared version, all the terms that are both linear in the smearings
will cancel out upon anti-symmetrization, so in the end we only have to calculate:∫

d3(x)N2

(
2gecgfdπ

cd − gefπ
) (
−gef∇2N1 +N ;ef

1

)
= 2

∫
d3xN2π

cdN1;cd (A.9)

And thus

{S(N1), S(N2)} =

∫
d3x

(
πcd(N1 −N2);cd

)
=

∫
d3x

(
πcd(N1(;c −N2(;c);d)

)
= Ha(N1∇aN2 −N2∇aN1) (A.10)

where the anti-symmetrization cancelled the mixed derivatives.

Important variations for SD.

Another calculation which will prove to be useful is the following one arising from δg 〈f〉:

δ

δgef (y)

(√
g(x)

V

)
=

1

2V

(
(gef
√
g)(x)δ(x, y)−

(gef
√
g)(y)

√
g(x)

V

)
(A.11)

We remark that it can easily be seen that∫
d3yFef (y)

δ

δgef (y)

(√
g(x)

V

)
=

1

2V
(F − 〈F 〉)√g(x)
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where F is the trace of the tensor Fab.
The last preparatory results for us are the following:

δ(π − 〈π〉√g)(z)

δgef (y)
= πef (z)δ(z, y)− πef (y)

√
g(x)

V
− 〈π〉V δ

δgef (y)

(√
g(z)

V

)
= πef (z)δ(z, y)− πef (y)

√
g(z)

V
− 〈π〉 1

2

(
(gef
√
g)(z)δ(z, y)−

(gef
√
g)(y)

√
g(z)

V

)
(A.12)

and
δ(π − 〈π〉√g)(z)

δπef (y)
= gef (z)δ(z, y)− gef (y)

√
g(z)

V
(A.13)

Now we calculate the first part of the most important Poisson bracket for our results,
that is {S(N), π(z)− 〈π〉√g(z)}:∫

d3y

∫
d3x

δS(x)

δgef (y)
N(x)

δ(π − 〈π〉√g)(z)

δπef (y)

=

∫
d3y
[(
− 1

2
√
g
gefGabcdπ

abπcd +
2
√
g

(πebgbdπ
fd − πefπ

2
)

)
N(y)−

(1

2

√
ggefRN(y)+

√
g(y)(−RefN(y)− gef (y)∇2N(y) + δN ;ef (y))

)](
gef (z)δ(z, y)− gef (y)

√
g(z)

V

)
=

(
−3

2
S +

2
√
g
Gabcdπ

abπcd +
√
g2(−R +∇2)

)
N(z)− 〈A〉 (A.14)

where we completed − 3
2
√
g
Gabcdπ

abπcd by adding 3
2
R− 3

2
R, and again we use the notation

that A denotes whatever comes before it in an equation (in this case A = (−3
2
S(z) +

2√
g
Gabcdπ

abπcd(z) +
√
g(z)(−R +∇2))N(z)). Now

−
∫
d3y

∫
d3x

δS(x)

δπef (y)
N(x)

δ(π − 〈π〉√g)(z)

δgef (y)

= −
∫
d3y

[
2gecgfdπ

cd − gefπ√
g

N(y)

]
×[

πef (z)δ(z, y)− πef (y)

√
g(z)

V
− 〈π〉 1

2

(
(gef
√
g)(z)δ(z, y)−

(gef
√
g)(y)

√
g(z)

V

)]
= − 2
√
g
Gabcdπ

abπcdN(z)− 1

2
π(z) 〈π〉 − 〈A〉 (A.15)

Combining (A.14) and (A.15) we get:

{S(N), D(z)} =

(
−3

2
S + 2

√
g(−R +∇2)− 1

2
π 〈π〉

)
N(z)− 〈A〉

≈
(

2
√
g(−R− 1

4
√
g
π 〈π〉+∇2)

)
N(z)− 〈A〉 (A.16)

which we can rewrite if we so choose by using the scalar constraint as

{S(N), D(z)} ≈ 2(−Gabcdπ
abπcd

√
g

− 1

4
π 〈π〉+

√
g∇2)N(z)− 〈A〉 (A.17)
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A.2 Scalar and Electromagnetic fields.

A.2.1 Scalar.

We start with the total scalar constraint, which is now:

S(x) =
πabπab − 1

2
π2 + π2

ψ√
g

−√g(R− gab∇aψ∇ψb) (A.18)

where we have simply added the scalar field Hamiltonian:

HScal =
π2
ψ√
g

+
√
ggab∇aψ∇ψb (A.19)

To find the contribution this extra term will have to the lapse fixing equation (A.16), due
to the absence of any terms containing the metric momenta, we must merely calculate:

δHScal(N)

δgab(x)
gab(x) =

(
−3

2

π2
ψ√
g

(x) +
1

2

√
ggab∇aψ∇ψb

)
N(x) (A.20)

where we used (A.1). But going back to (A.16), we must still complete the −3
2
Sg appear-

ing there, with −3
2
HScal, so that we can discard this term as weakly vanishing. To do so

we add and subtract 2
√
ggab∇aψ∇ψb obtaining:(

−3

2
S + 2

√
g(−R− 1

4
√
g
π 〈π〉+ gab∇aψ∇ψb +∇2)

)
N(z)− 〈A〉 (A.21)

which is the equation we need in the main text, in section 6.1.1.

A.2.2 Electromagnetic.

Now we add to the gravitational Hamiltonian the electromagnetic Hamiltonian:

HEM = −A[a,b]A[c,d](x)gac(x)gbd(x)
√
g(x) +

Ea(x)Eb(x)gab(x)
√
g

(x) (A.22)

Again we must calculate solely:

δHEM(N)

δgab(x)
gab(x) =

(
1

2
gacgbdA[a,b]A[c,d]

√
g − 1

2

EaEbgab√
g

(x)

)
N(x) = −1

2
HEMN(x)

(A.23)
Again from (A.16), we must still complete the −3

2
Sg appearing there, with −3

2
HEM, so

that we can discard this term as weakly vanishing. To do so we add and subtract HEM

obtaining: (
−3

2
S + 2

√
g(−R− 1

4
√
g
π 〈π〉+

HEM

2
√
g

+∇2)

)
N(z)− 〈A〉 (A.24)

which is the equation we use in section 6.1.2.
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Appendix B

Relevant formulae for
volume-preserving-conformal
transformations.

B.1 Basic variations.

