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ABSTRACT

GPS and Inertial Navigation Systems (INS) are increasingly used for posi-

tioning and attitude determination in a wide range of applications. Until

recently, the very high cost of the INS components limited their use to

high accuracy navigation and geo-referencing applications. Over the last

few years, a number of low cost inertial sensors have come on the mar-

ket. Although they exhibit large errors, GPS measurements can be used

to correct the INS and sensor errors to provide high accuracy real-time

navigation.

The integration of GPS and INS is usually achieved using a Kalman

filter which is a sophisticated mathematical algorithm used to optimise the

balance between the measurements from each sensor. The measurement

and process noise matrices used in the Kalman filter represent the stochastic

properties of each system. Traditionally they are defined a priori and

remain constant throughout a processing run. In reality, they depend on

factors such as vehicle dynamics and environmental conditions.

In this research, three different algorithms are investigated which are

able to adapt the stochastic information on-line. These are termed adaptive

Kalman filtering algorithms due to their ability to automatically adapt the

filter in real time to correspond to the temporal variation of the errors

involved.

The algorithms used in this research have been tested with the IESSG’s

GPS and inertial data simulation software. Field trials using a Crossbow

AHRS-DMU-HDX sensor have also been completed in a marine environ-

ment and in land based vehicle trials. The use of adaptive Kalman filtering



ii

shows a clear improvement in the on-line estimation of the stochastic

properties of the inertial system. It significantly enhances the speed of

the dynamic alignment and offers an improvement in navigation accuracy.

The use of the low cost IMU in a marine environment demonstrates that

a low cost sensor can potentially meet the requirements of navigation and

multi-beam sonar geo-referencing applications.
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Chapter 1

Introduction

1.1 Background

Inertial Navigation Systems (INS) became widely used in military vehicles

and civilian aircraft since the origin of inertial guidance during the second

world war. Primarily, the high cost of such systems has restricted the use

of INS for other navigation and surveying applications. However, in the

last two decades, two significant developments have broadened the use of

INS: integration of INS with the Global Positioning System (GPS) and the

development of lower cost inertial components.

Combining INS with other navigation systems such as GPS has gained

significance due to both systems having complimentary error character-

istics. GPS provides consistent accuracy position and velocity provided

that there is line-of-sight between the GPS receiver and the orbiting GPS

satellites. The latest generation of receivers are capable of providing Real-

Time Kinematic (RTK) positioning to centimetre level accuracy by using

relative positioning over short baselines (Wang et al., 1999). In order to

1
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achieve such accuracy, integer ambiguity resolution is required in order to

resolve the unknown number of integer carrier phase ambiguities between

the GPS receiver and satellite.

On the other hand, INS is an autonomous system that does not require

measurements to external signals. It provides high accuracy short-term

position, velocity and attitude at a high data rate. INS does, however,

require accurate knowledge of the initial position and attitude, and the

accuracy reduces over time due primarily to the imperfections in the inertial

sensors.

Combining GPS and INS measurements can greatly reduce the short-

comings of each standalone system to provide increased reliability and

accuracy. The GPS estimates of position and velocity are used to restrict

the growth of the INS errors over time and allow estimation of the inertial

sensor errors. The INS provides high accuracy short term navigation infor-

mation at a high data rate which can also be used to aid GPS ambiguity

resolution, correct cycle slips and bridge periods when there is no signal

reception.

Micro Electro-Mechanical Sensors (MEMS) have emerged in the last

20 years as a low cost method for mass producing small, lightweight ac-

celerometers and gyros (Barbour et al., 1996). MEMS accelerometers have

developed primarily from the automotive industry where they are used

for triggering safety devices (Yazdi et al., 1998). MEMS accelerometers

and gyros have diverse applications in other fields such as virtual reality,

robotics, and machine control and monitoring, and are increasingly being

used in navigation applications. However, they generally provide only

short-term navigation capability due to large sensor errors that require
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continuous calibration. GPS measurements can be used to estimate these

sensor errors.

The use of lower cost inertial components with GPS has opened up a

diverse range of applications. Originally, GPS and INS has been confined to

high accuracy navigation and geo-referencing applications due to the high

cost of the technology, and also due to government regulation. Examples

of geo-referencing imaging sensors in airborne applications can be found

in Cramer et al. (2000), Lithopoulos (1998) and Škaloud et al. (1996) and

for geo-referencing multi-beam echo sounders in a marine environment in

Alkan and Baykal (2001) and Trethewey et al. (1999). Low cost inertial

sensors potentially provide the capability to replace higher cost sensors in

these types of application.

Now, due to the potential for high accuracy mass-fabricated low cost

MEMS sensors, GPS and INS applications have expanded to fill a range

of new navigation applications such as personal and vehicular navigation

where increased performance and robustness is required over standalone

GPS systems. An example of personal navigation using MEMS can be

found in Ladetto (2000) and for vehicle navigation in Shin (2001) and

Sukkarieh et al. (1999).

1.1.1 Integration methodology

The Kalman filter has emerged as the dominant data fusion method for inte-

grating the two systems as it allows estimation of time-dependent variables

termed states (Wang et al., 1999). The Kalman filter uses mathematic and

stochastic models to estimate the INS error using measurements provided

by GPS. The mathematical model comprises of a functional model to relate



Chapter 1. Introduction 4

the measurements to the states to be estimated, and a dynamic model to

describe the way in which the INS errors develop over time. These models

are considered to be well defined for GPS and INS systems (Mohamed and

Schwarz, 1999; Wang et al., 1999).

The stochastic information describing each system is used by the Kalman

filter in order to correctly weight the new measurements to update the

states. The stochastic information is obtained using the specification of

the GPS and INS systems provided by the manufacturer, or is estimated

from empirical testing in a process termed tuning. This information is

defined a priori and generally remains constant throughout processing

runs. This has been identified as a deficiency in the conventional Kalman

filter algorithm for navigation applications where the stochastic properties

of the sensors change over time (Barnes et al., 1998; Collins and Langley,

1999; Mohamed and Schwarz, 1999; Satirapod, 2002; Wang et al., 1999).

These errors depend on factors such as vehicle dynamics and environmental

conditions and are consequently difficult to estimate.

One example of the time varying nature of low cost INS errors is high-

lighted during the initialisation and alignment of the INS using GPS up-

dates. Initially, the INS navigation and sensor errors can be large and they

vary each time the sensor is switched on. Using a low noise estimate for

the INS errors results in a precise, yet most likely biased, estimate which

results in a long transition to the correct value. Conversely, a larger noise

estimate results in a quicker transition to the correct value but results in a

noisier estimate which increases the navigation errors. This highlights the

need for adapting the stochastic information used in the filter as the inertial

sensor errors are reduced through alignment and the stochastic properties
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of the INS change.

In order to reduce the dependence on a priori information and allow

the filter to adapt on-line, several extensions to the conventional Kalman

filtering algorithm exist. These techniques use information from the inno-

vation or residual sequence in the conventional Kalman filtering algorithm

to supply additional stochastic information which is used to adapt the a

priori information. This adaptation of the stochastic properties of the filter

is generically termed adaptive Kalman filtering. The primary potential

benefit of adaptive Kalman filtering is improved performance in terms of

reducing the navigation errors of position, velocity and attitude. This

includes reducing the time required for INS alignment and resolution of

the initial sensor errors.

1.2 Research Aims and Objectives

The aim of the research undertaken in this thesis is to analyse and improve

the system performance of GPS integrated with a low cost Inertial Measure-

ment Unit (IMU). The term ‘low cost’ is used to represent MEMS grade

sensors that cost typically less than £5,000 for an IMU assembly. The

originality of the research lies in investigating the use of three different

adaptive Kalman filtering algorithms for this application area. Only one of

the algorithms has been used in GPS and INS integration before, and that

research was carried out with a higher grade INS (Mohamed and Schwarz,

1999; Wang et al., 1999). Novel research is also carried out into the use of

GPS and low cost INS in a marine environment as a potential replacement

for higher cost systems.
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The broad aims of this research are therefore summarised as follows:

• Undertake research into improving the system performance of inte-

grated GPS and low cost INS.

• Develop and investigate the performance of an integrated GPS and

low cost INS for marine applications.

More specifically, the objectives of this research are:

• To investigate the performance of conventional Kalman filtering for

GPS and low-cost INS.

• To propose an alternative to the conventional Kalman filter algorithm

that automatically adapts to the temporal variation of the low cost

INS errors.

• To undertake simulated data and practical testing of the proposed

adaptive Kalman filtering algorithms.

The research undertaken in this thesis demonstrates that adaptive Kal-

man filtering algorithms can be used to improve the stochastic information

used in the filter. This has the effect of reducing the dependence of the

initial stochastic information used in the filter which is often difficult to

estimate. It results in significant reduction in the time taken to align the

INS and resolve the initial sensor errors. Furthermore, it can also result in

a reduction in the navigation errors.

1.3 Research methodology

The following research methodology is carried out in this thesis to meet

the aims and objectives outlined in the previous section:
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• Review existing integration algorithms for GPS and low cost INS.

• Identify alternative algorithms to the conventional Kalman filter which

are able to adapt the stochastic information used by the filter depend-

ing on the new measurements.

• Develop integration software that provides the capabilities of current

integration algorithms and implement the adaptive algorithms.

• Use data simulation to investigate the performance of the adaptive

algorithms (this includes contributing to the development of the INS

simulation algorithms)

• Undertake practical testing to investigate the performance of GPS

and low cost INS for marine applications by comparing the results to

a higher grade reference system.

• Undertake practical testing of the adaptive Kalman filtering algo-

rithms in a marine and land-based vehicle environment and use this

to validate the results obtained using simulation.

1.4 Thesis Outline

Chapter 2 describes the general principle of operation for low cost inertial

sensor assemblies. The essential principles of mechanising the raw acceler-

ation and turn rate measurements to obtain estimates of position, velocity

and attitude are described.

The Global Positing System is described in Chapter 3. This provides an

overview of the fundamental principles of GPS with particular attention
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given to the error sources that corrupt the GPS signals. The chapter also

describes existing stochastic estimation methods for GPS observations.

Chapter 4 describes the principles of Kalman filtering and its application

to GPS and INS integration. An overview of the conventional Kalman

filter algorithm is given and the methods that exist to adapt the stochastic

properties of the Kalman filter are described. The way in which the Kalman

filter can be used for integrating the two systems is then examined and an

overview of the development of the integration software used for this thesis

is given.

The data simulation software for simulating GPS and inertial measure-

ments developed at the University of Nottingham is described in Chapter 5

with specific reference given to the contribution provided by the author.

Chapter 6 describes the results obtained using measurement simulation

with the conventional Kalman filtering algorithm. This section shows the

characteristics of the Kalman filter including the effect that the process

noise and initial covariance have on the time to alignment, and also the

properties of the innovation and residual sequence. This analysis motivates

the use of adaptive Kalman filtering algorithms to provide improved system

performance over the conventional algorithm.

Chapter 7 examines the use of the adaptive algorithms using the software

described in Chapters 4 and 5. Chapter 7 uses a simulated marine trial to

examine the adaptive techniques for alignment of the INS and resolution

of the inertial sensor errors. Each adaptive method is described and its

performance examined. The true inertial sensor errors from the data sim-

ulation are used to analyse the time required to resolve the sensor errors

and align the INS.
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Chapter 8 applies the algorithms to real data collected from a low cost

IMU in a marine trial on a small survey boat in Plymouth. The data

collection method is described, and the performance from the conventional

Kalman filter is examined. In view of the results obtained, attitude estima-

tion from dual antenna GPS receivers is used to improve the yaw estimation

of the low cost trial. The performance of the adaptive Kalman filtering

algorithms is then examined and compared to the results obtained using

simulation. A second trial is also undertaken to assess the performance of

the adaptive Kalman filtering algorithms in a land based vehicle trial.

Chapter 9 concludes the thesis with a summary of the results achieved

during this research. Ideas for extending the research are also presented.



Chapter 2

Strapdown Inertial Navigation

2.1 Introduction

Strapdown inertial navigation is a Dead Reckoning (DR) form of naviga-

tion. This means that navigation is achieved by measuring direction and

displacement from an initial point and orientation. This is achieved through

measuring acceleration and turn rates in three orthogonal directions with

accelerometers and gyros. The sensor assembly of accelerometers and gyros

is termed an Inertial Measurement Unit (IMU).

The objective of this chapter is to cover the fundamental concepts of

inertial navigation with the mechanisation of raw measurements along

sensor axes to estimates of position, velocity and attitude. In particular,

reference is given to the way in which GPS position and velocity updates

can be used with knowledge of the inertial error models to reduce the build

up of inertial errors over time. The chapter begins with an overview of

current inertial sensor technology.

10
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2.2 Low Cost Inertial Sensor Technology

The lowest cost inertial sensors for navigation applications are provided by

Micro-machined Electromechanical Sensor (MEMS) technology.

2.2.1 MEMS sensors

MEMS gyros use the Coriolis theorem in order to measure rotation rate.

Figure 2.1 shows the principle of Coriolis acceleration. Consider an observer

sitting on the x-axis of the coordinate system shown, with the coordinate

system rotating about the z-axis at the rotation rate, Ω. If a particle

travels along the y-axis at a velocity v, an acceleration will be apparent to

the observer perpendicular to the y-axis with magnitude a = 2v×Ω. This

is the principle that is used in MEMS gyros.

a = 2v × Ω

Travelling particle

Observer

Rotation
Ω

v

y

z

x

Figure 2.1: Coriolis force (Yazdi et al., 1998)

Low cost inertial sensors contain a vibrating silicon MEMS structure.

When the gyro is rotated, this results in a Coriolis acceleration perpendic-

ular to the input axis and proportional to the input rotation. The deflection

can be measured to derive the angular rate measurement. The advantage

of this type of sensor is that it contains no rotating parts. Consequently,
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the sensor can be miniaturised and batch fabricated using micro-machining

techniques resulting in a sensor that is small and low power (Yazdi et al.,

1998).

MEMS accelerometers consist of a proof mass that is suspended by

compliant beams. The deflection of the proof mass is measured under

acceleration either by measuring the displacement of the proof mass (open

loop), or more typically by measuring the force required to maintain its

position (closed loop). This again results in a sensor with no moving parts

that can be miniaturised and batch fabricated.

2.2.2 Performance

Table 2.1 compares the dominant error sources of low cost MEMS IMUs

(often termed automotive grade due to the original applications for which

these sensors were developed) to the higher grade ring laser and fibre

optic-based gyro systems. The table uses the Crossbow AHRS-DMU-

HDX as an example of a low cost MEMS sensor assembly. The Crossbow

unit is available for civilian applications and costs approximately £4,000.

The sensor contains additional electronics and a magnetometer to allow

standalone attitude operation.

The standalone performance of low cost IMUs for navigation is limited

by the large sensor errors. For example, the table shows that the Crossbow

has a bias uncertainty of 1◦/s compared to the high performance Ring Laser

Gyro with a drift of approximately 0.1◦/hr. For standalone inertial naviga-

tion, the manufacturer’s specification of the Litton LN90-100 is 0.8nmi/hr

(Northrup Gruman., 2001a) which allows such a system to be used for

commercial and military aircraft navigation applications. However, the
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Grade Navigation Tactical Low Cost

Example Litton LTN90-100 Litton LN200 Crossbow

AHRS-DMU-HDX

Dimensions (cm) - 8.9×8.9×8.5 7.62×9.53×10.41

Cost (approx) >£100k ≈£20k ≈£4k

Gyro Ring Laser Fibre Optic MEMS

Bias (◦/h) 0.005-0.1 1-10 <3600

Scale Factor 5ppm 100ppm <1%

Noise (◦/h/
√

Hz) 0.002 0.04-0.1 <0.85

Accelerometer Silicon Silicon Silicon

Bias 50µg 200µg − 1mg < ±30mg

Scale Factor (ppm) 50 300 < ±1%

Noise 50µg (1σ) 50µg/
√

Hz <0.15 m/s/
√

Hr

Table 2.1: Strapdown IMU sensor error characteristics

Sources Mohamed (1999); Northrup Gruman. (2001b); Crossbow Technology

Inc. (2000)

cost of high accuracy IMUs such as this is approximately 10 times the cost

of a low or medium cost INS (Schwarz, 1999). The inertial sensor errors

of the Crossbow IMU mean that navigation errors can reach kilometres in

minutes. Consequently, standalone navigation for long periods of time is

not possible with such sensor technology.

2.3 Coordinate frames and rotations

The mechanisation of the inertial measurements from the gyros and ac-

celerometers into estimates of position, velocity and attitude requires the

definition of a number of coordinate frames.
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2.3.1 Inertial frame

The inertial coordinate frame is geocentric (has origin at the Earth’s centre

of mass) and is non-rotating with respect to the fixed stars. This means

the coordinate system is non-accelerating. The z-axis coincides with the

mean rotation axis of the Earth, and the x-axis points toward the mean

vernal equinox. The y-axis completes the right-handed coordinate system.

All measurements in an inertial system are measured with respect to the

inertial frame.

2.3.2 Earth fixed frame

The Earth fixed frame is geocentric and rotates relative to the inertial

frame about the mean rotation axis of the Earth (z-axis). The x-axis points

toward the intersection of the Greenwich Meridian and the Equator. The

y-axis completes the right handed coordinate system. The approximation

to the Earth’s rotation rate about the z-axis is given as,

ωie = 2π
1 + 365.25

365.25× 24× 60× 60
≈ 7.292× 10−5rad/s (2.1)

The navigation errors caused by using the mean axis of rotation and the

Earth rate approximation are considered to be negligible (Farrell and Barth,

1999). In addition to the gyros detecting the Earth rotation, the rotation of

the Earth will result in the accelerometers detecting a Coriolis acceleration.

2.3.3 Navigation frame

The navigation frame (sometimes termed the Geographic frame) is defined

with respect to a reference ellipsoid. The navigation frame origin coincides

with the origin of the body frame (§2.3.4). The z-axis is defined as pointing
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down the ellipsoidal normal, the x-axis points to ellipsoidal north and the

y-axis points to ellipsoidal east. When the origin of the navigation frame

moves with respect to the Earth frame, the navigation frame rotates with

respect to the Earth frame at the transport rate, ωen (§2.5.2).

2.3.3.1 Earth to navigation frame rotation

Measurements from other navigation systems such as GPS are often mea-

sured in the Earth frame. Measurements in the navigation frame are

converted to measurements in the Earth fixed frame by two rotations. The

first rotation is about the Earth’s z-axis to align the y-axis with the east

axis of the navigation frame. The second rotation is about the new y-axis

to align the z-axis with the new down axis. This results in the rotation

matrix,

Ce
n =


− sinλ cosφ − sinφ − cosλ cosφ

− sinλ sinφ cosφ − cosλ sinφ

cosφ 0 − sinφ

 (2.2)

The resultant matrix is orthogonal so that measurements can be converted

from the Earth frame to the navigation frame using the transpose,

Cn
e = (Ce

n)−1 = (Ce
n)T (2.3)

2.3.4 Body and vehicle frames

The instrument axes in an IMU are aligned to the body frame. In most

applications it is the position and attitude of the vehicle in which the sensor

is rigidly mounted that is of interest. In these instances, the body frame is

rigidly fixed to the vehicle frame. The x-axis of the vehicle frame points to
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the front of the vehicle, the z-axis points to the bottom of the vehicle and

the y-axis completes the right-handed coordinate system.

2.3.4.1 Body to navigation frame rotation

The body frame is rotated to align with the navigation frame using a series

of rotations about the x, y and z-axes. The angular rotations about each

axis are known as Euler angles and are termed roll, ϕ, pitch, θ, and yaw,

ψ, respectively. The order of rotation is important as a different order

can result in a different rotation. The three sequential rotations form the

Direction Cosine Matrix (DCM). The DCM from the navigation frame to

the body frame is defined as,

Cb
n = C3C2C1 (2.4)

=


1 0 0

0 cosψ sinψ

0 − sinψ cosψ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


Because the DCM is orthogonal, the rotation from the body to the navi-

gation frame is easily calculated from its transpose,

Cn
b = (Cb

n)−1 = (Cb
n)T = CT

1 C
T
2 C

T
3 (2.5)

2.3.5 Quaternions

An alternative to computing rotations using the DCM is the quaternion

(Titterton and Weston, 1997). Quaternions use the principle that the trans-

formation between coordinate systems can be achieved by a rotation ‖µ‖

about a three-element vector µ = [ µx µy µz ]T (ibid.). The quaternion
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is defined as,

q = [ q1 q2 q3 q4
]T

=

 µ
(

1
‖µ‖ sin

(
‖µ‖
2

))
cos

(
‖µ‖
2

)
 (2.6)

The update equation for the quaternion vector is obtained by integrating

the equation,

q̇ = Ωq (2.7)

where Ω is the 4 × 4 skew symmetric form of the vector of gyro measure-

ments. The update of the quaternion vector is performed using discrete

measurement updates with the equation,

q(i+ 1) = [αI + βΥ]q(i) (2.8)

where Υ is the 4 × 4 skew symmetric form of the integrated angular

measurements and,

α = cos

(
‖υ‖
2

)
(2.9)

β =
1

‖υ‖
sin

(
‖υ‖
2

)
(2.10)

where υ is the vector of integrated angle measurements.

The DCM can be written directly in terms of elements of the quaternion

and similarly, the quaternion can be formed directly using elements of the

DCM. Normalisation of the quaternion vector may be required when the

square of the elements does not sum to unity due to computer rounding

errors. The quaternion can be normalised using an equation such as,

qnorm = q/
√
qT q (2.11)

Care must be taken when using normalisation such as this as the error can

be spread between elements (Titterton and Weston, 1997).
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2.4 Gravity compensation

The measurements of acceleration due to system movements and the ac-

celeration due to gravity cannot be distinguished because of relativistic

theory (Chen, 1992). A gravity model is therefore required to calculate the

movement of the sensor.

One of the reasons for selecting the navigation frame for mechanising

the inertial measurements is that the gravity model is simpler to define

(Škaloud, 1995). The gravity vector is formed using the equation,

gn =


0

0

γ(λ, h)

+


ζg

−ηg

δg

 (2.12)

where ζg,ηg and δg are gravity anomaly terms and,

γ(λ, h) = a1(1 + a2 sin2 λ+ a3 sin4 λ) + (a4 + a5sin
2λ)h+ a6h

2 (2.13)

with the coefficients a1, . . . , a6 for the WGS-84 coordinate system defined

in Shin (2001).

2.5 Navigation frame initialisation and

mechanisation

The navigation frame mechanisation approach is described in texts such as

Britting (1971), Titterton and Weston (1997) and Farrell and Barth (1999).

The navigation frame is used in this thesis, however other coordinate frames

can be used for the mechanisation process. Using the transformation

given in §2.3.3.1, measurements can be easily converted between the Earth
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fixed frame and the navigation frame when combining inertial navigation

measurements with GPS measurements.

2.5.1 Initialisation and alignment

The iterative nature of the navigation mechanisation means that the initial

navigation quantities of position, velocity and attitude must be provided

through some form of initialisation process. The term initialisation is

usually given to the process of determining the initial position and ve-

locity of the sensor, whereas the term alignment is given to the process of

determining the initial attitude parameters.

In an integrated system, position and velocity can be initialised using

GPS. Alignment of the body frame to the navigation frame is obtained in a

static environment using analytical formulae which use known gravity and

Earth rate measurements. The Earth rate measurement is required in order

to obtain the initial yaw estimate. However, for low cost gyros, the Earth

rate is below the instrument sensitivity therefore the yaw must be initialised

using an external aiding source, for example from a compass or from a

multi-antenna GPS system. Static alignment is obtained in two stages:

an initial coarse alignment followed by a fine alignment. For situations

where either a static alignment is impossible or impractical, the alignment

is performed using a dynamic alignment.

2.5.1.1 Coarse alignment

The coarse alignment is the process of using analytical formulae to directly

compute an approximate attitude estimate from the raw inertial sensor

outputs. The raw accelerometer measurements are used to obtain an
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estimate of the initial roll and pitch angles by comparing the vector of body

frame measurements, f b = [ fx fy fz ]T to the known gravity vector. By

analysis of the equation,

gn = Cn
b f

b (2.14)

the initial pitch and roll estimates can be obtained using,

ϕ = atan2(−fy, fx) (2.15)

θ = atan2(fx,
√
f 2
y + f 2

z ) (2.16)

This method is only valid for static initialisation where there are no external

forces acting on the sensors, and the accuracy of the alignment is directly

dependent on the sensor errors of the accelerometers. Coarse alignment

using the gyro measurements is not considered here due to the Earth rate

being below the instrument sensitivity for low cost sensors.

2.5.1.2 Fine alignment

The fine alignment is the process of refining the attitude obtained from

the coarse alignment. The raw inertial measurements are combined using

Zero Velocity Update Points (ZUPT) with knowledge of the way that the

inertial errors develop over time (see §2.6.1). This is usually achieved using

a Kalman filter (Chapter 4.2) using the observations,

δωn = ωn − ω̂n (2.17)

δfn = fn − f̂n (2.18)

where ωn and fn are the known Earth rotation and gravity vectors and ˆ

signifies the measurement obtained from the inertial sensor. The use of the

fine alignment for low cost sensors is again restricted due to the sensitivity

of the gyros.
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2.5.1.3 Dynamic alignment

The previous initialisation techniques require the inertial sensor to remain

static in order that the inertial sensors are only measuring the Earth’s

rotation and acceleration due to gravity. The low cost sensors are unable

to sense the Earth’s rotation, and the large inertial sensor errors result

in inaccurate estimates of the initial attitude. Consequently, a dynamic

alignment is used in order to estimate the navigation errors and also the

inertial sensor errors. This is usually achieved using a Kalman filter using

external estimates of position and velocity from a system such as GPS.

The dynamic alignment is also used after a static initialisation to reduce

the drift of the inertial sensor over time. The dynamic alignment is the

focus of the subsequent chapters in this thesis.

2.5.2 Navigation frame mechanisation

The navigation frame mechanisation is shown in Figure 2.2. The iterative

procedure begins with the raw gyro and accelerometer measurements (ωbib

and f b respectively) being sampled at discrete intervals. If information

about the sensor errors is available either from laboratory tests or an on-

line calibration, the corrections are applied to the raw sensor outputs. The

gyro measurements measure the total sensor rotation in the inertial frame

which is compensated for the Earth’s rotation, ωnie, and the navigation

frame transport rate, ωnen. This gives the turn rate of the body frame with

respect to the navigation frame referenced in the body frame,

ωbnb = ωbib − Cb
n (ωnie + ωnen) (2.19)
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where,

ωnie = [ ωie cosλ 0 −ωie sinλ ]T (2.20)

ωnen =
[

vE
Rλ+h

−vN
Rφ+h

vE tanλ
Rλ+h

]T
(2.21)

and v is the velocity in the navigation frame, h is the ellipsoidal height and

R is the latitudinal (λ) or longitudinal (φ) radius of the Earth.

The compensated gyro output is used to calculate the updated attitude

by using the methods described in §2.3.5. The updated attitude is then

used to resolve the specific force measurement from the body frame to the

navigation frame. The force in the navigation frame is then compensated

for gravity and Coriolis acceleration using,

v̇n = fn − (2ωnie + ωnen)× vn + gn (2.22)

Equation 2.22 is integrated to give velocity in the navigation frame and

hence longitudinal and latitudinal rates. A second integration yields po-

sition. The process then repeats for the next inertial measurements. The

measurements from the previous iteration are then used in the correction

terms for the next iteration.

It should also be noted that in Equation 2.21, the tangent function will

cause problems at extreme latitudes. Since the navigation frame has its

axes aligned with North and East directions, at extreme latitudes a small

movement will result in a large rotation being necessary to maintain the

orientation of the navigation frame (Salychev, 1998). In these instances,

the Wander frame is used to overcome this problem by rotating the North

axis by an angle termed the wander angle (ibid.).
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Figure 2.2: Inertial navigation frame mechanisation algorithm

2.6 Inertial navigation error estimation

The INS errors can be estimated using position and velocity updates from

GPS. This is accomplished by using knowledge of the way the inertial errors

develop over time. This section describes the INS error models.

2.6.1 Navigation frame error model

Linear INS error models are obtained through perturbation analysis in

texts such as Britting (1971); Farrell and Barth (1999); Rogers (2000). The

following equations describe the position, velocity and attitude dynamics

of the INS errors in the navigation frame,

δṗn = δvn (2.23)

δv̇n = fn × εn − (2ωnie + ωnen)× δvn +

vn × (2δωnie + δωnen) + δγn + Cn
b δfb (2.24)

ε̇n = −ωnin × εn + δωnin − Cn
b δω

b
ib (2.25)
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where δp, δv and ε are the vectors of position, velocity and attitude errors,

δγ is the gravity vector error and × is the cross product operator. The error

equations are used to form the dynamics matrix for estimating the inertial

errors using position and velocity updates from GPS (see Chapter 4).

2.6.2 Attitude error dynamics

When using GPS updates, the inertial position and velocity errors are

directly estimated using the GPS estimates of these errors. However, in

the absence of external attitude observations, the INS attitude error is

only observable through the velocity error dynamics. From Equation 2.24,

the velocity error due to attitude misalignment in the navigation frame

develops through the following system of equations,

δv̇N = −fDεE + fEεD (2.26)

δv̇E = fDεN − fNεD (2.27)

δv̇D = −fEεN + fNεE (2.28)

where the subscripts N , E and D, denote North, East and Down. It is

observed from this equation that the attitude misalignments about the

north and east axes result in velocity errors through the north, east and

down force terms. The force in the down direction is always large due to

the force due to gravity, therefore the north and east axis misalignments are

constantly observable through velocity updates. Equations 2.26 and 2.27

show that the misalignment about the down axis is only observable through

the horizontal acceleration terms, fN and fE. The misalignment about the

down axis is therefore only observable through velocity aiding when the

horizontal acceleration is non-zero.
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The attitude misalignments in the navigation frame are related to the

roll, pitch and yaw misalignments through the equations,

δϕ = εE
sinψ

cos θ
+ εN

cosψ

cos θ
(2.29)

δθ = εE cosψ − εN sinψ (2.30)

δψ = εE sinψ tan θ + εN cosψ tan θ + εD (2.31)

These equations demonstrate that the roll and pitch errors are dependent

on the misalignments about the east and north axes. The yaw error mainly

depends on the misalignment about the down axis. Therefore, in order to

aid alignment in an integrated system, the host vehicle is usually required

to perform a series of manoeuvres to induce horizontal acceleration. This

is usually achieved by performing a series of figure of eight turns.

2.6.3 Sensor error estimation

The previous section described the dynamics of the INS navigation errors.

Equations 2.24 and 2.25 contain the terms, Cn
b δfb, and, Cn

b δw
b
ib, which are

the dynamics of the inertial sensor bias errors. The error characteristics of

the inertial sensors are considered in detail in Chapter 5.

It is also possible to estimate other inertial sensor errors given knowledge

of the way the errors effect the navigation errors. The dynamics of the main

inertial error sources are given by the equation (Wolf et al., 1997; Farrell

and Barth, 1999),

ε̇n = Cn
b δbG + ∆TCn

b δtG + Cn
b ΩbδsG + Cn

b ΨbδmG (2.32)

δv̇n = Cn
b δbA + ∆TCn

b δtA + Cn
b FbδsA + Cn

b EbδmA (2.33)

where the A and G subscripts denote the accelerometer and gyro errors, and



Chapter 2. Strapdown Inertial Navigation 26

b, t, s, m represent the sensor bias, temperature dependent bias, scale factor

and axis misalignment errors respectively. ∆T is the difference between

the temperature output and the last calibration temperature of the IMU.

Ωb and Fb are diagonal matrices with the gyro and accelerometer outputs

forming the diagonal elements. Ψb and Eb are 3×6 matrices formed using,
−x2 x3 0 0 0 0

0 0 x1 −x3 0 0

0 0 0 0 −x1 x2

 (2.34)

where x is the accelerometer or gyro output respectively.



Chapter 3

Global Positioning System

3.1 Introduction

GPS provides a method for directly obtaining instantaneous position and

velocity estimates using passive range measurements from satellites. GPS

measurements are integrated with inertial measurements to prevent the

INS performance from deteriorating over time. This chapter examines the

essential principles of GPS and, in particular, the error sources in the GPS

observations. Further attention is also given to the measurement noise

estimation for GPS observations.

General GPS concepts are well documented in papers and textbooks, for

example, Bingley and Roberts (1998), Hofmann-Wellenhof et al. (1997),

Kaplan (1996), Leick (1995) and Xu (2003). For further details of other

aspects of GPS, the reader is referred to the aforementioned sources.

27
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3.2 General description

The NAVigation System with Timing And Ranging (NAVSTAR) Global

Positioning System (GPS) is a 24 hour, all-weather, passive, satellite posi-

tioning system. It provides high accuracy, instantaneous position, velocity

and time information to global users.

GPS satellites transmit two L-band (microwave) frequencies termed L1

(1575.42MHz) and L2 (1227.6MHz) derived from the fundamental GPS

frequency of 10.23MHz. This results in L1 and L2 carrier wavelengths of

approximately 19cm and 24cm respectively. Two codes are modulated onto

the carriers characterised by a Pseudo-random Noise (PRN) sequence. The

Coarse/Acquisition (C/A) code is modulated onto the L1 carrier only and

has a corresponding wavelength of approximately 300m. The C/A code

is currently the only signal intentionally available to the civil community

(Shaw et al., 2000). The Precise (P) code is modulated onto both L1 and

L2 signals and has a wavelength of 30m. In order to restrict the P-code

to authorised users, the P-code is encrypted to the Y-code. This is termed

Anti Spoofing (A-S).

