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Abstract 

This thesis is mostly about the analysis of second order linear vibrating systems. The 

main purpose of this study is to extend methods which have previously been 

developed for either undamped or proportionally damped or classically damped 

systems to the general case. These methods are commonly used in aerospace 

industries. Ground vibration testing of aircraft is performed to identify the dynamic 

behaviour of the structure. New aircraft materials and joining methods - composite 

materials and/or novel adhesive bonding approaches in place of riveted or welded 

joints - cause higher levels of damping that have not been seen before in aircraft 

structure. Any change occurring in an original structure causes associated changes of 

the dynamic behaviour of the structure.  

 

Analytical finite element analyses and experimental modal testing have become 

essential tools for engineers. These techniques are used to determine the dynamic 

characteristics of mechanical structures. In Chapters 3 and 4, structural analysis and 

modal testing have been carried out an aircraft-like structure. Modal analysis 

techniques are used to extract modal data which are identified from a single column 

of the frequency response matrix. The proposed method is presented for fitting modal 

peaks one by one. This technique overcomes the difficulty due to the conventional 

methods which require a series of measured FRFs at different points of excitation. 

 

New methods presented in this thesis are developed and implemented initially for 

undamped systems in all cases. These ideas are subsequently extended for generally 

damped linear systems. The equations of motion of second order damped systems are 
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represented in state space. These methods have been developed based on Lancaster 

Augmented Matrices (LAMs) and diagonalising structure preserving equivalences 

(DSPEs).  

 

In Chapter 5, new methods are developed for computing the derivatives of the non-

zeros of the diagonalised system and the derivatives of the diagonalising SPEs with 

respect to modifications in the system matrices. These methods have provided a new 

approach to the evaluation and the understanding of eigenvalue and eigenvector 

derivatives. This approach resolves the quandary where eigenvalue and eigenvector 

derivatives become undefined when a pair of complex eigenvalues turns into a pair 

of real eigenvalues or vice-versa. They also have resolved when any one or more of 

the system matrices is singular. Numerical examples have illustrated the new 

methods and they have shown that the method results overcome certain difficulties of 

conventional methods. 

 

In Chapter 6, Möbius transformations are used to address a problem where the mass 

matrix is singular. Two new transformations are investigated called system spectral 

transformation SSTNQ  and diagonalising spectral/similarity transformation DSTOQ . The 

transformation SSTNQ  maps between matrices of two systems having the same short 

eigenvectors and their diagonalised system matrices. The transformation DSTOQ  maps 

between two diagonalising SPE‟s having identical eigenvalues. 

 

Modal correlation methods are implemented to evaluate and quantify the differences 

between the output results from these techniques. Different cross orthogonality 

measures represent a class of methods which are recently performed as modal 
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correlation for damped systems. In Chapter 7, cross orthogonality measures and 

mutual orthogonality measures are developed for undamped systems. These 

measures are defined in terms of real matrices - the diagonalising structure 

preserving equivalences (DSPEs). New methods are well developed for ill-

conditioned system such that they work for all occasions and not only for cases 

where mass matrix is non-singular. Also a measure of the residuals is introduced 

which does not demand invertibility of diagonalised system matrices. 

 

Model updating methods are used in order to update models of systems by matching 

the output results from analytical system models with the experimentally obtained 

values. In Chapter 8, both cross-orthogonality measures and mutual-orthogonality 

measures are developed and used in the model updating of generally damped linear 

systems. Model updating based on the mutual orthogonality measures exhibits 

monotonic convergence from every starting position. That is to say, the ball of 

convergence has an infinite radius whereas updating procedures based on comparing 

eigenvectors exhibit a finite ball of convergence. 

 

Craig Bampton transformations are one of component methods which are used to 

reduce and decouple large structure systems. In Chapter 9 Craig Bampton 

transformations are developed for undamped systems and extended for damped 

second order systems in state space. Craig Bampton transformations are generalised 

and presented in SPEs forms. The two parts of the Craig Bampton transformations 

are extended in the full sizes of the substructure. The extended Craig Bampton 

transformations are modified to format each block of transformed substructure 

matrices as LAMs matrices format. 
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This thesis generalises and develops the methods mentioned above and illustrates 

these concepts with an experimental modal test and some examples. The thesis also 

contains brief information about basic vibration properties of general linear 

structures and literature review relevant to this project. 
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General Notation 

Underline notation used to represent double dimension (2n) 

The dot (.) above a vector denotes derivative with respect to time or parameter. 

Superscript “T” denotes transpose. 

Superscript notation “*” indicates a complex conjugate. 

Superscript notation “+” denotes generalised inverse or pseudo inverse. 

Subscripts “R” and “L” represent right and left. 

Subscript “a” indicates the analytical system 

Subscript “c” indicates complex modes. 

Subscripts “r1”and “r2” indicate real modes. 

Subscript “o” indicates the original system. 

Subscript “m” indicates the measured system 

Subscript “N” indicates the new system. 

Subscript “r” denotes reduced (master) coordinates. 

Subscript “e” denotes eliminated (slave) coordinates or element 

Subscript “up” indicates updated models. 

Matrices are denoted by bold uppercase characters. 

Vectors are denoted by bold lower case characters. 

Scalars are represented by non-bold italicized characters. 

The notation “
 .


” denotes partial derivatives. 

The notation “  . ” denotes Euclidean length of vector. 

The notation “=:” denotes a definition. 
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CHAPTER  1. Introduction 

1.1 Motivation of ground vibration testing (GVT) 

The safety of aircraft structures depends at least partly on their dynamic behaviour. 

These characteristics which are called modal parameters include natural frequencies, 

damping ratio and mode shapes. The modal parameters are commonly used in the 

validation of analytical (finite element) structural models and studies of structural 

vibration [1]. These quantities also can be used to identify any structural damage [2]. 

 

Large and complex structures such as aircraft after some time of operation face a 

great deal of structural damage such as cracks. Such structural damage changes to 

some extent the modal parameters of the structures. These changes can be noticed in 

shifts in the resonant frequencies.  

 

Analytical finite element method and experimental modal testing are two techniques 

commonly used to determine the dynamic characteristics of mechanical structures 

[3]. Both techniques have played dominant roles in aircraft design, manufacture, 

research and development of a wide range of aerospace industries. Also, they have 

become most important implements for engineers to improve the performance, safety 

and reliability of various structures [2]. 

 

Ground vibration testing (GVT) is performed to identify the dynamic behaviour of 

these structures by causing the structure to shake and then measuring its responses. 

Resonant frequencies and associated mode-shapes can be extracted from these tests. 
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In addition, the main purpose of GVT is to obtain measured data of the whole aircraft 

structure for validating and improving its structural dynamic models [4, 5]. 

Furthermore, ground vibration testing plays an important role for updating of 

analytical models in the certification of new aircraft [6]. Verification of analytical 

models using ground vibration test results is common practice in many aerospace 

applications [7]. 

 

1.2 System models for vibrating structures 

The equation of motion governing the vibration of a general damped second order 

system can be written as 

 

 

       

 

L

T
R

t

t t t t

t



  



f S u

Mq Dq Kq f

y S q

 (1.1) 

where  , ,K D M  are (n×n) stiffness, damping and mass matrices, q  is a vector of 

displacement coordinates, f  is a vector of forces. Both vectors are functions of time 

and the system has n  degrees of freedom. The vector y  represents output 

displacements and it has on  entries. The vector u  represents the corresponding input 

forces and it has in  entries. RS   on n  and LS   in n  are right and left matrices 

relating the terminal variables to the model degrees of freedom. 

 

In order to solve equations (1.1) for the response q  the major obstacle is the coupling 

between the equations. In subsequent sections, we will discuss coordinate 

transformations which decouple the equations. 
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1.3 Modal Analysis 

The eigenvalues and the corresponding eigenvectors satisfy the following equations 

    2 20      ,     0T
i i Ri Li i i        M D K M D K   (1.2) 

in which i  is the i
th

 eigenvalue and  ,Ri Li   are the right and left eigenvectors. 

 1 2 1 2   ......      ,       ......  R R R Rn L L L Ln       Φ Φ       (1.3) 

Modal analysis is a process of deriving system responses by transforming the 

equations of motion into a set of decoupled equations [8]. Any pair of matrices 

 ,R LT T  can be used to define a coordinate transformation according to the following 

equations. 

 

T
L

T T T
L R L R L R

R



  



f T f

T MT q T DT q T KT q f

q T q

 (1.4) 

where  ,R LT T  are the right and left coordinate transformation matrices. If  ,R LT T  

are invertible, the spectrum of the original system is identical to the spectrum of the 

new system such that the dynamic models can be written as 

 T
L R NT MT M  (1.5) 

 T
L R NT KT K  (1.6) 

 T
L R NT DT D  (1.7) 

It is not usually possible to find invertible matrices,  ,R LT T  such that the new 

system matrices are all diagonal. There are some systems which are proportionally 

and classically damped. For proportional damping, the damping matrix is a function 

of the mass and stiffness matrices. In the case of proportional damping, the 

coordinate transformations  ,R LT T  decouple the system matrices. 
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Classical damping is a more general condition. Caughey and O‟Kelly [9] expressed 

one sufficient criterion to satisfy equations  (1.5), (1.6) and (1.7) in which 

 , ,N N NK D M  are diagonal. The coordinate transformations decouple the system 

matrices if and only if one of the following conditions are satisfied [9]. 

 

1 1

1 1

1 1

 

 

 







DM K KM D

DK M MK D

MD K KD M

 (1.8) 

When  ,R LT T  represent diagonalising transformations, the structure will behave as a 

collection of single degree of freedom (SDOF) systems. The second equation in (1.4) 

can be written as 

 
1 1 1 1 1 1 10 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0n n n n n n n

m d k

m d k

           
           

              
            

           

q q q f

q q q f

 (1.9) 

 

1.4 Modal Testing 

Vibration measurements generally comprise two types of test. The first one is 

measuring the vibration forces or responses of the structures under study or during 

operation. The second one involves vibrating the structures or components with 

known excitation. The latter test, including data acquisition and its subsequent 

analysis is called modal testing [10]. 

 

1.4.1 Modal testing and its applications 

Validating the mathematical model used to describe the dynamics of components or 

structures is usually the major application of modal testing. There are different 
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applications of modal testing in order to produce the mathematical model of 

structures or components. 

 

1. The most commonly application is the measurement of vibration properties 

(natural frequencies, mode shapes and damping factor) of a structure which 

are used to compare and validate the theoretical model. 

 

2. Using modal testing in order to produce the mathematical model of a 

component is the next application. Complex structures such as aircraft 

contain many substructures. The dynamic behaviour for each component is 

required to include that component into a structural assembly. These 

identifications and accurate data from that substructure are also required for 

modifications of the original structure. 

 

3. Force determination is a different application of using modal testing. The 

dynamic forces causing vibration are required. These forces can be deduced 

by measuring the response caused by the forces. The measurements of 

response are combined with the mathematical model of the transfer functions 

of the structure. 

 

1.5 Experimental modal testing setup 

Preparation of the test structure itself is an essential element of modal testing. How to 

support the structure is the first decision which has to be taken. This determines 

whether the structure is to be tested in a free condition or grounded. Free support 



 

 

6 

 

means that the structure is not attached to ground (rigidly) at any of its coordinates. 

Modal testing of an aircraft may involve the complete aircraft mounted on a soft 

support system to simulate free-free condition, resting on its landing gear, specific 

parts on the complete airplane, or components, such as landing gear doors or control 

surfaces [11]. Figure 1-1 shows the soft support system. 

 

 

Figure 1-1 : The soft support system 

 

The main pieces of equipment used in experimental modal testing setup are 

excitation devices, dynamic response and a spectrum analyser. Figure 1-2 and Figure 

1-3 show excitation devices such as electrodynamic vibration exciters and an impact 

hammer. The excitation devices provide a measurable input force into the test 

structure. The input force signal is typically measured by means of a force 

transducer. 

 

The type of analysis to be performed and accuracy requirements of test information 

will influence the final choice of excitation signal. Transient excitation is usually by 

means of a force impulse from an impact hammer. This method is suitable for a wide 
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variety of engineering structures and is not suitable for non-linear systems. Random 

excitation is from an exciter via a push-rod or stinger. Direct excitation by exciters is 

the best excitation method for linear systems, giving a best linear approximation of 

system frequency response function [12]. 

 

 

Figure 1-2 : Electrodynamic exciters - shakers 

 

 

Figure 1-3 : Impact hammer 

 



 

 

8 

 

The dynamic response of an excited test structure is normally measured by one or 

more piezoelectric accelerometers (Figure 1-4) attached to the structure. The 

selection of the accelerometers (transducers) is influenced by the sensitivity, 

bandwidth, linearity and the working range. 

 

 

Figure 1-4 : Piezoelectric accelerometer 

 

A spectrum analyser is used to measure the various signals developed by the 

transducers in order to determine the magnitudes of the excitation forces and 

responses. The ratio between the output signals and the input signals is called the 

frequency response function (FRF). Frequency response functions are properties of a 

linear dynamic system and they do not depend on the type of excitation. For such 

structures, excitation can be a harmonic, random or transient function of time. 

 

In any linear system, there is a direct linear relationship between the input and 

output. This relationship, which also holds for random functions, is represented by 

the block diagram of a linear system (Figure 1-5). 
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      .  y H u  (1.10) 

where  H  is called a frequency response function (FRF). 

 

 

Figure 1-5 : Block diagram of a linear system 

 

1.6 Non-proportional and non-classical damping 

and their measures 

Modern aircraft structures are increasingly made of composite materials and/or 

bonded together with adhesives instead of being riveted or welded to achieve lighter 

weight. The complex aircraft designs need additional testing requirements due to 

increased use of composite materials and active control systems [4, 5]. Due to the 

development of the airframe structure materials the level of damping is increased 

related to modal aircraft structures of earlier years. 

 

Most mechanical structures exhibit non-proportional and/or non-classical damping. 

Many methods have been used to extract real normal mode shapes of the structures 

using ground vibration testing. 
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General practice is to find RΦ  and LΦ  such that T

L RΦ MΦ  and T

L RΦ KΦ  are diagonal. 

Then T

L RΦ DΦ  is assumed to be diagonal and its off diagonal terms are set to zero. 

The errors introduced by this assumption depend on how big the damping matrix 

values are. 

 

1.6.1 Real value transformations SPEs 

Structure preserving equivalences SPEs are more general than the conventional 

equivalences of equations (1.5), (1.6), (1.7) and they allow for most systems to be 

diagonalised. Diagonalising SPEs are used to decouple the original equations of 

motion such that the new system matrices themselves are diagonal. Matrices  ,R LT T  

describe diagonalising SPEs for the system  , ,K D M . Each SPE is characterised by 

one  2 2n n  matrix, RT , and one  2 2n n  matrix, LT , If the original system matrices 

are real, then the transformation matrices and the diagonalised system matrices are 

also real. 

 

1.7 Extracting normal modes from generally 

damped structures 

The procedure of extracting the undamped natural frequencies and normal mode 

shapes of structures is known as normal mode force appropriation [13]. The main 

purpose of force appropriation techniques is to provide an estimate for the force 

distribution. The appropriated forces in modal vibration testing of complex structures 
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are used to excite a single normal mode of vibration at a time using multiple exciters 

[13-16]. 

 

A single force may be sufficient to excite a structure in order to measure pure normal 

mode shapes. However multi-exciter locations may be required where modes are 

close in frequency [14]. The number of exciters must be greater than or equal to the 

number of effective modes in the frequency range of interest [15]. Over many years 

in the aerospace industry, the normal mode force appropriation techniques have been 

used for ground vibration testing where accurate normal mode estimates are required 

for direct comparisons between appropriated normal mode responses and the results 

of finite element analysis [13, 15-17]. 

 

1.8 The Proposed Work 

1.8.1 Motivation of the proposed work  

Ground vibration testing (GVT) and Finite element method (FEM) are two 

techniques which are commonly performed to identify dynamic characteristics of 

structures. These characteristics include the resonant frequencies at which a structure 

naturally vibrates, the mode shapes associated with resonant vibration and the levels 

of damping governing the amplitude of resonance. The comparison of measured 

results with predicted results is important. Experimental measured data from GVT 

are not expected to match exactly the computed data from FEM. These discrepancies 

might be assessed, and many methods in the literature exist to evaluate the 

discrepancies between GVT and FEM modal parameters. 
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 Any change occurring in the design parameters or modifications in the original 

structure causes associated changes of the dynamic characteristics of the structure. 

Cross orthogonality measures are also affected by the changes that occur in the 

system matrices. In order to correct and adjust the dynamic characteristics, 

eigenvalue and eigenvector derivatives are required. Also adjusting the cross 

orthogonality measures requires cross orthogonality measure derivatives. Both 

eigenvalue, eigenvector derivatives and cross orthogonality measures are used here 

to update the model system matrices. 

 

1.8.2 The focus of the work 

This study is mostly about the analysis of second order linear vibrating systems, and 

focuses on changes of the dynamic characteristics due to changes of the original 

system matrices. The main aims of this work are to develop model updating methods 

based on cross orthogonality measures for second order generally damped systems. 

The methods will be developed in state space in terms of real matrices involving 

diagonalising structure preserving equivalences SPEs. The work proposed in this 

thesis makes the following contribution areas: 

 

1. Identification of dynamic characteristics of a GARTEUR-like aircraft 

structure. Modal analysis technique will be implemented to extract the modal 

parameters from a single column frequency response function (FRF). Finite 

element analysis will also be applied to determine the predicted model data of 

the GARTEUR-like aircraft structure. 
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2. Development of Craig Bampton transformations for undamped systems. 

These methods will be generalised in terms of SPEs to generally damped 

systems. The finite element analysis methods require the number of degrees 

of freedom to be reduced and the Craig Bampton method is implemented to 

decouple the substructure matrices. 

 

3. Development of conventional eigenvalue and eigenvector derivative methods 

are implemented initially for undamped systems. The advanced methods will 

be generalised from the perspective of diagonalising SPEs to generally 

damped systems. The methods will be used for model updating. 

 

4. Development of modal correlation methods based on cross orthogonality 

measures for undamped system. These ideas will be generalised to generally 

damped systems in terms of real matrix SPEs. The methods will be developed 

for ill-conditioned systems and a measure of the residuals will be developed. 

These approaches will be implemented for model updating methods. 

 

5. Development of conventional model updating methods based on eigenvalues 

and eigenvectors for undamped systems. The ideas will be generalised 

through the utilisation of SPEs to generally damped systems. Development of 

model updating methods based on cross orthogonality and mutual 

orthogonality measures for undamped systems. These approaches will be 

generalised in terms of SPEs to generally damped systems. 
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1.9 Outline of Thesis 

The remaining chapters of the thesis are summarised as follows: 

Chapter 2 organises the currently available literature with regards to the various 

achievements of this project. 

 

Chapter 3 presents a general overview of finite element modelling and focuses on 3-

D aircraft structures. 

 

Chapter 4 introduces some general information about modal testing and presents 

technique to determine the dynamic characteristics of aircraft structures. 

 

Chapter 5 investigates new techniques to resolve undefined eigenvalue and 

eigenvector derivatives. 

 

Chapter 6 discuses calculations of diagonalising SPEs for ill-conditioned systems 

using the Möbius transformation. 

 

Chapter 7 focuses on the development of general modal correlation methods, 

investigates new methods for ill-conditioned systems and introduces a new measure 

for residuals. 

 

Chapter 8 develops model updating methods and compares the developed modal 

correlation methods with alternative methods for model updating. 
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Chapter 9 generalises Craig-Bampton transformations for general damped second 

order systems. 

 

Chapter 10 presents the conclusions of the methods presented and proposed future 

work. 
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CHAPTER  2. Literature Reviews 

Comparison of measured results with the predicted results is important in design 

[18], validation of the structural dynamic models [19, 20], verification of the 

analytical model [21], and certification of airworthiness. Experimental measurements 

from physical tests are not expected to match exactly the analytical information 

provided from the finite element analysis. These discrepancies between measured 

and predicted modal information need to be assessed. 

 

Modal correlation techniques are commonly used for evaluating the discrepancies 

between modal vectors measured using ground vibration testing (GVT) and modal 

vectors calculated from a finite element method (FEM). Most of the presented 

methods do not take into account the eigenvalues (frequencies) associated with 

eigenvectors (modes). The procedure of correcting the finite element model structure 

by processing vibration test data is called model updating. Many methods have been 

developed to correct the analytical models. The main purpose of  model updating is 

to modify the model parameters in order to match the analytical data with measured 

data [22]. 

 

The aspiration of this project is to develop and generalise model updating methods 

for second order generally damped systems. These methods apply to generally 

damped systems. This chapter organises the currently available literature with 

regards to the various achievements of this project. 
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Section 2.1 demonstrates the structure of models of vibrating systems. Section 2.2 

reviews the literature relevant to ground vibration testing of aircraft. Section 2.3 

presents a definition of eigenvalues and eigenvectors for vibrating systems. Section 

2.4 discusses frequency response function in frequency domain and in time domain. 

Section 2.5 focuses on coordinate transformations. Section 2.6 introduces the concept 

of structure preserving equivalences and diagonalising transformations for general 

damped systems. Section 2.7 concentrates on model reduction and modal expansion 

methods which are applied for large degrees of freedom systems. Section 2.8 

explains the force appropriation methods that are required to excite a single pure 

normal mode of vibration. Section 2.9 considers modal correlation methods. Section 

2.10 discusses model updating methods. It is appropriate to talk in brief about the 

basic vibration properties of general linear structures before commencing the various 

detailed aspects of this chapter. 

 

2.1 Basic vibration properties and model structures 

Figure 2-1 illustrates the structure of a dynamic model for a vibrating system and 

shows the vibration analysis.  

 

2.1.1 Classes of vibrating systems 

A physical system demonstrates two classes of vibration: Free and Forced [8]. Free 

vibration takes place when a system oscillates under the action of forces inherent in 

the system itself, where the external forces are set to zero in the equation of motion. 

The system will vibrate at one or more of its natural frequencies with associated 



 

 

18 

 

mode shapes. Forced vibration takes place when a system oscillates under the action 

of external forces. The system will vibrate at the excitation frequency, if the 

frequency of excitation coincides with one of the natural frequencies; the response is 

limited only by the degree of damping. 

 

 
Figure 2-1 : Structures of dynamic model 

 

2.1.2 Structure modelling 

The degrees of freedom of the system are independent coordinates which are 

required to describe the motion of the system. The system could be modelled by a 

single-degree of freedom (SDOF) or multi-degrees of freedom (MDOF) [10]. The 

inputs represent the forces and the outputs represent the responses. The multi-degrees 

of freedom systems can be described by either single input and multi-outputs (SIMO) 

or multi-inputs and multi-outputs (MIMO) or single-input and single-output (SISO). 
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2.1.3 System model classes: type and distribution 

The vibrating system can be described with two classes of system model; undamped 

or damped [10]. When the damping is very low, the system can be represented by 

mass and stiffness matrices only. Such systems are called an undamped-system. Real 

life systems are not undamped, since energy is always dissipated through friction and 

other resistances [8]. These resistances appear in various forms which are called 

Viscous, Hysteretic, Coulomb, and aerodynamic. The distribution of damping in the 

systems can be classified as proportional or non-proportional damping and classical 

or non-classical damping. 

 

2.1.4 Categories of vibration analysis  

Vibration analysis is divided into two categories: Theoretical (predicted) vibration 

analysis and Experimental (measured) vibration analysis [10]. Figure 2-2 shows the 

three stages of theoretical analysis. The structure model describes the structure 

physical characteristics in terms of mass, stiffness and damping properties. 

Performing theoretical modal analysis of the structural model result in the structure‟s 

behaviour as a set of natural frequencies (eigenvalues) associated with corresponding 

modal damping factors and vibration mode shapes (eigenvectors). The structure‟s 

response describes how the structure will respond under certain excitation conditions. 

This response model comprises a set of frequency response functions (FRFs). 

 

It is possible to progress vibration analysis in the opposite direction [10]. Figure 2-3 

defines the experimental vibration analysis which has three stages. The modal 
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properties and structural properties can be extracted from measured response 

properties such as measured frequency response functions. 

 

 
Figure 2-2 : Theoretical vibration analysis 

 

 
Figure 2-3 : Experimental vibration analysis 

 

2.1.5 The structure of models of vibrating systems 

Most dynamic models may be considered to comprise 3 stages [23, 24] as in Figure 

2-4. The associated linearised equation of motion governing the vibration of any 

structure [23] appears in the form 
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y S q

 (2.1) 

in which  , ,K D M  are the system stiffness, damping and mass matrices-all  n n , q  

is a vector of displacement coordinates, f  is a vector of forces. Both vectors are 
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functions of time and the system has n  degree of freedom. The vector y  represents 

the output displacements which has entries on , and u  represents vector of the 

corresponding input forces which has entries in . RS   on n  it controls how the 

generalised displacements are manifest in the output vector y . LS   in n  it 

distributes the system input onto the full length force vector f . 

 

 
Figure 2-4 : Model structure in 3 stages 

 

2.2 Ground Vibration Testing (GVT) of Aircraft 

Experimental modal analysis results have played dominant roles in aerospace 

industries and engineering applications. Ground vibration testing is a process 

performed to determine the dynamic characteristics of mechanical structures [1, 25]. 

The dynamic characteristics can be extracted from GVT by causing the structure to 

shake and then measuring the responses. These characteristics comprise resonant 
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frequencies, mode shapes associated with resonant vibration and levels of damping 

governing the amplitude of resonance.  

 

The comparison of measured data from GVT with predicted data from finite element 

method is important in many engineering applications. Invariably, these 

measurements do not match exactly what was predicted in a numerical model and 

indeed it is the mismatches that provide the information of interest. However, the 

mismatches have to be interpreted somehow and the way to do this interpretation is 

to understand how changing certain parameters in the numerical model will change 

the resonant frequencies and the mode-shapes. 

 

The present study of ground vibration testing is timely since the new method deals 

very nicely with structures which have relatively high levels of damping and 

previous methods do not work at all well in these situations. The reason for increased 

levels of damping is that airframe structures are increasingly made of composite 

materials and/or bonded together with adhesives instead of being riveted or welded 

as used to be the case. 

 

2.2.1 Validation of structural dynamic models 

A GVT is a modal test conducted for the purpose of validating and improving a 

structural dynamic model of the airplane [5, 19, 20]. The structural dynamic model is 

validated by comparing its predicted modes with the experimental modes identified 

from the test [1]. This validated model is then modified to represent various in-flight 

configurations and a variety of failure conditions [19]. 
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2.2.2 Verification of analytical models 

Verification of analytical models using ground vibration test results is common 

practice in many engineering applications [21]. In [26], the ground vibration test 

results of a modified JetStar airplane are compared with the test results of the same 

airplane using multiple-input random excitation. The results indicated that the 

structure was sufficiently excited using the impulsive sine waveform. 

 

2.2.3 Updating analytical models and aircraft certification 

Ground vibration test also plays an important role in updating analytical models for 

new aircraft certification [6]. The cause of discrepancies between measured 

frequency responses and identified modal parameters are evaluated and identified by 

using GVT tests. Many methods exist for updating analytical models using 

experimental data. There is non-unique method for model updating due to different 

computational methods [20]. 

 

2.2.4 Identification of structural damage 

Measured vibration data are used to identify structural damage [27]. Visual 

inspection may not detect and locate the damage.  Structural damage such as cracks 

will cause the stiffness distribution in the structure to change [28]. Structural damage 

is identified using system dynamic properties [29]. Estimation of stiffness by using 

model updating defines the most likely damage at the largest reduction in stiffness 

[28]. 
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2.2.5 Ground vibration testing methods 

Different excitation techniques have been investigated for performing aircraft ground 

vibration testing [26, 30]. Many excitation waveforms have been used for both 

ground vibration and flight flutter testing throughout the years. These waveforms 

have included sine dwell, sine sweep, impact, and single and multiple-input random 

excitation [11, 31, 32]. 

 

In flight excitation has consisted mainly of impact, from exciter or control surface 

pulses, and sine sweeps using either wingtip, oscillating or aerodynamic vanes, 

existing control surfaces, oscillating masses, or rotating eccentric weights [33]. 

Ideally, a waveform that excites all structural modes simultaneously and in a short 

duration is required for in-flight applications because of the high cost of flight 

testing. The capability of this waveform to excite all the structural modes of interest 

on an aircraft structure was investigated by conducting a ground vibration test on a 

modified JetStar airplane [26]. 

 

2.3 Definitions of eigenvalues and eigenvectors 

2.3.1 Eigenvalues and eigenvectors for undamped systems 

The general governing equation of motion for an undamped second order system can 

be written as 

  Mq Kq f  (2.2) 
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The eigenvalues  2 2 2
1 2, ,...., ndiag   Λ  might be complex or real or mixed (real and 

complex).  The corresponding right and left modal matrices  ,R LΦ Φ  diagonalise the 

system matrices  ,K M . 

 T

L R Φ MΦ Θ  (2.3) 

 T

L R  Φ KΦ ΛΩ Ψ  (2.4) 

where  , ,Θ Ψ Λ  are diagonal matrices,  1 2, ,...., ndiag   Θ ,  1 2, ,...., ndiag   Ψ . 

The i
th

 eigenvalue i  with the corresponding right and left eigenvectors  ,Ri Li   

satisfy the following equations 

    2 2=0    ,    0T
i Ri Li i   K M K M   (2.5) 

Equations (2.3) and (2.4) can be written as 

 T
Li Ri iM   (2.6) 

 T
Li Ri i i i  K   (2.7) 

For symmetric undamped systems, the right and left modal matrices  R LΦ Φ  are 

identical. The systems can usually be diagonalised by coordinate transformations 

equations (2.3) and (2.4) thus 

 T
L R Φ MΦ I  (2.8) 

 T
L R Φ KΦ Λ  (2.9) 

Matrices  ,I Λ  are diagonal. Generalised mass and stiffness matrices respectively 

decouple multi-degrees of freedom systems into single-degree of freedom systems. 

Equation (2.2) can be written as 

  q Λq f  (2.10) 

in which q  is the displacement vector in the modal coordinate system. 
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    ,   T
R L q Φ q f Φ f  (2.11) 

 

2.3.2 Eigenvalues and eigenvectors for damped systems 

The second order linear equation of motion for damped systems is expressed in 

equation (2.1). The right and left second order eigenvectors  ,Ri Li   (called short 

eigenvectors) satisfy the following equations 

  2 0i i Ri   K D M   (2.12) 

  2 0T
Li i i   K D M  (2.13) 

 

2.3.2.1 Proportionally damped systems 

For proportionally-damped systems, the mass normalised right and left second order 

modal matrices  ,R LΦ Φ  (called short modal matrices) are usually used to 

diagonalise mass, stiffness and damping matrices  , ,M D K  as the following 

equations indicate 

 T
L R Φ MΦ I  (2.14) 

 T
L R Φ DΦ Γ  (2.15) 

 T
L R Φ KΦ Λ  (2.16) 

The proportional damping matrix D  is a linear combination of the mass and stiffness 

matrices  ,M K  this relationship is defined by 

    D M K  (2.17) 
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The generalised mass, damping and stiffness matrices  , ,I Γ Λ  respectively in 

equation (2.14),(2.15) and (2.16) are diagonal matrices which decouple multi-degrees 

of freedom systems with n DoFs into n single-degree of freedom systems. 

Substituting equation (2.11) into equation (2.1) yields 

 

T
L

R



  



f Φ f

q Γq Λq f

q Φ q

 (2.18) 

The definition of proportional damping is extremely constrictive. There are many 

cases where one may diagonalise the system matrices and the definition delineated in 

equation (2.17) does not hold. This exists when the system is classically-damped. 

 

2.3.2.2 Classically damped systems 

Caughey and O‟Kelly [9] defined classically damped systems with symmetric 

coefficient matrices which possess classical normal modes. The system matrices 

 , ,M D K  may be diagonalised if and only if one of the conditions in equation (1.8) 

are satisfied 

 

The required criterions in equation (1.8) are sufficient but not necessary. Based on 

this result, the series of representative damping is a necessary and sufficient 

condition for the existence of classical normal modes and this series is known as the 

“Caughey series”. 

 
1

1

0

n
j

j

j








 
 D M M K  (2.19) 
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Ma and Caughey [34] proved that, in the case of non-symmetric system matrices; 

equation (2.19) still describes the necessary and sufficient condition for simultaneous 

diagonalisation of the system matrices by an equivalent transformation. 

 T

L R DΦ MΦ M  (2.20) 

 T

L R DΦ DΦ D  (2.21) 

 T

L R DΦ KΦ K  (2.22) 

 

2.3.2.3 Non-proportional or non classically damped systems 

Most real structures having non-zero damping are expected to be non-proportionally-

damped or non-classically-damped systems and these have complex modes as a 

result. The usual view taken of the modes of second-order systems begins with the 

supposition that M  is invertible. Then, equation (2.1) can be written in a state-space 

form as 

 
          

          
          

K 0 q D M q f

0 M q M 0 q 0
 (2.23) 

When no forcing is present, this becomes 

  Dx Kx 0  (2.24) 

where D  and K  are (2n  2n) matrices, x  is the so-called state-vector and the 

definitions are evident from comparison of equation (2.23) with equation (2.24). A 

generalised eigenvalue-eigenvector problem defined using matrices D  and K  above 

yields the triple of  (2n  2n) matrices  , ,R LΦ Φ Λ  which represent the right and left 

modal matrices and eigenvalues. 

 



 

 

29 

 

The damping matrix D  is not a linear combination of the mass and stiffness matrix 

 ,M K  [35]. Real eigenvectors cannot decouple the equations of motion in which the 

generalised damping matrix  T
L RΦ DΦ  is non diagonal. 

 

The eigenvalues with their associated eigenvectors can be all real. The right and left 

modal matrices can be written in the following forms respectively. 

 R
R

R

 
  
 

Φ
Φ

Φ Λ
 (2.25) 

 L
L

L

 
  
 

Φ
Φ

Φ Λ
 (2.26) 

Λ  is (usually) a diagonal (2n  2n) matrix and R{ , }LΦ Φ  are (n  2n) matrices.  

obeying 

 2
R R R  MΦ Λ DΦ Λ KΦ 0  (2.27) 

 2T T T
L L L  M Φ Λ D Φ Λ K Φ 0  (2.28) 

The pairs of matrices  R ,Φ Λ  and  ,LΦ Λ  are called standard pairs for equation (2.23) 

if RΦ  and LΦ  from equations (2.25)-(2.26) are non-singular and equations (2.27)-

(2.28) are obeyed. 

 

2.3.2.4 Extract real eigenvectors from real and complex conjugate 

eigenvectors 

The eigenvalues with their associated eigenvectors can be either all real as in 

equations (2.25)-(2.26) or all complex conjugate or a mixture of real and complex 

conjugate [36] that can be written in the following forms respectively. 
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*

* *

Rc Rc

R

Rc c Rc c

 
 

  
 

Φ Φ
Φ

Φ Φ
 (2.29) 

 
*

* *

Lc Lc

L

Lc c Lc c

 
 

  
 

Φ Φ
Φ

Φ Φ
 (2.30) 

 
*

1 2

* *
1 1 2 2

Rc Rr Rc Rr

R

Rc c Rr r Rc c Rr r

 
 
 
 

Φ Φ Φ Φ
Φ

Φ Λ Φ Λ Φ Λ Φ Λ
 (2.31) 

 
*

1 2

* *
1 1 2 2

Lc Lr Lc Lr

L

Lc c Lr r Lc c Lr r

 
 
 
 

Φ Φ Φ Φ
Φ

Φ Λ Φ Λ Φ Λ Φ Λ
 (2.32) 

The superscript notation “*” indicates a complex conjugate. The subscript “c” in 

equations (2.29)-(2.32) indicates complex.  ,Rc LcΦ Φ  are complex modal matrices. 

The size of real modal matrices  1 2 1 2, , ,Rr Rr Lr LrΦ Φ Φ Φ  in equations (2.31) and (2.32) is 

(n - cc) where “cc” is the size of the complex modal matrices  ,Rc LcΦ Φ . 

 

In general, R{ , , }LΦ Λ Φ  may be complex as in equations (2.29) and (2.30) but because 

the system matrices themselves are invariably real-valued for all practical cases, 

every complex entry in Λ is joined by its complex conjugate and the same applies to 

every complex column in LΦ  and in RΦ . In total, it is clear that R{ , , }LΦ Λ Φ  contain 

2n(2n+1) potentially-distinct real numbers whereas the original system matrices, 

 , ,K D M , contain only 3n
2
 real numbers at most. Certain constraints apply to the 

modal information for such systems and these constraints are well-understood when 

all system eigenvalues are complex [36-38]. 

 

   

   

* *
*

* * * * * *

R R R R
R R

Rreal

R R R R R R

       
                  

 

Φ Φ Φ ΦΦ Φ I J
Φ

I JΦ Φ Φ Φ Φ Φ
 (2.33) 
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* *
*

* * * * * *

L L L L
L L

Lreal

L L L L L L

       
                  

 

Φ Φ Φ ΦΦ Φ I J
Φ

I JΦ Φ Φ Φ Φ Φ
 (2.34) 

where I is (n×n) identity matrix and J is (I×j) and 1j   . 

 

Adhiakri [39] derived conditions for the existence of classical normal modes in 

nonviscously damped asymmetric linear multiple-degree of freedom systems. If the 

system matrices are positive definite, damping is a time domain function, and there 

exist two non-singular matrices n n
L

Φ  and n n
R

Φ  such that T
L RΦ MΦ , 

T
L RΦ KΦ  and      T

L Rt tΦ D Φ  are all real diagonal matrices then the following are 

equivalent 

 

   

   

   

1 1

1 1

1 1

t t

t t

t t

 

 

 







D M K KM D

D K M MK D

MD K KD M

 (2.35) 

The R{ , }LΦ Φ  modal matrices may be a mixture of real and complex conjugate. The 

real modal matrices can be achieved by rearranging the matrices in equations (2.31), 

(2.32) and multiplying by a I_J matrix. Equations (2.31), (2.32) can be written as 

 

   

   

* *

1 2

* * * *

1 1 2 2

*
1 2

* *
1 1 2 2

0 0

0 0 0

0 0

0 0 0

          
Rc Rc Rr Rc Rc Rr

Rc c Rc c Rr r Rc c Rc c Rr r

c c

Rc Rr Rc Rr n c
Rreal

c cRc c Rr r Rc c Rr r

n c





 

 

 
  
  
  

   
 

 
 
 
 

Φ Φ Φ Φ Φ Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ

I J

Φ Φ Φ Φ I
Φ

I JΦ Λ Φ Λ Φ Λ Φ Λ

I  (2.36) 
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* *

1 2

* * * *

1 1 2 2

*
1 2

* *
1 1 2 2

0 0

0 0 0

0 0

0 0 0

          
Lc Lc Lr Lc Lc Lr

Lc c Lc c Lr r Lc c Lc c Lr r

c c

Lc Lr Lc Lr n c
Lreal

c cLc c Lr r Lc c Lr r

n c





 

 

 
  
  
  

   
 

 
 
 
 

Φ Φ Φ Φ Φ Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ

I J

Φ Φ Φ Φ I
Φ

I JΦ Λ Φ Λ Φ Λ Φ Λ

I  (2.37) 

where 

0 0

0 0 0
_

0 0

0 0 0

c c

n c

c c

n c





 
 
 
 
 
 

I J

I
I J

I J

I

, Ic is a (cc×cc) identity matrix and Jc is an (Ic×j) 

and 1j   . 

 

2.4 Frequency Response Function 

2.4.1 Frequency domain calculation using linear models 

Equation  (2.1) can be written in the frequency domain as 

  2

L

T
R

i 



  



f S u

K D M q f

y S q

 (2.38) 

Rewrite equation (2.38) as 

 
 

 

1
2

1
2T

R L

i

i

 

 





  

  

q K D M f

y S K D M S u

 (2.39) 

Equation (2.38) can be transformed using the modal transformation  ,R LΦ Φ . 

Substituting equation (2.11) into equation (2.38) yields 

  2 2

T
L L

n

T
R R

i 



  



f Φ S u

ω Γ I q f

y S Φ q

 (2.40) 



 

 

33 

 

where  2 nΓ . Rewrite equation (2.40) as 

 
 

 

1
2 2

1
2 2

n

T T
R R n L L

i

i

 

 





  

  

q ω Γ I f

y S Φ ω Γ I Φ S u

 (2.41) 

The measured FRF (  H ) for the system in terms of displacement called 

admittance, can be expressed by two equations (2.39) and (2.41) 

 

   

 

 

1
2

1
2 2

1
2 2

         

         

T
R L

T T
R R n L L

T
R n L

i

i

i

  

 

 







  

  

  

H S K M D S

S Φ ω I Γ Φ S

Φ ω I Γ Φ

 (2.42) 

Equation (2.42) represents the complex frequency response function which forms the 

real and imaginary parts of  H . The real part of  H  expresses the undamped 

eigenvalues problem 

       i   H A B  (2.43) 

where A  is the real part of  H . B  is the imaginary part of  H . 

 

2.4.2 Time domain simulation using linear models 

2.4.2.1 General methods for time domain simulation 

There are several numerical integration methods for solving equation of motion (2.1) 

in a time domain simulation such as Euler‟s method, time-stepping, time-marching 

(MATLAB ode45), finite difference, and the Runge-Kutta method [40]. The equation 

of motion (2.1) for linear vibrating systems can be written in the time domain as 

          1t t t t  q M f Dq Kq  (2.44) 

We can rewrite equation of motion (2.1) in state space as 
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0 K q K 0 q 0

K D q 0 M q f
 (2.45) 

Let x  represent a vector of state for vibrating systems 

     ,         ,    
     

       
     

q q 0
x x f

q q f
 (2.46) 

we can rearrange equations (2.45) and (2.46) as 

 
1 1 1

L

L

T
R

  

 
  
 

   
    

      

 
 

0
f u

S

0 0 I
x u x

M S M K M D

y S 0 x

 (2.47) 

The rate vector x  in time domain simulation requires that we write 

     , ,f t t tx x u  (2.48) 

If we know      0t t   u  and  0x , then the numerical integration is possible. 

 

2.4.2.2 Runge-Kutta method 

The Runge-Kutta procedure [40] is popular since it is self starting and results in good 

accuracy. In the Runge-Kutta method the second order differential equation is first 

reduced into two first order equations.  

Let x q , the equation (2.44) is reduced to the following two first order equations. 

 
 , ,f t





q x

x q x
 (2.49) 

Both q  and x  can be expressed in terms of the Taylor series and the time increment 

is h t  . The first derivative is replaced by an average slope and ignoring higher 

order derivatives [41] gives 
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     ,    i i
iav iav

dq dx
q q h x x h

dt dt

   
      

   
 (2.50) 

The average in the interval h  becomes 

 
/2 /2

/2 /2

1
2 2

6

1
2 2

6

i i i i

i i i i

iav t t h t h t h

iav t t h t h t h

dq dq dq dq dq

dt dt dt dt dt

dx dx dx dx dx

dt dt dt dt dt

  

  

          
                        

          
                        

 (2.51) 

where ,     
dq dx

X F
dt dt

  . 

 

The centre term of the above equation is split into two terms and four values of 

, , ,      t q x and f  are computed for each point i  as shown in the Table 2-1. The next 

point of calculation  1i it t h    is 

 
 

 

1 1 2 3 4

1 1 2 3 4

6

6

i i

i i

h
q q X X X X

h
x x F F F F





    

    

 (2.52) 

 

 

1 1 1 1 1 1 1

2 2 1 2 1
2 2 2 2

3 3 2 3 2
3 3 3 3

4 3 4 34 4 4 4 4

Q ( , , )

Q
( , , )2 2 2

Q
( , , )2 2 2

Q ( , , )

i i i

i i i

i i i

i ii

q f x qt x

T t q X x F f T Q X

h h h
T t q X X x F

F f T Q X

h h h
T t q X X x F

F f T Q X

q X h X x F hT t h F f T Q X

 

   

     


     


     
 

Table 2-1 : Average of the interval h 

 

2.4.2.3 Duhamel’s integral 

The second order differential equation of motion for linear systems can be written in 

the form equation (2.2). Duhamel‟s integral method [10] is based on the ability to 
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compute the response of a linear system to a time-varying forcing function. The 

arbitrary forcing function  tf  can be regarded as a series of impulsive forces  f  

acting over a short interval d  see Figure 2-5. 

 

The force produces a short duration impulse  d f  (Figure 2-5). The response of the 

system to this impulse for all t   is defined as the system‟s unit Impulse Response 

Function (IRF) and has a direct relationship to the Frequency Response Function 

(FRF). IRF is written as  t H  which is called Kernel function. The response for a 

system at time t  can be written as [10]: 

 ( ) ( ) ( )d t t d   q H f  (2.53) 

and the total response of the system can be found by integrating all the incremental 

responses which is called convolution integrals as follows 

 ( ) ( ) ( )t H t d  



 q f  (2.54) 

 

 

Figure 2-5 : Arbitrary forcing function 

 

d  
t 

( )f  
Area = ( )d f  
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2.5 Coordinate transformation 

The dynamic system is described by  n n  matrices  , ,o o oM D K , which represent 

mass, damping and stiffness components of the system. Any pair of  n n  matrices 

 ,L RT T  can be used to define a coordinate transformation [42] according to the 

following equations 

        
o Lo

o o o o o o o

T
Ro o

t t t t



  



f S u

M q D q K q f

y S q

 (2.55) 

These transformations  ,R LT T  replace the original vectors  ,o oq f  with new vectors 

 ,N Nq f
. 

       ,      ,      ,   T T T T
o R N N L o RN Ro R LN L Lo   q T q f T f S S T S T S  (2.56) 

Then, the standard equation of motion can be written as  

 

N LN

N N N N N N N

T
RN N



  



f S u

K q D q M q f

y S q

 (2.57) 

Subscripts o  and N  indicate the original and new system. Subscripts L  and R

distinguish between left eigenvectors (or left transformations) and right eigenvectors 

(or right transformations). It is well known that the spectrum of some original 

system,  , ,o o oK D M , is identical to the spectrum of some new system  , ,N N NK D M  

if there are some invertible matrices,  ,R LT T  such that the dynamic models can be 

written as 

 T
L o R NT K T K  (2.58) 

 T
L o R NT D T D  (2.59) 
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 T
L o R NT M T M  (2.60) 

The relationship between two systems is referred as a conventional equivalence. It is 

also well known that given any arbitrary system  , ,o o oK D M , it is not usually 

possible to find invertible matrices,  ,R LT T  such that  , ,N N NK D M  are all diagonal. 

Caughey and O‟Kelly [9] expressed one sufficient criterion as in equation (1.8) to 

satisfy equations (2.58)-(2.60) in which  , ,N N NK D M are diagonal. 

 

If RT  and LT  have fewer columns than rows  n m , then, the coordinate 

transformation reduces the number of system degrees of freedom. In this case the 

transformation is not invertible it is a model reducing transformation. The concept of 

model reduction is based on reducing the number of degrees of freedom of the 

system. The equation of motion can be written as 

 
rr re r rr re r rr re r r

er ee e er ee e er ee e e

             
               

             

M M q D D q K K q f

M M q D D q K K q f
 (2.61) 

where subscripts „ r ‟ and „ e ‟ represent the reduced and eliminated degrees of 

freedom respectively. All model reduction strategies for undamped systems use a 

real-valued coordinate transformation. The transformation matrices RT  and LT  

replace the original vectors { , }o oq f  with new vectors { , }r rq f . The original (full 

length) vector of coordinates is expressed linearly in terms of a much smaller vector 

of coordinates [43]. 

     ,    T
o R r r L o q T q f T f  (2.62) 

The equation of motion (2.55) for the reduced system can be written as 
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r Lr

r r r r r r r

T
Rr r



  



f S u

K q D q M q f

y S q

 (2.63) 

in which , ,r r rM K D  are the reduced system matrices 

     ,        ,    T T T
r L o R r L o R r L o R  M T M T K T K T D T D T  (2.64) 

 

2.6 Structure Preserving Equivalences (SPEs) 

A “structure-preserving equivalence” [44] in the sense intended here is a mapping 

between the stiffness, damping and mass matrices describing some initial second-

order system and the corresponding three matrices of another second-order system 

having identical spectrum. 

 

These transformations are more general than the conventional equivalences of 

equations (2.58)-(2.60) and they allow for most systems to be diagonalised. They 

were first exposed in [42, 44]-but they were referred to as structure-preserving 

transformations in these papers. Each SPE is characterised by one  2 2N N  matrix, 

LT , acting on the left hand side and one  2 2N N  matrix, RT , acting on the right 

hand side in much the same way that equations (2.58)-(2.60) involve the  N N  

matrices  ,L RT T . If the original system matrices are real, then the transformation 

matrices and the diagonalised system matrices are also real. 

 

Garvey et al [42, 44] presented a more general approach to coordinate 

transformations for second-order systems (extended to higher order systems in [45, 
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46]). These more general coordinate transformations are referred to here as SPEs and 

they can be understood as left and right transformation matrices. They preserve the 

structure of Lancaster augmented matrices (LAMs) and the eigenvalues of these 

systems are identical. The structure of LAMs for any second order system are 

presented in the form 

 
,    ,    

      
       

      

0 K K 0 D M
M D K

K D 0 M M 0  

An alternative view of the modal information of any second-order system is possible 

through the concept of structure-preserving transformations (SPTs) [47]. Two 

different real-valued second-order systems,  , ,o o oK D M  and  , ,N N NK D M  are related 

by a SPT if there exist real-valued ( )n n  matrices  , , ,L L L LW X Y Z ,  , , ,R R R RW X Y Z  

such that 

 
T

o NL L R R

o o N NL L R R

      
      

      

0 K 0 KW X W X

K D K DY Z Y Z
 (2.65) 

 
T

o NL L R R

o NL L R R

      
      

       

K 0 K 0W X W X

0 M 0 MY Z Y Z
 (2.66) 

 
T

o o N NL L R R

o NL L R R

         
      

       

D M D MW X W X

M 0 M 0Y Z Y Z
 (2.67) 

Subscripts o and N indicate that the quantities subscripted belong either to the 

original or new system after a discrete transformation has taken place. Subscripts L 

and R distinguish between left eigenvectors (or left transformations) and right 

eigenvectors (or right transformations). If the inverses of the (2n2n) transformation 

matrices exist; The matrices on the right hand sides of equations (2.65)-(2.67) are the 

LAMs of the new system  , ,N N NK D M  and it is clear that the corresponding LAMs 
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for the original system  , ,o o oK D M  appear on the left hand side. These equations can 

be written more compactly as 

 T
L o R NT M T M  (2.68) 

 T
L o R NT D T D  (2.69) 

 T
L o R NT K T K  (2.70) 

The underlining is used to indicate a quantity of “double-dimension” i.e. matrices of 

dimension (2n2n). The notation for the LAMs is chosen deliberately.  R L,T T  define 

the left and right transformation matrices. Matrices  , ,o o oM D K  are the LAMs of the 

system  , ,o o oK D M  in recognition of the fact that Lancaster published these matrices 

for scalar polynomials in 1961 [48]. 

 

The naming convention derives from the fact that oM does not contain oM as a 

partition, oD does not contain oD as a partition and oK  does not contain oK  as a 

partition. Correspondingly, matrices  , ,N N NM D K  are the LAMs of the system 

 , ,N N NK D M  and the major  n n  partitions of these LAMs comprise 

 , , ,N N N0 K D M . The general SPT described in equations (2.65)-(2.67) can be said to 

be a structure preserving equivalence (SPE) if both of  ,R LT T  are invertible. 
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2.6.1 Diagonalising Structure Preserving Equivalences 

(DSPEs) 

Diagonalising SPEs are required to decouple the original equations of motion such 

that the new system matrices themselves are diagonal. Matrices  ,R LT T  describe a 

diagonalising SPT for the system  , ,K D M  if  

 
T

L L R R D

L L R R D D

      
      

      

W X W X 0 K0 K

Y Z Y Z K DK D
 (2.71) 

 
T

L L R R D

L L R R D

      
      

      

W X W X K 0K 0

Y Z Y Z 0 M0 M
 (2.72) 

 
T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z M 0M 0
 (2.73) 

where  , ,D D DK D M  are block diagonal matrices. The new system matrices
 

 , ,D D DK D M  represent the LAMs for the system whose coefficient matrices are the 

diagonal matrices  , ,D D DK D M . Equations (2.71), (2.72) and (2.73) can be written in 

the same form as equations (2.68), (2.69) and (2.70) 

 T
L R DT MT M  (2.74) 

 T
L R DT DT D  (2.75) 

 T
L R DT K T K  (2.76) 

Note that the spectrum (the set of eigenvalues) of the diagonal system must 

obviously be identical to the spectrum of the original system and that this spectrum is 

obtainable, one pair of eigenvalues at a time, from  , ,D D DK D M . 
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diag m m m







K

D

M

 (2.77) 

If the left and right diagonalising transformations  ,L RT T  are normalised in a 

particular way, then equation (2.77) can be written as 

 

 

 

1 2

1 1 2 2

, ,....,

2 ,2 ,...., 2

D n

D n n

D

diag

diag

Identity

  

     







K

D

M

 (2.78) 

The transformation matrices  ,R LT T  are not unique and can be expressed in several 

different parameterisations, but the most useful for present purposes is: 

 
 

1
2

1
2

L L D L D
L

L D L L D

  
  

  

F G D G M
T

G K F G D
 (2.79) 

 
1
2

1
2

R R D R D
R

R D L R D

  
  

  

F G D G M
T

G K F G D
 (2.80) 

where  , , ,R R L LF G G F  are real-valued ( )n n  matrices satisfying the constraint: 

 T T
R L R L F G G F 0  (2.81) 

The matrices  ,R LT T  contain modal information (corresponding to right and leftt 

eigenvectors respectively) in the sense that they can be derived quite directly from 

these eigenvectors. It follows that matrices  ,R RF G  contain the right modal 

eigenvector information and the matrices  ,L LF G  contain the left modal eigenvector 

information.  