We start from the definition of the surjection map given by (4.4):

φ̂(x) := φ(x)− 1

6
ln〈e6φ〉g (B.1)

where we use the mean 〈f〉g := 1
V

∫
d3x
√
|g|f(x) and 3-volume Vg :=

∫
d3x
√
g. We will

mainly work with the simplified exponentiated version:

e6φ̂ =
e6φV∫
d3xe6φ

√
g

(B.2)

Then we have:

δ

δgij(y)

(
e6φ(x)V∫
d3xe6φ

√
g

)
=

e6φ(x)V

2
∫
d3xe6φ

√
g

√
g(y)gij(y)

V
− e6φ(x)V

2
∫
d3xe6φ

√
g

√
g(y)gij(y)

V

e6φ(y)V∫
d3xe6φ

√
g

=
1

2V

√
g(y)gij(y)e6φ̂(x)(1− e6φ̂(y)) (B.3)

Generalizing to

δ(enφ̂)

δgij(y)
=

n

12V

√
g(y)gij(y)enφ̂(x)(1− e6φ̂(y)) (B.4)

In the same way:

δ

δφ(y)

(
e6φ(x)V∫
d3xe6φ

√
g

)
= 6

(
e6φ̂(x)δ(x, y)− e6φ(x)V∫

d3xe6φ
√
g

2 e
6φ̂(y)√g(y)

)

= 6e6φ̂(x)

(
δ(x, y)−

e6φ̂(y)√g(y)

V

)
(B.5)

Generalizing to

δ(enφ̂)

δφ(y)
= nenφ̂(x)

(
δ(x, y)−

e6φ̂(y)√g(y)

V

)
(B.6)

115



B.2 Canonical transformation properties

With the basic variations calculated in the last section we can, as a consistency check,
verify explicitly that the transformation is canonical:

{Tφgab, πφ} = 4Tφ{gab, π − 〈π〉
√
g} (B.7)

{Tφπab, πφ} = 4Tφ{πab, π − 〈π〉
√
g} (B.8)

{Tφgab, Tφπab} = Tφ{gab, πab} (B.9)

The first two also verify that the constraint Q commutes with any function Tφf(g, π).
Let us start with a direct proof of the last identity (B.9). As πφ does not appear in

the equation, and Tφgab does not contain πab, the calculation is made a lot simpler.

δTφπab(x)

δπef (y)
= e−4φ̂(x)

(
δabefδ(x, y)− 1

3V
gef (y)(

√
ggab(1− e6φ̂))(x)

)
(B.10)

The second element we need is (using (B.4))

δTφgcd(x)

δgef (y)
=

1

3V
e4φ̂(x)(1− e6φ̂(y))

√
g(y)gef (y)gcd(x) + e4φ̂(x)δefcd δ(x, y) (B.11)

Upon multiplying and integrating over y we get:

δabcdδ(x, y)− 1

3V 2

∫
d3y

(√
ggcdg

ab(1− e6φ̂)
)

(x)
(

(1− e6φ̂(y))
√
g
)

(y) = δabcdδ(x, y) (B.12)

where we already discarded the terms that come in with opposite signs, and used the
fact that the integral present runs only over the y dependent terms, and

∫
d3y(1 −

e6φ̂(y))
√
g(y) = 0.

To finish this explicit verification that we are indeed deling with a canonical trans-
formation, we separate the remaining steps into three: i) φ does not change under the
transformations, φ→ φ, and the change in πφ is just the conserved charge, which is φ in-
dependent, and thus the Poisson brackets {φ, πφ}, {φ, φ} and {πφ, πφ} are conserved. ii)
{φ, gab} clearly stays the same as does {φ, πab}, as none of the original canonical variables
transforms to something containing πφ. iii) This step is the most difficult one. Here we
must explicitly compute that {πφ, Tφgab} = 4{D, Tφgab}. To do so, we use the preceding
proof of (B.9) and the fact that D is invariant under Tφ, to resort to the equivalent
calculation of 4Tφ{D, gab}.

By (B.6), we have that

{Tφgab, πφ} =
δ(e4φ̂)

δφ(y)
gab(y) = 4e4φ̂(x)

(
δ(x, y)−

e6φ̂(y)√g(y)

V

)
gab(y). (B.13)

By (A.13), we have that

{gab(y), D(x)} =
δ(π − 〈π〉√g)(x)

δπef (y)
= gab(x)δ(x, y)− gab(y)

√
g(x)

V
(B.14)

which upon acting with Tφ and multiplying by 4 clearly gives us the sought for equality.
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Now, using the form of Tφπab(x) given in (4.6), and again (B.6):

{Tφπab, πφ} =
δe−4φ̂(x)

δφ(y)

(
πab(x)− gab(x)

3

√
g(x)〈π〉(1− e6φ̂(x))

)
+
δe6φ̂(x)

δφ(y)

gab(x)

3

√
g(x)〈π〉e−4φ̂(x)

= −4e−4φ̂(x)

(
δ(x, y)− e6φ̂(y)

√
g(y)

V

)(
πab(y)− 1

3
〈π〉 gab(y)

√
g(y) +

1

6
〈π〉 gab(y)

√
g(y)e6φ̂(y)

)
.

(B.15)

On the other hand we have by (A.12)

{D(x), πab(y)} =
δ(π − 〈π〉√g)(x)

δgab(y)

= πef (x)δ(x, y)− πef (y)

√
g(x)

V
− 〈π〉 1

2

(
(gef
√
g)(x)δ(x, y)−

(gef
√
g)(y)

√
g(x)

V

)
(B.16)

which upon acting with Tφ and multiplying by 4, after a little manipulation using the
fact that 〈π〉 transforms trivially, yields (B.15).

B.3 Tangent space to the space of volume-preserving

conformal transformations.

Thus if we fix the metric, it is easy to see what constitutes the space of tangent functions
to the volume-preserving ones (at φ = 0):

d

dt |t=0|
e6φ̂t(x) = 6

d

dt |t=0|
φ̂t (B.17)

for a one parameter family of φ̂, such that φ̂0 = 0. Let us call the function φ′ := f ∈
C∞(M). Since the metric is fixed we get from (B.5):

d

dt |t=0
e6φ̂t(x) =

δ

δφ(y)
e6φ̂(x) · f(y) = 6(f(x)− 〈f〉) (B.18)

where we have used the · notation employed in section D.1. And we have thus proven
the assertion needed in section 4.3.1.

B.4 Group structure.

Now we check that indeed volume preserving conformal transformations form a groupoid.
For each metric g the action of C/V will form a subgroup. Let φ1, φ2 be the generators
of two vpcts. From (4.6) we have

Tφ1gab = e4φ̂1(x)gab(x)

Tφ1π
ab = e−4φ̂1(x)

(
πab(x)− gab

3

√
g〈π〉(1− e6φ̂1)

) (B.19)

Now we see what happens when we iterate the transformation with φ2. For ease of
manipulation, we will just call the transformed variables above by ḡab and π̄ab. All we
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have to do now is replace all occurrences of φ1 by φ2, and all occurrences of the unbarred
variables by the barred variables. It turns out to be more convenient to express

e4φ̂ =

(
e6φV∫
e6φ
√
g

)2/3

(B.20)

Now ∫
e6φ2
√
ḡ =

V
∫
e6φ2e6φ1

√
g∫

e6φ1
√
g

(B.21)

and thus
e6φ2V∫
e6φ2
√
ḡ

=
e6φ2

∫
e6φ1
√
g∫

e6φ1e6φ2
√
g
. (B.22)

Finally:

Tφ2 ḡab =

(
e6φ2V∫
e6φ2
√
ḡ

)2/3(
e6φ1V∫
e6φ1
√
g

)2/3

gab =

(
V e6(φ2+φ1)∫
e6(φ+φ2)

√
g

)2/3

gab. (B.23)

For the momenta the equations are more involved. Let us first right down Tφ1 π̄
ab

in terms of φ2 and barred variables (except for the last term, where we already input
(B.22)):

