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Abstract

This thesis examines various aspects of time series and their applications. In the first

part, we study numerical and asymptotic properties of Box-Pierce family of portman-

teau tests. We compare size and power properties of time series model diagnostic tests

using their asymptotic χ2 distribution and bootstrap distribution (dynamic and fixed

design) against various linear and non-linear alternatives. In general, our results show

that dynamic bootstrapping provides a better approximation of the distribution un-

derlying these statistics. Moreover, we find that Box-Pierce type tests are powerful

against linear alternatives while the CvM due to Escanciano (2006b) test performs bet-

ter against non linear alternative models.

The most challenging scenario for these portmanteau tests is when the process is

close to the stationary boundary and value of m, the maximum lag considered in the

portmanteau test, is very small. In these situations, the χ2 distribution is a poor ap-

proximation of the null asymptotic distribution. Katayama (2008) suggested a bias

correction term to improve the approximation in these situations. We numerically

study Katayama’s bias correction in Ljung and Box (1978) test. Our results show that

Katayama’s correction works well and confirms the results as shown in Katayama

(2008). We also provide a number of algorithms for performing the necessary calcu-

lations efficiently.

We notice that the bootstrap automatically does bias correction in Ljung-Box statis-

tic. It motivates us to look at theoretical properties of the dynamic bootstrap in this

context. Moreover, noticing the good performance of Katayama’s correction, we sug-

gest a bias correction term for the Monti (1994) test on the lines of Katayama’s correc-

tion. We show that our suggestion improves Monti’s statistic in a similar way to what
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Katayama’s suggestion does for Ljung-Box test. We also make a novel suggestion of

using the pivotal portmanteau test. Our suggestion is to use two separate values of m,

one a large value for the calculation of the information matrix and a smaller choice for

diagnostic purposes. This results in a pivotal statistic which automatically corrects the

bias correction in Ljung-Box test. Our suggested novel algorithm efficiently computes

this novel portmanteau test.

In the second part, we implement lasso-type shrinkage methods to linear regression

and time series models. We look through simulations in various examples to study the

oracle properties of these methods via the adaptive lasso due to Zou (2006). We study

consistent variable selection by the lasso and adaptive lasso and consider a result in

the literature which states that the lasso cannot be consistent in variable selection if a

necessary condition does not hold for the model. We notice that lasso methods have

nice theoretical properties but it is not very easy to achieve them in practice.

The choice of tuning parameter is crucial for these methods. So far there is not any

fully explicit way of choosing the appropriate value of tuning parameter, so it is hard

to achieve the oracle properties in practice. In our numerical study, we compare the

performance of k-fold cross-validation with the BIC method of Wang et al. (2007) for

selecting the appropriate value of the tuning parameter. We show that k-fold cross-

validation is not a reliable method for choosing the value of the tuning parameter for

consistent variable selection.

We also look at ways to implement lasso-type methods time series models. In our

numerical results we show that the oracle properties of lasso-type methods can also

be achieved for time series models. We derive the necessary condition for consistent

variable selection by lasso-type methods in the time series context. We also prove the

oracle properties of the adaptive lasso for stationary time series.
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CHAPTER 1

Introduction

1.1 Introduction

A time series is a set of observations yt, with each observation being recorded at spec-

ified time t (Brockwell and Davis, 1991). Time series models have wide applications in

science and technology. Examples of time series can be found in almost every field of

life including, for example, economics, astronomy, physics, agriculture, genetic engi-

neering and commerce.

Mathematical models play an important role in the statistical analysis of data. These

models can be deterministic or stochastic. In time series analysis the first and most

important step is to identify the appropriate class of mathematical models for the data.

As in regression problems, model criticism is an important stage in time series model

building, where the fitted model is under scrutiny. To improve the model, we need to

go through an iterative procedure of identification, estimation and diagnostic checking.

The diagnostic checking not only examines the model for possible shortcomings but it

can also suggest ways to improve the model in the next iterative stage (Box and Jenkins,

1994, Chapter 8).

In this thesis, we are interested in goodness-of-fit tests used for diagnostic checking

of linear time series models so we will only consider the linear time series with finite

second order moment. We will mainly look at overall goodness-of-fit tests suggested

in literature e.g. Box and Pierce (1970), Ljung (1986), Monti (1994), Escanciano (2007),

Katayama (2008), Katayama (2009). The goodness-of-fit tests used to test the signifi-
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CHAPTER 1: Introduction

cance of a group of first m, say, autocorrelations are called portmanteau tests. A review

of literature on goodness-of-fit tests is briefly given in Section 1.4 and discussed with

more detail in Section 2.2.1.

Variable selection, especially in high dimensional settings, is important to have the

optimal subset of predictors. In regression we have methods, e.g. the lasso (Tibshirani,

1996), which can do variable selection and parameter estimation simultaneously. Vari-

able selection sometimes lead to greater prediction accuracy (Hastie et al., 2001, p.57).

These methods have not been widely discussed for time series models. In this thesis

we have developed a novel approach to the use of lasso-type methods for multivari-

ate time series analysis including a study of the oracle properties of our proposals.

Thus we have mainly focused on two aspects of time series model building, namely (i)

goodness of fit tests for diagnostic checking of time series models and (ii) applications

of shrinkage methods to time series models.

The first part of this thesis includes numerical and theoretical results on time se-

ries goodness-of-fit testing, which is an important part of model building. We study

goodness-of-fit tests under their distribution based on first-order asymptotic theory

(Ljung and Box, 1978, McLeod, 1978, Katayama, 2008) and distribution approximated

by a variety of bootstrap methods including dynamic (MacKinnon, 2006) and fixed de-

sign bootstrap methods (Escanciano, 2007). We present some numerical results for the

bootstrap distributions of these tests and also provide some theoretical justification of

dynamic bootstrap methods. For details see Section 2.3.1.

In the second part of the thesis, we investigate oracle properties (Fan and Li, 2001)

of lasso-type methods for regression and time series models. Firstly, we look at the

implementation of the lasso (Tibshirani, 1996) and adaptive lasso (Zou, 2006) to linear

regression models. We discuss the scenarios where the lasso does not achieve the oracle

properties while the adaptive lasso does. We find the necessary and almost sufficient

condition discussed by Zou (2006) and Zhao and Yu (2006) is an important condition

for consistent variable selection for these lasso-type methods. We also notice for the

adaptive lasso that normalisation of the predictors after rescaling with the adaptive

weights results in the adaptive lasso with uniform weights i.e. the standard lasso.

2



CHAPTER 1: Introduction

The properties of lasso-type methods are well studied for regression models, see

e.g. Tibshirani (1997) discussed the application of lasso to Cox proportional hazard

models, Van De Geer (2008) studied the application of the lasso to high-dimensional

generalized linear models. But application of lasso-type methods to time series models

is still in its early stages. Some discussion can be found on the ways to implement

lasso-type methods to time series data, see e.g. Haufe et al. (2008), Gustafsson et al.

(2005), Hsu et al. (2008), Nardi and Rinaldo (2008) but we cannot find any theoretical

results in the time series setting.

Haufe et al. (2008) studied the sparse causal discovery of multivariate time series

using simulation study. They compared the performance of group lasso (Yuan and Lin,

2006) and ridge regression (Hoerl and Kennard, 1970) with multiple testing (Hothorn et al.,

2008). Gustafsson et al. (2005) applied lasso to time series data of gene-to-gene net-

work. Hsu et al. (2008) has shown good performance of the lasso for multivariate time

series models in comparison to the conventional information-based AIC (Akaike, 1974)

and BIC (Schwarz, 1978) methods. He also proved the asymptotic distribution of lasso

estimates under vector autoregressive models. Nardi and Rinaldo (2008) has derived

set of conditions when the lasso estimation is consistent in model selection, estimation

and prediction but these results are proved for univariate autoregressive process.

We present the implementation of lasso-type methods to vector autoregressive mod-

els. We prove the necessary condition for the consistent variable selection property of

these methods. We also give theoretical proofs for the oracle properties of the adaptive

lasso for time series models on the lines of Zou (2006). Our results show, as for regres-

sion models, the oracle properties of the adaptive lasso also hold for stationary time

series models.

The rest of this chapter is organised as follows: Section 1.2 gives some important

definitions used in time series analysis. Important types of stochastic processes are

defined in Section 1.3. We will give a literature review of time series model diagnostic

checking in Section 1.4. Bootstrap methods are briefly defined in Section 1.5. Finally,

in Section 1.6, we will define the importance of variable selection with a brief survey of

popular methods used to do variable selection.
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1.2 Some Definitions

Time series data have unique characteristics and importance as the dependence among

the observations can be used to forecast the phenomenon for some future time. Time

series analysis provides the tools for the analysis of this dependence. The use of time

series stochastic and dynamic models play a vital role in this analysis. Assuming that,

in time series each observation yt is a realization of a certain random variable Yt, we

can consider the time series {yt}t≥1 as a realization of the family of random variables

{Yt}t≥1. Now we define briefly some of the important types of time series models.

Now we give some important definitions, for details see e.g. Box and Jenkins (1994).

Mean and Variance

If Yt is a stationary process, defined later in this section, with probability distribu-

tion p(yt) then the mean and variance are defined as

µ = E (Yt) =
∫ ∞

−∞
yt p(yt)dyt ,

and

σ2 = E (Yt − µ)2 =
∫ ∞

−∞
(yt − µ)2 p(yt)dyt.

For the stationary time series {yt : t = 1, . . . , n}, the sample mean and variance can be

defined as

ȳ =
1
n

n

∑
t=1

yt,

and

s2 =
1
n

n

∑
t=1

(yt − ȳ)2 .

4
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Strict Stationarity

Let {yt}t≥1 be an observed series of the stochastic process {Yt}t≥1 then

FYt1 ,...,Ytn
(y1, . . . , yn) = P (Yt1 ≤ y1, . . . , Ytn ≤ yn)

denote the joint distribution function of Yt1 , . . . , Ytn for any t1, t2, . . ., tn ∈ Z. Then a

time series {Yt} is said to be stationary if for any k ∈ Z, and n = 1, 2, . . .

FYt1 ,Yt2 ,...,Ytn
(y1, . . . , yn) = FYt1+k,Yt2+k,...,Ytn+k(y1, . . . , yn).

Thus, shifting the times of the observations backward or forward by an integer amount

k does not affect the joint distribution. This definition is often termed strict stationarity,

see e.g. Tong (1990).

Stationarity processes are considered to be in a state of equilibrium. Given the nor-

mality assumption, stationarity is the primary assumption in time series analysis as a

stationary process can be described by its mean, variance and spectral density function

(Box and Jenkins, 1994, p.43). In practical situations, stationarity may or may not hold,

but there are various ways of transforming time series data to approximate stationarity,

see e.g. Box and Jenkins (1994).

Weak Stationarity

A weaker form of stationarity is that the mean and variance of the process Yt are

constant and their autocovariance function, defined later in this section, does not de-

pend on time t but only on lag k. This is also called second order stationarity as it

requires conditions only up to the second order moment. Since a Gaussian process is

fully characterised by its first and second order moments, for such processes weak sta-

tionarity implies strict stationarity, see e.g. Box and Jenkins (1994).

Autocovariance and Autocorrelation Function

The autocovariance at lag k, denoted by ck, is the covariance between Yt and Yt+k.
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If Yt is a stationary process then ck does not depend on t and is defined as

ck = cov (Yt, Yt+k) = E (Yt − µ) (Yt+k − µ) , k = 0,±1,±2, . . . .

The Yt process is said to be white noise if ck = 0, when |k| ≥ 1. The autocorrelation at

lag k is

rk =
ck

c0
, k = 0,±1,±2, . . . . (1.2.1)

For the stationary time series {yt : t = 1, . . . , n}, the sample autocovariance function,

ĉk at lag k, can be defined as

ĉk =
1
n

n−k

∑
t=1

(yt − ȳ) (yt+k − ȳ) , k = 0,±1,±2, . . . .

Note that divisor is used as n instead of n − k to ensure that the matrix Ĉ = [ĉi−j]
n
i,j=1 is

non-negative definite (Brockwell and Davis, 1991, p.29) and thus for a stationary time

series with finite second order moment, we can define autocorrelation function r̂k, at

lag k,

r̂k =
ĉk

ĉ0
k = 0,±1,±2, . . . . (1.2.2)

The estimated autocorrelation coefficients r̂k are approximately independently and iden-

tically distributed (i.i.d.) with zero mean and

var(r̂k) =
1
n

.

Note that c0 = σ2 and r0 = 1 and for the sample version ĉ0 = s2 and r̂0 = 1, where σ2

is the variance of the process {Yt : t ∈ N} and s2 is the sample variance.

Partial Autocorrelation Function

The partial autocorrelation function of a stationary process Yt with finite second

order moment, ωk, can be defined as the correlation between Yt and Yt+k after removing

the effect of intervening observations Yt+1, . . . , Yt+k−1. We can define ωk = φkk as the
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kth coefficient in the autoregressive representation of order k of the jth autocorrelation

coefficient

rj = φk1rj−1 + . . . + φkkrj−k j = 1, . . . , k. (1.2.3)

The sample partial autocorrelation can be defined in parallel to (1.2.3) as

r̂j = φ̂k1r̂j−1 + . . . + φ̂kk r̂j−k j = 1, . . . , k,

thus ω̂k = φ̂kk (Brockwell and Davis, 1991, p.102).

Partial autocorrelation plays a vital role in determining the order of the autoregres-

sive model underlying a time series, details given in definition of autoregressive mod-

els in Section 1.3. Under the hypothesis that the underlying process is autoregressive

of order p, the estimated partial autocorrelation coefficients ω̂k of order greater than p

are approximately i.i.d. with zero mean and

var(ω̂k) ≈

1
n

, k ≥ p + 1, (1.2.4)

see e.g. Box and Jenkins (1994, p.68).

1.3 Some Important Types of Time Series

In this section we give definitions of some important time series models.

Moving Average model

A process

yt = β(L)εt, (1.3.1)

is called a moving average process of order q, denoted as MA(q) process, where

β(L) = 1 + β1L + β2L2 + . . . + βqLq, (1.3.2)

7



CHAPTER 1: Introduction

and εt is a white noise sequence (see e.g. Box and Jenkins, 1994). The operator L is

called the lag operator such that L jYt = Yt−j. For finite q, moving average processes

are always stationary and their autocorrelation function rk, defined in (1.2.1), cuts off

to zero for k ≥ q + 1. This is an important property of moving average processes and

plays an important role in model identification underlying an observed sample time

series.

Autoregressive model

A process

α(L)yt = εt (1.3.3)

is called an autoregressive process of order p, denoted as AR(p) process, where

α(L) = 1 − α1L − α2L2 − . . . − αpLp. (1.3.4)

An AR(p) process is said to be stationary when roots of α(L) = 0 lie outside the unit

circle or roots of α(L−1) = 0 lie inside the unit circle, where

α(L−1) = 1 − α1L−1 − α2L−2 − . . . − αpL−p.

The autocorrelation function of an AR(p) process is infinite in extent e.g. it can be a

damped sine wave or an exponentially decaying curve. For example, for an AR(1)

process yt = φyt−1 + εt, autocorrelation function shows an exponential decay if the

autoregressive parameter is positive i.e. 0 < φ < 1 while it makes a damped sine wave

if autoregressive parameter is negative i.e. −1 < φ < 0 (Box and Jenkins, 1994, p.58)

But the partial autocorrelation function of AR(p) process is non-zero only for first p

lags i.e. ωk = 0 for k ≥ p + 1 (Brockwell and Davis, 1991, p.100).

Autoregressive Moving Average model

A process

α(L)yt = β(L)εt (1.3.5)

8
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is called an autoregressive moving average process, denoted as ARMA(p, q) (see e.g.

Box and Jenkins, 1994), where β(L) and α(L) are defined in (1.3.2) and (1.3.4) respec-

tively. It is important to note that typically a stationary time series can be represented

simultaneously by an autoregressive, moving average or mixed autoregressive moving

average process of adequate order. The ARMA(p, q) model results in a more parsimo-

nious model representation.

An ARMA(p, q) model can be represented in AR(∞) form as

π(L)yt = εt, (1.3.6)

where π(L) = α(L)β(L)−1 = ∑
∞
i=0 πiLi. We can also write ARMA(p, q) model in

MA(∞) form as

yt = ψ(L)εt, (1.3.7)

where ψ(L) = β(L)α(L)−1 = ∑
∞
i=0 ψi Li. See e.g. Wei (2006, Chapter 3), Brockwell and Davis

(2002, Chapter 6) for detailed discussion including the applications of linear models.

Autoregressive Integrated Moving Average model

Suppose we have a non stationary ARMA(p + d, q) process of the form α ′(L)yt =

β(L)εt, such that d roots of α′(L) = 0 lie on the unit circle. In such situations we can

write it as a stationary process wt such that α(L)wt = β(L)εt where wt = ∇dyt. We can

say yt is an ARIMA(p, d, q) and wt is an ARMA(p, q). The α(L) and β(L) are defined in

(1.3.4) and (1.3.2) respectively.

Non Linear Time Series Models

Many time series especially occurring in the natural sciences and engineering can-

not be modeled by linear processes. These kinds of time series can have trends which

can be best modeled by nonlinear processes. The model building process for nonlinear

time series is much more complicated than for linear time series. The important types

of nonlinear time series includes bilinear, threshold autoregressive, exponential autore-

gressive, autoregressive conditional heteroscedastic (ARCH), generalized autoregres-
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sive heteroscedastic (GARCH) and stochastic and random coefficient models see e.g.

Fan and Yao (2003, Chapter 1), Li (2004, Chapter 5), Brockwell and Davis (1991, Chap-

ter 13) and Chatfield (2004, Chapter 11). Some of these models are defined in Section

2.4.

As we have discussed earlier, finite order moving average processes are always

stationary, so in the analysis of these processes for uniqueness purposes we need some

conditions on the parameters of the process. Here we give the definition of invertibility,

an important condition on moving average processes.

Invertibility

A moving average process {Yt} is said to be invertible, if the roots of β(L) = 0 lie

outside the unit-circle where β(L) is defined in (1.3.2). The invertibility condition is in-

dependent of the stationarity condition and can also be applied to non-stationary linear

time series. Invertibility is required for uniqueness purposes as two normal stationary

processes can have same autocorrelation function see e.g. Chatfield (2004, p.37).

1.4 Diagnostic Checking

As mentioned earlier, time series model building is a three stage iterative process con-

sisting of identification, estimation and diagnostic checking. Once the model is identi-

fied and fitted to an observed series, the next stage is to check the model for possible

discrepancies.

One approach is to assume that the fitted model is under-fitted and so suggest a

new model with some additional parameters. This method is called overfitting but

the practical problem is to know the directions in which the model should be aug-

mented. An analysis of the identified and overfitted model leads to the conclusion if

the additional parameters are needed. Information criteria like Akaike information cri-

terion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978)

can be used for the final model selection. See McQuarrie and Tsai (1998, Chapter 3)

Box and Jenkins (1994, Section 8.1.2) for details.

Residuals obtained from the fitted model are important for investigating the pos-
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sible discrepancies in the model and also to further suggest some modifications to the

model. Residuals are analysed and checked if they satisfy the model assumptions. Any

significant differences from the model assumptions mean we fail to prove that our fit-

ted model is correct.

Residuals plots may be the first step to look at the patterns and behaviour of resid-

uals. Residuals plots along with plots of residual autocorrelations and partial auto-

correlations provide an important set of diagnostic tools. Any non random pattern on

the residuals plot or any significant residual autocorrelation suggest modification in

the fitted model. Figure 1.1 shows that autocorrelations and partial autocorrelations

for series z is lying within the confidence limits therefore we can consider series z as

a purely random series. For series x, autocorrelation plot is cutting off after lag 1 and

partial autocorrelation function is showing a damped sine wave pattern, a behaviour

of moving average process of order 1. Similarly for series y, partial autocorrelation is

dying off after lag 1 with autocorrelation showing a pattern of damped sine wave, so

series y can be identified an autoregressive process of order 1. The identified moving

average and autoregressive models should be considered as possible candidate models

which can be further tested in the iterative procedure of model building.

The autocorrelation (partial autocorrelation) plot of the residuals is the graph where

residuals autocorrelations up to some finite lag, say m, are plotted along with large

sample confidence limits. Any autocorrelation (partial autocorrelation) lying outside

these limits indicates some non randomness in the residuals. Instead of testing the

significance of individual autocorrelations, Box and Pierce (1970) suggested a portman-

teau test for the first m autocorrelations. Later, several modifications of Box-Pierce were

suggested in the literature. A survey of these tests is given in Section 2.2.1.

In the following section, we give a brief review of some bootstrap methods which

are commonly used for time series models, but before that we give a description of the

Monte Carlo method.

Since the paper by Meteopolis and Ulam (1949) and the advent of high speed com-

puters, the Monte Carlo method has been applied in almost every field of science e.g.

physics, biological sciences, finance etc. Monte Carlo methods use repeated sampling

11
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Figure 1.1: Examples of autocorrelation function and partial autocorrelation functions.

and provide an efficient numerical method to solve a statistical problem for example,

we can obtain the first few moments of a distribution even without having any priori

knowledge of this distribution. For details see Robert and Casella (2004).
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1.5 Bootstrap Methods

In practice, we come to situations when it is very hard or sometimes impossible to work

out the asymptotic distribution of an estimator. In these situations, an approximation

of the asymptotic distribution can be obtained by a resampling method. Though the

concept of bootstrap methods goes back to the 1930s, Efron (1979) first introduced it in

a unified way.

Bootstrap methods are based on a simple idea that the relation between population

and sample can be recreated by resampling from the sample. Bootstrap methods pro-

vide mechanisms to generate bootstrap samples. The concept of bootstrap methods is

quite simple in the case of i.i.d. random variables but the situation becomes compli-

cated for time series data (Lahiri, 2003).

One way to resample from time series data is the block bootstrap method where the

sample is divided into blocks, overlapping (Künsch, 1989) or non-overlapping (Politis and Romano,

1992), of a certain length. Block length is an important issue and is chosen such that

the dependence structure in the original sample can still be explained by the bootstrap

sample. Under the stationarity condition each block should have the same joint prob-

ability distribution. Block bootstrapping is a non parametric bootstrap method. There

are some other parametric and semi parametric bootstrap methods for time series data.

Assuming that we have some knowledge of the underlying distribution, say Gaussian,

the parametric bootstrap is sampling from the estimated distribution.

Semi parametric bootstrap methods use the model structure to resample the resid-

uals. The residuals are obtained by fitting the model to time series data. The residuals

can be considered approximately i.i.d.. Having the resamples of these residuals, we

can use the fitted model to obtain the bootstrap samples of the time series. Sometimes,

residuals may require some transformation for centering and scale adjustment, see e.g.

Stute et al. (1998).

See Section 2.3.1 for more discussion on bootstrap methods.
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1.6 Variable Selection

In the second part of our thesis we look at the implementation of shrinkage methods

to regression and time series. Here we briefly introduce these methods, mainly in the

context of regression analysis. Later in Chapter 5, we will implement some of these

methods in the regression setting while application to time series data will be discussed

in Chapter 6.

Discovering the relationships between the response variable {y i : i = 1, . . . , n} and

the set of predictors {xj : j = 1, . . . , p} is one of the objectives of regression analy-

sis. This relationship is later used for statistical inference and prediction. The linear

regression model is usually defined as:

yi = β0 + β1xi1 + . . . + βpxip + ε i, i = 1, . . . , n.

In vector form, we can write the model as

yi = β0 + xT
i β + ε i (1.6.1)

such that yi ∈ R is the response variable, xi = (xi1, . . . , xip)
T ∈ Rp is the p-dimensional

set of predictors, ε i ∼ N(0, σ2) and β = (β1, . . . , βp) is the set of parameters and β0 is a

constant.

The ultimate question is to estimate the β j’s using a set of training data (xT
1 , y1),

. . ., (xT
n , yn), where xi = (xi1, . . . , xip)

T ∈ Rp. The method of least squares, based

on minimising the residual sum of squares, is the most popular method to estimate

the model. The least squares estimates always provide non-zero estimates even if true

model is sparse i.e. some of the model parameters are exactly zero. This is the reason

that least squares estimates generally have low bias but may suffer from large predic-

tion variance especially when true model is sparse. The large prediction variance is

due to the fact that least squares estimation always ends up with the full model see e.g.

Hastie et al. (2001, p.57).
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1.6.1 Subset Selection

In model building, we often have a large set of predictors. As all the variables are not

equally important for the model, so we seek for a parsimonious model. The parsimo-

nious models are very important for prediction purposes as overfitted models some-

times have the higher prediction variance see e.g. McQuarrie and Tsai (1998, Section

1.2), Hastie et al. (2001, p.57).

Variable selection in regression is so important that Bradley Efron, the inventor of

bootstrap methods, has named it as one of the most important problems in statistics

(Hesterberg et al., 2008). All the predictors, in general, are not worth to include in the

model especially when p is very large. We look for a subset of {β j : j = 1, . . . , p} which

optimizes a criterion, see Hocking and Leslie (1967). This criterion can be based on

certain model goodness measures like prediction error, goodness of fit measures or on

estimating some measures of distance between the model based on the subset and the

true model, see e.g. Seber and Lee (2003).

Searching through all possible subset models is computationally intensive. Best

subset selection produces a model that is interpretable and has possibly lower predic-

tion error than the full model. It is one way to fit a simple model but, as mentioned by

(Fan and Peng, 2004), is not feasible with a large set of predictors. Methods such as for-

ward stepwise selection and backward elimination, called greedy algorithm, provide

a good path through them (Hastie et al., 2001, p.58). More recently, there are sugges-

tions e.g. Hall et al. (2009b) and Cho and Fryzlewicz (2010) based on tilting for variable

selection in high-dimensional setting.

Shrinkage methods are another choice which lead to a simpler model in terms of

number of variables in the model. In the following section, we give a review of some

of the important shrinkage methods.

1.6.2 Shrinkage Methods

Subset selection is a discrete process i.e. either a candidate variable is included or ex-

cluded from the model. Thus a model, though simpler, can have a relatively high pre-

diction variance. Shrinkage methods answer this problem in an opposite way i.e. retain
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all the predictors but use a penalised least squares method instead of standard least

squares estimation. The concept of shrinkage was first introduced by James and Stein

(1961). Shrinkage is desired when a simpler model is desired at a cost of increased pre-

diction error but this increase is relatively lesser than result for a discrete process like

subset selection. Here we give some brief description of some of the shrinkage meth-

ods. For more detailed discussion see Section 5.2.

Ridge Regression

Ridge regression (Hoerl and Kennard, 1970) is a form of shrinkage method, which

shrinks the coefficients by imposing a penalty on the sum of squares of the parameters.

Ridge regression was primarily suggested for improving the estimation of regression

coefficients when the predictors are highly correlated. We can also define ridge regres-

sion as a mean or mode of a posterior distribution of response variable with a suitable

chosen of prior distribution for regression parameter, in which case we can see that op-

timal performance of ridge regression much depends on the distribution of regression

coefficients , see e.g. Hastie et al. (2001, p.64). One drawback of ridge regression is that

it fails to produce a simple model as it retains all the variables, see e.g. Seber and Lee

(2003). Ridge regression is preferred to variable subset selection when objective is to

minimize prediction error (Frank and Friedman, 1993).

Garrote

Shrinkage and simple models are desired simultaneous for an interpretable model

with low prediction variance (Hastie et al., 2001, Section 3.4). Subset selection provides

the simpler model but fails to shrink while ridge regression shrinks the regression coef-

ficients but retains all the variables in the model. Garrote (Breiman, 1995) does shrink-

age while setting some the coefficients exactly to zero at the same time. Garrote puts a

penalty on each individual least squares estimate of β j’s. As the penalty term increases

the shrinkage coefficients get smaller and some are even forced to zero. Due to the

condition on the shrinkage coefficient to be nonnegative this version of garrote is also

called nonnegative garrote, this condition was further relaxed by Breiman (1996).
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Lasso

The lasso (Tibshirani, 1996), least absolute shrinkage and selection operators, is an

L1 penalised least squares regression. Like garrote it shrinks some of the coefficients

while setting the rest of them exactly to zero. This property of the lasso makes it a

method which enjoys good properties of best subset regression and ridge regression

(Hastie et al., 2001, p.82) The lasso estimator of β for model (1.6.1) is defined by

β̂∗
j = argmin





n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

|β j |



 , j = 1, . . . , p,

where λ > 0 is a user-defined tuning parameter. The choice λ = 0 corresponds to the

least squares estimate and larger values of λ result in a higher amount of shrinkage

i.e. relatively more variables will shrink to zero. The theoretical properties of the lasso

method are very appealing but it had been computationally expensive until Efron et al.

(2004) suggested an efficient least angle regression (LARS) algorithm for finding the

solution path of the lasso method. The LARS correctly organizes the calculations thus

the computational cost of the entire p steps is of the same order as that required for the

usual least squares solution for the full model.

Variable selection is an important property of shrinkage methods. Zou (2006) and

Zhao and Yu (2006) has discussed a necessary condition for the lasso methods to achieve

consistency in variable selection. Zou (2006) has also suggested the use of adaptive

weights and showed that this results in putting a different penalty on each parameter,

which leads to consistent variable selection. The same LARS algorithm (Efron et al.,

2004) can be used to obtain the adaptive lasso estimates, see Section 5.2.4 for detailed

discussion on the adaptive lasso.

The rest of this thesis is organised as follows:

Goodness of fit testing is an important stage of time series model building. In Chap-

ter 2, we study the properties of time series goodness of fit tests. Though these prop-

erties are well studied but there is not much literature available studying these tests

especially for semi-parametric bootstrap methods. We give some numerical results to

compare the performance of various resampling residuals approaches in providing an

17



CHAPTER 1: Introduction

approximation of finite sample distributions underlying these tests. We also compared

the power of these tests against various linear and non-linear alternative models.

Katayama (2008) derived a bias term in Ljung-Box test. This motivated us to com-

pare Katayama’s bias corrected Ljung-Box test with other goodness-of-fit tests using

asymptotic and dynamic bootstrap method. In Chapter 3, we numerically study the

effect of the Katayama (2008) bias correction term in the Ljung and Box (1978) port-

manteau test. We also suggest a set of algorithms to estimate this bias correction term.

In this same Chapter 3, we present a novel suggestion for a bias correction term in

Monti (1994) test on the lines of Katayama (2008). Chapter 3 also includes numerical

results on Katayama’s suggested multiple test (Katayama, 2009). We suggest a hybrid

bootstrap approach to estimate the joint significance levels of this multiple portman-

teau test. We also suggest the use of pivotal portmanteau test and an algorithm for its

efficient computation.

The results in Chapter 2 lead to the conclusion that dynamic bootstrap sampling

provide an approximation of the finite sample distribution better than first order asymp-

totic theory. This motivated us to provide a theoretical justification of this finding. In

Chapter 4, where we have provided theoretical insight of good performance of dy-

namic bootstrap methods in estimating the distribution of the portmanteau tests espe-

cially when m is small and the process is close to stationarity boundary. We provide a

set of lemmas to prove the asymptotic normality of the least squares estimates. We have

proved the bounds on the cumulants of the residuals which are used to derive the nor-

mality of bootstrap least squares estimates. We discuss an approach to use these results

as a justification of good performance of dynamic bootstrap method for portmanteau

tests. We, along the lines of Katayama (2008), derive and suggest a bias correction term

in Monti’s(1994) test.

Issues like selection of tuning parameter for these shrinkage methods and condi-

tions required to achieve oracle performance by these methods are still areas of interest.

In the second part of our thesis, we look at the oracle properties of lasso-type methods.

In particular, we study the property of consistent variable selection for these methods.

In Chapter 5, numerical results on variable selection of the lasso (Tibshirani, 1996) and

adaptive lasso (Zou, 2006) are given and discussed. We present some interesting nu-
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merical results about the selection of the tuning parameter. Lasso-type methods are

originally suggested for linear regression models and their theoretical properties are

proved in the regression context (see e.g. Knight and Fu, 2000).

Shrinkage methods are now widely used in regression setting but it is less explored

for time series setting. Though time series models have some similarities with regres-

sion models, the results are not trivial (see e.g. Anderson, 1971). In Chapter 6, we

apply lasso-type methods to the multivariate time series models. We also give some

novel results about the application of these methods to linear time series models. Like

regression, we derive a necessary (but not sufficient) condition for consistent variable

selection by lasso-type methods. We prove the asymptotic normality of the adaptive

lasso and show that the adaptive lasso is always consistent in variable selection.

Finally, in Chapter 7, we give a summary and conclusion of our results. Future

directions of our work are also discussed in this same chapter.
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Bootstrap Goodness of Fit Tests for

Time Series Models

2.1 Introduction

In this chapter, we mainly look at the properties of goodness-of-fit tests for linear time

series models under semi-parametric bootstrap methods. Model criticism is an im-

portant stage of model building and thus goodness of fit tests provide a set of tools

for diagnostic checking of the fitted model. Box and Pierce (1970) test and its sev-

eral other versions are perhaps the most commonly used type of portmanteau test

(Mainassara et al., 2009). The portmanteau tests are used as overall tests for an entire

set of, say, the first m autocorrelations assuming that the true model is correct.

The asymptotic distribution of these tests is well studied in the literature and many

researchers have questioned the appropriateness of the χ2
m−p−q distribution as its ap-

proximation under ARMA(p, q) as a true model, see e.g. Katayama (2008) and refer-

ences therein. Moreover, the choice of m is very important in the χ2
m−p−q approximation

and power of these tests.

In this chapter, we numerically study the size and power of some of the popu-

lar time series goodness of fit tests. Escanciano (2006b) has studied power of various

goodness of fit tests under the fixed design wild bootstrap. Horowitz et al. (2006) has

compared performance of Box and Pierce (1970) test with some other tests under block-

of-block bootstrapping. See Section 2.3.1 for more detailed discussion.
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Most of the literature in time series bootstrap goodness-of-fit tests is related to non-

parametric bootstrap methods. Results in Escanciano (2007) and Katayama (2008) moti-

vated us to look at size and power properties of these goodness-of-fit tests for bootstrap

methods using resampling residuals. The novelty of our study is that we study the size

of the tests under various semi-parametric bootstrap designs described in Section 2.3.1.

Moreover, we also compare the power of these tests with the Cramer von Mises (CvM)

(Escanciano, 2007) statistic against various linear and non-linear alternative models.

We also study size and power of various versions of Box-Pierce test, Monti (1994) test

and CvM test. To the best of our knowledge, these tests have not been compared in

these scenarios in the literature.

Our results show that Box-Pierce type tests do well against the linear alternatives

but fail to perform against the non-linear alternatives, while the situation reverses for

the CvM statistic due to Escanciano (2007), i.e, the CvM statistic does well against non

linear alternatives but much less well against linear alternatives. Moreover, dynamic

bootstrap methods show better performance than the fixed design bootstrap in our

example. We have not found any advantage of using wild residuals in our simulations.

The remainder of the chapter is organized as follows. In the next section a review

of the literature on available diagnostic tests is given. Section 2.3 describes the different

bootstrap methods in a time series context. Section 2.4 gives the estimation procedure

and algorithms for Monte Carlo simulations for computing the size and power of the

tests. Finally, Section 2.5 presents the results of simulations and discussion of the re-

sults.

2.2 Literature Review

In practice, there are many possible linear and non-linear models for a problem under

study e.g. autoregressive, moving average, mixed ARMA models, threshold autore-

gressive etc. Box and Jenkins (1994) have described time series model building as a

three-stage iterative procedure that consists of identification, estimation and valida-

tion.

Identification of the model is partly science and partly art. There are no exact ways

21



CHAPTER 2: Bootstrap Goodness of Fit Tests for Time Series Models

of identifying the underlying model though there are some tools, for example, the auto-

correlation and partial autocorrelation plots to identify the general class of underlying

model, see Box and Jenkins (1994, p.196). See Section 1.3 for the definitions of autocor-

relation and partial autocorrelation. Importantly, it should be noted that at the identifi-

cation stage, especially dealing with complex situations, we identify a class of models

that will later be efficiently fitted and then go through the diagnostic checking phase

(Box and Jenkins, 1994). Identification of a single model makes the practitioner assume

that the data are generated under this particular identified model. To overcome this

problem, model averaging methods such as Bayesian model averaging can be used see

e.g. Hoeting et al. (1999) and references therein.

There are rigorous ways to estimate the parameters of autoregressive models such

as the methods of maximum likelihood estimation, least squares estimation and Yule-

Walker estimation. Moving average models can be estimated through the innovations

method, see e.g. Brockwell and Davis (1991, Chapter 8). The estimates of moving aver-

age models and the mixed models can also be obtained graphically or through iterative

estimation procedures such as non-linear minimization (see e.g. Box and Jenkins, 1994,

Chapter 7).

