
Optimised Editing of Variable Data

Documents via Partial Re-Evaluation

James A. J. Ollis, BSc (Hons)

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy, 2011

i

Abstract

With the advent of digital printing presses and the continued development

of associated technologies, variable data printing (VDP) is becoming more and more

common. VDP allows for a series of data instances to be bound to a single template

document in order to produce a set of result document instances, each customized

depending upon the data provided. As it gradually enters the mainstream of digital

publishing there is a need for appropriate and powerful editing tools suitable for

use by creative professionals. This thesis investigates the problem of representing

variable data documents in an editable visual form, and focuses on the technical

issues involved with supporting such an editing model.

Using a document processing model where the document is produced from

a data set and an appropriate programmatic transform, this thesis considers an

interactive editor developed to allow visual manipulation of the result documents.

It shows how the speed of the reprocessing necessary in such an interactive editing

scenario can be increased by selectively re-evaluating only the required parts of the

ii

transformation, including how these pieces of the transformation can be identified

and subsequently re-executed.

The techniques described are demonstrated using a simplified document

processing model that closely resembles variable data document frameworks. A

workable editor is also presented that builds on this processing model and illustrates

its advantages. Finally, an analysis of the perfomance of the proposed framework is

undertaken including a comparison to a standard processing pipeline.

iii

Acknowledgements

I would like to thank my supervisor, David Brailsford, for his much valued support

and guidance throughout the last 4 years. I would also like to thank the following

people:

The members of the Document Engineering research group at the University of

Nottingham, both past and present, whose suggestions and contributions have

helped with this thesis as well as the various talks and papers I have written over the

course of my research. Specific thanks are due to my co-supervisor, Steven Bagley,

for his input and guidance throughout.

The members of the Web Services and Systems Lab at HP Labs Bristol for their help

and encouragement during my numerous visits. Particular thanks are due to John

Lumley, my industrial co-supervisor, for sharing his insight and knowledge as well

as helping steer the research in the right direction.

Acknowlegdements

iv

The other PhD students and staff members that I have worked alongside at the

University of Nottingham who have made suggestions towards this work, but more

importantly have made the experience both enjoyable and rewarding.

Finally I must thank my friends and family for their continued support and

encouragement, without which this work would not have been completed. I am

especially grateful to my partner, Charlotte, for the help and understanding that she

continues to give.

This work was funded by the EPSRC and Hewlett Packard Laboratories Bristol with

additional help from the University of Nottingham.

v

Table of Contents

Abstract.. i

Acknowledgements.. iii

Table of Contents... v

List of Figures... ix

List of Tables.. xiii

Chapter 1: Introduction ... 1

1.1 Traditional Printing Methodologies ... 1

1.1.1 Modern Laser Printers ... 2

1.1.2 Copy-Hole Printing ... 3

1.2 Introduction of the Digital Press .. 5

1.3 Fully Variable Documents .. 6

1.4 Thesis Overview ... 10

Chapter 2: Introduction to XML and XSLT .. 12

2.1 Extensible Markup Language (XML) ... 12

2.1.1 Namespaces .. 14

2.1.2 Working with XML ... 15

2.2 Extensible Stylesheet Language Transformations (XSLT) 18

2.2.1 Language Design .. 19

2.2.2 XPath ... 20

Table of Contents

vi

2.2.3 Example Stylesheet .. 21

2.2.4 Stylesheet Evaluation .. 25

Chapter 3: Authoring Variable Data Documents ... 30

3.1 Existing Document Editors ... 30

3.1.1 Non-variable Document Editors ... 31

3.1.1.1 Text-Based Document Preparation .. 31

3.1.1.2 Desktop Publishing Applications ... 32

3.1.2 Variable Data Document Editors .. 35

3.1.3 Alternative Editors .. 37

3.2 Visualizing Document Variability .. 43

3.2.1 Data Variability vs. Document Logic Variability 44

3.2.2 Displaying Variable Documents .. 45

3.2.2.1 Document Models ... 45

3.2.2.2 Interacting with the Document .. 47

Chapter 4: Variable Data Document Processing .. 51

4.1 Simple Document Workflow .. 52

4.1.1 Editing the Document ... 53

4.2 The Need for Partial Re-Evaluation .. 56

Chapter 5: Implementation Options .. 60

5.1 Stylesheet Modification .. 61

5.2 Using a Specialist XSLT Processor .. 61

5.3 Modifying an Existing XSLT Processor ... 62

5.3.1 Existing XSLT Processors .. 63

5.3.2 Saxon Architecture ... 64

5.3.2.1 High Level Design .. 64

5.3.2.2 Input XML File ... 68

5.3.2.3 Parsed XSLT Representation .. 70

5.3.2.4 Stylesheet Compilation .. 71

5.3.2.4.1 The Executable .. 72

5.3.3 Compiled Stylesheet Execution .. 74

Chapter 6: Storing State and Component History ... 79

6.1 XSLT Stylesheet Modifications ... 80

6.1.1 XSLT Instruction Path .. 83

6.1.2 Position .. 84

6.1.3 Variables .. 85

6.1.4 Parameters .. 87

Table of Contents

vii

6.1.5 Tunneled Parameters ... 88

6.1.6 Context Node .. 89

6.1.7 Mode .. 90

6.2 Saxon Modifications ... 97

6.2.1 Gathering State Information ... 97

6.2.2 Outputting State Information ... 99

6.2.3 An Alternative Output DOM Implementation 102

6.2.4 Optimised State Storage .. 104

Chapter 7: Effecting Document Edits ... 107

7.1 Changes to the Data .. 107

7.1.1 Modifying the Input Data DOM ... 108

7.1.2 Collating Sample Data Instances .. 110

7.1.3 Switchable Data Description ... 113

7.1.4 Metadata Annotations .. 121

7.1.5 Implementation of the Switchable Data Instance 124

7.2 Changes to the Transform ... 125

7.2.1 Modifying the Stylesheet DOM .. 126

7.2.2 Reflecting Changes in the Transform Executable 128

Chapter 8: Working with Stored State ... 132

8.1 Partial Re-evaluation .. 132

8.2 Re-initializing the Processor ... 135

8.3 Capturing the Generated Tree Fragment .. 136

8.4 Automatic Re-Evaluation of Document Components 138

8.4.1 Recording Input Data Instance Usage .. 140

8.4.2 Compiled Expression Versioning .. 143

8.4.3 Variables and Parameters .. 145

8.4.4 Identifying the Need for Re-evaluation .. 146

Chapter 9: Editor Integration .. 154

9.1 Building a Usable Editor .. 154

9.2 Document Interaction .. 156

9.3 Abstract Edit Decomposition ... 157

9.4 Document Composition ... 158

9.5 Component Properties .. 161

9.6 Document Component Templates ... 163

9.7 Processor-Integrated Editor .. 166

Chapter 10: Performance Analysis .. 173

Table of Contents

viii

10.1 Methodology ... 173

10.2 Sources of Error .. 175

10.2.1 Experimental Error .. 175

10.2.2 Measurement Resolution ... 177

10.2.3 JVM Issues ... 178

10.2.4 DOM Differences ... 181

10.3 Testing Framework Setup ... 182

10.3.1 Performance Measuring Code ... 182

10.3.2 Control Setup .. 185

10.3.3 Experimental Setup ... 186

10.4 Results ... 187

10.4.1 State Storage Overheads ... 187

10.4.2 Single Component Re-Evaluation .. 195

10.4.3 Identification of Affected Nodes ... 198

10.4.4 Re-Evaluation of Variable Values ... 199

10.4.5 Adding New Components ... 201

10.5 Conclusion .. 203

Chapter 11: Conclusions .. 205

11.1 Visually Editing Variable Data Documents ... 205

11.2 Partial Re-Evaluation ... 207

11.3 Suitability of XML and XSLT .. 209

11.4 Future Research .. 210

Appendix A: Saxon Architecture Diagrams... 214

Appendix B: Supporting Program Code... 217

B.1 Example Input Data Document ... 217

B.2 Example Component Templates ... 219

B.3 Performance Measuring Code .. 223

Glossary.. 227

Bibliography... 230

ix

List of Figures

1.1 — Example copy-hole document... 4

1.2 — Separate document instances with large variability........................ 6

2.1 — Example XML Document.. 13

2.2 — Example XSLT stylesheet.. 21

2.3 — Example XML input file.. 23

2.4 — Example XHTML output.. 24

2.5 — Tunnelled variables example... 28

3.1 — Multimedia document authoring view.. 39

3.2 — User interface creation in NetBeans... 41

3.3 — User interface creation in QTDesigner... 42

4.1 — Simple one-step document transformation..................................... 52

4.2 — Sample variable data... 54

4.3 — Example XSLT transformation script.. 54

4.4 — Example result document.. 55

4.5 — Modified result document.. 55

4.6 — Sample data with longer address field... 56

4.7 — Result document showing longer address.. 56

4.8 — Highlighted instructions to be re-executed..................................... 59

5.1 — Saxon Architectural Overview.. 65

List of Figures

x

5.2 — Example input XML document... 66

5.3 — Example XSLT stylesheet.. 66

5.4 — SVG document produced from example inputs.............................. 68

5.5 — Input XML document object structure.. 70

5.6 — StyleElement object tree represention of example template........... 71

5.7 — Example Template Expression Heirarchy.. 74

5.8 — Example output element production... 78

6.1 — Modified XSLT transform processing stages.................................... 81

6.2 — Adding state producing code to the transform................................ 82

6.3 — Example of encoding XSLT instruction path.................................. 83

6.4 — Anciallary function for building stylesheet instruction path........... 84

6.5 — Transform instruction path calculating code fragment................... 84

6.6 — Instruction path code added to original transform.......................... 84

6.7 — Position value calculating code fragment.. 85

6.8 — Variable/Parameter name calculation code fragment...................... 86

6.9 — Variable value calculation function.. 86

6.10 — Value type calculation function.. 86

6.11 — Parameter records producing code fragment................................. 87

6.12 — Tunneled variables example.. 88

6.13 — Context node producing code fragment.. 89

6.14 — Context node path-building function... 89

6.15 — Mode value annotating code fragment.. 90

6.16 — Example XSLT code fragment before modification...................... 91

6.17 — Generating state information as elements..................................... 92

6.18 — Generating state information as attributes.................................... 93

6.19 — State attributes example (variables).. 95

6.20 — Example variable holding tree fragment....................................... 96

6.21 — Serialized form of variable holding tree fragment......................... 96

6.22 — Example variable/parameter test for a primitive type.................... 96

6.23 — State augmentation of truncated processLeavingTail method..... 101

6.24 — Example template with minimally changing execution state........ 104

7.1 — Example data instances.. 108

7.2 — Combining structurally dissimilar data instances............................ 112

List of Figures

xi

7.3 — Example instance descriptor for a fixed element............................. 114

7.4 — Example instance descriptor for fixed attributes............................. 115

7.5 — Text content as a direct child of an instance element.................... 115

7.6 — Example instance descriptor for textual content............................. 116

7.7 — Example instances containing mutually exclusive elements........... 117

7.8 — Conceptual relations involving alternative nodes........................... 118

7.9 — Example instance descriptor of an alternative node........................ 118

7.10 — Text nodes as children of an alternative node.............................. 120

7.11 — Example instance descriptor for an alternative attribute............... 120

7.12 — Example instance showing annotating metadata.......................... 122

7.13 — Sample instance data containing image URIs............................... 123

7.14 — StyleElement replacement example... 127

7.15 — Transfer of child StyleElement objects during edit....................... 128

8.1 — Re-evaluation caused by an edit to a referenced variable............... 134

8.2 — Tree fragment replacement after partial re-evaluation.................... 138

8.3 — Simple node selection XPath expression... 141

8.4 — Complex XPath expression utilizing functions............................... 142

8.5 — Propagation of an edit to a variable.. 145

8.6 — Flowchart showing re-evaluation identification process................. 151

8.7 — Abstract node/handle relationships... 153

9.1 — Stylesheet instruction to produce an output image......................... 159

9.2 — Root Node matching template for ‘blank’ documents..................... 160

9.3 — Example instruction exhibiting non-computed properties.............. 162

9.4 — Example instruction exhibiting computer properties...................... 162

9.5 — Supporting component interdependencies...................................... 163

9.6 — Image document component template definition........................... 164

9.7 — Root template in component-based document............................... 165

9.8 — XSLT name template built from Image component template......... 166

9.9 — Editor view of simple example document....................................... 167

9.10 — Colour-based property editor in use.. 168

9.11 — Editor tree view of underlying document structures...................... 170

9.12 — Editor tree view showing alternative input data values................. 171

10.1 — Example code showing calls to the PerformanceMonitor object.... 183

List of Figures

xii

10.2 — Comparative results showing minimal state storage overheads..... 190

10.3 — Comparative results showing higher state storage overheads........ 192

10.4 — Memoy overheads when processing minimal state documents...... 194

10.5 — Memoy overheads when processing state-intensive documents.... 194

10.6 — Comparison of minimal state configurations................................. 197

10.7 — Comparison of state-intensive configurations............................... 197

10.8 — Initial evaluation costs of various component types...................... 203

A.1 — Complete XSLT stylesheet object heirarchy.................................. 215

A.2 — Complete compiled stylesheet object heirarchy............................. 216

xiii

List of Tables

10.1 — Processing costs using unmodified processor................................. 189

10.2 — Processing costs (complete re-evaluation) of modified processor... 189

10.3 — Processing costs using unmodified processor................................. 191

10.4 — Processing costs (complete re-evaluation) of modified processor... 191

10.5 — Memoy overheads when processing minimal state documents...... 193

10.6 — Memory overheads when processing state-intensive documents... 193

10.7 — Cost of reprocessing a single component (minimal state)............. 196

10.8 — Cost of reprocessing a single component (state-intensive)........... 196

10.9 — Initial evaluation costs for various component templates............. 202

1

Chapter 1:

Introduction

Variable data printing is a recently developed technique, rapidly growing in

importance, that allows for the production of high-quality personalized documents.

This personalization has major implications on the way in which such documents

are created and processed, and so new methods of authoring and editing must be

considered. This thesis examines the inherent difficulties with creating and editing

variable data documents in a user-friendly way and proposes techniques to support

real-time WYSIWYG (What-You-See-Is-What-You-Get) editing by performing

optimal re-processing of the editable document instance.

However, before discussing how variable data printing (VDP) is achieved we first

need to recall how traditional printing is undertaken.

1.1 Traditional Printing Methodologies

High-volume document production has traditionally been the domain of offset

printing presses, where the basic principle has not changed significantly for more

Introduction

2

than 200 years. This process of image transfer from metal plate to rubber sheet,

and then finally to paper, has been gradually improved over the years so that

modern presses can acheive very high throughput while still producing a high quality

product. However this high speed and quality comes at the cost of inflexibility

— all documents in the print run are imaged from the same plates and so are

identical. In traditional situations, such as large-scale book publishing, this high-

speed replication is a positive aspect of the technology. Unfortunately modern

printing extends well beyond these basic principles into areas that are not well

served by the traditional model. One example is seen in the world of advertising,

where documents detailing products or services are more effective when produced

specifically for each recipient, rather than sending out a generic version targetted

at an, often non-existent, ‘average’ consumer. Studies show [1] that such targetted

advertising has almost ten times the chance of generating interest than generically

produced documents.

1.1.1 Modern Laser Printers

The opposite end of the printing spectrum from an offset press is the domain

of home/office laser printers. Unlike offset presses, no metal plates are required to

produce the image, but instead a laser and an electrostatically charged drum are used.

By scanning the laser over the surface of the negatively charged drum and precisely

controlling when the laser is active, areas with no electric charge are created on the

drum. These areas correspond to the pixels in a mirrored version of the image to

be printed and when the drum is exposed to negatively charged toner particles, the

toner is repelled from the negative areas on the drum and collects only at the points

on which the laser was shone. The toner is then transferred to the printing medium

and fused to the paper by heating it with a fuser.

Introduction

3

Laser printers produce documents that are generally of lower quality than those

produced on offset presses, but they are much more flexible in their operation.

The loss in quality and speed is more than compensated for by the decreased

cost and complexity, especially when producing short-run or one-off documents.

Clearly these types of printer are designed for a different purpose than large-scale

offset presses, but there are instances where the strengths of both of these printing

technologies are required.

1.1.2 Copy-Hole Printing

One solution to this apparent conflict between flexibility and quality/speed is

to produce documents in a two-pass process: the first pass using an offset press and

the second using a simple laser printer. This is the approach currently taken in a

number of situations where the personalization is limited to simple information such

as names and addresses. An example of such a document is given in figure 1.1.

In order for the second pass printing of the laser printer to be clearly visible, the

initial offset print must contain a blank area into which this second printing can be

placed. In the example document shown in figure 1.1, the variable content includes

the details of each discount voucher, which can easily be identified as such by

inspection of the original document. This type of printing is commonly referred to

as copy-hole due to the ‘holes’ left in the base image into which the variable content

is later placed.

Introduction

4

Figure 1.1 — Example copy-hole document

Although this is an improvement over the generic “no variability” situation, the

amount of variability that can be introduced into the document is limited. Firstly,

since the quality offered by the laser printer in the second-pass is relatively low,

any variable content is usually limited to simple content such as monochrome text.

Also, since the variable content is exactly that, i.e. variable, the copy holes left in

the document produced by the offset press must be large enough to accommodate

the largest name, address, etc. that might occur thereby running the risk that shorter

Introduction

5

instances of names etc. will appear to be drowned in excessive whitespace. In

practice, things are often more difficult still. The process of moving the printed

material from the offset press to the laser printer, for the second pass, makes mis-

registration an issue. Therefore, the copy holes are often made even larger than

strictly necessary to avoid the variable content overprinting other parts of the

document that lie outside the copy hole. In the example document, these issues are

evident from the excessively large blank areas into which the variable data is placed.

1.2 Introduction of the Digital Press

The holy grail for variable data printing was to develop a technology that

married the speed and quality of an offset press with the flexibility of a digital

laser/inkjet printer. In 1993, at the Ipex [2] trade show, two products were released

promising this ability: the Indigo E-Print 1000 and the Agfa Chromopress. These

digital presses did not require a metal plate to be produced, and so removed the

main inflexibility of traditional offset presses. In essence, these digital presses can

be thought of as extremely high quality laser printers that operate on a much larger

scale. With no need for a metal plate, the cost and complexity of low-volume print

runs need no longer be any more than that of high-volume runs. Taking this to

its logical conclusion, it was now possible for every page to be different whilst still

maintaining the high quality and speed associated with offset press printing.

In truth, these first digital presses could not reach the speed and quality of high-end

traditional offset presses. However their modern counterparts are now sufficiently

evolved that they are commercially viable.

Introduction

6

1.3 Fully Variable Documents

The possibility of printing fully personalized documents on digital presses

exposes the need for tools that can create such documents. Many document creation

programs, such as Adobe InDesign, provide support for including simple areas of

variable content; this is typically implemented as a placeholder component within

the document that will be later replaced by the actual variable content. A more

complete review of existing document creation applications is given in Chapter 3.

To appreciate the problems and restrictions imposed by such an editing paradigm

let us consider a document with a large degree of variability.

Figure 1.2 — Separate document instances with large variability

The two documents shown in figure 1.2 are separate instances of the same

(fabricated) variable data advertising leaflet designed for a fictional supermarket

Introduction

7

chain1. All of the instances have some common components, such as the leaflet

heading, however much of the rest of the document is dependent upon the variable

data.

Some of this variability is not much more complicated than that of typical copy-

hole printing. For example, the recipient's name and their address (in the upper

right corner of the page) are simple pieces of variable text. However, unlike copy-

hole printing, the areas allocated to the name and address are dependent upon their

size and the position of any other surrounding components is automatically changed

if required.

Other parts of the document go beyond the simple notion of variability required

for custom address fields. Inspection of the two document instances in figure 1.2

shows that there are sections present in one instance that are replaced by completely

different sections in the other. For example, the first instance has sections for men's

and women's gifts as well as an extended ‘generic’ items section. By contrast the

second instance has a section of gift ideas for young children as well as a section

advertising wines. The logic controlling which of these differing sections is included

can be based on the known shopping habits of the targetted customer — in the

example the recipient of the second leaflet might regularly buy wine and also

items that indicate that they have a young child, whereas the recipient of the first

leaflet might not exhibit such clear shopping habits. Clearly the scope for different

advertising sections is vast and there may be a large number of possibilities, each

one having a wide selection of products that can be advertised.

1This type of advertising is made possible through the ubiquity of store loyalty cards, from which a

person's shopping habits can easily be discovered.

Introduction

8

The final piece of variability in the document is the map included near the bottom

of the page. It has been decided in this fictional scenario that each customer is

provided with the address of, and a location map for, their local store. Although this

seems superficially no more complicated than the inclusion of different products to

be advertised, the example document highlights an important difference. Because

the map can take one of three general orientations — landscape, portrait or square

— the layout of the document must change to accommodate it. This is the cause of

the male and female gift ideas sections in the first leaflet being tall and thin, rather

than wide and shallow as is the case with the other sections. Extending this example

beyond just two customers, it is conceivable that in the set of all customers there are

some that share the same characterstics as the two shown, with the exception that

the maps to be included are in alternative orientations. In these cases, the majority

of the content of each document would be the same, but its layout would not.

This great variability in both the content and layout of the documents leads

to new problems when creating and editing them. The most obvious of these

is that an editing environment that utilizes blank placeholder components for

variable content will result in the majority of the document not being shown when

editing takes place. Chapter 3 looks at the problems related to visual editing of

such documents as well as a variety of approaches taken by existing commercial

document preparation tools and by academic research projects. The following

chapters consider the need for an underlying processing framework to support an

editing paradigm specifically tailored for variable data documents of the type shown

in the example.

Introduction

9

Document Description Framework (DDF)

As well as the problems in designing and editing variable data documents,

there is also the question of how such documents are represented. Traditional

document formats were designed to represent ‘fixed-form’ documents and extensions

to incorporate variability into the document often consider only a small part of the

document workflow.

DDF (Document Description Framework) [3] is a document format that provides

support for a more complete workflow to be supplied within one file. The contents

of the document are split into three sections: raw variable data, structural data

with document-like semantics, and a final-form presentation. DDF allows for the

inclusion of program code in these sections that will be executed at different stages

of the processing pipeline in order to transform one section to the next. This

programmatic capability is necessary to bind the variable data into the document

when it is processed, but it also provides the possibility of producing largely diverse

final-form documents as a result of differing variable data inputs.

This notion of defining the document as a series of programmatic transformations

that operate on some input variable data has major implications for the editing

process. No longer are we concerned with making changes to a series of declarative

drawing operators (as is the case with formats such as PDF and SVG) or to an abstract

markup such as DocBook or XHTML. In order to change the appearance of the

document, we must instead make changes to the code that is embedded in the file

such that when it is executed the resulting output will give the desired appearance.

In the case of DDF, the code to be modified is typically XSLT embedded within

the XML notation of the rest of the document. Throughout the remainder of this

thesis, we shall consider a simplified document format similiar to that specified

Introduction

10

by DDF. The idea of a programmatic (XSLT) transformation of some XML-based

input to a final-form page description (SVG) is preserved, however the intermediate

‘structural’ form and the associated transformation are omitted for simplicity.

Chapter 2 gives an detailed description of these technologies, which are required

for the discussions in later chapters.

Given this programmatic nature of variable data documents, and the need to

provide an intuitive editing environment as previously discussed, the later chapters

of this thesis discuss a method of optimally re-processing a document in support

of such an environment. The problems associated with such re-processing are

considered and a solution is proposed and implemented into a working document

workflow. This solution, and its implementation, are discussed in detail in chapters

4 through 9 and the performance analysed using a series of document scenarios in

chapter 10.

1.4 Thesis Overview

This thesis is split into three major parts. The first gives detailed explanations

of the technologies and languages that are utilized in later chapters. As a part of

these explanations, there is discussion of how each of the technologies works, as well

as a rationale for why each one is used.

The second part of the thesis describes the research undertaken and the results

that were found. It finishes with an analysis of the performance characteristics of the

various techniques and a discussion of how the techniques benefit VDP and what

work could be done in the future to improve them.

The final section contains Appendices which provide extra information that

is referenced throughout the thesis. A glossary of terms and abbreviations together

Introduction

11

with a bibliography of references can be found at the very end of the thesis.

References throughout the thesis are numbered sequentially and can be found listed

in numeric order in the bibliography.

12

Chapter 2:

Introduction to XML and XSLT

2.1 Extensible Markup Language (XML)

There are many instances where data must be stored in a structured way, and

digital documents are no exception. There are many proprietary ways of achieving

this structure, but there are substantial advantages to using a common metasyntax

to describe it. XML is just such a metasyntax and it has become the de facto

representation for structured data since becoming a W3C recommendation [4] in

1998.

XML defines a very basic structural syntax that can be used to construct custom

tagsets. However it adds no extra information pertaining to the contents of the

file — it merely provides a common metasyntax that allows many of the low-level,

tedious tasks, such as parsing, to be handled by general tools rather than having to

write custom parsers etc. to work with custom file formats. In particular, the lexical

analysis of the document is easily be automated because of the standard metasyntax,

Introduction to XML and XSLT

13

and parsing is aided by the fact that the heirarchical tree structure guaranteed by a

valid XML file is deterministic and context free.

The underlying data structure described by an XML document is a tree. The XML

specification defines different types of nodes that can appear within such a tree

structure, the most fundamental of which is an element. Elements are constructed

using the following general syntax:

<namespace:element_name attribute="foo"> ... </namespace:element_name>

where an arbitrarily long list of attributes can be provided using the same syntax as

the one shown. The namespace component of the element name can be omitted

if the element belongs to the default namespace (see next section) and attributes

are not mandatory, therefore it is permitted to construct elements using only its

name and the associated angle bracket syntax. The tree structure of the document

is defined by the correct nesting of these elements such that an element that exists

within another is a child node of that outer element. Figure 2.1 shows a simplified

XML document that utilizes exisiting tagsets to illustrate these ideas.

<xhtml:html>
<xhtml:head>

<xhtml:title>XHTML & SVG Example</xhtml:title>
</xhtml:head>
<xhtml:body>

<xhtml:p>
Hello World
<svg:svg width="100%" height="100%">

<svg:rect width="300" height="100"
 style="fill:rgb(0,0,255);stroke:rgb(0,0,0)"/>

</svg:svg>
</xhtml:p>

</xhtml:body>
</xhtml:html>

Figure 2.1 — Example XML Document

Introduction to XML and XSLT

14

2.1.1 Namespaces

Although XML provides a common metasyntax for defining custom tagsets,

it adds no meaning to the contents of the document. As a result separate tagsets

may define elements with the same name, but these elements have no intrinsic

commonality and may be processed in very different ways by target applications.

This can cause problems when XML documents are created that contain elements

from multiple tagsets such as is the case in the example document. This is a frequent

occurence in variable data documents where a single document may contain parts

from various sources such as raw data files, processing code fragments, output page

descriptions, typesetting directives etc. In such documents it is entirely possible for

there to be elements, with the same name, that originate from separate sources and

hence must be separately identifiable.

The solution to this problem is the concept of namespaces. A namespace is defined

as an International Resource Identifier [5] that uniquely identifies a tagset. Elements

can be labelled as belonging to a particular namespace in two different ways —

either by prefixing its name with an appropriately declared namespace prefix, or by

changing the default namespace. The example shown in figure 2.1 makes use two

tagsets (XHTML and SVG), with the elements being subsequently decorated with

the approriate namespace prefixes.

To declare a namespace prefix, the special xmlns attribute is used. A declaration

such as xmlns:foo="http://example.com/namespace" indicates that foo is the

prefix associated to the namespace http://example.com/namespace. Elements can

then be prefixed with foo: to indicate that they belong to the specified namespace.

It is worth noting that the prefixes have no meaning in themselves (only the IRI

Introduction to XML and XSLT

15

used has any meaning) and can be redefined to reference a different namespace at

a later point in the document.

The alternative approach of changing the default namespace also uses the xmlns

attribute, but no prefix is specified in its declaration. For example, adding an xmlns

declaration such as xmlns="http://example.com/namespace" to an element

causes all elements in the subtree of that element to belong to the namespace

http://example.com/namespace unless otherwise specified by a local prefix.

2.1.2 Working with XML

The popularity of XML stems largely from the fact that it provides a common

markup for structured documents, and as a result many common tasks are trivialised

through the use of standard tools. Since all XML documents are formed using a

common metasyntax, anyone wanting to work with the information contained

within a document can access it using a standard XML parser.

There are two main approaches that can be taken when working with XML files;

processing the content as it is read from the file, or building a model of the file's

contents and accessing that model.

Simple API for XML (SAX)

SAX is an event-based API which defines handlers for the various events that

are generated when parsing an XML file. The lexical analysis of XML documents

is made standard due to their fixed metasyntax, therefore the generated events

represent the results of this tokenization process. In order to do anything useful with

the generated events, custom implementations of the various event handlers must be

supplied by the user. These handlers are subsequently called when the corresponding

events are produced by the parser as the XML document is processed. The events

Introduction to XML and XSLT

16

that are generated relate to the logical structure of the XML — for example when a

start tag has been identified or when text content of a node has been parsed. For a

complete specification of the generated events, the reader is referred to the official

SAX technical documentation [6].

Because SAX generates events sequentially, and with no accompanying information

regarding their context, the user is responsible for storing any relevant information

that may be required when handling subsequent events. This limitation of having

no access to previous events (and therefore no access to previously processed parts

of the input) is one that springs from the implementation and philosophy of SAX.

This approach can be likened to that of traditional parsers such as those produced

by YACC [7].

By processing the XML document one event at a time, the SAX processor does not

need to build a complete model of the document as part of its execution (though

this can certainly be achieved by the user through appropriate handlers). This leads

to several benefits which satisfy the primary design goals of SAX:

• Smaller memory footprint

• Processing can begin before the document is fully parsed

• Very large documents can be processed using limited memory

Document Object Model (DOM)

The benefits of SAX come at the cost of not being able to traverse the

document tree without having first built an appropriate data structure using custom

event handlers. As the name suggests, the DOM takes the alternative approach by

automatcally providing the user with a model of the document where each node

in the tree is represented as an object. These objects are related to one another as

Introduction to XML and XSLT

17

specified by the implicit tree structure from the document and can be queried and

traversed accordingly.

Obviously the construction of the DOM tree must be completed before it can be

accessed by the user and herein lies its major drawback — the initial processing

and the overall memory cost are much larger than those for SAX. There has been

research [8] into the possibility of producing the DOM “on-demand” to avoid the

cost of producing parts of the document tree that are never accessed. However, in

situations where the DOM tree is wholly visited or consumed, performance gains

using such techniques are not possible.

As well as the random access permitted by the DOM, another feature is that a

complete model of the document is produced, and thus can be retained for future

queries that would have otherwise have required a full reparsing of the document.

As will be discussed later, the process of editing XML-based variable data documents

requires them to be frequently re-accessed and so the persistent document model

provided by the DOM is preferable to the repeated reparsing that would be required

by SAX.

SAX and DOM both provide simple access to the content of an XML document from

within common programming languages such as Java. However, the ubiquity of XML

has led naturally to asking whether an XML tree might be traversed, or analysed

and re-processed, using yet another XML-based syntax. This in turn has led to the

development of other tools and technologies specifically designed for the processing

and manipulation of XML documents — a particularly important example is XSLT.

Introduction to XML and XSLT

18

2.2 Extensible Stylesheet Language Transformations (XSLT)

In the late 1990s the W3C1 began work on bringing substantial typesetting

functionality to the world of XML in the form of the Extensible Stylesheet Language

(XSL). The process of transforming an XML document, with no typesetting markup,

into a form that could be rendered on screen or on a printer, was one that split itself

into two distinct stages. Firstly, the XML file has to be transformed into a markup

that describes the visual layout of the document. This resulting markup then needs

detailed rendering. Therefore, instead of XSL being an all-embracing language to

handle this entire process, it was eventually split into two separate parts — namely

XSLT [9] and XSL-FO [10].

XSL-FO (Formatting Objects) was the language used for specifying the visual

layout of the document, whereas XSLT was developed as a general XML-based

tree transformation language. One of the main reasons for the separation of XSL

into XSLT and XSL-FO was the realisation that XSLT had applications other

than transforming XML directly into XSL-FO. In fact, since XSLT can be used to

transform an XML document into any output XML tagset2, it was commonly used

to generate XHTML rather than XSL-FO.

As mentioned in the introduction, XSLT has been employed in current variable

data document frameworks, such as DDF, as the programing language of choice.

The fact that XSLT is itself an application of XML is a major advantage when

processing documents that contain embedded program code as is the case with

programmatic variable data documents. Since the document structure, its content,

1THe World Wide Web Consortium (W3C) is an international community with the purpose of

developing web standards
2However, XSLT is not limited to producing only XML documents — it is also capable of outputting

arbitrary plain text.

Introduction to XML and XSLT

19

and the embedded code are all written in XML (albeit in separate namespaces), the

document can be processed using the same standard tools that have been previously

discussed. Furthermore, because XSLT is primarily designed for transforming XML

documents into other XML documents — and an XSLT stylesheet is itself an XML

document — it is entirely possible for XSLT stylesheets to modify and/or generate

other XSLT stylesheets. This ability is often exploited and is frequently used in

later chapters of this thesis. Essentially there are big advantages with transforming

documents in an “all XML” environment.

2.2.1 Language Design

Although not strictly a functional language (since functions are not treated

as first-class data types), XSLT's design is heavily influenced by various aspects of

functional programming. An XSLT stylesheet comprises a set of templates that are

matched against the nodes found in the XML document being processed. These

templates are essentially pure functions that produce a fragment of the output given a

fragment of the input tree, while not producing any other side-effects. The templates

are evaluated when the XPath expression (a construct specifying a set of nodes)

defined in their match attribute matches the node in the input tree that is currently

being processed. Any output produced by an executing template is appended to the

current node in the result tree.

One further feature of XSLT that differentiates it from common procedural

programming languages is its lack of an assignment statement. The consequence

of this is that the values of all variables defined in XSLT stylesheets are fixed

Introduction to XML and XSLT

20

and cannot be changed once declared. Michael Kay3 explains this decision as

follows [11]:

“The XSLT language allows variables to be defined, but does not allow an

existing variable to change its value — there is no assignment statement. The

reason for this policy, which many new users find bewildering, is to allow style

sheets to be applied incrementally. The theory is that if the language is free of

side-effects, then when a small change is made to an input document it should

be possible to compute the resulting change to the output document without

performing the entire transformation from scratch. It has to be said that for

the moment, this remains a theoretical possibility, it is not something that any

existing XSLT processor achieves.”

This goal of performing a limited amount of reprocessing to produce a revised

output document is one that has significant implications when editing variable data

documents and is explored and expanded upon later in this thesis.

2.2.2 XPath

XSLT is dependent upon XPath for selecting items that it can subsequently

process. XPath itself is not a full programming language, but rather an expression

language that must be hosted inside a “real” language, such as XSLT or XPointer [12].

However, its abilities go beyond simply referencing nodes in an XML document,

because it also supports predicates and simple programming constructs that allow

filtering and other processing. To accompany the update of XSLT from version 1.0

to 2.0, XPath was also revised. The specification of version 2.0 is much larger than

its predecessor and provides a richer type system that is supported by a expanded set

3Michael Kay is the editor of the W3C specification of the XSLT 2.0 language

Introduction to XML and XSLT

21

of functions and operators4. Therefore, since the XSLT examples given throughout

this thesis are expressed using XSLT 2.0, any XPath expressions will consequently

also conform to the revised 2.0 version.

2.2.3 Example Stylesheet

Before discussing some of the more detailed aspects of XSLT we now show

an example program (see figure 2.2) that produces a simply formatted XHTML

document from an XML file containing the marked-up contact information of

multiple people.

The root element <xsl:stylesheet> indicates that the document is an XSLT

program, with the version attribute specifying that it should be processed by

an XSLT 2.0 compliant processor. Within the stylesheet, two <xsl:template>

elements are defined. Each of these templates has a match attribute specifying

the pattern that a node must match for the processor to consider applying the

corresponding template when processing a given node from the input tree. In our

example program, one of the templates matches on “/” (the document root) and the

other matches on any <person> element.