(
e6φ2

∫
e6φ1
√
g∫

e6φ1e6φ2
√
g

)−2/3(
π̄ab(x)− ḡab

3

√
ḡ〈π〉(1−

(
e6φ2

∫
e6φ1
√
g∫

e6φ1e6φ2
√
g

)
)

)

=
(e6φ2

A︷ ︸︸ ︷∫
e6φ1
√
g∫

e6φ1e6φ2
√
g

)−2/3{[( e6φ1V∫
e6φ1
√
g︸ ︷︷ ︸

A

)−2/3

πab(x)− gab

3

√
g〈π〉(1−

B︷ ︸︸ ︷(
e6φ1V∫
e6φ1
√
g

)
)

]

− 1

3
gab
√
g
[ e6φ1V∫

e6φ1
√
g︸ ︷︷ ︸

A

]−2/3[ e6φ1V∫
e6φ1
√
g︸ ︷︷ ︸

C

]
〈π〉
[

1︸︷︷︸
B

−
(e6φ2

C︷ ︸︸ ︷∫
e6φ1
√
g∫

e6φ1e6φ2
√
g

)]}

=
( e6(φ2+φ1)∫

e6(φ1+φ2)
√
g

)−2/3
(
πab(x)− gab

3

√
g〈π〉

[
1− e6(φ1+φ2)V∫

e6(φ1+φ2)
√
g

])
(B.24)

where in the above equation we use the letters A,B,C to mean operations in that order.
A pairs multiplicative inverses, B cancels terms, and C (which can be used only after
B) also pairs multiplicative inverses. This finishes the proof that volume-preserving
conformal transformations acts as a commutative groupoid on phase space. We note that
for commutative groupoids, the structure constants of the algebra are zero, and thus for
the algebra there is no leftover dependence on the base point.
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Appendix C

Hamilton-Jacobi auxiliary
calculations.

C.1 Volume decoupling for σab.

Here we show that the canonical Poisson brackets between the barred variables

ḡab =

(
V

V0

)− 2
3

gab, V =

∫
d3x
√
g, (C.1)

σ̄ab =

(
V

V0

) 2
3
(
πab − 1

3
〈π〉 gab√g

)
, P =

2

3
〈π〉 . (C.2)

in section 7 are trivial. Furthermore we will show how to use the chain rule to prove the
important identity (7.18). Let us start with the relations:

δ
(
V
V0

)−2/3

δgab(x)
= −1

3

(
V

V0

)−4/3 √
ḡḡab(x)

V0

(C.3)

δḡcd(y)

δgab(x)
=

δ
(
V
V0

)−2/3

δgab(x)
gcd(y) +

(
V

V0

)−2/3
δgcd(y)

δgab(x)

=

(
V

V0

)−2/3(
δabcd(x, y)− 1

3

ḡcd(y)

V0

ḡab(x)
√
ḡ(x)

)
(C.4)

thus∫
d3y

δS

δḡcd(y)

δḡcd(y)

δgab(x)
=

(
V

V0

)−2/3 [
δS

δḡab(y)
− 1

3

ḡab(x)

V0

√
ḡ(x)

∫
d3y

δS

δḡcd(y)
ḡcd(y)

]
(C.5)

Thus
δS

δV

δV

δgab(x)
=

1

2

δS

δV

(
V

V0

)1/3√
ḡḡab(x) (C.6)

We then have

δS

δgab(x)
=

δS

δV

δV

δgab(x)
+

∫
d3y

δS

δḡcd(y)

δḡcd(y)

δgab(x)

=
1

2

δS

δV

(
V

V0

)1/3√
ḡḡab(x) +

(
V

V0

)−2/3 [
δS

δḡab(x)
− 1

3

ḡab(x)

V0

√
ḡ(x)

∫
d3y

δS

δḡcd(y)
ḡcd(y)

]
(C.7)
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which means ∫
d3x

δS

δgab(x)
gab(x) =

3

2

δS

δV

V

V0

V0 (C.8)

Finally, under πab(x)→ δS
δgab(x)

, σab goes to:

σ̄ab →
(
V

V0

) 2
3
(

δS

δgab(x)
− 1

3V

∫
d3y

[
δS

δgab(y)
gab(y)

]√
g(x)gab(x)

)
=

δS

δḡab(x)
− 1

3

ḡab(x)

V0

√
ḡ(x)

∫
d3y

δS

δḡcd(y)
ḡcd(y) (C.9)

C.2 Volume expansion for the SD Hamiltonian

We find Hgl by simultaneously solving the equations

H0
gl =

(
2Λ− 3

8
P 2

)
+

(
8∇̄2

0 − R̄0

)
Ω

(V/V0)2/3Ω5
− σ̄abσ̄ab

(V/V0)2Ω12ḡ0

(C.10)〈
Ω6
〉

= 1, (C.11)

where barred quantities are calculated using ḡ0
ab and the (super)subscript o denotes the

Yamabe gauge.
The large V expansion is

Hgl =
∞∑
n=0

(
V

V0

)−2n/3

H(n), Ω6 =
∞∑
n=0

(
V

V0

)−2n/3

ω(n). (C.12)

Explicitly
Hgl = H0 + V −2/3H1 + V −4/3H2 + V −2H3 + . . . (C.13)

Ω6 = ω0 + V −2/3ω1 + V −4/3ω2 + V −2ω3 + . . . (C.14)

From (C.11), the restriction is trivially solved by
〈
ω(n)

〉
= 0 for n 6= 0 and

〈
ω(0)

〉
= 1.

We can solve for the H(n)’s by inserting the expansion, taking the mean, and using the
fact that R̄0 is constant. That is

〈ω0〉 = 1 , 〈ωj〉 = 0 , j > 0 . (C.15)

For order zero we get thus:

H0 = 2Λ− 3

8
P 2 , (C.16)

as it does not depend on the volume expansion, this already cancels out separately in the
expansion (C.10).

To order V −2/3 we have

H1 = − 1

ω
5/6
0 V 2/3

(
8∇̄2

0 −R0

)
ω

1/6
0 = −R

(
ω

2/3
0 ḡ0

)
(C.17)

where we used equation (2.48) on the last equality. Taking the mean

H1 = −
〈
R
(
ω

2/3
0 ḡ0

)〉
, (C.18)
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the equation now reads

R
(
ω

2/3
0 ḡ0

)
=
〈
R
(
ω

2/3
0 ḡ0

)〉
, (C.19)

which tells us that ω0 would take the metric to the Yamabe gauge. But since we’re
already working in the Yamabe gauge, and our Yamabe metric is unique (up to conformal
diffeomorphisms), this equation reduces to ω0 = 1. Then the solution for H1 is:

H1 = −R0 , (C.20)

Now let us expand the conformal factor to second order:

Ω−5 = 1−5

6
ω1V

−2/3+

(
55

72
ω2

1 −
5

6
ω2

)
V −4/3 and Ω1 = 1+

1

6
ω1V

−2/3+

(
− 5

72
ω2

1 +
1

6
ω2

)
V −4/3

(C.21)
Substituting, for order V −4/3 we get:

H2 = −1

6

(
8∇̄2

0 −R0

)
ω1 −

5

6
R0ω1 = −2

3

(
R0 + 2∇̄2

0

)
ω1 , (C.22)

Taking the mean, and using 〈ω1〉 = 0, we get H2 = 0. The conformal factor ω1 is given
by

−2

3

(
R0 + 2∇̄2

0

)
ω1 = 0

We will assume that the operator (∇2
0 +aR0) does have a unique inverse, and thus ω1 = 0

is the unique solution1.
Finally to order V −2, using again (C.21)

H3 = −2

3

(
R0 + 2∇2

0

)
ω2 +

σ̄abσ̄ab
ḡ0

, (C.23)

whose solution is

H3 = −2

3
R0 〈ω2〉+

〈
σ̄abσ̄ab
ḡ0

〉
=

〈
σ̄abσ̄ab
ḡ

〉
, (C.24)

where we used that 〈ωi〉 = 0 for i 6= 0. Note that already at this stage the solution of ω2

becomes significantly more complex,(
R0 + 2∇2

)−1
(
σ̄abσ̄ab
ḡ0

−
〈
σ̄abσ̄ab
ḡ0

〉)
.