 

Garvey et al. [47] presented real-valued transformations which can be derived from 

the complex modal transformations in which the diagonalised system matrices 
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 , ,D D DK D M  are real and diagonal. See Appendix A for further details to prove 

equations (2.79) and (2.80). 

 

2.7 Model Reduction and Mode Expansion Methods 

Model reduction methods are techniques which are applied to large finite element 

models to give faster computation of the natural frequencies and mode shapes of a 

structure [49]. These techniques are used to reduce the number of degrees of freedom 

in a structural model. The reduced models (mass, stiffness and damping matrices) 

may be used when comparing the analytical and experimental models. The 

transformation matrix in the model reduction, whereby the measured modal vectors 

are expanded back to the full set of analytical degrees of freedom of the system, may 

be required to perform modal correlation between analytical and experimental modal 

vectors or model updating [18, 19]. Figure 2-6 shows system coordinates. 

 

 

Figure 2-6 : System coordinates 
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2.7.1 Static Reduction Methods 

The oldest model reduction method is that proposed almost simultaneously by Guyan 

and Irons [23, 24]. The static reduction transformation is based on neglecting the 

inertia forces for the eliminated (slave) coordinates. The system matrices are divided 

into partitions which represent the reduced (master) coordinates and the eliminated 

coordinates. Figure 2-7 shows master and slave coordinates. The master coordinates 

are coloured red and the eliminated coordinates are coloured black. The eliminated 

coordinates should be selected as those for which the inertia is low and the stiffness 

is high. The static reduction method is exact only at zero frequency. 

 

 

Figure 2-7 : Master and slave coordinates 

 

All elements of the original stiffness matrix contribute to the reduced stiffness matrix 

but the reduced mass matrix is a combination of stiffness and mass elements. The 

transformation matrix is based only on the stiffness matrix. The full static system is 

described by a stiffness matrix and distributed force as 

 Kq f  (2.82) 
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where K  is the full system stiffness matrix, f  is the complete force vector acting on 

the system and q  is the system of displacements for the solution of equation (2.82). 

Partitioning equation (2.82) into reduced and eliminated degrees of freedom yields 

 r rr re r

e er ee e

     
    

     

f K K q

f K K q
 (2.83) 

where the subscripts „ r ‟ and „ e ‟ represent reduced Dofs which are remaining and 

eliminated Dofs respectively. Taking 0e f , find that 

 1
e ee er r

 q K K q  (2.84) 

The coordinate transformation is 

 r
s r

e

 
  
 

q
q T q

q
 (2.85) 

The static transformation matrix sT  can be written as 

 s
s

 
  
 

I
T

t
 (2.86) 

where 

 1
s ee er

 t K K  (2.87) 

The reduced stiffness is 

  1T
r s s rr re ee er

  K T KT K K K K  (2.88) 

Equation (2.85) is used to transfer the strain energy of the full system into the 

reduced state producing rK  described in equation (2.88). The transformation matrix 

in equation (2.86) can be used to modify the system kinetic energy and generates the 

reduced mass matrix without considering the equations of motion of the system 

      1 1 1
T

T
r s s rr re ee er ee er er ee ee er

      M T MT M M K K K K M M K K  (2.89) 
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Garvey et al. [43] proposed a method based on a logical extension of the Guyan 

reduction method for general linear second order systems having damping terms. 

This method is described here. The left and right static reduction transformation 

matrices  ,L RT T  as in equation (2.86) are extended in two stages. 

 1 2 1 2      ,     L L L R R R T T T T T T  (2.90) 

The first transformations  1 1,L RT T  are square matrices which decouple the eliminated 

degrees of freedom from the reduced degrees of freedom in the stiffness matrix. 

 1 1

0 0
    ,    L R

L R

   
    
   

I I
T T

t I t I
 (2.91) 

The  ,L Rt t  represent Guyan reduction transformations which are described in 

section 2.7.1 equation (2.87). The second transformations  2 2,L RT T  decouple the 

eliminated coordinates from the reduced coordinates 

 2 2    ,    
0 0

L R

   
    
   

I I
T T  (2.92) 

 

2.7.2 System Equivalent Reduction Expansion Process 

O‟Callahan [50] introduced another model reduction technique which he called the 

system equivalent reduction/expansion process (SEREP). This technique produces 

reduced models and preserves the dynamic character of the original full system 

models for the selected modes of interest. The accuracy of the SEREP reduced 

models is not dependent on which degrees of freedom are selected as slaves or 

masters. The expansion of the reduced system‟s mode shapes are exactly the same as 

the original mode shapes of the full system model Φ . The eigensolution of the 

undamped system is 
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 q Φp  (2.93) 

Φ  is the  n m  full system‟s modal matrix whose columns are m  modal vectors and 

p  is the  1m  displacement vector in the modal coordinate system. The full system 

is partitioned into retained degrees of freedom and eliminated degrees of freedom. 

 r

e

 
  
 

Φ
q p

Φ
 (2.94) 

Considering only the retained degrees of freedom in equation (2.94) yields 

 r rq Φ p  (2.95) 

The generalized left inverse of rΦ  is required to solve p . The number of reduced 

degrees of freedom „ r ‟ is greater than or equal to the number of modes m  in most 

practical applications used. The formulation of the generalized left inverse of rΦ  is 

  
1

T T
r r r r


 Φ Φ Φ Φ  (2.96) 

The full displacement vector in terms of the reduced system‟s displacement vector is 

 r r
q ΦΦ q  (2.97) 

The transformation matrix serepT  which relates the reduced degrees of freedom to the 

full degrees of freedom is 

 r r
serep r

e r






 
   

  

Φ Φ
T ΦΦ

Φ Φ
 (2.98) 

The reduction/expansion process is reversible. The modal vector matrix of the full 

degrees of freedom system is 

 r
serep rΦ T Φ  (2.99) 

whereas r
r rΦ Φ  and r

rΦ  is the modal matrix formed from the eigensolution of the 

reduced degrees of freedom system. 
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2.7.3 Improved Reduction System 

The Improved Reduced System (IRS) method was proposed by O‟Callahan [51]. 

This technique comprises an extra term which is added to the static transformation to 

make some allowance for the inertia forces. The IRS produces an estimate of the 

reduced eigensystem starting from the Guyan/Irons [52, 53] reduction technique. The 

modal vectors of the estimated solution can be adjusted as in the static solution 

producing an improved set of eigenvectors. Reduced mass and stiffness matrices can 

be produced, and the improved eigensystem is more accurate than that obtained with 

other techniques [51]. 

 

Expanding the upper and lower partitions of equation (2.83) produces the reduced set 

of equations and the eliminated set of equations 

 1 1
e ee er r ee e

   q K K q K f  (2.100) 

Substituting equation (2.100) into (2.85) produces system transformation matrix q  

 
1 1

r Fe
r s r

e ee er ee e
 

        
         

        

I 0q
q q T q X

q K K K f
 (2.101) 

in which Fe
X  is the eliminated distributed force 

 Fe
eX Q f  (2.102) 

and eQ  is a flexibility matrix associated with the eliminated force of the system 

 
1

0 0

0
e

ee


 
  
  

Q
K

 (2.103) 

The eigenpairs of the reduced system using Guyan/Irons reduction technique 

equation (2.85) can be described as 

 2
r r r rK Φ M Φ ω  (2.104) 
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The full space modal vectors f
Φ  can be formed using the static expansion matrix 

 f
s rΦ TΦ  (2.105) 

The force approximation for the distributed inertia forces associated with the 

eliminated degrees of freedom can be written as 

 ' 2f f f KΦ f MΦ ω  (2.106) 

Equation (2.106) allows the adjustment of the inertia terms associated with the 

eliminated degrees of freedom using equations (2.102) and (2.105) 

 2 2Fe f f
e e e s r  X Q f Q MΦ ω Q MTΦ ω  (2.107) 

The improved modal vectors which include the inertia forces can be formed using 

equations (2.101), (2.104), (2.105) and (2.107) 

 1f Fe
irs s r e s r r r

   Φ Φ X TΦ Q MTM K Φ  (2.108) 

The improved transformation matrix irsT  can be written as 

 1
irs s e s r r

s e

  
    

 

I
T T Q MT M K

t t
 (2.109) 

where et  is defined as 

  1 1 1
e ee er ee ee s r r

   t K M K M t M K  (2.110) 

The improved transformation produces an improved relationship between eliminated 

coordinates and reduced coordinates, also is used to expand the reduced degrees of 

freedom to the full system degrees of freedom. Equation (2.100) becomes 

   1 1 1 1
e ee er ee er ee ee er r r r

      q K K K M M K K M K q  (2.111) 
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2.7.4 Dynamic Reduction Method 

The reduction of static problems is exact when using a static reduction method 

proposed by Guyan and Irons [52, 53]. The static transformation matrix that is used 

to reduce the system mass and stiffness matrices neglects the inertia forces for the 

eliminated coordinates. Many errors are produced when the static reduction method 

is applied to the reduction of dynamic systems. Several alternatives [54-63] have 

been proposed to modify the Guyan reduction method to decrease these errors. The 

different methods based on a truncated series expansion depend on the convergence 

of the series. These are proposed to improve the eigenvectors and not eigenvalues 

[64]. 

 

The dynamic reduction transformation does take account of inertia forces for the 

eliminated degrees of freedom. The transformation for the dynamic reduction method 

is accurate at one specific frequency. Miller et al. [65] examined a dynamic reduction 

process to investigate the errors which may be introduced in the eigenvalues and 

eigenvectors. 

 

The equation of motion describing free vibration of the system is partitioned as 

 0
rr re r rr re r

er ee e er ee e

       
       

       

M M q K K q

M M q K K q
 (2.112) 

Then the eigenvalue problem can be written as 

 2 0
rr re r rr re r

er ee e er ee e


       

        
       

M M q K K q

M M q K K q
 (2.113) 

The response of eliminated degrees of freedom can be estimated from reduced 

degree of freedom system using the second row of the matrices in equation (2.113) 
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1

2 2
e ee ee er er r d r 


    q K M K M q t q  (2.114) 

The dynamic reduction transformation is defined as 

 
   

1
2 2d

d ee ee er er 


  
   
      

II
T

t K M K M
 (2.115) 

 

2.7.5 Iterative of IRS (IIRS) 

The reduced system produced from IRS matches the lower frequency resonances of 

the full system better than Guyan reduction. On the other hand, the reduced stiffness 

matrix is stiffer and the reduced mass matrix is less suitable than that produced from 

Guyan reduction [66]. Gordis [67] developed the transformation for the improved 

reduced system IRS by using a binomial series expansion. This transformation is 

exactly correct at a given frequency. 

 

Friswell et al. [66, 68, 69] proposed an alternative model reduction process based on 

the IRS procedure of O‟Callahan [51]. The Iterated Improved Reduced System 

(IIRS) techniques based on the IRS transformation is produced from the dynamic 

reduction method instead of static reduction. The improved estimate of the reduced 

matrices is used to define the IRS transformation that for more accurate 

transformation at each iteration. 

The Improved Reduced System (IRS) method has been extended from equation of 

motion including the inertia term. The eliminated coordinates becomes 

    
1

2 2
e ee ee er er r


   q K Ω M K Ω M q  (2.116) 
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Rearranging the eliminated coordinates in equations (2.116) and (2.114) for both IRS 

and dynamic reduction and using binomial theorem (in Appendix B) yields 

   1 2 2 1
e ee er ee ee er er r

      
 

q C C Ω ω M C C M q  (2.117) 

where  2
ee ee ee C K ω M   and   2

er er er C K ω M . Ω  is natural frequency and ω  is 

a given frequency. 

 

The dynamic IRS transformation dirsT  depends on the reduced mass and stiffness 

matrices obtained from dynamic reduction. 

 1
dirs d e d r r

 T T P MT M C  (2.118) 

in which  2
r r r C K ω M  and  

 
1

0 0

0
e

ee


 
  
  

P
C

 (2.119) 

The Iterated Improved Reduced System (IIRS) transformation [66] can be written as 

 1

, 1 , , ,irs i s e irs i irs i irs i



  T T Q MT M K  (2.120) 

The speed of convergence depends on the choice of the reduced degrees of freedom, 

and a poor choice leads to a very slow rate of convergence. On convergence the 

transformation is 

 1irsi irsi T T T  (2.121) 

The iterative algorithm converges a subset of the natural frequencies of the full 

model. Qu and Fu [70] proposed two iterative methods for the dynamic reduction 

based on the modified eigenvalue equation. This convergence is higher than the other 

methods; however, the computational work is more expensive [71]. 
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2.7.6 Model reduction for damped systems 

Most of the proposed reduction methods are implemented to decouple and reduce out 

the eliminated degrees of freedom from the full system by selecting one slave degree 

of freedom at a time. Guyan reduction and the improved transformation are 

developed for undamped systems and they work extremely well. These methods are 

also suitable for proportionally damped systems. Qu et al. [72] proposed methods for 

non classically damped systems in displacement space based on static reduction. 

However, the accuracy of these approaches is poor for heavily damped systems, 

because the reduction transformation is independent of any damped term. 

 

Most of the dynamic reduction transformation matrices do not comprise a damping 

term. The iteration methods do not converge to realistic values. Other iterative 

approaches are proposed by Qu et al. [71]  for non classically damped systems based 

on a dynamic reduction which is defined in state space. The accuracy of these 

methods are much better than that in displacement space. Although the system 

matrices are defined in state space; an expression of the stiffness, mass and damping 

matrices in displacement space cannot be found. 

 

Many investigators [73-76] have proposed solutions to this problem for state space 

systems but all have notable deficiencies. Garvey et al. [43] proposed a method 

based on a logical extension of Guyan reduction method for general linear second 

order systems having damping terms. The method is developed to perform the model 

reduction based on the elementary structure preserving coordinate transformations 

(SPEs) for second order systems. More details can be found in references [43, 44]. 
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2.7.7 Craig-Bampton Reduction Method 

Complex structures such as airplane or automotive components require coupling the 

reduced model systems by dynamic substructuring. Substructuring methods have 

been used to replace the result of a large eigenvalue problem with several small 

eigenvalue problems [77]. 

 

Component mode methods [78] have been applied to the analysis of large complex 

structural systems when the response to dynamic excitation must be analysed. 

Substructuring involves three basic steps: dividing the structure into a number of 

substructures or components, obtaining sets of “component modes” which are used 

in the model reduction, and coupling of the component mode models to form a 

reduced order system model. Component mode synthesis (CMS) methods have been 

developed for damped systems as well as for undamped systems [79]. 

 

An alternative method for model reduction was proposed by Craig & Bampton [80]. 

The Craig-Bampton transformation is one of the component mode synthesis (CMS) 

methods. This method is used for reducing the size of a finite element model that 

combines motion of boundary points with modes of the structure assuming that the 

boundary points are held fixed. 

 

The method employs two forms of generalized coordinates. Boundary generalized 

coordinates are related to the displacement modes of the substructures knows as 

constraint modes. All constraint modes are generated by matrix operations from 

substructure input data. Substructure normal mode generalized coordinates are 
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related to free vibration modes of the substructures relative to completely restrained 

boundaries. 

 

2.7.7.1 Craig-Bampton reduction for undamped substructures 

The Craig-Bampton reduction [79, 80] is explained here for the general case of 

undamped natural second order form (N.S.O.F) models. The equation of motion of 

an undamped substructure is represented as 

 s s s Mq Kq f  (2.122) 

equation (2.122) can be expressed in terms of the boundary degrees of freedom and 

interior degrees of freedom as 

 bb bi b bb bi b b

ib ii i ib ii i i

         
         

         

M M q K K q f

M M q K K q f
 (2.123) 

where the subscripts “ b “ and “ i “ indicate boundary and interior quantities 

respectively, bq  is the vector of boundary degrees of freedom, iq  is the vector of 

internal degrees of freedom. Figure 2-8 shows substructuring coordinates. The 

boundary coordinates are coloured green and the interior coordinates are coloured 

blue. 

 

Figure 2-8 : Boundary and interior coordinates 
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The Craig-Bampton transformation [79] is just like any other coordinate 

transformation which is defined as 

 b
s cb n cb

i

 
   

 

q
q T q T

q
 (2.124) 

where iq  is the vector of modal degrees of freedom and cbT  is the Craig-Bampton 

transformation which is divided into two parts 

  cb T F E  (2.125) 

where 

    ,   
c n

   
    
   

I 0
F E

Φ Φ
 (2.126) 

c
Φ  represents the constraint modes, and n

Φ  represents the normal modes of the 

constrained substructure. The constraint modes c
Φ  are determined from Guyan 

reduction, when the forces at all interior degrees of freedom are set equal to zero 

 1c
ii ib
 Φ K K  (2.127) 

The substructure normal mode n
Φ  is defined as the normal modes of the substructure 

with totally constrained boundary. The eigenvalue problem of the interior 

coordinates can be written 

 2
ii i ii iK q ω M q  (2.128) 

The eigenvectors of equation (2.128) represents the normal modes of the constrained 

substructure (interior coordinates). 

 

 These eigenvectors form the columns of the matrix n
Φ .  The reduced system mass 

and stiffness matrices are 

 bb biT
cb cb cb

ib ii

 
   

 

M M
M T MT

M M
 (2.129) 
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 bb biT
cb cb cb

ib ii

 
   

 

K K
K T KT

K K
 (2.130) 

If the mode shapes have been normalized, then  ii M I  and 2
pp

 
 

K ω   are diagonal 

matrices. The dynamic equation of motion including damping can be written as 

 
2

0

2 0

bb bp bb bp bbb b b b

i i ipb pb 

            
             

             

M M D D Kq q q f

q q qM I D ω 0ω
 (2.131) 

Chapter 9 generalises Craig-Bampton transformations for general damped systems 

without input and output assumptions. 

 

2.8 Force appropriation 

2.8.1 Force appropriation methods 

Many methods have been developed to determine the appropriated force vector 

required to excite pure normal modes. The force appropriation techniques are divided 

into direct and iterative methods [13, 14]. The iterative force appropriation methods 

are rarely used, as they can be time consuming and difficult to apply [13]. The direct 

force appropriation methods have three stage. The first stage is to measure the 

frequency response function (FRF) matrices relating selected response positions to 

multiple input exciters [13, 14]. The second stage is to estimate the undamped natural 

frequencies of the normal modes. A monophase vector of excitation forces is derived 

for each normal mode that will generate a single mode monophase response. The 

final stage is to apply the force vectors corresponding to each mode and related 

undamped natural frequency to measure the normal mode shape [13]. 
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For a linear system which is subject to monophase sinusoidal excitation forces at 

frequency  , with given force vector u , the complex displacement response of the 

structure in steady state is 

       i    y H u A B u  (2.132) 

where y  is the vector of responses,  A  and  B  are the real and imaginary parts 

of the frequency response function (FRF) matrix. The j
th

 undamped normal mode is 

excited at the corresponding undamped natural frequency j  when the response of 

the structure is in monophase and in quadrature with the excitation. In this condition 

the real part of the response will be zero while the imaginary part corresponds to the 

undamped normal mode shape  
j

 . 

    Re 0j y A u  (2.133) 

     j jIm y B u    (2.134) 

 

The multivariate mode indicator function (MMIF) is one of the most common 

methods of force appropriation. This method considers the ratio of the kinetic energy 

of the response in phase with the excitation to that of the total response. Wright et al. 

[15] noted that good quality force appropriation requires multiple exciters to be 

positioned. The appropriated force vector derived for a particular normal mode will 

excite only that mode. For proportionally damped structures, the appropriated force 

vector must excite the mode of interest and not contribute to the other modes, while 

for non-proportionally damped systems, the force vector must also cancel the non-

proportional damping coupling force between the mode of interest and other modes 

[13, 15].  
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2.8.2 Square FRF matrix method 

For square FRF matrices (number of output measurements equals the number of 

exciters), there are many methods to find the non-trivial solutions of the 

homogeneous equations (2.133). Asher‟s method [81] uses the determinant of the 

real frequency response function  A  in equation (2.133) to calculate the natural 

frequencies. 

   0 A  (2.135) 

Equation (2.134) is solved directly using the adjoint of  A  or Gauss-Seidel 

method. If  A  is not singular, the force vector ju  will be trivial. The modified 

Asher method [82] for an eigenvalue solution can be written as 

   j j j A u u  (2.136) 

The Trail-Nash method [83] proposed an alternative approach for general 

eigenvalues 

    j j j  A u B u  (2.137) 

Natural frequencies are identified from zero crossing of the eigenvalues  . The 

corresponding eigenvectors give the appropriation force vectors for each mode.  

 

To allow more responses to be measured the number of exciters is increased. The 

methods fail if this number exceeds the effective number of degrees of freedom and 

the FRF matrix is rank deficient. 
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2.8.3 Rectangular FRF matrix method 

For rectangular FRF matrices [13] (number of output measurements are greater than 

the number of exciters), the real part of the response is minimised across all of the 

response measurements. The extended Asher‟s method minimises the sum of the 

squares of the real part of the response with respect to the force vector, leading to the 

eigenvalue problem 

      Re Re
T

j j j  H H u u  (2.138) 

The multivariate mode indicator function (MMIF) minimises the ratio of the sum of 

the squares of the real part of the response to the sum of the squares of the total 

response 

                  Re Re Re Re Im Im
T T T

j j j       H H u H H H H u  (2.139) 

The undamped natural frequencies are identified by minima of the eigenvalues  . 

 

For rectangular FRF matrices a rank reduction technique is employed to reduce the 

size of the eigenvalue problem and so generate principle force vectors. The first 

singular value decomposition (SVD) [84] of   Re H  is carried out and the 

decomposition partitioned according to the effective rank of   Re H  at a given 

resonance. The second SVD yields the appropriated force vectors. 

      Resvd  U V H  (2.140) 

   Re T  H U V  (2.141) 

The singular values   are used to identify the undamped natural frequencies. 
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2.9 Modal Correlation Methods 

Modal correlation is well-known as a technique is performed to combine and 

quantify two sets of data [43]. The correlation of experimental and theoretical results 

is used to identify any discrepancies between their properties. These measures have 

been developed for undamped or classically damped systems. The major rationale for 

modal correlation is to quantify and evaluate the uniformity between modal vectors 

from the same system. Modal correlation also provides a method to quantify the 

discrepancy between predicted and physical modal vectors [23, 85]. The basic 

requirement for all modal correlation measures [85] is 

 

2

MAC

T
i j

T T
i i j j


X

X X

 

   
 (2.142) 

where ,i j   are two different modal vectors. X  is a scaling matrix. 

 

Although several methods have been proposed in the literature to assess these 

discrepancies, two techniques [86] are most commonly known and used for the 

determination of modal vector correlation.  The first technique is the modal 

assurance criterion (MAC), this has become popular for correlating measured modes 

with predicted modes.  The second technique is based on the orthogonality check that 

uses the analytical and experimental vectors with the analytical mass matrix. 

 

Modal correlation methods can be categorised in different ways. The most important 

division between classes is whether the correlation is performed at the level of full 

length calculated modal vectors or directly on the level of the measured modal 

vectors [23, 86]. If the assessment is to be carried out using the full vectors, 
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expanding the measured modal to at level of the full length analytical modal is 

possible by using one of the modal/mode expansion techniques. However, if the 

measure of modal correlation is performed on the measured modal vector, the 

reduced modal vectors must be provided to match the experimental modal vectors 

where model reduction techniques are used. 

 

2.9.1 The Modal Assurance Criterion (MAC) 

The modal assurance criterion [85] is the most common measure of modal 

correlation used. It was defined initially for real valued modes and subsequently 

extended to complex modes [23, 87]. The development of the modal assurance 

criteria over the last twenty years has led to similar assurance criteria being used for 

experimental and analytical structural dynamics such as coordinate modal assurance 

criterion (COMAC), frequency response assurance criterion (FRAC), coordinate 

orthogonality check (COOC), frequency scaled modal assurance criterion (FSMAC), 

partial modal assurance criterion (PMAC), scaled modal assurance criterion 

(SMAC), and modal assurance criterion using reciprocal modal vectors [88]. 

 

The MAC has been used to estimate the degree of correlation between two sets of 

modes, and to equate the measured modes with the computed modes which are 

reduced to match the measurement locations [85, 86]. The major advantage of modal 

assurance criterion is that no complete experimental eigenvectors and no mass 

matrices are required in order to assess the correlation between different modal 

vectors [85-87]. The modal assurance criterion is a statistical indicator, just like 

ordinary coherence [88]. The MAC satisfies the basic requirement for all modal 
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correlation measures independent of scaling in equation (2.142) where X  is the 

identity matrix. 

 

This technique has limitations based on its formulation [87]. The MAC value is 

between zero and one. The modal vectors are mismatched if MAC indicates nearly 

zeros. This can be due to some reasons such as a change in the system matrices 

during modal testing, nonlinearity in the system generated from different exciter 

positions or excitation signals, noise associated with modal vectors, and so on. Modal 

parameters may exploit a complex system model when a real valued system model 

exists or the modal vectors are from different excitation positions. The MAC can 

indicate consistency if it‟s value is near unity.  

 

The modal assurance criterion was developed and used for vector correlation in 

experimental data and moreover, to compare which vectors are similar and 

completely different to each other [89]. These vectors are obtained from a single row, 

column, several rows or columns of the transfer function matrix [86]. Allemang and 

Brown [85] focused on the development of the concept of consistency of modal 

vectors evaluated through the use of the modal assurance criterion (MAC) and the 

modal scale factor (MSF). 

 

The modal scale factor [85] is used to provide a means of normalizing all estimates 

of the same modal vector. The modal assurance criterion provides a measure of the 

consistency between different modal vectors for the same system. Both modal 

assurance criterion and modal scale factor provide a method of comparing of modal 
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vectors originating from different sources. The transfer function can be written in the 

form 
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 (2.143) 

where  sy  is the response vector,  sH  is the transfer function,  su  is the 

excitation vector, s  is the Laplace variable j ,  rA  is the residue matrix, r  is the 

mode number, n  is the number of degrees of freedom, and  rp  is system pole for 

mode r . Each element of the residue matrix can be written as 

        , , , ,a i j r k r i r j r    (2.144) 

in which  k r  is the scaling constant for mode r ,  ,i r  is the modal coefficient for 

location i  of mode r , and  ,j r  is the modal coefficient for location j  of mode r . 

The modal coefficient of the excitation location and the modal coefficient of the 

response location can be written as 

        
T

r k r r rA    (2.145) 

Equation (2.145) shows that each row or column of     T
r r   is the same modal 

vector multiplied by the modal coefficient of the response location or excitation 

location. In other word, each element of the residue matrix  rA  [85]  consists the 

product of scaling constant. 
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The ratio between rows ,c d  or columns ,c d  is constant. The modal scale factor is 

equal to: 
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The above equation is used to calculate a least squares error estimate of the 

proportionality constant between rows or columns of the residue matrix, the model is 

linear. 

      , , ,c r c d A d rA MSF  (2.148) 

The value of the modal scale factor is to be calculated so as to minimize the sum of 

the squared errors between corresponding elements of each modal vector. The modal 

scale factor is 
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 (2.149) 

The numerator of the above equation can be defined as the cross moment of the 

modal vectors. The denominator of the above equation can be defined as the auto 

moment of the modal vectors. 

 

The modal assurance criterion is defined as a scalar constant relating the portion of 

the auto moment of the modal vector. 

  
   

 

2
, ,

,
,

c d d d
c d

c c


MSF MOM
MAC

MOM
 (2.150) 

Substituting equation (2.149) into equation (2.150) yields 

  
 

   

2
,

,
, ,

c d
c d

c c d d


MOM
MAC

MOM MOM
 (2.151) 
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2.9.2 Cross Orthogonality Checks (XOC) 

Cross orthogonality checks [86] are used to check whether each modal vector of a 

system is orthonormal to all other modal vectors of that system. Modal correlation 

based on orthogonality relationships are commonly used to form normalised modal 

vectors using the analytical mass matrix [85]. 

 0        T
i j i j M   (2.152) 

         T
i j i i j M M   (2.153) 

where iM  is the generalised mass of mode i. 

 

The acceptable criterion from equation (2.153) is for all generalised masses to be 

unity and all terms from equation (2.152) to be satisfied. In practice, equation (2.152) 

might not be achieved for some reason; for example, lack of measured modal 

vectors, the mass matrix is not related to the physical system or the reduced mass 

matrix is invalid. This technique has limitations based on its formulation. 

 

Avitabile et al. [86] proposed a technique which is called a pseudo orthogonality 

check to overcome some of the problems associated with the modal assurance 

criteria and orthogonality check. This technique uses a system equivalent 

reduction/expansion process (SEREP) to reduce the mass matrix to the set of test 

degrees of freedom and the effects of the reduction are minimized. 

 

The same reduction technique develops a transformation matrix that can be used to 

expand the measured modal vectors back to the full set of analytical degrees of 
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freedom of the system. The pseudo orthogonality check can be performed at the 

reduced set of measured degrees of freedom or at the full set of computed degrees of 

freedom of the system. 

 

The transformation serepT  matrix in equation (2.98) is used to form the reduced mass 

rM  and stiffness rK  matrices. The SEREP process gives a basis of mapping the 

reduced set of degrees of freedom to the full set of degrees of freedom as in equation 

(2.99). All measured mode shapes at the reduced set of test degrees of freedom mΦ  

can be expanded to the full set of analytical F
mΦ . 

 

The analytical system matrices can be improved using the measured modal vectors. 

Mass is assumed the reference for this. The system mass matrix can be optimized at 

the full or reduced set of degrees of freedom. At the reduced set of test degrees of 

freedom, the improved mass matrix [86] can be defined as 

 I T T
r r r m r m r

    
 

M M Φ I Φ M Φ Φ  (2.154) 

r


Φ  is the generalised inverse which is defined as 

  
1

T T
r m r r m r


 Φ Φ M Φ Φ M  (2.155) 

At the full set of analytical degrees of freedom the improved mass matrix can be 

defined as 

 I T FT F
m m

    
 

M M Φ I Φ MΦ Φ  (2.156) 


Φ  is the generalised inverse which is defined as 

  
1

FT F FT
m m


 Φ Φ MΦ Φ M  (2.157) 
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Pseudo orthogonality checks can be investigated at the reduced set of test degrees of 

freedom or at the full set of analytical degrees of freedom using the analytical mass 

matrix or the improved mass matrix. The four pseudo orthogonality checks can be 

made 

 
   
   

1 2

3 4

   ,   

   ,   

FT FT I
m m

FT FT I
m m

 

 

PS Φ MΦ PS Φ M Φ

PS Φ MΦ PS Φ M Φ
 (2.158) 

where  
1/2

F F FT F
m m m m



Φ Φ Φ MΦ  and  
1/2

T I


Φ Φ Φ M Φ  are the normalised set of 

experimental vectors and normalised set of analytical vectors respectively. 

 

Morales [87] introduced some comments on the modal assurance criterion and the 

normalized cross orthogonality and a linear modal correlation coefficient. 

Normalized cross orthogonality is a modification of the MAC adapted to solve its 

defects. It is an orthogonality check. The other important implication is that the 

normalized cross orthogonality limit has a meaningful domain. The result of the 

Linear normalized cross orthogonality indicates that the situation is characterized by 

the correlation. 

 

2.9.3 Modal correlation for damped system 

Mass weighted cross orthogonality check is commonly used for classically damped 

systems. The mass cross orthogonality measure of modal correlation is insufficient to 

detect all discrepancies between physical and analytical modal information [23]. 

Even a full set of full length measured modes is presented; modal reduction method 

does not produce a transformation matrix spanning the space of the computed modal 
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vectors. For an undamped system, the mass weighted cross orthogonality measure of 

modal correlation [23] can be written as 

 T
M a mXO Φ MΦ  (2.159) 

The measured characteristic root information can be included in the stiffness 

weighted cross orthogonality measure of modal correlation [23] can be expressed as 

 1 1T
K a a m m

 XO Λ Φ KΦ Λ  (2.160) 

Most of the demonstrated modal correlation methods do not consider the eigenvalues 

(frequencies) associated with eigenvectors (modes). Garvey et al. [23] introduced 

modal correlation measures for general viscous damped structures. For general 

viscous damping, the three different cross orthogonality measures of modal 

correlation can be expressed in terms of the structure preserving matrices as 

 
1 1T

a a a m m m
KD

a a a a m m m m

 
        

         
        

0 Λ W X W X 0 Λ0 K
XO

Λ Λ Y Z Y Z Λ ΛK D
 (2.161) 

 

11
1

2

T

a a m m ma a
KM

a a m m m


        

         
         

W X W X Λ IΛ Λ K 0
XO

Y Z Y Z Λ II I 0 M
 (2.162) 

 
1 1T

a a m ma a m m
DM

a a m m

 
         

         
        

W X W Xζ Λ I D M ζ Λ I
XO

Y Z Y ZI 0 M 0 I 0
 (2.163) 

where  ,a mΛ Λ  are the computed and measured eigenvalues respectively. 

 

2.10 Model Updating 

The procedures of correcting or adjusting the theoretical model to match the modal 

properties with the experimental results are known as model updating [18, 22, 90]. 

The model updating techniques are largely used in civil and mechanical engineering 

to adjust selected parameters of finite element models. Measured data such as natural 
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frequencies and mode shapes identified from vibration tests are used to evaluate the 

predicted data obtained from finite element analysis. There are usually discrepancies 

between the measured data and the predicted data. In model updating, the inaccurate 

mass, stiffness and damping parameters in the analytical model structure are 

corrected in order to match the analytical modal data with measured data. 

 

2.10.1 Correction of System Matrices using Measured Modal 

Matrix 

The measured modes for a given structure are usually non-orthogonal relative to the 

analytical mass matrix. These modes can be corrected to satisfy the orthogonality 

requirements. Several investigators have proposed methods for orthogonalisation of 

measured mode shapes. These methods have been developed to modify the measured 

modes which are used to correct the finite element models [91]. 

 

Baruch and Bar-Itzhack [91] proposed a method to force the measured mode shapes 

for symmetric systems to satisfy the analytical requirement of weighted 

orthonormality. The modified measured modal matrix Φ  minimises the weighted 

Euclidean norm of the errors subject to the orthogonality requirement. The analytical 

mass matrix  n nM  is assumed to be symmetric and positive definite and is 

expected to be more accurate than the stiffness matrix. The weighted orthogonality 

condition can be written as 

 T Φ MΦ I  (2.164) 
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The method utilises a three stage process. In the first stage, the measured modes are 

normalised individually with respect to the analytical mass matrix. The measured 

mode vector mi  can be normalised using the following equation 

  
1/2

T
mi mi mi mi



 M     (2.165) 

where mi  is the i
th

 measured mode vector before the normalisation. The measured 

modal matrix 1 ...m m mi mm  Φ      consists of the m  normalised measured modes. 

In the second stage, the normalised measured modal matrix mΦ  is orthonormalised. 

The modified modes Φ  are closest to the measured modes in a weighted Euclidean 

norm sense and satisfy equation (2.164). The optimal orthonormality of the measured 

mode shapes [91] can be written as 

  
1/2

T
m m m



Φ Φ Φ MΦ  (2.166) 

In the third stage, the modified measured modes are used to update the computed 

stiffness matrix K . The corrected stiffness matrix upK  minimises the weighted 

Euclidean norm and satisfies the equilibrium dynamic condition 

 2
up K Φ MΦΛ  (2.167) 

where T
up upK K  is a corrected stiffness matrix which is a symmetric matrix and Ω  

is the measured frequencies. The corrected stiffness matrix can be expressed as 

    2T T T T
up     K K MΦΦ K KΦΦ M MΦ Φ KΦ Λ Φ M  (2.168) 

 

Berman [92] made suggestions to improve the method presented by Baruch and Bar-

Itzhack [91]. In this method, the reduced stiffness matrix by Guyan/Irons [52, 53] 

reduction is assumed more correct than the reduced mass matrix. The suggestion is to 
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use the analytical stiffness matrix to orthogonalise the measured modes. The 

modified measured modes are used to correct the analytical mass matrix. 

 

The mass matrix is not the only possible choice as a reference base. Different 

possible methods are proposed [92, 93] to obey the orthogonal requirement. Two 

different methods are proposed by Baruch [94] for identification of dynamic 

structures. The stiffness matrix is considered to be a positive definite matrix. The 

measured modal matrix is selected as a reference base. The measured modal matrix 

is slightly modified based on the theoretical rigid body modal matrix RΦ . The 

modified modes minimise the weighted Euclidean norm of  1/2
mM Φ Φ  and satisfy 

the constraint 0T
R Φ MΦ . The slight modification of the flexible mode shapes [94] is 

expressed in the form 

 T
R R mI  

 
Φ Φ Φ M Φ  (2.169) 

The first method considers the mass matrix which is more accurate than the stiffness 

matrix. The mass matrix is corrected to comply with the orthogonality condition and 

the stiffness matrix is corrected to satisfy the dynamic equations. The normalised 

flexible mode shape i  with respect to the analytical mass matrix is 

  
1/2

T
i i i i



 M     (2.170) 

The modified mode shapes 1 ...i m   Φ     are used to correct the analytical mass 

and stiffness matrices. The corrected mass matrix upM  that is closest to the analytical 

mass matrix M  in a weighted Euclidean norm sense with the constraint of 

orthogonality from equation (2.164) can be expressed as 
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1 1

T T T T
up up up up up

 

  M M K Φ Φ K Φ Φ MΦ I Φ K Φ Φ K  (2.171) 

where the stiffness matrix upK  is unknown. Substituting equilibrium equation (2.167) 

into equation (2.171) yields 

     
1 1

T T T T
up

 

  M M MΦ Φ MΦ Φ MΦ I Φ MΦ Φ M  (2.172) 

The corrected stiffness matrix can be written as 

 2T T T T T
up up up up up up up    K K KΦΦ M M ΦΦ K M ΦΦ KΦΦ M M ΦΛ Φ M  (2.173) 

The second method considers the stiffness matrix to be more accurate than the mass 

matrix. The stiffness matrix is corrected to comply with the orthogonality 

requirement and the mass matrix is corrected to satisfy the dynamic equations. The 

normalised flexible mode shape i  with respect to the analytical stiffness matrix is 

  
1/2

T
i i i i i



 K     (2.174) 

where i  is the i
th

 measured frequency. The corrected stiffness matrix upK  is closest 

to the analytical stiffness matrix in natural weighted norm sense with constraint 

2T
up Φ K Φ Λ .  

  2T T
up up up  K K M Φ Φ KΦ Λ Φ M  (2.175) 

where the mass matrix upM  is unknown. Substituting equilibrium equation (2.167) 

into equation (2.175) yields 

     
1 1

2T T T T
up

 

  K K KΦ Φ KΦ Φ KΦ Λ Φ KΦ Φ K  (2.176) 

The corrected mass matrix can be expressed as 

 
2 2

4 2 2

T T
up up

up T T T
up up

 

  

   
 
  

M MΦΛ Φ K K ΦΛ Φ M
M

K ΦΛ Φ K K ΦΛ Φ MΦΛ Φ K
 (2.177) 

More details are presented in references [91, 94]. 
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Optimisation methods of mass and stiffness matrices using modal data have been 

developed. The improved matrices satisfy the orthogonality requirements and 

equation of motion and reproduce exactly the measured modes. However, the 

corrected matrices are to be close to the analytical model in a weighted Euclidean 

norm sense and with certain assumptions on the Lagrange multipliers. O‟Callahan 

and Leung [95] proposed a method based on using the generalised inverse (the 

pseudo inverse) of the measured modal matrix.  

 

The modified mass matrix upM  which satisfies the orthogonality condition can be 

written as 

  1/2 1/2T
up

   M M M Φ I M Φ M  (2.178) 

where T
m mM Φ MΦ  and 

Φ  is the generalised measured normal modes 1/2T
mΦ Φ M . 

 1/2 1
m

 Φ M Φ M  (2.179) 

The modified stiffness matrix upK  which satisfies equation (2.167) can be expressed 

as 

   2T T T T
up up m m m m up up m m m m up    K K M Φ Φ K KΦ Φ M M Φ Φ KΦ Λ Φ M  (2.180) 

 

2.10.2 Computational Model Updating 

In large structures, measurements at a large number of locations are costly and 

require a large amount of data to be processed [90]. Assessing the effects of 

parameter changes on the finite element data can be complex if the number of 

parameters becomes too large. Computational model updating procedures are used 
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based on adjusting several parameters to minimise the discrepancies between the 

measured and predicted data. 

 

For an undamped system, changes of the analytical model matrices [18] can be 

represented as 

   1 1 2 2

1

....

p

o p p o j j

j

         M θ M M M M M M  (2.181) 

   1 1 2 2

1

....

p

o p p o j j

j

         K θ K K K K K K  (2.182) 

where  ,o oK M  define the original mass and stiffness matrices.  ,j jK M  substructure 

matrices define the location and error of model uncertainties,  1 2;....; p     

represents an unknown vector of uncertainty parameters and the subscript “p” 

denotes the number  of unknown parameters in the vector θ  where 22p n . 

 

There are a number of different possibilities which might reduce the residuals to 

zero. The residuals can be written as 

    m aO O r    (2.183) 

 mO  is a vector of measured data,  O   is the corresponding predicted analysis data 

vector. The residuals are nonlinear and depend on the uncertainty parameters 

   o   r r S    (2.184) 

where or  is the predicted analysis data vector at o ,   
oθ=θ

S r   is the sensitivity 

matrix and  o      is the change of uncertainty parameters vector. 
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Schedlinski et al. [90] presented the residuals used in computational model updating 

which are based on the natural frequency and mode shape residuals. The residual 

vector can be written in the form 

  
 
 

m

m

 
  

  

Λ Λ
r

Φ Φ


  (2.185) 

where mΛ  and  Λ   are the measured and predicted vectors of natural frequencies, 

mΦ  and  Φ   are the measured and predicted mode shape vectors. The errors of the 

residuals vector can be simply calculated in the general case by minimising the 

objective function 

 E T T r Wr W   (2.186) 

where  ,W W  are weighting matrices. For 0W , equation (2.186) represents a 

standard weighted least squares of the residuals vector. 

 E T r Wr  (2.187) 

The sensitivity matrix [96] is given as 

 
0

  
  

  

Λ
S

Φ
 




 (2.188) 

The sensitivity matrix S  contains the first derivative of eigenvalues and eigenvectors 

with respect to the parameters  . The updated parameters   can be calculated as 

    S r  (2.189) 

where 
S  is the pseudo inverse of the sensitivity matrix S . 
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2.10.3 Calculating the Sensitivity Matrix Analytically 

Calculating the sensitivity matrix analytically is of interest to most investigators. 

There is already substantial literature on eigenvalue and eigenvector derivatives for 

undamped systems. Fox and Kapoor [97] provided a method applicable to symmetric 

undamped systems. The derivative of the eigenvector equation with respect to the j
th

 

parameter j  can be expressed as 

   0i i
i i i i

j j j j


 

    
     

     

K M
M K M


 

   
 (2.190) 

The derivative of the i
th

 eigenvalue i  can be calculated by pre-multiplying equation 

(2.190) by the transpose of the eigenvector i  and using the mass orthogonality 

 Ti
i i i

j j j




   
  

    

K M
 

  
 (2.191) 

The derivatives of eigenvectors are expressed by Fox and Kapoor [97] as a linear 

combination of all eigenvectors. 

 





Φ
Φ ΦC


 (2.192) 

The derivative of the i
th

 eigenvector i  with respect to the j
th

 parameter j  can be 

calculated using equation (2.190) and the derivative of the mass orthogonality 

equation (2.164). These expressions have been expanded by numerous authors, e.g. 

[98-103] to determine eigenvalue and eigenvector derivatives for more general non-

symmetric undamped systems. 

 

Nelson [104] simplified the procedure for calculating eigenvector derivatives of 

undamped systems so that only the eigenvalue and eigenvector under consideration 
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are required. The implementation and application of sensitivity approaches are 

discussed by Allen and Martinez [105]. The sensitivity techniques are used to 

improve aircraft models using ground vibration test data [106].  

 

2.10.4 Ball of convergence for model updating 

Updating based on eigenvalues and eigenvectors may converge if values of  jθ  in 

equations (2.181) and (2.182) are very small and if the  ,j jK M  matrices are small 

relative to the original system matrices  ,o oK M . It might be possible to get small 

values of errors (sum of the squares of the residuals) and to update the analytical 

eigenvalues and eigenvectors to match the measured eigenvalues and eigenvectors. 

However, if the analytical system matrices are far from the original system the 

updating based on eigenvalues and eigenvectors may not converge. 

 

If there are further values of convergence, these values define the convergence 

interval. If this interval is infinite, it forms a radius of convergence [40]. The 

minimised from far values of the errors (residuals) and the converged model 

updating form a ball of convergence around the original point. 

 

2.11  Conclusion 

This chapter has reviewed the areas of intereste for to this project and highlighted 

some of the conventional techniques. This work attempts to develop and generalise 

model updating methods based on cross orthogonality for generally damped systems. 
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This project also addresses eigenvalue and eigenvector derivative methods. The 

developed methods have been introduced to overcome the difficulties facing 

conventional techniques, and the following chapters will address these methods in 

detail. 
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CHAPTER  3. 3-D Finite Element Modelling 

to develop dynamic models 

The finite element (F.E.) method is well-known in the analysis of continuum and 

structural mechanics [107]. It is widely used in the aerospace industry and it has 

become an accepted analysis method for solving eigenvalue problems in order to 

compute the natural frequencies and the mode shapes of the system [18]. In recent 

years, finite element model information has been combined with physical test model 

information for model updating.  

 

The F.E. method begins with dividing the structure into a large number of small 

elements. The equations and relationships are derived that exactly describe the 

behaviour of each small part of the structure. Generally, the numerical solution 

becomes more accurate as element sizes are reduced [107, 108]. 

 

The ambitions of this chapter are to identify the structural models and dynamic 

behaviour of “GARTEUR-like” aircraft structure. This chapter presents a general 

overview of finite element modelling and focuses on 3-D 20-noded quadratic 

hexahedron (brick) element. The structural analysis has been carried out on the 

“GARTEUR-like” structure (shown in Figure 3-1) at the University of Nottingham 

laboratory. GARTEUR is an abbreviation for a group for aeronautical research and 

technology in Europe. 

 

The structure is made from Aluminium. The length of the structure is 1.5 m with 

thickness 50mm, and the wing span is 2.0 m with thickness 10mm (more details 
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about the geometry is in ref. [20]). The structure was manufactured by staff in the 

university workshops. The overall mass is 42.20 kg. 

 

 

Figure 3-1 : GARTEUR-like aircraft structure 

 

3.1 Derivation of finite element formulation 

The derivation of the finite element formulation of structural problems can be broken 

into a number of steps [107]. 

 

Step 1:  Define the element and its shape functions. The first step in any finite 

element analysis is to divide the structure into elements and examine the behaviour 

of a typical element. 

 

Step 2:  Satisfy the material law. The element stiffness can be derived from the 

differentiation of the displacements (to obtain the strains) and then use the material 

law to calculate the stress. The generalized Hooke‟s law can be used to express the 

stress-strain relationship. 
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 proζ M  (3.1) 

 e  Bq  (3.2) 

where proM  is material property matrix.   is the element strain vector, B  is strain 

shape function matrix. 

 

Step 3:  Derive the element stiffness matrix. An energy approach is used to derive 

the element stiffness matrix. Using the total potential energy engP , the differential of 

engP  with respect to the displacement eq  must be zero. 

 
1

2

T T T
eng e pro e e e

v

dv P q B Bq q fM  (3.3) 

The differential of engP  in equation (3.3) with respect to the displacement eq  must be 

zero. 

 0
eng

e






P

q
 (3.4) 

Then, the element stiffness matrix can be calculated from equation (3.4) 

       ,     T
e e e e pro

v

dv  K q f K B BM  (3.5) 

 

Step 4:  Assemble the overall stiffness matrix. The individual elements are 

assembled together to form the overall structure. The displacement of a particular 

node must be the same for every element connected to it. The externally applied 

forces at the nodes must be balanced by the forces on the elements at these nodes. 

 external e e e

elements elements

  f f K q  (3.6) 

The global system of equations can be written as 
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 global global globalK u f  (3.7) 

Step 5:  Apply the boundary conditions and external loads. To obtain a unique 

solution of the problem, some constraints and loading conditions must be applied at 

some of the nodes. The boundary conditions can be included in the system of linear 

algebraic equations which can be solved to obtain a unique solution for the 

displacements at each node. 

 

Step 6:  Solve the equations. The algebraic equations can be solved by any standard 

solver such as Gaussian elimination technique. A unique solution is obtained because 

the number of unknown variables (displacements) at each node is equal the number 

of equations. 

 

Step7:  Compute other variables. After solving the global equations, displacements at 

all the nodal points are determined. Solving the eigenvalue problem gives the 

eigenvalues and eigenvectors of the system. 

 

3.2 Structural problems analysis 

The solution of the stress and strain distributions is required in the FE formulation 

for continuum elements. The degrees of freedom depend on the displacement 

components which are independent variables and an approximation for the 

displacement function within each element is assumed [107]. In many applications, 

the problems are solved using two-dimensional plane stress or strain distributions, 

axisymmetric solid, plate bending and shells, or full three-dimensional solid models. 
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3.2.1 Two-dimensional problems 

It is sometimes possible to approximate a 3-D problem to a simpler 2-D application 

in which only the x-y plane is modelled. All 2-D solutions are approximations of 3-D 

solutions. The simplest 2-D finite element analysis is three nodes which is call 

triangle element. The four nodes element is called quadrilateral elements. [109]. Two 

assumptions about the stress and thickness in the z-direction are made as follows: 

 

Plane stress is used to define thin geometries in the z-direction where 0zz  . Plane 

strain is used to define very thick geometries in the z-direction where 0zz   but 

0zz  . The simplest two dimensional continuum elements are 3-node triangles with 

straight line sides. Alternatively, 4-node straight sided a quadrilateral element can be 

used [107]. 

 

3.2.2 Three- dimensional problems 

Three dimensional continuum elements can be used to model all practical problems 

since no dimensional approximation is assumed. The simplest three dimensional 

element is a 4-node constant strain tetrahedron with a linear variation of 

displacement. 8-node hexahedron element and 20-node brick elements [108] are also 

used as shown in Figure 3-2. 

 

3.3 FE modelling 3-D 

In this chapter, we focus only on 3-D finite elements. The structure is divided into a 

large number of small elements. Each element has 20-node points and each node has 
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three translations degrees of freedom. Figure 3-2 show a 3-D 20-noded quadratic 

hexahedron element (brick). The front face  1,9,2,11,4,12,3,10  is in + z direction, the 

back face  5,17,6,19,8,20,7,18  is in - z direction and mid-side nodes  13,14,15,16  are 

in middle of z direction. 

 

 

Figure 3-2 : Quadratic hexahedron (Brick) 20-Noded element 

 

3.3.1 Shape functions 

The shape functions are interpolation functions for the displacement function that 

must satisfy three conditions. The shape function iN  has to be 1 at the node i itself (

1iN   at node i). The shape function iN  has to be 0 at nodes other than i node ( 0iN   

at node points j=1:20 and j i  where 20 is the number of node points in the 

element). The summation of all shape functions should be 1 for all  , ,    [108]. 

 

Figure 3-3 shows reference coordinates  , ,    for the 20-noded 3-D brick element. 

The shape function of the corner node points are shown in Figure 3-3 and formulated 

on the following equations [108]. 
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Figure 3-3 : Reference coordinates for the corner node points of 20-noded element 

 

Figure 3-4 shows the reference coordinates  , ,    for the middle points. The shape 

functions of the middle node points are formulated in the following equations [108] 
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Figure 3-4 : Reference coordinates for middle node points of 20-noded element 

 

3.3.2 Natural coordinate system 

The interpolation functions in equations (3.8)-(3.12) are functions of  , ,   . The 

 , ,x y z  coordinates can be described as functions of  , ,    using their nodal point 

values as 
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 (3.13) 

where  , ,i i ix y z  are nodal displacements in the  , ,x y z  directions. The derivative of 

the  , ,x y z  coordinates in equations (3.13) with respect to  , ,    can be written as 
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The displacement function can be expressed as follows using the same shape 

functions 
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The first derivative of the shape function [108, 110] with respect to  , ,   . 
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Equation (3.16) can be written using the Jacobian matrix [108] 
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To find the Cartesian derivatives of iN , invert equation (3.17) 
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The Jacobian matrix is described as 
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 (3.19) 

 

3.3.3 The stress-strain relationship 

The element stiffness [110] can be derived from the differentiation of the 

displacements  , ,x y zq q q  equation (3.15) to obtain the strains 

 eε Bq  (3.20) 

The strain shape function [111] matrix 1 2 ... i   B B B B
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B  (3.21) 

where i is the number of element node points. The element displacement can be 

written as 

 1 1 1 ...
T

e i i iN N N N N N   q  (3.22) 

where iN  is the shape function which is in 3-D coordinates  , ,x y z , and 1: pi n  

where pn  is number of element node points, in this work 20pn  . Each element is 

divided into 60 Dofs. 
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The generalized Hooke‟s law for the stress- strain relationship [108] can be 

expressed as a function of displacements written in a more concise way as 

 pro pro e ζ BqM M  (3.23) 

where ζ  is the stress vector which contains all stress components, ε  is the strain 

vector. proM  is called the material “or elastic” properties matrix. The stress-strain 

relationships are given by 
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where  , ,x y z    and  , ,x y z   are normal stresses and strains respectively, and 

 , ,xy yz xz    and  , ,xy yz xz    are shear stresses and strains respectively. Assuming 

that the material is isotropic [108, 111] 
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M  (3.25) 

where   is a Poisson‟s ratio (no units), E  is Young‟s modulus (Nm
-2

). The material 

properties  , E  are assumed to be constant in the element.   is the shear modulus 

(Nm
-2

). 