In addition to the two PRN codes, a navigation message is transmitted

which contains the satellite ephemeris, satellite clock coefficients, satellite

health information and ionospheric modelling coefficients. Almanac and

Hand-Over-Word are also transmitted to assist the receiver in locating the

satellites and identifying which segment of the P-code to search.

The GPS control segment consists of ground-based tracking and control

stations. These stations monitor and control the satellites which includes

determining the satellite orbits and uploading the navigation messages.
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3.3 GPS observables

GPS provides three fundamental types of observation which are termed the

pseudorange observation, the carrier phase observation and the Doppler

observation.

3.3.1 Pseudorange Observation

The pseudorange observation is formed by matching the received code

from a GPS satellite with a receiver’s internally generated code. The time

difference between the transmitted and received signal is scaled by the speed

of light to obtain a distance measurement between receiver and satellite.

The actual range measurement, ρ, between a satellite, s, and receiver, r, is

written as,

ρ =
√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2 (3.1)

where x, y and z are the satellite and receiver Cartesian coordinates.

The pseudorange observation is formed from the true range measurement

corrupted by a number of error sources which are considered in the following

sections. The measured pseudorange observation in metres, p, is written in

terms of these error sources using the equation,

p = ρ+ c(dt− dT ) + dion + dtrop + dρ+ eρ (3.2)

where,

ρ is the true receiver to satellite range (m)

c is the speed of light (m/s)

dt is the satellite clock error (s)

dT is the receiver clock error (s)
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dion is error caused by ionospheric delay (m)

dtrop is error caused by tropospheric delay (m)

dρ is the satellite orbit error (m)

eρ is the measurement noise including multipath (m)

The pseudorange observation is obtained from the C/A code or P-

code measurements and is used directly to obtain an estimate of position.

Pseudoranges are also required for initialising ambiguity searches for carrier

based positioning when initial coordinates are unavailable or are of low

accuracy.

3.3.2 Carrier Phase Observable

The carrier phase observation is obtained by stripping the code from the

received signal (Langley, 1997). Modern GPS receivers are capable of

measuring the carrier observation to better than 0.01 cycles which equates

to approximately millimetre measurement accuracy. The GPS receiver

measures the fractional phase and will measure the accumulated integer

number of wavelengths since signal lock-on. The total number of integer

wavelengths at lock-on is unknown and is referred to as the integer ambigu-

ity. The technique of resolving the integer ambiguity with no requirement

for the receiver to be static is called On-The-Fly GPS (OTF) . For this

thesis, ambiguity resolution is achieved using the LAMBDA method (see

§4.5.1.1). The carrier observable in metres is written as,

Φ = ρ+ c(dt− dT )− dion + dtrop + dρ+ eΦ + λN (3.3)

where,
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Φ is the carrier observation (m)

eΦ is the carrier phase measurement noise including multipath (m)

λ is the carrier wavelength (m)

N is the unknown integer ambiguity

The integer ambiguity term remains constant while the GPS receiver

Phase Lock Loop (PLL) is maintained. Loss of lock may occur due to

atmospheric effects, multipath, high vehicle dynamics or physical signal

obstructions such as bridges and buildings. A loss of lock results in a reini-

tialisation of the integer ambiguity and is termed a cycle slip. Examples of

cycle slip detection and correction algorithms using GPS observables can

be found in Roberts (1997) and Bisnath (2000).

3.3.3 Doppler Observation

The Doppler observation is the instantaneous rate of change of carrier phase

which is determined by the frequency change of the carrier signal. This

frequency shift is caused by relative motion of the receiver and satellite.

The range rate between satellite, s, and receiver, r is computed using,

Φ̇ =
(xs − xr)(ẋs − ẋr) + (ys − yr)(ẏs − ẏr) + (zs − zr)(żs − żr)√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2
(3.4)

The Doppler observation is obtained from the PLL in different ways

depending on the receiver technology. For example the Ashtech G12 aver-

ages the PLL using phase measurements from the previous half second

(Cannon et al., 1997). This results in a measurement with a quarter

second time offset which will introduce a timing error into the observation.

Consequently techniques have been constructed to obtain Doppler mea-

surements by post processing carrier observations using central difference
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approximations, curve fitting, or frequency based techniques. For more

details see Szarmes et al. (1997) and Bruton (2000).

The error equation for the Doppler observation is expressed in terms of

the rate of change of the error sources in Equation 3.3. Consequently, the

integer ambiguity term is removed which gives,

Φ̇ = ρ̇+ c(dṫ− dṪ )− ḋion + ḋtrop + dρ̇+ eΦ̇ (3.5)

3.4 Error sources

The following sections examine the error sources that corrupt GPS obser-

vations along with the mitigation techniques that can be implemented.

3.4.1 Satellite errors

3.4.1.1 Satellite clock errors

Although GPS satellites use high quality caesium or rubidium atomic os-

cillators, there still remain unavoidable time drifts from GPS time (Rizos,

1999). The control segment monitors each satellite’s drift and updates the

navigation message with three polynomial coefficients which can be used

to reduce the clock error. Since each observation made to each satellite is

contaminated by the same clock error, the drift can be completely removed

by differencing observations (§3.5).

3.4.1.2 Satellite Orbit

The satellite ephemeris information is provided from either the broad-

cast ephemeris in the satellite message or from a precise ephemeris. The
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broadcast ephemeris is accurate to approximately 5 metres (Hofmann-

Wellenhof et al., 1997). Precise orbits are available from agencies such

as the International GPS Service (IGS) on the world wide web. The

IGS provide three levels of accuracy: predicted, rapid and final. The

predicted orbits are available in real time and are accurate to approximately

25cm (IGS, 2002). The rapid and final orbits are available with a latency

of 17 hours and 13 days respectively, and are accurate to 5cm for the rapid

orbits and better than 5cm for the final orbits (ibid.).

The satellite position is considered fixed when solving for receiver po-

sition resulting in direct propagation of satellite position error into the

receiver position. The satellite position error is largely removed through

differencing observations for short baselines. The errors are elevation and

azimuth dependent and increase for longer baselines. Further details can

be found in Evans (2001).

3.4.2 Propagation errors

3.4.2.1 Ionosphere

The ionosphere is a dispersive medium with respect to the GPS microwave

signal (Hofmann-Wellenhof et al., 1997). This results in a frequency de-

pendent non-linear dispersion of the GPS signal as it passes through the

ionosphere. The ionosphere results in a delayed code range and an advanced

carrier phase which is reflected in Equations 3.2 and 3.3.

The magnitude of the ionospheric delay is dependent on the Total Elec-

tron Content (TEC) along the signal path. The temporal TEC varies

over a number of well known cycles including the 11 year sun spot cycle,
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a seasonal cycle and a diurnal cycle. Many models exist to attempt to

remove the ionospheric delay such as the Klobuchar model which is a

function of time and latitude. Klobuchar coefficients are transmitted in

the navigation message and accommodate approximately 50% of the total

ionospheric effect at mid-latitudes (Farrell and Barth, 1999).

Dual frequency observations can be used to form ionospherically free

combinations of observables due to the frequency dependent dispersion of

the GPS signal. For more details of ionospherically free combinations of

measurements, the reader is referred to Chao (1996).

3.4.2.2 Troposphere

The troposphere is non-dispersive at radio frequencies resulting in equal

delay errors for L1 and L2 carrier and code signals. This means that

dual frequency linear combinations of measurements cannot be used to

remove the tropospheric delay error. The troposphere is composed of a wet

component and a dry component.

The dry component is relatively well modelled and accounts for approx-

imately 90% of the total tropospheric delay (Hofmann-Wellenhof et al.,

1997). The temperature, pressure and humidity along the propagation

path is required to accurately model the delay but such measurements are

not always easily obtainable. Standard atmospheric models can be used

such as the Magnet model which uses station latitude, height and Julian

day. Surface pressure and temperature measurements can bring the residual

error down to within 2-5% of the total dry delay (Grewal et al., 2001).

The wet component is more difficult to model because of spatial varia-

tions in the water vapour content. For short baselines, it is considered to
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be removed by differencing measurements.

3.4.2.3 Multipath

Multipath is the effect caused by GPS satellite signals reaching the GPS

antenna via one or more indirect path. This is caused by objects near

the antenna such as buildings or the surrounding ground reflecting the

satellite signals. This results in a distorted correlation of the received signal

measurement with the receiver generated signal.

Several multipath reduction methods exist to utilise the effect of signal

propagation geometry (Weill, 1997). For static GPS receivers, multipath

error exhibits periodic behaviour due to the repeat period of the satellite

orbit. This can allow multipath effects to be reduced with time series

analysis for long occupation periods. For kinematic applications, multipath

effects are more random due to the change in the geometry of surrounding

reflective surfaces. Special antennas such as ground-plane or choke ring

antennas can be used to shield the antenna from signals arriving beneath

the antenna. Careful placing of the GPS antenna away from reflective

surfaces may also be possible in static and kinematic environments.

Recent advances in GPS receiver correlator technology use real-time

signal processing to mitigate multipath (Weill, 1997). However, these

techniques primarily relate to GPS code observations (ibid.).
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3.4.3 Receiver errors

3.4.3.1 Receiver clock errors

GPS receivers use relatively inexpensive quartz crystal oscillators which are

less stable than satellite clocks. Typically, the clock bias is treated as an

additional unknown in the estimation procedure. Therefore observations

are required to at least four satellites. However, the offset between receiver

clock time and GPS time equally contaminates all measurements made by a

single receiver. Therefore, by differencing measurements between satellites,

the receiver clock bias can be completely removed.

3.4.3.2 Receiver Measurement Noise

Receiver Measurement Noise is caused by the passing of the GPS signal

through the electrical components of the receiver, antenna and cables.

One method to determine the level of GPS receiver noise is to perform

a zero-baseline test where two receivers are connected to a single antenna

using a splitter. Differencing measurements between receivers results in the

combined receiver noise for a receiver pair. For the Ashtech Z-XII receivers

used in this thesis, Bona and Tiberius (2000) found the standard deviation

to be 0.2mm for the undifferenced L1 carrier noise.

The zero-baseline method eliminates preamplifier, sky, and ground noises

which dominate the receiver system noise (Langley, 1997). Short (10m)

baseline tests were also performed by Bona and Tiberius to provide an

estimate of the system measurement noise. For the same Ashtech Z-XII

receiver, the system measurement noise of 0.5mm was obtained for the L1

frequency (ibid.). Estimation of the measurement noise error is required
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for optimal filtering with other navigation systems. This is considered in

§3.6.

3.4.3.3 Phase centre variation

Measurements obtained by a GPS receiver are taken to the electrical An-

tenna Phase Centre (APC). The APC is vertically and horizontally offset

from the reference point of the antenna and is elevation and frequency

dependent. APC errors are reduced by differencing measurements taken

using the same antenna types which are aligned in the same direction

over short baselines. APC models provide frequency dependent offsets for

different elevation angles which can be used to reduce APC errors when

using, for example, different antenna types or longer baselines.

3.5 Differencing GPS observations

Differencing GPS observations is used in order to reduce or remove some

of the errors described in the previous sections. Differencing observations

works on the principle that GPS errors are highly correlated over short

baselines. A static base receiver is located at a known coordinate and

observes measurements from the same satellites as a second, roving receiver.

This method is known as Differential GPS (DGPS).

3.5.1 Single difference

The single difference observable is calculated by differencing observations

between either receivers or satellites. Differencing observations between

satellites removes the receiver clock bias whereas differencing between re-
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ceivers removes the satellite bias and reduces the satellite orbit error.

Atmospheric propagation effects are reduced through differencing given

the assumption that the differenced signals travel through a similar part

of the atmosphere. This means that an increase in the distance between

the roving receiver and the base receiver results in an increase in position

error.

Differencing observations results in an increase in measurement noise

due to combining the observations. Differencing does not remove mul-

tipath since multipath is both site and satellite dependent. Furthermore,

differencing measurements between receivers results in additional economic

and logistical factors.

3.5.2 Double difference

The double difference is formed by differencing observations between re-

ceivers and satellites. The double difference observation is convenient as

both the satellite and receiver clock offsets are removed in addition to the

reduction of atmospheric propagation errors. The double difference does

however result in an increase in measurement noise compared to the single

differenced observation.

The double difference error equations for pseudorange, carrier and Doppler

observations are written respectively as,

∆∇p = ∆∇ρ+ ∆∇dion + ∆∇dtrop + ∆∇dρ+ e∆∇ρ (3.6)

∆∇Φ = ∆∇ρ−∆∇dion + ∆∇dtrop + ∆∇dρ+ e∆∇Φ + ∆∇λN (3.7)

∆∇Φ̇ = ∆∇ρ̇−∆∇ḋion + ∆∇ḋtrop + ∆∇dρ̇+ e∆∇Φ̇ (3.8)

where ∆∇ is the double difference operator and ∆∇λN is the double
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difference ambiguity term.

For carrier measurements the (differenced) ambiguity term still remains

for both the single and double difference observations. The ambiguity term

can be removed by further differencing the measurements between epochs

resulting in the triple difference observation. The double difference obser-

vation is used extensively in this thesis for processing GPS measurements.

3.6 GPS Measurement Noise Estimation

This section considers the problem of estimating the stochastic proper-

ties of the GPS observations, i.e. constructing a fully populated variance-

covariance matrix. The stochastic model is required for optimal filtering

of GPS measurements and needs to take into consideration the inherent

observation correlations (Kim and Langley, 2001).

Temporal and spatial observation correlations caused by factors such as

signal propagation errors and orbit errors are reduced through differencing

measurements. Unmodelled temporal and spatial correlations will therefore

remain in the observations. Algebraic correlations introduced through dif-

ferencing the measurements are considered in the following section. Tech-

niques to estimate the random observation errors due to factors such as

measurement noise and temporally and spatially uncorrelated multipath

are considered in §3.6.2.

3.6.1 Algebraic Correlations

The measurement noise matrix is often considered to be a diagonal matrix

with the off-diagonal elements (correlations) set to zero (Wang et al., 1999).
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The differenced observations used in GPS are however inherently correlated

due to measurements being formed using the same GPS observations.

The software used in this thesis (see §4.5) uses double difference ob-

servations in the Kalman filter. The double difference observations are

formed by differencing the single difference observations to a satellite, j,

with the single difference observations of a reference satellite, j0. The

criteria for selecting the reference satellite is based on the highest satellite

elevation angle and whether a satellite has experienced cycle slips. The

single difference observations are formed for each satellite by differencing

the ranges for each satellite between the base and roving receiver. Because

each range is measured independently, the single difference observations are

assumed to be uncorrelated, with the associated matrix of measurement

errors being diagonal with the diagonal elements formed from the sum of

the variances for each range.

To account for the algebraic correlations in the double difference mea-

surement noise matrix, the following equation is considered which converts

the single difference observations to double differences,

∆∇Φ = J.∆Φ (3.9)

=



1 0 . . . 0 −1

0 1 . . . 0 −1

...
...

. . .
...

...

0 0 . . . 1 −1





∆Φ1

∆Φ2

...

∆Φj−1

∆Φj0


(3.10)

where ∆Φn is the nth single difference observation between receivers for j

observations and ∆Φj0 is the single difference observation to the reference

satellite.
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Gauss’ propagation of errors law is applied to the single difference co-

variance matrix using the relationship in Equation 3.9 to form the double

difference measurement noise matrix,

Rk =



σ2
∆Φ1

+ σ2
∆Φj0

σ2
∆Φj0

. . . σ2
∆Φj0

σ2
∆Φj0

σ2
∆Φ2

+ σ2
∆Φj0

. . . σ2
∆Φj0

...
...

. . .
...

σ2
∆Φj0

σ2
∆Φj0

. . . σ2
∆Φj−1

+ σ2
∆Φj0


(3.11)

where σ2
∆Φj

is the variance of the jth single difference observation. The

variance of the single difference is the sum of the variances of the two

independent range measurements. Therefore, if the measurement errors for

each range are considered equal, the above matrix simplifies to a matrix

with 4’s on the diagonal and 2’s on the off-diagonals, multiplied by the

measurement variance.

Equation 3.11 accounts for the algebraic correlations that exist between

measurements but other unmodelled spatial and temporal correlations may

exist that are not accounted for (Wang et al., 1999). Spatial and temporal

correlations may occur because of, for example, errors in satellite orbits,

antenna phase centre or tropospheric errors (Schwieger, 2001; Borre and

Tiberius, 2000).

3.6.2 Current Estimation Methods

As considered in the previous section, one approach for estimating the

measurement noise is to assume that each of the observations have equal

weight. This assumption can result in noisy satellite measurements cor-

rupting the state estimates. Two main techniques for correctly weighting

the measurement noise have been developed to date (Collins and Langley,
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1999). These are elevation dependent models and models that use the

signal to noise ratio output from the GPS receiver. These are discussed in

the following sections.

3.6.2.1 Satellite Elevation Angle

One form of weighting the observations is to use the satellite elevation angle

as an approximation to measurement noise as in, for example Satirapod and

Wang (2000) and Collins and Langley (1999). One equation to predict the

measurement error using the satellite elevation is to use an exponential

function such as in Xin-Xiang (1996),

y = a0 + a1e
−x
x0 (3.12)

where y is the carrier measurement noise and a0, a1 and x0 are empirically

derived constants for different receiver and antenna configurations.

While empirical results indicate that elevation angle can be used to

estimate measurement noise, it is the impact of the possible error sources

that increases for lower elevation satellites (Wieser, 2001). For example,

multipath is likely to increase with lower elevation, as will the noise caused

by atmospheric propagation. Therefore the elevation angle dependence

varies with the particular kinematic situation (Kim and Langley, 2001).

Furthermore, elevation dependence caused by the antenna gain pattern

will vary due to the physical orientation of the antenna (ibid.).

An alternative solution for reducing the effect of elevation dependence

is to use a higher elevation cut-off angle so that noisier observations are

not used. This may not be desirable because it reduces the number of

observations available which consequently reduces the geometrical strength
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of the GPS observations.

3.6.2.2 Signal-to-noise Ratio

Signal to noise ratio (SNR) has been identified as a potentially useful esti-

mate of measurement noise in, for example, Collins and Langley (1999), Sati-

rapod and Wang (2000) and Hartinger and Brunner (1998). SNR is often

represented by the carrier to noise power density ratio C/N0 with units in

dB-Hz. SNR data is available from most GPS receivers, although conver-

sion factors from SNR to C/N0 are not always readily available from GPS

receiver manufacturers. SNR is also used in algorithms that attempt to

estimate the signal multipath, for example Comp and Axelrad (1998).

The following equation is given in Langley (1997) to estimate the vari-

ance, σ2
L1,L2 of each satellite range measurement using the C/N0,

σ2
L1,L2 = SL1,L2.10

−C/N0
10 (3.13)

where SL1,L2 consists of the carrier loop noise bandwidth for L1 or L2, and

a conversion term from cycles2 to m2.

The C/N0 model determines how well the GPS receiver tracking loops

can track the signal which largely reflects the error in the GPS observation

(Langley, 1997). The C/N0 model is therefore potentially more applicable

to modelling the measurement error because it uses direct estimates of

observation noise from the GPS receiver.



Chapter 4

GPS and INS integration

using Kalman Filtering

4.1 Introduction

The Kalman filter is the commonly used method for integrating GPS

and INS measurements, for example in Howell and Tang (1994), Schmidt

(1989) and Wolf et al. (1997). Other integration algorithms such as neural

networks can be used but are not considered further in this thesis (See, for

example, Chiang et al. (2003)). This chapter describes the fundamental

principles of the Conventional Kalman Filter (CKF) and the way in which

it is used for integrating GPS and INS measurements.

Adaptive Kalman filtering techniques are introduced in Section 4.3 to

describe the methods which can be used to adapt the process and mea-

surement noise information used in the filter. The adaptive techniques

of Covariance Scaling, Adaptive Kalman Filtering and Multiple Model

Adaptive Estimation are described.

44
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Having examined conventional and adaptive Kalman filtering algorithms,

the way in which the Kalman filter algorithm can be implemented for GPS

and INS integration is considered. Here the centralised and decentralised

filter structures are examined and consideration is given to factors such as

aiding ambiguity resolution and cycle slip detection. Finally, the develop-

ment of the integration software used in this thesis is described.

4.2 Kalman filtering

The Kalman filter was first introduced by Kalman (1960). The Kalman

filter is a recursive algorithm which filters measurements using knowledge

of the system dynamics and the statistical properties of the system measure-

ment errors. The filter uses the measurements to compute the minimum

error estimate of a given number of states which are linearly related to

the measurements. The states are composed of a set of quantities that are

sufficient to model the motion of a system (Tsakiri, 1995). An integrated

GPS/INS filter typically estimates the error of nine navigation states, three

each for attitude, velocity and position. Sometimes four states are modelled

for attitude error when using the quaternion representation. The states

modelled for the software used in this thesis are,

x = [ ∂λ ∂φ ∂h ∂vN ∂vE ∂vD ∂ϕ ∂θ ∂ψ ]T (4.1)

Additional states can be modelled in the Kalman filter to compensate for

sensor specific errors. For a GPS/INS system, additional error states such

as sensor bias, scale factor, temperature dependent bias and axis non-

linearity can be included in the estimation process.
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The Kalman filter is well suited to navigation applications which contain

states that are time-variant. Often redundant measurements are available,

and the Kalman filter appropriately weights the measurements according to

the stochastic information provided. Another benefit of the Kalman filter

is its ability to operate in real-time. The full derivation of the Kalman

filter algorithm and further information on Kalman filtering is provided in

texts such as Brown and Hwang (1997), Cross (1994), Grewal and Andrews

(1993), Gelb (1974) and Maybeck (1979).

4.2.1 Dynamic Model

The dynamic model describes the change in the parameters of the state

vector with respect to time. The continuous time representation of the

dynamic model is given as,

ẋ = Fx+Gu (4.2)

where,

x is the system state vector

F is a dynamics matrix

G maps the disturbing forces to the states

u is the vector of disturbing forces

The discrete form of Equation 4.2 is given as,

xk+1 = Φxk + wk (4.3)

where Φ is termed the state transition matrix which relates the state vector

from the epoch k to k+1. The system noise, wk, is the vector of disturbing
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forces on the system. This is assumed to be a zero mean and uncorrelated

sequence. The covariance of the system noise is defined as,

E[wiw
T
j ] =


Qk i = j

0 i 6= j

(4.4)

The matrix Qk is termed the process noise matrix which in the GPS/INS

integration filter represents the estimates of the INS errors. The process

noise is approximated using the approximation (Shin, 2001),

Qk ≈ GQGT∆t (4.5)

where ∆t = tk+1− tk is the sampling interval and Q is the spectral density

matrix. Q is a diagonal matrix formed from the standard deviations of the

driving noise of the system (i.e. the accelerometer and gyro measurements).

The dynamic model, F , is formed using the error dynamics of the inertial

system (§2.6.1), and the state transition matrix is formed from the dynamic

model using the approximation,

Φ ≈ eF∆t (4.6)

= I + F∆t+
(F∆t)2

2!
+ . . . (4.7)

4.2.2 Measurement Model

The measurement model in the Kalman filter describes the geometrical or

physical relationship of the measurements to the filter states through the

linear model. The discrete measurement model at the epoch k is described

as,

zk = Hkxk + vk (4.8)

where,
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zk is the vector of measurements at the epoch k

Hk is the measurement model coefficient matrix (often termed

the design matrix) which defines the linear relationship

between the states and the measurements

vk is the measurement residual vector

The measurement noise is assumed to be a zero mean, uncorrelated random

sequence with covariance,

E[viv
T
j ] =


Rk i = j

0 i 6= j

(4.9)

For the GPS/INS integration filter, the measurement noise is formed using

the estimates of the GPS errors using a model such as those considered in

§3.6. A further assumption for the Kalman filter is that the process and

measurement noise are unrelated,

E[wiv
T
j ] = 0 ∀ i, j (4.10)

4.2.2.1 Linearisation and the Extended Kalman Filter

The Kalman filter is a linear estimation technique. It is observed from

Equation 3.1 that the raw GPS observations are non-linear with respect to

the required states, therefore the measurements need to be linearised. This

can be achieved in two ways. Firstly, the measurements can be linearised

about a nominal trajectory which does not depend on the measurement

data, this is termed linearisation (Brown and Hwang, 1997; Farrell and

Barth, 1999). Alternatively, the measurements can be linearised about the

predicted trajectory from the Kalman filter in what is termed an extended

Kalman filter (ibid.). In order for the linear assumption to remain valid and
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the filter to remain stable, the difference between the predicted estimate

and the measurement must remain small. For a low cost INS, the extended

Kalman filter implementation is used to reduce the build up of the inertial

errors which ensures that the difference between the estimated trajectory

from the INS and the GPS does remain small.

The measurement equation for the double difference GPS observations

is formed using,

zk =

 ∆∇ρobserved −∆∇ρpredicted

∆∇ρ̇observed −∆∇ρ̇predicted

 (4.11)

The measurement model is formed from the partial derivatives of the range

measurements to each satellite with respect to the navigation states. For

the states defined by Equation 4.1, the design matrix relating n double

difference range and range rate observations takes the form,

H =



∂∆∇ρ1

∂X
∂∆∇ρ1

∂Y
∂∆∇ρ1

∂Z
0 0 0 0 . . . 0

...
...

...
...

...
...

...
. . .

...

∂∆∇ρn
∂X

∂∆∇ρn
∂Y

∂∆∇ρn
∂Z

0 0 0 0 . . . 0

∂∆∇ρ̇1

∂X
∂∆∇ρ̇1

∂Y
∂∆∇ρ̇1

∂Z
∂∆∇ρ̇1

∂Ẋ

∂∆∇ρ̇1

∂Ẏ

∂∆∇ρ̇1

∂Ż
0 . . . 0

...
...

...
...

...
...

...
. . .

...

∂∆∇ρ̇n
∂X

∂∆∇ρ̇n
∂Y

∂∆∇ρ̇n
∂Z

∂∆∇ρ̇n
∂Ẋ

∂∆∇ρ̇n
∂Ẏ

∂∆∇ρ̇n
∂Ż

0 . . . 0


(4.12)

where the coordinate partials are formed by,

∂∆∇ρ
∂x

=
∂∆∇ρ̇i
∂ẋ

= −x
i
s − x
ρi

+
xbs − x
ρb

(4.13)

and,

∂∆∇ρ̇
∂x

= − ẋ
i
s − ẋ
ρi

+
ẋbs − ẋ
ρb

+ (4.14)
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xis − x
ρ3
i

[(xis − x)(ẋis − ẋ) + (yis − y)(ẏis − ẏ) + (zis − z)(żis − ż)]−

xrs − x
ρ3
r

[(xbs − x)(ẋbs − ẋ) + (ybs − y)(ẏbs − ẏ) + (zbs − z)(żbs − ż)]

where xis and xbs are the coordinates of the satellite i and reference satellite

b respectively.

4.2.3 Kalman filter algorithm

The Kalman filter is an iterative filtering procedure which can be divided

into two steps of prediction and measurement update. In order to begin

the iterative process the filter needs to be initialised.

4.2.3.1 Initialisation

The Kalman filtering algorithm begins with estimating the initial state

estimate x̂(−)

0 and the corresponding covariance matrix P
(−)
0 . The initial

estimate for the states is provided by an a priori estimate of the state

which has an associated covariance of,

P0 = E[(x0 − x̂0)(x0 − x̂0)T ] (4.15)

where x0 is the true value. P0 is usually formed using an estimate of the

variance with the initial correlation between the filter states considered to

be zero (Chen, 1992).

4.2.3.2 Prediction

The first step of the Kalman filter iteration is to predict the estimate of

the state x̂(−)

k based on the previous best estimate of the state from the

previous epoch, x̂(+)

k−1. This is achieved through using the state transition
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matrix Φ,

x̂(−)

k = Φx̂(+)

k−1 (4.16)

The corresponding predicted covariance matrix defined as P
(−)
k = E[x(−)

k x(−)

k
T

],

is also propagated to the next epoch using the equation,

P
(−)
k = ΦP

(+)
k−1ΦT +Qk−1 (4.17)

For the integration software in this thesis, the state prediction (Equa-

tion 4.16) is not required. This is because the INS is updated using the

Kalman filter error state estimate from the previous epoch in a closed

loop, (§4.4.1). Therefore, the predicted state at each epoch is zero for all

states. The Kalman filter prediction stage is only used to predict the second

moment (covariance) information of the inertial error.

4.2.3.3 Measurement Update

The measurement update phase of the Kalman filter algorithm combines

the measurement, zk, with the predicted estimate of the state. The in-

novation vector is introduced to the filter as the difference between the

measurements and the predicted estimate,

v(−)

k = zk −Hkx̂
(−)

k (4.18)

The innovation sequence is assumed to be a Gaussian white noise sequence

and is used as the basis for the adaptive filtering techniques considered in

§4.3. The Kalman gain is the weight between the new innovation and the

predicted state and is formed using the equation,

Kk = P
(−)
k HT

k (HkP
(−)
k HT

k +Rk)
−1 (4.19)
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The state estimate is then updated using the innovations weighted by the

filter gain to give the measurement update filtered estimate,

x̂(+)

k = x̂(−)

k +Kkv
(−)

k (4.20)

The corresponding measurement update covariance matrix is then com-

puted,

P
(+)
k = (I −KkHk)P

(−)
k (4.21)

Numerical stability problems can occur when using this equation due to

finite computer word length. The U-D factorisation method is a mathe-

matically equivalent alternative to the Kalman filter algorithm which has

improved numerical behaviour (see Brown and Hwang (1997) or Chen

(1992)). A simpler method to improve the numerical stability is to use

the Joseph form of the covariance update which has natural symmetry

given by,

P
(+)
k = (I −KkHk)P

(−)
k (I −KkHk)

T +KkRkK
T
k (4.22)

The Joseph form of the covariance update is used in this thesis.

4.2.3.4 Observability

Observability is the ability to determine a state from a given sequence of

measurements. For all of the states to be observable, the matrix,

Ξ =
[
HT ΦTHT (ΦT )2HT . . . (ΦT )n−1HT

]
(4.23)

must be of full rank (Gelb, 1974). In, for example, Ford et al. (2001), it is

demonstated that for a static INS with unknown gyro bias errors, not all of

the states are observable using position updates while the state transition
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matrix is constant. If the system moves (hence changing the elements of the

state transition matrix), all the states become observable to some degree

(ibid.). Therefore, it is important to consider that it is not always possible

to determine the states from a given set of measurements.

4.3 Adaptive Kalman filtering methods

One of the assumptions required for the Kalman filter to provide the opti-

mal estimate of the state is that the dynamic model is effectively modelled

and that the a priori covariance matrices for process and measurement

noise contain the correct statistics (Wang et al., 1999). In reality, the

measurement noise is not constant due to GPS errors sources such as

atmospheric conditions, satellite elevation angle and satellite geometry.

Similarly the model weighted by the process noise matrix is likely to vary

according to inertial error sources such as changing vehicle dynamics, nu-

merical integration errors and sensor errors.

A similar problem for static systems is experienced in least squares

processing. For least squares it is assumed that all variance terms are known

a priori which is not always the case. Variance Component Estimation

(VCE) is an iterative numerical procedure that is used to improve the

quality of the variance estimates by applying a scale factor to the errors of

each observation type. More information on least squares estimation can

be found in Cross (1994) and Rao (1965) and details of VCE can be found

in Caspary (1987).

In the following sections, three algorithms are identified for adapting

the measurement and process noise matrices used in the Kalman filter.
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Collectively these are termed adaptive Kalman filtering algorithms. The

three algorithms described are covariance prediction, adaptive Kalman

filtering and Multiple Model Adaptive Estimation (MMAE). Therefore the

distinction should be made between adaptive Kalman filtering (which is

a generic term for a Kalman filter where the stochastic information is

automatically adapted in the filter) and the adaptive Kalman filter (which

is one particular algorithm that achieves this).

4.3.1 Innovation and residual sequences

The innovations and residuals, v(−)

k and v(+)

k , respectively, are the key

to adaptive estimation in all the adaptive techniques considered in this

thesis. The innovation is the difference between the new measurement and

the predicted state (Equation 4.18), whereas the residual is the difference

between the measurement and the corrected state provided by the Kalman

filter,

v(−)

k = zk −Hkx̂
(+)

k (4.24)

The innovations and residuals therefore contain information about the

dynamic and measurement model and the measurement and process noise.

The adaptive Kalman filtering algorithms described in the following

sections essentially work on the principle that if a innovation or residual

value is small, the filter is working well. Conversely, if the value is large,

there is a deficiency in the dynamic model, the measurement model, or

the a priori stochastic information used in the filter. The well established

inertial error model is considered to be sufficiently known (Mohamed, 1999;

Wang et al., 1999). Therefore, the innovation or residual sequence is
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used for adapting the weight between the measurements and the states

(covariance scaling), directly estimating the measurement or process noise

matrices (adaptive Kalman filtering), or to identify the correct a priori

stochastic model (multiple model adaptive estimation). These algorithms

are considered in the following sections.

The innovation sequence is assumed to be Gaussian and white (Mehra,

1970). Although the innovation sequence contains information obtained

from the previous states, the innovation sequence still provides the most

relevant source of information for filter adaptation (Mohamed, 1999). It

is also important that blunders (for example cycle slips) are removed from

the measurements in order that the error is not absorbed into the model.

4.3.2 Covariance prediction

The simplest way to adapt the weight between the measurements and the

system prediction is to apply a scale factor, Sk, to the predicted covariance

matrix as given in Hu et al. (2001),

P
(−)
k = Sk(ΦP

(+)
k−1ΦT +Qk−1) (4.25)

Applying a scale factor Sk > 1 will result in the more weight being given

to the measurements in the filter whereas Sk = 1 results in a return to

conventional Kalman filtering.