<xsl:stylesheet version="2.0">
<xsl:template match="/">

<html>
<head>

<title>Contact Information Summary</title>
</head>
<body>

<h1>
Number of listed people:
<xsl:value-of select="count(//person)"/>

</h1>
<xsl:apply-templates/>

</body>
</html>

4In fact, version 2.0 of XPath is a subset of the querying language XQuery 1.0 [13]

Introduction to XML and XSLT

22

</xsl:template>

<xsl:template match="person">
<h2>

<xsl:value-of select="name"/>
</h2>
<p>

Tel:
<xsl:value-of select="telephone"/>

</p>
<p>

Email:
<xsl:value-of select="email"/>

</p>
</xsl:template>

</xsl:stylesheet>

Figure 2.2 — Example XSLT stylesheet

The content of each template is a combination of XSLT instructions and data.

All elements in the XSLT namespace will be interpreted by the processor with

any other elements being copied to the output document. In cases where XSLT

instruction elements would generate children of output elements, the instructions

will be executed and any resulting output is appended as child elements of the parent

element.

In our example, the first template will be interpreted when processing of the input

document begins since it has a match pattern of “/” that matches the document

root. The template contains a series of elements that are not in the XSLT namespace

and so are copied directly to the output to produce a simple skeleton XHTML tree.

The <h1> element that is produced contains a text string composed of some literal

text concatenated with the result value of an <xsl:value-of> instruction. This

instruction generates a text node with the value of the expression given in its select

attribute. In this case the select attribute utilizes the XPath count() function to

count the number of person elements within the document. The XPath expression

Introduction to XML and XSLT

23

//person is used to select all person elements in the document irrespective of their

ancestry.

The template also contains an <xsl:apply-templates> element that causes the

processor to process all child nodes of the currently selected node. The processor

therefore recursively processes the children of the document root testing each

element against the patterns of the various templates specified in the stylesheet. In

our example, the two <person> elements match the pattern specified by the second

template in the stylesheet and so it is executed once for each element.

The second template simply produces a <h2> element that contains the name of

the person in question, as well as two <p> elements that contain the person's

telephone number and email address. Since these pieces of information are stored

within appropriately named child elements of the <person> element (see figure 2.3),

they can be retrieved by the various <xsl:value-of> instructions by using select

attributes that simply specify the name of the required child element.

It should now be clear that the stylesheet produces the output given in figure 2.4,

when executed with the example XML file.

<people>
<person>

<name>James Ollis</name>
<telephone>0115 9123456</telephone>
<email>jao@cs.nott.ac.uk</email>

</person>
<person>

<name>Sherlock Holmes</name>
<telephone>020 1234567</telephone>
<email>sherlock.holmes@example.com</email>

</person>
</people>

Figure 2.3 — Example XML input file

Introduction to XML and XSLT

24

<html>
<head>

<title>Contact Information Summary</title>
</head>
<body>

<h1>Number of listed people: 2</h1>
<h2>James Ollis</h2>
<p>Tel: 0115 9123456</p>
<p>Email: jao@cs.nott.ac.uk</p>
<h2>Sherlock Holmes</h2>
<p>Tel: 020 1234567</p>
<p>Email: sherlock.holmes@example.com</p>

</body>
</html>

Figure 2.4 — Example XHTML output

Path Expressions

In the example stylesheet, XSLT makes heavy use of XPath expressions to

select and process nodes from the input document. Although XPath has a variety of

expression types, the most fundamental are the basic path expressions used to select

nodes. These expressions can be either absolute (starting with a / indicating the

document root), or relative to the current context node.

A path expression comprises a series of steps that are used to navigate the tree. Each

step consists of an axis, a node test and any number of predicates, such that the

syntax of a path expression is as follows:

axis::nodetest[predicate][predicate]...

Axes are used to specify the direction in which the step should operate. There are 13

axes defined in XPath, with 11 used to support navigation of ancestors, decendants,

siblings etc. and the other 2 to access attributes and namespaces respectively. If no

axis is declared in the path step, the default is to use the child axis.

The next constituent part of the step is the node test. This can be used to specify

the local name, namespace or type of nodes that should be matched at this stage.

Introduction to XML and XSLT

25

For example, a step of child::foo will select all children with the local name of

foo, whereas a step of following-sibling::text() will select all text nodes that

are siblings of the current node but appear later in the document order. To select

nodes of any name or namespace, the wildcard character “*” can be used.

The final part of a step is a list of predicates used to filter the nodes that were

returned as a result of the axis and node test. Predicates are XPath expressions

themselves and are evaluated once for each node, typically returning a boolean value

indicating whether the nodes should be included in the final sequence returned or

not. Predicates may also return numeric values specifying the index of the item to

be returned from the sequence.

2.2.4 Stylesheet Evaluation

Further to the basic execution of the stylesheet covered in the previous

section, we shall now discuss some more advanced aspects that are prevalent to the

discussions in later chapters.

Push vs. Pull

Most programming languages use a pull-based approach where data from the

input is explicitly fetched so that it can be manipulated and some result generated.

XSLT can operate in this manner, but it is more commonly used as described earlier

whereby the input document is parsed and the resulting tree is walked over, with

templates executing when the pattern specified within them matches the nodes

found in the tree. The key instruction used to instantiate this recursive, push-based

processing is the <xsl:apply-templates> element. Unless nodes are explicitly

specified via the optional select attribute and an accompanying XPath expression,

Introduction to XML and XSLT

26

the default behaviour is to find and execute the highest priority matching template

for each of the current node's children.

This push-based approach can also be seen in older scripting languages such as

awk[14]. Unlike XSLT, awk operates on input records rather than tree nodes, but

the output of the script is governed by matching the input against a set of templates5

much like in XSLT.

Template Priorities

Stylesheets often contain more than one template having a pattern that

satisfies the currently selected node from the input tree. In these circumstances,

the default behaviour is to evaluate the template with the most specific pattern;

however the priority of templates can be overriden by the user via a priority

attribute as part of the template definition. When priority attributes are supplied, the

template with the highest value (among the set of matching templates) is executed.

Once a template has been selected it assumes control for the input node producing

any required output and controlling the processing of any descendent nodes in the

associated sub-tree.

In order for the descendants of an already matched node to be processed, the selected

template must contain appropriate instructions. This can be achieved by directly

referencing the descendent nodes (pull-based processing), whether that be within

the current template or through calls to functions and/or other named templates,

or by returning control to the processor to find approporiate template matches for

through the <xsl:apply-templates> instruction.

5awk does not prioritise templates in the way that XSLT does, instead they are simply checked for

compatability in order of their appearance in the script

Introduction to XML and XSLT

27

Modes

There exists an optional mode attribute that can be placed on templates to indicate

that they may be considered for execution only when a matching mode value has

been specified on a corresponding <xsl:apply-templates> instruction. This allows

templates to be grouped and it is useful when performing logically distinct operations

within the stylesheet. A good example is that of generating documents with an index

and/or contents pages where the input document is processed once in the normal

manner to generate the actual content, but is then processed again in a different

mode in order to generate the index/contents.

As well as custom mode identifiers, there are a few “special” ones that are defined

within XSLT. When no mode value is given the processor runs in the default mode,

which has a value of #default. Templates can also be called with the special mode

value of #current, which indicates that processing should continue in the current

mode. The final pre-defined value is #any, which allows the template to be called

irrespective of the mode value specified.

Tunnelled Parameters

XSLT supports the passing of parameters to templates and functions through the use

of <xsl:param> and <xsl:with-param> instructions. This mechanism operates in

the same way as most programming languages, however an optional tunnel attribute

can be added to allow a parameter to be available in all templates called from that

point on without the need for explicitly passing it through.

Introduction to XML and XSLT

28

Let us consider the code example shown in figure 2.5 where the template named a

is called6 from the initial template with a parameter named foo. This parameter has

a value of ‘red’ and is specified as a tunnelled parameter by the tunnel attribute.

The <xsl:param> instruction within template a declares the incoming parameter,

but does not specify it as being tunnelled. Therefore, within the scope of template

a, foo holds the specified default value (in this case ‘blue’).

<xsl:template match="/">
<xsl:call-template name="a">

<xsl:with-param name="foo" tunnel="yes">red</xsl:with-param>
</xsl:call-template>

</xsl:template>

<xsl:template name="a">

<xsl:param name="foo">blue</xsl:param>
<!-- $foo contains the value 'blue' -->
<xsl:call-template name="b"/>

</xsl:template>

<xsl:template name="b">

<xsl:call-template name="c"/>
</xsl:template>

<xsl:template name="c">

<xsl:param name="foo" tunnel="yes">green</xsl:param>
<!-- $foo contains the value 'red' -->

</xsl:template>

Figure 2.5 — Tunnelled variables example

Template b is then called with no parameters and template c is subsequently called

in the same manner. Template c contains an <xsl:param> instruction indicating

that it can accept a parameter named foo that will take a default value of ‘green’

if no parameter is passed to the template. However, it also has a tunnel attribute

indicating that it can obtain the value from a previously tunnelled parameter.

6As an alternative to specifying templates with match attributes, which are executed when a template

matches the input node being processed, templates can be given a unique name via the name attribute

and called by a corresponding <xsl:call-template> instruction.

Introduction to XML and XSLT

29

Although the parameter passed from the initial template has not been explicitly

passed through the other templates, it has been automatically passed through

because it was declared as tunnelled. Therefore the parameter accepted by template

c is that initially passed from the first template and hence, within the scope of

template c, foo has the value ‘red’.

30

Chapter 3:

Authoring Variable Data Documents

The previous chapter introduced some of the common technologies for

producing and processing variable data documents. In this chapter we will examine

how documents in general have been traditionally authored, the aspects of variable

data documents that make traditional editing paradigms less than ideal, and how we

might develop new frameworks for editing.

3.1 Existing Document Editors

One of the difficulties in reviewing existing document editors is determining

exactly what constitutes a document and, therefore, which applications can be

classified as document editors. Clearly, there are traditional documents such as

such as books, reports, magazines, etc. with which we are familiar, as well as the

relatively new variable data documents that are the subject of this thesis. There are,

however, a large number of other types of media that can be justifiably classified as

documents, in the sense that they convey information to a consumer. Items such

Authoring Variable Data Documents

31

as TV documentaries, multimedia Web pages, and computer program interfaces can

all be thought of as documents and there are associated applications that exist to

aid their creation.

In the following sections we look at a variety of document types, and their editing

applications, under three broad categories: traditional manuscript-type documents,

variable data documents, and other miscellaneous documents. The purpose of this

exercise is to evaluate the strengths and weaknesses of the techniques associated

with each type of document and assess how they might be of use when looking

towards a new editing framework for fully variable documents.

3.1.1 Non-variable Document Editors

To most people, the word ‘document’ implies a fixed-form manuscript such as

a letter, article or leaflet. This association of fixed-formedness, or ‘non-variability’,

to the word ‘document’ is probably a consequence of the long-term existence of

written and printed documents in contrast to the relatively recent advent of other

document forms. With such a long-standing history, it is not suprising that their

production and consumption has been readily transferred to software. Although the

most familiar graphical WYSIWYG applications were not readily available until the

mid 1980s, a variety of text-based document preparation systems was available as far

back as the early 1970s.

3.1.1.1 Text-Based Document Preparation

Many document preparation systems such as [15] and troff[16] were

developed before the desktop publishing revolution of the mid 1980s. These systems

employ an authoring model wherein the textual content of the document is

interspersed with formatting and control commands and is subsequently processed

Authoring Variable Data Documents

32

by the appropriate processing engine to create a final-form document (nowadays,

this is commonly in the form of a page description language (PDL) such as PostScript

or PDF). This processing pipeline means that there is a separation between changes

made to the source document by the author and these changes being effected

in the resulting output document. This separation was largely overcome by the

development of WYSIWYG publishing applications, but systems such as and

troff are still used today.

The power of their typestting abilities combined with their simple textual format

means that, although they are often not used in the way originally intended, they

are still used as intermediary stages in complex document workflows. In this way,

they can be seen as contempories of XSL-FO (see chapter 2), however troff and

 macros can also support basic programmatic constructs, hence leading them

into the domain of XSLT. It is therefore not suprising to find troff1 and used

by publishers as a target typesetting language into which abstract documents are

converted, thus allowing them to use a standardized processing pipeline to achieve

a consistent appearance and style.

3.1.1.2 Desktop Publishing Applications

The tedium of having to completely reprocess a document to see the

output effect of any changes made by the author was largely removed with the

development of WYSIWYG desktop publishing applications. By the mid 1980s,

desktop computers were available with sufficient memory capacity and processing

power to support interactive authoring applications such as Aldus PageMaker2.

1In practice, the freely available clone groff[17] is often used instead
2Aldus Corporation was taken over by Adobe in 1994 and therefore subsequent releases of PageMaker

were released under the Adobe name

Authoring Variable Data Documents

33

Since the introduction of these first desktop publishing packages, many more have

been developed offering various refinements to the model of WYSIWYG document

authoring, with recent applications such as Adobe InDesign and QuarkExpress

becoming ever more complex and powerful.

Although the fixed-form documents we are considering here are a subset of a wider

range of document types, there is significant variation within this set. Editors such

as Quill [18] and Lilac [19] deal with purely textual documents like letters, books

and articles, whereas others (e.g. Juno [20]) deal with more graphically oriented

documents. There are also a large number of editors that support both text and

graphics within the same document, aimed at allowing the user to create reports,

Web pages etc. (e.g, InDesign, DreamWeaver, FrameMaker [21], Quanta+ [22],

Amaya [23], grif[24] etc.). Most of these editors allow for editing to be performed in

more than one mode, often supporting direct editing of the source as well as via the

graphical view of the resulting document. Some [24,21] further expose the structure

of the document (whether it is implicit or explicit) to the user through a separate

view that also supports user modifications.

This support for concurrent source, structural and graphical views of the same

document is something that can be easily maintained for fixed-form documents.

Each part of the document has a representable form in each of the different views

and the translation between these views is fairly straightforward. For example, if a

new paragraph was to be added to the source of a document being editing in Lilac,

it would result in exactly one formatted and typeset paragraph being added to the

corresponding graphical view. If the situation was reversed and the paragraph was

added through the user's interaction with the graphical result view, it is a simple

Authoring Variable Data Documents

34

task for the editor to insert the approporiate source code to produce the paragraph

at the correct point in the source view.

Impact on Variable Data Document Editing

The main advantage of WYSIWYG editing is the simple fact that any changes made

to the document are done through direct interaction with the resulting graphical

view. This editing process allows a user to easily create documents without the

need to know the underlying markup or language, as is the case with text-based

systems. This allows creative professionals to concentrate fully on designing the

document without having to concern themselves with the technical aspects of the

document format. Such an editing model works well for the types of document we

have discussed so far because of their implicit one-to-one relationship between the

marked up document content and the resulting final-form image. Every time the

document is processed, it will produce the same output and every component in the

output will have been directly produced from one section of the source document.

A classic example of a tool that follow this paradigm, and is widely used by a

large number of users, is Microsoft's ‘Word’ [25] word processing package. Word

allows users to create predominantly textual documents through direct interaction

with a view of the result document without exposing them to its underlying file

formats [26]. Although basic edits, such as adding new content or changing font, are

effected automatically, other, more complex, operations such as updating the table

of contents of a document must be initiated manually. However, the underlying

principle that the editing view presented to the user is a faithful representation of

the single possible rendering of the document remains.

When working with variable data documents, the basic assumption of a one-to-one

relationship between the components in the source and result documents, on which

Authoring Variable Data Documents

35

the traditional WYSIWYG desktop publishing paradigm is founded, no longer holds.

Repeatedly processing the source document does not necessarily produce an identical

result every time, but instead can produce wildly different results depending upon

the input data. Furthermore, and potentially more problematically, there may be

parts of the source document that are not evaluated when using certain input data.

The result of this can be that some components that would otherwise have been

produced are not included in the result. Since the aim is for all authoring of the

document to be performed via the result view, the problem is that certain result

instances can preclude the possibility of editing all aspects of the source document.

As an example, consider the sample document shown in figure 1.2 of chapter 1.

Many of the variable product sections are included only when certain information

about the customer is included in the data instance; it is not possible for all sections

to be included in a single result instance.

Clearly the editing model widely used for authoring non-variable documents

comes up against some significant obstacles when directly applied to variable

data documents. However, the editing of the source document through the final

result has proven to be an intuitive and effective method of editing non-variable

documents, and this remains a goal for variable document editors. Fortunately in

most variable data documents that are some components that do not vary. It is upon

this premise that a number of add-ons to existing desktop publishing packages have

been developed, to support varying degrees of document variability. We now look

at these, along with a variety of purpose-built variable data document editors.

3.1.2 Variable Data Document Editors

There are a number of products, such as CatBase [27] and uDirect [28] that

work in conjunction with existing non-variable document editors (Adobe InDesign,

Authoring Variable Data Documents

36

QuarkExpress, etc.) to provide a capability for supporting some form of variability. A

typical example in which this process might be used is that of adding personal details

to a template document to produce a ‘mail merge’ of the data and the template.

CatBase works by providing the author with a wizard to select the variable content

to be included in the document. This is then linked into the document by adding

it as a data source for a custom component. Once this is done, a set of documents

is created with the data fully bound, ready for the author to print. In the case of

uDirect, a plugin allows the author to specify the variable data to be included and

it then utilizes its own custom component, which is added to the document as a

placeholder. A series of previews can be generated for the author to use in proofing

the resulting document before a full set of result documents is generated from the

supplied variable data.

Both of these products highlight one of the main drawbacks to using existing

editors. Because the editor was not designed with variable data documents in

mind, the placeholder components that are included to represent variable content

are displayed in a static, and usually non-illustrative, way. This means that the

document author is not able to view the effects of the changing variable data without

generating and proofing a subset of the sample instances. For simple copy-hole

and minimal-variability documents this method is viable, but when we consider

documents with a high degree of variability it is clear that the number of sample

instances required makes this approach impractical.

In contrast to tools designed to work alongside existing document preparation

packages, a number of bespoke editors have been created specifically aimed at

authoring variable data documents. Dialogue Live [29] is a commercial package

that allows for extensive editing and modification control and provides support for

Authoring Variable Data Documents

37

more wide-ranging aspects of the document lifecycle. However, because it has been

designed from the start with the goal of supporting variable data, and other non-

standard documents, it is able to provide the user with a more complete view of the

document than a combination of placeholder components and a set of generated

instances otherwise could.

The work of Lumley et al[30] follows this same idea of creating a bespoke editor

for variable data documents — in their case building upon the DDF technologies

that have previously been discussed. Their proposed editing application adds support

for the visual display of programmatic concepts e.g. when a group of components

was generated from an iteration in the source transform and are part of a linear-

flow layout. Furthermore, this editor is designed to utilize an underlying editing

mechanism that allows for the document author to make changes to both the

document itself and to the variable data used to generate it. This is a step toward

a truly WYSIWYG variable-data editor because the author can now change the

instance that is being displayed through direct interaction with the document. There

is, however, still scope to further develop this idea of interactive modification of

the source data at a component-by-component level, as well as dealing with the

significant problem of real-time updates to the document view. These aims, and the

associated practical issues, will be discussed in more detail in later sections, when

we consider a refined approach to variable data document authoring.

3.1.3 Alternative Editors

Beyond traditional printable documents, there are a host of other document

types that share similar characteristics to those causing the difficulties for

WYSIWYG editing of variable data documents. Although an analysis of these

Authoring Variable Data Documents

38

documents, and their authoring applications, will not necessarily provide direct

solutions, it will be useful in further understanding the context of the problem.

Multimedia Document Editors

There is a substantial body of research in the area of multimedia documents and how

they are created and consumed [31, 32, 33, 34, 35]. This type of document extends

beyond the text and images associated with traditional documents and incorporates

the use of sounds, video, animations etc. The temporal aspect of these documents

introduces similar problems and concerns to those we have outlined for variable data

documents.

The connection can be seen when we consider multimedia documents to be those

that change from state to state, or instance to instance, as a result of temporal

progression, in the same way that variable data documents change from instance to

instance as a result of changing input data. In both cases, the goal of a WYSIWYG

editing application is to provide the user with a means of editing the document

through a simple interactive view even though the composition and layout of the

document may have many potential configurations.

At first glance, it appears that we are indeed attempting to solve the same

problems that exist when editing multimedia documents, but there is one significant

difference. When editing a multimedia document, the author sees many different

‘states’ that the document can be in as time progresses, however each of these states

is well defined and fully bound. This is in contrast to variable data documents where

the input data can potentially contain any values unless restrictions were applied at

some stage in data preparation and the document workflow.

Authoring Variable Data Documents

39

Figure 3.1 — Multimedia document authoring view

Figure 3.1 shows an interface for editing spatio-temporal multimedia documents

proposed by Bulterman et al[36]. At first glance, such an interface does not resemble

a WYSIWYG document editor. This is because it works with a graphical view

of the document's structure rather than a final-form view. The various coloured

containers represent different control structures, with the document components

and associated content being shown within them.

Although this interface does not show a final-form view of the document and, by

the authors' own admission, is hindered by its apparent complexity, it does show one

way in which tree-structured documents can be displayed whilst allowing access to

all ‘branches’ at the same time.

More ‘conventional’ looking multimedia document editors such as Adobe Flash [37]

and the application described in [38] use a timeline to access the different

transitional states of the document. If applied to variable data documents this

approach would result in the same type of result instance enumeration that already

Authoring Variable Data Documents

40

exists in other plugins for variable data document editors that were discussed in the

previous section.

Graphical User Interface (GUI) Designers

Another type of ‘document’ editor, seemingly unrelated to VDP editors, is

that of user interface designers for software applications. Mainstream Integrated

Development Environments (IDEs), such as Microsoft's Visual Studio and the

open-source NetBeans platform, as well as bespoke designers such as TrollTech's

QTDesigner all exhibit features that are potentially relevant to the problems

discussed so far.

Authoring Variable Data Documents

41

Figure 3.2 — User interface creation in NetBeans

The reality of GUIs is that they are the interface between the user and the content

of the program with which they are interacting. In this sense, they are no different to

printed documents and their programmatic underpinnings bring them closely in line

with complex variable data documents. GUI designers like those shown in figures 3.2

and 3.3 often provide the user with a window canvas onto which components can

be placed and organised. These are typically a combination of discrete interaction

controls (buttons, menus etc.) and information input or display components such

as text areas/fields, images, lists and tables. The information displayed by such

Authoring Variable Data Documents

42

components is linked to through other aspects of the GUI designer, or by direct

manipulation from within the underlying source code. Changes to the currently

displayed data, and/or other interactions with the user, often result in changes to

the layout and composition of the interface. For example, GUI components may

resize when their content changes and rules are often specified to describe the effect

on the bounds of other components as a result. This process is analagous to that of

changes to the layout and composition of a variable data document when changing

from one input data instance to the next.

Figure 3.3 — User interface creation in QTDesigner

Authoring Variable Data Documents

43

As well as allowing the user to add components to a window canvas and to directly

manipulate them, most GUI editors also provide access to all properties of the

currently selected component through a separate list view. These encompass all

aspects of the component, including visual properties such as size and position etc.,

as well as those properties that do not have a visual representation. This access to

‘hidden’ properties, such as the binding sources of any linked data, through a separate

aspect of the editing application, allows a WYSIWYG view to be used for editing

without losing the ability to control certain features of individual components.

Another interesting feature of many GUI designers is the way in which they

indicate various layout constraints to the user. Figures 3.2 and 3.3 both show

how the positioning of components is dependent upon the relationship with other

components and the canvas boundary. These relationships can be managed through

various component properties as well as through direct interaction with these ‘meta-

components’. It is clear that this idea of providing the user with graphical meta-

components to manipulate both structure and layout could also be applied to the

editing of variable data documents.

3.2 Visualizing Document Variability

In the previous sections a number of different editors have been discussed that

are designed to support the creation and modification of all types of documents.

Many of these work within a WYSIWYG framework, but in reality the process of

editing variable data documents, using the tools described, is not truly WYSIWYG.

Variable data frameworks based upon existing editors that use custom placeholder

components are only able to display a complete view of the document when

processed against an exhaustive set of input data. Therefore the interactive

document view offered to users contains unbound variable placeholder components

Authoring Variable Data Documents

44

and is, at best, What-You-See-Is-Part-Of-What-You-Get. The custom variable data

document editors that have been described improve this situation by giving a

complete view of a single document instance, but they are unable to adequately show

the full variation in the document without also producing a (potentially vast) set of

example documents. In this case, we might also consider these editors to be What-

You-See-Is-One-Instance-Of-What-You-Might-Get.

This is the crux of the problem — a true WYSIWYG editor must provide the user

with a complete view of the whole document, through which they can effect any

and all changes, but by their very nature, variable data documents have no single

instance that can be used in such a situation.

3.2.1 Data Variability vs. Document Logic Variability

To understand how we might solve this problem it is worth analysing the nature

of the variability within documents, which can broadly be classified into one of two

categories: data variability and document logic variability.

Data Variability

The most common type of variability encountered is through components within

the document whose content is sourced directly from the variable input data. Classic

examples, such as the inclusion of a recipient's address in a document, illustrate that

a variable component may be purely textual. The bounds of the text component

may be changed to accommodate the variable text, but beyond that, and any

consequential changes to other components, the structure of the document is not

affected.

Authoring Variable Data Documents

45

Document Logic Variability

In contrast to the effects caused by the changing of the content of a document

component, it is the overall structure of the document (and the reasoning on which

such changes are based) that we refer to here. This type of variability occurs when

components are conditionally included in the document and/or the layout of such

components is dependent upon some value in the variable data.

This type of variability is borne from the programmatic structures within the source

document in the form of conditional branch statements (‘if’ statements etc.) and,

in template matching languages such as XSLT, the implicit condition of whether or

not a node exists in the input data that might trigger some given template.

Clearly, in situations involving simple variability, such as copy-hole documents, it

is sufficient to deal only with the first of these two types. However, when working

with fully variable documents, of the sort shown in the earlier examples, structural

variability also has a major influence.

3.2.2 Displaying Variable Documents

Having examined how editing applications tackle the problems associated with

different document types (in particular focussing on the issues specific to variable

data documents) it is apparent that there is scope for improvement in the

WYSIWYG editing of such documents. Two main points need attention: how we

display the document to the user and how the user interacts with the given display.

3.2.2.1 Document Models

The display of the document is central to any WYSIWYG editing application —

what is seen must be representative of what the document will look like when finally

processed. This document view is a direct consequence of the way in which the

Authoring Variable Data Documents

46

document is modelled and the way different aspects of the document are accessed

through this model. A summary of the two main approaches is given below.

Template-Based

The first option is to present the user with an abstract ‘template’ view of the source

document where all static parts are rendered and where any variable components are

rendered as fully as possible given their known property values. This is similar to the

approach taken by products such as uDirect and CatBase, but it leaves the problem

of satisfactorily displaying the structural variations discussed above. One solution is

to initially show blank placeholders to show that there is more than one component

that can be included at that point in the document. However, the individual child

components of this conditional placeholder would then be accessible for editing by

‘opening’ the component to display its contents. This model has the advantage that

all possible components that may appear in the result document can be accessed and

edited through the same document representation. However, in practice, the author

would frequently be presented with a document view comprising mainly blank

placeholders and partially-rendered components with no content. The problem with

this approach, for users with a ‘design’ background, is that it is too complex and

programmatic and does not display the design aspects of the document sufficiently.

Instance-Based

The alternative model for representing a variable data document is to edit the result

instances of the document after it has been bound to some input data and processed.

This is the approach taken by the editor proposed by Lumley et al (see section 3.1.2).

The major advantage of this approach is that the document presented to the author

is a fully-rendered view of the document, therefore overcoming the main problem

with the template-based model described above. It essentially treats the variable

Authoring Variable Data Documents

47

data document as a fixed-form one, meaning that in order to edit the full range

of components that may be included in the result documents, numerous instance

documents must be presented for editing. A further point is that once a change

has been made to a particular document instance, it is not necessarily clear to the

author what effect this will have on other instances without rendering and viewing

them individually. For large, complex documents, this repeated proofing becomes

impractical.

Both of these approaches have their benefits and shortcomings, and it is conceivable

that aspects of both approaches could be incorporated into a third possibility. For

example, a template-based model could be instantiated with a default data set

that would result in a ‘complete’ document instance whilst retaining the abilities

of treating the variable components as entities in their own right. The result is

that components that could previously be only partially rendered can now be fully

rendered in the same manner as an instance from the result document set. However,

this still leaves the problems associated with displaying conditional components to

the author and allowing them to be edited, as well as showing only a single document

instance that will inevitably not show the complete range of variation supported.

Taking these points a step further brings us to issues of the way that the author

interacts with the document during the authoring process.

3.2.2.2 Interacting with the Document

Given the kind of hybrid model wherein a document is instantiated with a sample

input data set to produce a fully renderable result instance, we must consider how the

inherent variability of the document is exposed to the author and how they might

interact with it accordingly.

Authoring Variable Data Documents

48

This idea of exposing the variability to the author is one that is important, yet

it has not necessarily been fully explored with existing editors. When working

with a document instance, we must present the user with a view that shows the

potential structural variability as well as the variability due to the changing data

content. To do this we must show to the user, either directly or indirectly, both

the programmatic transform and the input data set. As an example, consider a

document with components that are conditionally included in the document as well

as other components with varying textual content, such as names and addresses. It

is important that the document view indicates both of these facts to the author and,

furthermore, aids the author in understanding how these aspects of variability will

affect the document from one instance to the next. In the case of the conditional

component, the author must be able to edit the component whether or not it is

included in the current result instance. Therefore, the editing application must

indicate to the author that there is a component within the document that is not

currently shown and allow for it to be displayed upon request. One way of achieving

this is to allow the author to switch to a different input data set that results in

the component being displayed. The situation involving the changing content of a

persistent component can be addressed in the same way. If the author could change

from one instance to the next, the effects of this change in content could be seen

directly in the updated document view.

Although this might seem to be no more than emulating the process of producing

a series of result instances, there is an important difference. These changes to the

input data set are being instigated by the author on a component-by-component

basis. Thus, rather than generating a series of somewhat random instances, the

author is able to intuitively generate a specific instance that displays the required

Authoring Variable Data Documents

49

combination of input data to illustrate some desired aspect of the document. This

can be taken further by guiding the author through the data selection process and

providing a series of commonly occuring samples that are at the extremes of the

allowable ranges. These samples could be collected from a set of sample instances or

even the complete data set that will be used with the final document. For example,

the textual content of the address component could be provided as a node in the

input data. The pre-processing of a series of separate input data could collect the

shortest, longest and most common addresses. These could then be presented to

authors when they select the component generated from this variable data. In

this way they can see the effects of changes to this component on the rest of the

document. In contrast to the approach of cycling through a series of complete input

data sets, this approach is able to generate a much larger number of document

configurations, as well as selecting potentially more meaningful data.

The way in which information is presented to a document author is an area of

research for Human-Computer Interaction (HCI) experts [39] and is beyond the

scope of this thesis. Many of the issues relating to displaying the variability available

within a document would need careful consideration and investigation in order

to provide an optimal solution. Indeed, Terry et al[40] examine the complexities

involved in designing user interfaces for creative applications and processes such as

the one we describe. These considerations will therefore not be discussed further

in this thesis, but the simple act of collecting and exposing this data, and the

mechanisms required to support an editing process that fully utilizes it will be the

subject of later chapters.

In this chapter, we have looked at the issues involved with editing documents in a

WYSIWYG manner with a particular focus on the problems associated with editing

Authoring Variable Data Documents

50

variable data documents. The goal of effectively authoring such documents, through

a WYSIWYG view, requires us to go beyond both the blank-placeholder ‘template’

and the single result ‘instance’ models towards a new model that encompasses aspects

of both. Furthermore, user interactions with the presented view of the document

must be tailored to provide access to all aspects of variabilty within the document,

and it must be done in an informative way. In the next chapter, we consider

the underlying processing model used to drive the editing process, as well as any

implications that a change to a new editing paradigm might have.

51

Chapter 4:

Variable Data Document Processing

In a variable data workflow the document reprocessing required, as a result

of an edit, can be substantial if each output page is fully recomputed. But this

complete reprocessing is sometimes unnecessary — the effects of an edit are often

localised to a subset of the components within the document. If this localisation also

applies to corresponding components in the source document, then the changes to

the programmatic transformation will also be localised. In principle, this will limit

the necessary reprocessing. Therefore, the goal of providing a practical interactive

editor for variable data documents requires that any reprocessing resulting from an

output-based edit should be limited only to those source-level components that were

affected. The clear implication here is that we can enforce a strong link between

source-level components and their final appearance in the output document.

Variable Data Document Processing

52

Using a representative XSLT-based document framework, this chapter examines in

detail the relationship between result document components and the parts of the

transform repsonsible for generating them.

4.1 Simple Document Workflow

As a foundation for the discussion that follows, we first introduce an example

document workflow. The use of XML and XSLT in VDP systems has been discussed

previously and we continue to concentrate on these technologies. They provide a

workflow where an XML input data file is transformed by an XSLT script to directly

produce the result document. This is a simplified version of the approach taken by

systems such as DDF, which are more complex and produce intermediate results that

are processed in several stages. The purpose of using a simple one-step transformation

is to remove some of the complexities that are both unnecessary and potentially

confusing. However, it should be noted that this does not preclude the techniques

to be described from being extended to multi-stage processing workflows.

XSLT Script

XML Data File

Result Document
(SVG)XSLT Processor

Figure 4.1 — Simple one-step document transformation

Figure 4.1 shows the process by which the input data will be transformed into a

final-form result document. The variable data is provided in the form of an XML

file, with the actual document structure being produced by the XSLT script. When

this script is processed by an XSLT processor the variable data is bound into the

result document — in this example workflow an SVG document. To produce a series

Variable Data Document Processing

53

of different result document instances, the XSLT script must simply be repeatedly

executed with different input data used for each execution.

4.1.1 Editing the Document

Once the resulting SVG document has been produced, any changes to it must

be made by amending either the XSLT transform, or the XML data, and then

reprocessing to produce a new result. These edits can be made directly to the data

and/or the XSLT code, but in the case of a WYSIWYG editor such edits would be

made indirectly, through interactions of the user with the resulting SVG document.

Methods of effecting the required changes to the input files, via edits to a final-form

result document, have been proposed [30], but for the purposes of this discussion we

are not so much interested in how these changes are made, but simply in the fact

that they can, and do, occur.

Edits to the Transform vs. Edits to the Data

It is worth noting that changes made to the transform are different in nature from

those made to the input data. Modifications made to the XSLT transform typically

have the effect of changing the structure of the document and the properties of the

components within it, whereas modifications of the data change just the content

of these components. In an interactive editing environment, edits to the XSLT

transform are a result of standard authoring operations on the document (adding/

moving/resizing components etc.) whereas edits to the variable data are the result of

requesting an alternative document instance as described in the previous chapter.

As an example of a typical edit, consider the XSLT code fragment given in figure

4.3, which would produce output similar to that shown in figure 4.4 when provided

with the variable data shown in figure 4.2.