 
 2 1

E






 (3.26) 
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3.3.4 Element stiffness matrix from potential energy 

In linear finite element analysis, the purpose of the structural analysis is to find a 

solution in which equilibrium is stable such that the system potential energy is a 

minimum.  The potential energy is used in finite element analysis by expressing the 

problem in terms of the independent variables such as displacements [107]. The 

difference between the strain energy and the work done by the external forces on the 

structure is the potential energy which can be expressed as follows 

 eng eng done P S W  (3.27) 

The strain energy engS  can be written as 

 1
2

T
eng e e eS q K q  (3.28) 

The potential energy formulation is applied to the elements to derive the element 

stiffness matrix. The total potential energy ( engP ) [108] of the element can be written 

as 

 
1

2

T T
eng e e

v

dv  P q f  (3.29) 

Substitute equations (3.23) and (3.20) into equation (3.29) 

    
1 1

2 2

T T T T T
eng pro e e e e e pro e e e

v v

dv dv    P Bq Bq q f q B Bq q fM M  (3.30) 

The differential of engP  with respect to the displacement eq  must be zero. 

 0
eng T

pro e e

v

dv


  
 
P

B Bq f
q

M  (3.31) 

 T
e pro

v
dv K B BM  (3.32) 

The stiffness and mass element matrices have dimension (60×60). 

 T T
e pro pro

v x y z

dv dxdydz    K B B B BM M  (3.33) 
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To complete the evaluation of the integral, the element volume dxdydz  in equation 

(3.33) is expressed in terms of reference coordinates d d d    

  acdxdydz = det d d d  J  (3.34) 

Substitute equation (3.34) into equation (3.33) yields 

  
1 1 1

1 1 1

detT
e pro d d d  

  

    B B JK M  (3.35) 

where det(Jac) is the determinant of the Jacobian matrix.  

 

The Legendre-Gauss method is a technique which is often used to compute the 

numerical integration [110]. Equation (3.35) is evaluated by the Gauss numerical 

integration formula. Table 3-1 shows Gauss integration point coordinates and weight 

coefficients of the Gaussian quadrature formula for integration with 4-Gaussian point 

on a 1D line between ±1 [108, 110]. 

 

Gauss points coordinates

 , ,i j k  
 

Gauss weight factors

 , ,i j kw w w
 

-0.86213631 0.34785485 

-0.33998104 0.65214515 

0.33998104 0.65214515 

0.86213631 0.34785485 

Table 3-1 : Gauss points and coefficients 

 

The number of integration points required to evaluate the stiffness matrix for a 

hexahedron is 64 integration points. The 3-D element stiffness matrix [108] is 

      , , , , , ,
det

i j k i j k i j k

GP GP GP
T

e i j k proac
i j k

w w w
        

   
  J B BK M  (3.36) 

The 3-D element mass matrix [108] is 
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     , , , , , ,

det
i j k i j k i j k

GP GP GP
T

e i j kac e e
i j k

w w w
        

  
 
 

  J q qM  (3.37) 

where iw , jw  and kw  denote Gauss weight coefficients and i , j  and k  denote 

Gauss integration points. GP  represents the number of Gauss points on each scalar. 

  is material density.  

 

3.3.5 Element stiffness matrix Assembly 

The individual elements stiffness and mass matrices are assembled together to form 

the overall structure matrices. The global stiffness matrix dimension comprises the 

total nodal points of the structure multiplied by the number of degrees of freedom for 

each node. For n nodes with three degrees of freedom per node, the global stiffness 

matrix K  is of size  3 3n n , while the global displacement q  and f  vectors are of 

size  3 1n . 

 0
engoverall eng

elements

  
  

  


P P

q q
 (3.38) 

The global system of equations can be written as 

     ,    global e global e

elements elements

  K K M M  (3.39) 

 

3.4 Structural analysis dimensions and properties 

The structural analysis has been carried out on the “Aircraft-like” structure. The 

model material used is Aluminium. The length of the airplane is 1.5 m, and the wing 

span is 2.0 m with thickness 10mm. In order to solve the eigenvalue problem using 

the finite element method, the airplane model is divided into a large number of small 
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parts (finite elements) in 3 dimensional coordinates. The total number of nodes is 

33753 and the total number of elements is 3232. 

 

3.4.1 Meshing the structure 

Mesh generation of the continuum region depends upon the shape of the element and 

the number of nodes for each element. The accurate solution of the finite elements 

converge to the accuracy of the final solution [109]. A MATLAB script called 

FE_GEOM.m is created to generate the geometry (node points) and to build-up the 

20-noded quadratic hexahedron (brick) elements for the airplane structure. Node 

points are generated along the z-direction, x-direction and then in the y-direction. 

Each node point is labelled and has three degrees of freedom  , ,x y z  that are saved in 

the matrix called “NodeSet”. 

 

The structure is divided into small finite elements (Figure 3-5). The mesh is created 

by divigng the model structure into a number of meshable regions. The elements are 

built-up in the x-direction, y-direction and then in the z-direction. Each element has 

20 labels related to each node in the element that is saved in a matrix called EleSet. 

 

The node points in each element are ordered. The front face of the element represents 

the node points (1,9,2,11,4,12,3,10) which is in the positive direction of the z axis. 

The back face represents node points (5,17,6,19,8,20,7,18) which is in negative 

direction of z. The middle-side faces represent node points (13,14,15,16) which are 

in z = 0. 
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Figure 3-5 : Finite element meshing 

 

3.4.2 Material Properties and an appropriate element 

ordering 

The second MATLAB script called FE_PREP.m loads up the model data from the 

file called model_0.mat. In this script a few steps have been performed on each 

element and the associated node points.  The first step here establishes the material 

properties of each element then, removes the redundant node points from the element 

topologies. Two columns are added onto the front of the EleSet matrix. The first 

column is to identify the element type (20-noded brick element) and the second 

column is to identify the material property code for each element. The node points 

NodeSet, number of nodes, element set EleSet, external faces Nface, number of faces 

and table of material properties MATTABL are saved into a file called model_1.mat. 

 

3.4.2.1 Material Properties 

The properties of the material [112] used for the model are shown in Table 3-2. 

These material properties are created in a matrix and related to the equation (3.25). 
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Material Properties Units of Measure 

Density    2600-2800 kg/m
3
 

Elastic (Young‟s) Modulus =: E 70-79 GPascal (10
9
Nm

-2
) 

Poisson‟s Ratio =:  0.33 

Table 3-2 : Material properties of aluminium 

 

3.4.2.2 Removing redundant nodes from the element 

The generated elements have some doubled node points which have the same 

coordinates with different labels. In this section, there are two steps which are used 

to remove the redundant node points from the elements. The first step is to find all 

the doubled nodes in the matrix NodeSet which are closer to each other using a 

MATLAB function called reds_dbnodes.m and save the label of those nodes into a 

matrix called reds. The second step is to replace the label for the closer nodes in the 

element matrix EleSet by using a MATLAB function called kill_reds.m. 

 

3.4.2.3 Extracting external faces for the model structure 

The number of faces for each element is defined. Each element has 6 faces as in 

Figure 3-2 and each face has 8 node points as the following. 

 

   

   

   

(1) 1,9,2,11,4,12,3,10     ,      (4) 3,15,7,20,8,16,4,12

(2) 5,17,6,19,8,20,7,18  ,     (5) 1,10,3,15,7,18,5,13

(3) 1,13,5,17,6,14,2,9    ,      (6) 2,11,4,16,8,19,6,14

face face

face face

face face

 

 

 
 

The repeated faces are removed from the total number of faces for all elements. A 

MATLAB function is used to identify which node points from the NodeSet matrix 

are not mentioned in the topologies of elements EleSet. The external faces with 

labels for each node are in a matrix. The number of external faces of the structure Nf 

is 3320. The node points which are not used in any element are removed from the 



____________________________________________________________________ 

 

98 

 

NodeSet matrix. The number of redundant node points removed is 15396 and the 

remaining node points are 18357. 

 

3.4.2.4 An appropriate element ordering 

In order to rearrange all the elements according to the selected Cartesian coordinates 

 , ,x y z , the global origin point of the structure is chosen  / 2,0,0xF , where xF  is the 

width of the fuselage (Figure 3-6). The priority element is chosen as the closest 

element to the original point by finding the square root of the sum of the squares of 

the difference between the mean value of the each element node and the original 

points. If the mean value for each element nodes is m_xyz and the difference 

between m_xyz and the original point is m_p, then the priority element is at the 

smallest value of the ( _ )norm m p . This is to get the minimum possible maximum 

front size. 

 

 

Figure 3-6 : Global origin point of the structure 
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3.4.3 Derive the element matrices 

The third MATLAB script called FE_PROC loads up the model data from the file 

called model_1.m. In this script, there are a few steps which have been performed to 

calculate the dynamic model mass and stiffness for each element. The MATLAB 

function called sweep0 is used to identify the minimum number of degrees of 

freedom or the minimum front size for each element. The MATLAB function called 

sweep1 is used to assemble the reduced system matrices  ,K M  which represent 

stiffness and mass respectively. The system matrices are reduced using dynamic 

reduction during the element merge. The reduced stiffness and mass matrices have 

dimension (1473×1473). 

 

3.4.3.1 Element degrees of freedom 

Each element has 20 labels related to the corresponding node points. The number of 

degrees of freedom for each element is (20×3) degrees of freedom. The degrees of 

freedom of all elements are prepared in a matrix called Ele_DoFs related to each 

element degree of freedom index. The labels related to each  , ,x y z  degree of 

freedom for each element are stored in columns as follows  : 1: 3: 58x  ,  : 2 : 3: 59y   

and  : 3 : 3: 60z  . A MATLAB function is used to find the index for each element 

node points label from the matrix NodeSet. 

 

3 2

3 1

3

indx

indx

indx

x indx

y indx

z indx

  

  

 

 (3.40) 
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3.4.4 Maximum front size 

The MATLAB function called sweep0 has two steps. The first step is to count the 

number of elements attached to each degree of freedom. The number of elements 

attached to each degree of freedom dictates how many elements are connected to 

each individual degree of freedom this number is kept in a vector called Ele_count0. 

The second step is to minimise the number of degrees of freedom that are in the 

global matrices. The elements are dealt with in an order which depends on the global 

original point. The labels of the degrees of freedom of each element that are present 

in the matrices during the merge and reduction are kept in a matrix called DoFMap0. 

As an element is merged into the matrices the number of remaining elements 

attached to each individual degree of freedom in that element is checked with the 

vector Ele_count0. The independent degrees of freedom are released from 

DoFMap0. The degrees of freedom of the next element are inserted in the available 

place in DoFMap. If there is no space the size of the matrix DoFMap0 is extended. 

 

Figure 3-7 shows the history of the front size in two curves. The blue line represents 

the actual size of the front which shows that the maximum merged degrees of 

freedom in the matrix DoFMap0 is the maximum front size 1473. The green line 

represents the number of non-trivial degrees of freedom in the front which shows the 

minimum number of degrees of freedom remaining in the front while the elements 

are merged. Release the degrees of freedom for each element from the matrix 

DoFMap gives the minimum degrees of freedom in the matrix DoFMap0. 
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Figure 3-7 : History of the minimum front size 

 

Table 3-3 shows the first 10 merged elements. The 1
st
 merged element had 60 

degrees of freedom. The reduced degrees of freedom are the number of degrees of 

freedom which can be removed during the merging. The remaining or front degrees 

of freedom are the number of degrees of freedom which remain during each element 

merging. 

 

Element no. Merged DoFs Reduced DoFs 
(Remaining) 

Front DoFs 

1 60 12 48 

2 84 12 72 

3 108 12 96 

4 132 12 120 

5 156 12 144 

6 180 12 168 

7 189 12 177 

8 198 12 186 

9 222 12 210 

10 231 12 219 

Table 3-3 : Minimum front size 
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3.4.5 Element matrices 

The element stiffness and mass matrices are calculated using equations (3.36) and 

(3.37). Gauss integration point coordinates and weight factors in Table 3-1 are used 

to evaluate stiffness eK  and mass eM  matrices for each element. The Gauss 

integration points  , ,i j k    and weight coefficients  , ,i j kw w w  are arranged in 64 

entries. The element matrices are prepared depending on the element type and 

material properties for each element and the node point coordinates. The element 

model matrices eK  and eM  have dimensions (60×60). 

 

3.4.6 Assembling the element matrices 

The element matrices are merged from the individual element matrices into global 

matrices. The number of degrees of freedom of the global matrices MNDoF is the 

maximum front size. The elements are arranged in an order related to the global 

original point in the structure. The location for all degrees of freedom in each 

element called frow is identified. The element matrices are located at frow while the 

element matrices are merged into global matrices.  

 

3.4.6.1 Model reduction during merge 

The number of degrees of freedom is reduced using Guyan reduction during the 

merge. The reduced stiffness and mass matrices depend on the front size and element 

degrees of freedom. The slave degrees of freedom are chosen as the degrees of 

freedom with the maximum value of the diagonal red red
K M . The number of slave 
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degrees of freedom is the number of reduced degrees of freedom in the front for each 

element. 

 

3.4.7 Eigenvalues and eigenvectors 

The fourth MATLAB script called FE_MODEL loads up the reduced matrices redK

and redM  in a file called model_2. In this script, the eigenvalues with the associated 

eigenvectors for the reduced system are computed. The reduced modal vectors are 

expanded to full length modal vectors of the system. 

 

3.5 Modes of Vibration 

The first 20 eigenvalues of the computed finite element mode shapes are chosen. The 

results show that the first six natural frequencies represent rigid body modes. Table 

3-4 shows the natural frequencies for modes of vibration. Wing first mode of 

vibration occurred at 13.44 Hz and has been shown in Figure 3-8. At this frequency 

the wing is bending symmetric moment. Wing anti-symmetric first mode of vibration 

occurs at 29.98 Hz shown in Figure 3-9. The wing torsion happens at frequencies 

34.76Hz, 51.82Hz and 56.90Hz as in Figure 3-10, Figure 3-13 and Figure 3-14. The 

vertical first mode occurs at 38.41 Hz as in Figure 3-11. The vertical tail torsion 

happens at 88.89Hz and 147.07Hz as in Figure 3-16, Figure 3-20. The wing third 

mode of vibration and torsion happens at 64.98 Hz. The fuselage first mode of 

vibration occurs at a 60.98 Hz as shown in Figure 3-15. The mode of vibration of the 

wing tips and horizontal tail falls between the rigid mode and bending. 
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Mode no. Natural Freq. HZ Modes of Vibration 

7 13.73 Wing first mode of vibration. 

8 29.98 Wing anti-symmetric first mode of vibration. 

9 34.76 Wing twist and wing tips first mode of vibration. 

10 38.41 
Wing anti-symmetric first mode of vibration, vertical tail 

first mode of vibration and horizontal tail bending. 

11 48.57 Wing symmetric second mode of vibration. 

12 51.82 Wing torsion and wing tips first mode of vibration. 

13 56.90 Wing symmetric torsion. 

14 60.40 
Wing anti-symmetric second mode of vibration, fuselage 

first mode and vertical tail second mode. 

15 64.98 
Wing third mode of vibration and torsion, vertical tail first 

mode and wing tips symmetric first mode. 

16 88.89 
Wing anti-symmetric third mode of vibration, wing tips 

symmetric first mode and vertical tail twist. 

17 107.50 
Wing anti-symmetric third mode of vibration and wing tips 

symmetric first mode. 

18 117.50 
Wing anti-symmetric third mode of vibration, wing tips 

vertical tail twist. 

19 136.49 
Wing symmetric third mode and wing tips symmetric first 

modes of vibration. 

20 147.07 
Wing symmetric third mode of vibration, wing tips first 

mode vertical tail twist. 

Table 3-4 : Natural frequencies and computed mode shapes 

 

3.6 Conclusion 

This chapter has identified structural models and the dynamic behaviour for 

GARTEUR-like aircraft structure. The presented work has introduced in 3-

Dimensional 20-noded quadratic hexahedron (brick) element. The 20 modes of 

vibration and their frequencies are calculated. The first six modes represent rigid 

body modes. The number of degrees of freedom of global matrices (stiffness and 

mass matrices), which depends on the maximum front size, is reduced using Guyan 

reduction during the merge. 
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The following chapter presents an experimental modal analysis for GARTEUR-like 

aircraft structure using ground vibration testing GVT. The computed results obtained 

from finite element analysis will be compared with the experimental results obtained 

from GVT. Regarding reducing the finite element degrees of freedom, Craig 

Bampton transformations will be developed in chapter 9. 
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  Figure 3-8 : Mode (7) Freq. 13.44 Hz 

 

  Figure 3-9 : Mode (8) Freq. 29.98 Hz 

 

  Figure 3-10 : Mode (9) Freq. 34.76 Hz 

 

  Figure 3-11 : Mode (10) Freq. 38.41 Hz 

 

  Figure 3-12 : Mode (11) Freq. 48.57 Hz 

 

  Figure 3-13 : Mode (12) Freq. 51.82 Hz 

 

  Figure 3-14 : Mode (13) Freq. 56.90 Hz 

 

  Figure 3-15 : Mode (14) Freq. 60.40 Hz 
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  Figure 3-16 : Mode (16) Freq. 88.89 Hz 

 

  Figure 3-17 : Mode (17) Freq. 107.50 Hz 

 

  Figure 3-18 : Mode (18) Freq. 117.50 Hz 

 

  Figure 3-19 : Mode (19) Freq. 136.49 Hz 

 

  Figure 3-20 : Mode (20) Freq. 147.07 Hz 
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CHAPTER  4. Modal Testing 

This chapter provides some background regarding the modal testing techniques and 

describes the methods that were used in this work for experimental modal analysis. 

In this chapter, the experimental data obtained from GVT will compare with the 

computed data obtained from the finite element analysis in the previous chapter. 

 

A modal test is where a structure is mounted with controlled boundary conditions 

and vibrated with a known or measured excitation. This experimental test is used in 

order to obtain or update a mathematical model of the structure, determining the 

nature and extent of vibration response levels, and measurement of the dynamic 

properties. These properties are used to compare with corresponding data produced 

by a finite element or other theoretical model. In addition, they are used to validate 

the theoretical model prior to its use for predicting response levels to complex 

excitations. The corroboration (verification) of the tests of major modes of vibration 

can provide support of the basic validity of the theoretical model [10]. 

 

A technique is investigated in this study to extract modal data which are identified 

from a single column of the frequency response matrix. This technique overcomes 

the difficulty due to the conventional methods which require a series of measured 

FRFs at different points of excitation. This chapter also covers some general 

information about modal testing. 

 

In this chapter, the modal analysis has been carried out on the “GARTEUR-like” 

structure (Figure 4-1). The model material used is Aluminium. The length of the 
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airplane is 1.5 m, and the wing span is 2.0 m with thickness 10mm. The presented 

work has been divided into two parts. The first part is obtaining the frequency 

response function using ground vibration testing (GVT). The second part focuses on 

extracting modal information using a single column of the frequency response 

function. 

 

 

Figure 4-1 :  GARTEUR-like aircraft structure 

 

4.1 General Outline of Modal Testing 

The most important task of modal testing is the preparation of the test structure itself. 

The first decision which has to be taken is whether the structure is to be tested with a 

free boundary condition or grounded. Free support means that the test structure is not 

attached to ground at any of its coordinates. In this condition, the structure will 

display rigid body modes in which there is no bending or other deformation. Due to 

errors in the measurements and difficulties in the simulation of free-free motion, the 

measured flexible mode shapes in general will not be orthogonal to the known rigid 

body modes [94].  
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Modal testing may involve the complete aircraft mounted on a soft support system to 

simulate free-free conditions, resting on its landing gear, specific parts on the 

complete airplane, or components, such as landing gear doors or control surfaces. 

The soft support systems are used to simulate a free-free condition and to reduce the 

frequency of the rigid-body modes. 

 

4.1.1 Measurement setup 

The main elements of equipment used in the experimental setup are: 

 

1. An excitation device used to vibrate the structure. The source of the 

excitation signal which depends on the type of modal testing (sinusoidal from 

an oscillator, random from a noise generator and transient from a special 

pulse by applying an impact with a hammer). An amplifier selected to match 

the excitation device to vibrate the structure. 

 

2. Transducers used to measure the excitation forces and the various responses 

of interest shown in Figure 4-2. 

 

3. A spectrum analyser used to measure the various signals developed by the 

transducers in order to determine the magnitudes of the excitation forces and 

responses. 

 



____________________________________________________________________ 

 

111 

 

 

Figure 4-2 : Transducers to measure forces and responses 

 

4.1.2 Excitation Methods 

Various devices are available for exciting the structure. These can be divided into 

two types, contact and non-contact excitation. In contact excitation, the structure can 

be driven by either an attached shaker or an impulse. The transducers which are 

connected to the excitation devices are used to measure the excitation forces. Other 

possible sources of excitation include step relaxation (releasing from a deflected 

position) and ambient excitation (such as waves, wind or roadway excitation). These 

are special cases which are only used when the conventional methods are not 

possible. The non-contact excitation includes devices such as non contacting 

electromagnetic exciters and pneumatic acoustic excitation. 

 

4.1.3 Response measurements 

There are several methods for measuring the response by contact or non-contact 

response transducers such as piezoelectric accelerometers see Figure 4-3. Certain 
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characteristics normally govern the choice of accelerometers for structural testing. 

Structural elements must not be loaded by heavy accelerometers. Large structures 

may require high sensitivity accelerometers. Frequency range is not normally a 

problem, the upper frequency limit of most accelerometers exceeds the maximum 

frequency requirements of structural testing. 

 

 

Figure 4-3 : Piezoelectric accelerometers 

 

Two types of Laser Doppler Vibrometer (LDV) have become commonplace in modal 

testing. The standard single-point version and the scanning version (SLDV) have 

been used as non-contact transducers to measure response. 

 

4.1.4 Obtaining Frequency Response Function (FRFs) 

In modal testing, the inputs (usually forces) and outputs (usually accelerations) are 

functions of time. The properties of the structure itself create a relationship between 

the inputs and outputs and a key stage in modal testing is to determine that 

relationship. For linear systems the relationship between inputs and outputs is a 
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direct linear and frequency domain function where it can be expressed as a ratio of 

two polynomials. This ratio is called the frequency response function (FRF) which 

defines the ratio between the output response signals and the input force signals. The 

displacement response to force is Receptance. The velocity response is called 

Mobility. The acceleration response is called Inertance or Accelerance. 

 

It is possible to derive frequency response function properties from excitation and 

response measurements when the vibration is periodic. Fourier series components of 

both the input force signal and the output response signals can be determined over 

the same range of frequencies. Once these two series are obtained, the FRF can be 

defined by computing the ratio of the response component to the input component for 

each discrete frequency. 

 

The calculation of the Fourier transforms of both the excitation and response signals 

is required to obtain FRF properties from measurements made during the transient 

vibration test. The transient input and response signals are used to obtain an 

input/output function in the frequency domain. The ratio of these two functions can 

be computed to obtain an expression for the corresponding frequency response 

function: 

  
 

 







y
H

u
 (4.1) 

As stated previously, the excitation may produce periodic, transient or pseudo-

random signals. Fourier analysis is used to convert the signals from the time domain 

to the frequency domain. 
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The discrete Fourier transform or series is computed for both the force and response 

signals and the ratio of these transforms gives the FRF. There are two sets of 

parameters used to describe random signals; one based on the time domain is called 

the correlation function and the other in the frequency domain is called the spectral 

densities. 

 

It is possible to determine FRF properties from the measurement and analysis of a 

random vibration test. The Fourier transform for the cross correlation function  qfR   

is used to produce the cross spectral density function  qfS  . The following formulas 

define the correlation functions and spectral density functions [10]. 
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where  tf  and  tq  are input and response functions in the time domain 

respectively. Autocorrelation functions,
 

 ffR   and  qqR  , define as the expected 

value of the product two functions which are real functions and computed along the 

time axis.  ffS  ,  qqS   define the Auto-spectral densities which are real functions 
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of frequency.  qfR   and  fqR   define cross-correlation functions which are real 

functions of time,  qfS   and  fqS   define cross-spectral density which are real 

functions of frequency [10]. The frequency response function FRF can be determined 

from the spectral densities formula 
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Noise is expected to contribute to the input force signal and output response signals. 

The ratio between  1 H  and  2 H  is called the Coherence 2C . The coherence can 

be shown to be less than or equal to 1.0. The coherence less than 1.0 represents the 

noise. A low coherence can occur in measurements near resonance and anti-

resonance on lightly-damped structures. The reason for the low coherence in some 

cases is due to random noise. 

 
 

 
12

2






H

H
C  (4.8) 

It is necessary to perform an averaging of several measurements of FRF estimates 

and coherence to establish confidence in results. The major advantage of employing 

a number of averages is to remove noise on the signals. The low coherence can be 

eliminated by taking many averages if the reason is random noise. Figure 4-4 shows 

frequency response function in the upper curve and the coherence in the lower curve. 
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Figure 4-4 : FRF and coherence 

 

4.2 Work done on the GARTEUR-like aircraft 

structure 

The experimental work was conducted in vibration laboratory. The model structure 

shown in Figure 4-1 was suspended by set of elastic cords (bungees) to simulate free-

free conditions and to reduce the frequency of the six rigid-body support modes as 

much as possible. The Aircraft-like structure is marked at 52 points (Figure 4-5) 

where it is excited using an impact hammer at each degree of freedom and the 

accelerometer response measurement is positioned at the left wing tip (point 1). 

Figure 4-6 shows the accelerometer location of the Aircraft-like structure. 

 

The instrumentation set-up comprises are shown in Figure 4-7; 

1. 2 charge Amplifier (one for input and one for output), 

2. Force transducer (Hammer), 

3. Accelerometer, 
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4. Oscilloscope, 

5. PC driving spectrum Analyzer card. 

 

 

Figure 4-5 : Model structure 

 

 

Figure 4-6 : Location of the accelerometer on airplane structure 

 

The frequency range analysed spans 0 to 320 Hz and is divided into 4000 lines. The 

average of the response from 10 triggers is taken for each response point. MATLAB 

files are used to save the data such as transfer function H1_2 and coherence function 
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C1_2. Classical damping is assumed in this test. All the FRFs  H for 52 points 

have been obtained using one fixed accelerometer at wing tip shown in Figure 4-6. 

 

 

Figure 4-7 : Equipments used in modal testing 

 

4.3 Calibration of a piezoelectric accelerometer 

Calibration of a piezoelectric accelerometer was carried out on a mass weighted 

4.5135 kg as shown in Figure 4-8. The mass is suspended to simulate free-free 

condition and excited using impact hammer as shown in Figure 4-9. We consider that 

the mass is a linear system of one degree of freedom as shown Figure 4-10. The 

equation of motion for linear system can be expressed as 

        m d k

L

T
R

t t t t



  



f S u

q q q f

y S q

 (4.9) 

The solution of equation (4.9) has two parts. Homogeneous solution, if   0t f , the 

solution of the homogeneous equation corresponds physically to that of free damped 
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vibration. Particular solution, if   0t f , the solution is due to the excitation 

irrespective of the homogeneous solution. The solution is assumed as 

       ,   i t i tt e t e  q q f f  (4.10) 

Substituting equation (4.10) into equation (4.9) yields 

  2k m d

S

L

T
R

i 



  



f S u

q f

y q

 (4.11) 

Equation (4.11) can be expressed by unit mass as 

  2 2 12 m

L

n n

T
R

i    



  



f S u

q f

y S q

 (4.12) 

where 2 1m kn
 ,  n  is natural frequency and 12 m dn  ,   is damping factor. 

 

 

Figure 4-8 : Mass weighted 
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Figure 4-9 : Model of calibration 

 

 

Figure 4-10 : Single degree of freedom system 

 

4.3.1 Frequency response function (FRF) of linear system 

Frequency response function represents a direct linear relationship between the input 

and output. The frequency response function at low frequency range indicates that 

the ratio between input and output signals is constant. This relationship is represented 

by the block diagram of a linear system in Figure 1-5. The frequency response 

function can be writes as 

k d 

m 
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 (4.13) 

Also the frequency response function can be written as 

  

1
22

1m 1 2n
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q
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 (4.14) 

The mass “m” has a single resonant frequency which occurs in the higher frequency 

range. Equation (4.14) represents the frequency response function  H  which can 

be used at high frequency. At lower frequency range, the calculated frequency 

response function can be expressed as 

  
2

1mn  
q

H
f

 (4.15) 

Equation (4.15) shows that the frequency response function at lower frequency range 

is equal to inverse of the mass (kg
-1

). 

 

4.3.2 Correction factor Cf 

In this experiment, the input and output signals is measured in voltage range. Decibel 

is a unit of measurement which is used in vibration measurements. The Decibel is 

expressed in terms of logarithm of the output to the input signals. 

 10

x
20 log

x

out

in

dB
 

   
 

 (4.16) 

Figure 4-11 shows a calibration curve of the piezoelectric accelerometer in frequency 

range (0-320Hz). The curve shows that the measured frequency response function 

 m H  at low frequency has constant value. The measured frequency response 

function shown in Figure 4-11 has non-dimension (dB).  

 



____________________________________________________________________ 

 

122 

 

 

Figure 4-11 : Calibration curve of piezoelectric accelerometer 

 

Figure 4-12 shows that the output accelerometer signal and the input force signal are 

converted through charge amplifier into voltage " "V .  

   1 1x x
m m

x x

c A A
m f

F F

a
C     

     
   

H
f

 (4.17) 

The ratio 
x

x

A

F

 
 
 

 represents the gain of output accelerometer to the gain of input force. 

This ratio is called a correction factor Cf. In this ratio, the xA  has units  2/m sV , xF  

has units  2. /N kg m sV V  and the correction factor fC  has units  2/N m s kg . 

 

It is easy to calculate the correction factor Cf for the simple mass using equation 

(4.15) and equation (4.17). The correction factor Cf is expressed as 
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Figure 4-12 : Input and output signals diagram 

 

Figure 4-13 shows the calibration curves of the piezoelectric accelerometer before 

and after modal testing of the aircraft structure in frequency range (0-80 Hz). The 

frequency response function before modal testing is 11.9852mb  H dB, substituting 

into equation (4.18) yields 

  
1

11.9852/201
10 1.1357  

4.5135
fbC kg


 

  
 

 (4.20) 

The correction factor before starting modal testing of the GARTEUR-like aircraft 

structure is
 

1.1357  fbC kg . However, the correction factor is changed after finishing 

the modal testing by 0.4336%. The measured frequency response function is 

11.9099ma  H dB from Figure 4-13, substituting into equation (4.18) yields 

  
1

11.9099/201
10 1.1456  

4.5135
faC kg


 

  
 

 (4.21) 

The correction factor after the modal testing of the GARTEUR-like aircraft structure 

is
 

1.1456  faC kg . The average of the correction factor is 1.1406  fC kg . The 

correction factor Cf  is used to correct the measured frequency response functions of 

the aircraft structure in all frequency range. All measured frequency response 
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functions of the aircraft structure are corrected by dividing by the correction factor 

Cf. 

  

 

Figure 4-13 : Calibration curves of piezoelectric accelerometer 

before and after modal testing of aircraft structure 

 

4.4 Extracting modal information 

The complete dynamic model of the second order system can be described by 

        
L

T
R

t t t t



  



f S u

Mq Dq Kq f

y S q

  (4.22) 

If this system is classically damped, then it is possible to define coordinate 

transformations  ,L RΦ Φ . These transformations transform the system matrices 

 , ,K D M  into diagonal matrices  , ,Λ Γ I  as in equations (2.15), (2.16) and (2.17) 

provided that M  is non-singular. All of the matrices here are real-valued. 
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The frequency response matrix,  H  is (no×ni), where no represents the number of 

outputs (the dimension of y) and where ni represents the number of inputs (the 

dimension of u).  H  can be expressed in terms of either the original representation 

equation (2.39) or the transformed modal representation equation (2.41) thus 
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 (4.23) 

where T
R R RΦ S Φ  and T T

L L LΦ Φ S . 

 

Modal information can be extracted from the measured frequency response function 

 H . A single entry of the frequency response matrix can be constructed as 

 
 

, ,

2
1

n
R ik L jk

ij

k kk kk

h
i  

 


 
  (4.24) 

,L jk  represents the amount by which one unit of excitation at input degree of 

freedom j excites mode k. ,R ik  represents the amount of output at output degree of 

freedom i which is contributed by each mode k. Extracting the single mode ,R ik  of 

the modal matrix RΦ  requires a series of measurements of FRF including the point 

FRF at the excitation position [10, 113]. 

 

4.4.1 A single column of the frequency Response- g(ω)  

Consider that there is only one independent source of excitation. Then for some 

(ni×1) matrix p 

 ( ) ( )            ( ) ( )t u t or u  u p u p  (4.25) 
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and in this case, we may define a single column of frequency response,  g  

according to 
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 (4.26) 

From this point, we will ignore the formulation of frequency response from the 

general system representation equation (2.39) and we concentrate specifically on the 

representation of equation (2.41).  T
LΦ p  is abbreviated as v. 

 

Define the general i
th

 entry  ig  of frequency response  g   and we then have 
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 (4.27) 

,ik R ik kw v   is a real-valued scalar which is called a modal participation factor. 

Specifically, it reflects the amount by which one unit of the single independent 

excitation source, u(t), causes a response at the i
th

 output degree of freedom through 

mode #k. In modal analysis, only these modal participation factors can be extracted. 

If we have a numerical model also in the form  , , , ,L RK D M S S  from equation (2.39), 

then some more information can be extracted. (In fact, only  , ,L RM S S  are needed). 

The modal participation factors, wik can be assembled into a real matrix W, and then 

 g can be written in this following very compact form as 

     1
2diag i  



   g W Λ Γ I  (4.28) 

In equation (4.28), the diag(.) operator serves to convert a diagonal matrix back into 

a column having n entries where n represents the number of independent modes. It 

should be noted that if any two or more “different” modes happen to have identical 
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kk  and kk , then it is always possible to write (4.28) using fewer columns in W. A 

single-column of FRFs is never sufficient to discriminate between two such modes. 

If two different columns of FRFs have been acquired, this discrimination is possible 

between two modes having identical kk  and kk . 

 

4.4.2 Extracting modes given  , ,Λ Γ Ι  

Many different methods exist for modal analysis performed directly on the FRF 

curves. Modal analysis methods depend upon whether a single mode is to be 

extracted at a time or several modes at a time. Moreover, modal analysis methods 

divide into two types, the first type analyses single FRF curves at a time and the 

second type analyse several curves. There is no single method which is best for all 

cases. A full discussion of these methods can be found in [10]. 

 

In equation (4.28),  g  is a vector function of frequency. The same is true of 

  1
2diag i 



 Λ Γ I . From a modal test, we acquire (an approximation to)  g  

for a large number of discrete frequencies. These frequencies are usually equally 

spaced and usually extend from 0 Hz up to some maximum value but there is no 

particular requirement for this. These frequencies can be arranged to form the vector 

fr. By forming equation (4.28) for each one of these individual frequencies, we can 

gather the results together into a single matrix form thus 

 G WA  (4.29) 

   1
2: diag i 



  A Λ Γ I  (4.30) 
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Matrix G has dimensions (no×nf) where nf is the number of frequencies at which the 

FRF has been collected. Matrix A has dimensions (n×nf) and matrix W has 

dimensions (no×n). Since G is known and A can be constructed quite easily 

(assuming that  ,Λ Γ  and the actual values of the nf different trial frequencies are 

known), it is clearly a linear problem to determine W. Invariably, nf is much greater 

than n and so the problem of finding W from G and A is an over-determined one. 

Because W is real, equation (4.29) can be broken into two parts: 

        Re Re        G G G W A A WAImg Img  (4.31) 

and a good solution is found using the right pseudo-inverse of A . 

   
1

T T
 

  
 

W GA AA  (4.32) 

Columns of matrix W contain multiples of the (right) mode-shapes. 

 

One other comment is necessary about equation (4.31). In effect, equation (4.32) 

says that W is the real part of the product of    multiplied by the real pseudo-inverse 

of A . 

 

4.4.3 Iteratively adjusting  ,Λ Γ  to minimise vector of 

residuals Δr 

Combining equations (4.29) and (4.31) leads to this definition of a matrix, R of 

residuals 
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In general, R is complex and    will be real. Their dimensions are the same as the 

dimensions of G (no×nf) and    (no×2nf) respectively. For reasons which become 

obvious shortly, it is appropriate for us to vectorise    to form r having dimension 

(2nonf ×1). 

  vecr R  (4.35) 

Now, since A is a function of the three quantities  , ,Λ Γ f , it is evident from equation 

(4.32) that    is also a function of these three quantities and in view of equation 

(4.34), it is straightforward now to define a total error, E, according to 

 E T r r  (4.36) 

Clearly, E is also a function of the three quantities  , ,Λ Γ f  and it is a single real-

valued overall measure of the poorness-of-fit.  

 

It is convenient to put together all of the diagonal entries of  ,Λ Γ  into a single 

vector of 2n parameters denoted  . Since we can consider that for any one set of 

FRFs, the frequencies in fr are fixed, we can assert that r is a function of  . 

Equations (4.32) and (4.34) together show how to form  r   given  . A single 

iterative step can be carried out which begins with a given vector of parameters, 0  

and ends with an improved vector of parameters,  1 0    . 

 

From 0 , we calculate the corresponding  00 r r   using equations (4.32) and (4.34). 

Subsequently, we determine the complex Sensitivity Matrix, S which is defined by 

the equation 

  0 0 0:     r r r r S    (4.37) 
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It is possible to determine S analytically and this is probably the fastest and most 

numerically stable means by which to obtain S. The alternative is to determine S 

numerically. At present, this numerical determination of S is adopted (accepted) 

simply because it is expedient (convenient). A central-difference approach is used. 

For each one of the 2n entries of  , a small positive change,  , is made in the entry 

and r  is computed. Then a small negative change,  , is made in the same entry 

and r  is computed. Finally, the vector expression   2 r r  provides one whole 

column of the matrix S. 

 

Having found S and r , a first approximation to the optimum adjustment,  , is 

discovered as 

    S r  (4.38) 

This is only a first approximation because the linear approximation expressed by 

equation (4.37) may not apply accurately over the entire optimum adjustment put 

forward by equation (4.38). To make the iterative refinement of the parameters 

robust, it is necessary to combine a line-search strategy with equation (4.38). 

Equation (4.38) is used to determine the small adjustment in the parameters. The 

actual adjustment is  xθ  where x is a scalar–normally much less than 1. As the 

iterative procedure advances, x tends to become less and less and by the time that x 

has reached 0.001, the iteration is probably as close as it is going to get.  
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4.4.4 Obtaining initial values for the parameters  ,Λ Γ   

It was stated above that we are supposing that the outcome from some modal testing 

is a single column  g  having no entries in it. This outcome can be represented as 

the complex (no×nf) matrix, G. 

 

The ( ( ))sum abs G  is a real-valued row-vector having nf always-positive entries in it. 

The transpose of this row vector is denoted as z. In this work, the interested 

frequency range has been chosen 25-175 Hz. The plot of log(z) with respect to the 

frequency range f  is shown in  Figure 4-14. 

 

 

Figure 4-14 : Modal peaks 

 

This plot is known in modal analysis as a modal peaks plot. If a significant peak in 

response has occurred in any one of the no FRFs obtained from the testing, this peak 

will appear as a significant peak in the modal peaks plot. From the modal peaks plot, 

numerous discrete frequency-bands are identified containing resonances indicating at 

the same time how many resonance frequencies there are within each one. 
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Figure 4-15 shows numerous discrete frequency-bands containing resonances. Each 

resonant frequency band is considered to contain one and only one resonant 

frequency and an initial estimate for this resonant frequency is provided at the same 

time as the upper and lower frequency limits of the band are specified. The frequency 

bands are usually relatively small. Typically, they might contain 5-12 different 

frequency lines each. 

 

 

Figure 4-15 : Modal peaks / frequency-bands 

 

Having identified a number of frequency bands (each containing a single resonance) 

and having speculated what the value of that resonant frequency is (by inspection 

also), an automatic procedure can be employed to produce an estimate of the 

damping factor associated with each individual resonance. 

 

This procedure works on magnitudes only and seeks to minimise the difference 

between the normalised vector of magnitudes from the modal peaks plot and a 

normalised vector of magnitudes from an analytical single-degree-of-freedom model. 
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The nature of this procedure for estimating the damping associated with a given 

mode is very similar to the procedure described above for adjusting simultaneously 

the parameters for all modes. It involves a sensitivity matrix and a vector of residuals 

but there is only one single parameter at a time being adjusted in this present case. 

Figure 4-16 shows the error (square of residuals) vs. the log of damping factor. 

 

 

Figure 4-16 : Error vs. Log of damping factor 

 

The reconstructed modal peaks which are shown in Figure 4-17 can be calculated 

from equation (4.29). The errors between the original and reconstructed modal peaks 

can be calculated from the sum of squares of the residual    which is 

( ( )) 1.36 -005sum sqrt eR . 
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Figure 4-17 : Reconstructed modal peaks 

 

4.5 Modes of vibration 

Table 4-1 shows experimental results (natural frequencies and mode shapes) which 

have been extracted at each modal peak. The range of frequency has been chosen 

between 25-175 Hz. Figure 4-18 - Figure 4-30 shows that most of the modes in this 

range are wing modes. The wing first mode of vibration occurs at 29.96 Hz, and the 

horizontal tail first mode of vibration happens at 92.01 Hz as shown in Figure 4-23, 

Figure 4-24 and Figure 4-26. Figure 4-28 shows that fuselage first mode of vibration 

occurs at 121.98 Hz, that. The mode of vibration of the wing tips occurs at 107.7 Hz. 
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Mode no. Natural Freq. HZ Mode of Vibration 

1 29.96 Wing anti-symmetric first mode of vibration. 

2 35.88 Wing torsion anti-symmetric. 

3 37.32 
Wing torsion symmetric and wing tips anti-symmetric first 

mode. 

4 45.46 Wing symmetric first mode of vibration. 

5 50.46 Wing second mode of vibration and torsion. 

6 56.41 
Wing anti-symmetric second mode of vibration and 

horizontal tail first mode. 

7 57.47 Wing second anti-symmetric mode of vibration. 

8 57.90 
Wing anti-symmetric second mode of vibration and wing 

tips first mode. 

9 92.01 
Wing third mode of vibration and horizontal tail anti-

symmetric first bending  

10 107.70 Wing tips first bending anti-symmetric. 

11 121.98 
Wing anti-symmetric third mode of vibration and Fuselage 

first mode of vibration. 

12 134.68 Wing third mode of vibration symmetric. 

13 140.48 
Wing third mode of vibration anti-symmetric and fuselage 

first mode. 

Table 4-1 : Experimental natural frequencies and extracted modes 

 

4.6 Comparison of modal data 

Comparisons of experimental data from GVT, analytical data from FE and 

GERTEUR published data in reference [20] are shown in Table 4-2. The measured 

results are compared with the computed results obtained from the finite element 

analysis in the previous chapter. Table 4-2 shows the percentage errors between the 

measured data and the computed data. The maximum errors shown in the table is -

12.23 % at mode 9. 

 



____________________________________________________________________ 

 

136 

 

These discrepancies may happen due to using incorrect data in the FE model. The 

material properties used in finite element analysis might cause some errors and do 

not include damping. The experimental procedure used may also cause some errors. 

For example, simulating the aircraft structure to simulate free-free condition may 

cause some changes in the frequency. 

 

The measured results also have been compared with experimental data for 

GARTEUR group [6, 20]. The measured frequency responses were differing slightly 

than from GARTEUR group structure. There are some reasons to identify the cause 

of these discrepancies. The modal testing has not been carried out on the same 

GARTEUR group structure. The GARTEUR group structure [20] weight is 44kg. 

The different weight between two structures may cause some difference in 

frequencies. Modal testing has been done using a single output (Accelerometer) 

whereas 24 reference accelerometer locations were used. The way of suspension of 

the structure may cause some discrepancies. 
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Mode no. 

Comparison of natural frequency for GARTEUR-like aircraft structure 

Exp. F.E. % Exp. Publications % 

1 29.96 29.98 -0.07 29.96 - - 

2 - - - - 34.88 - 

3 35.88 34.76 3.12 35.88 35.36 1.45 

4 37.32 38.41 -2.92 37.32 36.71 1.65 

5 45.46 48.57 -6.84 45.46 50.09 -10.19 

6 50.46 51.82 -2.69 50.46 50.72 -0.52 

7 56.41 56.9 -0.87 56.41 56.44 -0.05 

8 57.47 60.40 -5.10 57.47 65.14 -13.35 

9 57.90 64.98 -12.23 57.90 69.64 -20.28 

10 92.01 88.89 3.39 92.01 - - 

11 107.70 107.50 0.19 107.70 105.47 2.07 

12 121.98 117.50 3.67 121.98 -  

13 134.68 136.49 -1.34 134.68 134.68 0 

14 140.48 147.07 -4.69 140.48 145.87 -3.84 

Table 4-2 : Comparison of modal data from different tests 

 

4.7 Conclusions 

This chapter has identified the structural dynamic characteristics for GARTEUR-like 

aircraft structure. The experimental modal analysis was carried out on a physical 

implementation of the GARTEUR-like aircraft structure. This Chapter presented a 

method to assure that modal properties were identified from a single column of 

frequency response. The presented method focused on fitting the modal peak one by 

one. The modal properties: natural frequency and modal damping ratio have been 

identified for each single mode of the vibrating system. The method overcomes the 

difficulty of conventional methods that require a series of measured FRFs at different 

points of excitation. 



____________________________________________________________________ 

 

138 

 

The comparison between different results in Table 4-2 shows that the experimental 

results obtained from GVT do not match exactly the calculated results obtained from 

the finite element model. These discrepancies between the measured and computed 

data can be assessed. The following chapter presents methods to calculate the rate of 

change of eigenvalues and eigenvectors. 
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Figure 4-18 : Mode (1) Freq. 29.96 Hz 

 

Figure 4-19 : Mode (2) Freq. 35.88 Hz 

 

Figure 4-20 : Mode (3) Freq. 37.32 Hz 

 

Figure 4-21 : Mode (4) Freq. 45.46 Hz 

 

Figure 4-22 : Mode (5) Freq. 50.46 Hz 

 

Figure 4-23 : Mode (6) Freq. 56.41 Hz 

 

Figure 4-24 : Mode (7) Freq. 57.47 Hz 

 

Figure 4-25 : Mode (8) Freq. 57.90 Hz 
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Figure 4-26 : Mode (9) Freq. 92.01 Hz 

 

Figure 4-27 : Mode (10) Freq. 107.70 Hz 

 

Figure 4-28 : Mode (11) Freq. 121.98 Hz 

 

Figure 4-29 : Mode (12) Freq. 134.68 Hz 

 

Figure 4-30 : Mode (13) Freq. 140.48 Hz 
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CHAPTER  5. Eigenvalue and Eigenvector 

Derivatives 

The discrepancies between experimental results and analytical results in previous 

chapters can be estimated. This chapter investigates methods to calculate eigenvalue 

and eigenvector derivatives. These methods generalise the ideas implemented for 

undamped systems to generally damped systems using structure preserving 

equivalencies SPEs. 

 

Dynamic analysis is required for design, modification and verification of the 

complex structures to satisfy dynamic response restrictions. It is common to compare 

the measured modal information  , ,m Lm RmΛ Φ Φ -eigenvalues and their corresponding 

left and right eigenvectors-with the predicted modal information  , ,a La RaΛ Φ Φ . 

Changes in the system matrices  , ,K D M  cause direct effects in the dynamic 

properties. The system matrices can be represented as 

   1 1 2 2

1

....

p

o p p o j j

j

      K θ K θ K θ K θ K K θ K  (5.1) 

   1 1 2 2

1

....

p

o p p o j j

j

      M θ M θ M θ M θ M M θ M  (5.2) 

   1 1 2 2

1

....

p

o p p o j j

j

      D θ D θ D θ D θ D D θ D  (5.3) 

The variables  1 2, ,...., pθ θ θ  can be assembled into a vector θ  of unknown or 

uncertainty parameters. The subscript “p” is the number of entries in the vector   

where 23p n . Matching the discrepancies between the physical and computed modal 
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information can be achieved by computing the sensitivity of this modal information 

to changes in the parameters. This can be done either numerically or analytically 

 T i
i oi


 


  


θ

θ
 (5.4) 

    ,   Ri Li
Ri Roi Li Loi

 
     

 
θ θ

θ θ

 
     (5.5) 

 1 2, ,...., p    θ θ θ θ  is a vector of changes in the unknown parameters. i

θ
  is a 

vector which represents the derivative of the i
th

 eigenvalue i  with respect to each 

unknown parameter in the vector θ . Li

θ


 and Ri

θ


 are matrices which denote the 

derivative of the i
th

 column of the left and right eigenvectors with respect to each 

unknown parameter in the vector θ . 

 

There is a substantial literature on eigenvalue and eigenvector derivatives for 

undamped systems e.g [97-103]. The aim of this chapter is to extend the idea for 

eigenvalue and eigenvector derivatives for undamped systems to the case of 

eigenvalue and eigenvector derivatives of general second order system using 

structure preserving equivalences. This approach resolves the completely artificial 

phenomenon that the eigenvalue and eigenvector derivatives become “undefined” at 

instants when modification of, say, a damping parameter causes a pair of complex 

eigenvalues to turn into a pair of real eigenvalues or vice-versa. It also has the 

advantage of being applicable to cases where any one or more of the system matrices 

are singular. 

 

In this chapter, section 5.1 is devoted to outlining existing methods for eigenvalue 

and eigenvector derivatives. Section 5.2 deals with eigenvalue and eigenvector 
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derivatives for undamped systems. Section 5.3 shows very concisely how (in effect) 

eigenvalue derivatives may be obtained. Instead of referring to the eigenvalues 

directly, however, the diagonalised system is discussed. Section 5.5 shows concisely 

how the equivalent of eigenvector derivatives may be obtained. Instead of referring 

to the eigenvectors explicitly, the diagonalising transformations are needed. In 

section 5.7, the structure preserving equivalences (SPEs) are described. Section 5.8 

extends the logic of Section 5.3 to finding the derivatives of the diagonalised system 

in the context of damped systems. Section 5.8.1 shows how eigenvalues and their 

derivatives can be computed from the values and derivatives of the diagonalised 

system. Section 5.9 extends the logic of Section 5.5 to finding the derivatives of the 

diagonalising transformation in the context of damped systems. Section 5.9.1 shows 

how the eigenvectors and their derivatives can be extracted from the diagonalising 

transformation and their derivatives. 

 

The subsequent section contains four examples. In the first example, there is a pair of 

repeated real roots and the derivatives of two of the eigenvalues and their associated 

eigenvectors are undefined. This example is generated by adjusting a damping 

parameter such that at one specific value (corresponding to 0   where   is a scalar 

in vector of parameters  ), higher values result in two distinct real roots and lower 

values result in a complex conjugate pair of eigenvalues. In the second example, the 

mass matrix is singular at 0  . The conventional concepts of eigenvalue derivatives 

encounter difficulty in such cases as the rate of change of infinity is difficult to 

comprehend. The third example is a case of an undamped system having non-

symmetric mass and stiffness matrices where some of the eigenvalues of the system 

are complex. This example shows that whilst eigenvalue and eigenvector derivatives 
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can still be “made to work”, the approach to these derivatives through the SPEs is far 

more elegant and involves only real-valued quantities. The fourth and final example 

addresses a system of recognisable structure having both singular mass matrix and a 

pair of identical real roots. 

 

5.1 Eigenvalue and eigenvector derivative methods 

There is already a substantial literature on eigenvalue and eigenvector derivatives for 

undamped systems. Fox and Kapoor [97] provided a method applicable to symmetric 

undamped systems to calculate i

θ
 and i

θ


 in equations (5.4) and (5.5) respectively. 

The eigenvalue i  with corresponding eigenvector  i  satisfy the following 

equations 

   0i i K M   (5.6) 

   0T
i i K M  (5.7) 

The derivative of the eigenvalue i  can be found from differentiating equation (5.6) 

with respect to θ  which gives 

   i i
i i i


 

   
     

    

K M
K M M

θ θ θ θ


  (5.8) 

and pre-multiplication equation (5.8) by T
i gives 

  T Ti i
i i i i i


 

   
     

    

K M
K M M

θ θ θ θ


    (5.9) 

The left hand side of equation (5.9) vanishes by virtue of equation (5.7). The 

eigenvalue derivatives can be expressed in the following form 

 T Ti
i i i i i




   
  

   

K M
M

θ θθ
     (5.10) 
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Equation (2.9) in Chapter 2 expressed the mass normalisation condition that 

 1T
i i M   (5.11) 

The eigenvalue derivatives for eigenvector mass normalisation can be written as 

 Ti
i i i




   
  

   

K M

θ θ θ
   (5.12) 

Equation (5.12) involves the i
th

 eigenvalues and the corresponding eigenvector of 

interest. The derivative of the i
th

 eigenvector can be obtained from equation (5.8) 

which can be rewritten as 

 
 

                      

Ti
i i i i i i

i

  
       

               



K M M K
K M M

θ θ θ θ θ

F


  

 (5.13) 

Since  iK M  is a singular matrix of rank  1n  , an extra equation is needed in 

addition to equation (5.8) to calculate i

θ


. Differentiating equation (5.11) with 

respect to θ  yields 

 T Ti
i i i

 
 

 

M
M

θ θ


    (5.14) 

Together equations (5.8) and (5.14) comprise  1n n   matrix. 