Time series models should be able to describe the dependence among the observa-

tions, see e.g. Li (2004). It is a well-discussed issue that in time series model criticism,

the residuals obtained from fitting a potential model to the observed time series play

a vital role and can be used to detect departures from the underlying assumptions,

(Box and Jenkins, 1994; Li, 2004).

In particular, if the model is a good fit to the observed series then the residuals

should behave somewhat like a white noise process. So, taking into account of the ef-

fect of estimation, the residuals obtained from a good fit should be approximately un-

correlated. While looking at the significance of residual autocorrelations, one approach

is to test the significance of each individual residual autocorrelation which seems to

be quite cumbersome. Another approach is to have some portmanteau test capable of

testing the significance of the first, say m, residual autocorrelations (Box and Jenkins,

1994; Li, 2004), an approach we now describe.
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2.2.1 Diagnostic Tests

Since Box and Pierce (1970) paper, the portmanteau test has become the vital part of

time series diagnostic checking. Several modifications and versions of Box and Pierce

(1970) has been suggested in the literature, see e.g. Ljung and Box (1978), McLeod and Li

(1983), Monti (1994), Katayama (2008), Katayama (2009). These tests are capable of

testing the significance of the autocorrelations (partial autocorrelations) up to a finite

number of lags.

The third stage of diagnostic checking process (Box and Jenkins, 1994) provides a

practitioner an opportunity to test the model before using it for forecasting. This stage

not only checks the fitted model for inadequacies but can also suggest improvements in

the fitted model in the next iteration of this model building procedure. In this section

we will do a literature review of the available diagnostic tests for fitted time series

models.

The residuals are very commonly used as a diagnostic tool to test the goodness

of fit of models. In a time series context, if the fitted model is good then it should

be able to explain the dependence pattern among successive observations. In other

words, all the dependence in terms of autocorrelations and partial autocorrelations

of the data generating process (DGP) should be explained by the fitted model so there

should be no significant autocorrelation and partial autocorrelation in successive terms

of the residuals.

In practice the most popular way for diagnostic checking a time series model is

the portmanteau test, which tests whether any of a group of the first m autocorrela-

tions (r̂1, . . . , r̂m) of a time series are significantly different from zero. This type of test

was first suggested by Box and Pierce (1970), in which they studied the distribution

of residual autocorrelations in ARIMA processes defined in Section 1.3. Based on the

autocorrelations of the residuals obtained by fitting an ARMA(p, q) model defined in

Section 1.3.5 to {yt}, they suggested the following portmanteau test

Qm = n
m

∑
k=1

r̂2
k , (2.2.1)

where r̂k is the residual autocorrelation at lag k defined in (1.2.2). In practice, the op-
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timal choice of m is difficult as the use of the χ2
m−p−q approximation and diagnostic

checking require large values of m which results in less power and unstable size of test,

as noticed by Ljung (1986), Katayama (2008). Katayama (2009) suggested a multiple

portmanteau test to overcome this problem, for details see Section 3.4.

Box and Pierce (1970) suggested that Qm ∼ χ2
m−p−q, for moderate values of m and

the fitted model is adequate, under the following conditions:

1. ψj ≤ O
(
n−1/2) for j ≥ m − p, and

2. m
n = O

(
n−1/2

)
,

where ψj are the weights in the MA(∞) representation as defined in (1.3.7). This ap-

proximation requires substitution of residuals, ε̂t, for the error term, ε t, in the model

but erroneous use of such kind of substitution can lead to a serious underestimation of

significance level in diagnostic checking, see (Pierce, 1972) and references therin. Many

other researchers have also questioned the distribution of Qm, (see e.g. McLeod, 1978

and references therein). The choice of m is an important issue.

In the discussion of Prothero and Wallis (1976), Chatfield has mentioned the poor

power properties of Qm and has recommended focusing on residual autocorrelations at

the first few lags and seasonal lags. Similar suggestions are also made by Davies et al.

(1977). In the same discussion on the Prothero and Wallis paper, Chatfield and New-

bold also pointed out the poor approximation of the finite-sample distribution of Qm.

Prothero and Wallis (1976), in their reply to this discussion, suggested the use of the

correction factor (n + 2) / (n − k) to Qm. However, this correction factor may inflate

the variance of the resulting statistic relative to that of the asymptotic χ2
m−p−q distribu-

tion (see e.g. Davies et al., 1977, Ansley and Newbold, 1979).

An important point to note is that the statistic Qm has been developed assuming the

normality of the white noise process ε t. As the results of Anderson and Walker (1964)

suggest the asymptotic normality of the autocorrelation of a stochastic process is inde-

pendent of the normality of the stochastic process and only depends on the assumption

of finite variance, so the portmanteau test is expected to be insensitive to the normality

assumption.
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Ljung and Box (1978) suggested the use of the modified statistic

Q∗
m = n(n + 2)

p

∑
k=1

r̂2
k

n − k
. (2.2.2)

They have shown that the modified portmanteau statistic Q∗
m has a finite sample distri-

bution which is much closer to χ2
m−p−q. Their results also show that Q∗

m is insensitive to

the normality assumption of ε t. As pointed out by many researchers e.g. Davies et al.

(1977), Ansley and Newbold (1979), the true significance levels of Qm tends to be much

lower than predicted by the asymptotic theory and though the mean of Q∗
m is much

closer to the asymptotic distribution, this corrected version of the portmanteau test has

an inflated variance. But Ljung and Box (1978) pointed out that approximate expres-

sion of variance given by Davies et al. (1977) overestimates the variance of Q∗
m.

Frequently in the literature larger values of m have been used in Qm and Q∗
m, and the

most commonly suggested value is m = 20 (see e.g. Davies et al., 1977, Ljung and Box,

1978). Ljung (1986) suggests the use of smaller values of m and has shown that for small

values of m, Q∗
m has an approximate aχ2

b distribution, where a and b are constants to be

determined.

Ljung and Box (1978) also studied the empirical significance levels and empirical

powers of Q∗
m for various choices of m and showed that the empirical significance lev-

els for an AR(1) process are close to the nominal level for small choices of m (m = 10

or 20) in all the cases except when the AR parameter is close to the boundary of non-

stationarity region. This is a very challenging scenario for the χ2 approximation. We

will look at this issue in Chapter 3. Ljung and Box (1978) also showed that approximat-

ing asymptotic distribution of Qm ∼ χ2
ν, where ν = E(Qm) results in performance of

Qm similar to that of Q∗
m ∼ χ2

m−p−q.

We have already mentioned that the partial autocorrelation function is an important

tool in determining the order of an autoregressive process (Quenouille, 1947). The port-

manteau tests Qm and Q∗
m are based on the autocorrelations. Monti (1994) suggested a

portmanteau test

Q∗
m(ω̂) = n(n + 2)

m

∑
k=1

ω̂2
k

n − k
, (2.2.3)
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where ω̂k is the residual partial autocorrelation at lag k. She showed that Q∗
m(ω̂), anal-

ogously to Q∗
m, has an asymptotic null distribution χ2

m−p−q and that Q∗
m(ω̂) is more

powerful than Q∗
m especially when the order of the moving average component is un-

derstated.

As we have discussed earlier, the asymptotic distribution of Qm and Q∗
m is ques-

tioned by several authors in the literature. Though small values of m solve this problem

in some situations, it does not work in all cases, for example when the process is nearly

stationary, see Ljung (1986). In a very recent paper, Katayama (2008) has suggested a

bias correction term, in the Ljung and Box (1978) statistic Q∗
m, defined as

B∗
m,n = r̂TV DV r̂,

where r̂ = (r̂1, . . . , r̂m)T, V = diag
(√

n (n + 2) /(n − 1), . . . ,
√

n (n + 2) /(n − m)
)

,

D = X
(
XTX

)−1
XT and X is an (m × (p + q)) matrix partitioned into p and q

columns, such that each (i, j) element of the partitioned matrix of X is given

X = (−α∗
i−j

... − β∗
i−j)

where α∗
i and β∗

i are defined by

1
α(L)

=
∞

∑
i=0

α∗
i Li

and

1
β(L)

=
∞

∑
i=0

β∗
i Li

and α∗
i = β∗

i = 0 for i < 0. Katayama (2008) showed the importance of this correction

term especially for small values of m and when the roots of the ARMA(p, q) process lie

near the boundary of non-stationarity region. So the bias corrected portmanteau test is

given by

Q∗∗
m = Q∗

m − B∗
m,n.
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For more discussion on Katayama (2008), see Chapter 3.

McLeod (1978, Theorem 1) has showed that r̂ is approximately normal with mean

0 and Var(r̂) = (I −C) /n, where C = XJ−1X , I is the identity matrix and J is the

Fisher information matrix defined in (3.3.1). We noticed that approximation of C by

D = X(XTX)−1X , especially when m is small, is a source of bias in approximating

the asymptotic distribution of portmanteau tests. We found the use of pivotal statistic

automatically corrects for the bias mentioned in Katayama (2008). Pivotal statistics are

useful as their asymptotic distribution does not depend on unknown parameters, for

details see e.g. Hall (1992, Ch.3). For more details see Section 3.3.

Katayama (2008) suggested a multiple portmanteau test is based on several port-

manteau test for a range of small to medium values of m. He also discussed the linkage

between his suggested multiple test and the test due to Pena and Rodriguez (2002).

He suggested a method based on some iterative procedure to approximate joint distri-

bution of the multiple test as the computation of the distribution is very hard due to

correlated elements. See Section 3.4 for details.

For the past few decades the interest of researchers, especially working in the field

of financial time series, has been focused on nonlinear models. It has been pointed out

by several researchers that the Box-Pierce type tests fail to show good power against

nonlinear models (see e.g. Escanciano, 2006b; Pena and Rodriguez, 2002). One impor-

tant difference between nonlinear and linear models is that former do not inherit prop-

erties of innovations e.g. a GARCH model with Gaussian innovations does not have to

have a finite order fourth moment, for more detailed discussion see e.g. Fan and Yao

(2003, Chapter 4). McLeod and Li (1983) used the sample autocorrelation of the squared

residuals to test for linearity against the nonlinearity and showed its good power against

departures from linearity.

Escanciano (2007) proposed diagnostic tests based on the CvM test using the weights

suggested by Bierens (1982), given by

CvMexp,P =
1

nσ̂2

n

∑
t=1

n

∑
s=1

ε̂t ε̂s exp
(
−1

2
|It−1,P − Is−1,P|2

)
, (2.2.4)
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where σ̂2 = ∑
n
t=1 ε̂2

t /n − 1 is the variance of residuals and

It−1,P = (yt−1, yt−2, . . . , yt−P) (2.2.5)

is the information set at time t − 1 and dimension P. It can be noticed that the distance

|It−1,P − Is−1,P|2 increases very fast with P which results in weights being near 0 when

P is relatively large. We have considered the CvM statistic with this weight scheme in

our study as it has shown good power properties reported in Escanciano (2006b).

2.3 Methodology

We now consider various versions of the statistics defined in (2.2.1), (2.2.2), (2.2.3) and

(2.2.4). We compare empirical size and power of these tests against various linear and

non-linear classes of models. Mainly we compare the dynamic and fixed design boot-

strap methods but we also look at the usefulness of transformed residuals in bootstrap

methods.

2.3.1 Bootstrap Methods

Bootstrap methods are used to estimate the distribution of a test statistic or an esti-

mator. The bootstrap is usually implemented using resampling. Under conditions that

hold in wide variety of applications, the bootstrap provides approximations to distribu-

tions of statistics that are at least as accurate as, and sometimes are more accurate than,

the approximations of first-order asymptotic distribution theory (see Hardle et al., 2003).

The reliability of a bootstrap method depends upon the extent to which the bootstrap

data generating process (DGP) mimics the true DGP (see MacKinnon, 2006).

The bootstrap method was first suggested by Efron (1979) as a more general method

than jackknife. For a detailed discussion on jackknife methods see e.g. Shao and Tu

(1995). The idea of bootstrapping residuals was described in Efron (1988) in the context

of regression. Much of the earlier work in bootstrap methods was done on i.i.d. random

variables data.

For time series data, the dependence structure of the DGP makes it difficult to ap-
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ply the bootstrap methods. In general, there are two main bootstrap methods that are

used in time series i.e. model-based bootstrap methods and block-resampling boot-

strap methods. Generally, the model-based bootstrap methods are called resampling-

residuals bootstrap methods.

In block bootstrapping, we divide the sample into overlapping or non-overlapping

blocks of a certain length (Hall et al., 1995). The performance of block bootstrap meth-

ods much depend on block length. Under the stationarity condition each block should

have the same joint probability distribution. In our study we consider only the model-

based bootstrapping, as model-based bootstrap methods tend to be more accurate than

block bootstrap methods (Lahiri, 2003) and also as our objective is to compare two

model-based bootstrap methods, namely dynamic bootstrap and fixed design boot-

strap. Lahiri (1999) provides a good comparison of block bootstrap methods with non-

random and random block lengths.

Suppose we have a sample time series {yt}n
t=1 generated by a DGP defined by

yt = f (It−1,P, θ) + εt, (2.3.1)

where It−1,P is the information set defined earlier in (2.2.5) and θ is the vector of model

parameters. Suppose the fitted model is

ŷt = f
(
It−1,P, θ̂

)
, t = P, P + 1, . . .

where θ̂ is the estimate of θ. Thus the residuals are

ε̂t = yt − ŷt, (2.3.2)

We assume that initial data yt−P, . . . , y0 are available.

Fully parametric bootstrap method

If the distribution of the error term, ε t, is assumed to be known up to unknown

parameters, then we can use the knowledge of the distribution to select a bootstrap

sample. Suppose, for example, that ε t ∼ N(0, σ2) then the bootstrap DGP will be given
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as,

y†
t = f

(
I†

t−1,P, θ̂
)

+ ε†
t , t = 1, 2, . . .

where ε†
t ∼ N(0, σ2), σ2 is known and I†

t−1,P =
(
y†

t−1, . . . , y†
t−P
)

is the parametric

bootstrap of It−1,P defined in (2.2.5). If the true parameters are unknown then respec-

tive maximum likelihood estimates are used for these unknown parameters (Chernick,

1999, p.124)

Semi-parametric time series bootstrap methods

Under the assumption that the DGP given in (2.3.1) is the true model for the given

sample time series, the residuals given in (2.3.2) will serve the purpose of an i.i.d. sam-

ple. The following approaches are used in semi-parametric time series bootstrap meth-

ods.

Dynamic bootstrap If the error terms, ε t’s, in our DGP are i.i.d., with common vari-

ance σ2, then we can generally make very accurate inferences by using the the dynamic

bootstrap (DB) (MacKinnon, 2006). This method requires the i.i.d. assumption of the

error term and only mild conditions on its distribution. The DB is defined as:

y∗t = f
(
I∗

t−1,P, θ̂
)
+ ε∗t for t = 1, 2, . . . , n, (2.3.3)

where I∗
t−1,P =

(
y∗t−1, . . . , y∗t−P

)
is the dynamic bootstrap of the information set defined

in (2.2.5) and ε∗t is selected at random with replacement from the vector of the residuals

(ε̂1, ε̂2, . . . , ε̂n) .

Dynamic wild bootstrap The dynamic wild bootstrap (DWB) is a simple modification

of the dynamic bootstrap. The only difference is to resample the rescaled residuals

instead of residuals. These rescaled residuals are usually named as wild bootstrap.

Various rescaling schemes have been suggested in the literature, see e.g. Liu (1988) or

Stute et al. (1998). The DWB is defined as:

yo
t = f

(
Io

t−1,P, θ̂
)
+ εo

t for t = 1, 2, . . . , n, (2.3.4)
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where Io
t−1,P =

(
yo

t−1, . . . , yo
t−P
)

is the DWB of the information set defined in (2.2.5)

and εo
t = ε̂∗t .vt, such that the sequence vt is i.i.d. with zero mean, unit variance and

finite fourth moment. We can define a sequence {vt} of i.i.d. Bernoulli variates for

transforming the i.i.d. residuals to wild residuals e.g using as in Liu (1988)

vt =





−1 with p = 1
2

+1 with p = 1
2 .

(2.3.5)

or in Stute et al. (1998)

vt =





1−
√

5
2 with p = 1+

√
5

2
√

5
1+

√
5

2 with p = 1 − 1+
√

5
2
√

5
.

(2.3.6)

The fixed design wild bootstrap In fixed design wild bootstrap (FWB), the bootstrap

sample is generated from the fixed design It−1,P. This method is called fixed design as,

unlike dynamic bootstrap, the information set for observed series is used. Moreover,

the residuals are transformed to wild residuals using the suggested transformations

(see Liu, 1988 and Stute et al., 1998). The FWB is defined as:

y�t = f
(
It−1,P, θ̂

)
+ εo

t for t = 1, 2, . . . , n, (2.3.7)

where εo
t is as defined above.

Fully non-parametric Bootstrap methods

The model based (i.e. parametric or semi-parametric) bootstrap methods are based

upon the assumption of i.i.d. of error terms, ε t. When this assumption is violated, we

cannot resample the residuals. The sieve and block bootstrap are the most popular

bootstrap methods for non-i.i.d. error terms.

The sieve bootstrap Suppose that the error term ε t follows an unknown stationary

process with homoscedastic innovations. This method is implemented in three steps.
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• The model is estimated, imposing the null hypothesis if there is any, and the

residuals ε̂t’s are obtained.

• For several values of p, an AR(p) model is fitted to ε̂t’s as

ε̂t =
p

∑
i=1

πi ε̂ i + ut.

Maximum-Likelihood method or Yule-Walker equations are preferred to estimate

this model. After p has been chosen as the order for the best model, the model-

based approach can be used to obtain u‡
t , resamples of ut or rescaled ut.

• The final step is to generate bootstrap data using the equation

y‡
t = f

(
It−1,P, θ̂

)
+ u‡

t .

The sieve bootstrap assumes that ut are i.i.d., so it cannot be applied to heteroscedastic

models. The other limitation is the ability of the AR(p) process to provide a good ap-

proximation to every stationary, stochastic process.

The block bootstrap The main idea of the block bootstrap is to divide the quantities

that are to be resampled, which might be residuals, rescaled residuals or [yt It−1,P]

pairs, into blocks of b consecutive observations. There are several suggestions to form

the blocks, these blocks may be either overlapping or non-overlapping and their length

may be either fixed or variable. There are two main methods in the block bootstrap.

• Moving-block bootstrap

The best approach is considered as to form the overlapping blocks of fixed length

(see e.g. Lahiri, 1999), called moving-block bootstrap. For this method, there are

n − b + 1 blocks, constructed such as the first block consists of the first b obser-

vations i.e. Z1 = {yt : t = 1, . . . , b}, the second block consists of observations 2

through b + 1 i.e. Z2 = {yt : t = 2, . . . , b + 1}, and the last contains observations

n − b + 1 through n i.e. Zn−b+1 = {yt : t = n − b + 1, . . . , n}. Then a bootstrap
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sample is a sample selected from these blocks. The choice of b is somewhat sub-

jective and must be chosen carefully. Ideally, the block size b should not be too

small or large because if the block size is too small the dependence will be broken

and for too large block size, there will be lack of randomness in the bootstrap

samples.

• Block-of-blocks bootstrap

We define the block as Zt = [yt It−1,P] and then block of blocks are constructed as

[Z1, . . . , Zb], [Z2, . . . , Zb+1], . . ., [Zn−b+1, . . . , Zn]. Bootstrap samples are resampled

from these block-of-blocks. It has the capability to mimic any kind of dynamic

model. Moreover, it can handle heteroscedasticity and serial correlation.

For more detailed discussion on bootstrapping time series see e.g. Lahiri (1999), Lahiri

(2003).

In this study we use semi-parametric bootstrap methods. Now we provide a simple

example to illustrate semi-parametric bootstrap methods. We consider a time series of

only five observations say y1, . . . , y5, generated by an AR(1) process yt = φyt−1 + εt. We

assume initial value y0 is available. There are suggestions on choosing the initial data

see e.g. Box and Jenkins (1994, Chapter 8). We can describe semi-parametric bootstrap

methods as follows:

1. Obtain φ̂, an estimate of φ so estimated model as ŷt = φ̂yt−1. We use this model

to obtain fitted values ŷ1, . . . , ŷ5.

2. Obtain residuals ε̂1, . . . , ε̂5 using ε̂t = yt − ŷt.

3. Resample the residuals ε̂1, . . . , ε̂5 by drawing random samples of size n = 5 with

replacement. Suppose the first random sample is ε̂2, ε̂5, ε̂1, ε̂2, ε̂3. So we can say

ε∗1 = ε̂2, ε∗2 = ε̂5, ε∗3 = ε̂1, ε∗4 = ε̂2 and ε∗5 = ε̂3.

4. For wild bootstrap, we use rescaled residuals, say ε̂o
t using a transformation say

as in (2.3.5). Suppose we have vt = (+1,−1,−1, +1,−1). Then εo
1 = ε̂2, εo

2 = −ε̂5,

εo
3 = −ε̂1, εo

4 = ε̂2 and εo
5 = −ε̂3.

5. Dynamic bootstrap samples can be obtained as y∗
t = φ̂y∗t−1 + ε∗t , t = 1, . . . , 5,
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assuming y∗0 = y0. Note that in dynamic bootstrap sample, observation at time t,

y∗t is obtained recursively from previous bootstrap observation at time t − 1, y∗
t−1.

6. Dynamic wild bootstrap samples can be obtained as yo
t = φ̂yo

t−1 + εo
t , t = 1, . . . , 5,

assuming yo
0 = y0. The only difference between dynamic bootstrap sampling

and dynamic wild bootstrap sampling that in later we are using the transformed

bootstrap residuals as described above.

7. Fixed design wild bootstrap samples can be obtained as y†
t = φ̂yt−1 + εo

t , t =

1, . . . , 5, assuming y†
0 = y0. Note that in fixed design bootstrap, unlike dynamic

wild bootstrap, observation at time t, y†
t is obtained recursively from previous

sample observation at time t − 1, yt−1.

We use these stated bootstrap procedures for obtaining the empirical size and power

of goodness of fit tests. The algorithms based on these bootstrap procedures are given

in Section 2.4.1. In the next section, we describe the estimation methods used in our

study.

2.4 Parameter Estimation

In our numerical results showed in Section 2.5, we estimate the AR(p) model (1.3.3)

under various bootstrap designs discussed earlier in Section 2.3.1. The least squares

(OLS) estimates (Gonçalves and Kilian, 2004) of α = (α1, . . . , αp) are obtained as below:

α̂∗ =

(
n−1

n

∑
t=1

I∗
t−1,PI∗T

t−1,P

)−1

n−1
n

∑
t=1

I∗
t−1,Py∗t ,

α̂o =

(
n−1

n

∑
t=1

Io
t−1,PIoT

t−1,P

)−1

n−1
n

∑
t=1

Io
t−1,Pyo

t ,

α̂� =

(
n−1

n

∑
t=1

It−1,PIT
t−1,P

)−1

n−1
n

∑
t=1

It−1,Py�t ,
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where It−1,P is the information set defined in (2.2.5) while I∗
t−1,P and Io

t−1,P are the

information sets for DB and DWB respectively defined in Section 2.3.1. The y∗t , yo
t and

y�t are defined in (2.3.3), (2.3.4) and (2.3.7).

In this chapter, we mainly look at the size and power of the diagnostic tests. We use

the bootstrap distributions under the semi-parametric bootstrap designs discussed in

Section 2.3.1. We compute the empirical size of the tests from the bootstrap distribution

under null with a specified nominal significance level. We also look at empirical power

of test against various alternative models. For the sake of convenience, we denote the

statistic of interest as T, e.g. Qm, Q∗
m, Q∗

m(ω̂) and CvMexp,P.

2.4.1 Algorithms

In this section, we give the algorithms for the Monte Carlo method used to compute the

empirical size and power of the diagnostic tests defined in Section 2.2.1. For each Monte

Carlo run, a sample time series {yt}n
t=1 is simulated under the model M. For empirical

size, M is the true model while for the computation of power it is the alternative model.

In both of the situations, we estimate the true model for the simulated sample time

series and T is calculated from the residuals, ε̂t = yt − ŷt, where {yt}n
t=1 are the fitted

values assuming the initial data are known.

In the following algorithms, we describe the procedure for dynamic bootstrap sam-

pling but the same methods can be applied to other semi-parametric methods i.e. dy-

namic wild bootstrap and fixed design wild bootstrap methods. Algorithm 1 gives the

Algorithm 1: Bootstrap sampling procedure
Step 1 Generate bootstrap sample y∗

t using true model and resamples of ε̂t, say
ε∗t .
Step 2 Fit the true model to the bootstrap sample y∗

t and obtain residuals as
ε̂∗t = y∗t − ŷ∗t , where ŷ∗t is the fitted series.
Step 3 Using the residuals, ε̂∗t , calculate test-statistic T, say, T∗.
Step 4 Repeat Step 1-3 for each of the B bootstrap samples.

bootstrap procedure used in our numerical study. From this algorithm, we obtain the

bootstrap approximation of the distribution of the test. We will use this algorithm to

compute empirical size and power in the following algorithms of our simulation study

consisting of N Monte Carlo runs.
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Algorithm 2: Computation of empirical size.
Step 1 Obtain T∗ using Algorithm 1, for each of the B bootstrap samples, reject
true model if T∗ ≥ T, otherwise accept it.
Step 2 Determine the proportion of B bootstrap samples, say p̂c, for which the
null hypothesis is rejected.
Step 3 Repeat Step 1-2 for each of the N Monte Carlo runs.
Step 4 Empirical size, α̂, is determined as the proportion of Monte Carlo runs for
which the p̂c ≤ α, where α is the level of significance,

α̂ =
#( p̂c ≤ α)

N
.

The size of a test is helpful in assessing how reasonable is our assumption of the

null distribution. We can compute the size when the sample is simulated under the

true model. This is the probability of rejecting the true model when the true model is

true model.

The power of a test is the probability of rejecting a false null hypothesis. For empir-

ical power, as mentioned earlier, the sample is generated under the alternative model.

Algorithms 2 and 3 state the Monte Carlo procedure we use to determine the empirical

size and power of test.

Algorithm 3: Computation of empirical power.
Step 1 Calculate 100(1 − α)th percentile, say T∗

1−α, of the bootstrap distribution
of T∗ obtained using Algorithm 1.
Step 2 Reject true model if T ≥ T∗

1−α otherwise accept it.
Step 3 Repeat Step 1-2 for each of the N Monte Carlo runs.
Step 4 Empirical power, 1 − β̂, is determined as below,

1 − β̂ =
#(T ≥ T∗

1−α)

N
.

In the next section, we look at different examples and compute the empirical size

and power of the diagnostic tests. In Section 1.3, we have defined some important

linear time series models, now we give definitions of some non-linear models which

we will study as alternative models in empirical power study of portmanteau tests.

As we will compare our results with Escanciano (2007) so we consider the following

nonlinear models.
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Exponential Autoregressive model

An exponential autoregressive model, EXPAR(p), is defined as

yt =
p

∑
i=1

[
αi + πi exp(−γy2

t−1)
]
+ εt

For detailed discussion see e.g. Tong (1990, p.108).

Threshold Autoregressive model

The threshold autoregressive, TAR(p), model is defined as

yt =





∑
p
i=1 α

(1)
i yt−i + εt if yt−i < r

∑
p
i=1 α

(2)
i yt−i + εt if yt−i ≥ r

where r is called the threshold, below r the AR parameters are α
(1)
i and above r these are

α
(2)
i (see e.g. Chatfield, 2004, p.200). Threshold models were developed and introduced

by Tong and Lim (1980) which are basically piecewise linear AR models. For more

discussion on bilinear models see also Tang and Mohler (1988) and references therein.

2.5 Results and Discussion

In this section, first we numerically study how well asymptotic results hold for the port-

manteau tests. For this we look at the means and variances of the portmanteau tests

and compare with their asymptotic counterparts. Secondly, we compute and compare

the empirical size of the diagnostic tests under various semi-parametric bootstrap de-

signs discussed in Section 2.3.1. Finally, we compare the empirical power of these tests

under same bootstrap designs against a variety of linear and non linear alternative

models.

We study the following AR(p) processes,

yt = 1.05 + 1.41yt−1 − 0.77yt−2 + εt, (2.5.1)

yt = 1.05 + 1.41yt−1 − 0.77yt−2 + 0.2yt−3 + εt, (2.5.2)

yt = 1.05 + 1.41yt−1 − 0.77yt−2 + 0.2yt−3 − 0.1yt−4 + εt. (2.5.3)
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p 2 3 4
m 5 10 25 5 10 25 5 10 25

Asymp. Mean 3 8 23 2 7 22 1 6 21
SD 2.45 4.00 6.78 2.00 3.74 6.63 1.41 3.46 6.48

Qm Mean 3.28 7.37 19.46 2.36 6.63 18.51 1.73 5.65 17.17
SD 2.42 3.71 6.19 1.87 3.33 5.92 1.63 3.12 5.61

Q∗
m Mean 3.46 8.00 22.96 2.50 7.21 22.02 1.84 6.19 20.51

SD 2.55 4.03 7.30 1.98 3.64 7.05 1.74 3.42 6.68
Q∗

m(ω̂) Mean 3.46 8.32 23.44 2.55 7.51 22.80 1.88 6.49 21.65
SD 2.48 4.07 6.52 2.03 3.77 6.66 1.81 3.68 6.76

Table 2.1: Mean and standard deviation of portmanteau tests, based on 1000 Monte
Carlo runs of samples of size 100 for AR(p) processes given at the start of
Section 2.5.

All the above models are examples of stationary AR processes. The above AR(2) and

AR(3) models are also studied by Escanciano (2007) and for comparison purposes we

are considering the same models.

2.5.1 Mean and Variance

The asymptotic distribution of Qm, with AR(p) as the true true model, is χ2
m−p derived

by Box and Pierce (1970). The same asymptotic distribution is also proved for Q∗
m by

Ljung and Box (1978) and for Q∗
m(ω̂) by Monti (1994). These asymptotic results are a

good approximation when n is large relative to m.

It has been reported in the literature that Qm suffers from location bias (see, e.g.,

Davies et al., 1977; Ljung and Box, 1978; Kheoh and McLeod, 1992). These papers have

looked at various sample sizes ranging from 50 to 500 but one thing is common in

these results that they have considered only m ≥ 10 and we could not find any single

reference looking at empirical mean and variance of these portmanteau tests for small

choices of m. Moreover, we could not find any literature looking at empirical mean and

variance of Qm(ω̂).

Table 2.1 gives the empirical means of the portmanteau tests using 1000 Monte

Carlo runs. The asymptotic mean of these portmanteau tests is m − p. It can be no-

ticed that Qm is overestimating the asymptotic mean for small values of m while the

pattern reverses for larger choices of m, where it is underestimating the asymptotic

mean. The modified version of Qm, i.e. Q∗
m, shows a positive location bias greater than
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the bias for Qm for small value of m but performing better for large values of m where

its empirical mean is approximating well the asymptotic mean. Again, the direction of

the location bias for Q∗
m is not the same for various choices of m. Monti’s test, Q∗

m(ω̂),

shows a positive location bias for all choices of m. This bias is relatively lower than for

Qm but greater than for Q∗
m.

The asymptotic variance of these portmanteau tests is 2(m − p). In general empiri-

cal variance of Qm is lower while for Ljung-Box test, Q∗
m, it is higher than the asymptotic

variance. This confirms that Ljung-Box test Q∗
m corrects the location bias but it also in-

creases the variance, see e.g. Kwan and Sim (1996). Monti’s test, Q∗
m(ω̂), show some

inflated variances but in general the results are seen to be quite accurate.

We conclude that Qm suffers from bias, it generally underestimates the mean. This

underestimation of mean becomes serious for large values of m. The Ljung-Box test,

Q∗
m, corrects the bias in location but in some cases we noticed an increased variance

e.g. when m = 25. The empirical means for Monti’s test, Q∗
m(ω̂), though, are not as

accurate as for Q∗
m.

2.5.2 Empirical Size

In this section, we study the empirical size of the diagnostic tests using the semi-

parametric bootstrap methods; dynamic bootsrap (DB), dynamic wild bootstrap (DWB)

and fixed design wild bootstrap (FWB). These bootstrap methods are defined earlier

in Section 2.3.1. The Monte Carlo experiment consists of 1000 runs of 200 bootstrap

samples. Each bootstrap sample is of length 100. Various versions of these goodness-

of-fit tests are considered by looking at various choices of P for CvMexp,P and of m for

the portmanteau tests. All the empirical size results are obtained using Algorithm 2.

We also test the significance of difference between Monte Carlo size estimate and the

nominal size using the Monte Carlo confidence limits. We compute approximate 95%

confidence limits as

α̂ ± 2

√
α̂(1 − α̂)

N
, (2.5.4)

where α̂ is the empirical size estimate and N is the number of Monte Carlo runs.
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α = 1% α = 5% α = 10%
DB DWB FWB DB DWB FWB DB DWB FWB

CvMexp,3 1.4 1.5 1.5 6.1 6.6∗ 6.4 12.2∗ 12.9∗ 11.6
CvMexp,5 1.5 1.6 1.9 5.5 5.2 5.9 10.9 10.8 10.8
CvMexp,7 1.9∗ 2.4∗ 1.5 5.9 6.5 4.9 12.0 11.0 11.5
Q5 1.3 1.3 0.2∗ 4.9 4.5 1.2∗ 9.8 10.1 2.9∗

Q10 1.0 1.1 0.3∗ 4.6 4.8 1.8∗ 9.4 9.1 3.7∗

Q25 1.1 0.7∗ 0.4∗ 4.7 4.3 1.8∗ 8.5 9.0 4.7∗

Q∗
5 1.3 1.2 0.2∗ 5.0 4.4 1.2∗ 9.6 9.9 2.8∗

Q∗
10 1.0 1.1 0.2∗ 4.7 4.9 1.7∗ 9.2 9.1 3.7∗

Q∗
25 1.1 0.9∗ 0.4∗ 4.8 4.5 1.9∗ 8.9 9.2 4.7∗

Q∗
5(ω̂) 1.2 1.4 0.3∗ 4.6 4.8 0.9∗ 9.2 9.1 2.5∗

Q∗
10(ω̂) 1.5 1.5 0.4∗ 4.9 5.3 2.0∗ 8.3 9.2 4.3∗

Q∗
25(ω̂) 1.1 1.0 0.5∗ 4.9 4.6 2.0∗ 9.3 9.8 5.4∗

Table 2.2: Bootstrap empirical size (α̂ in %), based on N = 1000 Monte Carlo runs of
200 bootstrap samples of size 100 for AR(2) process, yt = 1.05 + 1.41yt−1 −
0.77yt−2 + εt. An asterisk (*) indicates that the approximate 95% confidence
interval α̂ ±

√
α̂(1− α̂/N) does not contain the nominal α.

Two main objectives in this size study are (1) to look at how different choices of

P and m effect the size of these tests and (2) to compare the various semi-parametric

bootstrap methods. Moreover, we also make comparison between CvMexp,P and the

portmanteau tests considered in this study. We consider P = 3, 5 and 7 as in Escanciano

(2007) and choices of as m = 5, 10 and 25 as discussed in literature see e.g. Ljung and Box

(1978) and Ljung (1986). The ordinary least squares estimates of models are obtained

using the rules stated in Section 2.4.

The results given in Tables 2.2-2.3 show the empirical size of the statistics under

study for the three bootstrap methods. It is difficult to conclude exclusively which boot-

strap method is better in terms of estimating the size of test. In general, the dynamic

bootstrap comes out to be the best bootstrap method among the considered choices

under the scenarios studied.

Table 2.2 gives the results for empirical size for an AR(2) process given in (2.5.1).

