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Abstract    

 

The role of parasites as agents of selection on their hosts has been well established, 

but less is known about how parasites facilitate divergence among host populations. 

In this thesis, I used the three-spined stickleback, Gasterosteus aculeatus, as a model 

organism to explore spatial variation in host-parasite interactions and the 

consequences for divergence of host traits. First, I established the extent of spatial 

variation in natural infection in the study system, North Uist, Outer Hebrides, 

Scotland, by conducting a survey of macroparasite communities in twelve freshwater 

lochs over two years. I found substantial geographic variation in parasite communities 

that was remarkably stable in time. Assuming that differences in parasite community 

composition correspond to differences in parasite-mediated selection, it suggests that 

North Uist stickleback populations experience divergent parasite-mediated selection 

that is consistent in time. Next, I carried out a series of artificial infection experiments 

with lab-reared sticklebacks from five populations using three widespread 

macroparasite species (Gyrodactylus gasterostei, Diplostomum spathaceum and 

Schistocephalus solidus), to assess geographic variation in parasite resistance and a 

component of the innate immune system, the respiratory burst response. There was 

significant variation among populations in resistance to G. gasterostei and D. 

spathaceum, and the innate immune response. To some extent the variation was 

related to natural infection levels, suggesting that divergent parasite-mediated 

selection may drive investment in these traits. Lastly, I conducted a growth 

experiment with the five stickleback populations and showed that there was 

significant population-level variation in juvenile growth rate, an important life history 

trait. In spite of considerable variation in all traits, I found no evidence for genetic 

trade-offs across populations between juvenile growth rate, and macroparasite 

resistance or the innate immune response. This thesis adds to a growing body of work 

that emphasises the importance of space in shaping host-parasite interactions. 
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Chapter 1: General introduction 

 

In this thesis I explore spatial variation in host-parasite interactions and examine the 

consequences for host population divergence. Below, I introduce the relevant 

concepts, using examples from vertebrate-macroparasite systems where possible. I 

begin by illustrating the role of parasites as agents of selection in host populations. I 

then consider what criteria must be met if parasite-mediated selection is to occur in a 

host population, the types of parasite-mediated selection and how parasite-mediated 

selection influences the evolution of parasite resistance. Finally, I emphasise the 

importance of space as a factor shaping host-parasite interactions.  

 

1.1 1.1 1.1 1.1 Parasites as agents of selection Parasites as agents of selection Parasites as agents of selection Parasites as agents of selection     

 

Parasitism is one of the most widespread lifestyles (Price, 1980). For every host species, 

there is probably at least one parasite species (Windsor, 1998; Poulin & Morand, 2000). 

Given that parasites form such a dominant component of ecological communities 

(Lafferty et al., 2006), it is not surprising that they influence the ecology and evolution 

of their hosts. Parasites are known to regulate host population dynamics (Anderson & 

May, 1979; Hudson et al., 1998; Tompkins et al., 2002) impact host life history 

(Minchella, 1985; Perrin et al., 1996; Agnew et al., 2000) and manipulate host 

behaviour (Barnard & Behnke, 1990; Thomas et al., 2005), to name just a few 

examples. For parasites to affect the evolution of their hosts, selection must be exerted 

on the genes underlying host phenotypes (Gillespie, 1975; Endler, 1986; Little, 2002). 

The potential of parasites as agents of evolutionary change and diversification in their 

hosts was first suggested by Haldane (1949). Since then, host-parasite interactions 

have been invoked to explain a range of evolutionary phenomena, including the 

evolution of sex (Jaenike, 1978; Hamilton, 1980; Howard & Lively, 1994), the 

maintenance of genetic polymorphism (Clarke, 1979) and sexual selection (Hamilton 

& Zuk, 1982; Penn & Potts, 1998), as well as ecological processes such as population 

regulation (Anderson & May, 1978; May & Anderson, 1978). Initially, many of these 

ideas were supported only theoretically, but there is a now a growing body of 

empirical evidence in support of parasite-mediated selection  driving host genetic 

change in the wild (Little, 2002; Woolhouse et al., 2002; Summers et al., 2003; Vamosi, 
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2005; Duffy & Forde, 2009). Parasites can affect the evolution of numerous host life 

history traits (Hochberg et al., 1992; Møller, 1997; Fredensborg & Poulin, 2006), but 

the most interesting traits from a coevolutionary perspective are the defence traits 

that hosts have evolved in response to parasitism. Resistance to parasites may be 

mediated by a range of defence mechanisms (Rigby et al., 2002), including behavioural 

avoidance (Hart, 1994; Karvonen et al., 2004b), physical barriers (Wilson et al., 2001) 

and perhaps most importantly, the immune system (Frank, 2002; Hedrick, 2002; 

Janeway et al., 2004). Even if the mechanistic basis of resistance is unknown, it 

remains important to quantify genetic variation in parasite resistance in natural 

populations to understand how parasite-mediated selection may operate in the wild. 

  

1.2 What are the requirements for parasite1.2 What are the requirements for parasite1.2 What are the requirements for parasite1.2 What are the requirements for parasite----mediated selection?mediated selection?mediated selection?mediated selection?    

 

Two criteria must be met if parasite-mediated selection is to occur (Little, 2002). First, 

parasites must have detrimental effects on the growth, survival or reproduction (i.e. 

fitness) of their hosts. In vertebrates, this has been demonstrated extensively for a 

variety of species, ranging from viruses (Packer et al., 1999; Telfer et al., 2002) to 

endoparasitic helminths (Johnson et al., 1999; Heins et al., 2004) and ectoparasites 

(Lehmann, 1993; Richner et al., 1993).  Second, there must be genetic variation in 

resistance to parasites, such that infection is distributed unevenly among host 

individuals (Little, 2002). Asymmetric parasite distributions are common in the wild. 

Macroparasites, for instance, are typically aggregated within a host population; that is, 

a few individuals harbour disproportionately large parasite burdens relative to the rest 

of the population (Shaw et al., 1998; Wilson et al., 2002). However, variation in natural 

infection levels cannot be assumed to reflect genetic variation in resistance (Wilson et 

al., 2002) because differences in exposure to parasites (Scott, 1991; Grosholz, 1994; 

Little & Ebert, 2000; Karvonen et al., 2004a) and host condition (Beldomenico et al., 

2008) between host individuals can be equally important in determining parasite 

infection in the wild.   

 

The most straightforward method for examining genetic variation in parasite 

resistance is to artificially infect a number of outbred individuals from a natural 

population under controlled conditions (Little, 2002). Rearing outbred individuals in a 
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uniform laboratory environment (‘common garden’) ensures that the contribution of 

environmental variation to the expression of traits is minimised. The advantage of 

this setup is that the observed variation among individuals/families can be assumed to 

have a genetic component (Lynch & Walsh, 1998). This approach has been successful 

for a number of invertebrate-microparasite (Ebert et al., 1998; Tinsley et al., 2006; 

Kraaijeveld & Godfray, 2008; Cory & Myers, 2009) and invertebrate-macroparasite 

(Henter & Via, 1995; Webster & Woolhouse, 1998; Hammerschmidt & Kurtz, 2005) 

systems. Thus far, most examples of genetic variation in resistance to parasites in 

vertebrates come from domesticated and laboratory populations (Wakelin, 1978; 

Kloosterman et al., 1992; Sorci et al., 1997; Gjedrem, 2000). Nevertheless, there are a 

several examples from natural populations. For example, Jackson & Tinsley (2005) 

found substantial family-level variation in resistance to a monogenean flatworm, 

Protopolystoma sp., in a population of African claw-toed frogs, Xenopus laevis. 

Likewise, Uller et al. (2003) observed strong differences in resistance to a viral eye 

disease among full-sib families of Swedish common lizards, Lacerta vivipara, and 

Rauch et al. (2006a) found significant within-population variation in resistance to an 

eye fluke, Diplostomum pseudospathaceum, in three-spined sticklebacks. One of the 

aims of this thesis was to quantify variation in macroparasite resistance within 

vertebrate host populations, and in so doing, provide evidence for the potential of 

parasite-mediated selection.     

  

Other studies have taken a more indirect approach to examining genetic variation in 

parasite resistance, by determining heritabilities of resistance of hosts in field 

experiments (Møller, 1990; Boulinier et al., 1997; Brinkhof et al., 1999; Smith et al., 

1999; Coltman et al., 2001) or by using molecular tools to evaluate genotypes directly, 

particularly those hypothesised to play a role in disease resistance. A good example of 

the latter is genes of the major histocompatibility complex (Gilbert et al., 1998; 

Paterson et al., 1998; Langefors et al., 2001; Wegner et al., 2003).   

 

1.3 Evidence for parasite1.3 Evidence for parasite1.3 Evidence for parasite1.3 Evidence for parasite----mediated selection in the wildmediated selection in the wildmediated selection in the wildmediated selection in the wild    

    

The presence of genetic variation in parasite resistance within a host population, as 

demonstrated by common garden experiments, can only provide evidence for the 
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potential of parasite-mediated selection. In fact, this variation is typically assumed in 

models of host-parasite coevolution (Anderson & May, 1982; Sorci et al., 1997). It has 

been more difficult to show directly that parasite-mediated selection drives genetic 

change in natural host populations, i.e. changes in frequencies of alleles associated 

with resistance or those that are closely linked to resistance alleles (Little, 2002). The 

most convincing evidence in animals comes from invertebrate studies that track the 

temporal dynamics of host genotypes. For instance, Duncan & Little (2007) examined 

clone frequencies in a population of Daphnia magna before, during and after an 

epidemic of the bacteria Pasteuria ramosa, and found that genotypes that became 

more common after the epidemic were also more resistant to infection. Duffy & 

Sivars-Becker (2007) recorded a similar pattern for an epidemic of the fungus 

Metschnikowia bicuspidata in a population of Daphnia dentifera. These two examples 

suggest that parasites can drive directional selection for parasite resistance in natural 

host populations: episodes of selection were followed by an increase in the mean 

resistance of host genotypes. There is also some evidence for the occurrence of 

negative frequency-dependent coevolutionary dynamics in the wild. Negative 

frequency-dependent selection is a type of selection in which parasites track common 

host genotypes and decrease their fitness; this in turn confers an advantage on rare 

host genotypes, creating oscillations in gene frequencies. As this process is dependent 

on particular combinations of host and parasite genotypes, it can maintain genetic 

diversity for parasite resistance within a host population (Agrawal & Lively, 2002). 

Negative frequency dependent selection is at the heart of the Red Queen hypothesis, 

an idea that is frequently cited to explain the evolution of sex (Jaenike, 1978; 

Hamilton, 1980; Howard & Lively, 1994). Dybdahl & Lively (1998) conducted a five-

year field study in a population of the snail Potamopyrgus antipodarum and found 

time lagged infection dynamics of  the trematode Microphallus sp.; host clones that 

were recently common were overinfected relative to rare clones, suggesting that 

parasites can track and select against common host genotypes, in a frequency-

dependent manner. In a recent study, Decaestecker et al. (2007) used dormant stages 

of Daphnia magna and Pasteuria ramosa from lake sediments to reconstruct 

coevolutionary dynamics. They also observed that parasites adapted rapidly to genetic 

changes in the host population (Decaestecker et al., 2007). However, other studies 

have failed to find consistent changes in genotype frequencies or found changes that 

did match patterns of genetic variation in resistance from common garden 
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experiments (Henter & Via, 1995; Little & Ebert, 1999; Siemens & Roy, 2005). As a 

result, it has been difficult to show unequivocally that parasite-mediated selection is 

occurring in the wild.  

    

1.4 The types of parasite1.4 The types of parasite1.4 The types of parasite1.4 The types of parasite----mediated selection and the evolution of mediated selection and the evolution of mediated selection and the evolution of mediated selection and the evolution of 

parasite parasite parasite parasite resistance resistance resistance resistance     

 

Parasites can exert different types of selection on their hosts. I have already 

mentioned directional selection and negative-frequency dependent selection. These 

two types of selection lead to fundamentally different coevolutionary dynamics and 

have different consequences for host diversification (Thompson, 1994; Agrawal & 

Lively, 2002; Woolhouse et al., 2002; Summers et al., 2003). Generally, directional 

selection is predicted to erode genetic variation in host traits whereas negative 

frequency dependent selection is thought to maintain it. However, the existence of 

other types of parasite-mediated selection, such as stabilising selection (Clayton et al., 

2005) and disruptive selection (Duffy et al., 2008; Blanchet et al., 2009) is becoming 

increasingly recognised. In stabilising selection, hosts with an intermediate level of the 

trait are selected for, whereas in disruptive selection, extreme values of the trait (high 

susceptibility and high resistance) are favoured. Stabilising selection and disruptive 

selection are predicted to decrease and increase host diversity, respectively (Endler, 

1986; Duffy & Forde, 2009).  

 

The type of parasite-mediated selection exerted, and hence the evolution of parasite 

resistance, is dependent on two key factors: costs of resistance and the genetic basis of 

the host-parasite interaction (May & Anderson, 1983; Frank, 1994b; Agrawal & Lively, 

2002). It is often assumed that investment in parasite resistance is expensive and 

comes at the cost of investment in other life history traits. If trade-offs between 

parasite resistance and other fitness-related traits have a genetic basis, they can 

constrain the evolution of, and in turn maintain genetic variation in, parasite 

resistance (Sheldon & Verhulst, 1996; Coustau et al., 2000; Rigby et al., 2002). 

Theoretically, the presence or absence of trade-offs with parasite resistance, as well as 

the shape of trade-offs, can lead to different types of parasite-mediated selection, 

including directional selection for resistance (Bowers et al., 1994; Frank, 1994a) and 
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stabilising selection (Boots & Haraguchi, 1999). There are several well-established 

examples of trade-offs between parasite resistance and other host life history traits in 

invertebrate-microparasite (Boots & Begon, 1993) and invertebrate-macroparasite 

(Kraaijeveld & Godfray, 1997; Webster & Woolhouse, 1999) systems, but examples in 

vertebrate-macroparasite interactions are currently lacking (although see e.g. Barber 

et al., 2001). In Chapter 7 I test for the presence of trade-offs between macroparasite 

resistance and another life history trait, juvenile growth rate. 

  

The genetic basis of host-parasite interactions also influences the evolution of parasite 

resistance (Sorci et al., 1997; Woolhouse et al., 2002). Two different genetic models 

have been used to characterise host-parasite interactions: the gene-for-gene (GFG) 

model and the matching allele (MA) model (Summers et al., 2003; Lambrechts et al., 

2006b). In the simplest GFG model one parasite genotype is ‘universally virulent’ and 

can infect both the resistant and susceptible host genotypes; the resistant host 

genotype is resistant only to the avirulent parasite genotype (Flor, 1971; Thompson & 

Burdon, 1992). In contrast, in the simplest MA model, infection occurs only when the 

virulence alleles of the parasite match the resistance alleles of the host (Frank, 1994b; 

Agrawal & Lively, 2002). Host-parasite interactions following the MA model are 

associated with strong host genotype by parasite genotype interactions and a high 

degree of specificity (Summers et al., 2003). As a result, frequency-dependence is 

inherent in MA models and negative frequency-dependent parasite-mediated 

selection is likely to occur. Host-parasite interactions following the GFG model, on 

the other hand, are associated with low specificity and low frequency-dependence 

(Summers et al., 2003). GFG models typically involve a few major genes of the host and 

parasite (Thompson & Burdon, 1992), whereas MA models may involve more host and 

parasite genes of smaller effect (Agrawal & Lively, 2002). Rather than forming a 

dichotomy, GFG and MA models comprise two ends of a continuum of host-parasite 

coevolutionary dynamics (Parker, 1994; Agrawal & Lively, 2002). The two aspects, the 

genetic basis of host-parasite interactions and costs of resistance, are linked: GFG 

models often assume a high cost of resistance (to stop the resistant host genotype 

from going to fixation), while MA models often assume either a low cost of resistance 

or no cost at all (Frank, 1994b). Furthermore, specific and non-specific forms of host 

defence may differ in costliness (Frank, 2000; Jokela et al., 2000; Moret, 2003; 

Schmid-Hempel & Ebert, 2003).  
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    1.5 Spatial variation in parasite1.5 Spatial variation in parasite1.5 Spatial variation in parasite1.5 Spatial variation in parasite----mediated selection and host divergencemediated selection and host divergencemediated selection and host divergencemediated selection and host divergence    

 

Until now, I have considered parasite-mediated selection solely in the context of 

generating and maintaining variation within the same host population. However, this 

neglects an important feature of host-parasite interactions: they are spatially variable 

(Frank, 1991; Thompson, 2005). Geographically distinct host populations are likely to 

experience divergent host-parasite coevolution as a result of spatial variation in 

parasite distributions (Jokela & Lively, 1995; Behnke et al., 2004; Poulin, 2007b), 

differences in genetic constitution of hosts and parasites (Lively, 1989; Grosholz, 1994; 

Henter & Via, 1995; Ebert et al., 1998; Thrall et al., 2002; Prugnolle et al., 2006), 

variation in the abiotic environment (Bedhomme et al., 2004; Mitchell et al., 2005), 

and their interaction (Tetard-Jones et al., 2007; Laine, 2009). Although most work on 

host-parasite interactions has focused on the temporal dynamics of parasite-mediated 

selection (Dybdahl & Lively, 1998; Decaestecker et al., 2007; Gaba & Ebert, 2009), 

parasite-mediated selection is potentially even more variable in space than it is in time 

(Duffy & Forde, 2009; Wolinska & King, 2009). Moreover, studying multiple host 

populations can inform our understanding of temporal aspects of host-parasite 

interactions, if different host populations are at different stages of a coevolutionary 

cycle (Frank, 1991; Morand et al., 1996; Lively, 1999). In such a scenario coevolutionary 

dynamics in space and time may be qualitatively similar (Woolhouse et al., 2002; 

Gandon et al., 2008; Wolinska & Spaak, 2009).  

 

Both the strength and type of selection exerted by parasites on their hosts are likely to 

vary spatially. As explained above, directional selection is predicted to deplete genetic 

variation for traits within populations, whereas negative frequency-dependent 

selection is thought to have the opposite effect. However, this may not be the case 

when comparing different host populations (Rieseberg et al., 2002; Summers et al., 

2003). For example, Buckling & Rainey (2002b) examined the evolution (diversity) of 

bacterial populations of Pseudomonas fluorescens in the presence and absence of a 

bacteriophage and found that selection imposed by the phage significantly increased 

among-population diversity, whereas within-population diversity was reduced. Given 

that parasite-mediated selection in bacterial populations is predominantly directional 

(via selective sweeps) (Chao et al., 1977; Buckling & Rainey, 2002a), this supports a role 
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for directional selection as a diversifying force among populations. Moreover, if the 

costs associated with maintaining parasite resistance (Sheldon & Verhulst, 1996; Rigby 

et al., 2002) vary among populations, either due to ecological differences, such as 

resource availability, or differences in the genetic relationships between life history 

traits, directional parasite-mediated selection can further contribute to divergence 

among host populations (Summers et al., 2003; Duffy & Forde, 2009).      

 

One of the most common spatial patterns in host-parasite interactions is local 

adaptation (Kaltz & Shykoff, 1998; Dybdahl & Storfer, 2003; Greischar & Koskella, 

2007; Hoeksema & Forde, 2008). Host local adaptation is defined as the increased 

resistance of hosts to sympatric parasites compared to allopatric parasites, whereas 

parasite local adaptation is defined as the increased infectivity of parasites in 

sympatric hosts compared to allopatric hosts (Kawecki & Ebert, 2004). Local 

adaptation is tested experimentally by carrying out cross-infection or reciprocal 

transplant experiments with a number of host and parasite populations. Theory 

predicts that parasites should be more frequently locally adapted to their host 

populations than vice versa, due to their shorter generation times, higher fecundity 

and higher rates of migration (Lively, 1999; Gandon, 2002; Nuismer, 2006). Empirical 

work generally bears out this prediction (Parker, 1985; Lively, 1989; Ebert, 1994). 

However, there are several examples in the literature of host local adaptation (parasite 

local maladaptation). For example, Kaltz et al. (1999) found that the plant Silene 

latifolia was significantly more resistant to a fungal pathogen, Microbotryum 

violaceum, from sympatric rather than allopatric populations. Similarly, Gasnier et al. 

(2000) documented that Lymnaea stagnalis had a lower abundance of metacercariae 

of Fasciola hepatica when exposed to a sympatric strain than when exposed to an 

allopatric strain. The majority of local adaptation studies are restricted to plants and 

invertebrates (Kaltz & Shykoff, 1998; Lajeunesse & Forbes, 2002; Greischar & Koskella, 

2007). Nonetheless, a few studies have been conducted in natural vertebrate-parasite 

systems and they support both parasite local adaptation (Ballabeni & Ward, 1993; 

Jackson & Tinsley, 2005) and host local adaptation (Oppliger et al., 1999; Kalbe & 

Kurtz, 2006) scenarios. 

 

Local adaptation may be seen as indirect evidence for the potential of host-parasite 

coevolution as it demonstrates the presence of genetic variation in both host traits 
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(resistance) and parasite traits (infectivity) in natural populations. It partly explains 

how variation in these traits can be maintained among populations (Summers et al., 

2003; Laine & Tellier, 2008). However, its absence does not indicate that host-parasite 

coevolution is not occurring. Instead, spatial patterns of host-parasite interactions 

may be more complex. In fact, the detection of local adaptation may depend strongly 

on the spatial scale at which patterns are investigated (Kaltz & Shykoff, 1998; Laine, 

2005; Gandon et al., 2008; Cogni & Futuyma, 2009). The ‘geographic mosaic of 

coevolution’ (Thompson, 1999; 2005) provides a framework for examining spatial 

heterogeneity in host-parasite interactions. It postulates that three key processes 

govern coevolutionary dynamics: coevolutionary hot and cold spots, selection mosaics 

and trait remixing (Gomulkiewicz et al., 2007). These processes are ultimately 

responsible for generating the three patterns that define a geographic mosaic: spatial 

variation in host and parasite traits, mismatching of these traits (local adaptation and 

maladaptation), and few traits that have coevolved at the species level (Thompson, 

1999; 2005). The theory has the potential to explain the evolution of complex spatial 

patterns of host resistance to parasites because it incorporates both biotic (parasite) 

and abiotic (environment) factors. Yet, verifying the three central processes 

empirically, and hence providing evidence for the existence of geographic mosaics, has 

proven difficult (Gomulkiewicz et al., 2007). For example, spatial variation in parasite 

resistance may simply be the product of differences among populations in initial 

genotype frequencies (Morand et al., 1996) rather than coevolutionary hot spots and 

cold spots or selection mosaics, thereby giving the impression of a geographic mosaic. 

 

A useful method for detecting coevolutionary host spots and cold spots is to conduct 

comparative spatial analyses of parasite resistance phenotypes of hosts (Berenbaum & 

Zangerl, 1998; Laine, 2006; Gomulkiewicz et al., 2007). In particular, assaying 

resistance to parasites among a number of geographically distinct host populations 

may offer insights into divergent host-parasite interactions. Local adaptation studies, 

by definition, examine geographic variation in parasite resistance. However, a 

limitation of such studies is that they require a factorial experimental design, that is, 

reciprocal cross-infection experiments must be carried out for all host-parasite 

combinations. This setup quickly becomes very labour-intensive and is restrictive in 

terms of providing a general overview of spatial variation in parasite resistance if few 

host-parasite combinations are used. Instead, lab-reared individuals from several 
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natural host populations can be exposed to a standard parasite genotype (or 

population) in common garden conditions to determine (genetically-based) 

geographic variation in resistance. This approach has been used successfully for a 

range of different invertebrate-parasite interactions (Kraaijeveld & van Alphen, 1995; 

Mucklow et al., 2004; Tinsley et al., 2006; Corby-Harris & Promislow, 2008; Cory & 

Myers, 2009). Again, there are fewer examples of common garden studies examining 

between-population variation in resistance to microparasites or macroparasites in 

vertebrates (but see e.g. Uller et al., 2003; Jackson & Tinsley, 2005; Kalbe & Kurtz, 

2006; Tobler & Schmidt, 2010). Hence, another aim of this thesis was to assess 

geographic variation in macroparasite resistance among multiple host populations. To 

address this question, I carried out a series of infection experiments with three 

macroparasite species (see Section 2.3). Others have used geographic variation in the 

diversity of immune genes, such as MHC genes, to infer divergent parasite-mediated 

selection (Miller et al., 2001; Ekblom et al., 2007; Alcaide et al., 2008; Matthews et al., 

2010a). However, constitutive expression of immune components is likely to be 

equally variable in space, and this variation may also have a genetic basis (Sanjayan et 

al., 1996; Lindström et al., 2004; Cornet et al., 2009). In Chapters 5 and 6, I evaluate 

variation in the innate immune response among host populations.  

 

Although we are beginning to appreciate the role of parasites as agents of selection 

and diversification in single host populations (Summers et al., 2003; Duffy & Forde, 

2009), it is less clear how parasites drive divergence among populations (Buckling & 

Rainey, 2002b; Vamosi, 2005). As mentioned before, common garden experiments 

incorporating multiple host populations can identify patterns of spatial variation in 

parasite resistance and immune response and reveal divergence in these traits. 

