
————————————————————————————————–
VERIFYING REQUIREMENTS FOR RESOURCE-BOUNDED AGENTS
————————————————————————————————–

ABDUR RAKIB

M.TECH. (IIT KHARAGPUR, INDIA)

————————————————————————————————–
A THESIS SUBMITTED TO THE UNIVERSITY OF NOTTINGHAM

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE SCHOOL OF COMPUTER SCIENCE

————————————————————————————————–

JUNE 2011

Abstract

This thesis presents frameworks for the modelling and verification of resource-bounded

reasoning agents. The resources considered include the time, memory, and communi-

cation bandwidth required by agents to achieve a goal. The scalability and expressive-

ness of standard model checking techniques is investigated using two typical multi-

agent reasoning problems which can be easily parameterised to increase or decrease

the problem size. Both a complexity analysis and experimental results suggest that

reasonably sized problem instances are unlikely to be tractable for a standard model

checker without steps to reduce the branching factor of the state space. We propose

two approaches to address this problem: the use of abstract specifications to model the

behaviour of some of the agents in the system, and exploiting information about the

reasoning strategy adopted by the agents. Abstract specifications are given as Linear

Temporal Logic (LTL) formulae which describe the external behaviour of the agents,

allowing their temporal behaviour to be compactly modelled. Conversely, reasoning

strategies allow the detailed specification of the ordering of steps in the agent’s reason-

ing process. Both approaches have been combined in an automated verification tool

TVRBA for rule-based multi-agent systems which allows the designer to specify infor-

mation about agents’ interaction, behaviour, and execution strategy at different levels

of abstraction. The TVRBA tool generates an encoding of the system for the Maude

LTL model checker, allowing properties of the system to be verified. The scalability of

the new approach is illustrated using three case studies.

I

Acknowledgement

First and foremost I would like to thank my supervisors Brian Logan and Natasha

Alechina for their wonderful support all throughout my stay at Nottingham. Under

Brian’s guidance, I have learnt everything I know about agents and formal verification.

He initiated me into the world of research by turning my attention towards various

interesting problems including those studied in this thesis. He then taught me, listened

to me, trusted me, and guided me with unwavering enthusiasm and patience and

steered me towards solutions. Brian and Natasha have maintained a great research

atmosphere in their Agents Lab, and have been an inspiration and constant source of

encouragement for us in terms of vision and ideas in research. My second biggest

fortune was in having good colleagues in Agents Lab during these years. I would like

to thank them all for the fruitful discussions about research and so many other aspects

of my life.

I would like to thank Henrik Nilsson, my internal assessor, for his show of support

and encouragement and comments on parts of the thesis, and to Michael Fisher for

accepting to act as my external examiner. I would like to thank those people who

have given courses on formal verification and everyone with whom I have had interac-

tions during my attendance at ESSLLI’07&08 and EASSS’07&08—both research and

otherwise.

I gratefully acknowledge the financial support of the UK Engineering and Physical

Sciences Research Council (EPSRC Reference: EP/E031226/1) and the School of

Computer Science at the University of Nottingham. I would like to express my greatest

appreciation to all the members of the School of Computer Science at the University of

Nottingham and my friends at Nottingham, including Syed Iqbal Anwar, for their direct

or indirect help and cooperation in completing a great task.

I would like to thank my parents, my sisters and brothers, for their love and en-

couragement. A very special thanks to my wife for her love, her patience and under-

standing. She supported me in every possible way, and was always there to listen and

help.

II

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Approaches to formal verification 4
1.3 Problem statement . 7
1.4 Methodology . 9
1.5 Thesis contribution . 12
1.6 Thesis structure . 13

2 Logical formalisms for MAS 15
2.1 Modal logics . 15
2.2 Temporal logics . 17

2.2.1 Computation tree logic . 17
2.2.1.1 Expressing properties in CTL 19

2.2.2 Linear temporal logic . 20
2.2.2.1 Expressing properties in LTL 21

2.3 Logics for resource-bounded agents 22
2.3.1 Step-logic . 23
2.3.2 Algorithmic knowledge . 24
2.3.3 Dynamic logic . 26
2.3.4 An explicit model of memory 26
2.3.5 An explicit model of communication 27

2.4 Analysis and expressiveness . 28

3 Formal verification approaches to MAS 30
3.1 The proof theoretic approach . 30

3.1.1 Verification using theorem proving 32
3.1.1.1 Modelling and verification framework using ConGolog 32
3.1.1.2 Verifying knowledge properties of security protocols 34
3.1.1.3 Discussion . 35

3.2 The model theoretic approach . 36

i

CONTENTS

3.2.1 Explicit-state model checking 38
3.2.2 Symbolic model checking 38

3.2.2.1 Representation of Boolean functions 39
3.2.2.2 Kripke model to BDDs and reachability analysis . . 41

3.2.3 The model checking complexity of CTL 43
3.2.4 Automata-based model checking 43

3.2.4.1 Büchi automata and LTL model checking 43
3.2.4.2 Complexity of model-checking LTL using automata 44

3.2.5 Discussion . 45
3.2.5.1 Discussion of symbolic model checking 45
3.2.5.2 Discussion of automata-based model-checking . . . 46
3.2.5.3 Symbolic vs. automata-based model-checking . . . 46
3.2.5.4 CTL vs. LTL . 47

3.2.6 Model checking techniques for MAS 47
3.2.6.1 Model checking agent programs 47
3.2.6.2 Model cheking techniques for interpreted systems . 49
3.2.6.3 Model checking resource-bounded agents 52
3.2.6.4 Discussion . 53

3.3 The choice of verification approach 55
3.4 Model checking tools . 56

3.4.1 MCK . 56
3.4.2 VerICS . 57
3.4.3 MCMAS . 57
3.4.4 DEMO . 58
3.4.5 Mocha . 58
3.4.6 NuSMV . 59
3.4.7 SPIN . 59
3.4.8 Maude LTL model checker 60
3.4.9 The choice of model checker 60

4 Verifying resolution-based systems 62
4.1 Distributed reasoners . 62
4.2 Measuring resources . 65
4.3 Property specification . 68
4.4 Logical formalism . 68

4.4.1 Syntax of BMCL-CTL . 69
4.4.2 Semantics of BMCL-CTL 70

4.5 Verifying resource-bounds . 73

ii

CONTENTS

4.6 Analysis of the problem complexity 75
4.6.1 An analysis of the state space 77
4.6.2 An analysis of the branching factor 79

4.7 Analysis of the encoding complexity 83
4.7.1 Positional encoding complexity 83

4.7.1.1 Positional encoding analysis for a single agent system 84
4.7.1.2 Positional encoding analysis for a multi-agent system 86

4.7.2 Non-positional encoding complexity 87
4.7.2.1 Non-positional encoding analysis for a single-agent

system . 88
4.7.2.2 Non-positional encoding analysis for a multi-agent

system . 89
4.8 Experimental evaluation . 90

4.8.1 Positional encoding using Mocha 91
4.8.2 Non-positional encoding using Mocha 93

4.8.2.1 Experiments using NuSMV 93
4.8.3 Analysis of experimental results 95

5 Verifying rule-based systems 98
5.1 Rule-based systems . 98

5.1.1 Structure of rule-based systems 99
5.1.2 Basic form of rules . 100

5.2 Systems of communicating rule-based reasoners 101
5.3 Property specification . 104
5.4 Logical formalism . 105

5.4.1 Syntax of LCRB . 106
5.4.2 Semantics of LCRB . 106

5.5 Analysis of the problem complexity 109
5.5.1 Asymptotic upper bound on the state space size 114
5.5.2 The branching factor of the problem 115

5.6 Analysis of the encoding complexity 115
5.7 Model checking rule-based systems 116

5.7.1 Mocha encoding . 116
5.7.2 Specifying system properties in Mocha 117
5.7.3 Experimental results . 117

5.8 Analysis of experimental results . 120

iii

CONTENTS

6 A scalable verification framework for MAS 122
6.1 Verification framework . 122
6.2 Communicating reasoners . 125
6.3 Concrete agents . 126

6.3.1 Rules and facts . 127
6.3.2 Reasoning strategy . 128

6.4 Abstract agents . 131
6.5 Example . 133
6.6 Discussion . 135

7 Automated verification tool for MAS 137
7.1 Maude rewriting system and formal verification 137

7.1.1 Basic foundation of Maude 138
7.1.1.1 Maude modules 138
7.1.1.2 Sorts and subsorts 139
7.1.1.3 Kinds . 139
7.1.1.4 Maude operators 140
7.1.1.5 Maude constants 141
7.1.1.6 Maude variables 141
7.1.1.7 Terms . 142
7.1.1.8 Equations . 142
7.1.1.9 Rewrite rules . 142
7.1.1.10 Module importation 143

7.1.2 Verifying systems using Maude 143
7.2 Maude encoding . 144

7.2.1 Agent configuration module 145
7.2.2 Implementation of agent modules 148

7.2.2.1 Concrete agent module 148
7.2.2.2 Abstract agent module 151

7.2.3 Implementation of the MAS module 155
7.2.4 Verifying system properties 161
7.2.5 Analysis of the implementation 163

7.3 The TVRBA verification tool . 164
7.3.1 TVRBA implementation . 167

8 Scalable MAS verification: case studies 171
8.1 Binary tree example . 171
8.2 A route planning example . 174
8.3 A home health-care monitoring alarm system 176

iv

CONTENTS

8.4 Discussion . 180

9 Conclusions and future work 181
9.1 Summary of contributions . 181
9.2 Future work . 184

9.2.1 Potential application areas 184
9.2.2 Extensions to the current framework 185
9.2.3 Re-engineering the Maude LTL model checker 187

Appendix 201
A Proof of theorem 5.5.1 . 201
B Proof of theorem 5.5.3 . 204
C Proof of theorem 5.5.4 . 205
D Mocha positional encoding . 206
E Mocha non-positional encoding . 210
F NuSMV positional encoding . 215
G Rule ordering strategy in an “16 leaf example” 218

v

List of Figures

3.1 Model checking method . 37
3.2 Representation of Boolean function 39
3.3 Boolean representation of Kripke model 42
3.4 Memory consumption during image computation 46

4.1 A single agent positional state branching factor model 84
4.2 A multi-agent positional state branching factor model 87
4.3 A single agent non-positional state branching factor model 88

5.1 Structure of rule-based systems . 100
5.2 Binary tree example . 104
5.3 State transition graph for ‘8 leaf example’ 112
5.4 Levels and the corresponding nodes of the tree 113

6.1 System behavioural specification . 125
6.2 Individual concrete agent . 126

7.1 System implementation structure in Maude 144
7.2 Architecture of TVRBA . 165
7.3 HornLog rule syntax . 166
7.4 Lexical syntax . 168
7.5 Abstract syntax for rules . 168
7.6 Abstract syntax for LTL fornulae . 169
7.7 Screenshot of TVRBA’s graphical user interface 170

8.1 Binary tree example with triangular regions 173
8.2 Health-care monitoring system . 177

G1 Focus on a particular region of the tree 218

vi

List of Tables

4.1 Example derivation using resolution 66
4.2 Example derivation using resolution with two agents 67
4.3 Experimental results using two propositional variables 74
4.4 Mocha positional encoding . 92
4.5 Mocha non-positional encoding . 93
4.6 NuSMV positional encoding . 94
4.7 Reference model from the NuSMV2.4.3 distribution package 97

5.1 Example: derivation with two agents 102
5.2 Resource requirements for one agent 118
5.3 Resource requirements for optimal derivation in 8 leaves cases 118
5.4 Resource requirements for optimal derivation in 16 leaves cases . . . 119
5.5 State space and CPU time produced by Mocha 121

6.1 Example: derivation scenario 1 . 134
6.2 Example: derivation scenario 2 . 135

8.1 Resource requirements for a single agent 172
8.2 Resource requirements for multiple agents 174
8.3 Resource requirements for the route planning example 176
8.4 Resource requirements for the health planner 179

G1 Two agents “16 leaf example” . 219
G2 Three agents “16 leaf example” . 219

vii

Listings

7.1 Sorts declaration and their relationships 145
7.2 Checking the existence of an element 147
7.3 Strategy implementation: an example 148
7.4 Structure of concrete agent module 149
7.5 Structure of abstract agent module 151
7.6 Structure of MAS module . 156
7.7 Structure of ModelCheck-MAS module 162

viii

Chapter 1

Introduction

Distributed problem solving is an emerging research area that combines aspects of ar-

tificial intelligence (AI) and distributed processing. One of the primary focuses of this

approach is the study of co-operative activity in systems composed of multiple interact-

ing intelligent agents. Such systems are known as multi-agent systems (MAS). When

solving problems, each intelligent agent in the system requires some basic resources

such as time (number of computational steps), space (amount of memory) and per-

haps communication bandwidth (number of messages that need to be exchanged). The

trend towards ever smaller agent platforms means that resource utilisation is becoming

an increasingly important factor in agent design and deployment. However the com-

plex, often distributed, derivations implied by modern agent designs make it hard for

agent developers to predict system resource requirements a priori. The development of

formal frameworks and practical verification tools to exploit them is therefore key to

the successful development of provably correct agent designs for emerging resource-

limited agent paradigms including, for example, agent-based sensor networks. The aim

of this thesis is to present frameworks for explicit modelling of system resources, speci-

fying and ultimately verifying the properties of resource-bounded multi-agent systems.

In this chapter we discuss the motivations for developing such techniques and tools,

followed by a brief outline of existing approaches to formal verification. The problem

statement and methodology of the thesis are then described. Finally, the contributions

1

CHAPTER 1: INTRODUCTION

and the structure of the remainder of the thesis is outlined.

1.1 Motivation

In recent years intelligent agents have been the focus of much attention from the AI

community. In AI research, agent-based systems technology has emerged as a new

paradigm for conceptualizing, designing, and implementing sophisticated software

systems. In general, multi-agent systems research refers to software agents. How-

ever, the agents in a multi-agent system could also be for example robots. The con-

cept of agents, in the context of this thesis is used to refer to autonomous reasoning

agents, where agents are capable of reasoning about their behaviour (using a knowl-

edge base and inference rules) and interactions (capable of communicating with each

other). That is agents are primarily viewed as doing some kind of inference over a

knowledge base, e.g., using resolution or forward chaining rules (modus ponens). An

agent is autonomous if it encapsulates its behaviour and internal state [Jennings and

Wooldridge, 1998]. This means that an agent itself has control over its own actions

and behaviour. Intelligent agents are being used in wide variety of applications that in-

clude small systems like email filtering and prioritizing [Boone, 1998], wireless sensor

network technology [Tynan et al., 2005, Platt et al., 2008], and safety-critical sys-

tems [Callantine, 2002, 2003] to e-commerce applications [Sun and Finnie, 2004].

While agents provide great benefits in developing many complex software applica-

tions (e.g., systems that have multiple components, distributed over networks, exhibit

dynamic changes, and require autonomous behaviour [Wooldridge, 2009]), they also

present new challenges to application developers, namely how to ensure the correct-

ness of system designs (will a system behave expectedly for all possible legal inputs),

termination (will a system produce an output at all), and response time (how much

computation will a system have to do before it generates an output). These problems

become even more challenging in the case of multi-agent systems, where agents ex-

change information via messages. Therefore, when a number of autonomous agents

2

CHAPTER 1: INTRODUCTION

interact it is very difficult to predict the behaviour of the system and guarantee that the

desired functionalities will be fulfilled. Consequently, the systems must be verified to

show that they are correct with respect to their specifications.

The analysis and verification of MAS is not an easy task due to their dynamic

nature, and the complex interactions between agents [Bordini et al., 2007a]. Neverthe-

less, there has been interest in using formal methods to specify and verify agent-based

systems [Fisher et al., 2007]. For the last few years, Lomuscio and colleagues [Rai-

mondi and Lomuscio, 2007, Lomuscio and Penczek, 2007] have been working on au-

tomatic verification of multi-agent systems. The outcome of their research includes

developing MCMAS [Lomuscio et al., 2009] a model based verification tool. A strand

of work on model-checking properties of agent programming languages is carried out

by various researchers, including those presented in [Wooldridge et al., 2002, Bordini

et al., 2003, 2004, 2006, Dennis et al., 2008a]. Some other significant works on mod-

elling and verifying multi-agent systems include [Rao and Georgeff, 1993, Shoham,

1993, Fisher and Wooldridge, 1997, Benerecetti et al., 1998, de Giacomo et al., 2000,

van der Hoek and Wooldridge, 2002]. However, all these works are based on the clas-

sical approach of knowledge representation, they do not model resources such as time,

space and communication restrictions on the agent’s ability to derive consequences of

its beliefs.

There is a growing body of work where the agent’s deduction steps are explicitly

modelled in the logical framework, for example [Duc, 1997, Alechina et al., 2004],

which makes it possible to model the time it takes the agent to arrive at a certain con-

clusion; a different kind of limitation on the depth of belief reasoning allowed is stud-

ied in [Fisher and Ghidini, 1999]. Both the time and space limitations on the agent’s

knowledge were considered in step logics [Elgot-Drapkin et al., 1991], the framework

however does not support verification of space requirements for solving a certain prob-

lem. In more recent work [Albore et al., 2006, Alechina et al., 2006, 2007] Alechina

and colleagues have taken some preliminary steps towards the automated verification

3

CHAPTER 1: INTRODUCTION

of resource requirements of reasoning agents. In [Albore et al., 2006, Alechina et al.,

2007] Alechina and colleagues have considered only single agents (and no communi-

cation costs), which reason using relatively simple logical formalisms, and have mostly

focused on a single resource (memory). In addition, their model checking work has

adopted simple direct encodings of finite state machines into the representational lan-

guage used by the model-based planner MBP [Bertoli et al., 2001] which they use for

automatic verification. While sufficient for small problems, this approach is unlikely

to scale to the verification of non trivial agent systems. An approach to modelling

multi-agent systems and communication has been studied in [Alechina et al., 2006].

However, in this framework memory bounds have not been imposed and scalability of

the verification approach is not explored.

Thus, none of the existing approaches allow us to express computational (memory

and time) and communication resource limitations altogether, and these approaches

do not allow the verification of multi-agent systems considering the interaction be-

tween different resources (time, memory and communication bandwidth). Hence there

is a need to define frameworks for the representation, specification and verification of

resource-bounded agents. This will involve explicit modelling of computational (space

and time) and communication resources, implementing practical tools for analysing re-

source requirements for systems of autonomous reasoning agents , investigating trade-

offs between multiple resource bounds, addressing the limitations of the existing ap-

proaches, namely the issues of expressiveness and scalability.

1.2 Approaches to formal verification

Automated verification encompasses many different techniques that include testing,

run-rime verification, static analysis, theorem proving, and model checking. The var-

ious verification techniques mentioned in this section have their own advantages and

disadvantages. However, this thesis is concerned with the problem of formal verifica-

tion for multi-agent systems using model checking. Model checking is an automatic

4

CHAPTER 1: INTRODUCTION

technique that has been proven very effective in verifying many hardware and soft-

ware system designs. In the following, we briefly describe the verification techniques

mentioned above. However theorem proving and model checking approaches will be

described in more detail later in the literature review.

Testing is one of the popular approaches used in verifying traditional software systems.

The most common testing methods applied to software systems are correctness testing,

performance testing, security testing and reliability testing [Pan, 1999]. In testing, the

verification is performed by running a number of test cases and checked whether the

required properties hold in all these runs. However, the main problem of testing is that

it can never completely identify all the defects within design. This is because it must be

ensured that the maximum number of different system behaviours are covered using a

minimum number of test cases. But the problem is to select a sensible set of test cases.

Therefore, testing is applied for a selective test cases which cover only a portion of

the system behaviour. While testing may help improve quality for more conventional

software systems, it falls short for complex artificial intelligent systems [Wang et al.,

2001].

Run-time verification also called runtime monitoring or runtime checking, is another

method to increase the quality of critical system design. Run-time verification is con-

cerned with monitoring and analysis of system executions, i.e., the system behaviour

is considered at run-time. In this process the input-output behaviour of the system is

observed during execution. The observed behaviour (log traces) of the system can be

monitored and verified dynamically to satisfy given requirements expressed in tempo-

ral logic formulae [D’Angelo et al., 2005]. In recent years several runtime verifica-

tion systems have been developed that include Java PathExplorer [Havelund and Rosu,

2001], ARVE [Shin et al., 2007], and Mcc [Sharma et al., 2009]. Run-time verification

has to deal with finite traces only of the target system, and again it only observes partial

executions and thus this technique also provides incomplete verification results.

Static program analysis is another verification technique. It is often used for auto-

5

CHAPTER 1: INTRODUCTION

matically discovering errors of a target program considering its all possible execution

paths. This technique is applied to statically analyse the dynamic properties of a pro-

gram at compile time without actually executing it [Nielson et al., 2005]. Abstract

interpretation is considered to be one of the basic static analysis techniques which

is successfully used in program optimization and verification [Cousot and Cousot,

1977, Cousot, 2003]. The most popular abstract interpretation based static analysers

which have been developed to support program optimization and verification include

PAG [Martin, 1998], ASTRÉE analyser [Cousot et al., 2005] and PolySpace [Tech-

nologies, 2008]. Abstract interpretation consists in considering an abstract semantics,

which is a sound approximation of the concrete program semantics. For instance, con-

sider the set of concrete points P = {(x, y) ∈ R2 | x2 + y2 ≤ 1}, then any polygon

including P is a sound abstraction of P . Sometimes abstraction may lose precision

and the consequence of over approximation of the possible concrete executions can

leads to false alarms. Patrick Cousot [Cousot, 2008] argues that: “a grand challenge

for abstract interpretation is to extend its scope to complex systems, from specification

to implementation, not only to the program part, as is presently the case”.

Automated theorem proving is a logic based proof theoretic approach [Gallier, 1986].

Theorem provers typically use a very expressive logic for expressing the implementa-

tion and the specification. The system implementation is expressed as a set of axioms,

and the specification is expressed as a theorem to be proved in the axiomatic system.

The verifier tries to find a proof of the theorem according to the inference rules of the

logic. There has been considerable work on verification of multi-agent systems using

theorem proving. State of the art of theorem proving tools can be thought of as an in-

teractive tools. This is usually only partially automated and requires an extensive user

interaction [Bharadwaj, 1996]. Moreover, the user must be familiar with the logic and

the ‘proof system’ the prover is based on.

Model checking is a model-based verification approach [Clarke et al., 2000]. The

description of a system (also known as model) is given by the specification language

6

CHAPTER 1: INTRODUCTION

of a model checker and verifies that a temporal logic formula holds for the model.

However, for the verification of MAS, the properties of the system to be verified are

often specified in combined modal and temporal logics, such as temporal logics of

belief or temporal logics of knowledge. The output of a model checker is either a

confirmation or a denial that the property is violated. If a system state that violates

the temporal formula is found, then a model checker usually returns a counterexample.

This is very useful for debugging purposes.

1.3 Problem statement

Let us consider an agent that has a finite knowledge base and some rules of inference

which allow it to derive new information from its knowledge base. It is intuitively clear

that some derivations require more time and/or memory than others (e.g., to store all

the relevant information, or to store intermediate results), and that two agents with the

same knowledge base and the same set of inference rules, but with different amounts

of memory, may not be able to answer the same queries or may take different amounts

of time to answer them. If two agents need to communicate in order to answer a query,

then the number and size of messages that must be exchanged will depend on the query,

and the time and memory available to the agents.

For a given problem and system of reasoning agents, many different solution strate-

gies may be possible, each involving different commitments of computational resources

(time and memory) and communication by each agent. For different multi-agent sys-

tems, different solution strategies will be preferred depending on the relative costs of

computational and communication resources for each agent. These tradeoffs may be

different for different agents (e.g., reflecting their computational capabilities or net-

work connection) and may reflect the agent’s commitment to a particular problem.

For a given system of agents with specified inferential abilities and resource bounds it

may not be clear whether a particular problem can be solved at all, or, if it can, what

computational and communication resources must be devoted to its solution by each

7

CHAPTER 1: INTRODUCTION

agent. For example, we may wish to know whether a goal can be achieved if a par-

ticular agent, perhaps possessing key information or inferential capabilities, is unable

(or unwilling) to contribute more than a given portion of its available computational

resources or bandwidth to the problem.

Therefore, the computational resources required by a reasoning agent to achieve

a goal or answer a query is of considerable theoretical and practical interest. From

a theoretical point of view, it is related to the questions investigated in proof com-

plexity [Haken, 1984, Alekhnovich et al., 2002], of the lower bounds on the size of

proofs in deductive systems, and of lower bounds on memory required to verify them.

However, a detailed discussion of the theoretical foundation is out of scope for this

thesis. From a practical point of view, the question of whether an agent has suffi-

cient resources (memory, time or communication bandwidth) to achieve its goal(s) is

clearly a major concern for the agent developer. As agent tasks become more open

ended, the amount of resources required to achieve them becomes harder to predict a

priori. For example, the reasoning capabilities of agents assumed by many web ser-

vice applications is non trivial and the time, memory and communication requirements

correspondingly difficult for the agent developer to determine a priori. Despite the

importance of the topic, there has been relatively little work in this area. While the

temporal aspects of reasoning have been considered in the literature mentioned before,

there has been no detailed treatment of computational (memory and time) and commu-

nication resource requirements, and no systematic investigation of resource trade-offs

in resource-bounded reasoners.

In this thesis we define frameworks for the representation, specification and verifi-

cation of resource-bounded agents. The frameworks allow us to model computational

and communication resources explicitly, and to reason about and verify tradeoffs be-

tween time, memory and communication in systems of distributed reasoning agents.

We are interested in properties such as:

i) there is a possibility that agent i will derive formula ϕ in nT time steps while

8

CHAPTER 1: INTRODUCTION

exchanging fewer that nC messages;

ii) agent i will always derive formula ϕ in nT time steps while exchanging fewer

that nC messages;

iii) every request of agent i will be responded by agent j in nT time steps (where i

and j are distinct agents in the system).

We show how state-of-the-art model checkers can be used to encode and verify

properties of systems of distributed reasoning agents. We describe the encoding and

report results of model checking experiments which show that even simple systems

have rich patterns of trade-offs between multiple (time, memory, and communication)

resource-bounds.

1.4 Methodology

The work presented in this thesis is a part of a research project1 to provide theoretical

foundations and practical tools for analysing resource requirements for systems of rea-

soning agents. The theoretical foundations are based on temporal doxastic2 logics. We

only give a brief description of the logical formalisms whenever necessary to describe

our frameworks; full details can be found in [Nga, 2010]. In this thesis, we focus on

developing formal frameworks and practical verification tools for analysing resource

requirements for systems of reasoning agents. The thesis research methodology is as

follows.

1. Preliminary definition of computational models To model an agent reason-

ing about a knowledge base KB and a formula ϕ in logic L, we represent the

states3 of the agents as assignments to finitely many formulae (all subformulae
1This work was partially supported by the Engineering and Physical Sciences Research Council

[grant number EP/E031226].
2A doxastic logic is a modal logic concerned with reasoning about beliefs. In the next chapter we will

see that modal logic plays a prominent role in specifying, reasoning about, and verifying multi-agent
systems.

3Note that throughout this thesis we use the term state and the term configuration interchangeably.

9

CHAPTER 1: INTRODUCTION

of KB and ϕ). Transitions correspond to applications of inference rules of L to

formulae which have a value true or false in the state. The constraint on memory

corresponds to a restriction that each agent i in the system has memory of size

nM(i) where one unit of memory corresponds to the ability to store an arbitrary

formula. The constraint on communication corresponds to a restriction that each

agent’s communication ability is nC(i): in any valid run of the system, agent i

can perform at most nC(i) communication actions.

2. Investigating trade offs In [Albore et al., 2006, Alechina et al., 2007] Alechina

and colleagues show that there exist examples of propositional formulae which

require less time (computational steps) to prove with larger memory, and are still

provable but require longer derivations with smaller memory. In this research

work we investigate such trade-offs systematically using two typical multi-agent

reasoning problems which can be easily parameterized to increase or decrease

the problem size. The first class of problems we consider is a resolution based

distributed reasoning system, where as the second class of problems corresponds

to a distributed system of rule-based agents. We investigate trade-offs between

memory and communication costs, and between communication costs and time

measured as the number of transitions required by the multi-agent system to

achieve the goal, provided the reasoners execute in parallel. Our approach is

informed by work in proof complexity on the relationships between the size

of proofs and space required to verify them. We also draw on the notions of

communication complexity [Yao, 1979] to represent communication costs as a

function of the number or size of formulae which reasoners have to exchange to

solve a common task.

3. Scalability analysis We analyse the scalability issues while verifying resource

bounded agents based on two example scenarios mentioned above. We use

model checking tools Mocha [Alur et al., 1998a] and NuSMV [Cimatti et al.,

2000] while verifying properties of the systems. In order to improve scalability

10

CHAPTER 1: INTRODUCTION

of model checking for larger problems, we analyse the problem and its encoding

complexity to better understand the scalability issues. Both the complexity anal-

ysis and experimental results suggest that reasonably sized problem instances

are unlikely to be tractable for a standard model checker without steps to reduce

the branching factor of the state space.

4. Developing an automatic tool We propose two approaches to address the scal-

ability issues identified above: the use of abstract specifications to model the

behaviour of some of the agents in the system, and exploiting information about

the reasoning strategy adopted by the agents. Abstract specifications are given as

Linear Temporal Logic (LTL) formulae which describe the external behaviour of

the agents, allowing their temporal behaviour to be compactly modelled. Con-

versely, reasoning strategies allow the detailed specification of the ordering of

steps in the agent’s reasoning process. Both approaches have been combined in

an automated verification tool TVRBA for rule-based multi-agent systems which

allows the designer to specify information about agents’ interaction, behaviour,

and execution strategy at different levels of abstraction. The tool TVRBA gen-

erates an encoding of the system for the Maude LTL model checker [Eker et al.,

2003], allowing properties of the system to be verified.

5. Evaluation We illustrate the scalability of the new approach by comparing it to

results obtained using traditional model checking techniques for a synthetic dis-

tributed rule-based reasoning problem (mentioned before). We also show how

to further improve scalability by using abstract agents specified in terms of tem-

poral doxastic formulae through two case studies. The experimental evaluation

determines the relationship between the size of a knowledge base and time re-

quired by the tool to verify resource requirements for typical system properties.

11

CHAPTER 1: INTRODUCTION

1.5 Thesis contribution

The work presented in this thesis includes material from some of my published papers

[Alechina et al., 2008a, 2009a, 2008b, 2010] which were co-authored by my supervi-

sors, and my colleague Nguyen Hoang Nga. In each of the first three papers [Alechina

et al., 2008a, 2009a, 2008b], there are two parts: the first part presents a logical frame-

work for resource-bounded MAS and the second part develops and experimentally

verifies model checker encodings for resource-bounded MAS formalised using those

logical frameworks. My contributions to these papers focus mostly on the devleopment

and experimental evaluation of the encodings. The last paper [Alechina et al., 2010] is

mostly my work. It presents the abstraction and strategy based verification technique

developed in this thesis including the development of the TVRBA verification tool.

The main contributions of this thesis are:

• A brief survey of the logical frameworks for MAS, and formal techniques to

verification of such systems. Some limitations of current approaches are also

discussed.

• Model checking encoding and verification of resolution-based systems, and the

analysis of the problem and its encoding complexity.

• Model checking encoding and verification of rule-based systems, and the analy-

sis of the problem and its encoding complexity.

• Identifying the scalability issues in verifying the above systems, and proposing

a new approach to model checking MAS which uses strategies and abstraction.

• Development of an automated verification tool TVRBA that supports strategies

and abstraction and uses Maude as a backend for model checking.

• The scalability of the new approach is illustrated using three case studies.

12

CHAPTER 1: INTRODUCTION

1.6 Thesis structure

The rest of this thesis is organised as follows: Chapter 2 and Chapter 3 review the

background literature. We briefly survey the background and history of modal and

temporal logics which are used to represent multi-agent systems with a special empha-

sis on resource-bounded agents. We then look at two approaches to verification: model

checking and theorem proving. Finally, we analyse the limitations of the current ap-

proaches.

Chapter 4 and Chapter 5 define frameworks for the representation, specification and

verification of resource-bounded agents. We consider two typical distributed reasoning

systems as mentioned before which reason using (propositional) resolution and (propo-

sitional) rules, respectively. We use conventional model checking techniques and use

symbolic model checkers Mocha and NuSMV to verify properties of those systems

and investigate trade-offs between multiple resource bounds. Furthermore, we analyse

the problem and its encoding complexity to better understand the scalability issues.

Chapter 6 presents a framework for the automated verification of multi-agent rule-

based systems, which allows the use of abstract specifications consisting of Linear

Time Temporal Logic (LTL) formulae to specify some of the agents in the system.

The framework also allows the use of agents explicit reasoning strategies. The rules

are extended from propositional to first-order horn clause rules. That is rules of an

rule-based agent can either be propositional or first-order horn clauses.

Chapter 7 describes an encoding based on the Maude rewriting system which im-

plements the approach to verification described in Chapter 6, and shows how the de-

sired properties of the system can be verified using Maude LTL model checker. It also

presents an automated verification tool TVRBA that uses Maude as a backend for

model checking.

Chapter 8 illustrates the scalability of the new approach which uses strategy and

abstraction using three case studies. In the first case study, we re-implement an exam-

13

CHAPTER 1: INTRODUCTION

ple scenario introduced in Chapter 5. To illustrate the application of the framework on

more complex examples we consider two more case studies: a route planning example,

and a home health-care monitoring alarm system.

Chapter 9 summarises briefly the work undertaken, and suggests some possible

future lines of research.

These chapters are followed by bibliographic references and appendices.

14

Chapter 2

Logical formalisms for MAS

In this chapter, we present a brief survey of existing research on modal logics concen-

trating on the approaches which have influenced the work presented in this thesis. Two

different areas are identified and addressed in the literature review. The first area is

the theoretical foundations (in general), which is addressed in this chapter. The sec-

ond area is concerned with the practical tools and formal verification of multi-agent

systems, which will be addressed in the next chapter.

2.1 Modal logics

Modal logics are regarded as the most suitable and versatile logical formalisms for

specifying, reasoning about, and verifying multi-agent systems. In essence, modal

logic extends propositional or first-order logic to include the modal operators. That is

modal logics often use modes of truth. The most well-known modalities that are used

in modal logics include possibility and necessity. For example, the following are modal

propositions: “it is possible that ϕ”, and “it is necessary that ϕ” for some proposition

ϕ. The operators “it is possible that” (♦) and “it is necessary that” (2) are called modal

operators. The possibility operator can be expressed using necessity (and vice versa)

as follows: ♦ ϕ ≡ ¬2¬ϕ (and 2 ϕ ≡ ¬♦¬ϕ). The presence of a modal operator in

front of a proposition specifies a way in which the rest of the proposition can be said

15

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

to be true.

In the literature [Hintikka, 1962], a wide variety of modal logics have been pro-

posed including epistemic logic which deals with the mental attitude of knowledge

and doxastic logic which treats belief. These logics have become popular in Computer

Science and AI to describe the informational aspects such as knowledge and belief of

agents. Epistemic modalities deal with the certainty of sentences, and the 2 operator

is usually translated as Ki which can be read as “agent i knows that”. Similarly, a

doxastic logic uses 2, often written as Bi which can be read as “agent i believes that”.

The language of basic modal logic is that of propositional logic with two extra

connectives 2 and ♦. Let P be a set of propositional variables. The formulae of basic

modal logic are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 → ϕ2 | 2ϕ

where p ∈ P . Classical abbreviations for ∧, ∨,↔, and ♦ are defined as usual.

The semantics for modal logic are given by Kripke structures of the form M =

〈W, v,R〉, where:

- W is a non-empty set of states or worlds;

- v : P ×W → {true,false} is a truth assignment function;

- R ⊆ W ×W is a binary relation on W , known as the accessibility relation.

The truth of a formula in a modelM = 〈W, v,R〉 and w ∈ W is defined induc-

tively as follows:

- M, w |= p iff v(p, w) = true;

- M, w |= ¬ϕ iffM, w 6|= ϕ;

- M, w |= ϕ→ ψ iff eitherM, w 6|= ϕ orM, w |= ψ;

- M, w |= 2ϕ iff for all v ∈ W such that R(w, v),M, v |= ϕ.

16

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

For a more detailed description of modal logics we refer the interested reader

to [Blackburn et al., 2001]. Throughout this thesis we will see combinations of logics

that have been used to specify multi-agent systems. When specifying MAS we may

also need to represent temporal aspects of systems, which are typically modelled us-

ing temporal logics [Pnueli, 1979]. In the following section, we present two temporal

logics which are often used to model dynamic behaviour of concurrent systems.

2.2 Temporal logics

Temporal logic can express properties about how the system evolves along compu-

tations. In the literature several temporal logics have been proposed, e.g., [Pnueli,

1979][Clarke et al., 2000, pp. 27–30], each one has its own collection of temporal op-

erators. These logics are categorised into linear time and branching time logics. In

linear time logic (LTL), formulae are interpreted over paths. When we interpret a for-

mula over a set of paths, we always quantify universally over all possible paths in the

set. In branching time logic, known as computation tree logic (CTL), the computation

is viewed as a tree-like structure. The logic CTL allows path quantifications, i.e., we

can reason about all or some paths starting in a state in the tree.

2.2.1 Computation tree logic

Syntax of CTL : The formulae in CTL are classified into state and path formulae.

The state formulae are assertions about the atomic propositions in the states and their

branching structure, on the other hand the path formulae express temporal properties

of paths. The basic components of CTL formulae are AP = {p1, p2, . . .} a set of

propositional variables, standard Boolean connectors, temporal operators X (next), G

(globally), F (eventually), U (until), and path quantifiers A (universal) and E (existen-

tial). The formulae of CTL are constructed inductively as follows:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | EXϕ | EGϕ | EU (ϕ1, ϕ2)

17

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

where p ∈ AP and the path quantifier E stands for “for at least one path”. The

classical abbreviations for ∨,→,↔ and ⊥ are defined as usual.

In CTL the basic operators are EX , EG , and EU . Other operators such as AX ,

AG , AF , AU (the path quantifierA stands for “for all paths”) and EF can be expressed

in terms of EX , EG , and EU :

EFϕ iff EU (>, ϕ)

AXϕ iff ¬EX¬ϕ

AGϕ iff ¬EF¬ϕ iff ¬EU (>,¬ϕ)

AFϕ iff AU (>, ϕ) iff ¬EG¬ϕ

AU (ϕ1, ϕ2) iff ¬EU (¬ϕ2,¬ϕ1 ∧ ¬ϕ2) ∧ ¬EG¬ϕ2

Semantics of CTL: The semantics of CTL is defined by a state transition graphM =

(S,SI , T ,L) where

i) S is a finite non-empty set of states ofM;

ii) SI ⊆ S is a non-empty set of states, called the set of initial states ofM;

iii) T ⊆ S × S is a set of pairs of states, called the transition relation ofM;

iv) L : S → ℘(AP) is a function, called the labelling function ofM.

Let s ∈ S and a formula ϕ over the language ofM, then the relation of semantic

entailmentM, s |= ϕ is defined inductively on the structure of ϕ as follows:

- (M, s) |= >,

- (M, s) |= p iff p ∈ L(s),

- (M, s) |= ¬ϕ iff M, s 6|= ϕ,

- (M, s) |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 ∧M, s |= ϕ2,

18

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

- (M, s) |= EXϕ iff ∃ a path π = s0, s1, s2, . . . s.t. s0 = s ∧ (si, si+1) ∈ T , M, s1 |=

ϕ,

- (M, s) |= EGϕ iff ∃ a path π = s0, s1, s2, . . . s.t. s0 = s∧ (si, si+1) ∈ T , ∀iM, si |=

ϕ,

- (M, s) |= EU(ϕ1, ϕ2) iff ∃ a path π = s0, s1, s2, . . . s.t. s0 = s ∧ (si, si+1) ∈

T , ∃iM, si |= ϕ2 ∧ ∀(j < i)M, sj |= ϕ1.

2.2.1.1 Expressing properties in CTL

A wide variety of system properties can be expressed using CTL. In this section we give

some generic [Clarke et al., 2000] CTL properties which are often used in verifying

finite state concurrent systems.

Liveness and safety properties. A liveness property states that: “something good will

eventually happen” [Lamport, 1977], i.e., eventually (after a finite number of steps)

some formula ϕ holds. Reachability of a state satisfying a formula ϕ can be expressed

as the existence of a path satisfying EFϕ. A safety property states that: “something

bad will never happen” [Lamport, 1977]. Safety properties can be expressed as non-

reachability of a state satisfying ϕ, i.e., the property AG¬ϕ.

In the following we mention a number of useful example properties which can be

stated in CTL.

Responsiveness. In distributed systems it is often the case that one process sends

requests that have to be responded to by other processes. For such systems we are

interested in the responsiveness property: every request must eventually be responded

to. Assuming that the request is expressed by a formula ϕ and response by a formula

ψ, one can express responsiveness by the formula AG(ϕ→ AFψ).

Mutual exclusion. Two or more processes are not allowed to enter the same critical

section of a concurrent system simultaneously. Assuming that there are two processes

P1, P2, and that formulae ϕi, where i = 1, 2 denote that Pi is in the critical section,

19

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

mutual exclusion can be expressed by the formula AG¬(ϕ1 ∧ ϕ2).

Precedence. From all reachable states satisfying ϕ, it is possible to maintain ϕ contin-

uously until reaching a state satisfying ψ, can be expressed using the formulaAG(ϕ→

E[ϕUψ]).

Non-blocking. A process can always request to enter its critical section, can be ex-

pressed using the formula AG(ϕ→ EXψ).

2.2.2 Linear temporal logic

Syntax of LTL: The basic components of LTL formulae are AP = {p1, p2, . . .} a

set of propositional variables, standard Boolean connectors, and temporal operators

X (next), G (globally), F (eventually), U (until), and R (release). The formulae of

LTL are constructed inductively as follows:

ϕ ::= > | p | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | U(ϕ1, ϕ2)

where p ∈ AP . Classical abbreviations for ∨, →, ↔ and ⊥ are defined as usual.

Other temporal operators can be expressed as: R(ϕ1, ϕ2) ≡ ¬(U(¬ϕ1,¬ϕ2)), Fϕ ≡

U(>, ϕ) and Gϕ ≡ R(⊥, ϕ) ≡ ¬ F¬ϕ.

Semantics of LTL: The semantics of LTL is defined by a state transition graphM =

(S,SI , T ,L) where

i) S is a finite non-empty set of states ofM;

ii) SI ⊆ S is a non-empty set of states, called the set of initial states ofM;

iii) T ⊆ S × S is a set of pairs of states, called the transition relation ofM;

iv) L : S → ℘(AP) is a function, called the labelling function ofM.

A path π ofM is an infinite sequence s0, s1, . . . , sn, . . . of states such that (si, si+1) ∈

T for all i ≥ 0. For all i = 0, 1, 2, . . . denote by πi the sequence of states si, si+1, si+2, . . .,

20

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

then π0 = π. The truth of an LTL formula ϕ on π ofM denoted by (M, π) |= ϕ is

defined inductively on the structure of ϕ as follows:

- (M, π) |= >,

- (M, π) |= p iff p ∈ L(s0),

- (M, π) |= ¬ϕ iff (M, π) 6|= ϕ,

- (M, π) |= ϕ1 ∧ ϕ2 iff (M, π) |= ϕ1 and (M, π) |= ϕ2,

- (M, π) |= Xϕ iff (M, π1) |= ϕ,

- (M, π) |= U(ϕ1, ϕ2) iff ∃k ≥ 0 : (M, πk) |= ϕ2 ∧ ∀ 0 ≤ i < k : (M, πi) |=

ϕ1.

The truth of an LTL formula using other Boolean connectives and temporal opera-

tors can be defined analogously.

2.2.2.1 Expressing properties in LTL

Some typical properties expressed in LTL which are often used in verifying concurrent

systems are given below.

Reachability: F¬ϕ, U(ϕ, ψ) etc.

Safety: G¬ϕ, U(ϕ, ψ) ∨ Fϕ etc.

Liveness: Gϕ→ Fψ, G(ϕ→ Fψ) etc.

Precedence: G(ϕ→ U(ψ1, ψ2))

Mutual exclusion: G¬(ϕ1 ∧ ϕ2)

Fairness: GFϕ, GFϕ→ GFψ etc.

21

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

2.3 Logics for resource-bounded agents

The possible worlds model for logics of knowledge and belief was originally intro-

duced by Hintikka [Hintikka, 1962], in this model an agent’s beliefs are characterized

as a set of possible worlds. The later work of Kripke [Kripke, 1963] has shown how

possible worlds may be incorporated into the semantic framework of a logic. How-

ever, representing knowledge in terms of possible worlds semantics suffers from the

logical omniscience problem, a term coined by Hintikka [Hintikka, 1962]. Logical

omniscience presupposes that an agent knows all logical consequences of its beliefs

and all valid sentences including tautologies.

Representing knowledge in terms of traditional possible worlds semantics is quite

useful. However, such semantics do not account the fact that agents possess limited

computational resources. In traditional possible worlds semantics if an agent consid-

ers possible a world where a formula ϕ is true and ϕ → ψ, then the agent instantly

imagines the formula ψ is also true in that world. However, practical agents in a multi-

agent system take time, space and perhaps communication to derive the consequences

of their beliefs. Thus the classical approach to knowledge representation poses a prob-

lem when modelling resource-bounded reasoners.

There are number of proposed solutions to solve the logical omniscience prob-

lem which develop alternative logical formalisms for representing knowledge and be-

lief. These include Levesque’s [Levesque, 1984] logic of implicit and explicit belief,

Fagin and Halpern’s [Fagin and Halpern, 1985] logic of general awareness, Kono-

lige’s [Konolige, 1986] deduction model of belief. However, we do not discuss these

logics because these approaches do not explicitly take account of time, space and/or

communication. Logical research which represents reasoning as a process that ex-

plicitly requires resources, includes Elgot et al.’s step logic [Elgot-Drapkin and Perlis,

1990], Halpern et al.’s algorithmic knowledge [Halpern et al., 1994], Duc’s dynamic

logic [Duc, 1995, 1997], and Alechina et al.’s [Alechina et al., 2007, 2006, Albore

et al., 2006] logics for resource bounded agents, among the others. In the following

22

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

we present a brief review of these logical formalisms.

2.3.1 Step-logic

Elgot-Drapkin and Perlis introduced step logic [Elgot-Drapkin and Perlis, 1990] to ex-

plicitly model the time that an agent requires for its belief derivation. The logic is

characterized by a language, a set of inference rules, and a set of observations. The

reasoning systems proceed to draw conclusions in steps, certain conclusions or obser-

vations may arise after some time steps based on the agent’s earlier beliefs. The logic

is non-monotonic, it cannot in general retain or inherit all conclusions from one step to

the next. Step-logic is a pair 〈SLn, SLn〉 of meta-theory (SLn) and its corresponding

agent-theory (SLn). The meta-theory is used as a scientific theory for the user who

might think about agent’s reasoning. However, it is not used formally for knowledge

representation, e.g., in computer program. The agent-theory is the main part of the

step-logic which aims to capture the on-going reasoning of agents. In this logic the

agent’s deduction steps are explicitly modelled in the logic, which makes it possible to

model the time it takes the agent to arrive at a certain conclusion. However, it does not

capture the space required.

In a later work [Elgot-Drapkin et al., 1991] Elgot-Drapkin and colleagues proposed

a memory-based model of reasoning, based on the step-logic framework, where bounds

on working memory were considered. The memory model contains five key compo-

nents STM (short-term memory), LTM (long-term memory), ITM (intermediate-term

memory), QTM (queue-term memory), and RTM (recent-term memory). STM con-

tains the set of beliefs that are currently active, and its size is bounded. STM is struc-

tured as a FIFO queue, when new facts are brought into STM, old facts must be evicted

due to the bounded size. LTM is a large database where beliefs are held as a series of

tuples of the form 〈T1, T2, . . . , Tn, B〉, where the Ti and B represent logical formulae.

ITM is just a chronological list of past items that were in STM; it is a history of the

agent’s thoughts. QTM holds incoming (new) items briefly, to check whether they (i.e.,

23

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

copies of them) are already in STM, before letting them enter STM. It prevents STM

from being flooded with identical copies of items. RTM holds items that have been in

STM recently, since they are presumed relevant to current issues the agent is working

on and thus are handy to have easy access to those items.