The scale factor can be defined empirically, for example, the inertial

sensor errors are likely to be larger before dynamic alignment. An empirical

scale factor can be used to artificially inflate the predicted covariance to give

the measurements a higher weighting during alignment. Hu et al. (2001)

provide a method for adapting the scale factor determined by the dynamic
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and observation model accuracy for GPS measurements. This is achieved

by computing the ratio between the new innovation and the average of a

previous window length of innovations. When the current innovation is

larger than the average, the ratio is used to scale the predicted covariance

in order to give more weight to the measurements.

4.3.3 Adaptive Kalman filter

The adaptive Kalman filter estimates for the measurement and process

noise matrices are based on the covariance-matching technique proposed

by Mehra (1972). The idea is to make the residuals consistent with their

theoretical covariance by altering the process or measurement noise (ibid.).

4.3.3.1 Measurement noise covariance estimation

An approximation to the innovation covariance can be obtained using the

previous innovation sequence by averaging across a window of N epochs.

The covariance estimate is given as,

Ĉ
v

(−)
k

= E[v(−)

k v(−)

k
T

] ≈ 1

N

k∑
j=k−N+1

v(−)

j v(−)

j
T

(4.26)

The Kalman filter covariance of the innovation sequence is given as,

C
v

(−)
k

= HkP
(−)
k HT

k +Rk (4.27)

The innovation based adaptive estimate of the measurement noise matrix

is formed by rearranging Equation 4.27 and substituting Equation 4.26 to

give,

R̂k =
1

N

k∑
j=k−N+1

v(−)

j v(−)

j
T −HkP

(−)
k HT

k (4.28)
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Mohamed (1999) provides a thorough derivation of the measurement noise

covariance matrix based on the maximum likelihood criterion.

Wang (1999) indicates that the innovation based adaptive estimate is

very sensitive to linearisation errors in the Extended Kalman filter. As a

result, Wang proposed that the measurement residual be used to adapt the

measurement noise. The measurement residual based adaptive estimate of

Rk is given as (ibid.),

R̂k =
1

N

k∑
j=k−N+1

v(+)

j v(+)

j
T

+HkP
(+)
k HT

k (4.29)

Wang also noted that Equation 4.29 is always positive definite as it is the

sum of two positive definite matrices whereas Equation 4.28 is not always

guaranteed to be positive definite. The residual based estimate requires a

minimal amount of extra computation over the innovation based estimate

since the term HkP
(+)
k HT

k is not already computed in the CKF algorithm.

These equations show that it is possible to obtain an estimate for the

measurement noise covariance using the approximation to the residual

covariance matrix and matrices used in the conventional filtering algorithm.

Such an adaptation adds a small amount of extra processing to the CKF

algorithm which can be considered negligible in the context of the over-

all data processing algorithm. Another potential benefit of the adaptive

measurement noise estimate is that is provides a full matrix containing an

estimate of both variance and covariance information.

The innovation covariance approximation uses an averaging window on

the last N epochs of the innovation sequence. It is important to use an

appropriate window length in order to provide the optimum weighting

between filter adaptivity and stability. Statistically, the sequence contained
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within the window is considered stationary, i.e. the statistical properties of

the process are constant with time. When the process is stationary for the

whole dataset, an infinite length window can be used (see Salychev (1998)).

4.3.3.2 Process noise covariance estimation

An adaptive estimate of the process noise covariance matrix is obtained

using the maximum likelihood derivation in Mohamed (1999) to give,

Q̂k = Ĉ∆xk − (ΦP
(+)
k−1ΦT − P (+)

k ) (4.30)

where Ĉ∆xk is the estimated covariance of the state correction sequence,

∆xk = x(+)

k − x
(−)

k (4.31)

A windowing function on the state correction sequence can be used to form

an approximation to the covariance in the same way that the innovation

covariance approximation was formed to give,

Ĉ∆xk ≈
1

N

k∑
j=k−N+1

∆xj∆xj
T (4.32)

Using the substitution ∆xk = Kkv
(−)

k , an approximation to the state cor-

rection covariance can also be formed using the innovation sequence by,

Ĉ∆xk ≈ KkĈv(−)
k

KT
k (4.33)

Equation 4.30 can be considered to be constructed of two parts. The

first part is the estimated covariance of the state correction. When the

estimated covariance is large, it indicates that the predicted state is of low

quality. Conversely, if the estimated covariance is small, it indicates that

the predicted state is a good estimate of the state at each epoch. The

second part of Equation 4.30 is the Kalman filter estimate of the difference
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of the a posteriori covariances between epochs. When the difference in the

a posteriori covariances is small, the approximation, Q̂k ≈ Ĉ∆xk , can be

made (Mohamed and Schwarz, 1999).

In a similar way to the adaptive measurement noise estimate, these

equations use matrices used in the CKF algorithm with a small amount

of extra processing required to compute the approximation to the state

correction covariance. Due to the approximations taking place in the esti-

mation of Q̂, the estimate is expected to be inferior to the estimation of R̂

(Mohamed, 1999). In addition, the estimate is not always guaranteed to be

positive definite (Wang et al., 1999). An appropriate window length for the

covariance approximation needs to be estimated and Equation 4.30 provides

a full process noise matrix which attempts to model any correlations that

may exist.

It should be noted that, from the derivation of the equation for R̂k, it is

assumed that the process noise matrix is known. Similarly, in the derivation

of Q̂k, the correct measurement noise matrix is required. Therefore, if

there is a deficiency in the stochastic model that is not being estimated,

the error will be incorrectly absorbed into the stochastic model that is

being estimated. For example, if the GPS measurement errors are being

estimated using Equation 4.28, and the inertial errors are larger than

a priori errors defined in the process noise matrix, the estimated GPS

measurement errors will incorrectly increase. Therefore it is important that

the stochastic model not being estimated is correct, and it also indicates

that the stability of such algorithms is likely to be reduced. The assumption

also means that both the R̂k and Q̂k matrices should not be estimated

simultaneously.
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4.3.4 Multiple Model Adaptive Estimation

Multiple Model Adaptive Estimation (MMAE) was first presented by Mag-

ill (1965). The multiple model filter processes a bank of Kalman filters each

using a different mathematical or stochastic model. The multiple model

filter can be used to identify a single correct state estimate or the state

estimate from each filter can be combined.

4.3.4.1 Algorithm

The Kalman filter innovation sequence is a white process with covariance

given in Equation 4.27. The Probability Density Function (PDF) for

each model is an estimate of the likelihood of a particular model being

correct and is a function of the innovation sequence and its corresponding

covariance. The PDF for the nth Kalman filter is given as,

fn(zk) =
1√

(2π)m|C
v

(−)
k

|
e
− 1

2
v

(−)
k

C−1

v
(−)
k

v
(−)
k

T

(4.34)

where m is the number of observations. By using Bayes law, the probability,

pn(k), that the nth model is correct at the epoch k is calculated using the

recursive equation,

pn(k) =
fn(zk).pn(k − 1)
N∑
j=1

fn(zk).pj(k)
(4.35)

for N possible models.

The processing methodology of MMAE is described in Figure 4.1. Here

it is shown that each of the Kalman filters are running in parallel, each

using different process noise, measurement noise or state transition matrix.

For each individual filter, n, the weight factor pn(k) is computed. The state

estimate from each filter can then be combined using the computed weight
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Figure 4.1: Multiple Model Adaptive Estimation (Adapted from Brown

and Hwang, 1997)

factors to form the optimal state estimate (Brown and Hwang, 1997),

x̂(+)

k =
N∑
j=1

pj(k)x̂(+)

kj
(4.36)

where x̂(+)

kj
is the state estimate of the jth Kalman filter. The optimal state

estimate covariance is given as,

P
(+)
k =

N∑
j=1

pj(k)
[
P

(+)
kj

+ (x̂(+)

kj
− x̂(+)

k )(x̂(+)

kj
− x̂(+)

k )T
]

(4.37)

The process is initialised using the a priori probability that a particular

model is correct. In most cases the probability is unknown, therefore the

probability is initialised by giving each of the models equal weighting.

The MMAE filter can be used in different configurations. The above

algorithm describes a filter that will converge to a fixed weighting of each

model (Welch and Bishop, 2001). In many instances, it is desirable to force

the filter to remain adaptive by using an ad hoc method such as imposing an

artificial lower bound on the model probabilities (ibid.). Another method

for avoiding model convergence is to directly weight each of the models
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according to the probability density function at each epoch using (Welch,

1999),

pn(k) =
fn(zk)
N∑
j=1

fj(zk)
(4.38)

The largest limitation of MMAE is the large computational burden im-

posed from running simultaneous Kalman filters. However, the continuing

advances in computer processor technology mean that it is now feasible

to run multiple Kalman filters even for real time navigation systems (see

§7.4.4).

To date, applications for MMAE have primarily been for fault detection.

For example Hanlon and Maybeck (2000) used multiple Kalman filters to

test different failure status models for actuator failure detection. Similarly,

MMAE is used in Chen (1992) for fault detection in GPS carrier measure-

ments (i.e. cycle slips).

4.4 Integration architectures

GPS and inertial measurements can be integrated using a Kalman filter in a

variety of configurations. This section identifies three levels of integration:

decentralised, centralised and full.

4.4.1 Decentralised

The decentralised filter implements two separate Kalman filters and is

described in Figure 4.2. Examples of decentralised filters can be found

in Sun (1998) and Wolf et al. (1997). The figure divides the integration

process into three stages.
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1. Measurement. Firstly the GPS and IMU data is discretely sampled.

2. Pre-processing. The observations for the separate Kalman filters

are formed. The GPS filter uses the differenced range and range

rate observations. The inertial measurements are mechanised using

the algorithms discussed in §2.3.3 to provide position, velocity and

attitude measurements.

3. Filtering. The filtering stage first processes the GPS observations to

provide an estimate of position and velocity. The output is differ-

enced with the INS observations to provide the measurements for the

integration filter. The integration filter estimates the error in each of

the states and the navigation errors are then fed back to correct the

INS. This is termed closed loop filtering and is used to reduce the

linearity errors.

The navigation filter measurements are described by,

zk = (X̂INS − X̂GPS) (4.39)

= (X + δX + nINS)− (X + nGPS) (4.40)

= δX + n (4.41)

where,

X̂ is the estimated navigation parameter from each system

X is the true navigation parameter

δX is the inertial navigation parameter error

n is the random noise
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Figure 4.2: Decentralised Filter Structure
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It should also be noted that the GPS observations are compensated for

the lever-arm offset between the origin of the IMU body frame and the

GPS phase centre. The previous system of equations shows that the mea-

surement is formed by differencing the GPS and INS navigation parameter

which is equivalent to the actual inertial navigation error plus random

noise. Using this architecture, the system works as a GPS corrected inertial

system.

The two dashed lines represent configurations which form closer coupling

of the measurements whilst retaining the decentralised filtering structure.

The INS can be used to provide cycle slip detection and correction while the

integrated position and covariance information can be used in the ambiguity

resolution algorithms. The GPS filter still, however, requires at least four

range observations to compute a solution.

The primary advantage of the decentralised filter lies in the ease of

implementation. The position and velocity output of a GPS receiver can be

used directly in the filter without need to process the raw GPS observations.

Moreover, the integration approach is conceptually easier to understand

and the computational burden of the integration Kalman filter is minimal.

The system is robust in the sense that if one of the systems were to fail,

navigation could still be provided by the other sensor.

From a statistical viewpoint, Brown and Hwang (1997) identifies two

problems with the decentralised filtering approach. Firstly, the estimation

error in the output of the GPS filter is likely to contain time correlations

which can be difficult to account for and may contradict the whiteness

requirement for the Kalman filter. Secondly, unless the state vector models

all of the sub-system errors, measurement information may be lost between
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the separate filters.

One method of reducing the measurement correlations is to use the

output of the GPS filter less frequently assuming that the error growth

of the INS is still small over this period (ibid.). Also, if available, the

covariance of the GPS filter can be used to form the measurement noise in

the INS filter. Alternatively, the raw measurements can be used in a single

filter.

4.4.2 Centralised

The centralised filter architecture is represented by Figure 4.3. Here,

the observations are formed using Equation 4.39 where the navigation

parameter, X, is substituted for the differenced range and range rate

observations. The INS measurements are used to form the equivalent GPS

range and range rate observations. The error estimate from the Kalman

filter is fed back to correct the INS.

As a consequence of the observations being combined in the single filter,

the filter provides the global optimal solution for the system (Brown and

Hwang, 1997). The non-linearities in the filter are reduced because the

predicted observation is provided using the inertially predicted trajectory.

Furthermore, by using the inertial trajectory, GPS observations can still

be used in the filter when less than the required 4 satellites are available.

For the centralised filter structure, the inertial position is readily avail-

able for cycle slip detection and correction. The time to ambiguity resolu-

tion may be reduced due to the improved estimate of receiver position used

to form the float solution in the ambiguity search. This improvement will

depend on the quality of the inertial sensor and its maintained navigation
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performance during GPS outages.

A potential problem is that the centralised filter will fail if the inertial

system fails. In the decentralised filter, the navigation solution would still

be available from the GPS filter. In practise the filter could be reconfigured

to work as a conventional GPS filter to add system robustness. The

centralised filter is also more difficult to implement due to the required

handling of the raw GPS observations.

4.4.3 Full

The full integration architecture uses the measurements from the inertial

system to aid the carrier tracking loops in the GPS receiver. This is

sometimes termed deeply coupled filtering. In a conventional receiver, the

bandwidth of the carrier tracking loop has to be large enough to maintain

lock during large vehicle accelerations (Farrell and Barth, 1999). The

acceleration information from the inertial system can be used to reduce

the bandwidth of the carrier tracking loop which improves the signal-to-

noise ratio of the receiver making it more resistant to interference (ibid.).

This implementation is not considered in this thesis because it requires

hardware access to the GPS receiver carrier tracking loops which is not

available in standard receivers. Examples of using inertial observations to

enhance the carrier tracking loop can be found in Kreye et al. (2000) and

Gustafson et al. (2000).
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4.4.4 Discussion

The previous sections have identified the various configurations in which

inertial sensors and GPS can be combined. The terms loosely and tightly

coupled are often used instead of the terms decentralised and centralised.

The term tightly coupled is used because, when using the centralised filter-

ing structure, the inertial measurements are usually used to aid the process-

ing of the GPS measurements. However, as described in Section 4.4, the

decentralised filter can also be used to aid GPS processing. Consequently,

in this thesis the terms centralised and decentralised refer to whether the

measurements are processed in a single Kalman filter, or two separate

Kalman filters. The use of inertial measurements to add robustness to

the overall system through providing cycle slip detection and correction,

improvement in ambiguity resolution performance and system integrity is

termed tight coupling.

4.5 Integration software

The following sections describe the development of the GPS and INS in-

tegration software, KinPosi, which is used throughout this thesis. KinPosi

was developed by the author by combining the IESSG’s kinematic GPS

software, KinPos, with loosely coupled GPS/INS software also developed

at the IESSG.

4.5.1 KinPos

KinPos is the IESSG’s post processing kinematic GPS software, originally

developed by Dr Wu Chen. KinPos was developed for estimating position
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and tropospheric delay at a moving GPS receiver (Dodson et al., 2001).

The software is written in FORTRAN and processes L1, L2 or the iono-

spherically free observable, L0, using double difference observations.

The original GPS only structure of KinPos is described by Figure 4.4.

The processing options and filenames are defined in a control file that is read

at the initialisation stage. At this point other initial values for processing

are defined. KinPos uses SP3 and NOTT2 file formats that are obtained

from Rinex format files using the software FILTER and CON2SP3 which

are part of the IESSG’s GPS Analysis Software (GAS) package. The GPS

data is read in and the states are propagated to the next epoch using a

choice of random walk, constant velocity or constant acceleration models

(see Tsakiri (1995)). The double differenced observed minus predicted

observations are then computed. The states are updated with pseudo-

range and carrier observations sequentially with the updated state from

the pseudorange observations forming the position estimate for ambiguity

resolution. The updated state estimate is also used as the state prediction

for the carrier phase Kalman filter update when the carrier phase ambi-

guities have been resolved. Doppler observations can be used in both the

pseudorange and carrier phase updates.

4.5.1.1 Ambiguity resolution

For ambiguity resolution, the double difference ambiguities are estimated

from the real valued double difference float ambiguities using least squares.

KinPos uses the Least Squares AMBiguity Decorrelation Adjustment (LAM-

BDA) from Delft University of Technology, Netherlands (De Jonge and

Tiberius, 1996) to search for the integer ambiguities.
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To estimate the ambiguities, the LAMBDA algorithm first uses a space

projection technique to transform the ambiguities and their corresponding

covariance to another space that is easier to analyse (Mohamed, 1999).

As a result, the satellite to receiver geometry changes and the resulting

ambiguities decorrelate (ibid.). In the transformed space, a sequential

least squares search is performed which results in a number of possible

ambiguity sets. The double differenced float ambiguity is corrupted largely

due to residual spatially correlated errors, receiver noise and multipath.

Consequently, the norm of the integer ambiguity candidate and the float

ambiguity is computed in the transformed space as a measure of the quality

of the ambiguity fix, and are used to identify the correct ambiguity set. The

prospective ambiguity set is then transformed back to the ambiguity space



Chapter 4. GPS and INS integration using Kalman Filtering 71

using the inverse of the transform.

The double differenced carrier observations are corrected with the es-

timated ambiguities and are used to update the states in the Kalman

filter. A cycle slip, loss of lock, or change of base satellite results in the

reinitialisation of the ambiguity resolution process. Further details of the

LAMBDA ambiguity resolution algorithm can be found in De Jonge and

Tiberius (1996). More information on ambiguity resolution in KinPos can

be found in (Pattinson, 2002).

4.5.2 Inertial Software

The inertial software on which KinPosi is based is a post processed, loosely

coupled 12 state Kalman filter written in the C programming language

developed by Dr Hu at the IESSG. The software provides the algorithms

described in §2.5.2 for mechanising the raw inertial measurements in the

navigation frame. GPS position and velocity is read in from a file and

integrated with the inertial observations using the decentralised architec-

ture described in §4.4.1. The original Kalman filter contained 9 navigation

states and 3 gyro bias states.

4.5.3 KinPosi

The above GPS and inertial software was combined and extended by the

author to produce KinPosi. KinPosi provides both decentralised and cen-

tralised integration methods utilising double difference carrier phase GPS

measurements. The following sections provide an overview of the modifi-

cations made to the original software.
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4.5.3.1 Modified Filter Architecture

The inertial software was converted to FORTRAN and combined with

the KinPos code. This allows the inertial measurements to be used for

cycle slip detection/correction and ambiguity aiding. KinPosi provides the

centralised and decentralised filtering structures described in 4.4. The mod-

ifications to accommodate inertial measurement processing are indicated in

red in Figure 4.4.

For the decentralised and centralised filtering structures, the inertial

processing options are selected from a modified KinPos control file. A

control file example for KinPosi is provided in Appendix B. After each

GPS epoch has been read in, the inertial data is read and is recursively

mechanised up to the current GPS epoch.

For the centralised filtering structure, the GPS only state transition

matrix and process noise matrices are replaced with the inertial error model

matrices. The observations for the Kalman filter are formed by using the

inertially predicted position and velocity to form range measurements. The

observed minus predicted double difference observations are then formed

using the inertial ranges and the GPS observations. The filter follows the

same control flow as the GPS only filter except the state estimation is used

to compensate the INS errors, and the state estimates are reset in a closed

loop. Using this methodology, the ambiguity estimation algorithm uses the

inertial/GPS observations.

For the decentralised filter, the inertial measurements are again mech-

anised up to the GPS epoch when the data is read in. This also allows

the INS to be used for cycle slip detection and correction if required, and
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for ambiguity resolution by forming the inertially predicted ranges from

the inertial position and velocity estimates. The conventional GPS control

flow is then used and the position and velocity is used to update the INS

in a separate Kalman filter.

Cycle slip detection is provided by comparing the inertially predicted

change in range estimate to the increment in carrier phase between epochs.

If the difference in range increments is larger than a threshold value then a

cycle slip is detected. The value of the nearest integer to the difference in

range increments corresponds to the inertial estimate of the cycle slip and

can be used to correct the carrier observation. The ability to detect and

resolve cycle slips is dependent on the specification of the inertial sensor,

and the accuracy of the INS alignment. For example, in Figure 8.6, the

difference between the predicted position from a low cost IMU and the

position from the GPS can be as large as 12cm, even after INS alignment

has taken place. Therefore cycle slips of 1 cycle cannot be detected and

corrected confidently using such a low cost sensor.

In addition to the cycle slip check, the integrity of the Kalman filter

innovation sequence can be checked using the 3-σ test,

|v(−)

k |i ≤ 3
√

[HkP (−)HT
k +Rk]i,i (4.42)

where i represents the ith vector element and i, i is the ith matrix diagonal

element. If the innovation measurement is larger than the predicted 3-σ

variance, the measurement is omitted from the Kalman filter update.
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4.5.3.2 Inertial navigation improvements

Several improvements were made to the inertial navigation software over

the original software described in §4.5.2. The static alignment routines

described in §2.5.1 were added, and also the initial alignment values can

be specified in the control file. The sensor error model in the Kalman filter

was extended to include states for gyro and accelerometer bias, scale factor,

temperature dependent bias and misalignments using the error models

described in §2.6.3.

4.5.3.3 GPS modifications

Some further modifications were made to the GPS processing algorithms

in the original KinPos software by the author. The software was updated

to include Doppler measurements in the Kalman filter in order to improve

velocity estimation for updating the inertial measurements. The stochastic

models described in §3.6 were also added to the software in order to improve

the stochastic modelling of the GPS observations.

4.5.3.4 Adaptive Kalman filtering algorithms

KinPosi was further modified to include the adaptive Kalman filtering

methods identified in §4.3. The adaptive Kalman filtering algorithms can

be used with both the centralised and decentralised filtering structures.

For centralised filtering the adaptive estimate of measurement noise can be

used in the ambiguity resolution routine.



Chapter 5

Development of a Navigation

System Simulator

5.1 Introduction

A problem always encountered with evaluating the performance of an in-

tegrated GPS and INS system is obtaining reference information for kine-

matic datasets. The problem faced is that integrated GPS and INS systems

potentially provide one of the highest accuracy methods for position, ve-

locity and attitude estimation in a dynamic environment.

Possible solutions for providing reference information for position, ve-

locity and attitude include using testing facilities such as the SESSYL test

track at Laboratoire Central des Ponts et Chaussés (LCPC) (see LCPC

(2003)), or using the parameters obtained from a photogrammetric bundle

adjustment when the INS is mounted to a camera in a mapping system,

for example in Škaloud et al. (1996). Another method that can be used

when using lower cost inertial sensors is to compare the low cost GPS/INS

75
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solution to that obtained using a higher grade GPS/INS system. However,

such solutions are expensive and can also be restrictive in aspects such as

operating dynamics and strict control over possible error sources.

The Navigation System Simulator (NSS) is a GPS and inertial measure-

ment software simulator. The software was developed by various authors at

the IESSG to provide measurement simulation for developing and testing

algorithms for the integration of GPS and (principally low cost) INS mea-

surements. The simulator is rare in its ability to simultaneously model GPS

and IMU measurements which allows full analysis of the results obtained

from an integrated GPS/INS system. This includes being able to use the

centralised integration architecture as described in the previous chapter.

Originally, the NSS was developed for GPS only measurement simu-

lation. The inclusion of inertial simulation algorithms was part of the

European Space Agency (ESA) Low Cost Navigator (LCN) project. The

author’s role was to validate the algorithms and models used for simulation.

The author also extended some of the models to more accurately model

the low cost inertial sensor used in this thesis. This chapter documents

the models and algorithms used in the measurement simulation, with par-

ticular reference given to the contribution provided by the author to the

development of the inertial simulation. The NSS is used later in Chapters 6

and 7 to provide test data with full truth information for the development

and testing of new GPS and INS integration algorithms.
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5.2 GPS simulation

The GPS data simulator generates pseudorange, carrier and Doppler data

consistent with the US DoD GPS system described in Chapter 3. The

error sources for the GPS measurements are also described in Chapter 3.

The following section gives a brief overview of the models used for the

simulation of the GPS measurements. The error models and corresponding

model parameters are specified in the control file for the NSS, an example

of which is found in Appendix C.

5.2.1 Orbital errors

The ephemeris information for simulation is obtained from an input SP3

file. The ephemeris information obtained from the SP3 file is considered

the true position and velocity of the satellite. Satellite orbit errors are

introduced by using a different ephemeris file for processing to that used

for constructing the simulated data. For example, the IGS precise em-

phemerides can be used for simulation, whereas the data can be processed

using the broadcast ephemeris.

5.2.2 Clocks simulation model

The satellite clock errors can be generated by using the clock error from

an SP3 file or the polynomial coefficients from a Rinex file. The NSS also

provides the option to create randomly generated polynomial coefficients

for each satellite using the polynomial (Chao, 1996),

dt = a0 + a1(T − T0) + a2(T − T0)2 (5.1)
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where a0, a1 and a2 are the randomly generated coefficients, T is the GPS

time and T0 is the reference time for computing the polynomial. A random

component of the clock error is simulated using a 1-sigma variance specified

in the control file.

The receiver clock errors are also simulated using the drift model in

Equation 5.1. The coefficients are randomly generated for each receiver. A

random clock error is also modelled with the 1-sigma variance specified in

the control file.

5.2.3 Atmospheric simulation models

The NSS simulates atmospheric propagation errors using standard atmo-

spheric models. A number of tropospheric models are available in the sim-

ulator, for example Magnet or Saastamoinen. For more information about

tropospheric delay models see Baker (1998). The Saastamoinen model is

used for all simulation runs in this thesis and is a function of elevation

angle, total barometric pressure, absolute temperature, water vapour and

geodetic height. The simulator uses preset standard meteorological data

for the model.

5.2.4 Multipath simulation model

Multipath is simulated using a single reflection surface with a random

component. The random noise component is specified as a 1-sigma noise

value in the control file. The reflection surface is randomly initialised for

each satellite and remains fixed for the reference station. The reflection

surface for the roving receiver is randomly generated at each epoch when
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the receiver is moving.

5.2.5 Measurement noise

Receiver measurement noise is simulated for all measurements simulated

by the NSS. The NSS simulates white noise with 1-sigma error variance

specified in the control file.

5.2.6 Cycle slips

Cycle slips are introduced by adding a random integer number of cycles to

the carrier data. Cycle slips can occur on L1, L2 or L1 and L2 frequencies.

The rate and magnitude of the cycle slips can be altered and all cycle slips

are written to a log file. Cycle slips are not simulated for the datasets in

this thesis.

5.2.7 GPS attitude model

GPS attitude can be achieved using multiple roving antennas on a fixed

baseline. However, as there is no GPS attitude processing software available

at the IESSG, provision for simulating multiple kinematic GPS observations

has not been included. GPS attitude observations are instead simulated

by adding white noise to the attitude measurements in the trajectory file

with zero mean and 1-sigma variance as specified in the control file. The

misalignment between GPS and INS attitude observations is considered in

§5.4.2.
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5.3 Inertial models

The models specific to the generation of the inertial measurements are

described in this section. The model types and their corresponding values

are specified in the NSS control file.

5.3.1 Inertial sensor error equation

The output from the gyros and accelerometers are considered simultane-

ously in this section since the error models are largely formed using the same

error characteristics. The error model is given for a triad of orthogonally

mounted sensors and therefore includes sensor misalignment. The inertial

sensor measurement can be written in terms of the vector of the true

measurement, l, with error characteristics formed using the equation,

l̂ = l + b+ Sl +Nl + ε (5.2)

where,

l̂ is the measurement obtained by the sensor in the body frame

l is the actual measurement vector

b is sensor bias vector

S is the scale factor error matrix

N is the misalignment matrix

ε is the vector of sensor noise

The errors given in Equation 5.2 are examined in detail in the following

sections.
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5.3.2 Bias

The model used in the NSS to model the sensor bias from Equation 5.2 is

given as (Dorobantu and Zebhauser, 1999),

b = b0 + b1t+ bc1 + (bT1 + bT2∆T )∆T (5.3)

where b0 is the g-independent bias, b1 is the bias variation, bTn is the

nth order temperature dependent bias and bc1 is a cross-axis sensitivity

term. ∆T is the difference between the physical temperature, T , and the

calibration temperature of the sensor.

The g-independent bias is the constant bias which is independent of the

motion of the sensor. The bias may vary from switch-on to switch-on, but

is considered constant while the sensor is in operation.

The bias term includes the first order cross axis sensitivity term, bc1.

Cross axis sensitivity is caused by imperfections in the sensor assembly

resulting in the sensor incorrectly responding to a force perpendicular to

the sensitive axis. The cross axis sensitivity is modelled as a percentage of

the force sensed by the other two axes of the sensor triad.

The original bias model was extended by the author to include two fur-

ther bias terms: bias instability and bias temperature dependence. These

terms were added in accordance with the specifications quoted by manu-

facturers of inertial sensors, and results obtained from laboratory testing.

The bias variation term was included since the sensor bias is unlikely to

be constant over time. If the sensor bias were to be completely constant,

the error would be deterministic and could be removed from the Kalman

filter once it is resolved. The bias variation is modelled as a first order

Gauss-Markov process with the power spectral density and correlation time
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specified in the control file.

The temperature dependence term was included due to the temperature

sensitivity experienced by low cost MEMS sensors (Yazdi et al., 1998).

Equation 5.3 also contains linear and quadratic terms for the sensor tem-

perature dependence. The difference, ∆T , between the actual temperature

and calibration temperature is modelled in the simulator by a polynomial

expression. The coefficients for the polynomial are specified in the control

file. The temperature dependent component is likely to be repeatable

and can be reduced through calibration using a temperature controlled

environment, hence the temperature dependent bias is not always modelled.

Figure 5.1 shows an example of the temperature sensitivity for the low

cost Crossbow AHRS-DMU-HDX sensor used in Chapter 8. The figure
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Figure 5.1: Gyro temperature sensitivity

shows the output of one of the gyros while the sensor is stationary and the

temperature increases by 8◦C. It is clear from the figure that the sensor

bias varies by 0.24◦/s over the temperature change.
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5.3.3 Scale factor

The scale factor is the ratio between the sensor input and sensor output.

The scale factor error model in the NSS is represented by the 3× 3 matrix

(Schwarz and El-Sheimy, 2000),

S = S1 + S2l (5.4)

where Sn is the matrix of nth order scale factor errors. The scale factor

matrix is a diagonal matrix with the errors for the x, y and z axes forming

the diagonal elements of Sn. Scale factor calibration can be achieved in

the laboratory by incrementing the acceleration or rotation rate and fitting

a curve to improve the model (Lawrence, 1999). Small changes in scale

factor error for inertial sensors can occur due to temperature changes or

because of g-dependent forces (Titterton and Weston, 1997). The scale

factors modelled in NSS are constant for each processing run.

5.3.4 Non-orthogonality

The non-orthogonality of the instrument axes is represented by the skew-

symmetric matrix, N , in Equation 5.5. The misalignment of the sensor axes

is caused by the imperfections in the construction of the sensor assembly.

The axis misalignment results in a random error for kinematic applications

when the vehicle undergoes frequent manoeuvres. Under constant velocity

conditions the error becomes systematic. The elements are formed using

the angular misalignment Mab which is the misalignment from the a-axis
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to the b-axis.

N =


0 Mxz −Mxy

−Myz 0 Myx

Mzy −Mzx 0

 (5.5)

5.3.5 Sensor noise and quantisation

Noise in the output of the inertial sensors is caused by factors such as

cabling and A-D converter noise, as well as noise caused by the inertial

sensors themselves. NSS models sensor noise by adding white noise with

standard deviation specified in the control file.

The quantisation error defines the minimum resolution of an inertial

measurement and also contributes to the sensor noise. In a physical INS,

quantisation error is dependent on the specification of the A-D converter

used (bit resolution, full scale range and input gain) and the full output

range of the inertial sensor. For example, the smallest resolution of voltage

or Least Significant Bit (LSB) of the 16-bit ADAC PCM-5516-16 A-D

converter using zero is gain given by,

LSB =
Full scale range

Bit resolution
=

20V

216
≈ 3× 10−4V (5.6)

For example, for the Crossbow AHRS-DMU-HDX used in Chapter 8, the

conversion from raw voltage output to standard units can be approximated

by 1V ≈ 10ms−1 and 1V ≈ 36.62◦/s (Crossbow Technology Inc., 1999).

This results in a quantisation error for the accelerometers and gyros of

0.003ms−2 and 0.011◦/s respectively when using a 16-bit A-D converter.

Measurement resolution can be improved by choosing a sensor which has

a smaller operating range and using a high resolution A-D converter.
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5.3.6 Saturation

When the measurement exceeds the operating range the sensor becomes

saturated. When the sensor is saturated, the maximum output of the

sensor is taken as the measurement. This is also modelled in NSS.

5.4 GPS and INS system errors

There are a number of system errors that can be simulated in the combined

GPS and inertial data simulator. The system errors are synchronisation

error, lever-arm error and GPS to INS attitude misalignment error. These

errors were implemented in NSS by the author and are considered in the

following sections.

5.4.1 Synchronisation error

In order to combine the inertial measurements with other sensors, the

measurements must be synchronised to a common time frame. When

GPS measurements are available, the INS measurements are time tagged

relative to GPS time. The time tagging method developed by the author

for recording the inertial measurements used in this thesis is described at

this point in order to motivate the error characteristic to be simulated.

The time tagging method used is a post-processing technique which was

developed by the author to provide high accuracy system timing. The INS

measurements are sampled by an Analogue to Digital (A-D) converter.

The A-D converter used for this thesis is the ADAC PCM-5516-16 which

has an on-board user programmable counter (for more information see

ADAC Corporation (2002)). The principle used for sensor time tagging
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is described in Figure 5.2.