For CvMexp,P statistic, the choice P = 5 comes out to be the best among the considered

choices of P. In the case of AR(2), we are unable to find a clear advantage of one boot-

strap method over the other bootstrap methods but DB may be considered performing

well in most of the cases. Escanciano (2007) and Escanciano (2006a) has suggested the

use of FWB but our results do not show any advantage for fixed design or wild residu-
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α = 1% α = 5% α = 10%
DB DWB FWB DB DWB FWB DB DWB FWB

CvMexp,3 0.4∗ 0.5∗ 0.6∗ 3.6 4.0 4.3 8.2 8.0 7.8
CvMexp,5 0.9∗ 0.7∗ 0.8∗ 3.7 4.1 4.8 8.7 8.5 8.8
CvMexp,7 1.2 0.3∗ 0.8∗ 4.4 3.9 3.9 9.3 8.9 8.7
Q5 0.8∗ 1.1 0.0∗ 4.9 5.3 0.2∗ 9.9 9.5 0.4∗

Q10 1.2 1.4 0.0∗ 4.9 4.9 0.3∗ 8.8 9.1 1.2∗

Q25 1.0 1.0 0.0∗ 4.2 4.3 0.4∗ 9.0 9.1 1.6∗

Q∗
5 0.8∗ 1.1 0.0∗ 4.9 5.3 0.2∗ 9.9 9.6 0.4∗

Q∗
10 1.2 1.4 0.0∗ 5.1 5.1 0.2∗ 8.6 8.7 1.4∗

Q∗
25 1.3 1.0 0.0∗ 4.3 4.3 0.6∗ 9.0 9.2 2.0∗

Q∗
5(ω̂) 0.9∗ 1.0 0.0∗ 5.1 5.3 0.1∗ 9.8 9.3 0.6∗

Q∗
10(ω̂) 1.0 1.6 0.1∗ 5.4 5.6 0.7∗ 10.1 10.0 1.5∗

Q∗
25(ω̂) 1.5 1.1 0.3∗ 4.4 4.8 1.2∗ 10.1 9.8 3.4∗

Table 2.3: Bootstrap empirical size (α̂ in %), based on N = 1000 Monte Carlo runs of
200 bootstrap samples of size 100 for AR(4) process, yt = 1.05 + 1.41yt−1 −
0.77yt−2 + 0.2yt−3 − 0.1yt−4 + εt. An asterisk (*) indicates that the approxi-
mate 95% confidence interval α̂ ±

√
α̂(1− α̂/N) does not contain the nom-

inal α.

als therefore a study looking at some more examples is required to further explore this

issue.

For the portmanteau tests, Qm, Q∗
m and Q∗

m(ω̂), we do not find the results clearly

advocating for a particular choice of m but m = 5 can be considered as the most ap-

propriate choice working for all the portmanteau tests in this study. These results

clearly indicate that dynamic bootstrapping is outperforming the fixed design boot-

strap. There are clear indications that for the portmanteau tests, FWB underestimates

the size. In general, dynamic bootstrap design is the best bootstrap method among the

considered methods to approximate the finite sample distribution of the portmanteau

tests considered.

The results for the AR(3) process are similar to those for the AR(4) process, so we

omit the results for AR(3).

Table 2.3 shows the empirical size for our AR(4) process given in (2.5.3). The results

do not lead to any obvious choice of P for CvMexp,P test but P = 7 can be considered

a better choice as other choices of P lead to overestimation of size. Again we cannot

see any clear advantage of using FWB, for which we are underestimating the size in all

cases and for all the goodness-of-fit tests. For the portmanteau tests, we reach the same

conclusions as for the AR(2) process.
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From the above discussion, we can conclude that dynamic bootstrap methods pro-

vide a better approximation of the distribution of these goodness-of-fit tests. The fixed

design bootstrap method shows poor performance, in general, and fails, specifically,

for the portmanteau tests. We can say on the basis of our numerical findings that for

CvMexp,P test, a larger value of P is required for a higher order autoregressive process

to capture the dependence on the terms with larger lag. For the portmanteau tests,

the smaller choice of m comes out to be the best, in general, but one limitation should

be kept in mind that the examples we study in this section are of a stationary process

with roots well inside the stationarity region. Conclusions may dramatically change

for a non-stationary or near-stationary process. We will look at this issue in some more

detail in Chapter 3.

With this we conclude our discussion on the size of the goodness-of-fit tests. In the

next section, we look at the empirical power of these goodness-of-fit tests.

2.5.3 Empirical Power

In this section, we look at some numerical examples to compare the empirical power

of the goodness of fit tests. We present and compare the power against linear and non-

linear alternative class of models under a linear true model. Empirical power results

are obtained using Algorithm 3 consisting of 1000 Monte Carlo runs of 200 bootstrap

samples. Each bootstrap sample is of size n = 100.

Linear Alternatives

Mixed ARMA models are the most commonly used models in applications. In this

section we compare the power of the tests against several versions of ARMA(2, 2) pro-

cess. In this example, we simulate the series for the alternative model, ARMA(2, 2)

process, given below:

yt = 1.05 + 1.41yt−1 − 0.77yt−2 + 0.33kεt−1 + 0.21kεt−2 + εt,

where εt ∼ N(0, 1). We fit an AR(2) model to this sample and the power results in

the following table of the percentage of Monte Carlo runs we rejected the true model.
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k = 0 k = 0.5 k = 1.0 k = 2.0
DB DWB FWB DB DWB FWB DB DWB FWB DB DWB FWB

CvMexp,3 6.1 6.2 5.4 7.0 7.3 7.9 10.7 10.1 10.6 20.0 20.5 20.6
CvMexp,5 4.8 4.4 4.7 8.3 8.1 8.0 7.5 7.7 8.5 15.1 15.0 16.7
CvMexp,7 4.9 4.9 5.3 8.0 7.9 7.8 10.0 9.9 10.6 11.7 13.0 14.9
Q5 5.2 5.1 2.0 8.4 8.8 3.8 42.7 43.3 26.4 99.2 99.3 97.8
Q10 5.6 5.8 2.3 8.7 8.4 3.9 33.1 34.1 21.2 96.1 96.7 93.1
Q25 5.2 4.9 1.5 10.0 9.8 5.3 29.4 27.9 20.4 90.9 91.7 85.9
Q∗

5 5.3 5.3 2.0 8.2 8.6 3.6 42.0 42.2 25.9 99.1 99.1 97.8
Q∗

10 5.9 6.0 2.4 8.4 8.0 3.9 32.3 32.9 20.7 95.6 96.1 92.5
Q∗

25 5.7 5.0 2.3 9.6 8.9 5.3 28.0 26.9 18.9 88.9 88.1 82.4
Q∗

5(ω̂) 4.8 5.0 1.2 10.3 10.9 5.0 47.7 47.1 30.2 99.5 99.6 98.4
Q∗

10(ω̂) 5.6 6.0 2.2 80 8.0 3.4 33.6 33.7 21.3 97.9 98.3 95.6
Q∗

25(ω̂) 4.4 4.7 2.7 9.4 9.9 6.2 26.3 26.2 19.1 91.7 91.1 87.1
Table 2.4: Power (in %) , based on 1000 Monte Carlo runs of 200 bootstrap samples of

size 100 for AR(2), against ARMA(2, 2), yt = 1.05 + 1.41yt−1 − 0.77yt−2 +
0.33kε t−1 + 0.21kε t−2 + εt.

Importantly, note that we consider various values of k ranging from 0 to 2. It can be

noticed that choice k = 0 corresponds to our AR(2) process (2.5.1) so we expect very

low power in this case, actually as low as the level of significance. On the other hand, as

the value of k increases, the MA component in an ARMA process increases in absolute

value and this should result in a higher power, reaching a maximum of 100%, for some

value of k.

Table 2.4 gives the results for empirical power of the goodness-of-fit tests. It can

be very clearly noticed that CvMexp,P has less power while portmanteau tests, Qm, Q∗
m

and Q∗
m(ω̂), have better power against this linear class of alternatives. Our results

confirm the results reported in the literature, see e.g Hong and Lee (2003),Escanciano

(2006b). Though we have provided the power results for both of dynamic and fixed de-

sign bootstrap methods, we discuss the results for dynamic bootstrap method only, as

we found and discussed in the previous section that dynamic bootstrapping provides

the best approximation to the finite sample distribution especially for the portmanteau

tests.

We can see from these results as we increase the value of k, in general, the power

for each of the goodness-of-fit tests increases but the increase that for CvMexp,P is not

exponential and it attains a maximum power around 20% even for k = 2. In contrast to

this, the portmanteau tests show an exponential increase in power with an increase in
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k and reaches nearly to maximum power of 100%.

Moreover, it can also be seen that as the value of m increases for the portmanteau

tests, these tests become generally less powerful. This result is well known and re-

ported in the literature, see e.g. Hong and Lee (2003), Katayama (2009). The same kind

of behaviour can be seen for CvMexp,P test and it also shows a decrease in power for

larger values of P, this is also reported in Escanciano (2006b).

Non Linear Alternatives

In this section, we look at the empirical power of the goodness-of-fit tests against

some popular non-linear alternatives. We consider several versions of non linear EXPAR(2)

and TAR(2) models. It has been reported in the literature that the portmanteau tests,

we are studying, have poor power against non-linear alternatives especially for TAR

models (Escanciano, 2006b). We will use the same choices of P and m as we have used

in previous section of power against linear alternatives i.e. P = 3, 5, 7 for CvMexp,P test

and m = 5, 10, 25 for residual autocorrelations based portmanteau tests.

First, we take an EXPAR(2) model, defined as

yt = (0.138 + k(0.316 + 0.982yt−1)e(−3.89y2
t−1))yt−1 − (0.437

+ k(0.659 + 1.260yt−1)e(−3.89y2
t−1))yt−2 + 0.2εt,

where εt ∼ N(0, 1). The empirical power of diagnostic tests is computed using Algo-

rithm 3.

Table 2.5 reports the empirical power of the diagnostic tests. The situation looks

quite opposite to the linear case in the previous section. As we can see, k = 0 will

correspond to an AR(2) process and with an increase in value of k, the non-linear com-

ponent in the model will become dominant.

The results in Table 2.5 suggest that residual autocorrelations based portmanteau

tests have low power against this class of non-linear alternatives while CvMexp,P is

showing good power in this case. As it can be seen that CvMexp,P power increases

exponentially with an increase in k and attains the maximum power 100% at k = 2

while power for the portmanteau tests can reach around 43%. These results confirm
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k = 0.2 k = 0.8 k = 1.0 k = 2.0
DB DWB FWB DB DWB FWB DB DWB FWB DB DWB FWB

CvMexp,3 5.1 5.4 3.1 29.6 30.0 21.2 69.5 70.2 61.0 100 100 100
CvMexp,5 6.8 7.3 4.2 26.8 27.9 21.8 67.1 67.2 61.2 100 100 100
CvMexp,7 5.8 6.1 3.7 21.8 22.3 18.3 62.2 63.1 56.0 100 100 100
Q5 3.8 4.3 0.6 8.7 8.5 3.5 11.2 11.7 5.2 42.3 42.2 23.1
Q10 6.5 6.7 1.4 5.7 6.2 2.3 8.6 7.5 4.4 29.5 29.0 18.0
Q25 7.2 6.4 2.9 5.8 4.9 2.7 8.0 7.5 4.3 31.1 30.7 22.3
Q∗

5 4.1 4.4 0.7 8.8 8.7 3.5 11.1 11.9 5.3 43.0 43.2 24.0
Q∗

10 6.3 6.6 1.4 5.8 5.9 2.1 8.4 7.5 4.4 29.6 28.7 18.0
Q∗

25 7.1 6.5 3.0 6.1 5.2 3.0 8.0 7.7 4.1 29.7 30.0 21.4
Q∗

5(ω̂) 4.7 4.8 1.0 8.6 8.3 2.8 11.9 11.9 5.6 40.6 39.4 22.6
Q∗

10(ω̂) 6.6 5.6 2.1 5.6 6.1 2.6 8.6 7.8 3.3 28.7 27.9 16.9
Q∗

25(ω̂) 4.9 5.7 2.8 4.9 5.0 3.0 7.7 7.3 4.5 28.5 28.9 22.6
Table 2.5: Power (in %), based on 1000 Monte Carlo runs of 200 bootstrap samples of

size 100 for AR(2) against EXPAR(2).

our earlier findings that power decreases for larger values of P and m.

Now, we move to threshold autoregressive model, another class of non-linear mod-

els. Theory suggests that TAR models are more challenging than EXPAR models for

the diagnostic tests. We consider the following TAR(2) model

yt =





(1.435 − 0.815k) + (1.385 − 0.135k)yt−1

+ (−0.835 + 0.405k)yt−2 + εt for yt−2 ≤ 3.25

(1.435 + 0.815k) + (1.385 + 0.135k)yt−1

+ (−0.835 − 0.405k)yt−2 + εt for yt−2 > 3.25

where εt ∼ N(0, 1). We can see by controlling the value of k, we can control the amount

of nonlinearity in the model. The lower values of k corresponds to low levels of nonlin-

earity while larger values of k will result in a highly nonlinear model. We use a range

of values of k where the model does not blow up. We use the same Algorithm 3 to

compute the empirical power.

Table 2.6 reports the empirical power of the diagnostic tests for AR(2) against TAR(2)

models. These results generally confirm the known fact that threshold models are chal-

lenging for the goodness-of-fit tests. The residual autocorrelations based portmanteau

tests show very low power against the TAR model. Though CvMexp,P is showing better

power results especially for smaller choice of P, i.e. P = 3, it still cannot achieve the
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k = 0.2 k = 0.8 k = 1.0 k = 1.5
DB DWB FWB DB DWB FWB DB DWB FWB DB DWB FWB

CvMexp,3 7.1 7.2 6.2 43.8 42.7 40.2 49.1 49.0 45.6 48.0 49.1 43.5
CvMexp,5 5.2 4.9 4.5 24.7 23.9 22.2 29.9 29.5 26.0 32.4 32.0 29.0
CvMexp,7 6.7 6.6 5.9 14.0 13.7 12.1 14.9 14.1 12.5 18.5 18.9 16.7
Q5 6.0 5.6 1.7 5.8 5.4 1.6 4.8 4.8 1.3 6.0 5.2 1.6
Q10 5.8 5.4 1.8 5.3 6.6 2.5 5.4 5.6 1.5 4.5 4.4 1.5
Q25 6.9 6.5 2.8 6.8 6.5 3.4 6.8 6.8 3.0 5.0 4.5 2.0
Q∗

5 5.9 5.5 1.7 5.7 5.4 1.6 4.9 4.7 1.3 6.0 5.1 1.5
Q∗

10 5.4 5.3 2.1 5.4 6.5 2.5 5.2 5.6 1.7 4.4 4.4 1.6
Q∗

25 6.6 6.3 2.8 6.7 6.8 3.4 6.3 7.0 7.2 4.8 4.8 1.9
Q∗

5(ω̂) 6.2 5.8 1.9 6.1 5.9 2.3 6.0 6.3 1.1 5.8 5.3 1.9
Q∗

10(ω̂) 5.4 5.4 1.6 5.7 5.9 1.7 5.9 5.3 2.2 5.2 5.9 1.0
Q∗

25(ω̂) 6.7 5.8 3.8 7.2 6.5 3.6 6.8 7.2 4.1 5.7 5.5 3.2
Table 2.6: Power (in %), based on 1000 Monte Carlo runs of 200 bootstrap samples of

size 100 for AR(2), against TAR(2).

same high power as it did against EXPAR(2) models.

Importantly, it should be noted that choice of P and m is very crucial and the power

results may improve for some smaller values of P and m. Noting the result reported in

Escanciano (2006b), where CvMexp,P has achieved power of 81% against TAR(1) model,

we tried smaller values of P, i.e. P = 1, 2. For P = 1, power for CvMexp,P even further

decreases to around 20% while for P = 2, it shows an improvement and power rises to

60%.

As dynamic bootstrap has shown good approximation of finite sample distribution

of goodness of fit test considered in this study. We will provide a theoretical insight of

this finding in Chapter 4.

In the next section, we implement these goodness-of-fit tests to a real dataset.

2.5.4 Real Data Example

We implement the goodness-of-fit tests Qm, Q∗
m, Q∗

m(ω̂) and CvMexp,P, defined earlier

in Section 2.2.1, to the Canadian lynx data set. This data set consists of the annual fig-

ures of the Canadian lynx trapped in the Mckenzie River district of northwest Canada

for the period 1821 − 1934 inclusive, thus in total 114 observations. Moran (1953) fitted

an AR(2) model to the logarithm of lynx data. We also consider the same specification

for our study. We report the empirical p-values for the above mentioned goodness-
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DB DWB FWB
CvMexp,2 0.000∗ 0.000∗ 0.000∗

CvMexp,4 0.000∗ 0.000∗ 0.000∗

CvMexp,6 0.015∗ 0.015∗ 0.010∗

CvMexp,10 0.000∗ 0.000∗ 0.015∗

Q3 0.015∗ 0.005∗ 0.090
Q5 0.065 0.125 0.240
Q10 0.035∗ 0.040∗ 0.090
Q20 0.030∗ 0.045∗ 0.075
Q∗

3 0.015∗ 0.005∗ 0.085
Q∗

5 0.065 0.125 0.240
Q∗

10 0.025∗ 0.040∗ 0.085
Q∗

20 0.030∗ 0.045∗ 0.075
Q∗

3(ω̂) 0.020∗ 0.025∗ 0.120
Q∗

5(ω̂) 0.115 0.135 0.275
Q∗

10(ω̂) 0.010∗ 0.045∗ 0.070
Q∗

20(ω̂) 0.000∗ 0.000∗ 0.015∗

Table 2.7: p-values for Canadian lynx data, based on 200 bootstrap samples under
AR(2) as true model. An asterisk (*) indicates that the p-value < 0.05.

of-fit tests in Table 2.7. These p-values are obtained as stated in Step-2 of Algorithm

2.

We found this AR(2) specification is rejected by CvMexp,P at α = 5% for all consid-

ered choices of P and under all bootstrap design. Also for CvMexp,P results are quite

similar for each bootstrap designs. Again, we cannot find any difference in the results

for CvMexp,P under various bootstrap methods.

The results for portmanteau tests seem to be much dependent on choice of m. For

the considered choices of m, the only choice which, for all bootstrap designs, gives

insignificant results is m = 5. It is also noticed that for the fixed design wild boot-

strapping, contrary to dynamic bootstrapping, the results for all portmanteau tests are

insignificant at α = 5% except for Q∗
20(ω̂).

The results suggest an AR(2) specification is not satisfactory for this Canadian lynx

data set. Several other authors have also reported this fact, see e.g. Moran (1953), Tong

(1990).
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2.6 Conclusion

We look at finite sample properties of the portmanteau tests and found that Monti’s test

more closely approximates its finite sample distribution as compared to the Box-Pierce

and Ljung-Box tests. The Box-Pierce test suffers from location bias and Ljung-Box test

can correct this bias only for large values of m. Moreover, this bias correction in mean

can result in an increased variance.

Dynamic bootstrap methods come out superior to fixed design bootstrap methods.

Though, for CvMexp,P statistic, fixed design bootstrap method in some situations have

performed well but, in general, we cannot see any obvious advantage of it over dy-

namic bootstrap.

Portmanteau tests are powerful against the linear alternatives while the CvM statis-

tic has shown more power against non-linear alternatives. The choice of m for portman-

teau tests and P for CvMexp,P test is important. Our results suggest that approximation

of the finite sample distribution and power of these goodness-of-fit tests highly de-

pends on the choice of these parameters, P and m.
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Improved Portmanteau Tests

3.1 Introduction

We noticed in Chapter 2 that the dynamic bootstrap correctly estimates the finite sam-

ple distribution of the autocorrelations based portmanteau tests. The asymptotic dis-

tribution of these tests for an ARMA(p, q) model is considered a χ2
m−p−q distribution.

There is a vast literature questioning the appropriateness of χ2
m−p−q as an underlying

distribution, see e.g. Davies et al. (1977), Katayama (2009). We have seen in Section

2.5 that, with an increase in m the empirical significance level also increases and the

empirical power decreases and the same sort of results have been reported by several

other researchers (see e.g. Ljung and Box, 1978; Katayama, 2008).

The estimation of the true distribution underlying the portmanteau tests and the

choice of m are questions that need addressing, as these tests are widely used in practice

as diagnostic checks of fitted time series models. Katayama (2008) has derived a bias

term in Q∗
m for χ2 approximation and using this bias term he also suggested a bias

corrected Ljung-Box test, Q∗∗
m .

We discussed in Section 2.2.1 and also noticed in Section 2.5 the importance of the

choice of m. There are some suggestions to choose the value of m, say m = 15 or 20,

but none of them are very precise, see e.g. Davies et al. (1977) and Katayama (2009).

In practice, it is quite difficult to suggest an optimum value of m. Noticing that for

these portmanteau tests, an approximation of the asymptotic distribution and suffi-

cient power cannot be achieved for a single value of m, Katayama (2009) suggested a
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multiple test. This test is based on a set of values of m ranging from small to medium.

Section 3.2 gives a novel suggestion for a bias correction term in Monti (1994) test

on the lines of Katayama (2008). In Section 3.2.1, we suggest a novel algorithm for

the efficient computation of the correction term in general ARMA(p, q) models. In this

section, we also look at the effect of these bias correction terms on Q∗
m and Q∗

m(ω̂). The

theoretical results of this bias correction on Monti (1994) have been given in Chapter

4. In Section 3.3, we give a novel suggestion for the use of pivotal portmanteau test

and compared its empirical distribution with other portmanteau tests and the relevant

asymptotic χ2 distribution. Finally, in Section 3.4, we give some numerical results on

the multiple test suggested by Katayama (2008).

3.2 Portmanteau Tests Bias Correction

Portmanteau tests are an important part of the diagnostic testing stage of time series

model building. The paper by Box and Pierce (1970) is considered as a breakthrough

in diagnostic checking of time series models. They derived the normal distribution of

residual autocorrelations in ARIMA(p, d, q) models. They showed that if the model is

fitted using the true parameter values then the residuals will be uncorrelated random

deviates such that n ∑
m
k=1 r2

k ∼ χ2
m and Var(rk) = (n − k)/n(n + 2) ≈ 1/n. Using

these results they showed that the statistic n(n + 2) ∑
m
k=1(n − k)−1r2

k asymptotically

follows χ2
m distribution. The following statistic, a further approximation for large m, is

suggested to use as a diagnostic test for the residuals of an ARMA(p, q) process

Qm = n
m

∑
k=1

r̂2
k ∼ χ2

m−p−q,

where r̂k is the kth order residual autocorrelation defined in (1.2.2). Ljung and Box

(1978) mentioned that Qm suffers from location bias and thus suggested the use of

modified statistic

Q∗
m = n(n + 2)

m

∑
k=1

r̂2
k

n − k
.
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Many authors, see e.g. McLeod (1978), Katayama (2008), have mentioned the poor

approximation of Qm and Q∗
m especially when m is small and the process is near the

stationary boundary. For diagnostic purposes, small values of m > p + q are desired.

In this section, we study the size of the improved statistic Q∗∗
m suggested by Katayama

(2008). We also give a novel suggestion to correct the bias in Monti (1994) test, Q∗
m(ω̂).

The computation of bias correction term especially for higher order processes is not

very simple. In Section 3.2.1, we suggest novel algorithms, to efficiently compute the

bias correction terms.

Bias Correction in Ljung-Box test

Katayama (2008) has derived in Box-Pierce test a positive extra random variable

given as

B∗
m,n = r̂TV DV r̂, (3.2.1)

where r̂ = (r̂1, . . . , r̂m) is the vector of first m residual autocorrelations,

V = diag



√

n(n + 2)

n − 1
, . . . ,

√
n(n + 2)

n − m


 ,

and D = X(XTX)−1XT. Each (i, j)th element of X , an (m × (p + q)) matrix, as

defined in McLeod (1978) and Katayama (2008), is given by

X =

(
−α∗

i−j
... − β∗

i−j

)
. (3.2.2)

Elements of blocks matrices
[

α∗
i−j : i = 1, . . . , m; j = 1, . . . , p

]
and

[
β∗

i−j : i = 1, . . . , m; j = 1, . . . , q
]

are defined as

α∗(L) =
1

α(L)
=

∞

∑
i=0

α∗
i Li (3.2.3)

and

β∗(L) =
1

β(L)
=

∞

∑
i=0

β∗
i Li. (3.2.4)
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Moreover, α∗
i = β∗

i = 0 for i < 0. The calculation of α∗
i and β∗

i is quite challenging for

higher order processes, we suggest novel Algorithm 4 for their computation.

Katayama suggested a new bias corrected Ljung-Box test given as

Q∗∗
m = Q∗

m − B∗
m,n.

where B∗
m,n is as defined in (3.2.1).

Bias Correction in Monti’s test

Monti’s test, like Ljung-Box test, given by

Q∗
m(ω̂) = n(n + 2)

m

∑
k=1

ω̂2
k

n − k

has a location bias. Moreover, we also noticed that a bias correction term on the lines

of Katayama (2008) is also workable for the Monti’s test. Working along the lines of

Katayama (2008) we suggest an improvement in Monti’s test in Section 4.4. Thus the

new bias corrected Monti’s test is given by

Q∗∗
m (ω̂) = Q∗

m(ω̂) − B∗
m,n(ω̂), (3.2.5)

where

B∗
m,n(ω̂) = ω̂TV DV ω̂

and ω̂ = (ω̂1, . . . , ω̂m) is the vector of first m residual partial autocorrelations defined

in (1.2.3).

3.2.1 Algorithms

The main component of the bias correction terms is matrix X defined in (3.2.2) above.

The computation of X in B∗
m,n and B∗

m,n(ω̂) is challenging especially for higher order

processes. In this section we suggest an efficient novel algorithm for the computation

of the X . Given an AR(p) or MA(q) polynomial, the following algorithm is for the
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computation of α∗
i and β∗

i , the components of X .

Algorithm 4: Coefficients of reciprocal of AR and MA polynomials

Step 1 Calculate the p roots, say γ1, . . . , γp, of α(L−1) = 0.
Step 2 Define matrix A(p×p) such that

A(i, j) =

{
γp−j+1 i ≤ j
0 i > j

.

Step 3 Compute the components in the infinite polynomial of α∗(L) using the
recursive rule

Sr+1 = ASr

for r ∈ Z+, where Sr is a vector of length p, such that S0 = 1p×1.
Step 4 Thus α∗

i is the first element of Si.

Algorithm 4 provides an efficient way to compute the coefficients of reciprocal poly-

nomials i.e. α(L)−1 and β(L)−1.

Justification of Algorithm 4

Algorithm 4 is key in obtaining the Katayama’s correction term and obtaining non

linear least squares estimates of mixed ARMA process. In the following lemma, we

will prove the main result used in this algorithm.

Lemma 3.2.1. If γ1, . . . , γp < 1 are the roots of α(L−1) = 0, then the coefficient of L j in the

expansion of α(L)−1 is given by

δj = Sj1,

such that Sj1 is the first element of Sj = ASj−1 for j = 1, 2, . . ., where

A =




γp γp−1 γp−2 . . . γ1

0 γp−1 γp−2 . . . γ1

0 0 γp−2 . . . γ1
...

...
...

. . .
...

0 0 0 . . . γ1




,

and S0 = 1p, where 1p is the p-vector of ones.
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Proof. As γ1, . . . , γp < 1 are the roots of α(L−1) = 0, where α(L) = 1− α1L− . . .− αpLp

is the polynomial as defined in Section 1.3, we can write

φ(z)−1 =
[
(1 − γ1z) . (1 − γ2z) . . . . .

(
1 − γpz

)]−1

=
p

∏
i=1

(1 − γiz)
−1

=
∞

∑
j=0

δjzj,

where δ0 = 1. In general, for an AR(p) process,

δj(γ1, . . . , γp) = ∑
ui≥0

∑ ui=j

γu1
1 γu2

2 . . . γ
up
p ;

where the summation above is over all (u1, . . . , up) such that the ui are non-negative

integers with ∑
p
i=1 ui = j. Now we derive a recursive rule for the determination of δ j,

which is easy to implement on a computer.

Now considering u1 as it ranges 0 to j,

δj
(
γ1, . . . , γp

)
=

j

∑
i=0

γi
1δj−i

(
γ2, . . . , γp

)

= δj
(
γ2, . . . , γp

)
+

j

∑
i=1

γi
1δj−i

(
γ2, . . . , γp

)
,

which can be further simplified as

δj
(
γ1, . . . , γp

)
= δj

(
γ2, . . . , γp

)
+ γ1

j

∑
i=1

γi−1
1 δj−i

(
γ2, . . . , γp

)
.

Putting h = i − 1,

δj
(
γ1, . . . , γp

)
= δj

(
γ2, . . . , γp

)
+ γ1

j−1

∑
h=0

γh
1δj−h−1

(
γ2, . . . , γp

)

= δj
(
γ2, . . . , γp

)
+ γ1δj−1

(
γ1, . . . , γp

)
.

54



CHAPTER 3: Improved Portmanteau Tests

Using the same recursive rule we can write,

δj
(
γ1, . . . , γp

)
=

p

∑
i=1

γiδj−1
(
γi, . . . , γp

)
.

Using the matrix representation, δj(γ1, . . . , γp) = Sj1 where Sj1 is the first element of

the vector Sj defined recursively as

Sj+1 = ASj, for j = 0, 1, . . . ,

where S0 = 1p. Hence the lemma is proved.

Note that calculating St given St−1 requires O(p2) floating point operations (flops).

Consequently the amount of computation required to calculate S1, . . . , ST is O(p2T)

flops.

There exists a duality between AR and MA processes. Moreover, an ARMA(p, q)

process can also be represented by an AR(∞) and MA(∞) process. Some problems like

least squares estimation of ARMA(p, q) models require its representation in the form

of an AR process. Algorithm 5 suggests a way to achieve this representation.

Algorithm 5: Computation of weights of AR representation of an ARMA(p, q)
process

Step 1 Given α(L) and β(L), obtain the {β∗
i : i = 1, . . . , N} using Algorithm 4.

Due to the invertibility condition, the series β(L)−1 is convergent. So for
practical purposes we can consider first N coefficients of this infinite polynomial.
Step 2 Let π(L) = β(L)−1α(L) be the AR polynomial of infinite order. Now πr,
the coefficient of Lr in the expansion of π(L), can be obtained as

πr = β∗
r −

p

∑
i=1

αiβ
∗
r−i

Computation of Katayama’s bias correction term requires the components of the

reciprocal polynomials of AR and MA polynomials. Algorithm 6 in connection with

Algorithm 4 can be used for computation of the correction term.

Estimates of AR(p) processes can be obtained by equating the sample and theoret-

ical autocovariances at lags 0, 1, . . . , p, but this approach is neither simple nor efficient

for MA(q) processes. As showed by Box and Jenkins (1994), the εt’s are always linear
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Algorithm 6: Computation of Katayama (2008) correction term for an
ARMA(p, q) process

Step 1 Using Algorithm 4, obtain {(α∗
i , β∗

i ) : i = 1, . . . , m − 1}, where m is the
maximum value of lag used in diagnostic checks (see Section 2.2.1).
Step 2 Form the matrix Xm×(p+q) given as

X =

(
−α∗

i−j
... − β∗

i−j

)
,

and as defined in (3.2.2).
Step 3 Calculate the bias correction term

B∗
m,n = r̂TV DV r̂,

where r̂ = (r̂1, . . . , r̂m)T is the vector of first m residual autocorrelations,
D = X

(
XTX

)−1
XT and

V = diag
(√

n(n + 2)/(n − 1),
√

n(n + 2)/(n − 2), . . . ,
√

n(n + 2)/(n − m)
)

.

functions of AR parameters αi’s but nonlinear functions of MA parameters β j’s. Meth-

ods such as innovations algorithm (see e.g. Brockwell and Davis, 1991) can be used to

obtain the preliminary estimates of MA coefficients. These preliminary estimates can

be further refined using nonlinear optimization procedures.

We suggest the following algorithm, which represents an ARMA(p, q) process as a

finite order AR process and thus non-linear least squares estimates can be obtained.

Algorithm 7: Nonlinear least squares estimation of ARMA(p, q) process
Step 1 Obtain the π weights i.e. the AR representation of the ARMA(p, q)
process using Algorithm 5.
Step 2 Obtain the residuals using the rule ε̂t = ∑

t−1
i=0 π̂iyt−i for t = 1, . . . , n, where

yt is the observed series and π̂i’s are the estimates of πi’s.
Step 3 Define the function T = ∑

n
t=1 ε̂2

t for sum of squares of residuals. Minimize
T using an algorithm based on numerical derivatives, such as Gauss-Newton
algorithm (Bjorck, 1996), to obtain the non-linear least square estimates of
coefficients in the polynomials α(L) and β(L).

Now we implement estimation using Algorithm 7 for some real data sets. We com-

pare the performance of our suggested algorithms to the other standard methods of

estimation. We fit ARMA(p, q) models to real data sets. The non-linear least squares

estimates are obtained as explained in Algorithm 7. For comparison purposes, maxi-

mum likelihood estimates are also obtained using the arima function in R. We notice the

importance of starting values as for some of the choices of starting values we end with a
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local maximum and not the global one. Originally we randomly select the starting val-

ues for the non-linear least squares estimates from N(0, 1). For comparison purposes

we also use the maximum likelihood estimates as the starting values.

Here we define some notations used:

θ̂∗: Non-linear least squares estimates obtained using Algorithm 7 with starting values

randomly selected from N(0, 1).

θ̂†: Maximum likelihood estimates obtained using arima function in R with starting

values using conditional sum of squares.

θ̂�: Non-linear least squares estimates obtained using Algorithm 7 when maximum

likelihood estimates are used as starting values.

In the following examples we give estimates obtained for above three methods.

Example 1 (Level of lake Huron 1875-1972)

An ARMA(1, 1) model is fitted to the mean corrected series.

θ̂∗ = (0.73729, 0.35448),

θ̂† = (0.74457, 0.32128),

θ̂� = (0.73729, 0.35448).

Estimates using the innovation algorithm are reported in Brockwell and Davis (2002)

as θ̂ = (0.7234, 0.3596). As we can see, θ̂∗ are similar to θ̂�.

Example 2 (Annual minimum level of Nile river 622-871)

An ARMA(5,2) model is fitted and we obtain the following estimates

θ̂∗ = (−0.30052,−0.03304, 0.64926, 0.05235, 0.23546, 0.67679, 0.30676,−0.44153),

θ̂† = (−0.32446,−0.06114, 0.63305, 0.06926, 0.24816, 0.70305, 0.35138,−0.41786),

θ̂� = (−0.30052,−0.03304, 0.64926, 0.05235, 0.23546, 0.67679, 0.30676,−0.44153).

Estimates using Autofit option in ITSM are reported in Brockwell and Davis (2002) as

θ̂ = (−0.323,−0.060, 0.633, 0.069, 0.248, 0.702, 0.350,−0.419).
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Example 3 (Australian monthly electricity production Jan 1956 - Aug 1995)

An ARMA(2,3) model is fitted.

θ̂∗ = (−0.62629,−0.93884,−0.02729, 0.47441,−0.63674),

θ̂† = (−0.26344,−0.93566,−0.45651, 0.81668,−0.62687),

θ̂� = (−0.26376,−0.93145,−0.45327, 0.80878,−0.61842).

These results show that the idea of estimating ARMA(p, q) model by transforming it

into an AR process works and the results are comparable with those obtained by the

innovations algorithm and maximum likelihood estimates.

3.2.2 Numerical Results

In this section, we look at the effect of bias correction terms considering various nu-

merical examples. We give the Monte Carlo estimates of size for the Box-Pierce test,

Ljung-Box test and its bias corrected version. We also look at Monti’s test and our novel

suggestion (3.2.5) to correct the bias in it. We obtain the size estimates from asymptotic

and dynamic bootstrap distributions.

Consider an AR(1) process, yt = φyt−1 + εt such that |φ| < 1. We simulate a sam-

ple time series of 200 observations for an AR(1) process. In order to look at different

levels of stationarity, we consider three different values of φ, i.e φ = 0.3, 0.7 and 0.9.

Remember that as |φ| < 1 is the stationarity condition for an AR(1) process and as |φ|

approaches 1 we move near to the stationary boundary. We also assume ε t ∼ N(0, 1).

The choices of m = 2, 3, 5, 10 and 25 are considered but the results are given only for

m = 2, 10 and 25 as the results for m = 3 and m = 5 are not very different from as for

m = 2.

Figure 3.1 gives the empirical size of five tests viz. Box-Pierce, Ljung-Box, Monti’s

test, bias corrected Ljung-Box test and bias corrected Monti’s test. Bias correction terms

are computed using Algorithm 6. It can be seen that when the process is well inside

the stationary boundary, i.e. for φ = 0.3, as m increases, bias in Q∗
m increases and so too

for its bias corrected version, Q∗∗
m . We can see that as m increases, the role of the bias
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Figure 3.1: Empirical size (Nominal level 1%) for AR(1) process, yt = φyt−1 + εt, based on
10, 000 replications of sample size n = 200 for the test statistics using asymptotic
distribution χ2

m−1.

correction term becomes minimal. The reason that Katayama’s bias correction does not

work in this situation is as mentioned before that it is suggested for small values of m

and for a near-stationary process.

Importantly, note that Monti’s test, Q∗
m(ω̂) does not suffer from bias in this case of

a process well inside the stationarity region and our suggested bias corrected Monti’s

test, Q∗∗
m (ω̂) is working equally well in this situation.

Now, as we move away to the stationarity boundary, i.e. φ = 0.9, for small value of

m, i.e. m = 2, both Q∗
m and Q∗

m(ω̂) suffer from the bias and this is the only case when

Katayama’s type correction comes into play and we can see that bias corrected versions
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are showing the size close to the nominal level.