However, an understanding of geographic variation in host ecology is likely to help 

explain and interpret these patterns (Sadd & Schmid-Hempel, 2009). For example, by 

characterising differences in parasite community composition among populations and 

integrating these data with measures of spatial variation in parasite resistance and 

immune response, it may be possible to determine whether the variation in parasite 

resistance and immune response is the result of adaptation to local parasite 

communities. In other words, is investment in these traits optimised according to the 

local rate of parasite exposure? The link between natural infection and experimental 

resistance or immune response across populations has received surprisingly little 
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empirical attention (but see e.g. Lindström et al., 2004; Scharsack et al., 2007a; Corby-

Harris & Promislow, 2008; Hasu et al., 2009). In Chapters 4-6, I aim to link spatial 

variation in macroparasite resistance and immune response to spatial variation in 

natural parasite infection.      
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1.6 Thesis 1.6 Thesis 1.6 Thesis 1.6 Thesis ooooutlineutlineutlineutline    andandandand    main aims of each chaptermain aims of each chaptermain aims of each chaptermain aims of each chapter    

 

Chapter 2 Chapter 2 Chapter 2 Chapter 2 ––––    HHHHost ost ost ost study speciesstudy speciesstudy speciesstudy species, , , , study systemstudy systemstudy systemstudy system, and, and, and, and    parasite speciesparasite speciesparasite speciesparasite species    

 

I give a brief description of the host study species (the three-spined stickleback, 

Gasterosteus aculeatus), the study system (North Uist, Outer Hebrides, Scotland), and 

the three macroparasite species used in the artificial infection experiments 

(Gyrodactylus gasterostei, Diplostomum spathaceum and Schistocephalus solidus). 

    

Chapter 3 Chapter 3 Chapter 3 Chapter 3 ––––    The relative contribution of spatial and temporal variation to The relative contribution of spatial and temporal variation to The relative contribution of spatial and temporal variation to The relative contribution of spatial and temporal variation to 

macroparasite community compositionmacroparasite community compositionmacroparasite community compositionmacroparasite community composition    in sticklebacksin sticklebacksin sticklebacksin sticklebacks    

 

I conducted a survey of macroparasite communities in 12 freshwater stickleback 

populations in two consecutive years to examine whether: 1) there is variation in 

parasite communities among populations, 2) this variation is consistent across years, 

and 3) spatial differences in parasite community composition can be explained by 

differences in geomorphological or physicochemical habitat characteristics.  

 

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ––––    Divergent resistance to a monogenean Divergent resistance to a monogenean Divergent resistance to a monogenean Divergent resistance to a monogenean flatwormflatwormflatwormflatworm    among stickleback among stickleback among stickleback among stickleback 

populationspopulationspopulationspopulations    

 

I carried out artificial infection experiments with the fin ectoparasite Gyrodactylus 

gasterostei in five lab-reared stickleback populations to investigate: 1) variation in 

resistance to G. gasterostei among populations, and 2) the relationship between 

natural Gyrodactylus infection and resistance to G. gasterostei.  

 

Chapter 5 Chapter 5 Chapter 5 Chapter 5 ––––    TTTThehehehe    relationship between parasite resistance andrelationship between parasite resistance andrelationship between parasite resistance andrelationship between parasite resistance and    the innate ithe innate ithe innate ithe innate immune mmune mmune mmune 

response response response response across stickleback populationsacross stickleback populationsacross stickleback populationsacross stickleback populations    

 

I conducted an artificial infection experiment with the eye fluke Diplostomum 

spathaceum in five lab-reared stickleback populations to examine: 1) variation in 

resistance to D. spathaceum among populations,  2) variation in the innate immune 

response to D. spathaceum among populations, 3) the relationship between the innate 
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immune response and D. spathaceum resistance across populations, 4) the 

relationship between natural infection Diplostomum infection, and resistance to D. 

spathaceum or the innate immune response and 5) the effect of D. spathaceum 

infection on stickleback growth.   

 

Chapter 6 Chapter 6 Chapter 6 Chapter 6 ––––    Examining variation Examining variation Examining variation Examining variation in parasite resistance and the innate immune in parasite resistance and the innate immune in parasite resistance and the innate immune in parasite resistance and the innate immune 

response to a tapeworm among stickleback populations response to a tapeworm among stickleback populations response to a tapeworm among stickleback populations response to a tapeworm among stickleback populations     

 

I carried out an artificial infection experiment with the body cavity tapeworm 

Schistocephalus solidus in five lab-reared stickleback populations to investigate: 1) 

variation in resistance to S. solidus among populations, 2) variation in the innate 

immune response to S. solidus among populations, 3) whether variation is resistance is 

linked to natural S. solidus infection and 4) the effect of S. solidus infection on 

stickleback growth and energy status.  

 

Chapter 7: Chapter 7: Chapter 7: Chapter 7: Are there Are there Are there Are there tradetradetradetrade----ofofofoffs between juvenile growth rate and parasite fs between juvenile growth rate and parasite fs between juvenile growth rate and parasite fs between juvenile growth rate and parasite 

resistance orresistance orresistance orresistance or    innate immune responseinnate immune responseinnate immune responseinnate immune response    in sticklebacks?in sticklebacks?in sticklebacks?in sticklebacks?        

    

I conducted a growth experiment with five lab-reared stickleback populations to 

examine variation among populations in juvenile growth rate, an important life 

history trait. Then, integrating data from Chapters 4 and 5, I looked for evidence of 

trade-offs, at the level of full-sib families across populations, between juvenile growth 

rate, resistance to G. gasterostei and D. spathaceum, and the innate immune response. 

This was possible because the same five stickleback populations were used in the 

growth experiment and the infection experiments.   

 

Chapter 8 Chapter 8 Chapter 8 Chapter 8 ––––    General discussionGeneral discussionGeneral discussionGeneral discussion    

 

I integrate the findings from all data chapters, discuss their implications and 

limitations, and suggest areas for further work.  
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Chapter 2: Host study species, study system 

& parasite species 

 

2.12.12.12.1    Host sHost sHost sHost study species: the threetudy species: the threetudy species: the threetudy species: the three----spined stickleback, spined stickleback, spined stickleback, spined stickleback, Gasterosteus Gasterosteus Gasterosteus Gasterosteus 

aculeatusaculeatusaculeatusaculeatus    

 

The three-spined stickleback, Gasterosteus aculeatus (Fig. 2.1), is a small teleost fish 

distributed throughout much of the northern hemisphere (Wootton, 1976; Bell & 

Foster, 1994). It has a long history as a model organism (Wootton, 2009) and has been 

used widely to investigate behaviour (Tinbergen, 1951; Huntingford, 1976; Bakker, 

1986) and to address ecological and evolutionary questions (Heuts, 1947; Hagen, 1967; 

Schluter & McPhail, 1992; Schluter, 2000; McKinnon et al., 2004; Bolnick, 2004). 

More recently, with the publication of the stickleback genome, sticklebacks have also 

shed light on the molecular genetics of adaptation and development (Peichel et al., 

2001; Cresko et al., 2007; Colosimo et al., 2005). The main reason this species has 

received so much attention from evolutionary biologists apart from being common 

and widely distributed is that it has recently undergone an adaptive radiation. 

Following the glacial retreat at the end of the last ice age approximately 10,000 years 

ago, ancestral marine sticklebacks have repeatedly colonised freshwater habitats (Bell 

& Foster, 1994; McKinnon & Rundle, 2002). Adaptation to these novel environments 

led to the divergence of numerous traits, including morphology (Shapiro et al., 2004), 

life history (Baker, 1994; Schluter, 1995) and behaviour (Boughman, 2001; Dingemanse 

et al., 2007). The large number of populations that have evolved in parallel as a result 

of this radiation provides an ideal system for examining the role of ecology in 

diversification and speciation (McKinnon et al., 2004), especially considering that 

parallel evolution forms some of the most convincing evidence for the action of 

natural selection in the wild (Rundle et al., 2000; Schluter, 2000). An additional 

benefit of the three-spined stickleback is that viable hybrids can be produced readily 

between sympatric populations that no longer interbreed, such as the 

limnetic/benthic stickleback species pairs (Bell & Foster, 1994), or between allopatric 

populations that have diverged substantially. Therefore, comparisons of hybrid and 

parental populations can offer insights into the ecological mechanisms contributing 
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to reproductive isolation (Hatfield & Schluter, 1999; Vamosi & Schluter, 2002; Vines & 

Schluter, 2006) as well as the genetic basis of complex traits (Colosimo et al., 2005; 

Albert et al., 2008).    

 

To date, most ecological and evolutionary studies of sticklebacks have focused on how 

resource competition and polymorphism (Gray & Robinson, 2002; Svanback & 

Bolnick, 2007; Matthews et al., 2010b), and predation (Vamosi, 2002; Rundle et al., 

2003; Reimchen & Nosil, 2004; Marchinko, 2009) drive population divergence. 

However, the last decade has seen an increasing interest in host-parasite interactions 

of sticklebacks and their consequences for host divergence. The stickleback fauna is 

well characterised (Chappell, 1969; Wootton, 1976; Barber, 2007; Zander, 2007) and 

spatial variation in parasite communities has been recorded (Kalbe et al., 2002; 

MacColl, 2009a). Moreover, for certain common stickleback parasites, such as the 

body cavity cestode Schistocephalus solidus and the eye fluke Diplostomum 

spathaceum, the negative impacts on host fitness are known (Brassard et al., 1982; 

Owen et al., 1993; Barber et al., 2008; Heins & Baker, 2008; Barber & Scharsack, 2010). 

As a result, sticklebacks exposed to these virulent parasites may be under strong 

selection to evolve defence mechanisms. The German lake-river stickleback system 

has been the most thoroughly studied in terms of host-parasite interactions, with a 

strong emphasis on the MHC genes (Wegner et al., 2003; Kurtz et al., 2006; Rauch et 

al., 2006b; Eizaguirre et al., 2009b; Kalbe et al., 2009). In this system, variation in 

parasite communities (Kalbe et al., 2002) appears to shape differential parasite 

resistance (Kalbe & Kurtz, 2006), immune response (Scharsack et al., 2007a) and MHC 

allelic diversity (Wegner et al., 2003). The well-established limnetic-benthic species 

pairs in British Columbia have also attracted interest with regards to host-parasite 

coevolution (MacColl, 2009a; 2009b; MacColl & Chapman, 2010; Matthews et al., 

2010a). However, we still have a limited understanding of how parasites can drive 

stickleback divergence.   
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FigureFigureFigureFigure    2.12.12.12.1. The study organism, the three-spined stickleback, Gasterosteus aculeatus. This fish 

is a lab-reared fish from Loch Hosta, North Uist. Photo by Andrew MacColl.  

 

2.22.22.22.2    Study system: North Uist, Outer Hebrides, Scotland Study system: North Uist, Outer Hebrides, Scotland Study system: North Uist, Outer Hebrides, Scotland Study system: North Uist, Outer Hebrides, Scotland     

 

North Uist is a small island (~300km2) in the Outer Hebrides, Scotland. The landscape 

comprises a vast network of freshwater and saltwater lochs (Fig. 2.2), the majority of 

which harbours three-spined sticklebacks. Since most of the lochs are not 

interconnected, these stickleback populations may be considered to be geographically 

isolated and evolutionarily independent. The phylogeographic history of North Uist 

sticklebacks remains to be studied, but preliminary microsatellite data (S. Coyle, 

personal communication) indicate that some populations have been separated long 

enough to have diverged substantially. The extensive morphological variation, in 

terms of body size, body shape and armour traits, among freshwater stickleback 

populations on North Uist (Giles, 1983b) certainly suggests that there has been 

divergence. However, with the exception of a few studies published in 1980’s (Giles, 

1983b; Giles & Huntingford, 1984), very little is actually known about the ecology and 

evolution of sticklebacks in this system, let alone the impact of parasites on 

stickleback evolution.  

 

Freshwater lochs on North Uist are characterised by substantial environmental 

variation, most notably a cline in alkalinity/acidity that runs from the west side to the 

east side of the island (Giles, 1983b), but conductivity and water temperature also vary 

spatially (A. MacColl, unpublished data). Alongside physicochemical differences, 

freshwater lochs differ considerably in size and depth, and there is spatial variation in 

phytoplankton and zooplankton densities (A. MacColl, unpublished data). Given these 

environmental differences and the large number of replicate stickleback populations, 

North Uist forms an excellent system in which to study the ecology and evolution of 
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spatial variation in host-parasite interactions. The stickleback populations examined 

in this thesis were chosen to cover a wide geographical and environmental range, with 

the aim of gaining a broad overview of spatial variation in host-parasite interactions. 

All but one of the populations are freshwater populations; one saltwater population 

was also included in the infection and growth experiments (Chapters 4-7).    

 

2.3 Parasite species: 2.3 Parasite species: 2.3 Parasite species: 2.3 Parasite species: Gyrodactylus gasterosteiGyrodactylus gasterosteiGyrodactylus gasterosteiGyrodactylus gasterostei, , , , Diplostomum Diplostomum Diplostomum Diplostomum 

spathaceumspathaceumspathaceumspathaceum    and and and and SchistocephalusSchistocephalusSchistocephalusSchistocephalus    solidussolidussolidussolidus    

 

In Chapter 4-6, artificial experiments were carried out with three common stickleback 

macroparasite species: Gyrodactylus gasterostei, Diplostomum spathaceum and 

Schistocephalus solidus. Below, I give a brief description of the life cycle and life 

history of each parasite species. 

 

2.3.1 2.3.1 2.3.1 2.3.1 Gyrodactylus gasterosteiGyrodactylus gasterosteiGyrodactylus gasterosteiGyrodactylus gasterostei    

 

Gyrodactylus gasterostei is a monogenean ectoparasite that infects the fins and body 

of freshwater three-spined sticklebacks (Glaser, 1974; Harris, 1985). Like most 

gyrodactylids, this species is viviparous and lacks a specific transmission stage. Worms 

reproduce directly on the host and have a short generation time (2-4 days depending 

on the water temperature). This short generation time is achieved in part due to their 

unusual mode of reproduction. Gyrodactylids give birth to a fully grown daughter 

which itself contains a developing embryo in utero, akin to “Russian Dolls” (Bakke et 

al., 2007). As a result, growth of the parasite population can be extremely rapid (Fig. 

2.3). Although gyrodactylids can reproduce both sexually and asexually, reproduction 

in G. gasterostei tends to be predominantly asexual (Harris, 1998). Gyrodactylus 

transmission between hosts occurs when fish come into close contact.  
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FigFigFigFigureureureure 2.2.2.2.2222 The study system, North Uist, Outer Hebrides, Scotland. The photo shows the view 

from Eaval to the North West, May 2008, and depicts the interlocking matrix of water bodies. 

The loch (Obisary) in the foreground is flooded by the sea at spring tides and is brackish. Lochs 

in the middle distance are acidic freshwater. The Atlantic can just be seen in the distance in 

the upper left. The satellite image of North Uist was obtained from WorldWind (NASA; 

http://worldwind.arc.nasa.gov/).  
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Fig. 2.3 Fig. 2.3 Fig. 2.3 Fig. 2.3 A scanning electron micrograph of a heavy Gyrodactylus infection. Photo by K. 

Kvalsvik, reproduced from Bakke et al. (2007) 

    

2.3.2 2.3.2 2.3.2 2.3.2 DiplostomumDiplostomumDiplostomumDiplostomum    spathaceumspathaceumspathaceumspathaceum    

 

Diplostomum spathaceum is a widely distributed digenean trematode that uses a 

range of fish species, including the three-spined stickleback, as a second intermediate 

host in its three-host life cycle (Chappell, 1995; Fig. 2.4). Adult worms mature in the 

gut of a fish-eating bird, the definitive host, and reproduce sexually to produce eggs. 

Eggs are deposited in the water along with bird faeces. Here, they hatch to release 

miracidia, the first free-swimming larval stage that locates, penetrates and infects 

snails (usually Lymnaea stagnalis), the first intermediate hosts. In the snail, miracidia 

develop into sporocysts that undergo asexual reproduction to produce cercariae, the 

second free-swimming larval stage. Fish become infected through exposure to 

cercariae shed from infected snails. Cercariae penetrate the fish gills and skin and 

migrate to the eye lens, where they develop into metacercariae. Metacercariae remain 

in the lens until the infected fish is eaten by a bird (e.g. a gull). In the bird gut, 

metacercariae develop into adult worms, thus completing the life cycle (Chappell, 

1995). 
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Fig. 2.4.Fig. 2.4.Fig. 2.4.Fig. 2.4. The life cycle of Diplostomum spathaceum. Figure from Dogiel et al. (1961). 

    

2.3.3 2.3.3 2.3.3 2.3.3 SchistocephalusSchistocephalusSchistocephalusSchistocephalus    solidussolidussolidussolidus    

 

Schistocephalus solidus is a pseudophyllidean cestode that regularly infects three-

spined sticklebacks, the second and only obligate intermediate host in its three-host 

life cycle (Barber & Scharsack, 2010; Fig. 2.4). In the gut of a fish-eating bird, the 

definitive host, adult worms mature and reproduce either sexually or asexually to 

produce eggs. Eggs are deposited in the water along with bird faeces. Here, they hatch 

to release coracidia, a free-swimming larval stage that is ingested by cyclopoid 

copepods, the first intermediate hosts. In the copepod, coracidia migrate to the 

haemocoel and develop into procercoids. Sticklebacks become infected when they eat 

an infected copepod. In the stickleback, infective procercoids penetrate the intestine 

wall and migrate to the body cavity, where they develop into plerocercoids. 

Plerocercoids remain in the body cavity until the fish is eaten by a bird (e.g. a heron). 

In the bird gut, plerocercoids develop into adult worms, thus completing the life cycle 

(Barber & Scharsack, 2010). S. solidus infection in sticklebacks can be long-lived. 

Accordingly, plerocercoids can attain a large size in the body cavity and can account 

for a large proportion of stickleback body weight.  
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Fig. 2.5.Fig. 2.5.Fig. 2.5.Fig. 2.5. The life cycle of Schistocephalus solidus. Figure from Milinski (2006). 

  



27 

 

Chapter 3: The relative contribution of 

spatial and temporal variation to 

macroparasite community composition of 

sticklebacks   

    

3.1 Introduction3.1 Introduction3.1 Introduction3.1 Introduction    

 

Parasites form an important part of the selective environment of their host organisms. 

Antagonistic coevolution between hosts and parasites is a key mechanism driving 

adaptive change in host populations (Woolhouse et al., 2002; Paterson et al., 2010). 

However, selection exerted by parasites is likely to be heterogeneous, both in space 

(Brockhurst et al., 2004; Nuismer & Ridenhour, 2008) and time (Burdon & Thrall, 

1999; Forde et al., 2004; Soubeyrand et al., 2009). Moreover, the most basic version of 

the Red Queen hypothesis, which plays a central role in our thinking about host-

parasite interactions, predicts that there will be fluctuations in parasites over time 

(Hamilton, 1980). Therefore, the spatiotemporal structure of host-parasite 

interactions is crucial in determining the outcome of coevolutionary dynamics and 

the nature of parasite-mediated selection. Local adaptation studies have aided our 

understanding of host-parasite interactions in space (Lively & Dybdahl, 2000; 

Greischar & Koskella, 2007; Hoeksema & Forde, 2008). Likewise, temporal adaptation 

experiments can provide insights into the dynamics and stability of host-parasite 

interactions in time (Decaestecker et al., 2007; Gaba & Ebert, 2009). However, 

spatiotemporal analyses of the parasite communities of a large number of populations 

of the same host species may also provide important insights, albeit indirectly, into 

the geographic structure and dynamics of host-parasite interactions in the wild. 

Indeed, a fundamental first step in assessing the impact of parasites on natural host 

populations is to understand their distribution (Ebert, 2005). This applies especially to 

vertebrate-macroparasite systems, where longitudinal data and comparative studies 

on host-parasite interactions in natural populations are often scarce or lacking.  

 

An important issue in the study of parasite-mediated selection that has yet to be 

investigated is the relative contribution of spatial and temporal variation to parasite 
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distributions, and hence, parasite-mediated selection (Duffy & Forde, 2009). Parasite 

community ecologists have strived to identify patterns of variation in parasite 

community composition and structure, both in space and time (Poulin, 2007a; 

Kennedy, 2009). However, these two aspects are often studied in isolation (although 

see e.g. Behnke et al., 2008). There is a need for studies that examine the generality of 

any patterns by looking at temporal and spatial variation in parasite community 

composition simultaneously across a large number of host populations. Moreover, 

results from such analyses are rarely interpreted in an evolutionary context that 

addresses the potential impact of this variation on the evolution of host populations. 

For instance, if host population accounts for more variation in parasite community 

composition than sampling time, it suggests that variation in space is more important 

in determining the strength of parasite-mediated selection than variation in time. 

This approach assumes that parasite community composition is an accurate proxy for 

parasite-mediated selection. Further evidence for the importance of geographical 

location can be obtained by examining the relationships between environmental 

variables and parasite distributions: if there is a strong association between parasite 

distributions and abiotic habitat characteristics, it indicates that the differences in 

parasite distributions among populations are likely to be stable in time. Habitat 

characteristics can influence parasite distributions for instance by determining the 

suitability of the environment for intermediate hosts of certain parasite species, or for 

the parasite species themselves (Poulin, 2007b). A large-scale comparative approach 

also allows one to assess whether parasite-mediated selection is acting in a consistent 

manner within and/or among populations (Ricklefs, 2010). For instance, if parasite 

distributions are sufficiently stable in time such that the relative differences among 

host populations do not change between sampling times, it indicates that host 

populations experience divergent parasite-mediated selection that is consistent in 

time.      

 

Here, twelve replicate three-spined stickleback, Gasterosteus aculeatus, populations 

from North Uist, Outer Hebrides, Scotland, were sampled in two consecutive years to 

address the following questions: 1) is there variation in parasite communities among 

populations, 2) is this variation consistent across years and 3) can spatial differences in 

parasite community composition be explained by differences in geomorphological 

and physicochemical habitat characteristics? The three-spined stickleback is a useful 
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model species for assessing spatial and temporal variation in parasite communities for 

a number of reasons. It occupies a diverse array of habitats, from freshwater streams 

and pools to brackish/marine water bodies. Population density in these habitats is 

typically high, making it easy to obtain large sample sizes. Furthermore, the 

stickleback parasite fauna has been well-documented (Wootton, 1976; Barber, 2007). 

North Uist comprises an extensive network of lochs, the majority of which contain 

sticklebacks. Although it has yet to be assessed formally whether these populations are 

evolutionarily independent, the substantial morphological divergence found 

throughout the island (Giles, 1983b) and preliminary genetic data (S. Coyle, personal 

communication) suggest that some populations have been separated long enough to 

have diverged considerably. Therefore, the North Uist system provides a wide scope 

for comparative analysis.  

 

3.2 Methods3.2 Methods3.2 Methods3.2 Methods    

 

3.2.1 Fish populations and parasite identification 3.2.1 Fish populations and parasite identification 3.2.1 Fish populations and parasite identification 3.2.1 Fish populations and parasite identification     

    

Twelve stickleback populations on North Uist, Scotland, were selected for sampling to 

represent a range of freshwater habitats across the island (Table 3.1). The lochs were 

situated in a small geographical area, the furthest two lochs being 17.41km apart. 

Populations were sampled at the same time during the breeding season (April-May) in 

two consecutive years, 2007 and 2008. Fish were caught using minnow traps (Gee 

traps, Dynamic Aqua, Vancouver) which were set overnight and lifted the following 

day. A sample of 20 fish was selected haphazardly from the total number caught, 

although occasionally fewer than 20 fish were caught (Table 3.1). Fish were 

subsequently transferred to polystyrene boxes filled with lake water and provided with 

an air source.  

 

Within 48 hours of capture, fish were killed, by overdose of MS222 (400 mg L-1), and 

dissected. Standard length was measured to the nearest 0.1 mm. The external surface, 

gills and all organs were carefully scanned for macroparasites using a dissection 

microscope. The caudal, anal and dorsal fins were examined for Gyrodactylus and the 

number recorded to give an index of abundance. Presence of Gyrodactylus on other 
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parts of the body and gills were recorded in order to estimate prevalence, but were not 

counted. The rest of the body surface was checked for parasites under the skin. The 

opercular cavity and the gills on the left side were examined. Only the left eye was 

dissected. Intestines were stored in 70% ethanol and dissected in July-August 2007, 

and October-November 2008 for both years, respectively. A total of 455 fish was 

dissected.  

 

Most parasites were identified to species level, using a key for parasites of freshwater 

fish (Bykhovskaya-Pavlovskaya et al., 1964) and more current and specialist literature 

where necessary. Encysted trematode metacercariae found in the humour of the eye 

were not identified, but probably belonged to the species Apatemon gracilis (Blair, 

1976). Here, these metacercariae are referred to as Apatemon sp. Likewise, encysted 

Diphyllobothrium worms could not be identified to species level and are referred to as 

Diphyllobothrium spp. 

 

3.2.2 Statistical analysis3.2.2 Statistical analysis3.2.2 Statistical analysis3.2.2 Statistical analysis    

 

To identify common parasite species quantitatively, I followed the approach of 

MacColl (2009a). If a parasite species had an overall prevalence greater than 10%, 

averaged across both years, it was considered for individual statistical analysis (see 

below). Prevalence and abundance are defined after Bush et al. (1997), and refer to the 

percentage of hosts infected with a certain parasite species and the number of 

individuals of a particular parasite species on/in a host individual, respectively.  

 

Two measures of parasite community composition at the host population level were 

calculated: Simpson’s diversity index (1-D), which is a diversity index that takes into 

account the relative abundance of each species in the index (Magurran, 2003) and the 

percentage of fish infected with at least one parasite species. Additionally, coefficients 

of variation (CV) were calculated using mean abundance values for each parasite 

species per population, to obtain a metric indicating variability of parasite 

distributions across populations. Coefficients of variation are scale invariant and 

dimensionless and can therefore be used to compare distributions of different parasite 

species which have very different magnitudes of infection (Poulin, 2006). 
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Parasite abundance, prevalence and species richness data, i.e. measures of parasite 

community composition at the level of individual hosts, were analysed using 

generalised linear models (GLMs). Parasite species richness was modelled with 

Poisson errors and a logarithm link function, whereas total parasite abundance and 

abundance of individual parasite species were modelled with negative binomial errors 

and a logarithm link function. Prevalence of individual parasite species was analysed 

using GLMs with a binomial error structure and a logit link function; the response 

variable took a value of ‘1’ and ‘0’ if fish were infected or uninfected, respectively. Full 

models were the same for all response variables and included population, year and sex 

as fixed effects, fish standard length as a covariate and the year × population 

interaction. This term assessed whether there was a change in the relative abundance, 

parasite prevalence and species richness of different populations across years; if this 

was the case, the interaction term was expected to be significant. Length × sex and 

length × population were also fitted, to examine whether the effect of length was 

consistent between sexes and across populations. Significance of effects was 

determined by sequentially dropping each term from the full model and recording the 

change in deviance compared to the χ2 distribution with the corresponding number of 

degrees of freedom, until a minimum adequate model was specified. If main effects 

were marginal to interaction effects, the significance of the main effect was assessed 

by dropping both the main and interaction effects. All statistical analyses were 

performed in GenStat (release 12, VSN International Ltd., Hemel Hempstead, UK).   