Variable Data Document Processing

54

<person forename="Joe" surname="Bloggs">
<address>

1 Main Street,
Nottingham
NG1 2AB

</address>
<pets>

<dog name="Rover"/>
<cat name="Fluffy"/>
<cat name="Top"/>

</pets>
</person>

Figure 4.2 — Sample variable data

<xsl:stylesheet version="2.0">
<xsl:template match="person">

<svg:svg>
<svg:text x="0" y="0">TITLE</svg:text>
<svg:text x="0" y="10" font-weight="bold">

<xsl:value-of select="concat(@surname, ', ', @forename)"/>
</svg:text>
<xsl:apply-templates/>

</svg:svg>
</xsl:template>

<xsl:template match="address">

<svg:text x="10" y="20" font-family="Helvetica" font-size="12pt">
<xsl:value-of select="."/>

</svg:text>
</xsl:template>

<xsl:template match="pets">

<xsl:apply-templates/>
</xsl:template>

<xsl:template match="dog">

<svg:image xlink:href="dog1.jpg" x="{10 + (count(preceding-
sibling::*)*10)}" y="100" width="10" height="10"/>

</xsl:template>

<xsl:template match="cat">
<svg:image xlink:href="cat1.jpg" x="{10 + (count(preceding-

sibling::*)*10)}" y="100" width="10" height="10"/>
</xsl:template>

</xsl:stylesheet>

Figure 4.3 — Example XSLT transformation script

Variable Data Document Processing

55

1 Main Street
Nottingham
NG1 2AB

TITLE
Joe Bloggs

Figure 4.4 — Example result document

If the user wanted to change the font in which the address was displayed, the

value of the font-family attribute must be changed by modifying the instruction(s)

responsible for generating that attribute at the the relevant point in the XSLT

transform. Once this change has been made, the input data file and the XSLT script

are completely reprocessed to generate the new result SVG document shown in

figure 4.5.

TITLE
Joe Bloggs

1 Main Street
Nottingham
NG1 2AB

Figure 4.5 — Modified result document

As an alternative type of edit, consider the process involved when the user wishes to

see the effect on the document of some new piece of variable data. Continuing with

the previous example, the user may wish to see the effect on the document when the

value of a piece of variable data changes, e.g. an address. The address shown in figure

4.2 is quite short (only three lines) and it is conceivable that the addresses of other

Variable Data Document Processing

56

people may be much longer. Although the images in the example are not positioned

dependent upon the position and size of the address, this is something that might

occur frequently in real-world documents. In this situation the author might wish to

see where the images would be positioned when a longer address is provided. Figure

4.6 shows a modified data file and figure 4.7 shows the revised document produced

as a result of the change.

<person forename="Joe" surname="Bloggs">
<address>

School of Computer Science,
University of Nottingham,
Jubilee Campus,
NOTTINGHAM
NG8 1BB

</address>
<pets>

<dog name="Rover"/>
<cat name="Fluffy"/>
<cat name="Top"/>

</pets>
</person>

Figure 4.6 — Sample data with longer address field

School of Computer Science
University of Nottingham
Jubilee Campus
Nottingham
NG8 1BB

TITLE
Joe Bloggs

Figure 4.7 — Result document showing longer address

4.2 The Need for Partial Re-Evaluation

The editing process described above suffers from one serious drawback when

we consider applying it to the situation that exists in an interactive editing

environment. For the type of trivial documents we have used in the examples

so far, the cost of reprocessing is relatively inconsequential. When considering

Variable Data Document Processing

57

realistic documents, which may contain hundreds of complex pages with numerous

components on each page, the cost of reprocessing the entire document becomes

prohibitive. This problem is not restricted simply to the document workflow

presented here, but is a more general one encountered by any variable data

document editing procedure that relies upon the updating and reprocessing of an

interactive document instance. Indeed the variable-data document editors discussed

in chapter 3 come up against this same problem, whether when regenerating the

document instance as described here, or simply generating a set of example results

for proofing.

To support interactive editing of such computationally expensive documents, we

must follow one of two strategies: either find a way to speed up the tools used to

perform the processing, or simply perform less processing.

Faster Processing

There are several ways to achieve an increase in processing speed. At the lowest level

we can provide faster hardware to improve performance, however this simply raises

the point at which a document becomes too complex to realistically reprocess. The

current trend of an increasing number of processing cores, coupled with potential

multithreading optimisations to the XSLT processing software provides another

opportunity for potentially large performance gains given the functional nature

of the language. Furthermore, the stylesheet itself could be statically optimised to

speed up its execution [41, 42], but again these improvements can easily be nullified

by simply providing a larger or more complex document. Indeed, any technique

for speeding up processing will ultimately be overcome by attempting to process a

suitably large and/or complex document.

Variable Data Document Processing

58

Reducing Processor Workload

To overcome the performance problem, the cost of reprocessing must be decoupled

from the size of the document by reducing the amount of the document that is

reprocessed as the result of an editing operation. In the example shown in the

previous section, the only altered part of the XSLT transform was that responsible

for producing the address. The remainder of the transform was left unmodified and

so the parts of the result document that were produced by the unmodified code are

identical to those that were originally generated. This can be seen in the example

of figure 4.7 as the images are unaffected by the change to the XSLT transform.

Avoiding redundant reprocessing of unaffected parts of the document is central to

a processing model where the computational expense is constrained by the extent

and complexity of the edit operation, rather than the size and complexity of the

document itself.

As discussed in chapter 2, the idea of partial XSLT evaluation is an obvious

extension when processing a language such as XSLT. Indeed, Villard et al, have

proposed methods for incrementally processing XSLT scripts [43] through analysis

of the stylesheet template patterns to ascertain the execution flow through which

source elements might be processed. However their techniques and goals differ from

those discussed in the following sections.

Supporting Selective Re-processing

We now consider the tree-based representation, shown in figure 4.8, of the example

XSLT code provided earlier in figure 4.3. In order to reprocess only the address

component we must re-execute the XSLT instruction(s) contained within the

subtree of the node responsible for producing that component while ignoring the

Variable Data Document Processing

59

rest of the transform. In the case of this example, the instructions to be re-executed

are highlighted in red.

xsl:stylesheet

xsl:template

svg:svg

svg:text

xsl:apply-templates

xsl:template

svg:text

xsl:value-of

xsl:template

svg:text

xsl:value-of

xsl:apply-templates

xsl:template

xsl:apply-templates

xsl:template

svg:image

xsl:template

svg:image

Figure 4.8 — Highlighted instructions to be re-executed

In this simple example, re-evaluating the modified part of the transform is a trivial

exercise, but in more complex scripts where the modified code may make reference

to previously declared variables, parameters, input data calculations etc. we must

also be able to provide their original values. The method we propose for providing

this required information is based on recording the state of the processor throughout

the original processing stage and restoring it, as required, during reprocessing. The

following chapters look in detail at the processes involved, and describe how such

techniques have been applied via modifications to existing tools.

60

Chapter 5:

Implementation Options

The need to save and restore the state of execution during XSLT processing

requires changes to be made to the processing pipeline itself. The constituent

elements of the workflow can be considered to be either inputs (data files,

stylesheets, intermediate results etc.) or processing tools (parsers, XSLT processors

etc.). Therefore, there are two avenues to be explored when implementing the

storage and restoration of processing state. Firstly, preprocessing of the inputs may

be needed in order to produce the required state information during execution.

Secondly, one may need to modify the processing tools to perform the necessary

extra actions as they execute the input stylesheets.

Both of these approaches are considered in the following sections and the advantages

and disadvantages of each are examined. In later chapters, the topics will be

presented in terms of one, or both, of these different approaches, giving insight into

the suitability of each.

Implementation Options

61

5.1 Stylesheet Modification

Since the specifics of the document execution, in our example workflow, are

based upon the processing performed by an XSLT stylesheet we need to modify that

stylesheet so as to produce the required state information along with the original

output. A detailed discussion of how this was achieved will be given in section 6.1.

However, a few problems arise when one tries to implement the proposed

reprocessing scheme solely through the modification of the input stylesheet(s).

Firstly, there is the issue of separating the original output of the stylesheet from the

extra state output that is generated. At first glance, namespaces might appear to be

a valid solution to this problem of ‘hiding’ extra information. The extra state output

elements/attributes could simply be placed in a specific namespace so as to separate

them from the origingal content. However there are some subtle problems with this

approach — namely that these extra elements/attributes can potentially affect the

subsequent execution of the stylesheet. Secondly, it is not immediately obvious how

the problem of reinitializing the processor to a given state, in order to perform a

partial re-evaluation, can be handled if there is access only to the input stylesheets

and data. These apparent problems, along with others, are discussed in more detail

as they are encountered in later chapters.

5.2 Using a Specialist XSLT Processor

XSLT is sufficiently powerful and expressive that it is entirely possible to write

an XSLT program that consumes another XSLT script and executes the instructions

contained within it as per the langauge specification. Clearly, a ‘real’ processor is

required to execute the underlying ‘processor’ script, but any extra functionality

of the sort we require, can be implemented within this extra layer of abstraction.

We shall see that by working at the level ‘below’ the document stylesheet, we

Implementation Options

62

can overcome some of the problems encountered by the alternative solution of

modifying the stylesheet itself.

Because such a processor is in control of the XSLT statements being executed, it is

possible to add extra instructions that will allow for the current interpreter state to

be recorded internally, without the normal output of the stylesheet being affected.

Furthermore, the templates used to interpret the XSLT statements can be written to

facilitate easy instantiation with a stored state. In this way they can be re-executed

when necessary.

5.3 Modifying an Existing XSLT Processor

There are many advantages to recording the execution state from within the

processor itself. The approach discussed in the previous section offers this possibility,

but its performance would be restricted by the fact that we have two extra layers of

XSLT running on top of the underlying XSLT processor.

Indeed, given that there is still an underlying XSLT processor, the next logical step

is to remove the need for the XSLT layer built on top and to modify the processor

itself. In that way we gain the following advantages:

• Full XSLT specification implementation is already available

• Execution optimizations are performed by the processor at no cost

• Speed increases should ensue, due to the removal of the extra XSLT

processor layer

• Direct access to the processor's internal data structures help us to obtain,

and to maintain, the required state information

This final point is arguably the most important since it allows us to avoid many

of the problems of outputting state information without affecting the original

execution of the XSLT script. Since we have access to the processor's data structures,

Implementation Options

63

and execution system, it is possible to retain copies of the required values and

data structures and, more importantly, to store them within the processor without

changing the output that is generated.

Although these advantages are welcome, the price to be paid is that the process of

making the required modifications is potentially much more complex than creating

a custom processor from scratch. However, the benefits of working with an existing

processor outweigh this extra complexity and chapters 6 – 8 detail the modifications

that have been made to an existing XSLT processor to support partial re-evaluation.

5.3.1 Existing XSLT Processors

XSLT processing is an integral part of many XML-based workflows. As a

result, several XSLT processors have been developed. Obviously, some of these

are proprietary software, but, since we must make significant modifications that

require access to the source code, we are restricted to working with predominantly

open-source projects. Two of the most popular such processors are Xalan [44] and

Saxon [45] but the choice was Saxon for several reasons that now follow.

Firstly, Saxon offers support for version 2.0 of the XSLT language, and XPath,

whereas Xalan, and many others, only fully support the outdated version 1.0. This is

important since variable data documents often make use of the features and facilities

introduced in the updated language specification. Saxon also employs many internal

optimisations [46] during processing that provide good memory usage and execution

time performance. Finally, Saxon is considered to be one of the best XSLT processors

available [47] and is therefore widely used. A contributing factor to its popularity is

that of confidence in the main developer, Michael Kay, who was editor of the XSLT

2.0 language specification.

Implementation Options

64

As a primer for later discussions, including the changes made to Saxon, we must

first explain its internal design. Michael Kay wrote an architectural overview [48] in

2005 that readers may find of interest. However it should be noted that this review

refers to an older version of Saxon and that there have been substantial changes

made in some areas of its architecture and implementation.

5.3.2 Saxon Architecture

Saxon is a complex piece of software that offers support for XQuery as well as the

processing of XSLT stylesheets. As a result, its architecture sometimes appears more

cumbersome than would be necessary solely for processing XSLT. Therefore, aspects

of the design that are exclusive to the support for XQuery are omitted from the

following discussions.

5.3.2.1 High Level Design

Before discussing the detailed aspects of how Saxon loads and processes stylesheets,

we present a general overview of its operation. Figure 5.1 shows the major stages of

processing and how they relate to one another.

The first task performed by Saxon is to load both the XML input file and the XSLT

stylesheet that will be the subjects of the transformation. When Saxon is run as a

standalone tool these are loaded from a file using standard parsing methodologies,

however, as we shall see later, interfaces are included to support the loading of

existing DOMs without the need for serialization and immediate reparsing.

Implementation Options

65

Figure 5.1 — Saxon Architectural Overview

The input XML and XSLT stylesheet documents may be loaded from disk, or from

an alternative source such as an existing DOM or a SAX-based source, but in either

case they are used to generate events that are handled by the appropriate builder

classes to construct the data structures used within Saxon. A DOM-like structure

is created to represent the input XML file, and a specialized builder constructs an

internal representation of the XSLT stylesheet.

Once the tree representation of the stylesheet has been constructed, it is then

compiled into an executable form. This executable contains mechanisms for

selecting templates in accordance with the XSLT language specification together

with executable expressions for each of the supported XSLT elements. The complete

executable is then executed with the previously constructed input XML document as

its data source. Those instructions that produce output content then send events to

Implementation Options

66

the appropriate result document builder. Depending on the configuration of Saxon,

these events can be used to create a result DOM that is serialized to a file or passed

to another linked tool. As we shall see in later chapters, this ability to change the

builder program, responsible for creating the result DOM, is of great convenience

when using Saxon as a processing engine within a document editor.

The subsequent sections discuss the details of the various stages of stylesheet and

data processing that are performed during execution. To illustrate these discussions,

and to give a coherent overview of the process, the following example documents

are used.

<person forename="Joe" surname="Bloggs">
<address>

<line>1 Main Street</line>
<line>Localville</line>
<line>Mytown</line>

</address>
<store name="Nottingham" map_url="notts.jpg"/>
<offers>

<offer image="product1.jpg">
<title>20% off selected wines</title>
<description>Choose from our extensive selection of quality wines

 and enjoy savings of up to 20%!</description>
</offer>

</offers>
</person>

Figure 5.2 — Example input XML document

<xsl:template match="/">
<svg:svg width="21cm" height="29.7cm">

<svg:text x="10" y="10" font-family="Helvetica" font-size="24">
<xsl:value-of select="concat('Hey ', @forename, ',')"/>

</svg:text>
<xsl:apply-templates/>

</svg:svg>
</xsl:template>

<xsl:template match="address">

<svg:text x="200" y="10">
<xsl:apply-templates/>

</svg:text>
</xsl:template>

<xsl:template match="line">

Implementation Options

67

<xsl:value-of select="."/>
</xsl:template>

<xsl:template match="offers">

<svg:text x="10" y="30">Great new offers just for you!</svg:text>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="offer">

<svg:text x="10 + (100 * count(preceding-sibling::offer))" y="50" font-
style="bold">
<xsl:value-of select="title"/>

</svg:text>
<svg:text x="10 + (100 * count(preceding-sibling::offer))" y="70" font-

style="bold">
<xsl:value-of select="description"/>

</svg:text>
<svg:image x="10" y="100" xlink:href="{@image}"/>

</xsl:template>

<xsl:template match="store">

<svg:text x="10" y="200">
Visit your local store at
<xsl:value-of select="@name"/>

</svg:text>
<svg:image x="10" y="220" xlink:href="{@map_url}"/>

</xsl:template>

Figure 5.3 — Example XSLT stylesheet

The XSLT stylesheet shown in figure 5.3 produces a simple marketing flyer based

upon the contents of the input XML file shown in figure 5.2. Although the output

document produced (figure 5.4) is simple, the premise of customized advertising

material is frequently encountered in variable data publishing.

Implementation Options

68

Figure 5.4 — SVG document produced from example inputs

We shall now look at each of processing stages that occur during the transformation

of these input documents into the output shown in figure 5.4.

5.3.2.2 Input XML File

As previously mentioned, Saxon builds an internal representation of the input XML

document to be used during execution of the stylesheet. This data structure is built

by a subclass of Builder, a class that receives the events generated by the parsing

of the input XML document. This document can be built from a file, or can be

an existing DOM or SAX source, but whatever the source of the document, the

same events are sent to the Builder instance. These events are similar to the events

Implementation Options

69

generated by a standard SAX parser and reflect the structure of the document that is

being processed. For example, the builder is alerted to the start and end of element

definitions, text nodes and other related events.

Saxon provides support for different Builder implementations, each of which

is responsible for building a document instance that conforms to the DOM-like

interface used internally. There are two implementations supported by default

(TreeBuilder and TinyTreeBuilder), but, as discussed later, a new Builder

implementation is required to build documents with specific properties that better

support the proposed editing model. The basic TreeBuilder constructs a document

that is implemented using objects to represent nodes in the tree, with references

stored between them as is typical for implementations of DOM-like data structures.

In contrast, the TinyTreeBuilder creates a document that makes heavy use of

primitive types and arrays to reduce the memory footprint of the document,

thus providing a general increase in efficiency during execution. The default

configuration is for Saxon to use the TinyTreeBuilder because of its greater

efficiency, but since all implementations expose the same interface to the processor,

the behaviour and functionality is identical whichever Builder is used.

Figure 5.5 shows a representation of the tree structure used to model the example

input XML document when built using the standard TreeBuilder implementation.

The ElementImpl objects that represent the elements within the document have

been labelled with the name of the element for clarity.

Implementation Options

70

ElementImpl
(offers)

ElementImpl
(offer)

ElementImpl
(description)

TextImpl

ElementImpl
(title)

TextImpl

ElementImpl
(address)

ElementImpl
(line)

TextImpl

ElementImpl
(line)

TextImpl

ElementImpl
(line)

TextImpl

DocumentImpl

ElementImpl
(person)

ElementImpl
(store)

TextImpl

Figure 5.5 — Input XML document object structure

5.3.2.3 Parsed XSLT Representation

A similar procedure to that used for parsing the input XML data file is followed when

parsing the XSLT stylesheet and, consequently, building the internal data structure

used to represent it. Again, the TreeBuilder class is used to handle the parsing

events that are generated, but instead of building the document using a generic

implementation, it creates a representation that uses specific classes to represent

each of the various XSLT instructions. This change in functionality is achieved

by replacing the default NodeFactory, used by TreeBuilder, with a specialist one

(StyleElementFactory).

The result of this building process is a tree structure composed of various subclasses of

StyleElement, each responsible for providing the functionality associated with the

equivalent XSLT instruction. Elements in the stylesheet that are not in the XSLT

namespace, and hence are to be output to the result document, are represented by

LiteralResultElement objects. These objects also inherit from StyleElement, but

instead of bearing responsibility for one of the various instructions supported in the

Implementation Options

71

XSLT language specification, each instance contains the details of the content to

be output.

Returning to the example stylesheet introduced earlier in this chapter, figure 5.6

shows the various objects and their relations used to represent part of it. Due to size

contraints, only the object representation of the first template is shown. A complete

diagram is included in Appendix A. We can see that, for example, the <xsl:value-

of> elements used to select the textual content of nodes in the input tree are

represented by corresponding XSLValueOf objects, whereas the non-XSL elements

to be copied to the output document are represented as LiteralResultElements.

XSLStylesheet

XSLTemplate

LiteralResultElement

XSLValueOf

XSLApplyTemplatesLiteralResultElement

...

Figure 5.6 — StyleElement object tree represention of example template

5.3.2.4 Stylesheet Compilation

Having produced an internal representation of the stylesheet, it is then prepared

for execution by compiling each StyleElement within the tree to create an

executable form of the stylesheet. The functionality required to construct and

evaluate this executable form is encapsulated within the PreparedStylesheet

class. Methods for the construction of the XSLT tree representation, as well as

Implementation Options

72

for initiating the compilation process, are called from other external classes, with

reference to the XSLT tree representation. The final executable is retained by

the PreparedStylesheet instance. It is this executable that subsequently interacts

with the input data tree and produces the corresponding output of the stylesheet.

XSLTemplate nodes representing the <xsl:template> elements add pattern rules to

an instance of a RuleManager (see next section) and contain a hierarchical structure

of Instruction and Expression objects that are produced by the child elements in

the stylesheet. These instructions and expressions are then evaluated in accordance

with the XSLT and XPath language specifications. Any calls that contribute to

producing the result document tree are sent to the appropriate Receiver object.

The details of the execution of the stylesheet and the resulting output document

production are discussed in the following sections.

5.3.2.4.1 The Executable

Expressions and Instructions

The base type for all compiled objects is Expression, with all XSLT instructions

inheriting from Instruction (which is itself a subclass of Expression). XPath

expressions are also compiled into a sequence of specialised Expression objects,

the particular types depending upon the XPath expression to be compiled. With

the exception of a few specific instructions, the hierarchical nature of the original

stylesheet tree is preserved by maintaining expressions as children of one another.

The execution methods of each instruction are therefore responsible for instigating

the execution of subsequent instructions.

Implementation Options

73

Templates and the RuleManager

One of the exceptions to hierarchical execution is that of templates. When an

XSLTemplate object (a subclass of StyleElement used to represent <xsl:template>

elements) is compiled, a corresponding Template object is produced. However

instead of adding it directly to another object representing the stylesheet itself, it is,

instead, added to a RuleManager instance, which is maintainted by the Executable.

This RuleManager is responsible for maintaining a list of the available templates1

and, subsequently, providing the correct one whenever it is queried throughout the

processing of the stylesheet. The ‘correctness’ of the template returned depends upon

a number of factors, each specified by the XSLT language specification and handled

by the RuleManager. In order for the correct template to be returned, it must meet

the following requirements:

• The Pattern2 against which a Template is stored should match the

node currently being processed

• The mode in which the processor is to process the node is compatible

with the Mode object stored alongside the Template in question

• The priority of the Template is consistent with that specified

• The Template has the highest precedence of all those that match the

other requirements listed above

1In truth, the RuleManager maintains a series of Mode objects, each of which maintains a list of

Templates, but the exposed interface hides this

2A Pattern object is built from, and thus represents, the match attribute specified on an

<xsl:template> element

Implementation Options

74

Therefore, these pieces of information are provided to the RuleManager when a

Template is added, in order that such a query can be performed during the later

operation of the Executable.

Figure 5.7 shows the Expression hierarchy built to represent the root

<xsl:template> of the example stylesheet we presented earlier in the chapter.

The FixedElement objects have been annotated with the name of the element

that they produce, however their associated attributes have been omitted to keep

the figure concise. A Block object is also included to allow for an instruction

to reference multiple child instructions. Clearly, similar hierarchies are built for

the other <xsl:template> elements in the stylesheet, but for clarity, only one is

presented in the figure. A complete diagram of the full object hierarchy can be found

in Appendix A.

Block

Template

FixedElement

ValueOf

FixedElement ApplyTemplates

<svg:svg>

<svg:text>

Figure 5.7 — Example Template Expression Heirarchy

5.3.3 Compiled Stylesheet Execution

Having discussed the way in which the executable is created, we now look at the

process involved in executing it in order to produce the output document.

Implementation Options

75

Initial Template Selection

Depending on whether or not a specific <xsl:template> has been indicted as the

starting template, the stylesheet will begin execution by either directly processing

the instructions in this template, or by processing the instructions contained within

the Template returned by querying the Executable's RuleManager for the most

appropriate instance. Each instruction encountered is then executed through calls

to either the process() or processLeavingTail() methods, depending upon the

nature of the instruction in question, with child Instructions and Expressions

being processed in due course.

This execution process initially appears quite simple, but we have neglected the fact

that to query the RuleManager it must be provided with information pertaining to

the current processing state (current input node, mode, etc.) so that it can return

the correct Template instance. In fact, this processing context is important for all

Instructions and Expressions that make reference to the input XML document,

or to any context-sensitive data such as variables or parameters. For this reason, an

object representing the current context in which Instructions and Expressions

should be processed is maintained by the processor and passed among calls to the

process() and processLeavingTail() methods previously discussed. This context

object, or a derivative of it, is maintained with the current details regarding the

processor's state as the stylesheet is executed.

XPathContext

The context object described above is either an instance of XPathContextMajor

or XPathContextMinor, both of which are subclasses of XPathContext. The

Implementation Options

76

XPathContextMajor class inherits from the XPathContextMinor class and adds

extra functionality to allow further changes to the dynamic context of the processor.

Such a hierarchy of context objects allows for more efficient execution of the

stylesheet because frequently updated values can be held within more lightweight

XPathContextMinor objects.

All aspects of the dynamic context are maintained within these XPathContext

objects and the values can be updated and queried by the Instruction or

Expression being executed when necessary. Therefore if, for example, an

instruction causes the current context node in the input XML document to change,

this will be reflected in the XPathContext object.

Generating Output

One important part of the original stylesheet that has not been discussed so far

is that of elements (and their associated Instructions) that produce output.

Along with XSLCopy and XSLCopyOf instructions, which represent xsl:copy and

xsl:copy-of nodes respectively, the most common ways to produce elements in

the result document are through literal result elements and <xsl:element> nodes.

As shown in previous sections, an element in the original stylesheet that is not

in the xsl namespace will be represented by a LiteralResultElement in the

stylesheet object tree and is subsequently compiled into a FixedElement instruction.

All <xsl:element> nodes in the stylesheet are represented through XSLElement

StyleElements and are also typically compiled to FixedElement instructions3.

3XSLElement objects can also be compiled to ComputedElement instructions in situations where the

element name and/or the namespace are not known at compile time and must be computed at runtime

Implementation Options

77

All of the instruction classes discussed above inherit from a common

ElementCreator superclass that encompasses all instructions responsible for

producing elements in the result document. When executed, all ElementCreators

query the processor's configuration for the correct object to send the relevant

element creation events to and subsequently sends all the required information

through appropriate method calls.

The Receiver object to which the element creation events are sent is typically

responsible for creating a DOM and then serializing this to a file, but this is

not always the case. Saxon provides other Receiver implementations that can

be used as SAX sources to other transformations, thus allowing stylesheets to be

chained together with the output of one being used as the input to the next.

Although the example workflows that are presented here are simple single step

transformations, there is no reason that a series of stylesheets could not be chained

together to support a multi-step processing model like that used by some variable

data document frameworks such as DDF. Other Receiver implementations are also

available, including support for custom implementations, so the results produced

by the execution of the stylesheet can be used in any way desired. Later chapters

will show that this facility is extremely useful when incorporating a Saxon-based

processing framework into a WYSIWYG editing application.

Continuing with the example stylesheet introduced earlier, figure 5.8 shows how

the <svg:text> element in the first template is represented at various stages of

processing as well as the series of method calls invoked to produce the corresponding

<svg:text> node in the result document.

Implementation Options

78

compile(...)

processLeavingTail(...)

LiteralResultElement

FixedElement

Receiver

Element

Figure 5.8 — Example output element production

Having now considered different approaches to augmenting the processing pipeline,

and having subsequently looked at the implementation details of our chosen XSLT

processor, we now explore how the goal of partial document re-evaluation can be

realised. The following chapters discuss the different stages of partial re-evaluation

and how they were achieved by following one, or another, of the implementation

options proposed in this chapter.

79

Chapter 6:

Storing State and Component History

In this chapter we discuss a support mechanism for partially re-evaluating an

XSLT transform to generate a result document. This partial re-evaluation requires

the processing state of the XSLT processor to be stored during execution so that we

can later restore it for reprocessing a selected part of the transform. We detail the

information required for this reprocessing and then explore the ways in which we

might collect and store such information, either by modifying the underlying XSLT

processor or through modifications to the XSLT transform itself.

State Constituents

At any point during the processing of an XSLT script, there are several things that,

together, constitute the state of the processor1:

• The current mode

1To accompany this discussion of XSLT states the reader is encouraged to refer to the overview of XSLT

and XPath given in chapter 2

Storing State and Component History

80

• The current context node

• The current position

• The values of any variables that are currently in scope

• The values of any parameters passed to the current template/function

To repeat the processing from a given point in the transform, the values of all of

these items must be recorded and later restored together with a reference to the

current point in the transform.

A good analogy to this process is that of CPU context switching where the

execution of one process is suspended to allow another to execute. When a process

is suspended, the state of the CPU (all register values, flags etc.) is stored and the

state associated with the new process is loaded, thereby allowing it to execute. At

a later time, the state of the original process is restored and it continues executing

from the point at which it was suspended.

Calculating values

When processing an XSLT script, there are two ways to collect the required

information: either modify the transform to calculate the state information and

output it alongside the actual output, or output the required information from within

the processor as the transform is processed.

We consider both these approaches, including their advantages and shortcomings,

in the following sections.

6.1 XSLT Stylesheet Modifications

An obvious method of generating the required state information is by modifying

the processing XSLT script. This is a similar approach to that used to track the

transformation of document components in related work [49]. The modifications are

Storing State and Component History

81

performed through a pre-processing of the XSLT script that adds extra code to the

transform. Since XSLT is XML based, this pre-processing can be done using another

XSLT script. When executed, the modified XSLT script produces the same output

as the original, but the added code generates extra output detailing the current state

of the processor. Therefore, the resulting document is the same as that produced by

the original script, but interleaved with extra state information. Figure 6.1 shows

the complete two-stage processing scheme.

Pre-processing
XSLT script

Annotated
Result Document

Modified Stylesheet

Original Stylesheet Input Data

Figure 6.1 — Modified XSLT transform processing stages

Among the numerous instructions within the original transform, there are those

responsible for actually generating the output elements. These instructions include:

• <xsl:element>

• <xsl:copy>

• <xsl:copy-of>

• Literal result elements — e.g. <svg:rect>

The XSLT script used to modify the original transformation script matches all

such elements and inserts a section of code at the relevant points so that, when

Storing State and Component History

82

the modified version of the transform is executed, the desired state information is

produced. Figure 6.2 shows an example section of the transform before and after

code has been added. The various pieces of newly-added code are explained in the

following sections, which also discuss how each piece of information is calculated,

and stored, as part of the state of the processor.

<!-- Before -->
<xsl:template match="foo">

<svg:rect width="10" height="10" x="10" y="10" fill="red"/>
</xsl:template>

<!-- After -->
<xsl:template match="foo">

<svg:rect width="10" height="10" x="10" y="10" fill="red"/>
<state>

<!-- various state information nodes here -->
</state>

</xsl:template>

Figure 6.2 — Adding state producing code to the transform

Eager vs. Delayed Calculation

The code fragments to be added to the transform for each piece of state information

fall broadly into two categories: those that contain information obtained through

calculations performed by the modifying script (eager calculation) and those that

contain further code to dynamically generate the relevant values when the modified

transform is executed (delayed calculation). However, as we shall see in the

following sections, variables and parameters must be processed using both of these

methods.

Some of the required information can be eagerly calculated by simply analysing the

XSLT transform before it is ever executed. Values such as the path of the XSLT

instruction and the names of the (non-tunnelled) parameter/variables that are in

scope at the corresponding point in the code can be calculated and added to the

transform as literal strings. Other values, such as the actual contents of the variables/

Storing State and Component History

83

parameters and the current context node, can only be ascertained during execution

of the transform and so the calculation of these must be delayed until the transform

is processed.

The way in which each piece of state information is obtained is now described.

6.1.1 XSLT Instruction Path

The path to the currently executing instruction is stored so that we have a point of

reference to which the rest of the state information relates. This value is necessarily

calculated during the script modification process and the literal string value is added

to the transform, so that it can be copied onto the output elements when the

transform is executed. For efficiency purposes, this literal string value is a truncated

version of the complete path such that the relevant node at each level in the tree is

simply represented by an integer specifying its position. Therefore, the highlighted

node shown in figure 6.3 is represented as /1/3/2.

Figure 6.3 — Example of encoding XSLT instruction path

Since we are calculating the appropriate value during the modification of

the existing transform, the process by which we create the literal string is

straightforward. In this instance, the original transform is the input document to our

modifying transform. Therefore, the current context node is the instruction node

in the original transform to which we are adding the state producing code. We can

Storing State and Component History

84

simply build a string by recursively querying the parent node (until we reach the

document root node) of the current node's position within its children. This process

is performed by the user defined buildInstructionPath function shown in figure

6.4.

<xsl:function name="f:buildInstructionPath">
<xsl:param name="node"/>
<xsl:choose>

<xsl:when test="$node/parent::*">
<xsl:value-of select="concat(f:buildInstructionPath($node/

parent::*), '/', count($node/preceding-sibling::*) + 1)"/>
</xsl:when>
<xsl:otherwise>

<xsl:text>/1</xsl:text>
</xsl:otherwise>

</xsl:choose>
</xsl:function>

Figure 6.4 — Anciallary function for building stylesheet instruction path

Figure 6.6 shows an example of the code added to the transform, as a result of the

code shown in figure 6.5 being executed.

<path>
<!-- user defined function to recursively build the required string -->
<xsl:value-of select="f:buildInstructionPath(.)"/>

</path>

Figure 6.5 — Transform instruction path calculating code fragment

<state>
<!-- ... -->
<path>/1/3/5/8/1</path>
<!-- ... -->

</state>

Figure 6.6 — Instruction path code added to original transform

6.1.2 Position

Calculating the current position during execution is made simple by the XPath

position() function. This returns an integer representing the index position of the

Storing State and Component History

85

node that is currently being processed. Since we need to call this function when

the transform is being executed, the code shown in figure 6.7 is added so that the

position value is calculated at the time when the state information is produced.

<state>
<!-- ... -->
<position>

<xsl:value-of select="position()"/>
</position>
<!-- ... -->

</state>

Figure 6.7 — Position value calculating code fragment

6.1.3 Variables

Storing the currently available variables can be treated as two separate exercises —

firstly identifying the variables that are in scope at the current point in the transform,

and secondly calculating and storing the values of each variable.

The process of identifying in-scope variables can be performed during the

modification of the original XSLT script, whereas calculating and storing their

values must be done during execution of the modified script. A list of relevant

variables can be obtained by searching up the input tree from the current node and,

for each ancestor, checking whether any of the nodes on the preceding-sibling axis

are variable elements. For each variable that is found, and which is therefore in

scope, we can add an element to the output state tree that holds the name of the

variable as well as code that will calculate its type, and value, when executed. The

type and value calculations are required since a variable may hold different values

ranging from integers, to sequences and input tree node references, each of which

must be stored differently. For example, integers and sequences can be copied simply

by using an xsl:copy-of instruction, but this is insufficient for input tree node

references since any ancestral information is then lost. Therefore, input tree node

Storing State and Component History

86

references must be identified and a path to the node generated and stored in the

state output.

Figure 6.8 shows the code that is added to the original XSLT script. The ancillary

functions that are used within this code are summarised in figures 6.9 and 6.10.

<vars>
<var name="foo" type="{f:getValueType($foo)}">

<xsl:value-of select="f:serializeVariableValue($foo)"/>
</var>

</vars>

Figure 6.8 — Variable/Parameter name calculation code fragment

<xsl:function name="f:getCurrentMode">
<xsl:param name="node"/>
<xsl:value-of select="($node/ancestor-or-self::mode, '#default')[1]"/>

</xsl:function>
<xsl:function name="f:serializeVariable" as="xs:string">

<xsl:param name="var"/>
<xsl:choose>

<xsl:when test="$var instance of xs:integer">
<xsl:value-of select="$var"/>

</xsl:when>
<xsl:when test="$var instance of xs:string">

<xsl:value-of select="$var"/>
</xsl:when>
<xsl:when test="$var instance of element()">

<xsl:variable name="atts" select="[ommited for simplicity]"/>
<xsl:variable name="children" select="f:serializeVariable(*)"/>
<xsl:value-of select="concat('<', name($var), ' ', $atts, '>',

 $children, '</', name($var), '>')"/>
</xsl:when>
<!-- ... more tests ... -->
<xsl:otherwise>

<xsl:text>Error</xsl:text>
</xsl:otherwise>

</xsl:choose>
</xsl:function>

Figure 6.9 — Variable value calculation function

<xsl:function name="f:getValueType" as="xs:string">
<xsl:param name="var"/>
<xsl:choose>

<xsl:when test="$var instance of xs:decimal">
<xsl:text>xs:decimal</xsl:text>

</xsl:when>
<xsl:when test="$var instance of xs:string">

<xsl:text>xs:string</xsl:text>
</xsl:when>

Storing State and Component History

87

<xsl:when test="$var instance of element()">
<xsl:text>xs:element</xsl:text>

</xsl:when>
<!-- ... more tests ... -->
<xsl:otherwise>

<xsl:text>[unknown]</xsl:text>
</xsl:otherwise>

</xsl:choose>
</xsl:function>

Figure 6.10 — Value type calculation function

6.1.4 Parameters

Parameters are handled in much the same way as variables since they are simply

variables that are defined at the top of a template or function, with their values

being set when the template/function is executed. As described in chapter 2.2,

parameters can be tunnelled through template/function calls, therefore each entry

in the generated state is decorated with a tunnel attribute signifying whether it is

tunnelled or not. Figure 6.9 shows an example piece of code that might be added.