Bias in Q∗
m is greater than that of Q∗

m(ω̂) for large values of m. Moreover, it can

be seen that Katayma’s bias correction term does not work in this scenario and no

improvement can be seen for m = 25. However for large values of m bias in Monti’s

test is relatively smaller than in the Ljung-Box test.

In Chapter 2, we have seen that dynamic bootstrap methods provide a good ap-

proximation of the asymptotic distribution. Now we look at the size of the bootstrap

distributions of these tests and compare them with the results obtained for the asymp-

totic distribution. The results for the asymptotic distribution are based on 10, 000 Monte

Carlo runs. The bootstrap estimates are obtained from 1000 Monte Carlo runs of 200

bootstrap samples. Sample size is 100 in these examples.

Figure 3.2 gives the empirical size for the Ljung-Box test and its bias corrected ver-

sion at nominal level α = 5%. The results confirm the earlier findings but some more

interesting facts can be noticed.

In the case of the asymptotic distribution, it can be seen that for smaller choices

of m bias is introduced when the process is near to the stationarity boundary and

Katayama’s suggestion is correcting this bias but for larger values of m e.g. for m = 25,

the Ljung-Box test shows a consistent amount of bias which Katayama’s suggestion is

unable to correct. Note that for large values of m bias occurs even for the process which

is well inside the stationarity region.

For asymptotic distributions, Ljung-Box test show bias in estimating size for very

small and large values of m, while this bias is low for moderate choices of m. In contrast,

Monti’s test show larger bias for smaller values of m and bias reduces for larger values

of m.

Now in the case of dynamic bootstrap distribution, we can see that the Ljung-Box

test and its bias corrected version do not show any pattern over the values of φ. Though

it shows a general tendency of underestimating the size, the amount of bias is rela-

tively negligible especially when the process is near the stationary boundary. More-

over, it shows the bootstrap approximation to the asymptotic distribution is robust to

the choice of m.
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Figure 3.2: Ljung-Box test: Asymptotic empirical size for AR(1) process, yt = φyt−1 + εt,
based on 10000 runs of sample size 100 and Bootstrap empirical size, based on 1000
Monte Carlo runs of 200 bootstrap samples of size 100. Key: m = 2 m = 3;
m = 5; m = 10; m = 25

Figure 3.3 gives the plots of empirical size for the asymptotic distributions and boot-

strap distributions of Monti’s test and its bias corrected version.

For the asymptotic distribution, like the Ljung-Box test, Monti’s test, for small val-

ues of m, also shows a large amount of bias for near stationary process. We can see

that our suggested bias correction term in Monti’s test works successfully. Again it can

be concluded that Monti’s test has a better approximation of the asymptotic distribu-

tion for large values of m and it can be seen that bias for Monti’s test reduces with an

increase in m.

The bootstrap distribution again shows a similar bias correction for Monti’s test

as for the Ljung-Box test. The numerical results for the bootstrap distribution lead
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Figure 3.3: Monti’s test: Asymptotic empirical size for AR(1) process, yt = φyt−1 + εt ,, based
on 10000 runs of sample size 100 and Bootstrap empirical size, based on 1000 Monte
Carlo runs of 200 bootstrap samples of size 100. Key: m = 2 m = 3; m = 5;
m = 10; m = 25

us to look into the theory to see if the dynamic bootstrap automatically does the bias

correction, these results are given in Chapter 4.

3.3 Novel Pivotal Portmanteau Test

The choice of an optimal value of m is a critical issue. For small values of m, we have

bias in approximating the asymptotic distribution of the portmanteau tests while for

large values of m the empirical significance level increases and the empirical power de-

creases. As showed by McLeod (1978), the large sample distribution of autocorrelation
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r̂ = (r̂1, . . . , r̂m) is normal with mean 0 and covariance matrix

Var(r̂) =
1
n

(I −C) ,

where I is the identity matrix of appropriate order and C = XJ−1XT, X is as defined

in (3.2.2). The Fisher information matrix J for an ARMA(p, q) model defined in (1.3.5)

is given by

J =
∞

∑
i=1

did
T
i , (3.3.1)

where di is the ith row of X , so that

XXT =
m

∑
i=1

did
T
i .

In deriving the bias in the asymptotic distribution of r̂, Katayama (2008) has used the

first order approximation of C = XJ−1XT as

D = X(XXT)−1XT.

As m increases

XXT = J + o(1).

Now the problem is that for diagnostic purposes we need small values of m while

approximation of the Fisher information matrix requires some large values of m. For

these portmanteau tests the information matrix J is approximated using the same value

of m as used for diagnostic purposes. This results in a bias in approximating χ2
m−p−q as

its correct asymptotic distribution.

We make a novel suggestion here for computation of J, which corrects the bias. We

suggest calculating X0, an approximation of X , for some large value of m, say m0 → ∞,

so that X0X
T
0 = ∑

m0
i=1 did

T
i , is as close to J = ∑

∞
i=1 did

T
i while for computation of the

portmanteau test we still use the small value of m. Accurate calculation of J is feasible

due to the efficiency of the algorithms in Section 3.2. The use of two different values of
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m leads to bias correction without sacrificing the power. So our new statistic is

Q†
m = nr̂T (I −C0)

−1
r̂, (3.3.2)

where

C0 = X̂
(
X̂T

0 X̂0

)−1
X̂T,

where X̂ is obtained using the same value of m as used in the portmanteau test while

X̂0 is calculated for the considered larger choice of m, i.e. m0 >> m.

In the following examples we will show how our new proposed statistic works

especially in challenging scenarios e.g. small m while the process is near the stationarity

boundary.

3.3.1 Examples

Consider an AR(1) process

yt = φyt−1 + εt,

where |φ| < 1 and ε t ∼ N(0, 1). To study the stationary and near stationary processes,

we simulate a time series of n = 200 observations for φ = 0.7, 0.9, and 0.99. As men-

tioned by Ljung (1986), Katayama (2008), to make the situation challenging we consider

small values of m as m = 2, 3, and 5. While for the computation of the novel pivotal

statistic Q†
m we consider m0 = 150, which is quite large relative to the choices of m in

these examples.

Here we look at three statistics, the Ljung-Box statistic Q∗
m, Katayama’s corrected

Ljung-Box statistic Q∗∗
m and our new suggested statistic Q†

m. Figure 3.4 shows a shaded

curve for the relevant asymptotic χ2 distribution while coloured lines show the density

curves for the three tests based on their empirical distributions. All the calculations

are for 1000 Monte Carlo runs. In all the situations, the novel portmanteau test Q†
m

performs as well as Katayama’s corrected Q∗∗
m . It can be noticed that φ = 0.99 and m =

2 is the most challenging situation, where the distribution of Q∗
m is not approximating
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(h) φ = 0.7, m = 3
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Figure 3.4: Density plots based on 1000 Monte Carlo runs of 200 observation of AR(1) process
yt = φyt−1 + εt . Shaded curve represents the density plot of relevant χ2

m−1 distri-
bution. Key: Ljung-Box Q∗

m, Katayama Q∗∗
m , Novel pivotal portmanteau test

Q†
m based on m0 = 150.

the asymptotic distribution χ2
1, while Q†

m and Q∗∗
m show a good approximation to the

asymptotic distribution. The only concern is the bias in estimating the peak of the

distribution.

The novel pivotal portmanteau test and Katayama’s bias corrected test show almost

similar good performance in approximating the tails of the asymptotic χ2 distribution.

These results again confirm the need of bias correction when m is small and the process

is near stationary. It can be noticed that as m increases, e.g. m = 5, the uncorrected

statistics are also getting a good approximation of asymptotic distribution especially

when the process is not very close to stationarity boundary.
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α 1% 5% 10%
φ 0.99 0.9 0.7 0.3 0.99 0.9 0.7 0.3 0.99 0.9 0.7 0.3
Q∗

2 1.7 1.3 1.7 2.3 5.6 5.0 6.0 7.4 9.9 10.5 10.7 11.2
Q∗∗

2 1.5 1.0 1.9 2.4 5.1 4.4 5.8 7.5 10.2 9.3 10.6 11.3
Q†

2 1.6 1.0 2.0 2.4 5.2 4.3 6.0 7.6 10.4 9.4 10.8 11.9
Q∗

3 2.0 2.5 2.2 2.3 5.4 6.0 6.2 5.3 11.8 11.0 10.4 11.0
Q∗∗

3 1.8 1.8 2.0 2.2 5.4 5.6 6.4 5.3 10.5 10.2 10.3 10.9
Q†

3 1.8 1.8 2.0 2.1 5.4 5.6 6.3 5.4 10.6 10.5 10.3 10.9
Q∗

4 1.2 1.6 1.5 0.9 5.4 4.8 5.5 6.3 11.2 9.2 9.8 9.6
Q∗∗

4 1.1 1.7 1.6 0.9 5.7 5.0 5.3 6.3 9.9 8.9 10.0 9.7
Q†

4 1.1 1.7 1.6 0.9 5.6 5.1 5.5 6.4 10.0 8.8 9.9 9.9
Q∗

5 1.1 1.2 1.9 1.7 5.3 5.2 5.8 5.7 11.0 10.4 11.1 11.1
Q∗∗

5 1.5 1.3 1.9 1.7 4.0 4.9 5.8 5.7 9.9 10.4 11.0 11.2
Q†

5 1.5 1.3 1.8 1.8 4.0 4.6 5.8 5.9 10.1 10.4 10.9 11.1
Table 3.1: Bootstrap empirical size (in %) of the Ljung-Box Q∗

m, Katayama Q∗∗
m , New

test Q†
m , based on 1000 Monte Carlo runs of 200 bootstrap samples of size

200 for AR(1) process yt = φyt−1 + εt.

Now we look at the size of these tests using the bootstrap distribution. We use the

dynamic bootstrapping defined in Section 2.3.1. Results for the bootstrap distributions

in Table 3.1 confirm our earlier results shown in Figure 3.2. Bootstrap size results do

not show any specific pattern for different choices of φ and m. Interestingly, contrary to

asymptotic results, for bootstrap we notice some positive bias for stationary processes

and small value of m e.g. φ = 0.3 and m = 2.

In the next section, we will look at multiple portmanteau test suggested by Katayama

(2009).

3.4 Multiple Portmanteau Test

We have noticed and discussed in earlier sections that the asymptotic distribution and

performance of the Ljung and Box (1978) portmanteau test is highly dependent on the

choice of m. For diagnostic checking, and to use the chi-square as an asymptotic dis-

tribution, m should be moderately large (see e.g. McLeod and Li, 1983). On the other

hand, unnecessarily large choices of m lead to unstable test size and decrease the power

of test, see Sections 2.5.2 and 2.5.3. Also see e.g. Ljung (1986), Katayama (2009).

Katayama (2009) suggested another way to deal with the problem of the choice of

m. He suggested the use of a multiple portmanteau test which can be considered a
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collection of standard portmanteau tests with different degrees of freedom. He also

suggested an algorithm for numerical computation of the joint distribution of this test.

As estimation of the multiple portmanteau test is quite complicated, Katayama (2009)

has made suggestion to estimate probability of type-I error, α, for some specified proba-

bility of type-II error, β. In the next section, we suggest and show that bootstrap method

can be used to approximate the asymptotic distribution of multiple portmanteau test.

3.4.1 Examples

In this example we simulate n = 200 observations for AR(1) process y t = 1.05 +

φyt−1 + εt. We consider two choices of AR(1) parameter viz. φ = 0.3 and 0.9. As

the results do not differ much for these choices of φ, so we give here only the results

for φ = 0.9. This simulation study consists of 1000 Monte carlo runs of 500 bootstrap

samples.

DF(2,6,12) DF(4,8,12) DF(12,18) DF(18,24)
β β β β

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
Monte Carlo estimate
α̂ 2.6 9.6 17.4 2.9 10.7 18.7 2 7.4 14.2 2.5 7.6 14.1
Hybrid bootstrap average
α̂ 2.6 10.7 19.6 2.6 10.1 18.3 2.4 8.4 15.0 2.6 8.6 14.9
Katayama (2009) estimate
α̂ 2.3 10.3 19.4 2.1 9.6 18.0 1.5 7.2 13.9 1.5 6.9 13.4
MSE
Bootstrap 0.51 3.25 8.09 0.58 2.27 3.50 0.65 2.79 3.15 0.53 2.64 3.28
Katayama 0.12 0.49 3.88 0.63 1.28 0.49 0.22 0.03 0.09 1.06 0.46 0.56

Table 3.2: Empirical size of multiple test for specified β. A time series of length
n = 200 is simulated for AR(1) process yt = 1.05 + 0.9yt−1 + εt, where
εt ∼ N(0, 1). Estimates obtained from 1000 Monte Carlo runs of 500 boot-
strap samples of size 200 selected using the dynamic bootstrapping by re-
sampling residuals.

We compute the joint significance level α for specified marginal significance level

β. We also compare the bootstrap estimation and Katayama (2009) estimation with the

Monte Carlo estimate. A hybrid bootstrap approach is used for the estimation of the

significance level. This approach can be implemented using Algorithm 2 with a modi-

fication of replacing the T by the critical value of the relevant asymptotic distribution.

The only condition to use Katayama (2008) estimates is the condition of even degrees
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of freedom. The Monte Carlo method and bootstrap method have the advantage that

they don’t require this condition.

Table 3.2 gives the empirical size estimates obtained using the hybrid bootstrap,

Monte Carlo and Katayama (2009) suggested methods. Our results confirm the results

reported in Katayama (2008). The estimates obtained by Katayama’s method and the

mean of bootstrap estimates are approximately equal when β = 1%. While for larger

choices of β, in general, Katayama’s estimates are closer to the Monte Carlo estimates.

Moreover, we also observe that Katayama’s suggestion underestimates the size except

when a very small value of m is used e.g. m = 2 while in contrast to this, the bootstrap

estimates average is greater than the Monte Carlo estimates.

Now we give some plots to look at the empirical distribution of hybrid bootstrap

estimates of α.

Figure 3.5 shows plots of the bootstrap distribution of estimated size of the multi-

ple test for specified β = 5%. The results do not differ much for other choices of β.

We can see bootstrap estimates show a general tendency of overestimating the size as

Monte Carlo estimates, in all the cases, lie at the left tail of the bootstrap distribution. It

can also be noticed that Katayama’s estimates are underestimating the size as they are

generally less than the Monte Carlo estimate except for DF= (2, 6, 10). This result may

be due to the small value of m i.e. m = 2 in this case.

We have also studied some other choices of AR parameter and an important point

to note is that estimates are not very sensitive to the value of process parameters.

3.5 Conclusion

Bias in portmanteau tests and choice of m are two important issues which are dealt

within this chapter. As we have seen that Katayama’s suggested bias correction for

the Ljung-Box test works for a near stationary process with small values of m. This

is the case where Monti’s test also shows larger amount of bias otherwise our results

suggest that Monti’s test has generally lower bias than the Ljung-Box test. Our novel

suggestion, along the lines of Katayama (2008), show an improvement in Monti’s test
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Figure 3.5: Estimated significance level for β = 5%. A time series of length n = 200 has been
simulated for AR(1) process Xt = 1.05 + 0.9Xt−1 + εt , where εt ∼ N(0, 1). Esti-
mates obtained from 1000 Monte Carlo runs of 500 bootstrap samples of size 200.
Key: • Mean of hybrid bootstrap estimate, • Monte Carlo estimate, • Katayama
(2009) estimate

and corrects the bias. Moreover, we gave a novel result that dynamic bootstrapping

does an automatic bias correction in these portmanteau tests.

The computation of the bias correction term, especially for higher order processes,

is not very simple. We suggested a novel algorithm able to efficiently compute the bias

correction term.

We also made a novel suggestion to use pivotal portmanteau test using two dif-

ferent values of m, a relatively large value of m for the estimation of the information
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matrix to remove the bias. This can be efficiently computed our suggested novel algo-

rithms in Section 3.2.1 and then using a small value of m, for diagnostic test purposes.

Our numerical results showed that this novel suggestion of using pivotal portmanteau

test corrects the bias as good as Katayama’s suggestion does.

Finally, we studied Katayama’s multiple test. It is hard to derive a joint asymptotic

distribution of this test and Katayama (2009) suggested an iterative method to obtain

the estimates of significance level under some conditions. We, in our examples, suggest

that a hybrid bootstrap method is easy to implement and performs, in some cases,

better than Katayama’s method.
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Theoretical Results

4.1 Introduction

In the previous chapter, numerical results have shown that the dynamic bootstrap gives

a good approximation of the distribution of portmanteau tests. Now, we give theoreti-

cal results to support these numerical findings. We prove a central limit theorem for the

asymptotic distribution of the dynamic bootstrap. An important point is that we have

proved these results for AR(p) processes without making any assumptions specific to

AR structure. Therefore, the results hold true for a wider class of stationary models

and can be proved at the cost of greater technical complexity.

In this chapter, the main goal is to derive the asymptotic distribution of the least

squares estimator of the autoregressive coefficients under the dynamic bootstrap. How-

ever, we also derive the bias term in Monti (1994) test. McLeod (1978) has given the

asymptotic distribution of the residual autocorrelations under the true linear model.

Mann and Wald (1943) have proved the asymptotic normality of the maximum likeli-

hood estimates of a linear difference equation which is also true for the least squares

estimates but the use of martingale limit theory helps in providing a simpler proof of

this result which can also be easily justified for dynamic bootstrap method. The rest of

this chapter is as follows.

Section 4.2 gives results on the asymptotic distribution of the least squares estimator

of the AR coefficients. Theorem 4.2.1 gives the asymptotic distribution of the least

squares estimator in the AR(p) setting, while Theorem 4.2.2 proves the corresponding
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result for the dynamic bootstrap least square estimates and shows that the limiting

distributions of least squares estimates and dynamic bootstrap estimates are same with

probability 1.

In the process of proving these theorems we prove a number of technical lemmas

which may be of independent interest. Lemma 4.2.3 gives a bound on the coefficients

of an MA representation of a finite order AR(p) process. In Lemma 4.2.4 we prove

an upper bound for the kth order cumulant of {yt}t≥1. Lemma 4.2.5, proved under

the conditions of Theorem 4.2.1, shows that the variance of components of the sample

covariance matrix of yt decrease at rate n−1, which leads to the convergence result

proved in Corollary 4.2.6. Lemma 4.2.5 is used to establish that the conditions for the

martingale central limit theorem due to Brown (1971) stated in Theorem 4.2.7 hold in

our case. Section 4.3 explains the challenges in extending the theoretical development

to include higher-order properties of the dynamic bootstrap in the time series context.

In the previous chapter, we have also looked at some numerical results for bias

correction in Monti’s test along the lines of Katayama (2008). We derive the bias term

in Monti’s test in Section 4.4 and suggest an improved test to correct this bias.

4.2 Asymptotic Distribution of Dynamic Bootstrap Estimator

We shall focus on the AR(p) model. Throughout we assume that initial data y−p+1, . . . , y0

are available, and

yt = α0 +
p

∑
j=1

αjyt−j + εt

= α0 + α1yt−1 + . . . + αpyt−p + εt

= xT
t α + εt, (4.2.1)

for 1 ≤ t ≤ n, xt =
(
1, yt−1, . . . , yt−p

)Tand εt are i.i.d. with zero mean and finite

variance σ2. Let α̂ =
(
α̂0, . . . , α̂p

)T denote the least square estimator of α, given by

α̂ =

(
n

∑
t=1

xtx
T
t

)−1 n

∑
t=1

xtyt. (4.2.2)
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The residuals are defined as

ε̂t = yt − xT
t α̂, 1 ≤ t ≤ n.

We now consider the dynamic bootstrap. Let ε∗1, . . . , ε∗n denote a sample drawn ran-

domly with replacement from the set of residuals {ε̂1, . . . , ε̂n}. Recursively we define

y∗t =





yt, t = −p + 1, . . . , 0

x∗T
t α̂ + ε∗t , t = 1, . . . , n,

where x∗
t =

(
1, y∗t−1, . . . , y∗t−p

)T
, 1 ≤ t ≤ n. The bootstrap least squares estimator is,

α̂∗ =

(
n

∑
t=1

x∗
t x

∗T
t

)−1 n

∑
t=1

x∗
t y∗t .

Substituting from (4.2.1) into (4.2.2), assuming α0 =
(
α00, α01, . . . , α0p

)T is the true α,

we obtain

α̂ =

(
n

∑
t=1

xtx
T
t

)−1 n

∑
t=1

xt

(
xT

t α0 + εt

)

= α0 +

(
n

∑
t=1

xtx
T
t

)−1 n

∑
t=1

xtεt,

from which it follows that

√
n (α̂−α0) =

(
1
n

n

∑
t=1

xtx
T
t

)−1
1√
n

n

∑
t=1

xtεt. (4.2.3)

Similarly,

√
n (α̂∗ − α̂) =

(
1
n

n

∑
t=1

x∗
t x

∗T
t

)−1
1√
n

n

∑
t=1

x∗
t ε∗t . (4.2.4)

The following theorems tell us that the distribution of
√

n (α̂∗ − α̂) converges to

that of
√

n (α̂−α0). Let 4n denote the distribution of
√

n (α̂−α0) and let 4̂n denote

the distribution of
√

n (α̂∗ − α̂) conditional on the set of residuals {ε̂1, . . . , ε̂n}.
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Theorem 4.2.1 (Asymptotic distribution of the least squares estimator). Suppose that the

time series {yt} in (4.2.1) is a stationary AR(p) process, and that {ε t}t≥1 is an i.i.d. process

with zero mean and E|ε t |4 < ∞. Let 4n denote the distribution of least squares estimates

specified in (4.2.3). Then

4n
d−→ Np+1

(
0, σ2A−1

)
as n → ∞,

where A is defined in (4.2.5) and more explicitly in (4.2.16).

Condition of finite fourth moment is required to prove Lemma 4.2.4. The corre-

sponding theorem for the bootstrap estimator is as follows.

Theorem 4.2.2 (Asymptotic distribution of the bootstrap least squares estimator). Sup-

pose that the assumptions of Theorem 4.2.1 hold. Let 4̂n denote the distribution of the bootstrap

least squares estimator specified in (4.2.4). Then,

4̂n
d−→ Np+1

(
0, σ2A−1

)
as n → ∞,

where A is the same as mentioned in Theorem 4.2.1.

Thus 4n and 4̂n have the same limiting distribution under an AR(p) model.

4.2.1 Outline of Proofs of Theorems 4.2.1 and 4.2.2

The proofs of Theorems 4.2.1 and 4.2.2 are provided in Section 4.2.2. In this section, we

provide an outline of the way we prove these theorems.

Step 1 Show that

E

(
1
n

n

∑
t=1

xtx
T
t

)
→ A. (4.2.5)

This result is proved in Corollary 4.2.6.
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Step 2 Apply a martingale central limit theorem to n−1/2 ∑
n
t=1 xtεt, to establish that

1√
n

n

∑
t=1

xtεt
d−→ Np+1

(
0, σ2A

)
, (4.2.6)

where A is as defined above. This result is proved in Lemma 4.2.8.

In Step 3, we shall make use of Slutsky’s theorem, which states that if {Yn}n≥1 is

a sequence of random variables such that Yn
d−→ Y, and Xn is a sequence of random

variables such that Xn
p−→ 0, then Xn + Yn

d−→ Y; see e.g. Taniguchi and Kakizawa

(2000) for further details.

Step 3 Noting (4.2.3), we may combine (4.2.5) and (4.2.6) using Slutsky’s theorem stated

above. Thus

√
n (α̂−α0)

d−→ Np+1

(
0, σ2A−1

)
.

The details of the proof of Theorem 4.2.2 are similar to those of Theorem 4.2.1. In

particular (because 4̂n is a random distribution as it depends on the sample) the same

method shows that

4̂n =
√

n (α̂∗ − α̂)
d−→ Np+1

(
0, σ̂2Â−1

)
,

with probability one, where σ̂2 is the sample estimate of the error variance, σ2 and

Â is the sample analogue of A. Moreover under the moment condition E|ε t |4 < ∞,

σ̂2 p−→ σ2, Â
p−→ A, so σ̂2Â−1 p−→ σ2A−1, i.e. the limit distribution in Theorem 4.2.2 is the

same as that in Theorem 4.2.1. See Section 4.2.4 for further details.

4.2.2 Auxiliary Results

The result proved in the following lemma is probably well known but we have not

managed to find a reference for it. It shows that the coefficients ψr decay to 0 exponen-
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tially fast, where ψr is the coefficient of Lr in the expansion of

α(L)−1 =
∞

∑
j=0

ψj Lj

= ψ(L).

In the following lemma, we will establish an explicit bound for the ψ j’s, the coefficients

in an infinite MA representation of a finite order AR(p) process.

Lemma 4.2.3. Suppose {a−1
i : i = 1, . . . , p} are the roots of α(L) = 1 − α1L − α2L2 − . . . −

αpLp = 0, and are such that |ai | < 1 for all i = 1, . . . , p, as is the case under the assumptions

of Theorem 4.2.1. Define ã0 = max
(
|a1|, . . . , |ap|

)
. Then for any δ ∈ ]ã0, 1[ there exist a

constant ν = ν(δ) independent of r such that

|ψr| ≤ νar
0, r ≥ 1, (4.2.7)

where a0 = ã0/δ.

Proof. As {a−1
i : i = 1, . . . , p} are the roots of α(L) = 1 − α1L − α2L2 − . . . − αpLp = 0,

we can write

α(L) = −αp

p

∏
i=1

(
L − a−1

i

)
.

But the constant coefficient of α(L) is 1 which implies α p = (−1)p+1 ∏
p
i=1 ai. Therefore

α(L) = (−1)p
p

∏
i=1

ai

p

∏
i=1

(
L − a−1

i

)

=
p

∏
i=1

(1 − ai L) .

Thus

α(L)−1 =
p

∏
i=1

(1 − ai L)−1

=
p

∏
i=1

∞

∑
j=0

aj
i L

j

= 1 + ψ1L + ψ2L2 + . . . ,
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and it follows that

|ψr| =

∣∣∣∣∣∣
∑

k1+...+kp=r

p

∏
i=1

aki
i

∣∣∣∣∣∣

≤ ∑
k1+...+kp=r

p

∏
i=1

∣∣∣aki
i

∣∣∣

≤ ∑
k1+...+kp=r

p

∏
i=1

max
1≤i≤p

|ai|ki ,

which can be further written as

|ψr| ≤ ∑
k1+...+kp=r

ãr
0,

where ã0 = max
(
|a1|, . . . , |ap|

)
and ∑k1+...+kp=r means sum over all non-negative inte-

gers k1, . . . , kp, such that k1 + . . . + kp = r. Therefore

|ψr| ≤ ãr
0 ∑

k1+...+kp=r
1. (4.2.8)

The coefficient ∑k1+...+kp=r 1 can be calculated explicitly, since the RHS of the (4.2.8) is

the coefficient of Lr in the expansion of (1 − ã0 L)−p. Taking the (p − 1)th order deriva-

tive with respect to z of both sides of the identity (1 − z)−1 = ∑
∞
j=0 zj, we obtain

(p − 1)!
(1 − z)p =

∞

∑
j=p−1

j!
(j − p + 1)!

zj−p+1

=
∞

∑
r=0

(p + r − 1)!
r!

zr.

Therefore,

1
(1 − z)p =

∞

∑
r=0

(p + r − 1)!
(p − 1)!r!

zr . (4.2.9)
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Thus, from (4.2.8) and (4.2.9), it follows that

|ψr| ≤ (p + r − 1)!
(p − 1)!r!

ãr
0

=
(p + r − 1)!
(p − 1)!r!

δr
(

ã0

δ

)r

= νr(δ)ar
0,

where

νr(δ) =
(p + r − 1)!
(p − 1)!r!

δr,

and a0 = ã0/δ are such that δ ∈ ]ã0, 1[. Since δ ∈ (0, 1), and νr is maximum at r =

(1 − p)/ log δ, therefore

sup
r=0,1,...

νr(δ) = ν = ν(δ) < ∞.

Therefore, (4.2.7) holds as required.

In the following lemma, we use Lemma 4.2.3 to prove a bound for the correspond-

ing cumulant of an AR(p) process in terms of the joint cumulant of the error term ε t.

Lemma 4.2.4. Under the assumptions of Theorem 4.2.1,

|Cumk(yτ1 , . . . , yτk)| ≤ |ρk(ε)| νka
∑

k
j=1(τj−τ0)

0
1 − akτ0

0

1 − ak
0

,

where ν and a0 are the bounds in Lemma 4.2.3, ρk(ε) is the kth cumulant of ε t, and τ0 =

min(τ1, . . . , τk).

Proof. Consider the AR(p) process defined in (4.2.1),

yt = α0 +
p

∑
j=1

αjyt−j + εt. (4.2.10)

First of all, note that if we define

ỹt = yt −
α0

1 − ∑
p
k=1 αk

, t = 1, 2, . . . ,
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then, substituting into (4.2.10) we obtain

ỹt +
α0

1 − ∑
p
k=1 αk

= α0 +
p

∑
j=1

αj

(
ỹt−j +

α0

1 − ∑
p
k=1 αk

)
+ εt,

which implies

ỹt = α0 −
α0

1 − ∑
p
k=1 αk

+
α0 ∑

p
j=1 αj

1 − ∑
p
k=1 αk

+
p

∑
j=1

αj ỹt−j + εt,

which leads to

ỹt =
p

∑
j=1

αj ỹt−j + εt.

So to simplify, we assume α0 = 0 without any loss of generality.

We now wish to express each yt as a linear combination of the errors ε1, . . . , εt and

the initial data y0, . . . , y−j. We can do this by performing (t − 1) successive substitu-

tions of yt−k = ∑
p
j=1 αjyt−k−j + εt−k but replacing ε0, ε−1, . . . , ε−j by y0, y−1, . . . , y−j. An

equivalent way to do this is to define

ε̃t =





εt t ≥ 1

yt −p + 1 ≤ t ≤ 0

0 t < −p + 1.

Then

yt =
∞

∑
j=0

ψj ε̃t−j

=
t−1

∑
j=0

ψjεt−j +
p−1

∑
k=0

ψt+ky−k.

Since we are conditioning on the initial data, the second term on RHS is non-random.

Moreover, by Lemma 4.2.3, it is exponentially small. Hence, to simplify calculations

but without loss of generality, we shall assume that

yt =
t−1

∑
j=0

ψjεt−j, t = 1, 2, . . . . (4.2.11)
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Using the mulitilinearity property of joint cumulants, and the assumed i.i.d. property

of the {εt} sequence,

Cumk(yτ1 , . . . , yτk) = Cumk

(
τ1−1

∑
j1=0

ψj1 ετ1−j1 , . . . ,
τk−1

∑
jk=0

ψjk ετk−jk

)

=
τ1−1

∑
j1=0

. . .
τk−1

∑
jk=0

ψj1 . . . ψjk Cumk
(
ετ1−j1 , . . . , ετk−jk

)

and

Cumk
(
ετ1−j1 , . . . , ετk−jk

)
=





ρk(ε) τ1 − j1 = . . . = τk − jk

0 otherwise.

Thus writing τ0 = min(τ1, . . . , τk),

|Cumk(yτ1 , . . . , yτk)| =

∣∣∣∣∣ρk(ε)
τ0−1

∑
j=0

ψj+τ1−τ0 . . . ψj+τk−τ0

∣∣∣∣∣

≤ |ρk(ε)|
τ0−1

∑
j=0

k

∏
q=1

νaj+τq−τ0
0

= |ρk(ε)|
τ0−1

∑
j=0

νka
kj+∑

k
q=1(τq−τ0)

0

= |ρk(ε)| νka
∑

k
q=1(τq−τ0)

0
1 − akτ0

0

1 − ak
0

,

because
∣∣∣ψj+τq−τ0

∣∣∣ ≤ νaj+τq−τ0
0 , by Lemma 4.2.3.

Our next lemma shows that relevant sums of products of the yt process are O(n−1).

Lemma 4.2.5. Suppose that the assumptions of Theorem 4.2.1 hold. Then for each r, s =

1, . . . , p,

Var

(
1
n

n

∑
t=1

yt−ryt−s

)
= O(n−1). (4.2.12)

Proof. Using the result in (4.2.11) and writing a = t1 − r, b = t1 − s, c = t2 − r, and
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d = t2 − s, we have

Var

(
1
n

n

∑
t=1

yt−ryt−s

)
=

1
n2

n

∑
t1=1

n

∑
t2=1

Cov (yt1−ryt1−s, yt2−ryt2−s)

=
1
n2

n

∑
t1=1

n

∑
t2=1

κab,cd,

where κab,cd is a generalised cumulant. Using the rule for expressing generalised cu-

mulants in terms of ordinary cumulants (see McCullagh, 1987, p.31),

κab,cd = κa,b,c,d + κaκb,c,d + κbκa,c,d + κcκa,b,d + κdκa,b,c

+ κa,cκb,d + κa,dκb,c + κaκbκc,d + κaκcκb,d

+ κaκdκb,c + κbκcκa,d + κbκdκa,c.

As all first order cumulants are zero i.e. κa = κb = κc = κd = 0, the above expression

can be further simplified as

κab,cd = κa,b,c,d + κa,cκb,d + κa,dκb,c.

Using Lemma 4.2.4 with Lemma 4.2.3, we can write

∣∣∣κa,b,c,d
∣∣∣ = |cum4 (yt1−r, yt1−s, yt2−r, yt2−s)|

≤ |ρ4(ε)| ν4a
∑

4
j=1(τj−τ0)

0
1 − a4τ0

0

1 − a4
0

, (4.2.13)

where τ1 = t1 − r, τ2 = t1 − s, τ3 = t2 − r, τ4 = t2 − s and τ0 = min (τ1, τ2, τ3, τ4). From

elementary considerations,

4

∑
j=1

(
τj − τ0

)
≤ 2|t1 − t2| + 2|r − s|,

and so continuing from (4.2.13),

∣∣∣κa,b,c,d
∣∣∣ ≤ |ρ4(ε)| ν4a2|t1−t2|+2|r−s|

0
1 − a4τ0

0

1 − a4
0

= Cr,s a2|t1−t2|
0 , (4.2.14)
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where

Cr,s = |ρ4(ε)| ν4a2|r−s|
0

1 − a4τ0
0

1 − a4
0

.

Therefore using the result in (4.2.14),

∣∣∣∣∣
1
n2

n

∑
t1=1

n

∑
t2=1

κt1−r,t1−s,t2−r,t2−s

∣∣∣∣∣ ≤ 1
n2

n

∑
t1=1

n

∑
t2=1

Cr,s a2|t1−t2|
0 .

Substituting m = t1 − t2, we can write

1
n2

n

∑
t1=1

n

∑
t2=1

Cr,s a2|t1−t2|
0 =

Cr,s

n2

n−1

∑
m=−n+1

(n − |m|) a2|m|
0 ,

=
Cr,s

n

n−1

∑
m=−n+1

(
1 − |m|

n

)
a2|m|

0

≤ Cr,s

n

∞

∑
m=−∞

a2|m|
0 .

The remaining sum can be further expressed as a sum of two infinite geometric series,

and therefore

∣∣∣∣∣
1
n2

n

∑
t1=1

n

∑
t2=1

κt1−r,t1−s,t2−r,t2−s

∣∣∣∣∣ ≤ Cr,s

n
2

1 − a2
0

= O(n−1).

Similar calculations, using Lemma 4.2.4 again, show that

1
n2

n

∑
t1=1

n

∑
t2=1

{
κa,cκb,d + κa,dκb,c

}
= O(n−1),

and thus (4.2.12) is proved.

Corollary 4.2.6. Under the assumptions of Theorem 4.2.1,

E

(
1
n

n

∑
t=1

xtx
T
t

)
→ A as n → ∞, (4.2.15)
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where A =
[
aij
]p+1

i,j=1 and

aij =





1 i = j = 1

µ i = 1, j > 1 or i > 1, j = 1

σ2 ∑
∞
j=0 ψjψj+k i, j > 1, |i − j| = k

0 elsewhere.

(4.2.16)

where µ = E(yt) = α0/
(

1 − ∑
p
j=1 αj

)
and σ2 = Var(εt).

Proof. Consider the model (4.2.11). In this case,

E

(
1
n

n

∑
t=1

yt−ryt−s

)
=

1
n

n

∑
t=1

E

(
t−r−1

∑
j1=0

ψj1 εt−r−j1

t−s−1

∑
j2=0

ψj2 εt−s−j2

)

=
σ2

n

n

∑
t=1

t−max(r,s)−1

∑
j=0

ψjψj+|r−s|.