GPS
Event Input

A−D
Trigger

A−D
Conversion

Counter

Figure 5.2: Flow diagram for time tagging method

The figure shows that each A-D conversion is triggered by the A-D

trigger. The A-D trigger also increments the counter. When the counter

reaches a threshold value, the counter is reset and a pulse is sent to the

GPS receiver event marker input. The GPS receiver records the time of

the pulse in GPS time and stores the event in the internal memory of the

receiver. The A-D data is matched to the GPS events when all the data has

been recorded. The stability of the A-D oscillator allows pulses to be sent

to the GPS receiver at intervals of greater than 1 second. The time of the

A-D data recorded between these time-tags can be interpolated between

the recorded GPS time-tags.

Considering the described time tagging method, the total timing error

terror is formed from the equation,

terror = (tgps − tconv) + tnoise (5.7)

where,

tconv is the time of the A-D conversion

tgps is the time at which the GPS receiver receives the pulse

tnoise is the random noise caused by the variation in A-D

conversion length, variation in pulse transmission time
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and the random noise caused by the resolution of the

GPS event marker

The timing error therefore consists of a constant bias with a random compo-

nent, the magnitude of which is specified in the data simulator control file.

For the ADAC PCM-5516-16 card, the A-D conversion takes approximately

5µs (ADAC Corporation, 2002) while the signal transmission time from A-

D board to GPS receiver is unknown.

In addition to the model described for timing the A-D conversions, there

is also an error caused by the A-D converter sequentially measuring each

sensor. Therefore the A-D card actually samples each sensor measurement

at a separate time. For example, if the data rate for the IMU measure-

ments is 200Hz, the A-D sample rate is set to 1200Hz when recording six

measurements. Therefore the maximum timing error is 1/(S/2) where S

is the sample rate in Hz. The NSS can also be configured to provide INS

measurements using this sequential timing method.

Analysis of the above error sources shows that the timing error is dom-

inated by the sequential A-D conversion and the resolution of the GPS

receiver event marker input. The physical navigation error caused by the

timing error in GPS and INS integration will also depend on the trajectory

characteristics. Timing error will produce no position error for a non-

accelerating system. The error will increase proportionally to the system

acceleration.
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5.4.2 Lever-arm separation and attitude misalignment

In real world applications the phase centre of the GPS antenna and the

body frame of the IMU are separated by a lever-arm. When GPS attitude

is available, there will also be a misalignment between the GPS derived

attitude and the INS attitude.

The position correction for measurements separated by a lever-arm in

the navigation frame is computed using the equation,

pnGPS = pnIMU + Cn
b d

b (5.8)

where,

pn is the position of the GPS receiver or IMU in the navigation

frame

Cn
b is the DCM from the body frame to the navigation frame

db is the lever-arm separation in the body frame

The velocity correction for measurements separated by a lever-arm in

the navigation frame is derived from Equation 5.8 to form,

vnGPS = vnIMU + Ċn
b d

b (5.9)

= vnIMU + Cn
b Ωb

nbd
b (5.10)

where,

vn is the GPS or IMU velocity in the navigation frame

Ωb
nb is the skew-symmetric form of the rotation of the body

frame with respect to the navigation frame referenced

in the body frame

The misalignment between the GPS attitude and IMU attitude is intro-
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duced using the equation,

CbG
n = CbG

bI
CbI
n (5.11)

where bG and bI indicate the GPS and IMU body frame respectively. The

matrix CbG
bI

is formed using the small misalignment angles between the GPS

and IMU frames.

5.5 Environmental errors

In addition to the aforementioned sensor and GPS/INS system errors, envi-

ronmental error sources exist that degrade the performance of a GPS/INS

system. These are vibration and gravity anomalies.

5.5.1 Vibration

Noise in the output of the inertial sensor is also caused by vibration of the

sensor, for example from the engines running in a vehicle. Sensor vibration

is not strictly an inertial sensor error, but it is considered here due to the

error manifesting itself as inertial sensor noise.

Figure 5.3 shows the Fast Fourier Transform (FFT) for the x-axis ac-

celerometer located in a small marine survey vessel with the engines off

and the engines running. The data was collected with the vessel moored

to a jetty. The movement of the vessel oscillating on the water consists of

low frequency movement which from Figure 5.3 is shown as the spike at

approximately 0.5Hz. The higher frequency components of the accelerom-

eter output with the engines off can be attributed to noise caused by the

internal sensors. The FFT of the x-accelerometer with engines running



Chapter 5. Development of a Navigation System Simulator 90

0

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50 60 70 80 90 100

A
cc

el
er

at
io

n 
m

ag
ni

tu
de

 (
m

s-2
)

Frequency (Hz)

Engines On
Engines Off

Figure 5.3: FFT for Crossbow x-axis accelerometer

shows the noise at 35Hz caused by vibration due to the engines running.

High frequency noise can be removed from the sensor output by using low

pass signal filtering. For more information see Škaloud (1995).

The vibration characteristics differ for each sensor axis and depend on

the vehicle type and mounting location. The vibration is also likely to vary

throughout a dataset due to factors such as engine throttle. This makes

sensor vibration very difficult to model. Consequently, noise caused by

vibration is only modelled in the simulator by increasing the sensor white

noise.

5.5.2 Gravity Anomalies

Section 2.4 described a geodetic model for removing the contribution of

gravity to the accelerometer measurements. Equation 2.12 includes three

gravity anomaly terms which are location dependent. Because of the small

magnitude of the gravity anomalies, they are not modelled for the low cost
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sensors.

5.6 Differentiation and interpolation

The original GPS-only data simulator required a trajectory file containing

positions and velocities for the kinematic receiver. For the inclusion of

inertial data, attitude measurements for each epoch were added to the

trajectory file. The simulator provides interpolation of measurements so

that data can be simulated at higher data rates than those entered in the

trajectory file.

For the GPS-only simulation, the velocity input is used solely for the

creation of the Doppler data. The velocity input is the instantaneous

velocity of the GPS receiver, an approximation to which is provided by

differencing the positions between epochs. For the inertial measurements

however, the differentiation of the trajectory input becomes critical. This

is because the accelerations and turn rates output by the simulator are

integrated recursively by the GPS and INS integration software to calculate

velocity and position.

The original version of the data simulator differenced the interpolated

velocity inputs from the trajectory file between IMU epochs to calculate

the IMU acceleration vector. Everett interpolation was used to interpolate

the velocity input which fits a curve to the data, in this case using 12

points (see Agrotis (1984)). This results in two problems. The first is

that differencing between epochs is an inaccurate method for numerical

differentiation. If an improved method of integration is used to return to

velocity, an error will result. This problem also exists in the differentiation
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of the attitude in the trajectory file. The second problem occurs when

interpolating the differenced velocity in the trajectory file to calculate the

acceleration vector which is used for simulating the inertial measurements.

This is demonstrated by Figure 5.4. The figure shows four discrete velocity

inputs taken from the trajectory file at epochs i− 1 to i + 2. The shaded

region is the area that needs to be calculated by integration to obtain the

correct position due to approximating the velocity by differencing positions

in the trajectory file. By fitting a curve to the velocity data points for

interpolation, it is observed that integrating the curve at a higher data

rate will result in a position error.
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Figure 5.4: Velocity interpolation

A possible solution to the first problem is to use a more accurate dif-

ferentiation method, for example Simpson’s Rule. If the step size between

epochs is small, the differentiation/ integration process will only introduce

a small error. A possible solution to the second problem would be to simply

differentiate the interpolated positions twice to obtain acceleration instead

of differentiating the velocity. However, this results in an inaccurate value

for acceleration due to the errors introduced through double numerical in-

tegration. Instead, this provides the motivation for the spline interpolation

technique described in the next section.
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5.6.1 Cubic spline differentiation and interpolation

One method for interpolating the positions from the trajectory file is to use

curve fitting. However, different curves that are fitted between each tra-

jectory file position may result in a discontinuous curve at each trajectory

input point.

The solution developed by the University of Nottingham based on results

supplied by the author is to use cubic splines. Cubic splines fit a series of

cubic functions to discrete points with the condition that the slope and

curve at each of the adjoining cubic equations is equal (Burden and Faires,

1993). An overview of the method is given in Appendix A. The cubic

spline algorithm is used to fit cubic functions to the discrete position

and attitude trajectories in the simulator. The cubic functions provide

interpolation curves between the position and attitude inputs which can

be mathematically differentiated to provide exact velocity, acceleration and

attitude rates for simulating the inertial measurements. Therefore no errors

are introduced through double differentiation. This fully overcomes the

two problems described in the previous section. As a result, the effect

of integration error in the inertial system can be evaluated with the data

simulator.

Figure 5.5 shows the position error from using the different interpo-

lation/ differentiation methods on error free inertial data. Figure 5.5(a)

shows the effect described in Figure 5.4 where the velocity estimates ob-

tained by differencing the positions in the trajectory file are interpolated

and used to form the acceleration vector for the inertial measurements. It

is observed from the figure that during an acceleration manoeuvre from
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zero to 20ms−1 in a straight line, this method results in a significant

North position error of approximately 10 metres. Figure 5.5(b) shows

the error obtained from using cubic spline interpolation and also Everett

interpolation using exact instantaneous velocity in the trajectory file. The

exact velocity was obtained by differentiating the mathematical equations

that were used to model the acceleration manoeuvre.
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Figure 5.5: Differentiation/ integration error

The figure shows that the two methods obtain very similar integration

errors of 9.91cm and 9.99cm at the end of the manoeuvre for the Everett and

Spline interpolation methods respectively. Therefore, particularly for low

cost inertial sensors, either Spline integration or Everett interpolation with

exact velocity information is suitable for the interpolation of the trajectory

input. However, it should be noted that obtaining the exact instantaneous

velocity from real trajectory files is not possible (see §5.8).
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5.7 Simulation mechanisation

The inputs required for the data simulator are the IMU position, velocity,

acceleration, attitude and attitude rate at a user defined epoch separation.

The derivatives of position and attitude are calculated a separate program

which performs the cubic spline differentiation as described in the previous

section. This section describes the reverse mechanisation process used in

the simulator to calculate the body frame turn rates and accelerations.

The mechanisation process is described by Figure 5.6. Firstly the Cori-

olis and Gravity accelerations are added to the vehicle acceleration in

the Earth frame. The Cartesian positions are then converted to geodetic

positions (for details of this transformation see Leick (1995)). The geodetic

position is used to calculate the rotation matrix in Equation 2.3 to convert

the Earth frame acceleration to the navigation frame. The attitude vector

from the trajectory file is used to calculate the DCM which is used to rotate

the force measurement from the navigation frame to the body frame.

Read Pos
& Derivatives

Read Attitude
& Derivative
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Geodetic

Calculate body
angular rate

Resolve into
body frame

Gyro
Error 
Simulation

Accelerometer
Error
Simulation

Cartesian to
Nav frameGravity

Coriolis and

Correction

Earth and 
Transport Rate
Correction

Form DCM

Form DCM

Output

X,Y, Z λ, φ,

h

Cne

v̇e fe fn fb f̂b

ϕ, θ, ψ Cbn

ϕ̇, θ̇, ψ̇ ωb
nb

ωb
ib

ω̂b
ib

Figure 5.6: Simulator measurement mechanisation

The attitude rates are converted to body frame angular rates using the
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equation, 
ωx

ωy

ωz

 =


1 0 − sin(θ)

0 cos(ϕ) cos(θ) sin(ϕ)

0 − sin(ϕ) cos(θ) cos(ϕ)




ϕ̇

θ̇

ψ̇

 (5.12)

The derived quantity is the rotation of the navigation frame with respect to

the body frame referenced in the body frame. Equation 2.19 is rearranged

to calculate the rotation of the body frame with respect to the inertial

frame, which is the quantity measured by the accelerometers. Combining

this mechanisation algorithm with exact derivatives of position and attitude

measurements removes any errors associated with the mechanisation, apart

from those introduced by finite computer precision.

5.8 Construction of kinematic trajectories

As mentioned previously in this chapter, the data simulator requires tra-

jectory data in the form of position, velocity, acceleration, attitude and

attitude rate data. The cubic spline interpolation method removes the

requirement for entering the derivatives of position and attitude. The epoch

separation for the input trajectory can be any value as long as it is constant.

If modelling the high frequency motion of a vehicle, the Nyquist theorem

means that the data rate must be twice the frequency that needs to be

modelled (Chatfield, 2003).

Simple computer programs can be developed to produce reference tra-

jectories. For example, static and constant velocity trajectories are easily

formed which may be desirable when trying to assess the performance of a

non-accelerating system. Other simple trajectories such as circles or figure-
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of-eights can also be formed using mathematical equations. By using math-

ematical equations, it is also possible to directly derive the velocity which

allows the simulator to be used with the Everett interpolation algorithm.

Another approach for forming reference trajectories is to use the tra-

jectory obtained from a GPS or integrated GPS/INS trial. This has the

advantage of simulating the actual movement of a vehicle. However, care

needs to be taken using OTF GPS for forming trajectory files where loss

of lock on the satellite signals can result in jumps in the position data.

Furthermore, it is not possible to derive the exact velocity from the position

estimates. This means that the cubic spline differentiation and interpola-

tion algorithm must be used.

The marine trial used in the following chapter was obtained from the

TSS POS/MV integrated GPS and INS system described in Chapter 8. The

GPS/INS data has the benefit that navigation accuracy is not significantly

degraded during short GPS outages. Furthermore, the navigation output is

provided at a high data rate which allows the high frequency characteristics

of the trajectory to be modelled.



Chapter 6

Analysis of CKF alignment

using data simulation

6.1 Introduction

The chapter demonstrates the use of the CKF algorithm for integrating

GPS and low cost INS measurements obtained using the simulation soft-

ware described in the previous chapter. The NSS simulation software

is used to model a figure-of-eight alignment trajectory in a marine en-

vironment. The marine environment is particularly challenging for INS

alignment since it is not possible to use static initialisation techniques due

to the marine vessel moving on the surface of the water. This chapter

is used to show the characteristics of the CKF, validate the simulation

algorithms from Chapter 5, and motivate the use of the adaptive Kalman

filtering algorithms used in the following chapter.

98
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6.2 Trajectory and trial description

The following examination of the CKF uses the trajectory shown in Fig-

ures 6.1 and 6.2. The trajectory was obtained from a TSS Position and

Orientation System for Marine Vessels (POS/MV) integrated GPS and

INS system installed in a small survey boat owned by the Royal Naval

Hydrographic School in Plymouth (see §8.2).
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In order to model the high frequency motion of the vessel, the input

trajectory was defined for simulation at 10Hz. The vessel undergoes a short

traverse for approximately 3 minutes before commencing figure-of-eight

alignment manoeuvres that introduce horizontal acceleration. The north

and east velocity is shown in Figure 6.2 as an indication of the horizontal

acceleration. The horizontal acceleration information is important as it is

required for the estimation of some of the states in the filter as described

in §2.6.2. The dataset lasts for approximately 17 minutes.

The following trials simulate a sensor with the performance characteris-

tics of a low cost IMU. The errors simulated correspond to the Crossbow

AHRS-DMU-HDX sensor described in Table 6.1. The IMU measurements

are simulated at 100Hz and the temperature of the sensor remains constant

throughout the dataset (the temperature is assumed constant to simplify

the analysis). The sequential sampling method described in §5.4.1 is used

to simulate the synchronisation error. Dual frequency carrier phase and

pseudorange GPS measurements to 8 satellites from a static base and single

roving GPS antenna are simulated. The baseline separation between the

base and roving antennas is less than 3km for the entire processing run.

The L1 frequency carrier phase and Doppler data is used to obtain position

and velocity and the GPS ambiguities are fixed for the entire dataset. A

1 metre lever arm offset in each axis from IMU to GPS antenna is also

defined. The initial pitch, roll and yaw misalignment is 1.6◦, 0.6◦ and 2◦

respectively which corresponds to the level error of the vessel resting on

the water and an initial heading error which would be obtained from, for

example, an on-board compass.

The INS measurements are integrated in this chapter using the de-
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Error source (Units) Gyro (Units) Accel

Saturation (◦/s) 100 (ms−2) 40

Quantisation (◦/s) 0.011 (ms−2) 0.003

Bias (◦/s) 1 (ms−2) 0.294

Bias Variation (◦/s/
√

Hz) 1×10−5 (ms−2/
√

Hz) 1×10−5

Correlation time (s) 100 (s) 60

Cross-axis sensitivity (-) - (%) < 1

Scale Factor (%) <1.0 (%) <1.0

Scale Factor Non-linearity (% FS) <1.0 (% FS) <1.0

1st Order Temp Sensitivity (◦/s/◦C) 0.017 (ms−2/oC) 0.002

Noise (◦/s/
√

Hz) 0.005 (ms−2/
√

Hz) 0.1

Axis Misalignment (mrad) 3 (mrad) 3

Table 6.1: Specification for Crossbow AHRS-DMU-HDX

centralised filter architecture with the centralised filter only being used

when explicitly mentioned. This is because the large initial INS biases

cause large initial navigation errors which can degrade ambiguity resolution

when the initial inertial sensor error estimates have not been obtained.

The gyro and accelerometer biases are estimated in the filter whereas the

scale factor and misalignment errors are not estimated and are therefore

considered random errors due to the movement of the boat. Both position

and velocity measurements from the GPS filter are used as measurements

in the decentralised INS filter.
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6.3 INS alignment using the CKF

For marine applications it is rarely possible to estimate the inertial sensor

errors using the static initialisation techniques described in §2.5.1 because

of the movement of the vessel on the water. Low cost sensors that experi-

ence large switch-on to switch-on variation can be estimated using dynamic

alignment. The purpose of the dynamic alignment is to initialise the sensor

error estimates, and align the INS to the navigation frame. Navigation

performance of the INS is therefore reduced before alignment and it is

desirable to obtain full INS alignment as rapidly as possible. Furthermore,

if large inertial sensor errors remain uncompensated, the filter may become

unstable due to the large build up of the inertial navigation errors. The

following section performs an analysis using the sensor bias and attitude

alignment to show the time that is required for alignment.

Figure 6.3 shows the estimate of the x-axis gyro bias from the CKF

in KinPosi using different a priori sensor bias process noise estimates.

Figure 6.4 shows the corresponding attitude estimate for two of these

cases. The same sensor bias process noise estimates are used for both

the accelerometer bias error (with units ms−2) and gyro bias error (with

units ◦/s). Units for the process noise bias states are therefore omitted in

the following analysis.

It is clearly observed from Figure 6.3 that the larger process noise values

of 1×10−2 to 1×10−4 result in a more rapid transition to the correct bias

estimate. The bias estimate of 1×10−2 results in the most rapid transition

in approximately 20 seconds. However, the bias estimate is noisy and

deviates during the processing run by up to approximately 0.15◦/s. This is
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Figure 6.3: CKF x-axis gyro bias estimate

because too much weight from the innovation sequence is given to the

bias estimate. The points at which there appears to be a systematic

deviation from the true bias value are points where there are high dynamic

manoeuvres in the vessel’s trajectory (see the corresponding vessel velocity

in Figure 6.2). For approximately the first 200 seconds of the dataset, the

trajectory does not undergo significant horizontal acceleration in order for

all of the error states to become observable. Weakly observable states such
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as yaw error, z-axis gyro bias and x and y-axis accelerometer bias states

are not fully resolved after 200 seconds and this affects the bias estimation

of the x-axis gyro shown. This is examined further in the following section.

Once all states are resolved, the 1×10−2 sensor bias estimate provides a

noisy estimate of the x-axis gyro bias.

The bias process noise standard deviation estimates of 1×10−3 and

1×10−4 result in similar performances, with the larger process noise re-

sulting in a slightly quicker transition to the correct estimate. Once again,

the bias estimate temporarily deteriorates after 200 seconds due to the

dynamic manoeuvre, however after this point a good estimate of the bias

is maintained. It is observed from the 1×10−5 process noise estimate that

the smaller process noise results in a very slow transition to the correct bias

estimate. The estimate still has not fully converged after approximately 16

minutes.

Figure 6.4 shows the corresponding attitude alignment for two of the

cases in used Figure 6.3. Figure 6.4(a) corresponds to the bias stan-

dard deviation of 1×10−2. This figure shows that after approximately

220 seconds the attitude error state has converged, however, the resultant

attitude estimate is noisy. The attitude error after the initial 220 second

alignment period is 0.07◦, 0.09◦ and 1.54◦ RMS for roll, pitch and yaw

respectively. The attitude alignment for the bias standard deviation of

1×10−4 in Figure 6.4(b) results in an improved navigation performance

after the alignment period with corresponding RMS errors of 0.01◦, 0.02◦

and 0.21◦. However, the alignment takes approximately 600 seconds which

is over twice alignment time of the larger bias estimate.

Figures 6.3 and 6.4 demonstrate that there is a requirement to adapt the
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Figure 6.4: CKF Attitude alignment

stochastic information used in the CKF during alignment. The estimation

of the stochastic properties of the filter is a challenging task as the inertial

errors vary from switch-on to switch-on and the estimation of the sensor

errors depends on factors such as vehicle manoeuvres. This problem is

particularly prevalent in the marine environment due to the inability to

perform any form of static initialisation, but is also an issue in all other

operating environments where a rapid alignment is required.

6.3.1 Dependence on initial covariance

This section examines the effect of the initial covariance, P0, on the align-

ment of the INS. The initial covariance is formed using a priori estimates of

the error states. For the states which are directly observable (i.e. position

and velocity) the dependence on the initial covariance is minimal since
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the observations are used directly to estimate the states. For the weakly

observable states, in particular, yaw misalignment, z-axis gyro and x and

y-axis accelerometer states, the initial covariance has a greater influence on

the state estimate as shown in the following analysis.

Figure 6.5 shows the x and z-axis gyro bias alignment and correspond-

ing updated state covariance, P
(+)
k , using two different initial bias state

covariance estimates in the Kalman filter. The two cases are formed using

a small initial covariance where the initial covariance is set equal to the

process noise, and an empirical estimate where the initial covariance is

estimated using the truth from the data simulator and several processing

runs (the standard deviation used is 1×10−2). In both cases the initial

covariance matrix, P0, is a diagonal matrix. The navigation state process

noise elements remain the same as those used in the previous section and the

bias process noise is set to 1×10−4 for both the gyros and accelerometers.

This value is used for the bias states as it provided the best navigation

performance once the system is aligned.

The Figures 6.5(a) and 6.5(b) show the x-axis gyro bias estimate and

corresponding covariance. It is observed from Figure 6.5(a) that the larger

initial covariance results in a more rapid convergence to the correct bias

value due to more weight from the measurements being applied to the

states. The x-axis gyro bias is estimated to within 0.02◦/s in the initial 20

seconds but the estimate is not maintained. The bias does not converge

to 0.01◦/s until approximately 350 seconds due to other bias estimates not

being fully resolved. The state covariance estimates for both initial covari-

ance matrices in Figure 6.5(b) demonstrate that the standard deviations

converge to within 5×10−6◦/s after 20 seconds. This is due to the gyro
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Figure 6.5: CKF x and z-axis gyro bias alignment for different initial

covariances

bias state being observable through the acceleration in the down direction

which is always large due to the force due to gravity. The state converges

because the same process noise estimates are used in both cases.

The Figures 6.5(c) and 6.5(d) show the z-axis gyro bias estimate which

is weakly observable and requires the presence of horizontal accelerations

in order for it to be estimated. It is observed from the z-axis bias estimate
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that the larger initial covariance again results in a quicker convergence to

the true value. For the smaller initial covariance, the bias estimate remains

relatively constant during the first 200 seconds where there is low horizontal

acceleration. However, the larger initial covariance results in the z-axis gyro

bias state being updated from the small horizontal acceleration manoeuvres

due to more weight being applied from the measurements through the filter

gain. This results in the z-axis gyro bias estimate being improved during

this time.

It is observed from the corresponding z-axis gyro bias covariance that

the initial covariance is not updated as rapidly as the x-axis gyro bias

covariance due to the weak observability. At 200 seconds, the estimates

converge due to the presence of the large dynamics manoeuvre. This

indicates that the initial covariance for the z-axis gyro is more critical than

other states with higher observability. As a result of the improved estimate

of the initial covariance, the z-axis gyro bias estimate becomes aligned to

within 0.01◦/s within 385 seconds, compared to 490 seconds for the lower

initial covariance. Furthermore, the improved bias estimation also results

in improved navigation performance during alignment and at 453 seconds,

the yaw misalignment is obtained to within 0.5◦.

While the larger empirically derived initial covariance estimates provide

improved results, the values were defined using empirical knowledge of the

system using multiple processing runs. Furthermore, defining an initial

covariance that is too large can result in a significant decrease in alignment

performance due to giving too much weight to the measurements. For

example, the initial gyro bias error specification from Table 6.1 is 1◦/s. If

this value is used as the initial covariance for the gyro bias, the Kalman
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filter overestimates the gyro bias resulting in bias estimates of up to 10◦/s

during alignment. Because the initial bias is unknown and is different

for each sensor, the initial bias covariance cannot be reliably estimated.

When the initial covariance information is of low quality, the process noise

information needs to be adapted in order to identify the correct state

covariance. Therefore, it is desirable to estimate the stochastic information

on-line at each epoch by another means such as the adaptive techniques

investigated in the following chapter.

6.3.2 Innovation and residual sequence

Section 4.3.1 identified that an indication of the system performance can

be obtained from the innovation and residual sequences. Figure 6.6 shows

the innovation and residual sequence for the north velocity error from the

previous section using the bias process noise of 1×10−4 and a small initial

covariance. The figure also shows the corresponding north velocity error

and the yaw misalignment.

It is observed from the figure that the innovation and residual sequences

during alignment contain significant biases during the initial alignment

period of approximately 600 seconds. The biases in the innovation and

residual sequences reflect the trend of the error for the north velocity.

This is expected since the GPS observations provide a relatively unbiased

estimate of the receiver velocity, and the inertial errors are significantly

larger than the GPS errors during alignment. The residual sequence reflects

this error more accurately since the residual sequence is the difference

between the INS and the GPS estimate after the Kalman filter update.

The difference between the innovation and residual sequences is the error
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Figure 6.6: Errors during alignment a) Innovation and residual sequence

b)North Velocity c) Yaw

estimate provided by the Kalman filter i.e. the state correction sequence in

Equation 4.31.

As the inertial errors are compensated, the biases in the innovation/residual

sequences reduce and follow an approximately normal distribution. The

Lilliefors test is used to test if the sequence follows a normal distribu-

tion (Conover, 1999). The Lilliefors test compares the observed cumulative

distribution function taken from the data against the theoretical cumulative

distribution. The Lilliefors test statistic for the north velocity innovation

sequence is computed to be 0.048 between 500 and 600 seconds. This is
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less than the the value of 0.088 that is required to reject the null hypothesis

that the sequence is Gaussian at the 95% confidence level. So, after 500

seconds, the innovation sequence for the north velocity innovation sequence

approximates a Gaussian distribution. Before, 500 seconds, the sequence

does not approximate a normal distribution, for example, the Lilliefors test

statistic between 400 and 500 seconds is computed to be 0.16.

The figure also shows the INS yaw error. It is observed that the yaw

error has a very different characteristic to the velocity estimate due to

the yaw error observability. The yaw error causes an error in the north

and east velocity measurements only when the vessel undergoes horizontal

acceleration through Equation 2.26. Therefore, if the vessel experiences

zero horizontal acceleration, the yaw error does not contribute to the error

in the innovation/residual sequence, i.e. it is unobservable. This is reflected

in the figure. During the first 50 seconds, the filter estimates the states with

higher observability. When these are resolved, the magnitude of the inno-

vation/residual sequence is reduced during the period of 50-200 seconds,

even though the yaw error is increasing. When the vessel undergoes the

alignment manoeuvre at 200s, the error is observable through the horizontal

velocity which results in the spikes in the innovation/residual sequence.

As the errors are resolved using the Kalman filter estimates, the magni-

tude of the innovation/residual sequence reduces and the biases are re-

moved. This shows that the information contained in the innovation/

residual sequence is dependent on the observability of the system errors.

This also demonstrates that the innovation and residual sequences contain

useful information about the stochastic properties of the sensor errors

which can be used for the adaptive estimation algorithms examined in
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the following chapter.



Chapter 7

On-line Stochastic Estimation

for Low cost INS

7.1 Introduction

This chapter demonstrates the use of the different adaptive Kalman filtering

approaches described in Chapter 4 for the alignment and initialisation of an

integrated GPS and low cost INS system. The data used is the simulated

data for a marine trial used in the previous section. As the INS becomes

aligned, the stochastic properties of the inertial system change significantly

and the adaptive estimation techniques are employed in order to track these

changes.

The adaptive Kalman filtering algorithms in this chapter are compared

to the CKF estimate that provided the best navigation performance in

the previous chapter. This was achieved by tuning the Kalman filter by

performing multiple processing runs and identifying the stochastic matrices

that provide the best performance. The optimised initial covariance esti-

113
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mate that was shown to provide the fastest alignment time in Section 6.3 is

also used for the CKF in this chapter. In a real system, this would not be

possible and the performance of the CKF alignment is likely to be degraded

because of this. Therefore, the adaptive Kalman filtering algorithms are

tested against the best performance that is expected to be obtained from

the CKF using a priori stochastic information.

Initial results on which this chapter is based are presented in Hide et al.

(2002) and Hide et al. (2003).

7.2 Covariance scaling

The first method considered in this chapter for adapting the stochastic

properties of the Kalman filter is to artificially scale the predicted co-

variance using a scale factor as given in Equation 4.25. A number of

techniques can be used in order to estimate the scale factor, Sk. The

first method considered to evaluate the effect of covariance scaling is to use

an a priori scale factor which has been empirically estimated by analysing

several processing runs.

7.2.1 A priori scale factor method

To examine the effect of scaling the predicted covariance matrix, four scale

factors are used at 50 second intervals. The scale factors used are Sk =1.2,

1.15, 1.1 and 1.05, with conventional Kalman filtering resumed after 200

seconds by using the scale factor, Sk = 1. The scale factors used reduce

after each 50 second interval since it is expected that the inertial errors are

reduced due to the dynamic alignment. The scale factors were estimated
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using several processing runs to find values that result in a significant

improvement in time to alignment for this particular dataset. The filter

again uses the process noise matrix from §6.3 with the bias process noise of

1×10−4 since this provided the best navigation performance in the previous

analysis once the system is aligned.

Figure 7.1 shows the z-axis gyro bias estimate with the covariance scale

factors applied. From the examination performed with the conventional

Kalman filter in §6.3, it was shown that the z-axis gyro bias is difficult to

estimate due to its weak observability. Furthermore, the convergence of

other bias estimates requires all states to be successfully resolved, hence

the z-axis gyro bias is used as a performance indicator for examining the

effect of the adaptive estimation algorithms.
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Figure 7.1: Covariance scaling z-axis gyro bias alignment

Figure 7.1 demonstrates that the empirical scale factors result in the z-

axis gyro bias being resolved to within 0.01◦/s after 252 seconds, compared

to the CKF estimate of 385 seconds (which was obtained using empirical
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testing). The estimate is improved over the conventional Kalman filter

because the initial covariance, P0, and the a priori process noise are un-

derestimated at the beginning of the processing run in the conventional

Kalman filter. The covariance matrix is therefore increased at each epoch

by scaling the covariance matrix. Since the process noise is valid once

the initial large biases have been resolved, the conventional Kalman filter

algorithm resumes with Sk = 1.

The covariance scaling algorithm results in the attitude errors converg-

ing to within 0.5◦ after 280 seconds which is a significant improvement

over the 453 seconds required for the conventional Kalman filter using

the same process noise matrix. The amount of additional processing over

the conventional Kalman filter algorithm is negligible since Sk is a scalar

value. However, using a priori estimates for estimating the scale factors is

impractical for an adaptive Kalman filter design since the magnitude of the

inertial navigation estimates will vary from switch-on to switch-on, and the

speed of the Kalman filter alignment also depends on the dynamics of the

vehicle in which the system operates. The scale factors for the process noise

scaling filter were selected using knowledge of the navigation errors and are

therefore unlikely to produce similar results for every other environment in

which the inertial system is likely to operate. The results do however

demonstrate that using a predicted covariance scaling algorithm can result

in a significant improvement in the time to alignment. The following

sections describe how the scale factor can be automatically selected using

the innovation sequence.
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7.2.2 Development of a process noise scaling algo-

rithm

Hu et al. (2001) provide a method for estimating the scale factor by using

what is termed a fading memory algorithm. The fading memory algorithm

uses a window on the previous measurement innovations. The new innova-

tion is used to form a scale factor using the equation,

Sk ≥
v(−)

k
T
v(−)

k

1
N

∑N−1
j=0 v(−)

k−N+j
T
v(−)

k−N+j

(7.1)

where N is the window length. The denominator in Inequality 7.1 is

an estimate of the covariance of the innovation sequence. Therefore the

algorithm selects a scale factor using the expected innovation covariance

at that epoch. When Sk ≤ 1, the filter is assumed to be in steady state

processing and conventional Kalman filtering is continued. For Sk > 1, the

sum of the square of the innovations is larger than expected, so the scale

factor is used to give more weight to the measurements. Hu et al. (2001)

used this algorithm in order to reduce the mis-modelling errors associated

with a constant velocity model for pseudorange GPS observations during

dynamic manoeuvres. The algorithm relies on the filter having reached

steady state processing in order for the covariance approximation to give an

accurate estimate of the innovation covariance. For the alignment problem

with the GPS/INS integrated system, the algorithm is unsuitable since the

Kalman filter has not reached steady state.