  

To assess whether differences in environmental variables could explain spatial 

variation in parasite distributions, four physicochemical variables (pH, calcium 

concentration (‘Ca2+ conc.’), chlorophyll A concentration (‘Chlor A conc.’), dissolved 

organic carbon (‘DOC’)) and one geomorphological variable (loch surface area) were 

regressed against 11 measures of parasite community composition at the host 

population level: mean parasite species richness, mean total parasite abundance, 

Simpson’s diversity index (1-D), Diplostomum gasterostei abundance and prevalence, 

Gyrodactylus arcuatus abundance and prevalence, Apatemon sp. abundance and 

prevalence, and Schistocephalus solidus abundance and prevalence.  
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Chlorophyll A concentration is a measure of phytoplankton productivity specifically, 

and aquatic productivity generally, whereas DOC measures organic loading of a water 

body. The size of water bodies (Kennedy, 1978; Hartvigsen & Halvorsen, 1994), pH 

(Marcogliese & Cone, 1996; Goater et al., 2005; Hernandez et al., 2007) and DOC (King 

et al., 2007) have previously been shown to affect parasite species richness, and 

prevalence and abundance of individual parasite species in aquatic environments, and 

may therefore also be important in shaping stickleback parasite communities on 

North Uist. Loch surface area is important from an epidemiological perspective: larger 

lakes potentially contain larger host populations which may increase transmission of 

parasites (Ebert et al., 2001). Calcium concentration, although strongly correlated with 

pH, has been shown to be associated with presence of Diplostomum sp. (Curtis & Rau, 

1980), as lakes with low calcium concentrations cannot support the snail intermediate 

hosts. Furthermore, calcium concentration is known to be a dominant axis of 

variation among North Uist lochs (Giles, 1983b). As a result, it may affect the 

distribution of Diplostomum gasterostei and Apatemon sp., and was thus analysed 

separately from pH. DOC is known to mediate the density of invertebrates in 

freshwater systems (Wetzel, 2001) and may therefore affect the abundance of 

crustaceans, such as copepods, which are intermediate hosts for a number of 

stickleback cestodes, including S. solidus and Proteocephalus filicollis, and may have a 

knock-on effect on the abundance of these parasite species. Lastly, there are good 

reasons to expect a positive association between aquatic productivity and parasite 

species richness and abundance (Esch, 1971; Poulin et al., 2003), which may also be 

mediated indirectly via the abundance of intermediate host species (Goater et al., 

2005).      

 

Parasite data were averaged over both years for the parasite community and 

environmental measure associations. pH values were measured using a calibrated pH 

meter (Multi 340i, Semat International) and are averages of one to four readings 

(depending on the loch) taken between April 2006 and May 2009. Calcium 

concentrations were obtained from water samples, collected in April-May 2007, via 

inductively coupled plasma mass spectrometry (ICP-MS). The value is the average of 

five runs. Calcium concentrations were only available for 11 lochs. Chlorophyll A 

concentration and DOC values were obtained from water samples collected in April-

May 2008 by spectrophotometry and total organic carbon analyser respectively. Data 
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for these two environmental measures were only available for 8 lochs. Loch surface 

areas were determined from 1:25,000 topographic maps (Ordnance Survey sheet) in 

Adobe Photoshop (Adobe Systems, Mountain View, CA). A matrix was constructed 

with r2 values from the regression analyses. For each regression, the parasite measure 

was the response variable and the environmental variable was the explanatory 

variable. 

 

3.3 Results 3.3 Results 3.3 Results 3.3 Results     

    

3.3.1 Parasite communities3.3.1 Parasite communities3.3.1 Parasite communities3.3.1 Parasite communities    

 

Nine macroparasite species were recorded (Table 3.2). Tylodelphys clavata, a 

diplostomid species that is morphologically similar to Diplostomum gasterostei, was 

also recorded in the eye humour and retina. However, as T. clavata was encountered 

infrequently, findings were grouped together with D. gasterostei. Not included are 

isolated findings of a number of parasite species, which were each recorded from one 

fish only: the trematode Phyllodistomum folium (urinary bladder), the cestode 

Paradilepis scolecina (mesenteries), and two unidentified nematode species (one from 

the body cavity and one from the intestine). Larval intestinal cestodes were also 

excluded from the analyses as they were found infrequently in one population only 

(Hosta). Although these cestodes were unidentifiable due to their small size and 

underdeveloped scolex, they were most likely Proteocephalus filicollis and 

Eubothrium crassum, as these were the only intestinal cestodes present in Hosta 

(Table 3.2).  

 

3.3.2 Spatiotemporal variation in parasite commun3.3.2 Spatiotemporal variation in parasite commun3.3.2 Spatiotemporal variation in parasite commun3.3.2 Spatiotemporal variation in parasite communitiesitiesitiesities    

 

Five parasite species were present in over 10% of all hosts examined and contributed 

strongly to variation in parasite community composition: the trematodes 

Diplostomum gasterostei and Apatemon sp., the monogenean Gyrodactylus arcuatus, 

and the cestodes Schistocephalus solidus and Proteocephalus filicollis. Abundance and 

prevalence data of these parasite species were analysed with separate statistical 

models.  
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At the host population level, parasite communities ranged from those comprising only 

two species, with over 80% of uninfected individuals in the population (Daimh) to 

those in which a large proportion (70%) of the population was infected with at least 

three parasite species (Mhic Gille Bhride) (Table 3.2). Parasite diversity (1-D) varied 

considerably among populations but population-level differences were correlated 

across years (Fig. 3.1a). Likewise, the percentage of fish infected with at least one 

parasite species was spatially variable but the relative differences among populations 

did not change much between years (Fig. 3.1b). Furthermore, all coefficients of 

variation (CV) on population mean abundances had values above 1, indicating 

variability among host populations for all nine macroparasite species (Table 3.2).  

 

At the level of host individuals, parasite species richness varied significantly among 

populations and differed between years (Table 3.3). Although parasite species richness 

was higher in 2008 than in 2007, population explained substantially more variation in 

parasite species richness than year (Table 3.3). Moreover, the relative differences in 

parasite species richness among populations hardly changed between years, as 

indicated by the non-significant year × population interaction and the strong positive 

correlation between parasite species richness in both years (Fig. 3.1c). Length was 

positively correlated with parasite species richness across populations (Table 3.3). 

Neither sex nor sex × length explained significant variation in parasite species 

richness (Table 3.3). Total parasite abundance also varied significantly among 

populations, between years and as a result of fish length (Table 3.3). Like parasite 

species richness, population, rather than year, was the most important determinant of 

total parasite abundance. Total parasite abundance was higher in 2008 and was 

positively correlated with fish length across populations. The effect of length on 

parasite abundance differed significantly across males and females although there was 

no main effect of sex. The marginally significant year × population term indicated that 

the relative differences in parasite abundance changed slightly between years (Table 

3.3). Nevertheless, the correlation between total parasite abundance in both years 

remained tight and positive (Fig. 3.1d). 
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The GLMs of prevalence and abundance data of individual parasite species revealed 

common patterns. Population explained a significant proportion of variation in all 

data sets (Table 3.3). Year had a significant effect on the abundance of G. arcuatus, D. 

gasterostei, Apatemon sp. and S. solidus as well as on the prevalence of G. arcuatus, D. 

gasterostei and S. solidus, although to different extents (Table 3.3). Values of these 

individual parasite species measures, apart from S. solidus abundance, were higher in 

2008 than in 2007. With the exception of G. arcuatus prevalence, population rather 

than year accounted for the largest proportion of variation in abundance and 

prevalence of individual parasites species. Abundance of G. arcuatus, D. gasterostei, S. 

solidus and P. filicollis, and prevalence of G. arcuatus, D. gasterostei and Apatemon sp. 

also varied significantly as a result of fish length. Excluding P. filicollis and S. solidus, 

parasite abundance was positively correlated with fish length. Likewise, prevalence of 

individual parasite species was higher in larger fish (Table 3.3). However, the length × 

population interaction was significant for D. gasterostei abundance, G. arcuatus 

prevalence and Apatemon sp. prevalence, indicating that this relationship was not 

identical across all populations. Sex failed to explain variation in abundance and 

prevalence of all individual parasite species, but the length × sex term was significant 

for S. solidus (Table 3.3).     

 

The significance of the year × population interaction term varied among parasite 

species (Table 3.3). The relative differences among populations in D. gasterostei 

abundance and prevalence, P. filicollis abundance and prevalence and Apatemon sp. 

prevalence changed little between years (Figs. 3.2 and 3.3). Relative differences in G. 

arcuatus abundance and prevalence among populations were not as repeatable across 

years (Figs. 3.2b and 3.3b). However, this result was highly dependent on two 

populations, Buaile and Scadavay. Buaile had a high G. arcuatus abundance in 2007 

whereas the parasite was absent from the sample in 2008. Conversely, G. arcuatus was 

absent from Scadavay in 2007 but was found in 55% of fish examined in 2008. 

Removal of these two populations substantially improved the correlation between 

population-level means in both years, (G. arcuatus abundance: all populations, r = 

0.23; without Buaile and Scadavay, r = 0.99; G. arcuatus prevalence: all populations, r = 

0.61; without Buaile and Scadavay, r = 0.86). The year × population interaction was 

also significant for S. solidus abundance    and prevalence (Table 3.3). This may be 
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attributed to a single population, Mhic A’Roin. In 2007, S. solidus was found in the 

majority of fish from this population, while it was only recorded from one fish in 2008 

(Figs. 3.2d and 3.3c). Again, removal of this population improved the fit of the 

correlation between data from both years (S. solidus abundance: all populations, r = 

0.68; without Mhic A’Roin, r = 0.85; S. solidus prevalence: all populations, r = 0.31; 

without Mhic A’Roin, r = 0.79). The relative differences in Apatemon sp. abundance 

among populations also changed slightly between years, but the correlation between 

population-level means from both years remained strong and positive (Fig. 3.2c).  

 

 

 

FigureFigureFigureFigure    3.3.3.3.1111 Relationship between data from 2007 and 2008 of: a) parasite diversity (1-D): r = 

0.72; b) percentage of fish infected with at least one parasite species: r = 0.87; c) mean parasite 

species richness: r = 0.96, d) mean total parasite abundance: r = 0.92.  

 

0

1

2

3

4

0 1 2 3 4

M
e
a

n
 p

a
ra

s
it
e
 

s
p
e

c
ie

s
 r

ic
h
n
e

s
s
 2

0
0

8

Mean parasite 
species richness 2007

0

4

8

12

16

0 4 8 12 16

M
e
a

n
 t

o
ta

l 
p

a
ra

s
it
e

 
a
b

u
n
d

a
n
c
e

 2
0

0
8

Mean total parasite 
abundance 2007

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

P
a
ra

s
it
e
 d

iv
e

rs
it
y
 

(1
-D

) 
2

0
0
8

Parasite diversity 
(1-D) 2007

0

20

40

60

80

100

0 20 40 60 80 100

%
 i
n
fe

c
te

d
 w

it
h
 ≥

 1
 

p
a

ra
s
it
e
 s

p
p
. 

2
0
0

8

% infected with ≥ 1 
parasite spp. 2007

a) b)

d)c)



 

 

 

38 

                                                   

T
ab
le
 3
.2
. 

T
ab
le
 3
.2
. 

T
ab
le
 3
.2
. 

T
ab
le
 3
.2
. S
ee
 p
ag
e 
41
 fo
r 
le
ge
n
d

  T
ax
o
n
 

  Sp
ec
ie
s 

Y
ea
r 

B
h
a
rp
a
 

  
B
u
a
il
e
 

  
D
a
im

h
 

  
D
u
b
h
a
sa
ra
id
h
 
  

H
o
st
a
 

  
M
a
g
a
rl
a
n
 

P
 (
%
) 

M
A
 
  

P
 (
%
) 

M
A
 
  
P
 (
%
) 

M
A
 
 

P
 (
%
) 

M
A
 

 
P
 (
%
) 

M
A
 
 

P
 (
%
) 

M
A
 

C
ru
st
ac
ea
 

T
he
rs
iti
na
 g
as
te
ro
st
ei
 
2
0
0
7
 

 0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 
0
.0
 
 

4
0
.0
 

0
.5
 

2
0
0
8
 

 0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 
0
.0
 
 

6
0
.0
 

1
.3
 

M
o
n
o
ge
n
ea
 
G
yr
od
ac
ty
lu
s 

ar
cu
at
us
 

2
0
0
7
 

 0
.0
 
0
.0
 
 

3
5
.0
 
3
.1
 
 

0
.0
 
0
.0
 
 

1
6
.7
 

0
.3
 
 

4
5
.0
 
1
.4
 
 

4
0
.0
 

0
.4
 

 
2
0
0
8
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

6
0
.0
 

0
.7
 
 

9
0
.0
 
2
.5
 
 

3
5
.0
 

0
.7
 

D
ig
en
ea
 

D
ip
lo
st
om
um
 

ga
st
er
os
te
i 

2
0
0
7
 

 0
 
0
.0
 
 

8
0
.0
 
2
.2
 
 

4
.8
 
0
.1
 
 

5
8
.3
 

1
.3
 
 

2
0
.0
 
0
.8
 
 

4
0
.0
 

0
.6
 

 
2
0
0
8
 

5
.0
 
0
.1
 
 

9
0
.0
 
2
.6
 
 

5
.0
 
0
.1
 
 

6
0
.0
 

1
.3
 
 

3
5
.0
 
0
.9
 
 

5
5
.0
 

2
.4
 

 
A
p
at
em
on
 s
p
. 
 

2
0
0
7
 

 0
.0
 
0
.0
 
 

3
5
.0
 
0
.6
 
 

0
.0
 
0
.0
 
 

2
5
.0
 

0
.3
 
 

1
0
.0
 
0
.1
 
 

5
.0
 

0
.1
 

 
2
0
0
8
 

 0
.0
 
0
.0
 
 

7
0
.0
 
1
.2
 
 

0
.0
 
0
.0
 
 

1
5
.0
 

0
.2
 
 

0
.0
 
0
.0
 
 

2
5
.0
 

0
.3
 

C
es
to
d
a 

Sc
hi
st
oc
ep
ha
lu
s 

so
lid
us
 

2
0
0
7
 

3
0
.0
 
1
.8
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

1
5
.0
 
0
.5
 
 

5
.0
 

0
.1
 

 
2
0
0
8
 

4
0
.0
 
1
.3
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

4
5
.0
 
1
.0
 
 

0
.0
 

0
.0
 

 
D
ip
hy
llo
bo
th
ri
um
 

de
nd
ri
tic
um
 

2
0
0
7
 

0
.0
 
0
.0
 
 

5
.0
 
0
.1
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 

 
2
0
0
8
 

0
.0
 
0
.0
 
 

4
0
.0
 
6
.9
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
0
 
 

5
.0
 
0
.1
 
 

5
.0
 

0
.1
 

 
D
ip
hy
llo
bo
th
ri
um
 s
p
. 

(e
n
cy
st
ed
) 
 

2
0
0
7
 

2
0
.0
 
0
.2
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

1
5
.0
 
0
.2
 
 

1
0
.0
 

0
.1
 

 
2
0
0
8
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 

 
Pr
ot
eo
ce
p
ha
lu
s 

fil
ic
ol
lis
 

2
0
0
7
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

7
0
.0
 
3
.4
 
 

3
0
.0
 

0
.3
 

 
2
0
0
8
 

1
0
.0
 
0
.2
 
 

1
0
.0
 
0
.2
 
 

0
.0
 
0
.0
 
 

0
.0
 

0
.0
 
 

6
5
.0
 
2
.3
 
 

4
5
.0
 

0
.7
 

 
E
ub
ot
hr
iu
m
 c
ra
ss
um
 
2
0
0
7
 

3
0
.0
 
0
.5
 
 

0
.0
 
0
.0
 
 

1
4
.3
 
0
.2
 
 

0
.0
 

0
.0
 
 

3
0
.0
 
0
.6
 
 

0
.0
 

0
.0
 

 
2
0
0
8
 

1
5
.0
 
0
.2
 
  

0
.0
 
0
.0
 
  

5
.0
 
0
.1
 
  

0
.0
 

0
.0
 
  

1
5
.0
 
0
.4
 
  

0
.0
 

0
.0
 

 
P
ar
as
it
e 
d
iv
er
si
ty
  

(1
-D
) 

2
0
0
7
 

  
  
  
 0
.4
4
 

 
  
  
  
  
 0
.5
8
 

 
  
  
  
 0
.3
2
 

 
  
  
  
  
  
0
.5
1
 

 
  
  
  
  
 0
.6
9
 

 
  
  
  
  
 0
.7
8
 

 
2
0
0
8
 

  
  
  
 0
.3
6
 

 
  
  
  
  
 0
.5
2
 

 
  
  
  
 0
.5
0
 

 
  
  
  
  
  
0
.5
2
 

 
  
  
  
  
 0
.7
3
 

 
  
  
  
  
 0
.7
1
 

 
%
 i
n
fe
ct
ed
 w
it
h
 a
t 

le
as
t 
o
n
e 
p
ar
as
it
e 

sp
p
. 

2
0
0
7
 

5
5
.0
 

 
  
8
5
.0
 

 
1
9
.0
 

 
6
6
.7
 

 
 9
0
.0
 

 
 9
5
.0
 

  
2
0
0
8
 

  
  
 8
5
.0
  
  

 
  
9
5
.0
 

 
1
0
.0
 

 
8
0
.0
 

 
  
  
 1
0
0
.0
 

 
  
  
  
1
0
0
.0
 



 

 

 

39 

Y
ea
r 

M
a
ig
h
d
e
in
 

 
M
h
ic
 A
’ 
R
o
in
 
 

M
h
ic
 G
il
le
 B
h
ri
d
e
 
 

M
o
ra
c
h
a
 

 
S
c
a
d
a
v
a
y
 

 
T
o
rm

a
sa
d
 
  

O
v
e
ra
ll
 A
v
e
ra
g
e
 

P
 (
%
) 

M
A
 
  
P
 (
%
) 

M
A
 
  
P
 (
%
) 

M
A
 

  
P
 (
%
) 

M
A
 
  
P
 (
%
) 

M
A
 
  
P
 (
%
) 

M
A
 

 
P
 (
%
) 

M
A
 

C
V
 

2
0
0
7
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

7
2
.7
 

1
.5
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

7
.1
 

0
.1
 

4
.2
 

2
0
0
8
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

6
5
.0
 

2
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 
1
0
.8
 

0
.3
 

3
.7
 

2
0
0
7
 

5
.0
 

0
.1
 
 

5
.0
 

0
.1
 
 

5
4
.5
 

1
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 
1
5
.2
 

0
.5
 

5
.1
 

2
0
0
8
 

2
5
.0
 

0
.3
 
 

1
8
.8
 

0
.4
 
 

7
5
.0
 

1
.7
 
 

1
3
.3
 

0
.2
 
 

5
5
.0
 

0
.8
 
 

1
0
.0
 

0
.1
 
 
3
4
.2
 

0
.6
 

2
.0
 

2
0
0
7
 

2
0
.0
 

0
.2
 
 

2
5
.0
 

0
.4
 
 

9
0
.9
 

4
.2
 
 

5
5
.0
 

1
.1
 
 

1
0
.0
 

0
.2
 
 

4
0
.0
 

0
.5
 
 
3
3
.9
 

0
.8
 

2
.1
 

2
0
0
8
 

3
0
.0
 

0
.3
 
 

1
2
.5
 

0
.2
 
 

1
0
0
.0
 

9
.1
 
 

8
0
.0
 

1
.9
 
 

1
5
.0
 

0
.2
 
 

4
5
.0
 

1
.2
 
 
4
4
.2
 

1
.7
 

1
.9
 

2
0
0
7
 

1
5
.0
 

0
.2
 
 

5
.0
 

0
.2
 
 

6
3
.6
 

1
.0
 
 

1
5
.0
 

0
.2
 
 

0
.0
 

0
.0
 
 

2
5
.0
 

0
.3
 
 
1
4
.3
 

0
.2
 

2
.8
 

2
0
0
8
 

0
.0
 

0
.0
 
 

6
.3
 

0
.1
 
 

6
5
.0
 

1
.4
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.5
 
 

3
5
.0
 

0
.5
 
 
1
9
.0
 

0
.3
 

2
.8
 

2
0
0
7
 

0
.0
 

0
.0
 
 

5
5
.0
 

1
.1
 
 

9
.1
 

0
.1
 
 

5
.0
 

0
.1
 
 

1
0
.0
 

0
.1
 
 

0
.0
 

0
.0
 
 
1
1
.2
 

0
.3
 

5
.0
 

2
0
0
8
 

0
.0
 

0
.0
 
 

6
.3
 

0
.1
 
 

1
5
.0
 

0
.3
 
 

3
3
.3
 

0
.7
 
 

1
0
.0
 

0
.3
 
 

5
.0
 

0
.1
 
 
1
2
.6
 

0
.3
 

3
.4
 

2
0
0
7
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 

0
.0
 

0
.0
 
 

1
.3
 

0
.1
 

8
.6
 

2
0
0
8
 

0
.0
 

0
.0
 
 

1
2
.5
 

0
.2
 
 

5
.0
 

0
.1
 
 

6
.7
 

0
.1
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 

6
.5
 

0
.6
 

7
.0
 

2
0
0
7
 

3
0
.0
 

0
.6
 
 

5
.0
 

0
.1
 
 

0
.0
 

0
.0
 
 

2
5
.0
 

0
.4
 
 

0
.0
 

0
.0
 
 

2
0
.0
 

0
.2
 
 
1
1
.2
 

0
.2
 

3
.4
 

2
0
0
8
 

1
0
.0
 

0
.1
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 

1
3
.3
 

0
.2
 
 

5
.0
 

0
.1
 
 

5
.0
 

0
.1
 
 

3
.0
 

0
.1
 

5
.9
 

2
0
0
7
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 

9
.8
 

0
.3
 

4
.3
 

2
0
0
8
 

1
0
.0
 

0
.2
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

1
3
.3
 

0
.1
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 
1
3
.4
 

0
.3
 

4
.3
 

2
0
0
7
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

9
.1
 

0
.2
 
 

0
.0
 

0
.0
 
 

0
.0
 

0
.0
 
 

5
.0
 

0
.1
 
 

7
.6
 

0
.1
 

3
.8
 

2
0
0
8
 

1
0
.0
 

0
.1
 
  

3
1
.3
 

0
.6
 
  

2
0
.0
 

0
.3
 
  

0
.0
 

0
.0
 
  

0
.0
 

0
.0
 
  

2
0
.0
 

0
.5
 
  

9
.5
 

0
.2
 

3
.8
 

2
0
0
7
 

  
  
  
  
0
.5
9
 

 
  
  
  
  
  
0
.6
2
 

 
  
  
  
  
  
  
0
.6
5
 

 
  
  
  
  
0
.5
5
 

 
  
  
  
  
0
.5
7
 

 
  
  
  
  
0
.7
0
 

 
 

 
 

2
0
0
8
 

  
  
  
  
0
.7
6
 

 
  
  
  
  
  
0
.7
3
 

 
  
  
  
  
  
  
0
.5
8
 

 
  
  
  
  
0
.5
8
 

 
  
  
  
  
0
.5
8
 

 
  
  
  
  
0
.6
9
 

 
 

 
 

2
0
0
7
 

5
5
.0
 

 
7
5
.0
 

 
1
0
0
.0
 

 
7
0
.0
 

 
2
5
.0
 

 
5
5
.0
 

 
 

 
 

2
0
0
8
 

7
0
.0
 

 
6
8
.8
 

 
1
0
0
.0
 

 
8
6
.7
 

 
6
0
.0
 

 
8
5
.0
 

  
  

  
  

 T
ab
le
 3
.

T
ab
le
 3
.

T
ab
le
 3
.