An inference cycle is the process of updating the system’s current beliefs (STM).

The system moves from a given state (STM) to a new state (STM) by performing

four different mechanisms simultaneously. These four mechanisms are direct observa-

tions, modus ponens (MP), semantic retrieval (from LTM), and episodic retrieval (from

ITM). In order to model this simultaneity, the implementation uses a temporary waiting

queue (QTM) which holds the next cycle’s STM facts until all four mechanisms have

finished working on the old STM facts. Once they have finished, elements of QTM

are placed into STM one at a time, disallowing repetition of facts in STM. Throughout

this process, older elements in STM are moved into ITM to maintain STM’s size.

In the step-logic framework an agent’s beliefs are seen as a set of sentences that

changes over time. The logic models belief reasoning by allowing inference one-step

at a time by means of a time arguments in the agent-theory. Step logic takes memory

bounds into account but does not address issues like verification of space requirements

for solving a certain problem.

2.3.2 Algorithmic knowledge

Halpern and colleagues [Halpern et al., 1994] presented a framework to capture the

computational properties of knowledge based on interpreted systems [Fagin et al.,

1995] to take the computational aspects of knowledge into account. The formalism

of interpreted systems consist of four key components:

i) a set of local states: which describes the private information of each agent;

ii) a set of actions: which describe the set of possible actions that an agent can

perform;

24

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

iii) a protocol: which is a rule that manages the actions to be performed in a lo-

cal state and non-deterministic choice will be made when multiple actions are

enabled; and

iv) an evolution function: which describes the evolution of the system.

A global state is a sequence (se, s1, . . . , sn) of local states si along with an envi-

ronment state se. A run of the system r : N → G is a function from time (assumed to

be discrete) to global states. A systemR is a set of runs. The interpreted system I is a

pair (R, π), where π is a truth assignment function.

Based on this framework, agents are assumed to possess a procedure which they

use to produce knowledge. The intuition is that the agent knows a fact ϕ if it can

compute that it knows ϕ. This is modelled by saying that the agent has an algorithm

to decide if it knows ϕ. It is evident that an agent’s knowledge depends on its local

state: to decide if agent i knows ϕ, the algorithm takes as input a local state and the

formula ϕ and returns the output as one of the answer “YES” , “NO”, and “?”. If

r(m) = (se, s1, . . . , sn) and ri(m) = si = 〈A, l〉 is the local state of an agent i. For a

state (r,m) of the system on run r at timem, algi(r,m) is used to denote the algorithm

A and datai(r,m) is used to denote the local data l . Halpern and colleagues denote

the algorithmic knowledge by the modal operator Xi which is defined as

(I, r,m) |= Xiϕ iff A(ϕ, l) = “YES”, for A = algi(r,m) and l = datai(r,m).

This differs from standard interpreted systems in that Xϕ is true in a state, if the

output of the agent’s algorithm is “YES” with inputs ϕ and its local data.

The algorithmic knowledge approach does not address time or memory bounded-

ness explicitly. In this approach, agents are assumed to possess a procedure which they

use to produce knowledge. However, the approach is concerned with the result rather

than the process of producing knowledge.

25

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

2.3.3 Dynamic logic

In [Duc, 1995, 1997] Duc proposed an epistemic logic to reason about agents that are

logically non-omniscient. The language of the logic is based on formulae of the form

Kϕ (the agent knows ϕ) for some propositional formula ϕ, and closed under negation,

conjunction and two future modal operators 〈R〉 and [R] for each agent. Duc defines

operators 〈R〉 and [R] which can be thought of something is true “at some future time”

and “at all future times” respectively. For instance 〈R〉Kϕ has the following meaning:

sometimes after using inference rule R the agent knows ϕ, whereas [R]Kϕ formalizes

the fact that always after using inference ruleR the agent knows ϕ. Agents represented

within this framework are non-omniscient because their actual beliefs at a single time

point need not be closed under any law. Agents will believe all consequences of their

beliefs eventually, after some interval of time. However, Jago [Jago, 2006] showed that

the future modality 〈R〉 used in the dynamic logic does not capture specific resource

bounds on the agent’s computational ability. For example, if ϕ is a very large proposi-

tional (modality-free) tautology then 〈R〉Bϕ is a theorem. If the agent’s memory is not

large enough to hold the sentence in its memory, then it is not correct to read 〈R〉Bϕ

as “ the agent believes ϕ at some future time”.

In Duc’s dynamic logic agent’s deduction steps are explicitly modelled which

makes it possible to model the time it takes the agent to arrive at a certain conclusion,

however dynamic logic doesn’t take memory bounds into account.

2.3.4 An explicit model of memory

In [Alechina et al., 2007] Alechina and colleagues have taken some preliminary steps

towards the automated verification of resource requirements of reasoning agents. An

agent consists of a knowledge base (KB) and some rules of inference (R), and it can de-

rive new information from KB using R. The proposed framework investigates whether

the agent has sufficient memory to derive a given formula ϕ, and if so what would be

the length of the shortest derivation when a bounded memory size is given. They show

26

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

that the memory requirements may differ for logically equivalent knowledge bases as

well as inference rules available to the agent. For example, consider an agent with

knowledge base KB1 : {A,A → B,B → C,C → D} that reasons using modus

ponens (MP), and another agent with knowledge base KB2 : {A,A → B,A ∧ B →

C,B ∧ C → D} which reasons using MP and conjunction introduction (∧I). Each

agent’s memory usage is modelled as the maximal number of formulae in the agent’s

memory at any given time. Then to derive the goal formula D from the two logically

equivalent knowledge bases KB1 and KB2, the memory requirements are different: 2

and 3 respectively.

The resulting logic BMLd is interpreted on transition systems. Firstly, they have

defined the language and transition systems for definite reasoners that works for rule-

based agents. The transition system of this model is defined as a triple 〈S,R, π〉, where

S is a set of states, R is a transition relation on S which is serial, and π is formula as-

signment function which may assign a set of complex, contradictory formulae to a

state. The bounds on memory are restricted by allowing π to assign at most n for-

mulae to any given state. Then they have introduced a more complex logic for agents

reasoning by cases that need to maintain a set of epistemic alternatives. A transition

system of this kind of reasoner comprises of a 6-tuple 〈S,R,W, y, t, f〉, where S is a

set of states, R is a relation on S, W is a set of epistemic alternatives, y is an assign-

ment function that assigns a set of epistemic alternatives to a given state, t and f are

functions which determines the true and false values for a given formula in a world.

The memory bound is imposed by the condition |t(w)|+ |f(w)| ≤ n, where t(w) and

f(w) are disjoint. Interesting properties of an agent that can be expressed include, e.g.,

EX≤nBϕ: the agent believes ϕ (or ϕ is in the agent’s memory) in n timesteps.

2.3.5 An explicit model of communication

A formalism for how the beliefs of communicating rule-based agents change over time

is studied in [Alechina et al., 2006]. Here a multi-agent case is considered where

27

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

agents communicate with each other by asking or telling. Agents communicate only

literals, they cannot ask or tell the rules they believe. The modalities “Ask” and “Tell”

are introduced to the agents internal language. A multi-agent model is defined as an

(n+3)-tuple : 〈S, T , {i}i∈{1,...,n}, {fi}i∈{1,...,n}〉, where S and T represents set of states

and accessibility relation respectively, {i}i∈{1,...,n} is a set of agents and each fi is a

labelling function corresponding to an agent iwhich assigns a set of formulae to a given

state. To capture the agent’s behaviour some conditions are applied to the assignment

functions fi and the accessibility relation T . The model of the proposed logic can be

encoded in the description language of a model checker to verify properties of agents

automatically. However, memory bounds have not been imposed in this framework,

so it is considered that agents possess enough space to store beliefs and assumed that

the agent’s reasoning is monotonic. Interesting properties of a system that can be

expressed include, e.g., 2nBiϕ, where 2n stands for n nestings of 2. The property

2nBiϕ states that always agent i believes formula ϕ in n timesteps. Since in this

framework the formulae are not deleted once they are in the agent’s memory, 2≤nBϕ

entails 2nBϕ, so using the notation 2nBiϕ is enough to state that always agent i

believes ϕ in n timesteps.

2.4 Analysis and expressiveness

In this survey of logical formalisms for multi-agent systems, we have mainly focused

on the logics of limited or restricted reasoning. There is a growing body of work where

the agent’s deduction steps are explicitly modelled in the logic, for example [Duc,

1997], [Alechina et al., 2007, Albore et al., 2006], which makes it possible to model

the time it takes the agent to arrive at a certain conclusion. Both the time and space

limitations on the agent’s knowledge were considered in step logics [Elgot-Drapkin

et al., 1991]. However, [Elgot-Drapkin et al., 1991] are not concerned with express-

ing and verifying space requirements for systems while solving a particular problem,

rather they are concerned with restricting the size of short term memory to isolate any

28

CHAPTER 2: LOGICAL FORMALISMS FOR MAS

possible contradictions. The logical framework presented in [Alechina et al., 2007]

investigates whether an agent with a knowledge base KB, has sufficient memory to

derive a given formula ϕ. The logical syntax contains both temporal and epistemic op-

erators. Interesting properties of an agent that can be expressed include, for example,

the agent can derive a goal formula ϕ from its knowledge base KB as EFBϕ (there

is some future state where the agent believes formula ϕ). Similarly, that a formula

is derivable in n timesteps can be expressed as EX≤nBϕ. However, while this work

represents a significant advance on the state of the art in doxastic logics, it considers

only single agents and ignores communication costs.

In [Alechina et al., 2006] Alechina and colleagues have presented a complete and

sound modal logic which describes how the beliefs of communicating agents which

reason using rules evolve over time. This logic can be used to express and verify

temporal properties of multi-agent systems such as “if agent i asks agent j λ (literal),

agent j is guaranteed to reply within n inference cycles”. However, memory bounds

have not been imposed in this framework.

Therefore, there is a need for logical formalisms which will be expressible enough

for the representation of real (resource-bounded) reasoning agents with different rea-

soning capabilities (e.g., agents reasoning in propositional logic, resolution, or rule-

based agents) in a cooperative setting. The logical framework will allow us to ex-

press properties of systems to investigate trade-offs between multiple resource bounds

(memory, time and communication bandwidth). In § 4.4 we present a temporal doxas-

tic logic, BMCL-CTL developed by Nga and Alechina [Alechina et al., 2009a], which

allows us to describe a set of reasoning agents with bounds on time, memory and the

number of messages they can exchange.

29

Chapter 3

Formal verification approaches to
MAS

Formal verification techniques for multi-agent systems are still in their infancy. This

is because of the complex nature of multi-agent systems and difficulties in verifying

properties which have non-trivial dynamics specified with rich languages. Neverthe-

less, there has been considerable work on verification of multi-agent systems using

both proof theoretic and model theoretic approaches. In model based verification ap-

proaches model checking techniques are used which are based on the semantics of the

specification language. In contrast, proof theoretic approaches generally rely on the-

orem proving techniques. This chapter reviews the state-of-the-art in verifying multi-

agent systems.

3.1 The proof theoretic approach

In the proof theoretic approach, theorem proving techniques are used to show syntac-

tically that the specification is a logical consequence of a given set of premises. In this

approach, in order to discover a deductive proof, logical expressions are manipulated

by means of rules of inference of the form:

P1, P2, . . . , Pn
C

Name

where C is a conclusion, and P1, P2, . . . , Pn’s are premisses. The inference rule

says that if all the premisses are derivable, then the conclusion is guaranteed to hold.

30

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

Inference rules may have no premisses: in that case their conclusion automatically

holds. Such rules are called axioms. A formal proof is a finite sequence of formulae,

each of which is either an axiom or the result of applying a rule of inference to previous

members of the sequence. A logical theory consists of a grammar for formulae, a

collection of axioms, and a collection of rules of inference.

Proving properties by hand is often infeasible, and instead automated theorem

proving techniques are typically used. There are a range of approaches to automated

theorem proving from proof assistants (e.g., the Coq proof assistant [Huet et al., 2009])

to fully automated systems (e.g., MSPASS [Hustadt and Schmidt, 2000] and TeMP [Hus-

tadt et al., 2004]). A proof assistant is an interactive proof editor (or other interface)

with which a human can guide the search for proofs. This may include, for exam-

ple, the invention and ordering of lemmas. Automated theorem proving, on the other

hand, deals with the development of computer programs that find a proof for any given

formula if there is one without human intervention (though the user may still have to

choose which axioms to include from the logical theory). As noted in Chapter 2, for-

mal verification requires a formal model of the verified system and formal descriptions

of the properties to be verified. In theorem proving techniques, both the system and

desired properties are specified in a single specification language. Rushby [Rushby,

2001] argues that: “one of the most fundamental choices in this approach to verifica-

tion is that of the logic on which to base the specification language. There is a trade-off,

at least in theory, between expressiveness of the logic and the automation that can be

provided for it”. In general automated theorem provers use classical first-order logic as

a specification language. Classical first-order logic is expressive enough to allow the

specification of many systems and properties. However, in some cases a non-classical

or possibly a higher-order logic must be used, which can limit the degree of automation

of the proof procedure.

31

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

3.1.1 Verification using theorem proving

There has been considerable work on verifying properties of agent-based systems using

theorem proving. In the remainder of this section, we briefly review previous work in

which theorem provers have been used to verify properties of multi-agent systems.

Note that this section is not intended to be a comprehensive survey, but merely to give

a flavour of the use of proof theoretic approach to verifying multi-agent systems.

3.1.1.1 Modelling and verification framework using ConGolog

In [Lespérance et al., 1999], Lespérance et al. have proposed a framework modelling

business processes for requirements analysis using ConGolog [Lespérance et al., 1995,

Giacomo et al., 2000], and verifying that the processes satisfy certain properties. The

semantics of ConGolog is based on an extended version of the situation calculus [Mc-

Carthy and Hayes, 1987]. Situation calculus is a first order language for representing

dynamic domains. It uses the following constructs to model a system.

• Actions: all changes to the world are the result of actions, which are denoted by

function symbols.

• Situations: a possible world history which is simply a sequence of actions is

represented by a first-order term called a situation.

• Fluents: relations whose truth values vary from situation to situation, called re-

lational fluents and functions whose denotations vary from situation to situation

are called functional fluents.

The actions in a domain are specified by providing the following axioms.

i) Action preconditions: which describes when actions may be performed.

ii) Action postconditions: which describes what would be the affects after perform-

ing an action.

32

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

The Golog [de Giacomo et al., 1997] logic-programming language includes the fol-

lowing constructs (δ, possibly subscripted, ranges over Golog programs) for complex

actions:

• a primitive action;

• (δ1; δ2) sequence of actions;

• (δ1|δ2) non-deterministic choice between actions;

• πv.δ non-deterministic choice of arguments;

• δ∗ non-deterministic iteration;

• {proc P1(~v1) δ1 end; . . . ;proc Pn(~vn) δn end; δ} procedures.

The ConGolog language contains all features of Golog with some additional con-

structs (P represents a program)—if φ then δ1 else δ2 (conditional execution); while

φ do δ (loop execution); (δ1‖δ2) (concurrent execution); (δ1〉〉δ2) (priority based exe-

cution); 〈φ→ δ〉 (interrupt on execution).

To illustrate the use of the framework, a simple mail-order business domain was

modelled for simulation and verification. The system consists of two agents: the order

desk operator agent, who processes payment for orders while waiting for the phone

to ring, and when it does, receives an order from a customer; and the warehouse op-

erator agent, who fills the orders that the order desk operator has received, and ships

orders for which the order desk operator has processed payment; whenever a shipment

is delivered by a supplier, the warehouse operator receives the shipment. The system

is described in ConGolog in terms of situations (or state), actions, and fluents. The

system starts in a particular situation (or state) and evolves into various other possi-

ble situations through actions performed by the agents. For instance in this example,

ShipOrder(i , order) represents the action of agent i shipping order , the relational flu-

ent OrderShipped(order) represents the fact that order has been shipped. Given the

specification of the mail-order business domain, interesting properties from the point

33

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

of view of verification include (i) no order is ever shipped before payment is pro-

cessed, i.e., ∀order ·OrderShipped(order)⊃PaymentProcessed(order); and (ii) the

mail-order business should have income, i.e., there is a situation where ∃order ·Payment

Processed(order). A user-assisted verification tool based on theorem proving is devel-

oped [Shapiro et al., 1997]. The tool relies on an encoding of the ConGolog semantics

in a form that the PVS [Owre et al., 1992] theorem prover can reason with. The tool

can be used to verify the above properties automatically.

In later work [Shapiro et al., 2002], Shapiro et al., introduced the Cognitive Agent

Specification Language (CASL), and proposed a framework CASLve for specifying

and verifying properties of multi-agent systems implemented in ConGolog. CASL

models knowledge using a possible worlds semantics adapted to the situation calculus.

K(i, s′, s) is used to denote that in situation s, agent i thinks that it could be in situation

s′. An agent i knows a formula ϕ , if ϕ is true in all situations K-accessible by agent i.

In CASL, goals are modelled using an accessibility relationW over possible situations.

W (i, s′, s) holds if in situation s, agent i considers that in situation s′ all its goals

are satisfied. Agent communication is achieved through two generic communication

actions, informWhether(i , j , ϕ) where agent i informs agent j of the truth value of

the proposition ϕ, and informRef (i , j , θ) where agent i informs agent j of the value of

the term θ. The verification framework CASLve is again based on the theorem prover

PVS and has been used to specify a meeting scheduler multi-agent system in CASL,

and to prove that all bounded-loop CASL programs terminate.

3.1.1.2 Verifying knowledge properties of security protocols

In [Dixon et al., 2007], Dixon et al. have investigated the application of temporal logic

of knowledge to the specification and verification of security of protocols. The pro-

posed framework allows modelling security protocols using temporal epistemic logic,

specifying and ultimately verifying some interesting properties using theorem proving.

The resulting logic named as KL(n), is a fusion of LTL with epistemic logic. Formulae

34

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

of KL(n) are constructed from a set P of primitive propositions. The language of KL(n)

contains standard Boolean connectors, temporal operators of LTL, and for knowledge

a set of unary modal connectives Ki is introduced for each agent i for a set of agents

Ag = {1, 2, . . . , n}. The formulae of KL(n) are constructed inductively as follows:

ϕ ::= > | p | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | U(ϕ1, ϕ2) | Kiϕ

where p ∈ P . The semantics of KL(n) are defined in the obvious way using tran-

sitions systems. The proposed framework is illustrated using a simple system known

as the Needham-Schroeder protocol (NSP) with public keys [Needham and Schroeder,

1978]. The Needham-Schroeder protocol with public keys establishes authentication

between an agent i who initiates a protocol and an agent j who responds to i. Interest-

ing properties of NSP that can be expressed include, e.g.,

G(rcv(j ,m1 , pub_key(j))→ XKj val_nonce(Ni , an))

which states that “once j receives the nonce of i encoded by j’s public key then j

knows the value of that nonce”. Here m1 represents the first message of NSP, i.e., i’s

identity and nonce encoded in j’s public key and an is the actual value of i’s nonce.

Dixon et al. have shown how these simple properties can be verified by hand using

clausal resolution for KL(n) as well as using the resolution theorem prover TeMP to

carry out these proofs automatically.

3.1.1.3 Discussion

The modelling and verification frameworks presented in [Lespérance et al., 1999,

Shapiro et al., 2002] describe agents’ knowledge and goals based on situation cal-

culus and knowledge producing actions [Scherl and Levesque, 1993]. The frameworks

allow a user to systematically describe the effects of actions on the world and the men-

tal states of the agents. They are able to verify properties of simple problems, however

the scalability of these approaches has not been explored.

35

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

The proposed framework presented in [Dixon et al., 2007] shows how communi-

cation protocols can be modelled using temporal epistemic logic and verified some

interesting properties using theorem proving techniques. The authors have shown that

how to verify properties of such systems using the existing theorem prover TeMP via a

translation to the monodic fragment of first-order temporal logic. While the approach

has a number of advantages it also has some drawbacks, e.g., the specification for a

simple systems like NSP requires many axioms and initial conditions, and the propo-

sitionalisation of the first-order axioms can result in a large specification [Dixon et al.,

2007].

The approaches discussed above show how theorem proving techniques can be

used to verify properties of agent-based systems. However, these approaches do not

model resources (such as time, space and/or communication) explicitly.

3.2 The model theoretic approach

The model based verification approach uses model checking techniques, which are

based on the semantics of the specification language. Applying model checking to a

design comprises three components. First, a detailed description M (model) of the

system has to be given using the description language of the model checker. Second,

a property ϕ of the system has to be given by means of some property specification

language, e.g., linear time logic (LTL) or computation tree logic (CTL). The expressive

power of LTL and CTL is not comparable. There are properties that can be expressed

in LTL but cannot be expressed in CTL, and vice-versa [Clarke et al., 2000, pp. 30–31].

Third, once the model M and the system property ϕ are given, a model checker will

check whether or not M |= ϕ. The third phase is completely automatic. Thus the

model checking problem can be stated simply as given a formula ϕ of some logical

language and a model M , to determine whether or not ϕ is valid in model M . A pic-

torial representation of the model checking process is shown in Figure 3.1, a detailed

description can be found in [Clarke et al., 2000].

36

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

Finite state model: M

Temporal logic formula: ϕ

Model checker

M|= ϕ ?

Yes

error

trace

No

Or

Figure 3.1: Model checking method

In the literature, different approaches to model checking have been developed;

these include approaches to model checking of interpreted systems [Lomuscio et al.,

2009], model checking techniques for programs [Godefroid, 1997, Visser et al., 2003,

Henzinger et al., 2003], an approach to model checking of Petri nets [Gardey et al.,

2005], to mention only a few of many examples. Each approach allows for a differ-

ent class of systems to be analysed. For instance, some model checking approaches

represent search state spaces and transitions explicitly, others express these concepts

implicitly. These approaches also use different modelling techniques. For example, the

approach presented in [Visser et al., 2003] translates Java programs into Promela spec-

ifications for model checking. Whereas the approach presented in [Godefroid, 1997]

uses a different technique to perform model checking on a concurrent system: instead

of trying to extract a model (from programs written in traditional languages like C),

it explores the state-space of the system by replacing the scheduler of the concurrent

system. This allows it to apply model checking to actual programs.

In the following sections, we introduce the state of the art techniques in model-

37

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

checking CTL and LTL, namely symbolic model-checking and automata-based model-

checking. We then survey how model checking techniques have been used to verify

properties of multi-agent systems.

3.2.1 Explicit-state model checking

In explicit-state model checking, an explicit representation of the system’s global state

graph is usually given by a state transition function. That is, it uses a graph to repre-

sent a Kripke structure with nodes for states and edges for transitions. Unlike sym-

bolic model checking where model checking algorithms manipulate sets of states, in

explicit-state model checking states are manipulated individually. In this approach the

model checking algorithms are essentially graph search algorithms. In many practical

problems the state transition graph is enormous. Therefore, when verifying properties

of the systems, due to the large size of the search space it is hardly ever possible to

explore the full state space.

3.2.2 Symbolic model checking

In symbolic model checking the system to be verified is modelled as a finite state

transition system, and the specifications are often expressed in linear or branching time

temporal logic. Model checking algorithms work by exhaustively exploring the state

space of the state transition system and checking automatically that the specification is

satisfied. The states and the transition relations are both represented symbolically by

means of Boolean formulae.

Let V = {v0, v1, . . . , vn−1} be a set of n Boolean variables required to encode the

system to be verified. Then a state of the system can be described by assigning values

to all the variables in V , for example, (v0 = b0, v1 = b1, . . . , vn−1 = bn−1) represents

a possible state of the system, where bi ∈ {0, 1}. That is, a state is a mapping of state

variables to values. With n variables, there are 2n possible states of the system.

The transition relation of the system is represented by the current state and the

38

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

next sate valuation of the Boolean variables i.e., a transition is a binary relation on

states. When exploring the state space of the model to be verified, the model checker

iteratively applies the transition relation to the current state resulting in the next state

which is known as image computation. The algorithms for symbolic model checking

are implemented entirely by manipulating Boolean formulae. Nonetheless, to make

symbolic model checking practical, an efficient data structure is required to represent

Boolean formulae. Reduced ordered binary decision diagrams [Bryant, 1986, 1992]

serve this purpose.

v0

0 0 0 0 01 1 1

v0

v1 v1

v2 v2 v2 v2

0 1

v0

v1

v2

(a) Truth table (b) Binary decision tree (BDT) (c) Binary decision diagram (BDD)

v0 v1 v2 f

0 0 0 0

0 0 0

0 0 0

0

0 0 0

0

0 0

1

1

1 1 1

1

1 1 1

1 1

1 1 1 1

Figure 3.2: Representation of Boolean function

3.2.2.1 Representation of Boolean functions

A simple and straightforward way to encode Boolean functions is to use the truth

tables. However given the exponential growth in size as the number of inputs increase,

truth tables are not suitable for functions with a large number of inputs. A Boolean

function f(v0, v1, . . . , vn−1) can also be represented as a Binary Decision Tree (BDT)

of height n. In the BDT for f(v0, v1, . . . , vn−1) each path defines a Boolean assignment

b0, b1, . . . , bn−1 for the variables of f and the leaves are labelled with the Boolean value

f(b0, b1, . . . , bn−1).

39

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

As an illustration (the example using here is adapted from [Bryant, 1992]), a truth

table and BDT of a Boolean function f : B3 → B defined by f(v0, v1, v2) = (v0∨v1)∧

v2 is depicted in Figure 3.2 (a) and (b) respectively. The internal nodes of the BDT are

labelled by Boolean variables. Every internal node vi (0 ≤ i ≤ 2) has exactly two

children. The two arcs from vi (0 ≤ i ≤ 2) to the children are labelled by 0 (shown

as a dashed line) and by 1 (shown as a solid line). The nodes of every path in the tree

have unique labels; the leaves of tree are labelled by 0 and 1.

The BDT representation of a Boolean function shows that like truth tables, the BDT

is also not very compact; in fact the number of leaves is identical to the size of the truth

table of f . However, BDTs may contain redundancy, which can be transformed into

a more compact data structure by identifying redundancies and then eliminating them.

The resulting diagram will no longer be a tree but it will become a directed acyclic

graph (DAG). To identify redundancies, consider the leftmost subtree rooted at the

node v2 in Figure 3.2(b). The two children (leaves of the tree) of the node v2 evaluate

to 0. This shows that the value of the Boolean formula f is 0 independently of the

test of this particular node. Therefore, these type of tests can be eliminated and whole

subtree can be reduced to 0. This transformation rule is called elimination of redundant

tests. The Figure 3.2(b) also shows that there are three identical subtrees rooted at

v2, they can be merged into one subtree which transforms the tree into a DAG, this

transformation rule is called merging isomorphic subdags. It is obvious that applying

the merging isomorphic subdags rule, all leaves with value 0(1) can be merged into

a single leaf. By applying these transformation rules to a BDT, the resulting data

structure is called binary decision diagram(BDD), depicted in Figure 3.2(c).

The shape and size of a BDD depend on the order of its variables. When a BDD

is built for a given Boolean function, the order of selecting variables on different paths

of the DAG may be different. A BDD of a Boolean function is ordered if on all paths

through the DAG the variables respect a given linear order say, ρ : v0 < v1 <

. . . < vn−1. The size of the BDD is determined both by the Boolean function being

40

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

represented and the chosen ordering of the Boolean variables. Different orders can

result in a dramatic increase or decrease in size of the BDDs [Bryant, 1992]. When

the ordering of the variables is fixed in advance for a Boolean function, there is a

unique reduced ordered BDD corresponding to this order. The following theorem due

to Bryant [Bryant, 1986] proves a key property that reduced ordered BDDs form a

canonical representation for Boolean functions.1

Theorem [Canonicity of BDD] “For any Boolean function f , there is a unique(up

to isomorphism) reduced ordered binary decision diagram”.

3.2.2.2 Kripke model to BDDs and reachability analysis

In this section, we consider a simple case and show how Kripke models can be repre-

sented as BDDs. Let us consider the Kripke model depicted in Figure 3.3, where the

system consists of two states s0 and s1 and three possible transitions (s0, s1), (s1, s0)

and (s1, s1). It is easy to see that the system can be encoded using a single Boolean

variable say v0 such that the valuation v0 = 0 represents state s0 and the valuation

v0 = 1 represents state s1. In order to represent transition relation, two sets of vari-

ables {v0} and {v′0} are required containing the variable v0 as current state variable

and v′0 as the next state variable, where v′0 = next(v0). If there is a transition, e.g.,

from state s0 ≡ (v0 = 0) to state s1 ≡ (v0 = 1), then the corresponding Boolean

function can be represented as ¬v0 ∧ v′0. The disjunction of all these transitions form

the transition relation of the model. Therefore, the transition relation of this model can

be represented as T (v0, v
′
0) := (¬v0∧v′0)∨ (v0∧¬v′0)∨ (v0∧v′0). The corresponding

BDDs representation of the transition relation T (v0, v
′
0) is shown at the bottom of the

Figure 3.3.

The model-checking algorithm for CTL works by annotating states by sub-formulae

of the formula to be verified, starting from simpler sub-formulae. For this, we need to

recursively compute the set of states reachable from a given state. For example, if the

1Reduced ordered binary decision diagram: from now on through out the thesis, we shall use the
only abbreviation BDD to mean reduced ordered binary decision diagram.

41

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

s0 s1

v0

v′0 v′0

0 1 1 1

v0

v′0

0 1

Figure 3.3: Boolean representation of Kripke model

subformula we are working with is EU (ϕ1, ϕ2) and the states are already annotated

with ϕ1 and ϕ2, then we start with a set of states satisfying ϕ2, and keep annotating

the states which are predecessors of those states and satisfy ϕ1 with EU (ϕ1, ϕ2). The

standard way to compute it is to use the fixed point iteration algorithm implemented

in terms of basic BDD operations. The main idea is to stay at the BDD level when

finding the next states of a set of states. This can be done by the image computation

of a set of states reachable in at most one step. Consider a system M whose state can

be encoded by n Boolen variables V = {v0, v1, . . . , vn−1}. A set Si of states of M can

be viewed as a Boolean function of variables in V . Let V ′ = {v′0, v′1, . . . , v′n−1} be the

set of next-state variables and T (~v,~v′) be the transition relation, where ~v and ~v′ are the

vectors of the current state and next state variables, respectively. The transition rela-

tion is thus a Boolean function over 2n variables. Then the image computation can be

defined as Img(Si) = (∃~v ·Si(~v)∧T (~v,~v′))[~v/~v′], where [~v/~v′] denotes the remaining

operation of replacing each next-state variable v′i by the corresponding current-state

variable vi, Si(~v) represents the BDDs of the set of states reached in i or fewer steps,

and T (~v,~v′) represents the BDDs of the transition relation. This operation can be per-

formed as a single step. In this case the transition relation is said to be monolithic,

and consists of a single BDD. Or the transition relation can be built as a list of small

BDDs, called partitioned transition relations Ti, i ≥ 0, which are implicitly disjoined

(asynchronous model of concurrency) or conjoined (synchronous systems). A more

42

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

detailed discussion of the implementation can be found in [Cimatti et al., 2000].

3.2.3 The model checking complexity of CTL

We state some well established theorems [Clarke et al., 2000, pp. 35–41][Baier and

Katoen, 2008, pp. 355–381], which give the complexity of CTL model checking as

well as the complexity of counterexample generation.

Theorem [Complexity of CTL Model Checking] “Given a transition systemM

and CTL formula ϕ, there is an algorithm for the CTL model checking problemM |=

ϕ that runs in time O(|ϕ|.(|S|+ |T |))”.

Theorem [Complexity of Counterexample Generation] “Given a transition system

M and a CTL path formula Φ. IfM 6|= AΦ, then a counterexample for Φ inM can

be determined in time O(|S|+ |T |). The same holds for a witness for Φ, provided that

M |= EΦ”.

This is the optimal result: CTL model checking is P -space complete, see for ex-

ample [Schnoebelen, 2002].

3.2.4 Automata-based model checking

In this approach, the system to be verified is modelled as a finite state transition system

M and the property to be verified is expressed as a formula ϕ of linear temporal logic

(LTL). The first step of model checking is to translate both the modelM and the nega-

tion of the specification ¬ϕ into Büchi automata. Then the model checking problem is

seen as an emptiness problem for the product of these two automata.

3.2.4.1 Büchi automata and LTL model checking

Finite-state automata accept finite words, i.e., sequences of symbols of finite length.

In practice we often model concurrent systems which show infinite behaviours, which

cannot be represented using finite state automata. A variant of finite-state automata

43

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

known as Büchi automata that accepts an infinite input sequence can be used to rep-

resent finite-state systems. Büchi automata have the same syntactic structure as finite

state automata but they have a different acceptance condition. Let Σ be a finite alpha-

bet. An infinite word or ω-word over Σ is simply an infinite sequence w = a1a2 . . .

for ai ∈ Σ. Let Σω denote the set of all infinite words over the alphabet Σ. Let

A = (Σ, S, δ, S0, F) be a finite automaton, where S is the set of states, and S0 ⊆ S is

the set of initial states, δ ⊆ S × Σ × ℘(S) is the transition relation, and F the set of

final states. Since we are interested in the infinite behaviour of the system, A has the

following definition of acceptance.

Definition 3.2.1. A run over an infinite word w = a1a2 . . . (for ai ∈ Σ) is a sequence

of states s̄ = s0s1s2 . . . such that s0 ∈ S0 and si ∈ δ(si−1, ai) for all i ≥ 1. Let

infinite(s̄) = {s | s appears infinitely often on s̄}, then run s̄ ofA is said to be accept-

ing iff infinite(s̄) ∩ F 6= ∅.

The finite automaton A with the above acceptance condition is called a Büchi au-

tomaton. Therefore, a Büchi automaton is a finite automatonA = (Σ, S, δ, S0, F), and

the language accepted byA isL(A) = {w | there is a run s̄ overw such that infinite(s̄)∩

F 6= ∅}. In automata-based model checking we are interested in determining whether

the systemM, represented by Büchi automaton AM, satisfies a (LTL) property spec-

ification ϕ, represented by another Büchi automaton A¬ϕ. A¬ϕ can be automatically

derived from a given LTL formula ϕ. The model checking problem is to check whether

M satisfies ϕ iff the Büchi automaton AM satisfies A¬ϕ. Now AM satisfies A¬ϕ iff

L(AM) ⊆ L(A¬ϕ). Since Büchi automata are closed under complement and intersec-

tion, L(AM) ⊆ L(A¬ϕ) iff L(AM) ∩ L(A¬ϕ) = ∅, where L(A¬ϕ) is the complement

of L(A¬ϕ).

3.2.4.2 Complexity of model-checking LTL using automata

The complexity of LTL model checking using automata is given by:

44

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

Theorem [Complexity of LTL model checking] “Given a transition systemM and

LTL formula ϕ, there is an algorithm for the LTL model checking problemM |= ϕ

that runs in time O(|M| × 2|ϕ|)” [Lichtenstein and Pnueli, 1985].

The above theorem shows that the time complexity of LTL model checking algo-

rithm is linear in the size of the model and exponential (in the worst case) in the size

of the formula. Sistla and Clarke show in [Sistla and Clarke, 1985] that LTL model

checking is P -space complete.

3.2.5 Discussion

3.2.5.1 Discussion of symbolic model checking

Symbolic model checking is a powerful formal specification and verification method,

and it is regarded as the state-of-the-art technology for verifying finite state concur-

rent systems. It allows a very compact representation of states and state transition

relations. It has the ability to execute at the same time all transitions enabled at the ini-

tial states and manipulate sets of states effectively. However, in model checking state

space traversal is the main computational bottleneck. Despite considerable efforts,

symbolic model checking techniques suffer from the state-space explosion problem.

As explained above, computing reachable state sets from a given state transition graph

is one of the main components of symbolic model checking. A well known problem

with BDD-based reachability searches is the size of the BDDs. In many cases the size

of the intermediate BDDs during image computation become very large [Burch et al.,

1993], and the system blows up while computing the reachable state space.

In order to reduce BDD size, researchers have developed various algorithms which

are used based on the application model during image computation, e.g., monolithic,

partitioned transition relation, early quantification etc. [Burch et al., 1993]. However,

“even using all these state-of-the art algorithms the size of the intermediate BDDs

and the BDDs representing the reachable state set tend to behave as shown in Fig-

ure 3.4” [Bryant and Meinel, 2002].

45

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

Start computation End computation

Time

BDD size

Figure 3.4: Memory consumption during image computation

3.2.5.2 Discussion of automata-based model-checking

In practice explicit-state model checking, including automata-based model checking,

works efficiently if the number of reachable states is small. However, to handle large

search spaces techniques exist to prune the search, for example, partial order reduction,

as implemented in the SPIN model checker. It is possible in many cases to avoid

constructing the entire state space of the system to be verified. This is because the states

of the automaton AM are generated only when needed, while checking the emptiness

of its intersection with the property automaton A¬ϕ. Many state-of-the-art explicit-

state model checking tools, including SPIN [Holzmann, 1997], the Maude LTL model

checker [Eker et al., 2003], perform the verification using double depth-first-search

algorithms presented in [Courcoubetis et al., 1992], after translating the system and its

properties into Büchi automata.

3.2.5.3 Symbolic vs. automata-based model-checking

The choice between symbolic and explicit-state model checking may depend on the

system being verified. It has been argued that symbolic model checking performs

better for synchronous systems, whereas explicit-state model checking is better for

asynchronous systems [Hu et al., 1994][Magazzeni, 2009, pp. 13]. However, Eisner

and Peled [Eisner and Peled, 2002] have reported that symbolic model checking per-

46

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

forms better even for asynchronous systems. In this thesis, we use both symbolic and

explicit-state model checking approaches.

3.2.5.4 CTL vs. LTL

We use both LTL and CTL logics to formalise desired properties of the system to

be verified. The time complexity of CTL model checking algorithm is linear in the

state space of the system model and the formula. In contrast, the time complexity

of LTL model checking algorithm is linear in the size of the model and exponential

(in the worst case) in the size of the formula. However, Vardi [Vardi, 2001] argues

that: “usually the size of the formula is much smaller than the size of the transition

system. So the exponential complexity in the size of the formula is not very significant

in practice”. Emerson and Lei show in [Emerson and Lei, 1987] that any linear logic

can be extended to a branching logic that can be decided with the same complexity.

3.2.6 Model checking techniques for MAS

In recent years there has been considerable work on model checking temporal epis-

temic (doxastic) aspects of multi-agent systems using symbolic and explicit state (and

other) techniques. In this section, we briefly review the state-of-the-art model checking

techniques for the verification of multi-agent systems. This includes the use of explicit-

state (as implemented, e.g., in the SPIN or JPF [Visser et al., 2003]) model check-

ers) and symbolic (as implemented, e.g., in the Mocha model checker) approaches for

model checking multi-agent systems.

3.2.6.1 Model checking agent programs

In [Wooldridge et al., 2002], Wooldridge et al. have developed model-checking tech-

niques for the verification of agent-based systems, where each agent has a mental state

consisting of BDIs (beliefs, desires and intentions)2. The proposed framework intro-

2Rao and Georgeff [Rao and Georgeff, 1991] have developed a logical theory based on a possible
worlds approach for deliberation by agents based on three mental attitudes beliefs, desires, and inten-

47

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

duces a simple imperative language MABLE and a specification language MORA, a

simplified form of LORA [Wooldridge, 2000]. A MABLE system consists of a set of

agents where each agent is programmed using the MABLE language. The syntax of

MORA combines temporal logic and dynamic logic, and incorporates modalities for

beliefs, desires and intentions. The MABLE compiler takes as input a MABLE system

and properties of the system to be verified described in MORA, and generates an en-

coding of the system for SPIN model checker, allowing properties of the system to

be verified. The description of the MABLE system translated into PROMELA (spec-

ification language of the SPIN) and the property of the system specified in MORA is

translated into LTL used by SPIN for model checking. Many interesting properties that

can be specified in MORA and verified them (after translating) using SPIN include for

example “some agent i eventually comes to believe that agent j intends that i believes

the formula ϕ”.

In [Bordini et al., 2003], Bordini et al. have developed model-checking techniques

that apply directly to multiagent programs written in AgentSpeak(F). The basic differ-

ence between MABLE and AgentSpeak(F) is that MABLE is an imperative program-

ming language where as AgentSpeak(F) is a logic programming language. The aim

of the research [Bordini et al., 2003] is to facilitate model checking of AgentSpeak(L)

systems introduced by Rao in [Rao, 1996]. In order to reach that goal the first step

was to introduce AgentSpeak(F), a finite sate version of AgentSpeak(L). The language

AgentSpeak(F) is then used to formalise a multi-agent system expressed using Rao

and Georgeff’s BDI logic. The next step is translate AgentSpeak(F) programs into

PROMELA and BDI specification into an LTL specification, so that the system can be

model checked using the model checker SPIN. The translation process is performed

automatically by a translator called CASP (Checking AgentSpeak Programs).

In [Dennis et al., 2008a] a framework for the verification of MAS is proposed that

incorporates agents programmed in several programming languages. The authors have

tions. These mental attitudes represent the informational state, motivation state, and deliberative state
of an agent.

48

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

developed the AIL (Agent Infrastructure Layer) toolkit so that new agent program-

ming languages can easily be incorporated into the AJPF (an extended version of JPF)

model checking architecture. The basic idea for the development of AIL was to use

the semantic rules presented in [Dennis et al., 2008b], capturing all major features

of common BDI languages. A number of popular BDI languages have been con-

sidered, including variant of AgentSpeak [Rao, 1996] used in Jason [Bordini et al.,

2007b] and 3APL. Other agent languages that have been taken into account include

Jadex [Braubach and Lamersdorf, 2005] and Concurrent METATEM [Fisher, 1993].

Properties can be specified independently of any programming language specific re-

quirements and are given using modal temporal logic at the AIL level. Interesting

properties of systems that can be specified and verified include, e.g., ♦(B(i, pickup))

(“eventually, agent i believes that the object is picked up”).

3.2.6.2 Model cheking techniques for interpreted systems

Interpreted systems [Fagin et al., 1995] are considered by many as a prime example of

computationally grounded models of multi-agent systems (see e.g., [Lomuscio et al.,

2009]). A strand of work on model-checking techniques for MAS based on interpreted

systems is carried out by various researchers, including those presented below.

In [van der Hoek and Wooldridge, 2002] a framework is proposed for model check-

ing temporal logic of knowledge (CKLn). CKLn combines LTL with epistemic logic.

The underlying theory of the framework is interpreted systems. Each agent i in the

system is characterised by a finite set of local states Li and a finite set of actions

Ai. Actions are performed non-deterministically using a protocol Pi : Li → ℘(Ai).

A global state of a multi-agent system is represented by 〈l1, l2, . . . , ln〉, where each

li ∈ Li (1 ≤ i ≤ n) is the local state of agent i. Then G ⊆ L1 × L2 × . . . × Ln

represents the set of reachable states of the system. A run r of the system is a function

from time (assumed discrete) to global states, r : N → G. A system model R is con-

sidered to be a set of runs. A pair (r, t) is a point represented by a run r ∈ R at time

49

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

t ∈ {0, 1, 2, . . .} . Let r(t) = (s1, s2, . . . , sn) be a global state and define ri(t) = si

(local state). Two points (r, t) and (r′, t′) are indistinguishable to an agent i denoted by

(r, t) ∼i (r′, t′) if ri(t) = r′i(t
′). An interpreted system I is defined as a pair (R, π),

where R is a set of runs over a set of global states and π truth assignment function,

which gives the set of primitive propositions that are true at each point in R. The re-

lation ∼i is used to give a semantics to the knowledge modalities in CKLn. To give a

semantics to the common knowledge modalityCΓ two more relations∼EΓ and∼CΓ were

introduced. If the knowledge and common knowledge modalities are omitted from the

language of CKLn then it becomes simple LTL. In case of an simple LTL formula ϕ

interpreted at (r, t) in I which depends only on run r but for knowledge modalities

other runs of I has to be considered.

The LTL satisfaction relation denoted by |=LTL and is defined by 〈I, (r, t)〉 |=LTL ϕ

means that LTL formula ϕ is satisfied at point (r, t) in I. The framework cannot model

check directly formulae expressed in CKLn, so CKLn model checking is reduced to

LTL model checking using the concept of a local proposition [Engelhardt et al., 1998].

A formula of the form Kiϕ (an agent i knows ϕ) is interpreted as : Kiϕ iff there is

a proposition p local to i such that p is true, and whenever p is true, ϕ is also true.

That is the formula Kiϕ is translated into a formula of the form G(p → ϕ) for p is

an appropriate propositional formula local to agent i. The authors have shown how

the properties of a bit transmission protocol system (adapted from [Meyer and van der

Hoek, 1995, pp. 39–44]) can be verified using SPIN.

The problem of model checking knowledge has also been considered in [van der

Meyden and Shilov, 1999]. The verified systems are modelled using the class of in-

terpreted systems with perfect recall semantics. In this semantics an agent remembers

the whole sequence of its past states. The perfect recall semantics defines a set of

observation functions Oi and the perfect recall of an agent i at time t is defined by

ri(t) = Oi(s0).Oi(s1) . . . Oi(st). Agent always know the time due to it’s synchronous

property, which means that if (r, t) ∼i (r′, t′) then t = t′. The authors have provided

50

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

automata theoretic characterization and algorithms, and a detailed analysis of the prob-

lem of model checking. The idea is further extended [van der Meyden and Su, 2004]

to provide a BDD based algorithm for the verification of synchronous systems with

perfect recall. The algorithm accepts temporal epistemic formulae whose structure is

of the form XnKip, where Xn is the concatenation of n LTL next operators X and p is

an atomic proposition. It has been shown that these class of formulae can be reduced to

Boolean formulae using BDDs. Consequently verification of XnKip in synchronous

interpreted systems is reduced to the verification of the equivalence of Boolean formu-

lae. The authors have developed a system based on these ideas, and applied it to verify

the dining cryptographers protocol [Chaum, 1988].

In [Penczek and Lomuscio, 2002], Penczek and Lomuscio have applied bounded

model-checking techniques for the verification of MAS. The framework adapts the

semantics of interpreted systems and the resulting logical formalism CTLK is a com-

bination of CTL and an epistemic component. A computation in an interpreted sys-

tem I is a possibly infinite sequence of global states, and a bounded computation

“k-computation” is a computation of bounded length k. In a given interpreted system,

a k-model is constructed by by taking all the possible runs of length k. The bounded

semantics of CTLK is defined over k-model Mk. The authors have shown that for some

k ≤ |M | (state space size of M) the validity of a formula ϕ of CTLK on Mk implies

its validity in the standard model M and vice versa. Then it is shown that the problem

of verifying a formula ϕ over Mk can be achieved by checking the satisfiability of a

propositional Boolean formula [Mϕ]k ∧ [ϕ]Mk
. Which is a conjunction of the Boolean

encoding of the model under consideration and the formula to be verified. The veri-

fied properties are, for example, AGCϕ : whether a common knowledge of a fact is

always true, EG¬Cϕ: whether there is a path where common knowledge of a fact is

not always true.

Verification of MAS via bounded model checking have also been presented in [Lo-

muscio et al., 2007]. In this framework, the concept of real time has been incorpo-

51

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

rated into the standard interpreted systems semantics using the timed-automata seman-

tics [Alur et al., 1993].

3.2.6.3 Model checking resource-bounded agents

The vast majority of the literature neglects resource requirements when applying model

checking techniques for the verification of multi-agent systems. However, Alechina

and colleagues [Albore et al., 2006, Alechina et al., 2007] have taken some prelimi-

nary steps towards the automated verification of resource requirements of reasoning

agents. In [Alechina et al., 2007], they have investigated whether an agent with a

knowledge base KB, has sufficient memory to derive a given formula ϕ. They repre-

sent a reasoning agent as a finite state machine in which the states correspond to the

formulae currently held in the reasoner’s memory and the transitions between states

correspond to the application of an inference rule. They have introduced a logical

language in which they can formulate properties of memory-bounded reasoners, and

specified and verified properties of a rule-based agent and an agent reasoning in clas-

sical logic. The properties that can be expressed include EFBϕ, EX≤nBϕ. In the

proposed model authors recast the problem of identifying the existence of a deduc-

tion for a goal from a knowledge base for an agent as a planning problem. To check

whether a reasoner has enough memory to derive a formula ϕ, they specify the FSM

as input to the model-based planner MBP [Cimatti et al., 2003] and check whether the

reasoner has a plan (a choice of memory allocations and inference rule applications),

all executions of which lead to states containing ϕ. They have also investigated ex-

amples of trade-offs between time and memory requirements for rule-based reasoners

(larger memory enables shorter derivations).