<state>
<!-- ... -->
<params>

<param name="foo" tunnel="no" type="{f:getValueType($foo)}">
<xsl:value-of select="f:serializeVariableValue($foo)"/>

</param>
<param name="bar" tunnel="yes" type="{f:getValueType($bar)}">

<xsl:value-of select="f:serializeVariableValue($bar)"/>
</param>

</params>
<!-- ... -->

</state>

Figure 6.11 — Parameter records producing code fragment

Each param entry is created by searching up the input tree to find any xsl:params of

the template/function that the current instruction is a descendant of. The name is

stored at this point, with the value calculation being deferred to the actual stylesheet

execution by adding the call to an ancillary function. As with variables, the serialized

Storing State and Component History

88

form of the value is built by the serializeVariableValue function with the type

attribute indicating the serialized format being built by the getValueType function.

6.1.5 Tunneled Parameters

Tunnelled parameters present a problem when trying to store the current processing

state. At any given point in the stylesheet processing it is not possible to access

any tunnelled parameters that have not been declared as being used in the current

template or function. For example, it is not possible in the code sample shown in

figure 6.12 to access the tunnelled parameter foo from template b (or even be aware

that it exists). Therefore, if we were to save the state of the processor at any point

during the execution of template b we would need to store the value of foo (which

in this case is red, having been tunnelled from the initial template), but would be

unable to.

<xsl:template match="/">
<xsl:call-template name="a">

<xsl:with-param tunnel="yes" name="foo">red</xsl:with-param>
</xsl:call-template>

</xsl:template>

<xsl:template name="a">
<xsl:param name="foo">blue</xsl:param>
<xsl:call-template name="b"/>

</xsl:template>

<xsl:template name="b">
<xsl:call-template name="c"/>

</xsl:template>

<xsl:template name="c">
<xsl:param name="foo" tunnel="yes">green</xsl:param>

</xsl:template>

Figure 6.12 — Tunneled variables example

A solution to this problem is to build a list of all tunnelled parameters in the entire

stylesheet and to output this, along with any values that are currently available,

as part of the stored state information. As well as the inherent inefficiency of

Storing State and Component History

89

storing every tunnelled parameter, even when it may not be in scope, this requires

each template in the stylesheet to be re-written so as to allow for the parameters

to be accepted and subsequently accessed. There is also a further requirement of

renaming all of the tunnelled parameters to avoid conflicts with existing parameter

declarations.

6.1.6 Context Node

Obtaining the context node is a relatively trivial exercise since it can be referenced

using the ‘.’ (dot) operator. However, to generate a meaningful entry in the output

state requires a similar approach to that taken when dealing with variables and

parameters. The context node is often a node in the input tree, but it can also

be some other object such as a node in a constructed sequence. Therefore, simply

copying the node to the output is not useful; instead we must build a path that can

be used to reference the node. This path can then be output as a literal string as part

of the state tree that accompanies the original result element.

Figure 6.13 shows the inline code that is added to the transform which, in turn, calls

the function shown in figure 6.14 that is also added to the modified XSLT script.

<state>
<!-- ... -->
<context-node>

<xsl:value-of select="f:buildContextPath(.)"/>
</context-node>
<!-- ... -->

</state>

Figure 6.13 — Context node producing code fragment

<xsl:function name="f:buildContextPath" as="xs:string">
<xsl:param name="node"/>
<xsl:choose>

<xsl:when test="$node/parent::*">
<xsl:value-of select="concat(f:buildContextPath($node/parent::*),

 '/', count($node/preceding-sibling::*) + 1)"/>
</xsl:when>

Storing State and Component History

90

<xsl:otherwise>
<xsl:text>/1</xsl:text>

</xsl:otherwise>
</xsl:choose>

</xsl:function>

Figure 6.14 — Context node path-building function

6.1.7 Mode

The mode in which the processor is currently executing must be stored because the

resulting execution path followed by the processor may vary depending on the mode.

Since modes apply to functions and templates, it might seem trivial to store the value

of the mode attribute on the ancestor template/function and to store the #default

mode value when none is present. Unfortunately, this approach does not take into

consideration the possibility of a template or function that specifies any as its mode

attribute value. The any value allows the template/function to be called irrespective

of any specified mode. Therefore, finding the current mode at a given point in the

script is not simply a case of copying an attribute value, since we may be in a specific

mode but within a template/function that indicates it can be called in any mode. As

a result, we must obtain the value of the current mode at execution time, and there

is no easy way to query the mode value within XSLT or XPath. We must therefore

rely on extension functions that are supported by the processor to provide us with

this information. This kind of support is analogous to making modifications to the

processor itself and so will not be discussed any further here since the process is

covered in more detail later in the chapter.

<mode>
<xsl:value-of select="'#default'"/>

</mode>

Figure 6.15 — Mode value annotating code fragment

Storing State and Component History

91

An example of the code needed to produce the mode element in the state tree is

given in figure 6.15.

Possible Problems

One of the problems with storing state as output elements is ensuring that the extra

state information stored alongside the original output, does not alter the execution

of the script. This problem manifests itself in the example code fragment shown in

figure 6.16.

<xsl:template match="/">
<xsl:variable name="foo">

<xsl:apply-templates/>
</xsl:variable>
<xsl:choose>

<xsl:when test="count($foo) eq 1">
<svg:rect fill="green"/>

</xsl:when>
<xsl:otherwise>

<svg:rect fill="blue"/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match="*">

<xsl:copy select="*"/>
</xsl:template>

Figure 6.16 — Example XSLT code fragment before modification

Consider what would happen if extra code, to generate state information, were

added to the xsl:copy element in the second template as shown in figure 6.17.

The sequence returned by the second template will now contain state elements as

well as any child elements produced as standard output. Since we capture the result

in a variable, foo, and conditionally branch depending on the number of items in

that sequence, we can no longer produce the green rectangle because there is always

an even number of items returned since the elements output are paired with state

elements.

Storing State and Component History

92

<xsl:template match="/">
<xsl:variable name="foo">

<xsl:apply-templates/>
</xsl:variable>
<xsl:choose>

<xsl:when test="count($foo) eq 1">
<svg:rect fill="green"/>
<state>

<mode>#default</mode>
<position>

<xsl:value-of select="position()"/>
</position>
<!-- etc. -->

</state>
</xsl:when>
<xsl:otherwise>

<svg:rect fill="blue"/>
<state>

<mode>#default</mode>
<position>

<xsl:value-of select="position()"/>
</position>
<!-- etc. -->

</state>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match="*">

<xsl:copy select="*"/>
<state>

<mode>#default</mode>
<position>

<xsl:value-of select="position()"/>
</position>
<!-- etc. -->

</state>
</xsl:template>

Figure 6.17 — Generating state information as elements

Storing State Information as Attributes

One way to limit this type of problem is to return the state information as attributes

on the original result elements rather than producing entirely new state elements.

This reduces the number of situations where we may cause problems by outputting

extra information, since the guarantees made by the XML specification are less

restrictive for attributes than elements. For example, the order of attributes is not

guaranteed unlike with elements, therefore any code in our original transform that

Storing State and Component History

93

relies on properties such as this can be considered 'incorrect' and ignored. There is,

however, nothing preventing the author of an XSLT script, for example, counting

the number of attributes on an element and, although this is generally considered

bad practice, it is entirely legal. Therefore, following such a scheme allows us to

reduce the number of situations where problems arise, but not to eliminate them

entirely.

<xsl:template match="/">
<xsl:variable name="foo">

<xsl:apply-templates/>
</xsl:variable>
<xsl:choose>

<xsl:when test="count($foo) eq 1">
<svg:rect fill="green">

<xsl:attribute name="mode" select="'#default'"/>
<xsl:attribute name="position" select="position()"/>
<!-- other state attributes -->

</svg:rect>
</xsl:when>
<xsl:otherwise>

<svg:rect fill="blue">
<xsl:attribute name="mode" select="'#default'"/>
<xsl:attribute name="position" select="position()"/>
<!-- other state attributes -->

</svg:rect>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match="*">

<xsl:copy select="*">
<xsl:attribute name="mode" select="'#default'"/>
<xsl:attribute name="position" select="position()"/>
<!-- other state attributes -->

</xsl:copy>
</xsl:template>

Figure 6.18 — Generating state information as attributes

Storing the state information as attributes on result elements brings its own set of

problems — most notably the issues arising from having to store all values as textual

strings. Some pieces of information, such as the XSLT instruction path and current

mode, can easily be represented as string attribute values. However things are not

so simple when dealing with variables and parameters.

Storing State and Component History

94

Firstly, when outputting variables and parameters, there may be multiple values

to be stored. For example, when storing the current mode we can simply name

the attribute mode and store the appropriate value alongside it. To avoid conflict

with any exisiting attribute called mode we can place the new attribute in our new

namespace2. However, when dealing with variables and parameters there are often

more than one of them that is in scope and therefore needs recording. Namespaces

allow us to avoid conflict with existing attributes, but they do not help when we

have conflicts among our own added attributes. Therefore, we cannot simply use

multiple attributes called variable or parameter (the XML specfication does not

allow it3) and so we must devise an alternative strategy.

Since there are two pieces of information stored in each variable/parameter (its

name and its value), there is a possibility of using the name of each variable/

parameter as the name of the attribute. At first this might seem a sensible solution,

but there are some problems with it. Consider what happens if we have a variable

called mode — this would again cause a conflict with our existing state attributes.

The conflict could be solved, for example, by prepending ‘var_’ to each attribute

name, but there remains another issue. We have no information about the number of

variables/parameters, so we must assume that any unknown attribute must be treated

as a variable/parameter. If, for whatever reason, we were to add further information

at a later stage this could lead to severe problems.

Given the issues discussed above, the following scheme was devised for storing

variables, parameters and tunnelled parameters:

2Namespaces have not been included in the examples for clarity.
3Trying to generate an element with multiple atrtibutes with the same name does not fail, but instead

results in an element with a single attribute whose value was overwritten mutliple times.

Storing State and Component History

95

• There will be three attributes, varcount, paramcount and

tunnelcount, each of which will hold the number of values to be stored.

• Variables/parameters will be stored in three parts — their names, types

and values will be stored separately.

• Variables/parameters will be numbered sequentially to avoid conflicts

Therefore, when storing a state where two variables, foo and bar, were in scope

with the values 42 and "a_string" respectively, the following attributes would be

generated:

<svg:rect varcount="2" var1_name="foo" var2_name="bar"
 var1_type="xs:integer" var2_type="xs:string" var1_value="42"
 var2_value="a_string"/>

Figure 6.19 — State attributes example (variables)

This scheme works well in the type of situation shown in figure 6.19, where the

values held in the variables/parameters are simple numerical values or strings.

However, as mentioned earlier, further problems, such as tree fragments and

references to nodes in the input tree, arise when variables/parameters contain more

complex structures that are not easily stored as attribute value strings.

Serializing Values

Clearly, all variable and parameter values need to be serialized to a string, however

how this should be done is not immediately clear. As shown in figure 6.19, literal

string values and numerical values are trivial to serialize. Serializing references to

nodes within the input tree can be done by constructing the path of the referenced

node within the input and storing that as the attribute value. Variables/parameters

holding tree fragments, such as that shown in figure 6.20 are serialized to standard

XML markup. Figure 6.21 shows the serilized version of the tree shown in figure 6.20.

Storing State and Component History

96

<xsl:variable name="foo">
<lut>

<bar key="1">January</bar>
<bar key="2">February</bar>
<bar key="3">March</bar>
<!-- etc -->

</lut>
</xsl:variable>

Figure 6.20 — Example variable holding tree fragment

<result-element var_count="1" var1_name="foo" var1_type="literaltree"
 var1_value="<lut><bar key="1">January</
bar> ..."/>

Figure 6.21 — Serialized form of variable holding tree fragment

Although we have discussed the different ways in which the various types of variable/

parameter values can be stored, there remains the question of initially indentifying

the type of a given variable/parameter. Fortunately we can easily test for the

primitive value types such as strings and integers etc. using the XPath instance

of keyword and the value types defined by the XML Schema specification [50]. An

example of such a test can be seen in figure 6.22.

<xsl:if test="$foo instance of xs:string">
<!-- return the type of the variable/parameter as a string -->
xs:string

</xsl:if>
<!-- ... more type tests ... -->

Figure 6.22 — Example variable/parameter test for a primitive type

Having handled the primitive variable/parameter values, we are left with

differentiating between references to nodes in the input tree and other stored

structures such as temporary tree fragments. A simple solution to this problem

is to test whether the stored node has a parent node. All nodes in the input

XML document will have a parent node (except the document node which

will be handled separately), whereas temporary tree fragments will not. Having

Storing State and Component History

97

differentiated between these types of variable, they must be serialized as previously

described.

The approach described here is one that immediately stands out as a possibility

because of the fact that it can be implemented entriely within the language that

is the subject of the transformation. Therefore, it is important that its suitability

is evaluated, but given the now-apparent shortcomings of modifying the transform

in order to generate the required state information, we now look at the alternative

approach of modifying the XSLT processor itself.

6.2 Saxon Modifications

In contrast to modifying the stylesheet, making modifications to the processor

itself provides us with a much wider range of possibilities. Working within the

processor has two major benefits: we have direct access to the processor's internal

data structures and we can control how the result document is produced. The first

of these allows for a much more optimal, and simple, way of obtaining the state of

the processor as the stylesheet is executed, and the latter allows us to overcome the

issues raised in relation to outputting the infomation that has been gathered. We

now look in detial at the different solutions made possible by this low-level access,

as well as the necessary modifications to support them.

6.2.1 Gathering State Information

Since we are free to make whatever changes are necessary within Saxon, we are

able to delve directly into the stylesheet execution code to gain access to the

various pieces of information we require, as and when the stylesheet is executed.

As described in chapter 5, the execution of the stylesheet is performed by cascading

calls to either of the process or procesLeavingTail methods available on all

Storing State and Component History

98

Instruction and Expression objects that are used to represent the nodes within

the stylesheet. Both of these methods require an XPathContext object to be

passed to them, which is responsible for providing, and maintaining, the dynamic

execution context of the processor. Therefore, many of the pieces of information

that constitute the execution state of the processor as a whole can be obtained from

this single source.

There are two approaches that can be taken when collecting the required

information from the XPathContext object (as well as other sources as we shall

see shortly). Firstly, and perhaps rather naïvely, it is possible to request each piece

of information separately, as and when it is required to be output or stored. This

is a simple solution since the majority of the data is made available in a suitable

way by the XPathContext object as part of its normal functionality. Only minor

modifications are necessary to allow access to that data that is not readily available.

The second, and slightly more complex, solution is to further modify the inner

workings of the XPathContext object so that each time a value is explicitly set or

otherwise changed, an external agent is notified of that change. This agent can

then be queried for the data as in the first solution. Although this adds another

layer of abstraction, and in this case it actually makes the retrieval of data less

efficient (because extra work is being done, but the same queries are being made and

serviced), we shall soon see how it can be used as part of a more general mechanism

that is both coherent and also ultimately more efficient.

In addition to the data maintained by the XPathContext object, there are some

other pieces of information that must also be stored in order to support partial

re-evaluation of the stylesheet. The most obvious of these is a reference to the

Storing State and Component History

99

Instruction currently being evaluated. Clearly, this information is essential when

re-initialising the processor at a particular point in the stylesheet and so must be

included in the information that is stored, however it is not known to, or maintained

by, the XPathContext object and therefore must be found by some other means.

The solution is to augment the execution of the individual Instructions that

make up Saxon's internal (compiled) representation of the stylesheet. This is an

attractive solution since it is references to these Instructions that are required,

however they are compiled forms of the StyleElement objects in the original

stylesheet representation and have no information pertaining to their position in

the stylesheet. To provide access to this information, the compilation code for

each StyleElement that prodcues an Instruction is augmented to provide the

newly compiled Instruction with a reference to its corresponding StyleElement.

This reference can then be used to calculate the location path of the node in the

stylesheet by querying its ancestor nodes. In this way the required reference can be

calculated from within the Instruction as is required.

6.2.2 Outputting State Information

Efficient retrieval of the information needed to support partial re-evaluation of the

stylesheet is another challenge. For this information to be useful during the re-

evaulation process, it must be easily accessible not only to re-configure the processor,

but also to be linked to all relevant parts of the result document. Therefore, once

the state information has been obtained, it must be stored in a sensible way.

Two alternative approaches to storing the data have been discussed earlier in this

chapter when we considered augmentation of the stylesheet. Both of these (storing

the data as elements or as attributes on the result document nodes) suffer from the

Storing State and Component History

100

same shortcomings irrespective of the way they are generated. However, looking at

how we might implement storage from within the processor is a worthwhile exercise

since it inevitably has some commonality with any other approaches that might

otherise be considered.

The obvious place to start for changing the output produced by the processor is in

the Instructions responsible for producing the output from the stylesheet. There

are a limited number of elements in an XSLT stylesheet that can generate elements

in the result document, namely:

• <xsl:element>

• <xsl:copy>

• <xsl:copy-of>

• Literal result elements, such as <svg:rect>

Therefore, it is the Instruction objects that correspond to these elements that

will now be the subject of our attentions. Unsurprisingly, the commonality in

function between these instructions has resulted in a common relationship in the

object-oriented design of the relevant Saxon classes. All of the corresponding

Instructionss (ComputedElement, Copy, CopyOf and FixedElement) are sub-

classes of the abstract ElementCreator class. This means that there is a common

point from which all output to the result document is generated, and it is at this

point that the output can easily be augmented with whichever elements or attributes

are deemed necessary. Also, given the fact that this common point of execution

within the ElementCreator class is the processLeavingTail method, we can

directly generate the extra output as described above. Supplementary code can be

added within the method such that each piece of information is retrieved from the

Storing State and Component History

101

XPathContext object, and/or other sources, as necessary, and the extra elements or

attributes are directly added to the result element currently being produced. This

augmentation is illustrated in the truncated code example shown in figure 6.23 of

the processLeavingTail method within ElementCreator.

public TailCall processLeavingTail(XPathContext

 context) throws XPathException {
 //selection and preparation of output destination
 //selected destination is called 'out'

 //begin outputting the current result element
 out.startElement(...);

 //state output code inserted here

 //process any child Instruction/Expression(s)
 content.process(context);

 //end output of current result element
 out.endElement();
}

Figure 6.23 — State augmentation of truncated processLeavingTail method

This type of modification to the compiled styleheet instructions allows for other

solutions to the problem of outputting state information beyond what has been

discussed so far. An alternative to annotating the elements in the result document

with numerous extra elements and/or attributes is to create a separate output steam

for the state information and to put a single ‘ID’ attribute on each element produced,

which links it to the correct position in the stored state. By taking this approach we

can minimise, but not entirely eliminate, the effect on the original execution of the

stylesheet as is the case with the original solution, However, the possibility of storing

the state information separately to the stylesheet's output and then referencing it

from the result document elements is one that can be achieved by going beyond the

modifications presented here.

Storing State and Component History

102

In the code example given in figure 6.23, methods are called on an object (‘out’

in the example) to indicate the structure and content of the result document to be

produced. Under the default configuration of Saxon, this object is an instance of the

DOMWriter class and it produces a standard DOM structure using the Xerces DOM

implementation [51]. However, this behaviour can be altered through changes to

the configuration of Saxon (as discussed in chapter 5) or, alternatively, can be

modified by directly implementing changes to the existing classes. By providing an

alternative implementation for constructing the result document, we are able to

store the required state information without any potentially adverse effects on the

execution of the stylesheet. The modifications made in order to support this soultion

are the subject of the next section.

6.2.3 An Alternative Output DOM Implementation

The default Xerces DOM implementation, used by Saxon, conforms to the W3C

DOM specification through the implmentation of a set of Java interfaces produced

by the W3C. Furthermore, although the Xerces implementation is used to construct

the result document, this fact is not guaranteed, nor even advertised, by Saxon

since it is only made available to subsequent internal or external tools as an

implementation of the abstact W3C interface. Therefore, we are free to replace the

Xerces implementation with our own, so long as it conforms to the W3C interfaces

as advertised by Saxon.

At first, this may appear to be irrelevant since any tools that operated on the

result document could not do anything with it beyond what was specified in the

W3C interfaces. However, since we are intending this result document to be

partially re-consumed by the tool that created it (i.e. partial re-evaluation performed

internally within Saxon), knowledge of the underlying implementation can be

Storing State and Component History

103

utilized internally whilst still exposing the standard W3C interfaces for any other

tools that may use the final output. Therefore, we can modify the previous, ID-based

approach by no longer storing the ID as an attribute on the result element (thereby

removing the possible cause of problems when executing the stylesheet), but rather

storing a reference to the state information as part of the class description used to

represent elements in our DOM implementation. Because this reference is a property

of the implementing class, and not the W3C interface, it can be accessed by any

object that has knowledge of its concrete implementation (i.e. the modified objects

internal to Saxon), yet it is entirely invisible to external tools that operate only on

the DOM according to the methods defined in the W3C interfaces.

As a basis upon which to create the annotation-supporting DOM, the Xerces

class hierarchy is a good model to follow and so the types and functionality of

the objects created, as well as their relations, are similar to those used within

Xerces. However, to allow annotations to be added and subsequently accessed,

a new annotated element object is required. This is a subclass of the standard

element object implementation and extends it by providing methods (and associated

internal fields) to store and retrieve references to all of the state information that

is relevant to the element. The overall structure of the DOM, and the relations

between the objects, are discussed in more detail in chapter 8, since the design

implications that result from the re-evaluation selection strategy discussed therein

have a significant effect on these issues. For the discussions presented here, regarding

the production and storage of state information, it is possible to concentrate solely

on the object representing the annotated element and the objects and other data

that constitutes the processor's state, without the need to discuss other aspects of

the DOM implementation.

Storing State and Component History

104

Given that we now have a mechanism for annotating the result document elements

with information, without affecting the evaluation of the stylesheet, it makes sense

to revisit the way we gather this information and, thus, how it is stored within the

annotated element object. In the initial approach, each piece of information would

be stored either as descendant elements of the result element, or as serialized string

values of attributes on that element. As such, each piece of information was accessed

every time the state information was output alongside a result element. However,

since the information being stored can be referenced by, rather than copied to, the

result element, it needs only to be updated as and when a value is changed. The class

used to fascilitate this process is the ProcessorState class.

6.2.4 Optimised State Storage

Simply copying the value of every piece of state data onto each result element, with

the correct value at the relevant point of execution, is not only computationally

expensive, but it is also unnecessary and redundant. In many cases, the values change

only infrequently, and rarely all at once, so the naïveity of producing multiple copies

for every result element is clear. As an example, consider the execution of the sample

template shown in figure 6.24.

<xsl:template match="foo" mode="bar">
<xsl:variable name="cnt" select="count(*)"/>
<svg:text>Some example text</svg:text>
<svg:rect x="10" y="10" width="{100 * $cnt}" height="100"/>

</xsl:template>

Figure 6.24 — Example template with minimally changing execution state

The result of the execution of this template is that two result elements will be

produced; an <svg:text> element containing the text ‘Some example text’ and an

<svg:rect> with a width proportional to the number of child elements found on

Storing State and Component History

105

the foo element that the template has matched on. The state informaton stored

on each of these elements will be mostly identical, with the obvious exception of

the reference to the instruction that created it. For example, the variable declared

before the two result elements is in scope for the entire template, the mode in which

the instructions execute does not change within the template, and the context node

does not change from the foo element that the template matches on. However, each

of these pieces of information must be calculated or otherwise obtained for both of

the result elements.

The idea of limiting the calculation of state values to when they are set or changed

was introduced in section 6.2.1, and it is that approach we return to here. Instead

of fetching the data every time a result element is generated, it is more efficient to

notify an specialist class (ProcessorState) when a value is set or changed and then

to place a reference to the correct point within the data structure that is created

onto the relevant result element object. Therefore, the subclasses of Instruction

and XPathContext are modified to alert the ProcessorState class of changes to the

processor's state through static method calls, as well as when a new Instruction

is executed so that a ‘state-tree’ can be built and maintained. Each time a value is

changed (i.e. the current execution mode changes, a variable is declared, etc.) the

state tree is updated either by storing the value on the current ProcessorState node

or, if necessary, creating a new node as a child of the current one. In this way, the

complete state of the processor can be obtained by concatenating the current state

with all of its ancestors, whilst minimizing the amount of memory required to hold

the entire tree.

Storing State and Component History

106

The final part of the solution is to simply link the result element object to the

StyleElement reference corresponding to the Instruction that created it, as well

as a reference to the current ProcessorState object. Because the default DOMWriter

implementation is unaware of the need to store state information, it constructs the

result elements as the result of method calls that do not take the StyleElement

or ProcessorState references as parameters. Therefore, the methods were altered

to accept these parameters, and the code contained within them was changed to

create and work with annotated element objects, as opposed to the standard non-

annotated objects that would otherwise have been used. The end result of this

process is, therefore, a result DOM that complies with the standard W3C interfaces,

yet contains references to all of the information regarding the state of the processor

when each element was created.

As we shall see in later chapters, there is more data that must also be stored in

order to support the techniques use for triggering the re-evaluation of Instructions.

The details of this extra data, as well as how its storage is incorporated into the

mechanisms and data structures described in this chapter, are presented alongside

the relevant discussions. We now consider the implications of user edits to the

document, how these are reflected in the input data and/or stylesheet, and how such

changes are effected within the data structures within the processor.

107

Chapter 7:

Effecting Document Edits

The previous chapter has detailed the modifications made to the document

processing framework to support the storing of state information during document

evaluation. Although this state can easily be used to re-initialise the processor and

re-execute specific instructions, support for effecting edits to the document must also

be provided to avoid simply producing identical output to that already generated.

In an editing environment, the need for re-evaluation is a consequence of edits

made to the document. In the case of the variable data documents presented earlier,

these edits can be either changes to the stylesheet or to the variable input data.

This present chapter considers both of these and how such changes affect the re-

evaluation process.

7.1 Changes to the Data

The “variable” nature of a variable-data document is a consequence of the fact that

the input data changes from one instance to the next. Therefore, when editing such

Effecting Document Edits

108

a document, it is important that the author is able to alter the input data instance

so that the full variability of the document can be explored and its effect on the

result document observed. As discussed in chapter 3, this can either be achieved by

generating a series of example documents using sample input data or, alternatively, it

can be done in a piecemeal fashion through manual manipulation of the data. Such

manual manipulation requires a mechanism to allow changes to the input data tree

to be made, whilst remaining compatible with the state storage scheme described

in the previous chapter.

7.1.1 Modifying the Input Data DOM

The default implementation used by Saxon to store the input data tree is a custom

DOM-like structure that can be manipulated in much the same way as a standard

DOM would allow. Therefore, a simple solution is to build a mechanism through

which authors can change the data via some aspect of the editor's interface. This

would culminate in nodes within the tree being added, removed or otherwise altered.

There is, however, a variation on this approach that allows for a more convenient,

and potentially more useful, solution.

Rather than having a data structure to represent a single input data instance that

can be arbitrarily changed or replaced, it is possible to construct a switchable structure

that encompasses a range of related input instances, which at any given time presents

itself as a single instance. As an example, consider the data instances shown in figure

7.1, where each instance is a child of the root node of the document.

<data>
<instance>

<surname>Rubble</surname>
<forename>Joe</forename>
<address>

<line>Room A01</line>
<line>School of Computer Science</line>

Effecting Document Edits

109

<line>University of Nottingham</line>
<line>Jubilee Campus</line>
<line>Nottingham</line>
<line>NG8 1BB</line>
<line>UK</line>

</address>
</instance>
<instance>

<surname>Higginbotham</surname>
<forename>Barney</forename>
<address>

<line>3 Priory Mews</line>
<line>Nottingham</line>
<line>NG7 1AB</line>

</address>
</instance>
<instance>

<surname>Smith</surname>
<forename>Samantha</forename>
<address>

<line>1 Aldridge Close</line>
<line>Toton</line>
<line>Beeston</line>
<line>Nottingham</line>
<line>NG9 9YZ</line>

</address>
</instance>
<!-- more instances -->

</data>

Figure 7.1 — Example data instances

Each of the three instances contains contact information pertaining to an individual

who is the subject of the document being authored. Ordinarily, variable data

document editors (such as those described in chapter 3) would produce a result

document instance based upon the data provided for each input data instance.

Evidently, this would result in three documents being produced. However, by

merging the three instances into a single structure, we can produce a template for a

wider variety of instances. Upon closer inspection it can be seen that the constituent

pieces of data exhibit a range of values across the instances — the length of the

names of the individuals ranges from very short to long, as do the addresses, which

range from three lines to seven lines in length. Therefore, from these three simple

instances, it is possible to construct an ‘artificial’ instance that combines a short

Effecting Document Edits

110

name with a short address, or a long name with a long address, without the need for

any more raw data instances.

There are two ways in which such combinations can be generated; either a

new document can be created from the original instances each and every time

a variation is requested, or all three instances can be combined into a single

structure that can be morphed into any combination as needed. The first option

of creating a new data instance, or even simply replacing nodes within it, can

cause problems when tracking the usage of the data nodes, which is necessary

for the automatic re-evaluation mechanism discussed in the following chapter.

Therefore, the construction of a single, final-form structure containing all aspects of

the available data instances is the preferred solution. However, even this solution

is not without its problems, most notably that building such a structure requires a

sufficiently diverse, yet manageable, set of data instances to be collated to make the

alternative values useful.

7.1.2 Collating Sample Data Instances

Having a large set of data instances upon which a document will be based, is

not necessarily a common situation for a document author. Often, documents are

created ahead of time with the variable data being provided at some later point prior

to printing. A good example of this is would be advertising leaflets based on the

current shopping habits of supermarket loyalty card holders. The types of products

that particular customers are to be presented with, as well as the details of the

products themselves, are likely to be collected as close to the time of printing as

possible, with the overall document design being completed by the document author

well in advance.

Effecting Document Edits

111

In such circumstances, the exact details of each customer are not necessary, but

rather a representative data set is all that is required. This can be produced in one

of two ways:

• Use an existing data set that encompasses similar types of data

• Use a specially constructed sample data set that exhibits the expected

range of variable data

Clearly, using or adapting real data is preferred, but a carefully constructed sample

data set can have its own advantages. In fact, simply merging numerous real

data records together into one amorphous structure is not necessarily useful when

it comes to selecting alternative data values. Having too many choices reduces

the effectiveness of such an editing paradigm and suffers from a similar problem

to that of existing editors generating numerous proof documents as decribed in

chapter 3. Therefore, an ideal solution would be a simplified sample data set

that is automatically constructed from a set of real data instances, including

metadata annotations calculated during the construction process. However, before

we consider how such a data set might be created, we first look at the process of

simply merging data instances into a single structure.

Combining Data Instances

Combining multiple raw data instances, such as those shown in figure 7.1, into

a single switchable structure might seem straightforward, but that is not always

the case. Combining instances with identical tree structures allows the structure

of the combined ‘instance’ simply to be copied from any of the raw instances,

with the textual content of each node being added to a list of alternatives at the

corresponding points in the tree. In the example given, this is the case with the name

elements, but when we consider the address part of the data we have a more complex

Effecting Document Edits

112

problem. Since the number of <line> elements changes from one instance to the

next, the way in which this should be represented in the combined structure is not

immediately obvious. In more complex data sets, where parts of the tree structure

(including attributes) may be optionally omitted in any given instance, merging the

instances into a single structure becomes yet harder.

instance

address

?

surname

"Smith"
or

"Rubble"
or

"Higginbotham"

forename

"Joe"
or

"Barney"
or

"Samantha"

Figure 7.2 — Combining structurally dissimilar data instances

Access to a Document Type Definition (DTD) or schema1, would provide us with

more information regarding the allowable structure of the instances. This would

potentially make the problem easier to tackle, however a suitable DTD or schema

is not always available. The work of Chidlovskii on extraction of schemas from

collections of XML documents [54] and XML document creation using structural

suggestions [55] offer further possibilites towards this goal. The task of merging

documents with similar, or near-identical, structure is also central to research

aimed at efficient and effective version control and merging of XML documents

and there is a wide range of existing literature relating to the subject [56, 57].

Lindholm [58] proposes a three-way merging algorithm in which a document

instance and two derivative instances are compared and merged to produce a single

1This could be a traditional XML schema as defined by the W3C specification [52] or an alternative

such as the specifications defined by RelaxNG [53]

Effecting Document Edits

113

instance containing the variations from both of the derived instances, and Rönnau

et al[59,60] propose a solution of ‘context fingerprinting’ to facilitate the merging of

two related XML documents. Inspiration could be taken from these methodologies

when developing a robust solution to the problem, but a complete solution is

outside the scope of this thesis. Therefore we shall not consider this problem any

further, but instead we introduce a simplified model, and an accompanying tagset

for its definition, that supports the common aspects of a merged data set. This,

less complex, model still provides sufficient descriptive power to create combined

instances from data sets that exhibit a range of types of variation, while not becoming

obfuscated by the details of a totally comprehensive solution.

7.1.3 Switchable Data Description

We have already discussed the most basic of situations where the structure of all the

raw instances is identical and fixed, and it is only the textual content of the leaf

nodes that varies. All other situations must, therefore, involve some variation in the

structure of the document, and so a way of handling this in the instance definition

is necessary. Specific cases that the model must support include:

• Elements that may optionally be omitted from the instance

• Elements that are mutually exclusive (only one element from a set is

included)

• Attributes that may be omitted from the instance

• Attributes that have varying values across different instances

Clearly, the model must also support the declaration of fixed elements, attributes

and textual values for parts of the tree that do not change from one instance to the

next.

Effecting Document Edits

114

We now consider each aspect of the proposed model, including the markup used

for its declaration, and discuss how they relate to supporting the cases described

above. The tagset that is presented represents a meta-description of the switchable

instance rather than a direct declaration of it. To avoid issues with conflicting names

when handling and processing the switchable instance description, the constituent

elements are defined in our own (alt) namespace.

Elements

One of the most basic requirements for the model is that it allows fixed elements

(those that are known not to change across the various instances) to be included.

Because of the fixed nature of the element, it can simply be declared as an

<alt:element> element with details regarding its name, namespace URI and

namespace prefix defined as appropriate attributes2. Any ‘real’ attributes that are to

be present on the fixed element are declared as child descriptor elements that are

described in the following section.

An example of how this type of descriptor element is used is shown in figure 7.3.

The example shows the meta-description of a <foo:bar> element to be inlcuded

in the switchable instance where the foo prefix is bound the namespace http://

www.example.com.

<alt:element localname="bar" uri="http://www.example.com" prefix="foo">
<!-- ... -->

</alt:element>

Figure 7.3 — Example instance descriptor for a fixed element

2The prefix and uri atrtibutes can be ommitted if the element belongs to the default namespace.

Effecting Document Edits

115

Attributes

As mentioned in the previous section, attributes are not declared on the

<alt:element> to which they belong, but rather they are declared as child elements

of it. Each attribute is represented by an <alt:attribute> element, with the details

of its name, prefix and namespace URI being provided as attributes in the same way

that they are specified on an <alt:element> element. The attribute's value is also

provided as an attribute, called value, on the <alt:attribute> element. Therefore,

the fixed element (with fixed attributes)

<book publication_date="1st Jan 2010" revision="1.0"/>

would be represented as shown in figure 7.4

<alt:element localname="book">
<alt:attribute localname="publication_date" value="1st Jan 2010"/>
<alt:attribute localname="revision" value="1.0"/>

</alt:element>

Figure 7.4 — Example instance descriptor for fixed attributes

Text

It is entirely plausible to include invariant textual content of an element as a direct

child of the <alt:element> as shown in figure 7.5, but this approach can cause

ambiguity when we try and represent the numerous alternative text values that

might exist due to variation among the data instances.