T
ab
le
 3
.2 222
    c
o
n
ti
n
u
ed

co
n
ti
n
u
ed

co
n
ti
n
u
ed

co
n
ti
n
u
ed
. S
ee
 p
ag
e 
41
 fo
r 
le
ge
n
d



 

 

 

40 

  R
es
p
o
n
se
 v
ar
ia
b
le
 

P
o
p
u
la
ti
o
n
 

  
Y
ea
r 

  
Y
ea
r 
×
 

P
o
p
u
la
ti
o
n
 

  
L
en
gt
h
 

  
Se
x
 

  
L
en
gt
h
 ×
 

P
o
p
u
la
ti
o
n
 
  

L
en
gt
h
 ×
 

Se
x
 

χ2
 

P
 

  
D
iff
er
en
ce
 ±
 

SE
 

χ2
 

P
 

 

χ2
 

P
 

 
E
st
im
at
e 
±
 S
E
 

P
 

 
P
 

 
P
 

 
P
 

P
ar
as
it
e 
sp
ec
ie
s 
ri
ch
n
es
s 

1
6
3
.3
 
**
* 

 

0
.4
3
 ±
 0
.0
1
 

8
.8
 

**
 

 

1
0
.0
 

- 

 

0
.0
2
 ±
 0
.0
1
 
**
* 

 

- 

 

- 

 

- 

T
o
ta
l 
p
ar
as
it
e 
ab
u
n
d
an
ce
 

3
5
9
.5
 
**
* 

 

1
.7
6
 ±
 0
.2
9
 

3
3
.6
 
**
* 

 

2
1
.1
 

* 

 

0
.0
8
 ±
 0
.0
2
 
**
* 

 

- 

 

- 

 

* 

D
. g
as
te
ro
st
ei
 p
re
va
le
n
ce
 

1
8
3
.2
 
**
* 

 

0
.1
0
 ±
 0
.0
1
 

4
.9
 

* 

 

6
.4
 

- 

 

0
.1
1
 ±
 0
.0
2
 
**
* 

 

- 

 

- 

 

- 

D
. g
as
te
ro
st
ei
 a
b
u
n
d
an
ce
 

4
3
6
.8
 
**
* 

 

0
.9
0
 ±
 0
.0
6
 

2
0
.4
 
**
* 

 

1
1
.7
 

- 

 

0
.0
7
 ±
 0
.0
4
 
**
* 

 

- 

 

**
 

 

- 

G
. a
rc
ua
tu
s 
p
re
va
le
n
ce
 

6
9
.4
 
**
* 

 

0
.1
9
 ±
 0
.0
1
 

7
5
.8
 
**
* 

 

4
6
.6
 
**
* 

 

0
.3
1
 ±
 0
.1
7
 
**
* 

 

- 

 

* 

 

- 

G
. a
rc
ua
tu
s 
ab
u
n
d
an
ce
 

2
4
1
.2
 
**
* 

 

0
.1
0
 ±
 0
.0
4
 

7
9
.0
 
**
* 

 

7
1
.3
 
**
* 

 

0
.0
7
 ±
 0
.0
2
 
**
* 

 

- 

 

- 

 

- 

A
p
at
em
on
 s
p
. 
p
re
va
le
n
ce
 

1
3
8
.8
 
**
* 

 

0
.0
5
 ±
 0
.0
1
 

0
.1
 

- 

 

1
4
.9
 

- 

 

0
.0
7
 ±
 0
.0
3
 

**
 

 

- 
 

* 
 

- 

A
p
at
em
on
 s
p
. 
ab
u
n
d
an
ce
 

1
7
6
.3
 
**
* 

 

0
.1
0
 ±
 0
.0
1
 

2
1
.1
 

* 

 

2
0
.5
 

* 

 

- 
- 

 
- 

 
- 

 
- 

S.
 s
ol
id
us
 p
re
va
le
n
ce
 

1
0
7
.7
 
**
* 

 

0
.0
1
 ±
 0
.0
1
 

2
5
.4
 

* 

 

2
4
.6
 

* 

 

- 
- 

 

- 

 

- 

 

- 

S.
 s
ol
id
us
 a
b
u
n
d
an
ce
 

1
5
7
.0
 
**
* 

 

-0
.0
2
 ±
 0
.0
1
 

2
1
.6
 

* 

 

2
0
.4
 

* 

 

-0
.0
5
 ±
 0
.0
3
  

* 

 

- 

 

- 

 

* 

P.
 f
ili
co
lli
s 
p
re
va
le
n
ce
 

1
3
6
.6
 
**
* 

 

0
.0
4
 ±
 0
.0
1
 

3
.4
 

- 

 

7
.0
 

- 

 

- 
- 

 

- 

 

- 

 

- 

P.
 f
ili
co
lli
s 
ab
u
n
d
an
ce
 

2
8
0
.0
 
**
* 

  
-0
.0
3
 ±
 0
.0
2
 

1
.9
 

- 
  

0
.3
 

- 
  

-0
.0
5
 ±
 0
.0
2
 

* 
  

- 

 

- 

 

- 

 T
ab
le
 3
.3

T
ab
le
 3
.3

T
ab
le
 3
.3

T
ab
le
 3
.3
. ... S
ee
 p
ag
e 
41
 f
or
 le
ge
n
d
    



 

 

 

41 

T
ab
le
 3
.2

T
ab
le
 3
.2

T
ab
le
 3
.2

T
ab
le
 3
.2
 P
re
va
le
n
ce
 (
P
%
) 
an
d 
m
ea
n
 a
bu
n
da
n
ce
 (
M
A
) 
of
 n
in
e 
m
ac
ro
pa
ra
si
te
 s
pe
ci
es
 i
n
 t
h
re
e-
sp
in
ed
 s
ti
ck
le
ba
ck
s 
fr
om
 t
w
el
ve
 f
re
sh
w
at
er
 l
oc
h
s 
in
 N
or
th
 U
is
t,
 

Sc
ot
la
n
d,
 s
am
pl
ed
 in
 A
pr
il-
M
ay
 d
u
ri
n
g 
tw
o 
co
n
se
cu
ti
ve
 y
ea
rs
, 2
0
0
7 
an
d 
20
0
8.
 T
he
 m
ea
n
 a
bu
n
da
n
ce
, m
ea
n
 p
re
va
le
n
ce
 a
n
d 
co
ef
fi
ci
en
ts
 o
f 
va
ri
at
io
n
 (C
V
s)
 a
cr
os
s 

po
pu
la
ti
on
s 
ar
e 
al
so
 g
iv
en
. P
ar
as
it
e 
di
ve
rs
it
y 
(S
im
ps
on
’s
 d
iv
er
si
ty
 in
de
x 
(1
-D
))
 a
n
d 
th
e 
pr
op
or
ti
on
 o
f 
fi
sh
 in
fe
ct
ed
 w
it
h
 a
t 
le
as
t 
on
e 
pa
ra
si
te
 s
pe
ci
es
 a
re
 m
ea
su
re
s 

of
 p
ar
as
it
e 
co
m
m
u
n
it
y 
st
ru
ct
u
re
 a
t 
th
e 
h
os
t 
po
pu
la
ti
on
 le
ve
l. 
In
 t
ot
al
, 4
55
 fi
sh
 w
er
e 
sa
m
pl
ed
.  

 T
ab
le
 3
.3

T
ab
le
 3
.3

T
ab
le
 3
.3

T
ab
le
 3
.3
 R
es
u
lt
s 
fr
om
 g
en
er
al
is
ed
 l
in
ea
r 
m
od
el
s 
of
 p
ar
as
it
e 
sp
ec
ie
s 
ri
ch
n
es
s,
 t
ot
al
 p
ar
as
it
e 
ab
u
n
da
n
ce
 a
n
d 
ab
u
n
da
n
ce
 a
n
d 
pr
ev
al
en
ce
 o
f 
D
ip
lo
st
om
um
 

ga
st
er
os
te
i , 
A
pa
te
m
on
 s
p.
, G
yr
od
ac
ty
lu
s 
ar
cu
at
us
, S
ch
is
to
ce
ph
al
us
 s
ol
id
us
 a
n
d 
Pr
ot
eo
ce
ph
al
us
 f
ili
co
lli
s.
 P
ar
as
it
e 
sp
ec
ie
s 
ri
ch
n
es
s 
w
as
 m
od
el
le
d 
w
it
h
 a
 P
oi
ss
on
 

er
ro
r 
st
ru
ct
u
re
 a
n
d 
a 
lo
ga
ri
th
m
 li
n
k 
fu
n
ct
io
n
, t
ot
al
 a
n
d 
in
di
vi
du
al
 p
ar
as
it
e 
ab
u
n
da
n
ce
s 
w
er
e 
m
od
el
le
d 
w
it
h
 a
 n
eg
at
iv
e 
bi
n
om
ia
l e
rr
or
 s
tr
u
ct
u
re
 a
n
d 
lo
ga
ri
th
m
 

lin
k 
fu
n
ct
io
n
, 
w
h
er
ea
s 
pa
ra
si
te
 p
re
va
le
n
ce
 w
as
 m
od
el
le
d 
w
it
h
 a
 b
in
om
ia
l 
er
ro
r 
st
ru
ct
u
re
 a
n
d 
lo
gi
t 
lin
k 
fu
n
ct
io
n
. 
Si
gn
if
ic
an
ce
 o
f 
ef
fe
ct
s 
w
as
 d
et
er
m
in
ed
 b
y 

se
qu
en
ti
al
ly
 d
ro
pp
in
g 
ea
ch
 e
ff
ec
t 
fr
om
 t
h
e 
fu
ll 
m
od
el
 a
n
d 
re
co
rd
in
g 
th
e 
ch
an
ge
 i
n
 d
ev
ia
n
ce
, c
om
pa
re
d 
to
 χ
2  
di
st
ri
bu
ti
on
 w
it
h
 t
h
e 
co
rr
es
po
n
di
n
g 
n
u
m
be
r 
of
 

de
gr
ee
s 
of
 f
re
ed
om
. 
P
op
u
la
ti
on
, 
ye
ar
 ×
 p
op
u
la
ti
on
 a
n
d 
le
n
gt
h
 ×
 p
op
u
la
ti
on
 a
re
 a
ll 
as
so
ci
at
ed
 w
it
h
 1
1 
df
, 
w
h
er
ea
s 
ye
ar
, 
le
n
gt
h
, 
se
x 
an
d 
le
n
gt
h
 ×
 s
ex
 a
re
 

as
so
ci
at
ed
 w
it
h
 1
 d
f.
 P
ro
ba
bi
lit
y 
va
lu
es
 f
or
 t
h
e 
m
od
el
 e
ff
ec
ts
 w
er
e 
as
 f
ol
lo
w
s:
 *
**
 =
 P
 <
 0
.0
0
1,
 *
* 
= 
P
 <
 0
.0
1,
 *
 =
 P
 <
 0
.0
5,
 -
 =
 P
 >
 0
.0
5.
 “
D
if
fe
re
n
ce
” 
is
 t
h
e 

di
ff
er
en
ce
 in
 m
ea
su
re
s 
of
 p
ar
as
it
e 
co
m
m
u
n
it
y 
st
ru
ct
u
re
 b
et
w
ee
n
 y
ea
rs
 (2
0
0
8 
– 
20
0
7)
. “
E
st
im
at
e”
 is
 t
h
e 
pa
ra
m
et
er
 e
st
im
at
e 
of
 t
h
e 
ef
fe
ct
 ‘l
en
gt
h
’ o
bt
ai
n
ed
 f
ro
m
 

G
L
M
s.
 N
ot
e 
th
at
 it
 c
ou
ld
 o
n
ly
 b
e 
ob
ta
in
ed
 w
h
en
 t
h
e 
ef
fe
ct
 o
f l
en
gt
h
 w
as
 s
ig
n
if
ic
an
t.
 

     



 

42 

 

 

 

FigureFigureFigureFigure    3.23.23.23.2 Relationship between abundance data from 2007 and 2008 of: a) Diplostomum 

gasterostei: r = 0.96; b) Gyrodactylus arcuatus: r = 0.61; c) Apatemon sp.: r = 0.82; d) 

Schistocephalus solidus: r = 0.31; e) Proteocephalus filicollis: r = 0.96. 

0

2

4

6

8

10

0 2 4 6 8 10

M
e

a
n

 a
b

u
n
d

a
n

c
e
 2

0
0

8

0

1

2

3

4

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

M
e

a
n

 a
b

u
n

d
a

n
c
e

 2
0

0
8

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

Mean abundance 2007

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

M
e

a
n

 a
b

u
n

d
a

n
c
e

 2
0

0
8

Mean abundance 2007

a)

d)c)

e)

b)



 

43 

 

 

 

FigureFigureFigureFigure    3.33.33.33.3 Relationship between prevalence data from 2007 and 2008 of: a) Diplostomum 

gasterostei: r = 0.95, y = 2.00x – 0.22; b) Gyrodactylus arcuatus: r = 0.23; c) Apatemon sp.: r = 

0.92; d) Schistocephalus solidus: r = 0.68; e) Proteocephalus filicollis: r = 0.98.     
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3.3.3. Environmental variables3.3.3. Environmental variables3.3.3. Environmental variables3.3.3. Environmental variables    

 

pH explained significant variation in parasite diversity, and G. arcuatus abundance 

and prevalence and was positively correlated with all three parasite community 

measures (Table 3.4, Fig. 3.4). Likewise, calcium concentration had a significant and 

positive association with G. arcuatus abundance and prevalence (Table 3.4; Fig. 3.4). 

No other environmental variables accounted for significant variation in other parasite 

community measures (Table 3.4). 

 

Parasite community measure pH Loch S.A. Ca2+ conc. Chlor. A conc. DOC 

Mean species richness 0.33 0.08 0.18 0.29 0.00 

Mean total parasite abundance 0.17 0.06 0.08 0.30 0.24 

Parasite diversity (1-D) 0.46 0.01 0.28 0.00 0.23 

D. gasterostei abundance 0.02 0.04 0.01 0.34 0.01 

D. gasterostei prevalence 0.03 0.09 0.01 0.34 0.01 

G. arcuatus abundance 0.42 0.01 0.37 0.07 0.24 

G. arcuatus prevalence 0.44 0.00 0.38 0.01 0.00 

Apatemon sp. abundance 0.00 0.05 0.05 0.22 0.12 

Apatemon sp. prevalence 0.01 0.06 0.04 0.25 0.08 

S. solidus abundance 0.00 0.00 0.03 0.04 0.14 

S. solidus prevalence 0.03 0.00 0.08 0.02 0.10 

 

Table 3.4Table 3.4Table 3.4Table 3.4 Matrix of r2 values from linear regressions of environmental variables (pH, loch 

surface area, calcium concentration, chlorophyll A concentration, DOC) against measures of 

parasite community structure. In each regression, the environmental measure and the parasite 

community measure were the explanatory variable and response variable, respectively. 

Parasite data were averaged over both years. Bold values indicate statistically significant (p < 

0.05) effects of environmental measures. 
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FigureFigureFigureFigure    3.3.3.3.4444 Relationship between: a) Gyrodactylus arcuatus prevalence and pH: r2 = 0.42; b) G. 

arcuatus prevalence and calcium concentration: r2 = 0.37, c) G. arcuatus abundance and pH: r2 

= 0.44; d) G. arcuatus abundance and calcium concentration: r2 = 0.38; e) parasite diversity and 

pH: r2 = 0.46. In all five cases, the environmental variable explained significant variation in 

measures of parasite community structure. pH values are averages of one to four pH readings 

(depending on the lochs), taken between April 2006 and May 2009. Calcium (Ca2+) 

concentrations (parts per billion, ppb) were obtained from water samples collected in April 

2007 via inductively coupled plasma mass spectrometry (ICP-MS) and were averages of 5 

readings. Calcium concentrations are plotted on a log scale.        
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3.4 Discussion3.4 Discussion3.4 Discussion3.4 Discussion    

 

A comparative analysis of parasite communities in twelve populations of three-spined 

sticklebacks was carried out to investigate the relative importance of spatial and 

temporal variation in determining parasite community composition. The study had 

three key findings. First, there was substantial variation in parasite communities 

among populations that were located in close geographical proximity to one another. 

Second, although levels of parasitism differed between years, being higher in 2008 

than in 2007, population accounted for a substantially larger proportion of variation 

in parasite community composition of individual hosts than year. The effect of year 

was probably due to a warmer winter in 2007, and therefore some interaction of 

higher water temperatures and a more advanced breeding season, which may have led 

to the higher parasite prevalence and abundances in 2008. Lastly, the relative 

differences in parasite community composition among populations changed little 

across both years, a finding that is connected with the greater importance of space, 

rather than time, in determining parasite distribution. These patterns were observed 

both at the level of the whole parasite community (parasite species richness, total 

parasite abundance) and at the level of individual parasite species (abundance and 

prevalence).  

 

These results are important from both an evolutionary and ecological perspective. It is 

becoming increasingly clear that parasite-mediated selection is likely to vary in space 

and time (Gandon et al., 2008; Duffy & Forde, 2009). Although the best and most 

direct evidence of parasite-mediated selection in natural populations comes from 

tracking host and parasite genotypes in time (Dybdahl & Lively, 1998; Decaestecker et 

al., 2007; Duncan & Little, 2007), this approach is not feasible for dissecting the 

relative contribution of temporal and spatial variation to parasite-mediated selection 

in most vertebrates-macroparasite interactions, due to the long generation times of 

vertebrate hosts. Using measures of parasite community composition as a proxy for 

the magnitude of parasite mediated selection, it may be possible, at least indirectly, to 

understand spatiotemporal variation in parasite-mediated selection. Following this 

argument, the results from this study suggest that the populations experience 

divergent selection that is consistent in time in the short term, and that variation in 
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space is more important in determining the strength of parasite-mediated selection 

than variation in time for sticklebacks on North Uist. From an ecological perspective, 

the study indicates that local host and environmental factors are crucial in shaping the 

composition of parasite communities (Poulin, 2007b; Kennedy, 2009; but see 

Thieltges et al., 2009).  

  

In comparison to stickleback populations from Germany (Kalbe et al., 2002) and 

British Columbia (MacColl, 2009a), North Uist sticklebacks have relatively 

depauperate macroparasite faunas. Even in the most species-rich loch, fish with more 

than four parasite species were rarely encountered. The only parasites species found 

regularly were a monogenean (Gyrodactylus arcuatus), trematodes (Diplostomum 

gasterostei and Apatemon sp.) and cestodes (e.g. Schistocephalus solidus and 

Proteocephalus filicollis) and these five species largely influenced composition of 

parasite communities. Of the five common parasite species, D. gasterostei, G. arcuatus 

and S. solidus are particularly strong candidates for exerting parasite-mediated 

selection.  

 

Diplostomum negatively impacts stickleback fitness via its effects on vision (Owen et 

al., 1993), which consequently reduces predator avoidance (Crowden & Broom, 1980) 

and foraging efficiency (Seppälä et al., 2004) and may lead to mortality of heavily-

infected individuals in the wild (Pennycuick, 1971b). D. gasterostei was present in the 

majority of populations but prevalence and abundance varied substantially among 

populations. As the effect of year was marginal, relative differences in D. gasterostei 

abundance and prevalence among populations were highly repeatable across years. 

Therefore, selection mediated by D. gasterostei may vary more in space than in time. 

Unexpectedly, calcium concentration failed to predict spatial differences in D. 

gasterostei abundance and prevalence. It has previously been shown that calcium 

concentration is associated with Diplostomum sp. distribution (Curtis & Rau, 1980), 

presumably because it determines the suitability of a lake for the intermediate snail 

host. On North Uist, it may be the density of the snail population, rather its presence, 

which shapes D. gasterostei distribution. Parasite dispersal, mediated by birds, which 

serve as final hosts for D. gasterostei, is also known to influence trematode 

distribution (Marcogliese et al., 2001a; Hechinger & Lafferty, 2005; Byers et al., 2008).    
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G. arcuatus is a viviparous monogenean that lives on the gills, fins and body of 

sticklebacks and reproduces directly on the host. Gyrodactylus spp. can cause 

considerable parasite-induced host mortality as a result of rapid population growth 

(Lester & Adams, 1974). Generally, G. arcuatus distribution followed similar patterns 

to D. gasterostei: population explained a larger proportion of variation in G. arcuatus 

abundance and prevalence than year. As a result, the relative differences among 

populations changed little across years. Gyrodactylus sp. abundance and prevalence 

are known to vary seasonally (Raeymaekers et al., 2008). Here, seasonality was 

controlled for by sampling at the same time of year, and in spite of the potential 

dynamism and lability of Gyrodactylus infection in the wild (Bakke et al., 2007), this 

study revealed a strong degree of stability in distribution of G. arcuatus among 

populations across years. The positive relationship between pH, calcium 

concentration, which is closely correlated with pH, and the abundance and prevalence 

of G. arcuatus provides evidence that habitat characteristics may maintain spatial 

differences in G. arcuatus distribution. It also emphasises the importance of spatial 

variation as a determinant of selection mediated by G. arcuatus. Ectoparasites are 

particularly strongly influenced by their physicochemical environment (Ebert et al., 

2001) and are sensitive to environmental change (Khan & Thulin, 1991). Acidic 

conditions are known to impair survival of Gyrodactylus (Soleng et al., 1999), which 

may explain why G. arcuatus was found at lower abundance and prevalence in acidic 

lochs. 

  

S. solidus is a common body cavity cestode that is frequently cited as an agent of 

selection in stickleback populations due to its detrimental effects on stickleback 

growth (Barber et al., 2008) and reproduction (Heins & Baker, 2008). Again, 

abundance and prevalence of S. solidus varied more strongly among populations than 

between sampling times. Therefore, the strength of S. solidus-mediated selection may 

also be determined primarily by host population rather by temporal variation in its 

distribution. Furthermore, with the exception of one population, the relative 

differences in S. solidus abundance and prevalence among populations were 

repeatable. Loch size and physicochemical variables failed to explain spatial variation 

in S. solidus distribution. Like D. gasterostei, S. solidus has a complex life cycle, being 

trophically transmitted from copepods to sticklebacks to birds (Barber & Scharsack, 

2010). Hence, I expect similar ecological processes, such as the presence and 
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abundance of copepods and dispersal mediated by avian final hosts, to govern 

distribution of S. solidus.  

 

Parasite diversity itself may act as an agent of selection (Wegner et al., 2003; Bordes & 

Morand, 2009). Infection with multiple parasite species is the norm for many host 

species (Cox, 2001) and interactions between parasite species can contribute, if not 

govern, parasite community structure, both within a host individual and at the host 

population level (Pedersen & Fenton, 2007; Behnke, 2008). Therefore, the role of 

multiple infection as a driver of epidemiological and evolutionary processes may differ 

among populations as a result of variation in the composition of parasite communities 

(Kalbe et al., 2002). Whether or not this is the case in the depauperate macroparasite 

communities documented here, the consideration of multiple-species infection raises 

an interesting question, one that has received little attention in evolutionary 

ecological studies of host-parasite interactions, namely: what forms a good predictor 

of parasite-mediated selection (Clayton et al., 1992; King & Lively, 2009)? Is it a 

measure at the level of the entire parasite community, such as parasite species 

richness or parasite diversity, or is it the abundance and prevalence of individual 

parasite species?    

 

Length explained significant variation in parasite species richness, total parasite 

abundance, and abundance and prevalence of certain parasite species. Generally, 

length was positively correlated with measures of parasite community structure. 

Although most of the stickleback populations sampled in this study are annual, some 

may be multi-annual (MacColl, unpublished data), and therefore differences among 

populations may be due to larger fish accruing more parasites over time. Equally, as 

the majority of populations are annual, it limits the possibility of epidemiological 

‘carry-over’ from one year to the next. An alternative, yet compatible ecological 

explanation for the positive correlation is that fish that grow faster eat more infected 

intermediate hosts or come into contact with more free-living intermediate parasite 

stages. The pattern may also be the result of evolutionary processes. For example, 

larger fish may invest more resources in growth at the expensive of investing in 

parasite resistance, i.e. there is a genetic trade-off between the two traits (Barber et al., 

2001). However, these explanations do not clarify the negative relationship between 

parasite abundance and length for S. solidus and P. filicollis. Instead, this suggests 
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parasite-induced mortality of larger individuals infected more heavily with either 

parasite species. Some field data of S. solidus-infected sticklebacks support this idea 

(Pennycuick, 1971a).  

 

I found no significant difference in parasite distributions between males and females. 

The lack of male-biased parasitism was surprising, given that it seems to be a common 

feature of many vertebrate host populations (Poulin, 1996; Zuk & McKean, 1996), and 

that it has been demonstrated previously in three-spined stickleback populations 

(Reimchen & Nosil, 2001). The immunosuppressive effect of testosterone is often 

invoked as a proximate mechanism maintaining sex differences in parasitism (Zuk & 

McKean, 1996). As sticklebacks were sampled during the breeding season in both 

years, we might expect the immunosuppressive effects of testosterone, and therefore 

also male-biased parasitism, to be greatest during this period (Martin et al., 2008); 

however, this was not the case. Dietary-based, ecological sex-biased parasitism 

(Reimchen & Nosil, 2001) also does not seem to take place in the stickleback 

populations on North Uist. Although there may be no dietary differences between the 

sexes within populations, differences in diet could explain variation among 

populations in parasite community composition. For example, evolved differences 

among populations in resource use, feeding preference and/or diet composition 

(Schluter, 1995; Knudsen et al., 2006) can hinder or promote the establishment and 

distribution of trophically transmitted parasites (MacColl, 2009a) and influence the 

transmission of disease (Hall et al., 2007).  

 

This study provides a reliable basis for inferring divergent parasite-mediated selection 

among stickleback populations on North Uist, as the data satisfy two criteria 

necessary for this condition: ample geographical variation in parasites that is 

consistent in time (MacColl, 2009a). Divergent selection, imposed by individual 

parasite species or parasite communities as a whole, is likely to have consequences for 

the evolution of numerous host traits. Foremost among these are defence traits that 

confer resistance to parasites, such as components of the immune system. A specific 

prediction of this scenario is that adaptation to local parasite communities will drive 

differential and optimal investment in immune response and parasite resistance, 

which has been demonstrated in several different host-parasite systems (Lindström et 

al., 2004; Whiteman et al., 2006; Bryan-Walker et al., 2007; Hasu et al., 2009). 
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However, I have only provided information on spatiotemporal variation in stickleback 

parasite communities over a relatively short time frame. Therefore, these data do not 

allow me to make long-term predictions about the magnitude of parasite-mediated 

selection. Longitudinal data sets of fish macroparasite communities are scarce, but the 

few examples that do exist suggest that parasite population dynamics in the short- 

and long-term are not congruent (e.g. Kennedy et al., 2001). To assess the repeatability 

of the findings presented here the same lochs should be sampled in subsequent years.  