A framework for specifying and verifying systems of communicating rule-based

reasoners is presented in [Alechina et al., 2006]. In order to illustrate the proposed

framework, the authors have considered a very simple example consisting of two

agents, and shown that if one agent asks something to another agent, then the second

52

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

agent is guaranteed to reply within a given number of inference cycles. The interesting

properties that can be specified and verified include 2nBiϕ, where 2n is n nesting of

2. The authors have shown that such properties can be verified using existing model

checking techniques, and describe an approach using the Mocha [Alur et al., 1998a]

model checker.

3.2.6.4 Discussion

The verification frameworks presented in [Wooldridge et al., 2002, Bordini et al., 2003]

translate the multi-agent systems specification into a SPIN specification to perform the

verification. The MABLE language provides a number of agent-oriented development

features: agents in MABLE have a mental state consisting of beliefs, desires and in-

tentions, and communicate using KQML [Finin et al., 1994]-like performatives. The

work [Bordini et al., 2003] introduces the main aspects of AgentSpeak(F) and its in-

terpreter, and then addresses the use of model-checking techniques for the verification

of multi-agent systems implemented in AgentSpeak(F). Both the frameworks allow

system designer to formally express the system and its desired properties (as formulae

of linear-time BDI logic) to be verified using model checking techniques. Bordini and

colleagues [Bordini et al., 2004] extended the work on model-checking properties of

agent programming languages and continued by [Bordini et al., 2006, Dennis et al.,

2008a] by translating to a common underlying abstract language, Agent Infrastructure

Layer , which is then translated to Java, and checked using AJPF. The architecture

presented in [Dennis et al., 2008a] is much more flexible than previous approaches

to model checking for agent programs. Most importantly the approach supports the

verification of multi-agent systems where individual agents have been programmed in

different agent languages.

The main message of [van der Hoek and Wooldridge, 2002] is that, using the con-

cept of local propositions, the effort in model checking CKLn formulae is reduced to

LTL formulae. Thus the properties of the system can be verified using standard model

53

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

checker such as SPIN. However, the approach requires significant user intervention

as the reduction method of formulae from CKLn to LTL is manual. The main mo-

tivation of the work presented in [Penczek and Lomuscio, 2002] is to translate the

formulae CTLK into propositional formulae to model check properties of systems. In

bounded model checking, both the model Mk and the formula ϕ to be verified are

translated into Boolean formulae [Mϕ]k and [ϕ]Mk
respectively. The model checking

problem is then reduced to SAT-problem of verifying the satisfiability of the formula

[Mϕ]k∧[ϕ]Mk
. The idea of [van der Meyden and Shilov, 1999, van der Meyden and Su,

2004] is also model checking formulae in the proposed logic is to reduce its equivalent

Boolean formulae. However, unlike [van der Hoek and Wooldridge, 2002], [Penczek

and Lomuscio, 2002] where an agent’s knowledge are considered based on current

observation, in [van der Meyden and Shilov, 1999, van der Meyden and Su, 2004]

an agent’s knowledge is based on the observations of its history. Nevertheless, while

these works show a significant effort that have been made towards the verification of

multi-agent systems, they adapt the classical approach of knowledge representation.

Furthermore, communication mechanism is modelled via axioms that instantaneously

transmit knowledge from one agent to the other. For example, (Kiϕ → Kjϕ)—if

agent i knows that ϕ, then agent j knows that ϕ instantly [Fagin et al., 1995]. However

in real agent communication needs bandwidth and takes time.

The works presented in [Albore et al., 2006, Alechina et al., 2007] show how single

agent systems are modelled using bounded memory logical formalisms. The frame-

works [Alechina et al., 2007, Albore et al., 2006] show how to verify automatically the

minimal resource(space and time) requirements to achieve a certain goal in a single

agent system. Whereas in [Alechina et al., 2006], the authors have presented an inter-

esting approach to model multi-agent interactions. The proposed framework models

the communication for a particular reasoner (rule-based), the formulae of the proposed

logics can be translated into the specification language of a model checker. In order to

verify some interesting properties of the system automatically, the authors have used

54

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

the model checking tool Mocha. However, while these works represent a significant

advance on the state-of-the-art in verifying resource bounded agents, the frameworks

are unable to express the computational (memory and time) and communication re-

sources together. Furthermore, the verification approach in [Alechina et al., 2007,

Albore et al., 2006] explicitly represents the memory model as a part of the planning

domain. The resulting state space explosion is therefore due in large part to the fact

that a single epistemic state can be associated with several different configurations of,

e.g., memory usage.

Thus, none of the approaches mentioned above allow us to express computational

(memory and time) and communication resource limitations altogether, and these ap-

proaches do not allow the verification of multi-agent systems considering the inter-

action between different resources (time, memory and communication bandwidth).

Hence there is a need to define frameworks for verifying systems considering the in-

teraction between different resources (time, memory and communication bandwidth).

In the subsequent chapters we will propose some frameworks for analysing resource

requirements for systems of reasoning agents, and investigating trade-offs between

multiple resource bounds.

3.3 The choice of verification approach

There are many practical advantages and disadvantages to both proof theoretic and

model theoretic approaches. For instance, theorem proving techniques can deal with

infinite state spaces. While some theorem provers including, e.g., PVS [Owre et al.,

1992] and the Coq proof assistan [Huet et al., 2009] require human intervention, there

are fully automated theorem provers (for example MSPASS [Hustadt and Schmidt,

2000] and TeMP [Hustadt et al., 2004] to cite two of many) that can handle many of the

logics considered in this thesis. However, we agree with Halpern and Vardi [Halpern

and Vardi, 1991] who argue that: “usually very expressive logics are used to capture

the agents’ behaviour while modelling multi-agent systems. Thus it is harder to prove

55

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

theorems in that logic”. In contrast to the theorem proving, model checking is limited

to finite-state systems. It is a completely automatic approach, and if the property being

verified is violated, model checkers often produce a counterexample trace showing

why the specified property is not satisfied. The counterexamples are very useful in

finding subtle errors in the design of the system being verified, and it can be used

effectively for the purpose of system debugging. In this thesis, we use model checking

techniques to verify the properties of agent-based systems.

3.4 Model checking tools

As mentioned in the previous section, we focus on the use of model checking tech-

niques for the verification of multi-agent systems. This section reviews some of the

most popular model checking tools which are often used for the verification of multi-

agent systems.

3.4.1 MCK

MCK [Gammie and van der Meyden, 2004] is a model checker for the logic of knowl-

edge, written in Haskell. The MCK system uses interpreted systems [Fagin et al., 1995]

as underlying semantics, and supports both linear and branching time temporal opera-

tors. Actions and the environment may be only partially observable at each instant in

time. MCK supports several different ways of defining knowledge given a description

of a multi-agent system and the observations made by the agents: observation alone;

observation and clock; and perfect recall of all observations. The tool uses BDDs to

represent models symbolically and the system supports several different types of tem-

poral and epistemic specifications. In the epistemic dimension, agents may use their

observations in a variety of ways to determine what they know. In the temporal di-

mension, the specification formulae may use either LTL or CTL. The system supports

different combinations of these parameters to different degrees. The input language

of MCK describes the environment in which agents interact, observation functions for

56

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

the agents to define which part of the environment each agent can observe, the agents

behaviour using actions, the set of initial states, fairness constraints, and formulae to

be checked.

3.4.2 VerICS

VerICS [Nabialek et al., 2004] is a model checking tool for verification of timed and

multi-agent systems. The tool offers three complementary methods of verification:

SAT-based Bounded Model Checking (BMC), SAT-based Unbounded Model Check-

ing (UMC), and an on-the-fly reachability checking while constructing abstract mod-

els of systems. The input specification accepted by VerICS can be represented using a

subset of Estelle [Budkowski and Dembinski, 1987], which is an ISO standard speci-

fication language designed for describing distributed systems. The tool then translates

them into the common format called Intermediate Language [Doroś et al., 2002]. The

tool also deals with lower level descriptions of systems such as timed automata [Alur

and Dill, 1990, 1994] and Petri nets [Reisig, 1985]. Systems represented in the Inter-

mediate Language are further translated to a set of timed automata. This translation

result is then fed to the other components of VerICS for performing reachability or tem-

poral (epistemic) logic model checking. In the case of unrestricted time constrained

system, the untimed automaton generated from an Intermediate Language specification

is a model of a system and it is possible to apply standard model checking algorithms to

it. The properties of multi-agent systems are specified in CTLpK which is an extension

of CTL with past modalities and an epistemic component.

3.4.3 MCMAS

MCMAS [Lomuscio et al., 2009] is a model checker for multi-agent systems. MCMAS

permits the automatic verification of specifications that use epistemic, correctness, and

cooperation modalities, in addition to the standard temporal modalities. MCMAS uses

BDD based symbolic model checking algorithms, but unlike MCK, the semantics does

57

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

not assume perfect recall. The specification language of MCMAS is interpreted sys-

tem programming language (ISPL), a modular language inspired by interpreted sys-

tems [Fagin et al., 1995]. The tool supports various property specification languages

including CTL, epistemic operators. The properties to be verified can also be spec-

ified using ATL [Alur et al., 1998b]. Given a system model in ISPL and a formula

to be verified in that model, MCMAS computes the set of states in which the formula

holds and compares it to the set of reachable states. The algorithms implemented to

calculate this set extends the standard fix-point boolean characterization for temporal

operators [Clarke et al., 2000] to epistemic, correctness, and cooperation operators.

3.4.4 DEMO

The model checker DEMO implements the dynamic epistemic logic of [Baltag and

Moss, 2004]. In this ‘action model logic’ the global state of the multi-agent system is

represented by an epistemic model (multi-agent Kripke model), and the agent’s actions

are represented by an action model. An action model is also based on a multi-agent

Kripke frame, but instead of carrying a valuation it has a pre-condition function which

assigns a precondition to each point in the action model, which stands for an atomic

action [Ditmarsch et al., 2005].

3.4.5 Mocha

Mocha [Alur et al., 1998a] is a software tool for the modular and hierarchical ver-

ification of heterogeneous systems. The input language that Mocha uses for model

description is reactive modules language. Unlike simple state-transition graphs, re-

active modules form a compositional model in which both states and transitions are

structured. Reactive modules are built from atoms, and atoms are built from variables

which are the elementary particles of systems. Each specification consists of one or

more modules and they are composed in parallel. Mocha implements enumerative, as

well as symbolic, state-exploration algorithms and both checkers have the capability

58

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

to produce error traces. It supports three kinds of simulation, namely, random simula-

tion, manual simulation, and game simulation. Two versions of Mocha are available:

cMocha and jMocha. The property specification language of Mocha is ATL [Alur et al.,

1998b] which includes CTL.

3.4.6 NuSMV

NuSMV [Cimatti et al., 2000] is a symbolic model checker which is a reimplemen-

tation of SMV[McMillan, 1992]. It implements symbolic model checking techniques

for CTL and bounded model checking techniques for LTL. The specification language

of NuSMV permits the definition of the temporal model in an expressive, compact

and modular way. NuSMV applies symbolic techniques based on BDDs or proposi-

tional satisfiability (SAT) solvers to efficiently perform verification over large state

spaces. NuSMV allows for the representation of synchronous and asynchronous finite

state systems, and for the analysis of specifications expressed in CTL and LTL, using

BDD-based and SAT-based model checking techniques. Heuristics are available for

achieving efficiency and partially controlling the state explosion. The interaction with

the user can be carried on with a textual interface, as well as in batch mode.

3.4.7 SPIN

SPIN [Eker et al., 2003] is designed for analysing the logical consistency of concurrent

or distributed asynchronous software systems. SPIN verification models are focused on

proving the correctness of process interactions, and they attempt to abstract as much as

possible from internal sequential computations. The system models are described in a

modelling language called PROMELA (a Process Meta Language), which helps to find

good abstraction of system designs. SPIN supports two principal modes of operation

such as simulation and verification. SPIN uses finite automata based model checking.

The verification procedure is based on the reachability analysis of the automata, using

an optimized depth-first-search or breadth-first-search graph traversal method.

59

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

3.4.8 Maude LTL model checker

Maude LTL model checker [Eker et al., 2003] supports on-the-fly explicit-state model

checking of concurrent systems. The specification language of Maude LTL model

checker is rewrite theories, which is based on the mathematical theory of rewriting

logic [Meseguer, 1990, 1992]. Maude LTL model checker can model check systems

whose states involve data in data types of infinite cardinality. Data types could be any

algebraic data types. The only assumption is that the set of states reachable from a

given initial state is finite. LTL model checking is performed by constructing a Büchi

automaton from the negation of the property formula and the specified system, and

lazily searching the synchronous product for a reachable accepting cycle using double

depth-first algorithm presented in [Holzmann et al., 1996].

3.4.9 The choice of model checker

The above mentioned model checking tools, among others, have been extensively used

for automatic verification of multi-agent systems. However it is difficult to decide

which model checker is the best to use for verification of MAS. Note that since be-

lief operators in our model to be verified are interpreted syntactically, we do not need

to use a model-checker for temporal epistemic logic, e.g., MCMAS [Lomuscio et al.,

2009], MCK [Gammie and van der Meyden, 2004] or others. In our research we use

Mocha, NuSMV, and the Maude LTL model checker. We use the Mocha symbolic

model checker due to the ease with which we can specify concurrently executing agents

in reactive modules, the description language used by Mocha. NuSMV is also a state-

of-the-art symbolic model checker, which has been used for verifying several problems

corresponding to interesting scenarios from real-world applications [NuS]. In this the-

sis we consider one of the example scenarios, where agents reason using first-order

rules incorporating some reasoning strategies. In order to verify properties of such

systems we use Maude LTL model checker. The specification language of the Maude

LTL model checker supports any algebraic data types, this simplifies modelling of the

60

CHAPTER 3: FORMAL VERIFICATION APPROACHES TO MAS

agents’ (first-order) rules and reasoning strategies.

61

Chapter 4

Verifying resolution-based systems

In this chapter, we present a framework for verifying systems composed of resolution-

based reasoning agents, where the resources each agent is prepared to commit to a goal

(time, memory and communication bandwidth) are bounded. The framework allows

us to reason about and verify tradeoffs between time, memory and communication in

systems of distributed reasoning agents. We consider a typical problem for distributed

reasoning agents, which we can easily parameterise to increase or decrease the problem

size. We then show how model checking techniques can be used to verify that the

agents can achieve a goal only if they are prepared to commit certain time, memory

and communication resources. We also present an analysis of the problem and its

encoding complexity in terms of state space size and branching factor.

4.1 Distributed reasoners

We define the shape of a proof in terms of the maximum space requirement at any step

in the proof and the number of inference steps it contains. The lower bound on space

for a given problem is then the least maximum space requirement of any proof, and the

lower bound on time is the least number of inference steps of any proof. In general,

a minimum space proof and a minimum time proof will be different (have different

shapes). Bounding the space available for a proof will typically increase the number

62

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

of inference steps required and bounding the number of steps will increase the space

required. For example, a proof which requires only the minimum amount of space may

require rederivation of intermediate results.

We define the bounds on a reasoning agent in terms of its available resources ex-

pressed in terms of memory, time and communication. We assume that the memory

required for a particular proof can be taken to be its space requirement (e.g., the num-

ber of formulae that must be simultaneously held in memory), and the time required

of a proof is taken to be the number of inference steps necessary to solve the problem.

The communication requirement of a proof is taken to be the number of messages

exchanged with other agents.

For a particular agent solving a particular problem, the space available for any

given proof is ultimately bounded by the size of the agent’s memory and the number of

inference steps is bounded by the time available to the agent, e.g., by a response time

guarantee offered by the agent, or simply the point in time at which the solution to the

problem becomes irrelevant. The question then arises of whether a proof can be found

which falls within the resource envelope defined by the agent’s resource bounds.

For a single agent which processes a single goal at a time, the lower bounds on

space for the goal determines the minimum amount of memory the agent must have if it

is to solve the problem (given unlimited time); and the lower bound on time determines

the time the agent must commit to solving the problem (given unlimited memory). In

the general case in which the agent is attending to multiple goals simultaneously, the

memory and time bounds may be given not by the environment, but by the need to

share the available resources between multiple tasks. For example, the agent may need

to share memory between multiple concurrent tasks and/or devote no more than a given

proportion of CPU to a given task. In both cases, the agent designer may be interested

in tradeoffs between resource bounds; for example, whether more timely responses

can be provided by pursuing fewer tasks in parallel (thereby making more memory

available to each task) or whether more tasks can be pursued in parallel if each task is

63

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

allowed to take longer.

In the distributed setting we distinguish between symmetric problem distributions,

where all agents have the same premises, and asymmetric problem distributions where

different premises may be assigned to different agents. We also distinguish between

homogeneous reasoners (when all agents have the same rules of inference and resource

bounds) and heterogeneous reasoners, (when different agents have different rules of

inference and/or resource bounds).

Distribution does not necessarily change the shape (maximum space requirement

and number of inference steps) of a proof. However, in a distributed setting the trade-

offs between memory and time bounds are complicated by communication. Unlike

memory and time, communication has no direct counterpart in the proof. However

like memory, communication can be substituted for time (e.g., if part of the proof is

carried out by another agent), and, like time, it can be substituted for memory (e.g., if

a lemma is communicated by another agent rather than having to be remembered). In

the distributed setting, each agent has a minimum memory bound which is determined

by its inference rules and which may be smaller than the minimum space requirement

for the problem. If the memory bound for all agents taken individually is less than

the minimum space requirement for the problem, then the communication bound must

be greater than zero. If the memory bound for all agents taken together is less than

the minimum space requirement for the problem, then the problem is insoluble for

any communication bound. With a symmetric problem distribution, if the memory

bound for at least one agent is greater than the minimum space requirement for the

problem, the minimum communication bound is zero (with unbounded time). If the

problem distribution is asymmetric, i.e., not all agents have all the premises, then the

lower bound on communication may again be non-zero, if a necessary inference step

requires premises from more than one agent.

In the next section, we present measures of space, time and communication for

distributed reasoning agents which allow us to make these tradeoffs precise.

64

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

4.2 Measuring resources

We consider a distributed system consisting of nAg reasoning agents. Each agent i of

the system has a set of inference rules Ri (for example, Ri could contain conjunction

introduction and modus ponens, or it could contain just a single rule of resolution) and

a set of premises or a knowledge base KBi. Here we consider a system of reasoning

agents which reason using resolution. However, in [Alechina et al., 2008a] we present

a general framework which can be applied to different kinds of reasoners. For a single

agent, the notion of a derivation, or a proof of a formula G from KB i is standard, and

the time and space complexity of proofs are well studied [Haken, 1984]. Our model

of space complexity is based on [Alekhnovich et al., 2002]. We view the process

of producing a proof of G from KB i as a sequence of configurations or states of a

reasoner, starting from an empty configuration, and producing the next configuration

by one of the following operations:

- Read copies a formula from KB i into the current configuration, possibly over-

writing non-deterministically a formula from the previous configuration;

- Infer applies a rule from Ri to formulae in the current configuration, possibly

overwriting non-deterministically a formula from the previous configuration.

The sequence of configurations constitutes a proof of G if G appears in the last

configuration. Time complexity corresponds to the length of the sequence, and space

complexity to the size of configurations.1 The size of a configuration can be measured

either in terms of the number of formulae appearing in the configuration or in terms of

the number of symbols required to represent the configuration. We take the size of a

configuration to be the maximal number of formulae, where counting formulae results

in non-trivial space complexity [Esteban and Torán, 1999]. Table 4.1 illustrates the

1We deviate from [Alekhnovich et al., 2002] in that we do not have an explicit Erase operation,
preferring to incorporate erasing (overwriting) in the Read and Infer operations. This obviously results
in shorter proofs; however including an explicit erase operation gives proofs which are no more than
twice as long as our proofs if we don’t require the last configuration to contain only the goal formula.

65

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

(non-trivial) space complexity of resolution proofs in terms of the number of formulae

in a configuration. The example, which is due to [Esteban and Torán, 1999], shows the

derivation of an empty clause by resolution from the set of all possible clauses of the

form

∼A1∨ ∼A2 ∨ . . .∨ ∼An

where, ∼Ai is either Ai or ¬Ai, for n = 2. This is known as tree-like resolution,

whose clauses are all possible combinations of literals with the restriction that each

variable appears once in each clause. Its space usage is 3 and the length of the proof is

8.

Configuration Operation
1 { }
2 {A1 ∨A2} Read
3 {A1 ∨A2,¬A1 ∨A2} Read
4 {A1 ∨A2,¬A1 ∨A2, A2} Infer
5 {A1 ∨ ¬A2,¬A1 ∨A2, A2} Read
6 {A1 ∨ ¬A2,¬A1 ∨ ¬A2, A2} Read
7 {A1 ∨ ¬A2,¬A2, A2} Infer
8 {∅,¬A2, A2} Infer

Table 4.1: Example derivation using resolution

In the multi-agent case, when several reasoners can communicate to derive a com-

mon goal, an additional resource of interest is how many messages the reasoners must

exchange in order to derive the goal. In the distributed setting, we assume that each

agent has its own set of premises and inference rules and its own configuration, and

that the reasoning of the agents proceeds in lock step. In addition to Read and Infer,

each reasoner can perform two extra operations:

- Idle which leaves its configuration unchanged;

- Copy if agent i has a formula ϕ in its current configuration, then agent j can

copy it to its next configuration (possibly overwriting non-deterministically a

formula from the previous configuration).

66

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

The goal formula is derived if it occurs in the configuration of one of the agents.

Our model of communication complexity is based on [Yao, 1979], except that we count

the number of formulae exchanged by the agents rather than the number of bits ex-

changed. The communication complexity of a joint derivation is then the (total) num-

ber of Copy operations in the derivation.

Agent 1 Agent 2
Configuration Operation Configuration Operation
1 {} {}
2 {A1 ∨A2} Read {A1 ∨ ¬A2} Read
3 {A1 ∨A2,¬A1 ∨A2} Read {¬A1 ∨ ¬A2, A1 ∨ ¬A2} Read
4 {A1 ∨A2, A2} Infer {¬A2, A1 ∨ ¬A2} Infer
5 {A1 ∨ ¬A2, A2} Read {¬A2, A2} Copy
6 {A1, A2} Infer {{}, A2} Infer

Table 4.2: Example derivation using resolution with two agents

In general, in a distributed setting, trade-offs are possible between the number of

messages exchanged and the space (size of a single agent’s configuration) and time

required for a derivation. The total space used (the total number of formulae in all

agent’s configurations) clearly cannot be less than the minimal configuration size re-

quired by a single reasoner to derive the goal formula from the union of all knowledge

bases using resolution, however this can be distributed between the agents in differ-

ent ways, resulting in different numbers of exchanged messages. Similarly, if parts of

a derivation can be performed in parallel, the total derivation will be shorter, though

communication of the partial results will increase the communication complexity. As

an illustration, Table 4.2 shows one possible distribution of the resolution example in

Table 4.1. As can be seen, two communicating agents can solve the problem faster

than a single agent. We are assuming here both the agents having the same knowledge

base. It is shown in Table 4.2 that agent 1 derives formula A2 at time step 4 and agent

2 copies it to its next configuration.

67

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

4.3 Property specification

Let us consider the example derivation shown above in Table 4.2. The resource re-

quirements for the system to derive the goal clause ∅ are memory bound of 2 for each

agent, the communication bound is 0 for the first agent and 1 for the second, and the

time bound is 6 inference (time) steps. We can prove that start→ EX≤6[B1∅ ∨B2∅]

(i.e., from the start state, the agents can derive the empty clause in 6 timesteps), where

Bi is a belief operator (discussed in the next section) for each agent i. To obtain the

actual derivation we can also attempt to verify the negation of a formula, for example

AG¬Bi∅ (for i = 1, 2)—the counterexample trace will show how the system reaches

the state where ∅ is proved. In the following, we briefly describe a temporal doxastic

logic which can be used to reason about the system.

4.4 Logical formalism

To reason about systems of distributed reasoning agents we use BMCL-CTL developed

by Nga and Alechina, a temporal doxastic logic which allows us to describe a set

of reasoning agents with bounds on memory and on the number of messages they

can exchange. We are primarily interested in the automated verification aspects of

such systems. However, in this section, we briefly discuss the syntax and semantics

of BMCL-CTL, a detailed description can be found in [Alechina et al., 2009a].

The language of the logic contains belief operators Bi, for each agent i. We in-

terpret Biα syntactically (as a property of a formula ϕ, rather than of a proposition

denoted by ϕ). Biα is true if the formula α is in agent i’s memory. This is inevitable

since we consider resource-limited reasoning agents, and we cannot assume that the

agents can instantaneously identify logically equivalent formulae. For the same rea-

son, we do not interpret beliefs using an accessibility relation, since this would cause

beliefs to be immediately closed under logical consequence. We also do not consider

nested belief operators because we do not model agents reasoning about each other’s

68

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

beliefs. However it is possible to model agents that reason using positive introspection

in a similar way, see for example [Alechina et al., 2009b].

We consider a set of agents Ag = {1, 2, . . . , nAg} that reason using resolution.

For simplicity, we assume that they agree on a finite set P of propositional variables.2

Since each agent uses resolution for reasoning, we assume that all formulae of the

internal language of the agents are in the form of clauses. For convenience, we define

a clause as a set of literals in which a literal is a propositional variable or its negation.

Then the set of literals is defined as LP = {p,¬p | p ∈ P}. If l is a literal, then ¬l is

¬p if l is a propositional variable p, and p if l is of the form ¬p. Let Ω be the set of

all possible clauses over LP , i.e., Ω = ℘(LP). Note that Ω is finite. The only rule of

inference that each agent has is the resolution rule which is defined as follows:

l ∈ α ¬l ∈ β
(α \ {l}) ∪ (β \ {¬l}) Res

which states that if there are two clauses α and β such that one contains a literal

l and the other contains ¬l, then we can derive a new clause (α \ {l}) ∪ (β \ {¬l}).

Each agent i has a memory of size nM(i) where one unit of memory corresponds to

the ability to store an arbitrary clause. Each agent i has a knowledge base or a set of

premises KB i ⊆ Ω and can read clauses from KB i by performing Read action. The

communication ability of the agents is expressed by the Copy action which copies a

clause from another agent’s memory. The limit on each agent’s communication ability

is nC(i): in any valid run of the system, agent i can perform at most nC(i) Copy

actions.

4.4.1 Syntax of BMCL-CTL

The syntax of BMCL-CTL is defined inductively as follows:

- > is a well-formed formula (wff) of BMCL-CTL;
2This assumption can easily be relaxed, so that only some propositional variables are shared.

69

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

- if α is a clause, then Biα is a wff of BMCL-CTL for all i ∈ Ag;

- ci = n is a wff of BMCL-CTL, for all i ∈ Ag and n ∈ N;

- if ϕ and ψ are wff, then so are ¬ϕ, ϕ ∧ ψ;

- if ϕ and ψ are wff, then so are EXϕ, E(ϕUψ), and A(ϕUψ).

Classical abbreviations for ∨, →, ↔ and ⊥ are defined as usual. The language

contains both temporal and doxastic modalities. For the temporal part of BMCL-CTL,

we have CTL, a branching time temporal logic. Intuitively, CTL describes infinite

trees, or all possible runs of the system, over discrete time. In the temporal logic part

of the language, X stands for next step, U for until, A for ‘on all paths’ and E for ‘on

some path’. We also use abbreviations for other usual temporal operators AX , EF ,

AF , EG , and EG in which F stands for ‘some time in the future’ and G for ‘always

from now’. The doxastic part of the language consists of belief modalities Biα. For

convenience, we define the following sets:

BiΩ = {Biα | α ∈ Ω}, BΩ =
⋃

i∈AG
BiΩ,

CP i = {ci = n | 0 ≤ n ≤ nC(i)}, and CP =
⋃

i∈AG

CP i.

4.4.2 Semantics of BMCL-CTL

The semantics of BMCL-CTL is defined by BMCL-CTL transition systems. A BMCL-

CTL transition system M = (S,R, V) is defined as follows:

- S is a non-empty set of states;

- R ⊆ S × S is a total binary relation, that is for all s ∈ S, there exists s′ ∈ S

such that (s, s′) ∈ R;

- V : S × Ag → ℘(Ω ∪ CP); we define the ‘belief part’ of the assignment

V B(s, i) = V (s, i)\CP and the communication counter part V C(s, i) = V (s, i)∩

CP . V satisfies the following conditions:

70

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

i) |V C(s, i)| = 1 for all s ∈ S and i ∈ Ag;

ii) If (s, t) ∈ R and ci = n ∈ V (s, i) and ci = m ∈ V (t, i) then n ≤ m.

For each model M = (S,R, V), a path in M is a sequence of states (s0, s1, . . .) in

which (sk, sk+1) ∈ R for all k ≥ 0. The truth of a BMCL-CTL formula at a state s ∈ S

of a model M = (S,R, V) is defined inductively as follows:

- M, s |= Biα iff α ∈ V (s, i),

- M, s |= ci = n iff ci = n ∈ V (s, i),

- M, s |= ¬ϕ iff M, s 6|= ϕ,

- M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ,

- M, s |= EXφ iff there exists s′ ∈ S such that (s, s′) ∈ R and M, s′ |= ϕ,

- M, s |= E(ϕUψ) iff there exists a path (s0, s1, . . . , sn, . . .) in M with s = s0

and n ≥ 0 such that M, sk |= ϕ for all 0 ≤ k ≤ n− 1 and M, sn |= ψ,

- M, s |= A(ϕUψ) iff for all paths (s0, s1, . . .) in M with s = s0, there exists

n ≥ 0 such that M, sk |= ϕ for all 0 ≤ k ≤ n− 1 and M, sn |= ψ,

Now we describe conditions on the models. The first set of conditions refers to the

accessibility relation R. The intuition behind the conditions is that R corresponds to

the agents executing actions 〈a1, . . . , anAg〉 in parallel, where action ai is a possible ac-

tion (transition) for the agent i in a given state. The actions an agent i can perform are:

Readi,α,β (reading a clause α from the knowledge base and erasing β), Res i,α1,α2,l,β

(resolving α1 and α2 on l and erasing β), Copy i,α,β (copying α from another agent

and erasing β), and Idle i (doing nothing), where α, α1, α2, β ∈ Ω and l ∈ LP . Intu-

itively, β is an arbitrary clause which gets overwritten if it is in the agent’s memory.

If the agent’s memory is full (|V B(s, i)| = nM(i)), then we require that β has to be

in V B(s, i). Not all actions are possible in any given state. For example, to perform

71

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

a resolution step from state s, the agent has to have two resolvable clauses in s. The

message counter of each agent i starts with the value 0 and is incremented every time

i copies a clause. When the value of the counter becomes equal to nC(i), i cannot ex-

ecute the Copy action any more. Let us denote the set of all possible actions by agent

i in state s by Ri(s). Below is the definition of Ri(s):

Definition 4.4.1 (Available actions). For every state s and agent i,

1. Read i,α,β ∈ Ri(s) iff α ∈ KB i and β ∈ Ω, or if |V B(s, i)| = nM(i) then

β ∈ V B(s, i),

2. Res i,α1,α2,L,β ∈ Ri(s) iff α1, α2 ∈ Ω, l ∈ α1, ¬l ∈ α2, α1, α2 ∈ V (s, i),

α = (α1 \ {l}) ∪ (α2 \ {¬l}); β is as before,

3. Copy i,α,β ∈ Ri(s) iff there exists j 6= i such that α ∈ V (s, j) and ci = n ∈

V (s, i) for some n < nC(i); β is as before,

4. Idle i is always in Ri(s).

Now we define effects of actions on the agent’s state, i.e., the assignment V (s, i).

Definition 4.4.2 (Effects of actions). For each i ∈ Ag, the result of performing an

action a in state s is defined if a ∈ Ri(s) and has the following effect on the assignment

of clauses to i in the successor state t:

1. if a is Read i,α,β: V (t, i) = V (s, i) ∪ {α} \ {β},

2. if a is Res i,α1,α2,l,β: V (t, i) = V (s, i)∪ {α} \ {β} where α = (α1 \ {l})∪ (α2 \

{¬l}),

3. if a is Copy i,α,β , ci = n ∈ V (s, i) for some n: V (t, i) = V (s, i) ∪ {α, ci =

(n+ 1)} \ {β, ci = n},

4. if a is Idle i: V (t, i) = V (s, i).

Definition 4.4.3. BMCM-CTL(KB1, . . . , KBnAg , nM , nC) is the set of models M =

(S,R, V) such that:

72

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

1. For every s and t, R(s, t) iff for some tuple of actions

〈a1, . . . , anAg〉, ai ∈ Ri(s) and the assignment in t satisfies the effects of ai for

every i in {1, . . . , nAg},

2. For every s and a tuple of actions 〈a1, . . . , anAg〉, if ai ∈ Ri(s) for every i in

{1, . . . , nAg}, then there exists t ∈ S such that R(s, t) and t satisfies the effects

of ai for every i in {1, . . . , nAg},

3. The bound on each agent’s memory is set by the following constraint on the

mapping V :

|V B(s, i)| ≤ nM(i) for all s ∈ S and i ∈ Ag.

Note that the bound nC(i) on each agent i’s communication ability (no branch

contains more than nC(i) Copy actions by agent i) follows from the fact that Copyi is

only enabled if i has performed fewer than nC(i) Copy actions in the past.

4.5 Verifying resource-bounds

It is straightforward to encode a BMCM-CTL model using a standard model checker,

and to verify resource bounds using existing model checking techniques. For the exam-

ples, originally presented in [Alechina et al., 2009a], we have used the model checking

tool Mocha. The specification language of Mocha is ATL, which includes CTL. We can

express properties such as ‘agent i may derive belief α in n steps’ as EX≤n tr(Biα)

where tr(Biα) is a suitable encoding of the fact that a clause α is present in the agent’s

memory (a detailed encoding is presented in § 4.8). To obtain the actual derivation we

can verify the negation of a formula, for example AG ¬tr(Biα), and use the coun-

terexample trace generated by the model checker to show how the system reaches the

state where α is proved.

Consider a single agent (agent 1) whose knowledge base contains all clauses of

the form ∼ A1∨ ∼ A2 where ∼ Ai is either Ai or ¬Ai, and which has the goal of

73

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

Agents Problem distribution Memory Communication Time Found a proof
1 Symmetric 2 – – No
1 Symmetric 3 – 8 Yes
2 Symmetric 2, 2 1, 0 6 Yes
2 Symmetric 3, 3 1, 0 6 Yes
2 Symmetric 3, 3 0, 0 8 Yes
2 Symmetric 2, 1 1, 1 9 Yes
2 Asymmetric 2, 2 2, 1 7 Yes
2 Asymmetric 3, 3 2, 1 7 Yes
2 Asymmetric 3, 1 1, 0 8 Yes

Table 4.3: Experimental results using two propositional variables

deriving the empty clause. We can express the property that agent 1 will derive the

empty clause at some point in the future as EF B1∅. Using the model checker, we

can show that deriving the empty clause requires a memory bound of 3 and 8 time

steps (see Table 4.1). We can also show that these space and time bounds are minimal

for a single agent; i.e., increasing the space bound does not result in a shorter proof.

With two agents and a symmetric problem distribution (i.e., each agent has all the

premises ∼ A1∨ ∼ A2), we can show that a memory bound of 2 (i.e., the minimum

required for resolution) and a communication bound of 1 gives a proof of 6 steps (see

Table 4.2). Reducing the communication bound to 0 results in no proof, as, with a

memory bound of 2 for each agent, at least one clause must be communicated from

one agent to the other. Increasing the space bound to 3 (for each agent) does not

shorten the proof, though it does allow the communication bound to be reduced to 0

at the cost of increasing the proof length to 8 (i.e., the single agent case). Reducing

the total space bound to 3 (i.e., 2 for one agent and 1 for the other, equivalent to the

single agent case) increases the number of steps required to find a proof to 9 and the

communication bound to 1 for each agent. In effect, one agent functions as a cache for

a clause required later in the proof, and this clause must be copied in both directions.

If the problem distribution is asymmetric, e.g., if one agent has premises A1 ∨ A2

and ¬A1 ∨ ¬A2 and the other has premises ¬A1 ∨ A2 and A1 ∨ ¬A2, then with a

memory bound of 2 for each agent, we can show that the time bound is 7, and the

communication bound is 2 for the first agent and 1 for the second. Increasing the

74

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

memory bound for each agent to 3 does not reduce the time bound. However the

memory bound can be reduced to 1 and the communication bound reduced to 1 for one

agent and 0 for the other, if the time bound is increased to 8 (again this is equivalent

to the single agent case, except that one agent copies the clause it lacks from the other

rather than reading it). These tradeoffs are summarised in Table 4.3. Increasing the

size of the problem increases the number of possible tradeoffs, but similar patterns can

be seen to the 2-variable case. For example, if the agent’s knowledge base contain all

clauses of the form ∼A1∨ ∼A2∨ ∼A3, then a single agent requires a memory bound

of 4 and the time bound is 16 steps to achieve the goal. In comparison, two agents,

each with a memory bound of 2, require 13 steps and 4 messages to derive the goal.

These examples serve to illustrate the interaction between memory, time and com-

munication bounds, and between the resource distribution and the problem distribution.

However, while these techniques work for small numbers of agents, they are unlikely

to scale to large-scale systems. For example, using Mocha and the encoding above, we

are unable to verify in reasonable time a single agent system whose knowledge base

contain all clauses of the form ∼A1∨ ∼A2∨ ∼A3∨ ∼A4 where ∼Ai is either Ai or

¬Ai, and which has the goal of deriving the empty clause. In the following, we analyse

the problem and its encoding complexity to better understand the scalability issues.

4.6 Analysis of the problem complexity

In this section we present an analysis of the complexity of reasoning in a distributed

system for the tree-like resolution example introduced in § 4.2, in terms of its state

space size and branching factor. We make the following assumptions.

(i) Only a single copy of each clause is allowed to be present in the agent’s working

memory, i.e., at any given time all clauses present in the working memory are

distinct.

(ii) Overwrite of a memory cell will take place only after all the memory cells are

75

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

occupied.

(iii) If an agent’s working memory contains a clause α, then α will not be read again

if the agent’s knowledge base contains α and two clauses β and γ present in the

agent’s working memory will not be resolved if α is the resolvent.

(iv) An agent can copy a clause α from an other agent’s memory only if α is not

present in its own working memory.

(v) An agent will not generate a tautology.

We also assume that the agents share a finite set of propositional variables P =

{A1, A2, . . . , An} and each agent’s knowledge base KB can contain clauses from the

set of all possible clauses of the form ∼A1∨ ∼A2 ∨ . . .∨ ∼An where, ∼Ai is either

Ai or ¬Ai. Then the number of clauses in each agent’s knowledge base can be at most

2n. Let F be the set of all (tautology free) clauses which can be constructed from P .

Then we can easily observe that, if P is {A1} then F is {A1,¬A1, ∅}, if P is {A1, A2}

then F is {A1 ∨ A2,¬A1 ∨ A2, A1 ∨ ¬A2,¬A1 ∨ ¬A2, A1,¬A1, A2,¬A2, ∅} and so

on. Therefore, for a given P with n propositional variables, the size of the set F is 3n.

This comes from the fact that each variable appears in a clause either as a positive or

negative form or it may be absent. Note that KB ⊆ F . We call a clause which is an

element of agent’s knowledge base a KB -clause.

In [Esteban and Torán, 1999] it is shown that any resolution refutation of such a

tree-like example with n propositional variables requires at least space n + 1. There-

fore in order to derive the empty clause ∅ from a given knowledge base of size 2n

the minimum memory size required by a system is m = n + 1 cells. For example,

Table 4.1 shows that a single agent system with two propositional variables requires

three memory cells to derive the empty clause ∅. In the multi-agent case with two

propositional variables, to derive the empty clause ∅ at least one agent requires two

memory cells and the combined space requirements is at least three memory cells. If

one of them contains only a single memory cell, then it will be used as a cache by the

76

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

other agent as one can easily observe from the fact that a single memory cell agent

can’t infer anything.

4.6.1 An analysis of the state space

In symbolic model checking, there are two different measures of the size of a given

model. One measure is the number of bits i.e., the number of Boolean variables re-

quired to represent a state. This measure provides information about the size of a

single state in the model. The other measure is the number of reachable states of the

system i.e., the set of states which are reachable from the initial state(s) of the system,

known as the state space size of the system. A system which can be encoded using

b ∈ N Boolean variables, can have at most 2b reachable states. A tight upper bound on

the size of this set can often be determined by analysing the system. We provide here

the number of reachable states for the tree-like resolution example.

In the single-agent case, let n ∈ N be the number of propositional variables, k =

|KB | = 2n be the size of the knowledge base, p = |F | = 3n be the size of the set of

tautology free clauses, and m = n + 1 be the number of memory cells required for a

derivation. Then the number of reachable states N is given by the following equation:

N = (
m−1∑
i=0

kCi) + pCm (4.1)

where the notation nCr stands for “n choose r”. The above equation allows us to

calculate how the clauses from the set F can be chosen in different ways to represent

all possible configurations (reachable states) of the agent. The first term
∑m−1

i=0
kCi

= kC0 + kC1 + . . . + kCm−1 on the right hand side of Equation 4.1 represents the

configurations as follows. The first term of the summation is kC0 = 2nC0 which

evaluates to 1, which is the initial configuration of the agent when none of the 2n

clauses from the knowledge base has been read. The second term of the summation is

kC1 = 2nC1 which evaluates to 2n, which are the 2n configurations of the agent when

one of the 2n clauses from the knowledge base has been read non-deterministically. It

77

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

continues until the agent can read (m−1) clauses from its knowledge base. The second

term pCm on the right hand side of Equation 4.1 represents all those configurations

when m clauses are chosen out of 3n clauses from the set F . Thus Equation 4.1 gives

the (exact) number of reachable states of the system.

Let us consider the case of a multi-agent system, consisting of the parallel composi-

tion of nAg reasoning agentsA = {1, 2, . . . , nAg}. Intuitively, the parallel composition

contains all possible states and transitions that can be reached by making simultaneous

transitions by each agent in the system. IfNi denotes the number of reachable states of

agent i, then the number of reachable states N ′ of the multi-agent is obtained by their

parallel composition.

N ′ =
nAg∏
i=1

Ni (4.2)

We observe thatN ′ is exponential in the number of agents: the parallel composition

of nAg agents of state space size N each gives nNAg states. Note that in the multi-agent

case, if mi denotes the memory size of agent i, then the minimum value of
∑nAg

i=1 mi

must be n+ 1, and the value of at least one of the mis must be 2 otherwise the system

cannot infer anything. The following theorems give the asymptotic upper bounds on

the set of reachable states.

Theorem 4.6.1. Let ReS be a single-agent resolution-based system whose knowledge

base contains all clauses of the form ∼A1∨ ∼A2 ∨ . . .∨ ∼An where, ∼Ai is either

Ai or ¬Ai, and which has the goal of deriving the empty clause. Then the upper bound

on the set of reachable states of ReS is of order O(3n
2
).

Proof. Recall that Eqn. 4.1 (
∑m−1

i=0
kCi) + pCm gives the number of reachable

states of the system. By substituting the values of m, k and p in terms of n we can

define a function f : N→ N by

f(n) =
n∑
i=0

2nCi + 3nCn+1

78

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

Simplifying f(n) gives us the following:

f(n) =
n∑
i=0

2nCi +
3nCn+1

=
n∑
i=0

2n!

i!× (2n − i)! +
3n!

(n+ 1)!× (3n − (n+ 1))!

=

n∑
i=0

2n × (2n − 1)× . . .× (2n − (i− 1))

i!
+

3n × (3n − 1)× . . .× (3n − n)
(n+ 1)!

≤
n∑
i=0

2n×i

i!
+

3n×(n+1)

(n+ 1)!
, ∀k ∈ N · 2n − k ≤ 2n and 3n − k ≤ 3n

=

n∑
i=0

2n×i

i!
+ 3n

2 × 3n

(n+ 1)!

Hence, the function f(n) has order O(3n
2
).

Theorem 4.6.2. Let ReM be a multi-agent resolution-based system consisting of nAg

agents where each agent’s knowledge base KBi can contain clauses from the set of all

possible clauses of the form ∼ A1∨ ∼ A2 ∨ . . .∨ ∼ An where, ∼ Ai is either Ai or

¬Ai, and the agents have the goal of deriving the empty clause. Then the upper bound

on the set of reachable states of ReM is of order O(3nAg ·n
2
).

Proof. The proof is immediate from theorem 4.6.1 and the multiplication rule of

Big-O complexity theory.

4.6.2 An analysis of the branching factor

Given a state space graph of a system, the branching factor of a given state s is de-

termined by the number of possible legal moves that the system make from s. Let

P = {A1, A2, . . . , An} be a finite set of propositional variables. Let ReS be a single-

agent resolution-based system whose knowledge base contains all clauses of the form

∼A1∨ ∼A2 ∨ . . .∨ ∼An where, ∼Ai is either Ai or ¬Ai, and which has the goal

of deriving the empty clause. Then ReS requires m = n + 1 memory cells in order

to find a proof and the size of it’s knowledge base is k = |KB | = 2n. Let F be the

set of all (tautology free) clauses which can be constructed from P . Then, for a given

79

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

P with n propositional variables, the size of the set F is 3n. Note that KB ⊆ F . Let

us consider a configuration s ≡ 〈α1 α2 . . . αm〉 of the state space of ReS such that

all the memory cells are occupied, where αi ∈ F for all i ∈ {1, 2, . . . ,m}. At s the

agent can perform at most mC2 resolution actions. This follows from the following

observations: if any two clauses αi and αj can be resolved on variable Ai then they

cannot be resolved on any other variable Aj (i 6= j) otherwise the resolvent will be a

tautology. That is resolving any two clauses that can be resolved over more than one

variable always results in a tautology. Therefore, at an arbitrary state in the state space

of ReS, the agent can perform at most mC2 resolution steps. The branching factor at s

due to resolution action is m · mC2. This is because an agent can perform mC2 resolu-

tion actions and put the resolvents non-deterministically into itsmmemory cells. Now,

if αi /∈ KB for all i ∈ {1, 2, . . . ,m}, then at s the agent can perform k read actions.

Therefore, the branching factor at s due to read action is m · k. This is because the

agent can read k clauses from its knowledge base and put them non-deterministically

into its m memory cells. Then the worst case branching factor B of the search space

of ReS is given by the following equation:

B = m · k +m · mC2 (4.3)

The following theorems give the asymptotic branching factors of the search space

of a tree-like resolution based system.

Theorem 4.6.3. Let ReS be a single-agent resolution-based system whose knowledge

base contains all clauses of the form ∼A1∨ ∼A2 ∨ . . .∨ ∼An where, ∼Ai is either

Ai or ¬Ai, and which has the goal of deriving the empty clause. Then the worst case

branching factor of the search space of ReS is of order O(n · 2n+1).

Proof. Recall that (m · k +m · mC2) gives the the worst case branching factor of

the search space of ReS. By substituting the values of m and k in terms of n we can

80

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

define a function f : N→ N by

f(n) = (n+ 1) · 2n + (n+ 1) · (n+ 1) · n
2!

Simplifying f(n) gives us the following:

f(n) = (n+ 1) · 2n + (n+ 1) · (n+ 1) · n
2!

= n · 2n + 2n +
1

2
(n3 + 2n2 + n)

≤ n · 2n + n · 2n, ∃n0 ∈ N · ∀n ≥ n0 · 2n +
1

2
(n3 + 2n2 + n) ≤ n · 2n

= n · 2n+1

Hence, the function f(n) has order O(n · 2n+1).

Corollary 4.6.4. Let ReM be a multi-agent resolution-based system consisting of nAg

agents where each agent’s knowledge base KBi can contain clauses from the set of all

possible clauses of the form∼A1∨ ∼A2∨ . . .∨ ∼An where,∼Ai is either Ai or ¬Ai,

and the agents have the goal of deriving the empty clause. Let each agent in the system

have a knowledge base of size 2n and memory bound of n + 1 cells; then, the worst

case branching factor of the search space of ReM is of order O(nnAg · 2nAg ·(n+1)).