<alt:element localname="book">
<alt:attribute localname="publication_date" value="1st Jan 2010"/>
<alt:attribute localname="revision" value="1.0"/>
Alice in Wonderland

</alt:element>

Figure 7.5 — Text content as a direct child of an instance element

Effecting Document Edits

116

The details of how these are represented are covered in the following sections, but

we introduce the notion of declaring text content within an <alt:value> element

here. By ‘wrapping’ the text with an <alt:value> element we remove the problem of

ambiguity with multiple text values because each is separated within its own element

rather than being siblings of one another (which could be normalized to a single

text node, hence the ambiguity). Therefore, all text nodes (and alternative attribute

values) that are to be created in the switchable instance are declared as <alt:value>

elements in the description as shown in the updated example given in figure 7.6.

<alt:element localname="book">
<alt:attribute localname="publication_date" value="1st Jan 2010"/>
<alt:attribute localname="revision" value="1.0"/>
<alt:value>Alice in Wonderland</alt:value>

</alt:element>

Figure 7.6 — Example instance descriptor for textual content

It is worth noting that the elements described so far (<alt:element>,

<alt:attribute> and <alt:value>) closely resemble the XSLT <xsl:element>,

<xsl:attribute> and <xsl:text> instructions respectively, both in terms of their

syntactic definition and their semantics. This is unsuprising, since the purpose of

both groups is very similar — the XSLT elements describe the nodes to be produced

as part of the result of the stylesheet's execution, and the instance descriptor

elements describe the nodes to be produced when creating the switchable instance

tree. Having discussed the elements necessary to describe the fixed parts of the

switchable instance definition, we now turn to those used to declare the variable

aspects of it.

Effecting Document Edits

117

Alternative Nodes

Unlike the situation involving a standard data instance, the switchable instance

must maintain relationships with nodes that are not currently part of the document,

as well as those that are. A simple example of such circumstances is shown in figure

7.7 where each data instance contains a different type of element as a child of the

<offer> element.

<data>
<instance>

<offer>
<wine>

<name>Blossom Hill Chardonnay</name>
<year>2008</year>
<price>5.99</price>

</wine>
</offer>

</instance>
<instance>

<offer>
<clothing>

<name>Men's cotton shirt</name>
<price>8.99</price>

</clothing>
</offer>

</instance>
<instance>

<offer>
<music type="CD">

<artist>Stereophonics</artist>
<name>Word Gets Around</name>
<price>12.99</price>

</music>
</offer>

</instance>
</data>

Figure 7.7 — Example instances containing mutually exclusive elements

The example instances show how there are a variety of alternative offers available

to be included in the switchable instance, but also that they are mutually exclusive.

Clearly, we wish to include each of these tree fragments within the switchable

instance so that each one can be selected by the document author when the

Effecting Document Edits

118

document is being edited, but it would be incorrect to include all of the alternatives

in a single instance.

Therefore, the solution to this problem is the idea of a node that acts as a parent to

each of the possible alternatives, and can change the selected node upon request.

Although all of the alternative child nodes exist within the switchable instance,

only the selected node is made available to any external tool that accesses it, making

it appear as a single instance. The example shown in figure 7.7 can therefore be

modelled as is in figure 7.8, which shows how the nodes are conceptually related.

instance

offer

[Alternative Node]

clothing

...

music

...

wine

...

Figure 7.8 — Conceptual relations involving alternative nodes

As with the other aspects of the switchable instance, alternative nodes

are declared using a specialist element in the instance description. The

<alt:alternative_node> element needs no attributes to be specified and can be

included wherever needed. Figure 7.9 shows the use of an <alt:alternative_node>

element when describing the switchable instance created from figure 7.7.

<alt:element localname="instance">
<alt:element localname="offer">

<alt:alternative_node>
<alt:element localname="wine">

<alt:element name="name">
<alt:value>Blossom Hill Chardonnay</alt:value>

</alt:element>

Effecting Document Edits

119

<alt:element name="year">
<alt:value>2008</alt:value>

</alt:element>
<alt:element name="price">

<alt:value>5.99</alt:value>
</alt:element>

</alt:element>
<alt:element localname="clothing">

<alt:element localname="name">
<alt:value>Men's cotton shirt</alt:value>

</alt:element>
<alt:element localname="price">

<alt:value>8.99</alt:value>
</alt:element>

</alt:element>
<alt:element localname="music">

<alt:attribute localname="type" value="CD"/>
<alt:element localname="atrist">

<alt:value>Stereophonics</alt:value>
</alt:element>
<alt:element localname="name">

<alt:value>Word Gets Around</alt:value>
</alt:element>
<alt:element localname="price">

<alt:value>12.99</alt:value>
</alt:element>

</alt:element>
</alt:alternative_node>

</alt:element>
</alt:element>

Figure 7.9 — Example instance descriptor of an alternative node

Although the example presented here involves different elements (and their

subtrees) as alternative children to the <offer> element, the children of an

alternative node need not be elements, but can be any type of XML node. By

allowing all types of node to be provided as alternatives (even other alternative

nodes) we not only prevent unnecessary restrictions, but we also gain a simple

solution to the problem of fixed elements with varying textual context. Since text

is represented as a distinct type of node in XML, we can easily support alternative

textual values by placing each of the alternative text nodes as children to an

alternative node. An example of this is shown in figure 7.10, where the element

<foo> can contain any of the three text nodes as its content.

Effecting Document Edits

120

<alt:element localname="foo">
<alt:alternative_node>

<alt:value>red</alt:value>
<alt:value>yellow</alt:value>
<alt:value>turquoise</alt:value>

</alt:alternative_node>
</alt:element>

Figure 7.10 — Text nodes as children of an alternative node

Alternative Attributes

The final type of variability to be supported is that of attributes with associated

values that change from one instance to the next. An alternative attribute behaves

like a standard attribute in that it has a name and belongs to a parent element,

but it also behaves like an alternative node by supporting a variety of different

values. In the same way that an alternative node controls which of the child nodes is

included in the current instance, an alternative attribute maintains all of its possible

values, but only ever presents the currently selected one. Thus we see that the

way in which an alternative attribute is declared within the document description

resembles both a normal attribute and an alternative node. Figure 7.11 shows an

example declaration of an attribute named bar that can take any of the three values

shown.

<alt:element localname="foo">
<alt:alternative_attribute localname="bar">

<alt:value>Monday</alt:value>
<alt:value>Wednesday</alt:value>
<alt:value>Saturday</alt:value>

</alt:alternative_attribute>
</alt:element>

Figure 7.11 — Example instance descriptor for an alternative attribute

Instead of the attribute value being declared by a value attribute specified on the

<alt:alternative_attribute> element, a series of <alt:value> child elements

Effecting Document Edits

121

are specified, with each one declaring an alternative value that the attribute can

take.

7.1.4 Metadata Annotations

In addition to the elements and attributes presented so far, we allow for the possiblity

of adding metadata relating to the instance data through the use of additional

attributes on each of the descriptor elements. The purpose of such metadata is

not to aid the generation of, or to add functionality to, the instance produced,

but rather it is made available to the editing application, in which the switchable

instance is being used, to facilitate the informed selection of alternative data.

Obviously, the type information that can be provided through metadata is, in

principle, unrestricted, but there has to be a way of collecting the data in the first

instance, and the consuming application must be aware of its existance.

The problem of collecting the data depends upon the way in which the switchable

instance description is created. If it is constructed by hand, then, clearly, it must

also be provided manually. However, the idea behind annontating the instance with

metadata comes into its own when we consider the production of the switchable

instance from a set of sample data instances. Earlier in the chapter, we discussed the

problem that simply collecting many sample instances into a single one can result

in a large number of alternative values for each piece of data. We also mentioned

how a slimmed-down tree structure, with fewer alternatives, would be more suitable

when being used in an editing application. Therefore, if the number of alternatives

is to be reduced, they should be selected so as to give a representative indication

of the sample data set as a whole. For example, if a set of data instances contain a

common address section, which has textual content with a varying length, we might

choose to limit the alternatives to the those with the shortest, longest, average and

Effecting Document Edits

122

most frequent number of lines3. The annotations we advocate would indicate this

information along with the relative frequencies of each alternative value. The result

of this is that a large number of alternatives can be reduced to a much smaller one,

but without losing all of the information contained within the larger set. Figure 7.12

shows an example of fabricated metadata for the address situation described above.

<alt:element localname="address">
<alt:alternative_node>

<alt:value minimum="yes">
1 Main St.
Nottingham
NG1 2AB

</alt:value>
<alt:value frequency="0.4">

123 Brampton Drive
Stapleford
Nottingham
NG9 7YZ

</alt:value>
<alt:value frequency="0.25">

54 Aldridge Close
Toton
Beeston
Nottingham
NG9 6MN

</alt:value>
<alt:value maximum="yes">

Room C53
School of Computer Science
Jubilee Campus
University of Nottingham
Nottingham
NOTTINGHAMSHIRE
NG8 1BB

</alt:value>
</alt:alternative_node>

</alt:element>

Figure 7.12 — Example instance showing annotating metadata

Although we have not discussed the details of how a series of sample data instances

might be collated into a single switchable instance, it is clear that some extra

3In order to keep the example simple, the address sections are constructed as single blocks of text with

embedded newline characters, rather than a series of <line> elements as in the earlier example in figure

7.1.

Effecting Document Edits

123

processing during this procedure can generate a large amount of useful metadata.

The example presented in figure 7.12 is concerned only with textual variable

data where the metadata can be easily calculated. However, there are often

circumstances involving other types of data, for example, when the sample data

instances include URIs to images, as shown in figure 7.13. In this case, for the

metadata to be useful, it must be generated by a tool that is aware of the types of

data contained within the sample instances. For variable images, metadata regarding

the maximum and minimum bounds, aspect ratios and colour information might

be more appropriate than simply providing information relating to the URI string

provided. For this reason, the process of producing a correctly annotated switchable

instance description from a set of sample data instances can be difficult and, more

importantly, situation-specific, and so it is not considered here further. Therefore,

for the remainder of this thesis it is assumed that an annotated switchable instance

is available for consumption, without further consideration of how it was produced.

<data>
<instance>

<!-- ... -->
<image src="http://www.example.com/image.jpg"/>
<!-- ... -->

</instance>
<instance>

<!-- ... -->
<image src="foo.jpg"/>
<!-- ... -->

</instance>
<instance>

<!-- ... -->
<image src="resources/images/image1.jpg"/>
<!-- ... -->

</instance>
</data>

Figure 7.13 — Sample instance data containing image URIs

The details of how the metadata can be made available through an editing

application, and how such information can be utilized in specific circumstances are

Effecting Document Edits

124

discussed in chapter 9. A complete example of a switchable data instance, which

exhibits the full range of capabilities discussed, can be found in Appendix B. This

example will be the basis for the switchable instance used in later chapters when we

consider the execution performance of the modified toolchain.

7.1.5 Implementation of the Switchable Data Instance

So far, we have discussed the model used to represent the switchable data instance,

as well as the tagset used to define it, but it is also important to consider how it is

implemented and, therefore, how it interacts with the modified version of Saxon

described in the previous chapter. Clearly, the standard input tree implementation

used by Saxon does not provide support for alternative nodes or attributes with a

range of possible values. Therefore a new, custom, implementation is needed to

support the model as well as providing functionality to allow for the instance to be

‘switched’ from one configuration to the next.

The classes used to support the standard fixed elements, attributes and text nodes

implement the same interfaces used by the default Saxon implementations, so that

our switchable input document can simply be used as a direct replacement without

requiring any further modifications to other parts of the processor.

Beyond the basic classes, there must also be classes to provide the functionality

required of the alternative nodes and alternative attributes. This is achieved

through the AlternativeNodeImpl and AlternativeAttributeImpl classes, but

the implementation of the instance must remain fully consistent with the standard

Saxon interfaces, and so explicit knowledge of these must not be necessary when

processing the document. Therefore, the classes that implement the externally

visible interfaces, which represent the standard document nodes, are written with

Effecting Document Edits

125

full knowledge of the variable aspects of the instance structure so that they can

operate as expected by external tools, which expect a single immutable instance,

without exposing any implementation details. However, for external tools that are

aware of the nature of the input data instance, such as the editing application

presented later in chapter 9, the various classes also provide access to the alternative

nodes and attributes, thus allowing their currently selected alternatives to be

changed, as well as any related metadata to be queried.

In order for Saxon to work with this new implementation, a new Builder

implementation, AlternativeTreeBuilder, must also be provided that constructs

the switchable instance object structure from the XML-based description presented

in the preceding sections. The Configuration object used by Saxon to control its

operation must also be modified to make it aware of the availability of the new

Builder implementation.

We have now considered the problem of supporting changes to the input data

instance, and have presented the idea of a switchable instance that can be directly

used within Saxon, whilst also allowing compatible tools to effect the changes

needed. We now turn our attention to the issues surrounding edits that are made

to the XSLT stylesheet itself.

7.2 Changes to the Transform

In the previous section we considered the process of changing the input data

instance and the mechanisms needed to support these changes. The basis of such

changes stem from the need for the document author to view different result

instances that might be generated, in order to see the effect of the variable data on

the document as a whole. However, this type of edit is a specialist one that results

Effecting Document Edits

126

from the variable nature of the document and there remains the need to make more

‘traditional’ edits, such as adding components to the document or changing the

properties of existing components. These edits require changes to be made to the

underlying XSLT stylesheet and it is the way in which these changes are made that

we now consider.

7.2.1 Modifying the Stylesheet DOM

All edits that can be made to the XSLT stylesheet can be broken down into a series

of actions, each of which can be assigned to one of three categories: adding new

instructions, editing existing instructions, or removing existing instructions. In fact,

these categories can be further reduced to just two if we treat the editing of an

existing instruction as a compound action of removing the instruction and replacing

it with a new instruction that exhibits the necessary changes.

Since the XSLT stylesheet is represented as a DOM-like structure within Saxon,

and therefore supports direct manipulation along the same lines as a standard DOM,

the process of modifying the StyleElement-based representation of the stylesheet

is relatively straightforward. Removing instructions or expressions from the tree

can be achieved by removing the corresponding StyleElement objects from their

parent node. This can be effected by calling a method on the parent StyleElement

object, with a reference to an instruction/expression, that requests that the child

StyleElement object be removed. Equally, when adding a new instruction to the

stylesheet tree, a method an be called on the parent StyleElement object requesting

that the instruction be added as one of its children. Clearly, the new StyleElement

object must first be created before it can be added, but this is a simple extra task

Effecting Document Edits

127

for the StyleElementFactory class, which is used during the initial constrcution

of the stylesheet.

The process of making a change to an existing StyleElement object can be handled

by firstly removing the existing StyleElement object and then replacing it with

a newly constructed one. This approach reduces the number of distinct editing

tasks to be supported, while also allowing all edits to be handled through common

procedures. There is, however, an extra processing stage that must be performed

when dealing with the editing of existing StyleElement objects, which is illustrated

in figure 7.14.

<xsl:template match="/">
<xsl:for-each select="1 to 10">

<svg:text x="0" y="{10 * position()}">
<xsl:text>Line:</xsl:text>
<xsl:value-of select="."/>

</svg:text>
</xsl:for-each>

</xsl:template>

Figure 7.14 — StyleElement replacement example

The result of the example code is to print out the strings “Line: 1” through to

“Line: 10” beneath one another, but let us consider the changes required if we

wanted to alter the number of lines that are printed. Clearly, this can be achieved

by modifying the select attribute placed upon the <xsl:for-each> instruction.

However, by breaking this edit down into the removal of the affected StyleElement

object, followed by the addition of a new, modified, one, we encounter a problem.

By removing the original StyleElement object, we also remove the child nodes

attached to it, and so when we add the newly created StyleElement object, we must

also transfer the child StyleElement objects of the original node to the new one.

Effecting Document Edits

128

This process is depicted in figure 7.15. Once again, this can be achieved very simply

by using the standard manipulation methods provided by the StyleElement class,

but it is essential to the integrity of the stylesheet that this is done.

xsl:templatexsl:template

xsl:for-each

svg:text

...

xsl:template

xsl:for-each

svg:text

...

Figure 7.15 — Transfer of child StyleElement objects during edit

7.2.2 Reflecting Changes in the Transform Executable

Making the necessary changes to the StyleElement representation of the stylesheet

to reflect an edit to the document is relatively simple, but these changes alone are

not sufficient for the edit to have any effect. In chapter 5, we discussed the way

in which Saxon compiles this StyleElement tree into an executable form of the

stylesheet. Therefore, the changes made to the StyleElement representation must

be reflected in the compiled form if the edit is to be realised when the stylesheet

is re-evaluated.

The naïve approach to this problem is to make the necessary changes to the

StyleElement representation and then to recompile the entire stylesheet, as would

be done when the stylesheet is first loaded. This is a bad approach for two reasons:

Effecting Document Edits

129

• It is inefficient, because those parts of the stylesheet that have not been

changed are recompiled unnecessarily.

• It renders all of the stored state information useless since it is linked to

existing Instructions that will be replaced by the recompilation.

The first of these points is self-evident, but the second point requires further

explanation. The previous chapter, explained how each ProcessorState object

is referenced by the relevant result DOM element, alongside a reference to the

Instruction that was executed when the result element was generated. If the

entire stylesheet is recompiled, all of the StyleElement elements produce a new

Instruction object, which are then combined to create a new executable form of

the stylesheet. The result of this is that the internal configuration of the processor

is updated to reference the newly created executable form, and yet the numerous

ProcessorState objects, which were created during the initial processing of the

stylesheet, still reference the old executable form. As we shall see in chapter 8, the

automatic reprocessing mechanism that is employed relies on checking whether or

not the generating Instruction is still referenced within the executable, and re-

evaluating the relevant parts of the stylesheet if it is not. Clearly, if we were to

completely recompile the stylesheet after every edit, this would not be possible.

Given that complete recompilation of the stylesheet is both inefficient and

problematic, we must effect the changes to the existing executable form in a much

more targetted way. Since we create the new StyleElement objects that we then

add to the DOM-like representation of the stylesheet, we can also individually

compile them without having to go through the full compilation procedure that is

instigated from the root node of the stylesheet. This allows us to genertate the new

Effecting Document Edits

130

Instruction objects individually, but simply calling the compile(...) method on

a StyleElement object is only part of the procedure that must be performed. Firstly,

the old Instruction object that is part of the Executable must be removed so that

it can be replaced (or simply removed if that is the edit to be effected). Once this

has been done, or if we are just adding a new element to the stylesheet, the new

Instruction object must be incorporated into the Executable.

Removing Existing Expressions

In the majority of cases, removing an existing Expression object (Expression

being the superclass of Instruction) can be achieved through a single call to

the parent Instruction requesting that the Expression in question be removed

as its child. However, in other cases the procedure is much more involved. For

example, if an XSLTemplate node (the subclass of StyleElement that represents

an <xsl:template> element) is removed, any changes made to the RuleManager

object used by the stylesheet must be reversed. This is a much more complex process

in which any Pattern rules that were added when the XSLTemplate object was first

compiled must be removed, as well as any related changes that affect the operation

of the RuleManager as discussed in chapter 5.

The variety of actions perfomed when a StyleElement is first compiled is necessarily

diverse, and the variety of procedures required to reverse this compilation is

equally so. Therefore, a new method, uncompile(...), is added to the abstract

StyleElement class such that it an be called to reverse the effects of the initial

compilation and effectively remove the Expression from the Executable. Because

Effecting Document Edits

131

the actions required to achieve this are dependent upon the StyleElement in

question, the uncompile(...) method is not implemented in the StyleElement

class, but rather as specialised implementations in the various subclasses.

Adding New Expressions

The process of adding a new Expression object to the stylesheet is relatively simple.

A call made to the compile(...) method of a StyleElement object will either

return a corresponding Expression object, or will make direct modifications to the

executable (as is the case with XSLTemplate). Therefore, in some circumstances,

the call to compile(..) is all that is necessary to effect the required changes to the

Executable. However, when an Expression object is returned, it must be added as

a child of the relevant parent Expression object. The way in which this is achieved

is dependent upon the specific subclass of Expression in question, but is ultimately

a simple procedure.

Having considered the implications of how edits are made to both the input

data instance and the various stylesheet representations in this chapter, as well as

having considered the issues surrounding how state information is stored during

execution of the stylesheet in the previous chapter, we now turn to the problem of

incorporating these into a partial re-evaluation mechanism.

132

Chapter 8:

Working with Stored State

In the previous chapters, we have introduced the idea of recording the state of

the processor during its initial execution so that, at a later point, it can be restored

and the processing repeated. The exact details of the information that is needed,

how it can be obtained, and what format it might be stored in, have been dicussed

in chapter 6. We now look at the ways in which this information is used to restore

the execution state so that, after the types of edits discussed in chapter 7 have been

performed, we can subsequently partially re-evaluate the transformation script to

produce an updated result document. We also discuss a strategy that can be used to

perform the necessary re-evaluation automatically.

8.1 Partial Re-evaluation

Re-evaluation of a document by using stored execution state depends on the

mechanism employed to gather and store that state in the first instance. As was

discussed in chapter 5, two approaches to this problem were proposed — a pre-

Working with Stored State

133

processing XSLT script to augment the original stylesheet, and modifications made

directly to the evaluating XSLT processor — but the latter was chosen as the

preferred choice for a number of reasons. As well as the problems previously

discussed, there is also the difficulty of devising a viable re-evaluation strategy. The

process of stylesheet augmentation provides us with a method, albeit imperfect, of

gathering and storing the execution state as the elements in the result document

are produced. Once the initial processing pass has been completed, we are left with

a modified stylesheet and a result document annotated with state information. For

a particular piece of the original stylesheet to be re-evaluated, we must perform a

number of steps.

Firstly, the node at the root of the subtree requiring re-evaluation must be

identified. This is a simple process, since the path to that node is part of the

state information stored. However, there is a significant challenge in isolating the

subtree and re-evaluating it in the processing context in which it was originally

evaluated. In order to maintain the premise of making any required alterations,

to the pre- or post-processing stages, at the XSLT level, a number of potentially

complex transfomations must be completed through a series of newly created XSLT

stylesheets. Things are further complicated when we consider how the execution

state might be recreated and how the parts of the stylesheet requiring re-evaluation

are identified.

Some aspects of the execution state, such as the current mode, are easy to determine

during re-evaluation, but others, implicitly maintained by the underlying processor,

are much more problematic. As an example of this, consider the problem of setting

the current context position, as would be returned by the position() XPath

function. Re-evaluating specific instructions in an identical execution state requires

Working with Stored State

134

that this implicit ‘variable’ is reset to the correct value, but an XSLT-based solution

would require extra code to achieve this, thus adding to the cost and complexity of

re-evaluation.

The problem of identifying the instructions that require re-evaluation once an edit

has been made is another area where an XSLT-only solution is not well suited.

Consider the simple code example shown in figure 8.1 where the text content of an

input data element is stored in a variable and then later referenced.

<!-- ... -->
<xsl:variable name="foo">

<xsl:value-of select="/bar"/>
</xsl:variable>
<svg:text>

<xsl:value-of select="$foo"/>
</svg:text>
<!-- ... -->

Figure 8.1 — Re-evaluation caused by an edit to a referenced variable

If the input data instance is edited such that the text content of the bar element

in question is changed, the <svg:text> element must be re-evaluated because

it utilises the variable, foo, that is affected by the edit. In order to indentify

this re-evaluation requirement, via another XSLT stylesheet, a complex analysis

of the original stylesheet must be performed in which all expressions are parsed

and checked for references to the variable in question. This process, as with the

others described, is ultimately computationally expensive and, along with the other

problems discussed in chapter 5, renders a solution based on stylesheet augmentation

to the problem unsuitable.

The alternative approach of making modifications to the underlying processor can

provide solutions to these problems, and it is these solutions that we now discuss.

Working with Stored State

135

8.2 Re-initializing the Processor

As discussed in chapter 6, all the pieces of data regarding the execution state at

a given time are stored within a ProcessorState object. In order to re-initialize

the process to this state, we must reset the various variables and constructs within

the processor to the values and/or references stored within the ProcessorState

object. In contrast to the problems of the XSLT-based solution, the procedure is

much more simple when we have direct access to the internal objects and data

structures within the processor. In a similar way to that used to store the state in the

first instance, restoring the state can be achieved through some simple modifications

to the subclasses of XPathContext. Clearly, much of the required functionality

already exists since it is needed when setting and updating values during the normal

processing of the stylesheet. However, methods for setting or updating some of the

implicit values, such as the context position discussed in the previous section, are not

provided by default within Saxon because, under normal operation, such changes

are handled internally. Therefore, changes have been made to allow for the setting

and/or updating of such values as necessary. This is made possible by the fact that

the data stored within the ProcessorState objects is the same data used in the

initial processing. In the case of primitive values, the stored values are simply copied,

but more complex objects are retained by storing references to them within the

ProcessorState object. Thus, setting them within the new XPathContext object

is achieved either by simply copying a primitive value or by replacing an internal

reference with a stored reference and is therefore computationally inexpensive.

In conjunction with the minor changes made to the XPathContext-based classes,

the procedure used to restore the execution state utilises existing functionality

Working with Stored State

136

within Saxon, which supports the creation of a new XPathContext object. The

buildXPathContext() method contained with the ProcessorState class creates

a new XPathContext object and uses the newly added, and previously existing,

methods to set all values and references held by the object to those stored within

the ProcessorState object. The result of this call to the buildXPathContext(...)

method is an XPathContext object that is in an identical state that of the

XPathContext object used during the initial processing.

We recall from chapter 5 that the processing of instructions is performed

through calls to either the process(...) or processLeavingTail(...) methods

(depending on the Instruction or Expression in question) and that both of these

methods take a reference to an XPathContext object as a parameter. It is this object

that is used to access the dynamic context in which the Instruction or Expression

should be evaluated. Therefore, re-evaluation of a given instruction can easily be

achieved by calling the correct method on the appropriate Instruction object,

while passing it a reference to the newly constructed XPathContext object.

8.3 Capturing the Generated Tree Fragment

Although the re-evaluation of individual instructions can be performed as described,

the nodes produced as a result of such re-evaluation need to be captured and used

to replace the corresponding nodes in the original result document. In general, the

destination for all result nodes that are produced is set before the initial execution of

the stylesheet begins. Thereafter, all appropriate method calls, such as those emitted

from the various subclasses of ElementCreator, are sent to the Receiver object that

was registered within the processor. Clearly, the correct tree structure of the result

Working with Stored State

137

document is achieved because of the order in which these calls are made, and since

we are not reproducing the whole tree (and thus not making all the necessary calls),

the nodes produced due to the re-evaluation process will not automatically replace

the required nodes.

Instead, we provide the processor with a new destination for the result document

fragment that is to be produced by the partial re-evaluation, and we perform the

replacement in the original result document manually once the re-evaluation has

been completed. The first stage in this process is to create a new DOM Document

to which the newly created result nodes can be added and to wrap it within a

DOMDestination object that implements the Destination interface expected by

the Controller object, which is responsible for managing the execution of the

stylesheet. This object, along with references to the instruction to be re-evaluated

and the corresponding ProcessorState object, is then passed to a newly created

method within the Controller class that performs the partial re-evaluation. This

new method, transformFragment(...), handles the configuration of the processor

to use the new destination when creating result document nodes; it also constructs

a new XPathContext object as described in the previous section, and begins the

partial re-evaluation of the selected instruction.

Once the re-evaluation has been completed, the DOM Document contained within

the DOMDestination provided, has the generated tree fragment as a child of its

document node. Therefore, the object from which this entire process was instigated

now has a reference to the DOM Document containing the new tree fragment, as well

as a reference to the original result document. With access to both these structures,

Working with Stored State

138

it is a trivial operation to remove the old nodes from the result document and replace

them with those generated as a result of the partial re-evaluation. This process is

depicted in figure 8.2.

+

Figure 8.2 — Tree fragment replacement after partial re-evaluation

8.4 Automatic Re-Evaluation of Document Components

So far, we have discussed the ways in which processor state can be saved, restored,

and instructions re-evaluated with their new results being reflected in the complete

result document. However, the procedure in which this process has been performed

is a manual one and it is not a practical approach if we consider the full implications

of the potential re-evaluation needed when an edit is made. Consider a complex

document where a piece of data in the input instance represents a person's address,

as might be the case in a typical advertising leaflet. The view of the document

seen by the author is the result of the execution of the XSLT stylsheet with the

input data, and so any interaction with the document, in terms of editing, must be

performed through that result instance. Also, let us assume that, for whatever reason,

the recipient's address is required to be included in more than one place within the

Working with Stored State

139

document. If the author requests a change to the input data instance as described

in chapter 7, so that he/she can view the effect of a different data instance, such

a request would be initiated through interaction with one of the text components

that references the address data. Clearly, it is a trivial task to identify the instruction

associated with the selected component as being one in need of re-evaluation (since

a reference to the corresponding StyleNode object is stored on the result document

element). It is also the case that the other component(s) that reference the address

data require re-evaluation. Such a situation would require the author to select each

and every component that depends on the address data in any way and initiate

the re-evaluation of the relevant instruction(s). This becomes further complicated

when we consider inter-component dependencies (e.g. component A should be

the same width as component B), together with the issues surrounding the use of

variables by various components within the XSLT stylesheet, and changes to the

XSLT stylesheet itself.

Clearly a mechanism is needed for automatically performing the necessary re-

evaluation, as and when required. The two sources used to create the result

document instance, which is displayed to the user, are the input data instance and

the XSLT stylesheet. Any edits made by the author must be reflected in one or the

other of these, and it is only changes to these structures that have any effect on the

result instance. Therefore, any mechanism to initiate re-evaluation of the document

as a reaction to such edits, must be aware of the fact that they have occurred, as well

as having a method of identifying the parts of the stylesheet affected.

Chapter 6 briefly mentioned the need for further data to be stored alongside the

constituent pieces of state information in order to support such a re-evaluation

mechanism. Chapter 7 also alluded to a similar situation in which information

Working with Stored State

140

relating to the recompilation of StyleNode objects should be maintained to support

automatic re-evaluation. We now discuss the extra functionality needed in both of

these cases.

8.4.1 Recording Input Data Instance Usage

In summary, a change to the input data instance can result in a number of separate

parts of the stylesheet requiring re-evaluation, each possibly in a number of different

execution states. Therefore, when indentifying the parts of the result document

that are affected by the change to the input data, we must have some knowledge

of which parts of the input data instance were used in the process of generating

the result document elements. This problem can be approached in one of two ways

— either analyse the stylesheet to deduce which parts of the input data instance

are used at each point throughout its execution, or simply record the usage as the

stylesheet is initially executed. The difference in these approaches mirrors that

between the different methods of storing the execution state that were discussed

in chapter 6, and similar reasoning as to why we might choose the latter solution

applies here also. Analysis of the entire stylesheet after every edit to the input

data instance is expensive in the extreme, and a complete analysis may require

a simulated execution of the entire stylesheet. Therefore, we favour the latter

approach of recording the usage of the input data instance during the execution of

the stylesheet. This can be achieved in two separate ways; a list of result elements

can be recorded in a dictionary-like structure alongside each input data node that

was used in their production, or, alternatively, a list of the input data nodes used

in the production of each result element can be stored alongside each element. As

we shall see in later sections, aspects of both these approaches are combined in the

final solution that is presented, but the actual process of recording the use of input

Working with Stored State

141

data nodes utilizes the latter approach. Therefore, whenever a node in the input

data tree is accessed, this fact is recorded in the current ProcessorState object,

which is eventually stored alongside an element in the result document tree. Such

a solution is convenient since this mechanism for storing information within the

result elements (the ProcessorState objects) is already implemented, as described

in chapter 6.

The question now remains of ascertaining when individual nodes in the input data

instance are referenced from the XSLT stylesheet. A simple solution would be to

augment the Expression objects within the compiled form of the stylesheet such

that they report when they have accessed particular input data nodes. However,

this becomes increasingly difficult when we consider the range of permitted XPath

expressions that may utilize different parts of the data instance. Simple node

selection XPath expressions such as the select expression shown in figure 8.3 are

represented within Saxon by a series of embedded objects of a particular sublcasses

of Expression.

<xsl:template match="foo">
<!-- ... -->

</xsl:template>

Figure 8.3 — Simple node selection XPath expression

This subclass can be modified to emit a notification that it has been evaluated,

and hence that a particular node in the input data instance has been used, during

execution of the stylesheet, but when we consider other XPath expressions, in

particular those utilizing functions, things become more complicated. The number

of modifications required to support such a mechanism within the various expression

Working with Stored State

142

types and functions supported by the XPath classes, as exemplified by the match

expression shown in figure 8.41, forces us to consider an alternative solution.

<xsl:template match="//*[count(starts-with(./text(), 'The')) gt 1]">
<!-- ... -->

</xsl:template>

Figure 8.4 — Complex XPath expression utilizing functions

There are two ‘actors’ in the execution process — the Instructions and

Expressions within the compiled form of the stylesheet and the input data

instance. We have just discovered that the necessary modifications to the compiled

Expressions are numerous and ultimately impractical, and so we turn to the

possibility of making modifications to the input data instance.

We recall from chapter 7 that the input data instance utilises the switchable

implementation, thereby maintaining each allowable node in the instance within its

structure. Each node is implemented as an object in its own right in contrast to the

TinyTree implementation offered as the default by Saxon. Therefore, if a node in

the data instance is accessed or operated on, a corresponding method will be called

on the object that represents it. This provides an ideal point from which we can

notify any interested objects of the fact that a particular node has been used in some

way. When executing the stylesheet, any such use of the data instance indicates

that it is the subject of the Instruction or Expression being evaluated and so any

changes to the node could result in the Instruction or Expression requiring re-

evaluation.

1For completeness, the match expression shown selects all elements within the document that have at

least one text node child whose content starts with the string 'The'

Working with Stored State

143

The notification that a node has been accessed is achieved by adding a call

to an external entity from each of the methods supported by the various data

node implementation classes. Since we already have a external entity (the

ProcessorState class), that is notified of changes to the internal state of the

processor, it is only sensible that we extend its functionality to include the ability

to record references to the input data nodes as and when they are used. Therefore,

the ProcessorState objects referenced by the result document elements contain all

the necessary information to determine whether or not they require re-evaluation

when the input data instance is edited.

8.4.2 Compiled Expression Versioning

The other aspect of the document that can be edited is the underlying XSLT

stylesheet, and the ways in which such editing is supported has been previously

discussed in chapter 7. There is, however, an important point to make regarding

the process of replacing StyleElement objects in the stylesheet representation and

their subsequent reflection in the compiled executable form. Chapter 6 explained

how a reference to the relevant StyleElement object is stored alongside the

appropriate ProcessorState object within the annotated result elements, but there

has been no discussion of the implications of the re-compilation or replacement of

StyleElements on this stored reference. Clearly, if a StyleElement object is re-

compiled or replaced, any result element that was produced as a consequence of the

execution of its old compiled Instruction should be either re-evaluated or removed

completely. However, the reference to the old StyleElement, which was initially

stored on the result element, remains unchanged and only a process of checking and

updating every element can rectify this.

Working with Stored State

144

In order to support this checking procedure, which we discuss further later in the

chapter, we provide a method of versioning Instructions that are produced by

their respective StyleElements. The crux of the problem is that there can be stored

references to StyleElements that are either no longer part of the stylesheet, or have

produced multiple Instruction objects as a consequence of their re-compilation.

Therefore, the process of removing a StyleElement object from the stylesheet is

modified to indicate that the Instruction object it currently references should

not be used. This is achieved through the use of a versioning variable within

the StyleElement object that can be queried by other objects. As part of the

initial compilation of a StyleElement, the version variable is set to the value of

0, thus indicating that it is the first Instruction produced and referenced by this

object. Subsequent compilations of the same StyleElement increase the value of

this variable to indicate the increased number of Instructions produced, and the

removal of a StyleElement from the stylesheet is indicated by setting the versioning

variable to the value of -1.

Therefore, when the stylesheet is executed, the version of the compiled object

referenced by the StyleElement, which is stored within the annotated result

element, is also stored within that element. By having this information, as well as

a reference to the StyleElement object, it is possible to compare the version used

during the previous evaluation with the current version of the Instruction, thus

determining if the node requires re-evaluation because of a change to the stylesheet.