But

σ2

n

n

∑
t=1

t−max(r,s)−1

∑
j=0

ψjψj+|r−s| → σ2
∞

∑
j=0

ψjψj+|r−s| (4.2.17)

as n → ∞ and so Corollary 4.2.6 follows, since each term in the expectation on the LHS

of (4.2.15) is of the form of (4.2.17), apart from the entries with i = 1 or j = 1. The cases

with i = 1 or j = 1 follow from the fact that the first component of xt is 1.

4.2.3 Martingale Central Limit Theorem

To establish (4.2.6) in Step 2, we make use of the following result due to Brown (1971).

Using the terminology defined in Section 2 of Brown’s paper, let

{ξnt,Fnt, t = 1, 2, . . . , n; n = 1, 2, . . .},

be a martingale difference sequence. Note that Fn1 ⊆ Fn2 ⊆ . . ., whereFnt = σ (ε1, . . . , εt)

is a sigma algebra, for definition see e.g. Williams (1991, p.15). A martingale, say Xt, is

defined as a stochastic process such that its conditional expectation at time t given that

all the previous observations up to some earlier time s is equal to the observation at the
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earlier time i.e. E(Xt|X1, . . . , Xs) = Xs. While we will say a process Yt is a martingale

difference sequence relative to Xt if and only if E(Yt+1|Xs,−∞ < s ≤ t) = 0 for all t,

for definition see e.g. Brockwell and Davis (1991, p.546).

The characteristic function for a martingale difference sequence ξ nt conditioned on

Fn,t−1 can be defined as

φnt(v) = E
(

eivξnt |Fn,t−1

)
, (4.2.18)

and let

σ2
nt = E

(
ξ2

nt|Fn,t−1
)

V2
n =

n

∑
t=1

σ2
nt

s2
n = E(V2

n )

fn(v) =
n

∏
t=1

φnt(v/sn)

bn = s−2
n max

1≤t≤n
σ2

nt

for n = 1, 2, . . .. A key condition is that

s−2
n V2

n
p−→ 1 as n → ∞. (4.2.19)

For the class of martingales satisfying the above condition (4.2.19), the Lindeberg con-

dition (see e.g. Billingsley, 1979, p.310) is said to hold if

s−2
n

n

∑
k=1

E
[
ξ2

nk I (|ξnk| > η)
] p−→ 0. (4.2.20)

for each fixed η > 0, where I(.) is an indicator function.

Theorem 4.2.7. (Brown, 1971) Assume that (4.2.19) holds. Then

fn(v)
p−→ e−

1
2 v2

bn
p−→ 0

P

[
n

∑
t=1

ξnt/sn ≤ x

]
= Φ(x),
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as n → ∞ if and only if the Lindeberg condition (4.2.20) holds, where Φ(.) is the cdf of N(0, 1).

We make use of Theorem 4.2.7 in the proof of the following lemma.

Lemma 4.2.8. Under the assumptions of Theorem 4.2.1,

1√
n

n

∑
t=1

xtεt → Np+1
(
0, σ2A

)
,

where A = [ajk ]
p+1
j,k=1 is defined in (4.2.16) and σ2 = Var(εt).

Proof. Consider for fixed c

Tn = cT

(
1√
n

n

∑
t=1

xtεt

)

=
1√
n

n

∑
t=1

(cxt)εt,

where ε1, ε2, . . . are i.i.d. and xt =
(
1, yt−1, . . . , yt−p

)T. We shall first prove that asymp-

totic normality holds for each fixed c and then use the Cramér-Wold device to deduce

that n−1/2 ∑
n
t=1 xtεt is asymptotically normal. [The Cramér-Wold device states that

if {(Xn)}n≥1 is a sequence of random vectors and X is another random vector and

for each fixed c, XT
n c

d−→ XTc, then we may conclude Xn
d−→ X ; see, for example,

Van der Vaart (2000, p.16)]. Under the assumptions of Theorem 4.2.1, εk is independent

of xk. Define

ξnk(c) =
1√
n
(cTxk)εk, k = 1, . . . , n.

To simplify notation write ξnk = ξnk(c). Then

Tn =
n

∑
t=1

ξnt.

We now check the conditions (4.2.19) and (4.2.20).

85



CHAPTER 4: Theoretical Results

Proof that Condition (4.2.19) is satisfied.

Consider the sigma field Fnt = σ(ε1, . . . , εt), then

σ2
nt = E

[
ξ2

nt|Fn,t−1
]

=
1
n
(cTxt)

2E[ε2
t ]

=
σ2

n
(cTxt)

2,

since xt is known when we condition on Fn,t−1.

Thus

V2
n =

n

∑
t=1

σ2
nt

=
σ2

n

n

∑
t=1

(cTxt)
2

= σ2cT

(
1
n

n

∑
t=1

xtx
T
t

)
c,

p−→ σ2cTAc, as n → ∞.

Also

s2
n = E

[
V2

n
]

= E

(
σ2cT

(
1
n

n

∑
t=1

xtx
T
t

)
c

)

→ σ2cTAc as n → ∞.

Thus

s−2
n V2

n
p−→
(

σ2cTAc
)−1

V2
n

p−→ 1 as n → ∞,

and condition (4.2.19) holds.

Proof that condition (4.2.20) is satisfied.

We wish to show that for each fixed η > 0,

a′n =
n

∑
k=1

E
[
ξ2

nk I (|ξnk | > η)
] p−→ 0.
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Using the Markov inequality (see e.g. Williams, 1991, p.59),

I (|ξnk| > η) ≤ ξ
p
nk

ηp ,

where p ∈ Z+. In our case, we choose p = 2 to simplify the calculations, as for this

choice of p we will end up with the fourth moment. Thus

I (|ξnk| > η) ≤ ξ2
nk

η2 ,

and it follows that

a′n ≤
n

∑
k=1

η−2E
[

ξ4
nk|Fn,k−1

]

= η−2n−2
n

∑
k=1

E
[
(cTxk)

4ε4
k|Fn,k−1

]

= η−2n−2µ4(ε)
n

∑
k=1

(cTxk)
4 = an,

where µ4(ε) = E[ε4
k ], and the independence of εk and xk along with the i.i.d. property

of εk have been used. To show that an
p−→ 0, it is sufficient to establish that E[an ] → 0 as

n → ∞; see e.g. Chung (2001, Theorem 4.1.4).

But the first four cumulants of cTxk are uniformly bounded in k (Lemma 4.2.4), and

therefore

sup
k

E
[
(cTxk)

4
]
≤ C < ∞.

This leads to

E[sn ] ≤ 1
η2 .

1
n2 µ4(ε).nC = O

(
1
n

)
for each fixed η > 0.

Therefore (4.2.20) holds. Thus, we have proved that convergence holds for each fixed

c, so by the Cramér-Wold device mentioned above we may conclude that

1√
n

n

∑
t=1

xtεt
d−→ Np+1

(
0, σ2A

)
.

87



CHAPTER 4: Theoretical Results

Hence Lemma 4.2.8 is proved.

4.2.4 Proof of Theorem 4.2.2

A benefit of providing explicit bounds in the proof of Theorem 4.2.1 is that we are able

to see how the proof in the bootstrap case follows in similar fashion. Recall that the

residuals are defined by

ε̂t = yt − xT
t α̂ = εt − xT

t (α̂−α0) ,

using the fact that yt = xT
t α0 + εt; so, in vector form,

ε̂ = ε− X̃
(
X̃TX̃

)−1
X̃Tε

=

[
In − X̃

(
X̃TX̃

)−1
X̃T
]

ε,

where In is the n × n identity matrix and X̃ = [x1, . . . , xn]
T. Therefore, since xt con-

tains the constant term (recall that by definition the first component of xt is 1), it follows

that

1
n
1

T
n ε̂ =

1
n
1

T
n

[
In − X̃

(
X̃TX̃

)−1
X̃T
]

ε = 0,

where 1n is the n-vector of ones. Also,

1
n

n

∑
t=1

ε̂2
t =

1
n

n

∑
t=1

ε2
t +

1
n

[
{√

n (α̂−α0)
}T
(

1
n

n

∑
t=1

xtx
T
t

)
{√

n (α̂−α0)
}
]

− 2
n

(
1√
n

n

∑
t=1

εtx
T
t

)
{√

n (α̂−α0)
}

=
1
n

n

∑
t=1

ε2
t + Op

(
n−1

)
,

because, as was shown in the proof of Theorem 4.2.1,

∥∥∥∥∥
1√
n

n

∑
t=1

εtxt

∥∥∥∥∥ = Op(1),

∥∥√n (α̂−α0)
∥∥ = Op(1)
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and

∥∥∥∥∥
1
n

n

∑
t=1

xtx
T
t

∥∥∥∥∥ = Op(1).

Similar but slightly more elaborate calculations show that

1
n

n

∑
t=1

ε̂r
t =

1
n

n

∑
t=1

εr
t + Op

(
n−1

)
, r = 3, 4.

Therefore the first four moments of the ε̂t agree with the sample moments of the ε1, . . . , εt

up to an error term of order Op
(
n−1

)
. Moreover, since E |εt|4 < ∞, by assumption, it

follows from the strong law of large numbers that

1
n

n

∑
t=1

ε̂r
t

p−→ E [εr
t] , r = 2, 3, 4.

Let us now return to the proof of Theorem 4.2.1. In view of the above, the bootstrap

analogue of the bound in Lemma 4.2.4 converges in probability to the RHS in Lemma

4.2.4. Likewise, the bootstrap analogy of the bounds used in Lemma 4.2.5 converges

in probability to the bounds used in the proof of Theorem 4.2.1. Similar components

apply to the application of Theorem 4.2.7 in the bootstrap case.

4.2.5 Extension to Portmanteau Statistic

At the cost of further technical detail it is possible to extend Theorems 4.2.1 and 4.2.2 to

the portmanteau statistic itself. Following McLeod (1978, formula(34)) and Katayama

(2008), we may write

r̂ = r + X (α̂−α0) + Op

(
n−1

)
,

where X is defined in (3.2.2). Using the martingale central limit theorem stated in

Theorem 4.2.7 above, we can establish the joint normality of
√

n
(
rT, (α̂−α0)

T
)T

, and

the asymptotic normality of
√

nr̂ follows; see McLeod (1978, Theorem 1) where it is
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shown that

√
nr̂

d−→ Nm

(
0m, Im −XJ−1XT

)
.

Making use of similar lemmas to those proved earlier in this section, the asymptotic

normality of
√

nr̂∗, the bootstrap analogue of
√

nr̂, can be proved. Novelty of our

results is that proof of central limit theorem using the martingale theory which can be

easily generalized for the dynamic bootstrap.

4.3 Higher-Order Accuracy

In the previous chapter it was shown numerically that the use of the dynamic bootstrap

for approximating the null distribution of the portmanteau statistic leads to excellent

accuracy. It is natural to ask whether this good performance can be explained in theo-

retical terms. To provide some idea of what theoretical results one might hope to ob-

tain, we shall look at what happens in the multivariate i.i.d. case. Firstly, we show how

good performance of dynamic bootstrap can be proved in a multivariate i.i.d. case. In

Section 4.3.2 we discuss the possible way of proving these results for the portmanteau

test, where a non-i.i.d. version of the results proved in the case of multivariate i.i.d.

case is required. The particular source we use here is Fisher et al. (1996, Appendix B);

see also Hall (1992) and reference therein. The full details are rather involved and we

only give a brief sketch. Subsequently, we discuss what would be involved in proving

parallel results for the portmanteau test in the time series setting.

4.3.1 The Multivariate i.i.d. Case

Suppose that we observe i.i.d. random vectors X1, . . . , Xn. Let T = Tn(X1, . . . , Xn)

denote a statistic which has an asymptotic χ2
d distribution as n → ∞ under some null

hypothesis H0. That is, under H0,

P
(
T > χ2

d,1−α

)
→ α as n → ∞
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for each α ∈ (0, 1), where χ2
d,α is the α-quantile of χ2

d. Since the asymptotic distribu-

tion of T under H0 does not depend on any unknowns, T is said to be (asymptotically)

pivotal under H0. The desirability of using pivotal statistics in the bootstrap setting

has been discussed by Hall (1992) and, for example, Fisher et al. (1996). The theoreti-

cal advantage of using pivotal statistics is that they generally achieve higher order of

(theoretical) accuracy than is achieved by non-pivotal statistics.

In broad generality there is usually a multivariate central limit theorem underlying

a statistic with a χ2 limit distribution. In regular situations, we can express an asymp-

totically χ2
d statistic T in the form

T = RTR, R = R0 + n−1/2R1 + n−1R2 + Op(n−3/2) (4.3.1)

where each Ri is a vector with components R1
i , . . . , Rd

i , and each Rj
i is a function of the

form n−1 ∑
n
k=1 Pj

i (Xk), where each Pj
i is a polynomial; see Fisher et al. (1996, Appendix

B). In (4.3.1), as n → ∞, R
p−→ Ro, from which we deduce that R0 is asymptotically

standard d-variate normal i.e. Nd (0d, Id) under H0, because T = RTR
d−→ χ2

d.

A key requirement for what follows is that the Edgeworth expansion given below

for fn(x), the density of R at R = x, can be rigorously justified:

fn(x) = φd(x)
{

1 + n−1/2 p1(x) + n−1p2(x) + n−3/2p3(x) + n−2En(x)
}

(4.3.2)

where pi(x), i = 1, 2, 3 are multivariate polynomials related to Hermite polynomials

(see e.g. Sen et al., 2010, p.198), φd(x) is the Nd (0d, Id) density, and the remainder term

En(x) satisfies

sup
n

∫
|En(x)| φd(x)dx < ∞.

The coefficients of the polynomials pi(x) depend on lower-order cumulants of R. For

further details of Edgeworth expansions, see Bhattacharya and Rao (1976), Bhattacharya and Ghosh

(1978), McCullagh (1987) and Hall (1992). An important further point is that the poly-

nomials p1(x) and p3(x) are odd functions of x, while p2(x) is an even function of

x.
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Following Fisher et al. (1996), we now derive an expansion for P(T ≤ C̃), for any

C̃ > 0. Write B1 =
{
x ∈ Rd : xTx ≤ 1

}
for the unit ball in Rd. Then, using (4.3.2),

P
[

T ≤ C̃
]

= P
[{

R : ‖R‖2 ≤ C̃
}]

=
∫

x∈C̃1/2B1

fn(x)dx

=
∫

x∈C̃1/2B1

φd(x)
{

1 + n−1/2 p1(x) + n−1 p2(x) + n−3/2 p3(x) + n−2En(x)
}

dx

=
∫

x∈C̃1/2B1

φd(x)
{

1 + +n−1 p2(x) + n−2En(x)
}

dx,

which can be written as

P
[

T ≤ C̃
]

= P
[

χ2
d ≤ C̃

]
+ n−1q1(d, C̃, κ) + O(n−2). (4.3.3)

Note that the n−1/2 and n−3/2 terms make a zero contribution because (i) p1(x) and

p3(x) are odd functions and (ii) the unit ball B1 is symmetric about the origin and (iii)

φd(x) is an even function. In (4.3.3), κ is a vector of standardised cumulants of R which

determine the coefficients of the multivariate polynomial p2(x).

Suppose now that we have B bootstrap samples, obtained by resampling the X i’s

randomly with replacement, with equal probability n−1, thereby obtaining T∗
1 , . . . , T∗

B

the values of statistic T for B bootstrap samples. Write χ̂2
d,α = T∗

([Bα]+1), where T∗
(1) ≤

. . . ≤ T∗
(B) are the ordered values of T∗

1 , . . . , T∗
B. It is shown by Fisher et al. (1996, Ap-

pendix B, Section B5) that in the i.i.d. case under mild conditions,

P
[
T ≤ χ̂2

d,α
]

= α + O(n−2) (4.3.4)

under H0; a more detailed argument is given by Hall (1992). Thus, in words: boot-

strapping the asymptotically pivotal statistic T with a χ2
d limit distribution results in a

decrease in the error in the CDF approximation from O(n−1) to O(n−2).

4.3.2 The Portmanteau Statistic

The question we consider now is whether the analogue (4.3.4) holds for the portman-

teau statistic in the time series setting. First of all, we note that the results in Fisher et al.
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(1996, Appendix B) indicate that for (4.3.4) to have a chance of holding, T must be

asymptotically pivotal under the null hypothesis. However, as we have seen earlier, the

well-known variants of the portmanteau statistic, including those due to Box-Pierce,

Ljung-Box and Katayama, are not asymptotically pivotal, at least when m stays fixed.

However, it is possible to use an asymptotically pivotal version of the statistic, namely

T = nr̂T (I −C)−1
r̂, (4.3.5)

as defined in (3.3.2).

If version T in (4.3.5) of the portmanteau statistic is used, then it appears that most

of the steps leading to (4.3.4) are similar to those in the i.i.d. case apart from justifi-

cation of the Edgeworth expansions (4.3.2). Rigorous justification of Edgeworth ex-

pansions in the time series context is far more challenging than in the multivariate

i.i.d. case. Götze and Hipp (1983) were the first authors to establish rigorous Edge-

worth expansions for dependent data in some generality. The results are not easy

to apply but a more recent paper by the same authors, Götze and Hipp (1994), fo-

cuses more specifically on time series. The latter paper works on sample means of

a nonlinear functions of blocks of data: specifically, if [yt]t≥1 is a stationary time se-

ries, and X = h
(

yt, yt+1, . . . , yt+p−1
)
, where h : Rp → R is a nonlinear function, then

Götze and Hipp (1994) develop Edgeworth expansions for the sample mean

Xn =
1

n − p

n−p+1

∑
t=1

h
(
yt, yt+1, . . . , yt+p−1

)
.

This framework does not include the situation under consideration here for either T or

the bootstrap version T∗. It is an open question whether Götze and Hipp (1994) results

can be extended in the direction under consideration here.

Other work on Edgeworth expansions in time series includes Maekawa (1985), who

focuses on the ordinary least squares estimator in the ARMA(1, 1) model. In a substan-

tial body of work, Lahiri has considered Edgeworth expansions for weakly dependent

data in a sequence of papers, the most recent of which is Lahiri (2010). However, as

far as we are aware, none of the research mentioned above (including that of Götz and

Hipp) develops rigorous Edgeworth expansion theory for bootstrap distribution in the
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time series context considered here. As noted above, this is an essential requirement

for establishing the analogue of (4.3.4) rigorously. It will be interesting to see if further

progress on this problem can be made in the future.

4.4 Improved Monti’s Test

Monti’s portmanteau test (Monti, 1994) is based on the first m partial autocorrela-

tions. Like the Ljung-Box test (Ljung and Box, 1978), the null asymptotic distribution

of Monti’s test is χ2
m−p−q under an ARMA(p, q) process. This approximation depends

on m and stationarity of the true model. As we have noticed in Section 3.2.2, there are

situations, e.g. where m is small and the process is near the stationary boundary, when

this approximation becomes poor.

Katayama (2008) suggested a bias correction term in the Ljung-Box statistic. We

have already looked into this bias corrected statistic with some numerical examples in

Section 3.3. Following the idea of Katayama (2008), we suggest a bias correction term in

Monti’s test. We have already seen in our numerical examples that this bias correction

term is able to correct the bias in Monti’s test under the challenging conditions i.e. small

m and near stationarity boundary; see Figure 3.3. In the following section we will give

a derivation of Monti’s bias correction term. This derivation is sketched on the lines of

Katayama (2008).

Suppose that {yt} is the time series generated by a stationary ARMA(p, q) process,

α(L)yt = β(L)εt, t = 0,±1,±2, . . . (4.4.1)

where p + q > 0 and {ε t} is i.i.d. (0,σ2). As α(L) = 1 − ∑
p
i=1 αi Li and β(L) = 1 +

∑
q
i=1 βi Li, it follows that (4.4.1) can be written as:

(1 −
p

∑
i=1

αiLi)yt = (1 +
q

∑
i=1

βi Li)εt.

Let θ0 = (α0, β0) denote the vector of true values of the parameters and θ̂ =

(α̂, β̂) is the nonlinear least squares estimate of θ0 obtained from the observed time
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series. The residuals ε̂t = εt(θ̂) from the fitted model will be the linear combination of

y1, y2, . . . , yt with weights equal to the AR-representation coefficients based on nonlin-

ear least squares estimates θ̂ i.e. ε̂t = ∑
t−1
i=0 π̂iyt−i, where π̂i’s are defined as

π̂(L) =
α̂(L)

β̂(L)
=

∞

∑
i=0

π̂iLi.

The π̂i weights can be computed efficiently using Algorithm 5; see Section 3.2.1.

Monti (1994) has suggested a diagnostic test for time series models based on the

partial autocorrelation defined as

Q∗
m(ω̂) = n(n + 2)

m

∑
k=1

ω̂2
k

n − k
= ω̂TV 2ω̂,

where ω̂ = (ω̂1, . . . , ω̂m) be the vector of the first m partial autocorrelations with the

kth element given by

ω̂k =
r̂k − r̂T

k−1R̂
−1
k−1r̂

′
k−1

1 − r̂T
k−1R̂

−1
k−1r̂k−1

,

where R̂k =
(
r̂|i−j|

)
i,j=1,...,k

is the k × k Toeplitz matrix, r̂ ′
k = (r̂k , . . . , r̂1)

T, and

V = diag



√

n(n + 2)

n − 1
,

√
n(n + 2)

n − 2
, . . . ,

√
n(n + 2)

n − m


 .

Monti (1994) has shown that V
1
2 ω ∼ N(0m, (I − C)), where C = XJ−1XT, J is the

Fisher’s information matrix defined in (3.3.1). Each (i, j)th element of the partitioned

matrix of X is given

X = (−α∗
i−j

... − β∗
i−j),

where α∗
i and β∗

i are defined in (3.2.3) and (3.2.4) respectively. Also, α∗
i and β∗

i can be

computed efficiently using Algorithm 4.
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4.4.1 Bias Term in Monti’s Test

Consider r = (r1, . . . , rm)T and ω = (ω1, . . . , ωm)T are the vectors of the first m autocor-

relations and partial autocorrelations respectively. Monti (1994, Lemma 1) has shown

that

ω = r + Op

(
1
n

)
, (4.4.2)

and

ω̂ = r̂ + Op

(
1
n

)
, (4.4.3)

where r̂ and ω̂ are sample analogues of r and ω respectively. So following result (34)

in the proof of McLeod (1978),

r̂ = r + X(θ̂n − θ0) + Op

(
1
n

)
, (4.4.4)

where θ0 and θ̂n are the true value and least squares estimate of θ = (α, β). Then we

can write, from (4.4.3) and (4.4.4),

ω̂ = r + X(θ̂n − θ0) + Op

(
1
n

)
. (4.4.5)

From (4.4.2) and (4.4.5)

ω̂ = ω + X(θ̂n − θ0) + Op

(
1
n

)
.

Working along the lines of Katayama (2008, formulae (10)-(13)), we can obtain the fol-

lowing bias corrected Monti’s statistic:

Q∗∗
m (ω̂) = Q∗

m(ω̂)− B∗
m,n(ω̂).

The extra positive random variable B∗
m,n(ω̂) given by

B̂∗
m,n(ω̂) = ω̂TV D̂V ω̂,
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where ω̂T = (ω̂1, ω̂2, . . . , ω̂m), D̂ = X̂(X̂TX̂)−1X̂T, where X̂ is a sample analogue of

X formed by the coefficients in the reciprocal of estimated AR and MA polynomials.

Algorithm 6 can then be used to obtain B̂∗
m,n(ω̂) efficiently. There is also the possibility

of using the asymptotically pivotal statistic

ω̂T (Im −C)−1
ω̂

which has a limiting χ2
m−p−q distribution under the null hypothesis: Section 3.3. This

follows from the fact that
√

n (ω̂ −ω0) has the same asymptotic covariance matrix,

Im −C, as
√

n (r̂ − r0), where ω0 and r0 are the true values of ω and r respectively.

4.5 Conclusion

In this chapter, we have proved central limit theorems for the least squares estimator

and dynamic bootstrap least squares estimator of time series models using a number of

basic lemmas and martingale limit theory. These results show that the dynamic boot-

strap least squares estimator has the same limit distribution as that of the least squares

estimator. This is an important result and provides a basis for better performance of

dynamic bootstrap methods for time series models.

We also gave a discussion to link this theory to the numerical results obtained in

Section 2.5, where the dynamic bootstrap method showed good performance in ap-

proximating the finite sample distribution of portmanteau tests. We have provided

only an outline on which the good performance of dynamic bootstrap methods can be

proved but it requires a rigorous Edgeworth expansion for dynamic bootstrap distri-

bution which is quite challenging to develop.

Finally, we made a novel suggestion to correct the bias in Monti (1994) test using the

partial autocorrelations, which is analogous to the Ljung-Box statistic. There is also an

asymptotically pivot version of this statistic which parallels the development of Section

3.3.
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Lasso Methods for Regression

Models

5.1 Introduction

In this chapter, we study the lasso (Tibshirani, 1996) and adaptive lasso (Zou, 2006)

for regression models. The theoretical properties of these lasso-type methods are well

studied in the past decade. For example, Fan and Li (2001) have discussed the relation-

ship between the penalized least squares and subset selection and also studied the vari-

able selection properties for lasso-type methods. Zhao and Yu (2006) has also studied

model selection consistency for the lasso and derived a condition, based on the covari-

ance matrix of the predictors, to achieve this consistency. This same condition is also

independently derived by Zou (2006). The theoretical properties of lasso-type meth-

ods are very appealing but there are still a number of unanswered questions including

some issues in their practical application, e.g. the selection of the tuning parameter.

As discussed by Fan and Li (2001), penalised regression methods such as the lasso,

ideally, possess two oracle properties:

1. the zero components (and only the zero components) are estimated as exactly

zero with probability approaches 1 as n → ∞, where n is the sample size; and

2. the non-zero parameters are estimated as efficiently well as when the correct sub-

model is known.
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The tuning parameter plays a vital role in consistent variable selection. It controls the

degree of shrinkage of the estimator. We compare the performance of lasso-type meth-

ods using different tuning parameter selectors suggested in the literature.

The oracle properties of these procedures are studied for different models and un-

der various conditions e.g. the necessary condition for consistent selection discussed in

Zhao and Yu (2006) and Zou (2006). We will demonstrate numerically that when this

condition fails the adaptive lasso can still do correct variable selection while the lasso

cannot.

Some of the literature on the application of the lasso in regression has focused on

very high-dimensional settings. In this chapter we focus on the lasso in a modest num-

ber of dimensions as this seems more relevant to the applications of the lasso in the

multivariate time series context considered in the next chapter. The rest of this chapter

is organised as follows.

Section 5.2 describes shrinkage procedures and their implementation in regression

models. In Section 5.3 we will discuss the necessary condition for the oracle perfor-

mance of lasso-type methods. Section 5.4 discusses various methods for choosing the

appropriate value of the tuning parameter and its effect on the performance of lasso-

type procedures. Section 5.5 gives some numerical results on the performance of lasso

methods for regression models. We end this chapter in Section 5.6 with discussion and

conclusions about the performance of these lasso-type methods under various condi-

tions.

5.2 Shrinkage Methods

The ready availability of fast and powerful computers, combined with rapid techno-

logical advances in methods of automated data collection, have led to the routine pro-

duction of massive datasets, e.g. in bioinformatics. There are many real-life examples

where we are dealing with a very large number of predictors, and this naturally leads

to consideration of high-dimensional settings.

Traditional statistical estimation procedures such as ordinary least squares (OLS)
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tend to perform poorly in high-dimensional problems. In particular, although OLS

estimators typically have low bias, they tend to have high prediction variance, and

may be difficult to interpret (Brown, 1993). In such situations it is often beneficial to

use shrinkage i.e. shrink the estimator towards the zero vector, which in effect involves

introducing some bias so as to decrease the prediction variance, with the net result of

reducing the mean squared error of prediction.

There are several shrinkage methods suggested in the literature including ridge

regression (Hoerl and Kennard, 1970). The paper by Tibshirani (1996), in which he

suggested the lasso, is a big breakthrough in the field of sparse model estimation

which performs the variable selection and coefficient shrinkage simultaneously. Other

shrinkage methods include non-negative garotte (Breiman, 1995), smoothly clipped ab-

solute deviation (SCAD) (Fan and Li, 2001), elastic net (Zou and Hastie, 2005), adap-

tive lasso (Zou, 2006), Dantzig selector (Candes and Tao, 2007), variable inclusion and

selection algorithm (VISA) (Radchenko and James, 2008). Many other methods have

been suggested in the literature but lasso-type methods are currently popular among

researchers (Knight and Fu, 2000; Fan and Li, 2001; Wang and Leng, 2007; Hsu et al.,

2008). The group lasso was originally suggested by Bakin (1999) in his PhD Thesis

from The Australian National University, Canberra. This technique selects a group

of variables; rather than individual variables, for more details see e.g. Yuan and Lin

(2006), Zhao and Kulasekera (2006).

Most recently, James et al. (2009) proposed an algorithm DASSO (Dantzig selector

with sequential optimization) to obtain the entire coefficient path for the Dantzig selec-

tor and they also investigated the relationship between the lasso and Dantzig selector.

Hesterberg et al. (2008) have given a good survey of L1 penalised regression. Very re-

cent papers by Fan and Lv (2008), Fan and Lv (2009) and Lv and Fan (2009) are good

reference for variable selection especially in high dimension setting. In the following

paragraphs we will define the linear model and some notations used and referred to

frequently in the later sections.

Let (xT
1 , y1), . . . , (xT

n , yn) be n independent and identically distributed random vec-
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tors, assumed to satisfy the linear model

yi = xT
i β + ε i, (5.2.1)

such that yi ∈ R is the response variable, xi = (xi1, . . . , xip)
T ∈ Rp is the p-dimensional

set of predictors, the ε i’s are independently and identically distributed with mean 0

and variance σ2 and β = (β1, . . . , βp) is the set of parameters.

We define A =
{

j : β j 6= 0
}

and Ac =
{

j : β j = 0
}

. Assume that only p0 (p0 < p)

parameters are non-zero i.e. β j 6= 0 for j ∈ A where |A| = p0 and |.| stands for

the number of elements in the set i.e. the cardinality of the set. Thus we can define

βA =
{

β j : j ∈ A
}

and βAc =
{

β j : j ∈ Ac}. Also assume that 1
nXTX

p−→ C, where

X = (x1, . . . , xn)T is the design matrix and C is a positive definite matrix. We can

define a partition of the matrix C as

C =


 C11 C12

C21 C22


 (5.2.2)

where C11 is the p0 × p0 submatrix corresponding to the active predictors
{
xj : j ∈ A

}
.

The least squares estimator estimates the zero coefficients as non-zero in the model

defined above. We would like a method which is consistent in variable selection i.e.

which correctly classifies the active (i.e. non-zero coefficients) and non-active (i.e. zero

coefficients) predictors. This is an important property of lasso-type methods as men-

tioned by Knight and Fu (2000).

5.2.1 The Lasso

Tibshirani (1996) proposed a new shrinkage method named least absolute shrinkage

and selection operator, abbreviated as lasso. The lasso shrinks some coefficients while

setting others exactly to zero, and thus theoretical properties suggest that the lasso po-

tentially enjoys the good features of both subset selection and ridge regression (Tibshirani,
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1996). The lasso estimator of β is defined by

β̂∗ = argmin
n

∑
i=1

(
yi −

p

∑
j=1

β jxij

)2

subject to ∑
p
j=1 |β j | ≤ t,

or equivalently,

β̂∗ = argmin





n

∑
i=1

(
yi −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

|β j |



 ,

where t and λ are user-defined tuning parameters and control the amount of shrinkage.

Smaller values of t and larger values of λ result in a higher amount of shrinkage. For

detailed discussion on the selection of the tuning parameter see Section 5.4.

5.2.2 Characterisation of the Components

Variable selection is an important property of shrinkage methods. The lasso is a convex

procedure and sets some of the components exactly to zero. In this section, we will look

at how the model coefficients behave under the lasso. First we will look at a simple one

dimensional example to explain why the lasso sometimes gives solutions which are

exactly zero. Then we will move to the general case.

Consider a model

f (x) = (x + 1)2 + λ |x|

and the first order derivative

f ′(x) = 2 (x + 1) + λsgn(x),

where x ∈ R, and sgn(x) = −1, 0, 1 for x ≤ 0, x = 0 and x > 0 respectively, and λ ≥ 0.

The lasso will set those x to zero for which f ′(x) changes sign when x passes through

origin. As f ′(x) ≥ 0 when x ≥ 0, thus to set any of the x to zero the lasso needs to have
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f ′(x) < 0, when x passes through origin. Take x < 0. Then

f ′(x) < 0 ⇔ 2 (x + 1) + λsgn(x) < 0

⇔ 2 (x + 1) − λ < 0

⇔ 2 (x + 1) < λ.

Therefore f ′(x) < 0 for all x < 0 when λ > 2. We conclude that f (x) has a (nonstation-

ary) global minimum at x = 0 if and only if λ > 2.

PSfrag replacements

x

−2 −1

0

0 1

2

2

−5
5

10

4
6

8

f(
x)

f ′(x)

(a) f (x) = (x + 1)2 + λ |x|

−
4

PSfrag replacements

x

−
2

−2 −1

0

0 1

2

2

−5
5

10
4

6
8

f (x)

f′
(x

)

(b) f ′(x) = 2 (x + 1) + λsgn(x)

Figure 5.1: Plots of f (x) and f ′(x) for various choices of the tuning parameter. Key: λ = 0;
λ = 1; λ = 2; λ = 3.

Figures 5.1(a) and 5.1(b) give plots of f (x) and f ′(x) respectively for various choices

of λ. It can be seen that for λ > 2, f ′(x) does become negative for all x < 0 but not

when λ ≤ 2.

Now we move to the general case and we consider the linear regression model

y = Xβ + ε,

as defined in (5.2.1), but written in vector/matrix form here, with active set A =

{1, . . . , p0}. We define the lasso objective function as

L = (y −Xβ)T (y −Xβ) + λ
p

∑
j=1

∣∣β j
∣∣ .
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Letting β̂∗ = arg min L, thus

Sk =
∂L
∂βk

= −2xT
k (y −Xβ) + λsgn (βk) .

If Sk changes sign when βk passes through the origin then β̂∗
k = 0; and if not then

β̂∗
k 6= 0. We write A∗

n =
{

j : β̂∗
j 6= 0

}
. Thus, at β̂∗,

j ∈ A∗
n if −2xT

k
(
y −Xβ̂∗)+ λsgn

(
β̂k
)

= 0

j /∈ A∗
n if

∣∣∣−2xT
k
(
y −Xβ̂∗)

∣∣∣ ≤ λ.

As we have discussed earlier, the choice of λ is very important as it controls the degree

of shrinkage. As λ → 0, the OLS estimator is obtained and for λ sufficiently large, all

the coefficients are zero.

5.2.3 LARS Algorithm

Efron et al. (2004) developed an efficient algorithm known as least angle regression

(LARS) algorithm for finding the solution path of the lasso method, where the solution

path is the set of values of β̂∗(λ) as λ varies. Efron et al. (2004) also showed that both

forward stagewise linear regression and the lasso are variants of the LARS. (”L” for

least, ”A” for angle, ”R” for regression and ”S” suggests ”Lasso” and ”Stagewise”).

LARS cleverly organizes the calculations and thus the computational cost of the entire

p steps is of the same order as that required for the usual least squares solution for

the full model, though LARS modified for the lasso solution requires some additional

steps (Efron et al., 2004). LARS, like classic forward selection, starts with all coefficients

equal to zero.

Hastie et al. (2007) described the LARS algorithm to obtain the lasso solution as

follows:

1. Standardise the predictors to have zero mean and unit variance. Start with the

residual r = y − ȳ, β1, . . . , βp = 0.
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Figure 5.2: Example of Lasso solution path using the LARS algorithm

2. Find the predictor xj most correlated with r.

3. Move β j from 0 towards its least squares coefficient (x j, r), until some other com-

petitor xk has as much correlation with the current residual as does x j.

4. Move (β j , βk) in the direction defined by their joint least squares coefficient of the

current residual on (xj, xk), until some other competitor xl has as much correla-

tion with the current residual.

5. If a non-zero coefficient hits zero, drop it from A and recompute the current joint

least squares direction.

6. Continue in this way until all p predictors have been entered in the model and

we arrive at the full least squares solution.