Consequently, a modified innovation based scale factor was developed

by the author using an estimation window on the innovation sequence of

the system when the INS is aligned. Therefore Inequality 7.1 is modified
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to give the equation,

Sk ≥
vTk vk
E

(7.2)

where E is the expected covariance of the innovations when the system

is aligned. An estimate of E can be easily obtained from analysis of

the conventional Kalman filter using field trials. A further advantage is

obtained with this implementation since the window function is removed

therefore removing the lag that occurs when accumulating innovations

inside the window function.

Testing this equation with the low cost INS dataset caused problems

with filter stability due to the large uncompensated inertial errors. The

estimated scale factor was too large which resulted in divergence of the

filter. Therefore, Equation 4.25 was modified to apply the scale factor only

to the process noise matrix to give,

P
(−)
k = ΦP

(+)
k−1ΦT + SkQk−1 (7.3)

The new equation is termed the process noise scaling algorithm. The above

equation can be formed by following the proof in Hu et al. as follows.

Consider the equation,

v(−)

k
T
v(−)

k ≤ Tr(HkP
(−)
k−1H

T
k +Rk) (7.4)

where Tr() is the matrix trace function and HkP
(−)
k−1H

T
k +Rk is the covari-

ance of the innovation sequence.

Substituting the new process noise scaling equation from Equation 7.3

results in,

v(−)

k
T
v(−)

k ≤ Tr(HkΦP
(+)
k−1ΦTHT

k + SkHkQk−1H
T
k +Rk) (7.5)
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and given that Sk ≥ 1 we have,

v(−)

k
T
v(−)

k ≤ SkTr(HkP
(−)
k−1H

T
k +Rk) (7.6)

which results in the formulation of Inequality 7.1. The only difference

in this formulation is that the required scale factor is underestimated

compared to the scale factor used for the covariance scaling algorithm.

7.2.3 Process noise scaling

Figure 7.2 shows the z-axis gyro bias estimate obtained using the new

process noise scaling algorithm compared to the estimate obtained using

the CKF. The CKF estimate is that obtained from §6.3.1 where the initial

covariance matrix was defined using multiple processing runs to find an

initial covariance that results in a fast time to alignment. The figure shows

that the resolution of the initial bias estimate is improved over the CKF

estimate. The z-axis gyro bias is obtained to within 0.01◦/s within 210

seconds compared to 385 seconds for the CKF. It is shown in the figure

that the estimated bias responds more than the CKF estimate to the small

change in heading manoeuvres during the period of low dynamics. However,

the presence of the larger dynamic manoeuvres beginning at approximately

190 seconds are still required in order to fully resolve the bias state to within

an error that allows navigation performance to be maintained.

Figure 7.3 shows the corresponding attitude estimation from the process

noise scaling filter. The figure shows that the maximum yaw misalignment

is approximately 20◦. For the CKF the maximum error was 67◦ and

it was not until the period of higher dynamics that the yaw error was

reduced. The presence of the small dynamic manoeuvres is clearly observed
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Figure 7.2: Process noise scaling z-axis gyro bias alignment

at 70 and 120 seconds indicating that the filter has adapted to give more

weight to the GPS measurements than the CKF. Although the alignment

is initially obtained to within 0.5◦ after 212 seconds, the alignment is

not maintained because the z-axis gyro bias is not resolved sufficiently

to maintain the heading accuracy, which drifts to a heading error of 0.62◦.

The yaw alignment is obtained to within 0.5◦ after 265 seconds. The figure

also shows that the pitch and roll estimation is improved over the CKF

estimate during the initial part of the trajectory. This indicates that the

x and y-axis accelerometer bias states are also better estimated during

alignment than the estimates obtained using the CKF.

In order to improve the integrity of the filter, two modifications to the

algorithm were made. Firstly, the scale factor is not calculated for the first

epoch. This condition was introduced since the initial INS position and

velocity estimates may contain large errors due to incorrect initialisation,

therefore the magnitude of the initial innovation may result in a poor
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Figure 7.3: Process noise scaling attitude alignment

estimate of the scale factor. The initial position and velocity errors are

greatly reduced after the first epoch, therefore the bias in the innovation

sequence is more likely to be caused by the incorrect initialisation of the

inertial sensor errors and attitude errors. The second condition is that the

scale factor must not exceed 10,000. This condition was imposed to help

ensure the stability of the filter. This is because previous analysis showed

that if the covariance is increased too much, then too much weight can be

given to the measurements resulting in very large incorrect bias estimates

which can result in divergence of the filter.

The estimated process noise scale factors are shown in Figure 7.4, with

the figure being split into two sections for clarity. Figure 7.4(a) shows the

first 100 seconds of the scale factor estimates. From the figure it is shown

that no scale factor is used for the first epoch, and at the second epoch, the

maximum scale factor estimate is used. The application of the scale factor

results in the next estimated scale factor to be greatly reduced with the



Chapter 7. On-line Stochastic Estimation for Low cost INS 122

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

S
ca

le
 fa

ct
or

Time (s)

(a) Scale factor between 1-100 seconds

0 100 200 300 400 500 600
0

10

20

30

40

50

S
ca

le
 fa

ct
or

Time (s)

(b) Scale factor between 100-600 seconds

Figure 7.4: Estimated process noise scale factors

scale factor estimated to be 2713. For the first 30 seconds of the dataset

the scale factor estimates are all computed to be 1000 or greater. After

this initial 30 seconds, the estimated scale factors reduce significantly and

Figure 7.4(b) shows that the values are all computed to be less than 50.

The initial period of large scale factors estimates is caused by the large

values in the innovation sequence indicating that there is some form of mis-

modelling in the Kalman filter. Therefore, the algorithm uses the assump-

tion that any mis-modelling is caused by the incorrect stochastic model

for the INS. Therefore, as the process noise is increased, the innovation

sequence shows that the system is being modelled better resulting in the

scale factor estimates to reduce. After 130 seconds, with the exception

of 1 epoch, the scale factors are computed to be less than 10. This

indicates that the filter has adapted to allow the innovation sequence to
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follow an approximately normal distribution of errors, again indicating that

the system is properly modelled by the stochastic matrices. The values

of between 1 and 10 are consistent with using the estimated innovation

covariance approximation.

A potential problem with the process noise scaling filter is stability.

The covariance scaling method caused divergence when the scale factor

was overestimated. This resulted in the state estimates being too large,

particularly for the bias states. The large bias estimates resulted in di-

vergence since the bias estimate resulted in very large navigation errors

which resulted in larger state estimates at the next Kalman filter iteration.

This was specifically a problem using Inequality 7.2 since the scale factor

estimate was very large. The new process noise scaling algorithm results

in a much more stable estimate due to not scaling the state covariance at

each epoch. Stability is improved over the covariance scaling approach due

to the approximation used in moving from Inequality 7.5 to Inequality 7.6

in the derivation of the scale factor. This results in a scale factor that is

more likely to be underestimated.

7.2.4 Covariance

Figure 7.5 shows the x and z-axis updated state covariance estimates for

the process noise scaling filter, again compared to the CKF estimate using

the empirically derived initial covariance matrix. The process noise scaling

filter was initialised using a low initial covariance value for the initial

matrix. Figure 7.5(a) shows that the standard deviation of the x-axis

gyro bias is increased to 0.034◦/s after 24 seconds due to the application

of the scale factor on the process noise estimates. In other words the large
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process noise estimate has increased the uncertainty of the x-axis gyro bias

estimate whereas with the CKF, the covariance is decreased. A similar

characteristic is shown for the z-axis gyro bias, although the maximum

standard deviation is 0.04◦/s due to the lower observability of the state.
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Figure 7.5: Process noise scaling updated state covariance during attitude

alignment

From the figures, it would appear that the algorithm could be replaced

by setting the initial covariance to 0.04◦/s, however the analysis in §6.3.1

resulted in the optimum initial covariance for the bias states of 0.1◦/s.

There are two reasons why this is so. Firstly the initial innovation in

the Kalman filter is usually mainly caused by the initial position and

velocity errors. This results in a large initial innovation which can result

in a large bias estimate which may actually increase the initial bias error.

Secondly, the initial errors vary from switch-on to switch-on, therefore it is

not possible to estimate an initial covariance that will always result in the
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fastest time to alignment.

Another factor to consider with the process noise scaling algorithm is

that the algorithm works by multiplying all the elements in the process

noise matrix by the scale factor, Sk. When a deficiency in the state

estimation is identified through the innovation sequence, the process noise

is increased for all states. Consequently, the algorithm is not able to

identify an individual state that has been poorly estimated. Intuitively,

it is desirable to maintain the correct filter estimates once they have been

initialised for the states that are strongly observable. For example the

x-axis gyro bias which is shown for the conventional Kalman filter in

Figure 6.3. Therefore, it may be possible to improve the time to alignment

using an algorithm such as the adaptive Kalman filter examined in §7.3.

7.2.5 Innovation and residual sequence

Figure 7.6 shows the innovation and residual sequences for the north ve-

locity error using the process noise scaling algorithm. The figure shows

that the biases that exist under the conventional Kalman filter shown in

Figure 6.6 have been removed. In other words, the algorithm has identified

that there is a deficiency in the state estimation and has attributed this

deficiency to the INS through increasing the process noise. For the initial 35

seconds, there is a significant bias in the north velocity innovation sequence.

This is removed through using the scale factor to increase the process noise.

As a result, the north velocity residual sequence has very small magnitude

at the start of the dataset since the state is heavily weighted by the new

measurement. Using the Lilliefors test for normality using 100 samples,

the test is passed using data starting at 40 seconds. At the 95% confidence
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level, the Lilliefors test statistic is computed to be 0.078 which is less than

0.088 indicating that the sequence approximates a Gaussian distribution.
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Figure 7.6: Process noise scaling residual and innovation sequences

Another factor that must be addressed in using the innovation sequence

to scale the process noise is that it is important that blunders due to the

measurements have been removed from the innovation sequence. In the

decentralised filter used in this section, this means ensuring that there

are no blunders in the GPS position and velocity estimates. Furthermore,

the correct measurement noise for the GPS measurements is required in

order to calculate the covariance of the innovation sequence. For the

results obtained in this section, only carrier phase measurements are used

with the ambiguities fixed. If an unresolved cycle slip were to cause the

ambiguities to be reset, the GPS solution is obtained from the pseudorange

measurements. It is important that the measurement model is adjusted in

order to accommodate for the increased measurement noise, otherwise the
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error is attributed to the INS by increasing the process noise scale factor.

7.2.6 Dependence on initial covariance

A significant advantage of using the process noise scaling algorithm is that

it reduces the dependence on the initial covariance as considered for the

conventional Kalman filter in §6.3.1. Table 7.1 shows the alignment times

obtained using process noise scaling when using different initial covariance

estimates. The table demonstrates that for the CKF, the time to alignment

is highly dependent on the initial covariance of the bias states. The opti-

mum value was a standard deviation of 0.01, with values larger than this

resulting in a rapid increase in the time to alignment due to the large bias

estimates. The lower covariance estimates all result in similar performance

with a prolonged period of high dynamic manoeuvres required to resolve

the biases.

The covariance scaling algorithm greatly reduces the dependence on the

initial covariance. The initial standard deviation of 0.1 to 1×10−5 only

results in a 1 second difference in the time to alignment. Surprisingly, the

initial standard deviation of 0.1 did not result in large bias estimates as the

CKF experienced. This is thought to be due to the scale factor increasing

the process noise of all the states, resulting in comparatively less weight

given to just the bias states. However, the alignment time was greatly

increased for the initial estimate of 1.0. These results demonstrate that

the new algorithm provides a robust method for improving the time to

alignment, and reduces the dependence of the initial covariance estimate.



Chapter 7. On-line Stochastic Estimation for Low cost INS 128

Initial standard deviation (◦/s, ms−2)

1.0 0.1 0.01 1×10−3 1×10−4 1×10−5

CKF (s) >1000 >1000 453 551 556 556

Process noise scaling (s) 730 258 265 266 266 266

Table 7.1: Processing noise scaling alignment times for different initial bias

state standard deviations

7.2.7 Centralised filtering

The process noise scaling algorithm is more complex to implement for the

centralised filtering structure than for the decentralised structure. This is

because the number of observations in the centralised filter (i.e. the double

differenced satellite range observations) varies depending on the number

of satellites available. Therefore, the expected sum of the square of the

innovations in Inequality 7.2 will depend on the number of observations

used in the filter.

The centralised filter was adapted in KinPosi to include the covariance

scaling algorithm. To accommodate the different number of measurements

and measurement types, the approximation for the aligned innovation co-

variance was estimated for each observation for each type of measurement.

The estimate of the innovation variance was then formed from the sum

of the variances for each observation. A more thorough statistical model

could be developed using the models described in §3.6.2 to allow for the

variation in measurement noise on each of the measurements.

The process noise scaling algorithm using the centralised filtering struc-

ture results in an alignment time of 263 seconds. This is 5 seconds slower
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than the decentralised filter using the same initial covariance matrix. The

small difference in the time to alignment is considered to be negligible.

Another factor to consider is that it was mentioned in §6.2 that the

decentralised filter is used in this section because the large initial INS errors

can actually degrade ambiguity resolution. For the simulated data, the

ambiguities were resolved after 1 epoch, however the initial position was

specified to within approximately 10 centimetres. For real data, if too much

weight is initially given to the INS, the estimated position will drift with

the INS. The adaptive algorithms should reduce this problem because, in

the case of large initial errors, the INS process noise is increased so that

the position is obtained primarily from the GPS measurements. This is

considered further in Chapter 8.

7.2.8 Navigation performance

So far, it has been demonstrated that the process noise scaling algorithm

provides a significant performance improvement in the time it takes to ini-

tialise the bias estimates and align the INS attitude. This section examines

the effect that the scaling algorithms have on the navigation errors once

the INS is aligned.

Figure 7.7 shows the navigation errors for the position, velocity and

attitude using the conventional Kalman filter and the process noise scaling

algorithm. The navigation performance of the fading memory covariance

scaling algorithm from Hu et al. (2001) given by Inequality 7.1 is also

shown. The fading memory algorithm is examined in this section as the

algorithms are being tested when the system is aligned and the Kalman

gain has reached steady state.
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Figure 7.7: Covariance and Process Noise scaling RMS errors

The figure shows that the RMS position errors are at the centimetre level

for the CKF. The mean position errors are at the level of a few millimetres

for the trial. This is because the atmospheric errors cancel over the short

baseline. The position error is thought to be larger in the North direction

due to the latitude at which the data was simulated. This is a result of the

current orbit patterns and satellite geometry of 55◦ inclination (Meng et al.,

2003). The Doppler errors are at the millimetre level which is thought to

be of higher accuracy than expected for real data (see §8.2.5). The roll

and pitch errors are less than 0.03◦ as they are continually observable, but

the yaw error is significantly larger at 0.20◦ for the CKF due to the lower

observability.
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The figure shows that the adaptive algorithms both result in a small

increase in all the navigation errors over the CKF except for a small

decrease in the north axis position error of less than 1mm. The largest

percentage increase in the navigation errors is experienced by the velocity

error which increases by 12.3% in the down axis for the covariance scaling

filter. This is however, still an increase of less than 1mm/s.

It was anticipated that the process noise scaling filter could result in a

slight deterioration of navigation accuracy because of the approximation

used to form the innovation covariance. The approximation is formed from

a sample of data taken from the innovation sequence when the system

is aligned. The covariance approximation is therefore only valid for the

sample of data that it was obtained from. The reduction in navigation

performance of the process noise scaling filter is however, only at the

millimetre level for position and velocity and less than 1.5 arc minutes

in attitude.

The covariance scaling filter was anticipated to improve the navigation

performance by providing improved modelling of the inertial errors. How-

ever, the algorithm results in a small deterioration in navigation accuracy,

which is at the millimetre level for position and velocity and less than 2

arc minutes in attitude.

7.3 Adaptive Kalman filtering

The adaptive Kalman filter is described in §4.3.3. This section describes the

use of the innovation and residual based adaptive process noise algorithms

for the alignment and initialisation of the INS errors. Therefore, the
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adaptive algorithm is used to identify the process noise matrix as opposed

to identifying the measurement noise matrix. The adaptive Kalman filter

estimate of the measurement noise is not considered in this chapter because

the large low cost inertial navigation sensor errors are the dominant error

source at the initialisation stage. Use of the measurement noise adaptive

estimate would result in the inertial navigation sensor errors being incor-

rectly attributed to the GPS measurements. The adaptive Kalman filter

algorithm for process noise estimation is termed adaptive-Q filtering for

the rest of this thesis.

7.3.1 Innovation based adaptive-Q

The innovation based adaptive-Q estimate is formed using the state co-

variance approximation in Equation 4.33 substituted into Equation 4.30.

The process noise estimate is computed after the Kalman filter update and

it is used to form the covariance prediction at the following epoch. The

adaptive estimate requires an initial window length of observations to be

accumulated using conventional Kalman filtering to form the approxima-

tion for the state covariance. The window length used in this section is 20

epochs. Initially in this section, only the diagonal elements of the estimated

process noise matrix are used.

Figure 7.8 shows the innovation based adaptive-Q estimate using two

different initial process noise matrices. The first initial process noise matrix

considered is the matrix used in §6.3.1 which was identified as the estimate

that resulted in the best navigation performance using the CKF. This is

labelled as the normal process noise in the figure. The figure shows that

the z-axis gyro bias estimate formed using this process noise matrix is slow
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to converge to the correct estimate. The bias estimate only converges to

within 0.01◦/s after 473 seconds, which is slower to converge to the correct

value than the CKF.

In order for the bias estimate to converge at all using the normal naviga-

tion process noise, the adaptive-Q filter was initialised using the empirically

estimated initial covariance matrix that was identified in §6.3.1. When the

filter is initialised with a smaller initial covariance for the bias states, the

process noise of the bias states converges to a small value which results in

the bias states not being updated by the new observations.
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Figure 7.8: Innovation based adaptive-Q filter z-axis gyro bias alignment

The adaptive-Q estimate shown in Figure 7.8 is slow to converge to

the correct bias estimate due to the recursive nature of the adaptive-Q

algorithm. The adaptive-Q algorithm uses the state covariance approx-

imation given by Equation 4.33 which uses the Kalman gain to convert

the innovation covariance approximation to the state covariance approx-

imation. Therefore, the algorithm uses the information obtained from
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the first 20 epochs using the CKF algorithm to form the process noise

estimate. Because the initial process noise elements correspond to those

expected when the INS is aligned, the resultant process noise estimate is

based on this information, hence the process noise is underestimated. As

more information is obtained from the innovation sequence, the process

noise estimates increase. For example, in the figure at approximately 190

seconds at the beginning of the alignment manoeuvre, there is a significant

increase in the z-axis gyro bias due to the large innovation. However, the

bias estimation is still slower to align than the CKF because the initial

covariance and process noise estimates do not accurately model the initial

stochastic properties of the INS errors. Therefore the adaptive-Q algorithm

is sensitive to the initial covariance and the initial process noise values used.

The sensitivity to these values is investigated further §7.3.4.

As a result of the poor bias estimates obtained using the normal process

noise matrix for the INS during navigation, the algorithm was changed so

that the initial process noise matrix is formed using estimates of what the

initial process noise elements are likely to be. The adaptive-Q algorithm is

then used to adapt the process noise to reduce the process noise as the states

become aligned. This is different to the process noise scaling algorithm

where the algorithm was used to automatically increase the process noise.

Figure 7.8 shows the adaptive-Q estimate obtained using the estimated

initial process noise matrix. This figure shows that the z-axis gyro bias is

resolved to within 0.01◦/s at 340 seconds which is 45 seconds faster than the

optimised CKF. The yaw alignment converges to within 0.5◦ after only 264

seconds which is 189 seconds faster than the CKF and 1 second faster than

the process noise scaling filter. It is significant that the yaw alignment
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is achieved to within the 0.5◦ threshold after 264 seconds even though

the z-axis gyro bias is not obtained to within 0.01◦/s until 340 seconds.

In the process noise scaling filter, the z-axis gyro bias was obtained to

within 0.01◦/s after only 210 seconds. This indicates that the adaptive-

Q algorithm has adapted the process noise elements individually, unlike

the process noise scaling algorithm where all the elements are increased by

the same amount. In the adaptive-Q filter, the yaw state process noise is

estimated so that the yaw state responds to the high dynamic manoeuvre

during alignment. The z-axis gyro bias process noise is comparatively

underestimated which results in a longer alignment time.

One of the potential advantages of using the adaptive-Q process noise

estimate is that it provides a fully populated variance-covariance matrix.

However, use of the full variance-covariance matrix resulted in the filter

becoming divergent after approximately 200 seconds. This is because the

number of unknowns that the adaptive-Q filter is attempting to estimate is

increased significantly when including the off-diagonal elements. The full

variance-covariance matrix results in a more stable performance when the

INS errors are resolved, i.e. when there is less variation in the estimated

process noise. Analysis in Mohamed (1999) identified that the correlations

in the estimated process noise reduce when a longer estimation window on

the innovation sequence is used, and that the navigation performance is

similar to that of just using the diagonal elements. Therefore, although

it is theoretically appealing to use the full process noise matrix, only the

diagonal elements of the process noise are considered for the adaptive-Q

filters in this thesis due to the more stable performance.

Another important result of using the adaptive-Q formulation is the
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effect on the innovation sequence. The adaptive-Q filter described results

in the innovation sequence sharing similar properties with the innovation

sequence from the process noise scaling algorithm in §7.2.5 in that the

biases are removed from the sequence. For the first 20 seconds during

conventional Kalman filtering, there is a bias in the innovation sequence

that increases to 27cm/s for the north velocity. When the adaptive filter

begins, the bias reduces to 6cm/s after 40 seconds and after 45 seconds there

is no distinguishable bias in the innovations. The Lilliefors test statistic

computed for the innovation sequence between 45 and 145 is 0.044 which

indicates that the sequence during this time period approximates a normal

distribution. Therefore, the adaptive-Q algorithm has adapted to make

the innovation sequence consistent with the estimated covariance which is

the basis for the formulation of the adaptive-Q algorithm. Therefore, in a

similar way to the process noise scaling filter, it is important that blunders

are removed from the GPS measurements to avoid the errors caused by

the GPS measurements resulting in the process noise for the INS being

increased incorrectly.

7.3.2 Residual based adaptive-Q

Figure 7.9 shows the residual based adaptive-Q estimate of the z-axis gyro

bias. The approximation to the state correction covariance for the residual

based adaptive-Q filter is given by Equation 4.32. The figure shows the

z-axis gyro bias estimate using the same initial covariance and the same

two initial process noise matrices that were defined in the previous section.

The bias estimate in the figure formed using the normal navigation process

noise shows that the residual based adaptive-Q bias estimate takes longer
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to converge than the equivalent innovation based estimate. The filter takes

793 seconds for the z-axis gyro bias to converge to within 0.01◦/s. Again

this shows that the initial covariance and process noise that are used to

initialise the filter are important in the convergence of both the innovation

and residual based adaptive-Q algorithms.
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Figure 7.9: Residual based adaptive-Q filter z-axis gyro bias estimate

Figure 7.9 also shows that the estimated initial process noise matrix

results in a very similar performance to the innovation based estimate. In

fact, the yaw estimate is obtained to within 0.5◦ after 283 seconds, which

is only 19 seconds slower to align than the innovation based filter. The

z-axis gyro bias is obtained to within 0.01◦/s after 370 seconds which is

30 seconds slower than the innovation based adaptive-Q filter, but still 15

seconds quicker than the CKF. Therefore both the innovation and residual

based algorithms show the potential to provide a more rapid initialisation

and alignment than the CKF algorithm.

The residual based adaptive-Q algorithm was also tested using the full
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variance-covariance process noise matrix. However, this again resulted in

filter divergence after approximately 200 seconds which is the same as the

innovation based estimate. Therefore only the diagonal elements of the

estimated process noise are used in the residual based adaptive-Q filter.

From the results obtained from the residual and innovation based filters it

is clear that both filters need to be initialised with suitable covariance and

process noise matrices.

7.3.3 Covariance

Figure 7.10 shows the covariance and estimated process noise elements for

the gyro bias states using the innovation and residual based adaptive-Q

algorithms. From the figures it is clear that the innovation and residual

based estimates show different characteristics for the estimated process

noise.

The residual based filter estimates the x-axis bias process noise to be

approximately 0.015◦/s at the first adaptive epoch (i.e. after the initial 20

epochs where the CKF is used) with the y-axis bias process noise estimated

to be approximately 0.008◦/s. The residual based estimate follows what

the bias estimates are expected to be since initially the x and y-axis bias

estimates are -0.28◦/s and -0.18◦/s respectively. Both states are observable

at the start of the dataset with the state correction expected to be larger

for the x-axis bias since the initial error is larger. As the state correction

sequence is used to form the process noise matrix, the initial process noise

for the x-axis is larger than for the y-axis, hence the estimates shown.

However, at the start of the dataset, the z-axis process noise estimate is

the smallest even though the initial bias error is the largest at 0.35◦/s. This
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Figure 7.10: Adaptive-Q filter gyro bias process noise and covariance

is considered later in this section. The figure shows that the process noise is

individually estimated for each state, unlike the process noise scaling filter

where all the process noise elements are increased by the same amount.

For the innovation based filter, the estimates vary at a much higher

frequency than the residual based filter. Initially at the first adaptive

epoch, the y-axis gyro bias is estimated to be 0.15◦/s with the subsequent

20 epochs predominantly estimated to be less than 0.01◦/s. The initial
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estimate of 0.15◦/s increases the covariance significantly to 0.154◦/s. This

actually deteriorates the y-axis bias estimate because too much weight is

given to this state. From the innovation covariance for the x and y gyro bias

states is is shown that the covariance reduces slower than for the residual

based estimate. This is because the x and y-axis bias states are not as

accurately obtained as the residual based estimates. Similarly the z-axis

bias is quicker to reduce than the residual based estimate because the z-axis

bias estimate is better. Therefore the filter is adapting depending on the

actual errors. After approximately 400 seconds when both the residual and

innovation estimates are obtained to approximately the same accuracy, the

covariance estimates converge.

The main characteristic that is identified in Figure 7.10 is that the values

for the x and y-axis estimates reduce as more data is made available to

the filter. Conversely, the z-axis estimate increases after approximately

70 seconds. This is caused by the observability of the states that are

being estimated. For the z-axis gyro, during the period of low dynam-

ics, the state correction sequence is of small magnitude due to the low

observability. Therefore, the estimated process noise is small for this state.

However, when the small dynamic manoeuvre occurs at approximately 70

seconds, the state correction sequence increases and hence the process noise

increases. Similarly, as the correct bias estimates are obtained for the x

and y-axes, the state correction sequence reduces and therefore the process

noise reduces. This shows that the estimation is recursive which identifies

that for the alignment problem, the initial values for the covariance and

process noise matrices are critical for the performance of the filter.

The covariance estimates for the gyro bias states in Figure 7.10 both
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show that during the initial 20 epochs using the CKF, the covariance

increases from the initial standard deviation of 0.1◦/s to approximately

0.45◦/s for all states (the actual values vary slightly due to the observability

of the states). The initial increase should be the same as initialising the

bias state covariance with a standard deviation of 0.45◦/s but this is not the

case. This is because the initial few innovations in the innovation sequence

are dominated by the initial position and velocity errors. If a large initial

covariance for the bias states is used, the initial error is incorrectly absorbed

by the bias states, potentially resulting in large bias errors. By increasing

the initial covariance after the first few epochs using the process noise, the

filter provides a much better estimate of the biases. This is considered

further in the following section.

7.3.4 Dependence on initial covariance and initial pro-

cess noise

One of the characteristics required for the alignment filter is to reduce the

requirement for accurate a priori estimates for the elements in the process

noise matrix. So far, the analysis has indicated that the initial process

noise and covariance information used in the filter is potentially more

critical than that used for the CKF. Table 7.2 gives the alignment times

for the adaptive-Q formulation given different initial covariance estimates

for the gyro and accelerometer bias states. The initial process noise matrix

used for the CKF initialisation is the process noise that was identified for

normal navigation performance. In other words, Table 7.2 shows whether

the standard navigation process noise matrix can be used to initialise the
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filter by changing the initial covariance. The dependence of the initial bias

states is investigated here due to their weak observability.

Initial covariance (◦/s, ms−2)

0.1 0.01 0.001

Innovation based (s) 271 413 >1000

Residual based (s) 378 700 >1000

Table 7.2: Adaptive-Q alignment times for different initial bias state

covariance

The table shows that the adaptive-Q filters are highly sensitive to the

initial covariance used. For the initial covariance of the bias states, the

estimate of 0.001 resulted in the filter not being aligned even after 1000

epochs. In fact, the filter had only estimated the z-axis bias to be 0.03◦/s

after 1000 seconds, whereas the actual bias is approximately 0.35◦/s. This

indicates that the filter will take far longer than 1000 seconds to become

aligned. The reason this occurs is that initial bias state corrections using

the CKF were very small. Therefore, the process noise estimates are small

and the filter continues to underestimate the state correction.

The larger initial covariance estimate of 0.01 for the bias states resulted

in the z-axis bias shown in the previous sections when using the navigation

process noise. The initial estimate of 0.1 provided the fastest alignment

time for the adaptive filters. An initial estimate of 1.0 resulted in the filter

becoming divergent as too much weight was given to the bias states which

resulted in very large bias estimates which quickly make the filter unstable.

Therefore, unlike the process noise scaling filter, the adaptive-Q algorithms
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are more sensitive to the initial covariance matrices used than the CKF.

Furthermore, from the results obtained, it is clear that the algorithm is

slow to increase the process noise but is capable of reducing the estimate

relatively rapidly.

Table 7.3 shows the alignment times for the adaptive-Q filters when

using different initial process noise elements for the bias states. A scale

factor was multiplied to the standard navigation process noise matrix as it

is assumed that all states will have a larger process noise at the beginning

of the dataset. The table shows that in addition to the sensitivity of the

initial covariance, the filter is also sensitive to the initial values used for

the process noise. For the innovation based filter, the most rapid time to

alignment is 264 seconds and for the residual based filter the fastest time to

alignment is 279 seconds using a process noise matrix of 100 and 1000 times

larger respectively than the standard navigation process noise matrix.

Process noise scale factor

10000 1000 100 10 1 0.1

Innovation based (s) 347 291 264 472 413 345

Residual based (s) 341 279 283 686 700 702

Table 7.3: Adaptive-Q alignment times for different initial process noise

The results obtained from using different initial process noise matrices

are consistent with the results obtained in Busse et al. (2002). Busse et al.

used adaptive Kalman filtering for formation flying missions in low Earth

orbits. Busse et al. observed that adaptive routines were always able to

identify the process noise if the initial estimate was larger than the actual
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value, but the adaptive routines were not always able to converge to the

correct value if the initial guess was underestimated. The analysis in this

section has shown that the algorithm does not increase the process noise

rapidly enough to be useful for the alignment problem. The performance of

the alignment algorithm is reduced when the initial covariance and process

noise is too high or low. Therefore although the algorithm is potentially

able to improve alignment over the CKF, its use is restricted because of

this problem.

7.3.5 Optimising window length

A further consideration for the adaptive-Q algorithms is the effect of the

window length used to form the approximation to the covariance of the

state correction sequence. Mohamed (1999) indicated that the number of

epochs of observations used to form the approximation should be at least

the number of states that are to be estimated. In this instance, the number

of states is 15 so as an approximate guide, the window length should be

larger than 15. Table 7.4 shows the effect that the window length has on

the alignment time for the innovation and residual based adaptive-Q filters

using the optimised initial covariance and process noise from §7.3.1. From

the table, the fastest alignment times are obtained using a window length

of 30 or 40 observations using the innovation based algorithm.

One of the factors for the INS alignment is that using a longer window

length increases the initial period for which the filter uses the CKF when

accumulating the observations. For example, the filters using a window of

60 epochs will require an initial 60 epochs of processing using the CKF at

the start of the dataset. However, the approximation to the innovation or
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Initial covariance (◦/s, ms−2)

10 20 30 40 50 60

Innovation based (s) 349 264 247 245 346 342

Residual based (s) 342 284 282 282 279 272

Table 7.4: Adaptive-Q alignment time for different window lengths

state correction covariance should be improved with more data contained

inside the estimation window. Another consideration is that the approx-

imation will not reflect a change in the stochastic properties of the filter

as rapidly when using a longer estimation window. Therefore the window

needs to provide a balance between these factors. From the table it is

shown that the window lengths of 30 and 40 show a good balance between

these factors for the innovation based adaptive-Q filter, with the alignment

time being increased for shorter or longer estimation windows.

For the residual based filter, the alignment times are improved when

using the longer estimation windows. This is expected to be because

the CKF is used for a longer time which increases the state covariance.

The residual based filter tends to underestimate the process noise during

alignment which results in the covariance being reduced too quickly. There-

fore, the longer estimation windows compensate for the smaller estimated

process noise.

7.3.6 Centralised filtering

The adaptive-Q algorithms can also be implemented using the centralised

filtering structure. The residual based algorithm is simpler to implement
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in the centralised filter than the innovation based algorithm because the

number of observations is always constant. For the innovation based ap-

proximation, the number of observations varies due to the different number

of satellite observations that are available at each epoch. There are two

situations that need to be considered for the innovation based filter when

satellites come into view. The first is that the satellite is a new observation.

In this instance the satellite has not been recently viewed and therefore

only a priori stochastic information is available for the observation. In

this instance, a standard approximation to the innovation covariance for

the satellite is assumed. The second situation when a satellite comes

into view is when it has been momentarily blocked by an obstruction. In

this instance, the previously accumulated residual information is used to

form the innovation covariance approximation as it is assumed that the

approximation is still valid.