The complete solution, up to order V −2 is:

H0
gl = 2Λ− 3

8
P 2 − R0

V 2/3
+

1

V 2

〈
σ̄abσ̄ab
ḡ0

〉
+O((V/V0)−8/3) . (C.25)

A couple of comments are in order. First, we note that each term in the expansion is
diffeomorphism invariant but vpct gauge dependent. Thus we conformally covariantize
it, so that it coincides with the above equation over the Yamabe section. We get:

Hgl = 2Λ− 3

8
P 2 − R[e4λ[g]gab]

V 2/3
+

1

V 2

〈
σ̄abσ̄ab
ē12λ[g]g

〉
+O((V/V0)−8/3) . (C.26)

1We note that since the manifold is compact, ∇2
0 has discrete spectrum. Thus an operator of the form

(∇2
0 + aR0) will generically have a unique Green’s function, as generically R0 ∈ R will not fall into that

spectrum. If the reader finds this argument insufficient, using more sophisticated analytical tools [31],
one can show that if the metric is not the standard one on S3, then the operator above has a unique
Green’s function. And if it is the standard one, we still generically have uniqueness.
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C.2.1 Explicit calculation of the first three terms in the Hamilton-
Jacobi volume expansion.

The equation we are then trying to solve is:

2Λ− 3

8

(
δS

δV

)2

− R0

V 2/3

+
1

V 2

〈(
δS

δḡ0
ab

− 1

3

〈
ḡ0
ab

δS

δḡ0
ab

〉
ḡ0
ab

√
ḡ0

)
ḡ0
acḡ

0
cd

(
δS

δḡ0
ab

− 1

3

〈
ḡ0
ab

δS

δḡ0
ab

〉
ḡ0
ab

√
ḡ0

)〉
+O(V −8/3) = 0 .

(C.27)

The expansion we are going to use, still of course in steps of V −2/3, to solve this is:

S = S0V + S1V
1/3 + S2V

−1/3 +O(V −1). (C.28)

The 0-th order equation then becomes:

2Λ− 3

8
ᾱ2 −

(
αab − 1

3
gab0

)(
αab −

1

3
g0
ab

)
= 2Λ− 3

8
ᾱ2 = 0 , (C.29)

where we used ᾱ
√
g = α and that αab is for our boundary conditions pure trace, and thus

its traceless part vanishes. Thus we have

S0 = ±
√

16Λ

3
(C.30)

For the next order, the relevant terms are those that contribute with V −2/3, coming from
− R0

V 2/3 and:

− 3

8

(
δS0V + S1V

1/3

δV

)2

= −3

8

(
S0 +

1

3
S1V

−2/3

)2

= O(1)− 1

4
S0S1V

−2/3 − 1

24
S2

1V
−4/3

(C.31)
Thus we get

S1 = −4
R0

S0

(C.32)

For the next order term we get the term −2
3

R2
0

S2
0

coming from the last order of (C.31),

the term coming from

−3

8

(
δS0V + S2V

−1/3

δV

)2

= −3

8

(
S0 −

1

3
S2V

−4/3

)2

= O(1) +
1

4
S0S2V

−4/3 − 1

24
S2

2V
−8/3

which is just
1

4
S0S2

and finally, the term:〈
1

g0

(
δS1

δg0
ab

− 1

3
gab0

√
g0

〈
δS1

δg0
kl

g0
kl

〉)(
δS1

δg0
cd

− 1

3
gcd0
√
g0

〈
δS1

δg0
ij

g0
ij

〉)
g0
acg

0
bd

〉
,

yielding

S2 =
8

3

R0
2

S3
0

− 4

S0

〈
1

g0

(
δS1

δg0
ab

− 1

3
gab0

√
g0

〈
δS1

δg0
kl

g0
kl

〉)(
δS1

δg0
cd

− 1

3
gcd0
√
g0

〈
δS1

δg0
ij

g0
ij

〉)
g0
acg

0
bd

〉
,

(C.33)
Now we use the fact that2 R0(x) = R0 =

∫
d3xR0

√
g0, we can discard the boundary terms

2Assuming for simplicity that in the barred variables V0 = 1.
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of the variation to get:
δS1

δg0
ab

=
4

S0

√
g0

(
Rab

0 −
1

2
R0 g

ab
0

)
, (C.34)

Contraction with gab0 yields −2R0

S0
and thus

δS1

δg0
ab

− 1

3
gab0

√
g0

〈
δS1

δg0
cd

g0
cd

〉
=

4

S0

√
g0

(
Rab

0 −
1

2
R0 g

ab
0

)
√
g0 −

1

3
gab0

√
g0

(
−2R0

S0

)
=

4

S0

(
Rab

0 −
1

3
R0 g

ab
0

)
√
g0. (C.35)

As can easily be seen the term 〈σ · σ〉 yields to this order:〈
16

S2
0

(
Rab

0 −
1

3
R0 g

ab
0

)(
R0
ab −

1

3
R0 g

0
ab

)〉
=

16

S2
0

〈
Rab

0 R
0
ab −

1

3
R2

0

〉
Inputting this back into (C.33) yields:

S2 =
8

S3
0

(
R0

2

3
− 8

〈
Rab

0 R
0
ab −

1

3
R2

0

〉)
=

24

S3
0

(
R0

2 − 8

3

〈
Rab

0 R
0
ab

〉)
(C.36)

Complete solution:

S = ±

(
4

√
Λ

3
V −

√
3

Λ
R0 V

1/3 +
9

8Λ

√
3

Λ

(
R0

2 − 8

3

〈
Rab

0 R
o
ab

〉)
V −1/3 + . . .

)
. (C.37)

where we separated the factors
√

3
Λ

to show that the V 2/3 step is accompanied by a 3
Λ

one.
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Appendix D

Manifold structure for constraint
set.

D.1 Poisson Brackets and Linear maps

To make what we mean more precise and evaluation more straightforward (specially the
linear algebra part), I will employ the Fischer-Marsden notation. So we start by notation.
Riem(M) =:M.