 
 

 i

i i
iT

Ti
i




  
       

    
 

 

K M

K M θ

θ MM

θ







 (5.15) 

 Pre-multiplying equation (5.15) by 
 

T

i

T
i

 
 
  

K M

M
yields 

     
 1

2
T T iT T T Ti

i i i i i i i i


  

                  

K M M
K M K M M M K M M

θ θ θ


    (5.16) 

 



____________________________________________________________________ 

 

146 

 

Fox and Kapoor [97] proposed another expression to solve equation (5.8). The 

derivative of the i
th

 eigenvector can be expressed as a linear combination of the 

complete set of vectors of Φ . 

 
1

n
i

k k

k

c




 


 Φc

θ


  (5.17) 

Substitute equation (5.17) into equation (5.8) and pre-multiply by T
k  to calculate kc  

  T T i
k i k k k i ic


 

  
     

   

K M
K M M

θ θ θ
     (5.18) 

 The general scalar kc  can be written in the form 

            T Ti
k k i i k i kc k i


 

  
      

   

K M
M K M

θ θ θ
     (5.19) 

For eigenvectors mass normalised, the kc  can be rewritten 

           T i
k k i i i kc k i


  

  
     

   

K M
M

θ θ θ
   (5.20) 

To find ic  we apply the mass normalisation condition equation (5.14) 

 2         T
i i ic k i






M

θ
    (5.21) 

Calculating the coefficients in equation (5.17) using equations (5.20) and (5.21) 

requires the complete set of eigenvectors but does not involve inverting any matrix. 

 

These expressions have been developed by numerous authors [98-103] to determine 

the eigenvalue and eigenvector derivatives for more general non-symmetric 

undamped systems. For large eigenvalue problems, the calculation of eigenvalue 

derivatives is simple and straightforward, whereas the calculation of eigenvector 

derivatives is more complicated. 
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Nelson [104] simplified the procedure for calculating eigenvector derivatives of 

symmetric and non-symmetric undamped systems so that only the eigenvalue and 

eigenvector under consideration are required. The procedure of this method is to 

modify the eigenvalue problem matrix  iK M  of rank  1n   in equation (5.8) to 

matrix of rank n . The method shows that right and left eigenvector derivatives 

,Ri Li  
 
  θ θ

 
 have a unique expression in terms of  1n   eigenvectors of the system, 

except the i
th

 eigenvector 

 
1,

n
Ri

k Rk Ri Ri Ri Ri Ri

k k i

c c c

 


   


 v

θ


    (5.22) 

 
1,

n
Li

k Lk Li Li Li Li Li

k k i

c c c

 


   


 v

θ


    (5.23) 

 ,Ri Liv v  are vectors related to the right and left eigenvectors. The solution of the 

vectors  ,Ri Liv v  in equations (5.22) and (5.23) can be computed by partitioning the 

matrix on the left hand side of equation (5.13). This partition depends on the location 

of the k
th

 pivotal components  ,Rk Lkv v  of the vectors  ,Ri Liv v .  The k
th

 location is 

where the inner product of Rk  and Lk  is maximum -  Rk Lk    is maximum  . The 

complete solution for right and left eigenvector derivatives ,Ri Li  
 
  θ θ

 
 is 

 

1 1

0

R R

Ri
Ri Rk

Rn Rn

c

  
  
  

    
    

    
   
   
   

v

θ

v








 (5.24) 
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1 1

0

L L

Li
Li Lk

Ln Ln

c

  
  
  

    
    

    
   
   
   

v

θ

v








 (5.25) 

 The superscript “ ” is used to indicate the n entries of the vectors Riv and Ri  and 

the k
th

 pivotal components  ,Rk Lkv v  of vectors  ,Ri Liv v  are zero. The entries in the 

k
th

 row and column of the eigenvalue problem matrix in equation (5.13) are zero and 

the location  ,k k  of that matrix is 1. 

 

   

   

1 111 11 1 1

1 1

0

0

0 0 1 0 0 0

0

0

R Ri n i n

Rk

n i n nn i nn RnRn

 

 

     
    
    
        

     
     
          

vK M K M f

v

K M K M fv

 (5.26) 

The vector Riv  can be solved directly from equation (5.26) since the matrix on the 

left hand side of equation (5.26) is of rank n. The Ric  is calculated using the norm for 

Ri  that can be put in the form 

 1T
Ri Ri M   (5.27) 

Differentiating equation (5.27) with respect to θ  yields 

 2 0H HRi
Ri Ri RiRe

  
 

  

M
M


   

 
 (5.28) 

Re  is the real part of a complex number. Substitute equation (5.22) into equation 

(5.28) to calculate Ric  yields 

   0.5H H
Ri Ri Ri Ri Ric Re

 
   

 

M
Mv  


 (5.29) 

The left eigenvector derivatives Li

θ


 can be found by differentiating equation (2.4) 

with respect to θ  and then following the same procedure. 
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Most of the existing methods explored eigenvalue and eigenvector derivatives of 

undamped eigenvalue problems. These methods cannot be applied directly for 

repeated eigenvalues. Many methods [114-118] are proposed for calculating 

eigenvector derivatives with repeated eigenvalues.  All methods suggested by 

references [114-118] have difficulties to define the exact eigenvector derivatives. 

Baisheng Wu et al. [119] presented a method for computing eigenvector derivatives 

with repeated eigenvalues for real symmetric eigensystems. The solution is required 

to be mass orthogonal with respect to repeated modes. The coefficient matrices are 

non-singular. 

 

In this chapter, existing methods have been developed and generalised to determine 

eigenvalue and eigenvector derivatives for undamped systems. The solution required 

knowledge of the eigenvalues and eigenvectors under consideration. Real 

diagonalised system, diagonalising transformations and their derivatives have been 

used in order to calculate the eigenvalue and eigenvector derivatives. These methods 

overcome the difficulty that eigenvalue derivatives become undefined.  The ideas for 

undamped system are extended for generally damped systems to the concept of 

structure preserving equivalences. For the purpose of this chapter, differentiation is 

chosen to be with respect to  , where   is a singular scalar parameter of the 

uncertain parameters vector θ .  
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5.2 Eigenvalue and eigenvector derivatives for 

undamped systems 

This section provides an approach based on the above existing methods but takes a 

slightly more general view of the concept of eigenvalues based on the homogeneous 

coordinates approach of [120]. The purpose of this section is to provide a framework 

for undamped systems which can be extended naturally to damped systems. Aside 

from this purpose, the only added value in this section is that it caters naturally for 

the case where the mass matrix may be singular whereas the aforementioned 

methods do not. 

 

Non-symmetric undamped systems  ,K M  are considered in this section. The 

stiffness matrix is K  and the mass matrix is M . It is possible that such systems can 

produce complex eigenvalues and associated complex eigenvectors. The treatment of 

this section can be applied to such cases but there may be issues of numerical 

stability in such cases. The intention for the methods of this section is that they 

would only ever be applied to the case of real eigenvalues. Where an undamped 

system has complex eigenvalues, the natural course is to treat it as we propose that 

all damped systems should be treated (sections 5.8 and 5.9). 

 

In place of the concept of matrices of left and right eigenvectors, we consider 

transformation matrices  ,L RT T  which diagonalise the system according to the 

following equation 

 T
L R DT KT K  (5.30) 

 T
L R DT MT M  (5.31) 
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 T
L R DT DT D  (5.32) 

In this section, the eigenvalue and eigenvector derivatives are calculated based on the 

diagonalised system and diagonalising transformations using equations (5.30) and 

(5.31) which describe the undamped second order problem  2det 0 K M . 

Abuazoum and Garvey [121] considered the eigenvalue and eigenvector derivatives 

of the first order problem  det 0 K D  and the method is completely analogous. 

 

The eigenvalues of this system represent squares of natural frequencies in rad/s. The 

following general definitions will be used  

   0i i Rim k K M   (5.33) 

   0T
Li i im k K M  (5.34) 

where  ,i im k  together represent the eigenvalue  :  /i ik m   and { , }Li Ri    represent 

the corresponding left and right eigenvectors, respectively. For consistency with later 

sections, we place all emphasis on the pair  ,i im k  and no emphasis on the eigenvalue 

itself. In most instances, we could insist that  1im  . This corresponds to the familiar 

“mass-normalisation”. However a more generally-applicable constraint is that  

 2 2 1         i ik m for all i   (5.35) 

The definition of the eigenvalues in equations (5.33) and (5.34) can be referred to as 

homogeneous coordinates [120] and the same arbitrary normalisation of each pair 

 ,i im k  is used there. This formulation normalisation admits the possibility that either 

0im   or 0ik   and it is possible to express  ,i im k , respectively, as the cosine and 

sine of a single scalar angle but there is no particular value in pursuing this 

expression here.  
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 The following orthogonality relationships are easily proven 

 0          T
Li Rj i j i jm k k m  K   (5.36) 

 0          .T
Li Rj i j i jm k k m  M   (5.37) 

In this section, we will consider that the eigenvalues are all distinct. In later sections 

dealing with damped systems, this condition will be relaxed to the milder condition 

that no pairs of eigenvalues are repeated. Collecting the left and right eigenvectors in 

the same order produces  

  1 2 ..R R R Rn        (5.38) 

 1 2 ..L L L Ln        (5.39) 

and both matrices,  ,L RΦ Φ , will be invertible since the eigenvalues are distinct. 

Then diagonal matrices,  ,D DK M  are related to the original stiffness and mass 

matrices  ,o oK M   through the conventional equivalences  

 T
D L RK K   (5.40) 

 T
D L RM M   (5.41) 

Note that the normalization of equation (5.35) controls the scaling of  T
L RΦ KΦ  and 

 T
L RΦ MΦ . The i

th
 diagonal entries of  ,D DK M  are  ,i ik m , respectively. We see 

that the eigenvectors define a diagonalising transformation which maps the original 

system matrices  ,K M  onto the diagonal matrices  ,D DK M . 
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5.3 Rates of change of the diagonalised matrices for 

undamped systems 

Differentiate equations (5.40) and (5.41) with respect to some scalar parameter,  . 

The dot notation employed above the matrices here and henceforth indicates a 

derivative with respect to  .  

 T T T
D L R L R L R  K K K K       (5.42) 

 T T T
D L R L R L R  M M M M       (5.43) 

The derivatives of each pair,  ,i ik m , must be determined in isolation. Throughout 

this paper, we use the notation, ie , to denote the i
th

 column of the (n×n) identity 

matrix and we will denote by iS  the matrix containing the remaining (n-1) columns. 

Pre-multiplying equations (5.42) and (5.43) by T
ie  and post-multiplying them by ie  

yields 

 T T T
i Li Ri Li Ri Li Rik   K K K       (5.44) 

 T T T
i Li Ri Li Ri Li Rim   M M M       (5.45) 

Multiplying equation (5.44) by im , multiplying equation (5.45) by ik  and subtracting 

the latter result from the former gives 

  1 1
T

i i i i Li i i Rim k k m m k  K M   (5.46) 

Equations (5.36) and (5.37) were invoked to cancel terms from equation (5.46) and 

equations (5.1) and (5.3) were also applied to replace  ,K M  by  1 1,K M , 

respectively. Evidently, equation (5.46) is insufficient to determine  ,i ik m  uniquely. 

The normalisation information of equation (5.35) provides the necessary second 

equation 

 0i i i ik k m m   (5.47) 
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Combining equations (5.46) and (5.47) yields 

 
0

i i i

i i i

m k k

k m m

    
    

      


 (5.48) 

where the diamond symbol,  , is used here (and later) to represent a known scalar 

quantity. In the present case, it happens to be   1 1
T

Li i i Rim kK M  . Note that the 

(2×2) matrix of Eq. (5.48) is an orthogonal matrix. 

 

5.4 Orthogonal transformation matrix - 

Householder Reflection 

Any orthogonal transformation in the plane or three dimensional space is a rotation. 

It is possibly combined with a reflection in a straight line or a plane [40]. 

Chandruptla and Constans [122] presented a technical note about the use of 

Householder reflection in place of Givens rotation in matrix decomposition. The 

Householder reflection is used to decompose a fully populated matrix into bidiagonal 

form. The Householder matrix is defined as  

  2 T Q I uu  (5.49) 

where u  is a unit vector defining the direction of a reflection. In two dimensions, if 

T

i j
   u u u  and for given a matrix Φ , 

 
ii ik

i k
ji jk

 
     

 
Φ

 
 

 
 (5.50) 

The matrix Q  can be written as 

 
2

, 2

1 2 2

2 1 2

i i j

i j

i j j

  
 
   

u u u
Q

u u u
 (5.51) 



____________________________________________________________________ 

 

155 

 

Since the vector u  is a unit vector,  2 2 1i j u u  and 
22

1 2 2 1i i j
        u u u . Then, the 

matrix ,i jQ  is proposed to be 

 ,i j

c s

s c

 
  

 
Q  (5.52) 

Where 2 2 1c s  , the c and s are chosen such that 

 ,
0

ii i
i j i

ji

c s

s c

        
     

       
Q

 



 (5.53) 

Therefore, 2 2,     ,     
jiii

i ii ji
i i

c s   


  
 

. The symbol  .  denotes the Euclidean 

norm. 

 ,

1... ,

 
ik jkik

i j k
jk ik jk

k n k i

c sc s

s c s c
 

     
     

        

Q
 


  

 (5.54) 

 

5.5 Rates of change of the diagonalising 

transformation for undamped system 

Applying equations (5.33) and (5.34) for all of the eigenvectors simultaneously 

results in  

   0R D R D KΦ M MΦ K  (5.55) 

   0T T
D L D L M Φ K K Φ M  (5.56) 

Differentiating equation (5.55) with respect to  yields 

    1 1R D R D R D R D R D R D    KΦ M MΦ K MΦ K M Φ K K Φ M KΦ M  (5.57) 

The quantities on the right hand side of equation (5.57) are known. Note that because 

 ,D DK M  are both diagonal, column i of the left hand side involves only the 

eigenvector, Ri . Thus for the general i
th

 right eigenvector, 
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      1 1i i Ri i i i i Rim k k k m m     
 

K M M M K K   (5.58) 

Similarly for the left eigenvector, by differentiating equation (5.56) and taking row i 

we can obtain 

      1 1
T T

Li i i Li i i i im k k k m m     
 

K M M M K K   (5.59) 

Now,  i im kK M  has one zero singular value (recall our assumption of no repeated 

eigenvalues) and hence the solution of equations (5.58) and (5.59) is not simply a 

matter of finding the inverse of this matrix. In fact, these equations each reveal the 

fundamental truth that it is only possible to know  1n   independent facts about the 

rate of change of any one eigenvector (either left or right). The reason for the 

remaining unknown is that even when the system is not changing, any multiple of Ri  

can be added onto Ri  itself without compromising its legitimacy as a right 

eigenvector. The same is true for Li . Nelson [104] showed that by writing the 

eigenvector derivative as a linear combination of the eigenvectors, it becomes clear 

what can be known about the eigenvector derivative and what cannot. We adopt a 

more direct (and more efficient) approach here. 

 

Begin by calculating orthogonal matrices,  ,Li RiQ Q  such that  

 Li Li i LiQ e  (5.60) 

 Ri Ri i RiQ e  (5.61) 

where  ,Li Ri   are arbitrary real scalars. Such matrices  ,Li RiQ Q  are easily achieved 

as Householder reflections [123] which, in addition to being orthogonal, have the 

very attractive properties of being symmetric and low-rank modifications of the 
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identity. Recalling that iS  represents the (n×n) identity matrix from which the i
th

 

column has been removed, it is clear that 

  0T T
i Li Li i Ri Ri S Q S Q   (5.62) 

Now, write the two desired vector derivatives as 

  T
Li Li i Li Li Li Q S g   (5.63) 

  T
Ri Ri i Ri Ri Ri Q S g   (5.64) 

The vectors  ,Li Rig g  each have  1n   entries and these can be computed directly 

from equations (5.58) and (5.59), respectively. The transpose symbols in equations 

(5.63) and (5.64) are not necessary if  ,Li RiQ Q  have been calculated as Householder 

reflections but we allow that  ,Li RiQ Q  are not necessarily Householder reflections. 

Many other options are also available. 

 

The Householder reflection matrices have the form as in equation (5.49) 

    2     ,    2T T
Li L L Ri R R   Q I u u Q I u u  (5.65) 

Vectors  ,L Ru u  are unit vectors where 1T
L L L u u u  and 1T

R R R u u u . These 

vectors can be calculated from eigenvectors  Li Ri 
 as 

 

    ,    

   ,    

L
L Li i L L

L

R
R Ri i R R

R





  

  

u
u e u

u

u
u e u

u





 (5.66) 

where  ,L R   can be calculated from the following expression 

     ,    
Li Ri

Li Ri
i i

  
e e

 
 (5.67) 
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To obtain Rig , substitute for Ri
 
in equation (5.58). The term involving the unknown 

scalar, Ri , vanishes naturally and the result is a set of n consistent equations with 

 1n   unknowns. The most stable solution of these equations is achieved through use 

of the left pseudo-inverse. To obtain Lig , substitute for Li in equation (5.59). The 

term involving the unknown scalar, Li , vanishes naturally and the result is a set of n 

consistent equations with  1n   unknowns. The most stable solution of these 

equations is achieved through use of the right pseudo-inverse. 

 

Having evaluated vectors  ,Li Rig g , it remains only to set values for the unknown 

scalars  ,Li Ri  . The normalisation of equation (5.35) provides one equation 

governing these since T
Li Ri ikK   and T

Li Ri imM  . Thus 

 
   1 1 0T T T T T T

i Li Ri Li Ri Li Ri i Li Ri Li Ri Li Rik m     K K K M M M             (5.68) 

 

Substituting for  ,Li Ri   using equations (5.63) and (5.64) transforms equation (5.68) 

into a linear equation in  ,Li Ri  . Obviously, one linear equation is not sufficient to 

determine two unknowns and a further arbitrary decision must be made. For 

symmetric undamped systems, the left and right eigenvectors can be forced to be 

identical and in this case, Li Ri  . In more general cases, a reasonable strategy is to 

maintain the following condition 

      T T
Li Li Ri Ri for all i     (5.69) 

and this clearly leads to a second linear equation in  ,Li Ri  . The problem of 

determining the eigenvector derivatives is now solved. Moreover, notice that in order 



____________________________________________________________________ 

 

159 

 

to determine the derivatives of the i
th

 left and right eigenvectors, it is not necessary to 

know any other eigenvectors.  

 

5.6 Eigenvalues and eigenvectors for damped 

systems 

The governing equation of motion of a general second order damped system is 

   Mq Dq Kq f  (5.70) 

where  , ,K D M  are the system matrices which satisfy the following equations 

  2 =0i i Ri  M D K   (5.71) 

  2 0T
Li i i   M D K  (5.72) 

Defining  Li Ri   as the i
th

 left and right eigenvectors, where  1,2,....,i n  

 

In state space, the  2 2n n  left and right eigenvector matrices  ,L RΦ Φ  diagonalise 

the Lancaster augmented matrices (LAM‟s)  , ,K D M . The eigenvalues Λ  might be 

complex or real or mixed (real and complex). If all eigenvalues are complex 

 * * *
1 2 1 2, ,...., , , ,...., ,n ndiag      Λ  

 
* *

* * ** * * *

T

L L R R

L L R R

        
         
              

ΛΨ 0 Ω 0Φ Φ Φ Φ0 K

K D 0 Λ Ψ 0 ΩΛΦ Λ Φ ΛΦ Λ Φ
 (5.73) 

 
* *

** * * *

T

L L R R

L L R R

      
      

           

Ψ 0Φ Φ Φ ΦK 0

0 M 0 ΨΛΦ Λ Φ ΛΦ Λ Φ
 (5.74) 

 
* *

* * ** * * *

T

L L R R

L L R R

         
         

               

Ψ Λ 0 Γ 0Φ Φ Φ ΦD M

M 0 0 Ψ Λ 0 ΓΛΦ Λ Φ ΛΦ Λ Φ
 (5.75) 
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Equations (5.73), (5.74) and (5.75) can be written in general form as 

 T
L R Φ MΦ Ω  (5.76) 

 T
L R Φ DΦ Ψ  (5.77) 

 T
L R Φ KΦ Γ  (5.78) 

where  , ,Ω Ψ Γ  are diagonal matrices  1 2, ,...., ndiag   Ω ,  1 2, ,...., ndiag   Ψ and 

 1 2, ,...., ndiag   Γ . If the left and right matrices of complete eigenvectors  ,L RΦ Φ  

are normalised using equation (5.74) and setting Ψ I , the values of  , ,Ω Ψ Γ  are 

still diagonal and can be expressed as  1, , 
Λ I Λ  respectively. 

 

We will select two columns of eigenvectors at a time: the i
th

 column and the complex 

conjugate of the i
th

 column. Equations (5.73), (5.74) and (5.75) can be written as 

 
* *

* * ** * * *
:

T

i i iLi Li Ri Ri

i i ii Li i Li i Ri i Ri

 

     

        
         
              

0 00 K

K D 0 0

   

   
 (5.79) 

 
* *

** * * *

T

iLi Li Ri Ri

ii Li i Li i Ri i Ri



   

      
      

           

0K 0

0 M 0

   

   
 (5.80) 

 
* *

* * ** * * *
:

T

i i iLi Li Ri Ri

i i ii Li i Li i Ri i Ri

  

     

         
         

               

0 0D M

M 0 0 0

   

   
 (5.81) 

 T
Li Ri iM   (5.82) 

 T
Li Ri iD   (5.83) 

 T
Li Ri iK   (5.84) 
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5.7 Diagonalising structure-preserving equivalences 

(DSPEs) 

Since the eigenvalues of system  , ,K D M  are most usually calculated as the roots of  

  det 0 D K  (5.85) 

If these roots are all distinct, then it is always possible to find matrices  ,L RΦ Φ  such 

that  T
L RΦ DΦ  and  T

L RΦ KΦ  are diagonal. In all such cases, it is always possible to 

find some SPEs for the system such that  , ,N N NK D M  of equations (2.70), (2.71) 

and (2.72) are all diagonal. An algorithmic approach to determining diagonalising 

 ,L RT T  from  ,L RΦ Φ  is outlined in [44, 45]. In [46], a process is described by 

which the matrices  ,L RT T  are developed from a numerical solution of the 

differential equations outlined in [124]. A major motivation for this chapter is that 

even when it is not possible to find matrices  ,L RΦ Φ  such that  T
L o RΦ D Φ  and 

 T
L o RΦ K Φ  are diagonal, it may still be possible to determine diagonalising  ,L RT T . 

This happens particularly where there are pairs of repeated real roots. 

 

The diagonalising SPEs are introduced in Chapter 2 section (2.6.1). The 

diagonalising transformations for the general damping system  , ,K D M  are 

 
T

L L R R D

L L R R D D

      
      

      

W X W X 0 K0 K

Y Z Y Z K DK D
 (5.86) 

 
T

L L R R D

L L R R D

      
      

      

W X W X K 0K 0

Y Z Y Z 0 M0 M
 (5.87) 

 
T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z M 0M 0
 (5.88) 
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or equivalently 

 T
L R DT MT M  (5.89) 

 T
L R DT DT D  (5.90) 

 T
L R DT KT K  (5.91) 

where  , ,D D DK D M  are block diagonal matrices and  , ,D D DK D M  represent the 

LAMs for the system whose coefficient matrices are the diagonal matrices 

 , ,D D DK D M  

 

 

 

 

1 2

1 2

1 2

, ,....,

, ,....,

, ,....,

D n

D n

D n

diag k k k

diag d d d

diag m m m







K

D

M

 (5.92) 

The following serve as a general definition for a pair of eigenvalues of a second-

order system and the associated pairs of left and right eigenvectors.  

 
0

0

Ri Ri
i i i

Ri Ri

k d m
          

            
         

w x-D -M K 0 0 K

y z-M 0 0 -M K D
 (5.93) 

 
0

0

T

Li Li
i i i

Li Li

k d m
          

            
          

w x -D -M K 0 0 K

y z -M 0 0 -M K D
 (5.94) 

more concisely 

   0i i i Rik d m  K D M t  (5.95) 

   0
T

Li i i ik d m  t K D M  (5.96) 

Here, Rit  is a matrix of dimension (2n×2) whereas Riw  is a column-vector of size n 

and ik  is a (2×2) matrix whilst ik  is a scalar.  ,Li Rit t  will be partitioned as follows 

 Li Li
Li

Li Li

 
  
 

w x
t

y z
 (5.97) 

 Ri Ri
Ri

Ri Ri

 
  
 

w x
t

y z
 (5.98) 
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These partitions are related to the full matrices of the diagonalising transformation 

through  

    1 2 1 2..    ,   ..R R R RN L L L LN W w w w W w w w  (5.99) 

    1 2 1 2..    ,   ..R R R RN L L L LN X x x x X x x x  (5.100) 

    1 2 1 2..    ,   ..R R R RN L L L LN Y y w w Y y y y  (5.101) 

    1 2 1 2..    ,   ..R R R RN L L L LN Z z z z Z z z z  (5.102) 

and the matrices  , , , , , , ,L L L L R R R RW X Y Z W X Y Z  collectively form  ,L RT T  as 

equations (5.86)-(5.88) indicate. It is evident that  ,Li Rit t  hold the i
th

 and (n+i) 

columns of the left and right diagonalising transformations  ,L RT T  respectively. 

 L i LiT e t  (5.103) 

 R i RiT e t  (5.104) 

where 
ie  is a  2 2n  matrix which is defined as 

 i
i

i

 
  
 

e 0
e

0 e
 (5.105) 

Here, the notation ie  denotes the i
th

 column of the (n×n) identity matrix. Equations 

(5.86)-(5.88) can be written as 

 
0

T

Li Li Ri Ri i

Li Li Ri Ri i i

w x w x k

y z y z k d

      
      

      

0 K

K D
 (5.106) 

 
0

0

T

Li Li Ri Ri i

Li Li Ri Ri i

w x w x k

y z y z m

      
      

      

K 0

0 M
 (5.107) 

 
0

T

Li Li Ri Ri i i

Li Li Ri Ri i

w x w x d m

y z y z m

        
      

      

D M

M 0
 (5.108) 

Simplifying equations (5.106)-(5.108) as 

 T
Li Ri ikt Kt  (5.109) 



____________________________________________________________________ 

 

164 

 

 T
Li Ri idt Dt  (5.110) 

 T
Li Ri imt Mt  (5.111) 

These equations arise by post-multiplying each of equations (5.89)-(5.91) by 
ie and 

pre-multiplying each one by its transpose. The left and right diagonalising 

transformations  ,Li Rit t  satisfy equations (5.95) and (5.96) 

 

A new homogeneous coordinates definition for the eigenvalues and eigenvectors of a 

second-order system can be developed. Multiply both sides of equation (5.109) by ik

and multiply both sides of equation (5.110) by id  and multiply both sides of equation 

(5.111) by im  and then add the three equations. Observe that  

 
0 0 0 0

0 0 0 0

i i i i
i i i

i i i i

k k d m
m d k

k d m m

         
                    

 (5.112) 

or equivalently 

   0i i i i i im m d d k k    (5.113) 

It follows immediately that if  , ,i i ik d m  are the i
th

 diagonal entries of the diagonal 

matrices  , ,D D DK D M  respectively, then the matrix  i D i D i Dm d k M D K  must have 

(at least) two zero singular values. It then follows that if equations (5.89)-(5.91) 

apply and if  ,L RT T  are both invertible, then  i i im d k M D K  must also have (at 

least) two zero singular values. 
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5.8 Derivatives of diagonalised damped system 

The derivatives of the eigenvalues and eigenvectors of damped second-order systems 

provide additional challenges but there is obviously strong motivation for studying 

these. Cardani and Mantegazza [125] considered damping in the context of flutter 

problems and noted that the eigenvalues, eigenvectors and their derivatives become 

complex in general. Adhikari [126] derived exact expressions for the derivatives of 

complex eigenvalues and eigenvectors for systems having non-proportional viscous 

damping - avoiding the use of a state space representation of the equation of motion. 

Friswell and Adhikari [127] developed Nelson‟s method for symmetric non-

proportionally damped systems with complex modes. Adhikari and Friswell [128] 

developed expressions for the first and second derivatives of complex eigensolutions 

of general asymmetric nonconservative systems.  

 

In this section, we concentrate on the derivatives of three diagonal matrices, 

 , ,D D DK D M . In effect, we are finding the derivatives of the eigenvalues of the 

general second-order system. However, this approach does not suffer from the 

eigenvalue derivatives becoming undefined in the presence of a single pair of 

identical real roots and it does not have any restriction to non-infinite eigenvalues. 

Differentiate equations (5.89)-(5.91) to obtain: 

 
T T T

L R L R L R D  T MT T MT T MT M  (5.114) 

 
T T T

L R L R L R D  T DT T DT T DT D  (5.115) 

 
T T T

L R L R L R D  T KT T KT T KT K  (5.116) 
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Following a close parallel to the logic used in section 5.3, for some given i, multiply 

equation (5.114) by im , multiply equation (5.115) by id  and multiply equation 

(5.116) by ik . Adding the three resulting equations and pre- and post-multiplying by 

T

ie and 
ie , respectively, yields 

    T
Li i i i Ri i i i i i ik d m k k d d m m    t K D M t  (5.117) 

where the definitions of  , ,i i ik d m  are 

 
0 0

   ,      ,   
0 0

i i i i
i i i

i i i i

d m k k
k d m

m m k d

      
       

      
 (5.118) 

In determining equation (5.117), equations (5.95), (5.96), (5.103) and (5.104) were 

applied.  Now, since all quantities on the LHS of equation (5.117) are known along 

with  , ,i i ik d m , it is clear that there are four scalar equations in equation (5.117) 

involving the three unknowns  , ,i i ik d m . It is immediately obvious, by symmetry 

that, at most, only three scalar equations are independent. These three resulting 

equations can be rearranged to have the form: 

 

0

0

0

ii i

i i i

i i i

kd k

m k d

m d m

    
    

     
          







 (5.119) 

where, once again, the diamond symbol,  , is being used to indicate a known scalar 

quantity. The (3 × 3) matrix on the left hand side of equation (5.119) always has one 

zero singular value. The fact that  , ,i i ik d m  is not uniquely defined is consistent with 

the fact that the scaling of the diagonal entries themselves is not unique. We found 

something similar for the case of an undamped system. By choosing to set the scaling  

 2 2 2 1      i i ik d m for all i    (5.120) 

then equation (5.119) becomes 
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0

0

0

0

i i
i

i i
i

i i
i

i i i

d k
k

m k
d

m d
m

k d m

    
        
     
        






 (5.121) 

Rather than eliminate any one row from equation (5.119) when forming equation 

(5.121), it is recommended to leave four scalar equations in equation (5.121) and to 

solve this using the pseudo-inverse. The columns of the (4×3) matrix in equation 

(5.121) are mutually orthogonal and thus very stable solutions can be found for the 

three rates of change. 

 

5.8.1 Eigenvalues and their derivatives from diagonalised 

systems 

Eigenvalues and their derivatives can be calculated from  , ,i i ik d m  and their 

derivatives  , ,i i ik d m  using the following equation 

 2 0i i ik d m     (5.122) 

Then, a pair of eigenvalues is represented by 

 
2 4

2

i i i i

i

d d m k

m


  
  (5.123) 

Differentiating equation (5.122) with respect to θ  gives an expression for the 

eigenvalue derivatives (see Appendix D). 

 
 
 

2

2

i i i

i i

k d m

d m

 




  



 (5.124) 

For any three scalars  , ,i i ik d m  equations (5.71) and (5.93) are two equivalent 

statements (further details are in Appendix C). 
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5.9 Derivatives of the diagonalising transformations 

In this section, we follow a close parallel to the development of section 5.5. We 

begin with equations (5.95) and (5.96) as definitions of the left and right 

“eigenvectors” in the sense that they contain the eigenvector information associated 

with the pair of eigenvalues which are roots of equation (5.122). As was the case 

with Section 5.5, we shall see that no other eigenvector information is required to 

find the required derivatives of  ,Li Rit t . 

 

Differentiating equations (5.95) and (5.96) with respect to scalar parameter   

produces 

    i i i Ri i i i Ri

d
k d m k d m

d
     K D M t K D M t  (5.125) 

    
T T

Li i i i Li i i i

d
k d m k d m

d
     t K D M t K D M  (5.126) 

The right hand sides of the above equations are known. We now follow a procedure 

almost identical to that of section 5.5 where the derivatives of the eigenvectors of an 

undamped system were derived. First, recall the definition of 
ie from equation 

(5.105). In the same way that  ,i ie S  together span n-space, we define a new 

  2 2 2n n   matrix,  
iS , such that  ii Se ,  together span 2n-space. A logical format 

for 
iS is this 

 i
i

i

 
  
 

S 0
S

0 S
 (5.127) 
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The developed method is to generate two orthogonal matrices  ,Li RiQ Q  which are 

orthogonal to the  ,Li Rit t . The  ,Li RiQ Q  matrices can represent left and right 

Householder Reflections and they satisfy the following equations 

 Li Li i LiQ t e  (5.128) 

 Ri Ri i RiQ t e  (5.129) 

Then,  ,Li RiQ Q  satisfy the following equation 

    T T
i Li Li i Ri Ri S Q t 0 S Q t  (5.130) 

where  ,Li Riα α  are any two arbitrary (2×2) matrices which can be defined as 

 1 3 1 3

4 2 4 2

    ,    
L L R R

Li Ri
L L R R

   
    
   

α α α α
α α

α α α α
 (5.131) 

The left and right diagonalising transformations  ,Li Rit t  comprise two columns each 

1 2Li Li Li
 
 

t t t  and 1 2Ri Ri Ri
 
 

t t t  respectively. 

 

The two orthogonal matrices  ,Li RiQ Q  can be calculated by regarding each column 

in the left and right diagonalising transformation  ,Li Rit t  using the following 

equations 

 
  

  

2 1 2 2 1 1

2 1 2 2 1 1

: 2 2

: 2 2

T T
Li Li Li L L L L

T T
Ri Ri Ri R R R R

   

   

Q Q Q I u u I u u

Q Q Q I u u I u u

 (5.132) 

 1 2,Li LiQ Q ,  1 2,Ri RiQ Q  are symmetric orthogonal matrices. Vectors  1 1,L Ru u  and 

 2 2,L Ru u  are unit vectors. This calculation can be divided into two steps: the first 
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step is to calculate the  1 1,Li RiQ Q  based on the first column in  ,Li Rit t  and the 

second step is to calculate the  2 2,Li RiQ Q  based on the second column in  ,Li Rit t . 

 

To find the orthogonal matrices  1 1,Li RiQ Q  in equation (5.132) based on the first 

column in  ,Li Rit t , the vectors  1 1,L Ru u  can be calculated from the columns 

 1 1,Li Rit t  as 

 

1

1 1 1 1 1

1

1

1 1 1 1 1

1

    ,    

    ,    

L

L Li i L L

L

R

R Ri i R R

R





  

  

u
u t e u

u

u
u t e u

u

 (5.133) 

where 1ie  represents the first column of the matrix ie  and the scalar  1 1,L R   can be 

calculated from the following expression 

 
1 1

1 1

1 1

    ,    
Li Ri

L R

i i

  
t t

e e
 (5.134) 

Then,  1 1,Li RiQ Q  can be calculated using the following equations 

 
 

 

1 1 1

1 1 1

2

2

T
Li L L

T
Ri R R

 

 

Q I u u

Q I u u

 (5.135) 

 

To find orthogonal matrices  2 2,Li RiQ Q  based on the second column in  ,Li Rit t , the 

vectors  2 2,L Ru u  can be calculated using the following expressions 

    1 1 1 12     ,    2
T T

Lni L L Li Rni R R Ri   t I u u t t I u u t  (5.136) 
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where  ,Lni Rnit t  comprise two columns each 1 2Lni Lni Lni
 
 

t t t , 1 2Rni Rni Rni
 
 

t t t . 

The scalars  3 3,L R   are selected to be the i
th

 entry in the columns  1 1,Lni Rnit t  and 

the scalars  4 4,L R   are selected to be the i
th

 entry in the columns  2 2,Lni Rnit t

respectively. Then, zero the i
th

 entry of columns  2 2,Lni Rnit t . Using the following 

expression to calculate 2L  

 
2 2

2 2

2 2

    ,    
Lni Rni

L R

i i

  
T T

e e
 (5.137) 

The vectors  2 2,L Ru u  are obtained 

 

2

2 2 2 2 2

2

2

2 2 2 2 2

2

    ,    

    ,    

L

L Lni i L L

L

R

R Rni i R R

R





  

  

u
u t e u

u

u
u t e u

u

 (5.138) 

Then,  2 2,Li RiQ Q  can be calculated using the following equations 

 
 

 

2 2 2

2 2 2

2

2

T
Li L L

T
Ri R R

 

 

Q I u u

Q I u u

 (5.139) 

The left and right diagonalising transformation derivatives  ,Li Rit t  can be written as 

  T
Li Li i Li Li Li t Q S g t  (5.140) 

  T
Ri Ri i Ri Ri Ri t Q S g t  (5.141) 

where  ,Li Ri   are (2×2) matrices and where  RiLi gg ,  are matrices of dimension 

  2 1 2n   which can be determined uniquely by substituting for  ,Li Rit t  in 

equation (5.125), (5.126), respectively, using equations (5.140) and (5.141). Terms 

involving the unknown (22) matrix quantities,  ,Li Ri  , vanish naturally and the 
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result in each case is an overdetermined but consistent set of equations which can be 

solved directly and stably using a pseudo-inverse.  

 

It remains only to state how the two (2×2) matrices  ,Li Ri   should be found. 

 11 12 11 12

21 22 21 22

      ,    
L L R R

Li Ri
L L R R

   
 

   

   
    
   

 (5.142) 

Much of the requisite information is present through differentiating equations (5.109)

-(5.111). 

 
T T T

Li Ri Li Ri i Li Ri kik   t Kt t Kt t Kt h  (5.143) 

 
T T T

Li Ri Li Ri i Li Ri did   t Dt t Dt t Dt h  (5.144) 

 
T T T

Li Ri Li Ri i Li Ri mim   t Mt t Mt t Mt h  (5.145) 

The derivatives in the right hand sides of equations (5.143)-(5.145)  , ,ki di mih h h are 

 2 2  matrices that are known (see section 5.8) as are the derivatives of the LAMs 

 , ,K D M . When equations (5.140) and (5.141) are used to substitute for  ,Li Rit t , 

equations (5.143)-(5.145) yield 12 equations with only 8 unknowns (the 8 scalar 

entries of  ,Li Ri  ). 

 

11

12

21

22

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

i i

i i i

i i i R

i i i i R

i i R

i i R

i i L

i i

i i i i

i i i

i i i

i i

k k

k d k

k k d

k d k d

k k

m k

k m

m m

d m d m
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m m
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m

m

m
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d

d

d
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 (5.146) 
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or equivalently  

 i i W h  (5.147) 

where W  is a  12 8  matrix with rank 6, i  is a vector of 8 unknowns and ih  is a 

vector of 12 known values. In fact, only 6 of these equations are independent. When 

the system matrices are symmetric, forcing 
RiLi    is always possible and this is 

sufficient to determine  RiLi  ,  uniquely.  When the system matrices are not 

symmetric, some arbitrary choice must be made in the determination of these 

quantities. A reasonably general approach (which is consistent with the symmetric 

case) is to impose the constraint: 

    T T
Li Li Ri Ridiag diag     (5.148) 

The solution of the vector i  in equation (5.147) can be achieved from singular value 

decomposition of the matrix W  

  [ ] svdu v W  (5.149) 

where  ,u v  have dimensions  12 12 ,  8 8 , respectively, are two orthogonal 

matrices  T u u I ,  T v v I  and   is a diagonal matrix with two zero singular 

values. The matrix W  can be written as 

    1
1 1 2

0
2

0 0

TT  
   

 
W u v u u v v


  (5.150) 

where the number of columns of  1 1,u v  equals rank of the matrix W , 1 1
T u u I  and 

 1 1
T v v I . The vector i  can be expressed in the following form 

  i  w z  (5.151) 

where w can be calculated using this equation 

 1 1
1 1 1 1 1 1

T
ir x   w v v v u h   (5.152) 
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and the vector z  can be calculated using the following expression 

 2z v b  (5.153) 

in which z  satisfies 0Wz . The vector b  is a random vector, has a dimension equal 

to the number of zero singular values. 

 

5.9.1 Eigenvectors and their derivatives from diagonalising 

transformations 

Comparing equations (5.79)-(5.81) with equations (5.106)-(5.108) yields 

 11 12 11 12

* *
21 22 21 22

T
i i i

i ii i

ka a a a

k da a a a



 

      
      

       

0 0

0
 (5.154) 

 11 12 11 12

*
21 22 21 22

0

0

T
i i

ii

ka a a a

ma a a a





      
      

       

0

0
 (5.155) 

 11 12 11 12

* *
21 22 21 220

T
i i i i

ii i

d ma a a a

ma a a a

 

 

       
      

       

0

0
 (5.156) 

 T
i i i im  a a  (5.157) 

 T
i i i id  a a  (5.158) 

 T
i i i ik  a a  (5.159) 

Equations (5.157)-(5.159) show that the  2 2  matrix ia  is the eigenvector of the 

system  , ,i i ik d m . Scaling the vectors in matrix ia  yields 

 11 12/ ([ ])i i diaga a a a  (5.160) 

The matrix ia  can be written as 

 
*

1 1
i

i i 

 
  
  

a  (5.161) 
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 The left and right columns i and (n+i) of the eigenvector matrix of the original 

system can be calculated from the left and right columns i and (n+i) of the 

diagonalising transformations as 

 
*

** *

1 1
R R Ri Ri

Ri Ri i ii R i R

w x

y z   

    
    

       

u u

u u
 (5.162) 

 
*

** *

1 1
Li Li Li Li

Li Li i ii Li i Li

w x

y z   

    
    

       

u u

u u
 (5.163) 

Equivalently, we can write 

 Ri Ri i t a  (5.164) 

 Li Li i t a  (5.165) 

Differentiating equations (5.164) and (5.165) with respect to   delivers a new 

expression for the eigenvector derivatives (see Appendix D) as 

 
Ri

Ri Ri i Ri i

d

d
  t a t a


  (5.166) 

 
Li

Li Li i Li i

d

d
  t a t a


  (5.167) 

where the derivative of ia  can be written as 

 
*

0 0
i

i i 

 
  
  

a  (5.168) 

 

5.10 Examples 

Four examples are presented here. For three of the cases, the systems are symmetric 

and have dimension (3×3). In the other case, the system is undamped and non-

symmetric with dimension (2×2). All systems are described in terms of the scalar 
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parameter,  , through equations (5.1)-(5.3) where  , ,o o oM D K  and  1 1 1, ,M D K  are 

given explicitly. 

 

5.10.1 Example 1: A pair of identical real roots 

In this case, there is a pair of identical real roots. Here, the point 0   coincides 

exactly with a point on the root-locus plot where two repeated real roots are just 

about to turn into two complex conjugate roots or vice-versa. Established methods 

indicate (correctly) that eigenvalue derivatives are undefined in such cases. However, 

the coefficients of the corresponding quadratic polynomial vary smoothly and are 

well-behaved. The eigenvector scaling is selected such that  2 2 2 1i i im d k    for all i. 

 

1 1

 4   -1    0  800   -300   0 0     0     0

-1    5    1     ,   -300    900    50     ,    0     0     0

 0    1    9  0        50      1200 0     0     0

o o

     
     

   
     
          

M K M K

 

 

1 1

26    10    24 2     1     2

10    18    15     ,     1     1     1      ,    =13.4120370573992091

24    15    40 2     1     3

o ref ref

   
   

  
   
      

D θ D D θ

 

 

Table 5-1 summarises the values  iii kdm ,,  for each of the three pairs of modes as 

well as  iii kdm  ,, . Pairs of eigenvalues can be calculated from  iii kdm ,,  using 

2 0i i ik d m    . The following eigenvalues are found: 

 

-1.5862 14.1363i

-1.4654 12.2227i

-12.1341  0i



 
 

 
 
    

Figure 5-1 shows the root locus for the pair of repeated real roots for positive and 

negative values of  close to . 

 

 0 
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 Mode Pair 1 Mode Pair 2 Mode Pair 3 

im
 

4.9413e-3 6.5974e-3 6.7012e-3 

id
 

1.5678e-2 1.9336e-2 1.6263e-1 

ik
 

9.9986e-1 9.9979e-1 9.8666e-1 

im
 

6.278e-6 -6.254e-6 -9.165e-6 

id
 

0.3514e-3 0.6544e-3 0.6149e-2 

ik
 

-5.54e-6 -1.261e-5 -0.1013e-2 

Table 5-1 : The diagonalised system and its rate of change 

 

 

Figure 5-1 : Root locus for one pair of roots 

 

5.10.2 Example 2: Singular Mass matrix 

In this case, the mass matrix, Mo , is singular. This is deliberately selected to be a 

problematic case for the conventional eigenvalue solutions because one eigenvalue is 

infinity. 

 

1

 4    1  -1  3    -1     0

 1    2  -2 ,       -1     6     0

-1  -2    2  0     0     5

o

   
   

 
   
      

M M

 

0   0   

0   
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1

 800   -300   0  29    26   -14

-300    900    50  ,     26    29   - 24

 0        50      1200 -14   - 24    36

o

   
   

 
   
      

K K

 

 

1

26    10    24 2     1     2

10    18    15    ,  1     1     1    

24    15    40 2     1     3

o

   
   

 
   
      

D D

 

The eigenvalues for the system are shown below 

 

-1.6401 11.1827i

-18.5730

-5.4110 22.0597i

Inf



 
 
 
 
 
   

Since the mass matrix is singular, equations (5.86)-(5.88) cannot be used easily to 

determine the diagonalised system. We take two linear combinations of the LAMs. 

 o o oa b c  F M D K  (5.169) 

 o o od e f  G M   D K  (5.170) 

where  , , , , ,a b c d e f  are selected scalars and G  is an invertible matrix. The matrix of 

eigenvectors, X , diagonalises all three LAMs in the sense that T
oX M X  , T

oX D X  and 

T
0X K X  are all diagonal. From this point, it is straightforward to determine the left 

and right parts of the structure-preserving diagonalising equivalence. These are 

identical and are given by 

 

-3

-28.2204    -21.7725      13.8422       0.5128     -0.0109   -0.0000

-22.4223     19.6328      20.6002       0.2288      0.2550   -0.0000

 16.9498      -6.5772      26.0390       0.7345      0.45
T = 10 *

15    0.0000

-65.5050       5.6367   -257.0914   -29.9025   -21.6542     0.0000

-29.2315  -131.5579      76.4689   -23.1729    16.8731   24.7175

-93.8257  -232.9398    -24.5455    14.5405    -11.4635   24.7175

 
 
 
 
 
 
 
 
    

The diagonalised system and its derivatives are calculated from equation (5.121). 

Table 5-2 summarises the values of  iii kdm ,,  for each of the three pairs of modes 

as well as  iii kdm  ,, . 
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 Mode Pair 1 Mode Pair 2 Mode Pair 3 

im
 

7.8254 e-3 1.9378e-3 1.0692e-20 

id
 

2.5669e-2 2.0972e-2 5.3763e-2 

ik
 

9.9964e-1 9.9977e-1 9.9855e-1 

im
 

0.4139e-2 0.3712e-2 0.672e-2 

id
 

-0.2159e-2 -0.144e-1 0.1921e-1 

ik
 

0.2304e-4 0.2949e-3 -0.1034e-2 

Table 5-2 : Diagonalised system and its rates of change 

 

The rate of change of the diagonalising transformation T  is computed by substituting 

equations (5.140), (5.141) into equations (5.125), (5.126). Terms involving the 

unknown scalars,  RiLi  , , vanish naturally because of equations (5.95), (5.96). The 

derivatives of the equations (5.109)-(5.111) are sufficient to determine  RiLi  ,  

uniquely. We find 

 

3

   6.3979       -6.1790    16.5810    0.3525    0.3174    1.7303

 -4.3913         8.4139   -13.8721    0.0949    0.2566   -0.5147

   1.4526      22.3316      8.5647    0.2828    0.8830    0.1652
10 *T

-10.3857  -174.5571     -1.1403    6.2727   -9.9218   11.5605

   3.3407   119.5562      6.7647   -4.2423   12.8174  -12.0328

 13.4884     -9.4664   227.8947    2.0016   25.4895   20.3615

 
 
 
 
 



 




  

 

5.10.3 Example 3: Undamped non-symmetric system 

This example is an undamped system having non-symmetric (2×2) mass and stiffness 

matrices. It is selected to be an interesting case for conventional eigenvalue solutions 

because all of the eigenvalues of the system are complex. 

 
1 1

 4     3 11   -16  4     0 -4     0
M  =    ,  K  =    ,  M =    ,  K =

-5     3 8    - 2 -1    - 4 -5     4
o o
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The eigenvalues comprise two conjugate pairs – one pair being the negative of the 

other. 

  1.6058  0.7484i   
 

The decoupled single-degree-of freedom system  iii kdm ,,  and their derivatives are 

calculated. Table 5-3 summarises the values  iii kdm ,,  for each of the two pairs of 

eigenvalues as well as  iii kdm  ,, . 

 

 Mode Pair 1 Mode Pair 2 

im
 

0.2174 0.2174 

id
 

0.6981 -0.6981 

ik
 

0.6822 0.6822 

im
 

-0.0055 -0.0055 

id
 

0.0414 -0.0414 

ik
 

-0.0406 -0.0406 

Table 5-3 : Diagonalised system and its rates of change 

 

The right and left parts of the diagonalising transformations  R LT ,T  are given by 

 

R L

-0.0481   -0.1409   -0.0601    0.0612  0.1118    0.1873    0.0149

-0.2683   -0.0420   -0.1478   -0.0391
T =    ,   T

 0.1886   -0.1922    0.1449    0.0558

 0.4640    0.1226    0.2065   -0.1675

 
 
  
 
 
 

   -0.1240

 0.2426   -0.2061    0.1707    0.0444

-0.0468    0.3892    0.0639   -0.2109

-0.5357   -0.1392   -0.3055   -0.0636

 
 
 
 
 
   

The rates of change of the right and left diagonalising transformations  R LT ,T  are 

found to be 

 

R L

 0.0378    0.0268    0.0394   -0.0063 -0.0647   -0.0938   -0.00

-0.1374    0.0333   -0.0971   -0.0300
T =    ,   T

-0.1300    0.0264   -0.0723    0.0232

 0.2891    0.0901    0.2149   -0.0738

 
 
  
 
 
 

20    0.0518

 0.3657   -0.0133    0.1673   -0.0178

 0.0080   -0.1758   -0.0622    0.0387

-0.5068    0.0605   -0.2181   -0.0583
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5.10.4 Example 4: A Physical system 

In this example we try to give a practical application of the proposed approach. 

Figure 5-2 shows a system with 3 degrees of freedom whose system matrices are 

 

 

 

 

 

1 1 1

2 1 1 2 2

3 2 2 3

1 1

1 1 2 2

2 2 3

0 0 0

0 0 ,   ,

0 0 0

0

                

0

m k k

o m o k k k k

m k k k

d d

o d d d d

d d d

  

    

   

 

   

  

  
  

      
       

 
 

    
   

M K

D

 

 

 

Figure 5-2 : Physical system; mass, stiffness and damping 

 

We will investigate the case where 1 2 32 ,  1 ,  0m m m     , 1 23.0 4 ,  2.0 4 ,k ke e  

3 1.0 4k E   and 1 2 3278.9616508149336  ,  100d d d     . The value for 1d  has been 

chosen so as to cause a pair of identical real roots. The rate of change of the system 

parameters are 1 2 33 , 1 , 5m m m     , 1 2 31600 , 1400 , 2000k k k      and 1 6 ,d 

2 37 , 2d d   . 

2k  2d  

3k  3d  

1k  1d  

2m  

1m  
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The eigenvalues of the system comprise one pair of complex conjugate, one pair of 

identical real roots, one other finite real root and one infinite eigenvalue. The 

inverses of the system eigenvalues are 

 

1

-0.00418 0.02177

-0.00423 0.00000

-0.00734

-0.00000

i

i


 
 


 
 
 
   

The diagonalised system and its derivatives are calculated from equation (5.121).  

Table 5-4 summarises values of  iii kdm ,,  for each of the three pairs of modes as 

well as  iii kdm  ,, . 

 

 Mode Pair 1 Mode Pair 2 Mode Pair 3 

im
 

4.9128e-4 1.8481e-5 0 

id
 

8.3581e-3 8.5976e-3 7.3425e-3 

ik
 

9.9996e-1 9.9993e-1 9.9997e-1 

im
 

0.1134e-2 0. 1278e-3 0. 1836e-3 

id
 

-0. 6694e-2 0. 1207e-1 -0.1407e-1 

ik
 

0.5539e-6 -0. 1038e-3 0. 1033e-3 

Table 5-4 : Diagonalised system and its rates of change 

 

5.11 Conclusions 

This chapter has investigated methods to evaluate the discrepancies between 

different sets of modal data. The new approaches have generalised the ideas of 

eigenvalue and eigenvalue derivatives for undamped systems to the concept of 

structure-preserving equivalences SPEs for generally damped systems. This chapter 

also has provided a method to calculate the eigenpairs and their derivatives from the 



____________________________________________________________________ 

 

183 

 

diagonalised system, diagonalising transformations and their derivatives for 

generally damped system.  