Figure 5.2 is an example of the entire lasso solution path obtained using the lars

package (Hastie and Efron, 2007) in R. This figure shows the solution path of the lasso

obtained for the diabetes data discussed in Efron et al. (2004), as a function of the stan-

dardised lasso bound s ∈ [0, 1]. An important point to note is that the tuning parameter
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used is not λ ∈ [0, ∞] but a standardised quantity s defined as

s =

∣∣∣∣β̂∗∣∣∣∣
1∣∣∣∣β̂

∣∣∣∣
1

∈ [0, 1], (5.2.3)

where β̂ is the ordinary least squares estimate and β̂∗ is the lasso estimate of β for a

specified value of λ and ||.||1 stands for the l1 norm. It should be noticed that low values

of s correspond to high values of λ thus resulting in a large amount of shrinkage. The

vertical dotted line at s = 0.44 is the value of the tuning parameter chosen using cross-

validation (CV), described in Section 5.4. It can be seen that all the coefficients are set

to 0 at s = 0 and the predictors enter the solution sequentially as s increases. The

lasso solution at s = 1 corresponds to the least squares estimates. This example clearly

shows the importance of the tuning parameter in picking the correct solution from the

entire solution path. We will discuss this issue in detail in Section 5.4.

5.2.4 The Adaptive Lasso

Zou (2006) proposed a new version of the lasso, named the adaptive lasso, by using

adaptive weights which result in different penalisation for the coefficients appearing

in the L1 penalty term. The adaptive lasso can be defined as

β̂∗∗ = argmin

{
n

∑
i=1

(yi −
p

∑
j=1

β j xij)
2 + λ

p

∑
j=1

wj|β j |
}

,

where (w1, . . . , wp) are the adaptive weights. Zou has shown that if the weights are

efficiently chosen in a data-dependent way then the adaptive lasso can achieve the

oracle properties. He suggested the use of estimated weights, ŵj = |bj |−γ, where b =

{bj : j = 1, . . . , p} is a root-n-consistent estimator of β and γ > 0 is a user-chosen

constant.

The choice of ŵj is very important and Zou (2006) suggested using ordinary least

squares estimates while γ can be chosen by k-fold cross-validation. Zou (2006) has also

noted that the adaptive lasso, like the lasso, is a convex optimisation problem and so

does not suffer from having more than one local minimum, and its global minimum

can be obtained by the LARS algorithm (Efron et al., 2004) after a simple modification,
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we give in Algorithm 8, to accommodate the adaptive weights.

More recently, Pötscher and Schneider (2009) have studied the finite-sample and

the large-sample distribution of the adaptive lasso. They have focused on the two

important aspects of the adaptive lasso: (1) tuning to perform conservative model se-

lection and (2) tuning to perform consistent model selection. They have shown that

the finite-sample distribution of the adaptive lasso is highly non-normal and are often

multimodal. Their results show asymptotic results with a fixed tuning parameter (i.e.

tuning parameter not changing with sample size) can give the wrong picture of the

adaptive lasso estimator’s actual behaviour. They have also discussed scenarios when

λ → ∞ but n1/2λ → λ0 when 0 ≤ λ ≤ ∞ it is impossible to estimate the distribution

function as none of the estimators is uniformly consistent.

Zou (2006) has studied whether the standard lasso has the oracle properties dis-

cussed by Fan and Li (2001). He showed that there are some scenarios e.g. when con-

dition (5.2.4) given below does not hold, the lasso variable selection is not consistent.

The oracle properties of other shrinkage methods are also studied in the literature.

Fan and Li (2001) has studied the asymptotic properties of the SCAD and showed that

penalized likelihood methods have some local maximisers for which the oracle prop-

erties hold.

Zou (2006) also gave a necessary and almost sufficient condition for the consistency

of lasso variable selection. This condition, named as the irrepresentable condition, was

also found independently by Zhao and Yu (2006). We will call this condition the Zhao-

Yu-Zou condition (ZYZ condition). Assuming C11 is invertible, the ZYZ condition can

be stated as

∣∣∣
[
C21C

−1
11 sβ(A)

]
r

∣∣∣ ≤ 1, r = 1, . . . , p − p0, (5.2.4)

where C11, C21 are the partitions of C defined in (5.2.2), sβ(A) = {sgn(β j) : j ∈ A} and

p0 is the number of elements in A.

In general, lasso-type methods are more effective than conventional methods, e.g.

ordinary least squares, when the true model is sparse. If sparsity is not known to

be present then there are not many advantages of using lasso-type methods as the
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shrinkage results in biased estimates for the nonzero components (Hsu et al., 2008).

5.3 ZYZ Condition

The ZYZ condition (5.2.4) discussed by Zhao and Yu (2006) and Zou (2006) is a neces-

sary condition on the matrix C defined in (5.2.2) for consistent variable selection. The

ZYZ condition is always satisfied for an orthogonal design but there are some scenar-

ios where this condition fails. Zhao and Yu (2006) and Zou (2006) have presented some

examples where this condition fails, in which case, the lasso is inconsistent in variable

selection. However, Zou (2006) has shown that the adaptive lasso has the oracle prop-

erties for the linear regression model, so that variable selection is consistent.

An important point to note is that the ZYZ condition is an asymptotic condition.

The condition requires λ
p−→ 0, which refers to large sample sizes (n → ∞). For finite

sample sizes, the ZYZ condition does not always guarantee good variable selection.

When using the lars package in R for the implementation of the adaptive lasso,

we notice that the theoretical properties are not shown in the simulated examples. As

showed by Zou (2006) the adaptive lasso is consistent in variable selection even where

the ZYZ condition fails for the standard lasso, but we failed to approach the variable

selection oracle property of the adaptive lasso in the numerical example when the sam-

ple size becomes large. These strange results for the adaptive lasso lead us to look in

depth to the LARS algorithm and we noticed that normalisation (see Section 5.3.1), if

done after introduction of the adaptive weights, nullifies the effect of adaptive weights.

In this section we will show how use of adaptive weights makes the ZYZ condition

hold even when it originally fails.

Assume n−1XTX = C(n) p−→ C and is partitioned as indicated in (5.2.2). The

adaptive lasso rescales the design matrix X using some data-driven adaptive weights

{wj : j = 1, . . . , p}. We can rearrange and partition the weight matrix, W , as

W =


 W11 0

0 W22


 ,
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where W11 = diag(w−1
j ; j ∈ A) and W22 = diag(w−1

j ; j ∈ Ac).

Writing X̃ = XW , we can define C̃(n) = n−1X̃TX̃
p−→ C̃. We can partition C̃(n) as

C̃(n) =


 C̃

(n)
11 C̃

(n)
12

C̃
(n)
21 C̃

(n)
22


 .

Now,

C̃(n) =
1
n

X̃TX̃

= W TC(n)W

=


 W11C

(n)
11 W11 W11C

(n)
12 W22

W22C
(n)
21 W11 W22C

(n)
22 W22


 (5.3.1)

Take

C̃
(n)
21 C̃

(n)−1

11 sβ(A) =
(
W22C

(n)
21 W11

) (
W11C

(n)
11 W11

)−1
sβ(A)

= W22C
(n)
21 (C

(n)
11 )−1W−1

11 sβ(A),

where sβ(A) is defined in (5.2.4). If the weights {wj} are chosen appropriately (typ-

ical choices are inverse powers of absolute values of least squares estimates or ridge

estimates or lasso estimates) then,

wj =
1

|β̂ j|γ
p−→





1/|β j |γ, j ∈ A

∞, j /∈ A.
(5.3.2)

As W11 = diag
(

w−1
j : j ∈ A

)
, W−1

11 = diag
(
wj : j ∈ A

)
, so we can say, when in

general
∣∣β j
∣∣ >> 1 for j ∈ A, the elements of W −1

11 will be bounded by some finite

value say k∗. Moreover, since W22 = diag
(

w−1
j : j /∈ A

)
, it can be easily concluded

from (5.3.2) that W22
p−→ 0p−p0 , the (p − p0) × (p − p0) matrix of zeros. So for an

appropriate choice of the adaptive lasso weights, we can say that componentwise

∣∣∣
[
W22C

(n)
21 (C

(n)
11 )−1W11sβ(A)

]
r

∣∣∣ −→ 0, r = 1, . . . , p − p0
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thus we can conclude that componentwise

∣∣∣
[
W22C

(n)
21 (C

(n)
11 )−1W11sβ(A)

]
r

∣∣∣ ≤ 1, r = 1, . . . , p − p0 (5.3.3)

always holds, at least asymptotically. So the adaptive lasso always satisfies the ZYZ

condition asymptotically.

5.3.1 Normalisation after Rescaling by the Adaptive Weights

We have mentioned earlier that, under certain conditions, normalisation of the design

matrix often improves the performance of the lasso. As penalized least squares meth-

ods are not scale equivariant, it is recommended to normalize the predictors so that

each variable has unit L2 norm. Such a scaling is also the default option of the lars

package in R.

To provide insight into the effect of normalisation, we consider a simple case. Sup-

pose we have p predictors {xj : j = 1, . . . , p} for the model defined in (5.2.1) such that

n−1XTX
p−→ C. LARS uses xj/hj to normalise the predictors, where h j =

√
∑

n
i=1 x2

ij; j =

1, . . . , p.

Let Z̃ be the normalised design matrix of X̃ , which can be defined as

Z̃ = X̃D, (5.3.4)

where D = diag
(
1/h1 , . . . , 1/hp

)
. For illustrative purposes we consider

hj =





h∗1 for all j ∈ A

h∗2 for all j ∈ Ac
.

Thus D can be partitioned as D =


 D11 0

0 D22


, where D11 = h∗

−1

1 Ip0 and D22 =

h∗
−1

2 Ip−p0 . We can write the covariance matrix for the normalised predictors defined in
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(5.3.4) as C̃
(n)
Z = n−1Z̃TZ̃ as follows:

C̃
(n)
Z =


 D11C̃

(n)
11 D11 D11C̃

(n)
12 D22

D22C̃
(n)
21 C̃

(n)
11 D22C̃

(n)
22 D22




=


 C̃

(n)
11(Z)

C̃
(n)
12(Z)

C̃
(n)
21(Z)

C̃
(n)
22(Z)


 , say,

where C̃
(n)
ij(Z)

= (h∗i h∗j )
−1C̃

(n)
ij , i, j = 1, 2.

Now take

C̃
(n)
21(Z)

(C̃
(n)
11(Z)

)−1sβ(A) =
(
D22C̃

(n)
21 D11

) (
D11C̃

(n)
11 D11

)−1
sβ(A)

= D22C̃
(n)
21 (C̃

(n)
11 )−1D−1

11 sβ(A)

= h∗1 h∗
−1

2 C̃
(n)
21 (C̃

(n)
11 )−1sβ(A).

Using C̃
(n)
11 = W11C

(n)
11 W11 and C̃

(n)
21 = W22C

(n)
21 W11, we get

C̃
(n)
21(Z)

(C̃
(n)
11(Z)

)−1sβ(A) = h∗1 h∗
−1

2

(
W22C

(n)
21 (C

(n)
11 )−1W11

)
sβ(A).

For the necessary condition for consistent variable selection to hold, we require

∣∣∣
[
h∗1h∗

−1

2

(
W22C

(n)
21 (C

(n)
11 )−1W11

)
sβ(A)

]
r

∣∣∣ ≤ 1, r = 1, . . . , p − p0.

Using the result in (5.3.3), this will lead to two different scenarios:

• if h∗1 ≤ h∗2 , then the ZYZ condition always holds;

• if h∗1 > h∗2 , then normalisation can lead to failure of the ZYZ condition thus mak-

ing the variable selection inconsistent.

For example, consider Model 0, β0 = (5.6, 5.6, 5.6, 0)T , studied by Zou (2006). The
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covariance matrix used for simulation of predictors is

C =




1 −0.39 −0.39 0.23

−0.39 1 −0.39 0.23

−0.39 −0.39 1 0.23

0.23 0.23 0.23 1




.

We have
∣∣∣C21C

−1
11 sβ(A)

∣∣∣ = 3.1363 > 1, thus the ZYZ condition fails. Suppose C (n) be

the covariance matrix of the simulated set of predictors, x i:

C(n) =




1.0428311 −0.4203259 −0.3738564 0.2409415

−0.4203259 0.9585507 −0.3345396 0.2163182

−0.3738564 −0.3345396 0.9631588 0.2878907

0.2409415 0.2163182 0.2878907 1.0548909




.

We observed that
∣∣∣C(n)

21 (C
(n)
11 )−1sβ(A)

∣∣∣ = 3.161134 > 1. Thus the ZYZ condition fails so

the lasso variable selection will be inconsistent.

Now if we apply the adaptive lasso, we need to rescale the predictors x̃ j = xj/wj

using the adaptive weights, w j. Here, for example, we use estimated weights ŵj =

|β̂ j |−1, for j = 1, . . . , p, where β̂ j is the least squares estimate of β j, i.e. we choose the

tuning parameter γ to be 1. Now the covariance matrix, C̃(n), of the x̃j’s is given by

C̃(n) =




0.169194693 −0.080898724 −0.067396782 0.004310662

−0.080898724 0.218853480 −0.071542606 0.004591009

−0.067396782 −0.071542606 0.192927391 0.005722972

0.004310662 0.004591009 0.005722972 0.002081131




and we observed that
∣∣∣C̃(n)

21 (C̃
(n)
11 )−1sβ(A)

∣∣∣ = 0.3185492 < 1. Thus the ZYZ condition

holds and leads the adaptive lasso to consistent variable selection. Now if we normalise

the predictors after rescaling by the adaptive weights, the effect of the adaptive weights
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is nullified and the resulting covariance matrix after normalisation is given as

C̃
(n)
z =




6.9640450 × 10−3 −2.068320 × 10−4 −1.109767 × 10−3 8.745434 × 10−4

−2.068320 × 10−4 3.475609 × 10−5 −7.317432 × 10−5 5.785579 × 10−5

−1.1097671 × 10−3 −7.317432 × 10−5 1.270880 × 10−3 4.644906 × 10−4

8.745434 × 10−4 5.785579 × 10−5 4.644906 × 10−4 2.081131 × 10−3




and we observe that
∣∣∣C̃21(z)(C̃

(n)
11(z))

−1sβ(A)

∣∣∣ = 9.645727 > 1. Hence if predictors are

normalised after introducing adaptive weights the adaptive lasso will result into the

standard lasso.

The general case is less transparent but, even so, this illustrative example throws

some light in to the effect of normalisation.

The use of adaptive weights makes the adaptive lasso an oracle procedure. There-

fore it is crucial to determine at which stage we should normalise the predictors, if

required. We observe that normalisation nullifies the effect of adaptive weights if it is

done after the introduction of adaptive weights. In Algorithm 8, we elaborate the Zou

(2006) Algorithm 1 to obtain the adaptive lasso estimates for normalised predictors.

Algorithm 8: The LARS algorithm for the adaptive lasso.
Step 1 Standardise the predictors x1, . . . , xp so that each has mean 0 and
variance 1.
Step 2 Estimate the weights ŵj, j = 1, . . . , p using the normalised predictors
obtained in Step 1 above.
Step 3 Define x∗

j = xj/ŵj, j = 1, . . . , p.
Step 4 Solve the lasso problem for all λ

β̂∗ = argmin





n

∑
i=1

(
yi −

p

∑
j=1

x∗
j β j

)2

+ λ
p

∑
j=1

|β j |



 .

Step 5 Output β̂∗∗
j = β̂∗

j /ŵj.

5.4 Selection of Tuning Parameter

Selection of the tuning parameter is very important as it can have a big influence on

the performance of the estimator. Cross-validation is considered the simplest and most
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widely used method for minimisation the prediction error (Hastie et al., 2001). In the

literature, cross-validation (CV) is commonly used for estimating the tuning parameter.

It is defined later in this section. The most common forms of cross-validation are k-fold,

leave-one-out and the generalized cross-validation. The lars package uses k-fold cross-

validation. We can describe the k-fold cross-validation as below:

1. Data consisting of n observations are divided at random into k mutually exclusive

subsamples, known as k-folds.

2. The entire solution path is obtained as a function of the standardized tuning pa-

rameter s ∈ [0, 1] using the LARS algorithm, while omitting the ith fold, where

i = 1, . . . , k.

3. The fitted model is then used for prediction of the omitted ith subsample and the

prediction error is obtained against each choice of the tuning parameter s ∈ [0, 1].

4. The value of s which minimizes the prediction error is considered the optimal

choice of the tuning parameter.

Typical choices of k are 5 or 10. The choice k = n is known as leave-one-out cross-

validation, in this case we have n subsamples and for the ith subsample the fit is com-

puted using all the data after omitting ith observation. Leave-one-out cross-validation

is computationally very expensive. Generalized cross-validation provides an approxi-

mation to leave-one-out cross-validation. It is used when a linear model is fitted under

a squared-error loss function. See Hastie et al. (2001) for more details.

The theory suggests that consistent variable selection depends very much on the

selection of the tuning parameters. We will show and discuss later in Section 5.5 how

the choice of tuning parameter affects the performance of the lasso and adaptive lasso.

Our results (Section 5.5) show that when the tuning parameter is selected using cross-

validation, the lasso and adaptive lasso do not appear to be consistent in variable se-

lection, as independently showed by Wang and Leng (2009). Leng et al. (2006) have

shown that if the prediction accuracy criterion is used to select the tuning parameter

then lasso-type procedures cannot be consistent in variable selection.
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We have noticed that the oracle performance of the lasso can be achieved if a reli-

able method of tuning parameter selection is used. Recently, papers by Wang and Leng

(2009) and Hall et al. (2009a) confirmed our conclusions about the poor performance

of cross-validation based on numerical results. Wang and Leng (2009) suggested a

Bayesian information criterion (BIC) type criterion to choose the value of the tuning

parameter.

The BIC has previously been used as a model selection tool. As in model build-

ing, we have several candidate models and adding new parameters to a model will

increase the likelihood, but by including more parameters in the model, the model be-

comes more complex and the estimates also tend to have greater variance. In order to

address this problem, Schwarz (1978) suggested a Bayesian information criterion (BIC)

for the selection of a better model which achieves a suitable trade-off between simplic-

ity (fewer parameters) and goodness of fit (greater likelihood). In the Gaussian case

this takes the form given as

BIC = log(σ̂2) + p × log(n)

n
,

where σ̂2 is the residual variance and p is the number of parameters. The candidate

model which minimizes the BIC is selected. Note that log(σ̂2) is proportional to a

maximised Gaussian likelihood. Wang et al. (2007) defined a BIC as follows:

BICS = log(σ̂2
S) + |S| × log(n)

n
× Cn,

where |S| is the size of the model i.e. the number of non-zero parameters in the model,

σ̂2
S = SSES/n, Cn > 0 and SSES is the sum of squares of error for the non-zero com-

ponent of model. For Cn = 1 the modified BIC of Wang et al. (2007) reduces to the

traditional BIC of Schwarz (1978).

Suppose p0 is the size of the true model, i.e. the number of non-zero parameters

in the true model and |S| is the size of an arbitrary overfitted model i.e. ST ⊂ S and

|S| > p0. Under a condtion on the size of non-zero coefficients and standard condi-

tions of finite fourth order moments, Wang and Leng (2009) showed that P(BICS >

BICST) −→ 1 for any overfitted model, S . Thus, the BIC is consistent in differen-
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tiating the true model from every overfitted model. Using this property of the BIC,

Wang and Leng (2009) defined a modified BIC for the selection of the optimal value of

the tuning parameter λ:

BICλ = log(σ̂2
λ) + |Sλ| ×

log n
n

× Cn, (5.4.1)

where σ̂2
λ = SSEλ/n, SSEλ = ∑

n
i=1 ∑

p
j=1

(
yij − ∑

p
j=1 xT

j β̂λ

)2
is the sum of squared error,

Sλ = {j : β̂ j,λ 6= 0}, β̂ j,λ is the estimate for some chosen value of λ. Importantly, Cn > 0

is a constant, which must be very carefully chosen. Wang and Leng used Cn = log log p

in their simulation study when the number of parameters diverge with sample size. In

our study, we have tried several choices, for more discussion, see Section 5.5.2.

5.5 Numerical Results

In this section we look at the oracle properties (see Section 5.1) of the lasso (Tibshirani,

1996) and adaptive lasso (Zou, 2006). The theoretical properties of the lasso and adap-

tive lasso suggest that these methods are consistent in variable selection under some

conditions, see Section 5.3. We compare the performance of these two shrinkage meth-

ods looking at the following properties:

(1) consistency in variable selection, and

(2) prediction performance.

For (1), we look at the probability of containing the true model on the solution

path (PTSP) of these shrinkage methods. This measure has been used by Zou (2006).

The solution path is the entire set of estimates corresponding to various choices of the

tuning parameter. We obtain this solution path using the lars package in R. The solution

path is said to contain the true model if it results in a correct estimated model (CM) for

some choice of the tuning parameter, measure CM is defined more precisely later in

this section. We define PTSP as the proportion of times we get the CM out of N Monte

Carlo runs. For an oracle performance, PTSP
p−→ 1 as n → ∞.
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Convergence of PTSP to 1 in probability supports theoretical consistent variable

selection but to achieve it in practice requires the right choice of the tuning parameter.

Selection of the appropriate value of the tuning parameter is very challenging as there

is no precise theoretical answer to this question yet. In this study, we compare two

methods, k-fold cross-validation and the BIC, in their selection of the value of the tun-

ing parameter. We define two measures we will use to assess and compare the tuning

parameters selectors’ performance.

Model size (MS)

As we have defined earlier, model size, in the linear regression context, is the num-

ber of non-zero components in the model. For the simplicity of presentation, we as-

sume that model (5.2.1) has p0 < p, say, non-zero components i.e. {β j 6= 0 : j ∈ A} then

|A| = p0 while |SF| = p, whereA and |SF| are model size for true model and full model

respectively. An oracle procedure, say µ, should have the model size |Sµ| = |A| = p0.

Thus this measure guarantees that the prediction procedure is shrinking exactly the

same number of estimates to zero as in the true model. In our results, we present the

median MS (MMS) for the prediction procedure resulting from the M replicates. For

an oracle procedure MMS
p−→ p0.

Correct model (CM)

The correct model is the measure we use to determine if the procedure is correctly

shrinking the zero and non-zero components of the model. For oracle performance, the

estimated model should have {β̂ j = 0 for j ∈ A} and {β̂ j 6= 0 for j ∈ Ac} i.e.

CM = {β̂ j = 0 : j ∈ A, β̂ j 6= 0 : j ∈ Ac}. (5.5.1)

In our Monte Carlo study for each of these two methods, we compute and compare the

percent of correct models (PCM). For an oracle procedure MMS
p−→ p0 and PCM

p−→

100. The measures MMS and PCM are also used by Wang and Leng (2009).

For (2), we compute the median of relative model error (MRME) of the lasso and

adaptive lasso estimates, when the tuning parameter is selected by k-fold cross-validation

and the BIC. The measure MRME is used by Wang et al. (2007). We define the measure
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MRME as follows.

Median of relative model error (MRME)

As defined in Fan and Li (2001), if {(xi, yi) : i = 1, . . . , n} are assumed to be a

random sample from the distribution (X , y). For a prediction procedure µ̂(x) the pre-

diction error can be defined as

PE(µ̂) = E{y − µ̂(x)}2.

It should be noted that the expectation is taken only for the new data (x, y). Thus

the prediction error, assuming x being random, can be further decomposed into two

components as

PE(µ̂) = E{y − E(y|x)}2 + E{E(y|x) − µ̂(x)}2.

The second component of the prediction error, due to lack of fit, is called model error.

For the model (5.2.1), the model error can be defined as

ME(µ̂) = (β̂ − β)TE(xxT)(β̂ − β), (5.5.2)

where β̂ are the estimates used in the prediction procedure µ̂(x). Now we can de-

fine the relative model error as the ratio of the model error for any prediction proce-

dure µ̂(x) to the model error for least squares. The median of the relative model error

(MRME) for N Monte Carlo runs is obtained to assess the average lack of fit in the

prediction procedure.

Ideally, a model should have a low MRME. In order to have a standard reference

for the comparison, we define the oracle relative model error (ORME) as a ratio of

oracle model error, where we have knowledge of the zero components of the model

and the non-zero components have been replaced by the least square estimates, to the

model error of least squares estimates. The MRME for each model was compared to

the ORME and the model with MRME closest to the ORME is considered as the best

prediction procedure.
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We study the following three examples:

Model 0:

Suppose p = 4 and β0 = (5.6, 5.6, 5.6, 0)T , we consider this example to observe the

effect on the lasso and adaptive lasso consistency in variable selection when the ZYZ

condition does not hold. Using the partitioning of C defined in (5.2.2), we consider

C11 = (1 − ρ1) I + ρ1J1, where I is the identity matrix, J1 is the matrix of 1’s and

C12 = ρ21, where 1 is the vector of 1’s. In this model, we chose ρ1 = −0.39 and ρ2 =

0.23. This model is the same as that studied in Zou (2006) to illustrate the inconsistent

lasso solution path.

Model 1:

Suppose β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T and C =
{
(0.5|i−j|); i, j = 1, . . . , p

}
. The ZYZ

condition holds for this choice of C. This model was also studied by Fan and Li (2001),

Zou (2006) and Hall et al. (2009a).

Model 2:

Suppose β0 = (0.85, 0.85, 0.85, 0)T and C is the same as for Model 0. We have

considered this example to compare with the results obtained in Model 0, where we

have relatively large effects.

For all of the three examples, we designed a Monte Carlo study of 100 runs. For

each Monte Carlo run, we simulate the linear model y = Xβ + ε for the fixed set of

parameters given above, where X ∼ Np(0, C). In the Gaussian case, ε i ∼ N(0, σ2), we

have considered the choices σ = 1, 3, 6 and 9.

In the next section, we will see if the numerical results support the conclusion that

the lasso and adaptive lasso are consistent in variable selection. We will give results

for PTSP to compare variable selection done by these lasso-type methods, without in-

volving tuning parameter selection. In the second part of the next section, we will

give results for PCM, MMS and MRME, which are obtained after selecting the tuning

parameter. We will use k-fold cross-validation and BIC for the selection of tuning pa-

rameter. These results will also throw some light on how possible it is, in practice, to
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(a) Model 0, γ = 0
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(b) Model 0, γ = 0.5
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(c) Model 0, γ = 1
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(d) Model 0, γ = 2
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(e) Model 1, γ = 0

*

*

*

** * * * *

* * *

**
* * * *

* * * **

* * * *

* * * ** *
*

*
*

* *

*

**
* * * *

* * * **

* *
* *

* * * ** * *
*

*

* * * ** * * *

*

PSfrag replacements

s

C
oe

ffi
ci

en
ts

−.2
−.15
−.1
−.05

0
0.05

0.1
−2

−1.5
−1

−0.5

0

0.1

0.2

0.3

0.4

0.5

0.6 0.8 1

1.5
2

−5
−3
−2

−
1

0

0

1

1

1

2

2

2

3

3
4

5

5

5

6

6

7

7

8

8

9
10
11
12
15

−20
−15
−10

20
30
40
60
80

100
120

50
150
1.5

2
(f) Model 1, γ = 0.5
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(g) Model 1, γ = 1
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(h) Model 1, γ = 2
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(i) Model 2, γ = 0
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(j) Model 2, γ = 0.5
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(k) Model 2, γ = 1
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(l) Model 2, γ = 2

Figure 5.3: Solution path of the lasso (γ = 0) and adaptive lasso (γ = 0.5, 1, and 2) for the
three models defined in Section 5.5. Model 0: β0 = (5.6, 5.6, 5.6, 0)T . Model 1:
β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T . Model 2: β0 = (0.85, 0.85, 0.85, 0)T. Key: solid x1,
x2, x3, x4, x5, x6, dashed x7, x8.

achieve these oracle properties.

5.5.1 Variable Selection

To be consistent in variable selection is an important property of the shrinkage meth-

ods. The consistency or otherwise of the lasso selection depends on some model fea-

tures e.g. the ZYZ condition (5.2.4).

In this section, we give results for the solution path and the probability that it con-

tains the true model. These results are shown in Figure 5.3 and Figure 5.4. We consider

n = 50000 and assume ε ∼ N(0, 1) in the following results.

Figure 5.3 gives the solution paths of the lasso and adaptive lasso for the three
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CHAPTER 5: Lasso Methods for Regression Models

models obtained using the LARS algorithm. The horizontal axis corresponds to the

standardised tuning parameter, s ∈ [0, 1], defined in (5.2.3), and the vertical axis gives

the estimates of the model parameters in standardised units. The vertical lines show

the steps of the LARS algorithm when a variable enters or leaves a model. Different

colours and styles of lines correspond to the variables in the model as defined in the

caption of the figure. In the following paragraphs, we will discuss the solution paths

for each of the models defined above.

Model 0 in Figure 5.3:

We can define the following:

A = {1, 2, 3} and Ac = {4}.

For this model the ZYZ condition, the necessary condition for consistent variable se-

lection, fails and thus, as shown by Zou (2006), the standard lasso cannot be consistent

in variable selection. Figure 5.3(a) shows the solution path for the lasso and it can be

observed that the variable in the non-active set, x4, enters the model even for values

of s very close to zero and remains in the model except for a small range of values of s

where its coefficient changes its sign. This shows that the lasso solution path does not

contain the true model over a wide range of values of the tuning parameter which, as

we will see in next section, makes it harder to select a value for the tuning parameter

corresponding to the true model.

Figures 5.3(b)-(d) show the solution path of the adaptive lasso for choices of γ con-

sidered. It can be observed that the general pattern of the solution path in all these

cases is similar. The predictors, x1, x2 and x3, corresponding to the active set, A, enter

the model first while the predictor, x4, for the non-active set never enters the model

except near s = 1, which is the least squares estimate. These results show that the

adaptive lasso can be correct in variable selection if an appropriate value of the tuning

parameter is selected. In the next section, we will compare some popular tuning pa-

rameter selectors and see if this theoretical property of consistent variable selection can

be achieved in practice.
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CHAPTER 5: Lasso Methods for Regression Models

Model 1 in Figure 5.3:

We can define the following

A = {1, 2, 5} and Ac = {3, 4, 6, 7, 8}.

For this model the ZYZ condition holds. Now we will see if the lasso and adaptive

lasso both can do consistent variable selection. From Figure 5.3(e)-(f), we can see that

the solution paths of the lasso and adaptive lasso contain the true model but the stan-

dard lasso is performing better in the sense that picking up the correct model from the

solution path is less challenging as for a wide range of tuning parameter values, s, it

sets the non-active predictors to zero and they become non-zero only when s reaches

near to 1. As γ increases, the band of s for which the solution path contains the correct

model becomes narrower which makes selecting the tuning parameter harder. More-

over, it can be observed that the larger the value of γ, the smaller the value of s is

required to shrink the non-active predictors to zero.

Model 2 in Figure 5.3:

We can define the following

A = {1, 2, 3} and Ac = {4}.

This model has the same construction as for Model 0 but the effects are small in their

absolute values, so this is more challenging for lasso methods. The results shown in

Figure 5.3(i)-(l) lead to the same conclusions as for Model 0 but the solution path shows

that relatively small values of s need to be selected for correct variable selection. Also,

the adaptive lasso for γ = 0.5 shows that it can be incorrect unless a moderate value of

s is selected.

Having studied the solution paths of the lasso and adaptive lasso, we now have

some idea which method can be correct in variable selection. Now in the rest of this

section, we will give results on the basis of 100 Monte Carlo runs and will look at

some empirical results for the performance measures defined earlier at the start of this

section.
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(a) Model 0, γ = 0
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(b) Model 0, γ = 0.5
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(c) Model 0, γ = 1
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(d) Model 0, γ = 2
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(e) Model 1, γ = 0
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(f) Model 1, γ = 0.5
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(g) Model 1, γ = 1
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(h) Model 1, γ = 2
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(i) Model 2, γ = 0
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(j) Model 2, γ = 0.5
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(k) Model 2, γ = 1
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(l) Model 2, γ = 2

Figure 5.4: Probability, based on 100 runs, that solution paths of the lasso (γ = 0) and
adaptive lasso (γ = 0.5, 1, and 2) for the three models defined in Section 5.5.
Model 0: β0 = (5.6, 5.6, 5.6, 0)T. Model 1: β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T . Model 2:
β0 = (0.85, 0.85, 0.85, 0)T. The error distribution is ε i ∼ N(0, σ2); see also the cap-
tion for Figure 5.3. Key: σ = 1; σ = 3; σ = 6; σ = 9.

We now consider a selection of sample sizes ranging from n = 50 to n = 50000,

(50, 100, 300, 500, 1000, 5000, 10000, 20000, 50000) to study the performance of these meth-

ods for small sizes and also for their asymptotic behaviour. We assume ε i ∼ N(0, σ2),

where σ = 1,3,6 and 9 are the choices of error standard deviation.

Figure 5.4 gives the plots for the lasso and adaptive lasso showing the empirical

probability of containing the true model for each of the three models defined earlier. In

these plots, the horizontal axis corresponds to sample size on a logarithmic scale and

the vertical axis corresponds to the empirical probability that the true model lies on the

solution path.
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Model 0 in Figure 5.4:

Figure 5.4(a) shows the empirical probability of containing the true model for the

standard lasso, which confirms our earlier finding in the study of the solution path that

the lasso cannot be consistent in variable selection for Model 0 as the ZYZ condition

fails for this model. We can see that this probability varies between 0.4 and 0.6 and

does not converge to 1 even for sample sizes as large as n = 50000. The results do not

differ much for different choices of error variance.

For the adaptive lasso, Figures 5.4(b)-(d), show that the probability is converging to

1 and the larger the value of γ, the smaller the sample size is required to be to get the

probability exactly one. This shows that the adaptive lasso can be consistent in variable

selection if an appropriate value of the tuning parameter is selected. However, the

result that the adaptive lasso is doing well for larger values of γ should be interpreted

with caution. We have noticed in our earlier results on solution paths shown in Figure

5.3 that with an increase in γ, the range of values of s which correspond to the true

model decreases thereby making it harder for the tuning parameter selector to pick an

appropriate value of the tuning parameter. We will discuss this in detail later in this

section.

Model 1 in Figure 5.4:

In this case, the lasso and adaptive lasso for all choices of γ does not differ much

and the probability for all of them is converging to one. These results in conjunction

with the results shown in Figure 5.3 suggest that it is sometimes easier to select the

correct value of the tuning parameter for the lasso as compared to the adaptive lasso.

Model 2 in Figure 5.4:

For Model 2, we have small effects and the ZYZ condition also fails. As we no-

ticed earlier from Figure 5.3, this situation becomes more challenging. Now it can be

seen from the results shown in Figure 5.4(j),(k), that, in general, the probability for the

adaptive lasso when γ = 0.5 and 1 converges to one at a rate slower than in the case of

Model 0. But the results for the adaptive lasso when γ = 2 do not differ much for the

two models.
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(a) Model 0, γ = 0
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(b) Model 0, γ = 0.5
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(c) Model 0, γ = 1
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(d) Model 0, γ = 2

Figure 5.5: PTSP: Probability, based on 100 runs, that solution path of the lasso (γ = 0) and
adaptive lasso ((γ = 0.5, 1, and 2) for Model 0 defined in Section 5.5. Model 0:
β0 = (5.6, 5.6, 5.6, 0)T . The error distribution is ε i ∼ tν. Key: ν = 5; ν = 10;
ν = 20; ν = ∞

Before we give results for other performance measures based on the tuning param-

eter selector, we give some results for non-Gaussian errors. First we assume ε i ∼ tν,

where tν represents a Student’s t-distribution with ν degrees of freedom. We consider

ν = 5, 10, 20 and ∞. The smaller the value of ν is, the heavier the tails of the error

distribution and ν = ∞ corresponds to the normal distribution.

As expected, results in Figure 5.5 show that, due to failure of the ZYZ condition,

the lasso is not consistent and, as is the case for Gaussian errors, the probability that

the true model lies on the solution path is not converging to 1. For the adaptive lasso,

the results match with Gaussian errors with σ = 1. Obviously, scaling the error with a

factor, say a > 1, will result in poor performance as seen in the Gaussian case.

Now consider ε i ∼ χ2
ν, where ν = 1, 2, 5, 10 and 100. We know that for small ν the

χ2
ν distribution is skewed to the right, but as ν increases the χ2

ν distribution approaches

125



CHAPTER 5: Lasso Methods for Regression Models

PSfrag replacements

log n
4 5 6 7 8 9 10 11

P
T

SP
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(a) Model 0, γ = 0
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(b) Model 0, γ = 0.5
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(c) Model 0, γ = 1
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(d) Model 0, γ = 2

Figure 5.6: PTSP: Probability, based on 100 runs, that solution path of the lasso and the
adaptive lasso ((γ = 0.5, 1, and 2) for Model 0 defined in Section 5.5. Model 0:
β0 = (5.6, 5.6, 5.6, 0)T . The error distribution is ε i ∼ χ2

ν. Key: ν = 1; ν = 2;
ν = 5; ν = 10, ν = 100.

symmetry but the variance increases.

Figure 5.6 gives the probability for the lasso and adaptive lasso of containing the

true model on their solution paths. These results confirm the earlier findings that larger

error variance makes variable selection more challenging. Though for smaller choices

of ν, e.g. ν = 1, the chi-square distribution is extremely skewed but the adaptive lasso

is still consistent in variable selection.