We define the variation as a tangent map in these spaces (for example for F : T ∗M→
C∞(M) which we are considering to be densities):

δF(g,π) · (h,w) = δF(g0,π0) · (h,w) = δgF(g0,π0) · h+ δπF(g0,π0) · w (D.1)

where

δgF(g0,π0) · h =

∫
M

δF
δgab(x)

∣∣∣∣
(g0,π0)

hab(x) and δgF(g0,π0) =
δF

δgab(x)

∣∣∣∣
(g0,π0)

and so on. Note we are omiting in the δg notation that this has both continuous (x) and
discrete (ab) indices. Both types of indices are summed over through the dot notation.
This mimics the action of matrices in linear algebra.

Now, we have natural inner products on C∞(M) and T ∗M:

〈f,m〉C∞(M) :=
∫
d3x
√
gfm

〈(h, π), (k, w)〉T ∗M :=
∫
d3x
√
g
(
gacgbdhabkcd + gacgbd

g
πabwcd

)
(D.2)

In this way, what we usually mean for a smearing of a function F ∈ C∞(M) is seen as
an inner product:

F (N) := 〈F,N〉C∞(M).

We will omit the subscript C∞(M) from now on. Of course to be more precise we should
be working not with the space of smooth functions (on the second entry of the inner
product), but the space of square-integrable functions. However, as we can sidestep
most of the difficulties arising from this simplification, we will merely make a side note
whenever the difference becomes relevant.

We can write the Poisson bracket as:

{F(N),S(x)} = 〈δgF · δπS(x)− δπF · δgS(x), N〉 = 〈δ(g,π)F · Jδ(g,π)S(x), N〉 (D.3)
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where one can simplify notation by using the J map (the symplectic structure) which
inverts the order of contraction (so to speak).

In much the same way as in linear algebra, we can define the adjoint of the tangent
map linear operator (in this case for F taking values in C∞(M)):

〈(δgF) · h,N〉C∞(M) = 〈(δgH)∗ ·N, h〉M

It is exactly by finding the adjoint that we actually find the variational derivative; i.e.
we have to isolate h, more usually denoted by δg. As an example, let us study both the
scalar and the momentum constraints (2.38), (2.40).

Let us start with the smeared version of the momentum constraint:

Ha(ξa) = −
∫
d3xπabLξgab =

∫
d3xgabLξπab. (D.4)

where we have used integration by parts to transfer the Lie derivative. There is an easy
way to check consistency of this formula by using the formula for the Lie derivative of
the density:

Lξπab = ξeπab;e − ξa;eπeb − ξb;eπea + ξe;eπ
ab (D.5)

Upon contraction with gab and discarding the term ξeπab;e + ξe;eπ
ab as a total derivative,

one obtains the desired relation. This makes it very easy to calculate any Poisson bracket
between the smeared momentum constraint and functionals of (g, π). The fundamental
Poisson brackets are easily calculated to be

{Ha(ξa), gab(x)} = Lξgab(x)

{Ha(ξa), π
ab(x)} = Lξπab(x)

And thus by the chain rule we get that for any functional of phase space:

{Ha(ξa), f(g, π)(x)} = Lξf(g, π)(x).

Using the above notation, for the scalar constraint we have, from (A.6) and (A.8):

δS(g,π)·(h,w) =

(
− 1

2
√
g
gefGabcdπ

abπcd +
2
√
g

(πebgbdπ
fd − πefπ

2
)

)
hef−

(1

2

√
ggefRhef+

√
g(−Refhef − gef∇2hef + h;ef

ef )
)

+ +2
Gefcdπ

cd

√
g

wef (D.6)

The adjoint is given using (D.2)

δ∗S(g,π) ·N = (Aab, N(
2gacgbdπ

cd − gabπ√
g

)) (D.7)

where Aab is given by (A.7).
For the momentum constraint we have (remembering that if we consider the momen-

tum constraint as a map into the space of vector fields C∞(TM), we need to lower indices
with the metric):

δHa(g,π) · (h,w) = −2

(
wa

b
;b + hacπ

cb
;b + πbc(hab;c −

1

2
hbc;a)

)
(D.8)

δ∗Ha
(g,π) · ξa = (−Lξπab, Lξgab) (D.9)
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The next issue is do we get such things as the lapse fixing equation, which is

{T H(N), πφ(ρ)} = 〈(δφT H) · ρ,N〉C∞(M) = 〈(δφT H)∗ ·N, ρ〉C = 0 (D.10)

thus (δφH)∗ ·N = 0 is the lapse fixing equation and (δφH)∗ is the lapse fixing operator.
We can still use the canonical transformation properties and D(Tφg,Tφπ,φ) = D(g,π). We
get:

〈(δφTH) · ρ,N〉 = 〈δ(g,π)H · Jδ(g,π)D(ρ), N〉.

D.2 Constraint manifold for GR.

We now investigate under which circumstances the set of phase space points obeying both
constraints form a manifold. I.e., under which conditions the intersection(
S−1(0) := {(g, π) ∈ T ∗M | S(g, π) = 0}

)
∩
(
Ha
−1(0) := {(g, π) ∈ T ∗M | Ha(g, π) = 0}

)
(D.11)

forms a manifold. From the form of the constraint algebra for the constraints (A.10)
we already know that the constraint set is maintained by the evolution equations for all
choices of lapse and shift.

Now suppose again that if πab ≡ 0 then gab is not flat. We prove the following
proposition:

Proposition 6. Under the assumption that whenever πab ≡ 0 then gab is not flat, S−1(0)
forms a manifold.

To prove this we use the Fredholm alternative (8.8) for the differential operator

δS(g,π) : TgM× T ∗gM→ C∞(M) (D.12)

where we remind the reader that T ∗gM is not the actual space of linear functionals on
TgM, but the space of sections of TM ⊗S TM the symmetric product of the tangent
bundle. See section 8 for a more thorough explanation of these spaces. The reasoning
is quite familiar from section 8.3.1 and again quite simple: if the operator is elliptic, we
can use the Fredholm splitting

C∞(M) = Im(δS)⊕Kerδ∗S, (D.13)

where ⊕ is an L2 orthogonal splitting (i.e. in the positive definite metric used in this
section (D.2)). Then we must merely show that δ∗S is injective, which will imply that δS
is surjective. By the regular value theorem we then have that S−1(0) is (at least locally)
a submanifold, with tangent space KerδS. For σ(D) denoting the principal symbol of the
operator D, we have σ(D∗ ◦D) = σ(D)∗ ◦σ(D). This means that if σ(D) is injective, for
positive definite inner product, we automatically have σ(D∗) surjective and thus that the
operator is elliptic (see proposition 3). And thus we are left to prove that the operator is
injective and has injective symbol.

This calculation is typical of chapter 9 (see (9.20), (9.26), (9.27), etc) and by now we
can skip the preliminaries and assert that the symbol of δ∗S, given in (D.7):

σξ(δ
∗S) = (−ξaξb + gabξ

cξc, 0) (D.14)
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which by doing the usual trick of taking the trace, guarantees the operator is elliptic.
Now from (D.7), we have two equations that we must satisfy if N ∈ Kerδ∗S. Taking the
trace of the second one we get Nπ = 0, which when input back into the same equation
yields Nπab = 0. When input back into the first of these equations (denoted by Aab) we
get:

−
(1

2

√
ggefRN(y) +

√
g(y)(−Ref (y)− gef (y)∇2N(y) +N ;ef (y))

)
= 0 (D.15)

By taking the trace we arrive at:

− 2∇2N +
1

2
RN = 0 (D.16)

Now if we substitute the scalar constraint for R, and since Nπab = 0 we get ∇2N = 0
which means N is a constant. But we furthermore have that πab 6≡ 0, which implies that
N = 0 everywhere (i.e N ≡ 0), as it is a constant. Thus δ∗S is injective. �.