Proof. From theorem 4.6.3, for each agent i we can define a function fi : N→ N

by:

fi(n) = (n+ 1) · (n+ 1) + (n+ 1) · 2n + (n+ 1) · (n+ 1) · n
2!

.

In the above defined function the additional (n + 1) · (n + 1) is due to the Copy

action, i.e., in the worst case an agent can copy (n+ 1) formulae from another agent’s

memory and put them non-deterministically into any of its (n + 1) memory cells. We

81

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

can now simplify f(n) which gives us the following:

f(n) = (n+ 1) · 2n + (n+ 1) · (n+ 1) · n
2!

+ (n+ 1) · (n+ 1)

= n · 2n + 2n +
1

2
(n3 + 2n2 + n) + n2 + 2n+ 1

= n · 2n + 2n +
1

2
(n3 + 4n2 + 5n+ 2)

≤ n · 2n + n · 2n, ∃n0 ∈ N · ∀n ≥ n0 · 2n +
1

2
(n3 + 4n2 + 5n+ 2) ≤ n · 2n

= n · 2n+1

Therefore, the proof of the corollary is immediate from the multiplication rule of

the Big-O complexity theory.

Theorem 4.6.5. Let ReM be a multi-agent resolution-based system consisting of nAg

agents where each agent’s knowledge base KBi can contain clauses from the set of all

possible clauses of the form∼A1∨ ∼A2∨ . . .∨ ∼An where,∼Ai is either Ai or ¬Ai,

and the agents have the goal of deriving the empty clause. Let ki and mi be the size

of the knowledge base and memory bound for each agent i in the system, respectively,

such that mi ≥ 2 for all i ∈ {1, 2, . . . , nAg}. Then the worst case branching factor of

the search space of ReM is of order

O(

nAg∏
i=1

(mi ·mi +mi · ki +mi · miC2)).

P roof. The proof is immediate from theorem 4.6.3. The additional mi · mi is

due to the Copy action, i.e., in the worst case an agent can copy mi formulae from

another agent’s memory and put them non-deterministically into any of its mi memory

cells.

82

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

4.7 Analysis of the encoding complexity

The analysis in the previous section gives theoretical lower bounds for the tree-like

resolution example. However for practical verification, the problem must be encoded

in the states of a model checker, and this typically entails some overhead. In this sec-

tion we analyse the complexity of the tree-like resolution example for two alternative

model-checker encodings: a positional encoding which tries to minimise the number

of bits required to encode each state, and a non-positional encoding which requires

more bits to encode each state but which gives a symmetry reduced state space. We

analyse the state space size and branching factor of the problem for both encodings.

4.7.1 Positional encoding complexity

The states of the system correspond to an assignment of values to state variables in the

model-checker. One possible way in which the state variables representing an agent’s

memory can be organized is as a collection of “cells”, each holding at most one clause.

Each cell can be represented by a bit vector of length δ = 2 × |P |, for example,

when P contains the propositional variables A1 and A2 with index positions 0 and 1

respectively, the clause A1 ∨ ¬A2 would be represented by two bitvectors: “10” for

the positive literals and “01” for the negative literals. In this encoding the position of

a memory cell is fixed and hence, it is known that, which memory cell contains which

clause. Therefore, in a system consisting of nAg agents, nAg ·m ·2 · |P | bits are required

to represent a state when there are |P | variables and each agent has m memory cells.

Reading a premise simply sets the bit vectors representing an arbitrary cell in agent

i’s memory to the appropriate values for the clause. Resolution can be implemented

using simple bit operations on cells containing values representing clauses α and β,

with the results being assigned to an arbitrary cell in agent i’s memory. Communi-

cation, i.e., a Copy action, can be implemented by copying the values representing a

clause α from a cell of agent j to an arbitrary cell of agent i. To express the commu-

nication bound, we can use a counter for each agent which is incremented each time a

83

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

copy action is performed by the agent. After the counter for agent i reaches nC(i), the

Copy action is disabled. Note that, since the position of a memory cell is fixed in this

encoding, the state space of the system may contain a number of symmetric states. For

instance, the states 〈A1, A1 ∨ A2,¬A2〉 and 〈¬A2, A1 ∨ A2, A1〉 are symmetric. They

contain the same set of formulae and one can be obtained from the other by permuting

indices.

〈−,−, . . . ,−〉

〈A1 ∨A2 ∨ . . . ∨An,−, . . . ,−〉

〈A1 ∨A2 ∨ . . . ∨An,¬A1 ∨A2 ∨ . . . ∨An, . . . ,−〉

〈A1 ∨A2 ∨ . . . ∨An,¬A1 ∨A2 ∨ . . . ∨An, . . . , A1 ∨A2 ∨ . . . ∨ ¬An〉

Level 0 : m · k

Level 1 : (m− 1) · (k − 1)

Level 2 : (m− 2) · [(k − 2) + 1]

Level m : m · [(k −m) + (m− 1)]

. . .

. . .

. . .

. . .

...

...

Figure 4.1: A single agent positional state branching factor model

4.7.1.1 Positional encoding analysis for a single agent system

A worst case branching factor scenario of a single agent system is shown in Figure 4.1.

The initial state of the system is represented by the memory cells being empty. Since,

each memory cell may contain k possible clauses that the agent can read from its

knowledge base, the branching factor of the initial state is m · k. It is easy to observe

that the branching factor of any state at level 1 is (m− 1) · (k − 1), because agent can

read the remaining (k − 1) clauses from its knowledge base and put it (m − 1) ways

into the rest (m− 1) empty memory cells. At level 2, the agent can read the remaining

(k−2) clauses from its knowledge base and put it into (m−2) ways into the remaining

(m− 2) empty memory cells, in this state agent may also perform a resolution action.

84

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

Thus, the branching factor of a state at level 2 is (m − 2) · [(k − 2) + 1]. In the same

way when all the memory cells at level m are fully occupied, the worst case branching

factor of a given state in this level would be m · [(k−m) + (m− 1)]. This is due to the

fact that agent can read its remaining (k−m) clauses and put it non-deterministically to

any of its m memory cells, it can also perform (m− 1) possible resolution actions and

put the resolvents non-deterministically to any of its m memory cells. For instance, let

us consider P = {A1, A2} and KB = {A1∨A2,¬A1∨A2, A1∨¬A2,¬A1∨¬A2}. As

shown earlier, in this case the agent requires m = 3 memory cells to derive the empty

clause. Now when the agent has read three clauses from its KB , all the three memory

cells are occupied. One possible configuration of the state space could be, for example,

s ≡ 〈A1 ∨ A2,¬A1 ∨ A2, A1 ∨ ¬A2〉. At s the agent can read the remaining clause

¬A1∨¬A2 of its KB into its memory, it can also perform two resolution actions such as

resolving the clausesA1∨A2 and ¬A1∨A2 orA1∨A2 andA1∨¬A2. Note that at s the

agent cannot perform any more resolution actions otherwise the resolvent of the two

clauses will be a tautology. Similarly, when considering an arbitrary configuration of

the state space, which contains any three clauses from F , the agent cannot resolve them

in more than two ways. Thus the worst case branching factor at s is 3·[(4−3)+(3−1)].

In the same way, for an arbitrary number of propositional variables, it can be shown

that the worst case branching factor at level m would be m · [(k−m)+(m−1)]. After

level m, in the state space, there exists a state

〈A1 ∨A2, A1 ∨ ¬A2, . . . ,¬A1 ∨ ¬A3 ∨ . . . ∨An,¬A1 ∨ ¬A3 ∨ . . . ∨ ¬An〉

where the branching factor B is m · k+m ·mC2. This is because the agent can read k

clauses from its knowledge base and put them non-deterministically into itsmmemory

cells, and also agent can perform mC2 resolution actions and put the resolvents non-

deterministically into its m memory cells. The branching factor B can be expressed in

terms of n as [(n+1) ·2n+(n+1) ·n+1C2] which is of orderO(n ·2n+1), which agrees

with the result of Theorem 4.6.3. However, in this encoding the position of a memory

cell is fixed, therefore the reachable state space contains a large number of symmetric

85

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

states. Apart from the initial state, every other state in the state space will be generated

m! times all of which give the same information. Therefore, the upper bound on the

set of reachable states will be N × (m!), where N is the reachable state space size of

the problem. Thus the state space size of the positional encoding is m! times bigger

than the reachable state space size of the problem.

4.7.1.2 Positional encoding analysis for a multi-agent system

A worst case branching factor scenario of a multi-agent system for nAg = 2 and n

propositional variables is shown in Figure 4.2. In this case it is assumed that both

the agents have m memory cells and the same knowledge base of size k = 2n. The

branching factor at the initial state when all memory cells are empty is m · k ×m · k,

which results from the fact that both agents can read any of their k KB -clauses and

put it any of its m memory cells non-deterministically. At the next level, in addition to

read actions, the agents can communicate with each other by performing Copy actions.

Thus the branching factor of a given state in this level will be ((m−1) · [(k−1)+1])×

((m− 1) · [(k− 1) + 1]), where each agent can read its remaining (k− 1) KB -clauses

and also perform a Copy action and put the copied clause non-deterministically into

any of its m − 1 memory cells. At level m when all the memory cells are occupied,

an agent can read (k−m) KB -clauses, it can perform (m− 1) resolution actions, and

it can also perform a Copy action. Therefore the branching factor of a given state in

this level would be (m · [(k −m) + (m− 1) + 1])× (m · [(k −m) + (m− 1) + 1]).

As in the single-agent case there exists a state in the state space where the worst case

branching factor is of order O([m ·m+m ·k+m ·mC2]× [m ·m+m ·k+m ·mC2]).

The additional m · m is due to the Copy action, i.e., in the worst case an agent can

copy m formulae from another agent’s memory and put them non-deterministically

into any of its m memory cells. In this scenario the reachable state space also contains

a number of symmetric states. The upper bound on the set of reachable states will be

(N × m!) × (N × m!), which is greater than the reachable state space size of the

problem. This model can be extended to arbitrary number of agents with different size

86

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

of memory cells and knowledge bases. In this case, the worst case branching factor

will be of order O(
∏nAg

i=1 (mi ·mi + mi · ki + mi · miC2)) and the upper bound on the

set of reachable states will be
∏nAg

i=1 (Ni ×mi!).

〈−,−, . . . ,−|−,−, . . . ,−〉

〈A1 ∨A2 . . . ∨An,−, . . . ,−|A1 ∨A2 . . . ∨An,−, . . . ,−〉

〈A1 ∨A2 . . . ∨An, A1 ∨ ¬A2 . . . ∨An, . . . ,−|A1 ∨A2 . . . ∨An,¬A1 ∨A2 . . . ∨An, . . . ,−〉

〈A1 ∨A2 . . . ∨An, A1 ∨ ¬A2 . . . ∨An, . . . , A1 ∨A2 . . . ∨ ¬An|A1 ∨A2 . . . ∨An,¬A1 ∨A2 . . . ∨An, . . . , A1 ∨A2 . . . ∨ ¬An〉

Level 0 : [m · k]2

Level 1 : [(m− 1) · [(k − 1) + 1]]2

Level 2 : [(m− 2) · [(k − 2) + 1 + 1]]2

Level m : [m · [(k −m) + (m− 1) + 1]]2

...

...

. . .

. . .

. . .

. . .

Figure 4.2: A multi-agent positional state branching factor model

4.7.2 Non-positional encoding complexity

The above analyses of positional encoding show that the encoded state space of the

system is bigger than the reachable state space size of the problem. This can be avoided

by a non positional encoding, where the position of a memory cell is not fixed. In this

encoding, each clause of F is represented by a Boolean variable. Therefore, in a system

consisting of nAg(≥ 1) agents, nAg · |F | i.e., nAg · 3n Boolean variables are required to

encode each state. In this encoding we use the term valid transition to mean that two

resolvable clauses never produce a tautology.

Let us consider a simple system consisting of a single agent with one propositional

variable. The set of all possible clauses is F = {A1,¬A1, ∅}. Therefore, three Boolean

variables are required to encode the system. A state of the system is the valuation of

its Boolean variables. The initial state of the system is represented by making all the

87

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

Boolean variables as false. In fact, this simple system never generates a tautology, and

only possible resolution step is between the clauses A1 and ¬A1 which produces the

empty clause ∅. At any given state at most m Boolean variables can be true, where

m is the number of memory cells. In this encoding, the position of a memory cell is

not fixed, so we do not need to care about where the clauses are stored in memory.

Only the maximum number of Boolean variables which are to be true in a given state

is taken into account.

〈 〉

〈A1 ∨A2 . . . ∨An〉

〈A1 ∨A2 . . . ∨An ¬A1 ∨A2 . . . ∨An〉

〈A1 ∨A2 . . . ∨An ¬A1 ∨A2 . . . ∨An A1 ∨A2 . . . ∨ ¬An〉

Level 0 : B ≤ k

Level 1 : B ≤ (k − 1)

Level 2 : B ≤ [(k − 2) + 1]

Level m : B ≤ m · [(k −m) + (m− 1)]

...

...

. . .

. . .

. . .

. . .

Figure 4.3: A single agent non-positional state branching factor model

4.7.2.1 Non-positional encoding analysis for a single-agent system

A possible worst case branching factor scenario of a single agent system is shown in

Figure 4.3. In the initial state all memory cells are empty. Since, each memory cell

may contain k possible clauses that the agent can read from its knowledge base, the

branching factor of the initial state is k i.e., any of the k clauses can be true. It is easy

to observe that the branching factor of any state at level 1 is (k − 1), because any of

the remaining (k − 1) clauses from knowledge base can be true. At level 2, the agent

can read the remaining (k − 2) clauses from its knowledge base as well as perform a

resolution action. Thus, the branching factor of a given state at level 2 is [(k− 2) + 1].

88

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

In the same way when all the memory cells at level m are occupied, the worst case

branching factor of a given state in this level would be m · [(k −m) + (m− 1)]. This

is due to the fact that agent can read its remaining (k−m) clauses from its knowledge

base, it can also perform (m− 1) possible resolution actions and overwrite any of the

m clauses present in the memory. Since all the memory cells are occupied, the worst

case branching factor of a state at level m or higher will be greater then or equal to

m · [(k −m) + (m− 1)]. After level m, in the state space, there exists a state

〈A1 ∨A2 A1 ∨ ¬A2 . . . ¬A1 ∨ ¬A3 ∨ . . . ∨An ¬A1 ∨ ¬A3 ∨ . . . ∨ ¬An〉

where the branching factor B is m · k + m · mC2. This is because an agent can

read k clauses from its knowledge base and put them non-deterministically into its m

memory cells, and can also perform mC2 resolution actions and put the resolvents non-

deterministically into its m memory cells. The branching factor B can be expressed in

terms of n as [(n + 1) · 2n + (n + 1) · n+1C2] which is of order O(n · 2n+1), which

agrees with the result of Theorem 4.6.3. Furthermore, in this encoding the position of

a memory cell is not fixed, so there are no symmetric states and the reachable state

space size would be N which is same as the problem state space size.

4.7.2.2 Non-positional encoding analysis for a multi-agent system

Let us consider a multi-agent system where nAg = 2 and there are n propositional

variables. Assume that both the agents have m memory cells and same knowledge

base of size k = 2n. The branching factor of the initial state when all memory cells

are empty is k × k. This follows from the fact that both agents can read any of their k

KB -clauses. At the next level, in addition to read actions the agents can communicate

with each other by performing a Copy action. Thus, the branching factor of a state

at this level will be ((k − 1) + 1) × ((k − 1) + 1) i.e., k × k. This is because each

agent can read (k − 1) KB -clauses and can also perform a Copy action. At level m

when all memory cells are occupied, each agent can read (k − m) KB -clauses, they

can perform (m− 1) resolution actions, and can also perform a Copy action. Thus the

89

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

branching factor of a given state at this level or higher would be greater than or equal to

(m·[(k−m)+(m−1)+1])×(m·[(k−m)+(m−1)+1]). As above (in the single agent

scenario), in this scenario there exists a state in the state space where the worst case

branching factor is of orderO([m·m+m·k+m·mC2]×[m·m+m·k+m·mC2]). The

additional m ·m is due to the Copy action, i.e., in the worst case an agent can copy m

formulae from another agent’s memory and put them non-deterministically into any of

its m memory cells. Therefore, the worst case branching factor of the reachable state

space follows Theorem 4.6.5, and the upper bound on the set of reachable states will be

N ×N . This model can be extended to arbitrary number of agents with different size

of memory cells and knowledge bases. In that case, the worst case branching factor

will be of order O(
∏nAg

i=1 (mi ·mi + mi · ki + mi · miC2)) and the upper bound on the

set of reachable states will be
∏nAg

i=1 Ni.

4.8 Experimental evaluation

In this section, we investigate the impact of different encodings for varying sizes of the

same problem introduced in § 4.2. We report the reachable state space size, maximal

BBD (MDD3) size of a particular iteration of image computation, and the CPU time (in

seconds), required to verify properties of the system. In the largest problem that could

be verified using conventional model checking techniques, each agent’s knowledge

base contain all clauses of the form ∼ A1∨ ∼ A2∨ ∼ A3 where ∼ Ai is either Ai or

¬Ai, and the agents have the goal of deriving the empty clause. The properties that

were verified are of the form AG¬∅. These type of properties are useful to verify the

existence of derivations. When AG¬∅ is false, upon analysing the counterexample

trace generated by the model checker we can show how the system reaches the state

3As we have seen (cf. § 3.2.2.1) that each Boolean function f : Bn → B can be represented by a
BDD, BDDs can be extended to represent functions f : Bn → {0, . . . , k 1} and the resulting graph is
called as multi-terminal BDDs. In turn, multi-terminal BDDs can be extended to multi-value decision
diagrams known as MDDs which represent functions of the form f : {0, . . . , k 1}n → {0, . . . , k 1}.
Unlike BDDs which has two outgoing edges for each internal nodes, in MDDs each internal node has k
outgoing edges. The efficient operations which can be performed on BDDs can also be carried out on
MDDs [Srinivasan et al., 1990].

90

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

where ∅ is proved and the resource requirements for such systems by looking at the

values of the counter variables. All the experiments reported here were performed on

an Intel Pentium 4 CPU 3.20GHz machine with 2GB of RAM under CentOS release

4.8.

4.8.1 Positional encoding using Mocha

In this section, we present experimental results using positional encoding based on the

Mocha model checker. States of the system correspond to an assignment of values

to state variables in the model-checker. The state variables representing an agent’s

memory are organised as a collection of ‘cells’, each holding at most one clause. For

an agent i with memory bound nM(i), there are nM(i) cells. Each cell is represented

by a pair of bitvectors, each of length δ = |P |, representing the positive and negative

literals in the clause in some standard order (e.g., lexicographic order). For example,

if P contains the propositional variables A1, A2 and A3 with index positions 0, 1 and

2 respectively, the clause A1 ∨¬A3 would be represented by two bitvectors: “100” for

the positive literals and “001” for the negative literals. This gives reasonably compact

states. A positional Mocha encoding for a single agent tree-like resolution example

with two propositional variables is given in Appendix D.

Actions by each agent such as reading a premise, resolution and communication

with other agents are represented by Mocha atoms which describe the initial condi-

tion and transition relation for a group of related state variables. Reading a premise

(Read i,α,β) simply sets the bitvectors representing an arbitrary cell in agent i’s memory

to the appropriate values for the clause α. Resolution (Res i,α1,α2,l,β) is implemented

using simple bit operations on cells containing values representing α1 and α2, with

the results being assigned to an arbitrary cell in agent i’s memory. Communication

(Copy i,α,β) is implemented by copying the values representing α from a cell of agent j

to an arbitrary cell of agent i. To express the communication bound, we use a counter

for each agent which is incremented each time a copy action is performed by the agent.

91

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

After the counter for agent i reaches nC(i), the Copy i,α,β action is disabled.

Mocha supports hierarchical modelling through composition of modules. A mod-

ule is a collection of atoms and a specification of which of the state variables updated

by those atoms are visible from outside the module. In our encoding, each agent is

represented by a module. A particular distributed reasoning system is then simply a

parallel composition of the appropriate agent modules. We verify the properties of the

form AG ¬tr(Biα), and use the counterexample trace generated by the model checker

to show how the system reaches the state where α is proved. In the AG ¬tr(Biα),

tr(Biα) is a suitable encoding of the fact that a clause α is present in the agent’s mem-

ory, either as a disjunction of possible values of cell vectors or as a special boolean

variable which becomes true when one of the cells contains a particular value. For ex-

ample, if α is the empty clause, then both of the vectors of state variables representing

one of agent i’s cells should contain all 0s. (In practice, the situation is slightly more

complex, as we need to check that a memory cell which contains all 0s at the current

step was actually used in the proof, i.e., it contained a literal at the previous step.)

Ag. # Var. Mem. # Reachable states # Reachable states Max. MDDs Max. MDDs CPU time CPU time
(sym_search) (sym_search) (sym_search)

1 2 3 613 1009 554 629 0.1 0.1
2 2 2,2 5177 17921 977 2115 0.7 1
1 3 4 417201 835041 61986 92605 321 498
2 3 2,2 415933 1.65821e+06 42552 121223 252 709

Table 4.4: Mocha positional encoding

Mocha supports on-the-fly model checking which is performed by verifying, at

each step of the reachability analysis, whether the formula is satisfied in states reached

so far. As soon as the property is violated in a state the algorithm will terminate by

producing a counter example resulting in the state where the property is violated. We

can obtain the complete reachable state space information using Mocha’s sym_search

command. In Table 4.4 we provide the state apace size, BDD size, and CPU time

information obtained from the counterexample trace and using sym_search command.

92

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

4.8.2 Non-positional encoding using Mocha

In this section, we present experimental results using non-positional encoding and the

Mocha model checker. The encoding is based on a list of possible (useful) clauses

and the appropriate transitions. The encoding follows the assumptions which have

been made in § 4.6. Each clause of the set of all possible clauses F is represented

as a Boolean variable. In order to implement memory bounds, message counters,

clause adding and overwriting operations, we use counter variables of range type and

Mocha’s event variables. Actions by each agent such as reading a premise, resolving

two clauses, and communication with other agents are represented by Mocha atoms

which describe the initial condition and transition relation for a group of related state

variables. A non-positional Mocha encoding for a single agent tree-like resolution ex-

ample with two propositional variables is given in Appendix E. Table 4.5 summarises

Mocha’s runtime information based on non-positional encoding.

Ag. # Var. Mem. # Reachable states # Reachable states Max. MDDs Max. MDDs CPU time CPU time
(sym_search) (sym_search) (sym_search)

1 2 3 85 95 633 807 0.1 0.1
2 2 2,2 975 1313 2739 2828 0.8 2
1 3 4 15013 17643 49110 51954 44 48
2 3 2,2 99888 108716 377465 315364 1250 1527

Table 4.5: Mocha non-positional encoding

The experimental results show that positional encoding gives relatively better re-

sults (in terms of CPU time) than that of a non-positional encoding, some of the possi-

ble reasons for this are explained in § 4.8.3.

4.8.2.1 Experiments using NuSMV

In the previous section, we have presented some experimental results for the problem

introduced in § 4.2 using Mocha which suggest that scalability may be an issue. In

this section, we present some experimental results for the same problem using NuSMV

2.4.3. This is to know whether a better performance and scalability can be achieved

using a different model checker. We consider a positional encoding that follows the

assumptions which have been made in § 4.6. We use a positional encoding because it

93

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

gave better results in the Mocha experiments. The system is encoded in NuSMV using

a similar approach to the Mocha encoding. The state variables representing an agent’s

memory are organised as a collection of ’cells’, each holding at most one clause. Each

cell is represented by a bitvector, each of length δ = 2× |P |, representing the positive

and negative literals in the clause in some standard order (e.g., lexicographic order).

Actions by each agent such as reading a premise, resolution are represented using

init and next which describe the initial condition and transition relation for a group

of related state variables. These are implemented using simple bit operations. The

specification language of NuSMV is designed to allow for the description of finite state

systems and it supports both synchronous and asynchronous transitions. An SMV pro-

gram consists of one or more module declarations including a main module. A module

declaration is an encapsulated collection of declarations, constraints and specifications.

A module can contain instances of other modules. In this encoding we implement the

memory cells and specify read and resolve operations as an asynchronous network

of non-deterministic processes. Among all the modules instantiated with the process

keyword, one is non-deterministically chosen, and the assignment statements declared

in that process are executed in parallel. As an example, a NuSMV encoding for a

single agent tree-like resolution example with two propositional variables is given in

Appendix F.

Agents # Var. Mem. # Reachable states Max. BDDs CPU time
(intermediate product)

1 2 3 1305 1924 0.3
1 3 4 874097 1126430 413

Table 4.6: NuSMV positional encoding

NuSMV has an interactive mode through which the user can activate the various

computation steps as system commands with different options. For example, the user

can provide options (monolithic, partitioned etc.) on how to partition the model during

reachable state space computation. The final BDD size for each step in the traversal is

identical for both partitioned and monolithic methods. As far as the intermediate BDD

sizes, the partitioned relation reports the sizes after each subset of quantifications are

94

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

done. On the other hand, with monolithic, the BDD size explosion happens inside

BDD manager during a single operation, so it is not reported by NuSMV. The default

option that NuSMV uses is the partitioned transition relation, and the information re-

ported here is based on the default option. The results are summarised in Table 4.6.

We found no significant differences in performance between Mocha and NuSMV.

4.8.3 Analysis of experimental results

The state space size and CPU time required by the model checkers for various problem

sizes are summarised in Tables 4.4, 4.5 & 4.6. From the results we observe that the

state space size reported by the model checkers in case of positional encodings for a

single agent system are slightly larger than the theoretical analysis. This is due to use

of some additional Boolean variables in the encodings. On the other hand, in the non-

positional encoding for a single agent system the state space size reported by Mocha

(the only model checker where a non-positional encoding was used) is approximately

the same as the actual state space size of the problem. In this encoding we have used

additional “event” variables which do not contribute to the state space size. In both

the encodings, for multi-agent systems, the state space size reported by Mocha (the

only model checker that was used) are slightly larger than the theoretical analysis.

This is because for multi-agent systems some communication counter variables (an

integer type) are also required to count the number of messages exchanged. Thus in

a multi-agent system consisting of nAg(> 1) agents, nAg additional counter variables

are required one for each agent. We need log2 r bits for a counter of range r ∈ N. We

further observe that, the maximal BDD (MDD) size during image computation may

reach 1126430.

An important point that we can see from the Table 4.4 and Table 4.5 that the CPU

time required by Mocha for non-positional encoding with two agents and three propo-

sitional variables is much larger than that of a positional encoding. This may be be-

cause in the non-positional encoding we had to use additional 2 · 3n event variables

95

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

and a counter variable of range type in order to implement the memory bound, clause

adding and overwriting operations. Although the event variables do not contribute to

the state space size, at each iteration in the image computation steps their presence is

necessary and hence increases the size of the intermediate MDD sizes which causes

the slowdown of the computation.

In NuSMV, image computation methods are implemented in different ways such

as Monolithic, Threshold, and IWLS95 [Ranjan et al., 1995]. The Monolithic option

is based on no partitioning at all. We have tried different methods, however, we did

not find any significant differences in terms of BDD nodes or CPU time in order to

perform the reachability analysis. The final BDD size for each step in the traversal is

identical for both partitioned and monolithic methods.

In symbolic model checking, variable ordering plays a major role to achieve better

performance. However, in our example model, for both the model checkers, variable

ordering does not improve performance significantly.

In addition, we have also compared our resolution encodings with two other stan-

dard models from the NuSMV2.4.3 distribution package: “Shuttle Digital Autopilot

engines out (3E/O) contingency guidance requirements (SDA)” and “the model of

the MSI protocol with transient states (MSI)”. The SDA model has also been stud-

ied in [Cimatti et al., 2000] as a reference example, and was used for a comparison of

NuSMV performance with the original CMU SMV [McMillan, 1992]. These example

models can be model checked quite efficiently. The state space size of these models are

much greater than that of our resolution-based models, however, their maximal BDD

sizes during image computation are much smaller (because of small branching factors)

(see Table 4.7). The number of reachable states of a single-agent tree-like resolution

based system with four propositional variables is 25624113, which is less than that of

SAD and MSI. However, we were unable to verify properties of such a system using

both the model checkers. In fact its intermediate BDD size reaches 35333396 at an

early stage (at the sixth iteration) of image computation and the system blows up. This

96

CHAPTER 4: VERIFYING RESOLUTION-BASED SYSTEMS

is because the worst case branching factor of the system at this stage itself is greater

than or equal to 75.

Model Property # Reachable states # Max. BDDs CPU time
(intermediate product)

SDA CTL 2.10443e+14 2245 0.7
AG(cg.finished -> output_k != 0)

MSI CTL 3.65528e+07 33693 9
AG ! (n0.c.modified & n1.c.modified
& (n0.c.tag = n1.c.tag))

Table 4.7: Reference model from the NuSMV2.4.3 distribution package

We observe that both the model checkers spent much of the verification time during

reachable state space computation. Each iteration of the reachability analysis takes a

large amount of time to complete execution. This is mostly due to the large branching

factor of the model. Also, the system verification time increases exponentially with the

number of propositional variables. This is because increasing the number of proposi-

tional variables increases the branching factor as well as the depth of the solution.

In the next chapter, we propose a framework for analysing resource requirements

for systems of reasoning agents which reason using rules.

97

Chapter 5

Verifying rule-based systems

In this chapter, we consider the verification of system behaviour and resource require-

ments for distributed rule-based agents (i.e., agents which reason using rules). More

specifically, we consider distributed problem solving in systems of communicating

rule-based agents, and ask how much time (measured as the number of rule firings)

and message exchanges does it take the system to find a solution. Using a synthetic but

realistic example system of rule-based reasoning agents which allows the size of the

problem and the distribution of knowledge among the reasoners to be varied, we show

the Mocha model checker can be used to encode and verify properties of systems of

distributed rule-based agents. We present preliminary results which highlight complex

tradeoffs between time and communication bounds. We analyse the complexity of the

problem and its model checking encoding in terms of state space size and branching

factor. Finally, we argue (based on complexity analysis and experimental results) that

reasonably sized problem instances are unlikely to be tractable for a standard model

checker without steps to reduce the branching factor of the state space.

5.1 Rule-based systems

An important class of AI reasoning systems is rule-based. Rule-based systems are

rapidly becoming an important component of mainstream computing technologies, for

98

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

example in business process modelling, the semantic web, sensor networks etc. How-

ever, while rules provide a flexible way of implementing such systems, the resulting

system behaviour and the resources required to realise it can be difficult to predict.

These problems become even more challenging in the case of distributed rule-based

systems, where the system being designed or analysed consists of several communi-

cating rule-based programs that exchange information via messages, e.g., a semantic

web application or a sensor network. A communicated fact (or sensor reading) may be

added asynchronously to the state of a rule-based system while the system is running,

potentially triggering a new strand of computation which executes in parallel with cur-

rent processing. To be able to provide response time guarantees for such systems, it is

important to know how long each rule-based system’s reasoning is going to take. In

other situations, for example a rule-based system running on a PDA or other mobile

device, the number of messages exchanged may be a critical factor. In this section, we

present the basic structure of rule-based systems.

5.1.1 Structure of rule-based systems

A rule-based system consists of a rule-base; an inference engine; and a working mem-

ory. In some applications, a user interface may be present through which input and

output signals are received and sent, however, it is not necessarily a part of the ba-

sic reasoning process. The architecture of a rule-based system is depicted in Fig-

ure 5.1 [Negnevitsky, 2005]. The rule-based system uses a very simple technique.

Starting with a rule-base, which contains all of the appropriate knowledge encoded

into IF-THEN rules for a given problem, and a working memory contains a set of facts

which represent the initial state of the system.

It repeatedly executes an inference cycle consisting of three phases: are the match

phase, the select phase and the execute phase. The match phase compares the con-

ditions (IF) of all rules to working memory. A match for every condition in a rule

constitutes an instantiation of that rule. A rule may have more than one instantiation.

99

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

Rule Base Working Memory (WM)

Match Select

Execute

Inference Engine

Figure 5.1: Structure of rule-based systems

The set of all rule instantiations collectively form a set, called the conflict set, which is

passed through the select phase. In the select phase a reasoning strategy (or a conflict

resolution strategy) determines a single instantiation, all instantiations or a subset of

conflict set, which is passed to the execute phase. In the absence of an explicit rea-

soning strategy, all the instantiations are selected for execution. The execute phase

then performs the actions of those instantiations passed specified in its THEN clause.

These actions can modify the working memory, for example newly generated facts

can be added to the working memory, some old facts can be deleted from the working

memory or do anything else specified by the system designer. The cycle begins again

with the match phase and the process continues until no more rules can be matched

and all agents have an empty conflict set.

In this chapter, we do not consider explicit conflict resolution strategies, hence at

each cycle in the select phase all the instantiations are selected for execution.

5.1.2 Basic form of rules

Rules in a rule-based system have the following general form:

rule : 〈〈IF 〉 → 〈THEN〉〉

100

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

where 〈IF 〉 is a logical formula represented by a set of conditions which define when

the rule can be applied, and 〈THEN〉 is the consequence of applying the rule; it can

also be a logical formula, action or decision. The most common form of rule has more

than one conditions (|IF | ≥ 1) and a single conclusion (|THEN | = 1):

〈P1 ∧ P2 ∧ . . . ∧ Pn−1 → Pn〉 (5.1)

where P1, P2, . . . , Pn−1 are atomic formulae1 of some language, for example, propo-

sitional logic or first-order logic, and Pn can also be an atomic formula of the same

language or an action or a decision. A rule of the form above, which has one or more

conditions and a single conclusion, is known as Horn clause rule. For simplicity, all

the variables occurring in a formula Pi (when Pi is an atomic formula of first-order

logic) are assumed to be universally quantified. Furthermore, it is assumed that all the

variables occurring in the right-hand side atomic formula Pn must also appear in some

of the left-hand side atomic formulae P1, P2, . . . , Pn−1.

In this chapter, we consider rule-based systems with propositional Horn clause

rules. However, rule-based systems with first-order Horn clause rules are considered

later in this thesis (cf. Chapter 6).

5.2 Systems of communicating rule-based reasoners

In this section, we describe the systems of communicating rule-based agents which we

investigate. We assume that the system consists of nAg individual rule-based systems

or agents, where nAg ≥ 1. Each agent is identified by a value in {1, . . . , nAg}, and

we use variables i and j over {1, . . . , nAg} to refer to agents. Each agent i has a

program, consisting of propositional Horn clause rules, and a working memory, which

contains facts (propositions). The restriction to propositional rules is not critical: if

the rules do not contain functional symbols and we can assume a fixed finite set of

1An atomic formula is a formula that contains no logical connectives nor quantifiers.

101

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

constant symbols, then any set of first-order Horn clauses and facts can be encoded as

propositional formulae. If an agent i has a rule A1 ∧ A2 ∧ . . . ∧ An → B, the facts

A1, . . . , An are in i’s working memory and B is not in i’s working memory in state s,

then i can fire the rule, adding B to i’s working memory in the successor state s′.

In addition to firing rules, agents can exchange messages regarding facts currently

in their working memory. The exchange of information between agents is modelled as

an abstract Copy operation as before. An agent can also perform an Idle operation (do

nothing). Furthermore, each agent performs a single action at each step.

Time Agent 1 Agent 2
t0 {A1, A2, A3, A4} {A5, A6, A7, A8}

operation: RuleB2 RuleB4
t1 {A1, A2, A3, A4, B2} {A5, A6, A7, A8, B4}

operation: RuleB1 RuleB3
t2 {A1, A2, A3, A4, B1, B2} {A5, A6, A7, A8, B3, B4}

operation: RuleC1 RuleC2
t3 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C2}

operation: Idle Copy (C1 from Agent 1)
t4 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C1, C2}

operation: Idle RuleD1
t5 {A1, A2, A3, A4, B1, B2, C1} {A5, A6, A7, A8, B3, B4, C1, C2, D1}

Table 5.1: Example: derivation with two agents

A problem is considered to be solved if one of the agents has derived the goal. The

time taken to solve the problem is taken to be the total number of steps by the whole

system (agents firing their rules or copying facts in parallel, at most one operation exe-

cuted by each agent at every step). This abstracts away from the cost of rule matching

etc. This assumption is made for simplicity and a single ‘tick’ can be replaced with

a numerical value reflecting real time taken by the system to fire a rule (worst case or

average). The amount of communication required to solve the problem is taken to be

the total number of copy operations performed by all agents. Note that the only agent

which incurs the communication cost is the agent which performs the copy. As with

our model of time, the assumptions regarding communication are made for simplicity;

it is straightforward to modify the definition of communication so that, e.g., the ‘cost’

102

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

of communication is paid by both agents, communication takes more than one tick of

time, and communication is non-deterministic.

The execution of a distributed rule-based system can be modelled as a state transi-

tion system where states correspond to combined states of agents (set of facts in each

agent’s working memory) and transitions correspond to agents performing actions in

parallel, where each agent’s action is either a single rule firing, a copy action, or an

idle action.

As an example, consider a system of two agents, 1 and 2. The agents share the

same set of rules is as follows.

RuleB1 A1 ∧A2 → B1 RuleB2 A3 ∧A4 → B2

RuleB3 A5 ∧A6 → B3 RuleB4 A7 ∧A8 → B4

RuleC1 B1 ∧B2 → C1 RuleC2 B3 ∧B4 → C2

RuleD1 C1 ∧ C2 → D1

The goal is to derive D1. Table 5.1 gives a simple example of a run of the system

starting from a state where agent 1 has A1, A2, A3 and A4 in its working memory, and

agent 2 has A5, A6, A7, A8. In this example, the agents require one Copy operation and

five time steps to derive the goal. (In fact, this is an optimal use of resources for this

problem, as verified using Mocha, see § 5.7). We will use variations on this synthetic

‘binary tree’ problem, in which theAis are the leaves and the goal is the root of the tree,

as examples, depicted in Figure 5.2. This problem is typical of a class of distributed

reasoning problems and can be easily parameterised by the number of leaf facts and

the distribution of facts and rules among the agents. For example, a larger system can

be generated using 16 ‘leaf’ facts A1, . . . , A16, adding extra rules to derive B5 from A9

and A10, etc., and a new goal E1 derivable from D1 and D2. We will refer to this as a

103

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

‘16 leaf example’.

A1 A2 A3
A4 A5 A6

A7 A8

B1 B2 B3 B4

C1 C2

D1
Level 0

Level 1

Level 2

Level 3

Figure 5.2: Binary tree example

5.3 Property specification

Let us consider the ‘8 leaf example’ discussed above, and a run of the system to derive

the goal formula D1 which is shown in Table 5.1. The resource requirements for the

system to derive the goal formula D1 are one copy operation and 5 time steps. We can

prove that start→ EX5 [B1D1∨B2D1] (i.e., from the start state, the agents can derive

the formula D1 in 5 steps), where Bi is a belief operator (discussed in the next section)

for each agent i. This is a very simple case; however, if we increase the problem size

and distribute leaf nodes to the agents in various patterns, the verification task would

be hard to do by hand. Therefore it is more convenient to use an automatic method to

verify them. In order to verify these properties automatically we use symbolic model

checking tools, which will be discussed shortly. To obtain the actual derivation we

can also attempt to verify the negation of a formula, for example AG¬BiD1 (for i =

1, 2)—the counterexample trace will show how the system reaches the state where the

goal formula D1 is derived. In the following, we briefly describe a temporal doxastic

logic that can be used to reason about the system.

If formulae are not deleted once they are in the agent’s memory, in order to verify

104

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

that an agent has derived ϕ within n timesteps, it is sufficient to check whether ϕ is in

the agent’s memory at the nth step, so we can use EX nBϕ to verify whether EX≤nBϕ

holds.

5.4 Logical formalism

To reason about systems of distributed rule-based reasoning agents we use LCRB de-

veloped by Nga and Alechina, a temporal doxastic logic which allows us to describe a

set of reasoning agents with bounds on time and on communication. In this section, we

briefly describe the syntax and semantics of LCRB , a detailed description can be found

in [Alechina et al., 2008b]. The language of LCRB is an extension of CTL∗ [Clarke

et al., 2000, pp. 27–30], and contains a belief operator for each agent and communica-

tion modalities. All the properties of interest are expressible in CTL, but CTL∗ is used

to make the completeness proof easier.

We begin by defining an internal language for each agent. This language in-

cludes all possible formulae that the agent can store in its working memory. Let

A = {1, . . . , nAg} be the set of all agents, and P a finite common alphabet of facts.

Let Π be a finite set of rules of the form P1, . . . , Pn → P , where n ≥ 0, Pi, P ∈ P

for all i ∈ {1, . . . , n} and Pi 6= Pj for all i 6= j. For convenience, we use the notation

pre(ρ) where ρ ∈ Π for the set of premises of ρ and con(ρ) for the conclusion of ρ. For

example, if ρ = P1, . . . , Pn → P , then pre(ρ) = {P1, . . . , Pn} and con(ρ) = P . The

internal language IL, then, includes all the facts P ∈ P and rules ρ ∈ Π. We denote

the set of all formulae of IL by Ω = P ∪ Π. Note that Ω is finite. The communication

ability of the agents is expressed by the Copy action which copies a fact from another

agent’s memory. The limit on each agent’s communication ability is nC(i): in any

valid run of the system, agent i can perform at most nC(i) Copy actions.

105

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

5.4.1 Syntax of LCRB

The syntax of LCRB includes the temporal operators of CTL∗ and is defined inductively

as follows:

• > (tautology) and start (a propositional variable which is only true at the initial

moment of time) are well-formed formulae (wff) of LCRB ,

• cp=n
i (which states that the value of agent i’s communication counter is n) is a

wff of LCRB for all 0 ≤ n ≤ nC(i) and i ∈ A,

• BiP (agent i believes P) and Biρ (agent i believes ρ) are wffs of LCRB for any

P ∈ P , ρ ∈ Π and i ∈ A,

• If ϕ and ψ are wffs of LCRB , then so are ¬ϕ and ϕ ∧ ψ,

• If ϕ and ψ are wffs of LCRB , then so are Xϕ (in the next state ϕ), ϕUψ (ϕ

holds until ψ), Aϕ (on all paths ϕ).

Other classical abbreviations for ⊥, ∨,→,↔, and temporal operations:

Fϕ ≡ >Uϕ (at some point in the future ϕ) and Gϕ ≡ ¬F¬ϕ (at all points in the

future ϕ), and Eϕ ≡ ¬A¬ϕ (on some path ϕ) are defined as usual. For convenience,

we also introduce the following abbreviations: CP i = {cp=n
i | 0 ≤ n ≤ nC(i)} and

CP =
⋃
i∈ACP i.

5.4.2 Semantics of LCRB

The semantics of LCRB is defined by LCRB transition systems which are based on ω-

tree structures. Let (T,R) be a pair where T is a set and R is a binary relation on T .

(T,R) is a ω-tree frame iff the following conditions are satisfied.

1. T is a non-empty set.

2. R is total, i.e. for all t ∈ T , there exists s ∈ T such that tRs.

106

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

3. Let < be the strict transitive closure of R, namely {(s, t) ∈ T ×T | ∃n ≥ 0, t0 =

s, . . . , tn = t ∈ T such that tiRti+1∀0 ≤ i ≤ n− 1}.

4. For all t ∈ T , the past {s ∈ T | s < t} is linearly ordered by <.

5. There is a smallest element called the root, which is denoted by t0.

6. Each maximal linearly <- ordered subset of T is order-isomorphic to the natural

numbers.

A branch of (T,R) is an ω-sequence (t0, t1, . . .) such that t0 is the root and tiRti+1 for

all i ≥ 0. We denote B(T,R) to be the set of all branches of (T,R). For a branch

σ ∈ B(T,R), σi denotes the element ti of σ and σ≤i is the prefix (t0, t1, . . . , ti) of σ.

A LCRB transition system M is defined as a triple (T,R, V) where:

• (T,R) is a ω-tree frame,

• V : T×A → ℘(Ω∪CP) such that for all s ∈ T and i ∈ A: V (s, i) = Q∪{cp=n
i }

for some Q ∈ ℘(Ω) and cp=n
i ∈ CPi. We denote V ∗(s, i) = V (s, i) \ CPi.

The truth of a LCRB formula at a point n of a path σ ∈ B(T,R) is defined induc-

tively as follows:

• M,σ, n |= >,

• M,σ, n |= start iff n = 0,

• M,σ, n |= Biα iff α ∈ V (s, i),

• M,σ, n |= cp=m
i iff cp=m

i ∈ V (s, i),

• M,σ, n |= ¬ϕ iff M,σ, n 6|= ϕ,

• M,σ, n |= ϕ ∧ ψ iff M,σ, n |= ϕ and M,σ, n |= ψ,

• M,σ, n |= Xϕ iff M,σ, n+ 1 |= ϕ,

107

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

• M,σ, n |= ϕUψ iff ∃m ≥ n such that ∀k ∈ [n,m) M,σ, k |= ϕ and M,σ,m |=

ψ,

• M,σ, n |= Aϕ iff ∀σ′ ∈ B(T,R) such that σ′≤n = σ≤n, M,σ′, n |= ϕ.

The models of LCRB satisfy a set of constraints on the accessibility relation. In-

tuitively, each R is composed of an nA-tuple of agents’ actions performed in parallel.

We will next define precisely the set of actions that each agent can perform. They are

Rule i,ρ, Copy i,α and Idle i where i ∈ A, ρ ∈ Π and α ∈ Ω. Rule i,ρ is the action of an

agent i firing ρ; Copy i,α the action of copying α from another agent and Idle i is when

agent i does nothing and moves to the next state.

We set constraints on the set of models such that the two following conditions are

satisfied: (i) any transition between two states of the model corresponds to the effect of

actions done by all agents inA and (ii) for any action of an agent inA that is applicable

at a state s of the model, then there exists another state s′ and a transition from s to s′

which corresponds to the effect of the action. To formalise those two conditions, we

have the following definitions.

Definition 5.4.1. Let (T,R, V) be a tree model. The set of effective transitions Ra for

an action a is defined as a subset of R and satisfies the following conditions, for all

(s, t) ∈ R

1. (s, t) ∈ RRulei,ρ iff ρ ∈ V (s, i), V (s, i) ⊇ pre(ρ), con(ρ) /∈ V (s, i) and

V (t, i) = V (s, i) ∪ {con(ρ)}. This condition says that s and t are connected

by agent i’s rule-fired transition if the following is true: ρ is a rule of i, V (s, i)

contains all premises of ρ but not its conclusion and the conclusion of ρ is added

to the next state t of i.

2. (s, t) ∈ RCopyi,α iff α ∈ V (s, j) for some j ∈ A and j 6= i, cp=n
i ∈ V (s, i) such

that n < nC(i), α /∈ V (s, i) and V (t, i) = V (s, i) \ {cp=n
i } ∪ {cp=n+1

i } ∪ {α}.

In this condition, s and t are connected by a Copy transition of agent i iff i has

copied so far at most nC(i)− 1 messages from other agents, at s, i does not have

108

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

α in its working memory while another agent j does and at the next state t, α

is added into the working memory of i and its message counter is increased by

one.

3. (s, t) ∈ RIdlei iff V (t, i) = V (s, i). The Idle transition does not change the state.

Below, we specify when an action is applicable. Note that we only enable deriving

a formula if this formula is not already in the agent’s working memory.

Definition 5.4.2. Let (T,R, V) be a tree model. The set Acts,i of applicable actions

that an agent i can perform at a state s ∈ T is defined as follows:

1. Rule i,ρ ∈ Acts,i iff ρ ∈ V (s, i), pre(ρ) ⊆ V (s, i) and con(ρ) /∈ V (s, i).

2. Copy i,α ∈ Acts,i iff n < nC(i) where n is from cp=n
i ∈ V (s, i), α 6∈ V (s, i),

α ∈ V (s, j) for some j ∈ A.

3. It is always the case that Idle i ∈ Acts,i.

Finally, the definition of the set of models corresponding to a system of rule-based

reasoners is given below:

Definition 5.4.3. M(nC) is the set of models (T,R, V) which satisfies the following

conditions:

1. cp=0
i ∈ V (t0, i) where t0 is the root of (T,R) for all i ∈ A.