Working with Stored State

145

8.4.3 Variables and Parameters

A further complication to the re-evaluation process is introduced when we

consider the role of variables and parameters in the stylesheet. In situations where

instructions make use of previously declared variables or parameters, they are clearly

dependent upon their values. Therefore, it is important that any edits made to the

definition of these variables/parameters is noticed by the instructions that reference

them. To support this propagation, the ProcessorState class is further extended

to allow for the storage references to variable and parameter definitions as they are

utilized during the execution of the stylesheet.

It is also necessary to check for affected variable definitions when making edits to

the stylesheet. Let us consider the affect on an <xsl:variable> instruction when

one or more of its descendent nodes is edited as shown in the example code given

in figure 8.5.

<xsl:variable name="foo">
<xsl:text>bar</xsl:text>

</xsl:variable>
<svg:text>

<xsl:value-of select="$foo"/>
</svg:text>

Figure 8.5 — Propagation of an edit to a variable

Let us assume that the textual content of the variable ‘foo’ is changed from the value

‘bar’ to some other text string, thus causing the following <svg:text> element to

require re-evaluation. The previous section has discussed how the version number of

an Instruction is updated when its associated StyleElement object is recompiled,

and it is this same mechanism that we employ here. When the edit is made to the

<xsl:text> element, its ancestors must be searched to determine whether or not

Working with Stored State

146

it is a child element of an <xsl:variable> element. If such an ancestor element is

found, it is flagged as being outdated by increasing its compilation version.

8.4.4 Identifying the Need for Re-evaluation

The previous sections have discussed the ways in which we have augmented the

state storage mechanisms to support the storage of other information for determining

whether partial re-evaluation of the stylesheet is required. We now consider how,

and where, the need for partial re-evaluation is determined and subsequently

initiated.

A Self-Regenerating DOM

Rather than producing a series of external mechanisms designed to check for any

nodes in the result document that reference obsolete StyleElements, or have

ProcessorState objects that describe values that have been altered or updated,

we introduce the idea of the result nodes themselves initiating any necessary re-

evaulation.

Although this may seem an odd solution at first, it is ultimately one that yields

further reductions in potential re-processing costs. By making the result elements

responsible for initiating any partial re-evaluation that may be necessary, this will

only occur when they perform the checking procedure. In turn, this check must be

performed when the node is accessed so that it can respond in the correct way with

regard to the current state of the stylesheet and input data instance. The advantage

to this approach, as opposed to eagerly performing any re-evaluation of the stylesheet

directly as part of the editing process, is that the re-evaluation is only performed as

and when it is required. In terms of the result document, this requirement stems from

its consumption by another entity. In the case presented here, this entity would be

Working with Stored State

147

the editing application, which would access the result document in order to draw it

and display the result to the user. Therefore, if an edit made to the document by the

author affects elements in the result instance that are not currently being displayed

by the editing application, their re-evaluation might not be performed until they

are displayed. In cases where multiple edits are made that affect such an element,

the intermediate states will never be computed because they were never requested.

In large, multi-page documents, this has the potential to offer large savings in terms

of processing cost.

Update Notifications

As we have already discussed, calls to the ProcessorState class are made whenever

parts of the input data tree or stylesheet variables/parameters are used. References

to these objects are then stored so as to associate the stored execution state with the

parts of the document used. A simple solution to the problem of identifying outdated

result elements would be to check the status of these stored references and, if they

have been altered by an edit to the document, initiate the necessary re-evaluation.

However, this repeated ‘polling’ of data regarding the status of the stored objects is an

expensive one. When we consider that each of the elements in the result document

will retrieve and check this information every time they are accessed, the costs can

become considerable. Therefore, a process of notification, as opposed to polling, is

presented as a more efficient solution.

The way in which this is realised has already been alluded to earlier in the chapter

when we considered the process by which the usage of the input data tree is recorded.

This recording process associates every result element with the input data nodes,

and stylesheet variables/parameters, that were used during its creation. In order to

be able to notify these elements of changes to these dependencies, relationships

Working with Stored State

148

in the opposite direction must also be maintained. Therefore, each time a result

element is created, it is registered with the input data nodes and stylesheet variables/

parameters that were stored in the corresponding ProcessorState object. Thus,

whenever an edit is effected on the stylesheet or input data tree, any result elements

that were registered with the object in question can be notified of the change. This

is implemented by simply setting a boolean flag on the result element, which is then

checked as part of its procedure for determining if any re-evaluation is necessary.

By following this process, only the affected result elements are notified of an edit,

and unnecessary polling checks are not needed on every method call to the result

elements.

The notification process itself is done through a simple method call to the relevant

result element. Depending upon on the nature of the edit, this method call is made

from either the input data node object, or a stylesheet StyleElement object. In the

case of a change being made to the input data instance, the notification is emitted

from the method used to select an alternative node/value in the switchable data

instance. In the case of changes to variables or parameters within the stylesheet, the

notification is sent when the relevant StyleElement object is compiled to create a

new Instruction object.

Variable/Parameter Re-evaluation

When a result element is re-evaluated because of a change to the input data tree,

the relevant instruction can simply be re-executed with a rebuilt XPathContext

object to generate a replacement element. This is possible because the input

data nodes are accessed as the instruction is executed, and so any changes are

reflected during this execution. The situation involving variables and parameters

Working with Stored State

149

is, unfortunately, not as straightforward. Variables and parameters are declared and

defined by one instruction, but then accessed via other instructions. Therefore,

whenever an Instruction is executed, the values of these variables/parameters have

already been evaluated and stored within the current XPathContext object. Clearly,

in situations where re-evaluation is required because of changes to a variable or

parameter declaration, simply re-evaluating the relevant instruction with a rebuilt

XPathContext object will not yield an updated result element, but rather one

identical to the original. The reason for this is simple — although the result element

has been notified of a change to the variable/parameter definition, this change

has not been propagated to the calculated values used during execution of the

instruction(s).

The problem can be understood more easily by considering the true nature of

a variable or parameter. In reality, they are produced as the result of executing

an Instruction in the same way that result elements are generated by element

creation Instructions. Therefore, a re-evaluation mechanism similar to that

implemented for result elements can be used to automatically re-evaluate variables

and parameters. Because all parameters and variables are set in, and retrieved from,

the XPathContext object, we can perform a check as to whether or not they

require re-evaluating before returning the correct value. To be able to perform

these checks, information regarding the variable/parameter compilation version

is required. Therfore, the process through which variables/parameters are set is

modified such that references to the appropriate declaration StyleElement and

current compilation versions are stored. By checking these values when a variable/

Working with Stored State

150

parameter value is requested, the variable/parameter can be re-evaluated if necessary

and the correct values returned.

Two-Tier Result Nodes

In order to allow the replacement of result tree nodes with newly generated

document fragments ‘on-the-fly’ the implementation of the result document nodes

must be modified. The modification in question entails the division of each node

into two parts — the actual node and a handle to that node in which the re-

evaluation check is performed. Therefore, for each of the different node classes

supported as part of our custom result DOM implementation, we also produce a

corresponding handle class. The names of these classes mirror the name of the object

that they are a handle to, with the string ‘Handle’ appended to the node class name

(e.g. ElementHandle is the associated handle class for the ElementImpl class).

Each handle class implements the same interfaces supported by the relevant node

class and can therefore be referenced directly by anything that expects a standard

DOM interface (such as the internal workings of Saxon). The methods supported

by the handle classes are identical to those supported by their corresponding node

classes, with each of the incoming method calls being passed on to the actual node

object referenced by the handle. The process by which a node is accessed, and

subsequently checked for need for re-evaluation is as summarised in figure 8.6.

Working with Stored State

151

Required

Not required

Re-evaluate necessary
instructions

Replace node with
new tree fragment

Method called
on handle

Check need
for re-evaluation

Return object/value
to original caller

Call method on node

Figure 8.6 — Flowchart showing re-evaluation identification process

The first stage of the process is for a method to be called on the node's handle, for

example, querying the name or type of the node. The handle then checks whether

or not it has been notified that data on which it is dependent has been changed. If

re-evaluation is necessary, the handle requests this be performed through a call to

the necessary method on the underlying Controller object and retrieves the newly

generated result document fragment. The old node is then replaced by the root node

of the new tree fragment and a method call matching that which was originally

called on the handle is called on the new node. Any object or values returned by

the node are finally returned by the handle's method. From the viewpoint of the

object that made the original method call on the handle, the handle has behaved

exactly as a ‘standard’ node would have and the update check and (possible) re-

Working with Stored State

152

evaluation has been performed trasparently so that the method is called on the up-

to-date result node.

Handle and Node Relationships

To complete the discussion of the result DOM structure, we must discuss the

relationships maintained between the nodes and their handles. It is clear that each

handle holds an internal reference to the node that it ‘shadows’, however it is

also important that the actual node objects are never made available through the

public interface. If they were then the update checks will not be performed and

the handle mechanism might become inconsistent and corrupted. Therefore, the

internal implementations of the various node classes must be modified such that

they are aware of the existence of the handles and only return references to the

relevant handles as opposed to references to the actual nodes. This is particularly

the case when we consider methods supported by the nodes that provide access to

parent and child nodes. Clearly, these must return references to the handles rather

than to the nodes themselves and this is exactly the behaviour exhibited by the

modified node classes. In summary, all references that are returned are references

to handles, not actual nodes, but the inter-node relationships are maintained by

the nodes rather than the handles. A diagram showing the abstract parent-child

relationships between two nodes is given in figure 8.7.

Working with Stored State

153

Handle

Node

Handle

Node

Child Parent

Figure 8.7 — Abstract node/handle relationships

Summary

This chapter has discussed the mechanisms employed to automatically identify

and perform the necessary re-evaluation of the document. This is achieved by

utilizing the information that is stored as a result of the extra functionality described

in chapter 6 and the editing processes and supporting structures detailed in chapter

7. We now turn our attention to incorporating the methodologies and modified tools

previously discussed into a working WYSIWYG document editor that can be used

in the performance analysis of such an editing framework.

154

Chapter 9:

Editor Integration

The preceding chapters have shown how partial document re-evaluation can be

achieved and how a processing framework can be constructed to support interactive

editing of the underlying stylesheet and its input data document. In this chapter we

consider how this framework can be incorporated into a WYSIWYG editor, as well

as the implications of such integration on the construction of the document, and

interaction with it.

9.1 Building a Usable Editor

An important aspect of a WYSIWYG editor is that of displaying the document to the

user. Since our example document workflow culminates in the creation of an SVG

document, we must provide support for the direct rendering of SVG. One possible

option is to design and write a bespoke SVG rendering engine. However, this is a

large undertaking and one that has already been tackled by many people. There are

a number of different rendering engines, but it was decided to use the open source

Editor Integration

155

Batik [61] suite produced by the Apache Foundation. This selection was motivated

by the following reasons:

• It is open source and so any source code changes that need to be made

can easily be incorporated

• It is written in Java and so integration with the other Java-based tools

is relatively straightforward

• It is widely recognized as having good support for the SVG standards

with good supporting documentation

As part of the libraries supplied with Batik there exists a Swing1 component,

JSVGCanvas that can directly handle the rendering of an SVG document around

which an editor can be constructed. Therefore, the current document instance

created through interaction with other parts of the editor (via edits and subsequent

processing passes performed by our modified Saxon processing framework) can be

passed to this component to be rendered and then displayed to the user.

Although the JSVGCanvas faithfully renders the document provided to it, the

internal workings of the Batik libraries operate on a specific SVG DOM

implementation rather than any generic DOM implementation. This means that

the first stage of rendering the document is to produce a clone of it using the internal

SVG DOM classes, which can then be rendered. As we see in the next section,

this can cause problems when adding functionality for user interactions with the

document since all interactions are performed with the cloned DOM and not the

annotated one produced by our modified toolchain. One solution to this problem

is to change the output DOM implementation used by the modified version of

1Swing is the default widget toolkit provided as part of Sun Microsystems' Java Foundation Classes (JFC)

Editor Integration

156

Saxon so that it uses the Batik classes to produce a compatible DOM. Unfortunately

this leads to further problems. Firstly, the Batik DOM classes would need further

augmentation to allow for the annotations and ProcessorState references to be

stored on them, thus requiring a large amount of work to be done within the Batik

libraries themselves. Secondly, since the premise of partial re-evaluation of the

document is not dependent upon an SVG-based workflow, it seems undesirable to

alter the XSLT processor to support only a specific XML tagset.

The alternative approach is to make modifications to Batik such that it can operate

on a generic DOM implementation. However, there are technical reasons why

Batik works with a specific DOM implementation and attempting to make changes

to alter this behaviour is impractical without attempting to rewrite large parts of

its functionality. Therefore, the Batik libraries are used in their unmodified form

and all interactions with the cloned document are translated to the original result

DOM by simply traversing to the corresponding node in the original result DOM.

Obviously this approach is not optimal, most notably because the result DOM is

cloned every time the JSVGCanvas needs to be repainted, however this setup is

simply a test demonstration of the workflow methodology presented and therefore

such a compromise was deemed acceptable.

9.2 Document Interaction

As well as simply rendering the supplied document, the Batik libraries offer

a variety of extensions that allow for interaction with the document through

mouse and keyboard events generated by the JSVGCanvas object. A series of

default Interactors and Overlays are provided to handle common tasks such as

Editor Integration

157

zooming and translating the document, but these can be removed and custom

implementations added if needed.

By adding our own custom Interactor implementations, we can handle events

generated by user interaction with the document instance and react accordingly. For

example, when the user selects an SVG component we can retrieve references to

any variable input data used in the creation of that component and provide the user

with the option to choose an alternative value in the switchable input DOM. The

use of custom interactors is also essential in supporting the click-and-drag editing

support typically expected of WYSIWYG editing applications.

9.3 Abstract Edit Decomposition

As well as supporting component selection, and changes to the input data instance,

there are a number of common, yet potentially complex, edits typically performed

through direct user interaction with the result document. Changes such as those

to the position and size of components can be handled through the use of custom

Interactors, with supporting graphical cues (e.g. resizing handles) being displayed

through custom Overlays. Other, component-specific, edits such as changes to

fonts, colours etc. can be handled through other aspects of the editor, but whatever

the nature of these edits, they must all be effected as changes to the XSLT stylesheet

and/or the input XML document.

The specific changes that must be made to the stylesheet or input data are clearly

dependent upon the action performed by the user, but they can generally be

categorised as either actual edits to the document or as changes to the data instance

being shown. This distinction was made in chapter 4, but it is worth revisiting in

the context of how the user will interact with the document during editing.

Editor Integration

158

In situations where the user selects a result document component that was

constructed using a piece of variable input data, the editing application should

provide the user with the ability to change the value of that piece of data to another

one, thus creating a modified data instance. But, more generally, other types of edit

will result in various changes to the stylesheet that must be reflected in changes to

the Executable in preparation for re-evaluation. In both cases, the re-evaluation of

the document is required to propagate the changes made into the result document

instance presented to the user. As discussed in chapter 8, such re-evaluation is

instigated as necessary by the result document whenever methods are called on it

(i.e. whenever it is accessed). Therefore, all the editing application has to do, in

order to refresh the result document view once an edit has been performed, is to

simply repaint the result document, which will, in turn, cause various method calls

to be made.

9.4 Document Composition

Although we have discussed the process by which changes are made to the stylesheet

and/or input data instance, this has been based on the assumption that the document

already contains all of the necessary components and that all edits will simply be

changes to exisiting components. Clearly, a WYSIWYG editing application is not

of much use to creative professionals if they are unable to add or remove components

and, in particular, to build new documents starting from a blank canvas.

Adding components to the document requires new instructions to be added to the

stylesheet such that, when executed, they will produce the required component

at the correct point in the result document. At first, this might seem relatively

simple — user interactions with the document view can be handled by an

appropriate Interactor and the editor can then construct the required stylsheet

Editor Integration

159

nodes depending on the component that is to be added, and add these new nodes to

the stylesheet where necessary. As an example, if an author wished to add an image

to the document, the element shown in figure 9.1 could be added by constructing

the correct StyleElement objects and compiling it as previously discussed.

<svg:image xlink:href="image.jpg" x="10" y="10" width="200" height="200"/>

Figure 9.1 — Stylesheet instruction to produce an output image

The problem then arises of where this instruction should be added to the stylesheet.

In fact, this is just one aspect of the larger problem of how the stylesheet should

be constructed so that interaction with the editing application is made simple and

efficient. As with most editing applications that use an underlying programming

and/or markup language, it is not realistic to expect the code produced by the

application to be of the same level of complexity that could be achieved via

hand-coding by an intelligent programmer. Therefore, although the editor and its

associated tools are able to process and display any valid XSLT and XML, the code

that is produced as a result of user interaction with the editor may typically seem

simplistic and verbose.

One of the most fundamental decisions to be taken is whether to work in a ‘pull’

or ‘push’ based way as previously described in chapter 2. A pull-based approach

is arguably more suited to these circumstances where the component creating

instructions can be specified in a given order rather than relying on the order of

nodes in the input XML document.

Another requirement is for an ‘empty’ document to produce a valid result document,

even if it contains no content. The solution to this problem is for the editor to create

‘blank’ documents with a single template that matches the root node of the input

Editor Integration

160

document and produces the necessary SVG container nodes in the result document.

An example of such a template is given in figure 9.2, which includes nodes for

pagination support in the result document.

<xsl:template match="/">
<svg:svg>

<svg:pageSet>
<svg:page width="210mm" height="297mm">

<!-- page content to be added here -->
</svg:page>

</svg:pageSet>
</svg:svg>

</xsl:template>

Figure 9.2 — Root Node matching template for ‘blank’ documents

As indicated in the figure, the insertion point for instructions, when adding new

components to the document, is within the <svg:page> container element. Under

a push-based processing model, this entails inserting an <xsl:apply-templates>

instruction, as well as adding the necessary templates to match the input data nodes.

However, a pull-based approach requires that the relevant instructions be added as

direct children of this node resulting in a more imperative page description.

The functional nature of XSLT is a major benefit in such circumstances i.e. where

numerous instructions are added to the root template to produce multiple output

components. Since XSLT instructions are side-effect free, it is possible to add new

instructions when a new component is requested without having to be concerned

about their effect on other instructions. For example, if instructions to produce a

textual component using a specific font were added, there is no danger of affecting

other components because of any change of font, as might be the case with other

page description languages such as PostScript and PDF [62].

Editor Integration

161

9.5 Component Properties

A typical document will, more often than not, contain more than one type of

component (e.g. text, images, shapes) with each of these different components

having its own set of properties. For example, a text component might support

changes to the typeface and font size used when rendering its contents, but these

are not relevant to other components such as images or shapes. For the editing

application to allow changes to these disparate properties, it must have knowledge

of what these properties are and how they can be edited. Without such information,

the editing application cannot offer a graphically interactive solution to the problem

and any changes would need to be made via direct edits to the stylesheet and/or

input data instance.

A solution is to provide ‘templates’ for each of the component types supported

by the editor, with details relating to the available properties, and their editing

mechanisms, being included within the template itself. These component templates

are discussed in more detail in the following section, but it is sufficient to understand

that the editing application has knowledge of the various properties supported by

the different components, and that it provides interface widgets to edit their values.

In this situation, the editing application behaves in a very similar manner to the way

in which ‘normal’ IDEs, such as Visual Studio, work when designing and building

user interfaces for graphical windowed applications. When a component in the

document —an interface widget in the case of an IDE —is selected, a series of

properties, together with their values, and functionality to edit those values, is

presented to the user by the editing application or the IDE.

Editor Integration

162

Computed Properties & Component Relations

As well as supporting appropriate changes to specific property types, the editing

application must also allow the user to set computed property values or values

that reference the input data instance. Therefore, irrespective of the component or

property type, the user must always be permitted to specify a computed expression to

replace an existing property value. Such an expression may simply be a reference to

the input data instance, or it may reference other components within the document.

The way in which this expression can be specified by the user is discussed later in

this chapter, but the resulting construct would typically be a valid XPath expression.

As an example, let us consider the XSLT code shown in figure 9.3, which results in

the creation of a block of text in the result document.

<svg:text x="10" y="10" color="#000000" font-size="10pt" font-
family="Helvetica">Some Example Text</svg:text>

Figure 9.3 — Example instruction exhibiting non-computed properties

Clearly the editing application must allow for edits to be made to each of the

properties specified through attributes, as well as a separate property relating to the

textual content of the component. Let us assume that the input data instance has

information regarding the style to be used within the document, and that part of

that style sets out the typeface to be used. As with a change to any of the available

properties, the code shown in figure 9.3 would need to be altered to replace the

affected attribute values. For example, the code might be changed as shown in figure

9.4.

<svg:text x="10" y="10" color="#000000" font-size="10pt" font-family="{/
@fontname}">Some Example Text</svg:text>

Figure 9.4 — Example instruction exhibiting computer properties

Editor Integration

163

The way in which the edit is made to the XSLT instruction element is discussed in

the following sections, but the nature of the computed expressions remains the same.

As well as references to parts of the input data instance, or computed values based

upon it, we must also allow properties to reference other components. This type

of relationship is illustrated by the grouping or layout of components. A container

object that lays out a list of child components, requires that the components in

question can be specified. If we return to the previous example, the piece of text

described might be one such child. In order for a layout container to be able to

reference it, the text component must be given an identifier. The way in which this

is achieved is to wrap the component in an <xsl:variable> element, with a unique

name, as shown in figure 9.5. The name of this variable can then be provided to the

layout component as would the case with any other variable expression.

<xsl:variable name="foo">
<svg:text x="10" y="10" color="#000000" font-size="10pt" font-family="{/

@fontname}">Some Example Text</svg:text>
</xsl:variable>

Figure 9.5 — Supporting component interdependencies

9.6 Document Component Templates

We have now highlighted the various problems posed by getting the editing

application to interact with the underlying XSLT stylesheet and processing

mechanisms. To solve these problems, we introduce the concept of a document

component template.

Many of the problems stem from the fact that an XSLT stylesheet can produce

arbitrary output that need not be valid SVG. Therefore, the underlying XSLT

processor also has no limitations on the ways in which the stylesheet is constructed,

nor the result produced. However, for editing variable data documents some

Editor Integration

164

restrictions are necessary. The editing application works with abstract components,

such as text blocks and images, but the processor works with elements, attributes

and string values. We therefore require a mapping between the high-level concept

of a document component and the XSLT instructions and attributes that are used

to produce it.

Figure 9.6 shows an example template for an image component. The template has a

unique name, as well as a descriptive name to be displayed to the user by the editing

application. The main content of the template can be split in two; the configurable

properties of the component, and the XSLT code required to produce the desired

effect.

<template name="component-e02e64c8-a203-4ee7-a7f3-ce8103f9d701"
 displayname="Image">
<param name="x" displayname="X"

 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="y" displayname="Y"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="width" displayname="Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="height" displayname="Height"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="src" displayname="Source"
 editor="testingeditor.property_editors.FilePathPropertyEditor"
 default_value="'file://localhost/Users/james/Desktop/Uni/Research/
PhD/ThesisProcessor/figures/placeholder.jpg'"/>

<body>
<svg:image x="{$x}" y="{$y}" width="{$y}" height="{$height}"

 xlink:href="{$src}"/>
</body>

</template>

Figure 9.6 — Image document component template definition

Each property is specified as a parameter to the template and can be edited using

the Java class specified by the editor attribute. As an example, consider the ‘x’

property that can be edited by the FloatPropertyEditor widget within the editing

Editor Integration

165

application, and which has a default value of ‘0.0’. The <body> element within the

template contains all of the XSLT code necessary to produce the required result

elements. In the case of the image template shown, this is simply a <svg:image>

element that binds the parameter values to specific attributes, although other

template types can contain much more complex code.

The result of using templates to specify the link between the editing application

and the underlying stylesheet is that stylesheet is constructed in the form shown in

figure 9.7.

<xsl:template match="/">
<svg:svg>

<svg:pageSet>
<svg:page width="210mm" height="297mm">

<xsl:call-template name="component-e02e64c8-a203-4ee7-a7f3-
ce8103f9d701">
<xsl:with-param name="x" select="100"/>
<xsl:with-param name="y" select="100"/>
<xsl:with-param name="width" select="10"/>
<xsl:with-param name="height" select="10"/>
<xsl:with-param name="src" select="'photo.jpg'"/>

</xsl:call-template>
</svg:page>

</svg:pageSet>
</svg:svg>

</xsl:template>

Figure 9.7 — Root template in component-based document

Here, a call to the desired template component is added to the <svg:page> element,

and any parameters are specified. In the example shown, the actual image file is

called photo.jpg, and its bounding box in the result document will be 10x10 pixels,

with the top left at co-ordinates (100, 100).

This is not the only step that is required if a component of the required type is not

already included in the stylesheet. Because the <xsl:call-template> instruction

calls a named template, then a template with that name needs to exist. Such a named

Editor Integration

166

template can be created from the component template definition and added to the

stylesheet. Once it has been included it can be referenced multiple times from within

the stylesheet. The process is as follows:

1. Create an <xsl:template> with the name specified by the component

template

2. Add an <xsl:param> element to the <xsl:template> for each of the

properties specified

3. Copy the code from within the <body> element of the component

template to the <xsl:template>

Therefore, the named XSLT template corresponding to the Image component

template would be defined as shown in figure 9.8.

<xsl:template name="component-e02e64c8-a203-4ee7-a7f3-ce8103f9d701">
<xsl:param name="x">0.0</xsl:param>
<xsl:param name="y">0.0</xsl:param>
<xsl:param name="width">40.0</xsl:param>
<xsl:param name="height">40.0</xsl:param>
<xsl:param name="src">'file://localhost/Users/james/Desktop/Uni/

Research/PhD/ThesisProcessor/figures/placeholder.jpg'</xsl:param>
<svg:image x="{$x}" y="{$y}" width="{$y}" height="{$height}"

 xlink:href="{$src}"/>
</xsl:template>

Figure 9.8 — XSLT name template built from Image component template

As we shall see in the next section, this mechanism of component templates allows

for easy integration with the user interface provided by the editing application.

9.7 Processor-Integrated Editor

Document View

Figure 9.9 shows a screenshot of the editor with a simple example document

being edited. The SVG result document produced by evaluation of the underlying

Editor Integration

167

stylesheet is displayed in the central window, and a list of property editors relevant

to the currently selected component is shown on the right hand side of the editor

window. Direct manipulation of the result document is supported through mouse

interactions that allow the movement and resizing of components, as well as other

related operations.

Figure 9.9 — Editor view of simple example document

Property Editors

To change properties other than the dimension and position of a component on

the page, the document author must make used of the property editing panel

to the right of the document view panel. This list of properties is obtained

by querying the selected SVG result element for a reference to the component

template definition used in its creation. Once this reference is obtained, the editing

Editor Integration

168

application constructs the appropriate editing widget as defined in the component

template definition, and populates it with the values that were passed as parameters

to the named template in the XSLT stylesheet. The different property editor

types handle the different values that are relevant to the property in question

and, upon alteration, reflect the new value in the correct <xsl:with-param>

element in the corresponding <xsl:call-template> instruction in the stylesheet.

The XSLWithParam object (a subclass of StyleElement) that was changed is then

recompiled, as discussed in chapter 7, and the document redrawn (thus triggering

the automatic re-evaluation mechanism discussed in chapter 8). An example of a

property editor in use (in the case of the example it is a colour-based property that

is the subject of the edit) can be seen in figure 9.10.

Figure 9.10 — Colour-based property editor in use

Editor Integration

169

In addition to the specific property editors displayed to the user, each property also

has access to a variable expression builder via the button to the right of the property

editing widget. In the demonstration editor presented here, this simply allows the

user to enter a valid XPath expression as a string, but a more advanced editor could

provide a wizard to help build the expression in a more user-friendly manner.

Underlying Tree View

In an actual editing application, the document view discussed above might be the

only one available to the document author. However, since the editing application

presented here is designed for demonstrating and testing the underlying processing

model, it is convenient to have a second view that displays the underlying tree

structures of the input data, XSLT stylesheet and SVG result documents. A

screenshot of the editor in this mode is shown in figure 9.11.

Editor Integration

170

Figure 9.11 — Editor tree view of underlying document structures

Each of the tree views shows the underlying structure of one of the documents

held within the processor, and allows us direct access to them. As an example of

this, the input data instance, shown in the far left view, can be manually altered

to produce a new data instance. The default view is to show the data instance as

it is seen by the processor (i.e. it has no knowledge of alternative nodes/values and

looks like a standard document), but this behaviour can be changed by selecting

the checkbox below the view. With this checkbox checked, the complete structure

of the switchable instance is exposed and the currently selected node at each

of the alternative points in the instance can be replaced with any of the other

supported nodes/values by right-clicking on the desired alternative and selecting the

Editor Integration

171

appropriate command from the resulting popup menu.. A screenshot of the editor

displaying the full structure of the switchable instance is shown in figure 9.12.

Figure 9.12 — Editor tree view showing alternative input data values

An additional feature — of great benefit when testing and performing analysis of

the processing framework — is provided through the result document tree view.

Each node in the tree can be selected and, when this occurs, the various state

information stored alongside that node is presented to the user. As well as viewing

the internal state information, we can also force re-evaluation of that node outside

of the automatic re-evaluation mechamism. This provides us with manual control

over the parts of the stylesheet that are re-evaluated which can be used to analyse

specific re-evaluation situations in isolation.

Editor Integration

172

Although the editor is a prototype, it has proved sufficient to demonstrate the

techniques discussed. The addition of the document structure view and the

possibility of manually controlling the (re-)processing of the document makes

the editor a good basis for the performance analysis of the partially re-evaluating

toolchain described in the following chapter.

173

Chapter 10:

Performance Analysis

Previous chapters have discussed the ways in which the overheads of repeated

re-processing of document components can be reduced and, hence, how documents

with localised changes can be optimally re-evaluated. In this chapter we explore

the benefits of these techniques by analysing the performance of the tools

developed when re-processing a range of representative variable data documents.

The performance analysis will be done using the editing application presented in the

preceding chapter and a corresponding toolchain based on unmodified processing

tools.

10.1 Methodology

Before we consider measuring performance, we first consider what aspects

of ‘performance’ we are interested in measuring. The aim of this work is to

provide techniques for increasing the speed at which documents can be re-processed

to support a more responsive interactive editing paradigm. Hence the primary

Performance Analysis

174

performance metric that we are interested in measuring is the reduction in re-

processing time that results from an edit to the document. However, the proposed

techniques of storing and restoring processing state introduce some computational

overhead as well as a larger memory load, both of which must also be considered.

The potential reduction in re-processing is directly related to the complexity and

composition of the document in question as well as the change resulting from an

editing operation. Situations involving simple localized changes to large, complex

documents are candidates for the largest optimizations. But, in the worst case,

documents where everything changes must of necessity, be completely re-processed.

In such cases, the amount of processing performed is necessarily larger with the

modified processing tools due to the overhead of storing state information during

re-processing. One of the aims of the following analysis is to determine the extent

to which such processing overhead affects processing speed in such circumstances.

Representative Documents and Edits

The potential performance gains obtained by using the processing tools already

developed are heavily dependent on the complexity and composition of the

document as well as the nature of the edit that has been performed. To obtain

representative results, a range of different documents and associated edits must be

large enough to encompass the variety of situations that might arise during a typical

editing session.

Therefore test cases covering the following scenarios will be evaluated:

• Adding components to the document without affecting other existing

document components

• Changing properties of existing document components

• Reprocessing the document as a result of an edit

Performance Analysis

175

Each test case scenario will be evaluated across a range of documents that differ in

the number and type of components that they contain.

Testing Platform

All of the tools used as the basis for this work are written in the Java programming

language, and so must be executed by a Java Virtual Machine (JVM). For this

performance analysis, we use the default JVM supplied by Oracle [63] running

on the Windows 7 operating system from Microsoft. It should be noted that

this analysis would be equally valid using other JVMs on other operating system

platforms, however due to the different system architectures and implementations,

the performance across platforms would not be consistent. Therefore, all test cases

will be run on the same operating system/JVM installation.

In the following section, we examine how to measure the time taken to execute

various parts of the modified and unmodified toolchain. Then we propose ways in

which the measurements can be made while minimising the effect of, or eliminating,

these issues. These measurements will be used to indicate the relative performance

increase/decrease as a result of the optimizations (and associated overhead) discussed

in this thesis.

10.2 Sources of Error

As with all experimental measurement, there are a number of ways that errors

can be introduced. The following subsections detail the anticipated sources of error

and the precautions taken to avoid them.

10.2.1 Experimental Error

One of the forseeable problems when running test cases on our modified

toolchain is that of classloading and caching. On the first reference to a given type of

Performance Analysis

176

Java object, the class definition must be loaded by a ClassLoader before the object

can be instantiated. Once the class definition has been loaded it will remain so, and

thereafter it can be used to create subsequent objects of that type, until it is explicitly

unloaded or the associated ClassLoader is destroyed. In the case of the default JVM

ClassLoader, class definitions cannot be unloaded and therefore they will remain

loaded until the JVM terminates execution of the program.

The effect of this process is that the time taken to instantiate an object of a given

type takes much longer the first time the class is referenced (due to the overhead of

loading the class definition) than on subsequent instantiations. This overhead might

potentially affect the measurements we make and so each test case will be repeated

a number of times, with the lowest value being used. It might naively be assumed

that the average time would provide a more reliable mesurement, but the argument

can be clearly made for using the minumum value instead. Any given test case is an

abstract representation of a series of operations that must be performed to carry out

the required task. Because these operations must always be performed to complete

the task, and it is only these operations that we wish to time, any other operations

performed by the operating system etc. are superfluous and take additional time,

thus adding to the measured value. Therefore, the test iteration performed in the

shortest time is the one with the least interference from other sources and hence

is the closest to the real value attributable to the test case itself. The repetition of

measurements should discard any results affected by such overhead as well as any

anomalous results that occur for other unforseen reasons.

Performance Analysis

177

10.2.2 Measurement Resolution

The aim of these performance tests is to ascertain the amount of time required

for our modified and unmodified toolchains to reprocess a series of documents that

have been subject to specific edits. To do this we must accurately record the time

taken to execute the reprocessing routines inside the processor. At first glance, a

system by which we record the absolute time at the start of the process and then

compare it to the absolute time after execution should provide the correct value.

There are however two major issues with this approach — timing resolution and

multithreading/multitasking.

Firstly, we are limited to the resolution provided by the various time-

access methods provided by Java. There are two main methods provided

which can return time values in milliseconds and nanoseconds respectively:

System.systemTimeInMillis() and System.nanoTime(). However, although the

values returned will be of the correct order, the resolution of these values

is implementation dependent and not guaranteed to match the ‘advertised’

precision. System.nanoTime() uses mechanisms only available on certain platforms

and resorts to scaling the value returned by System.systemTimeInMillis()

when these mechanisms are not available. Furthermore, the value returned by

System.systemTimeInMillis() is dependent upon the JVM implementation and

underlying operating system and, in some cases, can only provide values with a

resolution of 10ms.

Secondly, and more problematically, running an inherently multithreaded program

on a multitasking operating system means that we can never be sure how much of the

time that elapsed between starting and ending the reprocessing routines was actually

Performance Analysis

178

used performing the task we are trying to measure. It is entirely possible (even likely)

that after we have recorded the start time, but before we finish reprocessing, the

JVM may block the current thread to allow other threads to run. This second thread

may then run for some time (for example, redrawing the user inferface) before our

original thread is allowed to continue executing.

However, not only can the JVM block the current thread, but the OS may block

the JVM process itself to allow other processes to execute. Preventing OS process

switching can only be guaranteed by using a non-multitasking operating system or

a real-time operating system with custom scheduling algorithms, however its effects

can be minimised by stopping all unnecessary programs and services from running.

This, coupled with the repetition of tests, will decrease any such errors introduced

when performing the tests.

10.2.3 JVM Issues

Although we have specified a common platform on which all our tests will

be performed, the JVM itself is a final point of possible error. As well as the

problems dscribed above, there are a number of other JVM operations that could

affect our timing measurements. The pertinent issues are discussed in the following

subsections, with suggested remedial action where appropriate. A more detailed

discussion of general JVM issues with respect to program benchmarking can be found

in [64].