We will not prove the same for the diffeomorphism group, which goes through quite
simply. What changes when we try to prove that the intersection is a manifold? Now we
have the mapping:

(δS(g,π), δH
a
(g,π)) : TgM× T ∗gM→ C∞(M)× C∞(T ∗M) (D.17)

And the adjoint given in (D.7) differs from that by the term (−Lξπab,Lξgab). We will not
go through the calculations here (since the tricks used are basically the same as before),
but the only condition under which this is still injective is if gabπ

ab = c, a constant
[29]. This is further circumstantial evidence that the domain which has good theoretical
properties is not the entire one of general relativity, but that of shape dynamics.

D.3 Propagation of the constraints.

We now show how the Poisson brackets of the ADM constraints, propagate. As men-
tioned in section 2.1.4, we will take this opportunity to illustrate how the Lagrangian
formalism, as opposed to the Hamiltonian one, is cumbersome when dealing with canon-
ical dynamical systems. In the Hamiltonian formalism the only non-trivial bracket is
the one given by {S(x), S(y)}, which was easily calculated in (A.10). Not so in the La-
grangian formalism, where we will have to prove every propagation non-trivially. We will
also take the opportunity to demonstrate two other points that arise in the text. First is
the propagation of the constraints in BSW form (section 2.3). Second is the use of a more
general supermetric in the propagation (section 8) and the conditions it gives rise to. To
emphasize then, in this section we will compute propagation of the BSW constraints with
a generalized supermetric.

D.3.1 Momentum Constraint

We shall start with the BSW action given by the Lagrangian density L =
√
gRTλ,

L =
∫
M
d3xL, M a closed manifold without boundary again, and where

Tλ = (gacgbd − λgabgcd)(ġab − 2ξ(a;b))(ġcd − 2ξ(c;d)).
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To distinguish the BSW momenta from the ADM one, we denote it by pij, as opposed to
πij.

Now we are ready to start with:

pij =
δL
δġij

=

√
gR

Tλ
(gicgjd − λgijgcd)(ġcd − 2ξ(c;d)) (D.18)

We also assume both the Hamiltonian and momentum constraints:

− pljplj +
λ

3λ− 1
p2 + gR = 0 (D.19)

pij;j = 0 (D.20)

Now,

ṗij =
δL
δgij

=

∫
M

d3x

(
(
δ
√
g

δgij
)
√
RTλ +

√
g(
δ
√
R

δgij
)
√
Tλ +

√
g
√
R(
δ
√
Tλ

δgij
)

)
(D.21)

The first term yields naturally:

(δ
√
g)
√
RTλ =

1

2

√
RTλ
√
ggijδgij (D.22)

The second term gives:

√
g(δ
√
R)
√
Tλ =

1

2

√
gTλ
R

(−Rijδgij − gij∆(δgij) + (δgij);cdg
icgjd) (D.23)

Integrating by parts, and noting that the covariant derivative of the density function g is
zero, we have an equivalence of (D.23) up to a boundary term, with:

√
g

2

−Rij

√
Tλ
R
− gij∆

(√
Tλ
R

)
+

(√
Tλ
R

)
;dc

gicgjd

 δgij (D.24)

Now for the third term we have that the inverse of (gacgbd − λgabgcd) is: gaegbf −
λ

3λ−1
gabgcd. We must first calculate:

δ(gacgbd − λgabgcd))
δgij

= −gaigcjgbd − gacgbigdj + λ(gaigbjgcd + gabgcigdj) (D.25)

Inverting (D.18) we have:

ġij =
N
√
g

(
pij −

λ

3λ− 1
gijp

)
+ 2ξ(i;j) (D.26)

and thus:

(δ(gicgjd − λgijgcd))(ġcd − 2ξ(c;d))(ġij − 2ξ(i;j)) = (δ(gicgjd − λgijgcd)) T
gR

pcdpij

=
T

gR

(
−gaigcjgbd − gacgbigdj + λ(gaigbjgcd + gabgcigdj)

)
pcdpij
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=
2T

R

(
(pid − λ

3λ− 1
gidp)(pjd −

λ

3λ− 1
δjdp) + λp(pij − λ

3λ− 1
gijp)(1− λ

3λ− 1
)

)
=

2T

R

(
−(pidpjd −

2λ

3λ− 1
ppij +

λ

3λ− 1

2

p2gij)− λ

3λ− 1
(ppij − λ

3λ− 1
p2gij)

)
=

2T

R
(−pidpjd +

λ

3λ− 1
ppij) (D.27)

Finally the third term yields:

√
gR(δ

√
Tλ) =

1

2

√
gR

Tλ
(δ(gicgjd − λgijgcd))(ġcd − 2ξ(c;d))(ġij − 2ξ(i;j))

− 2

√
gR

Tλ
(gicgjd − λgijgcd)(ġcd − 2ξ(c;d))(δξ(i;j))

= −

√
Tλ
gR

(picp j
c −

λ

3λ− 1
ppij)δgij + 2pij(ξeδΓ

e
ij) (D.28)

Now from (A.2) we get:

2pab(ξeδΓ
e
(ab)) = pabξc(δgbc;a + δgac;b − δgab;c)

=̂ −((ξcpab);aδgbc + (ξcpab);bδgac − (ξcpab);cδgab) (D.29)

where =̂ is equivalence up to boundary terms. Now, the formula for the Lie derivative of
a density reads:

Lξpij = ξepij;e − ξi;epej − ξ
j
;ep

ei + ξe;ep
ij (D.30)

and thus we get from (D.29), already discarding the terms that disappear due to the
momentum constraint pab;b = 0:

2pab
(
ξe
δΓe(ab)
δgij

)
= −((ξcpab);aδ

ij
bc + (ξcpab);bδ

ij
ca − (ξcpab);cδ

ij
ab)

= −(ξj;ap
ai + ξi;bp

jb − ξc;cpij − ξcp
ij

;c)

= Lξpij (D.31)

Putting it all together we have:

ṗij = −1

2

√
g
(
(Rij − gijR)N + gij∆N −N;cdg

icgjd
)

− N
√
g

(picp j
c −

λ

3λ− 1
ppij) + Lξpij (D.32)

where N =
√

Tλ
R

.