 

The new construction for these derivatives has several advantages over the 

conventional approaches to eigenvalue and eigenvector derivatives. Firstly, cases 

where the existence of a pair of identical real roots causes the derivatives of two 

eigenvalues and their corresponding eigenvectors to become undefined present no 

such problem in this case. Secondly, cases of infinite eigenvalues (corresponding to 

some zero singular values in the mass matrix) produce no difficulty whatsoever. 

Thirdly, some other cases where the Jordan form for the system is non-diagonal can 

have well defined derivatives for their diagonalised systems and diagonalising 

transformations.  

 

As a by-product of the development of these new formulae for the derivatives, a new 

homogeneous coordinates expression for pairs of roots of a quadratic eigenvalue 

problem has been presented (equations (5.95) and (5.96)). This expression potentially 

has substantial value in its own right and it forms obvious prototypes for related 

expressions for groups of l eigenvalues of general matrix polynomials of order l.  

 

In some cases the leading coefficients for eigenvalue problems are singular. It might 

not be possible to find diagonalising SPEs transformations directly for the system. 

The next chapter addresses new methods to calculate the diagonalising SPEs for ill-

conditioned systems. 
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CHAPTER  6. Spectral Transformations (STs) 

This chapter provides new transformations to calculate the diagonalising SPEs where 

the mass matrix is singular.  This case was considered as an example in the previous 

chapter. Conventional methods for solving the eigenvalue problems of the second 

order systems are well established for cases where the leading coefficient is non-

singular. In these conventional cases it is possible to create a strong linearization. In 

cases where the leading coefficient is singular we often have numerical difficulties in 

finding eigenvalues and eigenvectors. Meerbergen [129] introduces an application of 

matrix transformations for computing large-scale eigenvalue problems. It might not 

be possible to find diagonalising SPEs transformations directly for the system.  

 

Coordinate transformations of second order systems have been paid substantial 

attention so far in the literature. The coordinate transformations have returned the 

eigenvalues and eigenstructure exactly but the eigenvectors have changed. Structure 

preserving equivalences SPEs are one of transformation that are of interest to us. The 

SPEs transformations [44] preserve the eigenvalues Λ  but change the modal matrix 

Φ  (2n×2n). These transformations map between two systems in state space. 

 

Spectral transformation is one of the several transformations which are used to 

transform system matrices to new system matrices. The spectral transformation maps 

between two systems having the same eigenvectors but change the eigenvalues. 

Möbius transformations [40, 130] (or linear fractional transformations) are spectral 

transformations which map between two systems. These transformations preserve the 
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modal matrix Φ  (sets of second order eigenvectors) (n×n) but change the 

eigenvalues Λ  according to some mapping.  

 

The Möbius transformations include special cases (translation, rotation, linear 

transformation and inversion) [40]. The benefits of using Möbius transformations are 

divided into two parts. The first part is to transform the eigenvalue problem of the 

original second order system with a singular coefficient to new eigenvalue problem 

system. The second part is to find a relationship between diagonalising SPEs for two 

systems. 

 

In this chapter we are going to discuss a transformation of an independent scalar 

variable   which will change the eigenvalues but not eigenvectors (n×n). This 

chapter also focuses on calculating the diagonalising SPEs for an ill-conditioned 

system using the Möbius transformations. There are other methods for calculating 

the diagonalising SPEs based on Möbius transformations using modal filters and 

homogenous coordinates (more details in Appendices E and F). 

 

6.1 Eigenvalue problems for general second order 

systems 

The quadratic eigenvalue problem for the system stiffness, damping and mass 

matrices  , ,K D M , respectively, can be represented as 

  2 0i i Ri   K D M   (6.1) 

  2 0T T T
Li i i   K D M  (6.2) 
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In this context, Ri  and Li  define the i
th

 eigenvectors of the right and left short modal 

matrices  ,R LΦ Φ  n n  respectively. 

 

Diagonalising SPEs  ,L RT T  for the system  , ,K D M  are previously mentioned in 

Chapter 2 section 2.6 equations (2.42)-(2.44). 

 
00

T

L L R R D

L L R R D D

      
      

      

W X W X KK

Y Z Y Z K DK D
 (6.3) 

 
00

00

T

L L R R D

L L R R D

      
      

      

W X W X KK

Y Z Y Z MM
 (6.4) 

 
00

T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z MM
 (6.5) 

The left and right diagonalising transformations  ,L RT T  are each divided into four 

partitions and structures of these blocks are defined in equations (2.81) and (2.82). 

The i
th

 entry of the diagonalised system  , ,D D DK D M  satisfies equation (5.122) 

 2 0i i ik d m     (6.6) 

 

6.2 Möbius Transformations 

The general form of Möbius transformations [40] are 

                     0
p q

ps qr
r s







  


 (6.7) 

The inverse of the Möbius transformations in equation (6.7) are 

 
s q

r p








 

 (6.8) 

A new eigenvalue problem of second order system  , ,N N NK D M  can be obtained by 

substituting equation (6.7) into equation (6.1). The new eigenvalue problem system 
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has the same second order (short) eigenvectors as the original system  , ,o o oK D M  

and the eigenvalues related to equation (6.8). Multiplying the result by  
2

r s   and 

dividing by  qr ps  

 

 

 
  

 

2 2

2 2 2

1
2 2 0

o o o

i o o o Ri

i o o o

s qs q

rs ps qr pq
qr ps

r pr p





   
 
 

    
 
 
  
 

K D M

K D M

K D M



 (6.9) 

Then, the quadratic eigenvalue problem for the new system can be written as 

  2 0N i N i N Ri   K D M   (6.10) 

The left and right short eigenvectors  ,Li Ri   for the original system and the new 

system are the same. The system matrices  , ,N N NK D M  can be expressed in terms of 

the original system  , ,o o oK D M  matrices as 

 2 2
N o o os qs q  K K D M  (6.11) 

  2 2N o o ors ps qr pq   D K D M  (6.12) 

 2 2
N o o or pr p  M K D M  (6.13) 

Equations (6.11)-(6.13) define a relationship between the new system and the 

original system matrices which can be written as 

  
N o

N SSTN n o

N o

   
   

    
      

K K

D Q I D

M M

 (6.14) 

In this framework, the SSTNQ  matrix is called the system spectral transformation 

matrix (SST) and defined as 

 
 

 

2 2

2 2

1
2 2SSTN

s qs q

rs ps qr pq
qr ps

r rp p

 
 

  
  

 

Q  (6.15) 
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and  , , ,p q r s  are constants, the symbol   represents the Kronecker product and I  

represents the (n × n) identity matrix. Equation (6.13) can be singular, the constants 

 , , ,p q r s  can be chosen which can minimise the condition number of NM  

  min Ncond M  in equation (6.13) 

 
cos sin

cos sin

p q

r s

 

 

 

 
 (6.16) 

The condition number is the ratio of the largest singular value of NM  to the smallest. 

The best value of angles   and   are chosen at minimum condition of NM . Figure 

6-1 shows the condition number of NM  as a function of the angles θ, β for one case. 

 

 

Figure 6-1 : Angles θ ,  β and condition of MN 

 

The eigenvalue problem for the new system can be easily solved using a state space 

system. The left and right diagonalising transformations  ,LN RNT T  for the new 

system satisfy equations (6.3)-(6.5). 
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Substituting equation (6.8) into equation (6.10) multiplying by  
2

r p   and 

dividing by  qr ps  gives another relationship between the original system and the 

new system 

  
o N

o SSTO n N

o N

   
   

    
      

K K

D Q I D

M M

 (6.17) 

where 

 
 

 

2 2

2 2

1
2 2SSTO

p pq q

rp ps qr sq
qr ps

r rs s

 
 

    
  

 

Q  (6.18) 

Matrix SSTOQ  is the inverse of the matrix SSTNQ . 

 

The diagonalised system  , ,Do Do DoM D K  can be calculated from  , ,DN DN DNM D K  

using the same SST matrix SSTOQ  in equation (6.17) or the inverse of SST matrix 

SSTNQ . Then evidently, 

  
Do DN

Do SSTO n DN

Do DN

   
   

    
      

K K

D Q I D

M M

 (6.19) 

The system spectral transformation matrix 1
SSTN SSTO

Q Q  used to transform the 

system matrices into other system matrices is the same spectral transformation matrix 

used to transform the diagonalised system matrices into other diagonalised system 

matrices. The diagram in Figure 6-2 shows the Möbius (spectral) transformations 

cycle. There are four major steps to calculate the diagonalising structure preserving 

equivalences (DSPEs) for the original system matrices  , ,o o oK D M . 
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The first step is to transform the original system matrices  , ,o o oK D M  into new 

system matrices  , ,N N NK D M  using the SST matrix SSTNQ  as in equations (6.14) and 

(6.18). The second step is to find the diagonalised system matrices  , ,DN DN DNK D M  

using the diagonalising structure preserving equivalences (DSPEs) for the new 

system matrices  , ,N N NK D M . The third step is to transform the diagonalised system 

matrices  , ,DN DN DNK D M  for the new system matrices into diagonalised system 

matrices  , ,Do Do DoK D M  for the original system matrices using the SST matrix SSTOQ  

or inverse SST matrix SSTNQ . The final step is to calculate the diagonalising structure 

preserving equivalences for the original system matrices  , ,o o oK D M  and vice versa. 

 

 

Figure 6-2 : Möbius transformation diagram 

 

The left and right diagonalising SPEs  ,Lo RoT T  for the original system matrices 

 , ,o o oK D M  can be calculated from the left and right diagonalising SPEs  ,LN RNT T  

for the transformed system matrices  , ,N N NK D M . The difficulty here is to find a 

direct relationship between the diagonalising SPE‟s for both systems. The next 

sections can solve this issue. 

 

, ,o o oK D M  

, ,N N NK D M  

, ,Do Do DoK D M

 

, ,DN DN DNK D M  

DSP

Es 

DSP

Es 

SSTNQ  
SSTOQ  SPECTRA

L 
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6.3 Decomposing the Möbius transformations 

In this section, we use three different elementary spectral transformations to compose 

a general Möbius transformation. The three elementary transformations are: 

 

 The shift transformation a    

 The invert transformation 
1




  

 The scaling transformation c   

 

Both shift and invert transformations are used to convert the largest magnitude of 

eigenvalues to the nearest shift values that are easy to compute. Once they are found, 

they may be transformed back to the spectrum of the original system. 

 

Every general Möbius transformation in equation (6.7) can be decomposed into a 

sequence of elementary transformations [40] as shown in Table 6-1.  

 

Operation Type Operation Equation 

Shift    a    

Invert  
 

1





 

Shift  
 

b  
 

Scale  
 

c 
 

Table 6-1 : Decomposition of the Möbius transformation    

 

Combining the equations in Table 6-1 yields 

  (6.20) 
 1ac ab

c b
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The reverse Möbius transformation can also be decomposed into a sequence of 

elementary transformations as shown in Table 6-2. 

 

Combining the equations in Table 6-2 yields 

 
 1b ab

c ac






 


 
 (6.21) 

 

Operation Type Operation Equation 

Scale  
 c


 

 

Shift  
 

b  

 

Invert  
 

1





 

Shift  
 

a  
 

Table 6-2 : Decomposition of the Möbius transformation    

 

6.4 Shift spectral transformation (ST_s) 

The shift transformation transforms the original spectrum into a new spectrum 

directly by using the following equation 

 a    (6.22) 

Substituting for   in equation (6.1) leads to 

     2
0o i o i o Ria a     K D M   (6.23) 

Then, the new system matrices  1 1 1, ,K D M  can be represented as 

  2
1 1 1 0i i Ri   K D M   (6.24) 

where  1 1 1, ,K D M  are 
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2
1

1

1

2

o o o

o o

o

a a

a

  

 



K K D M

D D M

M M

 (6.25) 

Equation (6.25) can be written as 

  
1

1 _

1

o

SST sa o

o

  
  

    
     

K K

D Q I D

M M

 (6.26) 

The first shift system spectral transformation (SST_sa) matrix _SST saQ  is 

 

2

_

1

0 1 2

0 0 1

SST sa

a a

a

 
 

  
 
 

Q  (6.27) 

The diagonalised system matrices  1 1 1, ,D D DK D M  for the system  1 1 1, ,K D M  can be 

calculated using the same SST_sa matrix _SST saQ  

  
1

1 _

1

D Do

D SST sa Do

D Do

  
  

    
     

K K

D Q I D

M M

 (6.28) 

The inverse of the matrix _SST saQ  in equation (6.27) can be used to calculate the 

diagonalised system  , ,Do Do DoK D M  for the system  , ,o o oK D M . 

  
1

1

_ 1

1

Do D

Do SST sa D

Do D


   
    

      
     

K K

D Q I D

M M

 (6.29) 

where  
1

_SST sa


Q  is 

  

2

1

_

1

0 1 2

0 0 1

SST sa

a a

a


 
 

  
 
 

Q  (6.30) 

The shift spectral transformation does not change the mass matrix –i.e. 1 oM M . 
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6.4.1 Shift spectral transformation and diagonalising SPEs 

Shifting the spectrum has found a relationship between the left and right 

diagonalising transformations  ,Lo RoT T  for the system  , ,o o oK D M  with the system

 1 1 1, ,K D M . Pre- and post-multiplying the left and right diagonalising 

transformations  1 1,L RT T  for the system  1 1 1, ,K D M  by _DST saQ  and 1
_DST sa


Q , 

respectively, yields four partitions in each left and right diagonalising transformation 

    
1 1 1

_ _
1 1

Lo Lo L L
DST sa DST sa

Lo Lo L L

   
     

  

W X W X
Q I Q I

Y Z Y Z
 (6.31) 

    
1 1 1

_ _
1 1

Ro Ro R R
DST sa DST sa

Ro Ro R R

   
     

  

W X W X
Q I Q I

Y Z Y Z
 (6.32) 

where matrix _DST saQ  is called the shift diagonalising spectral transformation 

(DST_sa) 

 _

1 0

1
DST sa

a

 
  

 
Q  (6.33) 

 

6.5 Invert spectral transformation (ST_i) 

This transformation inverts the spectrum of the system  1 1 1, ,K D M  to another 

spectrum by using the equation below 

 
1




  (6.34) 

Substituting for   in equation (6.24) and multiplying by 2  yields 

  2
1 1 1 0i i Ri   K D M   (6.35) 

Then, the system matrices  2 2 2, ,K D M  can be represented as 
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  2
2 2 2 0i i Ri   K D M   (6.36) 

The system matrices  2 2 2, ,K D M  are found by replacing the mass and stiffness 

matrices
  2 2,M K  with  1 1,K M , respectively, whereas 2 1D D . 

 
2 1

2 1

2 1







K M

D D

M K

 (6.37) 

writing equation (6.37) as 

  
2 1

2 _ 1

2 1

SST i

   
   

 
   
      

K K

D Q I D

M M

 (6.38) 

The invert system spectral transformation (SST_i) matrix _SST iQ  is 

 _

0 0 1

0 1 0

1 0 0

SST i

 
 


 
  

Q  (6.39) 

The diagonalised system  2 2 2, ,D D DK D M  can be calculated using the same SST_i 

matrix _SST iQ   in the form 

  
2 1

2 _ 1

2 1

D D

D SST i D

D D

   
   

 
   
      

K K

D Q I D

M M

 (6.40) 

The invert spectral transformation does not change the damping matrix 2 1D D

whereas the mass and stiffness matrices are switched 2 1M K  and 2 1K M . 

 

6.5.1 Invert spectral transformation and diagonalising SPEs 

The diagonalising transformations for the system  1 1 1, ,K D M  can be found from the 

diagonalising transformations for  2 2 2, ,K D M  by pre- and post-multiplying LAM‟s 

matrices left and right diagonalising transformations  2 2,L RT T  for the system 
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 2 2 2, ,K D M  by 1
_ _DST i DST i

Q Q . The matrix _DST iQ  is called invert diagonalising 

spectral transformation (DST_i) 

 _

0 1

1 0
DST i

 
  
 

Q  (6.41) 

 

6.6 Shift spectral transformation (ST_s) 

The second shift transformation is 

 b    (6.42) 

The relation between systems  3 3 3, ,K D M  and  2 2 2, ,K D M  is 

  
3 2

3 _ 2

3 2

SST sb

   
   

    
     

K K

D Q I D

M M

 (6.43) 

The second shift system spectral transformation (SST_sb) matrix _SST sbQ  is 

 

2

_

1

0 1 2

0 0 1

SST sb

b b

b

 
 

  
 
 

Q  (6.44) 

The diagonalised system can be found using the same SST_sb matrix _SST sbQ  as 

  
3 2

3 _ 2

3 2

D D

D SST sb D

D D

   
   

    
     

K K

D Q I D

M M

 (6.45) 

The second shift transformation shows that the mass 3M  matrix becomes the  

stiffness 2K matrix 3 2M K . 
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6.6.1 Shift spectral transformation and diagonalising SPEs 

The left and right diagonalising transformations for the system  2 2 2, ,K D M  can be 

calculated following the same method which has been mentioned in section 6.4.1. 

 _

1 0

1
DST sb

b

 
  

 
Q  (6.46) 

where _DST sbQ  is called second shift diagonalising spectral transformation matrix 

(DST_sb). 

 

6.7 Scale spectral transformation (ST_sc) 

Comparing Möbius transformation in equation (6.7) with those in equations (6.22), 

(6.34) and (6.42) shows the spectrum requires scaling. The eigenvalues of the system 

 3 3 3, ,K D M  can be multiplied by a scalar as in the following form 

 c   (6.47) 

Then, the system matrices  4 4 4, ,K D M  are written as 

  2
4 4 4 0i i Ri   K D M   (6.48) 

where 

 
4 3

4 3

4 3

1 c

c







K K

D D

M M

 (6.49) 

writing equation (6.49) as 

  
4 3

4 _ 3

4 3

SST sc

  
  

    
     

K K

D Q I D

M M

 (6.50) 

The scale system spectral transformation (SST_sc) matrix _SST scQ  is 
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 _

1 0 0

0 1 0

0 0

SST sc

c

c

 
 


 
  

Q  (6.51) 

The diagonalised system matrices can be found by using the same SST_sc matrix 

_SST scQ  as 

  
4 3

4 _ 3

4 3

D D

D SST sc D

D D

  
  

    
     

K K

D Q I D

M M

 (6.52) 

 

The inverse of the matrix _SST scQ  in equation (6.51) can be used to calculate the 

diagonalised system  3 3 3, ,D D DK D M  for the system  3 3 3, ,K D M . 

  
3 4

1

3 _ 4

3 4

D D

D SST sc D

D D


   
    

      
     

K K

D Q I D

M M

 (6.53) 

where  
1

_SST sc


Q  is 

  
1

_

0 0

0 1 0

0 0 1

SST sc

c

c


 
 


 
  

Q  (6.54) 

The scale spectral transformation does not change the damping matrix 4 3D D

whereas the mass matrix and the stiffness matrix are changed 4 3cM M  and 

4 3 cK K . 

 

6.7.1 Scale spectral transformation and diagonalising SPEs 

The left and right diagonalising transformations for the system  3 3 3, ,K D M  can be 

calculated by scaling blocks of the left and right diagonalising transformations for 

the system  4 4 4, ,K D M . 
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 _

0

0 1
DST sc

c 
  
 

Q  (6.55) 

where the matrix _DST scQ  is called the scale diagonalising spectral transformation 

(DST_sc). 

 

6.8 Composing spectral transformations 

It is straightforward to find a relationship between the original system matrices with 

any transformed system matrices. Multiplying the spectral transformation matrices 

_SST saQ , _SST iQ , _SST sbQ  and _SST scQ  from equations (6.27), (6.39), (6.44) and (6.51) 

yields 

 

   
   

22

2

1 1

2 1 2 2 1SST

b c b ab c ab c

b ab a ab

c ac a c

  
 

   
 
  

Q  (6.56) 

The original system matrices  , ,o o oK D M  and their diagonalised system matrices 

 , ,Do Do DoK D M  can be expressed in terms of the transformed system matrices 

 4 4 4, ,K D M  and their diagonalised system matrices  4 4 4, ,D D DK D M  with the 

following equations 

  
4

4

4

o

SST o

o

  
  

    
     

K K

D Q I D

M M

 (6.57) 

  
4

4

4

D Do

D SST Do

D Do

  
  

    
     

K K

D Q I D

M M

 (6.58) 

It is possible here to find the left and right diagonalising transformations  ,Lo RoT T  

for the original system  , ,o o oK D M  in terms of diagonalising transformations for any 

transformed system matrices. Multiplying the diagonalising spectral transformation 
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matrices _DST scQ , _DST sbQ , _DST iQ , and _DST saQ  for each elementary spectral 

transformation yields 

 
 1DST

ac c

ab b

 
  

  
Q  (6.59) 

The left and right diagonalising transformations  ,Lo RoT T  for the system  , ,o o oK D M  

can be calculated in terms of  4 4,L RT T  as 

    
1 4 4

4 4

Lo Lo L L
DST DST

Lo Lo L L

   
     

  

W X W X
Q I Q I

Y Z Y Z
 (6.60) 

    
1 4 4

4 4

Ro Ro R R
DST DST

Ro Ro R R

   
     

  

W X W X
Q I Q I

Y Z Y Z
 (6.61) 

 

Figure 6-3 shows that the system spectral transformation matrix SSTQ  maps between 

two systems having the same short eigenvectors and their diagonalised matrices. 

However, the diagonalising spectral/similarity transformation matrix DSTQ  maps 

between two SPE‟s having identical eigenvalues. 

 

 

Figure 6-3 : Spectral transformation diagram and SPEs 

 

Comparing equations (6.20) and (6.21) with equations (6.7) and (6.8), it is obvious 

that 

, ,o o oK D M  

4 4 4, ,K D M  

, ,Do Do DoK D M

 

4 4 4, ,D D DK D M  

DSP

Es 

DSP

Es 

SSTQ  1
SST


Q  

DSTQ  SPECTRAL 

 

SPECTRAL 
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 1

p ac

q ab

r c

s b



 





 (6.62) 

The system matrices  , ,N N NK D M  and their diagonalised matrices  , ,DN DN DNK D M  

can be calculated in terms of new system matrices , ,o o oK D M  and their diagonalised 

matrices , ,Do Do DoK D M  using the same spectral transformation matrix SSTNQ  

equation (6.15) and vice versa. 

  
N o

N SSTN o

N o

   
   

    
      

K K

D Q I D

M M

 (6.63) 

  
DN Do

DN SSTN Do

DN Do

   
   

    
      

K K

D Q I D

M M

 (6.64) 

The left and right diagonalising transformations  ,Lo RoT T  for the system  , ,o o oK D M  

can be calculated in terms of  ,LN RNT T  for the system  , ,N N NK D M  as 

    
1Lo Lo LN LN

DSTO DSTO
Lo Lo LN LN

   
     

   

W X W X
Q I Q I

Y Z Y Z
 (6.65) 

    
1Ro Ro RN RN

DSTO DSTO
Ro Ro RN RN

   
     

   

W X W X
Q I Q I

Y Z Y Z
 (6.66) 

where 

 DSTO

p r

q s

 
  

 
Q  (6.67) 

DSTOQ  and DSTQ  are called diagonalising spectral transformation matrices. These 

transformation matrices are also called similarity transformations and these preserve 

the eigenvalues [40]. Then, the left and right diagonalising transformations  ,Lo RoT T  
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for the original system matrices  , ,o o oK D M  are similar to that for the transformed 

system matrices. 

 

6.9 Example 

This example addresses a three degrees of freedom system having a singular mass 

matrix and repeated real roots. The system matrices  0 0 0, ,K D M are shown below 

 

 

 
 

 

1 1 1 1

0 1 1 2 2 0 1 1 2 2

2 2 3 2 2 3

0 0

,      

0 0

k k d d

k k k k d d d d

k k k d d d

    
   

          
         

K D

 

 

1

0 2

3

0 0

0 0

0 0

m

m

m

 
 


 
  

M

 

where 1 2 33.0 4,     2.0 4,     1.0 4k e k e k e   , 1 2 3278.9616508149336,      100d d d    and 

1 2 32,   1,   0m m m   . The value for 1d  has been chosen so as to cause a pair of 

identical real roots. The eigenvalues of the system comprise one pair of complex 

conjugates, one pair of identical real roots, one other finite real root and one infinite 

eigenvalue. 

 

8.5063 44.3063

8.5063 44.3063

232.6196

232.6196

136.1906

i

i

Inf



  
 
 
 
 

  
 

 
 
    

The left and right eigenvectors  ,L RΦ Φ  for the original system matrices are 
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0.00427 0.02163 0.00427 0.02163  0.00205 0.00205 0.00087 0.00000

0.00358 0.01875 0.00358 0.01875 0.00429 0.00429 0.00318 0.00000

0.00331 0.01221 0.00331 0.01221 0.00085 0.00085 0.00734 0.00000

0.

L R

i i

i i

i i



     

    

     

Φ Φ

99462 0.00538 0.99462 0.00538 0.47581 0.47581 0.11886 0.00000

0.86099 0.00087 0.86099 0.00087 1.00000 1.00000 0.43283 0.00000

0.56908 0.04281 0.56908 0.04281 0.19741 0.19741 1.00000 1.00000

i i

i i

i i

  

    

    

 
 
 
 
 



 





 

 

The constants  , , ,p q r s  in equation (6.7) are calculated using equation (6.16). A 

MATLAB function is used to calculate the best angles   and   which are chosen at 

minimum condition of NM . Figure 6-4 and Figure 6-5 show the condition of NM  in 

logarithm values against the range of angles   and   in degrees ˚. 

 

  

  

The constants , , ,p q r s  are 

  

The system spectral transformation matrix  is calculated using equation (6.15) 

  

The transformed system matrices  are calculated using equations (6.14). 

The eigenvalues for the system are 

  

_ 52.58427,      _ 89.86854Best best  

    5.55050,     log 1.71389N Ncond cond M M

0.68017 0.73306

0.32702 0.94502

p q

r s

   
   

   

SSTNQ

2.21578 1.7188 1.3333

1.5335 2.1896 2.4742

0.2653 0.5519 1.1478

SSTN

 
 

   
 
  

Q

 , ,N N NK D M

2.8706 0.0805

2.8737 0.0000

2.8625

2.8898

i

i
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The i
th

 vector  of short eigenvector  and  with the system matrices 

 satisfy equation (6.10). 

 

 

Figure 6-4 : Angles θ and β with condition number of MN 

 

 

Figure 6-5 : Contours of condition number of MN 

 

 Ri RΦ i

 , ,N N NK D M
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The left and right diagonalising transformations  ,LN RNT T  for the system 

 , ,N N NK D M  and diagonalised system matrices  , ,DN DN DNK D M  are found to be 

 

0.8167 0.5685 0.0990

0.8168 ,     0.5684 ,     0.0989

0.8169 0.5681 0.0988

DN DN DNdiag diag diag

          
          

             
                    

K D M

 

The left and right diagonalising transformations  ,Lo RoT T  for the original system 

 , ,o o oK D M  are calculated using the diagonalising spectral transformation DSTOQ  in 

equation (6.67), equations (6.65) and (6.66). 

 

0.6802 0.3270

0.7331 0.9450
DSTN

 
  

 
Q

 

The diagonalised system matrices  , ,Do Do DoK D M  are calculated using equations 

(6.3)-(6.5) and can also be calculated using equation (6.19). 

 

0.3661 0.0031 0.1799

0.3662 ,     0.0032 ,     1.0 3 0.0068

0.3666 0.0027 0.0000

Do Do Dodiag diag diag e

          
          

              
                    

K D M

 

 

6.10 Conclusion 

This chapter has investigated methods based on Möbius/spectral transformation 

formulae to calculate the diagonalising SPEs where the eigenvalue problem leading 

coefficient is singular. Two new transformations have been investigated called 

system spectral transformation SSTNQ  and diagonalising spectral/similarity 

transformation DSTOQ . The system spectral transformation SSTNQ  maps between 

matrices of two systems having the same second order (short) eigenvectors and their 

diagonalised system matrices. The diagonalising spectral transformation DSTOQ  maps 

between two diagonalising SPE‟s having identical eigenvalues. 
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Equation (6.14) shows a relationship between the original system matrices and the 

transformed system matrices using the Möbius transformation formula in equation 

(6.7). The matrix SSTNQ  called the system spectral transformation matrix (SST) can 

also be used to determine the diagonalised system matrices.  

 

The Möbius transformation is decomposed into four elementary spectral 

transformations. These spectral transformations are used to find a relationship 

between the diagonalising SPEs for the new system matrices and the original system 

matrices. The system spectral transformation matrix SSTNQ  maps between two 

systems and their diagonalised system matrices having the same short eigenvectors. 

However, the diagonalising spectral/similarity transformation matrix DSTOQ  maps 

between two SPEs having identical eigenvalues. 

 

The following chapter focuses on generalising modal correlation methods to assess 

the discrepancies between sets of modal data.   
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CHAPTER  7. Modal correlation 

This chapter focuses on the development of general modal correlation methods to 

assess the discrepancies between experimental data and analytical data. Modal 

correlation is well-known as a technique which is performed for comparing measured 

modes with modes obtained from a numerical analysis. There are many methods for 

correlating measured modes with analytical modes. The most common and popular 

techniques known for modal correlation measures are the modal assurance criterion 

(MAC) and cross orthogonality checks on modal vectors [1-3]. 

 

This chapter extends the idea of mass and stiffness-weighted cross orthogonality 

measures in a natural way to the case of damped systems using diagonalising 

structure-preserving equivalences (SPEs). In this chapter, two different basic classes 

of orthogonality-cross orthogonality and mutual orthogonality- are presented. The 

cross orthogonality measures are used for matching sets of measured modes with sets 

of analytical modes. These measures are similar to MAC usage.  

 

The mutual orthogonality measures are defined through cross orthogonality 

measures. The mutual orthogonality measures are used to evaluate the consistency 

between measured modal information and system matrices. The mutual 

orthogonality measures can be used for modal updating and do not require matching 

of modes. Moreover, these calculations can be performed either at the level of the 

reduced analytical system matrices or by using extended measured modal 

information.  
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Every linear second-order system can be represented using the following three 

equations: 

 
L

T
R



  



f S u

Mq Dq Kq f

y S q

 (7.1) 

in which K , D  and M  are the system stiffness, damping and mass matrices, q  is a 

vector of (generalised) displacement coordinates, f  is a vector of (generalised) 

forces, and both of these vectors are functions of time. The matrices are assumed to 

be constant. The dot notation indicates differentiation with respect to time. The 

system has n degrees of freedom if q  and f  each contain n entries. Vectors u  and y  

represent the model inputs and outputs and they have ni and no entries respectively. 

The matrix LS  has dimensions (n  ni) and it distributes the system inputs onto the 

full-length force vector, f . The matrix RS  has dimensions (n  no) and it controls 

how the generalised displacements are manifest in the output vector, y . 

 

7.1 Undamped system modes 

7.1.1 Eigenvalues and eigenvectors 

The governing equation of motion for an undamped system is introduced in section 

2.3. The eigenvalues  ,...i n   with the corresponding right and left eigenvectors 

 ,Ri Li   together satisfy the following equations 

  2 0i Ri K M   (7.2) 

  2 0T
Li i K M  (7.3) 
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where Ri  represents the i
th

 vector of the right modal matrix RΦ  and Li  represents 

the i
th

 vector of the left modal matrix LΦ . 

The system can be diagonalised by transformations thus 

 T
L R DΦ MΦ M  (7.4) 

 T
L R DΦ KΦ K  (7.5) 

where DM  and DK  are real-valued diagonal matrices. 

 

7.1.2 Mass and stiffness weighted orthogonality for 

undamped systems 

In general modes may not have been mass-normalised. This allows for the possibility 

that M need not necessarily be invertible and it also emphasises the important point 

that the mass-weighted orthogonality of the modes is no more special than the 

stiffness-weighted orthogonality checks. 

 

There are different possible methods [91-94] which are suggested to achieve the 

orthogonality requirement. Garvey et al. [23] defined the mass and stiffness-

weighted orthogonality in the following equations. Equations (2.8) and (7.5) can be 

written as 

 1 1T
L R

  Θ Φ MΦ Θ I  (7.6) 

 1 1T
L R

  Ψ Φ KΦ Ψ I  (7.7) 

In some cases, the values of DM  and DK  are positive then, 2
D M Θ  and 2

D K Ψ . 

However, it might be possible that one or more of the entries in DM  or/and DK  are 
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negative. The issue here is that the inverse of Θ  and Ψ  will have imaginary parts. 

The matrices  ,D DM K  can be written as 

 D L RM Θ Θ  (7.8) 

 D L RK Ψ Ψ  (7.9) 

In this case, the values in LΘ  are equal to the values in RΘ  but where a minus sign 

appears in one, that entry in the other will be positive. The same applies to the 

 ,L RΨ Ψ . 

 

7.2 Generally damped modes for second-order 

systems 

7.2.1 Eigenvalues and eigenvectors for damped systems 

The governing equation of motion for a damped second order system is introduced in 

Chapter 2 section 2.1.5. Every linear second-order system can be represented using 

the following three equations: 

 

The right and left eigenvectors  ,Ri Li   are also mentioned in Chapter 2 section 2.3.2 

which satisfy the following equations 

  2 0i i Ri   K D M   (7.10) 

  2 0T
Li i i   K D M  (7.11) 

Equation (7.1) can be written in a state-space form as 

 
          

          
          

K 0 q D M q f

0 M q M 0 q 0
 (7.12) 

when no forcing is present, this becomes 
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  Dx Kx 0  (7.13) 

where D and K  are (2n  2n) matrices, x  is the so-called state-vector and the 

definitions of all are evident from comparison of equation (2.23) with (7.13). 

 

Coordinate transformations are introduced in Chapter 2 section 2.5. The relationship 

between two systems is referred as a conventional equivalence. 

 

T
L R N

T
L R N

T
L R N







T KT K

T DT D

T MT M

 (7.14) 

 It is also well known that given any arbitrary system  , ,K D M , it is not usually 

possible to find invertible matrices,  ,L RT T  such that  , ,N N NK D M  are all diagonal. 

 

7.2.2 Structure preserving equivalences (SPEs) 

The structure preserving transformations (SPTs) which are introduced in Chapter 2, 

developed by Garvey et al. [42, 44] are coordinate transformations for second-order 

systems. The concept of structure-preserving transformations (SPTs) is described in 

[47]. These transformations are applied to the LAMs such that the structure of LAMs 

is preserved and the eigenvalues of the system are preserved. 

 

Diagonalising SPEs which are introduced in Chapter 2, section 2.6 and Chapter 5, 

section 5.4 are represented by real-valued (nn) matrices  , , ,L L L LW X Y Z , 

 , , ,R R R RW X Y Z . These transformations  ,L RT T  can usually decouple the 

equations of motion such that the new system matrices  , ,D D DK D M  themselves are 

diagonal.  
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T

L L R R D

L L R R D D

      
      

      

W X W X 0 K0 K

Y Z Y Z K DK D
 (7.15) 

 
T

L L R R D

L L R R D

      
      

      

W X W X K 0K 0

Y Z Y Z 0 M0 M
 (7.16) 

 
T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z M 0M 0
 (7.17) 

More concisely 

 T
L R DT MT M  (7.18) 

 T
L R DT DT D  (7.19) 

 T
L R DT KT K  (7.20) 

where  , ,D D DK D M  are block diagonal matrices and  , ,D D DK D M  represent the 

LAMs for the system whose coefficient matrices are the diagonal matrices 

 , ,D D DK D M  

 

 

 

 

1 2

1 2

1 2

, ,....,

, ,....,

, ,....,

D n

D n

D n

diag k k k

diag d d d

diag m m m







K

D

M

 (7.21) 

Pairs of columns of the right and left diagonalising transformations  ,Ri Lit t  satisfy 

the following equations 

 
0 0

0 0

Ri Ri
i i i

Ri Ri

w x
m d k

y z

           
                       

0 K K 0 D M

K D 0 M M 0
 (7.22) 

 
0 0

0 0

T

Li Li
i i i

Li Li

w x
m d k

y z

           
                        

0 K K 0 D M

K D 0 M M 0
 (7.23) 

where it is trivial to verify 

 
0 0 0 0

0 0 0 0

i i i i
i i i

i i i i

k k d m
m d k

k d m m

         
                    

 (7.24) 

Equations (7.22) and (7.23) can be written more concisely 
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   0i i i Rim d k  M D K t  (7.25) 

   0
T

Li i i im d k  t M D K  (7.26) 

 

7.3 Modal correlation for undamped systems with 

complete modal information 

There are many methods for correlating measured modes with analytical modes. The 

MAC is the most common measure of modal correlation used. The MAC [23] is 

independent of modal scaling and was defined originally for real valued modes and 

extended later to complex modes. One of the modal correlation techniques for 

general undamped systems is the cross orthogonality method. 

 

It is common practice in the vibration literature to mass-normalise modes and if this 

were done, we would have D M I .  However we will retain the generality that the 

modes may not have been mass-normalised. This emphasises the important point that 

the mass-weighting orthogonality of the modes is no more special than the stiffness-

weighted orthogonality checks. 

 

7.3.1 Orthogonality properties of undamped systems 

This section extends the ideas proposed by Garvey et al. [23] for undamped 

symmetric systems. Now consider that there have been two slightly-different 

undamped systems,  ,o oK M and  ,a aK M - each with slightly different modal 

properties. The subscripts “o” and “a” refer to the original and analytical systems. 

Then 
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 T
Lo o Ro DoM M   (7.27) 

 T
Lo o Ro DoK K   (7.28) 

 T
La a Ra DaM M   (7.29) 

 T
La a Ra DaK K   (7.30) 

The eigenvalues and corresponding right and left eigenvectors of the standard 

equations of motion in structural dynamics in second-order form for undamped 

systems are given by the solutions of equations (5.6) and (5.7). The modal matrices 

,L RΦ Φ  satisfy equations (2.8) and (7.5) for measured and analytical systems. 

The diagonalising transformations satisfy these equations 

 1 1T
Lo Lo o Ro Ro n
  M I     (7.31) 

 1 1T
La La a Ra Ra n
  M I      (7.32) 

 1 1T
Lo Lo o Ro Ro n
  K I     (7.33) 

 1 1T
La La a Ra Ra n
  K I     (7.34) 

in which   , , ,Lo Ro La Ra     are some real invertible diagonal matrices  such that 

 Lo Ro DoM   (7.35) 

 La Ra DaM   (7.36) 

The generality afforded by allowing Lo Ro   and La Ra   allows that DoM  and 

DaM  may contain negative diagonal entries without requiring that any of 

 , , ,Lo Ro La Ra     should contain complex (purely-imaginary) quantities. 

Similarly, the matrices  , , ,Lo Ro La Ra     are some real invertible diagonal matrices 

such that 

 Lo Ro DoK   (7.37) 

 La Ra DaK   (7.38) 
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7.3.2 Mass and stiffness-weighted cross-orthogonality for 

undamped systems 

Pseudo or cross orthogonality checks have been used in much of the literature to 

overcome some of the problems associated with some methods of modal correlation. 

The two mass-weighting orthogonality measures using only the known mass matrix, 

aM  are defined as 

 1 1T
Moa Lo Lo a Ra Ra

 XO M     (7.39) 

 1 1T
Mao La La a Ro Ro

 XO M     (7.40) 

The matrices MoaXO  and MaoXO  have dimensions  m n  and  n m , respectively, 

where m  is the number of measured modes and n  is the number of degrees of 

freedom. 

 

There are two different stiffness-weighting cross-orthogonality measures - using 

only aK which is also known 

 1 1T
Koa Lo Lo a Ra Ra

 XO K     (7.41) 

 1 1T
Kao La La a Ro Ro

 XO K     (7.42) 

By looking at equations (7.39) and (7.41), the cross orthogonality measures can help 

to assess which eigenvectors from the left measured system best matches the right 

analytical system. In addition, the cross orthogonality measures can help to match up 

which eigenvectors from the right measured system best match with one from the left 

analytical system by looking at equations (7.40) and (7.42). 
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7.3.3 Mass and Stiffness mutual orthogonality for 

undamped system 

The products of equations (7.39), (7.40) and equations (7.41), (7.42) in equations 

(7.43), (7.45) define other measure MooO and KooO  respectively. These measures are 

independent of any modal information from system  a a,K M . By rearranging 

equation (7.32), (7.34) and substituting into equation (7.43) and (7.45), respectively, 

the results will be referred to as mass and stiffness mutual orthogonality measures, 

respectively. 

 

7.3.3.1 Errors in the stiffness matrix 

If some discrepancy K , exists between the physical model and the analytical model 

in the stiffness matrix then,  Moa MaoXO XO  must be a bi-orthogonal matrix pair. 

Matrices  ,Moa MaoXO XO  are said to be bi-orthogonal if Moa Mao XO XO C .  C  is the 

identity matrix and has dimensions  m m , where m n . The modal correlation here 

is the product of the two mass-weighted orthogonality measures equations (7.39) and 

(7.40). 

    1 1 1 1T T
Ma Lo Lo a Ra Ra La La a Ro Ro

    XO M M         (7.43) 

Also equation (7.43) defines a new expression which is called mutual orthogonality 

measures MooO . If the two mass matrices  a,oM M  are identical, then Moo O I  which 

is similar to equation (7.31). 

 

       

   

1
1 1 1 1

1 1

:

T T T
Ma Lo Lo La La La La a Ro Ro

T
Lo Lo a Ro Ro

Moo


   

 

    

  



XO M

M

O

       

     (7.44) 
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7.3.3.2 Errors in the mass matrix 

If the physical model differs from the analytical model only by some errors in the 

mass matrix M , then  Koa KaoXO XO  must be a bi-orthogonal matrix pair. The modal 

correlation here is the product of these two stiffness-weighted orthogonality 

measures (7.41) and (7.42). 

    1 1 1 1T T
Ka Lo Lo a Ra Ra La La a Ro Ro

    XO K K         (7.45) 

Equation (7.45) defines a new expression which is called mutual orthogonality 

measures KooO . If the two stiffness matrices  a,oK K  are identical, then Koo O I  

which is similar to equation (7.33). 

 

       

   

1
1 1 1

1 1

:

T T T T
Ka Lo Lo La La La La a Ro Ro

T
Lo Lo a Ro Ro

Koo


  

 

    

  



XO K

K

O

       

     (7.46) 

 

Equations (7.43) and (7.45) define the cross-orthogonality measures ,Ma KaXO XO  for 

undamped systems. These equations require modal information from both systems 

 ,o oK M  and  ,a aK M . However, equations (7.44) and (7.46) define the mutual 

orthogonality measures ,Moo KooO O  which are independent of any information from 

the system  ,a aK M . The measured modal information for the system  ,o oK M  are 

bi-orthogonal through the mass and stiffness matrices. 
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7.3.4 Rate of change of cross orthogonality measures MooO  

and KooO  for undamped systems 

For the purposes of this work, the system matrices (θ), (θ)a aK M  are taken to be 

linear functions of a scalar parameter vector  . In effect, we are assuming that 

stiffness and mass matrices are changing continuously as described in the following 

equations 

  
1

θ

p

a o j j

j

  M M M  (7.47) 

  
1

θ

p

a o j j

j

  K K K  (7.48) 

Obviously, the eigenvalues and their corresponding eigenvectors are also changing 

and are functions of the scalar parameter vector  . Differentiating equations (7.29) 

and (7.30) with respect to each scalar parameter j  in vector   gives 

 T T T
Da La a Ra La a Ra La a Ra  M M M M       (7.49) 

 T T T
Da La a Ra La a Ra La a Ra  K K K K       (7.50) 

 

The derivatives of eigenvalues and their corresponding eigenvectors for undamped 

systems are well known. These derivatives with respect to a single scalar parameter 

j  at 0j   are presented in Chapter 5. The single scalar parameter j  is chosen to 

be a variable parameter from the uncertainty parameter vector θ . 

 

The cross orthogonality measures are also changed.  

 
1

p

Ma
Ma M M M j

jj


    




XO
XO XO XO XO  (7.51) 
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1

θ
θ

p

Ka
Ka K K K j

jj


    




XO
XO XO XO = XO  (7.52) 

where j=1:p , and p is number of uncertainty parameter vector θ . 

 

Computing the sensitivity of cross orthogonality measures can be done either 

numerically or analytically. 

 

7.3.4.1 Rates of change of cross-orthogonality measures for undamped 

systems 

The rates of change of different cross-orthogonality measures can be determined by 

differentiating equations (7.43) and (7.45) with respect to each scalar parameter j  in 

the vector   at 0j  . In this case the modal information for both systems is 

required. 

 

1 1

1 1 1 1

1 1

T
a Ra Ra La La a

T T
Ma Lo Lo a Ra Ra La La a Ro Ro

T
a Ra Ra La La a

 

   

 

      
     
       
     

     
     

M M

XO M M

M M

   

       

   

 (7.53) 

 

1 1

1 1 1 1

1 1

T
a Ra Ra La La a

T T
Ka Lo Lo a Ra Ra La La a Ro Ro

T
a Ra Ra La La a

 

   

 

      
     
       
     

     
     

K K

XO K K

K K

   

       

   

 (7.54) 

The rates of change of cross orthogonality in equations (7.53) and (7.54) demand 

modal information from the system  ,a aK M .  
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7.3.4.2 Rate of change of mutual orthogonality measures for undamped 

systems 

The rates of change of mutual orthogonality can be determined by differentiating 

equations (7.44) and (7.46)  with respect to each scalar parameter j  in the vector   

at 0j  . 

 1 1T
Moo Lo Lo a Ro Ro

 
O M      (7.55) 

 1 1T
Koo Lo Lo a Ro Ro

 O K     (7.56) 

The rate of change of cross orthogonality in equations (7.55) and (7.56) are 

independent of any information from the system  ,a aK M . 

 

7.3.5 Residual measures based on mutual orthogonality for 

undamped systems 

The above mutual orthogonality measures have long been developed for undamped 

systems [91, 131, 132]. The residuals  Koo nO I  and  Moo nO I  are measures of the 

difference between systems  ,o oK M  and  a a,K M  without loss of generality 

provided that the system matrices  ,o oK M  are invertible. Evidently if both of these 

measures are zero, then the two systems are identical. Note that, the availability of 

the full modal information for the system  ,o oK M  is assumed. 

 

One criticism of the above two measures in equations (7.44) and (7.46) is that they 

rely on the invertibility of  ,Do DoM K . A measure which does not demand this 

invertibility is introduced.  
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Pre- and post-multiplying equation (7.35) by  ,Lo Ro   and pre- and post-

multiplying equation (7.37) by  ,Lo Ro   yields 

 :Lo Do Ro Lo Lo Ro Ro M A       (7.57) 

 :Lo Do Ro Lo Lo Ro Ro K A       (7.58) 

 ,Lo Ro  and  ,Lo Ro   are diagonal matrices, equations (7.57) and (7.58) are 

identical. 

 

Then, new residuals can be calculated. Pre- and post-multiplying equation (7.44) by 

    ,Lo Lo Ro Ro     and equation (7.46) by     ,Lo Lo Ro Ro     respectively yield 

 Moo M Lo Lo Ro Ro M Do Do M     R O O M K O A     (7.59) 

 Koo K Lo Lo Ro Ro K Do Do K     R O O M K O A     (7.60) 

in which 

    T
M Lo Lo Moo Ro Ro Lo Lo a Ro Ro O O M         (7.61) 

    T
K Lo Lo Koo Ro Ro Lo Lo a Ro Ro O O K         (7.62) 

The matrices MooO , and KooO  are the same as in equations (7.44) and (7.46) 

respectively. 

 

It is appropriate to vectorise MooR , and KooR  and combine them to define the total 

residual where the dimension is  22 1m  .  

 
 
 

Moo

Koo

vec

vec

 
  
  

R
r

R
 (7.63) 

The rate of change of equations (7.61) and (7.62) can be written as 

  T
M Lo Lo a Ro RoO M     (7.64) 
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  T
K Lo Lo a Ro RoO K     (7.65) 

These derivatives are independent of any information from the system  ,a aK M . 

 

7.4 Modal correlation for undamped systems with 

incomplete modal information 

In practice, complete measured modal information is not available for any system. 

Measurements are restricted by the input and output matrices,  ,L RS S , which 

determine where excitation may be applied and where responses may be measured. 

Measurements are also restricted by the sampling rates and resolution of equipment 

with the result that the number of modes obtained is restricted - reducing it from n to 

m, where m<n. 

 

In general, we will have incomplete information about the modal properties of the 

system  ,o oK M  with modal properties     , , ,T T
Do Do L Lo R RoK M S S   where 

 ,Do DoK M  are each diagonal (mm) matrices with m<n.  Note that matrices  RL SS ,  

are invertible and identical for the two systems  ,o oK M  and  ,a aK M  and we 

consider that these are not subject to any uncertainty.  

 

If  ,L RS S  are not invertible, then it is not possible to discover  ,Lo RoΦ Φ  from 

measurements. In fact what the measurements obtain is     ,T T
L L R RS Φ S Φ . As stated 

earlier, if the system matrices are all symmetric, then with appropriate scaling 
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Lo Ro   and this can be used to expand the obtained information to some extent  

(provided that L RS S ). However, this is not useful in the general case. 

 

With modal information obtained from only a subset of the total set of degrees of 

freedom, the literature is divided between some papers which advocate expanding 

the modal vectors,  ,Lo Ro   [133, 134], and some [132] which prefer to reduce the 

system matrices, a a,K M . To expand the modal vectors, some transformation 

matrices,  ,L RT T , are chosen such that  

 T
L L S T I  (7.66) 

 T
R R S T I  (7.67) 

Then the expanded modal matrices are found as  

  T
Lo L L Lo T S   (7.68) 

  T
Ro R R Ro T S   (7.69) 

 

Equations (7.68) and (7.69) preclude the possibility that different transformation 

matrices  ,L RT T  might be developed for each individual pair of eigenvectors such as 

[133] describes. Including this generality is possible but it is beyond the scope of the 

present chapter. By accepting the restriction indicated by equations (7.68) and (7.69), 

it is obvious that the expanded modal matrices will be consistent with the measured 

modal information in so far as 

 T T
L Lo L LoS S   (7.70) 

 T T
R Ro R RoS S   (7.71) 
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The alternative to expanding the modal matrices – namely reducing the system 

matrices  ,a aK M – is achieved by forming 

 _
T

a redu L a RM T M T  (7.72) 

 _
T

a redu L a RK T K T  (7.73) 

It is clear from equations (7.70) and (7.71) that whether the expanded modal 

information or the original modal information is employed, the same mutual-

orthogonality measures  ,Koo MooO O  are obtained since 

         1 1 1 1
T T

T T T T T T
L L Lo L a R R Ro R L L Lo L a R R Ro R
   S T M T S S T M T S         (7.74) 

         1 1 1 1
T T

T T T T T T
L L Lo L a R R Ro R L L Lo L a R R Ro R
   S T K T S S T K T S         (7.75) 

 

The same transformation matrices are applicable whether we are expanding the 

measured modal information or reducing the dimensions of the system matrices. 

 

7.5 Modal Correlation measures for general second 

order systems 

In this section, the general ideas for modal correlation of undamped systems are 

extended to the case of damped systems. Garvey et al. [23] addressed modal 

correlation measures for general viscous damped structures. This section extends the 

ideas well presented in that paper. 

 

7.5.1 Orthogonality properties of damped systems 

The orthogonality measures for a damped system can be written as 
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1T T

L L R RL L R R

L L R RL R

 
         

         
         

W X W X0 K 0 IΠ Π

Y Z Y ZK D I 00 0

   

 
 (7.76) 

 

1

2

T T

L L L L R R R R

L L L L R R R R

 
          

          
           

W X W XK 0 0 I

Y Z Y Z0 M I 0

   

   
 (7.77) 

 
   

1T T

L RL L R R

L L R RL L R R

 
          

         
         

0 0W X W XD M 0 I

Π ΠY Z Y ZM 0 I 0

 

   
 (7.78) 

The first task here is to generalise the idea of factorising the matrices of the 

diagonalised system in a way which is equivalent to equations (7.35)-(7.38). This 

generalisation takes the form: 

 
   

T

DL L R R

D DL R

      
      

      

0 K0 IΠ Π

K DI 00 0

   

 
 (7.79) 

 
1

2

T

L L R R D

L L R R D

      
      

        

K 00 I

0 MI 0

   

   
 (7.80) 

 
   

T

L R D D

L L R R D

       
      

      

0 0 D M0 I

Π Π M 0I 0

 

   
 (7.81) 

The second subscripts (o or a) have been omitted from equations (7.79)-(7.81) since 

they are taken to apply to systems  , ,o o oK D M  and  a a a, ,K D M . Observe that if 

equations (7.79)-(7.81) are expanded, the following equations are obtained 

 D L RM     (7.82) 

 D L RK     (7.83) 

 (which are consistent with equations (7.35),(7.36) and (7.37),(7.38) respectively) 

along with 

  D L R L RD        (7.84) 
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Again, in equations (7.82)-(7.84), the second subscripts (o or a) have been omitted 

and these equations are intended to be applied again to systems  , ,o o oK D M  and 

 a a a, ,K D M . Note that 

 
   

1T T

L L R RL L R R

L L R RL R

 
         

         
         

W X W X0 K 0 IΠ Π

Y Z Y ZK D I 00 0

   

 
 (7.85) 

 
1

2

T T

L L L L R R R R

L L L L R R R R

 
          

          
           

W X W XK 0 0 I

Y Z Y Z0 M I 0

   

   
 (7.86) 

 
   

1T T

L RL L R R

L L R RL L R R

 
          

         
         

0 0W X W XD M 0 I

Π ΠY Z Y ZM 0 I 0

 

   
 (7.87) 

Equations (7.85), (7.86) and (7.87) can be written as 

 1T T
LC L R RC

 
M T MT M J  (7.88) 

 1
2

T T
LC L R RC

 
D T DT D J  (7.89) 

 1T T
LC L R RC

 
K T KT K J  (7.90) 

and these equations apply both to  , ,o o oK D M  and  , ,a a aK D M . 