The adaptive-Q algorithms were implemented in KinPosi using the method

described. For the innovation based adaptive-Q filter, the alignment time

was 266 seconds which is 2 seconds slower than the decentralised innovation

based filter. This is considered to be a negligible difference. The z-axis gyro

bias estimate was obtained to within 0.01◦/s in 264 seconds compared to

340 seconds for the decentralised filter. This large difference was obtained

because for the decentralised filter, the estimate only just failed the 0.01◦/s

criterion. Similarly the residual based centralised adaptive-Q filter resulted

in an alignment time of 289 seconds which is 6 seconds slower than the

decentralised filter.

The results obtained using the centralised filtering structure are particu-

larly important for the adaptive-Q algorithm as the centralised and decen-
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tralised filters contain different measurement models. One of the factors

that needs to be considered with the adaptive-Q algorithm is that in the

derivation of the algorithm, it is assumed that the the measurement noise

matrix is known. If there is a deficiency in the measurement noise model,

it will be incorrectly absorbed by the process noise estimate. The mea-

surement noise for the centralised filter is formed using a priori estimates

of the noise of the double differenced observations. For the measurement

simulation, this model does not vary significantly for different elevation

angles which may be expected in a real world environment. Therefore

the assumption that each observation is of equal weight for the simulation

trials is valid. This should be considered when using real GPS observations.

Possible weighting schemes for the GPS measurements were described in

§3.6.

For the decentralised filter, the measurement noise matrix is formed

using the position and velocity variances from the GPS filter covariance

matrix. The GPS filter covariance elements are used because the GPS

position and velocity cannot be assumed to be constant due to factors such

as changes in the geometrical strength of the satellite constellation, and

most importantly the types of GPS observation that were available to form

the position estimate. Because the results obtained for the centralised and

decentralised filters are very similar, it is assumed that the measurement

model for the decentralised filter is a good approximation of the true

measurement noise. This is examined in more detail for real data in §8

where the change in position and velocity accuracy is more significant.
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7.3.7 Navigation performance

So far, the adaptive-Q algorithm has only been assessed for its suitability

for the alignment of a low cost INS. To date, the adaptive-Q algorithm has

been examined for GPS and INS in Mohamed (1999) with the adaptive

filter resulting in improved orientation accuracy for a tactical grade INS.

Figure 7.11 shows the navigation performance obtained from the innovation

and residual based adaptive-Q filters compared to the CKF performance.
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Figure 7.11: Adaptive-Q Kalman filter RMS errors

From the graphs it is clear that there is a small performance decrease

in most of the navigation parameters for both the innovation and residual

based filters. However, it is shown that for position, the differences are

at the millimetre level and for velocity, the differences are at the sub-
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millimetre per seconds level. The most significant difference is for the yaw

error where the innovation based estimate is 0.08◦ (5 arc min) worse than

the CKF and the residual estimate is an improvement of 0.02◦ (1.5 arc min).

This is thought to be because the residual based filter tends to estimate the

process noise to be smaller than the innovation based filter. This resulted

in a slower alignment and initialisation but results in improved navigation

performance.

Another consideration of the adaptive-Q filters is that they potentially

provide a self-tuning algorithm for GPS and INS integration. Therefore the

process noise estimate that the adaptive filter converges to may be useful for

tuning the CKF algorithm. This was attempted using the average errors

obtained from the end of the processing run when the filter is aligned.

This resulted in the process noise estimates being much too small for use

as a priori estimates in the CKF. States such as the yaw error drifted

from the true value because the process noise was set too small. This

is thought to be because the adaptive algorithm increases and decreases

the process noise estimates depending on the new information provided by

the estimated state correction covariance. Therefore, for example, during

turning manoeuvres, the process noise estimates are increased. Taking an

average of the process noise does not provide a good estimate of the process

noise. The use of adaptive-Q filtering for identifying the a priori process

noise for the CKF therefore requires further investigation.
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7.4 Multiple Model Adaptive Estimation

The final adaptive Kalman filtering technique for alignment examined here

is the multiple model approach as described in Section 4.3.4. The multiple

model filter is generally not considered for navigation applications due to

the large computational burden imposed from running the multiple filters.

However, continued improvements in computer processor technology now

allow multiple models to be genuinely considered as a potential method for

an adaptive Kalman filtering algorithm.

7.4.1 A six model adaptive filter

The first trial considered here uses six Kalman filters all operating using

different process noise matrices. Six models were used since it provides the

filter with a broad range of potential filters to cover the change in stochastic

properties of the INS during alignment. The process noise matrices are

formed using the process noise matrix from §6.3 with the bias process noise

of 1×10−4. Again, this process noise matrix is used since it provided the

best navigation performance in §6.3. Each filter is formed using a different

scale factor, Sn, for the nth Kalman filter to scale the process noise matrix.

Therefore this implementation of the multiple model filter is similar to the

process noise scaling filter in §7.2.2, but uses a different method to identify

the scale factor. This method also differs in that the state estimate from

each filter can be used to form the weighted combination of the state at

each epoch.

The scale factors for the six individual Kalman filters are defined as

Sn = 10000, 1000, 100, 10, 1 and 0.1. The scale factors are predominantly
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larger than the standard Kalman filter of Sn = 1 since the inertial errors

are expected to be larger during alignment. Since the multiple model

filter is required to remain adaptive during the processing run, a minimum

probability condition is imposed on the probability pn(k) for each model. If

the computed probability is below this threshold, the probability is replaced

with the threshold value and the probabilities for the other models are

normalised in order to ensure that the sum of the probabilities is equal to

unity. The minimum probability threshold used is 1×10−3. Figure 7.12

shows the estimate of the z-axis gyro bias using the multiple model filter.
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Figure 7.12: 6-model MMAE filter z-axis gyro bias alignment

The MMAE estimate shown in Figure 7.12 provides the fastest alignment

achieved by any of the algorithms considered in this chapter. The figure

demonstrates that the MMAE algorithm is able to adapt to use different

process noise information during initialisation and alignment. From the

figure it is shown that during the initial period of low dynamics, the z-

axis gyro bias estimate is continually being updated which indicates that
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the filters with the larger process noise are being used. After only 114

seconds, the filter estimates the bias to within 0.01◦ which is still during

the period of low dynamics. The yaw alignment is achieved to within 0.5◦

after 127 seconds. This indicates that the initialisation and alignment is

achieved while the vessel is still in the period of low dynamics. Therefore

the algorithm removes the requirement for the vessel to undergo the period

of high horizontal acceleration manoeuvres in order to align the INS.

From Figure 7.12 it is observed that the filter is constantly adapting to

the new information provided by the innovation sequence. At the beginning

of the processing run, the filter with the largest process noise scale factor

is identified as the filter with the largest probability. In fact, the estimated

conditional probability for this filter is 1 to 10 decimal places. This is why

it is necessary for the threshold probability condition to be imposed to

ensure that this does not result in this being the only filter used for the

entire processing run. The filter continually adapts the process noise so

that there is a smooth transition to the correct bias estimate. The figure

shows that at 114 seconds when the bias estimate is obtained to within

0.01◦/s, the bias estimate follows the true bias estimate indicating that the

process noise is reduced.

To show how the MMAE estimate was formed, Figure 7.13 shows the

conditional probabilities that form the weights for each individual Kalman

filter. For example, at 300 seconds, the Kalman filters formed using the

process noise scale factors of 0.1 and 1 both have a probability of approx-

imately 0.18. The filter using the process noise scale factor of 10 has a

probability of 0.64. The conditional probabilities for the remaining models

are calculated to be less than 2×10−5 and consequently are not visible on
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Figure 7.13: 6-model MMAE filter conditional probabilities

the graph.

The filter with the largest process noise shown in Figure 7.13 was iden-

tified as the correct filter at the first epoch since the innovation is large

compared to the predicted innovation covariance. After 10 seconds the

MMAE filter adapts to weight the second Kalman filter with a conditional

probability of 0.999 to 3 decimal places and at 26 seconds the filter adapts

to weight the third Kalman filter with a probability of 0.966 to 3 decimal

places. The figure shows that using the threshold probability results in the

filter continually adapting the process noise. During the vessel manoeuvres,

the inertial errors reduce and the innovation sequence reduces in magnitude

resulting in the MMAE algorithm using the Kalman filters with the smaller

process noise. The filter continually adapts during the data set which allows

the filter to adapt to the correct bias estimate for the z-axis gyro bias.

After approximately 80 seconds, the MMAE algorithm predominantly
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uses the filters with the scale factors of 0.1, 1 and 10, with the scale factor

of 10 providing the dominant filter after 600 seconds. This is because

these filters result in similar covariance matrices, and hence similar PDF

estimates. As more observations become available the MMAE algorithm

gradually converges to a single filter even though the minimum threshold

is applied. The MMAE converges to the scale factor of 10, not 1 which was

expected to give the best navigation performance as identified in §6.3. In

fact, as shown in §7.4.7 later on in this chapter, the scale factor does result

in a small improvement in some of the navigation states, although there

is also a small deterioration in other navigation states. The navigation

performance is considered further in §7.4.7.

Figure 7.14 shows the PDF plotted for a range of innovations and the

innovation covariances. For the GPS/INS MMAE integration filter, the

innovation sequence is the same for each model. However, each filter

uses a different process noise matrix which results in a different innovation

covariance. In the figure, it is shown that given a small innovation, a filter

with a small covariance will most likely be the correct filter. Similarly, for

larger innovations, a filter with a larger covariance is more likely to be the

correct filter. In other words, MMAE chooses the Kalman filter with an

innovation covariance consistent with the the new innovation. This results

in an innovation sequence with similar properties to those shown for the

process noise and adaptive-Q filters.

7.4.2 Covariance

Figure 7.15 shows the the covariance of the gyro bias states using the

MMAE algorithm. The covariance of the multiple model filter is given
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by Equation 4.37 and is formed using all of the multiple model estimates

weighted by the conditional probabilities. The covariance of the bias states

shows similar properties to the covariance obtained using the other adaptive

algorithms in that the covariance is increased rapidly after the first epoch.

This appears to reduce the initial bias errors that are caused at the first few

epochs when a large initial covariance is used. Large initial bias errors are

caused when using a large initial covariance because the some of the initial

position and velocity errors are absorbed incorrectly by the bias estimates.

Because the bias estimates have a relatively low observability, the errors

can take a long time to reduce. After the first few epochs, the position and

velocity errors in the innovation sequence are primarily caused by the INS

attitude misalignment and sensor errors.

The MMAE algorithm increases the covariance to the largest value of

all the adaptive filters by increasing the process noise which results in the

fastest alignment performance of any of the filters considered. It is also

shown that the initial covariance reduces rapidly and by 315 seconds, the

covariance estimate for the z-axis gyro bias state is within 0.001◦/s of the

CKF covariance.
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Figure 7.15: 6-model MMAE filter gyro bias covariance

7.4.3 Dependence on initial covariance

The alignment times for different initial bias state covariance values are

shown in Table 7.5. The initial covariance estimates of less than or equal

to 0.01 all result in the same time to alignment. The initial covariance of 0.1

resulted in the fastest time to alignment, with the yaw estimate resolved to

within 0.5◦ after only 92 seconds. The larger initial covariance estimate of

1 increased the time to alignment by causing too much weight to be given

to the bias states resulting in larger, erroneous bias estimates that take

longer to converge. The table shows that the filter significantly reduces the

dependence on the initial covariance which is a key characteristic that is

required for an alignment filter.
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Initial covariance (◦/s, ms−2)

1.0 0.1 0.01 1×10−3 1×10−4 1×10−5

MMAE (s) 191 92 127 127 127 127

Table 7.5: MMAE alignment times for different initial process noise

7.4.4 Processing time

The principle drawback of the multiple model filter is the significant in-

crease in processing time required for computing the multiple model esti-

mates. The previous trial used a decentralised bank of six, 15-state INS

Kalman filters. Table 7.6 shows the average processing time required per 1

second epoch using KinPosi on a 1.4GHz PC using the Linux operating sys-

tem. The results were obtained by averaging the results from 10 processing

runs. The table shows that for the decentralised filter, the time required

for processing the INS filter is less than 10% of the total GPS and INS

processing time per 1 second epoch. The most significant processing time is

required by the mechanisation of the inertial measurements. In a real-time

system, the inertial mechanisation takes place as soon as the measurement

is available. Therefore, at each GPS update, the integrated navigation

solution using the decentralised CKF structure requires approximately 6ms

of processing time including the processing of the GPS measurements.

Table 7.6 shows that each additional Kalman filter using the MMAE

algorithm requires an additional 1ms of extra processing time (the extra

processing time required for computing the PDF for each filter and cal-

culating the weighted combination of states and covariance at each epoch

is considered negligible). Consequently for the six model Kalman filter
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Time (ms)

GPS 5

INS mechanisation (100Hz) 7

INS Kalman filter 1

Total 13

Table 7.6: KinPosi CKF processing time per 1 second epoch

described, total processing time per 1 second epoch is 18ms, with the

integrated solution available in a real time system with a latency of approx-

imately 11ms. Therefore, modern processing technology allows MMAE to

meet the latency requirements for a number of real time applications. It

should also be noted that KinPosi is still in its development stage. This

means that there are many potential efficiency improvements that can be

made to the software to improve the speed of processing.

Two further considerations are that, firstly, the MMAE algorithm uses

parallel Kalman filters. This provides the potential for parallel processors

to compute the solution for each filter concurrently, hence removing any

extra processing time. Secondly, it is also possible when processing GPS

and INS measurements for the Kalman filter to run behind the main

mechanisation loop. This means that the correction from the Kalman

filter can be applied when the solution becomes available, see for example

in Watts and Neads (2003). This removes any latency other than that

occurring from the INS mechanisation. Further modifications that can be

made to the actual MMAE algorithm to reduce the processing time are

considered in Section 7.4.6.
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7.4.5 Dynamic MMAE

For the previous six model MMAE filter, when the minimum threshold

condition is not used, the filter uses the largest filter for 40s before adapting

to the second largest filter. The second largest filter is then used for the

entire processing run. This is unsuitable for the GPS/INS filter, especially

during alignment, since it ignores new measurements and converges to an

incorrect model.

The previous six-model filter used a minimum threshold on the con-

ditional probabilities in order to keep the filter adaptive. This is termed

dynamic MMAE. This section examines the effect of varying the magnitude

of the minimum threshold on the way the filter responds to new measure-

ments. This section also examines using the weighted combination of states

formed using only the PDF at each epoch as suggested in Welch (1999) as

a method of keeping the MMAE filter adaptive.

7.4.5.1 Conditional Probability Threshold

Using a threshold value for the conditional probability threshold is one

method for forcing the MMAE filter to remain adaptive. As identified in the

previous analysis, the selection of the value for the threshold is important

for a number of reasons. Firstly, the threshold level needs to be large enough

to allow the filter to react rapidly to changes in the innovation sequence.

For example, for the six-model filter, initially the filter with the largest

process noise is selected by the algorithm as the best model. As a result,

the conditional probabilities for the other filters tend to zero. The recursive

algorithm for computing the conditional probability using the PDF means
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that a filter that has a very small computed probability will take a long time

to increase again if the filter becomes valid. If the conditional probability

equals zero due to the finite precision of the computer word length, the

filter will never be included.

It is also expected to be important that the threshold value is not too

large so that filters that are not a good model of the system are not

incorporated in the weighted solution. The use of the threshold value

means that filters that may be poor a model of the system which should

be removed from the solution will always be used to form the weighted

estimate to some level. Therefore the threshold value needs to be selected

to be small enough to allow some filters to be effectively removed from the

solution by allowing the conditional probability to be small enough. In

the implementation of the MMAE algorithm in KinPosi, the threshold

probability is applied to the estimated probabilities after the weighted

combination of state estimates has been formed. This is necessary to

avoid increasing the weight given to filters that have been identified by

the algorithm as containing incorrect stochastic information.

In order to assess the impact that the selection of the threshold value

has on the time to alignment and the navigation performance, the filter

was run using different threshold values. The results of which are shown in

Table 7.7. The table shows that the fastest alignment time was obtained

using the minimum threshold of 1×10−2. However, this estimate resulted in

the navigation errors being increased since the threshold does not allow the

models with the larger process noise estimates to be removed sufficiently

from the weighted combination of states. Therefore the resultant navigation

errors were noisy. Similarly, the minimum threshold of 1×10−1 was also
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tested but this resulted in the yaw alignment not converging to within

0.5◦ at all because the models with large process noise estimates were still

included in the estimation. In fact, the filter resulted in similar performance

to the weighted PDF filter considered in the following section.

Threshold

10−2 10−3 10−4 10−5 10−10 10−20 10−30

Alignment Time (s) 107 127 284 286 286 368 502

Table 7.7: MMAE alignment times for different initial process noise

As expected, the smaller threshold values result in a longer time to

alignment because the MMAE algorithm takes longer to adapt from one

filter to another. For example using the minimum threshold of 1×10−20, the

filter using the largest scale factor is predominantly used for 25 seconds,

followed by the second filter for 20 seconds and then the third filter for

300 seconds. After 600 seconds the MMAE algorithm fully converges to

the filter using the scale factor of 10. This is unsuitable for the alignment

algorithm as transition between filters is too slow resulting in noisy filter

estimates at the beginning of the dataset and a slower alignment time. It

is interesting to note, however, that the alignment time for this filter is 368

seconds which, despite the sub-optimal performance, is faster to align than

the CKF.

All of the MMAE filters using a minimum threshold of 1×10−3 or less

resulted in the algorithm converging to the filter using the process noise

scale factor of 10. For all of these minimum threshold filters, after 1000

seconds, the conditional probability for the filter using the process noise
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scale factor of 10 was 0.99 or larger. This is due to the point identified in

§7.4.1 where the filter is not able to adapt quickly between filters that have

a similar covariance. It requires many epochs in order for the conditional

probabilities to change when the computed PDF is similar for each filter.

As a result, the transition between using different Kalman filters is slower

which may result in reduced performance if the filter does not react quickly

to a change in the stochastic properties.

7.4.5.2 Weighted combination of PDF at each epoch

Another method to keep the MMAE filter adaptive suggested by Welch

(1999) is to use the weighted combination of PDF at each epoch as in

Equation 4.38. Figure 7.16 shows the z-axis gyro bias estimate obtained

by directly using the PDF estimate to compute the filter weight factors.

The figure shows that the z-axis gyro bias error is resolved slower than

when using the conditional probabilities to weight the filters. Furthermore

the filter does not estimate the gyro bias as accurately as the conditional

probability weighted filter once the filter has converged to the correct value.

In other words the filter does not appear to adapt the process noise once

the bias state has been resolved.

The results from Figure 7.16 are explained by looking at the weight

factors obtained using the PDF in Figure 7.17. The figure shows that

for the first two epochs the Kalman filter uses the process noise scale

factor of 10000 which is identified as the single filter to use. After this the

Kalman filter using the scale factors of 1000 and 100 result in the largest

estimated weight. However, after approximately 10 seconds, the estimated

filter weights remain relatively constant with no single filter being identified
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as the correct filter. This is similar to the situation that occurred in the

last section where the minimum threshold was set too large. This does

not provide the characteristics required for the alignment filter because the

filter results in the navigation errors being too large.

The PDF is not suitable for weighting the Kalman filters at each epoch

since the difference between the PDF for a given innovation is not significant

enough to remove filters that do not model the inertial errors correctly.

7.4.6 Reducing computational burden

This section identifies two simple methods that can be used to help reduce

the computational burden of running multiple model Kalman filters. The

approaches considered are reducing the number of parallel Kalman filters

used, and using the filter with the maximum conditional probability at each

epoch.

7.4.6.1 Reducing the number of models

This section examines the effect of reducing the number of models used in

the MMAE filter in order to reduce the computational burden of MMAE.

Figure 7.18 shows the z-axis gyro bias estimate from the MMAE filter using

two, three and four models. The different models were formed in the same

way as the six model filter in §7.4.1 using the scale factors 10 to 10000.

Figure 7.18a shows the two model filter estimate. The filters use the scale

factors of 10 and 10000. The MMAE filter therefore effectively consists of

an alignment filter formed using the large scale factor, and a navigation

filter formed using the smaller scale factor. The scale factor of 10 is used

for the navigation filter since it is the filter that the MMAE algorithm
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converged to in §7.4.1. The MMAE algorithm is used to switch between

the two filters depending on the information provided by the innovation

sequence.

From Figure 7.18a it is shown that the two model estimate does not

provide a smooth transition to the correct bias estimate. The MMAE

algorithm identifies the alignment filter at the start of the processing run

and transfers to the navigation filter after 40 seconds. The MMAE adapts

between the alignment filter and the navigation filter at 45, 60 and 70

seconds. From the bias estimate it is clear that the alignment filter gives

too much weight the measurements resulting in the large jumps in the bias

estimation. When the algorithm converges to the navigation filter, the bias

estimate from the navigation filter is poor and the bias estimate takes over

300 seconds to converge, with the attitude alignment achieved after 370

seconds.

The two model estimate is poor because the MMAE filter is unable to

identify a correct model during the transition period between the alignment

filter and the navigation filter. Instead, the algorithm selects the nearest

model to approximate the process noise which is not a good estimate. The

three model filter in Figure 7.18b provides an improved transition to the

bias estimate over the two model filter. This is because an intermediate

model is used using a scale factor of 100. This provides an improved

estimate of the process noise during the transition period from the scale

factor of 10000 to the scale factor of 10. Yaw alignment is achieved to

within 0.5◦ for the three model filter in 285 seconds.

The four model filter provides an estimate much closer to that of the

6 model filter. This is because the MMAE algorithm has a filter that
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accurately models the process noise information during each phase of the

alignment as the bias estimate improves. However, the full attitude align-

ment is still not obtained until 285 seconds due to the z-axis bias state

not being resolved to a high enough accuracy for the yaw alignment to

be maintained. This indicates that in the 6 model filter, the period from

approximately 100 seconds to 600 seconds is significant where the filter uses

the models with the scale factors of 0.1 and 10. From the estimate for the

four model filter, it appears that the alignment is maintained by effectively

using smaller process noise estimates during this time.

In order to reduce the number of models that are used in the filter, it

is important that there still remain enough models to accurately model

the process noise during all conditions. In the case of the alignment filter,

there needs to be a smooth transition from the larger process noise to the

lower process noise. The number of models used in the MMAE filter can

be reduced once navigation performance has been achieved so that the

MMAE is just used during alignment. This would decrease the processing

requirements which will reduce the latency at which the multiple model

estimate would be made available. Also, in the case of the filters shown in

this chapter, the MMAE algorithm has converged to a single Kalman filter

estimate. This filter could be then used as a single filter which reduces to

the standard CKF.

7.4.6.2 Maximum conditional probability filter

Another method that can be used to improve the efficiency of the algorithm

is to use the filter with the maximum conditional probability as the single

‘correct’ filter at each epoch. This significantly improves the efficiency
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of the algorithm since the multiple models are only required in order

to calculate the innovation covariance at each epoch. Therefore, once a

single filter has been identified, only one model is used for the Kalman

filter update. In addition to examining using the filter with the maximum

conditional probability, this section also examines using the filter with the

maximum PDF at each epoch. The z-axis gyro bias estimates for the

-0.05 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0 200 400 600

Z
-a

xi
s 

gy
ro

 b
ia

s 
(˚

/s
)

Time (s)

Maximum Conditional Probability
Maximum PDF

6-model MMAE
CKF

Truth

Figure 7.19: MPDF and MCP filter z-axis gyro bias alignment

0.1

1

10

100

1000

10000

0 200 400 600

S
ca

le
 fa

ct
or

Time (s)

Maximum PDF
Maximum Conditional Probability

Figure 7.20: MPDF and MCP filter scale factors



Chapter 7. On-line Stochastic Estimation for Low cost INS 169

maximum conditional probability (MCP) filter and the maximum PDF

(MPDF) filter are compared to the conventional MMAE algorithm estimate

in Figure 7.19. The filters are formed using the same six models that are

used in §7.4.1. From the figure, it is clear that the MCP filter provides

similar characteristics to the standard MMAE filter for the z-axis gyro

bias estimate. The bias is aligned during the period of low dynamics,

and the noise reduces once the correct estimate is obtained. However, the

yaw alignment for the MCP filter is not obtained to within 0.5◦ until 285

seconds. This is because the MCP filter uses only one of the six filters

instead of forming the optimal weighted combination. The yaw estimate is

however obtained to within 0.8◦ after only 101 seconds.

Figure 7.20 shows the scale factor estimate from the maximum condi-

tional probability filter. After 100 seconds only the filter using the scale

factor of 10 is used. The figure shows that the MCP filter adapts from the

largest scale factor filter to the filter using the scale factor of 10 in the first

100 seconds. Unlike the standard MMAE algorithm, the single filter is used

after this point. The 6 model filter uses a combination of the filters using

the scale factors 0.1, 1 and 10. This appears to be significant from the

results shown for the MCP filter in that it makes the navigation estimate

less noisy when the INS is aligned.

Figure 7.19 also shows that the MPDF estimate is slightly slower to

converge to the correct bias with the large manoeuvre at 190 seconds

required for the bias to be fully resolved. The attitude alignment is obtained

to within 0.5◦ after 195 seconds which is faster than the MCP filter but is

still slower than the conventional MMAE algorithm. From Figure 7.20 it

is shown that after the initial selection of the filters with the large scale



Chapter 7. On-line Stochastic Estimation for Low cost INS 170

factors at the start of the processing run, the maximum PDF fluctuates

between the scale factors of 0.1 to 100 very rapidly. It is interesting to

note, however, that the maximum PDF is very rarely identified as the scale

factor of 1. During the first 1000 epochs of processing, for the scale factors

100 to 0.1, the number of epochs for which the filter is identified as the

maximum PDF are 128, 338, 22 and 500 respectively. It is not known why

the scale factor of 1 should only be used for such a comparatively small

number of epochs. Because there is a much faster transition between the

filters, the MPDF filter potentially provides an algorithm that can change

rapidly which may be useful for during normal navigation. The navigation

performance for the filters is examined in §7.4.7.

From the analysis in this section it is clear that both of the algorithms

result in a faster time to alignment than the CKF. However, both the filters

are slower to align than the standard MMAE algorithm.

7.4.7 Navigation performance

It has been shown in the previous sections that the MMAE filtering ap-

proach can greatly improve the time for aligning a low cost INS over the

CKF. The other potential benefit of MMAE is that the multiple models

can identify a ‘correct’ filter from a bank of Kalman filters and can also

adapt the stochastic properties during navigation. The identification of a

single correct filter can be useful in the design stage of a Kalman filter

in that the algorithm essentially provides a method for self-tuning. Also,

with the identification of the dynamic MMAE algorithms, it is also an-

ticipated that the algorithms will be able to provide improved navigation

performance over the CKF. Figure 7.21 shows the navigation performance
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of the standard MMAE filter and also the MPDF and MCP filters. The

reduced model filters from §7.4.6.1 are not included as they all converged

to a single filter which results in the same performance as the MCP filter.
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Figure 7.21: MMAE filter navigation errors

Firstly, the standard 6 model estimate gives a small increase in the

position and vertical velocity errors, and a small decrease in the horizontal

velocity errors. The differences are at the sub centimetre level for position

and sub millimetre per second level for velocity and can therefore be con-

sidered negligible. There is also a small improvement in the yaw attitude

error of 0.006◦ (23 arcseconds). It was mentioned in §6.3 that the base

process noise filter used to form the MMAE process noise matrices resulted

in the best navigation performance for the CKF, so it was expected that the



Chapter 7. On-line Stochastic Estimation for Low cost INS 172

MMAE algorithm would converge to the filter using a scale factor of 1. In

fact, it is shown in Figure 7.21 that the filter using a scale factor of 10 results

in very similar navigation performance which gives a small improvement

in some states and a small deterioration in others. The analysis in §6.3

considered only changing the process noise for the bias states and not the

process noise for the navigation states.

The navigation errors for the MPDF filter are the same navigation errors

that result from using the reduced order filters as during the period of data

used for analysing the navigation performance, only the process noise using

the scale factor of 10 is used. The figure shows that there is a small increase

in all of the navigation errors, although the increase can be considered

negligible.

Also shown in Figure 7.21 is the navigation performance of the MCP

filter. From the figure it is clear that there is a deterioration in the

navigation errors for all of the states. The most significant of which is

the yaw error which is increased by 0.039◦ (2.5 arc min). In §7.4.6.2 it

was mentioned that the rapid change in the estimation of the process noise

matrix that resulted when using the MCP filter may potentially provide an

MMAE filter that is able to adapt quickly to new measurements. In fact,

the filter results in a more noisy estimate since the filter with a scale factor

of 100 is used relatively often (in the initial analysis it was used for 128

epochs in the first 1000 epochs). Unfortunately, none of the variations of

the MMAE filters appear to lend themselves to adapting the process noise

during normal navigation. However, the MMAE algorithm does operate

well when the stochastic properties of the filter change significantly over

time.
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7.5 Summary

This chapter has investigated the use of three different adaptive Kalman

filtering algorithms for the initialisation and alignment of a low cost INS

using carrier phase GPS updates. Each of the filters identified have different

characteristics that provide many different advantages and disadvantages

for the alignment problem. These are summarised in Table 7.8. Figure 7.22

also shows the yaw alignment obtained using the adaptive algorithms com-

pared to the CKF estimate. It should also be noted that the CKF estimate

is the estimate obtained from §6.3 where the filter is initialised using an

empirically derived initial covariance matrix that provided a fast alignment.
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Figure 7.22: Attitude alignment

From Figure 7.22 and Table 7.8, it is clear that all of the adaptive
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algorithms investigated result in an improvement in the time to alignment

over the CKF. For the process noise scaling filter and adaptive-Q filter, the

alignment is achieved in just over half the time required for the CKF. The

actual improvement is slightly better than this because the adaptive algo-

rithms only require the vessel to undergo a short period of high horizontal

acceleration alignment manoeuvres. The alignment manoeuvre begins at

approximately 190 seconds so that the adaptive algorithms require only 75

seconds of the alignment manoeuvre compared to the CKF that requires

260 seconds. Of course the MMAE estimate is resolved in 127 seconds

which completely removes the requirement for the dynamic manoeuvre to

take place and just uses the small horizontal accelerations that occur in the

normal trajectory to align the filter. The MMAE estimate requires less than

one third of the time that the CKF requires to obtain the yaw alignment to

within 0.5◦. The improvement in the time to alignment for other datasets

will depend on factors such as the initial attitude misalignment, the initial

sensor errors and the vessel or vehicle trajectory.

Of all the adaptive algorithms, the adaptive-Q filters are the least suited

to the alignment problem. The high dependence on the initial covariance

and process noise matrix means that the adaptive-Q filters do not always

result in an improvement over the CKF. In fact, the filter may not align

the INS at all if the initial stochastic information is not correct. However,

the adaptive-Q algorithm has shown some promise, however, for the in-

tegration of low cost INS and GPS during normal navigation due to its

ability to adapt the individual states separately and potentially model any

correlations that may exist. The adaptive-Q algorithm has also been used

successfully with a tactical grade IMU in Mohamed (1999).
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The process noise scaling algorithm is the simplest to implement of

all the filters and it provided a significant improvement in the time to

alignment. The MMAE filter provided the best alignment performance but

the improvement is at the cost of a significant increase in the amount of

computer processing required. None of the simple efficiency improvements

were able to match the performance of the 6-model filter.

The most important consideration that applies to all of these filters is

that they all require the definition of the initial process noise matrices (or

matrices for the MMAE algorithm). None of the filters are able to remove

the requirement for a priori stochastic information although the process

noise scaling filter and the MMAE filter both reduce the requirement

for the definition of the correct initial covariance. The following chapter

investigates the use of the adaptive algorithms with real data.
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Chapter 8

Test results

8.1 Introduction

This chapter describes the results of two kinematic field trials using a low

cost INS with carrier phase GPS. The field trials are used to assess the

performance of a low cost MEMS INS integrated with GPS. The trials are

also used to investigate the adaptive Kalman filtering algorithms examined

in Chapter 7.

This chapter first describes the results obtained from a marine trial

conducted in February 2002 in Plymouth, UK, from which the trajectory

in §6.2 was derived. The integration of GPS with low cost inertial sensors is

an innovative area of research as current GPS/INS hydrographic surveying

systems mostly use medium cost tactical grade INS.

The second part of this chapter describes the results obtained from a

vehicle trial conducted in July 2003 in Nottingham, UK, using the same

low cost IMU as used in the marine trial.

177
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8.2 Marine Trial

This section describes the kinematic GPS and low cost INS trial conducted

at the Royal Naval Hydrographic School in Plymouth. Some of the issues

related to collecting GPS and INS data, including sensor synchronisation

and calculation of the lever-arm separation of the IMU and the GPS an-

tenna, are also presented.

The marine trial is investigated as it is a potential application area

in which low cost INS based systems can be used to replace higher cost

systems. The attitude accuracy requirement for a modern multibeam

sonar with a swath width of 150◦ is 0.05◦ in the roll axis, with a similar

requirement for pitch and yaw Trethewey et al. (1999). This results in

a depth error of 0.5% at the largest scan angle (ibid.). This research

investigates whether this accuracy is attainable from a GPS and low cost

INS system.

8.2.1 Test description

The trial was conducted in February 2002 on the River Tamar at Plymouth,

UK on a small hydrographic survey vessel owned by the Royal Naval Hy-

drographic School. The survey vessel was used since it has a TSS Position

and Orientation System for Marine Vessels (POS/MV 320) installed which

is used for geo-referencing a multibeam sonar mounted on the underside of

the vessel.
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8.2.1.1 POS/MV

The POS/MV system was used to provide an attitude reference for the

trial. The POS/MV utilises two dual frequency Novatel GPS receivers

with a tactical grade Litton LN200 inertial navigation unit (see §2.2.2 for

the IMU sensor specification). The specification of the integrated POS/MV

solution is given in Table 8.1.