Hotspot Compiler

Unlike traditional languages such as C, Java source code is compiled to an

intermediate bytecode rather than directly to machine instructions. This bytecode

is then converted to machine code by the JVM, either by simple interpretation or

Performance Analysis

179

Just-in-time (JIT) compilation. Since JIT compilation has a relatively high initial

cost, the JVM defaults to interpreting all parts of the program to avoid long start-up

times. However, bytecodes compiled to native machine instructions execute much

more quickly than when they are simply interpreted. Therefore, the JVM analyzes

the code as it runs and records statistics based on the amount of time spent executing

particular pieces of code. When a ‘hotspot’ is detected, the relavent bytecodes are

JIT compiled and executed to increase performance. Other optimizations such as

method inlining are also performed by the JIT compiler at this stage to further

improve performance.

Although this mechanism of interpretation and compilation works well in striking

a balance between speed and responsiveness, it can cause serious problems when

attempting to analyze the performance of our modified processing tools. Because

the point at which a section of the program's bytecodes will be JIT compiled is

determined by the JVM, it is entirely possible that one invocation of the code will

be interpreted and the next compiled. This would cause a large spike owing to the

time taken to compile the bytecode, followed by consistently faster execution, which

could seriously affect our measurements. In our set of test cases, it is quite probable

that those involving larger, more complex documents will cause parts of the program

to run enough times that it will trigger the JVM's hotspot compiler.

We could attempt to negate this problem by running the tests numerous times

before we start taking measurements in an attempt to force the JVM to JIT-compile

all the relevant sections, however this is time-consuming and there are better

solutions. Firstly, there exists a JVM option called -XX:CompileThreshold that can

be specified when starting the JVM. This allows us to set the number of times a piece

Performance Analysis

180

of code is interpreted before it is JIT compiled, but this will still cause a delay when

that limit is reached.

Secondly, there are another set of JVM options that can be used to control its

behaviour with respect to hotspot compilation — -Xint, -Xcomp and -Xmixed.

These instruct the JVM to always interpret the bytecodes (without any JIT

compilation), to always JIT compile the bytecodes before execution, or to use a

mixture of the two approaches as described above. If none of these options is

specified, the JVM will default to mixed mode. Specifying that the compiler should

always JIT compile (-Xcomp) suffers from the same problem of initial compilation

delay as lowering the hotspot threshold using -XX:CompileThreshold. This should

not be a suprise since setting the compile threshold to 1 has the effect of JIT

compiling each section of the program when it is first encountered. By forcing

the JVM to never JIT compile the bytecodes, our modified processing tools will

potentially execute more slowly, however the execution will progress in a much

more uniform and predictable manner. This is essential when performing the sort

of timing tests presented here, and so the problem of hotspot compilation will be

avoided by passing the -Xint flag to the JVM.

Garbage Collection

In contrast to languages like C and C++, Java hides much of the task of memory

allocation and reclamation from the programmer. Memory is automatically allocated

when a new object is created and it cannot be explicitly released by the programmer;

instead the destruction of objects is performed by the garbage collecter implemented

within the JVM once the object is no longer referenced. The programmer can

request that the garbage collector be run via the System.gc() method call, but this

Performance Analysis

181

is merely a request and the Java specification makes no guarantees as to when, or

if, the JVM will service it. This has the potential to cause problems when running

timing tests since the execution of the processor may or may not be paused while

the garbage collector runs.

One solution to minimizing this problem is to redundantly maintain references to

every object created so that none are released during the execution of the code that

we are measuring. Although the garbage collector will still run, no objects will be

eligible for collection and so the time spent by the JVM would be negligible. This is,

however, a false economy since the process of creating and destroying objects is an

integral part of the processor's execution. Any increase or decrease in the number

of objects created (and therefore time spent managing them) is intrinsic to the way

in which the modified processor operates and so artificially removing this aspect of

its execution would unfairly skew the results. Furthermore, holding such references

would provide a non-representative memory load during execution, preventing any

analysis of this aspect of the modified toolchain's performance. In extreme cases, the

resulting large memory load could also cause the operating system's memory manager

to swap out pages containing parts of the toolchain which must then be swapped

back in when necessary, thus causing large delays in execution.

10.2.4 DOM Differences

As discussed in previous chapters, the default implementations of the input data

tree and the generated result document are replaced with custom versions in the

modified toolchain. These new implementations are required to provide the extra

functionality required of them, but this has implications on their performance

relative to the default implementations. Clearly, they do not function in the

same way and so it is not surprising that they may offer different performance

Performance Analysis

182

during execution. The custom implementations of the input data document and

the generated result document are integral to the modified toolchain and so

any increases or decreases in processing cost are a reflection of the modified

toolchain as a whole. It should also be noted that in the comparison tests using

an unmodified toolchain, the input document will be represented using the object-

bsaed implementation offered by Saxon due to its similarity in implementation to

the custom implementation used by the modified processor.

10.3 Testing Framework Setup

10.3.1 Performance Measuring Code

To measure the performance of the different testing setups, extra code must be added

to make the necessary measurements as the tests are run. We need to ensure that the

same timing mechanisms are used, and that they are also used in a consistent way, so

we introduce the PerformanceMonitor class that can be used from within both of

the test setups. Calls to the various methods supported by the PerformanceMonitor

are made from within the processing methods of the different setups to record the

time take to perform various tasks. The information gathered can then be output

at the end of each test run and subsequently used to analyse the relative processing

costs.

The PerformanceMonitor class allows for the recording of different tasks during

a test, as well as supporting multiple iterations of the same task to overcome

any anomalous results as previously described. Therefore, the series of steps, and

associated method calls, needed to perform the measurement of a given task is as

follows:

Performance Analysis

183

1. Inform the PerformanceMonitor that a new task is being undertaken

via a call to startTask(String name) where name is a string identifying

the task being performed.

2. For each iteration of the task, the startIteration() method

should be called. This records the absolute system time within the

PerformanceMonitor object.

3. The endIteration() method should be called after the code to be

measured has executed. This compares the absolute system time with

the value previously stored and records the difference.

A code sample showing this process is given in figure 10.1.

public void someMethod() {
 /*truncated*/

 //get a reference to the PerformanceMonitor object
 PerformanceMonitor pm = PerformanceMonitor.getInstance();

 //indicate that we are starting a new task
 pm.startTask("Descriptive task name");

 //do the task many times to overcome anomalous results
 for (int i = 0; i < 500; i++) {
 pm.startIteration();

 //code we want to measure goes here

 pm.endIteration();
 }

 /*truncated*/
}

Figure 10.1 — Example code showing calls to the PerformanceMonitor object

Once a task has been completed, the PerformanceMonitor object can be queried

regarding the results of the iterations of that task. It is these results that we present

Performance Analysis

184

later in this chapter. A complete code listing of the PerformanceMonitor class can

be found in Appendix B.

Measuring Memory Usage

In addition to measurements of the processing cost, we also consider the memory

overheads introduced by the techniques described. The measurement of memory

usage is more complex than that of processing time and, therefore, we turn to

specialised tools to obtain representative results. The tool that would initially

appear to be best suited is a code profiler such as the VisualVM profiler [65] that

comes bundled with the latest version of the Java Development Kit (JDK). Like

many other code profiling tools, VisualVM provides overall JVM memory usage

statistics as well as individual class size tracking. However, both of these solutions

suffer from problems that make this approach unsatisfactory. Firstly, monitoring the

overall usage of the JVM makes the results subject to the same potential issues that

were previously discussed in relation to measuring execution time. In the case of

execution time measurements, these issues might only have minor effects, but they

can be the source of major discrepancies with respect to memory usage statistics.

Perhaps the most troublesome of these is the garbage-collector used by the JVM

to reclaim unreferenced objects. As discussed, the JVM is under no obligation to

respect any requests to run the garbge collector, and so any memory usage statistics

may include objects and values that are no longer in use. Furthermore, the numerous

optimizations performed by the JVM (in particular those that employ caching

mechanisms), can increase the measured memory load even further.

The second type of functionality offered by VisualVM appears to be more

promising. It provides live statistics relating to the number, and size, of each object

instantiation. However, the figures presented only show the memory size of the

Performance Analysis

185

individual objects and does not include the size of other objects that are referenced

by them. Therefore, the size of our ProcessorState objects might appear very small

because the value reported does not include the size of any referenced objects.

Fortunately, a tool exists that extends the type of functionality offered by VisualVM

so that the entire dependency graph of an object is measured. ClassMexer [66] uses

the same underlying functionality offered by the JVM that VisualVM uses, but it

traverses all referenced objects and records the complete size of an object. The

measurement is performed by simply passing a reference to the object to be measured

to a static method provided by ClassMexer. It then traverses the object graph (while

maintaining a list of previously measured objects so as not to include them twice

if they are referenced by more than one object) and returns the overall size. Given

the accuracy of this approach, the memory usage measurements made in the tests

presented later, are performed using this tool.

10.3.2 Control Setup

The purpose of the tests and analysis presented here is to ascertain the performance

characteristics of the modified toolchain. To understand how it performs in certain

circumstances, it will be subject to a series of tests, but without a baseline against

which to judge the outcome, the results are meaningless. Therefore, the tests

will be run not only on the modified toolchain, but also on the orignal ‘vanilla’

version of the processor so that a direct comparison can be made. It should be

noted that the only modifications made to the source code of the processor used

in the control experiments are the addition of the various method calls to the

PerformanceMonitor class that are necessary for the measurements to be made,

as well as simple looping constructs, where necessary, to ensure that the code in

question is executed a number of times.

Performance Analysis

186

Since the measurement method calls will only be placed around the particular pieces

of code that are of interest with regard to the tests, the cost of other tasks, such as

loading and parsing the input files, that are not of interest, will not affect the results

produced. Therefore, the tests run on the ‘vanilla’ setup will be executed from the

command line in the following way:

java -Xint -jar vsaxon.jar -xsl:trans.xsl -s:data.xml -o:out.svg

where the ‘vanilla’ version of the processor is compiled to a JAR file called

vsaxon.jar and the various input and output files names/paths are specfied in the

default way as expected by Saxon. In addition, the -Xint parameter is passed to the

JVM to ensure that the test is run in a fully interpreted way as described earlier in

the chapter. The results of the test will be output by the PerformanceMonitor class

when the processing is complete and the processor quits.

10.3.3 Experimental Setup

The experimental toolchain on which the tests are also performed is the

demonstration editor introduced in the previous chapter. Again, the necessary calls

to the PerformanceMonitor class, as well as looping constructs to ensure repeated

execution, are added around the pieces of code that are to be measured. The editor

is also compiled to a JAR file (editor.jar) and is executed from the command line

in a similar manner to the control setup. The command used is given below:

java -Xint -jar editor.jar

The -Xint JVM flag is once again set so as to ensure that both test setups are

interpreted by the JVM as opposed to being JIT compiled. It should also be

clear that the various input and output file names/paths are not provided because

Performance Analysis

187

this is done from within the editor during its execution. However, since the

PerformanceMonitor class remains unchanged from the version used in the control

setup, the measurement results will still be output to the command line.

10.4 Results

The following sections detail individual test cases used to explore certain

performance characteristics of the modified processor and associated data structures.

In most cases, this involves executing an example document and performing some

action, with the test being repeated on both the modified and unmodified toolchains

for comparison purposes. Clearly, the values obtained as a result of completing these

tests are dependent on the particular hardware used, but we are less interested in

their absolute values but more in their relative performance. In addition, example

documents of differing size and complexity will be used, where appropriate, to

illustrate the performance in a particular test case across a range of simulated

documents. In many cases, this range simply contains documents with a varying

number of components on a single page, thus requiring varying amounts of re-

processing when reacting to an edit to the document.

10.4.1 State Storage Overheads

Given that the modifications to the processor require its execution state to be

gathered and stored, as described in chapter 6, this additional work inevitably leads

to an increase in the cost of processing the XSLT stylesheet, particularly in the

first instance. These ‘overheads’ are introduced in all processing situtations (since

the state must always be stored to support partial re-evaluation), and therefore

counteract the possible savings made available by targetted partial re-evaluation.

The purpose of this test is, therefore, to ascertain the extra processing costs

attributable to the process of storing state information.

Performance Analysis

188

To obtain representative figures for this test case, we perform comparative tests

between the unmodified version of Saxon and our modified one. The measurements

taken are limited only to the cost of fully processing the document (including

producing the result document); they do not include the cost of setting up the

procesor or parsing and loading the test documents. In the case of the modified

processor, a complete re-evaluation of the document is performed by using the

partially re-evaluating mechanism, by requesting that the subtree to be re-evaluated

starts at the root node of the document (and hence includes the whole document).

To avoid the problems relating to classloading delays etc. that were discussed earlier

in this chapter, each (re-)processing operation will be executed 500 times within

each of the processors.

Test Documents

Clearly, the construction of the document has a large bearing on the overhead costs

associated with storing state information. A stylesheet that utilizes large numbers

of variables and parameters will introduce higher overheads than documents that

do not use any. Therefore, example documents that exhibit a wide range of such

state-affecting constructs are presented. In addition, each of these examples will be

produced with varying numbers of document components in order to obtain data

over a range of document sizes. As an example, the document shown in figure 9.9

is relatively simple since it only contains a few components, however the barcodes

shown are computationally expensive to generate and so a document containing

many such components would require significant processing time. An increase in

document complexity is therefore easily simulated by adding more components to

the document, thus increasing the overall processing requirement.

The documents used in this test are produced with the following configurations:

Performance Analysis

189

1. A single template containing varying numbers of <svg:text> elements

contain the test string ‘Hello World!’

2. A root template with varying numbers of calls to component template

definitions1, with parameters passed as necessary

Processing Cost

The results of the first (minimal state storage) configuration for the modified and

unmodified processors are shown in tables 10.1 and 10.2 respectively.

Components Min (ms) Max (ms) Mean (ms)

10 0.558 40.888 0.707

20 1.009 24.808 1.232

40 1.911 14.446 2.238

70 3.257 16.999 3.644

100 4.601 16.392 4.780

Table 10.1 — Processing costs using unmodified processor

Components Min (ms) Max (ms) Mean (ms)

10 0.560 9.067 0.594

20 1.012 26.906 1.131

40 1.915 35.622 2.071

70 3.271 91.680 3.690

100 4.623 73.190 4.946

Table 10.2 — Processing costs (complete re-evaluation) of modified processor

1The template definition is of the sort described in chapter 9 and, specifically, is the Text template

detailed in Appendix B with the string ‘Hello World!’ passed as a parameter

Performance Analysis

190

The minimum processing times for each document in the data sets are plotted on

the graph shown in figure 10.2 for comparison purposes.

Components

T
im

e (m
s)

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

10 20 30 40 50 60 70 80 90 100

Unmodified
Modified

Figure 10.2 — Comparative results showing minimal state storage overheads

The graph shows that the overheads introduced on these simple documents are

minor. Across the range of document sizes, the cost of storing the state of the

processor is negligable. Given the simple nature of the test documents, and hence

the lack of information that needs to be stored, the results are not entirely

unexpected.

We now consider the overhead costs associated when processing documents that

exhibit more state-affecting constructs, as discussed above. In each case, a specific

number of calls are made to the named template responsible for creating the result

document component in question. The results of these tests for the unmodified and

modified processors are shown in tables 10.3 and 10.4 respectively.

Performance Analysis

191

Components Min (ms) Max (ms) Mean (ms)

10 1.900 14.931 2.073

20 3.729 22.579 4.112

40 7.290 22.550 7.676

70 12.674 55.149 13.524

100 18.115 46.079 19.284

Table 10.3 — Processing costs using unmodified processor

Components Min (ms) Max (ms) Mean (ms)

10 3.072 33.115 3.355

20 6.077 50.451 6.866

40 12.091 64.618 13.475

70 22.211 70.591 23.849

100 30.135 77.313 33.834

Table 10.4 — Processing costs (complete re-evaluation) of modified processor

It should be noted that a direct comparison between the absolute values for the

tests presented here, and those presented earlier, which involved documents with

minimal state-affecting constructs, is not possible. This is due to the fact that

the stylesheets used in both cases are vastly different, and that the latter requires

many more instructions to be evaluated in its execution. However, the comparison

between the modified and unmodified processor in each case is the sole purpose of

these tests, and when considered together, the different tests describe two extremes

of the same phenomenon.

As with the previous test results, a graph showing the comparative performance of

the two test configurations is given in figure 10.3 below.

Performance Analysis

192

Components

T
im

e (m
s)

4.00

8.00

12.00

16.00

20.00

24.00

28.00

32.00

10 20 30 40 50 60 70 80 90 100

Unmodified
Modified

Figure 10.3 — Comparative results showing higher state storage overheads

As expected, the number of variables/parameters etc. that are utilized by the

document (and therefore require storing as part of the execution state) has a large

bearing of the overheads introduced by storing the processor's state and data/

stylesheet usage references. In contrast to the results for the first test, the overheads

shown in figure 10.3 are much larger (around 60%-70%). Clearly, in this worst-

case scenario our modified processor performs relatively badly, but when operating

in partially re-evaluating mode, such a complete re-evaluation would rarely be

necessary. In many cases at least some region of the document will remain invariant

between one generated result instance and the next, and it is these circumstances

that the following sections consider.

Memory Cost

Before moving on to test cases involving partial re-evaluation, we analyse the

memory cost of storing the required state information. By using the ClassMexer tool

Performance Analysis

193

discussed earlier, we can obtain accurate sizes for the collections of objects that we

are interested in. In the case of both test systems, this includes the object hierarchies

of the input document, stylesheet tree, stylesheet executable, and result document.

As with the execution time tests, both the modified and unmodified processors will

execute a variety of documents that range in size (number of components) and

variable/parameter usage. To avoid any confusion, the same test documents are used

as in the execution timing tests. The results for the two tests are shown in tables

10.5 and 10.6, and figures 10.4 and 10.5 below.

Components Unmodified (kB) Modified (kB)

10 108.41 140.95

20 118.66 166.64

40 137.13 212.35

70 167.86 289.68

100 196.63 360.44

Table 10.5 — Memoy overheads when processing minimal state documents

Components Unmodified (kB) Modified (kB)

10 124.95 201.77

20 147.35 287.07

40 191.16 457.36

70 257.85 713.20

100 323.68 969.03

Table 10.6 — Memory overheads when processing state-intensive documents

Performance Analysis

194

Components

M
em

ory usage (kB
)

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

10 20 30 40 50 60 70 80 90 100

Unmodified
Modified

Figure 10.4 — Memoy overheads when processing minimal state documents

Components

M
em

ory usage (kB
)

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

10 20 30 40 50 60 70 80 90 100

Unmodified
Modified

Figure 10.5 — Memoy overheads when processing state-intensive documents

Performance Analysis

195

As expected, the results in both test cases show a larger memory load for the modified

processor due to the extra state information being stored. This is especially the case

for documents that utilize a large number of state-affecting constructs. Some of this

extra memory load is a consequence of the way that the internal Saxon classes are

constructed. For performance reasons, we retain references to the objects already

created and used by Saxon. However, because Saxon was not designed with state-

storage functionality in mind, these constructs are not always optimal with respect

to persistant memory storage. Furthermore, it is important that we consider the

results in the context of authoring real-world documents in a WYSIWYG editing

application. Firstly, the generated document must be rendered so that it can be

displayed to the user. In the case of our example editing application, this rendering

is handled by the Batik SVG libraries, which have memory overheads of around

4-5Mb. Clearly, when we consider documents containing high resolution images

etc. these rendering overheads will necessarily increase. Given the fact that the test

results show a total memory load (including data and stylesheet representations) of

less than a megabyte, the extra cost of storing the required state information does

not affect the viability of the approach.

10.4.2 Single Component Re-Evaluation

In contrast to the situation described above, the best case for our partially re-

evaluating processor is when only a single component requires reprocessing. The

type of edit that might lead to such circumstances can easily be imagined if we

consider simply moving a component that is not related to any other. Here, the state

information stored on the element to be re-processed is used to build an appropriate

XPathContext object, and this is subsequently used to process only the relevant

instruction(s).

Performance Analysis

196

The results shown in tables 10.7 and 10.8 correspond to the processing cost of

manually selecting a single node in the result document and requesting that it be

re-evaluated. The documents used are the same ones used in the previous section.

Components Min (ms) Max (ms) Mean (ms)

10 0.111 18.885 0.174

20 0.111 21.802 0.184

40 0.111 20.337 0.190

70 0.111 24.758 0.199

100 0.112 25.248 0.195

Table 10.7 — Cost of reprocessing a single component (minimal state)

Components Min (ms) Max (ms) Mean (ms)

10 0.286 29.142 0.384

20 0.286 37.371 0.406

40 0.287 14.309 0.338

70 0.290 20.114 0.379

100 0.290 25.307 0.384

Table 10.8 — Cost of reprocessing a single component (state-intensive)

We see that the cost of re-processing a single component is virtually constant,

irrespective of the size of the document. This is not surprising since we are simply

executing a fraction of the stylesheet that was fully executed in the initial processing

pass. It should be noted that in the test case presented here, no modifications

are made to the document between the initial processing and the subsequent

partial re-evaluation. The consequence of this is that the the result document

instance is identical to its original form after the re-evaluation has been performed.

Performance Analysis

197

This situation is sufficient to illustrate the performance of re-evaluating a single

component, but the problem of reacting to, and realising, edits is the subject of later

tests.

Components

T
im

e (m
s)

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

10 20 30 40 50 60 70 80 90 100

Unmodified
Full
Single

Figure 10.6 — Comparison of minimal state configurations

Components

T
im

e (m
s)

4.00

8.00

12.00

16.00

20.00

24.00

28.00

32.00

10 20 30 40 50 60 70 80 90 100

Unmodified
Full
Single

Figure 10.7 — Comparison of state-intensive configurations

Performance Analysis

198

Figures 10.6 and 10.7 combine the results of this test case with those presented

for the complete re-evaluation tests discussed earlier. The potential gains that can

be made via partial re-evaluation clearly increase as the size/complexity of the

document increases (and hence the full re-processing cost also increases). The

two lines representing the results from the modified processor illustrate the upper

and lower bounds of the processing costs that can be expected with the given

documents. Any actual edit to the document will result in a re-evaluation cost

somewhere between these limits. Returning to the document depicted in figure 9.9

as an example, the cost of reprocessing one of the textual components might be

relatively inexpensive (and hence close to the lower limit), wheras the reprocessing

cost of one of the barcodes would be much higher due to its increased computational

complexity.

10.4.3 Identification of Affected Nodes

So far, we have considered the worst case of re-evaluating the entire document and

the best case of re-evaluating just a single simple component. To achieve this best

case, without the user manually performing the re-evaluation, the result document

nodes that are affected by an edit must be automatically re-evaluated. Chapter 8 has

discussed a mechanism that can provide such automatic re-evalution, and we now

investigate the processing cost of doing so.

We recall that there are four stages to initiating the re-evaluation of a result element:

1. Record the usage of the stylesheet/data during execution.

2. Use this data to link data/stylesheet nodes with the result document

elements as they are produced.

3. Notify the appropriate result elements when a change to the data/

stylesheet is made.

Performance Analysis

199

4. Re-evaluate as necessary as the result document is consumed

The cost of the first of these stages is included in the state storage costs detailed in

section 10.4.1. The second stage is performed each time a result element is produced

and, thus, is also included in the other test cases presented so far. Indeed, it is this

cost that is a major contributor to the overheads encountered when processing the

state-intesive tests, as opposed to the minimal state tests, presented in section 10.4.1.

The notification of result elements to the fact that an instruction/data node has

been changed is initiated from the Instruction's compile(...) method, or the

data tree modification method respectively. This operation is simply a case of setting

a boolean flag on the result element indicating that it requires re-evaluation and

so takes a trivial amount of time. Finally, the re-evaluation is performed by the

result node itself as a result of it checking its status flag when accessed. Again, this

check is simply a boolean comparison and takes negligible time before the node is

re-evaluated in the same way as described in the previous section.

In summary, the bulk of the computation necessary to support automatic re-

evaluation is performed during execution of the stylesheet and the subsequent

production of the result document elements. These costs have already been included

in the previous test cases and so the cost associated with initiating the re-evaluation

is minimal.

10.4.4 Re-Evaluation of Variable Values

Section 10.4.2 looked at the process of re-evaluating a single component, but it did

so in the context of simply reproducing the same result. In reality, any re-evaluation

would only occur as the consequence of an edit to the document. Changes to

the input data do not need any special attention because the input data nodes

Performance Analysis

200

are directly accessed by the Instruction or Expression during execution and so

any edits will be automatically effected upon re-evaluation. However, instructions

that rely on variables or parameters need to be handled differently. We have seen

in chapter 8 that references to variables and parameters are added to the current

ProcessorState object to indicate that they have been used. We have also seen

that the result document elements are made aware of the fact that these variables/

parameters have been changed, but because variables and parameters are calculated

upon their declaration, these instructions must also be re-evaluated to produce the

updated values.

In order to ensure that these values are up to date when an instruction is re-

evaluated, the StackFrame object into which variable/parameter values are placed is

responsible for their checking and potential recalculation. This approach is similar

to the way in which the result document nodes themselves behave. Each time

a variable or parameter's value is requested, the StackFrame object checks the

version information of the appropriate Instruction and, if necessary, re-evaluates

its value before returning it. Clearly, this variable/parameter re-evaluation adds

to the re-evaluation cost, and this cost is proportional to the complexity of the

value to be calculated. Continuing with documents used in earlier tests, the state-

intensive documents used in section 10.4.1, the mean cost of recalculating the basic

parameters (x, y, etc.) to a text component are in the region of 0.010ms. For simple

cases such as these the cost is trivial, but it is likely to increase as the variable/

parameter complexity increases.

Performance Analysis

201

10.4.5 Adding New Components

The process of adding a new component to the document is detailed in chapter 9,

but we consider the costs of the procedure here.

StyleElement Construction

The first stage in adding a new component to the document is to create the necessary

StyleElement objects to represent the <xsl:call-template> and <xsl:with-

param> elements needed to reference the component template. These are then

added to the StyleElement tree before being compiled. The cost of this procedure

is clearly dependent upon the number, and definitions, of the parameters passed to

the component template. However, a typical example in which four parameters are

provided (x, y, width and height) with simple numerical values has an associated

construction cost in the region of 0.250ms.

StyleElement Compilation

Once the StyleElement objects have been constructed, they must be compiled in

order to reflect their existence in the executable form of the stylesheet. As described

in chapter 5 this is simply a case of calling the compile(...) method on the topmost

StyleElement object that represents the <xsl:call-template> instruction. In the

case of the constructed StyleNode object described above, this compilation cost is

around 0.070ms

Initial Evaluation

The final step in adding a new component to the document is to execute the required

instruction(s) to produce the output elements in the result document instance. This

cost is clearly dependent upon the type of component in question. A table detailing

Performance Analysis

202

the initial processing costs of a selection of supported component types is given in

figure 10.9, and a bar chart comparing the minimum values is shown in figure 10.8.

The definitions of each of these component templates can be found in Appendix B.

Component Min (ms) Max (ms) Mean (ms)

Text Area 0.626 12.757 0.689

Image 0.330 6.080 0.371

Rectangle 0.403 6.817 0.450

Ellipse 0.795 7.651 0.853

Star 1.581 8.685 1.672

Barcode 48.907 65.498 50.832

Table 10.9 — Initial evaluation costs for various component templates

The first observation made is the relatively large value for the ‘Barcode’ component

when compared to the other component types. This clearly shows how the

processing cost associated with non-trivial document components can be significant.

Secondly, when we compare the result shown for the ‘Text Area’ component

with the single component evaluation results (which also utilize the ‘Text Area’

component) shown in section 10.4 it might initially appear that the results are

anomolous. It might be naïvely assumed that the cost of reprocessing a single

component when it is already in the document should be the same as when it

is first added. However, this is not the case — the initial processing is more

computationally expensive. This because when we re-evaluate the component, the

execution state is restored from the associated ProcessorState object, whereas

during the initial processing, the Instruction objects that effect the <xsl:call-

template> and <xsl:with-param> instructions must first be evaluated to set the

Performance Analysis

203

required execution state. The process of state restoration is much faster than that

of initially evaluating the various parameter instructions and this is reflected in the

differing processing costs.

Component type

T
im

e (m
s)

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Text Area

Im
age

Rectangle

Ellipse

Star
Barcode

Figure 10.8 — Initial evaluation costs of various component types

10.5 Conclusion

The test cases presented in the previous sections are designed to investigate

the relative perfomance of our modified processing framework against a ‘vanilla’

processor across a range of processing scenarios. It has been shown that the process

of storing state, so that partial re-evaluation can be supported, introduces overhead

costs that can, in the worst case, result in slower overall execution. However, it has

also been shown that in cases where much of the document remains unchanged from

one instance to the next, the cost of partially re-evaluating the necessary instructions

is much lower than the cost of completely re-evaluating the document. In a

production environment, a variety of edits will be performed on the document, each

Performance Analysis

204

requiring a different proportion of the stylesheet to be re-evaluated. In situations

where the document is constructed using component templates as presented in

chapter 9, the effects of an edit to the document should, in the majority of cases, be

relatively localised, thus avoiding the worst-case scenario described. For example,

when editing the document show in figure 9.9, the cost of reprocessing only one

of the textual components due to an edit would avoid the cost associated with re-

processing the computationally expensive barcodes at the bottom of the page that

would be otherwise unavoidable.

The memory cost of storing the necessary state information in such a processing

framework is clearly higher than when not storing any state information at all, but

the cost of doing so is within acceptable limits. The tradeoff of a relatively small

amount of memory for a decrease in re-processing costs is one that is deemed entirely

worthwhile in circumstances in which regeneration time is critical to support an

interactive editing environment.

The automatic re-evaluation mechanism adds further overheads to the processing

of the document, but this is an upfront cost that is only apparent when an updated

part of the document is re-evaluated. In situations where a result element does not

require re-evaluation, there are only negligible overheads introduced by this process.

In summary, our modified processing framework introduces computational

overheads in worst-case scenarios, but it offers potentially large benefits in a range

of other situations. The re-processing cost incurred as the result of a change to the

input data or stylesheet is now dependent upon the proportion of the stylesheet that

needs re-evaluating and no longer on the cost of re-processing the entire stylesheet.

205

Chapter 11:

Conclusions

Having presented the case for a tailored variable data document processing

framework, we have discussed a series of processor modifications and methods

to support such an editing scheme. Testing of the framework, and analysis

of its performance in a demonstration application, has been presented in the

previous chapter. We now summarise the findings of this research and consider

enhancements to the work, as well as other areas of research that may prove fruitful,

but were beyond the scope of this thesis.

11.1 Visually Editing Variable Data Documents

The advent of digital offset presses, and the drive towards ever more personalized

content, has led to a publishing paradigm based around variable data documents.

This is further reinforced by the number of variable data add-ons for existing

document authoring applications, as well as a number of bespoke document

preparation systems targetting variable data documents. However, these add-ons

Conclusions

206

and applications typically only offer support for document variation of a limited

scope, or are otherwise restricted by the inherent limitations of working alongside an

authoring application that was originally designed for the creation of non-variable

documents.

We therefore require a document authoring system that is designed specifically

to support the full variability required of true variable data documents, in which

the most extreme cases see one result instance differ from the next in every way

possible. The underlying model for such a system comprises a variable data source

and a programmtic transformation that generates the various result instances. A

simple workflow based around XML, XSLT and SVG has been used throughout this

thesis, but more complex solutions using similar technologies, such as the Document

Description Framework (DDF) introduced in chapter 1, also exist and provide a

more complete solution. The power of these workflows and frameworks come from

their extensive programmatic capabilities, but this is also the source of significant

usability issues. In order to produce these programmatic documents, the author

must have detailed knowledge of the underlying programming language, as well

as a good grounding in Computer Science concepts. Unfortunately, the creative

professionals that author documents in the real world are not typically skilled in

these areas and are more productive when working with a WYSIWYG editing

application. Therefore, to allow fully variable documents to be easily created and

widely published, there needs to be a way of authoring them through a WYSIWYG

editor, as opposed to using a text editor and command-line processing tool.

The requirement for a WYSIWYG editing application is not surprising in a field that

has already experienced the desktop publishing revolution of the mid-1980s. Then,

the process of document creation and editing was moved from text-based languages,

Conclusions

207

such as and troff, to the graphical editors that were the forerunners to the

WYSIWYG applications widely used today. Chapter 3 discussed the problems that

affect such editors when we consider the properties of variable data documents and

we subsequently proposed a mechanism through which the variability of a document

can be exposed and manipulated in a WYSIWYG setting. The exact way in which

this should be implemented with regard to interaction with the document author

were not considered further since this is an area requiring extensive further research.

Instead, we concentrated on the underlying processing framework and associated

tools that would be required to support such an interactive editing paradigm.

11.2 Partial Re-Evaluation

Irrespective of the way in which the author interacts with the editing application,

the changes made must, ultimately, be effected on the underlying data instance and/

or programmatic transform. Once these changes have been made, the document

is re-evaluated to generate a new result instance to be displayed to the user. The

problem with this approach is that the cost of completely reprocessing the document

can be prohibitively high in the context of an interactive editing environment.

Therefore, methods of identifying and re-evaluating only the parts of the document

affected by the edit were proposed with the aim of decoupling the cost of reprocessing

from the size and complexity of the document and, instead, making it dependent on

the scope and complexity of the changes made.

To achieve this goal, a mechanism for re-executing only the necessary parts of

the transform has been proposed and developed. Given the XML/XSLT-based

nature of the document workflows typically employed, an approach using only

these technologies was proposed and evaluated, however it was deemed unwieldy

and otherwise problematic. Therefore, an alternative approach [67] involving

Conclusions

208

augmentation of the XSLT processor itself, as well as its supporting data structures,

was chosen.

The results presented in the previous chapter show that a partial re-evaluation

of the stylesheet offers potentially large efficiency gains in documents with low

coupling between the component(s) being edited and the rest of the document. The

overheads introduced by such a processing scheme are typically outweighed by the

reduction in overall processing cost and, in the worst case, where an edit requires

the stylesheet to be fully re-evaluated, the cost of storing the processor's state is

acceptable.

A method of automatically identifying the parts of the stylesheet that are in need

of re-evaluation was also proposed and implemented. The approach taken revolved

around the fact that the result document itself had access to all of the information

required to determine whether or not re-evaluation was required. Through the use

of a further modified custom DOM, the result document is able to request specific

re-evaluations to be performed and to replace child nodes within the document

with those tree fragments produced by the re-evaluation. This approach also has

further advantages with regard to the reduction of unnecessary re-processing. In

situations where a change to the stylesheet or input data instance affects parts of

the result document that are not of interest to the consuming application, any re-

evaluation that is, in principle, required, is not performed. This avoids unnecessary

re-processing where many changes are made to the same part of the stylesheet or

input data instance, but the affected components are not displayed by the editing

application.

Conclusions

209

11.3 Suitability of XML and XSLT

Throughout this thesis we have concentrated on variable data documents and

processing systems that are based around XML technologies — in particular,

XSLT and SVG. Although these technologies were primarily chosen because many

existing systems are implemented using them, they also offer advantages when we

consider their use in the editing context used throughout this thesis.

The first advantage is that of locality within documents. Given the tree structure

of XML documents, the scope of properties or values defined in whichever tagset

we consider, is generally restricted to the sub-trees in which they are declared. In

the case of XSLT, this is advantageous in that in-scope variables and parameters

can easily be located and their effect is limited to the local subtree. Furthermore, in

the case of SVG, this tree structure enforces a hierarchy in which properties affect

only the sub-tree of the node on which they are specified, thus providing a form of

‘component encapsulation’.

Another major benefit of using XSLT as the underlying processing language is the

fact that it supports only single-assignment variables1. Therefore, the process of

identifying the parts of the stylesheet that are eligible for re-evaluation is made much

simpler. Instead of having to identify all of the variables that are in scope, and then

track any subsequent re-assignments, we can simply locate their initial (and only)

declaration.

Although these properties may be true of other languages and technologies, their

presence in the XML-based languages and formats used by many variable data

document schemes is a distinct advantage when attempting to build an optimal

editing framework.