 

7.5.2 Cross orthogonality measures for general damped 

systems 

Three different cross orthogonality measures of modal correlation are expressed in 

terms of the structure preserving equivalences in [23]. The two different cross-

orthogonality measures-using the known matrix aM  are defined as 

   
1T T

Lo Lo a Ra RaLo o Lo Ra a Ra
Moa

Lo Lo a a Ra RaLo Ra

 
        

         
        

W X 0 K W XΠ Π
XO

Y Z K D Y Z0 0

   

 
 (7.91) 

   
1T T

La La a Ro RoLa a La Ro o Ro
Mao

La La a a Ro RoLa Ro

 
        

         
        

W X 0 K W XΠ Π
XO

Y Z K D Y Z0 0

   

 
 (7.92) 
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More concisely 

 1T T
Moa LCo Lo a Ra RCa

 
XO M T M T M  (7.93) 

 1T T
Mao LCa La a Ro RCo

 
XO M T M T M  (7.94) 

 

Correspondingly, define two different cross orthogonality measures-using the known 

aD  matrix 

1

2

T T

Lo Lo Lo Lo a Ra Ra Ra Ra
Doa

Lo Lo Lo Lo a Ra Ra Ra Ra

 
         

          
          

W X K 0 W X
XO

Y Z 0 -M Y Z

   

   
 (7.95) 

1

2

T T

La La La La a Ro Ro Ro Ro
Dao

La La La La a Ro Ro Ro Ro

 
         

          
           

W X K 0 W X
XO

Y Z 0 M Y Z

   

   
 (7.96) 

More concisely 

 1
2

T T
Doa LCo Lo a Ra RCa

 
XO D T D T D  (7.97) 

 1
2

T T
Dao LCa La a Ro RCo

 
XO D T D T D  (7.98) 

Define another two different cross-orthogonality measures-using aK  which is also 

known 

   

1T T
Lo RaLo Lo a a Ra Ra

Koa
o Lo Lo a Ra RaLo Lo a Ra Ra

 
         

         
        

0 0W X D M W X
XO

Π ΠY Z M 0 Y Z

 

   
 (7.99) 

   

1T T
La RoLa La a a Ro Ro

Kao
a La La Ro RoLa La a Ro Ro

 
         

         
        

0 0W X D M W X
XO

Π ΠY Z M 0 Y Z

 

   
 (7.100) 

More concisely 

 1T T
Koa LCo Lo a Ra RCa

 
XO K T K T K  (7.101) 

 1T T
Kao LCa La a Ro RCo

 
XO K T K T K  (7.102) 

Evidently, the main important point by looking at equations (7.91), (7.95) and (7.99) 

is that the cross orthogonality measures can help to assess which modal information 
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from the left measured system best match with the right analytical system. 

Furthermore, the cross orthogonality measures can help to match up which modal 

information from the right measured system best match with one from the left 

analytical system by looking at equations (7.92), (7.96) and (7.100). 

 

7.5.3 Mutual orthogonality for general damped systems 

7.5.3.1 Errors in the mass matrix 

If the physical model differs from the analytical model only by some errors in the 

mass matrix M , then   2 2Moa Maon nXO J XO  must be a bi-J-unitary matrix pair. 

Matrices   2 2Moa Maon nXO J XO  are said to be bi-J-unitary matrix if 

 2 2Moa Maon n XO J XO J . J  is a matrix which takes form 
 

  
 

0 I
J

I 0
, I  is the identity 

matrix and has dimensions  m m , where m n . The modal correlation here is the 

product of equations (7.91) and (7.92). 

  
   

 

   

2 2

1

2 2

Moa Maon n

T T

Lo Lo a Ra RaLo o Lo Ra a Ra
n n

Lo Lo a a Ra RaLo Ra

T T

La La a Ro RoLa a La Ro o Ro

La La a a Ro RoLa Ro



 







        
        

        

        
       

        

XO J XO

W X 0 K W XΠ Π
J

Y Z K D Y Z0 0

W X 0 K W XΠ Π

Y Z K D Y Z0 0

   

 

   

 

1

 
 
 
 
 
  
 

 (7.103) 

A more concise way of writing equation (7.103) is 

 
  1 1

2 2

T T T T
Ma LCo Lo a Ra RCa LCa La a Ro RCon n

   

XO M T M T M J M T M T M  (7.104) 

The product of cross-orthogonality measures in equation (7.103) defines another 

measure, MooO  which is independent of any modal information from the system 

 , ,a a aK D M . Rearranging equation (7.76) for the system  , ,a a aK D M  and 
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substituting into equation (7.103) the result will be referred to as mutual 

orthogonality for the system  , ,o o oK D M . If the two matrices  ,o aM M  are identical, 

Moo O J . 

   
1

0 :

Ma

T T

Lo Lo a Ro RoLo o Lo Ro o R
Moo

Lo Lo a a Ro RoLo Ro

 



        
        

        

XO

W X 0 K W XΠ Π
O

Y Z K D Y Z0 0

   

 

 (7.105) 

Equation (7.105) can be written as 

  1
:

T T
Ma LCo Lo a Ro RCo Moo

 
 XO M T M T M O  (7.106) 

 

7.5.3.2 Errors in the damping matrix 

If the physical model differs from the analytical model only by some errors in the 

damping matrix D , then   2 2Doa Daon nXO J XO  must be a bi-J-unitary matrix pair. 

The modal correlation here is the product of equations (7.95) and (7.96). 

 

 

2 2

1

2 2

4

Doa Daon n

T T

Lo Lo Lo Lo a Ra Ra Ra Ra

n n
Lo Lo Lo Lo a Ra Ra Ra Ra

T T

La La La La a Ro Ro Ro Ro

La La La La a Ro Ro Ro Ro



 







         
         

           

       
       

         

XO J XO

W X K 0 W X
J

Y Z 0 M Y Z

W X K 0 W X

Y Z 0 M Y Z

   

   

   

   

1

 
 
 
 
  
  

  

 (7.107) 

More concisely than equation (7.107) 

 
  1 1

2 24
T T T T

Da LCo Lo a Ra RCa LCa La a Ro RCon n

   

XO D T D T D J D T D T D  (7.108) 

The product of cross-orthogonality measures in equation (7.107) defines another 

measure, DooO  which is independent of any modal information from the system 

 , ,a a aK D M . The result of rearranging equation (7.77) for the system  , ,a a aK D M  
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and substituting into equation (7.107) will be referred to as the mutual orthogonality 

for system  , ,o o oK D M . If the two matrices  ,o aD D  are identical, Doo O J . 

1

2 :

Da

T T

Lo Lo Lo Lo a Ro Ro Ro Ro
Doo

Lo Lo Lo Lo a Ro Ro Ro Ro

 



         
         

           

XO

W X K 0 W X
O

Y Z 0 M Y Z

   

   

 (7.109) 

Equation (7.109) can be written as 

  1
2 :

T T
Da LCo Lo a Ro RCo Doo

 
 XO D T D T D O  (7.110) 

 

7.5.3.3 Errors in the stiffness matrix 

If the physical model differs from the analytical model only by some errors in the 

stiffness matrix K , then   2 2Koa Kaon nXO J XO  must be a bi-J-unitary matrix pair. 

The modal correlation here is the product of equations (7.99) and (7.100). 

 

     

 

2 2

1

2 2

Koa Kaon n

T T
Lo RaLo Lo a a Ra Ra

n n
o Lo Lo a Ra RaLo Lo a Ra Ra

T T
La RoLa La a a Ro Ro

a La La oLa La a Ro Ro



 







         
        

        

        
       

      

XO J XO

0 0W X D M W X
J

Π ΠY Z M 0 Y Z

0 0W X D M W X

Π ΠY Z M 0 Y Z

 

   

 

   

1

Ro Ro



 
 
 
 
  
   

  

(7.111) 

Writing equation (7.111) more concisely 

 
  1 1

2 2

T T T T
Ka LCo Lo a Ra RCa LCa La a Ro RCon n

   

XO K T K T D J K T K T K  (7.112) 

The product of cross-orthogonality measures in equation (7.111) also defines another 

measure, KooO  which is independent of any modal information from the system 

 , ,a a aK D M . The result of rearranging equation (7.78) for the system  , ,a a aK D M  

and substituting into equation (7.111) will be referred to as the  mutual orthogonality 

for the system  , ,o o oK D M . If the two matrices  ,o aK K  are identical, Koo O J . 
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1

:

Ka

T T
Lo RoLo Lo a a Ro Ro

Koo
o Lo Lo o Ro RoLo Lo a Ro Ro

 



         
        

        

XO

0 0W X D M W X
O

Π ΠY Z M 0 Y Z

 

   

 (7.113) 

Equation (7.113) can be written as 

  1
:

T T
Ka LCo Lo a Ro RCo Koo

 
 XO K T K T K O  (7.114) 

Equations (7.103), (7.107) and (7.111) define the cross-orthogonality measures 

, ,Ma Da KaXO XO XO  for general damped systems. These equations require modal 

information from both systems  , ,o o oK D M  and  , ,a a aK D M . However, equations 

(7.105), (7.109) and (7.113) define the mutual orthogonality measures 

, ,Moo Doo KooO O O  which are independent of any information from the system 

 , ,a a aK D M . The measured modal information for the system  , ,o o oK D M  are bi-J-

unitary through the system matrices. 

 

7.5.4 Rate of change of different cross orthogonality 

measures MaXO , DaXO  and KaXO  for damped systems 

A procedure is applied which is a close parallel to the presented procedure in section 

7.3.4. In effect, we are assuming that stiffness, damping and mass matrices 

 , ,a a aK D M  are changing continuously as shown in the following equations 

  
1

θ

p

a o j j

j

  M M M  (7.115) 

  
1

p

a o j j

j

   D D D  (7.116) 

  
1

θ

p

a o j j

j

  K K K  (7.117) 
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The eigenvalues and their corresponding eigenvectors are also changed. Then the 

derivatives of the diagonalised system and diagonalising SPEs can be calculated. 

Differentiating equations (7.18), (7.19) and (7.20) with respect to each scalar 

parameter j   in vector   gives 

 
T T T

La a Ra La a Ra La a Ra Da  T M T T M T T M T M  (7.118) 

 
T T T

La a Ra La a Ra La a Ra Da  T D T T D T T D T D  (7.119) 

 
T T T

La a Ra La a Ra La a Ra Da  T K T T K T T K T K  (7.120) 

The derivatives of the diagonalised system matrices and diagonalising SPEs for 

damped system in equations (7.115), (7.116) and (7.117) with respect to a single 

scalar parameter j  at 0j   are introduced in Chapter 5 and presented in [121, 

135]. 

 

The cross orthogonality measures are also affected by the changes that occur in the 

system matrices. Matching the discrepancies between the physical and computed 

modal information can be achieved. 

 
1

θ

p
Ma

Ma M M M j
jj


     




XO
XO XO XO XO  (7.121) 

 
1

θa

p
Da

D D D D j
jj


     




XO
XO XO XO XO  (7.122) 

 
1

θ
θ

p
Ka

Ka K K K j
jj


    




XO
XO XO XO = XO  (7.123) 

The sensitivity of cross orthogonality measures can be computed by relating changes 

due to variations in each scalar parameter j . This can be done either numerically or 

analytically. 
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7.5.4.1 Rates of change of cross orthogonality measures for damped 

systems 

The rates of change of different cross-orthogonality measures for structure 

preserving transformations can be determined by differentiating equations (7.104), 

(7.108) and (5.44) with respect to each scalar parameter j  in the vector   at 0j   

 

1

1 1

2 2

1

T T
LCa La aa Ra RCa

TT T T
Ma LCo Lo a Ra RCa LCa La a Ro RCon n

T T
LCa La aa Ra RCa



   



 

          
          
              

M T MM T M

XO M T M T M J M T M T M

M T MM T M

 (7.124) 

 

1

1 1

2 2

1

4

T T
LCa La aa Ra RCa

TT T T
Da LCo Lo a Ra RCa LCa La a Ro RCon n

T T
LCa La aa Ra RCa



   



 

          
          
              

D T DD T D

XO D T D T D J D T D T D

D T DD T D

 (7.125) 

 

1

1 1

2 2

1

T T
LCa La aa Ra RCa

TT T T
Ka LCo Lo a Ra RCa LCa La a Ro RCon n

T T
LCa La aa Ra RCa



   



 

          
          
              

K T KK T D

XO K T K T D J K T K T K

K T KK T D

 (7.126) 

 

7.5.4.2 Rates of change of mutual orthogonality measures for damped 

systems 

The rates of change of different mutual orthogonality measures for structure 

preserving transformations can be determined by differentiating equations (7.105), 

(7.109) and (7.113) with respect to each scalar parameter j  in the vector   at 0j   

   
1

0

T T

Lo Lo Ro RoLo o Lo Ro o Ra
Moo

Lo Lo Ro RoLo Roa a

 
       

        
       

W X W XΠ Π0 K
O

Y Z Y Z0 0K D

   

 
 (7.127) 

1

2

T T

Lo Lo Lo Lo Ro Ro Ro Roa
Doo

Lo Lo Lo Lo Ro Ro Ro Roa

 
        

         
         

W X W XK 0
O

Y Z Y Z0 M

   

   
 (7.128) 
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1T T
Lo RoLo Lo Ro Roa a

Koo
o Lo Lo o Ro RoLo Lo Ro Roa

 
        

        
       

0 0W X W XD M
O

Π ΠY Z Y ZM 0

 

   
 (7.129) 

 

7.5.5 Residual measures based on mutual orthogonality for 

second order system 

The residuals  Moo O J ,  Doo O J  and  Koo O J  are measures of the differences 

between the systems  , ,o o oK D M  and  , ,a a aK D M . If these measures are zeros, then 

the matrices  ,o aM M ,  ,o aK K  and  ,o aD D  are identical pairs, and Moo O J , 

Doo O J  and Koo O J . 

 

In some cases, there are difficulties in determining the diagonalising transformations 

directly for the system. These cases might happen if one of the system matrices is 

singular. The spectral transformations in Chapter 6 are used to find the diagonalising 

SPEs and the diagonalised system matrices for ill-conditioned systems. 

 

It is obvious that, the three measures in equations (7.105), (7.109) and (7.113) 

require the invertibility of  , ,D D DM D K  matrices. In the case of ill-conditioned 

system matrices, it might be difficult to invert  , ,D D DM D K . The general ideas for 

residual measures of undamped systems can be extended to the general damped 

systems by introducing a measure of the residuals which does not demand 

invertibility of  , ,D D DM D K . 
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7.5.5.1 A palindromic polynomial for second order systems 

The developed ideas in section 7.3.5 for undamped systems are extended for general 

damped second order systems. Matrices which are suggested to match that ideas can 

be written as 

 
   

   ,   

T

Lo RoT
LS RS

o Lo Lo o Ro Ro

   
    
   

0 0
K K

Π Π

 

   
 (7.130) 

 
1 1

   ,   
2 2

T

Lo Lo T Ro Ro
LS RS

Lo Lo Ro Ro

   
    

   
D D

   

   
 (7.131) 

 
   

   ,   

T

TLo o Lo Ro o Ro
LS RS

Lo Ro

   
    
   

Π Π
M M

0 0

   

 
 (7.132) 

Pre- and post-multiplying equation (7.79) by LSK  and T
RSK  in equation (7.130), 

respectively, pre- and post-multiplying equation (7.80) by LSD  and T
RSD  in equation 

(7.131), respectively, and pre- and post-multiplying equation (7.81) by LSM  and 

T
RSM in equation (7.132), respectively, yields 

 
   

T

Lo RoDo

o Lo Lo o Ro RoDo Do

      
      
     

0 00 K 0 A

Π ΠK D A B

 

   
 (7.133) 

 
1

2

T

Lo Lo Do Ro Ro

Lo Lo Do Ro Ro

       
               

K 0 A 0

0 M 0 A

   

    
 (7.134) 

 
   

T

Do DoLo o Lo Ro o Ro

DoLo Ro

        
      

      

D M B AΠ Π

M 0 A 00 0

   

 
 (7.135) 

where 

 Lo Ro Lo Ro Do Do A K M     (7.136) 

     o Lo Ro Ro Lo Lo Ro Lo Ro Do Do Do  B Π D K M         (7.137) 
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The matrices  ,A B  represent palindromic polynomials for the second system 

 , ,o o oK D M . 

 

7.5.5.2 Residual measures using palindromic polynomial 

To avoid the invertibility of  , ,D D DM D K  while calculating the residuals, equations 

(7.105), (7.109) and (7.113) are multiplied by matrices. These matrices represent the 

first and third terms of the left side of equations (7.79), (7.80), (7.81) and each term 

is multiplied by LSK , T
RSK , LSD , T

RSD , LSM  and T
RSM , respectively. These terms 

can be written as 

 
   

   ,   

T

T Lo o Lo Ro o Ro
LI RI

Lo Ro

   
    
   

Π Π
M M

0 0

   

 
 (7.138) 

 
1 1

   ,   
2 2

T

T Lo Lo Ro Ro
LI RI

Lo Lo Ro Ro

   
    

    
D D

   

   
 (7.139) 

 
   

   ,   

T

Lo RoT
LI RI

o Lo Lo o Ro Ro

    
    
   

0 0
K K

Π Π

 

   
 (7.140) 

Then, the residuals are calculated by pre/post-multiplying equation (7.105) by 

T
LS LIK M  and T

RI RSM K  in equations (7.130), (7.138), pre/post-multiplying equation 

(7.109) by T
LS LID D  and T

RI RSD D  in equations (7.131), (7.139), and pre/post-

multiplying equation (7.113) by T
LS LIM K and T

RI RSK M  in equations (7.132), (7.140) 

 Moo M

  
    

  

0 A
R O

A B
 (7.141) 

 Doo D

  
   

  

A 0
R O

0 A
 (7.142) 
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 Koo K

   
   

  

B A
R O

A 0




 (7.143) 

where 

 
   

 

   
      

T T

Lo RoLo o Lo Ro o Ro
M Moo

o Lo Lo o Ro RoLo Ro

TT

Lo RoLo Lo a Ro Ro

o Lo Lo o Ro RoLo Lo a a Ro Ro

       
        
        

         
          
          

0 0Π Π
O O

Π Π0 0

0 0W X 0 K W X

Π ΠY Z K D Y Z

    

    

 

   

 (7.144) 

1

4

1
     

2

T T

Lo Lo Lo Lo Ro Ro Ro Ro
D Doo

Lo Lo Lo Lo Ro Ro Ro Ro

T T

Lo Lo Lo Lo a Ro Ro Ro Ro

Lo Lo Lo Lo a Ro Ro Ro Ro

        
                    

          
                       

O O

W X K 0 W X

Y Z 0 M Y Z

       

       

   

   

 (7.145) 

 
   

 

   
     

TT

Lo RoLo o Lo Ro o Ro
K Koo

o Lo Lo o Ro RoLo Ro

TT

Lo Lo a a Ro RoLo o Lo Ro o Ro

Lo Lo a Ro RoLo Ro

        
        
        

          
                    

0 0Π Π
O O

Π Π0 0

W X D M W XΠ Π

Y Z M 0 Y Z0 0

    

    

   

 

 (7.146) 

where the matrices MooO , DooO  and KooO  are the same as equations (7.105), (7.109) 

and (7.113), respectively. 

 

It is appropriate to vectorise MooR , DooR  and KooR  into the form , ,M D Kr r r . The total 

residual can be written in the form 

 
M

D

K

 
 


 
  

r

r r

r

 (7.147) 

The rate of change of equations (7.144), (7.145) and (7.146) can be written as 

 
   

TT

Lo RoLo Lo Ro Roa
M

o Lo Lo o Ro RoLo Lo Ro Roa a

        
         
         

0 0W X W X0 K
O

Π ΠY Z Y ZK D

 

   
(7.148) 

 
1

2

T T

Lo Lo Lo Lo Ro Ro Ro Roa
D

Lo Lo Lo Lo Ro Ro Ro Roa

         
                     

W X W XK 0
O

Y Z Y Z0 M

   

   
 (7.149) 
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TT

Lo Lo Ro RoLo o Lo Ro o Roa a
K

Lo Lo Ro RoLo Roa

         
                  

W X W XΠ ΠD M
O

Y Z Y Z0 0M 0

   

 
(7.150) 

These derivatives are independent of any information from system  , ,a a aK D M . 

 

7.6 Example 

We consider a system having four degrees of freedom with general linear damping. 

The system matrices  , ,o o oK D M  have been deliberately chosen to have a non 

symmetric and singular mass matrix. The information required are the system 

matrices for the analytical system  , ,a a aK D M . For the measured system, the 

diagonalised system matrices  , ,Do Do DoK D M  and the diagonalising transformations 

 ,Lo RoT T  can be calculated by using spectral transformations. The measured system 

matrices  , ,o o oK D M  are 

 

4342 2621 3704 698

2356 1458 4901 3903

3397 4669 3630 2349

3729 1649 3188 1873

o

  
 
 
 
  
 
 

K

 

 

-15 -8 -4 40 193 100 124 0

33 36 4 49 150 301 490 0
                   

34 1 5 20 483 125 80 0

31 32 9 45 53 233 254 0

o o

    
   
    
    
       
   
     

D M

 

The eigenvalues are 

 

0.0430 0.7679

0.0080 2.6493

0.4233 13.3734

54.95495

i

i

diag i

Inf
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The diagonalising SPE‟s  ,Ro LoT T  for the measured system are calculated using 

Möbius transformation. The diagonalised system matrices  , ,Do Do DoK D M  are 

 

0.6238 0.00295 0.00348

0.60378 0.00138 0.08601
,     ,      

0.2872 0.04179 0.48541

0.6197 0.01128 0.00000

Do Do Dodiag diag diag

           
          
             

           
                       

K D M




 

The i
th

 entry of the matrices DoM , DoK  and DoD   are written as im , ik  and id . The 

right and left matrices  ,R LΘ Θ ,  ,R LΨ Ψ  can be calculated. If the i
th

 entry of 

  0i isign m k  , is less than zero, the i
th

 entry of the right and left matrices  ,R LΘ Θ , 

 ,R LΨ Ψ  are chosen as 

 
 

1                 ,    

   ,    

Ri Li i Ri

Ri i Li i Ri

m

abs k k

 

 

Θ Θ Θ

Ψ Ψ Ψ
 

 If the i
th

 entry of   0i isign m k  ,  is greater than zero, the i
th

 entry of the right and left 

matrices  ,R RΘ Ψ ,  ,L LΘ Ψ  are equal 

 

 

 

    ,    

    ,    

Ri i Li i Ri

Ri i Li i Ri

abs m m

abs k k

 

 

Θ Θ Θ

Ψ Ψ Ψ
 

 Moreover, 

 

1    ,    

1    ,    

Ri Li i Ri

Ri Li i Ri

m

k

 

 

Θ Θ Θ

Ψ Ψ Ψ  

The i
th

 entry of matrix Π  can be calculated as 

  i Li Ri Ri Li id Π Ψ Θ Ψ Θ
 

The analytical system matrices  , ,a a aK D M  are 

 

3937.5148 2424.9165 3495.5983 894.0835

2159.9165 1261.9165 4901 4099.0835

3605.4017 4669 3838.4017 2349

3532.9165 1845.0835 3188 1676.9165

a

  
 
 
 
  
 
 

K  
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43.8749 530.9069 593.7819 498.9069

505.9069 502.9069 4 489.9069

563.7819 1 592.7819 20

569.9069 570.9069 9 583.9069

a

 
 

 
 
  
 
   

D  

 

259.0495 499.2043 457.1547 399.2043

249.2042 98.2043 490 399.2043

149.8453 125 413.1547 0

452.2043 166.2043 254 399.2043

a

  
 
  
 
 
 

 

M  

The eigenvalues of the analytical system are found 

 

0.02154 0.7922

2.62184

2.20235 2.9523

2.07063 3.05288

5.9091

a

i

i

i

 
 


 
  
 
  
 
 

Λ  

The aim in this example is to match the measured modal information with that from 

the analytical system. The matching used is based on mutual orthogonality measures 

as in equations (7.105), (7.109) and (7.113) to satisfy bi-J-unitary through the system 

matrices  , ,a a aK D M  by driving the residuals to zero. 

 

This example does not require invertibility of matrices  , ,D D DM D K . Equations 

(7.141), (7.142) and (7.143) are used to calculate the residuals. The matrices  ,A B  

are calculated as in equations (7.136) and (7.137) 

 

0.00217 0.00185

0.05193 0.00095
      ,      

0.13938 0.03228

0.00000 0.00699

diag diag

      
      

       
      
               

A B  

The sensitivity matrix is calculated at each change of the scalar parameters 

 , , , , ,a b c d e f  in the vector θ . 
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7.7 Conclusion 

This chapter has developed modal correlation methods for undamped systems. The 

general ideas of modal correlation for undamped systems have been extended for 

generally damped systems. Cross orthogonality measures are performed as modal 

correlation methods. The product of different cross orthogonality measures has been 

referred as mutual orthogonality measures. Both cross orthogonality and mutual 

orthogonality measures for generally damped linear systems have been presented in 

terms of diagonalising structure preserving equivalences (DSPE‟s). In this chapter, a 

new measure of residuals has been investigated which does not demand invertibility 

of the matrices  , ,D D DM D K . 

 

Cross orthogonality measures require matching the right and left diagonalising SPEs 

from the computed system with that from the true system. In contrast, the mutual 

orthogonality measures do not involve this matching. However, both left and right 

modes are required for the mutual orthogonality measures. In case of ill-conditioned 

systems such that the mass matrix is singular, the diagonalising SPEs can be 

calculated using new methods in chapter 6  and the methods in appendices C and D. 

 

The following chapter addresses model updating based on the methods developed in 

this chapter. 
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CHAPTER  8. Model Updating 

This chapter presents model updating methods for generally damped systems based 

on modal correlation methods in the previous chapter. Model updating techniques are 

commonly used to adjust selected parameters of finite element (FE) models in order 

to match models with experimental data. Most experience in model updating is based 

on natural frequencies and mode shapes. The natural frequencies and mode shapes 

are identified from vibration test data. Experimental modal analysis results are often 

used to evaluate the predicted model information from FE analysis predictions. 

 

If the number of parameters becomes too large, the effects of parameter changes on 

the FE analysis results are not easy to assess and lengthy computational model 

updating procedures must be used. These procedures are able to adjust several 

parameters such that the difference between measured and predicted natural 

frequencies and mode shapes are minimised  [90]. Numerous different methods are 

used to update model parameters. 

 

In this chapter we focus on developing model updating methods for undamped 

systems, extend the ideas for generally damped systems and compare the developed 

modal correlation methods with alternative methods for model updating. Three 

related measures of error are presented which make it possible to determine what 

adjustments should be applied to the system mass, damping and stiffness matrices.  
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8.1 Model updating 

The differences between analytical data and experimental data allow for an 

evaluation of the quality of the utilized finite element model. For general damped 

systems, we consider that the system matrices       , ,a a aK θ D θ M θ  are functions of 

a parameter vector θ  containing p  entries. The original system matrices are

 , ,o o oK D M . In effect, we are assuming that stiffness, damping and mass matrices 

can change continuously as the following equations indicate 

   1 1 2 2

1

....

p

a o p p o j j

j

         K θ K K K K K K  (8.1) 

   1 1 2 2

1

....

p

a o p p o j j

j

         D θ D D D D D D  (8.2) 

   1 1 2 2

1

....

p

a o p p o j j

j

         M θ M M M M M M  (8.3) 

The subscripts “o” and “a” refer to the measured and analytical systems. 

 

Since matrices  , ,a a aK D M  depend on a parameter vector θ , the eigenvalues and 

their corresponding eigenvectors also depend on θ . Both the diagonalising 

transformation and the diagonalised system change correspondingly (see Chapter 5). 

Then the derivatives of the diagonalised system and diagonalising SPEs can be 

calculated. The rates of change of eigenvalues and eigenvectors can be solved from 

these.  

 

There are numerous methods in the literature to determine eigenvalue and 

eigenvector derivatives for general non-symmetric undamped systems [97-104]. 
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Computing the derivative of any one eigenvector of an undamped system requires 

only the eigenvalue and eigenvector under consideration [104]. The methods of 

complex eigenvalue and eigenvector derivatives are derived and developed for 

general asymmetric second-order damped systems [125-128, 136]. The derivatives of 

the diagonalised system matrices and diagonalising SPEs for the damped system in 

equations (8.1),(8.2) and (8.3) are presented [121, 135] for a single scalar parameter 

j . 

 

8.1.1 Residuals and the sensitivity matrix 

Model updating methods are based on the definition of a vector of parameters and a 

vector of residuals [137, 138]. Also, model updating methods use a sensitivity matrix 

relating changes in model outputs to changes in model parameters in order to 

determine what changes in the parameters will reduce the overall discrepancy. The 

finite element model is then reformed using the new values of the updated 

parameters, and the process repeats until some convergence criteria are met [139]. 

The model parameters are adjusted iteratively until the analytical output data matches 

the measured data satisfactorily. Many different methods have been proposed for 

updating the model parameters. All of these attempted to minimise differences 

between computed and measured data. These differences are called residuals. The 

residuals can be written as 

  o a R O O  (8.4) 

Matrices  ,o aO O  are the physical and analytical output data respectively. It is 

appropriate to vectorise R  to define an output vector, Δr 

  vecr R  (8.5) 
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In general, the vector r may include some complex values. In this work we shall 

assume without loss of generality that r contains only real values. There are two 

reasons for this. Firstly where any complex values arise, we can replace the single 

complex number  a jb  by the two real numbers  ,a b . Secondly, the new model 

updating methods proposed here never utilise any complex quantity. 

 

Now, since R  depends on θ , then the vector of residuals r is also a function of 

vector parameters θ . We can define the weighted sum of squares of residuals E, 

according to 

  E T r Wr  (8.6) 

where W  is a positive definite weighting matrix. 

 

For a given vector of parameters 0θ  we can calculate the corresponding  0 0:  r θ r . 

The solution to the problem of minimising E usually leads to set of nonlinear 

equations because  r θ  is in general nonlinearly dependent on the estimation 

parameters. The objective function E can be minimized iteratively. The truncated 

Taylor series for  r θ  is given by 

   0: r θ r r  (8.7) 

and for some real sensitivity matrix, S , 

   r S θ  (8.8) 

Since we have a numerical model, it is straightforward to determine the matrix S  

numerically. For each entry of vector parameters θ , a small positive change   is 

made in the entry and the corresponding 
r  is computed. Then a small negative 
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change   is made in the same entry and the corresponding 
r  is computed. Finally, 

each column of the sensitivity matrix S  can be calculated numerically using the 

central difference formula 

 
 

2
c



 


r r
s  (8.9) 

The sensitivity matrix in equation (8.8) can be computed analytically by calculating 

the derivatives of the analytical output data aO  with respect to each single scalar 

parameter in vector θ . 

 
1

θ
θ

p

a
a j

jj


  




O
O  (8.10) 

Equation (8.8) may be fully determined, over-determined or under-determined 

depending on whether the number of output data is equal to, larger than or smaller 

than the number of scalar parameters θ . In any case, the change of parameter θ  in 

equation (8.8) can be solved using the pseudo inverse [140] . To obtain 

    θ S y  (8.11) 

where 
S  is the left pseudo-inverse matrix of the sensitivity matrix S  

 

8.1.1.1 Solution of under-determined or ill-conditioned equations 

In cases where the equation (8.8) is under-determined or ill-conditioned, there are 

two possible approaches: singular value decomposition (SVD) and regularisation. 

The benefits of these methods in model updating are that in both cases their 

application results in the unique solution of θ  [18]. 

 

Singular value decomposition SVD is used in under-determined problems and it 

results in the unique minimum norm solution. 
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0

0 0

T 
  

 
S U V  (8.12) 

consider 

  
22 T T      r S θ U r SVV θ  (8.13) 

The parameter vector θ  can be obtained in terms of the singular values of the right 

and left singular vectors 

 
1 0

0 0

T
 

   
 

θ V U r  (8.14) 

 

Regularisation is an alternative method used in model updating to solve under-

determined or ill conditioned equations. This approach involves minimising a cost 

function  

  
2 22J     θ S θ r B θ  (8.15) 

where   is the regularisation parameter. The matrix B  has full rank. The generalised 

solution depends on  . The derivatives of the cost function with respect to θ  can be 

written as 

  2T T T   S S B B θ S r  (8.16) 

 The singular value decomposition approach is a particular case of regularisation 

where  T
B B  is the identity matrix and 2  is infinity. 

 

8.2 Model updating for undamped system 

Most experience in model updating is based on natural frequencies and mode shapes. 

Eigenvalues and the corresponding eigenvectors are often identified from vibration 

modal testing. However, the computed modal information is obtained from finite 
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element methods. The discrepancies between measured and computed modal 

information are used to evaluate and qualify the predicted model information.  

 

We are assuming that stiffness and mass matrices  ,a aK M  are changing 

continuously according to equations (8.1) and (8.3). 

 

8.2.1 Model updating based on eigenpairs of undamped 

system 

8.2.1.1 Eigenvalues and eigenvectors for undamped systems 

The general governing equation of motion for an undamped second order system is 

introduced in Chapter 2, section 2.3.1. 

  Mq Kq f  (8.17) 

The eigenvalues  2 2 2
1 2, ,...., ndiag   Λ  might be complex or real or mixed (real and 

complex).  The corresponding left and right eigenvector matrices  ,L RΦ Φ  

diagonalise the system matrices  ,K M . The eigenvectors are commonly mass 

normalised in which case they satisfy the following equations 

 T
L R Φ MΦ I  (8.18) 

 T
L R Φ KΦ Λ  (8.19) 

The i
th

 eigenvalue i  with the corresponding left and right eigenvectors  Li Ri   

satisfy the following equations 

    2 2=0    ,    0T
i Ri Li i   K M K M   (8.20) 
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8.2.1.2 Changing of eigenpairs for undamped system 

Changes in the system matrices  ,a aK M  cause direct effects in the dynamic 

properties. Obviously, the eigenvalues and their corresponding eigenvectors are also 

changed. 

 T i
i oi


 


  


θ

θ
 (8.21) 

    ,   Ri Li
Ri Roi Li Loi

 
     

 
θ θ

θ θ

 
     (8.22) 

 

An estimate of the discrepancies between the physical modal information 

 , ,Ro o LoΦ Λ Φ  and computed modal information  , ,Ra a LaΦ Λ Φ  can be achieved by 

computing the sensitivity of this modal information to changes in the parameters. 

This can be done either numerically or analytically. The rates of change of 

eigenvalues and eigenvectors for undamped systems are introduced in Chapter 5, 

section 5.2 and section 5.5. 

 

8.2.1.3 Scaling and ordering Eigenvectors of undamped systems 

The measured eigenvectors are compared with the predicted eigenvectors according 

to some rules. The analytical eigenvectors are scaled and ordered such that the 

resulting ordered and scaled vectors are like eigenvectors of the measured system. 

 

Mass normalisation is applied to both systems. 

 o Lo a Ro

a La a Ra





X Φ M Φ

X Φ M Φ
 (8.23) 
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The right and left eigenvectors for both systems are scaled accordingly. Rewrite 

equation (8.23) with scaled eigenvectors, 

 so Lo a Ro

sa La a Ra





X Φ M Φ

X Φ M Φ
 (8.24) 

Balance the scaling of eigenvectors of the analytical system 

         ,      ,   /T T
o so so a sa sa b o adiag diag diag

 
    

 
t X X t X X t t t  (8.25) 

The balanced analytical eigenvectors can be written as 

 /    ,   Rba Rsa b Lba Lsa b Φ Φ t Φ Φ t  (8.26) 

 /         ,   bo so b ba sa b X X t X X t  (8.27) 

The sum of the generalised mass matrices  ,bo baX X  can be written as 

 bo ba X XX  (8.28) 

Each column in the analytical eigenvector matrices  ,Rba LbaΦ Φ  is sorted according 

to locations of the largest values in the rows of the generalised mass matrix X . 

    max T L X  (8.29) 

    :,    ,   :,Ra Rba La Lba Φ Φ Φ ΦL L  (8.30) 

The   has dimension (1×n) and defines the maximum values in the rows of matrix 

X . The L  has dimension (1×n) and defines the locations of the largest values   in 

the rows of matrix X . 

 

8.2.1.4 Residual measures based on eigenpairs of undamped systems 

Model updating methods based on eigenpairs are used to minimise the discrepancies 

between the measured and predicted output data. The differences between the 
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measured and computed modal information is used in the vector of residuals r . The 

vector of residuals can be written as 

 

 

 

 

Ro Ra

Lo La

o a

vec

vec

diag

 
 

  
  

Φ Φ

r Φ Φ

Λ Λ

 (8.31) 

The vector r may include some complex values. However, in this work we assume 

that r  contains only real values. 

 

8.2.2 Model updating based on cross orthogonality 

measures of undamped systems 

Changing the system matrices  ,a aK M  also causes a change in the corresponding 

cross orthogonality measures. Cross orthogonality measures and their derivatives for 

undamped systems are introduced in Chapter 7 section 7.3. 

 
1

p

Ma
Ma M M M j

jj


    




XO
XO XO XO XO  (8.32) 

 
1

θ
θ

p

Ka
Ka K K K j

jj


    




XO
XO XO XO = XO  (8.33) 

The product of two mass-weighted cross orthogonality measures is defined in 

equation (7.43) as 

    1 1 1 1T T
Ma Lo Lo a Ra Ra La La a Ro Ro

    XO M M         (8.34) 

Also the product of two different stiffness-weighted cross-orthogonality measures is 

expressed in equation (7.45) as 

    1 1 1 1T T
Ka Lo Lo a Ra Ra La La a Ro Ro

    XO K K         (8.35) 

Equations (8.34) and (8.35) are used for updating model parameters. Full model 

information is required for both systems. The analytical eigenvectors are scaled and 
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ordered to match the measured eigenvectors. The same procedures introduced in 

section 8.2.1.3 are used for scaling and ordering the analytical eigenvectors. 

 

8.2.2.1 Residual measures based on cross orthogonality measures of 

undamped systems 

Model updating based on cross orthogonality can be used to minimise the 

differences between the measured model information and analytical model 

information. The vector of residuals r  has dimension (2n
2
). The residuals 

 Ka nXO I  and  Ma nXO I  are measures of the differences between systems 

 ,o oK M  and  a a,K M . The vector of residuals is expressed as 

 
 
 

Ka n

Ma n

vec

vec

 
  

  

XO I
r

XO I
 (8.36) 

where nI  defines the identity matrix. 

 

Computing the sensitivity of cross orthogonality measures can be done either 

numerically or analytically. The derivatives of cross orthogonality measures are 

introduced in Chapter 7, section 7.3.4.1. 

 

In this section all full modal information for both systems are required. The 

eigenvectors of the analytical system are scaled and ordered correctly to match the 

eigenvectors of the measured system. 
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8.2.3 Model updating based on mutual orthogonality 

measures of undamped systems 

Mutual orthogonality measures are introduced in Chapter 7 section 7.3. The product 

of the cross orthogonality measures in equations (8.34) and (8.35) defines the mutual 

orthogonality measures. These measures are independent of any information from 

the system  a a,K M . 

    1 1T
Moo Lo Lo a Ro Ro

   O M     (8.37) 

    1 1T
Koo Lo Lo a Ro Ro

   O K     (8.38) 

The above two measures in equations (8.37) and (8.38) depend on the invertibility of 

the diagonalised system matrices  ,Do DoM K . A measure is introduced in Chapter 7, 

section 7.3.5 which does not demand this invertibility. 

 Lo Do Ro Lo Lo Ro RoM       (8.39) 

 Lo Do Ro Lo Lo Ro RoK       (8.40) 

The matrices  , , ,Lo Ro Lo Ro     are diagonal. Then, equations (8.39) and (8.40) are 

identical 

 : Lo Lo Ro RoΑ       (8.41) 

Equations (8.37) and (8.38) are modified and can be written as 

    T
M Lo Lo Moo Ro Ro Lo Lo a Ro Ro O O M         (8.42) 

    T
K Lo Lo Koo Ro Ro Lo Lo a Ro Ro O O K         (8.43) 
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8.2.3.1 Residual measures based on mutual orthogonality measures of 

undamped systems 

Model updating based on mutual orthogonality measures is used to minimise the 

discrepancies between the measured and analytical model information. The residuals 

 M O A  and  K O A  are measures of the differences between the systems  ,o oK M  

and  a a,K M . The vector of residuals y can be written as 

 
 
 

K

M

vec

vec

 
  

  

O A
r

O A
 (8.44) 

The sensitivity matrix of mutual orthogonality measures in equations (8.42) and 

(8.43) can be obtained either numerically or analytically. The derivatives of these 

measures are introduced in Chapter 7, section 7.3.5. 

 

8.3 Model updating of generally damped systems 

In this section, the general ideas for model updating the undamped systems in section 

8.2 are extended to the case of damped systems. The model structure for generally 

damped systems remains as assumed in equations (8.1), (8.2) and (8.3). Model 

updating procedures are applied to modify the model parameters. The model 

parameters are adjusted so that output data from the model matches output data from 

the physical system. These sets of output data can be vectorised as before to form a 

vector of residuals r. 
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8.3.1 Model updating based on eigenvalues and 

eigenvectors for general damped systems 

8.3.1.1 Eigenvalues and eigenvectors for generally damped systems 

The system dynamics of a general second order system are written as 

 a a a

a a

         
         

         

K 0 D Mq q f

0 M M 0q q 0
 (8.45) 

When no forcing is present, this becomes 

 a a D x K x 0  (8.46) 

where aD  and aK  are (2n  2n) matrices (see section 2.3.2 for further discussion on 

these). A generalised eigenvalue-eigenvector problem defined using matrices aD  and 

aK  above yields the triple of (2n  2n) matrices,  Ra La, ,aΦ Λ Φ . The eigenvalues 

with their associated eigenvectors can be either real or complex conjugate which are 

presented by equations (2.27), (2.28) and (2.31)-(2.34). 

 
*

1 2

* *
1 1 2 2

Rca Rra Rca RraRa
Ra

Ra a Rca ca Rra ra Rca ca Rra ra

  
   
    

Φ Φ Φ ΦΦ
Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ
 (8.47) 

 
*

1 2

* *
1 1 2 2

Lca Lra Lca LraLa
La

La a Lca ca Lra ra Lca ca Lra ra

  
   
    

Φ Φ Φ ΦΦ
Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ
 (8.48) 

The superscript notation “*” indicates a complex conjugate. aΛ  is (usually) a 

diagonal (2n  2n) matrix and  ,Ra LaΦ Φ  are (n  2n) matrices obeying 

 2 0a Ra a a Ra a a Ra  M Φ Λ D Φ Λ K Φ  (8.49) 

 2 0T T T
a La a a La a a La  M Φ Λ D Φ Λ K Φ  (8.50) 
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The pairs of matrices  Ra , aΦ Λ  and  ,La aΦ Λ  are called standard pairs for equation 

(8.45) if RaΦ  and LaΦ  from equations (8.47) and (8.48) are non-singular and 

equations (8.49) and (8.50) are obeyed [141, 142]. 

 

8.3.1.2 Scaling and ordering Eigenvectors for general damped systems 

The measured eigenvectors are compared with the predicted eigenvectors according 

to some rules. This involves two steps: 

Scaling the eigenvectors and 

Ordering the eigenvectors of the analytical system to best match those of the 

measured system. 

 

The right and left experimental and analytical modal matrices  ,Ro LoΦ Φ ,  ,Ra LaΦ Φ  

respectively, may be a mixture of real and complex conjugate. The real measured 

modal matrices  ,RV LVΦ Φ  are expressed in equation (2.38). These matrices have 

dimensions (2n × 2n). 

   

   

* *

1 2

* * * *

1 1 2 2

Rco Rco Rro Rco Rco Rro

Rco co Rco co Rro ro Rco co Rco co Rra ro

RV

 

 

 
 
 
 

Φ Φ Φ Φ Φ Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ
Φ  (8.51) 

   

   

*

1 2

* *

1 1 2 2

Lco Lco Lro Lco Lco Lro

Lco co Lco co Lro ro Lco co Lco co Lro ro

LV

 

 

 
 
 
 

Φ Φ Φ Φ Φ Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ
Φ  (8.52) 

and the real predicated modal matrices  ,RW LWΦ Φ  are expressed in equation (2.39). 

See section 2.3 for further information. These matrices have dimensions (2n×2n). 

   

   

* *

1 2

* * * *

1 1 2 2

Rca Rca Rra Rca Rca Rra

Rca ca Rca ca Rra ra Rca ca Rca ca Rra ra

RW

 

 

 
 
 
 

Φ Φ Φ Φ Φ Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ
Φ  (8.53) 
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*

1 2

* *

1 1 2 2

Lca Lca Lra Lca Lca Lra

Lca ca Lca ca Lra ra Lca ca Lca ca Lra ra

LW

 

 

 
 
 
 

Φ Φ Φ Φ Φ Φ

Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ Φ Λ
Φ  (8.54) 

 

The projection of subspace Riv  of the modal matrix RVΦ  onto the subspace Riw  of 

modal matrix RWΦ  can be defined by Rijz . The pair of eigenvectors Riv  defines the i
th

 

and i
th

+n columns of the modal matrix RVΦ  of the measured system where 

(i=1,2...,n). The pair of eigenvectors Rjw  defines the j
th

 and j
th

+n columns in the 

modal matrix RWΦ  of the analytical system where (j=1,2,...,n). The dimensions of 

Riv  and Rjw  are (2n×2). The pair of columns Rijz  is the projection of Riv  onto Rjw . 

The projection Rijz  has dimension (2n×2) and is defined as 

  
1

T T
Rij Ri Rj Rj Rj Rj Ri



 z Pv w w w w v  (8.55) 

where P  is a projection matrix (satisfying an idempotent 2 3 ....  P P P ). 

 

Figure 8-1 shows the projection of the subspace Riv  onto the subspace Rjw . If the 

projection Rijz  lays within the subspace Rjw , then the angle between the two 

subspaces  ,Rij Riz v  must be zero. The cosine of the angle   between Rijz  and Riv  

can be expressed as 

  
  

  

2

2
cos

T T
Rij Ri Rij Ri

Rij T
T

Ri Ri
Ri Ri

norm
x

norm

  
z v z v

v vv v

 (8.56) 
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Figure 8-1 : Projection of Riv  into Rjw  

 

The notation .  represents the square of the norm. Each pair of eigenvectors Riv  of 

RVΦ  (where i=1,2,...,n) is compared with the pair of eigenvectors Rjw  of RWΦ  (and 

j=1,2,...,n), where all values of j are spanned for a given i. Thus, a given instance of 

Riv  is matched with a total n pairs of eigenvectors from RWΦ , and the result in each 

case forms the (i,j)
th

 entry of the matrix RX . 

 

11 1

1

R R j

R

Ri Rij

x x

x x

 
 

  
 
 

X  (8.57) 

The matrix RX  is (n × n) and this represents the cosine of the angles between each 

subspace in RVΦ  with the subspace in RWΦ . The location of the largest value of Rijx  

in each row of matrix RX  indicates which subspace Riv  matches most closely to 

subspace Rjw . 

Riv  

Rjw  

Rijz  
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    max T
R R R L X  (8.58) 

The R  has dimension (1×n), the entries indicate the maximum values in the rows of 

the matrix RX . The RL  has dimension (1×n) and the entries indicate the location of 

the largest values R  of the rows in RX . The n pairs of eigenvectors in the matrix 

RWΦ  can be ordered related to the location RL  of the largest values in the rows in 

RX . 

     :, :,RW RW R RW R n  
 

Φ Φ ΦL L  (8.59) 

 

The same procedure is used to match and order the left real predicted modal matrix 

LWΦ   related to the left real measured modal matrix LVΦ . 

 

8.3.1.3 Residual measures based on eigenvectors for general damped 

systems 

Vector of residuals y  has dimension (8n
2
). The vector of residuals for the right 

eigenvectors can be written as 

  

   

   

   

1

1 1 1 1 1 1

1

2 2 2 2 2 2

1

1

T T
R R R R R R

T T
n R R R R R R

R Ri Ri i

T T
Rn Rn Rn Rn Rn Rn

vec

vec
vec

vec









   
   
   

   
               
 
   

   
   

v w w w w v

v w w w w v
r v z

v w w w w v

 (8.60) 

The vector of residuals for the left eigenvectors can be written as 
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1

1 1 1 1 1 1

1

2 2 2 2 2 2

1

1

T T
L L L L L L

T T
n L L L L L L

L Li Li i

T T
Ln Ln Ln Ln Ln Ln

vec

vec
vec

vec









   
   
   

   
               
 
   

   
   

v w w w w v

v w w w w v
r v z

v w w w w v

 (8.61) 

 

Model updating may be attempted using the above two vectors of residuals  ,R Lr r  

which can be combined into one vector giving 

 R

L

 
  
 

r
r

r
 (8.62) 

The sensitivity matrix in equation (8.8) can be computed analytically by calculating 

the derivatives of eigenvalues and eigenvectors with respect to each single scalar 

parameter in vector θ . The rates of change of eigenvalues and eigenvectors for the 

damped system in equations (8.1), (8.2) and (8.3) are developed in Chapter 5 (and 

more details are in Appendix C). 

 

8.3.2 Model Updating based on diagonalising SPEs 

Since the system matrices  , ,a a aK D M  are changed, the corresponding diagonalised 

system matrices and the diagonalising transformations are also changed. The right 

and left diagonalising transformations  ,Ra LaT T  for the analytical system are 

functions of θ . We assume that   are small. 

 
1

p
Ra

Ra Ro R Ro j
jj


     




T
T T T T  (8.63) 

 
1

p
La

La Lo L Lo j
jj


     




T
T T T T  (8.64) 
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Left and right diagonalising SPEs  ,Ro LoT T  for the physical (true) system can be 

found to diagonalise the system matrices  , ,o o oK D M . The diagonalising SPEs 

 ,Ra LaT T  diagonalise the analytical system  , ,a a aK D M . The right and left 

diagonalising transformations  ,Ro LoT T  for systems  , ,o o oK D M  satisfy the 

following equations, 

 
0 0

T

Lo Lo o Ro Ro Do

Lo Lo o o Ro Ro Do Do

       
       

       

W X K W X K

Y Z K D Y Z K D
 (8.65) 

 
0 0

0 0

T

Lo Lo o Ro Ro Do

Lo Lo o Ro Ro Do

       
       

        

W X K W X K

Y Z M Y Z M
 (8.66) 

 
0 0

T

Lo Lo o o Ro Ro Do Do

Lo Lo o Ro Ro Do

          
       

        

W X D M W X D M

Y Z M Y Z M
 (8.67) 

The right and left diagonalising transformations  ,Ra LaT T  for systems  , ,a a aK D M  

satisfy the following equations, 

 
0 0

T

La La a Ra Ra Da

La La a a Ra Ra Da Da

       
       

       

W X K W X K

Y Z K D Y Z K D
 (8.68) 

 
0 0

0 0

T

La La a Ra Ra Da

La La a Ra Ra Da

       
       

        

W X K W X K

Y Z M Y Z M
 (8.69) 

 
0 0

T

La La a a Ra Ra Da Da

La La a Ra Ra Da

          
       

        

W X D M W X D M

Y Z M Y Z M
 (8.70) 

 

The new model updating methods proposed here also use the discrepancy between 

computed and measured results and they use sensitivities to determine a change in 

the update parameters that will reduce the discrepancy. The right and left 

diagonalising transformations are used to update the model parameters. The 

derivatives of the diagonalised system matrices and their diagonalising 



____________________________________________________________________ 

 

262 

 

transformations are introduced in Chapter 5. The model parameters are iteratively 

adjusted until the numerical (or analytical) models match the measured models. 

 

Two problems are noted: the diagonalising transformations are not unique because of 

(a) ordering and (b) scaling. 

 

8.3.2.1 Scaling and ordering diagonalising SPEs 

In this section, the ideas for undamped systems in section 8.2.1.3 are extended for 

generally damped system. This section attempts to find the best "ordering" of pairs of 

vectors within diagonalising transformations from the system  , ,a a aK D M  and 

“scaling” of those vectors. The resulting ordered and scaled vectors are "like" the 

diagonalising transformations of the system  , ,o o oK D M . Arranging the eigenvalues 

in ascending order of magnitude is not sufficient, especially when two modes are 

close together in frequency. 

 

The experimental and theoretical eigenvalues and eigenvectors must relate to the 

same mode. Usually the analytical eigenvectors are mass normalised and the 

measured eigenvectors obtained from standard modal analysis methods are also mass 

normalised. Because the mass distributions of the finite element model and the actual 

structure may be different, the eigenvectors may not be scaled consistently. Without 

loss of generality the diagonalising SPEs for both systems can be selected such that 

 2 2 2 1          0i i ik d m i n       (8.71) 
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in which  , ,i i ik d m  are the i
th

 entries of the diagonalised system matrices  

 , ,D D DK D M . Each triple of scalars  , ,i i ik d m  defines a pair of eigenvalues implicitly 

through 

 2 0i i ik d m     (8.72) 

 

The linear combination of equations (8.65)-(8.67) and linear combination of 

equations (8.68)-(8.70) that give at least two zero singular values. In this case, non-

eigenvalues are chosen for which no singular value is close to zero and to give a well 

conditioned matrix. The linear combination of the equations which have been 

mentioned above can be written as 

0 0

0

0

T T

Lo Lo a Ro Ro Lo Lo a Ro Ro

Lo Lo a a Ro Ro Lo Lo a Ro Ro

o T

Lo Lo a a Ro Ro

Lo Lo a Ro Ro

 



            
            

            
  
       
             

W X K W X W X K W X

Y Z K D Y Z Y Z M Y Z
X

W X D M W X

Y Z M Y Z

 (8.73) 

0 0

0

0

T T

La La a Ra Ra La La a Ra Ra

La La a a Ra Ra La La a Ra Ra

a T

La La a a Ra Ra

La La a Ra Ra

 



            
            

            
  
       
             

W X K W X W X K W X

Y Z K D Y Z Y Z M Y Z
X

W X D M W X

Y Z M Y Z

 (8.74) 

 

In which the best values of  , ,    are chosen to be 

 2 2 2 1      (8.75) 

and at minimum condition for the matrix  

   min a a acond    M D K  (8.76) 

The entries in the set  , ,    are called negievalues. 