 

To conclude, I have shown that there is substantial variation in parasite communities 

of sticklebacks on North Uist and that this is accounted for largely by host population, 

rather than year of sampling. Furthermore, this spatial variation was repeatable across 

years, both at the level of the whole parasite community and at the level of individual 

parasite species. Several of these parasite species, especially G. arcuatus, D. gasterostei 

and S. solidus potentially exert strong selection on their hosts. Taken together, this 

suggests that the stickleback populations examined here experience divergent 

parasite-mediated selection that is not transient, at least in the short term. Moreover, 

it suggests that spatial, as opposed temporal, variation in the macroparasite 

communities of three-spined sticklebacks may be more important determining the 

strength of parasite-mediated selection. In the chapters that follow, I will explore the 

consequence of adaptation to local parasite communities for the evolution of parasite 

resistance and other host life history traits of North Uist stickleback populations. 
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Chapter 4: Divergent resistance to a 

monogenean flatworm among stickleback 

populations  

 

 

 

 

 

4.14.14.14.1    IntroductionIntroductionIntroductionIntroduction    

 

Spatial variation in traits related to fitness is thought to be a consequence of 

adaptation to local ecological conditions (Schluter, 2000). Divergence in ecologically 

relevant traits may be driven by a number of selective factors (Rundle & Nosil, 2005). 

The roles of competition (Schluter, 1994; Pfennig et al., 2007) and predation (Reznick 

& Endler, 1982; Nosil & Crespi, 2006) have been well studied in this context, but the 

influence of parasites on this process has been comparatively neglected (but see e.g. 

Buckling & Rainey, 2002b; Laine, 2009). Divergent parasite-mediated selection may 

affect the evolution of many host life history traits (Minchella, 1985; Fredensborg & 

Poulin, 2006), but defence traits are likely to be under the strongest selection, as they 

determine parasite resistance. All else being equal, directional selection should drive 

alleles coding for resistance to fixation and erode genetic variation (Mousseau & Roff, 

1987; Houle, 1992). However, extensive additive genetic variation for parasite 

resistance in natural animal populations is commonplace (Henter & Via, 1995; Ebert et 

al., 1998; Jackson & Tinsley, 2005; Cory & Myers, 2009). This diversity may be 

maintained via several mechanisms, including: i) negative frequency-dependent 

selection (Carius et al., 2001; Woolhouse et al., 2002), ii) costs of resistance (Sheldon & 

Verhulst, 1996; Rigby et al., 2002), iii) fluctuating selection associated with 

environmental heterogeneity (Blanford et al., 2003; Lazzaro & Little, 2009), iv) 

heterozygote advantage (MacDougall-Shackleton et al., 2005) and v) sexual selection 

(Hamilton & Zuk, 1982).   

 

Parts of this chapter have been published as: de Roij, J., Harris, P.D. & MacColl, 

A.D.C (2011). Divergent resistance to a monogenean flatworm among three-spined 

stickleback populations. Functional Ecology 25252525: 217-226  
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An important aspect of host-parasite interactions that could govern the evolution and 

maintenance of parasite resistance among populations is spatial variation in parasite 

distributions. The magnitude of parasite-mediated selection may be determined both 

by the prevalence and abundance of certain parasite species. There are two possible 

outcomes of divergent parasite-mediated selection in terms of parasite resistance. On 

the one hand, populations at greater risk of infection should be under stronger 

selection to evolve resistance, which should lead to a positive correlation between 

natural parasite abundance and investment in parasite resistance. On the other hand, 

resistant populations may keep parasite prevalence and/or abundance at a low level, 

which should generate a negative correlation between parasite abundance and 

parasite resistance. The few studies that have been conducted in this context provide 

support for the former scenario. Bryan-Walker, Leung & Poulin (2007), for example, 

compared resistance to a trematode parasite, Maritrema novaezealandensis, in two 

populations of amphipods, Paracalliope novizealandiae, and found that the 

population not exposed to the parasite had significantly lower resistance in an 

infection experiment. Likewise, albeit at the level of parasite diversity, Corby-Harris & 

Promislow (2008) showed that natural bacterial species richness was positively 

associated with resistance to a bacterial species, Lactococcus lactis across 20 natural 

populations of Drosophila melanogaster. Cable & van Oosterhout (2007a) 

documented the opposite pattern for two Trinidadian guppy (Poecilia reticulata) 

populations infected with a laboratory strain of the monogenean flatworm 

Gyrodactylus turnbulli: the population naturally exposed to higher Gyrodactylus 

burdens (van Oosterhout et al., 2006) was significantly more susceptible. However, 

with the exception of these and a few other studies (e.g. Little & Ebert, 2000; Kalbe & 

Kurtz, 2006; Hasu et al., 2009), our understanding of patterns of divergence in 

parasite resistance among natural populations and their relationship to infection 

levels in the wild remains limited, especially for vertebrate-macroparasite interactions.   

 

Artificial infection experiments involving outbred individuals from a number of 

natural populations differing in parasite distributions allow us to test the prediction 

that divergent parasite-mediated selection drives divergent parasite resistance. Here, 

using lab-reared individuals from five populations of three-spined sticklebacks, 

Gasterosteus aculeatus, I investigated divergence in resistance to Gyrodactylus 

gasterostei, a monogenean flatworm. Sticklebacks are a well-established model for the 
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study of ecologically-based divergent selection (McKinnon & Rundle, 2002). In the last 

10,000 years marine sticklebacks have repeatedly invaded freshwater environments 

and as a result have undergone rapid evolution in a number of traits. Morphological 

divergence stemming from these invasion events has been particularly well 

characterised (Colosimo et al., 2005), but considerable variation in life history (Baker 

et al., 2008) and behavioural (Boughman, 2001) traits among populations has also been 

documented. There is a growing interest in understanding how host-parasite 

interactions fit into this diversification context (MacColl, 2009b; Matthews et al., 

2010a). Sticklebacks have a diverse and well-documented parasite fauna (Wootton, 

1976; Barber, 2007) and therefore constitute a model species for investigating 

divergent parasite-mediated selection.        

 

Gyrodactylids form a dominant component of many stickleback parasite communities 

(e.g. Kalbe et al., 2002, MacColl 2009b). Gyrodactylus spp. are viviparous and lack a 

specific transmission stage. As worms reproduce directly on the host and have short 

generation times (2-4 days; Bakke et al., 2007), population growth can be exponential, 

often leading to host mortality. Furthermore, Gyrodactylus is known to affect mate-

choice and courtship behaviours (Houde & Torio, 1992; Lopez, 1998). Given their 

detrimental effects on host fitness, gyrodactylids are likely to exert strong selection on 

their hosts. Most of our knowledge of gyrodactylid-host interactions comes from the 

Gyrodactylus salaris-salmon (Salmo salar) and the Gyrodactylus turnbulli-guppy 

(Poecilia reticulata) systems. In both cases, there is evidence for geographic variation 

in resistance to Gyrodactylus. For example, van Oosterhout, Harris & Cable (2003) and 

Cable & van Oosterhout (2007b) showed that resistance to G. turnbulli varied among 

two populations of Trinidadian guppies. Likewise, different genetic stocks of Atlantic 

salmon differ in their ability to resist G. salaris (Bakke et al., 1990; Dalgaard et al., 

2003). However, pathogenicity may vary widely among gyrodactylid species (Bakke et 

al., 2007) and the extent to which different species drive divergence in parasite 

resistance remains unknown. Although we have some knowledge of the biology 

(Glaser, 1974; Harris, 1982) and population dynamics (Raeymaekers et al., 2008) of G. 

gasterostei, this study sought to shed light on pathogenicity and infection dynamics of 

G. gasterostei, and spatial variation in the host response to this parasite species. 
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The main objectives of the study were fourfold: first, to look for differences in natural 

Gyrodactylus abundance among the five stickleback populations; second, to examine 

variation in resistance to G. gasterostei among these populations by carrying out an 

artificial infection experiment; third, to determine whether this variation was related 

to natural infection level, and fourth, to look for an association between G. gasterostei 

infection and stickleback growth. This last question was of interest because it has 

recently been suggested that Gyrodactylus may affect host life history evolution in 

terms of growth, at least in guppies (Cable & van Oosterhout, 2007a). Therefore, I was 

motivated to examine the relationship between parasite resistance and growth.  

 

Additionally, a second infection experiment was carried out to investigate host 

preference of G. gasterostei. If G. gasterostei exhibits a behavioural preference for 

particular host genotypes (i.e. populations), then differences in parasite resistance 

among populations observed in the first infection experiment may also be due to 

population differences in host suitability. Behavioural preference relates directly to 

host specificity, a term that is often coined in the Gyrodactylus literature (Bakke et al., 

2002; 2007). However, it is important to distinguish between host specificity (the 

ability of a parasite species to infect one or a limited number of host species or 

populations of the same host species) and parasite resistance since they reflect a 

parasite trait and a host trait, respectively. The experiment employed a “two-choice” 

design, in which two naive fish, one from the most resistant population and one from 

the most susceptible population (as determined from the large-scale infection 

experiment), were simultaneously exposed to an infected donor fish. To avoid 

confusion between the two infection experiments, the five-population comparison 

will hereafter be referred to as the large-scale infection experiment, whereas the 

behavioural preference experiment will be referred to as the two-choice experiment.    

 

It must be emphasised that Gyrodactylus arcuatus, not G. gasterostei, is the native 

Gyrodactylus species in North Uist stickleback populations. A different Gyrodactylus 

species was chosen for the infection experiments because it removed the possibility of 

close coevolution between host and parasite populations. However, because there may 

be overlap in the host response to different Gyrodactylus species (Buchmann & 

Lindenstrøm, 2002), use of G. gasterostei still allowed me to make inferences about 

the evolution of resistance to Gyrodactylus. Overall, I found substantial differences in 
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G. gasterostei resistance among populations which were partially correlated with 

natural G. arcuatus abundance.  

    

4.2 Methods4.2 Methods4.2 Methods4.2 Methods    

 

4.2.1 4.2.1 4.2.1 4.2.1 Study populations and parasitesStudy populations and parasitesStudy populations and parasitesStudy populations and parasites    

 

Fish were collected from five geographically isolated lochs on North Uist, Outer 

Hebrides, Scotland during May 2008, using minnow traps (Gee traps, Dynamic Aqua, 

Vancouver). These lochs were chosen specifically to represent a range of natural 

infection levels (Table 4.1). Abundance and prevalence of G. arcuatus, the native 

Gyrodactylus species on North Uist, were estimated by sampling approximately 10-20 

fish per loch in May 2008. For each population, F1 offspring used in infection 

experiments were obtained by making 8 unrelated full-sib crosses (families) from 

wild-caught fish. To make a cross, eggs were stripped from a gravid female and placed 

into a petri dish containing a small volume of 1‰ salt solution. Males were killed, by 

overdose of anaesthetic (400 mg L-1 MS222), and were dissected to remove testes. Fine 

forceps were used to tease apart testes and release sperm, which was gently mixed 

with the eggs (Barber & Arnott, 2000). Two to three hours later, fertilisation was 

confirmed by low-power microscopy, and testes were removed from the fertilised 

clutches. Fertilised eggs were transferred to a falcon tube containing 50 mL of 1 ‰ salt 

solution. Eggs were then transported on ice to aquaria at the University of 

Nottingham, where they were placed in a plastic cup with a mesh screen on the 

bottom, suspended in a well-aerated tank containing dechlorinated water (Marchinko 

& Schluter, 2007). Water was treated with Methylene blue to reduce the possibility of 

fungal infection. After 10 days, egg cups were transferred to individual half-tank 

partitions of 100L tanks and the eggs were allowed to hatch. Following hatching, full-

sib families were thinned to groups of 15. Clutches from each population were 

distributed haphazardly between tanks across the temperature-controlled room 

(13.5°C ± 1°C). Fry were fed with infusoria (Colpidium spp.) for the first five days, then 

daily with brine shrimp (Artemia salina) naupliae until 64 days post-hatching. 

Thereafter, fish received chironomid larvae (‘bloodworm’; defrosted from frozen) 
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daily. Fish were maintained at a daylight regime mimicking the natural photoperiod 

on North Uist.    

 

Gyrodactylus gasterostei is a common fin parasite (Glaser, 1974; Harris, 1985) of three-

spined sticklebacks. Sticklebacks infected with G. gasterostei were caught by hand net 

from a stream in Clifton, Nottingham (52°55”N; 1°10”W) at the end of February, two 

weeks prior to the start of the experimental infection. Gyrodactylids were identified as 

G. gasterostei by confirming the absence of excretory bladders, a defining anatomical 

feature of this Gyrodactylus species, under a dissecting microscope. Donor fish were 

housed in groups of 16-20 to encourage growth of parasite populations.  

 

Population 
G. arcuatus 

abundance 

G. arcuatus  

prevalence 
N 

Geographic 

location 

Chadha Ruaidh 0 0 (0.0, 15.9) 21 57°35"N; 7°11"W 

Hosta 2.45 ± 0.51 90.0 (68.0, 98.2) 20 57°37"N; 7°29"W 

Lochmaddy 12.63 ± 2.42 100.0 (86.1, 100.0) 24 57°36"N; 7°10"W 

Reivil 6.27 ± 3.25 90.9 (59.6, 99.5)  11 57°36"N; 7°30"W 

Tormasad 0.10 ± 0.07 10.0 (1.8, 32.0) 20 57°33"N; 7°19"W 

 

Table Table Table Table 4.14.14.14.1 The five stickleback populations from North Uist, Scotland used in the study. Data 

on Gyrodactylus arcuatus prevalence and abundance were obtained in May 2008 by sampling 

approximately 20 sticklebacks from each loch. Abundance on individual fish was quantified by 

counting the number of worms on the caudal, anal and dorsal fins. Abundance values are 

given with standard error of the mean, whereas prevalence values are given with 95% 

confidence intervals. 

    

4.2.2 4.2.2 4.2.2 4.2.2 DDDDesignesignesignesign    of the largeof the largeof the largeof the large----scale infection experimentscale infection experimentscale infection experimentscale infection experiment    

 

In total, 150 ten-month old sticklebacks were exposed to G. gasterostei: 30 fish per 

population balanced for logistic purposes across two blocks. For each population, fish 

from all 8 full-sib families were included, with the exception of Hosta, for which only 

7 families were available. Families were also balanced across both blocks, such that at 

least one fish per family was included in both blocks. Fish were housed individually in 



 

58 

 

a three-litre tank containing one litre of dechlorinated tap water. This enabled the 

infection profile of each fish to be monitored accurately. Water temperature was 

maintained at 12°C (±0.5°C), a well-established temperature for carrying out 

gyrodactylid infections (Bakke et al., 2002). Populations were distributed equally 

across the room to balance any microclimatic effects on parasite population growth.  

    

4.2.3 4.2.3 4.2.3 4.2.3 Infection protocolInfection protocolInfection protocolInfection protocol    

 

Donor fish, selected randomly from the infected fish population, were killed with an 

overdose of MS222 (400 mg L-1) and placed in a Petri dish containing a small amount 

of dechlorinated water. Gyrodactylus worms were removed using insect pins. Prior to 

infection, the standard length of each recipient fish was measured to the nearest 

0.1mm. Infection of naive, lab-bred fish was achieved by holding the caudal fin of a 

lightly anaesthetised (MS222, 100 mg L-1) experimental fish near two previously 

isolated Gyrodactylus until the worms moved onto the fin. Generally, this process was 

extremely rapid: most worms transferred within 5 to 10 seconds. On the day following 

infection, each fish was scanned carefully using a binocular microscope to determine 

establishment success. If a fish had lost both parasites, it was immediately re-infected 

with two new worms from another randomly selected donor fish. Fish from different 

populations were infected in a sequential order such that all populations were 

exposed as uniformly as possible to worms from each donor fish, minimising any 

variation in infection response profiles due to worm origin.   

 

Starting on day 4, the number of parasites on each fish was counted every four days 

until the end of the experimental period (day 62), by which time all but 10 fish had lost 

the infection. Monitoring parasite levels involved careful scanning of the caudal, anal, 

dorsal and pectoral fins as well as the dorsal spines, pelvic spines and girdle, caudal 

peduncle, flanks and head. Both stereomicroscopic and sub-stage illumination were 

used to accurately determine the number of Gyrodactylus. Prior to scanning, fish were 

lightly anaesthetised. On day 62, fish were killed by overdose of MS222, measured as 

before (standard length to the nearest 0.1 mm) and sexed by dissection. Water was 

changed every four days and fish were fed to satiation once per day with bloodworm, 

defrosted from frozen. Throughout the infection experiment, if fish were in a state of 



 

59 

 

poor health, here defined as the cessation of feeding and reduction in movement, they 

were euthanised by overdose of MS222 and destruction of the brain, as required by 

conditions of the experimental licence. For the purposes of the experiment, this was 

defined as mortality. By the end of the 62-day period, 13 fish had been euthanised, 

mostly because of infection with the secondary, opportunistic fungus of the genus 

Saprolegnia, which normally results in death of the fish once the fungus becomes 

visible (Pickering & Willoughby, 1982).   

    

4.2.4 Two4.2.4 Two4.2.4 Two4.2.4 Two----choice experimentchoice experimentchoice experimentchoice experiment    

 

A two-choice experiment was conducted in October 2009, approximately 7 months 

after the large-scale infection experiment, to assess behavioural preference of G. 

gasterostei. In the experiment, two naive fish, one from the most susceptible 

population (Chadha Ruaidh) and one from the most resistant population (Tormasad), 

were simultaneously exposed to an infected donor fish. Infected donor fish were 

obtained by artificially infecting naive fish from another North Uist loch (Reivil) with 

two G. gasterostei from wild caught sticklebacks from Clifton, Nottingham in 

September 2009. The infection protocol was identical to the one used in the large-

scale infection experiment. The two-choice experiment was then conducted 23 days 

after infection of the Reivil donor fish. By this stage, parasite populations on the 

donor fish approach their peak (Fig. 4.1), thereby encouraging transmission of worms. 

Recipient Chadha Ruaidh and Tormasad fish, and donor Reivil fish originated from 

four full-sib families different to those used in the large-scale infection experiment. 

Prior to exposure of recipient fish, their standard length was measured to the nearest 

0.1mm. One recipient fish from Chadha Ruaidh and Tormasad were size matched and 

randomly assigned to donor fish. Additionally, before recipient fish were transferred, 

parasite burdens of donor fish were quantified and the water volume in the tank was 

increased from one to two litres. This restricted volume ensured a similar level of 

contact, and hence transmission, between donor fish and both recipient fish. Then, 24 

hours after exposure, parasite burdens on recipient and donor fish were quantified. In 

favourable conditions, gyrodactylid worms can give birth within a day of having been 

born (Cable & van Oosterhout, 2007a). Therefore, the short exposure period ensured 

that the number of worms transmitted from donor to recipient hosts could be 
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estimated accurately with minimal contribution from worms born on the recipient 

fish. Twenty replicates were performed. 

      

4.2.54.2.54.2.54.2.5    Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

 

All statistical analyses were conducted in GenStat (release 12; VSN International Ltd., 

Hemel Hempstead, U.K.). For all models, parameter estimates are given for significant 

effects only. Natural abundance of G. arcuatus was modelled using a generalised linear 

model (GLM) with a negative binomial error distribution and log link function. 

Population was the only fixed effect in this model. 

 

The Gyrodactylus infection process is highly dynamic and is characterised by a 

standard sequence of events: the parasite population grows, reaches a peak, then 

starts to decline and is eventually cleared by the host (Fig. 4.1). Where possible, five 

response variables were extracted from the infection response profiles of individual 

fish in the large-scale infection experiment. ‘Peak’ was the parasite abundance at the 

peak of the infection. ‘AUC’ was the sum of worm abundances counted throughout 

the experiment, a measure equivalent to total worm burden over the infection time 

course. ‘Average r to peak’, the average daily growth rate of the parasite population, 

was calculated as: ‘r’ = [ln(Npeak) – ln(N0)]/t, where Npeak = ‘peak’, N0 is number of 

parasites on the host at the start of the infection (two worms), and t is the day at 

which the peak was reached (i.e. ‘time until peak’). ‘Time lost post-peak’ was the time 

until clearance following the peak. For those fish that had not lost the infection by day 

62, this day was noted as the day of clearance.  

 

To reduce the number of response variables to two explanatory variables that 

captured the most variation in infection response profiles, a principal components 

analysis (PCA) was conducted on the five response variables. The resulting scores of 

principal component 1 (PC1) and principal component 2 (PC2) were used to make 

inferences about variation in resistance to G. gasterostei. Although this approach 

obscures interesting and subtle differences in temporal aspects of each infection 

response profile, single measures of resistance provide a more rigorous basis for 

statistical analysis. Due to the strong effect of AUC and peak on PC1 scores (see 

Results), models with these two response variable generated qualitatively similar 
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results to those using PC1. Nevertheless, I chose to use PC1 because it gave the best 

objective descriptor of the dynamics of the infection. It was not possible to calculate 

PC scores for those fish (13) missing values of any of the response variables due to 

mortality.  

 

GLMs with a binomial distribution and a logit link function were used to model 

parasite establishment and host mortality data. The binary response variable, 

‘established?’ took a value of 1 if the two parasites remained on the fish the first day 

following infection and 0 if they did not. Likewise, the response variable ‘died?’ took a 

value of 1 if fish died during the experimental period and 0 if fish survived. Full 

models included block, sex, and population as fixed effects and initial length as a 

covariate. For the mortality model, an additional effect, ‘daily r’, describing average 

daily growth rate of the parasite population up until the point of death or until the 

peak of the infection, was included to examine whether mortality was associated with 

infection levels. Similarly, a daily r × population effect was fitted to assess whether this 

relationship was consistent across populations. Significance of fixed effects was 

assessed by comparing the change in deviance upon dropping the effect to a Chi-

square distribution with the appropriate degrees of freedom. Additionally, the 

relationship between mortality and G. gasterostei resistance at the population level 

was examined by a Pearson correlation. 

 

Variation in infection response profiles was analysed using a general linear model, 

with PC1 or PC2 score as the response variable. To achieve normality, PC1 and PC2 

scores were log and square-root transformed, respectively. The model comprised the 

fixed effects block, sex, population, the covariate initial length and the initial length × 

population interaction. Family nested within population (population × family) was 

initially included as a random effect; however, as the effect was non-significant for 

both PC1 and PC2 models (likelihood ratio (LR) test based on comparing the deviance 

of the reduced model without the random interaction term and the deviance of the 

full model (Galwey, 2006) – PC1: χ21 = 0.78, P = 0.189, variance component estimate ± 

S.E. = 0.0030 ± 0.0038; PC2: χ21 = 0.37, P = 0.272, variance component estimate ± S.E. = 

0 ± 0), the model reverted to a GLM. Stepwise regression was used to construct a 

minimal adequate model by sequentially dropping non-significant fixed effects (sensu 
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Crawley, 2007). If main effects were marginal to interaction effects, significance of 

main effects was tested in the presence of interactions. Post-hoc contrasts on log-

transformed PC1 scores were used to examine differences among populations in more 

detail. The correlation between mean population (log-transformed) PC1 scores and 

mean natural abundance of G. arcuatus was tested using a Pearson correlation and a 

two-tailed significance test. 

 

To examine if there was variation in fish growth rate, and a relationship between 

parasite resistance and fish growth, a linear mixed model was used. Specific growth 

rate (SGR; sensu Barber, 2005) the average daily percentage increase in fish length, was 

calculated using the equation: SGR = 100*[ln(L62)-ln(L0)]/62, where L0 and L62 denote 

the length measured before, and at the end of, the experimental infection, 

respectively. SGR was square-root transformed to achieve normality. The full model 

consisted of family nested within population as a random effect and block, sex, initial 

length, population, PC1 score (untransformed) and population × PC1 as fixed effects. 

Significance of the random effect was assessed using a LR test. As above, non-

significant fixed effects were dropped from the full model to generate a minimum 

adequate model. Significance of fixed effects was determined by Wald F tests.  

 

A GLM was used to analyse data from the two-choice experiment. The response 

variable ‘recipient burden’ was modelled with a Poisson distribution and a logarithm 

link function. The model included the fixed effects recipient length, recipient 

population, donor length, donor burden and the donor length × donor burden and 

recipient population × donor burden interaction effects. These terms test whether 

longer fish with bigger parasite burdens were disproportionately more likely to 

transmit parasites to recipient fish, and whether the relationship between donor 

burden and recipient burden varied among populations, respectively.  
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4.3 Results 4.3 Results 4.3 Results 4.3 Results     

 

4.3.1 4.3.1 4.3.1 4.3.1 NNNNatural atural atural atural GGGG....    arcuatusarcuatusarcuatusarcuatus    infection infection infection infection     

 

Natural G. arcuatus abundance varied significantly among populations (χ24 = 54.98, P < 

0.001; Table 4.1). G. arcuatus appeared to be absent from one population, Chadha 

Ruaidh.    

 

4.3.24.3.24.3.24.3.2    PPPParasite establishment arasite establishment arasite establishment arasite establishment and host mortalityand host mortalityand host mortalityand host mortality    in in in in the largethe largethe largethe large----scale infection scale infection scale infection scale infection 

experimentexperimentexperimentexperiment        

 

Eight fish lost their infection within 24 hours; however, all 8 fish were successfully re-

infected the following day. G. gasterostei establishment did not vary significantly 

among populations (χ24 = 5.00, P = 0.288). It also did not differ significantly between 

males and females (χ21 = 0.01, P = 0.931), blocks (χ21 = 0.00, P = 0.991) or as a result of 

variation in fish length (χ21 = 0.00, P = 0.956). Although there was some small-scale 

variation in mortality among populations (number of deaths per population: Chadha 

Ruaidh, 5, Hosta, 2, Lochmaddy, 1, Reivil, 3, Tormasad, 2), the effect of population was 

not significant (χ24 = 3.99, P = 0.407). Likewise, mortality was not dependent on the 

average daily growth rate of the parasite population (daily r: χ21 = 0.11, P = 0.745) or its 

interaction with population (daily r × population:  χ24 = 3.82, P = 0.431). Sex (χ21 = 0.32, 

P = 0.574), length (χ21 = 1.77, P = 0.184) and block (χ21 = 2.58, P = 0.108) also failed to 

explain significant variation in host mortality. The relationship between mortality and 

population mean PC1 score was positive but not significant (r = 0.687, P = 0.200).   