2. R =
⋃
∀aRa.

3. For all s ∈ T , ai ∈ Acts,i, there exists t ∈ T such that (s, t) ∈ Rai for all i ∈ A.

5.5 Analysis of the problem complexity

In this section, we present an analysis of the complexity of the binary-tree problem. We

analyse the problem complexity in terms of its state space size and branching factor.

Let us consider the binary-tree example depicted in Figure 5.2. It is easy to compute

109

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

the set of all possible configurations for a single-agent system, when all leaf facts are

present in its initial working memory, and the agent has the following set of rules:

RuleB1 A1 ∧A2 → B1 RuleB2 A3 ∧A4 → B2

RuleB3 A5 ∧A6 → B3 RuleB4 A7 ∧A8 → B4

RuleC1 B1 ∧B2 → C1 RuleC2 B3 ∧B4 → C2

RuleD1 C1 ∧ C2 → D1

Figure 5.3 shows the set of all possible configurations (numbered 1 to 26) and the

corresponding state transition graph of the system. Let S = {1, 2, . . . , 26} be the

set of all possible configurations of the system. Let S3 = {1}, S2 = {2, 3 . . . , 16},

S1 = {17, 18, . . . , 25}, and S0 = {26}. Then S =
⋃3
l=0 Sl. The singleton set S3

contains the initial configuration of the state space, in this initial configuration all leaf

facts are true (present in the initial working memory). The set S2 contains all those

configurations which are Ai’s (all the leaf facts) in concatenation with all possible

combinations of Bi’s. That is S2 contains those configurations of the state space which

represent all possible ways Bi may be present in the agent’s working memory. Sim-

ilarly, the set S1 contains those configurations of the state space which represent all

possible ways Ci may be present in the agent’s working memory, and the set S0 con-

tains the configuration of the state space which represents D1’s presence in the agent’s

working memory. For ease of illustration, we assume that there is an Sl corresponding

to each Level l (0 ≤ l ≤ 3) of the tree depicted in Figure 5.2. Let Nl denote the

cardinality of the set Sl (0 ≤ l ≤ 3). Then the value of Nl can be calculated as follows:

N3 = 8C8

= 1.

The above expression gives the number of initial configuration of the state space:

when all the 8 leaf facts are present in the working memory; i.e., 8 elements are

chosen from a set of size 8.

110

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

N2 = 4C1 · 8C8 + 4C2 · 8C8 + 4C3 · 8C8 + 4C4 · 8C8

= 4 + 6 + 4 + 1

= 15.

The above expression gives the number of all those configurations which areAi’s

(all the leaf facts 8C8) in concatenation with all possible combinations of Bi’s.

Note that we keep 8C8 in the expression to come up with a pattern otherwise we

can simply replace it by 1.

N1 = (2C1 · [
∑2

i=0
2Ci] · 8C8) + (2C2 · 4C4 · 8C8)

= (2 · [1 + 2 + 1]) + 1

= 9.

The above expression gives the number of all those configurations which rep-

resent all possible ways Ci’s may be present in the agent’s working memory.

The first term (2C1 · [
∑2

i=0
2Ci] · 8C8) on the right-hand side of the expression

computes the presence of either C1 or C2 in different ways. The presence of

Ci’s in the working memory depends on the presence of Bi’s. In order to ensure

the presence of C1 (or C2) in the working memory, the Bi’s may be present in

[
∑2

i=0
2Ci] different ways, where the upper range 2 of the sum and the constant

2 of the combination operator are calculated based on the Bi’s level in the tree.

We keep 8C8 instead of 1 for the same reason as stated above. The second term

2C2 · 4C4 · 8C8 on the right-hand side of the expression computes the presence

of both C1 and C2 in different ways. There is only one way they can be present

together in the working memory: when all the Bi’s and in turn all the Ai’s are

present.

N0 = 1C1 · 2C2 · 4C4 · 8C8

= 1.

The above expression gives the number of configuration(s) which represent all

possible way the root node of the tree can be present in the working memory.

111

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

There is only one way this can happen when all other nodes of the tree are already

present in the working memory.

Then the number of reachable states N is:

N = N0 +N1 +N2 +N3 = 1 + 9 + 15 + 1 = 26

1 : {A1, A2, A3, A4, A5, A6, A7, A8}
2 : {A1, A2, A3, A4, A5, A6, A7, A8, B1}
3 : {A1, A2, A3, A4, A5, A6, A7, A8, B2}
4 : {A1, A2, A3, A4, A5, A6, A7, A8, B3}

5 : {A1, A2, A3, A4, A5, A6, A7, A8, B4}
6 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2}
7 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B3}
8 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B4}
9 : {A1, A2, A3, A4, A5, A6, A7, A8, B2, B3}
10 : {A1, A2, A3, A4, A5, A6, A7, A8, B2, B4}
11 : {A1, A2, A3, A4, A5, A6, A7, A8, B3, B4}
12 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3}
13 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B4}

14 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B3, B4}

17 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, C1}
18 : {A1, A2, A3, A4, A5, A6, A7, A8, B3, B4, C2}

15 : {A1, A2, A3, A4, A5, A6, A7, A8, B2, B3, B4}

16 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4}

19 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B4, C1}
20 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, C1}
21 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B3, B4, C2}

22 : {A1, A2, A3, A4, A5, A6, A7, A8, B2, B3, B4, C2}
23 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4, C1}
24 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4, C2}
25 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4, C1, C2}
26 : {A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, B3, B4, C1, C2, D1}

1

2

3

4

5

7

8

9

10

6

11

13

14

17

18

12

15

19

20

21

22

16

24

23

25 26

Figure 5.3: State transition graph for ‘8 leaf example’

Now we generalise the idea discussed above for an ‘n leaf example’ (see Fig-

ure 5.4). Without loss of generality we assume that the tree is a perfect binary tree.2

Therefore, in a tree with height h has 2h leaf nodes and the total number of nodes in

the tree is 2h+1− 1. The number of nodes nj at level j is determined by the expression

nj = 2j, for 0 ≤ j ≤ h. Therefore, a tree with n leaf nodes, at level h the number of

2A full binary tree is a tree in which every internal node has two children. A perfect binary tree is a
full binary tree in which all leaves are at the same level [Preiss, 1999].

112

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

nodes is nh = 2h = n, at level h−1 the number of nodes is nh−1 = 2h−1 = 2h/2 = n/2

and so on. We use the following notation to represent the nodes of the tree at each level.

Level : 0 X0
1

Level : 1 X1
1 , X

1
2

...

Level : h− 1 Xh−1
1 , Xh−1

2 , . . . , Xh−1
nh−1

Level : h Xh
1 , X

h
2 , . . . , X

h
nh

Xh
1 Xh

2
Xh

nh
Xh

nh−1

Xh−1
1

Xh−1
nh−1

. . .

. . .

X0
1

X1
1 X1

2

X2
1 X2

4X2
3X2

2

...

Level

Level : 0

Level : 1

Level : 2

Level : h− 1

Level : h

Number of nodes

20 = 1

21 = 2

22 = 4

2h−1 = n/2

2h = n

Figure 5.4: Levels and the corresponding nodes of the tree

We assume that all leaf facts {Xh
1 , X

h
2 , . . . , X

h
nh
} are true initially (present in the

initial working memory). For 0 ≤ l ≤ h, let Sl represent the set of configuration(s)

corresponding to each Level l, and Nl denote the cardinality of the set Sl. Then the

value of Nl (for 0 ≤ l ≤ h) can be calculated using the following expressions:

N0 =
h∏
j=0

f(j) , where f(j) = njCnj

113

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

N1 = n1C1 · [
h−1∏
j=2

f(j)] · nhCnh +
h∏
k=1

g(k) , where f(j) =

nj−2j−1∑
i=0

nj−2j−1
Ci and g(k) = nkCnk

N2 = n2C1 · [
h−1∏
j=3

f1(j)] · nhCnh + n2C2 · [
h−1∏
j=3

f2(j)] · nhCnh + n2C3 · [
h−1∏
j=3

f3(j)] · nhCnh +
h∏
k=2

g(k)

, where f1(j) =

nj−1·2j−2∑
i=0

nj−1·2j−2
Ci , f2(j) =

nj−2·2j−2∑
i=0

nj−2·2j−2
Ci , f3(j) =

nj−3·2j−2∑
i=0

nj−3·2j−2
Ci

and g(k) = nkCnk
...

Nh−2 = nh−2C1 · [
nh−1−21∑
i=0

nh−1−21Ci] · nhCnh + nh−2C2 · [
nh−1−22∑
i=0

nh−1−22Ci] · nhCnh + . . .+

nh−2Cnh−2
· nh−1Cnh−1

· nhCnh
Nh−1 = nh−1C1 · nhCnh + nh−1C2 · nhCnh + . . .+ nh−1Cnh−1

· nhCnh
Nh = nhCnh

LetN denote the number of reachable states of a single-agent system. The expres-

sion 5.2 defines the value of N as follows:

N =
h∑
l=0

Nl (5.2)

Let us consider the case of a multi-agent system, consisting of the parallel com-

position of nAg reasoning agents A = {1, 2, . . . , nAg}. If Ni denotes the number of

reachable states of agent i, then the number of reachable states N ′ of the multi-agent

is obtained by their parallel composition.

N ′ =
nAg∏
i=1

Ni (5.3)

5.5.1 Asymptotic upper bound on the state space size

The following theorems provide the upper bounds on the set of reachable states of the

systems using Big-O notation.

Theorem 5.5.1. Let RuS be a single-agent rule-based system corresponding to an ‘n

leaf example’. Then the upper bound on the set of reachable states of RuS is of order

114

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

O(n · 2n(n+2)
4).

Proof. see Appendix A for a proof.

Theorem 5.5.2. Let RuM be a multi-agent rule-based system consisting of nAg agents

which share the same set of rules of an ‘n leaf example’. Then the upper bound on the

set of reachable states of RuM is of order O(nnAg · 2nAg ·(n(n+2)
4

)).

Proof. The proof is immediate from theorem 5.5.1 and the multiplication rule of

Big-O complexity theory.

5.5.2 The branching factor of the problem

The worst case branching factor of the search space of a rule-based system correspond-

ing to an “n leaf example” is determined by the following theorems.

Theorem 5.5.3. Let RuS be a single-agent rule-based system corresponding to an ‘n

leaf example’. Then the worst case branching factor of the search space of ReS is of

order O(n
2
).

Proof. see Appendix B for a proof.

Theorem 5.5.4. Let RuM be a multi-agent rule-based system consisting of two agents

which share the same set of rules of an ‘n leaf example’. Then the worst case branching

factor of the search space of RuM is of order O(n2).

Proof. see Appendix C for a proof.

5.6 Analysis of the encoding complexity

In symbolic model checking, in order to encode a LCRB model each proposition of P

can be represented by a Boolean variable. Thus |P| Boolean variables are required to

encode the system. Therefore, the encoding complexity of an “n leaf example” will be

same as its problem complexity (in terms of state space size and branching factor).

115

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

5.7 Model checking rule-based systems

In this experiment, we used the Mocha model checker in order to verify the properties

of the system. The state of the system is described by a set of state variables and each

system state corresponds to an assignment of values to the variables. The presence or

absence of each fact in the working memory of an agent is represented by a boolean

state variable aiAj which represents the fact that agent i believes fact Aj . The initial

values of these variables determines the initial distribution of facts between agents.3

In the experiments reported below, all derived (non-leaf) variables were initialized to

false, and only the allocation of leaves to each agent was varied.

5.7.1 Mocha encoding

The actions of firing a rule, copying a fact from another agent and idling were en-

coded as a Mocha atom which describes the initial condition and transition relation for

a group of related state variables. Inference is implemented by marking the consequent

of a rule as present in working memory at the next cycle if all of the antecedents of

the rule are present in working memory at the current cycle. A rule is only enabled if

its consequent is not already present in working memory at the current cycle. Com-

munication is implemented by copying the value representing the presence of a fact in

the working memory of another agent at the current cycle to the corresponding state

variable in the agent performing the copy at the next cycle. Copying is only enabled if

the fact to be copied is not already in the working memory of the agent performing the

copy. To express the communication bound, we use a counter for each agent which is

incremented each time a copy action is performed by the agent. In the experiments, we

assumed that all rules are believed by all agents in the initial state, and did not imple-

ment copying of rules. However, this can be done in a straightforward way by adding

an extra boolean variable to the premises of each rule, and implementing copying a

3We can also leave the initial allocation of facts undetermined, and allow the model checker to find
an allocation which satisfies some property, e.g., that there is a proof which takes less than 7 steps.
However for the experiments reported here, we specified the initial assignment of facts to agents.

116

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

rule as copying this variable. To allow an agent to idle at any cycle, the atoms which

update working memory in each agent are declared to be lazy.

At each update round, Mocha non-deterministically chooses between the enabled

rules and copy operations and idling.

5.7.2 Specifying system properties in Mocha

We can express a LCRB formula such as EX nBiα (agent i may derive belief α in

n steps) in the specification language of Mocha as EXn tr(Biα), where EXn is EX

repeated n times, and tr(Biα) is a state variable encoding of the fact that α is present

in the agent’s working memory (e.g. tr(Biα) = aiAj if α = Aj). To obtain the actual

derivation, we can verify an invariant which states that tr(Biα) is never true, and use

the counterexample trace to show how the system reaches the state where α is proved.

To bound the number of messages used, we can include a bound on the value of the

message counter of one or more agents in the property to be verified. For example,

EXn (tr(Biα)∧ tr(cp=0
i ∨cp=1

i)), where tr(cp=0
i ∨cp=1

i) is translated to the statement

ai_counter < 2, bounds the number of messages used by agent i to be at most 1.

5.7.3 Experimental results

In this section we give the results of experiments, originally presented in [Alechina

et al., 2008b] for different sizes of the binary tree example and different distributions

of leaves between the agents. The experiments were designed to investigate trade-

offs between the number of steps and the number of messages exchanged (a shorter

derivation with more messages or a longer derivation with fewer messages).

First, as a ‘base case’ and also to get an idea of the size of examples which can be

model-checked in a reasonable time using our Mocha encoding, we ran experiments

with just one agent, varying the size of the tree. The results are shown in Table 5.2. As

one would expect, the number of steps equals to the total number of rules in the exam-

ple. While for our binary tree example the results are unsurprising, in a less uniform

117

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

rule-based system such a result may be difficult to establish by a simple inspection of

rules.

Case # leaves # steps
1. 8 7
2. 16 15
3. 32 31
4. 64 63
5. 128 127

Table 5.2: Resource requirements for one agent

Case Agent 1 Agent 2 # steps #Messages 1 #Messages 2
1. A1 − A8 7 - -
2. A1 − A7 A8 6 0 3
3. A1 − A7 A8 6 1 2
4. A1 − A7 A8 7 1 1
5. A1 − A7 A8 8 1 0
6. A1 − A6 A7, A8 6 0 2
7. A1 − A6 A7, A8 6 1 1
8. A1 − A6 A7, A8 7 1 0
9. A1 − A4 A5 − A8 5 1 0
10. A1, A3, A5, A7 A2, A4, A6, A8 7 2 3
11. A1, A3, A5, A7 A2, A4, A6, A8 11 0 4

Table 5.3: Resource requirements for optimal derivation in 8 leaves cases

We then investigated different distributions of leaf facts between the agents. Ta-

ble 5.3 shows the number of derivation steps and the number of messages for each

agent for varying distributions of 8 leaves. Note that there are several optimal (non-

dominated) derivations for the same initial distribution of leaves between the agents.

For example, when agent 1 has all the leaves apart from A8, and agent 2 has A8, the

obvious solution is case 5, where agent 1 copies A8 from agent 2, and then derives the

goal in 7 steps, as in case 1. This derivation requires 8 time steps and one message.

However, the agents can solve the problem in fewer steps by exchanging more mes-

sages. For example, case 2 describes the situation when agent 2 copies A7 from agent

1, while agent 1 derives B3 (step 1). Then agent 2 derives B4 while agent 1 derives B2

(step 2). Then agent 2 copies B3 from agent 1, while agent 1 derives B1 (step 3). At

the next step agent 1 derives C1 and agent 2 derives C2 (step 4). Then agent 2 copies

118

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

C1 from agent 1 (step 5) and agent 1 idles; finally at step 6 agent 2 derives D1. The

effect of the bound on messages varies with the distribution, as can be seen in cases 10

and 11: if agent 1 has all the odd leaves and agent 2 all the even leaves, then to derive

the goal either requires 7 steps and 5 messages, or 11 steps and 4 messages.

Case Agent 1 Agent 2 # steps # msg 1 # msg 2
1. A1 −A16 15 - -
2. A1 −A15 A16 12 0 6
3. A1 −A15 A16 12 1 4
4. A1 −A15 A16 13 1 3
5. A1 −A15 A16 14 1 2
6. A1 −A15 A16 15 1 1
7. A1 −A15 A16 16 1 0
8. A1 −A14 A15, A16 11 0 5
9. A1 −A14 A15, A16 11 1 4
10. A1 −A14 A15, A16 12 1 3
11. A1 −A14 A15, A16 13 1 2
12. A1 −A14 A15, A16 14 1 1
13. A1 −A14 A15, A16 15 1 0
14. A1 −A12 A13, A14, A15, A16 11 0 4
15. A1 −A12 A13, A14, A15, A16 11 1 2
16. A1 −A12 A13, A14, A15, A16 12 1 1
17. A1 −A12 A13, A14, A15, A16 13 1 0
18. A1 −A3, A5 −A7, A9 −A11, A13 −A15 A4, A8, A12, A16 13 2 6
19. A1 −A3, A5 −A7, A9 −A11, A13 −A15 A4, A8, A12, A16 19 4 0
20. A1, A3, A5, A7, A9, A11, A13, A15 A2, A4, A6, A8, A12, A14, A16 13 4 5
21. A1, A3, A5, A7, A9, A11, A13, A15 A2, A4, A6, A8, A12, A14, A16 23 0 8

Table 5.4: Resource requirements for optimal derivation in 16 leaves cases

Similar trade-offs are apparent for a problem with 16 leaves, as shown in Table 5.4.

However in this case there are a larger number of possible distributions of leaves, and,

in general, more trade-offs for each distribution. For example, when one of the agents

has all the leaves but one, we again have the obvious solution where agent 1 copies

the missing leaf and derives the goal on its own, which takes 16 steps and 1 message

(case 7). In addition there are 15, 14, 13 and 12 step derivations, where the shorter

the derivation the more messages the agents have to exchange (cases 2 − 7). We also

see interesting trade-offs when agent 2 has two leaves (cases 8 − 13) or four leaves

in the same subtree (cases 14 − 17). When agent 1 has 3 leaves in each subtree and

agent 4 the fourth leaf in each subtree, there is again an obvious derivation in which

agent 1 copies the 4 missing leaves and completes the derivation in 19 steps and 4 copy

operations, and a more interesting one which takes 13 steps and the agents exchange

more messages (agent 2 copies 3 leaves to complete a part of the proof, and then copies

variables from higher up in the tree). The difference is also more marked in the ‘odd

119

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

and even’ case (cases 20 and 21), where agent 1 has all the odd leaves and agent 2 all

the even leaves, where increasing the message bound by 1 reduces the length of the

proof by 10 steps.

5.8 Analysis of experimental results

All the experiments reported in the previous section were performed on an Intel Pen-

tium 4 CPU 3.20GHz machine with 2GB of RAM under CentOS release 4.8. In Ta-

ble 5.5, we present some runtime system information produced by Mocha when verify-

ing properties of the binary tree example and different distributions of leaves between

the agents. That includes the state space size, maximal MDD size of a particular it-

eration during image computation, and the CPU time (in seconds). When a system

property is violated Mocha produces a counter example trace that includes final MDD

size of each step of the reachable state space computation. In this experiment, for a

single agent, in order to verify the invariant property of the form AG¬ϕ (for exam-

ple ϕ is the root node), model checker has to explore the entire reachable state space.

This is because for a single agent system, to derive the root node, the system has to

fire all the rules of the system. However, for a multi-agent system in order to verify

invariant properties, model checker does not need to explore the entire reachable state

space. This is because each agent does not necessarily have to fire all its rules. For

instance, one agent can receive facts from other agent in the system. In Table 5.5, we

have provided the complete reachable state space information for multi-agent cases

using the Mocha’s sym_search command, these are mentioned within second brack-

ets. The distribution (n/2, n/2) of leaf facts between agents indicates that the first

n/2 leaf facts A1, A2, . . . , An/2 are assigned to one agent and the other n/2 leaf facts

An/2+1, An/2+2, . . . , An are assigned to the other agent in the system. Similarly, the

distribution (odd, even) of leaf facts indicates that the odd position node facts are as-

signed to one agent and the even position node facts are assigned to the other agent in

the system.

120

CHAPTER 5: VERIFYING RULE-BASED SYSTEMS

Ag. # Leaves Dist. # Reach. states # Reach. states # Max. MDDs # Max. MDDs CPU time CPU time
(sym_search) (sym_search) (sym_search)

1 8 - 26 - 22 - 0.4 -
2 8 (4,4) 41943 336156 3108 3874 4 5
2 8 (odd,even) 55278 145511 3447 4636 7 8
1 16 - 784 - 173 - 1 -
2 16 (8,8) 8.6667e+08 2.34705e+10 131179 321423 469 3429
2 16 (odd,even) 7.52994e+08 3.64244e+09 189419 286196 613 2267
1 32 - 458330 - 1141 - 3 -
1 64 - 2.10066e+11 - 4655 - 251 -
1 128 - 4.41279e+22 - 38897 - 6472 -

Table 5.5: State space and CPU time produced by Mocha

The results show that the state space size produced by Mocha is a close approx-

imation of the problem state space size. We observe that Mocha spent much of the

verification time during reachable state space computation. Table 5.5 shows that the

maximal MDD size of an intermediate product in a particular iteration during image

computation is quite large, e.g., the size reaches up to 8.6667e + 08. As in the reso-

lution example, model checking performance heavily depends not only on the number

of states and Boolean variables used in a model but also on the branching factor of the

model. A large branching factor causes the slowdown of the overall model checking

process. It also depends upon the solution depth. For example, a single agent ‘n leaf’

rule based system requires (n− 1) iterations during reachable state space computation

in order to reach the fixed point. The results suggest that the scalability issue of the

models coming from the large branching factor and the solution depth of the problem.

To address the problem of scalability, in the next chapter we propose a framework

for verifying systems of rule-based agents which uses explicit strategies and abstrac-

tion.

121

Chapter 6

A scalable verification framework for
MAS

In the preceding chapters, we have described frameworks for the explicit modelling

of computational (time, memory) and communication resources for distributed reason-

ing systems. We have seen that reasoning occurs in time and the agents can achieve

a goal only if they are prepared to commit certain time, memory and communication

resources. We have seen how properties of systems of distributed reasoning agents,

such as existence of derivations with given bounds on memory, communication, and

the number of inference steps, can be verified automatically. However, while these

techniques work for small numbers of agents, we saw in chapters 4 and 5, they are

unlikely to scale to large-scale systems. To address the problem of scalability, in this

chapter we propose a framework for verifying systems of rule-based agents which uses

explicit strategies and abstraction. The framework allows the use of abstract specifica-

tions consisting of LTL formulae to specify some of the agents in the system.

6.1 Verification framework

We would like to be able to verify properties of systems consisting of arbitrary numbers

of complex communicating reasoners. However our experience has indicated that veri-

fying such large, complex reasoning systems is infeasible with current model checking

technologies.

The most straightforward approach to defining the global state of a multi-agent sys-

122

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

tem is as a (parallel) composition of the local states of the agents (cf. Chapters 4 & 5).

At each step in the evolution of the system, each agent chooses from a set of possible

actions (we assume that an agent can always perform an ‘idle’ action which does not

change its state). The actions selected by the agents are then performed in parallel and

the system advances to the next state. In a multi-agent system composed of nAg (≥ 1)

agents, if each agent i can choose between performing at most a (≥ 1) actions, then the

system as a whole can move in anAg different ways from a given state at a given point

in time. Along with state space size, model checking performance is heavily dependent

on the branching factor of states in the reachable state space and the solution depth of a

given problem. In general, the model checking algorithm for reachability analysis per-

forms a breadth-first exploration of the state transition graph. When checking invariant

(safety) properties, the model-checker will either determine that no states violate the

invariant by exploring the entire state space, or will find a state violating the invari-

ant and produce a counter-example.1 However, even with state-of-the-art BDD-based

model-checkers, memory exhaustion can occur when computing the reachable state

space due to the large size of the intermediate BDDs (because of the high branching

factor).

To overcome this problem, we propose two approaches: the use of abstract spec-

ifications to model the behaviour of some of the agents in the system, and exploiting

information about the reasoning strategy adopted by the agents.

In model checking, when verifying large system, the model that describes the sys-

tem must be designed as a compromise between the model precision and its state space

size. Our approach to the verification of systems of communicating reasoners starts

from the assumption that the detailed behaviour of only a small number of agents

(perhaps only a single agent) is of interest to the system designer, and the remaining

agents in the system can be considered at a high level of abstraction. This is largely

true in practice, when different agents situated in different locations work indepen-

1Even with on-the-fly model-checking [Holzmann, 1996], the model checker has to explore the state
space at least until the solution depth.

123

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

dently except for the exchange of messages. Their complete computational behaviour

is therefore hidden from each other, and in general where the system designer may

have little or no direct control over (or even knowledge of) the internal behaviour of

some of the agents in the system. The external behaviours of such agents can be ade-

quately captured by specifications in an appropriate temporal doxastic logic, i.e., their

external behaviour can be represented by sets of temporal doxastic formulae, e.g., for-

mulae of the form X≤nϕ describe agents which produce a certain message or input to

the system within n time steps. Here ϕ can be, e.g., Bi Ask(i, j, P), Bi Tell(i, j, P), or

Bi P .

In our framework, we assume that an agent in the system is either completely con-

crete or completely abstract. The representation of agents in the system are divided

into two classes based on their behavioural specification, depicted in Figure 6.1. The

system designer may have complete control over the internal behaviour of some agents

in the system. The concrete agents class contains those agents. The remaining agents

belong to the abstract agents class. In this step the designer identifies which agents

(s)he needs to design for what classes. The designer also determines the number of

agents he needs to place in each class and their possible interactions. An agent can in-

teract with one or more agents in the system, but not necessarily every agent interacts

with every other agent in the system. For simplicity, we assume that communication is

error-free and takes one tick of time. The designer can consider the following different

possible levels of system information in order to design and verify system properties.

1. The system designer may have detailed design information about the internal

behaviour of some agents in the system including the initial facts in their working

memories, their rules and the reasoning strategy. The remaining agents in the

system are modelled using temporal doxastic formulae.

2. The system designer may have information of all the agents in the system includ-

ing the initial facts in their working memories, their rules but no information at

all about their reasoning strategy. This design gives the worst case model which

124

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

Agent 1

Agent 2

Agent m

Agent m+1

Agent m+2

Agent nAg

Concrete agents Abstract agents

Figure 6.1: System behavioural specification

we have already taken into account in our previous work.

3. The system designer may have detailed information of all the agents in the sys-

tem including the initial facts in their working memories, their rules and the

reasoning strategy.

In the following sections, we describe in more detail how we model the concrete

and abstract agents.

6.2 Communicating reasoners

We extend the model of distributed reasoners presented in Chapter 5. A distributed rea-

soning system consists of nAg (≥ 1) individual reasoners or agents. Each agent is iden-

tified by a value in {1, 2, . . . , nAg} and we use variables i and j over {1, 2, . . . , nAg}

to refer to agents. An agent in the system is either concrete or abstract. Each concrete

agent has a program, consisting of first-order Horn clause rules with negation-as-failure

allowed in the premises2, and a working memory, which contains facts (ground atomic
2Rules are of the form P1∧ . . .∧Pn → P where P is an atomic formula and Pi are atomic formulae

or atomic formulae preceded by the negation as failure operator.

125

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

formulae) representing the initial state of the system. The introduction of first-order

Horn clause rules and negation as failure increase the expressiveness of the frame-

work, and makes it easier to model complex real world problems. The behaviour of

each abstract agent is represented in terms of a set of temporal doxastic formulae. That

is abstract specifications are given as LTL formulae which describe the external be-

haviour of agents, and allow their temporal behaviour (the response time behaviour of

the agent), to be compactly modelled. The agents (concrete and abstract) execute syn-

chronously. We assume that each agent executes in a separate process and that agents

communicate via message passing. We further assume that each agent can communi-

cate with multiple agents in the system at the same time.

6.3 Concrete agents

The behavioural specification of a concrete agent that the system designer can spec-

ify is depicted in Figure 6.2. The two main components of rule-based agents are the

knowledge base (KB) which contains a set of condition-action rules and the working

memory (WM) which contains a set of facts that constitute the current (local) state

of the system. Another major component of a rule-based system is the inference en-

gine which reasons over rules when the application is executed. The inference engine

may have some reasoning strategies to handle cases when multiple rule instances are

eligible to fire.

Set of First order Horn clause rules

(Knowledge Base)

Set of ground atomic formulas

(Working Memory)

Reasoning strategy

(Inference Engine)

Figure 6.2: Individual concrete agent

126

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

6.3.1 Rules and facts

The syntax of rules that the system designer can specify has the following BNF:

Rule ::= 〈 Priority : Patterns → Pattern 〉
Patterns ::= Pattern(∧Pattern)∗

Pattern ::= Predicate(Terms)

| Naf (Predicate(Terms))

| Ask(i , j ,Predicate(Terms))

| Tell(i , j ,Predicate(Terms))

Priority ::= N≥0

N≥0 ::= 0 | 1 | 2 | . . .
i ::= 1 | 2 | . . . | nAg

j ::= 1 | 2 | . . . | nAg

Predicate ::= Identifier

Terms ::= Term(,Term)∗

Term ::= Constant | Variable | Function

Function ::= Identifier(Terms)

Variable ::= Identifier

Constant ::= Identifier

Identifier ::= Letter(Letter | Digit)∗

Letter ::= A | B | . . . | Z | a | b | . . . | z
Digit ::= 0 | 1 | . . . | 9

That is, rules of a concrete agent have the following form:

〈 n : P1 ∧ P2 ∧ . . . ∧ Pn → P 〉

where n is a constant that represents the priority of the rule. For communication,

we assume a simple query-response scheme based on asynchronous message pass-

ing. Each agent’s rules may contain two distinguished communication primitives:

Ask(i, j, P), and Tell(i, j, P), where i and j are agents and P is an atomic formula

not containing an Ask or a Tell. Ask(i, j, P) means ‘i asks j whether P is the case’ and

Tell(i, j, P) means ‘i tells j that P ’ (i 6= j). The positions in which the Ask and Tell

primitives may appear in a rule depends on which agent’s program the rule belongs to.

Agent i may have an Ask or a Tell with arguments (i, j, P) in the consequent of a rule,

e.g.,:
〈 n : P1 ∧ P2 ∧ . . . ∧ Pn → Ask(i, j, P) 〉

127

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

Whereas agent j may have an Ask or a Tell with arguments (i, j, P) in the an-

tecedent of the rule. For example:

〈 n : Tell(i, j, P)→ P 〉

is a well-formed rule for agent j that causes it to believe i when i informs it that

P is the case. No other occurrences of Ask or Tell are allowed. When a rule has either

an Ask or a Tell as its consequent, we call it a communication rule. All other rules are

known as deduction rules. These include rules with Asks and Tells in the antecedent as

well as rules containing neither an Ask nor a Tell.

Firing a communication rule instance with the consequent Ask(i, j, P) adds the

pattern Ask(i, j, P) both to the working memory of i and of j. Intuitively, i has a

record that it asked j whether P is the case, and j has a record of being asked by i

whether P is the case. Similarly, if the consequent of a communication rule instance

is of the form Tell(i, j, P), then the corresponding pattern Tell(i, j, P) is added to the

working memories of both the agents i and j. The set of facts are ground atomic

formulae.

6.3.2 Reasoning strategy

At each cycle, each agent matches (unifies) the conditions of its rules against the con-

tents of its working memory. The conditions of a rule are evaluated using the closed

world assumption (i.e., Naf (P) evaluates to true if P is not in working memory). A

match for every condition of a rule constitutes an instance of that rule (a rule may have

more than one instance). The set of all rule instances for an agent form the agent’s

conflict set. Each agent then chooses a subset of rule instances from the conflict set to

be applied. Applying a rule adds the consequent of the rule as a new fact to the agent’s

working memory or sends a message to another agent. The cycle begins again with

the match phase and the process continues until no more rules can be matched and all

agents have an empty conflict set.

128

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

We assume that each concrete agent has a reasoning strategy (or conflict resolution

strategy) which determines the order in which rules are applied when more than one

rule matches the contents of the agent’s working memory. The choice of reasoning

strategy is important in determining the capabilities of the agent. For example, different

reasoning strategies may determine how quickly/efficiently an answer to a query can

be derived, or even whether an answer can be produced at all. The reasoning strategy

is also important in determining trade-offs between the resources required to process a

query. For example, if multiple queries arrive at about the same time, processing them

sequentially may reduce the memory required at the cost of increasing the worst case

response time for queries. Conversely, processing the queries in parallel may reduce

the worst case response time at the cost of increasing the peak memory usage.

To allow the implementation of reasoning strategies, each pattern is associated with

a time stamp which records the cycle at which the pattern was added to working mem-

ory. Rule priorities and fact time stamps can be used to determine which rule in-

stance(s) are selected from the conflict set for execution. For example, a rule instance

with the highest priority may be selected, or a rule instance may be selected whose

antecedent patterns are associated with highest time stamp etc. The framework (and

the TVRBA tool presented in Chapter 7) supports a set of standard conflict resolution

strategies often used in rule-based systems including: rule ordering, depth, breadth,

simplicity, and complexity. The internal configurations of the rules follow the syntax

given below:

〈 n : [t1 : P1] ∧ [t2 : P2] ∧ . . . ∧ [tn : Pn]→ [t : P] 〉

where the placeholders ti’s and t represent time stamps of patterns. When a rule

instance of the above rule is fired, its consequent pattern P will be added to the working

memory with time stamp t = t′ + 1, i.e., t will be replaced by t′ + 1, where t′ is the

current cycle time of the system.

Let RI = {r | r is a rule instance} and FP = {p | p is a TPattern} denote the set

of rule instances and set of time patterns (every pattern has an associated timestamp

129

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

assigned to it), respectively. We define two partial orders ≤r and ≤f over RI and FP ,

respectively, as follows:

1. for any two rule instances r, r′ ∈ RI where

r ≡ 〈 n1 : [t1 : P1] ∧ [t2 : P2] ∧ . . . ∧ [tn : Pn]→ [t : P] 〉

r′ ≡ 〈 n2 : [t′1 : P ′1] ∧ [t′2 : P ′2] ∧ . . . ∧ [t′m : P ′m]→ [t′ : P ′] 〉

we say that r ≤r r′ (rule instance r′ has priority over the rule instance r) iff

n1 ≤ n2, where ≤ is the standard less-than-or-equal relation on the set of non-

negative integers N≥0.

2. for any two time patterns p, p′ ∈ FP where p ≡ [t1 : P1] and p′ ≡ [t2 : P2], we

say that p ≤f p′ (fact P2 has greater timestamp than the fact P1) iff t1 ≤ t2.

This information is used by each strategy. The system designer can specify the

following standard conflict resolution strategies (based on those provided in [Culbert,

2007, Friedman-Hill, 2008, Tzafestas et al., 1989]).

1. Rule ordering strategy Select one rule instance from the conflict set that has

the highest priority. If there are mutiple rule instances with the same priority, the

rule instance to be executed is selected non-deterministically.

2. Depth strategy If the conflict set contains multiple rule instances with the high-

est priority, a rule instance whose antecedent patterns are associated with the

highest timestamp is executed. If there are multiple rule instances whose an-

tecedent patterns are associated with the highest timestamp, the rule instance to

be executed is selected non-deterministically.

3. Breadth strategy If the conflict set contains multiple rule instances with the

highest priority, a rule instance whose antecedent patterns are associated with

the lowest timestamp is executed. If there are multiple rule instances whose

antecedent patterns are associated with the lowest timestamp, the rule instance

to be executed is selected non-deterministically.

130

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

4. Specificity strategy (simplicity) If the conflict set contains multiple rule in-

stances with the highest priority, a rule instance with the smallest number of con-

ditions is executed. If there are multiple rule instances with the smallest number

of conditions, the rule instance to be executed is selected non-deterministically.

5. Specificity strategy (complexity) If the conflict set contains multiple rule in-

stances with the highest priority, a rule instance with the largest number of con-

ditions is executed. If there are multiple rule instances with the largest number

of conditions, the rule instance to be executed is selected non-deterministically.

Different agents in the system may use different types of reasoning strategy.

6.4 Abstract agents

When verifying response time guarantees of the ‘focal’ agent(s), the concrete repre-

sentation of ‘peripheral’ agents can be replaced by an abstract specification of their

external (communication) behaviour, so long as the abstract specification results in be-

haviour that is indistinguishable from the original concrete representation for the pur-

poses of verification, i.e., it produces queries and responds to queries within specified

bounds. All other details of an abstract agent’s internal behaviour are omitted.

The decision regarding which agents to abstract and how their external behaviour

should be specified rests with the system designer. Specifications of the external (ob-

servable) behaviour of abstract agents may be derived from, e.g., assumed characteris-

tics of as-yet-unimplemented parts of the system, assumptions regarding the behaviour

of parts of the overall system the designer does not control (e.g., quality of service

guarantees offered by an existing web service) or from the prior verification of the

behaviour of other (concrete) agents in the system.

An abstract agent consists of a working memory and a behavioural specification.

The behaviour of abstract agents is specified using the temporal logic LTL extended

131

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

with belief operators. The general form of the formulae used to represent the external

behaviour of an abstract agent i is given below:

ρ ::= X≤nϕ1 | G(ϕ2 → X≤n ϕ3)

ϕ1 ::= Bi Ask(i, j, P)

|Bi Tell(i, j, P)

|Bi Ask(j, i, P)

|Bi Tell(j, i, P)

|Bi P

ϕ2 ::= Bi Ask(j, i, P)

ϕ3 ::= Bi Tell(i, j, P)

where X is the next step temporal operator, X≤n is a sequence of n X operators,

G is the temporal ‘in all future states’ operator, and Bi for each agent i is a syntactic

doxastic operator used to specify agent i’s ‘beliefs’ or the contents of its working mem-

ory. Formulae of the form X≤nϕ1 describe agents which produce a certain message

or input to the system within n time steps. When ϕ1 is of the form Bi Ask(i, j, P) or

Bi Tell(i, j, P) these two cases result in communication with the other agent as follows:

when the beliefs appear (as an Ask or a Tell) in the abstract agent i’s working memory,

they are also copied to agent j’s working memory at the next cycle. Formulae of the

form Bi P represent the fact that beliefs other than Ask and Tell may also appear

in the abstract agent i’s working memory within n time steps. This is not critical to

how abstract agents interact with communication, however it describes agent i’s own

behaviour.

The G(ϕ2 → X≤n ϕ3) formulae describe agents which are always guaranteed to

reply to a request for information within n timesteps. The abstract agent i interacts

with communication as follows: if t is the timestamp when abstract agent i came to

believe formula Ask(j, i, P) (agent j asked for P), then the formula Tell(i, j, P) must

132

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

appear in the working memory of agent i within t + n steps. The formula Tell(i, j, P)

is then copied to agent j’s working memory at the next cycle. Note that we do not need

the full language of LTL (for example, the Until operator) in order to specify abstract

agents.

6.5 Example

To illustrate the use of the proposed framework, let us consider an example system

consisting of two agents: where one is concrete, the other is abstract. We consider the

following two different scenarions.

Scenario 1:

Agent 1 which is a concrete agent has the following set of rules:

Rule1 < 1 : P → Ask(1, 2, Q) >

Rule2 < 2 : Tell(2, 1, Q)→ Q >

Rule3 < 3 : P ∧ Q→ R >

The first rule states that if P then ask the abstract agent 2 whether Q is the case.

The second rule is a trust rule for agent 1 which makes it trust 2 when 2 informs it that

Q is the case. The third rule states that if P and Q then R. The external behaviour of

the abstract agent 2 is described by the following temporal logic formula:

G(B2 Ask(1, 2, Q) → X≤4 B2 Tell(2, 1, Q))

Suppose now that the initial working memory of the agents contain the following

patterns: WM 1 : {[0 : P]} and WM 2 : { }.

Table 6.1 gives a simple example of a run of the system starting from the initial

configuration. This example helps to explain how facts are derived and communicated,

and what happens when the abstract agent receives an Ask query by communication.

133

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

Time Agent 1 Agent 2
0 {[0 : P]} { }

Rule1 Idle
1 {[0 : P] [1 : Ask(1, 2, Q)]} { }

Idle Copy (Ask(1,2,Q) from Agent 1)
2 {[0 : P] [1 : Ask(1, 2, Q)]} {[2 : Ask(1, 2, Q)]}

Idle Idle
3 {[0 : P] [1 : Ask(1, 2, Q)]} {[2 : Ask(1, 2, Q)]}

Idle Idle
4 {[0 : P] [1 : Ask(1, 2, Q)]} {[2 : Ask(1, 2, Q)]}

Idle Idle
5 {[0 : P] [1 : Ask(1, 2, Q)]} {[2 : Ask(1, 2, Q)]}

Idle Tell
6 {[0 : P] [1 : Ask(1, 2, Q)]} {[2 : Ask(1, 2, Q)] [6 : Tell(2, 1, Q)]}

Copy (Tell(2,1,Q) from Agent 2) Idle
7 {[0 : P] [1 : Ask(1, 2, Q)] {[2 : Ask(1, 2, Q)] [6 : Tell(2, 1, Q)]}

[7 : Tell(2, 1, Q)]}
Rule2 Idle

8 {[0 : P] [1 : Ask(1, 2, Q)] {[2 : Ask(1, 2, Q)] [6 : Tell(2, 1, Q)]}
[7 : Tell(2, 1, Q)] [8 : Q]}
Rule3 Idle

9 {[0 : P] [1 : Ask(1, 2, Q)] {[2 : Ask(1, 2, Q)] [6 : Tell(2, 1, Q)]}
[7 : Tell(2, 1, Q)] [8 : Q] [9 : R]}

Table 6.1: Example: derivation scenario 1

Note that in the above derivation it is assumed that, at step 2 when abstract agent

2 came to believe formula Ask(1, 2, Q) (agent 1 asked for Q) the formula Tell(2, 1, Q)

appeared in the working memory of agent 2 at 2 + 4 i.e., at the 6th step. However, the

formula Tell(2, 1, Q) could also appear at any of the 3rd, 4th, or 5th steps but definitely

appear at step 6 if it is not already present in the working memory of agent 2. In the

above run, at the 3rd, 4th, and 5th steps both the agents perform an Idle action.

Scenario 2:

Agent 1 which is a concrete agent has the following set of rules:

Rule2 < 2 : Tell(2, 1, Q)→ Q >

Rule3 < 3 : P ∧ Q→ R >

The external behaviour of the abstract agent 2 is described by the following tem-

134

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

poral logic formula:

X≤5 B2 Tell(2, 1, Q)

that is abstract agent 2 spontaneously generates a Tell. Suppose now that the initial

working memory of the agents contain the following patterns: WM 1 : {[0 : P]}

and WM 2 : { }. Table 6.2 gives a simple example of a run of the system starting

from the initial configuration. This example helps to explain how facts are derived and

communicated, and what happens when an abstract agent spontaneously generates a

Tell (similarly we can show for an Ask).

Time Agent 1 Agent 2
0 {[0 : P]} { }

operation: Idle Tell
1 {[0 : P]} {[1 : Tell(2, 1, Q)]}

operation: Copy (Tell(2,1,Q) from Agent 2) Idle
2 {[0 : P] [2 : Tell(2, 1, Q)]} {[1 : Tell(2, 1, Q)]}

operation: Rule2 Idle
3 {[0 : P] [2 : Tell(2, 1, Q)] [3 : Q]} {[1 : Tell(2, 1, Q)]}

operation: Rule3 Idle
4 {[0 : P] [2 : Tell(2, 1, Q)] [3 : Q] [4 : R]} {[1 : Tell(2, 1, Q)]}

Table 6.2: Example: derivation scenario 2

In this derivation it is assumed that, the formula Tell(2, 1, Q) appeared in the work-

ing memory of agent 2 at the 1st step. However, the formula Tell(2, 1, Q) could also

appear at any of the 2rd, 3rd, 4th, or 5th steps but definitely appear at step 5 if it is not

already present in the working memory of agent 2.

In both scenarios, interesting properties of the system that can be verified include,

e.g., Xn B1 R.3

6.6 Discussion

Abstraction is a key technique in handling the state space explosion problem in model

checking. A number of abstraction approaches have been proposed for verifying (soft-

3Recall that we can use Xn B1 R to verify whether X≤n B1 R holds.

135

CHAPTER 6: A SCALABLE VERIFICATION FRAMEWORK FOR MAS

ware/hardware) designs of industrial complexity, e.g., [Gallardo et al., 2002, Clarke

et al., 1994, Cousot and Cousot, 1977]. Our use of abstraction is however different

from such classic approaches which use a mapping between an abstract transition sys-

tem and a concrete program. Depending on this mapping, verification results may be

correct but not complete. By correct or conservative abstraction usually mean that if

a formula is true in the abstract system, then it is true in the concrete system (but if

a formula is false in the abstract system, it may not be false in the concrete system).

In contrast, our approach uses a very specific kind of abstraction, which replaces a

concrete agent with an abstract one that implements guarantees of its response time

behaviour. If those guarantees are correct, then our approach gives both correct and

complete results. Complete or exact abstraction means that a formula is true in the

abstract system if and only if it is true in the concrete system. Agents can be modelled

as abstract if their response time guarantees have already been verified or the system

designer is prepared to assume them.

In the literature, there have been many other approaches to alleviate the state space

explosion problem, including verification approaches based on compositional reason-

ing [Berezin and Clarke, 1998]. In compositional reasoning, a property ϕ to be verified

is decomposed into sub-properties that describe the behaviour of small components of

the system. The sub-properties are verified for the corresponding components. Then

the system satisfies ϕ if all the sub-properties are satisfied locally and their conjunction

implies ϕ. In contrast, our approach to verification using abstraction does not decom-

pose ϕ into sub-properties. The property ϕ is verified in the whole system. However,

we construct the system using a hierarchical composition in which the LTL properties

can be previously verified properties of non-abstract versions of an abstract agent or

set of abstract agents.

In the subsequent chapters, we implement the approach to verification described

above.

136

Chapter 7

Automated verification tool for MAS

In this chapter, we describe an encoding based on the Maude rewriting system which

implements the approach to verification described in the preceding chapter. We then

describe an automated verification tool, TVRBA, which generates an encoding of a

system of communicating rule-based agents for the Maude LTL model checker, which

is then used to verify the desired properties of the system. TVRBA allows the system

designer to specify the information about agents’ interaction, behaviour, and execution

strategy at different levels of abstraction. We chose the Maude LTL model checker be-

cause it can model check systems whose states involve arbitrary algebraic data types.

The only assumption is that the set of states reachable from a given initial state is finite.

This simplifies modelling of the agents’ (first-order) rules and reasoning strategies. For

example, the variables appear in a rule can be represented directly in the Maude encod-

ing, without having to generate all ground instances resulting from possible variable

substitutions.

7.1 Maude rewriting system and formal verification

Maude is a high-level declarative programming language that models systems and the

actions within those systems [Clavel et al., 2007, 2008]. The Maude system inte-

grates an equational style of functional programming with rewriting logic computa-

137

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

tion. Equations are useful for creating and mapping out structures. Rewriting rules

can be used to represent transitions that occur within and between structures. Maude’s

formal tools, such as its inductive theorem prover, LTL model checker, and breadth-first

search capability have been used successfully in several applications, for example [van

Riemsdijk et al., 2007, Astefanoaei et al., 2008, Alpuente et al., 2009], among oth-

ers. In this section, we present the basic foundation of Maude following [Clavel et al.,

2007, 2008] and give an overview of Maude LTL model checking.

7.1.1 Basic foundation of Maude

A rewriting theory R = (Σ, E, R), consists of a signature Σ, a set E of equations,

and a set R of rules. The static part of a system is specified in an equational sub-

logic of rewriting logic (membership equational logic) by means of equations E. The

system dynamics (concurrent transitions or inferences) is specified by means of rules

R that rewrite terms, representing parts of the system, into other terms. The rules in

R are applied modulo the equations in E. Thus, data types are defined algebraically

by equations and the dynamic behaviour of a system is defined by rewrite rules which

describe how a part of the state can change in one step. A rewrite theory is often

non-deterministic and could exhibit many different behaviours.