Finally, we consider the lognormal case in which ε i ∼ eσzi , where zi ∼ N(0, 1). We

consider the choices σ = 1 through 5.

Figure 5.7 shows the plots of empirical probability of doing consistent variable se-

lection of the lasso and adaptive lasso when the error term has a log-normal distribu-

tion. For the log-normal distribution, as σ increases the distribution moves away from

symmetry and the variance is also increased. Thus, as our previous findings suggest,
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(a) Model 0, γ = 0
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(b) Model 0, γ = 0.5
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(c) Model 0, γ = 1
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(d) Model 0, γ = 2

Figure 5.7: PTSP: Probability, based on 100 runs, that solution path of the lasso and adap-
tive lasso ((γ = 0.5, 1, and 2) for Model 0 defined in Section 5.5. Model 0:
β0 = (5.6, 5.6, 5.6, 0)T. The error distribution is ε i = exp(σzi), where zi ∼ N(0, 1).
Key: σ = 1; σ = 2; σ = 3; σ = 4; σ = 5.

we can expect, the log-normal distribution with larger values of σ to be more challeng-

ing for the lasso methods applied to variable selection, and this fact is evident in these

results.

In the next section, we will compare the tuning parameter selectors and will also

see if oracle properties of lasso-type methods can be achieved in practice.

5.5.2 Estimation of the Tuning Parameter

As we have discussed earlier in Section 5.5.1, when the ZYZ condition fails, the lasso

is not consistent in variable selection but the adaptive lasso is. In cases where the

ZYZ condition holds, the lasso and adaptive lasso theoretically do consistent variable

selection but consistency can only be achieved if we have a method which can select an

appropriate value of the tuning parameter. If the tuning parameter is not appropriately
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selected, even though the solution path contains the true model, it is likely we will

select an incorrect model. Tibshirani (1996) also noted in a simulation example that

though the lasso solution path contains the true model, only for a small fraction of

possible choices of tuning parameter s ∈ [0, 1] the lasso does pick the correct model.

The discussion above shows the importance of tuning parameter selection. In this

section, we compare two methods used for tuning parameter selection: (1) k-fold cross-

validation and (2) the Bayesian information criterion (BIC). These methods are defined

in Section 5.4. We use 5-fold cross-validation as suggested by Zou (2006). In their

numerical results, Fan and Li (2001) have found that 5-fold cross-validation and gener-

alised cross-validation perform similarly. For the BIC, defined in (5.4.1), we have used

several values for Cn, e.g. Cn = 1, 5, and 10. We noticed in our numerical study that all

of these considered choices of Cn fail to work as n increases. This may be due to fail-

ure of Wang and Leng (2009, condition 4), for these fixed choices of Cn, that requires a

condition on the size of non-zero parameters and that of Cn. We also observe from our

numerical results that each of the considered fixed choice of Cn works up to a certain

sample size and then the results drop down in performance. We notice that the larger

the sample size the larger the value of Cn is required and vice versa.

These results lead us to the conclusion that the performance of the BIC approach is

highly dependent on the value of Cn and we need a value of Cn which increases at a

certain rate with n. The results for these fixed values of Cn intuitively guided us to the

use of Cn =
√

n/p, where n is the sample size and p is the number of predictors. In the

rest of the section, we give the results for this choice of Cn.

As we have discussed earlier, smaller values of the tuning parameter, s, lead to a

greater amount of shrinkage and this results in setting more of the estimates to exactly

zero. First we look at the median model size for the value of s chosen by each of the

tuning parameter selectors viz cross-validation and the BIC.

Figure 5.8, shows the plots of median model size. The measure model size is defined

earlier at the start of Section 5.5. To illustrate the results, we give the results for the

lasso (γ = 0) and adaptive lasso (γ = 1). In this figure, the dashed horizontal line

corresponds to the true model size while different coloured lines correspond to the
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(a) Model 0, γ = 0, CV
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(b) Model 0, γ = 0, BIC
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(c) Model 0, γ = 1, CV
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(d) Model 0, γ = 1, BIC
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(e) Model 1, γ = 0, CV
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(f) Model 1, γ = 0, BIC
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(g) Model 1, γ = 1, CV
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(h) Model 1, γ = 1, BIC
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(i) Model 2, γ = 0, CV
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(j) Model 2, γ = 0, BIC
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(k) Model 2, γ = 1, CV
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(l) Model 2, γ = 1, BIC

Figure 5.8: MMS: Median model size, based on 100 Monte Carlo runs, for the lasso (γ = 0) and
adaptive lasso (γ = 1) using CV (5-fold cross-validation) and BIC (Cn =

√
n/p)

for tuning parameter selection for the three models defined in Section 5.5. Model
0: β0 = (5.6, 5.6, 5.6, 0)T . Model 1: β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T . Model 2: β0 =
(0.85, 0.85, 0.85, 0)T . The error distribution is ε i ∼ N(0, σ2); see also the caption for
Figure 5.3. Key: σ = 1; σ = 3; σ = 6; σ = 9.

model sizes for the different choices of error variance.

Model 0 in Figure 5.8:

Figure 5.8(a),(b) give the median model size for the lasso for cross-validation and

the BIC respectively. It can be noticed that the lasso cross-validation leads to MMS = 4,

which is the full model. If we look at the model size plot for the lasso with the BIC, we

can see even the BIC does not lead to the true model size. If we read this result in

relation to the solution path of the lasso for Model 0 as shown in Figure 5.3(a), we can

see for the lasso the non-active predictor enters the estimated model first and for most

of the part of the lasso solution path, it remains are non-zero.
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As we have already concluded in the previous discussion on the solution path con-

cerning Figure 5.3, the adaptive lasso picks up the predictors in the right order, so an

appropriate choice of tuning parameter will lead to the true model size. Now we can

see from Figure 5.8(c),(d) that cross-validation is again resulting in overfitted models,

while with the BIC we get the true model size except for small choices of sample size.

Interestingly, the BIC for the adaptive lasso does not produce any overfitted model.

Model 1 in Figure 5.8:

This is the model for which the ZYZ condition holds and we have seen earlier that

both the lasso and adaptive lasso can do consistent variable selection for this model.

We have also noticed that picking up the correct model from the lasso solution path is

often easier than for the adaptive lasso. Figure 5.8(e)-(h) confirm the earlier findings

that both the lasso and adaptive lasso tuning parameters selected by cross-validation

result in overfitted models, while the BIC results converge to true model size. Note

that for the lasso, even for larger error variance, the size of the fitted model converges

to the true model size for smaller sample size.

Model 2 in Figure 5.8:

This model contains small effects and also the ZYZ condition does not hold. These

two facts make the variable selection very challenging in this case. If we compare these

results with those of Model 0, we notice that in this case we are seeing more underfitted

models, especially for the larger choices of error variance. For the adaptive lasso with

smaller error variance, σ2 = 1, with the BIC we are able to achieve the true model but

not for the larger choices of error variance.

From the discussion on model size, we note that cross-validation is not the right

method to select the tuning parameter and results in some incorrect shrinkage to zero

for the active predictors. We have also observed that the BIC is leading to the true

model size while cross-validation not. Now we further confirm these results by looking

at the percent of correct models identified by these tuning parameter selectors. The

measure CM is defined in (5.5.1). PCM is the percentage of times we end up with

correct model in N Monte Carlo runs. This measure help us to confirm, when we have
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achieved the true model size, whether the active predictors have been selected in the

model.
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Figure 5.9: PCM: Percentage of correct models identified, based on 100 Monte Carlo runs, for
the lasso (γ = 0) and adaptive lasso (γ = 1) using CV (5-fold cross-validation) and
the BIC (Cn =

√
n/p) for tuning parameter selection for the three models defined

in Section 5.5. Model 0: β0 = (5.6, 5.6, 5.6, 0)T . Model 1: β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T .
Model 2: β0 = (0.85, 0.85, 0.85, 0)T . The error distribution is ε i ∼ N(0, σ2); see also
the caption for Figure 5.3. Key: σ = 1; σ = 3; σ = 6; σ = 9.

Figure 5.9 show the plots of percentage of correct model identified. We give the

results for the lasso (γ = 0) and adaptive lasso (γ = 1) when the tuning parameter is

selected by 5-fold cross-validation and the BIC (Cn =
√

n/p). The horizontal axis cor-

responds to the sample size on a logarithmic scale and the vertical axis corresponds to

the percent of correct models. Ideally, these plots should match with the corresponding

plots of probability of containing the true model on the solution path shown in Figure

5.4. For example, Figure 5.4(c) shows that for the adaptive lasso (γ = 1), the probabil-

ity of containing the true model on the solution path converges to one for each choice
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of the error variance. Now if we compare this with Figure 5.9(c), which shows the per-

centage of correct models identified using cross-validation, we can see this percentage

is very low and even decreases to zero as sample size increases. In contrast, a com-

parison of Figure 5.4(c) with Figure 5.9(d) shows that for the BIC we can do consistent

variable selection with percentage approaching 1.

Similar kinds of conclusions can be made for the other two models. It is found that

cross-validation fails to select the appropriate value of the tuning parameter thus re-

sulting in the selection of an incorrect model from the lasso and adaptive lasso solution

path.

From the above discussion we note that the oracle property of consistent variable

selection can be achieved for the lasso if the ZYZ condition holds, while the adaptive

lasso can do the consistent variable selection even if the ZYZ condition does not hold

in the standard lasso. We also found that an appropriate value of the tuning parameter

can be selected if a tuning parameter selector based on the BIC is used.

In the following paragraphs we will give some results on the performance measure

Median of Relative Model error (MRME) and will compare it with corresponding Or-

acle Relative Model Error (ORME). MRME and ORME are defined earlier at the start

of Section 5.5 along with the definition of Model error (ME) given in (5.5.2).

Figure 5.10 gives the plots of MRME for the lasso and adaptive lasso. These plots

are for the models corresponding to the value of the tuning parameter selected by cross-

validation and the BIC. The dotted line is the ORME. In general, we can see that the

MRME for cross-validation is lower than for the BIC. Moreover, we notice, in the case

of the BIC, the MRME for the adaptive lasso is lower than the lasso when the ZYZ

condition fails.

Now we give some results for the distribution of the tuning parameter selected by

cross-validation and the BIC.

Figure 5.11 gives for Model 0 boxplots for the distribution of the tuning parameter,

s, selected by cross-validation and the BIC. It can be noticed that for the lasso with error

standard deviation, σ = 1, the distribution of s is centered around 1, with a very low

range. This means that for Model 0, the lasso with cross-validation and BIC will pro-
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(e) Model 1, γ = 0, CV
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(f) Model 1, γ = 0, BIC
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(g) Model 1, γ = 1, CV
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(h) Model 1, γ = 1, BIC

PSfrag replacements

log n
4 5 6 7 8 9 10 11

M
R

M
E

0

20
40

60
80

10
0

50
70
90
85
95

105
110
115
500

1000
1500
2000
4000
6000
8000

200
400
600
800

1200
300
700

10000

20000
(i) Model 2, γ = 0, CV
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(k) Model 2, γ = 1, CV
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Figure 5.10: MRME: Median of relative model error, based on 100 Monte Carlo runs, for the
lasso (γ = 0) and adaptive lasso (γ = 1) using CV (5-fold cross-validation) and the
BIC (Cn =

√
n/p) for tuning parameter selection for the three models defined in

Section 5.5. Model 0: β0 = (5.6, 5.6, 5.6, 0)T. Model 1: β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T .
Model 2: β0 = (0.85, 0.85, 0.85, 0)T . The error distribution is ε i ∼ N(0, σ2); see
also the caption for Figure 5.3. Key: σ = 1; σ = 3; σ = 6; σ = 9.

duce least squares estimates. This result is also supported by our earlier finding from

the lasso solution path and other performance measures based on tuning parameter

selectors. As the error variance increases, we can see the tuning parameter selectors,

especially the BIC, start picking up tuning parameter values away from 1 and close to

0, which results in some shrinkage for the lasso estimates. The result of this change can

be seen in Figure 5.9(b), where we can clearly see higher percentage of correct models

for σ = 6 as compared to σ = 1.

For the adaptive lasso, cross-validation is selecting a value of s, which is further

away from 1 as compared to the lasso. Due to this, a relatively higher percentage of

correct models for the adaptive lasso can be seen in Figure 5.9(c), as compared to Figure
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Figure 5.11: Box plots for tuning parameters for the lasso (γ = 0) and adaptive lasso (γ = 1)
using CV (5-fold cross-validation) and the BIC (Cn =

√
n/p) for tuning parameter

selection for the model defined in Section 5.5. Model 0: β0 = (5.6, 5.6, 5.6, 0)T .
The error distribution is ε i ∼ N(0, σ2) where σ = 1 and 6. Considered choices of
sample size are ni = (50, 100, 300, 500, 1000, 5000, 10000, 20000, 50000).

5.9(a). But it can be clearly noticed that the BIC is selecting a value of s, which is smaller

than that selected by cross-validation and thus shrinking some of the estimates exactly

to zero. So the advantage of selecting an appropriate value of s by the BIC can be clearly

seen in Figure 5.9(d).

5.6 Conclusion

In this chapter we have compared the performance of the lasso and adaptive lasso. Our

results show that the ZYZ condition is an important condition for consistent variable

selection for the lasso and adaptive lasso. We have seen that the lasso can be consistent

in variable selection when the ZYZ condition holds provided that an appropriate value

of the tuning parameter is selected. It should be noted that the ZYZ condition always

holds for the adaptive lasso due to the use of adaptive weights and thus it showed

consistent variable selection in all the cases.

The numerical results suggest that cross-validation is not a reliable method espe-

cially if the primary objective is variable selection. In all situations considered, our
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results suggest that both the lasso and adaptive lasso using cross-validation as a tun-

ing parameter selector leads to inconsistent variable selection. In contrast, the BIC has

shown its capability to choose a value for the tuning parameter which correctly shrinks

the coefficients of non-active predictors to zero.

135



CHAPTER 6

Lasso Methods for Time Series

Models

6.1 Introduction

Time series models are of importance in many fields. More recently, there has been

growing interest in multivariate as opposed to univariate time series. Serial depen-

dence of univariate time series provides an important basis for constructing time series

models. In multivariate time series, in addition to the serial dependence of each com-

ponent of the time series, the interdependence between different component time series

needs to be accounted for in model building.

The theoretical properties of the lasso (Tibshirani, 1996) and adaptive lasso (Zou,

2006) are potentially appealing for time series models. However, although lasso-type

methods are widely studied and discussed for the regression problem, there is rela-

tively little literature available on the application of lasso-type methods in the time

series context. Perhaps this is because it is not clear at the outset how best to use lasso-

type methods in the multivariate time series setting. Most of the applications of lasso-

type methods in the time series context are in the field of network identification, see

e.g. Fujita et al. (2007). Haufe et al. (2008) discussed the application of shrinkage meth-

ods to estimate sparse vector autoregressive models in the context of causal discovery.

They suggested a method based on the group lasso and compared its performance with

ridge regression and the lasso. For details see Section 1.1.
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The success of shrinkage methods for regression models leads us to explore the use

of these methods for multivariate time series. When modelling real data we often focus

on sparse models, especially in high dimensional settings. Although we use VAR(1)

i.e. vector autoregressive model with lag 1, as the basis for our approach, it is important

point to note that in our theoretical results we have assumed only a stationarity condi-

tion for the time series model. The VAR(1) model structure is used for convenience but

our results hold for much more general classes of stationary and non-stationary time

series models e.g. seasonal and non-seasonal vector ARMA models.

In Chapter 5, we studied properties of the lasso and adaptive lasso for linear regres-

sion models. In this chapter, we study the lasso and adaptive lasso in multivariate time

series problems. The oracle properties of the adaptive lasso are proved for multivari-

ate time series models under a stationarity condition. We also compare the lasso and

adaptive lasso variable selection procedures for different models.

The structure of this chapter is follows: Section 6.2 gives some important defini-

tions. Least squares estimates for VAR(1) are obtained in Section 6.3. In Section 6.4 a

theorem which presents a necessary condition, similar to the ZYZ condition discussed

in Chapter 5 for consistent variable selection using the lasso is stated and proved. In

Section 6.5 a statement and proof of the oracle property of the adaptive lasso for multi-

variate time series models is given. Finally, in Section 6.6 we look at some examples of

the application of lasso-type methods to time series models.

6.2 Some Definitions

6.2.1 Centred Multivariate Time Series

Consider a p-dimensional multivariate time series {yt}n
t=1 where yt =

(
y1t, . . . , ypt

)T.

Consider a VAR(1) model which can be defined as

yt = β0 + Byt−1 + εt, t = 2, . . . , n, (6.2.1)

where β0 is a constant vector, B = [bij]
p
i,j=1 = (b1, . . . , bp)T is p × p coefficient matrix

and {εt} is a white noise process with zero mean and covariance matrix Σε.
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Let us define the active sets i.e. sets of non-zero coefficients in model (6.2.1), as

A = {(i, j) : bij 6= 0} ⊆ {1, . . . , p} × {1, . . . , p} and, moreover, suppose that for each

i = 1, . . . , p, we define A(i) = {j : bij 6= 0} ⊆ {1, . . . , p}. Then A = {(i, j) : j ∈

A(i), i = 1, . . . , p}.

The L1 penalty lasso estimator, β̂∗, of β = (β0, B) can be defined as

β̂∗ = arg min

[
n−1

∑
t=1

p

∑
i=1

(yt+1,i − β0i − bT
i yt)

2 + λn

p

∑
i,j=1

|bij|
]

,

where λn varies with n. It is important to note that components of β0 are not penalized.

Let us now write penalized sum of squares as

L(β0, B) =
n−1

∑
t=1

‖yt+1 − β0 −Byt‖2 + λn

p

∑
i,j=1

|bij|.

Setting

∂L
∂β0

= 0p,

gives

n−1

∑
t=1

(yt+1 − β0 −Byt) = 0p,

where 0p is the p-vector of zeros. For given B, this yields

β̂∗
0 (B) = ȳ2 −Bȳ1,

where ȳ2 = (n − 1)−1 ∑
n−1
t=1 yt+1 is the mean vector of last n − 1 observations and ȳ1 =

(n − 1)−1 ∑
n−1
t=1 yt is the mean vector of first n − 1 observations. Now we can redefine

the penalized sum of squares evaluated at β̂0
∗
(B) as

L(β̂∗
0(B), B) =

n−1

∑
t=1

‖(yt+1 − ȳ2) −B(yt − ȳ1)‖2 + λn

p

∑
i,j=1

|bij|.

Thus, working with the centerings shown above, we can omit β0 and without loss of

generality we can work with only autoregressive parameter matrix B. So the reduced
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form of model (6.2.1) for centered time series, {yt} can be defined as

yt = Byt−1 + εt, t = 2, . . . , n, (6.2.2)

where B = (b1, . . . , bp)T is the matrix of autoregressive coefficients. From this point

onwards, we will work only with centered series of the form (6.2.2).

6.2.2 Karesh-Kuhn-Tucker Optimality Conditions

In optimization theory, the question of whether a given stationary point is a local mini-

mum of the objective function often arises. The Karesh-Kuhn-Tucker (KKT) optimality

conditions may be used to address this question. Here we briefly define the KKT con-

ditions in the lasso context as there is a non-standard aspect.

Suppose we have a nonlinear programming problem:

minimize f (x)

subject to the inequality constraint

gj(x) ≥ 0, for j = 1, . . . , J.

According to the KKT conditions for an inequality constrained problem, a point x? is a

local minimum if a set of non-negative λ j’s may be found such that

∇ f (x?) −
J

∑
j=1

λj∇gj(x
?) = 0. (6.2.3)

In the lasso context it is necessary to consider modified KKT conditions because of

the non-differentiability of the penalty term when coefficients b ij pass through zero.

Specifically, consider the partial derivatives corresponding to components which are

exactly zero at the optimum. The modified KKT condition for these partial derivatives

is that they change sign at the optimum. We will make use of these modified KKT

conditions in the proof of Theorems 6.4.1 and 6.5.1. See the example in Section 5.2.2 for

further insight.
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In general, KKT conditions are necessary conditions but not sufficient. To prove the

sufficiency of KKT conditions some further restrictions are required. For more details

on KKT conditions see e.g. Nocedal and Wright (1999).

6.3 Least Squares Estimates of the Multivariate Time Series

Let y1, . . . , yn be a random sample from a centered stationary p-dimensional multivari-

ate time series {yt} defined in (6.2.2). Assume Cov(yt) = C and Cov(yt+1, yt) = D.

Let us first obtain the least squares estimates for the vector autoregressive model,

VAR(1). Note that we are not going to assume that the VAR(1) model is the true model.

We work with a general stationary sequence {yt}t≥1, which is only required to satisfy

mild conditions which are stated later. The model sum of squares of residuals can be

defined as

M(B) =
n−1

∑
t=1

||yt+1 −Byt||2 =
n−1

∑
t=1

p

∑
i=1

(yt+1,i − bT
i yt)

2 (6.3.1)

over b1, . . . , bp. Differentiating (6.3.1) with respect to bi and equating to zero gives

2
n−1

∑
t=1

yt

(
yt+1,i − b̂T

i yt

)
= 0p.

Dividing through by (n − 1) and on simplifying we obtain

b̂i =

(
1

n − 1

n−1

∑
t=1

yty
T
t

)−1(
1

n − 1

n−1

∑
t=1

ytyt+1,i

)

Therefore,

B̂ =
[
b̂1, . . . , b̂p

]T

=

[
1

n − 1

n−1

∑
t=1

yt+1y
T
t

] [
1

n − 1

n−1

∑
t=1

yty
T
t

]−1

= DnC−1
n ,

where Cn and Dn are sample analogues of C = Cov(yt) and D = Cov(yt+1, yt) defined
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by

Cn =
1

n − 1

n−1

∑
t=1

yty
T
t and Dn =

1
n − 1

n−1

∑
t=1

yt+1y
T
t . (6.3.2)

Let us now consider least squares estimate of B in a submodel consisting of only non-

zero autoregressive coefficients. Following through the previous calculation, we can

write the least squares estimates for the submodel A as

b̂i,A(i) =



{

C−1
n

(
1

n − 1

n−1

∑
t=1

yt,A(i)yt+1,i

)}

j

: j ∈ A(i)




T

,

where [a]j is the jth component of a vector a.

Using the results of Hsu et al. (2008), we can write the model (6.2.2) in the regression

form

y ≡ Zβ + E, (6.3.3)

where

β = vec(B) (6.3.4)

is (p2 × 1), y = vec(y2, . . . , yn) is (p(n − 1) × 1), E = vec(ε2, . . . , εn) is (p(n − 1) × 1),

Z ≡ zT ⊗ Ip is (p(n − 1) × p2) where z = (y1, . . . , yn−1) is (p × (n − 1)). In the above

vec(.) is the vectorization formed by stacking the columns of a matrix and ⊗ is the

Kronecker product. The Kronecker product A ⊗ B of two matrices A = {a ij}p,q
i,j=1 and

B = {bkl}r,s
k,l=1 is the pq× rs matrix {aij B}p,q

i,j=1; see e.g. Mardia et al. (1979). Assume that

1
n

ZTZ
p−→ Γ = C ⊗ Ip, (6.3.5)

where C = E
[
yty

T
t
]
. This is a very mild assumption in the regression context as

discussed by Knight and Fu (2000), Zou (2006) and Zhao and Yu (2006). In the time

series context it also holds under mild conditions provided long range dependence is

not present.
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We have k = p2 parameters and we can assume that k0 < k is number of non-zero

parameters in the true model (6.3.3). Let

C ⊗ Ip =


 (C ⊗ Ip)A,A (C ⊗ Ip)A,Ac

(C ⊗ Ip)Ac,A (C ⊗ Ip)Ac,Ac


 , (6.3.6)

where (C ⊗ Ip)A,A = {c(i,j),(r,s) : (i, j), (r, s) ∈ A} is a k0 × k0 matrix, (C ⊗ Ip)A,Ac =

{c(i,j),(r,s) : (i, j) ∈ A, (r, s) ∈ Ac} is a (k− k0)× k0 matrix, (C ⊗ Ip)Ac,A = (C ⊗ Ip)T
A,Ac ,

and (C ⊗ Ip)Ac,Ac = {c(i,j),(r,s) : (i, j), (r, s) ∈ Ac} is a (k − k0) × (k − k0) matrix. The

rows and columns (C ⊗ Ip)ij are ordered using the ordering defined as follows:

(i1, j1)





< (i2, j2) if i1 < i2, or i1 = i2 and j1 < j2

= (i2, j2) iff i1 = i2, j1 = j2

> (i2, j2) if i1 > i2, or i1 = i2 and j1 > j2.

In the next section, we will prove a necessary condition for lasso-type methods to

achieve consistent variable selection for time series models. This condition closely par-

allels the ZYZ condition in the regression case but the form of the condition is more

complicated in the multivariate time series setting.

We will use the following notations: B† = [b†
ij : i, j = 1, . . . , p], B̂∗ = [b̂∗ij : i, j =

1, . . . , p] and B̂∗∗ = [b̂∗∗ij : i, j = 1, . . . , p] as the true value, the lasso estimate and the

adaptive lasso estimate, respectively, of parameter matrix B = [b ij : i, j = 1, . . . , p].

Moreover, we define B∗ = [b∗ij : i, j = 1, . . . , p] as a limiting value of the lasso estimates

B̂∗ = [b̂∗ij : i, j = 1, . . . , p].

6.4 Consistency of Lasso Variable Selection

Zou (2006) showed for linear regression models that lasso variable selection is incon-

sistent if the ZYZ condition (5.2.4) fails; see Section 5.5 for detailed discussion. In this

section we prove the inconsistency of the lasso in variable selection for stationary mul-

tivariate time series models when the multivariate time series analogue of the ZYZ

condition does not hold. Importantly, the multivariate time series analogue of ZYZ

condition, like regression version, is a necessary condition so holding ZYZ condition
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does not imply consistent variable selection.

Lasso estimates for the model (6.2.2) can be defined as

β̂∗ = arg min
n−1

∑
t=1

p

∑
i=1

(yt+1,i − bT
i yt)

2 subject to
p

∑
i,j=1

|bij | ≤ ω,

where β̂∗ = vec(B̂∗) is defined in similar fashion as β̂ defined in (6.3.4). We shall often

define the problem in following way:

β̂∗ = arg min

{
n−1

∑
t=1

p

∑
i=1

(yt+1,i − bT
i yt)

2 + λn

p

∑
i,j=1

|bij|
}

, (6.4.1)

where λn is the user-defined tuning parameter that controls the amount of shrinkage.

The lasso selection is consistent if and only if limn→∞ P(A∗
n = A) = 1, where

A =
{
(i, j) : bij 6= 0

}
, (6.4.2)

A∗
n =

{
(i, j) : b̂∗ij 6= 0

}
(6.4.3)

and b̂∗ij is the lasso estimate of bij. We define

βA = {bij : (i, j) ∈ A} (6.4.4)

as the non-zero coefficients in the model and

β̂∗
A = {b̂∗ij : (i, j) ∈ A} (6.4.5)

the non-zero coefficients in the estimated lasso model. We assume |βA| = k0, where |.|

stands for the cardinality.

The following assumptions about the process {yt}t≥1 will be needed:

(A1) The sequence {yt}t≥1 is stationary.

(A2) The mean is zero, i.e. E(yt) = 0p.

(A3) As n → ∞,

1
n

n−1

∑
t=1

yty
T
t

p−→ C,
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where C is of full rank; and

1
n

n−1

∑
t=1

yt+1y
T
t

p−→ D =
[
d1, . . . , dp

]T .

(A4) As n → ∞,

G
d−→ Np2

(
0p2 , V

)
,

where G =
[
GT

1 , . . . , GT
p

]T
, such that

Gi = n−1/2
n−1

∑
t=1

(
yt+1,i − yT

t b†
i

)
yt,

the b†
i are defined by

B† =
[
b†

1, . . . , b†
p

]
= DC−1,

and

V = Cov(G). (6.4.6)

Comments: Assumption (A1) and (A2) are not necessary but they simplify the pre-

sentation. Assumptions (A3) and (A4) hold under mild moment conditions provided

long-range dependence is not present. A general result which implies (A3) and (A4)

under weak conditions is given by Hannan (1976). Note also that, with the given choice

of the b†
i , E(G) = 0p2 .

In the following theorem, we derive an asymptotic necessary condition for consis-

tent variable selection for the model (6.2.2). This theorem is modeled on Theorem 1 of

Zou (2006), but some new issues arise because of the time series structure.

Theorem 6.4.1 (Condition for consistent variable selection). Suppose that the multivariate

time series {yt}t≥1 satisfies conditions (A1)-(A4). If the lasso estimator β̂∗ in (6.4.1) is such

that

lim
n→∞

P(A∗
n = A) = 1, (6.4.7)
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where A and A∗
n are as defined above in (6.4.2) and (6.4.3) respectively, then there exists a sign

vector s (whose components are of the form sgn(x) for suitable x) such that, componentwise,

∣∣∣
(
(C ⊗ Ip)Ac,A (C ⊗ Ip)

−1
A,As

)
r

∣∣∣ ≤ 1, r = 1, . . . , p2 − k0, (6.4.8)

where k0 is the cardinality of A, (a)r is the rth component of the vector a. The sign vector

s = sgn
[
(C ⊗ Ip)A,A(β∗

A − β†
A)
]
, where β∗

A and β†
A are defined in a similar fashion to βA

in (6.4.4).

Proof. As noted by Zou (2006), lasso variable selection can be consistent only in one of

the following three scenarios;

n−1λn −→ ∞, (6.4.9)

n−1λn −→ λ0, 0 < λ0 < ∞, (6.4.10)

n−1λn −→ 0 but n−1/2λn −→ ∞. (6.4.11)

If none of the above conditions hold, then the effect of the lasso penalty term is asymp-

totically negligible relative to the sum of squares term, and consequently

lim
n→∞

A∗
n = {(i, j) : i, j = 1, . . . , p}, (6.4.12)

meaning we end up with a value of λn which corresponds to the least squares estimates

i.e. none of the estimates shrink exactly to zero. This is because, for any given n,

the least squares estimator of each bij will be non-zero with probability 1, when the

distribution of yt is continuous.

Define

Sn(B) =
p

∑
i=1

n−1

∑
t=1

(
yt+1,i − bT

i yt

)2
+ λn

p

∑
i,j=1

∣∣bij
∣∣ . (6.4.13)

Now for each of the three scenarios stated above, we will look at the conditions re-

quired by the lasso to achieve consistency in variable selection.
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Scenario (6.4.9): n−1λn → ∞

Dividing (6.4.13) by λn, we obtain

λ−1
n Sn(B) =

n
λn

[
1
n

p

∑
i=1

n−1

∑
t=1

(
yt+1,i − bT

i yt

)2
]

+
p

∑
i,j=1

∣∣bij
∣∣ . (6.4.14)

By assumption (A3), the term on the RHS of (6.4.14) in the square bracket [.], and the

first derivative of this term with respect to each bij, are both Op(1). Therefore, since by

hypothesis n/λn → 0, it follows that each b̂∗ij = 0 with probability 1 for n sufficiently

large. But this contradicts the assumption that P(An = A) → 1. So we ignore this case.

Scenario (6.4.10): n−1λn → λ0 ∈ (0, ∞)

Dividing (6.4.13) by n and defining Sn(B) = n−1Sn(B):

Sn(B) =
1
n

p

∑
i=1

n−1

∑
t=1

(
yt+1,i − bT

i yt

)2
+

λn

n

p

∑
i,j=1

∣∣bij
∣∣

=

(
1
n

p

∑
i=1

n−1

∑
t=1

y2
t+1,i

)
+

p

∑
i=1

bT
i

(
1
n

n−1

∑
t=1

yty
T
t bi

}

− 2
p

∑
i=1

bT
i

(
1
n

n−1

∑
t=1

yt+1,iyt

)
+

λn

n

p

∑
i,j=1

∣∣bij
∣∣

= tr(Cn) +
p

∑
i=1

bT
i Cnbi − 2

p

∑
i=1

bT
i di,n + n−1λn

p

∑
i=1

∣∣bij
∣∣ ,

where Cn is defined in (6.3.2) and the di,n are the columns of the matrix Dn in (6.3.2).

Letting n → ∞, using the assumption n−1λn → λ0, and using (A3), we obtain

Sn(B)
p−→ tr(C) +

p

∑
i=1

bT
i Cbi − 2

p

∑
i=1

bT
i di + λ0

p

∑
i,j=1

∣∣bij
∣∣

= V1(B),

say. Then

B̂∗ =
[
b̂∗1 , . . . , b̂∗p

]T p−→ arg minV1(B) = B∗,

say.

Now pick a pair (i, j) ∈ A. The derivative of Sn(B) with respect to bij and evaluated
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at b̂∗i is given by

∂

∂bij
Sn(B) = 2eT

j Cn

(
b̂∗i −C−1

n di,n

)
+ n−1λnsgn

(
b̂∗ij
)

, (6.4.15)

where ej is the p × 1 vector whose jth component is 1 and whose other components are

zero.

Now consider the event {(i, j) ∈ A∗
n}, where (i, j) ∈ A. This event is a subset of the

event that the RHS of (6.4.15) is exactly zero. Therefore,

P [(i, j) ∈ A∗
n] ≤ P

[∣∣∣2eT
j Cn

(
b̂∗i −C−1

n di,n

)∣∣∣ = n−1λn

]
.

Now as n → ∞, Cn
p−→ C, C−1

n di,n
p−→ b†

i , b̂∗i
p−→ b∗i and n−1λn → λ0.

Therefore

2eT
j Cn

(
b̂∗i −C−1

n di,n

) p−→
{

2C
(
b∗i − b†

i

)}
j
,

the jth component of the vector 2C(b∗i − b†
i ). Consequently, given that P(A∗

n = A) → 1

as n → ∞, it follows that, for (i, j) ∈ A, P [(i, j) ∈ A∗
n] → 1, and we may conclude that

∣∣∣∣
{

2C
(
b∗i − b†

i

)}
j

∣∣∣∣ = λ0. (6.4.16)

Now similarly for (i, j) /∈ A, then for P {(i, j) /∈ A∗
n} → 1, we get

∣∣∣∣
{

2C
(
b∗i − b†

i

)}
j

∣∣∣∣ ≤ λ0. (6.4.17)

We define B∗
A =

[
b∗ij
]
(i,j)∈A

and B∗
Ac =

[
b∗ij
]
(i,j)∈Ac

. Similarly, B†
A =

[
b†

ij

]
(i,j)∈A

and

B†
Ac =

[
b†

ij

]
(i,j)∈Ac

. Note that b∗ij = 0 = b†
ij for (i, j) ∈ Ac, because limn→∞ P (A∗

n = A) →

1 in the former case, and (i, j) ∈ Ac implies b†
ij = 0, by definition.

Take

(
C ⊗ Ip

) (
β∗ − β†

)
=



(
C ⊗ Ip

)
A,A

(
β∗
A − β†

A
)
+
(
C ⊗ Ip

)
A,Ac

(
β∗
Ac − β†

Ac

)

(
C ⊗ Ip

)
Ac,A

(
β∗
A − β†

A
)
+
(
C ⊗ Ip

)
Ac,Ac

(
β∗
Ac − β†

Ac

)


 .
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As β∗
Ac = β†

Ac = 0, thus

(
C ⊗ Ip

) (
β∗ − β†

)
=



(
C ⊗ Ip

)
A,A

(
β∗
A − β†

A
)

(
C ⊗ Ip

)
Ac,A

(
β∗
A − β†

A
)


 .

Using the assumption given in (6.4.10) and result obtained in (6.4.16), we can write

(
C ⊗ Ip

)
A,A

(
β∗
A − β†

A
)

=
λ0

2
s∗. (6.4.18)

Consequently,

β∗
A − β†

A =
λ0

2
(
C ⊗ Ip

)−1
A,A s∗, (6.4.19)

where s∗ = sgn
[(

C ⊗ Ip
)
A,A

(
β∗
A − β†

A
)]

. Similarly, by using (6.4.17) we can write

∣∣∣
{(

C ⊗ Ip
)
Ac,A

(
β∗
A − β†

A
)}

r

∣∣∣ ≤ λ0

2
, (6.4.20)

where r = 1, . . . , |Ac| = p2 − k0. Substituting from (6.4.19) to (6.4.20), we get

∣∣∣∣
{

λ0

2
(
C ⊗ Ip

)
Ac,A

(
C ⊗ Ip

)−1
A,A s∗

}

r

∣∣∣∣ ≤ λ0

2
,

which implies that

∣∣∣
{(

C ⊗ Ip
)
Ac,A

(
C ⊗ Ip

)−1
A,A s∗

}
r

∣∣∣ ≤ 1 for r = 1, . . . , p2 − k0. (6.4.21)

It is important to note that the above inequality holds componentwise.