 

4.3.3 4.3.3 4.3.3 4.3.3 RRRResistance to esistance to esistance to esistance to GGGG....    gasterosteigasterosteigasterosteigasterostei    

 

Principal component 1 (PC1) explained 46.92% of the variation in infection response 

profiles and was determined mainly by the peak and AUC (Table 4.2). These two 

variables were strongly positively correlated (r = 0.94; Table 4.3). PC2 accounted for 

28.87% of variation and was influenced largely by average r to peak and time until 

peak (Table 4.2), which were negatively correlated (r = -0.41; Table 4.3).  
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Response variable PC1 loading PC2 loading 

AUC 0.638 0.004 

Peak 0.630 0.027 

Average r to peak 0.229 0.704 

Time until peak 0.348 -0.647 

Time lost post-peak 0.152 0.292 

 

Table 4.2Table 4.2Table 4.2Table 4.2 Loadings from a principal components analysis (PCA) of the five response variables, 

extracted from the infection response profiles of individual fish. PC1 and PC2 accounted for 

46.92% and 28.87% of variation in infection response profiles, respectively. 

 

 AUC Peak 
Average r 

to peak 

Time until 

peak 

Time lost 

post-peak 

AUC 

     Peak 0.94 
    

Average r to peak 0.31 0.37 
   

Time until peak 0.47 0.43 -0.41 
  

Time lost post-peak 0.21 0.09 0.13 -0.05 
 

 

Table Table Table Table 4.34.34.34.3 A matrix of correlation coefficients between the five response variables included in 

the principal components analysis.  

 

There was no significant difference in PC1 scores between the two experimental 

blocks, and therefore results from both blocks were pooled (Table 4.4). Mean infection 

response profiles were markedly different for each population (Fig. 4.1) and PC1 scores 

varied significantly among populations (Table 4.4). Chadha Ruaidh, the only 

population not naturally exposed to G. arcuatus, had a significantly higher PC1 score 

than Reivil, Tormasad and Lochmaddy (contrast: F1,122 = 20.04, P < 0.001). 

Furthermore, Tormasad had a significantly lower PC1 score than any other population 

(contrast: F1,122 = 27.55, P < 0.001). There was no significant difference in PC1 score 

between Chadha Ruaidh and Hosta (contrast: F1,122 = 0.36, P = 0.552). Initial length was 

negatively correlated with PC1 score across populations, but there was no significant 

difference in PC1 score between males and females (Table 4.4). Mean population PC1 
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score was weakly negatively correlated with natural G. arcuatus abundance rank score, 

although this relationship was not significant (r = -0.23, P = 0.701; Fig. 4.2). PC2 scores 

were significantly affected by block, being marginally higher in Block 2 than Block 1, 

but not by sex, population, initial length and initial length × population (Table 4.4).  

 

Response 

variable 
Fixed effect F df P Estimate ± S.E. 

Log (PC1) Initial length 6.08 1, 122 0.015 -0.011 ± 0.005 

 

Population  9.57 4, 122  <0.001 

 

 

Chadha Ruaidh 

   

0.995 ± 0.179 

 

Hosta 

   

0.960 ± 0.194 

 

Lochmaddy 

   

0.816 ± 0.169 

 

Reivil 

   

0.876 ± 0.192 

 

Tormasad 

   

0.686 ± 0.174 

 

Sex 0.91 1, 121 0.341 - 

 

Block 0.06 1, 120 0.803 - 

 

Initial length x population 0.91 4, 116 0.462 - 

      Sqrt (PC2) Initial length 2.29 1, 125 0.133 - 

 

Population 0.35 4, 121 0.843 - 

 

Sex 0.01 1, 120 0.932 - 

 

Block 5.64 1, 126 0.019 

 

 

Block 1 

   

1.621 ± 0.044 

 

Block 2 

   

1.767 ± 0.043 

  Initial length x Population 1.26 4, 116 0.292 - 

 

Table 4.4Table 4.4Table 4.4Table 4.4 Results from general linear models of PC1 and PC2 scores, used to characterise 

variation in infection response profiles of individual sticklebacks.  
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Figure Figure Figure Figure 4.4.4.4.1111 Mean infection response profile of the five stickleback populations across the 62-

day experimental period. Parasite abundance of Gyrodactylus gasterostei on individual fish 

was counted every four days, following artificial infection with two G. gasterostei on Day 0. 

Data from fish that died were included until the time of death. Error bars are the standard 

error of the population mean at each time point.          
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Figure Figure Figure Figure 4.4.4.4.2222 Relationship between population means of log-transformed PC1 scores and natural 

G. arcuatus abundance rank score. PC1 scores served as a proxy for resistance to G. gasterostei: 

a high PC1 value indicates susceptibility, whereas a low PC1 value indicates resistance. Rank 

score increase corresponds to an increase in natural G. arcuatus abundance. Error bars are the 

standard error of the population mean. The correlation was negative and not significant (r = -

0.23, P = 0.701).  
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4.3.4 4.3.4 4.3.4 4.3.4 AssociationAssociationAssociationAssociationssss    between between between between GGGG....    gasterosteigasterosteigasterosteigasterostei    resistanceresistanceresistanceresistance    and fishand fishand fishand fish    growthgrowthgrowthgrowth    

 

Specific growth rate varied significantly among families (LR test of population × 

family: χ21 = 11.84, P < 0.001; variance component estimate ± S.E. = 0.00092 ± 

0.00039). There was no significant effect of block on SGR (F1,96 = 0.78, P = 0.379); 

hence results from both blocks were pooled. PC1 score did not explain significant 

variation in SGR (F1,103 = 0.01, P = 0.911) and this relationship did not vary among 

populations (PC1 × population: F4,103 = 0.54, P = 0.708). However, SGR was significantly 

affected by population (F4,35 = 31.78, P < 0.001), length (F4,35 = 31.78, P < 0.001) and sex 

(F1,127 = 93.55, P < 0.001). Length was negatively correlated with SGR (parameter 

estimate ± S.E. = -0.152 ± 0.001), such that larger fish grew proportionately slower. 

Females grew faster than males (parameter estimate ± S.E.: females = 0.349 ± 0.007, 

males = 0.243 ± 0.008). 

 

4.3.5 Two4.3.5 Two4.3.5 Two4.3.5 Two----choice experimentchoice experimentchoice experimentchoice experiment    

 

There was no behavioural preference of G. gasterostei for Chadha Ruaidh or 

Tormasad fish, as measured by the parasite burden of recipient fish 24 hours after 

exposure (χ21 = 0.23, P = 0.632). Likewise, G. gasterostei preference was not dependent 

on recipient fish length (χ21 = 0.04, P = 0.832). However, donor burden was 

significantly positively correlated with recipient burden (χ21 = 12.43, P < 0.001; Fig. 4.3). 

This relationship was consistent across Chadha Ruaidh and Tormasad (χ21 = 1.93, P = 

0.164). Although the effect of donor length on recipient burden was only marginally 

non-significant (χ21 = 2.85, P = 0.058) the interaction between donor length and donor 

burden was significant (χ21 = 5.69, P = 0.017). 
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Figure Figure Figure Figure 4.4.4.4.3333 Relationship between donor burden and recipient burden in the two-choice 

experiment. One fish from Tormasad and Chadha Ruaidh were transferred simultaneously to 

a tank containing an artificially infected Reivil fish. Donor burden was quantified prior to 

transfer of recipient fish whereas recipient burden was quantified 24 hours after exposure (i.e. 

transfer). The experiment consisted of 20 replicates. Donor burden was positively correlated 

with recipient burden (combined: r = 0.68; Tormasad only: r = 0.79; Chadha Ruaidh only: r = 

0.55). 

 

4.44.44.44.4    DiscussionDiscussionDiscussionDiscussion    

 

I found substantial variation in resistance to Gyrodactylus gasterostei among the five 

populations of three-spined sticklebacks. Population-level variation in resistance has 

been reported in other Gyrodactylus-host systems (Madhavi & Anderson, 1985; van 

Oosterhout et al., 2003; Bakke et al., 2004), but this is one of the few demonstrations 

of variation in resistance to Gyrodactylus among stickleback populations. A 

multivariate technique, used to analyse variation in infection response profiles of 

individual fish, revealed that resistance to G. gasterostei was defined largely by the 

ability to limit the size of the worm population, rather than by the timing of the host 

response to infection. Hereafter, resistance will be defined as being inversely 
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proportional to PC1 score, such that a low PC1 score denotes resistance and a high PC1 

score denotes susceptibility.                

 

The results of the large-scale infection experiment, utilising a common garden, 

suggest that G. gasterostei resistance has a genetic basis, echoing studies in guppies 

(Madhavi & Anderson, 1985; Cable & van Oosterhout, 2007a), salmon (Bakke et al., 

1999; Gilbey et al., 2006) and topminnows (Leberg & Vrijenhoek, 1994; Hedrick et al., 

2001). In addition to population-level differences in resistance, fish families varied in 

their response to infection. This may reflect true genetic variation, although my 

choice of a F1 generation full-sib experimental design means I cannot exclude the 

contribution of maternal effects or dominance variance (Lynch & Walsh, 1998). This 

variation also could have been the result of host genotype x parasite genotype 

interactions (Lambrechts et al., 2006b) generated by genetic variation in virulence in 

the G. gasterostei source population. In any case, this study provides the first line of 

evidence for the potential of Gyrodactylus-mediated selection in stickleback 

populations, because variation in infection response profiles was influenced by host 

genetics (Anderson & May, 1982; Little, 2002).  

 

The mechanistic basis of the variation in G. gasterostei resistance is currently 

unknown. Several arms of the innate immune system have been implicated with the 

host response to Gyrodactylus (Buchmann & Lindenstrøm, 2002), especially the 

alternative complement pathway (Buchmann, 1998; Harris et al., 1998). It would be 

worthwhile examining baseline complement levels of all five populations and to assess 

their relationship with experimental levels of resistance. This has been demonstrated 

for three strains of Atlantic salmon that vary greatly in resistance to G. salaris: higher 

levels of complement factor C3 in mucous corresponded to greater G. salaris 

resistance (Bakke et al., 2000). Interestingly, principal component 2 (PC2) scores, 

which were determined mainly by the time until the peak of the infection was 

reached, did not vary significantly among populations, implying the existence of an 

immune cascade leading to clearance of the infection that is common to all 

populations. Therefore, quantitative, rather than qualitative differences in immune 

parameters may be responsible for variation in resistance among populations. 

Alternatively, Gyrodactylus resistance may be related to the density of mucous cells 

(Buchmann & Uldal, 1997). Although the adaptive immune system is unlikely to have a 
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large effect on the Gyrodactylus infections of naive, lab-bred fish, such as those 

conducted here, recent studies have found associations between major 

histocompatibility complex (MHC) genetic diversity and natural Gyrodactylus 

abundance (Eizaguirre et al., 2009b; Fraser & Neff, 2010), suggesting that the adaptive 

immune response may contribute to parasite resistance in the wild. 

 

Resistance to G. gasterostei was not significantly correlated with natural G. arcuatus 

abundance. However, a weak pattern emerged. Generally, fish from populations 

exposed to higher levels of G. arcuatus in the wild were more resistant to G. 

gasterostei (had a lower PC1 score) in the large-scale infection experiment. Tormasad 

was the exception to this pattern, showing high resistance despite low natural 

burdens. Chadha Ruaidh, the only naturally uninfected population, demonstrated 

particularly low resistance. This supports findings from other studies that have 

compared evolutionary naive and exposed populations. For example, Hasu et al. 

(2009) examined variation in experimental resistance to an acanthocephalan parasite, 

Acanthocephalus lucii, among naturally exposed and unexposed isopod (Asellus 

aquaticus) populations and showed that unexposed populations were markedly more 

susceptible. Similarly, Kalbe and Kurtz (2006) reported that a population of three-

spined sticklebacks naturally exposed to the eye fluke Diplostomum 

pseudospathaceum was significantly more resistant than a naturally unexposed 

population. In the absence of the parasite, there may be less selection to maintain 

resistance (Webster et al., 2004; Lohse et al., 2006; Hasu et al., 2009), provided that 

parasite resistance is costly (Sheldon & Verhulst, 1996; Rigby et al., 2002). Here, I 

studied a number of populations that spanned a gradient of natural infection levels, 

rather than considering only naturally exposed and unexposed host populations. 

These data suggest that differences in Gyrodactylus-mediated selection, as inferred 

from natural infection levels, may play a role in driving variation in G. gasterostei 

resistance among populations. 

 

There are several caveats to the approach of correlating natural infection levels with 

experimental levels of parasite resistance, which may go some way to explaining the 

noisiness of the pattern. First, using current infection levels to infer historical levels of 

parasite-mediated selection is problematic, considering that there may be temporal 

variation in parasite distributions within a host population. Furthermore, the small 
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sample size used in this study (20 fish per population) may not capture the true extent 

of spatial heterogeneity natural infection levels. However, data I have collected on 

spatiotemporal variation in G. arcuatus distribution indicate that differences among 

populations are stable in the short term (Chapter 3), lending support to the idea that 

the single measure can be informative, at least for the North Uist system. Second, I 

chose to use a non-native Gyrodactylus species to investigate divergent resistance to 

this parasite. This decision was based on the need to remove the possibility of close 

coevolution between the host and parasite species. Moreover, because there may be 

overlap in the host response to both Gyrodactylus species, it allowed me to draw 

general conclusions about the evolution of resistance to Gyrodactylus. However, it is 

necessary to repeat the infection experiment with G. arcuatus to confirm that the 

observed differences in G. gasterostei resistance are relevant to infection scenarios in 

the wild. Thirdly, the interpretation that a positive relationship between natural 

infection levels and experimental resistance is evidence for divergent Gyrodactylus-

mediated selection assumes that natural infection levels are determined mainly by the 

environment (exposure rate), not host genetics. If the opposite were true, I might 

expect to have seen a negative relationship between natural infection levels and 

parasite resistance. In reality, both exposure and host genetics influence parasite 

distribution in host populations (Scott, 1991; Grosholz, 1994; Little & Ebert, 2000; 

Karvonen et al., 2004a). Lastly, this study included just five host populations. 

Inclusion of more populations could alter the sign and strength of the relationship. 

Nevertheless, I observed an interesting pattern that warrants further investigation. 

More studies are necessary to obtain a fuller understanding of how differences in 

parasite distribution shape investment in parasite resistance, particularly for 

vertebrate macroparasite interactions where such data are scarce.  

 

Mortality in the large-scale infection experiment was low. This supports other G. 

gasterostei infection experiments (Harris, 1982) that also found low levels of mortality 

associated with infection. Mortality was independent of the growth rate of the 

parasite population, which is sometimes used as a proxy for Gyrodactylus 

pathogenicity (Bakke et al., 2007). Moreover, many fish sustained large infections 

without any apparent pathology. By comparison, small G. turnbulli infections can be 

lethal for guppies (Scott & Anderson, 1984; Cable & van Oosterhout, 2007a). There are 

two possible explanations for the low mortality observed in our study. On the one 
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hand, low pathogenicity may be a property of the strain of G. gasterostei used in the 

infection experiment, or more generally, of G. gasterostei as a species. On the other 

hand, host tolerance to infection, defined as the ability to limit the detrimental fitness 

effects of the parasite (Restif & Koella, 2004; Raberg et al., 2007; Raberg et al., 2009), 

may play an important role in the G. gasterostei-stickleback interaction. Minimising 

G. gasterostei-associated mortality may form a separate or complementary defence 

mechanism to resistance to G. gasterostei. Furthermore, there may be variation in this 

strategy among populations, such that more tolerant populations are able to sustain 

higher parasite levels and minimise the fitness effects of Gyrodactylus infection 

relative to less tolerant populations. Interestingly, mortality did not vary significantly 

among populations, suggesting that there may not be genetic variation in tolerance to 

G. gasterostei. However, this idea needs to be tested explicitly in separate infection 

experiments. 

 

I did not find a significant effect of G. gasterostei resistance on stickleback growth and 

this was consistent across all five populations. Unfortunately, due to the experimental 

design it was not possible to distinguish the effects of the host response to infection 

(resistance) from the effects of the infection itself. Negative effects of Gyrodactylus 

infection on host growth have been reported previously (Barker et al., 2002), but there 

are few studies that have investigated growth effects of Gyrodactylus infection 

formally. In fish, growth rate is an important component of fitness (Schluter, 1995; 

Arendt, 1997). In contrast to the lack of an effect of parasite resistance on growth rate 

during the infection experiment, fish length, measured before the start of the 

infection experiment, explained significant variation in G. gasterostei resistance. This 

suggests there may be an interaction between fish growth and parasite resistance. 

Larger fish were more resistant to G. gasterostei, contradicting results from a study in 

guppies that found that larger guppies supported larger number of Gyrodactylus and 

were more likely to die as a result of the infection (Cable & van Oosterhout, 2007a). 

Larger fish are assumed to have a greater surface area that provides more niche space 

for parasites (Poulin, 2000). A possible explanation for the pattern observed here is 

that there is a positive genetic correlation between parasite resistance and host 

growth (Coltman et al., 2001). I explore this possibility in Chapter 7. If a genetic 

correlation exists, selection mediated by Gyrodactylus may have consequences for 

stickleback life history evolution in terms of growth. The significant variation in 



 

74 

 

growth rate among host populations certainly suggests that there is ample inter-

population variation for this life history trait. In any case, it has yet to be determined 

whether resistance to Gyrodactylus is evolutionarily or physiologically costly. 

Costliness of parasite resistance, like spatial variation in parasite distributions, forms a 

potential mechanism constraining the evolution of parasite resistance within and 

among host populations (Rigby et al., 2002; Cotter et al., 2004).  

       

There was no behavioural preference of G. gasterostei for a susceptible (Chadha 

Ruaidh) or resistant (Tormasad) host genotype in the two-choice experiment. The 

large-scale infection experiment already revealed that there were no significant 

differences in establishment of G. gasterostei among the five populations. However, 

because the route of infection in the large-scale experiment was highly artificial 

(transferring two worms onto the tail of recipient fish), any difference in 

establishment cannot be interpreted as a behavioural preference. The two-choice 

experiment simulated a more natural infection scenario by exposing recipient fish to 

an infected donor. Indeed, direct host-host contact is the most frequent and 

important mode of Gyrodactylus dispersal (Olstad et al., 2006), and in the wild 

Gyrodactylus population dynamics are defined by the continuous transmission of 

worms from infected to uninfected hosts (Scott & Anderson, 1984). The lack of 

behavioural preference was a little surprising, given the highly significant differences 

in resistance between both populations. The only factor that explained significant 

variation in the worm burdens of recipient fish was the burden of the donor fish; as 

the donor burden increased, so too did the recipient burden. Increased transmission 

with higher worm burden appears to be a common feature of Gyrodactylus infection 

(Bakke et al., 2002). The two-choice experiment confirms that variation in resistance 

to G. gasterostei observed in the large-scale infection experiment reflects variation in 

the host response to infection, rather than population-differences in initial suitability 

of fish as hosts.   

 

In summary, I have shown that there are substantial differences in G. gasterostei 

resistance among stickleback populations on North Uist. Resistance was best defined 

by the ability to limit the size of the infection rather than by preventing establishment 

of the parasite or the timing of the host response. The population-level variation 

observed here most likely has a genetic basis, although the mechanism(s) conferring 
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resistance have yet to be explored. There was a weak positive correlation between 

resistance to G. gasterostei and natural abundance of G. arcuatus, suggesting that 

population-level differences in resistance to Gyrodactylus may be driven partly by 

divergent selection mediated by this parasite, inferred from natural infection levels of 

G. arcuatus. More generally, this study illustrates the potential of the stickleback-

Gyrodactylus interaction as a tractable model for investigating divergent parasite-

mediated selection and the evolution of parasite resistance.    
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Chapter 5: The relationship between 

parasite resistance and the innate immune 

response across stickleback populations 

 

5.1 Introduction5.1 Introduction5.1 Introduction5.1 Introduction    

 

Parasites are ubiquitous, as is the harm that they inflict on their hosts (Stearns & 

Koella, 2008). The constant threat of parasites leads us to expect the evolution of 

resistance where infection is associated with fitness costs. Similarly, there will be 

strong selection on protective mechanisms (Sheldon & Verhulst, 1996). One of the 

most important host defence mechanisms is the immune system (Frank, 2002; 

Janeway et al., 2004). Given that both parasite resistance and the immune response are 

important contributors to host fitness (Zuk & Stoehr, 2002; Schmid-Hempel, 2003), 

we should expect the risk of parasitism, host resistance to parasites and the immune 

response to be tightly correlated. This prediction is at the heart of ecological 

immunology, a relatively new field that has attempted to integrate immune responses 

into a general life history framework (Sheldon & Verhulst, 1996; Zuk & Stoehr, 2002; 

Sadd & Schmid-Hempel, 2009). Indeed, many ecological immunologists that measure 

one or a number of immune parameters in individuals from natural populations 

assume that these measures accurately reflect ‘immunocompetence’, the ability of 

those individual to combat parasite infection (Adamo, 2004; Lee, 2006; Martin et al., 

2006; Sadd & Schmid-Hempel, 2009).  

 

The problem with this ‘immunocompetence’ approach is that it decouples the 

immune response from its function and hence, its biological significance (Siva-Jothy, 

1995; Owens & Wilson, 1999; Ryder, 2003; Viney et al., 2005). It ignores the fact that an 

immune response may be parasite-species specific (Schmid-Hempel, 2003; Schmid-

Hempel & Ebert, 2003; Adamo, 2004). There is likely to be some overlap in the 

immune components that a host uses to fight infection, given the diversity of 

parasites it may potentially encounter. However, in many cases it is not known, and 

therefore cannot be assumed a priori, which immune components play the most 

important role in determining resistance to a particular parasite, or even whether the 
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immune system is the major contributor to variation in resistance, relative to non-

immune forms of host defence such as avoidance behaviour (Hart, 1994) or physical 

barriers (Wilson et al., 2001). Moreover, it is often unclear how large a change is 

needed in an immune assay before one can infer a statistically significant change in 

parasite resistance (Keil et al., 2001; Adamo, 2004). The few studies that have explicitly 

examined the relationship between a single component of the immune system and 

parasite resistance in natural host populations have generated mixed results. For 

instance, Schwarzenbach & Ward (2007) studied the association between 

phenoloxidase (PO), an important component of the insect immune system, and 

resistance to mites and entomopathic nematodes among replicate lines of yellow 

dung flies, Scathophagia stercoraria selected for different levels of PO, but found that 

PO level was not a good predictor of parasite resistance. Auld et al. (2010) found that 

high basal levels of haemocytes, an immune cell of invertebrates, served as a marker 

for susceptibility rather than resistance to the bacterial parasite Pasteuria ramosa in 

Daphnia magna. On the other hand, Kraaijeveld et al. (2001) recorded a positive 

correlation between haemocyte concentration and resistance to a parasitoid wasp, 

Asobara abida, in Drosophila melanogaster. Therefore, the relationship between 

parasite resistance and the immune response is likely to depend on the host-parasite 

interaction and the immune component that is being measured. Moreover, the sign 

and strength of the relationship may vary among host populations, or the pattern 

within populations may be different from the pattern across populations (Mucklow et 

al., 2004) Hence, multiple host populations should be incorporated into such studies 

to gain a general impression of the relevance of the immune response to parasite 

resistance.      

 

Here, using lab-reared three-spined sticklebacks, Gasterosteus aculeatus, from five 

populations from North Uist, Scotland and a widespread stickleback parasite, 

Diplostomum spathaceum, I carried out an artificial infection experiment to address 

whether there is (i) spatial variation in parasite resistance, (ii) spatial variation in 

immune response, and (iii) a relationship between parasite resistance and the immune 

response. Three-spined sticklebacks are an excellent species for investigating 

population divergence of ecologically-relevant traits (McPhail, 1994; McKinnon & 

Rundle, 2002). Since the last ice age, ancestral marine populations have repeatedly 

colonised freshwater environments. These invasion events have often been 
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accompanied by rapid evolutionary change and the divergence of morphological 

(Peichel et al., 2001; Berner et al., 2008), life history (Snyder & Dingle, 1989; Baker, 

1994) and behavioural (Boughman, 2001; Bolnick et al., 2009) traits. Differences in 

parasite faunas between freshwater and saltwater habitats may be an important 

source of selection driving divergence of these traits and mediating adaptation to 

freshwater (MacColl & Chapman, 2010). Moreover, parasite communities of 

sticklebacks have been shown to vary substantially among populations (Kalbe et al., 

2002; Barber, 2007, Chapter 3). Therefore, divergent parasite-mediated selection is 

likely to be a pervasive process that has important consequences for the evolution of 

immune responses and parasite resistance in stickleback populations.  

 

Diplostomum spp. are digenean trematodes that use a range of fish species, including 

three-spined sticklebacks, as a second intermediate host in their three-host life cycle 

(Chappell, 1995). Fish become infected through exposure to cercariae, released from 

the  first intermediate host (a snail), which penetrate the gills and skin and migrate to 

the eye lens or retinal tissue. They remain in the eye until infected fish are eaten by 

birds. Three lines of reasoning make the stickleback-Diplostomum interaction a good 

model for testing the three questions outlined above. Firstly, Diplostomum spp. are 

known to exert strong selective effects on their hosts. For instance, field data have 

shown that heavily infected individuals are selectively removed from the population 

(Pennycuick, 1971b; Lester, 1977; Kennedy, 1984). In the case of D. spathaceum, the 

parasite may cause direct host mortality (Brassard et al., 1982). However, most 

parasite-induced host mortality is probably indirect and mediated through the 

parasite’s detrimental effects on fish vision (Shariff et al., 1980). Even at low levels of 

infection Diplostomum can affect the vision of sticklebacks (Owen et al., 1993). 