7.1.1.1 Maude modules

The fundamental concept of Maude is the module, which represents the basic units

of specification and programming. A module is essentially a collection of sorts and a

set of operations on these sorts. In Maude there are two kinds of modules: functional

modules and system modules. Each module is declared with the key terms:

fmod <ModuleName> is
<DeclarationsAndStatements>

endfm

mod <ModuleName> is
<DeclarationsAndStatements>

endm

138

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

where a functional module begins with fmod keyword and ends with endfm key-

word, and a system module begins with mod keyword and ends with the keyword

endm. The <ModuleName> represents the name of the module, and the body of

a module <DeclarationsAndStatements> represents all the declarations and

statements in between the beginning of the module and the end of it. The body of

a functional module <DeclarationsAndStatements> defines data types and

operations on them by means of equational theory E only. In contrast, the body of

a system module <DeclarationsAndStatements> specifies a rewrite theory,

which contains an equational theory E plus rewriting rules R.

7.1.1.2 Sorts and subsorts

A sort is a category for values. It is declared within the module, with the key word

sort and a period at the end. Multiple sorts may be declared using the sorts key-

word.

sort Animal .
sorts Mammal Bird Color .

The subsort relation on sorts are just like the subset relation on the sets of elements

in the intended model of these sorts. A subsort relation is declared using the keyword

subsort. The following declaration states that the sort Mammal is a subsort of the

sort Animal.

subsort Mammal < Animal .

7.1.1.3 Kinds

In Maude, sorts are grouped into equivalence classes called kinds. Two sorts are

grouped together in the same equivalence class if and only if they belong to the same

connected component. Consider the following declarations.

sort Animal .
subsort Dog < Animal .
subsorts Hound Toy < Dog .

139

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

Then we create a graph of connected sorts. The following entire graph is a con-

nected component. Where [Animal] represents the kind of this connected com-

ponent. If we were to declare another sort Vegetable and not declare any subsort

relations with any sort on this graph, Vegetable would not be part of the connected

component. Vegetable would be its own, separate, singleton connected component.

Animal
|
Dog
|

| |

Hound Toy

7.1.1.4 Maude operators

Maude operators are used as constructors and functions on data. An operator is de-

clared with the keyword op followed by its name, followed by a colon, followed by

the list of sorts for its arguments, followed by ->, followed by the sort of its result,

optionally followed by an attribute declaration, followed by white space and a period.

The following declaration represent the general scheme

op <OpName> : <Sort-1> ... <Sort-k> -> <Sort>
[<OperatorAttributes>] .

where <Sort-1> ... <Sort-k> are called domain sorts and <Sort> is

the range sort of the operator <OpName>. The arity and coarity pair is called the

rank of the operator. The keyword ops can be used to declare multiple operators that

have a same rank. For example, the declaration

ops <OpName-1> ... <OpName-n> : <Sort-1> ... <Sort-k>
-> <Sort> [<OperatorAttributes>] .

represent the general scheme of multiple operators. An operator attribute could

be commutative (comm), associative (assoc), identity (id), constructor (ctor), iterated

(iter) etc., that provide additional information about the operator. The users can define

140

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

a (context free) grammar of operators, e.g.,

op _+_ : Nat Nat -> Nat .
op if_then_else_fi : Bool Nat Nat -> Nat .

where the underscores “_” indicate places where actual arguments are put, for

example, 0 + 0 and if N > M then N else M fi.

7.1.1.5 Maude constants

In the operator declaration if the argument list of the operator is empty, then the oper-

ator is called a constant. For example, the following declarations state that cat is a

constant of sort Animal and red, blue, and yellow are constants of sort Colour.

op cat : -> Animal .
ops red blue yellow : -> Colour .

7.1.1.6 Maude variables

A Maude variable is constrained to range over a particular sort (or kind), i.e., it is an

indefinite value for a sort. A Maude variable is declared in a module using the keyword

var followed by the variable name, followed by a colon with white space before and

after, followed by its sort (or its kind), followed by white space and a period. The

following declaration

var x : Colour .

states that x is a variable of sort Colour. The keyword vars can be used to

declare multiple variables of the same sort. For example, the following declaration

vars x y : Colour .

states that x and y are variables of sort Colour. Maude variables can also be

declared on-the-fly with syntax consisting of the variable name, followed by a colon,

followed by its sort. For example, x : Colour declares a variable named x of sort

Colour. Note that the variables in Maude do not represent memory locations like

variables in C++ and Java and other programming languages. Maude variables never

141

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

have a definite value assigned to them, and they do not carry values from one operation

to other.

7.1.1.7 Terms

A term is either a constant, a variable, or the application of an operator to a list of

argument terms. A ground term is a term containing no variables, but only constants

and operators.

7.1.1.8 Equations

Unconditional equations. Unconditional equations are declared using the keyword

eq, followed by an (optional) [<LabelName>] :, followed by a term (its left hand

side), the equality sign =, then a term (its right hand side), optionally followed by a

list of statement attributes.

eq [<LabelName>] : <Term-1> = <Term-2>
[<OptionalStatementAttributes>] .

Conditional equations. The general form of conditional equations is the following:

ceq [<LabelName>] : <Term-1> = <Term-2> if <EqCond-1>
/\ ... /\ <EqCond-k> [<OptionalStatementAttributes>] .

In Maude equations, variables appearing in the right-hand side term must also ap-

pear in its left-hand side term.

7.1.1.9 Rewrite rules

Equations are extremely useful for describing static part of a system, however, the real

power of Maude is to provide concurrent transitions that occur within and between

structures in the system. These transitions are achieved by means of rewriting rules.

Unconditional rules. Unconditional rules are declared using the keyword rl, followed

by an (optional) [<LabelName>] :, a term (its left hand side), the Rightarrow sign

=>, then a term (its right hand side).

142

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

rl [<LabelName>] : <Term-1> => <Term-2> .

Conditional rules. Conditional rules are declared using the following syntax:

crl [<LabelName>] : <Term-1> => <Term-2> if
<RuleCond-1> /\ ... /\ <RuleCond-k> .

The conditions could be equations, membership conditions, or other rewriting rules.

In the rules, variables appearing in the right-hand side term must also appear in its left-

hand side term.

7.1.1.10 Module importation

Like most programming languages, Maude supports module importations, i.e., a Maude

module can be imported as a submodule of another. However, in Maude, module im-

portation cannot be cyclic: if module A imports module B, then module B cannot

import module A.

7.1.2 Verifying systems using Maude

In Maude the model checking process comes in two flavours. Maude supports model

checking invariants through search. This is essentially a breadth-first search strategy

for verifying safety properties of the systems. The breadth-first search command has

an optional argument n stating the maximum depth of the search. In this case, model

checker does not explore all reachable states, but only those states reachable within a

certain depth bound n, known as bounded model checking. Maude also provides an

LTL model checker [Eker et al., 2003] that enables the verification of LTL properties of

rewriting systems.

Like any other model checking tool, verification in Maude requires a system speci-

fication and a property specification. The system specification is provided by a rewrite

theory, whereas the property specification is given by linear temporal logic. Maude

supports on-the-fly LTL model checking for initial states [t], say of sort State, of a

rewrite theory R such that the set of reachable states {[t′] ∈ TΣ/E | R ` [t] → [t′]}

143

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

from [t] is finite. Model checking is performed by constructing a Büchi automaton from

the negation of the property formula and lazily searching the synchronous product of

the Büchi automaton and the system state transition graph for a reachable accepting

cycle. The double depth-first algorithm of [Holzmann et al., 1996] is used to lazily

generate and search the synchronous product.

7.2 Maude encoding

In this section, we describe how we implement the approach to verification which uses

strategies and abstraction as a Maude rewriting system.

Agent Configuration Module

Functional Module

Agent 1

System Module

(Multi-agent System)

Agent 1|| Agent 2 || . . . ||Agent n

Functional Module

Agent 2

Functional Module

Agent n. . .

Figure 7.1: System implementation structure in Maude

We take advantage of Maude’s modular structuring mechanisms to implement our

system design. We use a generic functional module and a set of functional and system

modules to represent the system. The overall picture of our implementation is shown

in Figure 7.1.

Throughout this chapter we will use verbatim texts to represent specification of the

agents into Maude. Therefore, an agent i will be denoted by i in Maude specification.

Similarly, Ask(i,j,P) will have the same meaning as Ask(i, j, P) and so on.

144

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

7.2.1 Agent configuration module

Each agent in a MAS has a configuration (local state) and the composition of all these

configurations (local states) make the configuration (global state) of the MAS. The

types necessary to implement the local state of an agent (working memory, program,

reasoning strategy, message counters, timestep etc.) are declared in a generic agent

configuration functional module called ACM. The structure of the ACM is given in List-

ing 7.1.

fmod ACM is
protecting NAT .
protecting BOOL .
protecting QID .
sorts Constant Pattern Term Rule Agenda WM .
sorts TimeP TimeWM RepT RepTime Config .
subsort Pattern < WM .
subsort Rule < Agenda .
subsort Qid < Constant .
subsort TimeP < TimeWM .
subsorts Constant < Term .
subsort RepT < RepTime .
ops void rule : -> Pattern .
ops com exec : -> Phase [ctor] .
op nil : -> Term[ctor] .
op _|_ : Term Term -> Constant [ctor assoc] .
op [_] : Term -> Term [ctor] .
op [_ : _] : Nat Pattern -> TimeP .
op _ _ : WM WM -> WM [comm assoc] .
op _ _ : TimeWM TimeWM -> TimeWM [comm assoc] .
op _ _ : Agenda Agenda -> Agenda [comm assoc] .
op <_ : _->_> : Nat TimeWM TimeP -> Rule .
op _ _ : RepTime RepTime -> RepTime [comm assoc] .
op Ask : Nat Nat Pattern -> Pattern .
op Tell : Nat Nat Pattern -> Pattern .
op Naf : Pattern -> Pattern .
.
.
.

endfm

Listing 7.1: Sorts declaration and their relationships

A number of Maude library modules such as NAT, BOOL, and QID have been

imported into the ACM functional module. The modules NAT and BOOL are used to

define natural and Boolean values, respectively, whereas the module QID is used to

define the set of constant symbols (constant terms of the rule-based system). The

set of variable symbols (variable terms of the rule-based system) are simply Maude

variables of sort QID. Both variables and constants are subsorts of sort Term. A

function (function terms of the rule-based system) is simply declared as an operator

145

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

whose arguments are of sort Term, and returns an element of sort Term. Similarly,

a pattern (fact/predicate of the rule-based system) is declared as an operator whose

arguments are of sort Term, and returns an element of sort Pattern. Therefore, the

arguments of a pattern may contain functions, constants, and variables all of which are

of sort Term. The sort Pattern is declared as a subsort of the sort WM (working

memory), and a concatenation operator is declared on sort WM which is the double

underscore shown below.

op _ _ : WM WM -> WM [comm assoc] .

The above operation is in mixfix notation and it is commutative and associative.

This means that working memory elements are a set of patterns whose order does not

matter. In order to maintain time stamp for each pattern, a sort TimeP is declared

whose elements are of the form [t : P], where t represents the time stamp of

pattern P that indicating when that pattern was added to the working memory. The sort

TimeP is declared as a subsort of the sort TimeWM, and a concatenation operator is

declared on sort TimeWM which is also the double underscore and commutative and

associative.

op _ _ : TimeWM TimeWM -> TimeWM [comm assoc] .

Note that updating of WM and TimeWM take place simultaneously, for example,

whenever a pattern P is added to WM the corresponding element [t : P] is also

added to TimeWM for an appropriate time cycle t. Fact time stamps are maintained

to implement reasoning strategies. In § 7.2.5 we give a detailed analysis of why we

maintain two working memories.

The rules of each agent are defined using an operator which takes as arguments

a sort Nat specifying the priority, a set of patterns (of sort TimeWM) specifying the

antecedents of the rule and a single patten (of sort TimeP) specifying the consequent,

and returns an element of sort Rule. The sort Rule is declared as a subsort of the

sort Agenda, and a concatenation operator is declared on sort Agenda which is also

the double underscore and commutative and associative.

146

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

op _ _ : Agenda Agenda -> Agenda [comm assoc] .

The sort RepT (reply/generate an Ask or a Tell within a given time bound) is used to

implement the behaviour of abstract agents. The sort RepT is declared as a subsort of

the sort RepTime, and a concatenation operator is declared on sort RepTime which

is also the double underscore and commutative and associative.

op _ _ : RepTime RepTime -> RepTime [comm assoc] .

Each element of RepTime consists of a time bound (based on the value of n of an

LTL formula discussed in § 6.4) and a pattern.

------Checking if a pattern is in the working memory--
var p : Pattern .
var M : WM .
op inWM : Pattern WM -> Bool .
eq inWM(p, p) = true .
eq inWM(p, p M) = true .
eq inWM(p, M) = false [owise] .

-----Checking if a rule-instance is in the agenda-----
var r : Rule .
var RL : Agenda .
op inAgenda : Rule Agenda -> Bool .
eq inAgenda(r,r) = true .
eq inAgenda(r, r RL) = true .
eq inAgenda(r, RL) = false [owise] .

-----Checking if an element is in RepTime-------------
var rt : RepT .
var RT : RepTime .
op inRT : RepT RepTime -> Bool .
eq inRT(rt, rt) = true .
eq inRT(rt, rt RT) = true .
eq inRT(rt, RT) = false [owise] .

Listing 7.2: Checking the existence of an element

The data types presented in Listing 7.1 are manipulated using a set of equations.

The equations are used for various purposes: for example, to check, whether or not a

given pattern (used to represent fact/predicate) is already in the agent’s working mem-

ory, whether or not a rule instance is already in the agenda etc. Some illustrative

examples of the Maude implementation are given in Listing 7.2.

Additional equations are used to implement reasoning strategies, e.g., to determine

the highest priority rule instance in the agenda, or the pattern with highest time stamp

in working memory etc. Listing 7.3 illustrates the implementation of the rule priority

147

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

reasoning strategy.

var n : Nat .
var Ant : TimeWM .
var Cons : TimeP .
var A RL : Agenda .
op void-rule : -> Rule .
eq void-rule = < 0 : [0 : void] -> [0 : rule] > .
op priority : Rule -> Nat .
eq priority(< n : Ant -> Cons >) = n .
op max : Agenda -> Nat .
eq max(r) = priority(r) .
eq max(r A) = if priority(r) > max(A)

then priority(r) else max(A) fi .
op strategyRule : Agenda Agenda -> Agenda .
ceq strategyRule(r A, RL) = if priority(r) >= max(RL)

then r strategyRule(A, RL)
else strategyRule(A, RL)
fi if r =/= void-rule .

eq strategyRule(voidrule, RL) = void-rule .

Listing 7.3: Strategy implementation: an example

7.2.2 Implementation of agent modules

We model each (concrete and abstract) agent using a functional module which imports

the ACM module defined above. The local configuration of an agent i is represented

as a tuple Si[A|RL|TM|M|RT|RT’|t|msg|syn]iS, where Si and iS indicate

start and end of a state of agent i. The variables A and RL are of sort Agenda, TM is of

sort TimeWM, M is of sort WM, RT and RT’ are of sort RepTime. Moreover, t, msg,

and syn are of sort Nat. The variables t, msg, and syn have been used to represent

respectively the time step, message counter, and a flag for synchronisation. Note that

the structure of local configurations for both concrete and abstract agents are the same.

This is to maintain consistency of the shape of each agent’s configuration. However,

for example, the sort RepTime is of no use for concrete agents and its value is always

empty for them.

7.2.2.1 Concrete agent module

For each concrete agent i there is a corresponding ConcreteAgent-i module,

whose structure is given in Listing 7.4. In this module, we declare the configura-

tion Si[A|RL|TM|M|RT|RT’|t|msg|syn]iS which represents the local state

148

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

of the agent. We also declare a set of operators that are used in various equations, e.g.,

to represent rules of the agents, to compute set of rule instances based on the current

working memory patterns, and to select a set of rule instances from the agenda based

on a given reasoning strategy.

fmod ConcreteAgent-i is
protecting ACM .
op Si[_|_|_|_|_|_|_|_|_]iS : Agenda Agenda TimeWM WM

RepTime RepTime Nat Nat Nat -> Config .

op ruleIns-i : Agenda TimeWM WM -> Agenda .
op matchRule-i : Config -> Config .
op selectRule-i : Config -> Config .
.
.
.

endfm

Listing 7.4: Structure of concrete agent module

The representation of rules, generating rule instances, and selecting a set of rule

instances based on a given reasoning strategy is specified as a set of equations. The

following equations represent concrete agent i’s set of rules.

ceq [Rule1] : ruleIns-i(A, Ant1 TM, M) = < n1 : Ant1 -> Cons1 >

ruleIns-i(< n1 : Ant1 -> Cons1 > A, Ant1 TM, M) if

(not inAgenda(< n1 : Ant1 -> Cons1 >, A)) ∧ (not inWM(pattern(Cons1), M)) .

ceq [Rule2] : ruleIns-i(A, Ant2 TM, M) = < n2 : Ant2 -> Cons2 >

ruleIns-i(< n2 : Ant2 -> Cons2 > A, Ant2 TM, M) if

(not inAgenda(< n2 : Ant2 -> Cons2 >, A)) ∧ (not inWM(pattern(Cons2), M)) .

...

ceq [Rulek] : ruleIns-i(A, Antk TM, M) = < nk : Antk -> Consk >

ruleIns-i(< nk : Antk -> Consk > A, Antk TM, M) if

(not inAgenda(< nk : Antk -> Consk >, A)) ∧ (not inWM(pattern(Consk), M)) .

eq [Default] : ruleIns-i(A, TM, M) = void-rule [owise] .

The left-hand side of each equation uses the operator ruleIns-i (that takes ar-

guments an element of sort Agenda, an element of sort TimeWM, and an element

149

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

of sort WM, and returns an element of sort Agenda) which matches the antecedents

Antk for each rule < nk : Antk -> Consk >, and the right-hand side repre-

sents the corresponding rule. The ruleIns-i operator calls itself recursively so that

each equation may generate possibly multiple rule instances. The operator pattern

is declared and defined in the ACM module. It takes as argument an element of sort

TimeP and returns the corresponding pattern of sort Pattern, i.e., it is applied to

[n : P] and returns the corresponding pattern P. In the following we give the

semantics of the match equation (labelled as Match-i) which is used to generates a

set of rule instances based on the current working memory patterns.

eq [Match-i] : matchRule-i(Si[A|R|TM|M|RT|RT’|t|msg|1]iS)

=

Si[ruleIns-i(A,TM,M) A|RL|TM|M|RT|RT’|t|msg|2]iS .

In the Match-i equation, the operator matchRule-i is applied on the agent’s

configuration to compute the set of rule instances based on the current working mem-

ory patterns. The operator ruleIns-i is called in the equation Match-i. When

the equation Match-i executes, the operator ruleIns-i is called, consequently

ruleIns-i matches from the topmost equation Rule1 and goes to the bottom

Rulek to generate all possible rule instances recursively, and finally exits using the

Default equation that uses Maude’s [owise] attribute. Maude’s [owise] at-

tribute allows its equation to be applied only if all other equations for the same top

term having more-specific left-hand sides fail to match.

The select equation (labelled as Select-i) is used to select a set of rule instances

from the agenda based on a given reasoning strategy.

eq [Select-i] : selectRule-i(Si[A|RL|TM|M|RT|RT’|t|msg|2]iS)

=

Si[delete(strategy(A,A), A)|strategy(A,A) RL|TM|M|RT|RT’|t|msg|3]iS .

The left-hand side of the above equation applies the operator selectRule-i on

the agent’s configuration to select a set of rule instances from the current agenda based

on a given reasoning strategy. Two operators strategy and delete are called

150

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

from this equation. The strategy operator is applied on the current agenda that

returns a set of rule instances, whereas the delete operator is used to delete those

rule instances selected from the agenda. These operators are implemented in the ACM

module so that they can be used by all the concrete agents in the system.

The operators matchRule-i (used in Match-i) and selectRule-i (used in

Select-i) are called from Maude rules that implement concrete agent i’s inference

engine in the MAS system module (cf. 7.2.3). The communication for a concrete agent i

works with the other agent j as follows: when the beliefs appear (as an Ask(i,j,P)

or a Tell(i,j,P)) in the concrete agent i’s working memory, they are also copied

to agent j’s working memory at the next cycle. Communication between agents is also

implemented using Maude rules in the MAS system module.

7.2.2.2 Abstract agent module

For each abstract agent j there is a corresponding AbstractAgent-j module,

whose structure is given in Listing 7.5. In this module, we declare the configura-

tion Sj[A|RL|TM|M|RT|RT’|t|msg|syn]jS which represents the local state

of the agent. We also declare a set of operators that are used in various equations,

e.g., to compute the timing information of a pattern based on an LTL formula, to select

elements of RepTime that represent the information regarding when j must reply to

requests made by the other agents in the system, or when j must produce a message or

input to the system.

fmod AbstractAgent-j is
protecting ACM .
op Sj[_|_|_|_|_|_|_|_|_]jS : Agenda Agenda TimeWM WM

RepTime RepTime Nat Nat Nat -> Config .

op setTime-j : Config -> Config .
op proPattern-j : Config -> Config .
op tbound-j : TimeWM RepTime -> RepTime .
.
.
.

endfm

Listing 7.5: Structure of abstract agent module

151

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

The external behaviour of an abstract agent is represented by means of temporal

formulae that include belief operators. These formulae are translated into Maude agent

specifications. We now explain how we represent temporal formulae in Maude. In the

configuration, the variables RT (fifth entry from the left) and RT’ (sixth entry from

the left) of sort RepTime are used to implement the external behaviour of the abstract

agent. The following operators are declared in the ACM module:

op pro : Pattern Nat -> RepTime [ctor] .
op empty-RT : -> RepTime [ctor] .

Therefore, the elements of RepTime can be of the following form:

pro(Ask(j,i,P),m)
pro(Tell(j,i,P),m)
empty-RT

where pro(Ask(j,i,P),m) states that an Ask(j,i,P),m) must be pro-

duced in m time steps. Similarly, the element pro(Tell(j,i,P),m) states that:

a Tell(j,i, P),m) must be produced in m time steps. In the configuration, the

fifth entry is used to store the elements defined above, and the sixth entry maintains a

subset of these elements to be generated at the current cycle time.

First, we discuss how we construct the elements defined above based on LTL for-

mulae. Recall that LTL formulae are of the form Xn ϕ1 and G(ϕ2 → Xn ϕ3), where

ϕ1, ϕ2, and ϕ3 are ground atomic formulae.

LTL formulae of the form Xn ϕ1: The element pro(Ask(j,i,P), n) can be

constructed from the corresponding LTL formula Xn Bj Ask(j, i, P). Similarly, the

element pro(Tell(j,i,P),n) can be constructed from the corresponding LTL

formula Xn Bj Tell(j, i, P). In the Maude specification, these elements are added

initially in the fifth entry of the configuration. For example, let us assume that the

external behaviour of an abstract agent j = 2 is described using a set of LTL formulae

that include X4 B2 Tell(2, 1, P remCust(Miller)): in 4 time steps agent 2 will believe

that it tells agent 1 that Miller is a Premium Customer. Then the corresponding el-

ement pro(Tell(2,1,PremCust(Miller)),4) will be added initially to the

fifth entry of abstract agent 2’s configuration.

152

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

LTL formulae of the form G(ϕ2 → Xn ϕ3): The equation TimeBound-j com-

putes the timing information regarding when a particular pattern must be produced

based on an LTL formula G(Bj Ask(i, j, P)→ Xn Bi Tell(j, i, P)).

eq [TimeBound-j] : setTime-j(Sj[A|RL|TM|M|RT|RT’|t|msg|1]jS)

=

Sj[A|RL|TM|M|tbound-j(TM,RT) RT|RT’|t|msg|2]jS .

In the above equation, the operator tbound-j is used to compute a set of el-

ements of the form pro(Tell(j,i,P),m) based on the elements of the form

[t : Ask(i,j,P)] of TimeWM.

tbound -j (TM,RT) = { pro(Tell(j, i, P),m) |

pro(Tell(j, i, P),m) /∈ RT

∧ [t : Ask(i, j, P)] ∈ TM

∧ (m = t+ n− 1) }

The value of n is reduced by 1 to adjust the time step. This is due to the model of

communication that requires a single time step when sending (receiving) messages to

other agents (cf. § 7.2.3). For example, let us assume that the external behaviour of an

abstract agent j = 2 is described using a set of LTL formulae that include the following

formula:

G(B2 Ask(1, 2, P remCust(Miller))→

X7 B2 Tell(2, 1, P remCust(Miller))

The representation of LTL formulae in the Maude are given below:
...

ceq [Ltl1] : tbound-2([t : Ask(1,2,PremCust(Miller))] TM,RT)

=

pro(Tell(2,1,PremCust(Miller)), t+7) tbound-2(TM,RT) if

(not inRT(pro(Tell(2,1,PremCust(Miller)), t+7),RT)) .

...

eq [Default] : tbound-2(TM,RT) = empty-RT [owise] .

153

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

In the above equations, the operator tbound-2 is applied recursively to com-

pute all the elements at the current cycle time. That is, it constructs elements of the

form pro(Tell(2,1,PremCust(Miller)), t+7), upon the arrival of new

requests of the form [t : Ask(1,2,PremCust(Miller))] from other agents.

In the following, we give the semantics of the produce-pattern equation (labelled as

ProPattern-j) which is used to select those patterns to be generated at the current

cycle time.

eq [ProPattern-j] : proPattern-j(Sj[A|RL|TM|M|RT|RT’|t|msg|2]jS)

=

Sj[A|RL|TM|M|RT|pull(RT,RT,t) RT’|t|msg|3]jS .

In the ProPattern-j equation, the operator pull is declared and defined in the

ACM module. It takes arguments of sorts RepTime and Nat, and returns an element

of sort RepTime. RT” represents those elements of the form:

pro(Ask(j,i,P),m)
pro(Tell(j,i,P),m)

such that t < m, where t is the current cycle time. Therefore, the elements

of the sixth entry of the configuration will be used to produce (add to the work-

ing memory) Ask(j,i,P) or Tell(j,i,P) patterns at the current cycle time.

This is achieved using two operators genTime : RepTime Nat -> TimeWM

and genM : RepTime -> WM. These operators are declared and defined in the

ACM module, and they are used to update the working memory of the abstract agent

based on the values of RT’ and t. The first operator genTime takes as an argument an

element of sort RepTime and the current cycle time of sort Nat, and it returns an ele-

ment of sort TimeWM. That is, genTime is applied to (pro(Ask(j,i,P),m), t)

and produces the corresponding element [t : Ask(j,i,P)] of TimeWM. Sim-

ilarly, it is applied to (pro(Tell(j,i,P),m), t) and produces the correspond-

ing element [t : Tell(j,i,P)] of TimeWM. The second operator genM takes

as an argument an element of sort RepTime, and it returns an element of sort WM. That

is, genM is applied to (pro(Ask(j,i,P),m)) and produces the corresponding el-

154

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

ement Ask(j,i,P) of WM. Similarly, it is applied to (pro(Tell(j,i,P),m))

and produces the corresponding element Tell(j,i,P) of WM. When the operators

genTime and genM are applied to all the elements of RT’ (sixth entry of the config-

uration), RT’ becomes empty and the whole process repeats in the next cycles.

The operators setTime-j, proPattern-j, genTime, and genM are called

from Maude rules that implement the partial behaviour of an abstract agent in the MAS

system module (cf. 7.2.3).

7.2.3 Implementation of the MAS module

Computation steps of multi-agent systems are represented by transitions, which take

systems from one configuration to subsequent ones. Each agent in the system has its

own local state and the composition of all these local states comprises the configura-

tion (global state) of the multi-agent system. In every configuration (global state), all

agents proceed simultaneously. Each agent changes its next local configuration, pos-

sibly depending on the current local configurations of the other agents in the system.

However, there can be an alternative interleaved execution model, where at most one

agent is allowed to act at any one time. It depends on the modelled system which

execution model (interleaved or synchronous) is more realistic. If we count timesteps

required by a system of agents to derive something, interleaved model gives rather

pessimistic results because only one agent can ‘think’ at any single step and the rest

are waiting. This makes sense if the agents run on the same processor. However if,

as in most our examples, agents are running on different processors and can ‘think’ in

parallel, a synchronous model is more realistic.

The MAS module imports all the agent modules and contains both functions and

rewrite rules which are used to implement the dynamic behaviour of the system. The

structure of the MAS module is given in Listing 7.6. The parallel composition of agent

configurations in the system is achieved using the _||_ operator. In the MAS module

we declare a sort masConfig to represent the global configuration of the system.

155

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

We then define an operator <_,_> whose first argument is the composition of all the

local configurations of the system and the second argument is a phase, and it returns

an element of sort masConfig.

The masConfig moves through communication and execution phases. The com-

munication phase simply says that if there is something to be communicated then do it,

and then return to the execution phase. The inference engine of concrete agents and the

partial behaviour of abstract agents are implemented using a set of rules: Generate,

Choice, Apply, Idle, and Communication.

mod MAS is
protecting ConcreteAgent-i .
protecting AbstractAgent-j .
.
.
.
sort masConfig .
sort Phase .
ops com exec : -> Phase .
var phase : Phase .
op ruleIns-i : Agenda TimeWM WM -> Agenda .
op matchRule-i : Config -> Config .
op selectRule-i : Config -> Config .
op _||_ : Config Config -> Config [comm assoc] .
op <_,_> : Config Phase -> masConfig [ctor] .
op copy : masConfig -> masConfig [ctor] .
.
.
.

endm

Listing 7.6: Structure of MAS module

The Generate rule causes each concrete agent to generate its conflict set using

the equation labelled as Match-i in the concrete agent module, and each abstract

agent to update its RepTime using the equation labelled as TimeBound-j in the

abstract agent module. The Generate rule is given below. Here each variable is

associated with its corresponding agent index to make it clear which variables are used

to store state information and for what agent.

rl [Generate] : < . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|1]iS || . . .

|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|1]jS || . . .,phase >

=>

< . . .|| matchRule-i(Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|1]iS) || . . .

|| setTime-j(Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|1]jS) || . . .,phase > .

156

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

In the above Generate rule and throughout the rest of the discussion in this sec-

tion, it is assumed that Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|syni]iS

represents the local configuration of a concrete agent i, and Sj[Aj|RLj|TMj|Mj|RT

j|RTj’|tj|msgj|synj]jS represents that of an abstract agent j.

The Choice rule causes each concrete agent to apply its reasoning strategy using

the equation labelled as Select-i in the concrete agent module, and each abstract

agent to select a subset of RepTime whose time bounds are less than or equal to

the current system cycle time using the equation labelled as ProPattern-j in the

abstract agent module. The Choice rule is given below.

rl [Choice] : < . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|2]iS || . . .

|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|2]jS || . . .,phase >

=>

< . . .|| selectRule-i(Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|2]iS) || . . .

|| proPattern-j(Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|2]jS) || . . .,phase > .

The Apply rule causes each concrete agent to execute the rule instances selected

for execution and each abstract agent to produce those patterns selected from RepTime.

Each agent (concrete or abstract) of the system has an additional Idle rule, which ad-

vances the time of each agent, leaving everything else unchanged. The Idle rule has a

depth parameter which specifies the maximum depth at which the rule can be applied.

The Apply rule of a concrete agent i (labelled as Apply-i) is given below. In

this rule, the consequent of a rule instance is added to WM and TimeWM using the

operators pattern and time, respectively. These operators are declared and defined

in the ACM module. In the concrete agent module section, we have already mentioned

pattern. The operator time takes as arguments an element of sort TimeP and an

element of sort Nat, and returns an element of sort TimeP. That is, it is applied to

([0 : P],t+1) and returns the corresponding time pattern [t+1 : P],

thus associating the appropriate time cycle with P.

crl [Apply-i] : < . . .|| Si[Ai|< n : Ant -> Cons > RLi|Ant TMi|Mi|RTi|RTi’|ti|msgi|3]iS

157

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,exec >

=>

< . . .|| Si[Ai|RLi|Ant time(Cons, ti+1) TMi|pattern(Cons) Mi|RTi|RTi’|ti+1|msgi|1]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,exec > if

(not inWM(pattern(Cons), Mi)) .

The Idle rule of a concrete agent i (labelled as Idle-i) is given below. The

Idle rule executes only when there are no rule instances to be executed, that is, when

RLi contains only the default void rule. The application of the Idle-i rule advances

the cycle time of the concrete agent i, leaving everything else unchanged.

crl [Idle-i] : < . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|3]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,exec >

=>

< . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti+1|msgi|1]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,exec > if (size(RLi)=1) .

The Apply rule of an abstract agent j (labelled as Apply-j) is given below. The

rule executes when RTj’ is non-empty. In this rule, the operators genM and genTime

have been used to add patterns to WM and TimeWM, respectively. These operators have

already been mentioned in the abstract agent module section.

crl [Apply-j] : < . . .|| Si[Ai|RLi|Ant TMi|Mi|RTi|RTi’|ti|msgi|1]iS || . . .||

Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,exec >

=>

< . . .|| Si[Ai|RLi|Ant TMi|Mi|RTi|RTi’|ti|msgi|1]iS || . . .||

Sj[Aj|RLj|genTime(RTj’,tj) TMj| genM(RTj’) Mj|RTj|empty-RT|tj+1|msgj|1]jS || . . .,exec >

if (sizeRT(RTj’) > 1) .

The Idle rule of an abstract agent j (labelled as Idle-j) is given below. For

abstract agents, the Idle rule executes non-deterministically along with the Apply

158

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

rule. However, the Idle rule for abstract agents cannot be applied in some situations:

for example, if at the current cycle time tj the abstract agent j’s working memory

contains [t0 : Ask(i,j,P)], where t0 is the time stamp when abstract agent

j came to believe that agent i asked for P and abstract agent j’s behaviour is described

by the formula G(Bj Ask(i, j, P)→ Xn Bi Tell(j, i, P)), then the Idle rule of agent

j cannot be applied when tj = t0+n-1, forcing the agent j to reply at t0+n-1 if

it has not already done so. This is achieved using the bound operator that checks if

there exists such a situation. The operator bound is declared and defined in the ACM

module, which takes as arguments an element of sort RepTime and an element of sort

Nat, and returns an element of sort Bool. The application of Idle-j rule advances

the cycle time of the abstract agent j, leaving everything else unchanged.

crl [Idle-j] : < . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|1]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,exec >

=>

< . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|1]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj+1|1|1]jS || . . .,exec >

if (not bound(RTj’, tj)) .

These Maude rules are controlled using a flag (the last component of each local

configuration) which ensures that the configurations of all the agents move forward in

a synchronous way. When the last flag of each configuration becomes 1, the system

will execute the following Maude rule to change the status of the masConfig from

execute to communication.

rl [Exec-Comm] : < . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|1]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|1]jS || . . .,exec >

=>

< . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|1]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|1]jS || . . .,com > .

Communication among agents is achieved using a Communication rule. When

159

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

agents communicate with each other, one agent copies the communicated fact from

another agent’s memory. Copying is only allowed if the fact to be copied is not already

in the working memory of the agent intending to copy. The Communication rule is

given below.

rl [Communication] : < . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|3]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,com >

=>

copy(< . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|3]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,com >) .

Whenever the above Communication rule executes, the right hand side copy

operator (which is declared in the MAS module) reduces the masConfig using a set

of equations defined below. If the equational condition is satisfied then it will pull the

communicated fact from one agent’s memory to the other. In each equation the copy

operator calls itself recursively so that all the agents in the system can copy among

each other all the communicated facts possible at this cycle.

ceq [Copy1] : copy(< . . .|| Si[Ai|RLi|TMi|Ask(i,j,P) Mi|RTi|RTi’|ti|msgi|3]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,com >)

=

copy(< . . .|| Si[Ai|RLi|TMi|Ask(i,j,P) Mi|RTi|RTi’|ti|msgi+1|3]iS || . . .||

Sj[Aj|RLj|[tj : Ask(i,j,P)] TMj|Ask(i,j,P) Mj|RTj|RTj’|tj|msgj+1|3]jS || . . .,com >)

if (not inWM(Ask(i,j,P), Mj)) .

ceq [Copy2] : copy(< . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|3]iS

|| . . .|| Sj[Aj|RLj|TMj|Tell(j,i,P) Mj|RTj|RTj’|tj|msgj|3]jS || . . .,com >)

=

copy(< . . .|| Si[Ai|RLi|[ti : Tell(j,i,P)] TMi|Tell(j,i,P) Mi|RTi|RTi’|ti|msgi+1|syni]iS

|| . . .|| Sj[Aj|RLj|TMj|Tell(j,i,P) Mj|RTj|RTj’|tj|msgj+1|3]jS || . . .,com >)

if (not inWM(Tell(j,i,P), Mi)) .

160

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS
...

eq [Default] : copy(< . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|3]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,com >)

=

< . . .|| Si[Ai|RLi|TMi|Mi|RTi|RTi’|ti|msgi|3]iS

|| . . .|| Sj[Aj|RLj|TMj|Mj|RTj|RTj’|tj|msgj|3]jS || . . .,exec > [owise] .

Note that, during copy operations, agents only update their respective message

counters but not their cycle times. When all the agents in the system have copied all the

communicated facts at this cycle, the system changes its status from Communication

to Apply mode by changing the flag com to exec. This is achieved using Maude’s

otherwise ([owise]) attribute. Therefore, the execution of the Communication

rule is followed by the Apply rule and the system moves forward.

Note that when Ask(i,j,P) is added to agent j’s working memory, j may per-

form some computation if it does not know whether P is the case. In this model,

communication requires a single time step, i.e., when agent i asks agent j whether P

is the case at time step t, agent j will receive the request at time cycle t + 1. The

time agent i has to wait for a response to its query depends on the reasoning j must

(or chooses) to do (if j is concrete), or j’s specification (if j is abstract). A similar

approach is used when j tells i that P . Recall that when Generate, Choice, and

Communication rules execute agents do not change their time cycles, however time

cycles are increased by one when the Apply, and Idle rules execute. All three phases

match (Generate), select (Choice) and execute (consisting of Communication,

Apply, and Idle) therefore happen in a single time step.

7.2.4 Verifying system properties

Model checking in Maude involves a Maude specification of a system together with

a property of interest. A property is a LTL formula interpreted as a property of com-

putations of the system (linear sequences of states generated by application of rewrite

rules). A simple path from a given initial state s, to a state satisfying a property ϕ is

161

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

a list of rules together with a state s′ satisfying ϕ such that applying the rules start-

ing with s leads to s′. One way to find a simple path is to model check the assertion

that from s no state can be reached satisfying ϕ: modelCheck(s, ∼ F ϕ). If there is a

reachable state satisfying ϕ, a counterexample will be returned. The counterexample

contains the list of rules applied. Given a system module, say MAS, and an initial state,

say s of sort masConfig, we can model check different LTL properties beginning at

this initial state by doing the following:

• defining a new module, ModelCheck-MAS, that includes the module MAS and

Maude’s built-in module MODEL-CHECKER module as submodules;

• giving a subsort declaration, masConfig < State, where State is a sort

in the module MODEL-CHECKER;

• defining the syntax of the (target) state predicates we wish to use by means of

constants and operators of sort Prop, a subsort of the sort Formula (i.e., LTL

formulae) in the module MODEL-CHECKER;

• defining the semantics of the state predicates by means of equations.

The following ModelCheck-MAS system module shows how we can define state

predicates whose semantics are defined by appropriate equations.

mod ModelCheck-MAS is
including MAS .
including MODEL-CHECKER .
subsort masConfig < State .
op success : -> Prop .
var C : Config .
var phase : Phase .
eq < Si[Ai:Agenda|RLi:Agenda|TMi:TimeWM|P Mi:WM|RTi:Rep
TWM|RTi’:RepTWM|t:Nat|msgi:Nat|syni:Nat]iS || C:Config,
phase:Phase > |= success = true .
eq C |= success = false [owise] .
op init : -> masConfig .
eq init = < S1[...|...|...|...|...|...|0|0|1]1S ||...||

Si[...|...|...|...|...|...|0|0|1]iS ||...||
Sn[...|...|...|...|...|...|0|0|1]nS,com > .

endm

Listing 7.7: Structure of ModelCheck-MAS module

162

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

In the state predicate semantics defined in Listing 7.7, the masConfig says that

agent i’s working memory contains pattern P. The remaining information of the config-

uration is specified using Maude’s on-the-fly variable declaration. Note however that,

the initial state must contain information using ground terms only. In the ModelCheck

-MASmodule the initial system state is represented using init, where all the ... en-

tries of the configuration represent ground terms. Once the semantics of each of the

state predicates has been defined, given an initial state init, we can model check any

LTL formula, say ϕ, involving such predicates. We do so by executing in Maude, the

command reduce modelCheck(init, ϕ), where ϕ could be, for example, []

success,<> success, <> ∼success etc. Two things can then happen: if the

property holds, then we get the result true; if it does not, we get a counterexample.

7.2.5 Analysis of the implementation

When implementing reasoning strategies which involve time stamps of patterns, it is

convenient to be able to associate a time stamp to each pattern. To achieve this, we

have declared the sort TimeWM in the above encoding. However, in the encoding we

maintained both the sorts TimeWM and WM simultaneously. In this section, we explain

why. Let us suppose that each agent uses TimeWM as its only working memory. When

agents generate their conflict sets, they check whether consequents of rule instances

are already present in their working memory. If so, then these rule instances will not

be added to their agendas. Similarly, when agent fires a rule instance or receives a

message from another agent, it will make sure these patterns are not present in its

working memory. For example, suppose a pattern P with time stamp t1 is already

added to the working memory of an agent i. That is [t1 : P] is already present

in TimeWM. Sometimes later, say at time t2 (> t1), agent i needs to check whether

[t2 : P] is already present in its working memory. It is apparent that the el-

ements [t1 : P] and [t2 : P] of TimeWM are distinct because t1 6=

t2. However, the pattern P is common to both of them. Therefore, to ensure that

163

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

working memory does not contain duplicate patterns it is necessary to ensure that the

second part P of [t2 : P] is not already present in the working memory. This

can be accomplished in one of two ways. One way is to compare the second part of

[t2 : P] with the second part of each element [tk : P] of TimeWM.

In order to implement this approach some Maude conditional equations are required.

However, the execution of additional conditional equations slows down the computa-

tion. Another way is to maintain a duplicate working memory WM which contains all

the patterns of the form P. Whenever an element [t : P] is added to TimeWM,

the corresponding pattern P will be added to WM. In other words TimeWM and WM is

updated simultaneously. Thus it is only necessary to check whether the second part P

of [t2 : P] is already present in WM or not. Therefore, although maintaining

only one working memory is enough, we use duplicate working memory for efficiency

purposes.

7.3 The TVRBA verification tool

In this section, we describe the tool TVRBA, which generates an encoding of a system

of communicating rule-based agents for the Maude LTL model checker. The architec-

ture of TVRBA has three layers, as shown in Figure 7.2. The purpose of dividing this

into three separate layers is for ease of implementation and maintenance.

1. User interface: the first layer is the user interface layer by which the system

designer can interact with the tool and vice-versa. This layer is responsible for

validating input data from designer and presenting the output of model checker

to the designer. The tool takes as input:

(i) a set of concrete agent descriptions, each comprising a set of rules, a set of

initial working memory facts, and a reasoning strategy;

(ii) a set of abstract agent descriptions specified by a set of temporal doxastic

logic formulae;

164

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

User Interface

Concrete Agents

1. Set of rules

2. Set of facts

3. Rreasoning strategy

Abstract Agents

1. Set of temporal doxastic

System properties

1. Properties of the system

to be verified (Maude speci-

Encoding generator tool set

Scanner Parser Agent Module

Translator

Generic

Functional Module
Agent Module Agent Module

MAS Module

Check MAS

Module

LTL model checker
Verified design

. . .

logic formulae

Maude

fication)

Figure 7.2: Architecture of TVRBA

(iii) the properties of the system to be verified specified in temporal doxastic

logic.

Rules and facts can be expressed in XML or in a simplified ASCII syntax e.g.,

< n : P1 ∧ . . . ∧ Pn → P >, Pk. Note that one of our aims is to use

some standard rule representation language, such as HornLog RuleML. How-

ever, rule priorities, which are required by some of the supported inference (con-

flict resolution) strategies are not supported by standard HornLog. Therefore, the

TVRBA tool will automatically translate the input syntax< n : P1 ∧. . .∧ Pn →

P > into the corresponding time pattern rule language syntax:

< n : [t1 : P1] ∧ . . . ∧ [tn : Pn]→ [t : P] >

The general XML syntax of rules accepted by TVRBA corresponds to Horn-

Log RuleML with negation as failure. An XML document consists of pos-

sibly nested elements, where each element is a sequence of the form <tag>

165

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

E1...Em </tag>. In RuleML, a variable is denoted by a var element of

the form <var>variableName</var>, a constant is denoted by a ind el-

ement of the form <ind>constantName </ind>, a relation (predicate) is

denoted by a rel element of the form <rel>relationName</rel>. The

application of rel to a sequence of terms is denoted by an atom element of the

form given below.

<atom>
<rel>relationName</rel>
<var>variableName</var>
<ind>constantName</ind>
</atom>

A HornLog rule is asserted as an imp element that has two parts: a head con-

sists of a single atom and a body consists of one or more atom elements.

Negation as failure is represented using a naf element of the form <naf>

<atom>...</atom></naf>. A BNF of HornLog rules is given in Fig-

ure 7.3.

Rule ::= imp(head , body)

head ::= atom

body ::= (atom | naf)∗

atom ::= rel((var | ind)+)

naf ::= naf (atom)

Figure 7.3: HornLog rule syntax

Rules expressed in XML are translated internally into the simplified ASCII syn-

tax. Once translated, they can be annotated by the user with rule priorities, and

these annotated rules are then used to produce Maude specification. TVRBA sup-

ports the full range of conflict resolution strategies given in § 6.3.2. Different

agents in the system may use different strategies. The LTL specification of the

behaviour of abstract agents and properties to be verified are given in a simplified

ASCII notation.

2. Encoding generator: the second layer is the encoding generator layer which

consists of three main components: a scanner, a parser, and a translator. The

166

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

scanner or lexical analyser is used to validate the syntax of the input data pro-

vided by the system designer. If the input presented by the designer is lexically

valid then the scanner will pass it to the parser for further processing, otherwise,

it will report an error in case of an invalid input information. The parser retrieves

tokens from the scanner and processes these tokens to construct the model. The

translator is the main component of the tool. It takes inputs from parser as ab-

stract syntax and translate them into the corresponding Maude specifications.

3. System verifier: the third layer is the system verifier layer which feeds the out-

put of the Encoding generator to Maude LTL model checker along with the prop-

erties of the system to be verified. The output of the tool is the verified design

result, i.e., whether the MAS satisfies the desired property.

7.3.1 TVRBA implementation

We chose to build the tool using the Java platform. Java is a widely used object-

oriented programming language and has the advantage of being platform-independent.

The user interface(UI) of the tool is implemented in Java Swing.

This section describes how the encoding generator component of the tool translates

the designer’s input into a Maude system specification.

When the system designer loads a set of rules and facts in valid Hornlog RuleML

syntax, the tool uses XSLT transformation to transform the XML syntax into the ASCII

syntax. These translated ASCII rules are then annotated by the user with rule priorities

and are used as input for Maude specification.

The scanner and parser are implemented as Java classes. The scanner, represented

by Scanner object class, is used to validate input data from users. If a symbol is valid,

the scanner will send the corresponding token to the parser. Otherwise, it will throw a

ScannerException to report details of the failure. The scanner in our implementation

is based on the grammar shown in Figure 7.4. Terminal symbols in the grammar are as

167

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

usual, and some special symbols are used , e.g., $ stands for white space, EOL stands

for end of line(\n) and, the symbol # denotes as end of text (EOT).

Program ::= (Token | Separator)∗#

Token ::= Identifier | Connector | (|) |<|>|, |′
Identifier ::= Letter(Letter | Digit)∗

Letter ::= A | B | . . . | Z | a | b | . . . | z
Number ::= (Digit)+

Digit ::= 0 | 1 | . . . | 9
Connector ::= & |→
Separator ::= $ | EOL

Figure 7.4: Lexical syntax

A Parser object wraps a Scanner object, and feeds the input into it. It also receives

the output of the scanner in the form of Tokens. The implementation of the parser is

based on the grammar, depicted in Figure 7.5. The parser is a LL(1) predictive parser,

because it only needs to look ahead one token to decide the next parsing process.