Now we move forward to check if the momentum constraint is propagated. We must

thus calculate ˙(pij;j). We have that for a tensor density of weight one:

pij;j = (pij,j + Γijlp
lj + Γjjlp

il)− Γjjlp
il = pij,j + Γijlp

lj (D.33)

and thus,
˙(pij;j) = ṗij;j + Γ̇ijlp

lj (D.34)
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Then using (A.2) in (D.34) we get for the second term:

Γ̇ijlp
lj = (ġij;l −

1

2
ġlj

;i)plj

=
1
√
g

(
plj(N(pij −

λ

3λ− 1
δijp));l −

1

2
plj(N(plj −

λ

3λ− 1
pglj))

;i

)
+ 2gic(ξ(j;c);l −

1

2
ξj;lc)p

lj

=
1
√
g

(
(N(pljpij −

λ

3λ− 1
plip));l −

1

4
ggij((NR);j +N;jR)

)
+ 2gic(ξ(j;c);l −

1

2
ξj;lc)p

lj

(D.35)

Where on the first term we used the momentum constraint and on the second term we
had:

− 1

2
plj(N(plj −

λ

3λ− 1
pglj))

;i = −1

2
plj(N ;i(plj −

λ

3λ− 1
pglj))−

1

2
(pljN(plj −

λ

3λ− 1
pglj)

;i)

= 2

(
−1

4
(N ;i(pljplj −

λ

3λ− 1
p2))

)
− 1

4
(N(pljplj −

λ

3λ− 1
p2);i)

= −1

4
(N(pljplj −

λ

3λ− 1
p2));i − 1

4
(N ;i(pljplj −

λ

3λ− 1
p2))

= −1

4
ggij ((NR);j +N;jR) (D.36)

where we used the Hamiltonian constraint on the last equality.
Finally, going back to (D.32):

ṗij;j = −1

2

√
g
((

(Rij − gijR)N
)

;j
+
(
gij∆N −N;cdg

icgjd
)

;j

)
−
(
N
√
g

(picp j
c −

λ

3λ− 1
ppij)

)
;j

+ (Lξpij);j (D.37)

Then from (D.34), the third term of (D.37) can be seen to cancel with the first term of
(D.35).

Combining the part −√g 1
4
(NgijR);j of the second term of (D.35) (or the first term

of (D.36)) with the first term of (D.37) we obtain:

− 1

2

√
g
(
(Rij − gijR)N

)
;j
−√g1

4
(NgijR);j = −1

2

√
g

(
(Rij − 1

2
gijR)N

)
;j

= −1

2

√
g

(
(Rij − 1

2
gijR)N;j

)
(D.38)

where we used the Bianchi identity in 3D to set (Rij − 1
2
gijR);j = 0. The second term of

(D.37) is given by:

−1

2

√
g
(
gij∆N −N;cdg

icgjd
)

;j
=

1

2

√
g(N ;ik

k−N
ki

;k ) =
1

2

√
g(N ik

;k −N
ki

;k ) =
1

2

√
gN;jR

j ik
k

=
1

2

√
gN;jR

ij (D.39)

Now combining (D.38) and (D.39) we obtain:

1

4

√
ggijRN;j (D.40)
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which cancels with the second term of (D.36). Thus, in (D.32), we have already used up
all the terms that don’t explicitly involve ξ, being left with the third term of (D.35), the
fourth term of (D.37).

We start by writing out (Lξpij);j:

(Lξpij);j = ξc;jp
ij

;c + ξcpij;cj − ξc;jcpij − ξi;cjpcj − ξj;cpic;j + ξc;cjp
ij

= ξcpij;cj − ξc;jcpij − ξi;cjpcj + ξc;cjp
ij

= −ξc(R i
cj kp

jk +R k
c kjp

ij) + ξkR c
k cjp

ij − ξi;cjpcj

= −ξcR i
cj kp

jk − ξi;cjpcj (D.41)

where on the last line we have used the momentum constraint, implying pij;cj − p
ij

;jc =

pij;cj and the Riemman curvature formula as applied to a type (0, 2) tensor. Now com-
bining the third (last) term of (D.35) and the fourth (last) term of (D.37). We get:

(Lξpij);j + (ξ ;i
j l + ξi;jl − ξ

i
j;l )plj = −ξcR i

cj kp
jk + (ξ ;i

j l − ξ
i

j;l )plj = 0

And so finally we have shown that (D.34) is indeed zero, and thus the momentum con-
straint propagates.

D.3.2 Hamiltonian Constraint

We rewrite equation (D.19), for convenience:

H = −gklgijpljpki +
λ

3λ− 1
(gijp

ij)2 + gR = 0

Now we dot it:

Ḣ = g
(
(gijR−Rij)ġij −∆(gij ġij) + ġ ;ij

ij

)
+

(
−2ġijp

i
lp
jl +

2λ

3λ− 1
ġijp

ijp

)
+

(
−2pij ṗ

ij +
2λ

3λ− 1
ṗijgijp

)
(D.42)

Substituting for now only the undifferentiated ġij through the use of (D.26):

Ḣ =
√
g

(
N(gijR−Rij)(pij −

λ

3λ− 1
pgij)

)
+ g

(
ġ ;ij
ij −∆(gij ġij)

)
+
N
√
g

(
−2(pij −

λ

3λ− 1
pgij)p

i
lp
jl +

2λ

3λ− 1
(pij −

λ

3λ− 1
pgij)p

ijp

)
+

(
−2pij ṗ

ij +
2λ

3λ− 1
ṗijgijp)

)
+

2ξ(i;j)

(
g(gijR−Rij)− 2

(
pilp

jl − λ

3λ− 1
pijp

))
=
√
gN

(
(p− 3λ

3λ− 1
p)R−Rijpij +

λ

3λ− 1
pR)

)
+

2N
√
g

(
−pijpilpjl +

2λ

3λ− 1
pijp

ijp−
(

λ

3λ− 1

)2

p3

)
+

(
−2pij ṗ

ij +
2λ

3λ− 1
ṗijgijp)

)
+ g

(
ġ ;ij
ij −∆(gij ġij)

)
+ 2ξ(i;j)

(
g(gijR−Rij)− 2

(
pilp

jl − λ

3λ− 1
pijp

))
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where we left on the last line the terms we will deal with shortly. Let us re-write the last
equation, enumerating some of the terms so that they are more easily manipulable:

Ḣ =
√
gN


1︷ ︸︸ ︷

λ− 1

3λ− 1
pR−

2︷ ︸︸ ︷
Rijpij



+
2N
√
g


3︷ ︸︸ ︷

−pijpilpjl +

4︷ ︸︸ ︷
2λ

3λ− 1
pijp

ijp−

5︷ ︸︸ ︷(
λ

3λ− 1

)2

p3

+

(
−2pij ṗ

ij +
2λ

3λ− 1
ṗijgijp)

)

+ g
(
ġ ;ij
ij −∆(gij ġij)

)
+ 2ξ(i;j)

(
g(gijR−Rij)− 2

(
pilp

jl − λ

3λ− 1
pijp

))
(D.43)

Now we have that for the ṗij terms, using (D.32):

2

(
−pij ṗij +

λ

3λ− 1
ṗijgijp)

)
=

−pij
(
−√g

(
(Rij − gijR)N + gij∆N −N;cdg

icgjd
)
− 2N
√
g

(picp j
c −

λ

3λ− 1
ppij) + 2Lξpij

)
+

+
λ

3λ− 1
p

(
−√g (−2RN + 2∆N)− 2N

√
g

(pijpij −
λ

3λ− 1
p2) + 2gijLξpij

)
=

√
g

 2︷ ︸︸ ︷
pijR

ij +p(

1︷︸︸︷
RN −∆N)(

2λ

3λ− 1
− 1)−N;ijp

ij

+

3︷ ︸︸ ︷
2N
√
g
pijp

icp j
c

−

4︷ ︸︸ ︷
4N
√
g

λ

3λ− 1
ppijp

ij +

5︷ ︸︸ ︷
2N
√
g

(
λ

3λ− 1

)2

p3−2

(
pij −

λ

3λ− 1
pgij

)
Lξpij

So from (D.43) we are left with:

Ḣ = g
(
ġ ;ij
ij −∆(gij ġij)

)
+ 2ξ(i;j)

(
g(gijR−Rij)− 2

(
pilp

jl − λ

3λ− 1
pijp

))

+
√
g

p∆N︸ ︷︷ ︸
a

(1− 2λ

3λ− 1
)−N;ijp

ij︸ ︷︷ ︸
b

− 2

(
pij −

λ

3λ− 1
pgij

)
Lξpij (D.44)

Where we already denoted the terms that will be cancelled by the next set of equations
with underbraces.
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Now, to substitute the g
(
ġ ;ij
ij −∆(gij ġij)

)
term, using (D.26):

gġ ;ij
ij = g

(
N
√
g

(
pij −

λ

3λ− 1
gijp

)
+ 2ξ(i;j)

);ij

=
√
g

(
N ;ij

(
pij −

λ

3λ− 1
gijp

)
− λ

3λ− 1

(
gijN

;ip;j +N∆p
))

+ 2gξ
ij

(i;j)

(D.45)

−ggij(ġ);ij = −ggij
(
N
√
g

(
− 1

3λ− 1
p

)
+ 2ξk;k

);ij

=
√
g

1

3λ− 1

(
p∆N + gijN;ip;j +N∆p

)
− 2gξk;k

l

l
(D.46)

And thus:

gġ ;ij
ij −ggij(ġ);ij =

√
g

 1− λ
3λ− 1

( a︷ ︸︸ ︷
p∆N +gijN;ip;j +N∆p

)
+

b︷ ︸︸ ︷
N ;ijpij

+2g(ξ
ij

(i;j) −ξ
k
;k

l

l
)

(D.47)
Thus finally we are left with:

Ḣ = 2ξ(i;j)

g(

1︷︸︸︷
gijR−

2︷︸︸︷
Rij )− 2


3︷ ︸︸ ︷

pilp
jl − λ

3λ− 1
pijp


+
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2g(ξ

ij
(i;j) − ξ

k
;k

l

l
)

5︷ ︸︸ ︷
−2

(
pij −

λ

3λ− 1
pgij

)
Lξpij +

1− λ
3λ− 1

√
g
(
gijN;ip;j +N∆p

)
(D.48)

Where once again we group the terms for easier future manipulation.
Now, using (D.30), we expand the remaining ξ term, term 5:
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Where

− ξk
(
pijpij −

λ

3λ− 1
p2

)
;k

= −gξkR;k = −2ξkgR ;i
ik (D.50)

where we used the Bianchi identity. Combining (D.50) with element 2 of (D.48):
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(D.51)
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This cancels with term 4 of (D.48). Thus we are left with:

Ḣ =
1− λ
3λ− 1

√
g
(
gijN;ip;j +N∆p

)
(D.52)

This vanishes for λ = 1, but for different λ it generates a further constraint, p = cte.
Taking the mean we get p = 〈p〉√g, but this does not mean that the constraint is
p = 〈p〉√g. It could be given by any constant functional p(x) = F [g, p] that this
would still propagate the scalar constraint. We will not calculate propagation of the new
constraint or follow the Dirac analysis in the Lagrangian formalism, as it is obviously too
unwieldily. If one just assumes that p is any constant functional, i.e. p = cte, then we
know from section A.1 that this implies the familiar equation:

(∇2
R)N = 0 (D.53)

which can be solved for uniquely only on asymptotically flat manifolds. This case
F [g, π] = cte, is the one analyzed in [52], where they reach the same conclusion. Other
works by Barbour et al, such as [18], had already reached the same conclusion using
the Lagrangian framework some years ago. This also points to an interesting connection
between the present theory and Horava theory, which is what is being studied in [52].
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Appendix E

Some useful mathematical theorems.

Except for Lovelock’s theorem and the Yamabe conjecture, for which we give the specific
references, all theorems can be found in the form in which we present them here in [33].
In the category of topological vector spaces, the appropriate name of isomorphisms are
called topological linear isomorphims (toplinear).

E.0.3 Lovelock’s theorem

Lovelock’s theorem was proved in a series of papers [53, 54, 55], and its statement is the
following:

Theorem 1. In 4 dimensions, if the tensor Aµν depends exclusively on the metric tensor
4gµν and on its first and second partial derivatives, and if it also satisfies the continuity
equation Aµν ;µ = 0 then necessarily

Aµν = αδµν + βGµ
ν (E.1)

where α, β are constants and

Gµν = Rµν −
R

2
gµν

is the Einstein tensor.

It is highly restrictively on the possible actions for General Relativity, as the second
order condition is required if we would like to keep initial data that just depend on
positions and velocities.

E.0.4 Closed graph theorem.

We use two aspects of the closed graph theorem:

Proposition 7. Every continuous bijective linear between Banach spaces E and F is a
toplinear isomorphim.

Proposition 8. If E is a Banach space and F1, F2 are two closed subspaces which are
complementary (E = F1 + F2 and F1 ∩ F2 = 0) then the map of F1 × F2 → E given by
the sum is a toplinear isomorphism.

We will say that a closed subspace F of a Banach space E is such that there exists
a closed complement F1 such that E is isomorphic to the product F × F1 in the above
manner, that F splits E.
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E.0.5 Regular value theorem.

The regular value theorem is of the same family as the implicit function theorem. It
gives us a local description of a submanifold as always being given by the regular values
of some function in the ambient manifold.

Theorem 2. Let U be an open subset of a Banach space E and f : U → F a map into
a Banach space F . Let x0 ∈ U and assume that the tangent map Tfx0 is surjective and
that its Kernel splits. Then there exists an open subset U ′ of U containing x0 and an
isomorphism:

h : V1 × V2 → U ′

such that the map f ◦ h is a projection:

V1 × V2 → V1 → F

where the second map is an isomorphism.

E.0.6 Implicit function theorem.

Theorem 3. Let U, V be open sets of Banach spaces E and F , respectively, and let

f : U × V → H

be a Cr mapping. Let (a, b) ∈ U × V , and assume that T2f(a,b) → H is a toplinear
isomorphism. Let f(a, b) = 0. Then for a sufficiently small neighborhood U0 of a there
exists a unique continuous map h : U0 → V defined on an open neighborhood U0 of a such
that h(a) = b and such that

f(x, h(x)) = 0

for all x ∈ U0.

E.0.7 Yamabe problem

The Yamabe problem, which was proven in different dimensions by different people (see
[31] for a review), can be simply stated as

Theorem 4. Given a compact closed metric manifold (M, g) of dimension ≥ 3, there
exists a conformal transformation of g, let us call it g̃, such that (M, g̃) has constant
scalar curvature. Furthermore g̃ is unique up to global scaling.

For us, this means that we can implicitly go uniquely to the Yamabe gauge:

Tφgab → Tφg(λ)
ab := Tφ(Tλ[g,x)gab). (E.2)
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