C/A DGPS RTK

Horizontal Position (m) CEP 15-40 0.5-4 0.04-0.1

Velocity (ms−1) 0.5 0.03 <0.03

Roll and pitch (◦) RMS 0.02 0.02 0.02

Yaw with GAMS (◦) RMS 0.02-0.1 0.02-0.1 0.02-0.1

Yaw without GAMS (◦) RMS 0.02-2 0.02-2 0.02-2

Table 8.1: POS/MV 320 specification (TSS (UK) Ltd, 1999)

The POS/MV system uses a GPS Azimuth Measurement Subsystem

(GAMS) in order to maintain the yaw accuracy during periods of low hori-

zontal acceleration. The GAMS system consists of two choke ring antennas

mounted on the roof of the survey vessel over a baseline of approximately

1.7m. The system utilises GPS carrier phase measurements in order to

determine a GPS-only yaw estimate to approximately 0.1-0.5◦ depending

on baseline separation and the level of multipath (TSS (UK) Ltd, 1999).

The yaw estimate from the GPS phase measurements is noisy, yet drift free

which makes the measurement ideal for use in the POS/MV Kalman filter.

The POS/MV system was used in real time to obtain position, velocity

and attitude. The system used DGPS corrections from local beacons and
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the carrier phase measurements were only used for the GAMS solution.

8.2.1.2 Crossbow AHRS-DMU-HDX

The Crossbow AHRS-DMU-HDX is an Attitude and Heading Reference

System (AHRS) intended for applications such as UAVs, avionics and

platform stabilisation (Crossbow Technology Inc., 2000). The Crossbow

AHRS-DMU-HDX is herein referred to as the AHRS sensor. The IESSG’s

AHRS sensor was used in the marine trial as a low-cost MEMS IMU.

The sensor contains three orthogonally mounted gyros, accelerometers

and magnetometers to provide a three dimensional standalone attitude

solution. The AHRS sensor uses the magnetometers to obtain magnetic

heading and the accelerometers to provide roll and pitch. A Kalman filter

is used with the gyros to stabilise the attitude solutions from the magne-

tometers and accelerometers in the presence of magnetic disturbances and

vehicle acceleration. The Kalman filter is also used to estimate the sensor

errors.

The AHRS therefore contains orthogonally mounted gyro and accelerom-

eter triads which allows the AHRS to be used as a conventional IMU. The

specification of the inertial sensors is the same as that used for simulation,

the values for which are given in Table 6.1. The sensor specification is at

the very low end of sensors used as an INS, and the INS alone cannot be

used for navigation without GPS updates due to the large sensor drifts.

The AHRS has been modified through several revisions since the IESSG

obtained the sensor, and it can now been considered as providing similar

sensor specification to current sensors that are less than £2,000.

The AHRS is capable of operating in three different modes termed
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voltage, scaled and angle and provides both serial and analogue outputs. In

voltage mode, the AHRS sensor uses the internal A-D converter to sample

the accelerometer and gyro sensors, and outputs the raw voltages over

the serial interface at approximately 163Hz. In scaled sensor mode the

AHRS attempts to compensate the raw inertial measurements for bias and

scale factor errors using the internal Kalman filter and original calibration

information. The scaled measurements are available over the serial interface

at approximately 100Hz. Angle mode also compensates and scales the raw

inertial measurements, and in addition provides the roll, pitch and yaw

estimates over the serial interface at approximately 70Hz.

The raw analogue output of the accelerometers can be sampled by an

external A-D converter using any of the operational modes of the AHRS.

However, the raw analogue output from the gyros is not available. The

gyro output is only available via a D-A converter which converts the com-

pensated gyro output in scaled or angle mode to an analogue signal. When

the sensor is operated in voltage mode, the gyro measurements are not

available using the analogue output. The raw analogue output of the

gyros is, however, available using the serial output. As a result, the AHRS

sensor was operated in voltage mode and the serial data was used for data

processing.

8.2.1.3 Sensor configuration

The sensor configuration for the marine trial is depicted in Figure 8.1. The

POS/MV system is permanently installed in the survey vessel with the

two GPS antennas for the POS/MV rigidly mounted to the roof of the

vessel. The POS/MV processor is rack mounted in the main cabin with a
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notebook computer used to control and log the data from the POS/MV.

The IMU for the POS/MV is located on the floor of the front cabin. The

AHRS sensor was attached directly to the housing of the POS/MV IMU

as shown in the figure.

POS/MV processor and data logger Ashtech choke ring antennas

AHRS sensor

AHRS data collection PC

Figure 8.1: Marine trial sensor configuration

Three Ashtech receivers were connected to three Ashtech choke ring

antennas which were rigidly attached to a wooden frame at the front of

the vessel. The antennas were located at the front of the vessel in order

to reduce the obstruction caused by the masts on top of the vessel. Three

GPS receivers were used in order to provide the potential for the derivation

of GPS attitude measurements.
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Two computers were used to log the data from the AHRS sensor located

in the front cabin of the vessel. A notebook PC with an ADAC PCM-

5516-16 A-D converter card was used to log and time-tag the analogue

data using the time tagging method described in §5.4.1. Unfortunately,

due to a firmware upgrade in the Ashtech Z-XII receiver, the time tagging

method for the analogue data collection failed. A modified method for

data collection was therefore used which is described in Section 8.2.2. An

additional desktop PC was used in order to record the serial data output

from the AHRS sensor using the Crossbow GyroView software.

8.2.1.4 Trajectory description

The vessel trajectory for the marine trial is shown in Figure 8.2. The

initial alignment part of the trajectory is the same as is used for the

simulation analysis in Chapter 7. After this initial alignment section of

the trajectory, the vessel then performs a series of survey lines up and

down the course of the River Tamar with the survey lines increasing in

distance. The survey lines last from 2 minutes to 8 minutes. This is used

to assess the performance of the sensor during periods of low horizontal

acceleration.

8.2.1.5 Lever-arm separation

The lever-arm separation between the AHRS, GPS antennas and POS/MV

systems was measured using a total station. It was not possible to measure

the lever-arm offsets in a dry dock environment, therefore the measure-

ments were taken with the vessel resting on the water where the boat was

subject to some movement. Two sets of measurements to the AHRS, the



Chapter 8. Test results 184

50.406

50.408

50.410

50.412

50.414

50.416

355.784 355.788 355.792 355.796 355.800 355.804 355.808

La
tit

ud
e 

(˚
)

Longitude (˚)

Survey lines
Alignment

4
START

Figure 8.2: Marine trial trajectory

POS/MV IMU, the three Ashtech antennas and the two GAMS antennas

were recorded. The total station was mounted on a tripod on a fixed point

on the boat. The measurements could only be taken using the total station

when the boat was approximately level due to the total station detecting

that it was not level.

Since the points that the total station was measuring to were also fixed

to the boat, it was thought that the movement of the boat on the water

would not greatly affect the ability to measure the lever-arm offsets. The

prism for the total station was located above each of the GPS antennas and

on two points on the centre line of the boat. The prism was attached to a

survey pole to measure the reference point for the IMU which was mounted

beneath the hatch over the front cabin.

The points along the centre line of the survey vessel were used to rotate

the measurements from the total station to the vehicle/ vessel frame. The

reference point of the AHRS sensor was then used as the origin of the

coordinate system to form the IMU frame using the assumption that the
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IMU was aligned to the vessel frame. Table 8.2 shows the differences

between the Ashtech GPS antenna baselines measured using the total

station and a steel tape measure. The table shows that the measurements

compare to within 3mm for all of the baselines.

Antenna Total Station Tape measure Difference

Left to right 1.718 1.715 0.003

Centre to right 1.511 1.508 0.003

Centre to left 1.495 1.497 0.002

Table 8.2: Comparison of total station and tape-measured antenna sepa-

ration

8.2.1.6 Doppler generation

Due to the firmware update in the Ashtech receivers, raw Doppler observa-

tions were not recorded by the GPS receiver. Consequently, Doppler data

was derived from the raw carrier observations using a first order Taylor

approximation. The Doppler data was derived using the equation,

Φ̇(k) =
Φ(k + dt)− Φ(k − dt)

2dt
(8.1)

where k is the current epoch and dt is the epoch separation. A separate

pre-processing program was developed to derive the Doppler observations

before processing in KinPosi.

As a consequence of using this formula to derive the Doppler observa-

tions, the first epoch of Doppler data is not available at satellite acquisition.

This loss of data is not considered a problem since there was good satellite
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coverage throughout the dataset. The minimum number of GPS observa-

tions available for any epoch was 6, with 10 satellites available for much of

the dataset.

The first order Taylor approximation was used due to results presented

in Bruton (2000). Bruton assessed the performance of higher order Taylor

approximations and other differentiating filters for deriving high accuracy

Doppler data in static and kinematic environments. The first order Taylor

approximation produced the results that most closely matched the raw

Doppler observations using Ashtech Z-XII receivers in a dynamic environ-

ment. This approximation was selected since the algorithms examined are

designed for use in real time systems.

8.2.2 Sensor synchronisation

The time tagging of the Crossbow IMU measurements was planned to be

achieved using the method described in §5.4.1. However, as the Ashtech

Z-XII event marker input failed to work, a cross-correlation technique was

implemented to match the output of the Crossbow IMU measurements with

the GPS time-stamped IMU measurements from the POS/MV system.

The cross correlation equation used to time-tag the AHRS data is given

as,

r(d) =

∑
[(x(i)− x̄)(y(i− d)− ȳ)]√∑

(x(i)− x̄)2
√∑

(y(i− d)− ȳ)2
(8.2)

where r(d) is the cross correlation function between the data set x and y

for the time offset d. The cross correlation is calculated for different time

offsets and the maximum value of the cross correlation corresponds to the

closest match between the measurements. From analysis of Equation 8.2
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it can be demonstrated that the cross correlation coefficient is insensitive

to constant sensor bias and scale factor errors.

The timing for the serial data from the AHRS was obtained from the

unit’s internal free running counter which is taken at the time the A/D

channels are sampled (see Crossbow Technology Inc. (1999)). The counter

value is contained within the serial data collected from the Crossbow IMU

and a single tick of the counter corresponds to approximately 0.79µs (ibid.).

This scale factor was used with an approximate start time to approximately

time-tag the serial data.

A C program was developed to compute the cross correlation between

the POS/MV IMU and Crossbow measurements at a number of points

throughout the dataset for different time offsets. The results are shown in

Figure 8.3 where 200 points were tested with a time offset resolution of 1

millisecond. Each test sample contained 40,000 points which corresponds

to 200 seconds of POS/MV IMU data. This sample length was chosen

since it provides a high number of samples over which the sensor errors

can be considered constant. Since the data from the two IMU’s was not

recorded at exactly the same epoch, the POS/MV IMU data was linearly

interpolated to the AHRS time. Furthermore, several gaps occurred in

the collection of the POS/MV data recorded using the Ethernet link. The

interpolated POS/MV IMU data was only used if the difference between

the POS/MV IMU record and the Crossbow record was less than half the

POS/MV IMU epoch separation.

Figure 8.3 shows that there is a drift of the Crossbow time in relation

to GPS time. Linear regression was used on the gyro records to remove

this drift and also the constant time offset. The cross-correlation was
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recomputed and is shown in Figure 8.4. From this figure it is clear that

there is a constant offset of approximately 17ms in the time at which the

gyro measurements are sampled and the time at which the accelerometer

measurements are sampled. This is thought to be due to the sampling

electronics in the AHRS sensor. The accelerometer measurements were

therefore shifted in the AHRS IMU file by three IMU epochs which cor-

responds to an offset of 18ms. This is not shown in the figure to preserve

clarity.

The cross correlation method is suitable to use with the marine data set

because of the high frequency movement of the vessel on the water. The

movement of the vessel on the surface of the water ensures that there is

always some low frequency motion in the output of the inertial sensors. This

technique is likely to be less effective for trajectories with less movement

such as those obtained from land vehicles. Table 8.3 shows the standard

deviation of the final cross correlation of the IMU records. The largest

standard deviation of 6.49ms for the x-axis accelerometer record can be

attributed to the dynamics of the vessel. Given that the axes of the IMU

were approximately aligned with the vehicle frame of the survey vessel,

there is less variation in acceleration in the x-axis accelerometer than in

the y and z axes. Similarly, for the z-axis gyro, there is less variation in

turn rate in this axis due to the trajectory.

8.2.3 Conventional Kalman filter performance

Figure 8.5 shows the roll, pitch, yaw and vessel speed for the marine trial.

The attitude of the vessel shown in the figure is the attitude obtained using

the POS/MV, and the speed shown is obtained from the KinPos GPS
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Gyro Accelerometer

x y z x y z

Standard deviation (ms) 0.96 0.85 2.50 6.49 1.49 2.26

Table 8.3: Standard deviation of final cross correlation

processing using the derived Doppler observations. The change in pitch

at approximately 303600 seconds is caused by the increase in the speed of

the vessel which causes the front of the vessel to pitch up. The speed of

the vessel mainly varies between 4 and 6m/s (6m/s is approximately 13

miles per hour). The speed of the vessel depends on the direction of travel

because the vessel is either heading up or down stream, with the upstream

direction being slower because of the current of the river.

The attitude errors shown in the figure are obtained by processing the

AHRS IMU and carrier phase GPS measurements using KinPosi with the

decentralised Kalman filter. The GPS ambiguities are resolved in 5 epochs

using the GPS only filter and the GPS ambiguities remain fixed for all the

satellites throughout the dataset. The inertial measurements are integrated

with the GPS measurements only when the GPS carrier phase ambiguities

have been resolved. The number of satellites in view is 10 at the beginning

of the dataset which reduces to 7 by the end of the dataset. The GPS

antenna used for updating the INS is the antenna mounted on the port

side of the vessel. This antenna was used because the masts on the vessel

obstructed the satellite view less than the antenna that was mounted on

the centre of the vessel. The AHRS sensor was initialised at the start

of the dataset using bias estimates that were obtained from several post
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processing runs. The attitude was initialised using the estimated attitude

from the POS/MV system. It can be seen at the beginning of the dataset

before the alignment manoeuvre that the attitude drifts which indicates

that the INS has still not been fully initialised with the correct estimates.

From the roll and pitch errors in the figure, it is shown that there is

a constant attitude bias throughout the dataset. This is assumed to be

due to the misalignment of the AHRS sensor with the POS/MV IMU. The

AHRS sensor was mounted directly on top of the POS/MV IMU which is

not a completely level surface. Therefore, it was expected that there would

be a small misalignment between the x and y-axes of the two sensors.

The z-axis misalignment was anticipated to be potentially a larger error

because the sensor could only be aligned ‘by eye’. The POS/MV IMU

is a cylindrical shape (as shown in Figure 8.1), therefore there were no

parallel edges that could be physically aligned. As a result of the unknown

misalignment between the two sensors, it is assumed for the trial that

the mean attitude error is caused only by the misalignment between the

two sensors. In fact, error sources such as unresolved scale factor and

sensor axis misalignments can potentially result in a constant attitude error.

Therefore, this assumption should be considered for all the results obtained

in this section.

The attitude misalignments for the AHRS sensor are summarised in Ta-

ble 8.4. The statistics are obtained for two sections of the vessel trajectory.

The first statistics are taken during the alignment manoeuvre. This is

for two reasons. Firstly, all the states in the Kalman filter are observable

during this period, therefore, there should not be any drift in the data.

The second reason is that other error sources such as the scale factor errors
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should result in a random error due to the motion of the boat. Therefore,

the mean errors during this section are less likely to be contaminated by

the unresolved inertial sensor errors. The table also shows the errors for

the entire dataset starting at the beginning of the alignment manoeuvre.

These errors reflect the navigation errors that can be expected using the

low cost Crossbow INS.

Roll Pitch Yaw

During alignment Standard deviation (◦) 0.043 0.051 0.161

Mean (◦) -0.033 -0.785 1.719

Whole dataset Standard deviation (◦) 0.034 0.041 0.522

Mean (◦) -0.034 -0.774 1.667

Table 8.4: Marine trial attitude errors using CKF

Table 8.4 shows that the roll and pitch errors for the whole processing

run are 0.034◦ and 0.041◦ respectively. The RMS error specification for the

POS/MV system is 0.02◦ which means that the roll and pitch errors for the

low cost IMU are approaching the same accuracy as the higher specification

system. Without using a higher grade system still, it is difficult to assess

the roll and pitch errors to a more precise level because of the similarity

in the accuracies of the two systems. It should be noted that the above

AHRS sensor performance is the standard deviation whereas the POS/MV

error is an RMS. The table shows that the mean roll and pitch errors for

the entire dataset are different to the mean offset during alignment. For

the roll axis there is only a 0.001◦ difference, but for the pitch axis the

difference is 0.011◦ which indicates that the RMS error for the AHRS will
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be larger.

The most significant error identified in Figure 8.5 and Table 8.4 is the

yaw error. The yaw error is significantly larger than the roll and pitch

errors because of the lower observability of the error as experienced using

the simulated data. Figure 8.5 clearly identifies that the yaw error drifts

between the vessel turns. Therefore the error increases as the time between

the turning manoeuvres increases. For example, the most significant drift in

the yaw error occurs between 304800 and 305550 seconds. There is a slower

turn during this period but that doesn’t result in a significant improvement

in the yaw error estimation. By the end of the straight trajectory at 305550

seconds, the yaw error has increased to maximum of 1.13◦ from the mean.

At 305550 seconds, the yaw error is improved once again. Section 8.2.6

examines using GPS attitude observations from a dual antenna GPS system

in order to reduce the yaw drift.

8.2.4 CKF innovation sequence and GPS gap

bridging

As identified in Chapter 6, the residual and innovation sequences contain

significant information about the performance of the sensors in the inte-

grated system. Figure 8.6 shows the innovation sequence for the marine

trial for the horizontal position and velocity. The innovation sequence is

important as it shows the prediction accuracy of the AHRS sensor. The

GPS data for the marine trial was collected at 1Hz. For position obtained

using carrier phase GPS measurements with the integer ambiguities fixed,

the GPS positioning accuracy should be at the centimetre level. Figure 8.6
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shows the position innovation sequence to be at the sub-decimetre level,

with standard deviations for the north and east axes of 0.031m and 0.032m

respectively. The mean errors are -0.006 for both sets of data, and the

initial 300 seconds were not included to obtain these statistics since the

filter has not fully resolved the attitude and sensor errors. The innovation

sequence for the position in the down axis is slightly larger at 0.048m.
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Figure 8.6: Position and velocity innovation sequences

The innovation sequence is of larger magnitude than expected. The inno-

vation sequence represents the combined error of the INS and GPS systems.

It is assumed that the positioning accuracy using the GPS measurements

is relatively consistent due to the good satellite observability throughout

the dataset. Choke ring antennas were used to shield the antenna from
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signals arriving beneath the antenna, i.e. to reduce the multipath caused

by the GPS signals reflecting from the surface of the water. Therefore the

larger magnitude of the innovation sequence is thought to be caused by the

AHRS sensor errors. The innovation sequence shows spikes at, for instance,

304220 and 304520 seconds which coincide with the vessel turning. This

indicates that INS errors such as the yaw error have become observable

through the turn, resulting in a position error.

The velocity innovations are larger than for the position estimation with

standard deviation in the north and east axes of 0.055m/s and 0.057m/s

and mean of -0.004m/s for both axes. This is thought to be due to using

the first order Taylor approximation to derive the Doppler data. In the

results obtained for the derived data in Bruton (2000), the velocity errors

in a dynamic environment were estimated to be 0.24m/s, and during static

conditions the velocity errors were 0.007m/s. Therefore, it is thought that

the standard deviation of approximately 0.06m/s is consistent with these

results given the moderate dynamics of the vessel.

8.2.4.1 GPS gap bridging

Another test for the prediction accuracy of the INS is to simulate GPS

outages, and investigate the drift rate of the standalone INS over time.

This gives an indication of the performance that can be expected if a true

GPS outage were to occur. This also validates that the INS is working as

expected. Table 8.5 shows the maximum position errors obtained during

simulated GPS outages of 15, 30 and 60 seconds. Two dynamic conditions

are highlighted in the table to identify if there is a difference in performance

when the vessel follows an approximately straight trajectory, and when the
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vessel undergoes a turning manoeuvre.

Maximum position error (m)

Dynamics Outage start time 15s 30s 60s

Turn 304200 1.53 4.87 18.58

304350 0.33 1.07 2.94

304500 0.47 2.91 13.26

304800 0.58 2.93 11.05

305150 1.49 5.11 24.12

Straight 304600 0.80 4.03 21.74

304900 1.09 4.19 21.45

305000 0.82 3.20 14.18

305200 0.30 0.76 7.78

305400 0.69 3.24 17.36

Table 8.5: Standalone INS performance during GPS outages

The table shows that the maximum position errors obtained during

15, 30 and 60 second gaps are 1.53m, 5.11m and 24.12m. The average

errors for the 10 outages are 0.81m, 4.18m and 15.24m respectively. These

results are better than were expected. Results from, for example Salychev

et al. (2000) using a low cost INS sensor in a vehicle trial showed mean

position drifts of 3m after 10 seconds, and 10m after 20 seconds. These

values are RMS values for the whole outage whereas the values in Table 8.5

are maximum values taken from the end of the outage. In addition, the

results in Salychev et al. (2000) increased to 10m and 23m after 10 and 20

seconds respectively when the vehicle accelerated during the outage. These

results are significantly larger than the results obtained for the marine trial,
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although it is noted that the in the vehicle trial, larger velocities were

experienced.

An example of the drift during a GPS outage is shown in Figure 8.7

for the gap starting at 304800. The coordinates are given in metres in the

north and east directions to give a clearer indication of the magnitude of

the errors. The section of the vessel trajectory shown starts at coordinate

(0,0). The green circles indicate the GPS updates that are available and

the red crosses indicate the carrier phase position (truth) during the GPS

outage. The figure shows that the vessel travels approximately 300m during

the 60 second outage. The position error after 60 seconds is 11.05m which

is approximately 4% of the total distance travelled. The figure shows how

the INS is able to navigate over short distances with the error increasing

over time.
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Figure 8.7: Standalone INS performance during 60 second GPS outage

The average maximum position error after 60 seconds for the turn and

straight trajectories were 13.98m and 16.5m respectively. The error during

turning manoeuvres was expected to be larger due to the increased output
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of the sensors during this time. However this was not shown in the results.

This is thought to be because the constant movement of the boat on the

water results in the output of the sensors being similar during turns or

straight trajectories. The results obtained during GPS gap bridging also

showed that there was no significant difference in the attitude accuracy

after the 60 second outage, and the average maximum velocity error after

60 seconds was 0.6m/s.

8.2.5 Marine trial error sources

The navigation accuracy obtained from the practical trials has been shown

to be of lower accuracy than the results obtained when using simulation.

The attitude accuracy obtained from the simulated data using the CKF

is 0.01◦, 0.02◦ and 0.20◦ for roll, pitch and yaw respectively, compared to

0.03◦, 0.04◦ and 0.52◦ for the practical trial. This is thought to be due to

a combination of the GPS and inertial sensor errors being larger than the

manufacturer’s specification, and the increase in the error of the GPS and

INS system error sources. This also means that some of the error models

that were used for data simulation need to be changed to reflect the errors

obtained from the physical system.

For the GPS measurements, the Doppler measurements are significantly

larger than those obtained using simulation. The Doppler measurements

were consistent with the results obtained in Bruton (2000) indicating that

the simulated Doppler error sources need to be modified to be consistent

with the results obtained from real data. The first order Taylor approx-

imation is considered to provide similar velocity accuracy to the receiver

Doppler data following the results provided in Bruton.
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The GPS and INS system errors are lever-arm error, synchronisation

error and vibration. The total station measurements in §8.2.1.5 for the GPS

separation were consistent with the tape-measured distances. However, the

AHRS sensor was located in the front cabin which required the use of a

survey pole and further tape measured differences. Therefore, the lever-arm

error was expected to be larger for the GPS to IMU measurement.

The synchronisation error was analysed in §8.2.2 which resulted in the

standard deviation of the cross correlation at approximately the millisecond

level. It was also assumed that there was no synchronisation error in the

POS/MV measurements. This is not the case as the POS/MV system will

contain some timing errors, the magnitude and characteristics of which

are not known. The cross correlation is insensitive to scale factor and

bias errors, but the misalignment between the axes of the two sensors may

introduce a timing error. Therefore these factors will contribute to the

synchronisation error for the marine trial being larger than the error used

during simulation. In the future it is recommended that manufacturers of

low cost IMUs incorporate some form electronics to allow easier integration

of the measurements with GPS.

The vibration of the sensor was not introduced in the simulations in

Chapter 6 and Chapter 7. For the marine trial, the vibration of the sensor

introduces a significant increase in the output of the sensors. Figure 5.3

shows the frequency response of the x-axis accelerometer with the engines

on and the engines off, which shows a significant increase in the sensor

noise across the frequency range, and in particular at the frequency of

35Hz. The standard deviation of, for example, the z-axis accelerometer

increases from approximately 0.015m/s to 0.98m/s between the engines
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on and the engines off. These estimates are only very coarse estimates of

the noise in the output because the boat is not completely static, but this

gives an indication that vibration affects the raw inertial sensor outputs

significantly.

The inertial sensor errors of bias, scale factor and axis misalignment are

also potentially larger in the marine trial than simulation. It is thought

that the most significant error source is the bias variation in the sensor. The

sensor measurements were corrected for temperature dependent variation

using previously collected data. However, the repeatability of the temper-

ature dependent bias may not be consistent. The bias estimates obtained

still showed some temporal variation for both the gyros and accelerometers.

All of these error sources are thought to be responsible for the increased

errors that are obtained using the real data. The most significant error

that results from the marine trial is the yaw error. One possible method

to reduce the yaw error is considered in the following section.

8.2.6 GPS attitude estimation

This section examines the use of GPS attitude measurements in the integra-

tion Kalman filter to improve the yaw estimation. GPS derived attitude

measurements from multiple roving antennas can be used to reduce the

drift that occurs in the yaw axis between the vessel undergoing horizontal

acceleration manoeuvres. Three Ashtech receivers were mounted to the

marine vessel as shown in Figure 8.1 to allow the capability for full GPS

attitude estimation. No specific GPS processing software was available for

processing the GPS attitude measurements, therefore the attitude measure-

ments were obtained directly from the GPS positions. The yaw estimate is
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obtained using the equation,

ψ = atan2

(
δE

δN

)
(8.3)

where δN and δE is the difference between the positions of the GPS anten-

nas in the north and east axes respectively. Roll and pitch measurements

were also derived using the difference in height between the antennas.

In order to use the attitude estimates in the integration Kalman filter,

the misalignment between the GPS and inertial sensor body frames has

to be estimated. The misalignment between the two body frames was

estimated by computing the direction cosine matrices for the GPS and

INS systems. The misalignments were computed using POS/MV derived

attitudes for the IMU direction cosine matrix because the drift is lower

than for the AHRS sensor. The direction cosine matrix of misalignments

is formed using the equation,

CbI
bG

= CbI
NC

N
bG

(8.4)

where the subscripts G and I represent the GPS and inertial sensors re-

spectively. The average of the misalignments estimated using Equation 8.4

is then applied to the GPS measurements so that the GPS measurements

can be used as an attitude update for the integration filter.

The GPS attitude errors are given in Table 8.6 and the GPS yaw error

is shown in Figure 8.8. The table shows that the roll and pitch errors are

of lower accuracy than the yaw. This is because the height estimation from

the GPS measurements is of lower accuracy than the horizontal position

estimation. The attitude estimation is also affected by the antenna sepa-

ration with the accuracy being improved over longer baselines. The results

shown are consistent with attitude accuracy shown in, for example Zhang
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(1995) and Lu (1995), using an Ashtech 3DF system and a similar baseline

separation.

Roll Pitch Yaw

RMS error (◦) 0.173 0.301 0.155

Integrated system error (◦) 0.035 0.042 0.091

Table 8.6: GPS attitude estimation
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Figure 8.8: Integrated system yaw error using GPS yaw aiding

Because of the poor yaw estimation from the low cost INS integrated

with a single GPS antenna, the GPS yaw estimate obtained from two of the

GPS antennas was added as an estimate to the integration Kalman filter.

The roll and pitch measurements were not used due to their poor accuracy

and to reduce the overall potential system cost. Figure 8.8 shows the yaw

error using GPS yaw aiding compared to the INS yaw error obtained in

§8.2.3. The figure shows that the INS drift has significantly been reduced

in the yaw estimate. The figure also shows that the INS is essentially
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used to smooth the GPS yaw estimate. Unfortunately, the GPS heading

error varies over time which effects the accuracy of the integrated solution.

It is thought that the variation in the GPS heading accuracy is caused

by multipath as other GPS error sources should effect the GPS range

measurements equally.

Table 8.6 shows the attitude error from the integrated INS and dual

antenna GPS system compared to the three antenna GPS system. The

table shows that the INS system provides significantly improved attitude

accuracy over the three antenna GPS attitude system in all axes. The roll

and pitch errors both match the requirement for the multibeam sonar atti-

tude accuracy specified in §8.2. The yaw error of 0.091◦ is an improvement

over the GPS-only derived attitude and a significant improvement over the

single GPS antenna system. However, the accuracy falls just outside of the

0.05◦ multibeam requirement. The GPS yaw accuracy can potentially be

improved using a longer baseline, new GPS receivers with better multipath

mitigation and proper estimation of the attitude parameters using least

squares or a Kalman filter (Lu, 1995).

The low cost IMU and dual antenna GPS system provides a significant

improvement in attitude accuracy over a multi-antenna GPS system. The

cost of the IMU based system is potentially lower since the IMU costs

less than a geodetic grade GPS receiver. The cost of the dual antenna

system can also be reduced by using a single frequency receiver for the

second antenna. The attitude reference from the IMU coupled with the

ambiguities from the dual frequency receiver can be used to initialise the

ambiguities for the single frequency receiver. The estimated cost of the

hardware for such a system using commercial off the shelf components is
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estimated to be less than £20,000. This is a significant reduction in the

cost for a system such as the POS/MV which is based around a tactical

grade IMU.

8.2.7 Adaptive Kalman filtering

This section examines the use of the adaptive Kalman filtering algorithms

for the marine trial, that were used with simulated data in Chapters 6 and 7.

Figures 8.9 and 8.10 show the alignment of z-axis gyro bias and yaw error

respectively using the CKF, process noise scaling and MMAE filters. The

adaptive-Q filters are considered separately in §8.2.7.4. The trajectory used

is the same as that used in the simulation analysis which allows comparison

of the results obtained in this section with those obtained in Chapters 6

and 7. The time axis used in the figures in this section is therefore changed

to start at zero to correspond with the simulation analysis. Also, it is

highlighted that the sensor bias error in Figure 8.9 is different to that used

for simulation because the simulated bias values are formed using the 1-

sigma error from the IMU specification. Therefore each processing run

results in a random bias.

For the real data, truth is not available for the bias estimates. Instead,

the estimated truth is formed using the CKF estimate from §8.2.6 which

uses the GPS yaw aiding in the filter and initial bias estimates from multiple

processing runs. The following sections investigate the performance during

alignment for each of the filters.
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8.2.7.1 CKF

The CKF filter was initialised using the initial covariance matrix from

§6.3.1 where the initial gyro and accelerometer bias variances are 0.01◦/s

and 0.01ms−2. This initial covariance matrix was used because it is the best

estimate of the initial errors that is available based on the specification of

the inertial sensor. The a priori process noise matrix is taken from §8.2.3,

since this matrix provides the best navigation performance once the INS is

aligned.

Figures 8.9 and 8.10 show that the CKF estimate is slow to converge

to the correct bias and yaw errors. This is because the process noise

matrix used is the a priori matrix that is expected to give the smallest

navigation errors when the system is operating during normal navigation.

After 570 seconds the z-axis gyro bias is resolved to within 0.01◦/s. In view

of the larger yaw errors obtained using real data, alignment is considered

to be achieved when the yaw error converges to within 1◦ of the POS/MV

reference. The CKF estimate does not converge to within this value during

the alignment manoeuvre (which ends at approximately 800 seconds). An

alignment time is therefore not possible to obtain for the CKF estimate

because after the alignment manoeuvre, the yaw error drifts between vessel

turns. The failure to align the yaw error in this time is thought to be

because the x and y-axis accelerometer biases are not fully resolved. After

800 seconds, they are only estimated to within 0.013ms−2 and 0.014ms−2

respectively. The accelerometer bias error is therefore absorbed by other

states in the Kalman filter.

These results indicate that the CKF does not resolve the sensor biases
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and align the INS because of using the a priori process noise estimate which

is defined for normal navigation performance. This reflects the results that

were obtained using the simulation analysis and highlights the requirement

for the stochastic information to be adapted on-line.

8.2.7.2 Process noise scaling

The z-axis gyro bias for the process noise scaling filter in Figure 8.9 shows

that the bias is resolved to within 0.01◦/s after 344 seconds. The yaw

estimate is resolved to within 1◦ after 275 seconds. This is a significant

improvement over the CKF estimate which indicates that the process noise

noise scaling filter can be used to provide a rapid alignment using a simple

modification to the CKF.

In order to verify the process noise scaling filter alignment time, the filter

was also tested using different start times. Ten different start times were

used, with each run starting 30 seconds later so that the final processing

run began at 300 seconds. The average alignment time for the yaw error

was 267 seconds which indicates that the algorithm works independently

of dynamics.

The process noise scale factors for the first processing run are shown in

Figure 8.11. Figure 8.11(a) shows that the initial scale factors are estimated

to be large, with the magnitude quickly reducing after approximately the

first 10 seconds. These large initial scale factors result in the covariance

being increased which gives more weight to the measurements. Between 25

and 100 seconds, the scale factors are not larger than 50 which indicates

that the covariance has been sufficiently increased by the process noise.