Belief ::= Fact

Rule ::= Literals → Literal

Literals ::= Literal(& Literal)∗

Literal ::= Predicate(Terms)

Terms ::= Term(,Term)∗

Term ::= Constant | Variable | Function

Function ::= Identifier(Terms)

Constant ::= QuotedIdentifier

Variable ::= Identifier

Predicate ::= Identifier

QuotedIdentifier ::= ′Identifier

Fact ::= Literal where all terms are Constant

Figure 7.5: Abstract syntax for rules

The rules and facts in ASCII syntax are represented using abstract syntax trees

generated by the parser. These abstract syntax trees can then easily be translated (dec-

orated) to give the desired format.

Abstract agents are specified by a set of temporal doxastic logic formulae using

the syntax given in §6.4. For example, when the temporal logic formula with belief

operators G(B 2 Ask(1, 2, P)→ X 5 B 2 Tell(2, 1, P)) is specified as input, its syntax

168

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

must be validated. Input validation is carried out by the scanner and parser. The

implementation of the parser is based on the grammar, depicted in Figure 7.6. The

temporal doxastic formulae in ASCII syntax are represented using abstract syntax trees

generated by the parser. These abstract syntax trees can then be used to translate the

temporal specification into the desired Maude system specification. Some Java object

classes such as ResponseFormula and SimpleAskTellFormula are used to merge the

abstract agents specification with that for the concrete agents.

LTLFormula ::= Next num Phi | Globally(PhiOne → Next num PhiTwo)

Next ::= X

Globally ::= G

Phi ::= Belief Agi Ask(Agi ,Agj ,Predicate)

| Belief Agi Ask(Agj ,Agi ,Predicate)

| Belief Agi Tell(Agi ,Agj ,Predicate)

| Belief Agi Tell(Agj ,Agi ,Predicate)

| Belief Agi Predicate

PhiOne ::= Belief Agj Ask(Agi ,Agj ,Predicate)

PhiTwo ::= Belief Agi Tell(Agj ,Agi ,Predicate)

num ::= Number

Agi ::= Number

Agj ::= Number

Belief ::= B

Figure 7.6: Abstract syntax for LTL fornulae

Once a system encoding has been generated the designer can specify properties of

interest, by providing an initial and a target state of the system. An LtlPropertySpec-

ification object class generates the ModelCheck-MAS module in order to model check

properties of the system. The same procedure as discussed above is used to parse and

validate user input. The Maude LTL model checker has been integrated with the tool

using MaudeWrapper object class which is used to check the specified properties of

the system.

Now we explain how Maude implements the properties that are to be checked spec-

ified in temporal doxastic logic. Note that an agent i believes a formula ϕ if ϕ is in

the agent i’s working memory. In Listing 7.7, we have shown, for example, how to

define a proposition success in which the masConfig says that agent i’s working

169

CHAPTER 7: AUTOMATED VERIFICATION TOOL FOR MAS

memory contains pattern P. Therefore, some interesting properties that can be verified

include, for example, XnBiP .1 In Maude XnBiP can be specified as:

reduce modelCheck(init, O O...O success).

where O O...O stands for n application of O. In Maude specification O stands for

X . A screenshot of TVRBA’s user interface is presented in Figure 7.7.

Figure 7.7: Screenshot of TVRBA’s graphical user interface

1Recall that we can use XnBiP to verify whether X≤nBiP holds.

170

Chapter 8

Scalable MAS verification: case
studies

In this chapter, we report experiments designed to illustrate the scalability and expres-

siveness of the approach described in Chapter 6 and the TVRBA tool described in

Chapter 7. The first two experimental results described in this chapter were originally

presented in [Alechina et al., 2010]. All the experiments reported here were performed

on an Intel Pentium 4 CPU 3.20GHz machine with 2GB of RAM under CentOS release

4.8.

8.1 Binary tree example

To illustrate the scalability of our approach we re-implemented an example scenario

introduced in Chapter 5. In this scenario, a system of communicating reasoners attempt

to solve a distributed reasoning problem where the set of rules and facts that describes

the agents’ knowledge base are constructed from a complete binary tree. For example,

a complete binary tree with 8 leaf facts has the following set of rules

RuleB1 A1(x) ∧A2(x)→ B1(x) RuleB2 A3(x) ∧A4(x)→ B2(x)

RuleB3 A5(x) ∧A6(x)→ B3(x) RuleB4 A7(x) ∧A8(x)→ B4(x)

RuleC1 B1(x) ∧B2(x)→ C1(x) RuleC2 B3(x) ∧B4(x)→ C2(x)

RuleD1 C1(x) ∧ C2(x)→ D1(x)

171

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

leaves # steps CPU Time (in seconds)
128 127 1
512 511 97
1024 1023 903
2048 2047 13252

Table 8.1: Resource requirements for a single agent

For compatibility with the propositional example considered in [Alechina et al.,

2008b], (see § 5.7.3) we assume that the variable x is substituted by a single constant

value ‘a’, and the goal is to derive D1(a). One can easily see that a larger system

can be generated using 16 ‘leaf’ facts A1(x), . . . , A16(x), adding extra rules to derive

B5(x) from A9(x) and A10(x), etc., and a new goal E1(x) derivable from D1(x) and

D2(x) to give a ‘16 leaf example’. Similarly, we can consider systems with 32, 64,

128, . . ., 2048 etc. leaf facts.

In [Alechina et al., 2008b], the results of experiments on such problems using the

Mocha model-checker are reported. In the simplest case of a single agent, the largest

problem that could be verified using Mocha had 128 leaf facts (cf. § 5.7.3). However,

using our tool we are able to verify a system with 2048 leaf facts. This was modelled

as a single concrete agent, with varying numbers of facts and rules. The experimental

results are summarised in Table 8.1.

In the case of multi-agent systems, the exchange of information between agents

was modelled as an abstract Copy operation (cf. § 5.7.3). Each Copy operation takes

one tick of system time and does not require any special communication rules. We

were able to verify a multi-agent system consisting of two agents with 16 leaf facts.

An invariant property of the form AG¬(B1 ϕ ∨ B2 ϕ) (where ϕ represents the the

root node) was verified when the odd position node facts were assigned to one agent

and the even position node facts were assigned to the other agent in the system. In

our re-implementation, communication between agents is achieved using Ask and Tell

actions. The results presented in § 5.7.3 and those for our tool are therefore not directly

comparable in the multi-agent case. Nevertheless, we can show that much larger multi-

172

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

agent systems can be modelled using our approach.

A1 A2 . . . A127 A128

E1
E8

H1

Figure 8.1: Binary tree example with triangular regions

Consider a multi-agent system consisting of two concrete agents each with a knowl-

edge base of facts and rules for the 128 leaf example (i.e., both agents have all the rules

and leaf facts). Both agents in the system use rule ordering reasoning strategy. Agent

1 assigns lower priority to rules in the right-hand shaded triangular region depicted in

Figure 8.1. In contrast, agent 2 assigns lower priority to rules in the left-hand shaded

triangular region of Figure 8.1. In Appendix G, using a smaller example (cf. Table G1),

we show how we can direct the agents to focus on a particular region of the tree by

assigning rule priority. Suppose agent 1 asks agent 2 if E8(a) is the case. If agent 1

receives the fact E8(a) from agent 2 before deriving E8(a) itself, it can avoid firing 15

rules, and the agents are able to derive the goal H1(a) in 115 steps while exchanging

two messages.

Similarly, consider the scenario in which there are three concrete agents, each with

a knowledge base of facts and rules for the 128 leaf example. All the agents in the

system use the rule ordering reasoning strategy. Assume agent 1 asks agent 2 if E1(a)

is the case and also that agent 1 asks agent 3 if E8(a) is the case. In this case the set

173

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

agents # leaves # steps #msgs CPU Time (in seconds)
2 128 115 2 7
3 128 103 4 18

Table 8.2: Resource requirements for multiple agents

of rules in the unshaded region have higher priority for agent 1, the rules in left hand

shaded region have higher priority for agent 2, and the rules in the right hand shaded

region have higher priority for agent 3. Then the agents can derive the goal H1(a) in

103 steps while exchanging four messages. The experimental results are summarised

in Table 8.2. Although these examples are very simple, they point to the possibility of

complex trade-offs between time and communication bounds in systems of reasoning

agents. In Appendix G, using a smaller example (cf. Table G2), we show how we can

direct the agents to focus on a particular region of the tree by assigning rule priority in

the three agent case.

8.2 A route planning example

To illustrate the application of the framework on a more complex example we consider

the following scenario. The system consists of several agents representing users who

have queries about possible subway routes on the London Underground, denoted by ui,

and two agents that provide travel advice: a ‘route planning’ agent, p, that computes

routes between stations and an ‘engineering work’ agent, e, which has information

about line closures and other service disruptions. The user agents ask the route plan-

ning agent for route information, that is, they generate queries of the form:

Ask(ui , p,Route(start_station, destination_station)).

The route planning agent has a set of facts corresponding to connections between

stations, and a set of rules for finding a path between stations which returns a route (a

list of intermediate stations). Upon receiving a request from the user agent, the route

planning agent tries to find a route from the start_station to the destination_station

by firing a sequence of rules based on the facts in its working memory. To ensure

174

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

a route is valid, the planner must check that it is not affected by service disrup-

tions caused by engineering work, which it does by querying the engineering work

agent. If the route is open, the planner returns the route from source_station to the

destination_station to the user agent.

The user agents are modelled as abstract agents that generate a query at a non-

deterministically chosen time step within a specified interval, e.g.:

X≤5Bui Ask(ui , p,Route(MarbleArch,Victoria))

The engineering work agent is also modelled as an abstract agent which is assumed

to respond to a query within some bounded number of time steps, e.g., n time steps:

G(BeAsk(p, e,RouteList(start_station, destination_station,

[station1 | station2 | . . . | stationn]))→

X≤n BeTell(e, p,RouteList(start_station, destination_station,

[station1 | station2 | . . . | stationn]))

where [station1 | station2 | . . . | stationn] is a list of intermediate stations from

the start_station to the destination_station, and the response from the engineering

agent indicates that the route from the start_station to the destination_station via

station1 , station2 , . . . , stationn is open.

The system designer may wish to verify that the proposed design of the route plan-

ning agent, together with the assumed or known properties of the engineering work

agent, is able to respond to a given number of user queries arriving within a specified

interval, within a specified period of time. For a typical routing query, e.g., for an

abstract user agent ui asking for a route between station1 and station2, we can verify

that response is received within n time steps:

G(Bui Ask(ui , p,Route(s1 , s2))→

X≤n Bui Tell(p, ui ,RouteList(s1 , s2 , [t1 |t2 | . . . |tn])))

175

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

user agents # time steps CPU Time (in seconds)
2 21 39
4 29 236
5 33 530

Table 8.3: Resource requirements for the route planning example

Table 8.3 reports experimental results for a multi-agent system consisting of a plan-

ner agent, an engineering agent and varying number of user agents. In this experiment,

we have used 6 stations connected by 3 different lines (a total of 7 facts) and the planner

can derive 8 different routes. Different user agents in the system make queries about

different routes at different times in the interval [1, 10]. For example, the user agent ui

may request a route between Marble Arch and Victoria:

Ask(ui , p,Route(MarbleArch,Victoria))

and receive the reply

Tell(p, ui ,RouteList(MarbleArch,Victoria, [BondStreet |GreenPark]))

The time steps value in Table 8.3 gives the maximum number of time steps neces-

sary to return a route to a user agent under the specified system load.

8.3 A home health-care monitoring alarm system

Finally, we consider a home health care monitoring alarm system adapted from [Pa-

ganelli and Giuli, 2007]. The system consists of several concrete and abstract agents.

The concrete agents in the system include a number of home healthPCs, pci, and a cen-

tral Health Planner, p. Each pci agent in the system is connected with two body sensor

agents: a Blood pressure monitoring agent, bi, and a Heart rate monitoring agent, hi.

The agents bis and his are modelled as abstract agents. All the home healthPC agents

pci can communicate with the agent p, which is located at the health centre. The agent

p can also communicate with various other agents in the system including doctors,

nurses, relatives of patients, and an emergency operator. The over-all picture of the

176

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

system is depicted in Figure 8.2.

Blood pressure

monitoring sensor 1

Heart rate

monitoring sensor 1

Blood pressure

monitoring sensor 2

Heart rate

monitoring sensor 2

Blood pressure

monitoring sensor n

Heart rate

monitoring sensor n

Home PC1

Home PC2

Home PCn

The central health

DoctorX

NurseX

RelativeX

DoctorY

NurseY

Emergency operator

...
...

...

planner

Figure 8.2: Health-care monitoring system

The abstract agents bi and hi measure the Blood pressure and Heart rate information

of a patient and inform to the corresponding home healthPC, pci, as messages of the

form:

Tell(bi , pci ,BloodPressure(patientID , bp))

Tell(hk , pci ,HeartRate(patientID , hr))

Upon receiving the Blood pressure and Heart rate information from the body sen-

sor agents, the agent pci derives an alarm level by firing a sequence of rules from its

knowledge base. The alarm level may be Low , Very Low , Medium and High depend-

ing on the blood-pressure and heart-rate measurement values. The agent pci then sends

the alarm level information to the agent p for the patient’s health planning. In this sys-

tem, the doctors, di, nurses, ni, relatives of patients, ri, and an emergency operator,

e are modelled as abstract agents. These abstract agents can notify the agent p about

their availability by sending messages, e.g., “available”, “busy”, and “notAvailable”.

The messages generated by these abstract agents are of the form:

Tell(di , p,DoctorX (status))

177

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

Tell(ni , p,NurseX (status))

Tell(ri , p,RelativeX (status))

The agent p implements alarm notification policies specifying whom should be

alerted, how and when the notification is to be sent and if acknowledge is required.

The alarm notification policies are given below.

Alarm Level Notification Policies

Very Low message to relative, no ack

Low message to doctor, no ack and message to relative, no ack

Medium message to doctor or nurse, ack and message to relative, no ack

High message to emergency operator, ack and message to relative, ack

The agent p alerts a contact person (doctor, nurse, or relative of a patient) based on

their availability status and for certain cases the agent p may require an acknowledge-

ment. The availability status of a doctor, nurse, or relative of a patient may change from

“available” to “busy” or “notAvailable” when they are contacted by the agent p. In this

case, the agent pwaits for a fixed time interval and then based on the acknowledgement

received it might contact other agents for a service. For instance, when a Medium level

alarm occurs, the agent p first alerts a doctor, di. If the received acknowledgement from

the agent di within a fixed time interval is “busy” or “notAvailable”, then the agent pi

alerts a nurse, ni, if she also sends an “busy” or “notAvailable” message within a fixed

time interval, then the agent p alerts an emergency operator. At the same time, the

agent p alerts relative of patient, but acknowledgement is not required in this case.

The Blood pressure and Heart rate sensor agents in the system generate information

about the measurement values at different times in the interval [1, 5]. For example, the

agent bi generates blood pressure information for a patient with patientID P001 and

blood pressure B4 (where B4 symbolically representing the fact that systolic blood

178

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

pressure is higher than 160mm/Hg) using the following formula:

X≤5 Bbi Tell(bi , hpcj ,BloodPressure(P001 ,B4))

In this experiment, the priorities (from higher to the lower) of the rules of the

central Health Planner are assigned corresponding to the alarm levels High, Medium,

Low , and Very Low , respectively. The experimental results reported in Table 8.4,

for the 1 patient scenario, the system generates Medium alarms, for the 2 patients

scenario, the system generates Medium alarms for one patient and High alarm for

the other patient. For ease of illustration, we modelled one doctor, one nurse, and

one relative corresponding to each patient in the system. We verified the following

property of the system: whenever patient’s alarm level is Medium and the agent p has

received acknowledgements from the doctor and nurse as busy the agent p contacts the

emergency operator within n timesteps.

G(AlarmLevel(P001 ,Medium) ∧ Tell(di , p,DoctorXAck(P001 , busy)) ∧

Tell(ni , p,NurseXAck(P001 , busy))→ X≤n Tell(p, e,AlermLevel(P001 ,Medium)))

The above property is verified as true when the value of n is 3 and the model

checker spends 72 seconds for the 1 patient scenario and 165 seconds for the 2 patient

scenario. However when we assign a value less than 3 to n the property is verified as

false and the model checker returns a counterexample. This also ensures the correct-

ness of the encoding. In Table 8.4, we have shown the required time steps (from the

system startup) and the number of messages that are exchanged between the agents

when the property is verified as false.

#Patients #Concrete agents # Abstract agents # timesteps #msgs CPU Time
(in seconds)

1 2 6 19 22 0.04
2 3 11 26 32 0.09

Table 8.4: Resource requirements for the health planner

179

CHAPTER 8: SCALABLE MAS VERIFICATION: CASE STUDIES

8.4 Discussion

In this chapter, we illustrated the scalability of our new approach by comparing it to

results presented in [Alechina et al., 2008b] and in Chapter 5 for a synthetic distributed

reasoning problem. In our previous work, the largest problem that could be verified

using Mocha had 128 leaf facts, however, using our new approach we are able to

verify a system with 2048 leaf facts. This was modelled as a single concrete agent

which uses a rule ordering reasoning strategy. In our new approach, communication

between agents is achieved using Ask and Tell actions which is different from the Copy

operation used in our previous work, therefore the performance of verification is not

directly comparable in the multi-agent case. However, we showed that much larger

multi-agent systems can be modelled using our new approach. We also showed how

to further improve scalability by using abstract agents specified in terms of temporal

doxastic formulae. The modelling and experimental results using the notion of abstract

agents show the usability of TVRBA for various other problems.

180

Chapter 9

Conclusions and future work

This thesis has centred on the development of techniques and tools for verifying re-

source requirements for systems of reasoning agents, such as, for example, agents

which reason using resolution or rules. In this chapter, we briefly summarise the main

contributions of the thesis, and suggest some possible future lines of research.

9.1 Summary of contributions

In this thesis we have argued that there is a need for frameworks for modelling and

verifying properties of resource-bounded multi-agent systems. When solving prob-

lems, each intelligent agent in a multi-agent system requires some basic resources

such as time (number of computational steps), space (amount of memory) and per-

haps communication bandwidth (number of messages that need to be exchanged). We

briefly reviewed the existing logical formalisms for reasoning about resource-bounded

agents and discussed their expressiveness. We then argued that there is a need to define

temporal doxastic logics which allow us to express properties of systems to investi-

gate trade-offs between multiple resource bounds (memory, time and communication

bandwidth). The logical formalisms described in § 4.4 were developed by Nga and

Alechina [Alechina et al., 2009a], to meet this need, and form the starting point for

some of the work reported in this thesis a brief description of these logics has been

181

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

provided whenever necessary to understand the frameworks presented in this thesis.

We reviewed the state-of-the-art in verifying multi-agent systems. The two most pop-

ular approaches to formal verification we surveyed are theorem proving and model

checking, and we briefly summarised how these techniques have been used to ver-

ify properties of multi-agent systems. We then analysed the limitations of the current

approaches.

We then proposed some frameworks for modelling and verifying resource-bounded

reasoning agents. First, we presented a framework for verifying systems composed of

resolution-based reasoning agents, where the resources each agent is prepared to com-

mit to a goal (time, memory and communication bandwidth) are bounded. We then

presented a second framework for verifying systems of distributed rule-based reason-

ing agents. The work presented in Chapter 4 extends the work presented in [Albore

et al., 2006] which proposed a method of verifying memory and time bounds in a single

reasoner that reasons in classical logic using natural deduction rather than resolution.

The expressiveness and the scalability of our approaches (presented in Chapters 4 &

5) are illustrated through the verification of two typical multi-agent reasoning prob-

lems which can be easily parameterised to increase or decrease the problem size. Al-

though our approaches scale better than those presented in [Albore et al., 2006], the

results were still not satisfactory. In order to improve scalability of model checking for

larger problems, we analysed the problem and its encoding complexity to better un-

derstand the scalability issues. Both the complexity analysis and experimental results

suggested that reasonably sized problem instances are unlikely to be tractable for a

standard model checker without steps to reduce the branching factor of the state space.

To address the scalability issues identified in Chapters 4 & 5, we proposed a new

approach to model checking MAS which uses strategies and abstraction. Our mod-

elling approach abstracts from some aspects of system behaviour to obtain a system

model that is tractable for a standard model checker. When verifying response time

guarantees of the ‘focal’ agent(s), the concrete representation of ‘peripheral’ agents can

182

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

be replaced by an abstract specification of their external (communication) behaviour,

so long as the abstract specification results in behaviour that is indistinguishable from

the original concrete representation for the purposes of verification, i.e., it produces

queries and responds to queries within specified bounds. All other details of an ab-

stract agent’s internal behaviour are omitted. Abstract specifications are given as LTL

formulae which describe the external behaviour of the agents, allowing their temporal

behaviour to be compactly modelled. We assume that each concrete agent has a reason-

ing strategy (or conflict resolution strategy) which determines the order in which rules

are applied when more than one rule matches the contents of the agent’s working mem-

ory. The system designer can specify a range of conflict resolution strategies (based

on those provided in [Culbert, 2007, Friedman-Hill, 2008, Tzafestas et al., 1989]).

Both approaches have been combined in an automated verification tool TVRBA for

rule-based multi-agent systems which allows the designer to specify information about

agents’ interaction, behaviour, and execution strategy at different levels of abstraction.

The TVRBA tool generates an encoding of the multi-agent system for the Maude LTL

model checker, allowing properties of the system to be verified.

We illustrated the scalability of this approach by comparing it to results presented in

Chapter 5 for a synthetic distributed reasoning problem. We also showed how to further

improve scalability by using abstract agents specified in terms of temporal doxastic

formulae. Even with the initial prototype implementation of the TVRBA tool, the

results from the case studies suggest that new approach scales significantly better than

the approach presented in Chapter 5 that uses traditional model checking. We believe

that the new approach can form a useful framework for the scalable verification of

rule-based multi-agent systems. Although the approach assumes rule-based agents, the

basic idea can be implemented for other reasoning systems. How could it be extended

to other reasoning systems, such as agents which reason using resolution, is discussed

below in § 9.2.2.

183

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

9.2 Future work

The scope of the work described in this thesis has raised a number of issues which

could be addressed in future work. In this section, we highlight three different di-

rections, namely: practical applications of the current framework, extensions to the

framework presented in this thesis, and a re-engineering the Maude LTL model checker

to allow reasoning strategies to be propagated down to the model checking level.

9.2.1 Potential application areas

In this thesis, we have mainly focused on synthetic rule-based examples. A fruitful area

for future work would be to the application of the framework and the TVRBA tool to

the verification of resource tradeoffs in practical MAS applications where resources

are particularly important. Sensor networks have emerged as a promising new mon-

itoring and control solution for a variety of applications. However, sensor nodes are

resource-bounded having a of relatively small amount of physical memory, processing

power, power supply and communication throughput. Note that communication be-

tween sensor nodes consumes most of the available power. In order to increase the life

time of sensor nodes, the amount of information broadcast to all sensor nodes should

be minimised. Each sensor node should make local decisions in order to determine

what information should be communicated, and to whom. For example, instead of

broadcasting all the temperature readings, a sensor node may only send the average

of temperature readings taken over a specified amount of time. Interesting proper-

ties of such systems that can be verified include for example “data always reaches the

base station from the source node in nT time steps while exchanging fewer than nC

messages, in all topologies where there is a path between them ”. In the literature,

rule-based approaches have been used for the design and implementation of wireless

sensor networks including those studied by [Chu et al., 2007, Terfloth and Schiller,

2008, Baliosian et al., 2009]. Future work will look at exploring case studies in this

area to demonstrate the utility of the proposed framework.

184

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

Another potential area of future application could be to verify systems focusing on

business rules represented in Hornlog RuleML [Hirtle et al., 2006]. For example, there

has been work on rule-based approaches to representation of business contacts that en-

ables software agents to create, evaluate, negotiate, and execute contacts [Grosof and

Poon, 2003, Governatori, 2005, Boley et al., 2010]. As an example, consider an agent

which acts as a provider agent for a company which is in charge of quoting for prod-

ucts, and also decides when a discount should be given to a potential customer (e.g.,

premium customers are entitled a 5% discount on new orders on regular products [Bo-

ley et al., 2010]). The designer of such an agent may wish to ensure that the agent’s

behaviour is correct. This includes verifying that, for example, the agent does not of-

fer a customer an inappropriate discount. The designer also needs to be able to verify

other interesting properties, for example, the designer may wish the system to offer

certain quality of service guarantees, e.g., to bound the time a potential customer has

to wait between the acknowledgement of a request for a price and receiving a quote.

9.2.2 Extensions to the current framework

In this thesis, the verification approach using abstraction and strategies has been fo-

cused on rule-based agents. It would be interesting to extend the approach to other

types of reasoning agents, such as agents which reason using resolution. In Maude

resolution could be modelled in a similar way to the non-positional encoding dis-

cussed in § 4.8.2 in which resolution is limited to sets of valid clauses (tautology

free) and valid transition (two resolvable clauses never produce a tautology). Mem-

ory bounds, message counters, clause addition and overwriting operations can easily

be implemented using simple Maude algebra. Actions by each agent such as reading

a premise, resolving two clauses, and communication with other agents can be im-

plemented using equations and rules in Maude. Agents could communicate clauses

using Ask and Tell communication primitives. As in the rule-based case, abstract

specifications consisting of a set of LTL formulae could be used to specify some of the

185

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

agents in the system. The set of LTL formulae extended with doxastic operators would

be similar to those defined in § 6.4. For example, for some clause C,1 the formula

G(Bi Ask(i, j, C) → Xn Bj Tell(j, i, C)) describes agents which are always guaran-

teed to reply to a request for information within n timesteps. Here C is a propositional

Horn clause that we considered in Chapter 4, however we would like to extend the

resolution-based systems from propositional to first-order. In order to reduce branch-

ing factor of the models, we may consider e.g., the following reasoning strategies for

agents which reason with Horn clauses:

- resolution: always resolve the shortest clauses first;

- overwrite: always overwrite the oldest clause in memory when agents run out

of space;

- subsumption: eliminate subsumed clauses when agents read clauses from their

knowledge base or perform a resolution or a Copy operation. For example, if the

clause A1 is already in an agent’s memory then clauses subsumed by A1 should

not be read again from the KB. Furthermore, an agent will not be allowed to

perform a resolution at the current state for which A1 subsumes the resolvent.

The development of an automated tool would be similar to the TVRBA. The auto-

mated tool will allow the designer of a multi-agent resolution-based system to specify

the information about agents’ interaction, behaviour, and execution strategy at different

levels of abstraction. The existing parser can easily be extended to support the syntax

of Horn clauses, and the part of the TVRBA which implements the abstract agents

can be reused. The other parts of the TVRBA which implement the reasoning strate-

gies and concrete agents would need to be changed to support agents which reason

using resolution. This includes the implementation of the inference rule of resolution

and reasoning strategies. Ultimately, the approach could be extended to multi-agent

systems in which different agents reason in different ways.

1For example, C could be any clause from the set F (cf. § 4.6).

186

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

9.2.3 Re-engineering the Maude LTL model checker

A basic strategy language for Maude has been developed by [Eker et al., 2007]. The

Maude strategy language can be used to control how rules are applied to rewrite a

term. However, the Maude LTL model checker does not support the strategy lan-

guage. Model checking in the presence of strategies is an interesting research prob-

lem. Re-engineering the Maude LTL model checker to integrate the strategy language

would involve redefining the satisfaction relation of LTL formulae in the Maude’s LTL-

SIMPLIFIER module, and employing heuristic guided search algorithms. While this

would involve a non-trivial amount of work, the integration of strategy language into

the model checker would give the system designer greater flexibility in allowing them

to specify new agent conflict resolution strategies.

187

Bibliography

NuSMV examples: the collection. http://nusmv.fbk.eu/examples/examples.html.

A. Albore, N. Alechina, P. Bertoli, C. Ghidini, B. Logan, and L. Serafini. Model-
checking memory requirements of resource-bounded reasoners. In Proceedings of
the Twenty-First Conference on Artificial Intelligence, pages 213–218, Boston, Mas-
sachusetts, 2006.

N. Alechina, B. Logan, and M. Whitsey. A complete and decidable logic for resource-
bounded agents. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 606–613, New York, USA,
2004.

N. Alechina, M. Jago, and B. Logan. Modal logics for communicating rule-based
agents. In Proceedings of the 17th European Conference on Artificial Intelligence
(ECAI’06), pages 322–326. IOS Press, 2006.

N. Alechina, P. Bertoli, C. Ghidini, M. Jago, B. Logan, and L. Serafini. Model-
checking space and time requirements for resource-bounded agents. In Proceedings
of the Fourth Workshop on Model Checking and Artificial Intelligence, volume 4428
of Lecture Notes in Artificial Intelligence, pages 19–35. Springer-Verlag, 2007.

N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib. Verifying time, memory and com-
munication bounds in systems of reasoning agents. In Proceedings of the Seventh
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008). IFAAMAS, 2008a.

N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib. Verifying time and communica-
tion costs of rule-based reasoners. In Proceedings of the 5th International Workshop
on Model Checking and Artificial Intelligence, volume 5348 of Lecture Notes in
Computer Science, pages 1–14. Springer-Verlag, 2008b.

N. Alechina, B. Logan, N. H. Nga, and A. Rakib. Verifying time, memory and com-
munication bounds in systems of reasoning agents. Synthese, 169(2):385–403, April
2009a.

N. Alechina, B. Logan, N. H. Nga, and A. Rakib. Reasoning about other agents’ beliefs
under bounded resources. In J.-J. Meyer and J. Broersen, editors, Post-proceedings
of KR2008-workshop on Knowledge Representation for Agents and Multi-Agent Sys-
tems (KRAMAS), Sydney, September 2008, volume 5605 of Lecture Notes in Artifi-
cial Intelligence, pages 1–15. Springer-Verlag, 2009b.

188

BIBLIOGRAPHY

N. Alechina, B. Logan, N. H. Nga, and A. Rakib. Automated verification of resource
requirements in multi-agent systems using abstraction. In Ron van der Meyden and
Jan-Georg Smaus, editors, Proceedings of the Sixth Workshop on Model Checking
and Artificial Intelligence (MoChArt-2010), Atlanta, GA, July 2010.

M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson. Space com-
plexity in propositional calculus. SIAM Journal of Computing, 31(4):1184–1211,
2002.

M. Alpuente, M. A. Feliu, C. Joubert, and A. Villanueva. Implementing Datalog
in Maude. In Proceedings of the IX Jornadas sobre Programación y Lenguajes
(PROLE’09), San Sebastián, Spain, 2009.

R. Alur and D. Dill. Automata for modelling real-time systems. In Proceedings of the
International Colloquium on Automata, Languages and Programming (ICALP’90),
volume 443 of Lecture Notes in Computer Science, pages 322–335. Springer-Verlag,
1990.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2–34, 1993.

R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Proceedings of the 10th International
Conference on Computer Aided Verification, volume 1427 of Lecture Notes in Com-
puter Science, pages 521–525. Springer-Verlag, 1998a.

R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Revised Lectures from the International Symposium on Compositionality: The Sig-
nificant Difference, pages 23–60, London, UK, 1998b. Springer-Verlag.

L. Astefanoaei, M. Dastani, John-Jules Ch. Meyer, and F. S. de Boer. A verification
framework for normative multi-agent systems. In Proceedings of the 11th Pacific
Rim International Conference on Multi-Agents (PRIMA 2008), volume 5357 of Lec-
ture Notes in Computer Science, pages 54–65. Springer-Verlag, 2008.

C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, 2008.

J. Baliosian, J. Visca, E. Grampín, L. Vidal, and M. Giachino. A rule-based distributed
system for self-optimization of constrained devices. In Proceedings of the 11th
IFIP/IEEE international conference on Symposium on Integrated Network Manage-
ment, pages 41–48, Piscataway, NJ, USA, 2009. IEEE Press.

A. Baltag and L.S. Moss. Logics for epistemic programs. Synthese, 139:165-224,
Knowledge, Rationality & Action 1-60, 2004.

M. Benerecetti, F. Giunchiglia, L. Serafini, M. Benerecetti, and L. Serafini. Model
checking multiagent systems. Journal of Logic and Computation, 8(3):401–423,
1998.

189

BIBLIOGRAPHY

S. Berezin and S. V. A. Campos E. M. Clarke. Compositional reasoning in model
checking. In Revised Lectures from the International Symposium on Compositional-
ity: The Significant Difference, pages 81–102, London, UK, 1998. Springer-Verlag.

P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a model based
planner. In Proceedings of the IJCAI’01 Workshop on Planning under Uncertainty
and Incomplete Information, pages 93–97, 2001.

R. Bharadwaj. Tools to support a formal verification method for systems with concur-
rency and nondeterminism. PhD thesis, McMaster University, 1996.

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
2001.

H. Boley, A. Paschke, and O. Shafiq. RuleML 1.0: The overarching specification of
web rules. In Proceedings of the International Symposium on Rule Representation,
Interchange and Reasoning on the Web (RuleML 2010), volume 6403 of Lecture
Notes in Computer Science, pages 162–178. Springer-Verlag, 2010.

G. Boone. Concept features in re:agent, an intelligent email agent. In Proceedings of
the Second International Conference on Autonomous Agents, pages 141–148. ACM
Press, 1998.

R. H. Bordini, M. Fisher, C. Pardavila, V. Willem, and M. Wooldridge. Model checking
multi-agent programs with CASP. In Proceedings of the 15th International Confer-
ence on Computer Aided Verification, volume 2725 of Lecture Notes in Computer
Science, pages 110–113. Springer-Verlag, 2003.

R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. State-space reduction tech-
niques in agent verification. Proceedings of the Third International Joint Conference
on Autonomous Agents and Multi-Agent Systems, 2:896–903, 2004.

R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems, 12(2):
239–256, 2006.

R. H. Bordini, M. Dastani, and M. Winikoff. Current issues in multi-agent systems
development (invited paper). In Proceedings of the 7th International Workshop En-
gineering Societies in the Agents World(ESAW’06), volume 4457 of Lecture Notes
in Computer Science, pages 38–61. Springer-Verlag, 2007a.

R. H. Bordini, M. Wooldridge, and J. M. Hübner. Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons, 2007b.

A. Pokahrand L. Braubach and W. Lamersdorf. A flexible BDI architecture supporting
extensibility. In Proceedings of the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pages 379–385, Washington, DC, USA, 2005. IEEE
Computer Society.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
action on Computers, 35(8):677–691, 1986.

190

BIBLIOGRAPHY

R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams.
Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

R. E. Bryant and C. Meinel. Ordered Binary Decision Diagrams In Electronic Design
Automation: Foundations, Applications and Innovations. Technical report, Univer-
sität Trier, Mathematik/Informatik, Forschungsbericht, 2002.

S. Budkowski and P. Dembinski. An introduction to Estelle: a specification language
for distributed systems. Computer Networks and ISDN Systems, 14(1):3–23, 1987.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13:401–424, 1993.

T. J. Callantine. CATS -based air traffic controller agents. NASA Contractor Report
2002-211856. Moffett Field,CA: NASA Ames Research Center, 2002.

T. J. Callantine. Air traffic controller agents. In Proceedings of the Second Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003).
IFAAMAS, 2003.

D. Chaum. The dining cryptographers problem: unconditional sender and recipient
untraceability. Journal of Cryptology, 1(1):65–75, 1988.

D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and I. Stoica. The
design and implementation of a declarative sensor network system. In Proceedings
of the 5th international conference on Embedded networked sensor systems, pages
175–188. ACM, 2007.

A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV : A new Symbolic
Model Checker. International Journal on Software Tools for Technology Transfer, 2
(4):410–425, 2000.

A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence, 147(1-2):35–84,
2003.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16:1512–1542, September
1994.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-
bridge,Massachusetts, 2000.

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, and J. Meseguer. All About
Maude - A High Performance Logical Framework, volume 4350 of Lecture Notes
in Computer Science. Springer-Verlag, 2007.

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott.
Maude Manual (Version 2.4). SRI Internationa, Menlo Park, CA 94025, USA, 2008.

191

BIBLIOGRAPHY

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods in System Design,
1(2-3):275–288, 1992.

P. Cousot. Automatic verification by abstract interpretation. In Verification, Model
Checking, and Abstract Interpretation, 4th International Conference(VMCAI’03),
volume 2575 of Lecture Notes in Computer Science, pages 20–24, New York, NY,
USA, 2003.

P. Cousot. The verification grand challenge and abstract interpretation. In Ver-
ified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Confer-
ence(VSTTE’05), volume 4171 of Lecture Notes in Computer Science, pages 189–
201, 2008.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth ACM Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE analyser. In The European Symposium on Programming, volume
3444 of Lecture Notes in Computer Science, pages 21–30. Springer-Verlag, 2005.

C. Culbert. CLIPS reference manual. NASA, 2007.

B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B.
Sipma, S. Mehrotra, and Z. Manna. LOLA: Runtime monitoring of synchronous
systems. In Proceedings of the 12th International Symposium on Temporal Repre-
sentation and Reasoning, pages 166–174, 2005.

G. de Giacomo, Y. Lespérance, and H. J. Levesque. GOLOG: A logic programming
language for dynamic domains.s. Journal of Logic Programming, 31:59–84, 1997.

G. de Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog: a concurrent program-
ming language based on the situation calculus. Artificial Intelligence, 121:109–169,
2000.

L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher. A flexible framework for
verifying agent programs. In Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multi-Agent Systems, pages 1303–1306, Richland, SC,
2008a. IFAAMS.

L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldridge. A common
semantic basis for BDI languages. In Proceedings of the 5th workshop on Program-
ming Multi-Agent Systems, volume 4908 of Lecture Notes in Computer Science,
pages 124–139. Springer-Verlag, 2008b.

H. Ditmarsch, W. van der Hoek, R. van der Meyden, and J. Ruan. Model checking
russian cards. In K. Jensen and A. Podelski, editors, Proceedings of the Third Inter-
national Workshop on Model Checking and Artificial Intelligence, volume 149(2).
Electronic Notes in Theoretical Computer Science, 2005.

192

BIBLIOGRAPHY

C. Dixon, M. Gago, M. Fisher, and W. van der Hoek. Temporal logics of knowledge
and their applications in security. Electronic Notes in Theoretical Computer Science
(ENTCS), 186:27–42, July 2007.

A. Doroś, A. Janowska, and P. Janowski. From specification languages to timed au-
tomata. In Proceedings of the Int. Workshop on Concurrency, Specification and
Programming, volume 161, pages 117–128, Humboldt University, 2002.

H. N. Duc. Logical omniscience vs. logical ignorance on a dilemma of epistemic
logic. In Progress in Artificial Intelligence, 7th Portuguese Conference on Artificial
Intelligence, pages 237–248, 1995.

H. N. Duc. Reasoning about rational, but not logically omniscient, agents. Journal of
Logic and Computation, 7(5):633–648, 1997.

C. Eisner and D. Peled. Comparing symbolic and explicit model checking of a software
system. In Proceedings of the 9th International SPIN Workshop, volume 2318 of
Lecture Notes in Computer Science, pages 79–82. Springer-Verlag, 2002.

S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker and
its implementation. In Proceedings of the 10th International SPIN Workshop, vol-
ume 2648 of Lecture Notes in Computer Science, pages 623–624. Springer-Verlag,
2003.

S. Eker, N. Martí-Oliet, J. Meseguer, and A. Verdejo. Deduction, Strategies, and
Rewriting. Electronic Notes in Theoretical Computer Science (ENTCS), 174:3–25,
July 2007.

J. J. Elgot-Drapkin and D. Perlis. Reasoning situated in time I: basic concepts. Journal
of Experimental and Theoretical Artificial Intelligence, 2(1):75–98, 1990.

J. J. Elgot-Drapkin, D. Perlis, and M. Miller. Memory, Reason, and Time: the Step-
logic Approach. Philosophy and AI: Essays at the Interface, pages 79–103, 1991.

E. A. Emerson and C. L. Lei. Modalities for model checking: Branching time strikes
back. In Science of Computer Programming, volume 8, pages 275–306. Elsevier
North-Holland, Inc, 1987.

K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of lo-
cal propositions. In Proceedings of the 7th conference on Theoretical aspects of
rationality and knowledge, pages 29–41, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

J. L. Esteban and J. Torán. Space bounds for resolution. In Proceedings of the 16th
Annual Symposium on Theoretical Aspects of Computer Science, volume 1563 of
Lecture Notes in Computer Science, pages 551–560. Springer-Verlag, 1999.

R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning: Preliminary
report. In Proceedings of the International Joint Conference on Artifical intelligence,
pages 491–501, 1985.

193

BIBLIOGRAPHY

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT
Press, Cambridge, Mass, 1995.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent communication
language. In Proceedings of the Third International Conference on Information and
Knowledge Management, pages 456–463, New York, NY, USA, 1994. ACM.

M. Fisher. Concurrent METATEM - A language for modelling reactive systems. In
Proceedings of the 5th International Conference on Parallel Architectures and Lan-
guages Europe, pages 185–196, London, UK, 1993. Springer-Verlag.

M. Fisher and C. Ghidini. Programming resource-bounded deliberative agents. In Pro-
ceedings of the 16th International Joint Conference on Artifical Intelligence, pages
200–205, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

M. Fisher and M. Wooldridge. On the formal specification and verification of multi-
agent systems. International Journal of Cooperative Information Systems, 6(1):
37–66, 1997.

M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. Computational logics and agents:
A road map of current technologies and future trends. Computational Intelligence,
23(1):61–91, 2007.

E. J. Friedman-Hill. Jess, The Rule Engine for the Java Platform. Sandia National
Laboratories, 2008.

M. Gallardo, J. Martínez, P. Merino, and E. Pimentel. A Tool for Abstraction in Model
Checking. Electronic Notes in Theoretical Computer Science, 66(2):17, 2002.

J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving.
Harper & Row Publishers, 1986.

P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In
Proceedings of International Conference on Computer Aided Verification-2004, vol-
ume 3114 of Lecture Notes in Computer Science, pages 479–483. Springer-Verlag,
2004.

G. Gardey, D. Lime, M. Magnin, and O. r H. Roux. Romeo: A Tool for Analyzing
Time Petri Nets. In Proceedings of the 17th International Conference on Computer
Aided Verification, volume 3576 of Lecture Notes in Computer Science. Springer-
Verlag, 2005.

G. De Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence, 121(1-2):
109–169, 2000.

P. Godefroid. Model checking for programming languages using VeriSoft. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 174–186, New York, NY, USA, 1997. ACM.

G. Governatori. Representing business contracts in RuleML. International Journal of
Cooperative Information Systems, 14(2-3):181–216, 2005.

194

BIBLIOGRAPHY

B. N. Grosof and T. C. Poon. Representing agent contracts with exceptions using XML
rules, ontologies, and process descriptions. In Proceedings of the 12th International
Conference on World Wide Web, pages 340–349, New York, NY, USA, 2003. ACM.

A. Haken. The intractability of resolution (complexity). PhD thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA, 1984.

J. Y. Halpern and M. Y. Vardi. Model checking vs. theorem proving: A manifesto. In
Proceedings of the 2nd International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’91), pages 325–334. Morgan Kaufmann Publishers,
1991.

J. Y. Halpern, Y. Moses, and M. Y. Vardi. Algorithmic knowledge. In Proceedings
of the 5th Conference on Theoretical Aspects of Reasoning about Knowledge, pages
255–266, 1994.

K. Havelund and G. Rosu. Java PathExplorer - A Runtime Verification Tool. In
Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics
and Automation in Space: A New Space Odyssey, pages 200–217, 2001.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification with
BLAST. In Proceedings of the 10th SPIN Workshop on Model Checking Soft-
ware (SPIN), volume 2648 of Lecture Notes in Computer Science, pages 235–239.
Springer-Verlag, 2003.

J. Hintikka. Knowledge and Belief. New York, 1962.

D. Hirtle, H. Boley, B. Grosof, M. Kifer, M. Sintek, S. Tabet, and G. Wagner. Schema
Specification of RuleML 0.91. http://ruleml.org/0.91/, 2006.

G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search (extended
abstract). In Poceeding of the second Workshop on the SPIN Verification system,
pages 23–32. American Mathematical Society, 1996.

G. J. Holzmann. On-the-fly model checking. ACM Computing Surveys, 28(4), Decem-
ber 1996.

G. J. Holzmann. The model checker SPIN. IEEE Transaction on Software Engineer-
ing, 23(5):279–295, 1997.

A. J. Hu, G. York, and D. L. Dill. New techniques for efficient verification with im-
plicitly conjoined BDDs. In Proceedings of the 31st Annual Design Automation
Conference, pages 276–282, New York, NY, USA, 1994. ACM.

G. Huet, G. Kahn, and C. P. Mohring. The coq proof assistant: A tutorial. INRIA,
France, 2009.

U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and first-
order resolution. In Proceedings of the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, volume 1847 of Lecture
Notes in Computer Science, pages 67–71, London, UK, 2000. Springer-Verlag.

195

BIBLIOGRAPHY

U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal monodic
prover. In Proceedings of the Second International Joint Conference IJCAR 2004,
volume 3097 of Lecture Notes in Computer Science, pages 326–330. Springer-
Verlag, 2004.

M. Jago. Logics for resource-bounded agents. PhD thesis, University of Nottingham,
2006.

N. R. Jennings and M. Wooldridge. Applications of intelligent agents. In Agent tech-
nology, pages 3–28. Springer-Verlag, 1998.

K. Konolige. A Deduction Model of Belief. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA, 1986.

S. Kripke. Semantical Analysis of Modal Logic I. Normal Propositional Calculi.
Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 9:67–96,
1963.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, 3(2):125–143, 1977.

Y. Lespérance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl. Founda-
tions of a logical approach to agent programming. In ATAL, pages 331–346, 1995.

Y. Lespérance, T. G. Kelley, J. Mylopoulos, and E. S. K. Yu. Modeling dynamic
domains with ConGolog. In Proceedings of the 11th International Conference on
Advanced Information Systems Engineering, pages 365–380, London, UK, 1999.
Springer-Verlag.

H. J. Levesque. A logic of implicit and explicit belief. In AAAI, pages 198–202, 1984.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings of the 12th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, pages 97–107. ACM New York,
NY, USA, 1985.

A. Lomuscio and W. Penczek. Symbolic model checking for temporal epistemic logic.
SIGACT News Logic Column, 38(3):76–100, 2007.

A. Lomuscio, W. Penczek, and B. Woźna. Bounded model checking for knowledge
and real time. Artificial Intelligence, 171(16-17):1011–1038, 2007.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verifi-
cation of multi-agent systems. In Proceedings o 21st International Conference on
Computer Aided Verification, pages 682–688, 2009.

D. Magazzeni. Explicit Model Checking Techniques Applied to Control and Planning
Problems. PhD thesis, Dipartimento di Informatica, Università di L’Aquila, 2009.

F. Martin. PAG : an efficient program analyzer generator. International Journal on
Software Tools for Technology Transfer, 2(1):46–67, 1998.

196

BIBLIOGRAPHY

J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. pages 26–45, 1987.

K. McMillan. The SMV system. Technical Report CMU-CS-92-131, Carnegie-Mellon
University, 1992.

J. Meseguer. Rewriting as a unified model of concurrency. In CONCUR ’90: theories
of concurrency–unification and extension, Amsterdam, the Netherlands, volume 458
of Lecture Notes in Computer Science, pages 384–400. Springer-Verlag, 1990.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96:73–155, 1992.

J. J. C. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer Science.
Cambridge University Press, New York, NY, USA, 1995.

W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, and M. Szreter. VerICS 2004:
A model checker for real time and multi-agent systems. In Proceedings of the In-
ternational Workshop on Concurrency, Specification and Programming (CS&P’04),
volume 170 of Informatik-Berichte, pages 88–99, Humboldt University, 2004.

R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21:993–999, December 1978.

M. Negnevitsky. Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, 2005.

H. N. Nga. Logics for resource-bounded multi-agent systems. PhD thesis, University
of Nottingham, 2010.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis. Springer-
Verlag Berlin Heidelberg, Printed in Germany, 2005.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
Proceedings of the 11th International Conference on Automated Deduction, pages
748–752, London, UK, 1992. Springer-Verlag.