Impaired vision in turn reduces foraging efficiency (Crowden & Broom, 1980) and 

anti-predator behaviour (Seppälä et al., 2004). Therefore, fish from populations with a 

high prevalence and abundance of Diplostomum may be under strong selection to 

evolve resistance. Secondly, we have some understanding of the immune response to 

Diplostomum (Bortz et al., 1984; Stables & Chappell, 1986b; Whyte et al., 1987; Whyte 

et al., 1989; Höglund & Thuvander, 1990; Whyte et al., 1990). Of the immune 

mechanisms that have been identified as being important in fighting Diplostomum 

infection, the respiratory burst response probably constitutes the strongest candidate 

for killing the parasite prior to its establishment in the eye (Whyte et al., 1989). The 
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respiratory burst is a cellular innate immune response mediated by granulocytes such 

as neutrophils, and is initiated upon contact with parasite antigen. Granulocytes 

increase their oxygen consumption, which stimulates the production of damaging 

reactive oxygen species (Secombes, 1996; Dahlgren & Karlsson, 1999; Alvarez-Pellitero, 

2008). In this study, the proportion of granulocytes and the intensity of respiratory 

burst response served as measures of the innate immune response. Although the 

respiratory burst response is potentially vital in the response to Diplostomum 

infection, it has never been quantified to what extent variation in this immune 

parameter corresponds to variation in actual resistance to Diplostomum. Lastly, 

several studies have reported spatial variation in infectivity among Diplostomum 

strains (Ballabeni & Ward, 1993; Voutilainen et al., 2009) and parasite resistance 

among host populations (Kalbe & Kurtz, 2006), indicating that population divergence 

in host and parasite traits may be a common feature of the Diplostomum-host 

interaction.       

 

In addition to investigating spatial variation in resistance to D. spathaceum, the 

immune response and the association between the two traits, the current study had 

three further objectives. First, the design of the experiment allowed me to examine 

whether previous parasite exposure reduces the number of parasites that establish 

following a second exposure. Some studies have demonstrated a boosting effect of 

prior exposure on Diplostomum resistance (Höglund & Thuvander, 1990; Whyte et al., 

1990; Karvonen et al., 2005), whereas others have not (Kalbe & Kurtz, 2006). 

Therefore, it is worthwhile assessing the generality of a potential adaptive immune 

response to Diplostomum infection. Second, I attempted to link population-level 

variation in resistance to D. spathaceum and immune response in the artificial 

infection experiment to natural levels of Diplostomum infection. The extent to which 

divergent parasite-mediated selection, as inferred from variation in natural infection 

levels, shapes investment in parasite resistance (Corby-Harris & Promislow, 2008; 

Hasu et al., 2009) and immune response (Lindström et al., 2004; Whiteman et al., 

2006; Bryan-Walker et al., 2007) among populations remains largely unknown for 

vertebrate-macroparasite systems. Lastly, this study assessed whether there is a 

growth cost associated with D. spathaceum infection. There is some evidence of the 

detrimental growth effects of Diplostomum, but this is based solely on field data 

(Pennycuick, 1971b; Marcogliese et al., 2001b) or correlative data from artificial 
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infections (Buchmann & Uldal, 1994). Only a handful of studies have examined 

growth costs formally by comparing the growth of exposed and unexposed hosts in an 

experimental setup (Ballabeni, 1994; Karvonen & Seppälä, 2008), and this has yet to be 

tested in the stickleback-Diplostomum interaction. 

 

Even though D. spathaceum is not found in sticklebacks on North Uist (D. gasterostei 

is the native Diplostomum species), there is likely to be an overlap between the host 

immune response they induce, and therefore, in the potential mechanisms conferring 

resistance. The key feature that differentiates D. spathaceum and D. gasterostei is the 

infection site within the fish host: D. gasterostei and D. spathaceum infect the retinal 

tissue and lens, respectively (Karvonen et al., 2006). Furthermore, use of D. 

spathaceum instead of D. gasterostei removed the possibility of close coevolution 

between parasite and host populations. In effect, the experiment tests for an 

evolutionarily naive interaction, and may thus reveal some general patterns about the 

evolution of spatial variation in parasite resistance and the immune response.  

 

5.2 Methods 5.2 Methods 5.2 Methods 5.2 Methods     

 

5.2.1 Study populations and parasites5.2.1 Study populations and parasites5.2.1 Study populations and parasites5.2.1 Study populations and parasites    

 

Fish were collected from five geographically isolated lochs on North Uist, Outer 

Hebrides, Scotland during May 2008. Fish were caught using minnow traps (Gee 

traps, Dynamic Aqua, Vancouver). These lochs were chosen to represent a range of 

natural Diplostomum gasterostei infection levels (Table 5.1). For each population, F1 

offspring used in infection experiments were obtained by making 8 sets of unrelated 

full-sib crosses (families) from wild-caught fish. To make a cross, eggs were stripped 

from a gravid female and placed into a Petri dish containing a small volume of 1‰ salt 

solution. Males were killed, by overdose of anaesthetic (400 mg L-1 MS222), and 

dissected to remove testes. Fine forceps were used to tease apart testes and release 

sperm, which was gently mixed with the eggs (Barber & Arnott, 2000). Two to three 

hours later, fertilisation was confirmed by low-power microscopy, and testes were 

removed from the fertilised clutches. Fertilised eggs were transferred to a falcon tube 

containing 50 mL of 1‰ salt solution. Eggs were then transported on ice to aquaria at 
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the University of Nottingham, where they were placed in a plastic cup with a mesh 

screen on the bottom suspended in a well-aerated tank containing dechlorinated 

water (Marchinko & Schluter, 2007). Water was treated with Methylene blue to reduce 

fungal infection. After 10 days, egg cups were transferred to individual half-tank 

partitions of 100 L tanks and the eggs were allowed to hatch. Following hatching, full-

sib families were thinned to groups of 15. Clutches from each population were 

distributed haphazardly between tanks across the temperature-controlled room 

(13.5°C ± 1°C). Fry were fed with infusoria (Colpidium spp.) for the first five days, then 

daily with brine shrimp (Artemia salina) naupliae until day 65 post-hatching. 

Thereafter, fish received chironomid larvae (‘bloodworm’; defrosted from frozen) 

daily. Fish were maintained at a daylight regime mimicking the natural photoperiod 

on North Uist.   

 

Pond snails (Lymnaea stagnalis) infected with Diplostomum, were collected from the 

lower pond of Jubilee Campus, University of Nottingham (52°57”N; 1°11”W) in 

September 2008. This pond contains a large resident population of three-spined 

sticklebacks that carries high burdens of Diplostomum (personal observation). 

Dissections of the eyes from a small sample of sticklebacks revealed that 

Diplostomum was present only in the lens. No attempt was made to formally identify 

the species of Diplostomum metacercariae in sticklebacks (and the cercariae in snails) 

in Jubilee Campus. Two closely related and morphologically similar species, D. 

spathaceum Rudolphi, 1819 and D. pseudospathaceum Niewiadomska 1984, can infect 

the lens of sticklebacks. Although L. stagnalis may act as a first intermediate host for 

both species, in the U.K. only D. spathaceum cercariae have been recorded from L. 

stagnalis (Morley et al., 2001); therefore the species in Jubilee campus sticklebacks was 

regarded to be D. spathaceum. A detailed taxonomic study should be carried out to 

verify the identification of this species. Snails were housed in plastic tanks containing 

dechlorinated water in a temperature controlled room (16 ± 1°C) under a 16L:8D 

photoperiod.   
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Population 
D. gasterostei 

abundance 

D. gasterostei  

prevalence 
N 

Geographic 

location 

Chadha Ruaidh 9.82 ± 2.14 95.2 (76.7, 99.8)  21 57°35"N; 7°11"W 

Hosta 1.59 ± 0.35 35.0 (16.7, 57.6)  20 57°37"N; 7°29"W 

Lochmaddy 0 0 (0.0, 13.9) 24 57°36"N; 7°10"W 

Reivil 2.73 ± 0.70 72.7 (40.5, 92.1) 11 57°36"N; 7°30"W 

Tormasad 1.2 ± 0.38 45.0 (24.4, 68.0)  20 57°33"N; 7°19"W 

 

Table 5.1Table 5.1Table 5.1Table 5.1 The five stickleback populations from North Uist used in the study. D. gasterostei 

prevalence and abundance data were obtained in May 2008 by counting the number of 

parasites in the left eye of approximately 20 sticklebacks from each loch. Abundance values are 

given with the standard error of the mean whereas prevalence values are given with 95% 

confidence intervals. 

 

5.2.25.2.25.2.25.2.2    Experimental designExperimental designExperimental designExperimental design    

 

The infection experiment consisted of two rounds of exposure and one round of 

dissection (Fig. 5.1). Fish were six months old at the time of the first round of exposure 

(November 2008). The second round of exposure took place in January 2009, six 

weeks after the first round. This gap was chosen to give previously exposed fish 

sufficient time to develop an adaptive immune response, which can take up to several 

weeks in teleost fish (Jones, 2001; Magnadóttir, 2006). If there is a boosting effect of a 

previous exposure on subsequent parasite resistance, I predicted to see a reduction in 

the number of established parasites after the second round of exposure. All fish were 

dissected two days after the second round of exposure to determine the number of D. 

spathaceum metacercariae in the lens and to obtain morphological and 

immunological measurements. Fish have a very narrow window of time, typically 24 

hours, to mount an immune response to Diplostomum and eliminate the parasite 

prior to its migration to the eye lens (Chappell, 1995). Therefore, by minimising the 

amount of time between the second round of exposure and immunological 

measurements, it increases the chance of detecting a still-active and measurable 

innate immune response (Kalbe & Kurtz, 2006).          

 



 

83 

 

The experiment utilised a split-plot design to compare three parasite exposure 

treatments (control unexposed (C), once-exposed (1x) and twice-exposed (2x)) among 

five stickleback populations. The total sample size of the experiment was 120 fish. For 

each population, fish from 8 full-sib families were used, such that one fish per family 

was assigned to each of the three treatments; however, for Hosta only 7 full-sib 

families were available. As the number of fish that could be processed for 

immunological measurements was limited to a maximum of 32 per day by logistical 

constraints, the experiment was split into four blocks of 30 fish. Populations and 

treatments were balanced across blocks. However, families could not be balanced 

across blocks and were therefore randomly assigned to a block. To enable the 

comparison of parasite treatments within families, each block comprised two families. 

 

Throughout the experiment, fish were housed in groups of 15 in half-tank partitions 

of 100 litre tanks. One family per population was present in each partition such that a 

tank housed all fish belonging to the same block. Families were assigned randomly to 

blocks and fish within families were assigned randomly to treatments. Two weeks 

prior to the first round of exposure, fish were injected subcutaneously with a 

fluorescent visible implant elastomer tag (Northwest Marine Technology, Shaw 

Island, WA) to allow identification of individuals. Within partitions, each fish was 

given a unique mark. Fish were fed bloodworm (defrosted from frozen) to satiation 

daily and were maintained in a temperature controlled room (13.5°C ± 1°C) on a 8L:16D 

cycle.     
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Figure 5.1Figure 5.1Figure 5.1Figure 5.1 The design of the D. spathaceum infection experiment. The experiment comprised 

two rounds of exposure and one round of dissection. The figure is modified from Kalbe & 

Kurtz (2006).  

    

5.2.3 Infection protocol 5.2.3 Infection protocol 5.2.3 Infection protocol 5.2.3 Infection protocol     

 

D. spathaceum cercariae were obtained by placing snails in individual 50 mL falcon 

tubes containing 40 mL dechlorinated tap water and exposing them to a cold 

fluorescent light for one hour to stimulate shedding. Three 1 mL samples were taken 

and the number of cercariae counted using a dissection microscope. Total cercarial 

densities were then calculated from the average of the three samples. Cercariae from 

four snails were mixed in equal proportion to obtain a cercarial suspension containing 

several D. spathaceum genotypes (infected snails typically contain 2-4 Diplostomum 

genotypes (A. Karvonen, personal communication)). From the mixed-genotype 

suspension, groups of 20 cercariae were isolated in small Petri dishes. The same four 

snails were used throughout the experiment to minimise potentially confounding 

C 2x1x

6 WEEKS
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DISSECTION & IMMUNOLOGICAL 

MEASUREMENTS
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effects of parasite genotype on resistance and measures of host immune response. 

However, as one of the snails died before the second round of infections, fish from 

this group were exposed to cercariae from three snails only.  

 

One hour prior to exposure, fish were measured (to the nearest 0.1mm) and weighed 

(to the nearest mg),  transferred to individual three litre plastic tanks containing one 

litre of dechlorinated water and allowed to acclimatise. A Petri dish containing 20 

cercariae was then added to each tank and gently agitated to ensure that cercariae 

were released into the water. Control fish were sham-exposed by adding a Petri dish 

containing a small volume of dechlorinated water. Seven hours post-exposure, fish 

were removed from their individual tanks and returned to their original group tank. 

Fish in the twice-exposed group were re-exposed in an identical manner six weeks 

later. Throughout the experiment, if fish were found in a state of poor health, as 

defined by reduced feeding activity and cessation of movement, they were euthanised 

by overdose of MS222 (400 mg L-1) and destruction of the brain. By the end of the 

experiment, a total of 7 fish had been euthanised. However, in only one case was this 

associated with parasite exposure. 

    

5.2.45.2.45.2.45.2.4    Dissection and immunological assaysDissection and immunological assaysDissection and immunological assaysDissection and immunological assays    

 

Two days after the second round of exposure all fish were killed, by overdose of 

MS222 (400 mg L-1) and destruction of the brain, and were measured and weighed as 

before. Both eyes were dissected out and the number of metacercariae in the lenses 

determined using a dissection microscope. In twice-exposed fish, metacercariae from 

the first and second round of exposure could be easily differentiated on the basis of 

worm size. Infection levels from the first round of exposure were determined only at 

the end of experiment. However, as the eye lens constitutes an immunologically 

privileged site, worm morality in the six-week interval is unlikely to have affected 

worm counts (Chappell, 1995).     

 

As measures of cellular innate immune system, the proportion of granulocytes and the 

respiratory burst response were quantified. Extraction of head kidney leukocytes 

(HKL) and quantification of HKL cell numbers followed a protocol modified after 
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Scharsack et al. (2004). Head kidneys were dissected out using fine forceps. HKLs 

were isolated by squeezing head kidneys through a 40 µm cell strainer (BD-Falcon) 

into a 50 mL falcon tube containing 2 mL ‘R-90’. R-90 is RPMI-1640 (without phenol 

red, Gibco) diluted with 10% v/v distilled water, a medium that matches stickleback 

osmolarity (Scharsack et al., 2004). Cells were washed once by centrifugation at 4°C 

and resuspended in a final volume of 500 µL R-90. Cells and media were kept on ice 

throughout the protocol.  

 

HKL numbers were quantified by a standard cell dilution assay. To individual flow 

cytometry tubes the following were added: 50 µL of washed HKLs, 100 µL R-90, 5 × 

104 green fluorescent beads (3 µm, Polyscience) and propidium iodide (2 mg L-1, Sigma-

Aldrich). Propidium iodide is a DNA-binding substance that enables the detection of 

dead cells. Using a flow cytometer (FACS, Becton & Dickinson), FSC/SSC 

characteristics of at least 10,000 events were acquired at linear scale; fluorescent 

intensities at wavelengths of 530 (beads) and 585nm (propidium iodide) were acquired 

at log scale. Data were analysed using FacsDiva software. Cellular debris was easily 

distinguished from viable cells by its low FSC values and was excluded from 

subsequent analyses. Likewise, fluorescent beads (green fluorescence positive) were 

easily differentiated from viable HKLs (propidium iodide negative, green fluorescence 

negative) and dead HKLs (propidium iodide positive, green fluorescence negative). 

The total number of viable HKLs per sample was then calculated as: N [HKL] = events 

[viable HKL] × number [fluorescent beads]/events [fluorescent beads]. To standardise 

cell volumes for the respiratory burst assay, HKL suspensions were adjusted to a final 

concentration of 6.25 × 105 cells mL-1. The flow cytometric data were also used to 

calculate ratios of granulocytes to lymphocytes, which have characteristically high 

SSC and low SSC profiles, respectively (Scharsack et al., 2004; Serada et al., 2005).   

 

Respiratory burst activity was measured using an in vitro luminol-enhanced 

chemiluminescence assay. The luminol buffer was prepared by adding luminol 

dissolved in 0.1M NaOH (10 mg mL-1) to a buffer solution (25 µL of dissolved luminol 

per ml of Hanks’ buffered saline solution (HBSS, Gibco), containing 20mM HEPES 

(Sigma-Aldrich) and 1 g mL-1 bovine serum albumen (BSA, Sigma-Aldrich)). 20 µL of 

luminol buffer was added to 160 µL of HKL suspension (105 cells per well) in wells of 



 

87 

 

96-well microtitre plate. To allow the cells to take up luminol, plates were incubated 

at room temperature for 30 minutes. Luminol is a molecule that reacts with secreted 

and intracellular reactive oxygen species (ROS), and emits light when excited 

molecules return to their ground state (Stenfeldt & Dahlgren, 2007). In the current 

assay, production of reactive oxygen species (ROS) was stimulated by the addition of 

20 µL of a zymosan suspension (7.5 g L-1 phosphate-buffered saline (PBS, Gibco)). 

When enough cells were available, a duplicate zymosan treatment and a control PBS-

only treatment were also included. The respiratory burst reactions were measured at 

room temperature at three minute intervals for two hours using a microtitre plate 

luminometer (Berthold Technologies). Relative luminescence (RLU) was tracked using 

WinGlow software (Berthold Technologies). The amount of light emitted in a given 

reaction therefore provides a quantitative measure of the number of ROS produced by 

HKLs in a sample. From each reaction curve, the peak of the respiratory burst 

response was determined (hereafter, ‘respiratory burst’). On two of the four days 

(blocks) of immunological analysis, the luminometer had to be re-started mid-reaction 

due to a technical difficulty. As a result, the readings immediately before, during and 

after the peak were not recorded for several fish from these blocks and the true peak 

values could not be obtained. However, the value of the peak for these reactions could 

be determined by approximation. The reliability of this approximation technique was 

confirmed by deleting data between the identical time interval from reactions for fish 

from both blocks that were not affected by the technical problem and comparing 

approximations and true peak values (correlation between both values: r = 0.99).         

 

5.2.55.2.55.2.55.2.5    Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

    

5.2.5.1 Natural D. gasterostei infection levels 

    

All statistical analyses were conducted in GenStat (release 12, VSN International Ltd., 

Hemel Hempstead, U.K.). A generalised linear model (GLM) with a negative binomial 

error distribution and a logarithm link function was used to analyse variation in 

natural abundance of D. gasterostei. Population was the only fixed effect in this 

model. 
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5.2.5.2 Resistance to D. spathaceum 

 

D. spathaceum burdens resulting from exposure in the artificial infection experiment 

(‘number of metacercariae’ as the response variable) were modelled using generalised 

linear mixed models (GLMMs) with a binomial error structure and a logit link 

function. The number of binomial totals was 20, the exposure dose. The number of 

metacercariae was interpreted to be inversely proportional to resistance to D. 

spathaceum. Four different models were used to explore different subsets of the data. 

(i) To examine variation in the number of metacercariae after the first round of 

exposure, a fixed model with the effects sex, length before the first round of infection 

(‘initial length’) and population was used. (ii) To examine variation in the number of 

metacercariae after the second round of exposure, the fixed model consisted of the 

effects sex, length at the end of the experiment (‘final length’), population, treatment 

(1x /2x) and the interaction between treatment and population (treatment × 

population). (iii) To examine variation in the number of metacercariae after a single 

exposure to 20 D. spathaceum cercariae, the following fixed model was used: 

treatment (1x/2x), population and treatment × population. This model tested for a 

difference in the number of metacercariae using data from the first exposures of once-

exposed fish (in the second round of exposure) and twice-exposed fish (in the first 

round of exposure). (iv) Data from twice-exposed fish were used to test for an effect of 

previous exposure on the number of metacercariae in the second exposure. The fixed 

model included the effects exposure round, population and exposure round × 

population.  

 

In all models block, and family nested within population (population × family) were 

included as random effects. This latter effect controls for variation among families. 

The significance of random effects was assessed via likelihood ratio tests (Galwey, 

2006), which compare the differences in the deviance of the reduced model, without 

the random effect, and the full model to a χ2 distribution with one degree of freedom. 

Minimum adequate models (MAM) were constructed by stepwise deletion, i.e. the 

sequential dropping of non-significant fixed effects (Crawley, 2007). In GLMMs, 

significance of fixed effects was assessed by Wald F tests. In GLMs, significance of 

fixed effects was assessed by noting the change in deviance, compared to a χ2 
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distribution with the appropriate degrees of freedom. If main effects were marginal to 

interaction effects, significance of main effects was tested in the presence of 

interactions.  

 

5.2.5.3 Immune measures 

 

Immunological data were analysed using linear mixed models (LMMs). A first model 

analysed variation in the proportion of granulocytes (‘prop gran’ as the response 

variable, log-transformed to achieve normality). The fixed model consisted of the 

effects sex, final length, treatment, population and treatment × population. A second 

model was used to analyse variation in the respiratory burst response (‘respiratory 

burst’ as the response variable, log-transformed to achieve normality). Sex, final 

length, treatment, population, prop gran, and treatment × population were included 

as fixed effects. One fish was excluded from the respiratory burst model owing to an 

insufficient  number of HKLs. In both models, block, and family nested within 

population (population × family) were fitted as random effects. If neither effect was 

significant, the model reverted to a general linear model. As above, significance of 

fixed effects was assessed via stepwise regression by sequential deletion of non-

significant effects until a MAM was specified.  

 

5.2.5.4 Growth and D. spathaceum infection 

 

A GLMM with normal errors was used to examine variation in specific growth rate 

(SGR; sensu Barber, 2005) of individual fish. SGR, the average daily percentage 

increase in length, was calculated using the equation: SGR = 100*[ln(Lt1/Lt0)]/(t1-t0), 

where Lt1 and Lt0 represent the standard length measure before, and at the end of, the 

experimental infection, and t1-t0 denotes the number of days between measurements. 

This was 45, 46, 47 and 48 for block 1, 2, 3 and 4, respectively. Block and family nested 

within population were fitted as random effects. The fixed model included the effects 

sex, initial length, infecttion, population and infection × population. The effect 

‘infection’ comprised two levels: ‘1’, which included infected 2x-fish, and ‘0’, which 

included uninfected 2x fish, 1x fish and control fish. Therefore, this effect tests 

whether there is a somatic growth cost associated with D. spathaceum infection. 1x-
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fish were also included in the ‘0’ level because the impact of infection resulting from 

the second round of exposure, two days prior to dissection, was probably negligible. 

To investigate the actual impact of D. spathaceum infection on growth, the 

relationship between the SGR and number of metacercariae of infected 2x-fish was 

analysed with Pearson’s correlations, separately for each population. 

 

5.2.5.5 Associations between natural D. gasterostei infection, resistance to D. 

spathaceum and the innate immune response  

 

Pearson correlation analysis was used to examine the relationship at the population 

level between D. gasterostei infection in the wild (natural abundance rank score), and 

D. spathaceum resistance and log-transformed respiratory burst response. An increase 

in the abundance rank score corresponds to an increase in mean natural D. gasterostei 

abundance (Table 5.1). Resistance to D. spathaceum was defined as the mean number 

of metacercariae resulting from one exposure to 20 D. spathaceum cercariae (data 

from the 1x and 2x treatments were pooled); resistance is inversely proportional to the 

number of metacercariae. Since there was no significant effect of experimental 

treatment on the respiratory burst response, data from C, 1x and 2x treatments were 

pooled. To investigate the relationship between D. spathaceum resistance and the 

respiratory burst response, family-level means of both measurements were correlated. 

A two-tailed test was used to assess the significance of correlation coefficients.  

 

5.35.35.35.3    ResultsResultsResultsResults    

 

5.3.15.3.15.3.15.3.1    Natural Natural Natural Natural D. gasterosteiD. gasterosteiD. gasterosteiD. gasterostei    infection  infection  infection  infection      

 

There was significant variation in D. gasterostei abundance among populations (χ24 = 

26.46, P < 0.001; Table 5.1). D. gasterostei was absent from Lochmaddy.  

    

5.3.25.3.25.3.25.3.2    Resistance to Resistance to Resistance to Resistance to D. spathaceumD. spathaceumD. spathaceumD. spathaceum    

 

For both rounds of exposure, there was no significant effect of block on the number of 

metacercariae (first round LR test: χ21 = 0.00, P >>0.05, variance component estimate ± 
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S.E. = 0.008 ± 0.090; second round LR test: χ21 = 0.00, P >> 0.05, variance component 

estimate ± S.E. = 0 ± 0), therefore data from all blocks were pooled. The number of 

metacercariae varied significantly among fish families after the first and second round 

of exposure (first round LR test: χ21 = 0.00, P >>0.05, variance component estimate ± 

S.E. = 0.29 ± 0.22; second round LR test: χ21 = 2.89, P = 0.045, variance component ± 

S.E. = 0.12 ± 0.11). Population predicted the number of metacercariae in the first (F4,30.0 

= 23.00, P < 0.001; Fig. 5.2a) and second round of exposure (F4,66.0 = 56.53, P < 0.001; Fig. 