Figure 8.11(b) shows that the scale factors after the initial 100 epochs do
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Figure 8.11: Estimated process noise scale factors

not remain small like they did for the simulated data. Spikes occur in the

scale factors which coincide predominantly with the turning manoeuvres

in the vessel’s trajectory. This is due to some of the INS errors becoming

observable through the position error at these points. This is more signifi-

cant in the real data because the INS drift is higher between manoeuvres.

The process noise scaling filter results in more weight being given to the

observations during these turns, therefore the filter continually responds to

new measurements during navigation. The effect of this property on the

attitude errors is considered in §8.2.7.5.

8.2.7.3 MMAE

The MMAE filter used in this section is formed using six models with the

scale factors 0.1 to 10000. This is the same as the filter used in §7.4.1. The
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six model filter is used because it provided the best performance during

data simulation. The MMAE z-axis gyro estimate converges to within

0.01◦/s after 280 seconds which is 64 seconds faster than the process noise

scaling filter. However, the attitude alignment is not obtained to within 1◦

until 303 seconds which is 28 seconds slower. The average alignment time

was 290 using the 10 processing runs as considered for the process noise

scaling filter.

For the simulated data, the MMAE algorithm was able to align the

INS during the period of low dynamics, however for the real data, both of

the process noise scaling and MMAE filters still require a period of higher

dynamics to resolve all of the errors. This is again expected to be because

of the larger GPS, inertial sensor and system errors experienced by the real

system.

Figure 8.12 shows the conditional probability estimate for the MMAE

filter during the initial 600 seconds. The figure shows a similar character-

istic to the MMAE filter using simulated data. The algorithm transitions

from using the Kalman filters with the larger process noise scale factors to

the filters using the smaller scale factors. After 200 seconds, the filter using

the scale factor of 10 is identified as the dominant filter.

The figure shows that the MMAE filter uses the Kalman filters with

the largest scale factors for a shorter time than during simulation. This is

thought to be because the initial bias errors are slightly smaller for the real

data. This shows that the adaptive filter adapts differently depending on

the initial errors to be resolved. This is an essential quality of the adaptive

algorithm as the initial bias errors are random and vary each time the INS

is switched on.
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Figure 8.13 shows the conditional probabilities for the MMAE filter

during normal navigation. Here it is shown that after the initial alignment

period, the MMAE algorithm uses only the Kalman filters using the scale

factors of 0.1, 1 and 10. This potentially means that some of the Kalman

filters can be removed from the MMAE algorithm once alignment has been

achieved. The figure also shows that the filter adapts to use filter with

the larger process noise scale factor during the turning manoeuvres. This

is similar to the process noise scaling algorithm, except the transition is

smoother. The result of this characteristic on the attitude estimation is

considered in §8.2.7.5.

8.2.7.4 Adaptive-Q

The innovation and residual based adaptive-Q filters both result in a slow

time to alignment and large navigation errors for the real data. The

adaptive Kalman filter yaw errors are shown in Figure 8.14 for the entire

processing run. The filters were initialised using the process noise and

initial covariance matrices from §7.3.1. The figure shows that neither of the

filters are able to resolve the yaw error to within 1◦ during the alignment

manoeuvre. The figure does show that after approximately 500 seconds,

the yaw error converges, but the estimate is noisy. After the alignment

section of the trajectory is completed, the yaw error suffers from a larger

drift than the CKF indicating that the bias estimates are not resolved as

accurately. The attitude errors for the adaptive-Q filter are considered in

the following section.
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Figure 8.14: Adaptive Kalman filter attitude error

8.2.7.5 Attitude errors

Table 8.7 shows the attitude accuracies obtained using the adaptive Kalman

filters compared to the CKF. The table shows that the attitude accuracy in

all axes of the adaptive-Q filters is significantly worse than the performance

of the CKF. However, both the process noise scaling and MMAE filters

result in an improvement in the yaw estimation. The MMAE filter also re-

sulted in a small improvement in the roll and pitch estimation although this

is not thought to be significant. The improvement in the yaw estimation is

thought to be due to the filters continually adapting to the new information

from the innovation sequence as described in the previous sections. This

predominantly occurs during vessel turns when some of the errors become

observable. The adaptive filters identify that there is a deficiency in the

stochastic modelling and attribute this to the INS.
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Roll Pitch Yaw

CKF 0.034 0.041 0.522

Process noise scaling 0.040 0.035 0.357

MMAE 0.032 0.034 0.448

Innovation based Adaptive-Q 0.180 0.118 0.832

Residual based Adaptive-Q 0.123 0.100 0.651

Table 8.7: Attitude errors for adaptive Kalman filters

8.2.7.6 Summary

This section has showed that the process noise and MMAE filters result in

a faster time to alignment, and improved yaw estimation over the CKF.

The CKF algorithm resulted in the CKF not managing to resolve all of

the inertial sensor errors even after a prolonged period of high dynamic

manoeuvres. The process noise scaling and MMAE filters were able to

successfully adapt the stochastic information to provide average alignment

times of 267 and 290 seconds respectively. The yaw estimation was also

improved over the CKF using these adaptive filters. The adaptive-Q algo-

rithms were unable to successfully adapt the process noise matrix which

resulted in a longer alignment time and poor navigation performance.

8.3 Van Trial

This section investigates using adaptive Kalman filtering for integrating

GPS and INS for vehicle navigation. Vehicle navigation is a potential

area for the use of low cost INS as the INS can be used to bridge periods
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when the GPS satellite signals are obstructed. For the vehicle trial, truth

information is not available due to not having access to a higher grade

system for comparison. Consequently, the performance of the algorithms

is examined by investigating the drift of the sensor during GPS outages.

Improved compensation of the inertial sensors and alignment of the INS

should result in improved performance during gap bridging.

8.3.1 Sensor configuration

Figure 8.15 describes the method used to collect and time-tag the IMU data

for the van trial. The figure shows that the serial data stream from the

AHRS output was collected using a dedicated notebook PC. Data collection

software written by the author was used to collect the serial data. The

data collection software was developed due to the poor reliability of the

Crossbow GyroView software. The GyroView software frequently missed

several epochs of data on previous data collection trials. The AHRS sensor

was configured to sample data in voltage mode which is the same mode as

used for the marine trial.

A second notebook PC was used to collect the analogue data from

the AHRS sensor. Since the AHRS was configured to collect data in

voltage mode, only the accelerometer measurements were available using

the analogue outputs. The analogue output from the AHRS was sampled at

400Hz to ensure a high resolution for time tagging the IMU measurements.

The A-D card used was a Measurement Computing DAS16/16, which is

the latest version of the ADAC PCM-5516-16 A-D card that was used in

the marine trial. The data was collected using analogue data collection and

timing software developed by the author. The data collection software is a
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Figure 8.15: Van trial equipment configuration

Figure 8.16: Crossbow AHRS-DMU-HDX and Leica choke ring GPS

antenna mounted on roof of van
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modified version of the data collection software developed for Section 8.2.

The modified software allows the data to be sampled and accurately time

tagged with GPS time in real-time. The software also provides a visual

interface to configure and check the validity of the raw measurements.

The time tagging of the inertial measurements is achieved using the

same principle as described in Section 8.2.2. However, in this trial the

Leica System 530 GPS receiver was used which, in addition to logging the

received event times, outputs the precise time-tag of the event over the

serial output in the form of a PLEI string (for more information see Leica

Geosystems (1999)). This data collection principle is shown in Figure 8.15.

Here it is shown that the analogue output from the AHRS is sampled using

the analogue data collection notebook PC containing the DAS16/16 A-D

card. The A-D card sends a pulse to the event input of the GPS receiver

and the GPS receiver returns the precise time-tag over the serial output

which is received by the data collection software.

As a result of using the modified data collection software, in future

trials, the software can be used to provide integration of the GPS and INS

measurements in real-time. This capability was not used in this trial due

to the requirement for line of sight between the base and roving receiver

for differential corrections, and also due to the hardware restrictions of

sampling the AHRS raw analogue output described in Section 8.2.1.2.

Figure 8.16 shows the choke ring antenna and AHRS attached rigidly to

the roof rack of the van used for the field trial. Due to the small separation

between the antenna and the AHRS, the lever-arm separation was measured

using a steel ruler. The AHRS was not aligned to the vehicle frame due to

the restrictions of the AHRS thread mount.



Chapter 8. Test results 218

In addition to the roving GPS antenna and IMU, a static reference GPS

receiver was set up on the roof of the IESSG. The baseline separation

between the reference and rover is less than 2km for the entire dataset.

8.3.2 Sensor synchronisation

Analysis of the data collected using the A-D output from the AHRS sensor

demonstrated that the A-D data was noisier than expected. This was

thought to be due to the cable used to connect the AHRS sensor to the

A-D card being of poor quality and subject to signal interference. In

addition, the raw gyro voltage measurement is not available using the

analogue output from the AHRS. Therefore, the serial data from the AHRS

sensor had to be used, and cross correlation was used to match the serial

data to the time stamped analogue data. This is similar to the data

collection method in Section 8.2.2, but should be improved because both

data collection systems are sampling the same sensor.

Figure 8.17 shows the cross correlation between the serial and analogue

accelerometer output. The serial measurements were sampled at the max-

imum output of 166Hz and the analogue measurements were sampled at

400Hz.

The figure shows firstly that each accelerometer measurement is offset

by a constant time difference of approximately 0.4ms. This is caused by

the A-D sampling method of the DAS16/16 A-D card as described in

Section 5.4.1. The time difference corresponds to the channel skew which

is obtained from the A-D sampling frequency of 400Hz divided by the

6 sampled channels. This results in an inter-channel offset of 0.417ms.

Consequently, it can be assumed that the AHRS sensor does not suffer
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Figure 8.17: Cross correlation

from the inter-channel time skew that occurs using the DAS16/16.

The figure demonstrates that the cross-correlation method allows the

time-tag to be attached to the serial data with a high degree of accuracy.

The time-tags attached to the serial data were corrected for the drift that

was estimated by fitting a polynomial to the data. This resulted in the

standard deviation of the cross correlation of less than 1×10−5s for each

channel. Using the analysis from this section and §5.4.1, the time tagging

accuracy for the dataset is estimated to be at the millisecond level.

8.3.3 Trajectory description

The trajectory for the van trial is shown in Figure 8.18. The trial was

performed in an industrial estate located approximately 1.5km south of

the IESSG building in Nottingham. The location was selected as there

are only a few obstructions that were likely to obstruct the GPS signals.

Typical speeds that were reached during the trial were 20-30 miles per
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hour. Figure 8.18 shows that the trajectory involved a high number of

turns, particularly where the van was driven around a large car park. The

turns are expected to ensure that the INS alignment accuracy is maintained

throughout the trial.
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Figure 8.18: Van trial trajectory

8.3.4 CKF innovation sequence

The innovation sequence for north and east positions using the CKF is

shown in Figure 8.19. The epoch separation used is 1 second, therefore

the figure shows the prediction accuracy of the INS over this time. The

figure shows that for the initial two minutes, the innovation sequence is

small. In fact the standard deviation is 9mm/s and 6mm/s for the north

and east axes respectively. The innovation sequence is small because the

van is static with the engines off, the GPS integer ambiguities are fixed,

and the initial errors are estimated using a coarse alignment.
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Figure 8.19: Van trial innovation sequence

Because the vehicle is stationary, the initial gyro biases can be estimated

by averaging their outputs. A coarse roll and pitch alignment is achieved

using Equation 2.15 with the outputs of the accelerometers. The initial

accelerometer biases are estimated to be zero. Additionally, the initial yaw

estimation is achieved using the change in position of the van before it

came to a standstill. Because of this initialisation, the INS does not result

in a large initial position error as experienced in the marine trial.

When the van accelerates from being stationary, the residual sequence

increases. From the figure, is is also shown that the innovation sequence

contains several spikes, for example at 227100 and 227950. These spikes

occur where the GPS integer ambiguities are lost due to signal obstruc-

tions. At these points, the GPS position is provided by the pseudorange

observations.

8.3.5 Adaptive estimation

The analysis of the residual sequence in the previous section identified that

the stochastic properties of the INS are different to those experienced in
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the marine trial. This is because static initialisation can be used to reduce

the initial alignment and sensor errors. The analysis also showed that the

GPS position accuracy changes due to obstructions such as buildings and

trees blocking the GPS signals. This section looks at the characteristics of

the adaptive filters for the vehicle trial.

8.3.5.1 Initialisation and alignment

The adaptive Kalman filters for the vehicle trial were configured in the

same way as used for the marine trial. The only difference is that the

initial covariance for the gyro bias was reduced to 1×10−4◦/s due to its

improved estimation using the static initialisation.

The improved estimation of the initial gyro biases for the vehicle trial

has a significant impact on the estimation of the stochastic properties of

the INS by the adaptive algorithms. At the beginning of the dataset, the

estimated scale factors for the process noise scaling filter are all computed

to be less than 40. Similarly, for MMAE filter, the filter initially forms a

weighted combination of the Kalman filters that use the scale factors of

0.1, 1 and 10. Once the van moves from stationary, the filter converges to

predominantly use the filter with the scale factor of 10. For the adaptive-Q

filters, the initial covariance for the gyro bias was set to 1×10−3 to ensure

that the gyro bias is continually estimated during the trial. After the initial

20 seconds of conventional Kalman filtering for the adaptive-Q filters, the

estimated process noise is significantly reduced from the initial estimate.

Because there was no attitude reference available for the vehicle trial,

the time to resolve the initial attitude is not possible to ascertain. However,

the above analysis identifies that the adaptive filters have adapted to model
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the different initial stochastic properties that are experienced for the vehicle

trial.

8.3.5.2 Gap bridging

Because there is no attitude reference for the trial, the adaptive estimation

algorithms are tested by investigating the gap bridging accuracy of the INS.

The performance of the INS during a GPS outage depends on the resolution

of the inertial sensor errors, and the alignment of the INS. Therefore, if the

position accuracy is improved during a GPS outage, it is inferred that the

errors have been better estimated. Table 8.8 shows the maximum position

errors after 15, 30 and 60 second GPS outages for each of the adaptive

Kalman filtering algorithms used in this thesis. The results are obtained

by averaging the errors from 10 separate GPS outages. The GPS outages

were simulated which allows the carrier phase position at the end of the

outage to provide the truth.

Outage length (s)

15 30 60

CKF 2.33 7.36 23.61

Process noise scaling 1.87 6.81 15.23

MMAE 1.82 5.42 14.98

Innovation adaptive-Q 2.52 8.45 33.02

Residual adaptive-Q 2.43 8.42 33.26

Table 8.8: Standalone INS maximum position errors in metres during GPS

outages
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From the table, it is again confirmed that the process noise scaling and

MMAE filtering algorithms result in better estimation of the INS errors.

The table shows that after a 60 second GPS outage, the process noise

scaling and MMAE filters result in a 36% and 37% improvement in position

estimation over the CKF. The average distance travelled during the outage

is 540m. Therefore, the average maximum error is approximately 3% of

the distance travelled for these filters.

For the adaptive-Q filters, the gap bridging accuracy is deteriorated over

the CKF. This indicates that the adaptive-Q filter is not able to estimate

the process noise matrix for the INS effectively. However, for the residual

based filter, the gap bridging accuracy was significantly improved by the

end of the processing run. Using the last five simulated outages, the average

maximum position error was computed to be 15.68m, compared to 24.90m

for the CKF. This indicates that the residual based adaptive-Q filter has

taken longer to align the INS. Once alignment has been achieved, the

position accuracy during the outage is improved over the CKF indicating

that the stochastic information is being modelled effectively.

The position errors during the outage are a significant improvement

over the results presented in Salychev et al. (2000), which are described

in §8.2.4.1. This is thought to be partly due to the constant turns in the

trajectory which improves the observability of the errors and restricts the

error growth. Further analysis of the vehicle trial using different trajectories

is necessary to reach full conclusions about the full bridging accuracy of

the GPS and low cost system. The main point from the van trial is to

highlight the improved error estimation using adaptive Kalman filtering.



Chapter 9

Summary and Conclusions

This chapter gives an overview of the research undertaken for this thesis and

gives conclusions about the results that have been obtained. The chapter

concludes with recommendations for future research in the area of GPS

and low cost INS integration and adaptive Kalman filtering.

9.1 Summary

The objective of the research undertaken in this thesis is to investigate the

integration of GPS and low cost INS measurements and examine potential

ways in which the standard Kalman filter integration algorithms can be

improved. In order to achieve this objective, GPS and inertial measurement

data simulation software was used and extended. GPS and INS integra-

tion software was also developed which provides the capability of current

integration algorithms. The integration software was extended further to

allow the investigation of a number of adaptive Kalman filtering algorithms

that provide the ability to adapt the a priori stochastic information on-line

in real time. The tools were then used to examine the characteristics of
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the adaptive algorithms for improving the error estimation for a GPS and

low cost INS system. In particular, this involved examining the algorithms

during the initial alignment phase of the integration process when the INS

attitude and inertial sensor errors are resolved. Finally, two practical trials

were conducted using GPS and a low cost IMU in a marine and land-based

vehicle environment. The performance from such a low cost system was

evaluated, and the performance of the new integration algorithms was also

tested.

9.2 Conclusions

The following sections summarise the results and conclusions from the

research undertaken in this thesis. This section splits the conclusions into

two main areas: results obtained using data simulation and results obtained

using practical trials.

9.2.1 Simulated data

GPS and INS integration represents one of the most difficult challenges for

Kalman filtering as a large number of states are estimated, some of which

have low observability. Three adaptive Kalman filtering algorithms were

examined in detail using simulated data. The principle findings from each

of algorithms are summarised as:

• Process noise scaling: A new algorithm was developed that is used

to increase the process noise based on the information contained in the

innovation sequence. The algorithm requires very little modification

to the CKF algorithm, and requires negligible extra processing. The
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algorithm was shown to provide a 42% reduction in the time required

for INS alignment compared to the CKF.

• Adaptive-Q filter: The adaptive-Q filter was shown to provide

some of the characteristics that are required for rapid alignment and

initialisation. However, it was shown that the quality of the stochastic

information used to initialise the filter is essential in the convergence

of the algorithm. The algorithm only converged if the initial estimate

of the process noise is larger than the true value. The innovation and

residual based algorithms resulted in a reduction in the alignment

time over the CKF of 42% and 38% respectively.

• MMAE: The MMAE algorithm was implemented for the first time

for the application of GPS and INS integration. The computational

increase that results from using the MMAE algorithm was shown

to be significant. With modern processing technology, however, the

MMAE algorithm was shown to be able to meet the latency require-

ments for a real-time navigation system. The algorithm resulted in

the most rapid time to alignment of any of the adaptive algorithms

with a 72% reduction in the time required for alignment over the

CKF. The alignment was also achieved without the vessel undergoing

any special alignment manoeuvres.

The MMAE was shown to converge predominantly to a single filter

once alignment had taken place. Different algorithms were tested

that force the MMAE filter to remain adaptive. The threshold value

for the conditional probabilities was identified as the best method

to achieve this. Modifications to the MMAE to reduce the com-



Chapter 9. Summary and Conclusions 228

putational burden were examined but none were able to match the

performance of the standard MMAE algorithm.

The following general conclusions about the analysis of the adaptive Kalman

filters can be made:

• Using data simulation, all of the adaptive Kalman filtering algorithms

were shown to result in a reduction in the time required for alignment.

• Adaptive Kalman filtering is more convenient as it reduces the re-

quirement for a priori information.

• The CKF alignment time was obtained by empirically estimating the

initial covariance to result in the fastest alignment time which would

normally not be possible. Apart from the adaptive-Q filters, the

dependence on the initial covariance was significantly reduced using

adaptive Kalman filtering.

• None of the adaptive algorithms resulted in an overall improvement

in navigation performance with the simulated data. This is thought

to be because the stochastic properties of the simulated data remain

relatively constant throughout the processing run.

• None of the adaptive algorithms provide a complete solution to the

adaptation of the stochastic information. For example, the MMAE

algorithm resulted in the best performance at the expense of a sig-

nificant computational increase.

From the above points, a broader conclusion can be made about the use

of adaptive Kalman filtering algorithms. It has been shown that there are
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potential improvements that can be made to the CKF when the stochastic

information in the filter cannot be considered constant, or is not fully

known. These findings have repercussions for a broad range of applications

that use Kalman filtering. Some of the navigation based applications are

considered in the final section for ideas for future work.

9.2.2 Practical trials

Practical trials were undertaken in this thesis for three principle reasons.

Firstly, in the case of the marine trial, the attitude accuracy of a GPS and

low cost INS system was analysed for the application of geo-referencing a

multibeam sonar for hydrographic surveying. Secondly, the trials were used

to investigate the performance of the adaptive Kalman filtering algorithms,

and finally, they were used to validate the results obtained using data

simulation and identify areas in which the simulation algorithms need to

be modified.

The conclusions reached using the marine trial with the conventional

Kalman filter are summarised as:

• Single antenna marine trial: Using measurements from a single

GPS antenna, the roll and pitch accuracies achieved were 0.03◦ and

0.04◦ respectively. The yaw error was significantly larger at 0.52◦ due

to a combination of the inertial sensor errors and low observability

between the vessel performing turning manoeuvres.

• Dual antenna marine trial: To reduce the yaw drift between

manoeuvres, measurements from two roving GPS receivers installed

on the vessel were used in the integration Kalman filter. The dual
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antenna GPS and low cost IMU system was demonstrated to provide

an attitude accuracy of 0.04◦, 0.03◦ and 0.09◦ in roll, pitch and yaw

respectively. The yaw accuracy falls just outside of the attitude

requirement of 0.05◦ for geo-referencing a multibeam sonar but can

potentially be enhanced by improving the GPS attitude estimation

(see §9.3). The attitude performance from such a system is an im-

provement over a multiple antenna GPS attitude system and is lower

cost.

The following conclusions are drawn from the analysis of the adaptive

Kalman filtering algorithms used with the real data.

• The CKF failed to fully resolve the inertial sensor errors for the

marine trial even after a prolonged period of high dynamic manoeu-

vres. This again highlighted that some form of adaptation of the

stochastic properties is required at the beginning of the processing

run for alignment to be achieved rapidly.

• The process noise scaling and MMAE filters resolved the sensor errors

and aligned the INS attitude within 6 minutes for the marine trial.

The yaw alignment accuracy was also improved for these filters, with

an improvement over the CKF of 32% and 14% respectively. This

shows that the process noise scaling and MMAE filters provide the

capability to adapt the stochastic information for the INS to result

in reduced time to alignment and improved attitude estimation.

• The innovation and residual based adaptive-Q filters were slow to

resolve the initial errors and align the INS in the marine trial. Nav-
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igation performance was deteriorated compared to the CKF using

these filters.

• For the vehicle trial, the gap bridging accuracy for the process noise

and MMAE filters demonstrated an improvement of 36% and 37%

over the CKF. This indicates that these filters are able to estimate the

stochastic properties of the INS better than the a priori information

used in the CKF.

• For the vehicle trial, the adaptive-Q filters both resulted in a dete-

rioration of the gap bridging accuracy. However, some promise was

shown with the residual based filter as the gap bridging accuracy was

improved later on in the dataset.

Finally, the following conclusions about the use of data simulation for

analysing GPS and INS integration can be reached:

• The results from the practical trials using the adaptive Kalman filter

reflected the characteristics of the results obtained using the simula-

tion analysis.

• The absolute attitude accuracies and alignment times were different

using the simulated data to those obtained using the practical trial.

This was thought to be predominantly due to the error values used in

the modelling of the simulated data. These values need to be adjusted

in future trials to better reflect those obtained from practical trials.

• Data simulation is a valuable tool for investigating the properties

of new algorithms. All of the error sources are controllable and
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most importantly, truth information is provided for all navigation

parameters.

• Data simulation is an iterative process that requires comparison with

data obtained from practical trials. The results from practical trials

can be used to update the simulated errors.

9.3 Future recommendations

The ideas presented in this thesis can be tested in a broad range of ap-

plication areas. The research has shown that it is possible to modify the

conventional Kalman filtering algorithm to improve the state estimation.

The following recommendations are suggested for future research in the

area of GPS and low cost INS integration, adaptive Kalman filtering and

navigation system simulation:

• Simulation: The development of the GPS and inertial measurement

simulation software at the IESSG is an ongoing area of research.

Recently (summer 2003), the GPS simulation algorithms have been

developed for the Future Real-time Location and Navigation (FUR-

LONG) study (Moore et al., 2003). This is a 12 month study into

simulating signals for future satellite positioning systems (ibid.). For

this study, the simulator has been extended to include measurements

from modernised GPS and Galileo satellites. The GPS simulation

models have also been modified. In particular, the atmospheric delay

models have been modified to provide better modelling of regional

variations. See, for example, Moore et al. (2003) and Smith et al.

(2003). This demonstrates that navigation system simulation has an
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important role in the development and analysis of future processing

algorithms and navigation systems.

Data simulation needs to be a recursive process where the results

obtained from real data are applied to the simulated data and vice

versa. It is recommended that more research is carried out into mod-

ifying the error values used in simulation to match those experienced

with real data. In addition, the inertial sensor error models can

be extended to better characterise individual sensor types. Another

extension that has not been considered in this thesis is the change

in the sensor characteristics as the sensor warms up after the initial

switch-on. This can be incorporated into the existing data simulation

algorithms.

Other future recommendations for research using the data simulator

include examining the impact of the new satellite observations. By

2008, the European satellite navigation system, Galileo, is expected

to be fully operational (Ochieng et al., 2001). Simulation provides

an essential part of examining the potential performance from new

navigation systems.

• GPS and low cost INS for marine applications: The results

shown in this thesis for the GPS and low cost INS marine trial are

promising. More investigation is required using different qualities of

inertial sensor to identify the impact that this has on the attitude

accuracy. Also, the effect of different system errors such as lever-arm

offset and vibration on the attitude needs to be investigated further.

For low dynamic applications such as the marine environment, GPS
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attitude measurements will be required to restrict the error growth,

predominantly in the yaw axis. The attitude determination from the

GPS measurements performed in this thesis used the GPS positions to

directly derive the attitude parameters. Algorithms exist, for example

in Lu (1995), that can be used to improve the attitude estimation by

using an algorithm such as least squares or Kalman filtering. The

impact of improved estimation of the GPS attitude on the low cost

INS based system is required to determine the full potential accuracy

from such a system.

• Adaptive Kalman filtering: Further testing of the adaptive al-

gorithms needs to be performed in a variety of environments. For

example, flight tests and higher dynamic vehicle trials.

The adaptive-Q algorithm has been shown to work successfully in Mo-

hamed and Schwarz (1999) for a tactical grade INS. Therefore it is

suggested that the algorithms are applied to different grades of iner-

tial sensor, and also different types of GPS receiver. If the estimation

problem is not restricted to the real-time case, the performance of

the algorithms combined with Kalman filter smoothing can also be

investigated.

The adaptive algorithms can also be applied to a wide range of ap-

plications (not necessarily for navigation) where the stochastic prop-

erties of the processes being modelled vary over time. One possi-

ble application identified in the IESSG is using the algorithms for

integrating GPS and accelerometers in bridge deflection monitoring

(see Roberts et al. (2002)). The triad of accelerometers used in bridge



Chapter 9. Summary and Conclusions 235

deflection monitoring results in the same problems of, for example,

initialisation as experienced with this research.

It is hoped that the research presented in this thesis can be success-

fully applied to other applications in the future.
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Appendix A

Cubic spline Calculation

Given the cubic equation,

y = ai (x− xi)3 + bi (x− xi)2 + ci (x− xi) + di (A.1)

which has derivatives,

y′ = 3ai (x− xi)2 + 2bi (x− xi) + ci (A.2)

y′′ = 6ai (x− xi) + 2bi (A.3)

the second derivatives, Si, of the cubic equation can be calculated by solving

the following system of equations,

. . .

hi−1 2(hi−1 + hi) hi

hi 2(hi + hi+1) hi+i

hi+1 2(hi+1) + hi+2 hi+2

. . .





...

Si−1

Si

Si+1

...


(A.4)
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where hi = xi+1 − xi. The cubic equation in A.1 can then be constructed

using the following equations to obtain the coefficients,

ai =
Si+1 − Si

6hi
(A.5)

bi =
Si
2

(A.6)

ci =
yi+1 − yi

hi
− 2hiSi + hiSi+1

6
(A.7)

di = yi (A.8)



Appendix B

KinPosi control file example

FILES
INPUT (File locations for GPS and IMU files)

REFREC NOTT2 gerb nss/sunb/gerb118.not XYZ
3851400.0 -78000.0 5067000.0 0.000

KINREC NOTT2 movb nss/sunb/movb118.not XYZ
3851531.9655 -78696.6063 5066401.6861 0.000

EPH SP3 nss/sp3/igs10674.sp3
IMU nss/sunb/insfile.dat
ATTITUDE nss/attitude.out

END
OUTPUT

POS sim.pos
RES sim.res
REP sim.rep

END
END
OPTIONS

MODE 4 (1:standalone,2:diffpse,3:diffcar,4:diffcar&pse)
DOPPLER YES
SNR YES (Use signal to noise ratio GPS measurement model)
SMOOTHPSE NO
FREQUENCY 1
DPSEUDERR 1.4
CARRERR 0.01
DDOPERR 0.005
INTERVAL 1.0
START GPS 1067 355000.0
STOP GPS 1067 360000.0
ELEVMIN 10.0
POSMODEL CA (Constant Acceleration Model)

END
INERTIAL
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INS LOOSE (Centralised or decentralised)
TYPE STD (IMU file type)
ARM 1.000 1.000 -1.000 (Lever arm separation)
INITATTI 0.0 0.0 283.0 (Initial INS attitude)
UPDATE 1 (Kalman filter update rate)
INTERP INS (Interpolate IMU measurements at KF update)
ATTERR 0.001 0.001 (INS process noise)
VELERR 0.001 0.0014
POSERR 0.0 0.0
GYB YES 1.0d-4 (Bias process noise)
ACB YES 1.0d-4
GYS YES 0.0 (Scale factor process noise)
ACS NO 0.0
GYM NO 0.0 (Misalignment process noise)
ACM NO 0.0
IGYB 0.0 0.0 0.0 (Initial sensor biases)
IACB 0.0 0.0 0.0
IGYS 1.0 1.0 1.0
IACS 1.0 1.0 1.0
GPSCOV YES (Use GPS covariance to form measurement noise)
GPSATT 0.1 0.1 (GPS attitude measurement noise)
GPSPVEL 0.2 0.3 (Pseudorange velocity)
GPSPPOS 0.1 0.15 (Pseudorange position)
GPSCVEL 0.005 0.008 (Carrier phase velocity)
GPSCPOS 0.01 0.013 (Carrier phase position)

ATTITUDE NO RPH (Use GPS attitude measurements)
KALTYPE ADAPTIVE Q 20 INNOV DIAG (Adaptive options)

END

ATMOSPERE (GPS tropospheric delay models)
BASE

DRYMD MAGNET MAGNET
WETMD NONE NEILL
SOLVE NONE DIRECT
METDAT STD
DELAY NO tropdel.ini

END
ROVER

DRYMD MAGNET MAGNET
WETMD NONE NEILL
SOLVE NONE DIRECT
METDAT STD

END
END



Appendix C

NSS control file example

FILES
DATSTYLE sunb/***.01o (Location and extension for GPS files)
STATION

NAME movb118 KINEMATIC (Kinematic filename)
../traj/plymouth.dat (Location of trajectory file)

NAME gerb118 STATIC (Static filename - more than one can be defined)
4063506.2986 -297194.3999 4890803.0687 (Static coordinates)

END
EPH

SP3 sp3/igs10674.sp3
END

END
PROCOPT

MODEL (Errors to be simulated)
IONO 1
TROPO 1
MULTIPATH 1
DOPPLER 1
SPLINE 1 (Use cubic spline interpolation)

END
PARAMETERS

STARTTIME GPS 1067 355000.0
STOPTIME GPS 1067 358000.0
INTERVAL 1 (GPS sampling rate)
SATCLKRANDOMERR 1.0d-12
RECCLKRANDOMERR 4.0d-07
SIMSATCLK EPH
SIMRECCLK YES
L1PSEUDO 0.75d0
L2PSEUDO 0.75d0
L1CARR 0.001d0
L2CARR 0.001d0
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ELEVMIN 5.0d0
SLIP NO
UNHEALTHLY 1 2 3 4 (Satellites not to use)

END
END
INERTIAL

MODEL
LEVERARM 1.0 1.0 -1.0
GPSOFFSET 0.0 0.0 0.0 (GPS and INS attitude misalignment)
NGYRO 3
NACCEL 3
INSDAT sunb/insfile.dat (IMU output filename)
INTERVAL 0.01
AERONAV 0
EARTHROT YES
GRAVITY 0 (Gravity model)

END
GYROS

AXI1 1.0 0.0 0.0 (Definition of IMU axes)
AXI2 0.0 1.0 0.0
AXI3 0.0 0.0 1.0
BIAS 0.5 (◦/s)
BIASINST 1e-5 100
NOISE 0.0142
SF1 0.1 (%)
SF2 0.0
TEMP1 0.02 (◦/s/ ◦C)
TEMP2 0.0
SATURATION 100
QUANTI 0.011
MISALIGMENT 0.0172

END
ACCELEROMETERS

AXI1 1.0 0.0 0.0
AXI2 0.0 1.0 0.0
AXI3 0.0 0.0 1.0
BIAS 0.294 (ms−2)
BIASINST 1e-5 60
NOISE 0.0025
SF1 0.1 (%)
SF2 0.0
TEMP1 0.02 (ms−2/ ◦C)
TEMP2 0.0
SATURATION 40
QUANTI 0.003
MISALIGMENT 0.0172
CROSS 0.1 (%)

END
END
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