F. Paganelli and D. Giuli. An ontology-based context model for home health mon-
itoring and alerting in chronic patient care networks. In Proceedings of the 21st
International Conference on Advanced Information Networking and Applications
Workshops - Volume 02, pages 838–845, Washington, DC, USA, 2007. IEEE Com-
puter Society.

J. Pan. Software testing (18-849b dependable embedded systems). Technical report,
1999.

W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae, 55(2):167–185, 2002.

G. Platt, J. Wall, P. Valencia, and J. K. Ward. The tiny agent - wireless sensor networks
controlling energy resources. Journal of Networks, 3(4):42–50, 2008.

197

BIBLIOGRAPHY

A. Pnueli. The temporal semantics of concurrent programs. In Semantics of Concurrent
Computation: Proceedings of the International Symposium, volume 70 of Lecture
Notes in Computer Science, pages 1–20. Springer-Verlag, 1979.

B. R. Preiss. Data structures and algorithms with object-oriented design patterns in
C++. John Wiley & Sons, Inc., 1999.

F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model
checking via ordered binary decision diagrams. Journal of Applied Logic, 5(2):235–
251, 2007.

R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley. Efficient BDD algo-
rithms for FSM synthesis and verification. In IEEE/ACM Proceedings International
Workshop on Logic Synthesis, Lake Tahoe (NV), 1995.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proceedings of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World : Agents Breaking Away, volume 1038 of Lecture Notes in
Computer Science, pages 42–55, Secaucus, NJ, USA, 1996.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
James Allen, Richard Fikes, and Erik Sandewall, editors, Proceedings of the 2nd In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pages 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1991.

A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situ-
ated reasoning systems. In Proceedings of the 13th International Joint Conference
on Artifical intelligence, pages 318–324, San Francisco, CA, USA, 1993. Morgan
Kaufmann Publishers Inc.

W. Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc, New York, NY,
USA, 1985.

J. Rushby. Theorem Proving for Verification. In Modelling and Verification of Paral-
lel Processes: MOVEP 2000, volume 2067 of Lecture Notes in Computer Science,
pages 39–57. Springer Verlag, 2001.

R. B. Scherl and H. J. Levesque. The frame problem and knowledge-producing actions.
In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages
689–695. AAAI Press/The MIT Press, 1993.

Ph. Schnoebelen. The complexity of temporal logic model checking. In Advances in
Modal Logic, pages 393–436, 2002.

S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying communicative multi-agent
systems with ConGolog. In Working Notes of the AAAI Fall 1997 Symposium on
Communicative Action in Humans and Machines, pages 72–82, Cambridge, MA,
Novemeber 1997. AAAI Press.

S. Shapiro, Y. Lespérance, and H. J. Levesque. The cognitive agents specification lan-
guage and verification environment for multiagent systems. In Proceedings of the

198

BIBLIOGRAPHY

first International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems, pages 19–26, New York, NY, USA, 2002. ACM.

S. Sharma, G. Gopalakrishnan, E. Mercer, and J. Holt. MCC: A runtime verification
tool for MCAPI user applications. In Proceedings of the 9th International Confer-
ence on Formal Methods in Computer-Aided Design, pages 41–44, 2009.

H. Shin, Y. Endoh, and Y. Kataoka. ARVE: Aspect-oriented runtime verification en-
vironment. In Runtime Verification, 7th International Workshop, RV 2007, volume
4839 of Lecture Notes in Computer Science, pages 87–96. Springer-Verlag, 2007.

Y. Shoham. Agent oriented programming. Journal of Artificial Intelligence, 60(1):
51–92, 1993.

A. P Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.
Journal of the ACM, 32(3):733–749, 1985.

A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for discrete function
manipulation. In Proceedings of the IEEE International Conference on Computer-
Aided Design (ICCAD’90), pages 92–95, 1990.

Z. Sun and G. R. Finnie. Intelligent techniques in E-Commerce. Springer-Verlag Berlin
Heidelberg, Printed in Germany, 2004.

PolySpace Technologies. PolySpace Client/Server for C/C++/Ada.
http://www.mathworks.com/products/polyspace/, 2008.

K. Terfloth and J. Schiller. Ruling Networks with RDL: A domain-specific language
to task wireless sensor networks. In Proceedings of the International Symposium
on Rule Representation, Interchange and Reasoning on the Web, volume 5321 of
Lecture Notes in Computer Science, pages 127–134. Springer-Verlag, 2008.

R. Tynan, D. Marsh, D. O’Kane, and G. M. P. O’Hare. Intelligent agents for wire-
less sensor networks. In Proceedings of the Fourth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008). IFAAMAS, 2005.

S. Tzafestas, S. Ata-Doss, and G. Papakonstantinou. Knowledge-Base System Diag-
nosis, Supervision and Control. New York, London, Plenum Press, 1989.

W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In Pro-
ceedings of the 9th International SPIN Workshop, pages 95–111, 2002.

R. van der Meyden and N. V. Shilov. Model checking knowledge and time in systems
with perfect recall (extended abstract). In Proceedings of the 19th Conference on
Foundations of Software Technology and Theoretical Computer Science, pages 432–
445, London, UK, 1999. Springer-Verlag.

R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. In Proceedings of the 17th IEEE workshop on Computer Security
Foundations, pages 280–291, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

199

BIBLIOGRAPHY

M. Birna van Riemsdijk, F. S. de Boer, M. Dastani, and John-Jules Ch. Meyer. Proto-
typing 3APL in the Maude term rewriting language. In Proceedings of the Seventh
International Workshop on Computational Logic in Multi-Agent Systems (CLIMA
VII, Hakodate, Japan, May 2006), volume 4371 of Lecture Notes in Computer Sci-
ence, pages 95–114. Springer-Verlag, 2007.

M. Y. Vardi. Branching vs. linear time: Final showdown. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 2031 of Lecture Notes in
Computer Science, pages 1–22. Springer-Verlag, 2001.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering, 10:203–232, 2003.

W. Wang, Z. Hidvegi, A. B. Bailey, and A. D. Whinston. Model checking - a rigorous
and efficient tool for e-commerce internal control and assurance. Gozuita School
Business, Emory University, Atlanta, Georgia, USA, 2001.

M. Wooldridge. Reasoning about Rational Agents. The MIT Press:Cambridge, MA,
2000.

M. Wooldridge. An Introduction to Multi-Agent Systems. John Wiley & Sons Inc,
2009.

M. Wooldridge, M. Fisher, M. P. Huget, and S. Parsons. Model checking multi-agent
systems with MABLE. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems, pages 952–959. ACM, 2002.

A. C.-C. Yao. Some complexity questions related to distributive computing (prelim-
inary report). In Conference Record of the Eleventh Annual ACM Symposium on
Theory of Computing, pages 209–213. ACM, 1979.

200

APPENDIX

Appendix

A Proof of theorem 5.5.1

Proof. Let us recall that a tree with n leaf nodes, at level h the number of nodes is

2h = n, at level h− 1 the number of nodes is 2h−1 = 2h/2 = n/2 and so on. We also

recall the expressionN =
∑h

l=0 Nl (cf. Eq. 5.2), which gives the number of reachable

states of the system. Now we can expand Nj , for 0 ≤ j ≤ h as follows:

N0 = 1C1 · 2C2 · . . . ·
n
2C n

2
· nCn

= 1

N1 = 2C1 · (
2∑
i=0

2Ci) · (
4∑
i=0

4Ci) · . . . · (
n
4∑
i=0

n
4Ci) · nCn

+ 2C2 · 4C4 · . . . ·
n
2C n

2
· nCn

= 2C1 · 22 · 24 · . . . · 2n4
+ 1

N2 = 4C1 · (
6∑
i=0

6Ci) · (
12∑
i=0

12Ci) · . . . · (
3n
8∑
i=0

3n
8 Ci) · nCn

+ 4C2 · (
4∑
i=0

4Ci) · (
8∑
i=0

8Ci) · . . . · (
2n
8∑
i=0

2n
8 Ci) · nCn

+ 4C3 · (
2∑
i=0

2Ci) · (
4∑
i=0

4Ci) · . . . · (
n
8∑
i=0

n
8Ci) · nCn

+ 4C4 · 8C8 · . . . ·
n
2C n

2
· nCn

= 4C1 · 26 · 212 · . . . · 2 3n
8

+ 4C2 · 24 · 28 · . . . · 2 2n
8

+ 4C3 · 22 · 24 · . . . · 2n8
+ 1

In a similar fashion, by expanding Nj for 3 ≤ j ≤ h we obtain the following

expressions:

201

APPENDIX

N3 = 8C1 · 214 · 228 · . . . · 2 7n
16

+ 8C2 · 212 · 224 · . . . · 2 6n
16

+ 8C3 · 210 · 220 · . . . · 2 5n
16

+ 8C4 · 28 · 216 · . . . · 2 4n
16

+ 8C5 · 26 · 212 · . . . · 2 3n
16

+ 8C6 · 24 · 28 · . . . · 2 2n
16

+ 8C7 · 22 · 24 · . . . · 2 n
16

+ 1

N4 = 16C1 · 230 · 260 · . . . · 2 15n
32

+ 16C2 · 228 · 256 · . . . · 2 14n
32

+
...
+ 16C15 · 22 · 24 · . . . · 2 n

32

+ 1

...

Nh−3 =
n
8C1 · 2

n
4
−2 · 2n2−4 +

n
8C2 · 2

n
4
−4 · 2n2−8 + . . .+ 1

Nh−2 =
n
4C1 · 2

n
2
−2 +

n
4C2 · 2

n
2
−4 + . . .+ 1

Nh−1 =
n
2C1 +

n
2C2 + . . .+ 1

Nh = 1

Therefore, we can define a function f : N+ → N on N+ = {2m : m ≥ 1} by (sum

of N0, N1, . . . , Nh):

f(n) = [1]

+ [(2C1 · 22 · 24 · . . . · 2n
4) + 1]

+ [(4C1 · 26 · 212 · . . . · 2 3n
8) + (4C2 · 24 · 28 · . . . · 2 2n

8) + (4C3 · 22 · 24 · . . . · 2n
8) + 1]

+

...

+ [
n
2C1 +

n
2C2 + . . .+ 1]

+ [1] (A1)

Now, let us consider each Nj (h− 1 ≥ j ≥ 1) for a further simplification:

202

APPENDIX

Nh−1 =
n
2C1 +

n
2C2 + . . .+ 1

=

n
2∑
i=0

n
2Ci −

n
2C0

= 2
n
2 − n

2

≤ 2
n
2 ,∀n ∈ N+

Nh−2 =
n
4C1 · 2

n
2
−2 +

n
4C2 · 2

n
2
−4 + . . .+

n
4C n

8
· 2n2−n4 + . . .+ 1

=
n

4
· 2n2−2 +

n
4 (

n
4 − 1)

2!
· 2n2−4 + . . .+

n
4 (

n
4 − 1) . . . (n4 − (n8 − 1))

(n8)!
· 2n2−n4 + . . .+ 1

≤ n · 2n2 +
n2

2!
· 2n2 + . . .+

n
n
8

(n8)!
· 2n2 + . . .+ 1

≤ (
n

4
− 1) · [22 · 24 · 26 · . . . · 2n2] + 1, follows from the following proof

Let us consider the most significant term
n
n
8

(n8)!
· 2n2 of the series

n · 2n2 +
n2

2!
· 2n2 + . . .+

n
n
8

(n8)!
· 2n2 + . . .+ 1 and show that

n
n
8

(n8)!
· 2n2 ≤ 22 · 24 · 26 · . . . · 2n2−2 · 2n2

In order to show that, it is sufficient to show that
n
n
8

(n8)!
≤ 22 · 24 · 26 · . . . · 2n2−2

Let us consider the series:
22 · 24 · 26 · . . . · 2n2−2

= 22+4+6+...+(n
2
−2)

= 2
(n2 −2)

2
[2·2+(n

2
−2−1)·2], substituting sum of the A.P. series 2 + 4 + 6 + . . .+ (

n

2
− 2)

= 2
(n−4)(n−2)

4

Now, it is easy to see that
n
n
8

(n8)!
≤ 2

(n−4)(n−2)
4 ,∀n(≥ 8) ∈ N+. Since there are

(
n

4
− 1) terms, and it can easily be seen that each of them are ≤ 22 · 24 · 26 · . . . · 2n2 ,

hence it is multiplied by (
n

4
− 1).

Using a similar calculation, it can be shown that:

Nh−3 ≤ (
n

8
− 1) · [22 · 24 · 26 · . . . · 2n2] + 1

...

N2 ≤ (4− 1) · [22 · 24 · 26 · . . . · 2n2] + 1

N1 ≤ (2− 1) · [22 · 24 · 26 · . . . · 2n2] + 1

Thus from A1 we have

203

APPENDIX

f(n) ≤ (1 + 3 + 7 + 15 + . . .+ (
n

2
− 1)) · [22 · 24 · 26 · . . . · 2n2] + log2 n+ 1 (A2)

In A2, the additional log2 n+ 1 comes from 1 + 1 + . . .+ 1︸ ︷︷ ︸
h+1 times

= h+ 1 = log2 n+ 1.

Now, the sum of the series 1 + 3 + 7 + 15 + . . . + (n
2
− 1) can be obtained from the

following calculation:

1 + 3 + 7 + 15 + . . .+ (
n

2
− 1)

= (20 − 1) + (21 − 1) + (22 − 1) + (23 − 1) + . . .+ (2h−1 − 1), n = 2h−1

= (20 + 21 + 22 + 23 + . . .+ 2h−1)− h

=
2h−1+1 − 1

2− 1
− h, substituting the sum of the geometric series 20 + 21 + 22 + 23 + . . .+ 2h−1

= (2h − 1)− h
= (n− 1)− log2 n, substituting 2h = n and h = log2 n

= n− log2 n− 1

Similarly, the product series 22 · 24 · 26 · . . . · 2n
2 can be simplified as follows:

22 · 24 · 26 · . . . · 2n2
= 22+4+6+...+2

n
2

= 2
n
2
2

[2·2+(n
2
−1)·2]

= 2
n(n+2)

4

Therefore, from A2 we get

f(n) ≤ (1 + 3 + 7 + 15 + . . .+ (
n

2
− 1)) · [22 · 24 · 26 · . . . · 2n2] + log2 n+ 1

= (n− log2 n− 1) · 2
n(n+2)

4 + log2 n+ 1

≤ n · 2
n(n+2)

4 , ∀ n ∈ N+

Therefore, there exists a function g : N+ → N on N+ defined by g(n) = n ·2n(n+2)
4 ,

and an n0 ∈ N+ such that 0 ≤ f(n) ≤ g(n) for all n ≥ n0. Hence, the function f(n)

has order O(n · 2n(n+2)
4).

B Proof of theorem 5.5.3

Proof. Let {Xh
1 , X

h
2 , . . . , X

h
nh
} be the set of leaf nodes of the tree for nh ≥ 2. Then

the branching factor of the initial state of the state space is n
2
. This is because the agent

204

APPENDIX

can fire n
2

rules non-deterministically. At the next level, the branching factor of a state

of the state space is (n
2
−1). At the next level it is less than or equal to (n

2
−1) and so on.

The search space expands until it reaches the root node (goal state) and the branching

factor reaches its minimal value to one. Hence the worst case branching factor of the

state space is of order O(n
2
).

C Proof of theorem 5.5.4

Proof. Without loss of generality, we assume that the tree is a perfect binary tree.

Since the tree has n leaf nodes, it has total 2n − 1 nodes. We consider the following

cases:

distribution of leaves (n
2
, n

2
): Let us assume that the leaf facts are distributed be-

tween the agents as Xh
1 , X

h
2 , . . . , X

h
n
2

to agent 1 and Xh
n
2

+1, X
h
n
2

+2, . . . , X
h
nh

to agent 2.

Then at the initial state, each agent can perform n
4

rule firing actions, n
2

copy actions (in

order to copy n
2

facts from other agent’s memory), and they can be idle. Thus, the total

number of non-deterministic actions that can be performed in this state by each agent

is (n
4

+ n
2

+1). Therefore, the branching factor at this state is (n
4

+ n
2

+1)× (n
4

+ n
2

+1)

which is of order O(n2). O(n2) is the maximal branching factor of a given state of the

state space. Because the maximal number of actions that an agent can perform in a

given state is always less than n.

distribution of leaves (even, odd): Let us assume that the leaf facts are distributed

between the agents as Xh
2 , X

h
4 , . . . , X

h
nh

to agent 1 and Xh
1 , X

h
3 , . . . , X

h
nh−1 to agent

2. Then at the initial state, each agent can perform n
2

copy actions (in order to copy

n
2

facts from other agent’s memory), and they can be idle. Therefore, the branching

factor at this state is (n
2

+ 1)× (n
2

+ 1) which is of order O(n2). O(n2) is the maximal

branching factor of a given state of the state space. Because the maximal number of

actions that an agent can perform in a given state is always less than n.

distribution of leaves (n − k, k): Let us assume that the leaf facts are distributed

between the agents as (n−k) leaf facts to agent 1 and k leaf fact(s) to agent 2 for some

205

APPENDIX

k ≥ 1. If the leaf facts distribution (n−k, k) between the agents is equivalent to (n
2
, n

2
)

or (even, odd) then as in the above cases, the worst case branching factor of the state

space is of order O(n2). Now, if k = 1, then at the initial state agent 1 can perform

(n
2
−1) rule firing actions, one copy action (in order to copy one fact from other agent’s

memory), and an idle action. Similarly, agent 2 can perform (n − 1) copy actions (in

order to copy (n− 1) facts from other agent’s memory), and an idle action. Therefore,

the branching factor at this state is (n
2
− 1 + 1 + 1) × (n − 1 + 1) i.e., (n

2
+ 1) × (n)

which is of order O(n2). O(n2) is the maximal branching factor of a given state of the

state space. Because the maximal number of actions that an agent can perform in a

given state is always less than n.

Therefore, in a multi-agent rule-based system consisting of two agents which share

the same set of rules of an ‘n leaf example’, the worst case branching factor of the

search space is of order O(n2).

D Mocha positional encoding

– Positional Mocha encoding for a single agent two variable tree resolution.

– The size (maximum number of literals) in a clause

#define NUM_LITERALS 2

– The maximum number of clause cells that can be used in a proof

#define MAX_CELLS 3

– Type representing the postive and negative literals in a clause cell

type literals : bitvector $NUM_LITERALS

–Agent clauses

module Agent

– Whether we have found a proof

interface proof : bool

– The positive and negative literals in each clause cell

interface a1cell0_pos : literals

206

APPENDIX

interface a1cell0_neg : literals

interface a1cell1_pos : literals

interface a1cell1_neg : literals

interface a1cell2_pos : literals

interface a1cell2_neg : literals

– Whether each clause cell has been allocated. It is more convenient to

– represent this as a bitvector rather than an "array cells of bool",

– though we need to ensure that the size of the allocated bitvector and

– the cells type agree.

private a1_allocated : array (0 .. $MAX_CELLS - 1) of bool

– private allocated : bitvector $MAX_CELLS

– The postive and negative literals of the new cluase at this cycle.

– This may either be the resolvent of two literals currently in memory

– (if any resolve) or a clause read from the KB

private clause_pos : literals

private clause_neg : literals

atom Clause

controls clause_pos, clause_neg,

reads a1cell0_pos, a1cell0_neg, a1cell1_pos, a1cell1_neg, a1cell2_pos, a1cell2_neg

init

[] true -> clause_pos’ := 0; clause_neg’ := 0

update

– For each literal in each pair of cells, check to see if they

– resolve. Note that we don’t have to check whether cells are

– allocated as only allocated cells can have non-zero contents.

– Resolve on the first literal

[] (a1cell0_pos[0] & a1cell1_neg[0]) -> clause_pos’ := ((a1cell0_pos & 2) | a1cell1_pos); clause_neg’ := (a1cell0_neg

| (a1cell1_neg & 2))

207

APPENDIX

[] (a1cell0_neg[0] & a1cell1_pos[0]) -> clause_pos’ := (a1cell0_pos | (a1cell1_pos & 2)); clause_neg’ := ((a1cell0_neg

& 2) | a1cell1_neg)

[] (a1cell0_pos[0] & a1cell2_neg[0]) -> clause_pos’ := ((a1cell0_pos & 2) | a1cell2_pos); clause_neg’ := (a1cell0_neg

| (a1cell2_neg & 2))

[] (a1cell0_neg[0] & a1cell2_pos[0]) -> clause_pos’ := (a1cell0_pos | (a1cell2_pos & 2)); clause_neg’ := ((a1cell0_neg

& 2) | a1cell2_neg)

[] (a1cell1_pos[0] & a1cell2_neg[0]) -> clause_pos’ := ((a1cell1_pos & 2) | a1cell2_pos); clause_neg’ := (a1cell1_neg

| (a1cell2_neg & 2))

[] (a1cell1_neg[0] & a1cell2_pos[0]) -> clause_pos’ := (a1cell1_pos | (a1cell2_pos & 2)); clause_neg’ := ((a1cell1_neg

& 2) | a1cell2_neg)

– Resolve on the second literal

[] (a1cell0_pos[1] & a1cell1_neg[1]) -> clause_pos’ := ((a1cell0_pos & 1) | a1cell1_pos); clause_neg’ := (a1cell0_neg

| (a1cell1_neg & 1))

[] (a1cell0_neg[1] & a1cell1_pos[1]) -> clause_pos’ := (a1cell0_pos | (a1cell1_pos & 1)); clause_neg’ := ((a1cell0_neg

& 1) | a1cell1_neg)

[] (a1cell0_pos[1] & a1cell2_neg[1]) -> clause_pos’ := ((a1cell0_pos & 1) | a1cell2_pos); clause_neg’ := (a1cell0_neg

| (a1cell2_neg & 1))

[] (a1cell0_neg[1] & a1cell2_pos[1]) -> clause_pos’ := (a1cell0_pos | (a1cell2_pos & 1)); clause_neg’ := ((a1cell0_neg

& 1) | a1cell2_neg)

[] (a1cell1_pos[1] & a1cell2_neg[1]) -> clause_pos’ := ((a1cell1_pos & 1) | a1cell2_pos); clause_neg’ := (a1cell1_neg

| (a1cell2_neg & 1))

[] (a1cell1_neg[1] & a1cell2_pos[1]) -> clause_pos’ := (a1cell1_pos | (a1cell2_pos & 1)); clause_neg’ := ((a1cell1_neg

& 1) | a1cell2_neg)

– Alternatively, we can read the new value from the KB

– We have two variables, A1 and A2 with indices 0, and 1.

– A1 v A2

[] true -> clause_pos’[0] := true; clause_pos’[1] := true; clause_neg’[0] := false; clause_neg’[1] := false

– A1 v A2

[] true -> clause_pos’[0] := false; clause_pos’[1] := true; clause_neg’[0] := true; clause_neg’[1] := false

208

APPENDIX

– A1 v A2

[] true -> clause_pos’[0] := true; clause_pos’[1] := false; clause_neg’[0] := false; clause_neg’[1] := true

– A1 v A2

[] true -> clause_pos’[0] := false; clause_pos’[1] := false; clause_neg’[0] := true; clause_neg’[1] := true

endatom

atom Overwrite

controls a1cell0_pos, a1cell0_neg, a1cell1_pos, a1cell1_neg, a1cell2_pos, a1cell2_neg, a1_allocated

reads a1cell0_pos, a1cell0_neg, a1cell1_pos, a1cell1_neg, a1cell2_pos, a1cell2_neg, a1_allocated

awaits clause_pos, clause_neg

init

[] true ->

a1cell0_pos’ := 0; a1cell0_neg’ := 0;

a1cell1_pos’ := 0; a1cell1_neg’ := 0;

a1cell2_pos’ := 0; a1cell2_neg’ := 0;

forall j a1_allocated’[j] := false

update

[] true -> a1cell0_pos’ := clause_pos’; a1cell0_neg’ := clause_neg’; a1_allocated’[0] := true

[] true -> a1cell1_pos’ := clause_pos’; a1cell1_neg’ := clause_neg’; a1_allocated’[1] := true

[] true -> a1cell2_pos’ := clause_pos’; a1cell2_neg’ := clause_neg’; a1_allocated’[2] := true

endatom

atom Proof

controls proof

reads proof

awaits a1cell0_pos, a1cell0_neg, a1cell1_pos, a1cell1_neg, a1cell2_pos, a1cell2_neg, a1_allocated

init

[] true -> proof’ := false

update

– We have found a proof if we have an allocated cell containing

– no positive or negative literals

209

APPENDIX

[] a1_allocated’[0] & ((a1cell0_pos’ | a1cell0_neg’) = 0) -> proof’ := true

[] a1_allocated’[1] & ((a1cell1_pos’ | a1cell1_neg’) = 0) -> proof’ := true

[] a1_allocated’[2] & ((a1cell2_pos’ | a1cell2_neg’) = 0) -> proof’ := true

endatom

endmodule

E Mocha non-positional encoding

– Non-positional Mocha encoding for a single agent two variable tree resolution.

– The maximum number of clause cells that can be used in a proof

#define MAX_CELLS 3

–Agent1 clauses

module Agent1

– Whether we have found a proof

interface phi : bool

– The possible clauses

interface AvB, nAvB, AvnB, nAvnB, A, nA, B, nB : bool

– The number of clauses in memory

interface count : (0 .. $MAX_CELLS)

– Events

private add_AvB, add_nAvB, add_AvnB, add_nAvnB, add_A, add_nA, add_B, add_nB, add_phi, new_clause :

event

private overwrite_AvB, overwrite_nAvB, overwrite_AvnB, overwrite_nAvnB, overwrite_A, overwrite_nA, overwrite_B,

overwrite_nB : event

atom Clause

controls add_AvB, add_nAvB, add_AvnB, add_nAvnB, add_A, add_nA, add_B, add_nB, add_phi, new_clause

reads AvB, nAvB, AvnB, nAvnB, A, nA, B, nB, phi, add_AvB, add_nAvB, add_AvnB, add_nAvnB, add_A, add_nA,

add_B, add_nB, add_phi, new_clause

update

210

APPENDIX

– Clauses can only be read if they are not already in memory.

[] ∼AvB -> add_AvB!; new_clause!

[] ∼nAvB -> add_nAvB!; new_clause!

[] ∼AvnB -> add_AvnB!; new_clause!

[] ∼nAvnB -> add_nAvnB!; new_clause!

– Clauses can only resolve if their resolvent is not in memory. Note that we do not allow resolution to produce

tautologies.

– Copying from other agents can be done with additional guards in the same way.

[] ∼B & AvB & nAvB -> add_B!; new_clause!

[] ∼B & AvB & nA -> add_B!; new_clause!

[] ∼B & nAvB & A -> add_B!; new_clause!

[] ∼nB & AvnB & nAvnB -> add_nB!; new_clause!

[] ∼nB & AvnB & nA -> add_nB!; new_clause!

[] ∼nB & nAvnB & A -> add_nB!; new_clause!

[] ∼A & AvB & AvnB -> add_A!; new_clause!

[] ∼A & AvB & nB -> add_A!; new_clause!

[] ∼A & AvnB & B -> add_A!; new_clause!

[] ∼nA & nAvB & nAvnB -> add_nA!; new_clause!

[] ∼nA & nAvB & nB -> add_nA!; new_clause!

[] ∼nA & nAvnB & B -> add_nA!; new_clause!

[] ∼phi & A & nA -> add_phi!; new_clause!

[] ∼phi & B & nB -> add_phi!; new_clause!

endatom

atom Overwrite

controls count, overwrite_AvB, overwrite_nAvB, overwrite_AvnB, overwrite_nAvnB, overwrite_A, overwrite_nA,

overwrite_B, overwrite_nB

reads count, new_clause,AvB, nAvB, AvnB, nAvnB, A, nA, B, nB, overwrite_AvB, overwrite_nAvB, overwrite_AvnB,

overwrite_nAvnB,overwrite_A, overwrite_nA, overwrite_B, overwrite_nB

awaits new_clause

211

APPENDIX

init

[] true -> count’ := 0

update

[] count < $MAX_CELLS & new_clause? -> count’ := count + 1

[] count = $MAX_CELLS & new_clause? & AvB -> overwrite_AvB!

[] count = $MAX_CELLS & new_clause? & nAvB -> overwrite_nAvB!

[] count = $MAX_CELLS & new_clause? & AvnB -> overwrite_AvnB!

[] count = $MAX_CELLS & new_clause? & nAvnB -> overwrite_nAvnB!

[] count = $MAX_CELLS & new_clause? & A -> overwrite_A!

[] count = $MAX_CELLS & new_clause? & nA -> overwrite_nA!

[] count = $MAX_CELLS & new_clause? & B -> overwrite_B!

[] count = $MAX_CELLS & new_clause? & nB -> overwrite_nB!

endatom

– Each clause is controlled by its corresponding atom, which waits for the appropriate add and overwrite events.

– Note that a clause can only be added or overwritten at a cycle (not both), and that overwriting does not reduce

count,

– since we only overwrite when memory is full.

atom Clause_AvB

controls AvB

reads AvB, add_AvB, overwrite_AvB

awaits add_AvB, overwrite_AvB

init

[] true -> AvB’ := false

update

[] ∼AvB & add_AvB? -> AvB’ := true

[] AvB & overwrite_AvB? -> AvB’ := false

endatom

atom Clause_nAvB

controls nAvB

212

APPENDIX

reads nAvB, add_nAvB, overwrite_nAvB

awaits add_nAvB, overwrite_nAvB

init

[] true -> nAvB’ := false

update

[] ∼nAvB & add_nAvB? -> nAvB’ := true

[] nAvB & overwrite_nAvB? -> nAvB’ := false

endatom

atom Clause_AvnB

controls AvnB

reads AvnB, add_AvnB, overwrite_AvnB

awaits add_AvnB, overwrite_AvnB

init

[] true -> AvnB’ := false

update

[] ∼AvnB & add_AvnB? -> AvnB’ := true

[] AvnB & overwrite_AvnB? -> AvnB’ := false

endatom

atom Clause_nAvnB

controls nAvnB

reads nAvnB, add_nAvnB, overwrite_nAvnB

awaits add_nAvnB, overwrite_nAvnB

init

[] true -> nAvnB’ := false

update

[] ∼nAvnB & add_nAvnB? -> nAvnB’ := true

[] nAvnB & overwrite_nAvnB? -> nAvnB’ := false

endatom

atom Clause_A

213

APPENDIX

controls A

reads A, add_A, overwrite_A

awaits add_A, overwrite_A

init

[] true -> A’ := false

update

[] ∼A & add_A? -> A’ := true

[] A & overwrite_A? -> A’ := false

endatom

atom Clause_nA

controls nA

reads nA, add_nA, overwrite_nA

awaits add_nA, overwrite_nA

init

[] true -> nA’ := false

update

[] ∼nA & add_nA? -> nA’ := true

[] nA & overwrite_nA? -> nA’ := false

endatom

atom Clause_B

controls B

reads B, add_B, overwrite_B

awaits add_B, overwrite_B

init

[] true -> B’ := false

update

[] ∼B & add_B? -> B’ := true

[] B & overwrite_B? -> B’ := false

endatom

214

APPENDIX

atom Clause_nB

controls nB

reads nB, add_nB, overwrite_nB

awaits add_nB, overwrite_nB

init

[] true -> nB’ := false

update

[] ∼nB & add_nB? -> nB’ := true

[] nB & overwrite_nB? -> nB’ := false

endatom

atom Clause_phi

controls phi

reads phi, add_phi

awaits add_phi

init

[] true -> phi’ := false

update

[] ∼phi & add_phi? -> phi’ := true

endatom

endmodule

F NuSMV positional encoding

– Positional NuSMV encoding for a single agent two variable tree resolution.

MODULE read(cell,x,y,clause)

ASSIGN

next(cell) := case

cell!=clause & x!=clause & y!=clause : clause;

1 : cell;

215

APPENDIX

esac;

MODULE resolve(proof, cell, x, y, z, i, j)

DEFINE

i_bit := 0b4_0001 « i;

j_bit := 0b4_0001 « j;

i_mask := !i_bit;

j_mask := !j_bit;

v1 := (x & i_mask) | (y & j_mask);

v2 := (x & j_mask) | (y &i_mask);

ASSIGN

next(cell) :=

case

– If we can resolve in either order, it doesn’t matter which we do.

cell!=v1 & x!=v1 & y!=v1 & z!=v1 & !bool((v1[0:0] & v1[2:2]) | (v1[1:1] & v1[3:3])) & (((x & i_bit) = i_bit) & ((y &

j_bit) = j_bit)) : v1;

cell!=v2 & x!=v2 & y!=v2 & z!=v2 & !bool((v2[0:0] & v2[2:2]) | (v2[1:1] & v2[3:3])) & (((x & j_bit) = j_bit) & ((y &

i_bit) = i_bit)) : v2;

1 : cell;

esac;

– We have a proof if the cell was allocated (i.e., wasn’t empty) and now is

next(proof) := cell != 0b4_0000 & next(cell) = 0b4_0000;

MODULE clause_cell(proof, x, y)

VAR

cell : word[4];

– Read a clause into this clause cell

read0 : process read(cell,x,y, 0b4_1100);

read1 : process read(cell,x,y, 0b4_1001);

read2 : process read(cell,x,y, 0b4_0110);

read3 : process read(cell,x,y, 0b4_0011);

216

APPENDIX

– Resolve on A1 with the x clause

resolve0 : process resolve(proof, cell, cell, x, y, A1, nA1);

– Resolve on A2 with the x clause

resolve1 : process resolve(proof, cell, cell, x, y, A2, nA2);

– Resolve on A1 with the y clause

resolve2 : process resolve(proof, cell, cell, y, x, A1, nA1);

– Resolve on A2 with the y clause

resolve3 : process resolve(proof, cell, cell, y, x, A2, nA2);

– Resolve on A1 in the x and y clauses

resolve4 : process resolve(proof, cell, x, y, cell, A1, nA1);

– Resolve on A2 in the x and y clauses

resolve5 : process resolve(proof, cell, x, y, cell, A2, nA2);

DEFINE

– Bit 0 codes neg A1 and bit 1 codes neg A2, bit 2 codes A1 and bit 3 A2

A2 := 3;

A1 := 2;

nA2 := 1;

nA1 := 0;

ASSIGN

init(cell) := 0b4_0000;

MODULE main

VAR

proof : boolean;

cell0 : process clause_cell(proof, cell1.cell, cell2.cell);

cell1 : process clause_cell(proof, cell0.cell, cell2.cell);

cell2 : process clause_cell(proof, cell0.cell, cell1.cell);

ASSIGN

init(proof) := 0;

FAIRNESS

217

APPENDIX

running

— property to be verified

SPEC AG ! proof

G Rule ordering strategy in an “16 leaf example”

For ease of illustration, we consider “16 leaf example”. Table G1 and Table G2 show

how we can direct the agents to focus on a particular region of the tree by assigning

rule priority. In Table G1, we consider a multi-agent system consisting of two concrete

agents. Both agents use the rule ordering reasoning strategy. Agent 1 assigns lower

priority to rules in the right-hand shaded triangular region depicted in Figure G1. In

contrast, agent 2 assigns lower priority to rules in the left-hand shaded triangular region

of Figure G1.

A1 A2 . . . A15 A16

C1 C4

E1

Figure G1: Focus on a particular region of the tree

In Table G2, we consider a multi-agent system consisting of three concrete agents.

All the agents use the rule ordering reasoning strategy. In this case, the set of rules

in the unshaded region have higher priority for agent 1, the rules in left hand shaded

218

APPENDIX

region have higher priority for agent 2, and the rules in the right hand shaded region

have higher priority for agent 3.

Agent 1 Agent 2

Rules Rules
〈 15 : A1(x) ∧A2(x)→ B1(x) 〉 〈 12 : A1(x) ∧A2(x)→ B1(x) 〉
〈 14 : A3(x) ∧A4(x)→ B2(x) 〉 〈 11 : A3(x) ∧A4(x)→ B2(x) 〉
〈 13 : A5(x) ∧A6(x)→ B3(x) 〉 〈 10 : A5(x) ∧A6(x)→ B3(x) 〉
〈 12 : A7(x) ∧A8(x)→ B4(x) 〉 〈 9 : A7(x) ∧A8(x)→ B4(x) 〉
〈 11 : A9(x) ∧A10(x)→ B5(x) 〉 〈 8 : A9(x) ∧A10(x)→ B5(x) 〉
〈 10 : A11(x) ∧A12(x)→ B6(x) 〉 〈 7 : A11(x) ∧A12(x)→ B6(x) 〉
〈 3 : A13(x) ∧A14(x)→ B7(x) 〉 〈 15 : A13(x) ∧A14(x)→ B7(x) 〉
〈 2 : A15(x) ∧A16(x)→ B8(x) 〉 〈 14 : A15(x) ∧A16(x)→ B8(x) 〉
〈 9 : B1(x) ∧B2(x)→ C1(x) 〉 〈 6 : B1(x) ∧B2(x)→ C1(x) 〉
〈 8 : B3(x) ∧B4(x)→ C2(x) 〉 〈 5 : B3(x) ∧B4(x)→ C2(x) 〉
〈 7 : B5(x) ∧B6(x)→ C3(x) 〉 〈 4 : B5(x) ∧B6(x)→ C3(x) 〉
〈 1 : B7(x) ∧B8(x)→ C4(x) 〉 〈 13 : B7(x) ∧B8(x)→ C4(x) 〉
〈 6 : C1(x) ∧ C2(x)→ D1(x) 〉 〈 3 : C1(x) ∧ C2(x)→ D1(x) 〉
〈 5 : C3(x) ∧ C4(x)→ D2(x) 〉 〈 2 : C3(x) ∧ C4(x)→ D2(x) 〉
〈 4 : D1(x) ∧D2(x)→ E1(x) 〉 〈 1 : D1(x) ∧D2(x)→ E1(x) 〉
〈 17 : A1(x)→ Ask(1, 2, C4(a)) 〉 〈 16 : Ask(1, 2, C4(a)) ∧ C4(a)

→ Tell(2, 1, C4(a)) 〉
〈 16 : Tell(2, 1, C4(a))→ C4(a) 〉
Initial WM facts Initial WM facts
{A1(a), A2(a), . . . , A16(a)} {A1(a), A2(a), . . . , A16(a)}

Table G1: Two agents “16 leaf example”

Agent 1 Agent 2 Agent 3

Rules Rules Rules
〈 6 : A1(x) ∧A2(x)→ B1(x) 〉 〈 15 : A1(x) ∧A2(x)→ B1(x) 〉 〈 12 : A1(x) ∧A2(x)→ B1(x) 〉
〈 5 : A3(x) ∧A4(x)→ B2(x) 〉 〈 14 : A3(x) ∧A4(x)→ B2(x) 〉 〈 11 : A3(x) ∧A4(x)→ B2(x) 〉
〈 15 : A5(x) ∧A6(x)→ B3(x) 〉 〈 12 : A5(x) ∧A6(x)→ B3(x) 〉 〈 10 : A5(x) ∧A6(x)→ B3(x) 〉
〈 14 : A7(x) ∧A8(x)→ B4(x) 〉 〈 11 : A7(x) ∧A8(x)→ B4(x) 〉 〈 9 : A7(x) ∧A8(x)→ B4(x) 〉
〈 13 : A9(x) ∧A10(x)→ B5(x) 〉 〈 10 : A9(x) ∧A10(x)→ B5(x) 〉 〈 8 : A9(x) ∧A10(x)→ B5(x) 〉
〈 12 : A11(x) ∧A12(x)→ B6(x) 〉 〈 9 : A11(x) ∧A12(x)→ B6(x) 〉 〈 7 : A11(x) ∧A12(x)→ B6(x) 〉
〈 4 : A13(x) ∧A14(x)→ B7(x) 〉 〈 8 : A13(x) ∧A14(x)→ B7(x) 〉 〈 15 : A13(x) ∧A14(x)→ B7(x) 〉
〈 3 : A15(x) ∧A16(x)→ B8(x) 〉 〈 7 : A15(x) ∧A16(x)→ B8(x) 〉 〈 14 : A15(x) ∧A16(x)→ B8(x) 〉
〈 2 : B1(x) ∧B2(x)→ C1(x) 〉 〈 13 : B1(x) ∧B2(x)→ C1(x) 〉 〈 6 : B1(x) ∧B2(x)→ C1(x) 〉
〈 11 : B3(x) ∧B4(x)→ C2(x) 〉 〈 6 : B3(x) ∧B4(x)→ C2(x) 〉 〈 5 : B3(x) ∧B4(x)→ C2(x) 〉
〈 10 : B5(x) ∧B6(x)→ C3(x) 〉 〈 5 : B5(x) ∧B6(x)→ C3(x) 〉 〈 4 : B5(x) ∧B6(x)→ C3(x) 〉
〈 1 : B7(x) ∧B8(x)→ C4(x) 〉 〈 4 : B7(x) ∧B8(x)→ C4(x) 〉 〈 13 : B7(x) ∧B8(x)→ C4(x) 〉
〈 8 : C1(x) ∧ C2(x)→ D1(x) 〉 〈 3 : C1(x) ∧ C2(x)→ D1(x) 〉 〈 3 : C1(x) ∧ C2(x)→ D1(x) 〉
〈 9 : C3(x) ∧ C4(x)→ D2(x) 〉 〈 2 : C3(x) ∧ C4(x)→ D2(x) 〉 〈 2 : C3(x) ∧ C4(x)→ D2(x) 〉
〈 7 : D1(x) ∧D2(x)→ E1(x) 〉 〈 1 : D1(x) ∧D2(x)→ E1(x) 〉 〈 1 : D1(x) ∧D2(x)→ E1(x) 〉
〈 19 : A1(x)→ Ask(1, 2, C1(a)) 〉 〈 16 : Ask(1, 2, C1(a)) ∧ C1(a) 〈 16 : Ask(1, 3, C4(a)) ∧ C4(a)

→ Tell(2, 1, C1(a)) 〉 → Tell(3, 1, C4(a)) 〉
〈 18 : A2(x)→ Ask(1, 3, C4(a)) 〉
〈 17 : Tell(2, 1, C1(a))→ C1(a) 〉
〈 16 : Tell(3, 1, C4(a))→ C4(a) 〉
Initial WM facts Initial WM facts Initial WM facts
{A1(a), A2(a), . . . , A16(a)} {A1(a), A2(a), . . . , A16(a)} {A1(a), A2(a), . . . , A16(a)}

Table G2: Three agents “16 leaf example”

219

	1 Introduction
	1.1 Motivation
	1.2 Approaches to formal verification
	1.3 Problem statement
	1.4 Methodology
	1.5 Thesis contribution
	1.6 Thesis structure

	2 Logical formalisms for MAS
	2.1 Modal logics
	2.2 Temporal logics
	2.2.1 Computation tree logic
	2.2.1.1 Expressing properties in CTL

	2.2.2 Linear temporal logic
	2.2.2.1 Expressing properties in LTL

	2.3 Logics for resource-bounded agents
	2.3.1 Step-logic
	2.3.2 Algorithmic knowledge
	2.3.3 Dynamic logic
	2.3.4 An explicit model of memory
	2.3.5 An explicit model of communication

	2.4 Analysis and expressiveness

	3 Formal verification approaches to MAS
	3.1 The proof theoretic approach
	3.1.1 Verification using theorem proving
	3.1.1.1 Modelling and verification framework using ConGolog
	3.1.1.2 Verifying knowledge properties of security protocols
	3.1.1.3 Discussion

	3.2 The model theoretic approach
	3.2.1 Explicit-state model checking
	3.2.2 Symbolic model checking
	3.2.2.1 Representation of Boolean functions
	3.2.2.2 Kripke model to BDDs and reachability analysis

	3.2.3 The model checking complexity of CTL
	3.2.4 Automata-based model checking
	3.2.4.1 Büchi automata and LTL model checking
	3.2.4.2 Complexity of model-checking LTL using automata

	3.2.5 Discussion
	3.2.5.1 Discussion of symbolic model checking
	3.2.5.2 Discussion of automata-based model-checking
	3.2.5.3 Symbolic vs. automata-based model-checking
	3.2.5.4 CTL vs. LTL

	3.2.6 Model checking techniques for MAS
	3.2.6.1 Model checking agent programs
	3.2.6.2 Model cheking techniques for interpreted systems
	3.2.6.3 Model checking resource-bounded agents
	3.2.6.4 Discussion

	3.3 The choice of verification approach
	3.4 Model checking tools
	3.4.1 MCK
	3.4.2 VerICS
	3.4.3 MCMAS
	3.4.4 DEMO
	3.4.5 Mocha
	3.4.6 NuSMV
	3.4.7 SPIN
	3.4.8 Maude LTL model checker
	3.4.9 The choice of model checker

	4 Verifying resolution-based systems
	4.1 Distributed reasoners
	4.2 Measuring resources
	4.3 Property specification
	4.4 Logical formalism
	4.4.1 Syntax of BMCL-CTL
	4.4.2 Semantics of BMCL-CTL

	4.5 Verifying resource-bounds
	4.6 Analysis of the problem complexity
	4.6.1 An analysis of the state space
	4.6.2 An analysis of the branching factor

	4.7 Analysis of the encoding complexity
	4.7.1 Positional encoding complexity
	4.7.1.1 Positional encoding analysis for a single agent system
	4.7.1.2 Positional encoding analysis for a multi-agent system

	4.7.2 Non-positional encoding complexity
	4.7.2.1 Non-positional encoding analysis for a single-agent system
	4.7.2.2 Non-positional encoding analysis for a multi-agent system

	4.8 Experimental evaluation
	4.8.1 Positional encoding using Mocha
	4.8.2 Non-positional encoding using Mocha
	4.8.2.1 Experiments using NuSMV

	4.8.3 Analysis of experimental results

	5 Verifying rule-based systems
	5.1 Rule-based systems
	5.1.1 Structure of rule-based systems
	5.1.2 Basic form of rules

	5.2 Systems of communicating rule-based reasoners
	5.3 Property specification
	5.4 Logical formalism
	5.4.1 Syntax of LCRB
	5.4.2 Semantics of LCRB

	5.5 Analysis of the problem complexity
	5.5.1 Asymptotic upper bound on the state space size
	5.5.2 The branching factor of the problem

	5.6 Analysis of the encoding complexity
	5.7 Model checking rule-based systems
	5.7.1 Mocha encoding
	5.7.2 Specifying system properties in Mocha
	5.7.3 Experimental results

	5.8 Analysis of experimental results

	6 A scalable verification framework for MAS
	6.1 Verification framework
	6.2 Communicating reasoners
	6.3 Concrete agents
	6.3.1 Rules and facts
	6.3.2 Reasoning strategy

	6.4 Abstract agents
	6.5 Example
	6.6 Discussion

	7 Automated verification tool for MAS
	7.1 Maude rewriting system and formal verification
	7.1.1 Basic foundation of Maude
	7.1.1.1 Maude modules
	7.1.1.2 Sorts and subsorts
	7.1.1.3 Kinds
	7.1.1.4 Maude operators
	7.1.1.5 Maude constants
	7.1.1.6 Maude variables
	7.1.1.7 Terms
	7.1.1.8 Equations
	7.1.1.9 Rewrite rules
	7.1.1.10 Module importation

	7.1.2 Verifying systems using Maude

	7.2 Maude encoding
	7.2.1 Agent configuration module
	7.2.2 Implementation of agent modules
	7.2.2.1 Concrete agent module
	7.2.2.2 Abstract agent module

	7.2.3 Implementation of the MAS module
	7.2.4 Verifying system properties
	7.2.5 Analysis of the implementation

	7.3 The TVRBA verification tool
	7.3.1 TVRBA implementation

	8 Scalable MAS verification: case studies
	8.1 Binary tree example
	8.2 A route planning example
	8.3 A home health-care monitoring alarm system
	8.4 Discussion

	9 Conclusions and future work
	9.1 Summary of contributions
	9.2 Future work
	9.2.1 Potential application areas
	9.2.2 Extensions to the current framework
	9.2.3 Re-engineering the Maude LTL model checker

	Appendix
	A Proof of theorem 5.5.1
	B Proof of theorem 5.5.3
	C Proof of theorem 5.5.4
	D Mocha positional encoding
	E Mocha non-positional encoding
	F NuSMV positional encoding
	G Rule ordering strategy in an ``16 leaf example''