 2 : 0i i        (8.77) 
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The right and left diagonalising SPEs for both systems  ,Rso LsoT T ,  ,Rsa LsaT T  are 

scaled according to the above conditions in equations (8.75), (8.76) and (8.77). 

Rewrite equations (8.73) and (8.74) with scaled diagonalising SPEs  ,Rso LsoT T , 

 ,Rsa LsaT T  

  T T T
so Lso a Rso Lso a Rso Lso a Rso    X T M T T D T T K T  (8.78) 

  T T T
sa Lsa a Rsa Lsa a Rsa Lsa a Rsa    X T M T T D T T K T  (8.79) 

Balancing the scaled diagonalising SPEs of system  , ,a a aK D M  

    ,   
T T

o so so a sa sa t X X t X X  (8.80) 

The matrices  ,o at t  have four blocks each. The sum of the diagonal entries of each 

block can be written as 

 

   

    

   

    

 

11 22 11 22

12 21 12 21

   ,   
2 2

0
                             .    ,   

0

o o a a

o a

o o a a

b
b o a b

b

diag diag diag diag

diag diag diag diag

diag

      
    
    
   

   
           

t t t t
t t

t t t t

t
t t t t

t
 (8.81) 

where bt  is a matrix which has a dimension (2n×2n). 

 

The scaled right and left diagonalising SPEs  ,Rsa LsaT T  and the matrices  ,so saX X  

are balanced two columns at a time which can be written as 

 /    ,    Rba Rsa b Lba Lsa b T T t T T t  (8.82) 

 /    ,    bo so b ba sa b X X t X X t  (8.83) 

The sum of the matrices  ,bo baX X  can be written as 

 bo ba X XX  (8.84) 
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To match the computed diagonalising SPEs  ,Ra LaT T  with measured diagonalising 

SPEs  ,Ro LoT T , the right and left diagonalising SPEs  ,Ra LaT T  are ordered two 

columns at a time according to the locations of the largest values in the rows of the 

matrix X . 

 

  

   

max ,       1,2,...,

: : 2

ii ii ii irng ii n

irng ii n ii n n

    

   

L X

 (8.85) 

        :, :,      ,      :, :,Ra Rba ii Rba ii La Lba ii Lba iin n      
   

T T T T T TL L L L  (8.86) 

 

8.3.2.2 Residual measures based on diagonalising SPEs 

The vector of residuals r  based on the diagonalising SPEs is real and has dimension 

(8n
2
). 

 
 

 

Ro Ra

Lo La

vec

vec

 
 
 

  

T T
r

T T

 (8.87) 

The derivatives of diagonalising SPEs are developed and introduced in Chapter 5. 

The sensitivity matrix expressing the derivatives of diagonalising SPEs with respect 

to parameter vector θ  can be computed analytically. 

 

Model updating based on diagonalising SPEs requires complete modal information 

for both systems  , ,o o oK D M  and  , ,a a aK D M . The right and left diagonalising SPEs 

for the analytical system  , ,a a aK D M  must be in the same order with the right and 

left diagonalising SPEs for the measured system  , ,o o oK D M . 

 



____________________________________________________________________ 

 

266 

 

8.3.3 Model updating based on homogeneous coordinates 

8.3.3.1 Linear Combination of mutual orthogonality checks 

Linear combination of mutual orthogonality checks of equations (8.65), (8.66) and 

(8.67)  for system  , ,o o oK D M  are shown 

o Ro Ro Do o Ro Ro Do

o o Ro Ro Do o Ro Ro Do

o o Ro Ro Do

o Ro Ro Do

Do Do

T

Do Do DoLo Lo

Lo Lo







 




            
            
            
      
       

      

  
 

   
 
 

0 K W X M 0 K 0 W X D 0

K D Y Z 0 M 0 M Y Z 0 D

D M W X K 0

M 0 Y Z 0 K

0 K M 0

K D 0 MW X

Y Z

Do Do

Do Do

Do Do Do

Do Do





 




     
      

       
       

     
    

K 0 D 0

0 M 0 D

D M K 0

M 0 0 K

0 0

0 0

 (8.88) 

 

Linear combination of mutual orthogonality checks of equations (8.68), (8.69) and 

(8.70)  for system  , ,a a aK D M  are shown 

a Ra Ra Da a Ra Ra Da

a a Ra Ra Da a Ra Ra Da

a a Ra Ra Da

a Ra Ra Da

Da Da

T

Da Da DaLa La

La La







 




            
            
            
      
       

      

  
 

   
 
 

0 K W X M 0 K 0 W X D 0

K D Y Z 0 M 0 M Y Z 0 D

D M W X K 0

M 0 Y Z 0 K

0 K M 0

K D 0 MW X

Y Z

Da Da

Da Da

Da Da Da

Da Da





 




     
      

       
       

     
    

K 0 D 0

0 M 0 D

D M K 0

M 0 0 K

0 0

0 0

 (8.89) 

 

8.3.3.2 Linear combination of Cross orthogonality checks 

Cross orthogonality checks between the numerical and the measured systems when 

the left modal information LoT  for the physical system  , ,o o oK D M  is known are 

defined below. 
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0

:

T

Lo Lo a Ra Ra
LMoa

Lo Lo a a Ra Ra

     
      
     

W X K W X
X

Y Z K D Y Z
 (8.90) 

 
0

:
0

T

Lo Lo a Ra Ra
LDoa

Lo Lo a Ra Ra

     
      

     

W X K W X
X

Y Z M Y Z
 (8.91) 

 :
0

T

Lo Lo a a Ra Ra
LKoa

Lo Lo a Ra Ra

      
      

     

W X D M W X
X

Y Z M Y Z
 (8.92) 

If the system matrices  , ,a a aK D M  and  , ,o o oK D M  are identical, and the 

diagonalising SPE LaT  matches the DSPE LoT . Then the matrices LMoaX , LDoaX  and 

LKoaX  are block diagonal which are similar to equations (8.65)-(8.67). 

 

Pre-multiplying equations (8.90), (8.91) and (8.92) by DoM , DoD , DoK , respectively, 

and post-multiplying by the inverse of the right DSPEs RaT  for the system 

 , ,a a aK D M  and adding the results of each yields 

 

0 0 0 0

0 0 0

0

0 0

0 0

0 0

T T

Do Lo Lo a Do Lo Lo a

Do Lo Lo a a Do Lo Lo a

T

Do Lo Lo a a

Do Lo Lo a

Do Do
LMoa LDoa

Do Do

            
             

            
 

       
             

   
    

   

M W X K D W X K

M Y Z K D D Y Z M

K W X D M

K Y Z M

M D
X X

M D

1
0

0

Do Ra Ra
LKoa

Do Ra Ra


    
     

    

K W X
X

K Y Z
(8.93) 

 

If the system matrices  , ,a a aK D M  and the system matrices  , ,o o oK D M  are identical 

then the left hand side of equation (8.93) becomes zero  2 2N N  matrix. Then, this 

equation can be written as 

0

T T

Do Lo Lo a Do Lo Lo a

Do Lo Lo a a Do Lo Lo a

T

Do Lo Lo a a

Do Lo Lo a

            
            

              
   
        

             

M 0 W X 0 K D 0 W X K 0

0 M Y Z K D 0 D Y Z 0 M 0 0

0 0K 0 W X D M

0 K Y Z M 0

 (8.94) 
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The same process can be done when the right modes information RoT  have been 

measured. Then the cross orthogonality checks can be expressed as 

 :

T

La La a Ro Ro
RMao

La La a a Ro Ro

     
      
     

W X 0 K W X
X

Y Z K D Y Z
 (8.95) 

 :

T

La La a Ro Ro
RDao

La La a Ro Ro

     
      

     

W X K 0 W X
X

Y Z 0 M Y Z
 (8.96) 

 :

T

La La a a Ro Ro
RKao

La La a Ro Ro

      
      

     

W X D M W X
X

Y Z M 0 Y Z
 (8.97) 

If the system matrices  , ,a a aK D M  and the system matrices  , ,o o oK D M  are 

identical, the linear combination of LAMs for the system  , ,o o oK D M  when right 

mode information RoT  is known is defined as 

a Ro Ro Do a Ro Ro Do

a a Ro Ro Do a Ro Ro Do

a a Ro Ro Do

a Ro Ro Do

            
             

              
   

         
            

0 K W X M 0 K 0 W X D 0

K D Y Z 0 M 0 M Y Z 0 D 0 0

0 0D M W X K 0

M 0 Y Z 0 K

 (8.98) 

 

8.3.3.3 Updating Analytical models 

The model updating method proposed is based on minimising discrepancies between 

computed and measured results as described above. A matrix of sensitivities is found 

to determine the changes in the update parameters that will reduce the discrepancy. 

The model parameters are iteratively adjusted until the predicted models match the 

measured models as well as possible. Both equations (8.94) and (8.98) are dependent 

on the measured modal information  ,Lo RoT T , and numerical model matrices 

 , ,a a aK D M . 
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8.3.3.4 Residual measures based on Linear Combination of LAMs 

The measured modal information RoT  is used as a reference value and the analytical 

system matrices  , ,a a aK D M  are functions of the unknown parameters Θ  to be 

updated, the error is represented in the residual vector. 

0 0 0 0

0 0 0

0

0 0

a Ro Ro Do a Ro Ro Do

a a Ro Ro Do a Ro Ro Do

a a Ro Ro Do

a Ro Ro Do

vec

            
             

            
  

       
            

K W X M K W X D

K D Y Z M M Y Z D
r

D M W X K

M Y Z K

 (8.99) 

This is only one side (the right side) of measure. The vector of residuals has 

dimensions  24n . The vector of residuals may comprise the left side measure using 

equation (8.94) or both right and left of measured modes equations (8.94) and (8.98).  

 

When applying the method of weighted least squares the minimisation of the 

objective function equation (8.99) permits the estimate of the correction parameter 

vector Θ  where Θ  is a vector parmetering the uncertainties from the analytical 

models. 

 TE  r Wr  (8.100) 

The sensitivity matrix here is rank deficient (rank is less than number of unknowns)  

and has some zero singular values indicating that the number of variable parameters 

is more than the number of equations (underdetermined). 

 

8.3.3.5 Improved Analytical Models 

The updated systems matrices  , ,up up upK D M  satisfy equation (8.98) and also the 

measured system matrices  , ,o o oK D M  satisfy equation (8.88). Equation (8.98) 
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shows that using the right DSPE RoT  and simply scaling every entry of the system 

matrices  , ,up up upK D M  by any number does not make any change to that equation. 

Comparing these two equations for the same right measured diagonalising SPE RoT  

results changing the updated system matrices by pre-multiply by some non-singular 

matrix X .  

 o o o up up up
     K D M X K D M  (8.101) 

The matrix X  can be calculated from equation (8.101). 

   o o o up up up


      X K D M K D M  (8.102) 

The superscript “+” represents the pseudo inverse of the updated numerical model 

matrices. The improved numerical models  , ,imp imp impK D M  can be found using 

equation (8.102). 

 

imp up

imp up

imp up







K XK

D XD

M XM

 (8.103) 

 

8.3.4 Model updating based on cross orthogonality 

measures for general damped systems 

The different cross orthogonality measures  , ,Ma Da KaXO XO XO  are affected when the 

system matrices  , ,a a aK D M  are changed. Extending the ideas for undamped 

systems in section 8.2.2 to general damped systems, the different cross orthogonality 

measures  , ,Ma Da KaXO XO XO  which are introduced in Chapter 7, section 7.5.2 can 

be expressed as 
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1

θ

p
Ma

Ma M M M j
jj


     




XO
XO XO XO XO  (8.104) 

 
1

θ

p
Da

Da D D D j
jj


     




XO
XO XO XO XO  (8.105) 

 
1

θ
θ

p
Ka

Ka K K K j
jj


    




XO
XO XO XO = XO  (8.106) 

Equations (7.103), (7.107) and (7.111) in Chapter 7 section 7.5.3 require modal 

information from both systems  , ,o o oK D M  and  , ,a a aK D M . The modes of the 

calculated system must be correctly matched to the modes of the true system. The 

introduced procedures in section 8.3.2.1 are used for scaling and ordering the 

analytical diagonalising SPEs. 

 

8.3.4.1 Residual measures based on cross orthogonality 

The residuals  Ma XO J ,  Da XO J  and  Ka XO J  are measures of the 

discrepancies between systems  , ,o o oK D M  and  , ,a a aK D M .  The vector of 

residuals r has dimension (12n
2
),  and it can be written as 

 

 

 

 

Ma

Da

Ka

vec

vec

vec

 
 
 

  
 

 
 

XO J

r XO J

XO J

 (8.107) 

In the updating method proposed, we require to determine the sensitivity matrix, S, 

which relates small changes in the parameters to corresponding small changes in the 

vector of residuals r. The sensitivity could be computed numerically. In practice, we 

would normally compute it analytically. The rates of change of different cross 
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orthogonality measures are introduced in Chapter 7 section 7.5.4.1 in equations 

(7.124), (7.125) and (7.126). 

 

8.3.5 Model updating based on mutual orthogonality 

measures 

The mutual orthogonality measures are introduced in Chapter 7, section 7.5.3 in 

equations (7.105), (7.109) and (7.113). These measures are independent of any 

modal information from the system  , ,a a aK D M . However, for systems having non-

symmetric matrices, both right and left modes for the measured system  , ,o o oK D M  

are required. 

 

8.3.5.1 Residual measures based on mutual orthogonality measures for 

general damped systems 

The residuals  Moo O J ,  Doo O J  and  Koo O J  are measures of the differences 

between systems  , ,o o oK D M  and  , ,a a aK D M . If these measures are zeros, then the 

matrices  , ,o o oK D M  and  , ,a a aK D M  are identical, and Moo O J , Doo O J  and 

Koo O J . 

 

Equations (7.105), (7.109) and (7.113) require invertibility of the matrices 

 , ,Do Do DoM D K . Methods are investigated for model updating. These methods which 

are applied for undamped systems are introduced in Chapter 7 section 7.3.5. The 

general ideas for residual measures of undamped systems in section 8.2.3 are 

extended to generally damped systems. The residuals measures do not demand 
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invertibility of  , ,Do Do DoM D K  (further details in Chapter 7, section 7.5.5.2). The 

vector of residuals can be written as 

 

M

D

K

vec

vec

vec

   
    

    
 

   
     

   
   
        

0 A
O

A B

A 0
r O

0 A

B A
O

A 0







 (8.108) 

Matrices  , ,M D KO O O  and  ,A B  are well developed in Chapter 7 section 7.5.5.1. 

The matrices  ,A B  represent palindromic polynomials for the second systems 

 , ,o o oK D M . 

 Lo Ro Lo Ro Do Do A K M     (8.109) 

     o Lo Ro Ro Lo Lo Ro Lo Ro Do Do Do  B Π D K M         (8.110) 

The sensitivity matrix „S‟ can be determined either numerically or analytically. It is 

possible to compute the sensitivity analytically. The rate of change of mutual 

orthogonality measures are introduced in Chapter 7, section 7.5.5 in equations 

(7.148), (149) and (150). These derivatives are independent of any information from 

system  , ,a a aK D M  and do not require invertibility of  , ,Do Do DoM D K . 

 

8.4 Example-1 

This example considers a six degree of freedom system  , ,a a aK D M . Figure 8-2 

shows a physical system structure that has 6 lumped masses  1 2 3 4 5 6, , , , ,m m m m m m  

which are linked by 14 springs  01 12 13 16 02 23 24 03 34 35 45 46 56 06, , , , , , , , , , , , ,k k k k k k k k k k k k k k  and 

14 dampers  01 12 13 16 02 23 24 03 34 35 45 46 56 06, , , , , , , , , , , , ,d d d d d d d d d d d d d d . 
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Figure 8-2 : Physical system structure 

 

This example is deliberately chosen for model updating based on homogenous 

coordinates when only one side (the right side) of the measured modes are known. 

The total number of unknowns is 34 and there are 144 residual entries  2 2n n  

whereas 108 of these are independent  23n . The mass matrix is diagonal, the 

stiffness and damping matrices are symmetric. The system are shown below 

 

11 12 13 16

12 22 23 24

13 23 33 34 35

24 34 44 45 46

35 45 55 56

16 46 56 66

0 0

0 0

0

0

0 0

0 0

o

K k k k

k K k k

k k K k k

k k K k k

k k K k

k k k K

  

  

   

   

  

  

 
 
 
 

  
 
 
 
  

K  (8.111) 

where the diagonal entries  11 22 33 44 55 66, , , , ,K K K K K K  of the stiffness matrix oK  are 

d46, k46 

d06, k06 

d03, k03 

d24, k24 

d16, k16 

d35, k35 

m3 

m4 

m1 

m5 

m6 

m2 

d01, k01 

d12, k12 

d23, k23 

d34, k34 

d45, k45 

d56, k56 

d13, k13 

d02, k02 
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o
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D  (8.112) 

where the diagonal entries  11 22 33 44 55 66, , , , ,D D D D D D  of the stiffness matrix oD  are  

 

11 01 12 13 16

22 02 12 23 24

33 03 13 23 34 35

44 24 34 45 46

55 35 45 56

66 16 46 56 06

D d d d d

D d d d d

D d d d d d

D d d d d

D d d d

D d d d d

   

   

    

   

  

   
 

  1 2 3 4 5 6, , , , ,o diag m m m m m mM  (8.113) 

The parameters are generated randomly as follows 

 

01 12 13 16 02 23 24

03 34 35 45 46 56 06

405, 399, 123, 221, 129, 330, 490,
    N/m.

132, 458, 41, 65, 267, 376, 483

k k k k k k k

k k k k k k k

       
 

         

 

01 12 13 16 02 23 24

03 34 35 45 46 56 06

34, 6, 23, 16, 1, 35, 47,
    Ns/m.

45, 14, 4, 12, 18, 42, 7

d d d d d d d

d d d d d d d

       
 

         

  1 2 3 4 5 689, 22, 52, 89, 66, 13     kg.m m m m m m     
 

These parameters can be arranged in a vector 0 . 

 

All of the eigenvalues and the eigenvectors form complex conjugate pairs. 
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0.1307 1.6375

0.4049 2.6123

0.5242 3.5790

1.0827 4.8472

2.2592 7.7762

3.3712 9.7264

o

i

i

i

i

i

i



  
 
 
 
  

  
  
  
 
     

The right and left diagonalising SPEs  ,Ro LoT T  are identical Ro LoT T . The 

diagonalised system matrices  , ,Do Do DoK D M  are 

 

DoK
 DoD

 DoM
 

0.9979 0.0635 0.0094 

0.9992 0.0687 0.0152 

0.9975 0.0874 0.0404 

0.9939 0.0796 0.0759 

0.9338 0.0905 0.3461 

0.9835 0.11397 0.1407 

 

The analytical system matrices  , ,a a aK D M  are changed by  , ,  K D M . In this 

example,   is scalar value and selected equal 1.0e-2.  

 

1

1

1

a o

a o

a o







 

 

 

K K K

D D D

M M M
 

Matrices  1 1 1, ,K D M  are generated randomly with the same structure as the system 

matrices  , ,o o oK D M  as follows. In other words, the matrices aK , aD  and aM  are 

consistent with equations (8.111), (8.112) and (8.113) respectively. 

 

1 1

2504 756 749 0 0 568 241 63 21 0 0 72

756 1790 209 718 0 0 63 215 39 59 0 0

749 209 3588 677 955 0 21 39 257 41 86 0
   ,   

0 718 677 2406 773 822 0 59 41 20

0 0 955 773 2550 822

568 0 0 238 822 2597

      
 
     
 
        

  
      

   
 
    

K D
6 45 61

0 0 86 45 188 57

72 0 0 61 57 227
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1

58 0 0 0 0 0

0 169 0 0 0 0

0 0 24 0 0 0

0 0 0 65 0 0

0 0 0 0 123 0

0 0 0 0 0 153

 
 
 
 

  
 
 
 
  

M

 

In this example, there are 34 unknowns in the parameter vector   which we hope to 

find. The initial values of variable parameters are zero. 

 

The right diagonalising SPE RoT  for system  , ,o o oK D M  is used to calculate 

residuals vector. The residuals are determined based on a linear combination of 

LAMs according to equation (8.99). We noted that the sensitivity matrix is rank 

deficient (rank is less than number of unknowns). This leads to under-determined set 

of equations. The sensitivity matrix has dimensions (144×34). Each column cis  

where 1:34i   in the sensitivity matrix has entries according to changing each entry 

in the parameter vector θ . 

 

Applying the process described in section 8.3.3. The sum of squares of residuals 

approaches zero and equation (8.98) is satisfied. The number of iterations to 

convergence depends on how far the initial values of the variable parameters are 

from the exact values. However, the updated system matrices  , ,up up upK D M  do not 

necessary match the measured system matrices  , ,o o oK D M . The matrices 

 , ,up up upK D M  shown below are rounded. 
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1168 406 125 0 0 225

406 1371 336 498 0 0

125 336 1103 466 42 0

0 498 466 1302 66 272

0 0 42 66 490 382

225 0 0 272 382 1370

up 

   
 
  
 
    
 

    
   
 
    

K

 

 

   ,   

80 6 23 0 0 16 91 0 0 0 0 0

6 91 36 48 0 0 0 22 0 0 0 0

23 36 123 14 4 0 0 0 53 0 0 0

0 48 14 93 12 18 0 0 0 91 0 0

0 0 4 12 59 43 0 0 0 0 67 0

16 0 0 18 43 84 0 0 0 0 0 13

up up 

     
   
  

   
      
   

      
     
   
        

D M

 

Comparing equation (8.98) for updated models with equation (8.88) for the measured 

system  , ,o o oK D M  for the measured right modes RoT  results changing the updated 

system matrices  , ,up up upK D M  by pre-multiply by some non-singular matrix X  as in 

equation (8.101). The matrix X  is calculated from equation (8.102). This matrix is 

diagonal and all entries are identical. 

 

0.98311

0.98311

0.98311

0.98311

0.98311

0.98311

diag

 
 
 
 

  
 
 
 
 
 

X

 

The improved analytical models are calculated using equation (8.103) 

 
   ,      ,   imp up imp up imp up  K XK D XD M XM

 

 

8.5 Example-2 

In this example, we consider a system with general linear damping having four 

degrees of freedom. The system has been deliberately chosen to have non symmetric 

matrices  , ,o o oK D M . The aim of this example is to update the analytical system 



____________________________________________________________________ 

 

279 

 

matrices  , ,a a aK D M  by driving the vector of residuals r to zero. For updating 

parameters, the information required is the diagonalised system  , ,Do Do DoK D M , the 

diagonalising transformations  ,Lo RoT T  for the measured system and the system 

matrices for the analytical system  , ,a a aK D M . The left and right diagonalising 

transformations  ,Lo RoT T  for the measured system simultaneously diagonalise 

 , ,o o oK D M . We consider 6 unknown parameters  1 2 3 4 5 6, , , , ,       and we suppose 

that the diagonalised system matrices  ,Do DoK M  are invertible. 

 

-489 -463 396 295 10 11 24 -21 -46 30 38 -25

471 393 -81 -361 7 -4 -18 18 -39 -43 2 2
,    = ,    

-282 -373 -422 212 -14 5 -7 -18 4 -41 27 -19

-494 -479 -21 246 -3 -12 11 -12 -3 4 -7 25

o o o

     
     
      
     
     
     

K D M

 

The diagonalised system  , ,io io iok d m  is summarised below. 

 

iok
 iod

 iom
 

0.6627 0.6858 0.3009 

0.6112 -0.7534 0.2426 

0.9392 -0.3375 0.0638 

0.9335 0.3531 0.0622 

 

Scaling has been applied to make 2 2 2 1io io iok d m    for 1 4i  . 

The entries of the diagonalised system matrices  , ,Do Do DoK D M  for the original 

 , ,o o oK D M  can be factorised as equations (7.79)-(7.81) indicate. Matrices 

 Lo Lo  , right  Ro Ro   and o  satisfy equations (7.82)-(7.84). 

 

0.5486 0.8141 0.7678

0.4925 0.7818 0.9783
   ,   ,    

0.2525 0.9691 0.6895

0.2494 0.9662 0.7326

Lo Ro Lo Ro odiag diag diag

          
          

              
          
               
          

Π   
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The analytical system matrices  , ,a a aK D M  are related to the true system matrices 

by 

 1 2
T T

a o o    K K K K vv ww  

 3 4
T T

a o o    D D D D vv ww  

 5 6
T T

a o o    M M M M vv ww  

where    1 0 1 0    ,   1 0 1 1
T T

  v w  and where  1 2 3 4 5 6, , , , ,       are scalar 

parameters. 

 

We can attempt to update the system matrices  , ,a a aK D M  from any starting point. 

We consider that the scalar parameters  1 2 3 4 5 6, , , , ,       are six points on a 

hypersphere having constant radius. To test the updating, we chose many different 

random vectors θ  and scaled each one such that 

 2T rθ θ  (8.114) 

and 

 1 2 3 4 5 6

T
        θ  (8.115) 

For any updating method, we define the ball of convergence as the set of all vectors 

  for which the process will converge to 0 . The radius of this ball of convergence 

is defined as the minimum value of  
1/2

T
θ θ  outside this set. 

 

For comparison purposes, we investigated updating the system based on the 

eigenvectors of the analytical system  and based on the mutual 

orthogonality measures described in section 8.3.5. The updating procedure based on 

eigenvectors described in section 8.3.1 has been tested. It converges however; the 

 , ,a a aK D M



____________________________________________________________________ 

 

281 

 

radius of the ball of convergence is small. The updating procedure based on mutual 

orthogonality has been tested many times. It always converges monotonically for all 

starting values of  and the radius of the ball of convergence is thus infinity. 

Convergence is in this example always achieved in 6 iteration or less. 

 

Figure 8-3 shows a comparison of the distance between the true system matrices 

 , ,o o oK D M  and the analytical system matrices  , ,o o oK D M . The radii rmut and eigr  

show the maximum ball of convergence for model updating based on mutual 

orthogonality and eigenvectors, respectively. The maximum range of eigr  is 9.641 

whereas the maximum range of rmut goes to infinity mutr  . The range of radius eigr  

lies inside the range of radius rmut. 

 

 

Figure 8-3 : Radius of ball of convergence 
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8.6 Conclusion 

This chapter has developed methods which useful for the model updating of general 

damped linear systems. Model updating procedures based on eigenvectors, 

diagonalising SPEs and both cross-orthogonality measures and mutual-orthogonality 

measures are presented. In the cases of both cross-orthogonality and mutual-

orthogonality measures, these measures are defined in terms of real matrices - the 

diagonalising structure preserving equivalences DSPEs.  

 

If cross-orthogonality measures are to be used, then (in effect) the modes of the 

calculated system must be correctly matched to the modes of the true system. By 

contrast, if mutual orthogonality measures are employed, this matching of modes is 

unnecessary. However, for systems having non-symmetric matrices, both left and 

right modes are required for the mutual orthogonality measures. 

 

Example-1 presented model updating based on homogenous coordinates. The linear 

combination of cross orthogonality checks are used to form the residuals for updating 

model parameters. The model updating procedures require right or left modal 

information for the physical system  , ,o o oK D M  and analytical system matrices 

 , ,a a aK D M . An improved step is required to match the updated model matrices with 

the measured system because the sensitivity matrix is rank deficient. 

 

In Example-2, model updating based on the mutual orthogonality measures exhibits 

monotonic convergence from every starting position. That is to say, the ball of 
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convergence has an infinite radius. This contrasts starkly with updating procedures 

based on comparing eigenvectors which exhibit a finite ball of convergence. 

 

The following chapter develops Craig Bampton transformations as model reduction 

method. 
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CHAPTER  9. Craig-Bampton 

Transformations (CBTs) 

This chapter develops Craig Bampton transformations for undamped system. The 

ideas are extended for generally damped systems in state space with arbitrary input 

and output matrices and without the assumption of symmetry. Dynamic behaviours 

of large complex structures are typically modelled using finite element analysis. In 

order to analyse the response of any structure, the structure is divided into a large 

discrete number of substructures or components. The substructures or components 

modes are obtained. The substructures models are coupled to give reduced dimension 

system models [78]. 

 

Dynamic substructuring is mainly used to couple reduced models of complex 

structures, in test verification of finite element models of components, or to 

implement computation of the dynamics of very large finite element models [1, 3]. 

Several literatures are published on substructure coupling methods [78, 79, 143, 

144]. Some methods are developed for undamped and damped systems and used for 

large complex structural systems [79]. 

 

Craig and Bampton [80] proposed a technique  for representing substructures. Craig-

Bampton transformations (CBTs) are divided into two parts [80]. The first part of 

CBTs represents boundary generalized coordinates which are related to the 

displacement modes of the substructures knows as constraint modes. The second part 

of CBTs represents substructure normal mode generalized coordinates which 
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describe the motion of the interior coordinates relative to the fixed boundaries of the 

substructures. 

 

9.1 Undamped substructure systems 

The equations of motion for any undamped symmetric substructure can be written as 

      
s s s

s s s s s

T
s s s

t t t



 



f S u

M q K q f

y S q

 (9.1) 

where sS  represents selection matrix at terminal degrees of freedom (DoFs) of the 

substructure. Subscript “s” denotes substructure or component. T
s sM M , T

s sK K  

and sq  are the substructure‟s mass, stiffness matrices, and displacement vector 

respectively. Vector sf  includes external applied forces and the forces that act on the 

substructure due to its connection to adjacent components at boundary DoFs. The 

physical displacement coordinates sq  are represented in terms of substructure 

generalized coordinates snq  by the coordinate transformation 

    ,   T
s sn sn s q Tq f T f  (9.2) 

The matrix T  is a coordinate transformation populated with preselected substructure 

modes, (including rigid body modes, normal modes of free vibration, constraint 

modes, and attachment modes). The substructure equation of motion in generalized 

coordinates is defined as 

      
sn sn s

sn sn sn sn sn

T
s sn sn

t t t



 



f S u

M q K q f

y S q

 (9.3) 

where T
sn sS T S , and 

 T
sn sM T M T  (9.4) 



____________________________________________________________________ 

 

286 

 

 T
sn sK T K T  (9.5) 

The form of the equation of motion for a substructure given in equation (9.1) is 

partitioned into boundary DoFs and interior DoFs which can be expressed as 

 

 

 

b b
s

i

bb bi b bb bi b b

ib ii i ib ii i i

T

bb
s

i

   
   
  

         
         

         

  
   
   

f S
u

f 0

M M q K K q f

M M q K K q f

qS
y

q0

 (9.6) 

where subscripts b  and i  represent the boundary and interior DoFs, bq  represents a 

vector of boundary DoFs, iq  represents internal DoFs. Figure 9-1 shows external or 

boundary DoFs and the internal DoFs of an arbitrary substructure or component. 

 

 

Figure 9-1 : Substructure boundary and interior DoFs 

 

9.2 Craig-Bampton transformations for undamped 

substructure systems 

Craig-Bampton transformations for undamped systems are introduced in Chapter 2 

section 2.7.7. These transformations are used as a model reduction method. The 

Interior degrees of freedom 

Boundary degrees of freedom 
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Craig-Bampton transformations, like any other coordinate transformation are defined 

as 

 s Rcb snq T q  (9.7) 

 T
sn Lcb sf T f  (9.8) 

In fact, Craig-Bampton transformations are more specific since Rcb Lcb cb T T T . Now, 

in Craig-Bampton, the transformation matrix, cbT  comprises two separate parts 

  cb T F E  (9.9) 

The F  part ensures that the substructure model will reproduce static behaviour 

exactly. The E  part ensures that if the substructure model has all of its terminal DoFs 

clamped, it will reproduce at least the first few natural modes correctly. Before 

discussing these two parts separately it is necessary to discuss matrices which span 

the space orthogonal to sS . 

 

9.2.1 Matrix spanning the space orthogonal to sS  for 

undamped substructure systems 

In the usual presentation of Craig-Bampton, it is implicit that sS  is defined as shown 

below. sS  has dimensions (n×nb) where nb is number of DoFs at the terminals DoFs. 

 

1 0 0 .. 0

0 1 0 .. 0

0 0 1 .. 0

: : : . :

0 0 0 .. 1

0 0 0 .. 0

0 0 0 .. 0

0 0 0 .. 0

0 0 0 .. 0

0 0 0 .. 0

0 0 0 .. 0

s

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

S  (9.10) 
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Consider that some (n×(n-nb)) matrix, sR , can be found such that : s s  S R  is a 

square invertible matrix and such that 

 T
s s S R 0  (9.11) 

The matrix sR  will be used later. 

 

9.2.2 Finding the matrix F  for undamped substructure 

systems 

The first part of the Craig-Bampton transformation F  defines the constraint modes 

c
Φ . These modes are defined as the static deformation of a substructure when a unit 

displacement is applied to the boundary coordinates and the interior degrees of 

freedom are not forced 

 
bb

c

 
  
 

I
F

Φ
 (9.12) 

Note that the dimensions of F  are fixed. In words, F  represents a mapping between a 

set of prescribed displacements at the terminals of a substructure and the complete 

set of deflections of the substructure which results in minimum potential energy. F  

has the same number of columns as sS  and it can be derived as follows: 

 

Let a  represent some arbitrary vector describing the prescribed deflections at the 

terminals, a  has dimensions (nb×1). From equation (9.1) we get 

 T
s sa S q  (9.13) 

The space of all vectors, sq , which can satisfy equation (9.13) is given by 

  
1

:T
s s s s s s s



   q S S S a R b Q a R b  (9.14) 
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where b  is some arbitrary vector with dimensions ((n-nb) ×1). Now, we can easily 

see that (twice) the potential energy is given by  

 

2

       

T
sT T T

s s s s s sT
s

bb biT T

ib ii

   
         

    

   
      

  

Q a
q K q a b K Q R

bR

K K a
a b

K K b

PE

 (9.15) 

 
     ,    

      ,    

T T
bb s s s bi s s s

T T
ib s s s ii s s s

 

 

K Q K Q K Q K R

K R K Q K R K R
 (9.16) 

Now, following Guyan‟s logic [52], it is easy to see that for any given vector, a, the 

potential energy is minimised 
 2

0
b






PE
 by choosing: 

  1
ii ib
 b K K a  (9.17) 

Substitute all of this back into equation (9.14) to find 

 

  
   

1

1
   

   

s s s ii ib

s s s s s s s s





 

 



q Q R K K a

Q R R K R R K Q a

Fa

 (9.18) 

The Craig-Bampton transformation F  with dimensions (n×nb), can be expressed as 

 
1

=  
bbbb

c
ii ib


  
   

    

II
F

K KΦ
 (9.19)  

 

9.2.3 Finding the matrix E  for undamped substructure 

systems 

The second part of Craig-Bampton transformations E  is defined as substructure 

normal modes n
Φ . These modes are defined as the normal modes of the substructure 

for interior degrees of freedom relative to restrained boundaries. 
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n

 
  
 

0
E

Φ
 (9.20) 

n
Φ  represents the normal modes of the constrained substructure. The E  part does not 

have its dimensions fixed. If the system has n degrees of freedom and nb inputs (and 

outputs), then the maximum possible dimensions of E  are (n×(n-nb)). We choose 

how many columns to keep in E . In a serious implementation of Craig-Bampton, one 

would make an initial choice arbitrarily (using a conservative over-estimate) and then 

potentially reduce the number of columns retained. The E  matrix is formed as  

 n
sE R Φ  (9.21) 

The generalised eigenvalue problem for the interior coordinates is defined by the 

matrices T
ii sM R M R  and T

ii sK R K R . Then, matrix n
Φ  comprises sets of 

eigenvectors corresponding to the p lowest eigenvalues where p is some number not 

exceeding (n-nb). 

  2 0           1,2,...,ii p ii p bp n n   K ω M   (9.22) 

The eigenvectors of equation (9.22) are the normal modes of the constrained 

substructure and satisfy the following equations for the interior degrees of freedom. 

    ,   nT n nT n
ii Dii ii Dii Φ K Φ K Φ M Φ M  (9.23) 

The substructure normal modes or eigenvectors diagonalise the interior degrees of 

freedom matrices. The matrices  ,Dii DiiM K  in equation (9.23) are diagonal. If the 

mode shapes are mass normalized, then Dii iiM I  and Dii iiK Λ  are diagonal. The 

Craig-Bampton transformations E  with dimensions (n×(n-nb)), can be expressed as 

 
n

 
  
 

0
E

Φ
 (9.24) 
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9.2.4 Substructure model matrices for undamped systems 

The Craig-Bampton transformation can be written as 

 
1

bb

cb n
ii ib


 
  

  

I 0
T

K K Φ
 (9.25) 

The Craig-Bampton transformation cbT  transforms the substructure matrices into 

new system matrices. The substructure mass and stiffness matrices ,cb cbM K  are 

defined as 

 nbb nbi nbb nbiT
cb cb s cb

nib nii nib ii

   
     

   

M M M M
M T M T

M M M I
 (9.26) 

 
0

0

nbb nbi nbbT
cb cb s cb

nib nii ii

   
     

   

K K K
K T K T

K K Λ
 (9.27) 

where 

 

 1 1 1

1

1

nbb bb bi ii ib bi ii ib ii ii ib

n n
nbi bi bi ii ii

nT nT
nib ib ii ii ib

nT n
nii Dii ii ii

  





   

 

 

  

M M M K K K K M M K K

M M Φ K K M Φ

M Φ M Φ M K K

M M Φ M Φ I

 (9.28) 

 

1

0

0

nbb bb bi ii ib

nbi

nib

nT n
nii Dii L ii R ii

 





  

K K K K K

K

K

K K Φ K Φ Λ

 (9.29) 

The second part of the Craig-Bampton transformation E  diagonalises the 

substructure interior coordinate matrices  ,ii iiM K  which represent interior 

coordinates (or eliminated degrees of freedom) such that 

 
T nT n

s ii Dii

T nT n
s ii Dii

 

 

E M E Φ M Φ M

E K E Φ K Φ K
 (9.30) 

The first part of the Craig Bampton transformation F  is used also to identify 

boundary coordinates (or reduced degrees of freedom) such that 
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 T
s nbbF K F K  (9.31) 

Equation (9.19) shows that the constrain modes have stiffness orthogonal to all of the 

substructure normal modes, that is 

 0T
s E K F  (9.32) 

 

9.3 Damped substructure 

The equation of motion for an n DoFs damped symmetric substructure can be 

expressed as 

        
s s s

s s s s s s s

T
s s s

t t t t



  



f S u

M q D q K q f

y S q

 (9.33) 

where sS  represents selection matrix at the terminals output and input nb DoFs. The 

matrix sS  is defined as    ;
b b bn n n n 

 
 
I 0 . Based on the division of the boundary 

coordinates and interior coordinates, equation (9.33) can be expressed as 

 bb bi b bb bi b bb bi b b

ib ii i ib ii i ib ii i i

             
              

             

M M q D D q K K q f

M M q D D q K K q f
 (9.34) 

It is possible in this case to write the dynamic system equation (9.33) in state space 

as 

 s s s s s s

s s s s

         
         

         

K 0 q D M q f

0 M r M 0 r 0
 (9.35) 

 s s s s

s s s s s s

         
         

         

0 K q K 0 q 0

K D r 0 M r f
 (9.36) 

Based on the division of the boundary coordinates and interior coordinates, equations 

(9.35) and (9.36) can be expressed in state space as 
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bb bi bb bi bb bib b b

ib ii ib ii ib iii i i

b bbb bi bb bi

i iib ii ib ii

             
             
                                                         

K K D D M Mq q f
0

K K D D M Mq q f

r r 0M M M M
0 0

r r 0M M M M

 (9.37) 

where s sr q , s sr q , b
s

i

 
  
 

r
r

r
 and b

s
i

 
  
 

q
q

q
 

 :

bb bi

ib iis
s

s s bb bi bb bi

ib ii ib ii

  
  

                 
     

K K
0

K K0 K
M

K D K K D D

K K D D

 (9.38) 

 :

bb bi

ib iis
s

s bb bi

ib ii

  
  

               
   

K K
0

K KK 0
D

0 M M M
0

M M

 (9.39) 

 :

bb bi bb bi

ib ii ib iis s
s

s bb bi

ib ii

    
     

                  
   

D D M M

D D M MD M
K

M 0 M M
0

M M

 (9.40) 

The matrices  , ,s s sM D K  define Lancaster augmented matrices LAMs as introduced 

earlier in Chapter 2. Rearranging LAMs in equations (9.38)-(9.40) for the boundary 

coordinates and interior coordinates, equation (9.37) can be written in the form 

 

bb bi bb bb bi bib b

bb bi bb bib b

i iib ii ib ib ii ii

i iib ii ib ii

             
                                                                         

K 0 K 0 D M D Mq q

0 M 0 M M 0 M 0r r

q qK 0 K 0 D M D M

r r0 M 0 M M 0 M 0

b

i

 
 
 

  
 

   

f

0

f

0

 (9.41) 

where 

 

bb bi

bb bb bi bi
s

ib ii

ib ib ii ii

 
 
 
 
 
 

0 K 0 K

K D K D
M

0 K 0 K

K D K D

 (9.42) 
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bb bi

bb bi
s

ib ii

ib ii

 
 

 
 
 
 

  

K 0 K 0

0 M 0 M
D

K 0 K 0

0 M 0 M

 (9.43) 

 

bb bb bi bi

bb bi
s

ib ib ii ii

ib ii

   
 
 
 
    
 
  

D M D M

M 0 M 0
K

D M D M

M 0 M 0

 (9.44) 

Simplifying equation (9.41) as 

 
bb bi b bb bi b b

ib ii i ib ii i i

              
         

                 

D D q K K q f

D D q K K q f
 (9.45) 

Equation (9.45) can be written in the form 

 

s s

s s s s s

T
s s s



 



f S u

D q K q f

y S q

 (9.46) 

Underline   .  represents double dimensions (2n). 
b

s
i

  
  
  

q
q

q
, b

b
b

 
  
 

q
q

r
 and i

i
i

 
  
 

q
q

r
. 

 

9.4 Craig-Bampton transformations for damped 

second order systems 

This section extends the developed Craig-Bampton transformations (CBTs) for 

undamped systems in section 9.2 to damped systems. The Craig-Bampton 

transformation in state space is defined as 

 s Rcb snq T q  (9.47) 

 T
sn Lcb sf T f  (9.48) 

Craig-Bampton transformation matrix, cbT   is divided into two separate components 

  cb T F E  (9.49) 
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9.4.1 Finding the matrix F  for damped substructure 

systems in state space 

By comparing equation (9.46) with equation (9.1) for undamped systems then, 

 T
s sa S q  (9.50) 

where a  represents a double dimension (2nb×1), arbitrary vector describing the 

prescribed deflections and velocities at the terminals. The space of all vectors, sq  

(double dimension), which can satisfy equation (9.50) is given by 

  
1

:
T

s s s s s s s



   q S S S a R b Q a R b  (9.51) 

where b represents some arbitrary vector, has double dimensions (2(n-nb)×1). 

Then, the matrix sS  is defined as    2 2 2 2  ;   
b bnb n n n 

 
 
I 0  and the matrix, sR  

  2 2 2 bn n n  , can be found such that : s s
 
 
S R  is a square invertible matrix. 

Following the same procedure described in section 9.2.2, the potential energy and 

kinetic energy EPK are expressed as  

 
bb biT T T

E s s s
ib ii

   
       

   

D D a
q D q a b

D D b
PK  (9.52) 

where 

 
   ,   

   ,   

T T
bb s s s bi s s s

T T
ib s s s ii s s s

 

 

D Q D Q D Q D R

D R D Q D R D R
 (9.53) 

We note that the matrix sD  is not generally positive definite. Following Guyan‟s 

logic [52], the energy EPK  in equation (9.52) are minimised by choosing:   

  1
ii ib


 b D D a  (9.54) 

Substitute all of this back into equation (9.51) to find 
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1

1

  

  

s s s ii ib

T T
s s s s s s s s





 

  
    

  



q Q R D D a

Q R R D R R D Q a

Fa

 (9.55) 

The Craig-Bampton transformation F  in state space has dimensions  2 2 bn n  and 

can be expressed as 

 

 

 

  

  

1

1

nb nb

nb nb

ii ib n nb nb

ii ibn nb nb







 



 

 
 
 
 
 
 
 
 

I 0

0 I

F
K K 0

0 M M

 (9.56) 

The matrices  1
ii ib


K K  and  1
ii ib


M M  have dimensions   b bn n n  . 

 

9.4.2 Finding the matrix E  for damped substructure 

systems in state space 

The eigenvalue problem for the interior coordinates is defined by the matrices 

T
ii sD R D R  and T

ii sK R K R . 

   0           1,2,...,ii p ii p bp n n   D K   (9.57) 

The p  comprises a pair of eigenvectors in the modal matrix n
Φ . The maximum 

number of eigenvalues are not exceeding  2 2 bn n . The modal matrix n
Φ  

diagonalises the interior matrices  , ,ii ii iiK D M  and satisfies the following equations 

 

Tn n
Dii ii

Tn n
Dii ii

Tn n
Dii ii







M Φ M Φ

D Φ D Φ

K Φ K Φ

 (9.58) 
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In equation (9.58), the matrices  , ,Dii Dii DiiK D M  are diagonal. The Craig-Bampton 

transformation E  in state space with dimensions   2 2 2 bn n n   can be expressed as 

 
  

    

2 2

2 2

b

b

nb n n
n

s n
n nb n n



  

 
  
 
 

0

E R Φ
Φ

 (9.59) 

 

9.4.3 Substructure model matrices for damped systems 

The Craig-Bampton transformations  cbT  for damped symmetric substructure 

systems in state space can be written as 

 

 

 

  

       

1

1
2 2 b

nb nb

nb nb

cb

ii ib n nb nb

n
ii ib n nb n nn nb nb







 


   

 
 
 
 

  
 

 
 

 

I 0 0

0 I 0

T
K K 0

0 M M Φ

 (9.60) 

The substructure model matrices  , ,cb cb cbM D K  using equations are defined as 

 
nbb nbiT

cb cb s cb
nib nii

 
   

  

M M
M T M T

M M
 (9.61) 

 
nbb nbiT

cb cb s cb
nib nii

 
   

  

D D
D T D T

D D
 (9.62) 

 
nbb nbiT

cb cb s cb
nib nii

 
   

  

K K
K T K T

K K
 (9.63) 

The Craig-Bampton transformation E  diagonalises the substructure interior 

coordinates matrices  , ,ii ii iiM D K . 

 

T
Dii s

T
Dii s

T
Dii s







M E M E

D E D E

K E K E

 (9.64) 
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Equation (9.56) shows that the constrain modes have mass and stiffness orthogonal 

to all of the substructure normal modes, that are 

 0     ,     0
T T

s s E D F F D E  (9.65) 

Craig-Bampton transformation F  in state space gives 

 
1

1

0

0

T bb bi ii ib
s nbb

bb bi ii ib





 
   

   

K K K K
F D F D

M M M M
 (9.66) 

 

9.5 Generalised Craig-Bampton Transformations 

In a general case for non-symmetric matrices, the right and left Craig-Bampton 

transformations  ,Rcb LcbT T  are expressed each in two parts as 

    ,   Rcb R R Lcb L L
    
   

T F E T F E  (9.67) 

where 

  

 

 

 

1 1

1 1

00

00

   ,   0 0

0 0

T
R L

ii ib bi ii

T
ii ib bi ii

 

 

  
  
  
      
  

      

II

II

F FK K K K

M M M M

 (9.68) 

 

The matrices RE  and LE  can be solved from the eigenvalue problem of equation 

(9.57) and it‟s transpose defined by the matrices T
iiD  and T

iiK . 

    ,   n n
R R L L E RΦ E RΦ  (9.69) 

The matrices  ,n n
R LΦ Φ  are chosen at the same eigenvalues of the interior 

coordinates. The eigenvalues and corresponding eigenvectors for the interior 

coordinates can be either real or complex conjugate or mix. 
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Real valued diagonalising SPEs   ,Rii LiiT T  for the interior coordinates can be 

calculated. The transformation  ,R LE E  for the interior coordinates in state space can 

be expressed in terms of diagonalising SPEs for the interior coordinates. The 

interested modes can be chosen by discarding most of high frequency interior modes. 

 
  

    

  

    

2 2 2 2

2 2 2 2

    ,     
b b

b b

nb n n nb n n

R L
Rii Liin nb n n n nb n n

 

     

   
    
   
   

0 0

E E
T T

 (9.70) 

 

The right and left Craig-Bampton transformations  ,R LE E  satisfy equation (9.64). 

The matrices  , ,Dii Dii DiiK D M  have four block diagonal matrices. The following 

section presents Craig-Bampton transformations in SPEs form.  

 

9.5.1 Craig Bampton transformations in SPEs form 

Craig Bampton transformations for general damped substructure systems are 

extended to be as SPEs 

    ,   
R R L L

Rcb Lcb
R R L L

   
    
   

W X W X
T T

Y Z Y Z
 (9.71) 

such that 

 
T

s NL L R R

s s N NL L R R

      
      

      

0 K 0 KW X W X

K D K DY Z Y Z
 (9.72) 

 
T

s NL L R R

s NL L R R

      
      

       

K 0 K 0W X W X

0 M 0 MY Z Y Z
 (9.73) 

 
T

s s N NL L R R

s NL L R R

         
      

       

D M D MW X W X

M 0 M 0Y Z Y Z
 (9.74) 

more concisely 
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 T
Lcb s Rcb NT M T M  (9.75) 

 T
Lcb s Rcb NT D T D  (9.76) 

 T
Lcb s Rcb NT K T K  (9.77) 

where 

 

Nbb Nbi

Nbb Nbb Nbi Nbi
N

Nib Nii

Nib Nib Nii Nii

 
 
 
 
 
 

0 K 0 K

K D K D
M

0 K 0 K

K D K D

 (9.78) 

 

Nbb Nbi

Nbb Nbi
N

Nib Nii

Nib Nii

 
 

 
 
 
 

  

K 0 K 0

0 M 0 M
D

K 0 K 0

0 M 0 M

 (9.79) 

 

Nbb Nbb Nbi Nbi

Nbb Nbi
N

Nib Nib Nii Nii

Nib Nii

    
 
 
 
    
 
  

D M D M

M 0 M 0
K

D M D M

M 0 M 0

 (9.80) 

The matrices  , ,N N NM D K  have four blocks and each block has the same LAMs 

format. The matrices  , ,Nii Nii NiiM D K  are all diagonal. The two parts of the Craig 

Bampton transformations  ,R LE E  and  ,R LF F  are calculated separately in the full 

size of the substructure. The reduced system matrices  , ,cb cb cbM D K  are extracted 

from equations (9.78), (9.79) and (9.80) 

 

T

Nbb Nbi

Nbb Nbb Nbi Nbi cb
cb

Nib Nii cb cb

Nib Nib Nii Nii

    
    

              
    

    

0 K 0 K0 0I I

K D K D 0 K0 0I I
M

0 K 0 K K D0 0 0 0

K D K D0 0 0 0

 (9.81) 

 

T

Nbb Nbi

Nbb Nbi cb
cb

Nib Nii cb

Nib Nii

    
    

                
    

     

K 0 K 00 0I I

0 M 0 M K 00 0I I
D

K 0 K 0 0 M0 0 0 0

0 M 0 M0 0 0 0

 (9.82) 
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T

Nbb Nbb Nbi Nbi

Nbb Nbi cb cb
cb

Nib Nib Nii Nii cb

Nib Nii

       
    
                    
    
     

D M D M0 0I I

M 0 M 0 D M0 0I I
K

D M D M M 00 0 0 0

M 0 M 00 0 0 0

 (9.83) 

 

9.5.2 Craig Bampton transforms  ,R LE E  in the full size of 

the substructure 

The second part of the Craig Bampton transformations  ,R LE E  is extended to the 

full size of the substructure. These methods are simplified in a few points. 