Now we will prove the same necessary condition under the third scenario i.e. as-

suming condition (6.4.11)

Scenario (6.4.11): n−1λn → 0 but n−1/2λn → ∞

Under these conditions

n
λn

(
b̂∗i − b†

i

) p−→ arg min(V3), (6.4.22)
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where

V3(u) =
p

∑
i=1

(
uT

i Cui

)
+

p

∑
i,j=1

[
uijsgn

(
b†

ij

)
I
(

b†
ij 6= 0

)
+ |uij|I

(
b†

ij = 0
)]

, (6.4.23)

I(.) is the indicator function and ui, i = 1, . . . , p are non-random. To see this write

bi = b†
i +

λn

n
ui i = 1, . . . , p, (6.4.24)

and substitute this into (6.4.13). Then we can define the following quantity

Sn(u) =
p

∑
i=1

n−1

∑
t=1

{
yt+1,i −

(
b†

i +
λn

n
ui

)T

yt

}2

+ λn

p

∑
i,j=1

∣∣∣∣b
†
ij +

λn

n
uij

∣∣∣∣ .

Assuming û∗ = arg min V(n)
3 (u) then we can write

b̂∗i = b†
i +

λn

n
û∗

i , i = 1, . . . , p.

Consider

Sn(u)− Sn(0) =
p

∑
i=1

n−1

∑
t=1

[{(
yt+1,i − (b†

i )
Tyt

)
− λn

n
uT

i yt

}2

−
(

yt+1,i − b†
i yt

)2
]

+ λn

p

∑
i,j=1

(∣∣∣∣b
†
ij +

λn

n
uij

∣∣∣∣−
∣∣∣b†

ij

∣∣∣
)

.

After some algebraic manipulation, we can write

Sn(u) − Sn(0) =
p

∑
i=1

n−1

∑
t=1

{
λ2

n
n2 uT

i yty
T
t ui − 2

λn

n

(
yt+1,i − (b†

i )
Tyt

)
yT

t ui

}

+ λn

p

∑
i,j=1

(∣∣∣∣b
†
ij +

λn

n
uij

∣∣∣∣−
∣∣∣b†

ij

∣∣∣
)

,

=
p

∑
i=1

{
λ2

n
n

uT
i Cnui − 2

λn√
n

GT
i ui

}
+ λn

p

∑
i,j=1

(∣∣∣∣b
†
ij +

λn

n
uij

∣∣∣∣−
∣∣∣b†

ij

∣∣∣
)

.

We can define V(n)
3 (u) = nλ−2

n [S3(u) − S3(0)], and thus we can write

V(n)
3 (u) =

p

∑
i=1

uT
i Cnui − 2

√
n

λn

p

∑
i=1

GT
i ui +

n
λn

p

∑
i,j=1

(∣∣∣∣b
†
ij +

λn

n
uij

∣∣∣∣−
∣∣∣b†

ij

∣∣∣
)

.(6.4.25)
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As we know, Cn
p−→ C, so uT

i Cnui
p−→ uT

i Cui. Now Gi is Op(1), thus under this

scenario condition and λn/
√

n → ∞, so using Slutsky’s theorem, we conclude

√
n

λn
GT

i ui
p−→ 0. (6.4.26)

Thus the second term on RHS of (6.4.25) converges to zero in probability. Now for the

third term we have two different cases. If (i, j) ∈ A, i.e b†
ij 6= 0, then

n
λn

(∣∣∣∣b
†
ij +

λn

n
uij

∣∣∣∣−
∣∣∣b†

ij

∣∣∣
)

p−→ uijsgn(bij), (6.4.27)

and if (i, j) /∈ A i.e. b†
ij = 0 then

n
λn

(∣∣∣∣b
†
ij +

λn

n
uij

∣∣∣∣−
∣∣∣b†

ij

∣∣∣
)

= |uij|. (6.4.28)

Thus we can conclude from (6.4.26)-(6.4.28) and (6.4.25) that

V(n)
3 (u)

p−→ V3(u)

and

û∗ =
n

λn

(
β̂∗ − β†

) p−→ u† = arg minV3(u), (6.4.29)

where V3(u) is as defined in (6.4.23).

The above result (6.4.29) is an important result and we will use it to derive the condition

for consistent lasso variable selection. We can write (6.4.23) as

V3(uA, uAc) =
[

uA uAc

]

 CA,A CA,Ac

CAc,A CAc,Ac




 uA

uAc


+ ∑

(i,j)∈A
uijsij + ∑

(i,j)/∈A

∣∣uij
∣∣

= uACA,AuA + uACA,AcuAc + uAcCAc,AuA + uAcCAc,AcuAc

+ ∑
(i,j)∈A

uijsij + ∑
(i,j)/∈A

∣∣uij
∣∣ .

Consider (i, j) ∈ A:

∂

∂uij
V3(uA, uAc) = 2eT

j CA,AuA + 2eT
j CA,AcuAc + ejs,
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where ej is the k0 × 1 vector whose jth component is 1 and whose other components

are zero. Thus setting ∂
∂u

V3(uA, uAc) = 0, gives

2CA,AuA + 2CA,AcuAc + s = 0

2 (CA,AuA + CA,AcuAc) = −s

=⇒ û∗
A = −C−1

A,A

(
CA,AcuAc +

1
2
s

)
.

Now we consider (i, j) ∈ Ac. Then û∗
Ac = arg minṼ3(uAc), where,

Ṽ3(uAc) = uT
Ac

(
CAc,Ac −CAc,AC−1

A,ACA,Ac

)
uAc − uT

AcCAc,AC−1
A,As + ∑

(i,j)∈Ac

∣∣uij
∣∣ .

Take

∂

∂uij
Ṽ3(uAc) = 2eT

j

(
CAc,Ac −CAc,AC−1

A,ACA,Ac

)
uAc

−CAc,AC−1
A,As + sgn|uij|. (6.4.30)

Using (6.4.29), which implies that û∗
Ac

p−→ u†
Ac = 0, it is seen that the first term on

RHS of (6.4.30) goes to zero and according to the modified KKT optimality conditions,

defined in Section 6.2.2, the RHS of (6.4.30) requires the change of sign, so we can write

∣∣∣
(
(C ⊗ Ip)Ac,A(C ⊗ Ip)

−1
A,As†

)
r

∣∣∣ ≤ 1, r = 1, . . . , p2 − k0, (6.4.31)

where s† = sgn(β†
A).

Thus (6.4.21) and (6.4.31) jointly prove that lasso variable selection cannot be consistent

unless (6.4.8) holds.

6.5 Adaptive Lasso

We have looked at the oracle properties of the adaptive lasso in the regression con-

text in Chapter 5. For an appropriate value of the tuning parameter, the adaptive

lasso has shown to achieve the oracle properties. The adaptive lasso estimator β̂∗∗ =
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[
b̂∗∗ij : i, j = 1, . . . , p

]
of β = [bij : i, j = 1, . . . , p] for the model (6.2.2) can be defined as

β̂∗∗ = arg min

{
n−1

∑
t=1

p

∑
i=1

(yt+1,i − bT
i yt)

2 + λn

p

∑
i,j=1

wij|bij|
}

,

where wij is an adaptive weight for each bij and λn is the user-defined tuning parameter

which controls the amount of shrinkage. Zou (2006) proved in his Theorem 2 that for a

suitable choice of λn, the adaptive lasso satisfies the oracle properties in the regression

context. Here we extend the same conclusions to the multivariate time series context.

Our proof is modeled on that of Theorem 2 of Zou (2006).

We will define A∗∗
n =

{
(i, j) : b̂∗∗ij 6= 0

}
for i, j = 1, . . . , p.

Theorem 6.5.1. Suppose that λn/
√

n → 0, λnn(γ−1)/2 → ∞ for some γ > 0, and conditions

(A1)-(A4) of Section 6.4 are satisfied. Assume also that the weights are given by ŵij = 1/|b̂ij |γ,

where the b̂ij are the least squares estimates of the bij. Then the adaptive lasso estimates satisfy

the following oracle properties.

1. Consistency in variable selection:

lim
n→∞

P (A∗∗
n = A) = 1

2. Asymptotic normality:

√
n
(
β̂∗∗
A − β†

A
)

d−→ N (0, Σ) ,

where Σ is as defined in (6.5.7), β̂∗∗
A =

{
b̂∗∗ij : (i, j) ∈ A∗∗

n

}
and β†

A =
{

b†
ij : (i, j) ∈ A

}
.

Proof. First we prove the asymptotic normality of the adaptive lasso estimator β̂∗∗
A .

Consider

ψn(B) =
n−1

∑
t=1

p

∑
i=1

(yt+1,i − bT
i yt)

2 + λn

p

∑
i,j=1

ŵij|bij |.
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Let bi = b†
i + n−1/2ui and define

ψn(u) =
n−1

∑
t=1

p

∑
i=1

[
yt+1,i −

(
b†

i + n−1/2ui

)T
yt

]2

+ λn

p

∑
i,j=1

ŵij

∣∣∣b†
ij + n−1/2uij

∣∣∣ , (6.5.1)

where u =
(
u1, . . . , up

)T is a p × p matrix. We can write

û∗∗
i =

√
n
(
b̂∗∗i − b†

i

)

= arg min (ψn(u) − ψn(0))

= arg minV(n)
4 (u),

where

V(n)
4 (u) = ψn(u) − ψn(0).

Using (6.5.1),

V(n)
4 (u) =

n−1

∑
t=1

p

∑
i=1

[
yt+1,i −

(
b†

i + n−1/2ui

)T
yt

]2

+ λn

p

∑
i,j=1

ŵij

∣∣∣b†
ij + n−1/2uij

∣∣∣

−
n−1

∑
t=1

p

∑
i=1

[
yt+1,i − (b†

i )
Tyt

]2
− λn

p

∑
i,j=1

ŵij

∣∣∣b†
ij

∣∣∣ .

After some algebraic manipulation, we get

V(n)
4 (u) = n−1

n−1

∑
t=1

p

∑
i=1

uT
i yty

T
t ui − 2n−1/2

n−1

∑
t=1

p

∑
i=1

(
yt+1,i − yT

t b†
i

)
yT

t ui

+λn

p

∑
i,j=1

ŵij

(∣∣∣b†
ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
)

. (6.5.2)

The first term on the RHS of (6.5.2) may be written as

n−1
n−1

∑
t=1

p

∑
i=1

uT
i yty

T
t ui =

p

∑
i=1

uT
i Cnui

p−→
p

∑
i=1

uT
i Cui,
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where Cn = n−1 ∑
n−1
t=1 yty

T
t , and the second term satisfies

n−1/2
n−1

∑
t=1

p

∑
i=1

(
yt+1,i − yT

t b†
i

)
yT

t ui
d−→

p

∑
i=1

uT
i Gi,

using (A4). Consider the third term,

λn

p

∑
i,j=1

ŵij

(∣∣∣b†
ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
)

= n−1/2λn

p

∑
i,j=1

ŵijn1/2
(∣∣∣b†

ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
)

.

If (i, j) ∈ A i.e. b†
ij 6= 0, then

n1/2
(∣∣∣b†

ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
) p−→ uijsgn(b†

ij).

Therefore, because n−1/2λn → 0 and ŵij =
∣∣∣b̂ij

∣∣∣
−γ

= Op(1) by the assumption of

Theorem 6.5.1, therefore by Slutsky’s theorem, we have

n−1/2λnŵijn1/2
(∣∣∣b†

ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
) p−→ 0. (6.5.3)

Thus the third term on the RHS of (6.5.2) converges to zero in probability when (i, j) ∈

A. Now consider the situation (i, j) /∈ A, i.e. b†
ij = 0. In this case

n1/2
(∣∣∣b†

ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
)

=
∣∣uij
∣∣

and therefore the contribution of component (i, j) to the penalty term is

n−1/2λnŵijn1/2
(∣∣∣b†

ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
)

= n−1/2λn

∣∣∣b̂ij

∣∣∣
−γ ∣∣uij

∣∣

= nγ−1/2λn

∣∣∣
√

nb̂ij

∣∣∣
−γ ∣∣uij

∣∣ .

As
√

nb̂ij = Op(1), and
√

nb̂ij 6= 0 with probability 1, and n(γ−1)/2λn → ∞ by the

hypothesis of the theorem, it follows that

n(γ−1)/2λn

∣∣∣
√

nb̂ij

∣∣∣
−γ ∣∣uij

∣∣ p−→ ∞

unless uij = 0. It follows that the only way we can keep V (n)
4 (u) finite is to put uij = 0

for all (i, j) ∈ Ac. Write ui =
(
uT

i,A(i), 0
T
p−|A(i)|

)T
. Then, setting all these uij = 0 results
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in third term on RHS of (6.5.2) convergence to zero for (i, j) ∈ Ac i.e. for (i, j) /∈ A we

have

∣∣∣b†
ij + n−1/2uij

∣∣∣−
∣∣∣b†

ij

∣∣∣
p−→ 0. (6.5.4)

Using (6.5.3) and (6.5.4), we can say this term vanishes for all i, j = 1, . . . , p. Thus we

obtain

V(n)
4 (u)

p−→ V4(u) =
p

∑
i=1

uT
i,A(i)CA(i),A(i)ui,A(i) − 2

p

∑
i=1

uT
i,A(i)Gi,A(i). (6.5.5)

Now

∂V4(u)

∂ui,A(i)
= 0

implies

CA(i),A(i)û
∗∗
i,A(i) = Gi,A(i)

i.e.

û∗∗
i,A(i) = C−1

A(i),A(i)Gi,A(i).

It follows that

û∗∗
i,A(i) =

(
û∗∗T

i,A(i), 0
T
p−|A(i)|

)T
, i = 1, . . . , p

Using Lemma 4.2.8 we can write G
d−→ N(0, V ) and so we can write

√
n
(
β̂∗∗
A − β†

A
)

d−→ Nk2
0

(
0k2

0
, Σ

)
. (6.5.6)

where

Σ = 4Ξ4, (6.5.7)

4 = diag
{

C−1
A(1),A(1), . . . , C−1

A(p),A(p)

}
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and

Ξ =
{

Ξi,j
}p

i,j=1 , Ξi,j = Cov
(
Gi,A(i), Gj,A(j)

)
, i, j = 1, . . . , p,

and each Ξij is a |A(i)| × |A(j)| matrix. Note that the covariance matrix Σ is the same

as that for the least squares estimator of the non-zero bij, where all zero bij are omitted

from the estimation procedure.

Now we will show that the adaptive lasso is always consistent in variable selection.

We can conclude from the above result (6.5.6) that P((i, j) ∈ A∗∗
n ) −→ 1, for all(i, j) ∈

A; i.e. the adaptive lasso is consistent in correctly classifying the non-zero b ij. Now we

need to prove that P((i, j) ∈ A∗∗
n ) −→ 0, for all (i, j) /∈ A. This is equivalent to proving

that

P(b̂∗∗ij 6= 0) → 0, for all (i, j) /∈ A.

Now consider the case that (i, j) ∈ A∗∗
n , so we can write the ψn(u) in the form as below:

ψn(u) =
p

∑
i=1

n−1

∑
t=1

(
yt+1,i − bT

i yt

)2
+ λn

p

∑
i,j=1

ŵij
∣∣bij
∣∣ .

Using the modified KKT optimality condition for (i, j) ∈ A∗∗
n , we get

−2
n−1

∑
t=1

(
yt+1,i − (b̂∗∗i )Tyt

)
ytj = ±λnŵij,

which implies

±λnŵij√
n

=
2 ∑

n−1
t=1

(
yt+1,i − (b̂∗∗i )Tyt

)
ytj√

n
= 2Gij.

As n−1/2λn
p−→ 0, λnn(γ−1)/2 → ∞ by assumption, and

√
nb̂ij = Op(1) for (i, j) /∈ A,

where b̂ij is the ordinary least squares estimator, therefore

λnŵij√
n

= λnn(γ−1)/2
∣∣∣
√

nb̂ij

∣∣∣
−γ p−→ ∞.
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However G =
[
Gij
]p

i,j=1 is normally distributed, so

P ((i, j) ∈ A∗∗
n ) ≤ P

[∣∣∣(2Gi)j

∣∣∣ =
λnŵij√

n

]
−→ 0 as n → ∞

where (.)j stands for the jth component. This proves the consistency.

6.6 Numerical Results

In previous sections, theoretical results suggest that oracle properties of the lasso meth-

ods for time series models, like regression problems, can be achieved if certain condi-

tions are satisfied, namely the time series version of ZYZ condition (6.4.8) holds and an

appropriate value of the tuning parameter is selected.

Here we have considered three models. Model 0 is an example of a VAR(1) model

while Model 1 and Model 2 are as studied by Hsu et al. (2008, p. 3650). We now numer-

ically study the oracle properties of the lasso and adaptive lasso for time series models

using these models.

Model 0:

(I −A1L) yt = εt, εt ∼ N (0, Σε1)

Model 1:

(I −A1L)
(
I −A2L4

)
yt = εt, εt ∼ N (0, Σε1)

Model 2:

(
I −A3L −A4L2)yt = εt, εt ∼ N (0, Σε2)
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where L is the lag operator such that Ldyt = yt−d and

A1 =


 a11 a12

0 a13


 , A2 =


 a11 0

0 a22


 , Σε1 =


 1 ρ

ρ 1


 ,

A3 =




a31 0 0

a32 0 0

0 a33 a34




, A4 =




0 0 0

0 a41 0

a42 0 0




, Σε2 =




1 ρ ρ

ρ 1 ρ

ρ ρ 1




.

Model 0 is a two dimensional VAR(1) model, Model 1 is a two-dimensional sea-

sonal model with period 4 and can be considered as a sparse vector autoregressive

model of order 5 i.e. VAR(5), and Model 2 is a three-dimensional VAR(2) model. The

elements of matrices A1, A2, A3 and A4 are randomly selected from U(0.5, 1), where

U[a, b] represents a uniform distribution with parameters a and b.

We have

A1 =


 0.6148036 0.9161782

0 0.8834940


 , A2 =


 0.9817781 0

00.6621272


 ,

A3 =




0.9844588 0 0

0.9785033 0 0

0 0.6834209 0.781373




, A4 =




0 0 0

0 0.7862824 0

0.6825497 0 0




.

For the selected above choices, the ZYZ condition holds for Model 0 but not for Model 1

and Model 2. In order to look at the effect of correlated errors, we will consider various

choices in the numerical results in the next section viz. ρ = 0, ρ = 0.4, ρ = 0.7 and

ρ = 0.9.

6.6.1 Variable Selection

In Section 5.5.1, we have already seen that lasso-type methods, under certain condi-

tions, can achieve consistent variable selection for regression models. Now on the same

lines, we will study these properties for multivariate time series models. To illustrate

the theoretical properties we have proved in Section 6.4, we will look at the various

VAR models defined above. We consider different samples sizes ranging 50 to 50000.
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(a) Model 0, γ = 0
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(b) Model 0, γ = 1
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(c) Model 0, γ = 2
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(d) Model 1, γ = 0
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(e) Model 1, γ = 1
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(f) Model 1, γ = 2
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(g) Model 2, γ = 0
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(h) Model 2, γ = 1
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(i) Model 2, γ = 2

Figure 6.1: PTSP: Probability of true model lying on solution path, based on 100 runs, that
solution path of the lasso and the adaptive lasso contains the true model for the
three models defined in Section 6.6. Key: ρ = 0, ρ = 0.4; ρ = 0.7; ρ = 0.9.

Figure 6.1, shows the probability that the solution path of the lasso (γ = 0) and

adaptive lasso (γ = 1, 2) contain the true model for 100 Monte Carlo runs. As the

ZYZ condition holds for this Model 0, we can see that, for both the lasso and adaptive

lasso, this probability is one or close to one even for the smallest sample size consid-

ered. It can be seen that the results are not substantially different even if the errors are

correlated.

For Model 1 and Model 2, the ZYZ condition fails and we can see that the plots for

both of these two models do not differ much. It can be concluded that the lasso cannot

be consistent in variable selection as the probability of containing the true model on
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the solution path is zero or very close to zero. In contrast, for the adaptive lasso, this

probability rapidly approaches one, which indicates that the adaptive lasso is consis-

tent in variable selection if an appropriate value of the tuning parameter is selected. As

expected, we can see that for small sample sizes, uncorrelated errors are least challeng-

ing for consistent variable selection. In general, higher error correlation corresponds

to lower probability but the asymptotic results are almost equivalent for all levels of

correlation.

We have concluded from Figure 6.1 that for Model 0, both the lasso and adaptive

lasso should be consistent in variable selection. Also for Model 1 and Model 2, we

have seen that the lasso cannot be consistent in variable selection but the adaptive

lasso can be. If a method is potentially consistent in variable selection in the sense

that the solution path contains the correct model then consistency entirely depends on

the tuning parameter selector providing an appropriate value of the tuning parameter

corresponding to correct variables in model.

In the next section, as was done for regression models, we will compare the per-

formance of 5-fold cross-validation and BIC (Cn =
√

n/k) in selecting the appropriate

value of the tuning parameter. We will look at the performance measures MMS, PCM

for consistent variable selection and MRME for prediction accuracy. All these mea-

sures are defined earlier in Section 5.5.

6.6.2 Estimation of the Tuning Parameter

As stated earlier in Section 5.2, lasso-type methods shrink some model coefficients ex-

actly to zero. This amount of shrinkage depends on the value of the tuning parameter.

Higher values of the tuning parameter s ∈ [0, 1] corresponds to less shrinkage. Suppose

τ is the appropriate value of the tuning parameter for which we have |Sτ | = k0 and

An = A, where |Sτ | stands for model size for τ as the value of the tuning parameter.

If a tuning parameter selector has a tendency to select a value of s, say s > τ, it

will result in entering non-active predictors in the model. On the other hand, if we

have |Sτ | = k0, it does not guarantee that the correct model is selected as it is possible

for some non-active predictors in the model while some active predictors are dropped.
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(a) Model 0, γ = 0, CV
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(b) Model 0, γ = 0, BIC
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(c) Model 0, γ = 1, CV
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(d) Model 0, γ = 1, BIC
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(e) Model 1, γ = 0, CV
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(f) Model 1, γ = 0, BIC

PSfrag replacements

log n

3
4
5
6
7
8
9

10

M
M

S
0

1
2

3 4

5

5

5.0
5.2
5.4
5.6
5.8
6.0

6 7 8 9

10

10

12

15
20

(g) Model 1, γ = 1, CV
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(h) Model 1, γ = 1, BIC
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(i) Model 2, γ = 0, CV
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(j) Model 2, γ = 0, BIC
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Figure 6.2: MMS: Median model size estimated, based on 100 runs, by the lasso and adap-
tive lasso while the tuning parameter is selected by 5-fold cross-validation and
Wang and Leng (2009) BIC (Cn =

√
n/k) for the three models defined in Section

6.6. Key: ρ = 0, ρ = 0.4; ρ = 0.7; ρ = 0.9.

This can happen especially if some of the parameters are close to zero.

In this section, first we will look at the median model size corresponding to the

tuning parameter selected by cross-validation and BIC.

Figure 6.2 shows the median model size corresponding to the value of the tuning

parameter selected by cross-validation and BIC for 100 Monte Carlo runs. As we con-

cluded earlier in the discussion on the probability of containing the true model on the

solution path, both the lasso and adaptive lasso are consistent in variable selection,

so we should have the model size equal to k0. It can be clearly observed that cross-

validation results in overfitted models both for the lasso and adaptive lasso while BIC

is providing the tuning parameter for which we are getting the true model size.
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Figure 6.3: PCM: Percent correct models identified, based on 100 runs, by the lasso and adap-
tive lasso while the tuning parameter is selected by CV (5-fold cross-validation)
and Wang and Leng (2009) BIC (Cn =

√
n/k) for the three models defined in Sec-

tion 6.6. Key: ρ = 0, ρ = 0.4; ρ = 0.7; ρ = 0.9.

For Model 1 and Model 2 the lasso has not shown consistent variable selection in

the previous section and in Figure 6.2 both cross-validation and BIC are providing an

estimate of the tuning parameter corresponding to over-fitted models, so this situation

can be considered as a consequence of the failure of the ZYZ condition. For the adaptive

lasso, cross-validation results in an median model size close to the true model size but

the results are more consistent when BIC is used as a tuning parameter selector.

We have seen that BIC is able to estimate a value of the tuning parameter which

results in correct model size in all the three examples. For the last two models also

the estimated model size using cross-validation is approaching the correct model size.

Now with the plots of measure PCM, we will see, though the model size is correct, if

we are getting only the active predictors in the estimated model.
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(e) Model 1, γ = 0, CV
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(f) Model 1, γ = 0, BIC
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(g) Model 1, γ = 1, CV
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(h) Model 1, γ = 1, BIC
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(i) Model 2, γ = 0, CV

PSfrag replacements

log n
3

4

5

6

7

8

9

10

M
R

M
E

0
2

4 6 8 10

12

0.
5

1
1.

5
2

2.5
3
4
5
6

10
15
20
25
30
40
50
60
70
80
90

100
150
200
300
400
500
600
700
120

(j) Model 2, γ = 0, BIC
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(k) Model 2, γ = 1, CV
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(l) Model 2, γ = 1, BIC

Figure 6.4: MRME: Median of relative model error, based on 100 runs, by the lasso and adap-
tive lasso while the tuning parameter is selected by CV (5-fold cross-validation)
and Wang and Leng (2009) BIC (Cn =

√
n/k) for the three models defined in Sec-

tion 6.6. Key: ρ = 0, ρ = 0.4; ρ = 0.7; ρ = 0.9.

Figure 6.3 shows the percentage of correct models identified by cross-validation and

BIC for 100 Monte Carlo runs. As we have seen in the MMS plots that cross-validation

results in overfitted models, we can see the PCM is very low with cross-validation but

approaching the maximum of 100% with BIC both for the lasso and adaptive lasso.

For Model 1 and Model 2, the only situation where we are getting near to 100% is the

adaptive lasso with BIC as a tuning parameter selector.

The above results confirm our earlier findings in Section 5.5 that the ZYZ condition

is an important condition for consistent variable selection and rescaling of the predic-

tors with the adaptive weights always leads to the adaptive lasso satisfying this con-

dition. Moreover, cross-validation fails to provide a value of the tuning parameter for

which variable selection can be consistent.
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Now we move to look at the second oracle property of prediction accuracy of the

lasso methods. In the following paragraphs, we will provide plots on the results of

median of relative model error (MRME); see Section 5.5 for definition.

Figure 6.4 shows the MRME for the lasso and adaptive lasso both with cross-validation

and BIC as tuning parameter selector. It can be observed that with cross-validation

MRME decreases as sample size increases, but we observe some large values of MRME

with BIC as sample size increases. This behaviour may be due to this particular choice

of Cn, as larger values of Cn will tend to result in a higher amount of shrinkage even

for the active set of predictors. A more suitable choice of Cn might achieve low values

of MRME even for some large choices of sample size.

6.7 Conclusion

In this chapter, we proved the necessary condition for consistent variable selection by

lasso-type methods for multivariate time series models. Like for regressive models, our

results suggest that ZYZ condition is an important condition for lasso-type methods to

do consistent variable selection. This condition always hold for the adaptive lasso but

not for the lasso.

We also proved that the adaptive lasso is an oracle procedure for time series models

and our numerical results support these findings. As this condition always hold for the

adaptive lasso so it does consistent variable selection if an efficient tuning parameter

selector, like BIC, is used. But this consistent selection can be at the cost of increased

model error.

Moreover, in the case of correlated errors, high correlation among the error terms

makes the situation relatively harder but the lasso-type methods a still able to achieve

the oracle properties under certain conditions.
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CHAPTER 7

Summary, Conclusions and Topics

for Further Research

7.1 Summary and Discussion

In this chapter, we present a summary of our findings and some possible further exten-

sions of this project. In this thesis, we looked at two separate but related applications

of time series models. In the first part, we have looked at time series diagnostic testing

tools. In the second part, we first numerically studied the oracle properties, especially

consistent variable selection, for linear regression models. We then studied the appli-

cation of lasso methods to multivariate time series models through some theoretical

results and also gave some numerical examples to illustrate the theory.

We found that the dynamic bootstrap method is the best method among the con-

sidered semi-parametric bootstrap methods in providing an approximate distribution

of the diagnostic tests. Our results show that there is not any clear advantage of using

transformed, or wild, residuals for bootstrapping.

We also found that both the Ljung-Box (Ljung and Box, 1978) and Monti’s (Monti,

1994) test statistics suffer from location bias but our results show that the amount of

bias in Monti’s test is relatively low. Our results also confirm the finding that the

Ljung and Box (1978) suggestion corrects the location bias in the Box and Pierce (1970)

test but at the cost of increased variance. In our study comparing bootstrap meth-

ods, the dynamic bootstrap comes out superior to the fixed design bootstrap method.
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Though in some cases for the CvMexp,P statistic proposed by Escanciano (2007), the

fixed design bootstrap method has shown better performance but, in general, we can-

not see any obvious advantage of using the fixed design bootstrap.

In the comparison of power properties of diagnostic tests, the portmanteau tests

have shown more power against the linear alternatives while the CvMexp,P statistic has

shown more power against non-linear alternatives. Our results suggest that the ap-

proximation of the finite sample distribution and power of these tests highly depends

on the choice of these parameters, P and m.

Issues in Chapter 2, namely bias in portmanteau tests and choice of m, motivated us

to have an in depth look into them. In Chapter 3, we have seen that bias in portmanteau

tests is enormous when m is small and the process is near the stationarity boundary.

We confirmed, as found by Katayama (2008), that Katayama’s suggestion corrects the

bias in the Ljung-Box test under these conditions.

The conditions mentioned above are also the situation where Monti’s test also shows

a large amount of bias. We made a novel suggestion, along the lines of Katayama

(2008), to correct the bias in Monti (1994) suggested test which uses partial autocorrela-

tions. Numerical results show that this suggestion works. We also gave a novel result

that dynamic bootstrapping does an automatic bias correction in these portmanteau

tests. As the computation of the bias correction term, especially for higher order pro-

cesses, is not very simple, we suggested a novel algorithm to efficiently compute this

bias correction term.

We noticed that bias arises due to poor approximation of the information matrix

which depends on the choice of m. For diagnostic purposes, in order to automatically

correct the bias in the challenging case of a near stationary process with small m, we

made a novel suggestion to use pivotal portmanteau test with two different values of

m, a relatively large value of m for the computation of the information matrix which

corrects the bias and then using a small value of m, i.e. the number of autocorrela-

tions used for diagnostic test purposes, to achieve a good approximation of the asymp-

totic distribution. Our numerical results showed that this novel suggestion corrects the

bias as well as Katayama’s suggestion does. We also looked at another suggestion by
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Katayama (2009), to use a multiple test which enables the use of a range of values for

m, to deal with the choice of m. We made a novel suggestion to use a hybrid boot-

strap method to compute the joint significance levels of the test. Results show that our

suggestion is easy to implement and performs, in some cases, better than Katayama’s

method.

In Chapter 2, we found from the numerical examples that the dynamic bootstrap

provided a distribution of portmanteau tests which is more accurate than the first order

asymptotic distribution. In Chapter 4, we provide a theoretical justification of good

performance of dynamic bootstrap method. We have stated and proved a number of

lemmas to show that the distribution of bootstrap least squares estimates converges

in limit to that of least squares estimates. We also proved a martingale central limit

theorem for the residuals. Though the result in this theorem is already proved in the

literature but the use of martingale theory helps to apply these results to the dynamic

bootstrap method. In this same chapter, we also gave a theoretical derivation of bias

correction term we suggested in Monti’s test.

Chapter 5 is the first of two chapters in the second part of our thesis, where, through

numerical examples, we have looked at the oracle properties of the lasso methods us-

ing three different examples. We have compared the performance of the lasso and the

adaptive lasso. Our results show that the ZYZ condition is an important condition

for consistent variable selection for the lasso and adaptive lasso. We have seen that

the lasso can be consistent in variable selection when the ZYZ condition holds pro-

vided that an appropriate value of the tuning parameter is selected. It should be noted

that the ZYZ condition always holds for the adaptive lasso due to the use of adaptive

weights and thus it showed consistent variable selection in all the cases.

Tuning parameter selection is an important practical problem and can greatly ef-

fect the performance of the lasso methods. We compared cross-validation, a popu-

lar method for tuning parameter selection, with the Wang and Leng (2009) suggestion

of using the Bayesian Information Criterion (BIC). The numerical results suggest that

cross-validation is not a reliable method especially if the primary objective is variable

selection. In all situations considered, our results suggest that for both the lasso and

adaptive lasso, using cross-validation as a tuning parameter selector, leads to inconsis-
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tent variable selection. Meanwhile, the BIC has shown its capability to choose a value

for the tuning parameter which correctly shrinks the coefficients of non-active predic-

tors to zero.

The success of lasso methods for regression models motivated us to look at the

properties of these methods for multivariate time series models. The results are not

trivial as time series models differ in their structure to regression models because of

serial dependence. In Chapter 6, we have proved the necessary condition for consistent

variable selection by the lasso for time series models. We also proved that the adaptive

lasso is an oracle procedure for time series models and our numerical results support

these findings. An efficient method for selection of the tuning parameter is important

to achieve these properties in practice and the numerical results show that with the

BIC, as tuning parameter selector, we can achieve it.

7.2 Future Work

In the first part of this thesis we looked at different semi-parametric bootstrap methods

for providing an approximation to the asymptotic distribution of time series diagnostic

tests. We found that, among the methods considered, the dynamic bootstrap gener-

ally provided the best approximation. This work can be further extended by consider-

ing some non-parametric methods such as block bootstrap methods (Lahiri, 2003). We

looked at stationary AR processes in this work, so study of other classes of stationary

model e.g. general ARMA and nonlinear models would be of interest.

In our size study, in Chapter 2, we considered the case of a linear model and

looked at examples of AR processes. Some other examples of mixed models and also

some non-linear models will be helpful to have a further extension of the results ob-

tained in this thesis. An important objective was to compare the performance of the

CvM statistic with the Box-Pierce family of portmanteau tests, so we limited ourselves

to some popular tests which are based on autocorrelations and partial autocorrela-

tions. Obviously, there are some other tests like CvM with different weighting schemes

(Escanciano, 2007) and portmanteau tests based on autocorrelations of squared residu-

als (McLeod and Li, 1983).
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In Chapter 3, we discussed the suggestions to correct the bias in portmanteau tests

in some challenging conditions. We also made novel suggestions for automatic correc-

tion of bias in the Ljung-Box test and a bias correction term in Monti’s test. Bootstrap

estimates of standard errors of the estimates for our novel suggested Algorithm 7 can

be obtained to compare its performance with the other available estimation methods.

All the results we presented in this chapter are mainly for AR(1) process. Moreover,

the effect of these suggestions is only studied in correcting the size of these tests. A

further study is required to look at the power properties of these bias corrected tests.

We proved the asymptotic distribution of dynamic bootstrap least squares estimates

for stationary AR(p) process. An obvious further extension is to prove these results for

an ARMA(p, q) process. It would also be of interest to explore higher order properties

of the bootstrap distribution, as discussed in Chapter 4, although this is likely to be

challenging.

In the second part of our thesis, we studied the oracle properties of the lasso and

adaptive lasso. As we found that the use of adaptive weights is the key in making

the adaptive lasso an oracle procedure, so obviously the choice of γ, the exponent in

the weight function, is important. Zou (2006) suggested the use of cross-validation for

choosing the value of γ. A detailed study along those lines could help us to obtain

an optimal value of γ. In this thesis, we computed the adaptive weights using the

least squares estimates. Other suggestions, for example the lasso and ridge regression

estimates, can be considered and compared with these results.

Another important factor in achieving the oracle properties of lasso-type methods

is the choice of the tuning parameter, which controls the size of the penalty term. Our

results clearly show this fact. We compared two methods used as tuning parameter

selectors viz. k-fold cross-validation and the BIC. The other forms of cross-validation

such as generalized cross-validation and leave-one-out cross-validation can be studied

and compared with these two methods.

In all the examples of regression and time series models we studied in Chapter

5 and Chapter 6, the use of BIC resulted in an efficient way to choose the value of

the tuning parameter especially when the primary objective is variable selection. As
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expected and observed from the results, the choice of Cn for the BIC is an issue and we

made suggestion to use Cn =
√

n/p. This suggestion showed good performance in our

examples, though theoretical insight into this suggestion still needs to be provided.

We looked at both oracle properties of lasso-type methods but we focused more on

consistent variable selection. A detailed study of prediction error and an application to

real data sets will be helpful.

Finally, in all these examples, we looked at low dimensional regression and time

series models. A study of high dimensional models especially in the case of regression

is an obvious matter of interest, and has potential applications in bioinformatics, for

example.
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