1Parameters can be considered to be variables that are passed between functions or templates

Conclusions

210

11.4 Future Research

In addition to the research already presented, there are a number of areas that

warrant further investigation.

The first topic is concerned with the usability issues involved with editing

variable data documents. The work presented has concentrated on the underlying

technologies to support interactive WYSIWYG editing of variable data documents,

but the ways in which the variability is visually presented to the user, and how

they subsequently interact with the document, have not been discussed. This is an

important area of research that must be completed if real-world WYSIWYG editors

for variable data documents are to become commonplace.

Another related topic stems from the work discussed in chapter 7, in which the

production of the switchable input data structure was discussed. It has already been

mentioned that the process of merging XML documents into a single instance

is not something that was fully considered, and that there is existing literature

that could offer insights into the problem. Clearly, this is something that warrants

further investigation, but there is also the connected problem of generating valuable

metadata during such a merging process.

The values chosen to be represented in the switchable instance, as well as the

metadata stored alongside them, are essential when we consider the implications on

the how the variability in the document is visually presented to the user as described

above. The first task is to ensure that the chosen data represents the full range of

the variable values in the data set from which the switchable instance is built. The

way in which this is done will depend on the type of data in question, but it is also

important that relevant metadata is also produced and stored alongside the included

values. This metadata is essential information to the editing application when we

Conclusions

211

consider the sort of interactivity and visualizations that may be employed as a result

of the usability research discussed above.

In addition to utilizing this metadata to enhance the editing environment, it can also

be put to good use during the final processing of the document in which the full set of

result instances is produced. The method of speculative evaluation of the document

as proposed by Macdonald et al[68] relies on such information to indentify ‘fastpaths’

through the stylesheet that are frequently executed when repeatedly executing the

stylesheet. The metadata that we discuss here could conceivably identify the high

frequency alternative values and, by extension, be used to identify the ‘fastpaths’

utilized in speculative evaluation.

In fact, there are a number of processing optimizations that might be considered

possible as a result of the work done during the authoring of the document. Given

that the editing process must indentify the parts of the document that rely on

variable input data, the components produced in the results document could be

tagged as either invariant or variant, with those that are invariant cached or

otherwise optimized. This might be achieved through a low-level mechanism similar

to that of <REUSABLE_OBJECT> elements defined by PPML [69], or at a higher level

through component isolation schemes such as the COG model proposed by Bagley

et al and extended to SVG documents by Macdonald et al[70].

This idea of discrete document components is one that was introduced in chapter

9 and this link needs to be further investigated. In addition to the ‘result-level’

components presented by Bagley et al, a comprehensive framework for ‘source-

level’ components could be produced based on the initial ideas presented earlier in

this thesis. A framework mirroring the class/object relationship in object-oriented

programming could provide a way of futher increasing the locality within the

Conclusions

212

stylesheet making the selection and re-evaluation of parts of the document easier

and more efficient. As an extension to this idea, a tool for creating these component

types from existing stylesheets would be a valuable asset, in the same way that ‘result-

level’ COGs can be extracted from existing PDFs using the tools described in [62].

An alternative approach to generating the set of result documents could also be

investigated by considering an extension of the partial re-evaluation methodologies

described in this thesis. Rather than simply using the partially re-evaluating

processor as purely an editing tool, and then returning to a ‘standard’ processor to

produce the set of result documents, a scheme could be devised where the result

documents are produced by the partially re-evaluating processor. Such a procedure

would first require that the set of input data instances be merged into an, albeit large,

switchable instance as described in chapter 7. However, rather than reducing the

number of alternatives at each point in the tree, every alternative node/value would

be included. The document stylesheet would then be processed with the switchable

instance representing the first data instance from the original set. Subsequent result

instances would then be produced by making the necessary edits to the switchable

instance to morph it from one data instance to the next, and performing the required

partial re-evaluation. Clearly, the effectiveness of this approach would be dependent

on a sensible ordering of the data instances to be used, as well as a mechanism for

handling the large switchable input structure that would be necessary to contain all

of the data instances from a large data set. However, this approach has the potential

to deliver the prospect of an XSLT-based batch-processing framework that is viable

in terms of its performance.

In summary, this thesis has presented a novel solution to the problem of

efficiently re-processing variable data documents within an editing environment.

Conclusions

213

Modification of an existing XSLT processor, and development of supporting

document structures, has enabled re-evaluation of the document to be restricted

to those parts of the underlying XSLT stylesheet that are affected by an edit. An

example editing application has been presented, accompanied by a discussion of

considerations relating to the document structure and interaction between the

editing application and the stylesheet. An analysis of the performance of the

processing tools was presented and a gratifying performance speed up was observed.

Finally, further avenues of research were suggested including the possibility of

extending the work to produce an efficient result document generation framework

that could be of great value.

214

Appendix A:

Saxon Architecture Diagrams

Appendix A: Saxon Architecture Diagrams

215

XSLStylesheet

XSLTemplate

LiteralResultElement

LiteralResultElement

XSLValueOf

XSLApplyTemplates

XSLTemplate

LiteralResultElement

XSLValueOf

XSLTemplate

XSLValueOf

XSLTemplate

LiteralResultElement

XSLApplyTemplates

XSLTemplate

LiteralResultElement

XSLValueOf

LiteralResultElement

XSLValueOf

LiteralResultElement

XSLTemplate

LiteralResultElement

XSLValueOf

LiteralResultElement

Figure A.1 — Complete XSLT stylesheet object heirarchy

Appendix A: Saxon Architecture Diagrams

216

RuleManager

Template

FixedElement

Block

FixedElement

ValueOf

XSLApplyTemplates

Template

FixedElement

ValueOf

Template

ValueOf

Template

Block

FixedElement

XSLApplyTemplates

Template

Block

FixedElement

ValueOf

FixedElement

ValueOf

FixedElement

Template

Block

FixedElement

ValueOf

FixedElement

Figure A.2 — Complete compiled stylesheet object heirarchy

217

Appendix B:

Supporting Program Code

B.1 Example Input Data Document

The code listing given below is an example input document illustrating the

structure and markup described in chapter 7.

<alt:instance>
<alt:element localname="person">

<alt:alternative_attribute localname="forename">
<alt:value minimun="yes">Bob</alt:value>
<alt:value frequency="0.4">James</alt:value>
<alt:value maximum="yes">Christopher</alt:value>

</alt:alternative_attribute>
<alt:alternative_attribute localname="surname">

<alt:value minimun="yes">Qi</alt:value>
<alt:value frequency="0.3">Smith</alt:value>
<alt:value maximum="yes">Popadopolous</alt:value>

</alt:alternative_attribute>
<alt:element localname="address">

<alt:alternative_node>
<alt:value minimum="yes">

1 Main St.
Nottingham
NG1 2AB

</alt:value>
<alt:value frequency="0.4">

123 Brampton Drive
Stapleford
Nottingham

Appendix B: Supporting Program Code

218

NG9 7YZ
</alt:value>
<alt:value frequency="0.25">

54 Aldridge Close
Toton
Beeston
Nottingham
NG9 6MN

</alt:value>
<alt:value maximum="yes">

Room C53
School of Computer Science
Jubilee Campus
University of Nottingham
Nottingham
NOTTINGHAMSHIRE
NG8 1BB

</alt:value>
</alt:alternative_node>

</alt:element>
<alt:element localname="store">

<alt:alternative_attribute localname="name">
<alt:value>Beeston</alt:value>
<alt:value>Stapleford</alt:value>
<alt:value>Nottingham</alt:value>

</alt:alternative_attribute>
<alt:alternative_attribute localname="map_url">

<alt:value>beeston.jpg</alt:value>
<alt:value>stapleford.jpg</alt:value>
<alt:value>nottingham.jpg</alt:value>

</alt:alternative_attribute>
</alt:element>
<alt:alternative_node>

<alt:element localname="offers">
<alt:element localname="offer">

<alt:alternative_attribute localname="price">
<alt:value>£9.99</alt:value>
<alt:value>£12.99</alt:value>
<alt:value>£129.99</alt:value>

</alt:alternative_attribute>
<alt:element localname="description">

<alt:alternative_node>
<alt:value minimum="yes">Assorted beads</alt:value>
<alt:value>A wide selection of frozen meals.</

alt:value>
<alt:value maximum="yes">A classic toy for young

 children. A large selection of blocks in
 varying colours complete with simple vehicles
 and characters.</alt:value>

</alt:alternative_node>
</alt:element>
<alt:element localname="title">

<alt:alternative_node>
<alt:value minimum="yes">Fish</alt:value>
<alt:value>Kingsmill White Loaf</alt:value>
<alt:value maximum="yes">Replacement Battery for 15-

inch MacBook Pro</alt:value>
</alt:alternative_node>

</alt:element>
</alt:element>

Appendix B: Supporting Program Code

219

</alt:element>
</alt:alternative_node>

</alt:element>
</alt:instance>

B.2 Example Component Templates

The following code listings are the contents of the component template files

used to compose the documents in chapter 9.

Text Area Template

<template name="component-c6e300ed-97b5-470a-9737-4748d1638f3d"
 displayname="Text Area">
<param name="x" displayname="X"

 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="y" displayname="Y"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="width" displayname="Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0"/>

<param name="height" displayname="Height"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0"/>

<param name="content" displayname="Content"
 editor="testingeditor.property_editors.TextPropertyEditor"
 default_value="'Lorem Ipsum'"/>

<param name="font-family" displayname="Font Family"
 editor="testingeditor.property_editors.FontPropertyEditor"
 default_value="'Helvetica'"/>

<param name="font-size" displayname="Font Size"
 editor="testingeditor.property_editors.IntegerPropertyEditor"
 default_value="12"/>

<param name="font-weight" displayname="Font Weight"
 editor="testingeditor.property_editors.FontWeightPropertyEditor"
 default_value="'normal'"/>

<param name="font-style" displayname="Font Style"
 editor="testingeditor.property_editors.FontStylePropertyEditor"
 default_value="'normal'"/>

<body>
<svg:text x="{$x}" y="{$y}" font-family="{$font-family}"

 font-style="{$font-style}" font-size="{$font-size}" font-
weight="{$font-weight}">
<xsl:value-of select="$content"/>

</svg:text>
</body>

</template>

Image Template

<template name="component-e02e64c8-a203-4ee7-a7f3-ce8103f9d701"
 displayname="Image">

Appendix B: Supporting Program Code

220

<param name="x" displayname="X"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="y" displayname="Y"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="width" displayname="Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="height" displayname="Height"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="src" displayname="Source"
 editor="testingeditor.property_editors.FilePathPropertyEditor"
 default_value="'file://localhost/Users/james/Desktop/Uni/Research/
PhD/ThesisProcessor/figures/placeholder.jpg'"/>

<body>
<svg:image x="{$x}" y="{$y}" width="{$y}" height="{$height}"

 xlink:href="{$src}"/>
</body>

</template>

Rectangle Template

<template name="component-9b96ffa3-275a-4c30-b76b-62555a1ed5a4"
 displayname="Rectangle">
<param name="x" displayname="X"

 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="y" displayname="Y"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="width" displayname="Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="height" displayname="Height"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="fill" displayname="Fill"
 editor="testingeditor.property_editors.ColorPropertyEditor"
 default_value="'rgb(255, 255, 255)'"/>

<param name="stroke" displayname="Stroke"
 editor="testingeditor.property_editors.ColorPropertyEditor"
 default_value="'rgb(0, 0, 0)'"/>

<param name="stroke-width" displayname="Line Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="1.0"/>

<body>
<svg:rect x="{$x}" y="{$y}" width="{$y}" height="{$height}"

 fill="{$fill}" stroke="{$stroke}" stroke-width="{$stroke-
width}"/>

</body>
</template>

Ellipse Template

<template name="component-17c9a224-86a4-4fff-a155-88132c6384c7"
 displayname="Ellipse">

Appendix B: Supporting Program Code

221

<param name="x" displayname="X"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="y" displayname="Y"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="width" displayname="Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0"/>

<param name="height" displayname="Height"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0"/>

<param name="fill" displayname="Fill"
 editor="testingeditor.property_editors.ColorPropertyEditor"
 default_value="'rgb(255,255,255)'"/>

<param name="stroke" displayname="Stroke"
 editor="testingeditor.property_editors.ColorPropertyEditor"
 default_value="'rgb(0,0,0)'"/>

<param name="stroke-width" displayname="Line Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="1.0"/>

<body>
<svg:ellipse cx="{$x + ($width div 2)}" cy="{$y + ($height div

 2)}" rx="{$width div 2}" ry="{$height div 2}" fill="{$fill}"
 stroke="{$stroke}" stroke-width="{$stroke-width}"/>

</body>
</template>

Simple Barcode Template

<template name="component-7064ab3e-0bbd-49f2-a935-7f291c530cde"
 displayname="Barcode (Code 39)">
<param name="x" displayname="X"

 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="y" displayname="Y"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="0.0"/>

<param name="width" displayname="Width"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="height" displayname="Height"
 editor="testingeditor.property_editors.FloatPropertyEditor"
 default_value="40.0"/>

<param name="value" displayname="Value"
 editor="testingeditor.property_editors.TextPropertyEditor"
 default_value="'1234'"/>

<body>
<svg:g transform="{concat('translate(', $x, ', ', $y, ')')}"

 width="{$width}" height="{$height}">
<xsl:variable name="lut">

<entry char="0" value="bwbWBwBwb"/>
<entry char="1" value="BwbWbwbwB"/>
<entry char="2" value="bwBWbwbwB"/>
<entry char="3" value="BwBWbwbwb"/>
<entry char="4" value="bwbWBwbwB"/>
<entry char="5" value="BwbWBwbwb"/>
<entry char="6" value="bwBWBwbwb"/>
<entry char="7" value="bwbWbwBwB"/>

Appendix B: Supporting Program Code

222

<entry char="8" value="BwbWbwBwb"/>
<entry char="9" value="bwBWbwBwb"/>
<entry char="A" value="BwbwbWbwB"/>
<entry char="B" value="bwBwbWbwB"/>
<entry char="C" value="BwBwbWbwb"/>
<entry char="D" value="bwbwBWbwB"/>
<entry char="E" value="BwbwBWbwb"/>
<entry char="F" value="bwBwBWbwb"/>
<entry char="G" value="bwbwbWBwB"/>
<entry char="H" value="BwbwbWBwb"/>
<entry char="I" value="bwBwbWBwb"/>
<entry char="J" value="bwbwBWBwb"/>
<entry char="K" value="BwbwbwbWB"/>
<entry char="L" value="bwBwbwbWB"/>
<entry char="M" value="BwBwbwbWb"/>
<entry char="N" value="bwbwBwbWB"/>
<entry char="O" value="BwbwBwbWb"/>
<entry char="P" value="bwBwBwbWb"/>
<entry char="Q" value="bwbwbwBWB"/>
<entry char="R" value="BwbwbwBWb"/>
<entry char="S" value="bwBwbwBWb"/>
<entry char="T" value="bwbwBwBWb"/>
<entry char="U" value="BWbwbwbwB"/>
<entry char="V" value="bWBwbwbwB"/>
<entry char="W" value="BWBwbwbwb"/>
<entry char="X" value="bWbwBwbwB"/>
<entry char="Y" value="BWbwBwbwb"/>
<entry char="Z" value="bWBwBwbwb"/>
<entry char=" " value="bWBwbwBwb"/>
<entry char="*" value="bWbwBwBwb"/>
<entry char="-" value="bWbwbwBwB"/>
<entry char="$" value="bWbWbWbwb"/>
<entry char="%" value="bwbWbWbWb"/>
<entry char="." value="BWbwbwBwb"/>
<entry char="/" value="bWbWbwbWb"/>
<entry char="+" value="bWbwbWbWb"/>

</xsl:variable>
<xsl:variable name="patterns">

<token value="{$lut/entry[@char = '*']/@value}"/>
<xsl:for-each select="1 to string-length($value)">

<xsl:variable name="char" select="upper-
case(substring($value, position(), 1))"/>

<token value="{$lut/entry[@char = $char]/@value}"/>
</xsl:for-each>
<token value="{$lut/entry[@char = '*']/@value}"/>

</xsl:variable>
<xsl:variable name="output">

<xsl:for-each select="$patterns/token">
<xsl:variable name="token" select="@value"/>
<xsl:variable name="token_pos" select="position()"/>
<xsl:for-each select="1 to string-length($token)">

<xsl:choose>
<xsl:when test="substring($token, position(), 1) =

 'B'">
<svg:rect height="{if (($height - 22) lt 0)

 then 0 else ($height - 22)}" width="3"
 stroke="black" fill="black"/>

</xsl:when>
<xsl:when test="substring($token, position(), 1) =

 'b'">

Appendix B: Supporting Program Code

223

<svg:rect height="{if (($height - 22) lt 0)
 then 0 else ($height - 22)}" width="1"
 stroke="black" fill="black"/>

</xsl:when>
<xsl:when test="substring($token, position(), 1) =

 'W'">
<svg:rect height="{if (($height - 22) lt 0)

 then 0 else ($height - 22)}" width="3"
 stroke="white" fill="white"/>

</xsl:when>
<xsl:when test="substring($token, position(), 1) =

 'w'">
<svg:rect height="{if (($height - 22) lt 0)

 then 0 else ($height - 22)}" width="1"
 stroke="white" fill="white"/>

</xsl:when>
</xsl:choose>

</xsl:for-each>
<svg:rect height="{if (($height - 22) lt 0) then 0

 else ($height - 22)}" width="1" stroke="white"
 fill="white"/>

</xsl:for-each>
</xsl:variable>
<xsl:for-each select="$output/svg:rect">

<xsl:copy>
<xsl:variable name="pos" select="position()"/>
<xsl:attribute name="x" select="sum($output/

svg:rect[position() lt $pos]/@width)"/>
<xsl:for-each select="@* | text()">

<xsl:copy-of select="."/>
</xsl:for-each>

</xsl:copy>
</xsl:for-each>
<svg:text x="0" y="{if (($height - 10) lt 0) then 0 else ($height

 - 10)}" font-family="Courier" font-size="10">
<xsl:value-of select="concat('*', $value, '*')"/>

</svg:text>
</svg:g>

</body>
</template>

B.3 Performance Measuring Code

The following code listing details the contents of the PerformanceMonitor

class used in the perfomance analysis of the tests presented in chapter 10.

PerformanceMonitor.java

package net.sf.saxon;

import java.io.PrintStream;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.HashMap;

Appendix B: Supporting Program Code

224

public class PerformanceMonitor {

 private Task currentTask;
 private HashMap<String, Task> tasks = new HashMap>String,

 Task<();
 private long startTime;

 private DecimalFormat df = new DecimalFormat();

 private static PerformanceMonitor instance = new

 PerformanceMonitor();

 private PerformanceMonitor() {
 df.setMaximumFractionDigits(3);
 df.setMinimumFractionDigits(3);
 }

 public static PerformanceMonitor getInstance() {
 return instance;
 }

 public void startTask(String name) {
 currentTask = tasks.get(name);
 if (currentTask == null) {
 tasks.put(name, currentTask = new Task(name));
 }
 }

 public void startIteration() {
 startTime = System.nanoTime();
 }

 public void endIteration() {
 currentTask.addIteration(System.nanoTime() -

 startTime);
 }

 public void printResults() {
 System.out.println("Performance Results:");
 System.out.println("======================");
 System.out.println();

 for (Task t : tasks.values()) {
 System.out.println("Task: " + t.name);
 System.out.println("----------------------");
 System.out.println("Iterations - " +

 t.getIterationCount());
 System.out.println("Min - " + t.getMinTime() /

 1000000.0 + "ms");
 System.out.println("Max - " + t.getMaxTime() /

 1000000.0 + "ms");
 System.out.println("Mean - " + t.getMeanTime() /

 1000000.0 + "ms");
 System.out.println();
 System.out.println();
 }
 }

 public void printRawResults() {

Appendix B: Supporting Program Code

225

 System.out.println("Raw Performance Results:");
 System.out.println("=========================");
 System.out.println();

 for (Task t : tasks.values()) {
 System.out.println("Task: " + t.name);
 System.out.println("----------------------");
 int count = 0;
 for (Long l : t.getRawData()) {
 System.out.println(++count + ": " + l /

 1000000.0 + "ms");
 }
 System.out.println();
 System.out.println();
 }
 }

 private class Task {

 private String name;
 private ArrayList<Long> iterations = new

 ArrayList<Long>();

 public Task(String name) {
 this.name = name;
 }

 public void addIteration(long time) {
 iterations.add(time);
 }

 public long getMinTime() {
 long min = Long.MAX_VALUE;
 for (Long t : iterations) {
 if (t < min) {
 min = t;
 }
 }
 return min;
 }

 public long getMaxTime() {
 long max = Long.MIN_VALUE;
 for (Long t : iterations) {
 if (t > max) {
 max = t;
 }
 }
 return max;
 }

 public long getMeanTime() {
 long total = 0;
 for (Long t : iterations) {
 total += t;
 }
 return total / iterations.size();
 }

 public int getIterationCount() {

Appendix B: Supporting Program Code

226

 return iterations.size();
 }

 public ArrayList<Long> getRawData() {
 return iterations;
 }

 }

}

227

Glossary

Batik An open source Java library produced by the Apache
Foundation for displaying and manipulating SVG.

DDF Document Description Framework: An XML-based document

format designed by Hewlett-Packard Laboratories specifically
for the purpose of supporting programmatic variable data
documents.

DOM Document Object Model: An object-based model for

representing XML documents. A model of the document is
built as the document is parsed and, once complete, the DOM
can be queried or otherwise accessed.

IDE Integrated Development Environment: A software application

that provides tools and support for software development. An
IDE usually comprises a source code editor, a compiler and
associated build tools, and a debugger. Advanced features such
as Drag-and-Drop user interface builders are also included in
some products.

Mis-

registration

A common problem encountered when printing a document
using multiple passes. Because the printing medium is printed
onto several times, it is often positioned slightly differently on

Glossary

228

each pass. Therefore, each printed image from the different
passes can be out of position relative to those produced by
the other passes. This often results in blurred or overprinted
content.

PDF Portable Document Format: A final-form page description

langauge produced by Adobe Systems Inc. It is based upon the
PostScript langauge, but removes many of the programming
aspects to leave a declarative document description.

PDL Page Description Language: A language that describes the

content and appearance of a page in more abstract terms than
a final bitmap representation; common examples include
PostScript and PDF.

PPML Personalized Print Markup Language: An XML-based printer

language designed to support efficient variable data printing
by allowing reusable content to be identified for caching by
the RIP.

PostScript A stack-based programming language developed in the early
1980s by Adobe Systems Inc. Although Turing-complete, it is
mostly used as a page description language.

RIP Raster Image Processor: A software component in a printing

system that is responsible for generating the final bitmap
(raster) from an input source, typically a page description in a
supported PDL.

Relax NG A schema language for XML in which patterns are used to
specify the allowed structure and content of a document. It
can be written as an XML document itself, however there
is an alternative (non-XML) ‘compact’ version that is also
popular.

SAX Simple API for XML: An event-based interface for processing

XML documents. Events are generated as the document is
parsed and appropriate custom handlers are called in order to
process the content of the document as it is encountered.

Glossary

229

SVG Scalable Vector Graphics: An XML-based tag set used to

describe vector graphics. Although designed primarily for
use in conjunction with XHTML to provide high-quality
graphics for web sites, it is also used as an output format for
many document processing systems.

Saxon An open source XSLT processor written by Michael Kay. It
is written in Java and makes use of JAXP (Java API for XML
Processing).

VDP Variable Data Printing: A printing paradigm in which multiple

instances of the same document yield different result
documents depending upon the data provided. The variation
can range from simple ‘copy-hole’ documents to ones in which
the entire content is dependent on the variable data.

XML eXtensible Markup Language: A meta-syntax for defining

other languages. Based on its predecessor SGML (Standard
Generalized Markup Language), XML makes document
well-formedness easy to check and enforce through a strict
grammatical structure.

XPath An expression language used by XSLT and other XML-based
technologies. Its primary purpose is that of selecting nodes
from a tree structure and filtering the results according to a
series of predicates priovided by the user.

XSLT eXtensible Stylesheet Language for Transformations: A language

designed for transforming XML tree structures from one form
to another. Version 2.0 overcomes some of the shortcomings
of version 1.0, most notably by providing the ability to
transform temporary tree fragments.

230

Bibliography

All URLs were correct as of 10th May, 2011.

[1] Keith Moore, “Every Page is Different: A New Document Type
for Commercial Printing”, in ACM Symposium on Document

Engineering, p. 2, ACM Press, 10th October 2006

[2] “Ipex”, http://www.ipex.org

[3] John Lumley, Roger Gimson and Owen Rhys, “A Framework for
Structure, Layout & Function in Documents”, in Proceedings of

the 2005 ACM symposium on Document Engineering, pp. 32–41,

November 2005

[4] “Extensible Markup Language (XML) 1.0”, 10th February 1998,
http://www.w3.org/TR/1998/REC-xml-19980210

[5] “Internationalized Resource Identifiers (IRIs)”, January 2005,
http://www.ietf.org/rfc/rfc3987.txt

[6] “Simple API for XML (SAX)”, http://www.saxproject.org/

[7] Stephen C. Johnson, “YACC: Yet Another
Compiler Compiler”, AT&T Bell Laboratories,
http://dinosaur.compilertools.net/yacc/

Bibliography

231

[8] Marcus L. Noga, Steffan Schott and Welf Löwe, “Lazy XML
Processing”, in Proceedings of the 2002 ACM symposium on

Document Engineering, pp. 88–94, November 2002

[9] “Extensible Stylesheet Language Transformations (XSLT)
Version 2.0”, 23rd January 2007, http://www.w3.org/TR/xslt20/

[10] “Extensible Stylesheet Language (XSL) Version 1.1”, 5th
December 2006, http://www.w3.org/TR/xsl/

[11] Michael H. Kay, “What Kind of Language is
XSLT?”, IBM developerWorks, 1st February 2001,
http://www.ibm.com/developerworks/xml/library/x-xslt/

[12] “XML Pointer Language (XPointer)”, 16th August 2002,
http://www.w3.org/TR/xptr/

[13] “XQuery 1.0: An XML Query Language”, 23rd January 2007,
http://www.w3.org/TR/xquery/

[14] Alfred V. Aho, Brian W. Kernighan and Peter J. Weinberger,
“The AWK Programming Language”, Addison-Wesley Longman
Publishing Co., Inc. , 1987,

[15] Donald. E. Knuth, “The TeXbook”, Addison-Wesley, 1984

[16] Brian W. Kernighan, “A Typesetter-independent TROFF”, in
Computing Science Technical Report No. 97, Bell Laboratories,

March 1982

[17] “GNU Troff (Groff)”, GNU Project,
http://www.gnu.org/software/groff/

[18] Donald D. Chamberlin, “An Adaptation of Dataflow Methods
for WYSIWYG Document Processing”, in Proceedings of the ACM

Conference on Document Processing Systems, pp. 101–109, ACM

Press, 1988

[19] Kenneth P. Brooks, “A Two-view Document Editor with User-
definable Document Structure”, Department of Computer
Science of Stanford University, 1988

[20] Greg Nelson, “Juno, A Constraint-based Graphics System”, in
SIGGRAPH '85: Proceedings of the 12th annual conference on

Bibliography

232

Computer graphics and interactive techniques, pp. 235–243, ACM

Press, 1985

[21] Adobe Systems Inc., “FrameMaker”,

[22] Eric Laffoon and Andras Mantia et al, “Quanta+”,
http://quanta.kdewebdev.org

[23] Iréne Vatton, Laurent Carcone and Vincent Quint, “Amaya”,
http://www.w3.org/Amaya

[24] Richard K. Furuta, Vincent Quint and Jacques André,
“Interactively Editing Structured Documents”, in Electronic

Publishing, vol. 1, pp. 19–44

[25] Microsoft Corporation, “Microsoft Word”,
http://office.microsoft.com/en-gb/word/

[26] “Office Open XML File Formats (Standard ECMA-376)
— 2nd edition”, ECMA International, December 2008,
http://www.ecma-international.org/publications/standards/Ecma-376.htm

[27] “CatBase”, http://www.catbase.com/

[28] XMPie, “uDirect”, http://www.xmpie.com/

[29] Hewlett Packard, “Dialogue Live”,
http://welcome.hp.com/country/us/en/prodserv/software/eda/products/

dialogue-live.html

[30] John Lumley, Roger Gimson and Owen Rhys, “Configurable
Editing of XML-based Variable-Data Documents”, in Proceedings

of the 2008 ACM symposium on Document Engineering, pp. 76–85,

September 2008

[31] Stefan Wirag, “Modeling of adaptable multimedia documents”, in
Interactive Distributed Multimedia Systems and Telecommunication

Services, vol. 1309, pp. 420–429, Springer Berlin / Heidelberg,

1997

[32] Susanne Boll, Wolfgang Klas and Utz Westermann, “Multimedia
Document Models: Sealed Fate or Setting Out for New Shores?”,
in Multimedia Tools and Applications, vol. 11, pp. 267–279, Kluwer

Academic Publishers, August 2000

Bibliography

233

[33] Dick C. A. Bulterman, “User-centered Abstractions for Adaptive
Hypermedia Presentation”, in Proceedings of the sixth ACM

international conference on Multimedia, pp. 247–256, ACM Press,

1998, http://homepages.cwi.nl/~dcab/PDF/mm98.pdf

[34] Uriel Jourdan, Cécile Roisin and Laurent Tardif, “Multiviews
Interfaces for Multimedia Authoring Environments”, in
Proceedings of the 1998 Conference on MultiMedia Modeling, IEEE

Computer Society, 1998

[35] Susanne Boll, Wolfgang Klas and Utz Westermann, “A
Comparison of Multimedia Document Models Concerning
Advanced Requirements”, in Technical Report, Universität Ulm,

1999, http://dbis.eprints.uni-ulm.de/362/1/BKW99c.pdf

[36] Dick C. Bulterman and Lynda Hardman, “Structured Multimedia
Authoring”, in ACM Transactions on Multimedia Computing,

Communications and Applications, vol. 1, no. 1, pp. 80–109,

February 2005

[37] “Flash Profressional”, Adobe Systems Inc.,
http://www.adobe.com/products/flash

[38] Tien Tran-Thuong and Cecile Roisin, “Structured Media
for Authoring Multimedia Documents”, in Series in Machine

Perception and Artificial Intelligence, vol. 55, pp. 293–314, World

Scientific Publishing, 2003

[39] Ben Schneiderman, “Designing the User Interface: Strategies
for Effective Human-Computer Interaction (3rd ed.)”, Addison-
Wesley Longman Publishing Co, 1997

[40] Michael Terry and Elizabeth D. Mynatt, “Recognizing creative
needs in user interface design”, in Proceedings of the 4th conference

on Creativity & cognition, pp. 38–44, ACM Press, 2002

[41] Manaka Kenji and Sato Hiroyuki, “Static Optimization of XSLT
Stylesheets: Template Instantiation Optimization and Lazy XML
Parsing”, in Proceedings of the 2005 ACM symposium on Document

engineering, pp. 55–57, ACM Press, November 2005

Bibliography

234

[42] Ce Dong and James Bailey, “Static analysis of XSLT programs”, in
Proceedings of the 15th Australasian database conference, vol. 27, pp.

151–160, 2004

[43] Lionel Villard and Nabil Layaïda, “An Incremental XSLT
Transformation Processor for XML Document Manipulation”, in
Proceedings of the 11th international conference on World Wide Web,

pp. 474–485, ACM Press, 2002

[44] “Xalan-Java”, Apache Foundation,
http://xml.apache.org/xalan-j/

[45] Michael H. Kay, “The Saxon XSLT Processor”,
http://www.saxonica.net

[46] Michael H. Kay, “XSLT and XPath Optimization”, in Proceedings

of XML Europe 2004, April 2004

[47] Doug Tidwell, “XSLT: Mastering XML Transformations”,
O'Reilly, August 2011

[48] Michael H. Kay, “Saxon: Anatomy of an XSLT
processor”, IBM developerWorks, April 2005,
http://www.ibm.com/developerworks/xml/library/x-xslt2/

[49] James A. Ollis, David F. Brailsford and Steven R. Bagley,
“Tracking Sub-Page Components in Document Workflows”, in
Proceedings of the 2008 ACM symposium on Document Engineering,

pp. 86–89, September 2008

[50] “XML Schema Part 2: Datatypes Second Edition”, 28th October
2004, http://www.w3.org/TR/xmlschema-2/

[51] “The Apache Xerces Project”, Apache Foundation,
http://xerces.apache.org/

[52] “XML Schema Part 1: Structures Second Edition”, 28th October
2004, http://www.w3.org/TR/xmlschema-1/

[53] Organization for the Advancement of Structured Information
Standards (OASIS), “RELAX NG Specification”, 3rd December
2001, http://www.relaxng.org/spec-20011203.html

Bibliography

235

[54] Boris Chidlovskii, “Schema Extraction from XML Collections”,
in Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital

libraries, pp. 291–292, ACM Press, July 2002

[55] Boris Chidlovskii, “A structural adviser for the XML document
authoring”, in Proceedings of the 2003 ACM symposium on

Document engineering, pp. 203–211, ACM Press, November 2003

[56] Luuk Peters, “Change Detection in XML Trees: a Survey”, in 3rd

Twente Student Conference on IT, June 2005

[57] Amélie Marian, Serge Abiteboul, Gregory Cobena and Laurent
Mignet, “Change-Centric Management of Versions in an XML
Warehouse”, in Proceedings of the 27th International Conference

on Very Large Data Bases, pp. 581–590, Morgan Kaufmann

Publishers Inc.2001,

[58] Tancred Lindholm, “A three-way merge for XML documents”, in
Processedings of the 2004 symposium on Document Engineering, pp.

1–10, ACM Press, October 2004

[59] Sebastian Rönnau, Geraint Philipp and Uwe M. Borghoff,
“Efficient change control of XML documents”, in Proceedings of

the 9th ACM symposium on Document Engineering, pp. 3–12, ACM

Press, September 2009

[60] Sebastian Rönnau, Geraint Philipp and Uwe M. Borghoff,
“Efficient and reliable merging of XML documents”, in Proceedings

of the 18th ACM conference on Information and knowledge

management, pp. 2105–2106, ACM Press, November 2009

[61] “Batik”, Apache Foundation,
http://xmlgraphics.apache.org/batik

[62] Steven R. Bagley, David F. Brailsford and James A. Ollis,
“Extracting Reusable Document Components for Variable Data
Printing”, in Proceedings of the 2007 ACM symposium on Document

Engineering, pp. 44–52, August 2007

[63] Oracle Corporation, “Java Runtime Environment (JRE) for
Windows”, http://www.java.com/en/

Bibliography

236

[64] Brent Boyer, “Robust Java benchmarking, Part 1:
Issues”, IBM DeveloperWorks, 24th June 2008,
http://www.ibm.com/developerworks/java/library/j-benchmark1.html

[65] Jiri Sedlacek and Tomas Hurke, “VisualVM”,
https://visualvm.dev.java.net/

[66] Javamex UK, “ClassMexer”,
http://www.javamex.com/classmexer/

[67] James A. Ollis, David F. Brailsford and Steven. R. Bagley,
“Optimized reprocessing of documents using stored processor
state”, in Proceedings of the 10th ACM symposium on Document

engineering, pp. 135–148, ACM Press, September 2010

[68] Alexander J. Macdonald, David F. Brailsford, Steven R. Bagley
and John Lumley, “Speculative Document Evaluation”, in
Proceedings of the 2007 ACM symposium on Document Engineering,

pp. 56–58, August 2007

[69] D. DeBronkart and P. Davis, “PPML (Personalized Print
Markup Language): A New XML-based Industry Standard Print
Language”, in XML Europe 2000, pp. 1–14, June 2000

[70] Alexander J. Macdonald, David F. Brailsford and Steven R.
Bagley, “Encapsulating and Manipulating Component Object
Graphics (COGs) Using SVG”, in Proceedings of the 2005 ACM

symposium on Document Engineering, pp. 61–63, November 2005