 

9.5.2.1 Diagonalising SPEs for the interior coordinates 

The right and left diagonalising SPEs  ,Rii LiiT T  for the interior coordinate are 

 
1 1 1

1 1 1

1

2

1

2

R R Dii R Dii
Rii Rii

Rii
Rii Rii

R Dii R R Dii

 
   

    
   
  

F G D G M
W X

T
Y Z

G K F G D

 (9.84) 

 
1 1 1

1 1 1

1

2

1

2

T T
L L Dii L Dii

Lii Lii
Lii

T TLii Lii
L Dii L L Dii

 
   

    
   
  

F G D G M
W X

T
Y Z

G K F G D

 (9.85) 

where 1 1 1 1 0T T
R L R L F G G F  

 

9.5.2.2 Extract 2 2 2 2, , ,R L R LF F G G   from  ,Rii LiiT T  SPEs 

The matrices 2 2 2 2, , ,R L R LF F G G  are extracted from the inverse of the diagonalising 

transformations  ,Rii LiiT T  such that 
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2 2 2

1 2 2

2 2
2 2 2

1

2

1

2

R R ii R ii
R ii R ii

Rii
R ii R ii

R ii R R ii



 
   

    
   
  

F G D G M
W X

T
Y Z

G K F G D

 (9.86) 

 
2 2 2

1 2 2

2 2
2 2 2

1

2

1

2

T T
L L ii L ii

L ii L ii
Lii

T TL ii L ii
L ii L L ii



 
   

    
   
  

F G D G M
W X

T
Y Z

G K F G D

 (9.87) 

Using the pseudo inverse for determining 2 2,R LG G  

   2R RM RD RK ii ii ii


G X X X M D K  (9.88) 

  2
T T T

L LM LD LK ii ii ii


 
 

G X X X M D K  (9.89) 

where superscript “+” denotes pseudo inverse. The matrices , ,RM RD RKX X X  and 

, ,LM LD LKX X X  are defined as 

  2 2 2 2   ,      ,   RM R ii RD R ii R ii RK R ii   X X X Z W X Y  (9.90) 

  2 2 2 2   ,      ,   LM L ii LD L ii L ii LK L ii   X X X Z W X Y  (9.91) 

We note that 

 1 2 1 2   ,   T T
R L L R G G G G  (9.92) 

The values of 2 2,R LF F  are calculated 

    2 2 2 2 2 2/ 2   ,   / 2R R ii R ii L L ii L ii   F W Z F W Z  (9.93) 

where 2 2 2 2 0T T
R L R L F G G F . 

 

9.5.2.3 Extending 2 2 2 2, , ,R L R LF F G G  to the full size of the substructure 

The matrices 2 2 2 2, , ,R L R LF F G G  are extended to the full size of the substructure such 

that 
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2_ 2_ 2_

1

2_ 2_ 2_

1

2

1

2

R R s R s

R

R s R R s



 
  

  
 
  

F G D G M

T

G K F G D

 (9.94) 

 
2_ 2_ 2_

1

2_ 2_ 2_

1

2

1

2

T T
L L s L s

L
T T

L s L L s



 
  

  
 
  

F G D G M

T

G K F G D

 (9.95) 

where the matrices  2_ 2_ 2_ 2_, , ,R L R LF F G G  have dimensions (n×n). The right and left 

modified Craig Bampton transformations  ,R LE E  can be expressed as 

1

2 2 2 2 2

2 2 2 2 2

0

1 1

2 2

1 1

2 2

R
Rib Rii

R ib R ib R R ii R ii

R ib R ib R ii R R ii



 
 
 
 
  

    
      

 
 
 
 

I 0 0 0

0 I 0 0
I

T
T T

G D G M F G D G M

G K G D G K F G D

 (9.96) 

1

2 2 2 2 2

2 2 2 2 2

0

1 1

2 2

1 1

2 2

L T
T T T TLbi Lii

L bi L bi L L ii L ii

T T T T
L bi L bi L ii L L ii



 
 
 
 

   
    
       

 
 
 
 

I 0 0 0

0 I 0 0I
T

T T
G D G M F G D G M

G K G D G K F G D

(9.97) 

The extended the right and left Craig Bampton transformations ,R LE E  are defined in 

the forms 

    ,   R R L L E T E T  (9.98) 

where the right and left transformations ,R LT T  are the inverse of equations (9.96), 

(9.97) and can be written as 

 
   1 1 1 1

0 0
   ,   R L T

Rii Rib Rii Lbi Lii Lii
   

   
    
       

I I
T T

T T T T T T
 (9.99) 
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9.5.3 Craig-Bampton transforms ,R LF F  in the full size of the 

substructure 

The first part of the Craig Bampton transformation matrices ,R LF F  represent Guyan 

reduction transformations, where 

 1    ,   T T
R ii ib L ii bi

    F K K F K K  (9.100) 

The Craig Bampton transformations ,R LF F  are extended to the full size of the 

substructure. 

    ,   R L
R L

   
    
   

I I
F F

F F
 (9.101) 

 

9.5.3.1 Extending ,R LF F  to the full size of the substructure 

Garvey et al. [43] proposed a logical extension of the Guyan reduction method for 

general damped systems. Following the proposed approach for structure preserving 

transformations, Craig Bampton transformations ,R LF F  can be expressed in two parts 

as follows 

 1 2 1 2   ,   R R R L L L F U U F U U  (9.102) 

The first transformations  1 1,R LU U  are square matrices and can be expressed in the 

form 

 1

0 0 0

0 0 0

0

0

R
FR FR

FR FR

 
 
 
 
 
 

I

I
U

W X I

Y Z I

 (9.103) 

 1

0 0 0

0 0 0

0

0

L
FL FL

FL FL

 
 
 
 
 
 

I

I
U

W X I

Y Z I

 (9.104) 
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more concisely 

 1 1
1 1

   ,   R L
R L

   
    
   

I 0 I 0
U U

U I U I
 (9.105) 

  

The second transformations  2 2,R LU U  can be written as 

 2 2

0 0

0 0
   ,   

0 0 0 0

0 0 0 0

R L

   
   
    
   
   
   

I I

I I
U U  (9.106) 

The extended Craig Bampton transformations ,R LF F in the full size of the 

substructure are defined as 

 1 1   ,   R R L L F U F U  (9.107) 

Then, Craig Bampton transformations ,Rcb LcbT T  in SPEs form are defined from the 

multiplication of equation (9.103) by the inverse of (9.96) and equation (9.104) by 

the inverse of equation (9.97). 

 1 1   ,   Rcb R R Lcb L L T U E T U E  (9.108) 

 
   1 1 1 1

11

0 0
=Rcb

Rii Rib Rii R Rii Rib RiiR
   

    
     
         

I II 0
T

T T T U T T TU I
 (9.109) 

 
   1 1 1 1

11

0 0

Lcb T T
Lbi Lii Lii L Lbi Lii LiiL

   

    
     
         

I II 0
T

T T T U T T TU I
 (9.110) 

 

9.6 Modified Craig Bampton transformations and 

SPEs 

Craig Bampton transformations for general damped substructure systems are 

modified such that 
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T

sL L R R A

s sL L R R A A

      
      

      

0 KW X W X 0 K

K DY Z Y Z K D
 (9.111) 

 
T

sL L R R A

sL L R R A

      
      

       

K 0W X W X K 0

0 MY Z Y Z 0 M
 (9.112) 

 
T

s sL L R R A A

sL L R R A

         
      

       

D MW X W X D M

M 0Y Z Y Z M 0
 (9.113) 

The modified Craig Bampton transformations matrices are chosen in form to satisfy 

specific structure. The matrices  , ,A A AM D K  are chosen to be in the form 

 

Abb Abi

Abb Abi
A

Aib Aii
Aib

 
 

   
   

   
 
 

M M
M M

M =
0M M

M
0

 (9.114) 

 =

Abb

Abb Abi
A

Aib Aii

 
 

   
   
   

 
 

D 0
D D

D =
0D D

0
0

 (9.115) 

 

Abb

Abb Abi
A

Aib Aii

 
 

   
   

   
 
 

K 0
K K

K =
0K K

0
0

 (9.116) 

Matrices  , ,Aii Aii AiiM D K  are all diagonal and 0Abi Abi K D  and 0Aib Aib K D . The 

right and left modified Craig Bampton transformations  ,Rcb LcbT T  have two parts as 

in equation (9.67). The two parts of the modified Craig Bampton transformations 

 ,R LE E  and  ,R LF F  are modified separately. 
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9.6.1 Modified Craig-Bampton transforms  ,R LE E  in the 

full size of the substructure 

The matrices 2_ 2_,R LG G  and 2_ 2_,R LF F  in equations (9.94) and (9.95) have 

dimensions (n×n), and are formed as 

 2_ 2_
2 2

0 0 0 0
   ,   

0 0
R L

R L

   
    
   

G G
G G

 (9.117) 

 2_ 2_
2 2

0 0
   ,   

0 0
R L

R L

   
    
   

I I
F F

F F
 (9.118) 

The right and left transformations can be written as 

 
2 2 2 2 2

1

2 2 2 2 2

1 1

2 2

1 1

2 2

R ib R R ii R ib R ii

R

R ib R ii R ib R R ii



 
 
 
    
 

  
 
 
 
 
 

I 0 0 0

G D F G D G M G M

T

0 0 I 0

G K G K G D F G D

 (9.119) 

 
2 2 2 2 2

1

2 2 2 2 2

1 1

2 2

1 1

2 2

T T T T
L bi L L ii L bi L ii

L

T T T T
L bi L ii L bi L L ii



 
 
 
    
 

  
 
 
 
 
 

I 0 0 0

G D F G D G M G M

T

0 0 I 0

G K G K G D F G D

 (9.120) 

The modified right and left Craig Bampton transformations ,R LE E  in the full size of 

the substructure are defined as 

    
1 1

1 1
   ,   R R L L

 
 

 E T E T  (9.121) 
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9.6.2 Modified Craig-Bampton transforms ,R LF F  in the full 

size of the substructure 

The extended Craig Bampton transformations ,R LF F  in equations (9.103) and (9.104) 

are rearranged to form 

 1

0 0 0

0

0 0 0

0

FR FR
R

FR FR

 
 
 
 
 
 

I

W I X
U

I

Y Z I

 (9.122) 

 1

0 0 0

0

0 0 0

0

FL FL
L

FL FL

 
 
 
 
 
 

I

W I X
U

I

Y Z I

 (9.123) 

The right and left modified Craig Bampton transformations ,R LF F  in the full size of 

the substructure are defined as 

 1

0 0 0

0
=

0 0 0

0

FR FR
R R

FR FR

 
 
 
 
 
 

I

W I X
F U

I

Y Z I

 (9.124) 

 1

0 0 0

0

0 0 0

0

FL FL
L L

FL FL

 
 
  
 
 
 

I

W I X
F U

I

Y Z I

 (9.125) 

The Craig Bampton transformations  ,Rcb LcbT T  for general damped systems are 

modified to preserve LAMs matrices in new forms as equations (9.114), (9.115) and 

(9.116).  The modified Craig Bampton transformations  ,Rcb LcbT T  are defined from 

multiplication of equation (9.122) by inverse of equation (9.119) and equation 

(9.123) by inverse of equation (9.120). 

    ,   Rcb R R Lcb L L T F E T F E  (9.126) 



____________________________________________________________________ 

 

309 

 

 

1

2 2 2 2 2

2 2 2 2 2

0 0 0 1 1

0 2 2

0 0 0

0 1 1

2 2

R ib R R ii R ib R ii
FR FR

Rcb

FR FR
R ib R ii R ib R R ii


 
  
     
     
  
     

I 0 0 0

I
G D F G D G M G M

W I X
T

I 0 0 I 0

Y Z I
G K G K G D F G D

(9.127) 

 

1

2 2 2 2 2

2 2 2 2 2

0 0 0 1 1

0 2 2

0 0 0

0 1 1

2 2

T T T T
L bi L L ii L bi L ii

FL FL
Lcb

T T T TFL FL
L bi L ii L bi L L ii


 
  
     
     
  
     

I 0 0 0

I
G D F G D G M G M

W I X
T

I 0 0 I 0

Y Z I
G K G K G D F G D

(9.128) 

 

9.7 Example 

In this example, we consider a second order general linear damping subsystem. The 

motivation of this example is to calculate the Craig-Bampton transformations in state 

space form which are used as model reduction transformations. The subsystem 

matrices are non-symmetric with four degrees of freedom. 

 

121 4715 1868 1662 15 40 24 36

3915 3289 367 2532 22 18 39 32
,             ,

2623 3640 1606 4941 41 7 12 25

1553 2552 4904 4056 26 31 36 40

104 479 50 3

360 101 143 425

339 138 255 267

38

s s

s

      
   

         
       
   

     

 

 


  

K D

M

3 269 32 455

 
 
 
 
 

     

The system matrices are expressed in state space form. Based on the division of the 

boundary coordinates and interior coordinates, the LAMs matrices are arranged as 

equations (9.42), (9.43), and (9.44). The number of boundary coordinates is chosen 

as two degrees of freedom. The right and left diagonalising SPEs for the interior 

eigenvalue problem are calculated 
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0.0388 0.0378 0.0136 0.0137 0.0694 0.0693 0.0076 0.0083

0.0296 0.0295 0.0044 0.0041 0.0010 0.0020 0.0103 0.0095
   ,   

0.1587 0.1665 0.0138 0.0135 0.0892 0.1007 0.0

0.0509 0.0494 0.0127 0.0143

Ri Li

      
 

     
  
 
 

 

T T
398 0.0383

0.1204 0.1152 0.0409 0.0375

 
 
 
 
 

   

The first part of Craig-Bampton transformations  ,R LF F  in state space are calculated 

using equation (9.55) based on boundary coordinates. 

 

0 0 0 0 0 01 1

0 0 0 0 0 01 1

0 0 0 0 0 01 1

0 0 0 0 0 01 1
,     

0.1674 1.5451 0 0 0.8877 0.7849 0 0

0.5853 1.2389 0 0 0.6716 0.3319 0 0

0 0 0.4173 1.0806 0 0 0.1819 0.6315

0 0 0.8711 0.5152 0 0 0.1133 0.5635

R L

  
  
  
  
  
   
  

  
   
 

   
     

F F










 
 
 
   

The second part of Craig-Bampton transformations  ,R LE E  in state space are 

calculated from equation (9.70) in terms of diagonalising SPEs for the interior 

coordinates 

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
   ,    

0.0388 0.0378 0.0136 0.0137 0.0694 0.0693 0.0076 0.00

0.0296 0.0295 0.0044 0.0041

0.1587 0.1665 0.0138 0.0135

0.0509 0.0494 0.0127 0.0143

R L

 
 
 
 
 
  
 

     
 
   
 

 
  

E E
83

0.0010 0.0020 0.0103 0.0095

0.0892 0.1007 0.0398 0.0383

0.1204 0.1152 0.0409 0.0375

 
 
 
 
 
 
 
 
   
 

 
    

The two parts of Craig-Bampton transformations  , , ,R L R LF F E E  satisfy equations 

(9.64), (9.65) and (9.66). The right and left Craig-Bampton transformations 

 ,Rcb LcbT T  are calculated from equation (9.67) which satisfy equations (9.75), (9.76) 

and (9.77).  
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0 0 1164.4 230.2 0 0 0 0

0 0 5458.3 6992.9 0 0 0 0

1164.4 230.2 17.6 0.2 123.6 133.1 27.2 26.0

5458.3 6992.9 10.8 79.4 7.5 13.7 10.5 12.8

0 0 514.1 322.3 0 0 11.7 0

0 0 518.8 313.1 0 0 0 12.2

0 0 133.5 20.4 11.7 0 3.9 0

0 0 128.4 22.4 0 12.

N





  

     






  

 

M

2 0 3.7

 
 
 
 
 
 
 
 
 
 
 
    

 

1164.4 0230.2 0 0 0 0 0 0

5458.3 6992.9 0 0 0 0 0 0

0 0 122.3 534.6 0 0 0 0

0 0 789.9 165.4 0 0 0 0

0 0 0 0 11.7 0 0 0

0 0 0 0 0 12.2 0 0

0 0 0 0 0 0 01

0 0 0 0 0 0 0 1

N

 
 

 
  
 

 
 
 
 
 

 
  

D

 

 

24.5 34.1 122.3 534.6 13.8 14.9968 10.6 10.9

34.9 96.6 789.9 165.4 13.0 8.6 0.6 1.1

122.2 534.6 0 0 0 0 0 0

789.9 165.4 0 0 0 0 0 0

36.8 127.2 0 0 3.9 0 01

31.4 118.8 0 0 0 3.7 0 1

44.01 27.6 0 0 0 0 01

42.6 25.7 0 0 0 0 01

N

    


  
  




 


   


 
   

K











  

The reduce system matrices  , ,cb cb cbM D K  are calculated from equations (9.81), 

(9.82) and (9.83). 

 

0 0 1164.4 230.2 1164.4 230.2 0 0

0 0 5458.3 6992.9 5458.3 6992.9 0 0
    ,   

1164.4 230.2 17.6 0.2 0 0 122.3 534.6

5458.3 6992.9 10.8 79.4 0 0 789.9 165.4

24.5 34.1 122.3 534.6

34.9 96.6

cb cb

cb

    
   

     
      
   

     

  



M D

K
789.9 165.4

122.3 534.6 0 0

789.9 165.4 0 0

 
 


 
  
 

   

The Craig Bampton transformations preserve the substructure system matrices in the 

same format as LAMs matrices structure. 
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9.8 Conclusion 

This chapter has investigated Craig Bampton transforms  ,Rcb LcbT T  for undamped 

systems. The ideas for undamped systems have been extended to the generally 

damped systems in terms of diagonalising SPEs. New expressions of Craig Bampton 

transformations are presented. These transformations have been developed to 

preserve the substructure matrices in the same format as LAMs matrices structure. 

The developed Craig Bampton transformations have been used as model reduction 

transformations. The two parts of Craig Bampton transformations are extended to the 

full size of the substructure. The first part of the Craig Bampton transformations is 

extracted from a logical extension of Garvey et al. [43] to the full size of the 

substructure. The second part of the Craig Bampton transformations represents 

diagonalising SPEs in the full size of the substructure which diagonalise the interior 

coordinates. 
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CHAPTER  10. Conclusions and further work 

10.1 Conclusions 

The ambition of this study was divided into three aspects. (1) Developing and 

generalising modal correlation methods for undamped systems and extending these 

ideas to general damped systems. (2) Comparing the newly developed methods with 

alternative methods. (3) Applying these methods to model updating for general 

damped systems. 

 

This thesis starts with modelling an aircraft (GARTEUR-like) structure with a 3D 

finite element model. Modal parameters (the natural frequencies and mode shapes) 

are calculated using the system models. These procedures are described in Chapter 3. 

A general 3D finite element code has been developed in MATLABTM for this 

purpose. 

 

Experimental modal analysis was carried out on a physical implementation of the 

GARTEUR structure. This was used to extract modal data which were identified 

from a single column of frequency response. The modal data represent natural 

frequency and the modal damping ratio for each single mode of the vibrating system. 

The modal analysis procedures are described in Chapter 4. 

 

This thesis has shown how existing methods for eigenvalue and eigenvalue 

derivatives for undamped systems can be extended to the concept of structure-

preserving equivalences to yield general methods for calculating the derivatives of 
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both the diagonalised system and the diagonalising transformations. This approach 

resolves the quandary where eigenvalue and eigenvector derivatives become 

undefined when a pair of complex eigenvalues turns into a pair of real eigenvalues or 

vice-versa. This has also resolved the problem encountered when any one or more of 

the system matrices is singular. These methods are described in Chapter 5, are 

needed for model updating. 

 

New modal correlation methods have been developed and implemented initially for 

undamped systems in all cases. These ideas have been subsequently extended for 

general damped linear systems. Cross orthogonality measures and mutual 

orthogonality measures were investigated. These measures were defined in terms of 

real matrices - the diagonalising structure preserving equivalences (DSPEs). 

 

Cross orthogonality measures require the right and left modal information for the 

physical system  , ,o o oK D M  and analytical system , ,a a aK D M . The modes of the 

analytical system must be correctly matched to the modes of the measured system. 

Mutual orthogonality measures do not require any modal information from the 

analytical system , ,a a aK D M . This matching of modes is unnecessary. However, for 

systems having non-symmetric matrices, both right and left modes are required for 

the mutual orthogonality measures. 

 

The presented methods have been well developed for ill-conditioned systems such 

that they work for all occasions and not only for cases where mass matrix is non-

singular. A measure of the residuals was introduced which did not demand 

invertibility of diagonalised system matrices. This procedure is introduced in Chapter 
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7. Möbius/spectral transformation formulae were used to address a problem where 

the mass matrix is singular. The Möbius transformation is decomposed into four 

elementary spectral transformations. These spectral transformations are used to find a 

relationship between the diagonalising SPEs for the new system matrices and the 

original system matrices. Two new transformations are investigated called system 

spectral transformation SSTNQ  and diagonalising spectral/similarity transformation 

DSTOQ . The transformation SSTNQ  maps between two systems having the same short 

eigenvectors and their diagonalised system matrices. The transformation DSTOQ  maps 

between two SPEs having identical eigenvalues. This procedure is described in 

Chapter 6. 

 

The newly developed modal correlation methods have been used for model updating. 

The presented model updating methods in this thesis have been developed for 

undamped systems and extended to general damped systems. Alternative methods 

were compared with the developed modal correlation methods for model updating. 

The model updating methods have been implemented based on eigenvectors and 

SPEs and both cross-orthogonality measures and mutual-orthogonality measures. In 

both cross-orthogonality and mutual-orthogonality measures cases, these measures 

were defined in terms of real matrices - the diagonalising structure preserving 

equivalences (DSPEs). 

 

The model updating methods based on cross orthogonality measures require the right 

and left modal information for the physical system  , ,o o oK D M  and analytical 
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system , ,a a aK D M . The modes of the measured system must be correctly matched to 

the modes of the true system. 

 

The model updating method based on the mutual orthogonality measures exhibits 

monotonic convergence from every starting position. The ball of convergence has an 

infinite radius. This contrasts starkly with updating procedures based on comparing 

eigenvectors which exhibit a finite ball of convergence. 

 

Craig Bampton transformations were presented for undamped systems. The 

developed Craig Bampton transformations have been extended for damped second 

order systems in state space. New expressions of Craig Bampton transformations 

have been presented in SPEs forms. The two parts of the Craig Bampton 

transformations were extended in the full sizes of the substructure. The extended 

Craig Bampton transformations have been modified to format each block of 

transformed substructure matrices as LAMs matrices format. These procedures are 

described in Chapter 9. 

 

10.2 Further work 

The presented study presents some interesting possibilities for further investigations. 

Some recommendations for further work are presented here 
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10.2.1 Applications on real aircraft structures 

The developed methods in this study have been applied on deliberately chosen 

examples. These methods can be applied to real aircraft structure with real structural 

damage. These methods can also be implemented as a part of airworthiness 

maintenance schedule programs for large complex aircraft structures. 

 

10.2.2 Excitation and response devices 

The modal testing carried out in this project has used contact excitation achieved 

with an impact hammer and response measured with a piezoelectric accelerometer. 

The type of analysis to be performed and accuracy requirements of test information 

influence the choice of excitation signal. Non contact devices of input and output 

signals can be applied instead of the contact devices. Thermal excitation is a non 

contact exciter which can be used to excite aircraft models. 

 

 



____________________________________________________________________ 

 

318 

 

APPENDICES 

Appendix A. Proof of diagonalising SPEs  ,R LT T  

The Diagonalising SPEs matrices  ,L RT T  diagonalise LAMs matrices  , ,K D M  for 

the system  , ,K D M  such that 

 
T

L L R R D

L L R R D D

      
      

      

W X W X 0 K0 K

Y Z Y Z K DK D
 (A.1) 

 
T

L L R R D

L L R R D

      
      

      

W X W X K 0K 0

Y Z Y Z 0 M0 M
 (A.2) 

 
T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z M 0M 0
 (A.3) 

where  , ,D D DK D M  are block diagonal matrices. The new system matrices
 

 , ,D D DK D M  represent the LAMs for the system whose coefficient matrices are the 

diagonal matrices  , ,D D DK D M . These transformations  ,L RT T  can be expressed as 

 
 

1
2

1
2

L L D L D
L

L D L L D

  
  

  

F G D G M
T

G K F G D
 (A.4) 

 
1
2

1
2

R R D R D
R

R D L R D

  
  

  

F G D G M
T

G K F G D
 (A.5) 

where  , , ,L R L RF F G G  are real-valued ( )n n  matrices satisfying the constraint: 

 T T
R L R L F G G F 0  (A.6) 

 

It is possible to prove equations (2.79) and (2.80) by inverting equation (2.73) 

 
1 11

1 1 11 1 1

T

R R L L D

R R L L D D D D

  

    

      
      

         

W X W X 0 M0 M

Y Z Y Z M M D MM M DM
 (A.7) 
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 and pre-multiplying equation (2.72) by equation (A.7) to yield 

 
1 11 1

R R R R

R R R R D D D D
  

      
       

           

0 I0 I W X W X

Y Z Y Z M K M DM K M D
 (A.8) 

There are four block equations with four unknowns. Four  n n  square matrices 

 , , ,R R R RW X Y Z  can be calculated from equation (A.8). Using the top two block 

equations in equation (A.8) 

 1
R R D D

 Y X M K  (A.9) 

 1
R R R D D

 Z W X M D  (A.10) 

Provided that DM  is an invertible matrix and that for some RG  

 R R D X G M  (A.11) 

Then equations (A.9) and (A.10) become 

 R R DY G K  (A.12) 

 R R R D Z W G D  (A.13) 

For some RF  matrix let 

 2R R R Z W F  (A.14) 

Using equations (A.13) and (A.14) yields 

 1
2R R R D W F G D  (A.15) 

 1
2R R R D Z F G D  (A.16) 

This proves the form of equation (2.79). 

 

Similarly, the left transformation can be calculated by post-multiplying equation 

(2.72) by equation  (A.7) 

 
11

11

T T

L L D D L L

L L L LD D





      
      

         

W X 0 K M W X0 KM

Y Z Y ZI D MI DM
 (A.17) 
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Taking the transpose of equation (A.17) 

 L L L L

T T T TT T T T
L L L L D D D D

  

      
       

           

0 I0 I W X W X

Y Z Y Z M K M DM K M D
 (A.18) 

From the two block equations of (A.18) 

 T T
L L D D

 Y X M K  (A.19) 

 T T
L L L D D

 Z W X M D  (A.20) 

Again suppose that for some LG  

 T
L L D X G M  (A.21) 

Matrices  , ,D D DK D M  are diagonal;    ,      ,   T T T
D D D D D D  M M D D K K . Equations 

(A.19) and (A.20) can be written as 

 L L DY G K  (A.22) 

 L L L D Z W G D  (A.23) 

For some LF  matrix let 

 2L L L Z W F  (A.24) 

Using equations (A.23) and (A.24) yields 

 1
2L L L D W F G D  (A.25) 

 1
2L L L D Z F G D  (A.26) 
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Appendix B. Binomial theorem 

The binomial theorem formula for negative integer can be written as 

 
 

 

    

0 0

2 31 1
2! 3!

1
!

            1 1 1 2 ....

r k kk

k k

rr
x x x

k k

rx r r x r r r x

 


 

 
   

 

       

 
 (B.1) 

where r  is any real number and !k  is a factorial. The pochhammer symbol  
k

r  is 

written as 

 
     1 ..... 1

! !

k
r r r r kr

k k k

   
  

 
 (B.2) 

The model reduction transformation matrix is written in form 

    
1

2 2

d ee ee er er 


  t K M K M  (B.3) 

Rearrange equation (B.3) and using the binomial series, the term  
1

2

ee ee


K M  is 

expanded to  1 2 11ee ee ee K K M  in which  

    
1 1

2 1 2 11ee ee ee ee ee 
 

   K M K M K  (B.4) 

and 

  
1

2 1 2 1 2 1 21 1 ( )ee ee ee ee ee ee  


     M K M K M K  (B.5) 

The terms associated with 
4 are neglected compared with terms associated with 2 . 

Substitute equations (B.4) and (B.5) into equation (B.3), the transformation matrix 

dt  can be written as 

   1 2 1

d ee er ee ee er er    t K K M K K M  (B.6) 
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Appendix C. Proof of two equivalent statements 

For any three scalars  , ,k d m  the following two statements are equivalent 

a) 
0

0

i

i

k d m
          

            
         

v-D -M K 0 0 K

w-M 0 0 -M K D
 (C.1) 

where  ,i iv w  are some (n×2) matrices, with i

i

 
 
 

v

w
 having rank 2. 

b)  2 0            1,2i i i for i    K D M v  (C.2) 

where  1 2,v v  are some non-zero n-entries vectors and  1 2,   satisfy the following 

equation 

  2 0i ik d m     (C.3) 

This appendix shows a proof of these statements which are equivalent. Rearrange 

equation (C.1) which can be written as 

 
   

   

0

0

i

i

vd k m k

wm k m d

       
     

     

K D K M

K M D M
 (C.4) 

we get these two equations 

     0i id k m k   K D v K M w  (C.5) 

     0i im k m d   K M v D M w  (C.6) 

Multiplying equation (C.5) by /i k  and equation (C.6) by 1/ m  yields 

 0i i i i i i

d m

k k
   
   

      
   

K D v K M w  (C.7) 

 0i i

k d

m m

   
      

   
K M v D M w  (C.8) 

Taking a linear combination of equations (C.7), (C.8) and using equation (C.3) yields 
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 2

1 0

1
0

1 1
0

i i i i i i i i i i

i i i i i i i i i

i

i i i i i

i i

d k m d

k m k m

m k m k

k m k m

m k m k

k m k m

   

  


  
 

   
          

   

      

   
         

   

Kv Dv Mv Kw Dw Mw

Kv Dv Mv Kw Dw Mw

K D M v K D M w

 (C.9) 

If the system matrices  , ,  K D M are non-singular then equation (C.9) becomes 

 0             i i i i i i     Av Aw v w  (C.10) 

where 

1
: i

i

m k

k m




 
   
 

A K D M

 

 

Substituting equation (C.10) into equations (C.5), (C.6) and multiplying by  /i m , 

 1/ m  respectively  and using equation (C.3) yields 

 

 

2 2 2

2 2

0

0

i i i i i i i i i

i i i i i i

d k k d k k

m m m m m m

k k k

m m m

     

   

      
               

      

 
      

 

K D v K M v K D M v

K D M v K D M v

 (C.11) 

 

 2

0

0

i i i

i i i i i i

k d

m m

k d

m m



   

   
      

   

  
        

  

K M v D M v

K D M v K D M v

 (C.12) 

Equations (C.11) and (C.12) give equation (C.2). 
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Appendix D. Calculating eigenvalue, eigenvector 

and thier derivatives from diagonalised 

system matrices and DSPEs 

Considering a general non symmetric damped system, the governing equation of 

motion of the second order system is 

   Mx Dx Kx f  (D.1) 

where  , ,K D M  are the system matrices which satisfy the following equations 

    2 2=0    ,    0T
i i Ri Li i i       M D K M D K   (D.2) 

The  ,Ri Li   are the i
th

 right and left eigenvectors, where  1,2,....,i n  

 

In state space, the right and left modal matrices  ,R LΦ Φ  are (2n×2n). These 

diagonalise the Lancaster augmented matrices (LAMs)  , ,K D M . The eigenvalues Λ  

might be complex or real or mixed (real and complex). If all eigenvalues are complex 

 * * *
1 2 1 2, ,...., , , ,...., ,n ndiag      Λ  and assuming that all eigenvalues are “semi 

simple” 

 
* *

* * ** * * *

T

L L R R

L L R R

        
         
              

ΛΨ 0 Ω 0Φ Φ Φ Φ0 K

K D 0 Λ Ψ 0 ΩΛΦ Λ Φ ΛΦ Λ Φ
 (D.3) 

 
* *

** * * *

T

L L R R

L L R R

      
      

           

Ψ 0Φ Φ Φ ΦK 0

0 M 0 ΨΛΦ Λ Φ ΛΦ Λ Φ
 (D.4) 

 
* *

* * ** * * *

T

L L R R

L L R R

         
         

               

Ψ Λ 0 Γ 0Φ Φ Φ ΦD M

M 0 0 Ψ Λ 0 ΓΛΦ Λ Φ ΛΦ Λ Φ
 (D.5) 

Equations (5.73), (5.74) and (5.75) can be rewritten as 

 T
L R Φ MΦ Ω  (D.6) 
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 T
L R Φ DΦ Ψ  (D.7) 

 T
L R Φ KΦ Γ  (D.8) 

where  , ,Ω Ψ Γ  are diagonal matrices  1 2, ,...., ndiag   Ω ,  1 2, ,...., ndiag   Ψ and 

 1 2, ,...., ndiag   Γ . If the left and right matrices of long eigenvectors  ,L RΦ Φ  are 

normalised using equation (5.74) and setting Ψ I , the values of  , ,Ω Ψ Γ  are still 

diagonal and can be expressed as  1, , 
Λ I Λ  respectively. 

 

We will select two columns of eigenvectors at a time: the i
th

 column and the complex 

conjugate of the i
th

 column. Equations (5.73), (5.74) and (5.75) can be written as 

 
* *

* * ** * * *

T

i i iLi Li Ri Ri

i i ii Li i Li i Ri i Ri

 

     

        
         
              

0 00 K

K D 0 0

   

   
 (D.9) 

 
* *

** * * *

T

iLi Li Ri Ri

ii Li i Li i Ri i Ri



   

      
      

           

0K 0

0 M 0

   

   
 (D.10) 

 
* *

* * ** * * *

T

i i iLi Li Ri Ri

i i ii Li i Li i Ri i Ri

  

     

         
         

               

0 0D M

M 0 0 0

   

   
 (D.11) 

More concisely  

 T
Li Ri iM   (D.12) 

 T
Li Ri iD   (D.13) 

 T
Li Ri iK   (D.14) 

It is possible to find real-valued left and right diagonalising transformations  ,L RT T  

which transform the system matrices into block diagonal matrices having an identical 

spectrum 
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T

L L R R D

L L R R D D

      
      

      

W X W X 0 K0 K

Y Z Y Z K DK D
 (D.15) 

 
T

L L R R D

L L R R D

      
      

      

W X W X K 0K 0

Y Z Y Z 0 M0 M
 (D.16) 

 
T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z M 0M 0
 (D.17) 

Equations (5.86), (5.87) and (5.88) can be rewritten as 

 T
L R DT MT M  (D.18) 

 T
L R DT DT D  (D.19) 

 T
L R DT KT K  (D.20) 

where  , ,D D DK D M  are block diagonal matrices and  , ,D D DK D M  are diagonal 

matrices in the form 

 

 

 

 

1 2

1 2

1 2

, ,....,

, ,....,

, ,....,

D n

D n

D n

diag k k k

diag d d d

diag m m m







K

D

M

 (D.21) 

If the left and right diagonalising transformations  ,L RT T  are in a particular way 

normalised, then the equation (2.77) can be written as 

 

 

 

1 2

1 1 2 2

, ,....,

2 ,2 ,...., 2

D n

D n n

D

diag

diag

identity

  

     







K

D

M

 (D.22) 

The left and right diagonalising transformations  ,Li RiT T  satisfy the following 

equations 

    =0   ,    0
T

i i i Ri Li i i im d k m d k    M D K T T M D K  (D.23) 

Select columns i and (n+i) from the diagonalising transformations at a time. 

Equations (5.86), (5.87) and (5.88) can be written as 
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T

Li Li Ri Ri i

Li Li Ri Ri i i

w x w x k

y z y z k d

      
      

      

00 K

K D
 (D.24) 

 
0

0

T

Li Li Ri Ri i

Li Li Ri Ri i

w x w x k

y z y z m

      
      

      

K 0

0 M
 (D.25) 

 
0

T

Li Li Ri Ri i i

Li Li Ri Ri i

w x w x d m

y z y z m

        
      

      

D M

M 0
 (D.26) 

We can simplify equations (5.106), (5.107) and (5.108) as 

 T
Li Ri imT MT  (D.27) 

 T
Li Ri idT DT  (D.28) 

 T
Li Ri ikT KT  (D.29) 

 

D.1 Calculating pairs of eigenvalues and their derivatives 

from the diagonalised system matrices and its derivatives 

The i
th

 eigenvalue  1 2,i i   can be calculated from the i
th

 diagonalised system 

 , ,i i ik d m  using 

  2 0i i i i im d k     (D.30) 

It is possible to find the roots of  i  from equation (D.30) and through 

 
2

1,2

4

2

i i i i
i

i

d d k m

m


  
  (D.31) 

Differentiating equation (D.30) with respect to θ  gives an expression for the 

eigenvalue derivatives 

 
 

 

2
1,2 1,21,2

1,2

1,22

i i i i ii
i

i i i

k d m

d m

 




  
 

 θ
 (D.32) 
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D.2 Calculating two columns of eigenvectors and their 

derivatives from DSPEs and its derivatives 

Comparing equations (5.79), (5.80) and (5.81) with equations (5.106), (5.107) and 

(5.108) yields 

 11 12 11 12

* *
21 22 21 22

T
i i i

i ii i

ka a a a

k da a a a



 

      
      

       

0 0

0
 (D.33) 

 11 12 11 12

*
21 22 21 22

0

0

T
i i

ii

ka a a a

ma a a a





      
      

       

0

0
 (D.34) 

 11 12 11 12

* *
21 22 21 220

T
i i i i

ii i

d ma a a a

ma a a a

 

 

       
      

       

0

0
 (D.35) 

More concisely 

 T T
i i Li i Ri im  a T T a  (D.36) 

 T T
i i Li i Ri id  a T T a  (D.37) 

 T T
i i Li i Ri ik  a T T a  (D.38) 

Equation (5.157), (5.158) and (5.159) show that the  2 2  matrix ia is the 

eigenvector matrix  of  , ,i i ik d m . Scaling the matrix ia  as 

    / ([ 1,1 1,2 ])i i i idiaga a a a  (D.39) 

The matrix ia  can be written as 

 
*

1 1
i

i i 

 
  
  

a  (D.40) 

The left and right columns i and (n+i) of the eigenvector of the original system can 

be calculated from the left and right columns i and (n+i) of the diagonalising 

transformations as 
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*

** *

1 1
Ri Ri Ri Ri

Ri Ri i ii Ri i Ri

w x

y z   

    
    

       

 

 
 (D.41) 

 
*

** *

1 1
Li Li Li Li

Li Li i ii Li i Li

w x

y z   

    
    

       

 

 
 (D.42) 

More concisely  

 Ri Ri i T a  (D.43) 

 Li Li i T a  (D.44) 

Differentiating equations (5.164) and (5.165) with respect to θ  gives the expressions 

for the eigenvector derivatives as 

 
Ri

Ri Ri i Ri i


  


T a T a

θ


  (D.45) 

 
Li

Li Li i Li i


  


T a T a

θ


  (D.46) 

Where the derivative of ia  can be written as 

 
*

0 0
i

i i 

 
  
  

a  (D.47) 
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Appendix E. Extracting the measured DSPEs using 

Modal filters based on Möbius 

transformation 

The right and left diagonalising SPEs  ,Ro LoT T  for the original system  , ,o o oM D K  

can be extracted from the diagonalising SPEs  ,RN LNT T  for the new system 

 , ,N N NM D K  using the spectral transformations which are discussed in chapter 6. 

 
T

L L R R D

L L R R D D

      
      

      

W X W X 0 K0 K

Y Z Y Z K DK D
 (E.1) 

 
T

L L R R D

L L R R D

      
      

      

W X W X K 0K 0

Y Z Y Z 0 M0 M
 (E.2) 

 
T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z M 0M 0
 (E.3) 

The direct relation of Möbius transformation is  

 
p q

r s










 (E.4) 

The inverse of Möbius transformations in equation (E.4) is 

 
s q

r p








 

 (E.5) 

The diagonalised system matrices are calculated 

  
Do DN

Do SSTO n DN

Do DN

   
   

    
      

K K

D Q I D

M M

 (E.6) 

Houlston [145] presents the right and left polynomial of SPEs based modal filters. 

The SPEs are used to transform the original LAMs matrices to the block diagonal 

LAMs matrices. Then, SPEs modal filters can be written as 
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       T
N N RN LN DN DN   

 

   
     

   

I I
I I D Κ T I I T D Κ

I I
 (E.7) 

       T
N N RN LN DN DN   

 

   
     

   

I I
I I M D T I I T M D

I I
 (E.8) 

where 

 
1

1 LN LN SN SN
LN

LN LN SN SN



    
    
   

W X W X
T

Y Z Y Z
 (E.9) 

For a second order system having system matrices  , ,N N NM D K
, it is possible to 

find first order filters  RN i RNW X
 and  SN i SNW X

 or  RN i RNY Z
 and 

 SN i SNY Z
 which diagonalise the system matrices into diagonal (N × N) matrices 

 , ,DN DN DNM D K
. The diagonalising filters satisfy these equations for all values of   

 

      2 2T

N i N i N RN i RN SN i SN DN i DN i DN           K D M W X W X K D M  (E.10) 

      2 2T

N i N i N RN i RN SN i SN DN i DN i DN           K D M Y Z Y Z K D M  (E.11) 

To choose which of the above equations can be used it depends on the original 

system matrices. In some cases, the original mass matrix is singular then equation 

(E.11) can be chosen to calculate the original system diagonalising transformations. 

 

Substituting equation (6.8) into equation (E.11) and dividing by  qr ps  yields 

       2 2T

o i o i o Ro i Ro So i So Do i Do i Do           K D M Y Z Y Z K D M  (E.12) 

in which 

 
   

   

   ,   

   ,   

Ro RN RN So SN SN

Ro RN RN So SN SN

p q p q

r s r s

   

     

Y Y Z Y Y Z

Z Y Z Z Y Z
 (E.13) 
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The diagonalised system matrices are calculated from equation (E.6). The right 

diagonalising transformation RoT  for the original system can be shown in the form as 

 
   

   

1
2

1
2

 
Ro Ro Do Ro DoRo Ro

Ro
Ro Ro Ro Do Ro Ro Do

   
   
    

F G D G MW X
T

Y Z G K F G D
 (E.14) 

using  ,Ro RoY Z in equation (E.12) to extract the  ,Ro RoG F  and then to calculate 

 ,Ro RoW X  

 1
Ro Ro Do

G Y K  (E.15) 

 1
2Ro Ro Ro Do F Z G D  (E.16) 

The  ,Ro RoW X  can be calculated by substituting  ,Ro RoG F  into the following 

equations 

 1
2Ro Ro Ro Do W F G D  (E.17) 

 Ro Ro Do X G M  (E.18) 

The left diagonalising transformation LoT  can be calculated using (E.1). 

 

1
T

Lo Lo Do o Ro Ro
Lo

Lo Lo Do Do o o Ro Ro

         
           
          

W X 0 K 0 K W X
T

Y Z K D K D Y Z
 (E.19) 

The above approach for a singular mass matrix is summarised into these few steps :- 

1. Transform the eigenvalue problem for the original system into a new system 

using the Mobius transformations equation (6.7) and divide the equation by 

 qr ps . 

2. Find the right and left diagonalising transformations  ,RN LNT T  for the new 

system. 

3. Calculate the diagonalised system matrices  , ,Do Do DoM D K  using equation 

(E.6). 
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4. Extract the original systems right and left diagonalising SPEs  ,Ro LoT T  from 

the new system using SPEs based modal filters equation (E.8) 

 Substitute equation (6.8) into equation (E.11) which transforms the new 

system back into the original system, equation (E.12). 

 Calculate the right diagonalising SPEs RoT . 

- First, extract  ,Ro RoG F  from  ,Ro RoY Z  using equations (E.13), (E.15) and 

(E.16). 

- Second, substitute the values of  ,Ro RoG F  into equations (E.17) and 

(E.18) to calculate  ,Ro RoW X . 

 Calculate the left diagonalising transformation LoT  as in equation (E.19) by 

using equation (E.1). 
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Appendix F. Calculating measured DSPTs using 

homogenous coordinates based on 

Möbius transformation 

Diagonalising SPTs are represented by real-valued (nn) matrices  , , ,L L L LW X Y Z , 

 , , ,R R R RW X Y Z . These transformations  ,L RT T  can usually decouple the 

equations of motion such that the new system matrices  , ,D D DK D M  themselves are 

diagonal.  

 
T

L L R R D

L L R R D D

      
      

      

W X W X 0 K0 K

Y Z Y Z K DK D
 (F.1) 

 
T

L L R R D

L L R R D

      
      

      

W X W X K 0K 0

Y Z Y Z 0 M0 M
 (F.2) 

 
T

L L R R D D

L L R R D

        
      

      

W X W X D MD M

Y Z Y Z M 0M 0
 (F.3) 

The homogenous coordinate expression defines a pair of eigenvalues and the 

associated pair of eigenvectors. For the original system  , ,o o oM D K , the 

homogenous coordinate can be written as 

 

0 0 0 0

0 0 0 0

o o o o Roi Roi

oi oi oi

o o o o Roi Roi

m d k
 

  
 

          
          

         

K K D M w x

K D M M y z
 (F.4) 

where  , ,oi oi oim d k  are the thi  entries of the diagonalised system  , ,Do Do DoM D K  and 

 , , ,Roi Roi Roi Roiw x y z  are the thi  column vectors of the respective block of right 

diagonalising SPE of the original system. For some vectors,  ,Roi Roif g
 

 1
2Roi Roi Roi oid w f g  (F.5) 

 Roi Roi oim x g  (F.6) 
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 Roi Roi oiky g  (F.7) 

 1
2Roi Roi Roi oid z f g  (F.8) 

Note that 

 2 0oi oi oim d k     (F.9) 

Substituting equations (F.5)-(F.8) into equation (F.4) yields four homogenous vector 

equations 

  2 21 1
2 2

0oi o Roi oi oi oi o Roi oi o Roi oi oi o Roi oi o Roid m k d k k d k     K f K g D f D g M g  (F.10) 

 1 1
2 2

0oi o Roi oi oi o Roi oi oi o Roi oi o Roi oi oi o Roim d m k m k k d    K f K g D g M f M g  (F.11) 

 1 1
2 2

0oi o Roi oi oi o Roi oi oi o Roi oi o Roi oi oi o Roim d m k m k k d    K f K g D g M f M g  (F.12) 

  2 21 1
2 2

0oi o Roi oi o Roi oi oi o Roi oi o Roi oi oi oi o Roim m m d d k m d      K g D f D g M f M g  (F.13) 

 

Equations (F.11) and (F.12) are identical. Equations (F.10), (F.11) and (F.13) 

produce (3n × 1)  homogenous equations 

 

 

2 21 1
2 2

1 1
2 2

2 21 1
2 2

0

0 0

0

oi oi oi oi oi oi oi oi

Roi
oi oi oi oi oi oi oi oi n o

Roi

oi oi oi oi oi oi oi oi

d m k d k k d k

m d m k m k k d

m m m d d k m d

    
  

            
     
  

f
I B

g
 (F.14) 

where   represents the Kronecker product and nI  is the (n×n) identity matrix and 

 

0

0

0

0

0

0

o

o

o
o

o

o

o

 
 
 
 

  
 
 
 
  

K

K

D
B

D

M

M

 (F.15) 

Applying the Mobius transformation 

 
p q

r s










 (F.16) 
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to obtain a new second order system  , ,N N NK D M  having the same short 

eigenvectors as the original system and eigenvalues related by (F.16). Note that 

  
o N

o SSTO n N

o N

   
   

    
      

K K

D Q I D

M M

 (F.17) 

  
N o

N SSTN n o

N o

   
   

    
      

K K

D Q I D

M M

 (F.18) 

The diagonalised system matrices for the system  , ,o o oM D K  are 

  
Do DN

Do SSTO n DN

Do DN

   
   

    
      

K K

D Q I D

M M

 (F.19) 

where 1
SSTN SSTO

Q Q  

 
 

 

2 2

2 2

1
2 2SSTN

s qs q

rs ps qr pq
qr ps

r rp p

 
 

  
  

 

Q  (F.20) 

Substituting equation (F.17) into equation (F.14), yields 

   2 0
Roi

o n SSTO n N
Roi

 
   

 

f
A I Q I B

g
 (F.21) 

where 

 

 

 

2 21 1
2 2

1 1
2 2

2 21 1
2 2

0

0

0

oi oi oi oi oi oi oi oi

o oi oi oi oi oi oi oi oi

oi oi oi oi oi oi oi oi

d m k d k k d k

m d m k m k k d

m m m d d k m d

   
 
    
 
   
 

A

 (F.22) 

 

0

0

0

0

0

0

N

N

N
N

N

N

N

 
 
 
 

  
 
 
 
  

K

K

D
B

D

M

M

 (F.23) 
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The homogenous coordinate definition for the eigenvalues for the new system 

 , ,N N NM D K  can be written as 

 

0 0 0 0

0 0 0 0

N N N N RNi RNi

Ni Ni Ni

N N N N RNi RNi

m d k
 

  
 

          
          

         

K K D M w x

K D M M y z
 (F.24) 

  2 0Ni Ni Nim d k     (F.25) 

and there are vectors  ,RNi RNif g  such that 

 1
2RNi RNi RNi Nid w f g  (F.26) 

 RNi RNi Nim x g  (F.27) 

 RNi RNi Niky g  (F.28) 

 1
2RNi RNi RNi Nid z f g  (F.29) 

Equation (F.24) produces a set of equations in the same form as equation (F.14) 

 

 

2 21 1
2 2

1 1
2 2

2 21 1
2 2

0

0 0

0

Ni Ni Ni Ni Ni Ni Ni Ni

RNi
Ni Ni Ni Ni Ni Ni Ni Ni n N

RNi

Ni Ni Ni Ni Ni Ni Ni Ni

d m k d k k d k

m d m k m k k d

m m m d d k m d

    
  

            
     
  

f
I B

g
 (F.30) 

Equation (F.30) can be written as 

   0
RNi

N n N
RNi

 
  

 

f
A I B

g
 (F.31) 

The subspace spanned by  ,Roi Roif g
 
in equation (F.21) is the same as that spanned by 

 ,RNi RNif g  in equation (F.31). Then, vectors  ,Roi Roif g  can be written as a linear 

combination with some unknown scalars  , , ,ff fg gf gg    such that 

 
ff fgRoi RNi

n
Roi RNigf gg

 

 

     
             

f f
I

g g
 (F.32) 

Substituting equation (F.32) into equation (F.21) gives 
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   2 0
RNi

o n o n N
RNi

 
   

 

f
A I Q I B α

g
 (F.33) 

where 
ff fg

n
gf gg

 

 

  
   
    

α I  and has dimensions (2n×2n). The equation (F.33) can be 

rewritten as 

   2 0
RNi

o n o n N
RNi

 
   

 

f
A I Q I δB

g
 (F.34) 

where δ  has dimensions (6n×6n) 

 

 
 


 
  

α 0 0

δ 0 α 0

0 0 α

 (F.35) 

Define  

   2o n SSTO n  X A I Q I δ  (F.36) 

  N n Y A I  (F.37) 

Comparing equation (F.34) with equation (F.31) it is clear that X  and Y  are 

equivalent. This is also to say there exists some invertible Z  for which 

 X ZY  (F.38) 

Denote by 
Y  the right pseudo inverse of Y ,  pinv Y Y . Then evidently 

 Z XY  (F.39) 

in which Z  is a (3n×3n) invariable matrix. X  and Z have each four components 

(3n×6n) such that 

 ff ff fg fg gf gf gg gg      X X X X X  (F.40) 

and similarly 

 ff ff fg fg gf gf gg gg      Z Z Z Z Z
 (F.41) 
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The partitions  , , ,ff fg gf ggX X X X  and  , , ,ff fg gf ggZ Z Z Z  can be calculated in turn 

by setting the four unknown scalars  , , ,ff fg gf gg     to unity one at a time in 

equations (F.36) and (F.39), respectively. 

 

Set back Z  into equation (F.38) which is a function of  , , ,ff fg gf gg    . Then, the 

four unknown scalars  , , ,ff fg gf gg     are calculated from equations (F.40) and 

(F.38) such that 

 0

ff

fg

gf

gg









 
 
 

 
 
 
 

W  (F.42) 

where W  has a dimension (18N
2 

× 4) and  

       ff ff fg fg gf gf gg ggvec vec vec vec        
 

W X Z Y X Z Y X Z Y X Z Y  (F.43) 

Equation (F.42) can be solved using either the singular value decomposition of W  

 svd W  or null of W   null W . Substituting the values of  , , ,ff fg gf gg     into 

equation (F.32). This approach obtains the i
th

 column of the right diagonalising SPE 

for the original system. 

 

The left diagonalising transformation 0LT  can be calculated using equation (7.15). 

 

1

0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

T

L L D R R

L

L L D D R R

         
           
          

W X 0 K 0 K W X
T

Y Z K D K D Y Z
 (F.44) 

 

The above approach for a singular mass matrix can be simplified into steps:- 
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1. Transform the eigenvalue problem for the original system into a new system 

using Mobius transformations, equation (F.16) and divide the equation by 

 qr ps . 

2. Find the right and left diagonalising SPEs  ,RN LNT T  for the new system. 

3. Calculate the diagonalised system matrices  , ,Do Do DoM D K  using equation 

(F.19). 

4. Extract the original system right and left diagonalising transformations 

 ,Ro LoT T  from the new system using the homogenous coordinates definition 

as in equation (F.4). 

 Simplify the homogonous coordinates definition for the original system 

equation (F.4) into equation (F.14). 

 Applying Mobius transformations gives a relationship between the original 

system and the new system and vice versa. Substituting equation (F.17) into 

equation (F.14) yields equation (F.21). 

 For the new system, the homogonous coordinates can be simplified into 

equation (F.31). 

 The vectors  ,Roi Roif g  in equation (F.21) and the vectors  ,RNi RNif g  in 

equation (F.31) can be written as a linear combination with some unknown 

scalars  , , ,ff fg gf gg     as in equation (F.32). Substituting equation (F.32) 

into equation (F.21) leads to equation (F.34). 

 Comparing equation (F.34) with equation (F.31), we found that X  and Y  are 

equivalent for some invertible Z . X  and Z  have each four components as in 

equations (F.40) and (F.41). These partitions can be calculated in turn by 
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setting the four unknown scalars  , , ,ff fg gf gg     to unity one at a time in 

equations (F.36) and (F.39), respectively. 

 Substituting Z  in equation (F.41) back into equation (F.38) which is a 

function of  , , ,ff fg gf gg    . The four unknown scalars  , , ,ff fg gf gg     are 

calculated from equations (F.38) and (F.40). 
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