5.2b). Lochmaddy consistently had the highest number of metacercariae relative to the 

other four populations. After the first round of exposure, Reivil had the lowest 

number of metacercariae relative to Chadha Ruaidh, Hosta or Tormasad. This small 

scale variation among Reivil, Chadha Ruaidh, Hosta and Tormasad was less 

pronounced in once-exposed (1x) fish in the second round of infection; the rank of 

infection success changed such that Hosta had the lowest mean number of 

metacercariae (Fig. 5.2b). There was no significant effect of initial length (F1,29.0 = 1.09, 

P = 0.305) or sex (F1,29.0 = 0.28, P = 0.597) on the number of metacercariae after the first 

round of exposure. After the second round of exposure, the number of metacercariae 

did not differ significantly between once-exposed (1x) and twice-exposed (2x) fish 

(F1,65.0 = 1.98, P = 0.165), and this was consistent across populations (treatment × 

population: F4,32.0 = 8.14, P = 0.113). Likewise, final length (F1,58.1 = 0.71, P = 0.402) and 

sex (F1,57.2 = 0.71, P = 0.391) did not significantly influence the number of metacercariae 

resulting from the second round of exposure.  

 

Comparing data from 1x fish from the second round of exposure and 2x fish from the 

first round of exposure (i.e. first exposures), the number of metacercariae varied 

significantly among fish families (LR test: χ21 = 6.38, P = 0.006, variance component 

estimate ± S.E. = 0.15 ± 0.11) but not among  blocks (LR test: χ21 = 0.00, P >>0.05, 

variance component estimate ± S.E. = 0 ± 0). Population predicted the number of 

metacercariae (F4,33.7 = 48.89, P < 0.001; Fig. 5.3a). The number of metacercariae 

differed significantly between treatments (F1,36.1 = 6.57, P = 0.015), with 2x fish after the 

first round of exposure having a higher number of metacercariae than 1x fish after the 

second  round of exposure (mean ± S.E.: 1x = 3.59 ± 0.73, 2x = 4.43 ± 0.87). This effect 

was similar across populations (treatment × population: F4,30.4 = 2.15, P = 0.098). 

Comparing data from twice-exposed fish only, there was a significant effect of fish 
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family (LR test: χ21 = 12.77, P < 0.001, variance component estimate ± S.E. = 0.22 ± 0.13) 

but not of block (LR test: χ21 = 0.00, P >>0.05, variance component estimate ± S.E. = 0 

± 0) on the number of metacercariae. The number of metacercariae varied 

significantly among populations (F4,31.9 = 36.77, P < 0.001; Fig. 5.3b) and differed 

significantly between rounds of exposure (F1,37.8 = 13.14, P < 0.001; Fig. 5.3b), being 

lower in the second round of exposure (mean ± S.E: first round = 4.43 ± 0.87, second 

round = 2.71 ± 0.64). This effect of exposure round was consistent across populations 

(exposure round × population: F4,34.2 = 0.12, P = 0.976).  

 

5.3.3 Immune measures 5.3.3 Immune measures 5.3.3 Immune measures 5.3.3 Immune measures     

    

Block and fish family did not have a significant effect on the proportion of 

granulocytes (block LR test: χ21 = 1.08, P = 0.149, variance component estimate ± S.E. = 

0.0013 ± 0.0019; population × family LR test: χ21 = 2.39, P = 0.061, variance component 

estimate ± S.E. = 0.0036 ± 0.0027). The proportion of granulocytes did not differ 

significantly among treatments (F2,101 = 0.78, P = 0.462) and populations (F4,103 = 1.57, P 

= 0.189), nor was there a significant interaction between treatment and population 

(F8,93 = 0.89, P = 0.528, Fig. 5.4a). The proportion of granulocytes did not differ 

significantly between males and females (F1,108 = 0.83, P = 0.366) and was not associated 

with final length of fish (F1,107 = 0.32, P = 0.574). The respiratory burst response varied 

significantly among fish families (LR test: χ21 = 4.43, P = 0.018, variance component 

estimate ± S.E. = 0.011 ± 0.010) and among blocks (LR test: χ21 = 9.43, P = 0.001, 

variance component estimate ± S.E. = 0.0077 ± 0.0045). Population explained 

significant variation in respiratory burst (F4,34.3 = 2.87, P = 0.038; Fig. 5.4b). The 

respiratory burst was highest in Chadha Ruaidh; Chadha Ruaidh was also the only 

population in which exposed fish exhibited higher respiratory burst values than 

control fish (Fig. 5.4b). Nevertheless, neither treatment (F2,69.5 = 0.73, P = 0.486) nor 

treatment × population (F8,61.1 = 1.55, P = 0.158) explained significant variation in 

respiratory burst. Respiratory burst was significantly influenced by the proportion of 

granulocytes (F1,98.9 = 15.20, P < 0.001) and final length of fish (F1,100.1 = 7.77, P = 0.006); 

both covariates were positively correlated with respiratory burst (parameter estimate ± 

SE: prop gran = 0.620 ± 0.210, length = 0.019 ± 0.008). Respiratory burst did not differ 

significantly between males and females (F1,99.3 = 2.60, P = 0.110).  
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Figure 5.2Figure 5.2Figure 5.2Figure 5.2 Variation in D. spathaceum burdens among the five stickleback populations in the 

infection experiment. Bars represent the mean number of metacercariae (with standard errors) 

following exposure of individual fish to 20 D. spathaceum cercariae. a) First round of exposure 

(twice-exposed fish only) and b) second round of exposure (once-exposed (1x) and twice-

exposed (2x) fish). In a) metacercariae are six weeks old, whereas in b) metacercariae are two 

days old. The number of metacercariae is interpreted to be inversely proportional to D. 

spathaceum resistance. 
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Figure Figure Figure Figure 5555.3.3.3.3 Further population-level comparisons of variation in experimental D. spathaceum 

burdens between: a) first exposures of once-exposed (1x) and twice-exposed (2x) fish, and b) 

both rounds of exposure of twice-exposed fish. Bars represent the mean number of 

metacercariae (with standard errors) following exposure of individual fish to 20 D. 

spathaceum cercariae. In a) metacercariae are two days old (1x) and approximately six weeks 

old (2x), and in b) metacercariae are approximately six weeks old (1st round) and two days old 

(2nd round). 
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Figure 5.4Figure 5.4Figure 5.4Figure 5.4 Variation in innate immune measures among the five stickleback populations in 

the D. spathaceum infection experiment: a) proportion of granulocytes and b) respiratory 

burst response. Measures were taken two days after the second round of exposure. The 

proportion of granulocytes was determined by flow cytometry, whereas measures of the 

respiratory burst response were obtained from a luminol-enhanced chemiluminescence assay. 

C, 1x and 2x denote the control, once-exposed and twice-exposed treatments respectively. 

Error bars are the standard error of the mean. 
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5.3.45.3.45.3.45.3.4    Growth and Growth and Growth and Growth and D. spathaceumD. spathaceumD. spathaceumD. spathaceum    infectioninfectioninfectioninfection    

 

Specific growth rate (SGR) varied significantly among fish families (LR test: χ21 = 10.81, 

P < 0.001, variance component estimate ± S.E. = 0.0015 ± 0.0007) but not among 

blocks (LR test: χ21 = 0.05, P = 0.417, variance component estimate ± S.E. = 0.00005 ± 

0.00025). SGR did not differ significantly between D. spathaceum-infected and 

uninfected fish (F1,76.6 = 0.67, P = 0.415) and this was consistent across populations 

(infection × population: F4,73.5 = 0.76, P = 0.556; Fig. 5.5). However, SGR was 

significantly influenced by population (F4,36.3 = 15.68, P < 0.001; Fig. 5.5), initial length 

(F1,98.2 = 15.68, P = 0.003) and sex (F1,91.1 = 25.54, P < 0.001). Females grew faster than 

males (parameter estimate ± S.E.: females = 0.326 ± 0.009, males = 0.267 ± 0.011) and 

initial length was negatively correlated with SGR (parameter estimate ± S.E. = -0.010 ± 

0.003), such that larger fish grew proportionately slower. The sign of the relationship 

between SGR and the number of metacercariae varied among populations, but all 

correlations were non-significant (Chadha Ruaidh: r = -0.52, P = 0.187; Hosta: r = 0.28, 

P = 0.592; Lochmaddy: r = -0.02, P = 0.966; Reivil: r = 0.13, P = 0.287; Tormasad: r = 

0.06, P = 0.879).  

 

5.3.5 Associations between natural 5.3.5 Associations between natural 5.3.5 Associations between natural 5.3.5 Associations between natural D. D. D. D. gasterosteigasterosteigasterosteigasterostei    infection, resistance to infection, resistance to infection, resistance to infection, resistance to D. D. D. D. 

spathaceumspathaceumspathaceumspathaceum    and the innate immune responseand the innate immune responseand the innate immune responseand the innate immune response    

 

At the population level, there was a negative but non-significant correlation between 

the mean number of D. spathaceum metacercariae in the infection experiment and 

the natural abundance rank score of D. gasterostei and (r = -0.69, P = 0.197; Fig. 5.6a). 

This effect was largely due to the Lochmaddy population. In contrast, log-transformed 

respiratory burst was almost significantly positively correlated with natural 

abundance rank score of D. gasterostei (r = 0.84, P = 0.07; Fig. 5.6b). At the family-level 

across populations, the correlation between log-transformed respiratory burst and the 

mean number of D. spathaceum metacercariae was negative and not significant (r = -

0.25, p = 0.137, n = 38; Fig. 5.7).  
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Figure 5.5Figure 5.5Figure 5.5Figure 5.5 Differences in specific growth rate (SGR) between D. spathaceum-infected fish and 

uninfected fish across populations. SGR, a measure of the average daily percentage increase in 

fish length, was calculated using the equation: SGR = 100*[ln(Lt1/Lt0)]/(t1-t0), where Lt1 and Lt0 

represent the standard length measure before, and at the end of, the experimental infection 

and t1-t0 denotes the number of days between measurements. Error bars represent the 

standard error of the mean. 
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Figure Figure Figure Figure 5555.6.6.6.6 Relationship between population means of natural abundance of D. gasterostei 

and: a) number of D. spathaceum metacercariae in the infection experiment (r = -0.69, P = 

0.197), b) log-transformed respiratory burst response (r = 0.84, P = 0.073). Natural abundance 

of D. gasterostei was estimated by sampling approximately 20 fish per loch in May 2008. 

Abundance rank score increase corresponds to an increase in natural D. gasterostei 

abundance. The number of metacercariae was calculated from pooled data of first exposures 

of 1x and 2x fish, and was interpreted to be inversely proportional to D. spathaceum resistance. 

Respiratory burst values are also means of data pooled from C, 1x and 2x fish. Obse = 

Lochmaddy, Torm = Tormasad, Chru = Chadha Ruaidh. Error bars are the standard error of 

the population mean.  
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Figure Figure Figure Figure 5555.7.7.7.7 Relationship between family means of the number of D. spathaceum metacercariae 

in the infection experiment and log-transformed respiratory burst response (r = -0.25, P = 

0.137).     

 

5.4 Discussion5.4 Discussion5.4 Discussion5.4 Discussion    

 

In spite of significant variation in both resistance to Diplostomum spathaceum and 

the respiratory burst response within and among stickleback populations, the 

respiratory burst response was not a good predictor of D. spathaceum resistance. 

Resistance to D. spathaceum was interpreted to be inversely proportional to the 

number of metacercariae following a single exposure to 20 cercariae. I selected the 

respiratory burst response as the immune parameter to measure because 

immunological studies have verified the ability of reactive oxygen species to kill the 

migrating stage Diplostomum (e.g. Whyte et al., 1989) and because it can be quantified 

readily easily in sticklebacks (Kurtz et al., 2004; Scharsack et al., 2007b). Furthermore, 

since Diplostomum cercariae migrate to the eyes within 24 hours after penetrating 

fish skin (Whyte et al., 1991; Chappell, 1995; Karvonen et al., 2003), the host has a very 

short window of time in which to respond to the infection, and presumably an 

effective innate response is the only means of resistance following a single exposure. 

For these reasons, I expected the respiratory burst response to partially determine 
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resistance to D. spathaceum. However, no relationship consistent with such a 

mechanism was observed.  

 

This is an important finding in the context of ecological immunology. A common 

assumption of ecological immunologists is that measures of the immune system 

accurately reflect, and are quantitatively linked to, an individual’s ability to resist 

parasites (Sheldon & Verhulst, 1996; Owens & Wilson, 1999; Adamo, 2004; Lee, 2006). 

However, the number of studies that have explicitly tested this assumption in 

individuals from natural host populations under standardised conditions (Siva-Jothy, 

1995) is limited (but see e.g. Mucklow et al., 2004; Saks et al., 2006; Schwarzenbach & 

Ward, 2007). To my knowledge, this experiment is the first to do so for a vertebrate-

macroparasite interaction across multiple host populations. These results highlight 

the need for measuring multiple immune indices to obtain a more detailed 

understanding of the relationship between parasite resistance and the immune 

response, as others have argued (Keil et al., 2001; Blount et al., 2003; Adamo, 2004; 

Bradley & Jackson, 2008). The marked differences in D. spathaceum resistance among 

populations after one round of parasite exposure could only have been generated by 

genetically based differences in innate defence mechanisms (Kalbe & Kurtz, 2006; 

Rauch et al., 2006a). Therefore, there may be other non-specific innate immune 

mechanisms mediating resistance to Diplostomum that have yet to be identified, such 

as complement, lysozyme, or natural antibodies (Whyte et al., 1990; Jones, 2001; 

Magnadóttir, 2006; Alvarez-Pellitero, 2008). Alternatively, the protective mechanism 

may  depend on non-immunological barriers such as fish skin thickness (Betterton, 

1974), which may limit penetration of Diplostomum cercariae, or behavioural 

resistance (Karvonen et al., 2004b). Moreover, any trade-off between investment in 

these other defence mechanisms and the respiratory burst response may further 

obscure the relationship between resistance to D. spathaceum and the immune 

system.       

 

The significant difference among populations in D. spathaceum resistance was due 

mostly to one population, Lochmaddy, which was substantially more susceptible than 

the other four populations. Interestingly, this was the only population not naturally 

exposed to D. gasterostei. Because Lochmaddy is a saltwater loch, and the first 

intermediate host of D. gasterostei is a freshwater snail species (Radix spp.) that 
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cannot survive in marine conditions, the evolutionary naivety of this population is 

certain. High susceptibility to Diplostomum may be a general property of saltwater 

stickleback populations. Recently, MacColl and Chapman (2010) found that another 

saltwater population from North Uist, as well as a Canadian marine population, 

showed high susceptibility to Diplostomum in field transplant experiments. These 

data suggest that selection for resistance may be relaxed in the absence of the parasite 

(Webster et al., 2004; Bryan-Walker et al., 2007; Hasu et al., 2009), especially if there 

are costs associated with the maintenance of parasite resistance (Rigby et al., 2002; 

Zuk & Stoehr, 2002). In a comparable study of population-level variation in resistance 

to Diplostomum pseudospathaceum among two natural German stickleback 

populations, Kalbe & Kurtz (2006) documented a similar pattern: the unexposed 

population was markedly more susceptible than the population that was naturally 

exposed.  

 

There was also small-scale variation in resistance to D. spathaceum among the four 

freshwater populations after the first round of exposure. This pattern was not 

repeatable in immunologically naive fish that were exposed in the second round of 

exposure (i.e. the once-exposed treatment). A possible explanation for this 

inconsistency is a change in the viability of cercariae isolated from the same snails 

between rounds of exposure (Kalbe & Kurtz, 2006). However, comparing resistance 

data from both rounds of exposure of twice-exposed fish suggested otherwise: the 

rank order of D. spathaceum resistance in the five populations was identical after both 

rounds of exposure. Therefore, the difference in the small-scale pattern of variation in 

parasite resistance between once-exposed fish and twice-exposed probably reflects 

intra-family and intra-population variation in resistance, rather than a true biological 

difference between the exposure rounds. Because this within-population variation has 

a genetic basis, it provides evidence for the potential of parasite-mediated selection 

(Little, 2002). Contrary to expectations, variation in D. spathaceum resistance among 

the four freshwater populations that are naturally infected was not correlated with 

variation in natural abundance of Diplostomum gasterostei. Assuming that 

differences in natural infection reflect different strengths of parasite-mediated 

selection, this suggests that divergent parasite-mediated selection cannot explain the 

small-scale variation in D. spathaceum resistance. Instead, differences among these 

four populations may be the result of general population-level variation in life history 
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architecture or trade-offs, generated by adaptation to divergent selection mediated by 

resource levels or predation, for instance.  

 

The respiratory burst response also varied significantly among populations. At the 

population level, the respiratory burst response tended to increase with increasing D. 

gasterostei abundance. Therefore, divergent Diplostomum-mediated selection may 

play a role in shaping investment in this component of the innate immune response. 

This pattern has been reported for several other host-parasite systems (Lindström et 

al., 2004; Whiteman et al., 2006; Bryan-Walker et al., 2007; Cornet et al., 2009) and 

falls in line with predictions that investment in immune components should be 

optimised according to the risk of parasite exposure (Shudo & Iwasa, 2001; Lee, 2006; 

Tschirren & Richner, 2006). Again, as with parasite resistance, this may be particularly 

likely if there is a cost tied to the maintenance of those components (Lochmiller & 

Deerenberg, 2000; McKean et al., 2008). To correlate respiratory burst response with 

natural D. gasterostei infection levels, data from control and exposed fish were 

pooled, since across all fish, D. spathaceum exposure did not lead to a significant 

upregulation of the respiratory burst response. However, this approach obscured 

some interesting within-population differences between treatments, especially in the 

Chadha Ruaidh population. Exposed fish from this population showed a markedly 

higher respiratory burst relative to control, uninfected fish. This variation had no 

apparent biological significance; there was no concomitant decrease in the number of 

metacercariae that established in the eye lens compared to the other four populations, 

in which there was no change in the respiratory burst following D. spathaceum 

exposure. Nevertheless, as Chadha Ruaidh suffers the highest burdens of D. 

gasterostei in the wild, it suggests that Diplostomum-mediated selection may have 

shaped the response to infection, at least in this population. 

 

The proportion of granulocytes, the effector cells that mount the respiratory burst 

response (Dahlgren & Karlsson, 1999; Magnadóttir, 2006), was another important 

factor explaining variation in the respiratory burst response. The intensity of the 

respiratory burst was significantly positively correlated with the percentage of 

granulocytes, even though this measure itself did not vary significantly among 

populations. Importantly, since the population-level differences in respiratory burst 

were found after correcting for variation in the proportion of granulocytes, it suggests 
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these differences were not merely the result of differences in numbers of granulocytes 

present in a given sample. Instead, there may be qualitative differences in granulocytes 

among populations, for example in their efficiency at converting oxygen to reactive 

oxygen species, or ‘activation status’ (Kurtz et al., 2004; Kalbe & Kurtz, 2006). 

 

The experiment convincingly demonstrated that fish develop an adaptive immune 

response to Diplostomum infection. Twice-exposed fish showed a significant decrease 

in the number of D. spathaceum metacercariae in the second round of exposure 

following one previous exposure. This appears to be a common feature of 

Diplostomum infections (Höglund & Thuvander, 1990; Karvonen et al., 2005; but see 

Kalbe & Kurtz, 2006). Interestingly, the effect was present in all populations, even in 

the population that was the most susceptible and was not naturally exposed to 

Diplostomum, Lochmaddy. However, evidence for presence of antibodies following 

repeated exposure, a clear sign of the development of an adaptive immune response, is 

equivocal. For instance, Bortz et al. (1984) detected antibodies specific to 

Diplostomum in wild-caught fish, whereas Stables and Chappell (1986a) and Höglund 

& Thuvander (1990) failed to find any Diplostomum-specific antibody in 

experimentally infected fish. Moreover, Whyte et al. (1990) reported that trout 

immunised with D. spathaceum had significantly lower infection levels than controls 

when fish were artificially infected five weeks post-immunisation, but there was no 

association between the degree of protection and the level of serum antibody in 

individual fish. Regardless of the potential role of acquired immunity in the wild 

(Karvonen et al., 2004a), genetically-based differences in the innate response appear to 

be more important in determining Diplostomum resistance (Rauch et al., 2006a; this 

study).    

 

I found no growth cost of D. spathaceum infection. Most evidence of the detrimental 

growth effects of Diplostomum is anecdotal (Pennycuick, 1971b; Buchmann & Uldal, 

1994; Marcogliese et al., 2001b). Only a handful of studies have examined growth costs 

formally by comparing the growth of exposed and unexposed hosts in a common 

garden setup. For example, Karvonen & Seppälä (2008) found no overall difference in 

growth rate between whitefish, Coregonus lavaretus, exposed to a large dose of 

Diplostomum spathaceum and those that were unexposed. Only when cataract 

coverage reached 100% was there a detectable effect on growth (Karvonen & Seppälä, 
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2008). Likewise, Ballabeni and Ward (1993) observed no effect of Diplostomum 

phoxini infection on minnow growth. In fact, in a follow-up experiment, it was 

reported that minnows exposed to low doses actually grew faster than either control 

fish or fish exposed to a high parasite dose (Ballabeni, 1994). As regards the 

stickleback-Diplostomum interaction, a recent field transplant experiment revealed 

that sticklebacks with higher burdens of D. gasterostei sometimes grew faster, but 

that this effect differed between stickleback populations (MacColl & Chapman, 2010). 

This study provides further evidence for the minimal impact of Diplostomum 

infection on host growth. It is worth noting that any growth costs associated with 

Diplostomum infection are probably indirect, mediated via the effects of reduced 

vision on competitive and foraging abilities (Buchmann & Uldal, 1994; Karvonen & 

Seppälä, 2008). Competitive scenarios can exacerbate the cost of parasitism 

(Bedhomme et al., 2005). Perhaps I failed to detect a growth cost because of the 

feeding regime that minimised effects of competitive ability on food intake (fish were 

provided food to satiation daily). This is certainly the case for infection with another 

parasite of sticklebacks, Schistocephalus solidus (Barber et al., 2008). Nevertheless, the 

results from this study strongly indicate that there is no growth (energetic) cost of 

being infected. There was significant variation in growth rate among populations, 

however. In Chapter 7 I explore whether there is a genetically based trade-off, that is, 

an evolutionary cost of resistance, between growth and Diplostomum resistance (see 

e.g. Kuukka-Anttila et al., 2010). Costs of resistance form an important mechanism for 

the maintenance of variation in parasite resistance within and among natural host 

populations (Sheldon & Verhulst, 1996; Rigby et al., 2002; Summers et al., 2003; 

Lazzaro & Little, 2009), and as mentioned before, may ultimately contribute to our 

understanding of the spatial patterns of variation in D. spathaceum resistance.     

 

To conclude, I have shown that a measure of the innate immune system, the 

respiratory burst response, does not accurately reflect resistance to Diplostomum 

spathaceum among stickleback populations. Although the respiratory burst response 

is known to have a functional role in killing the migrating stages of this parasite 

species, variation in this immune component could not explain variation in resistance 

following a single Diplostomum exposure. This indicates that it is not sufficient to use 

just one measure of the immune response as a proxy for parasite resistance. Other 

innate immune components may be involved in resistance to this parasite that have 
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yet to be identified. Nevertheless, I found significant variation in resistance to D. 

spathaceum and the respiratory burst response among populations, which probably 

has a genetic basis, although I cannot rule out maternal effects due to the full-sib 

experimental design. There was no significant correlation between natural infection 

of a closely related parasite species, Diplostomum gasterostei and resistance to D. 

spathaceum, but the only population that was not naturally exposed to D. gasterostei 

was significantly less resistant to D. spathaceum, which may be the result of reduced 

selection to maintain resistance. However, the respiratory burst response tended to 

increase with increasing natural D. gasterostei abundance. Therefore, although 

divergent Diplostomum-mediated selection, as inferred from natural infection levels, 

may shape investment in both parasite resistance and the innate immune response to 

some extent in evolutionarily young stickleback populations, these two aspects are 

not correlated. Spatial variation in the stickleback-Diplostomum interaction and the 

relationship between parasite resistance and immune response in this system appear 

to be complex and requires further investigation.            



 

106 

 

Chapter 6: Examining variation in 

resistance and the innate immune response 

to a tapeworm among stickleback 

populations 

  

6.1 Introduction6.1 Introduction6.1 Introduction6.1 Introduction    

 

The dynamics of interspecific interactions are likely to vary in space, as is their 

importance for shaping the evolution of the interacting species (Thompson, 1999; 

2005). Interactions between parasites and their hosts provide particularly good models 

for investigating the influence of spatial variation on trait divergence (Burdon & 

Thrall, 1999; Dybdahl & Storfer, 2003; Brockhurst et al., 2004) since many parasites 

are known to have detrimental effects on the fitness of their hosts and therefore form 

potent agents of selection (Summers et al., 2003). Host traits that contribute to the 

outcome of host-parasite relationships, such as parasite resistance, are known to vary 

spatially. For example, differences in parasite resistance between natural populations 

of the same host species are commonplace in plants (Kaltz et al., 1999; Thrall et al., 

2002; Laine, 2005) and invertebrates (Ebert et al., 1998; Kraaijeveld & Godfray, 1999; 

Lively & Dybdahl, 2000). A few examples also exist for vertebrates (McCoy et al., 2002; 

Jackson & Tinsley, 2005). Considering that the immune system forms a crucial 

mechanism of host defence (Janeway et al., 2004), it is not surprising that geographic 

variation in immune responses (Sanjayan et al., 1996; Bryan-Walker et al., 2007; 

Cornet et al., 2009) and in the genes underlying them, such as those of the major 

histocompatibility complex (Miller et al., 2001; Bernatchez & Landry, 2003; Wegner et 

al., 2003), are equally pervasive. However, it is not always clear what drives these 

patterns of variation. One possibility is that investment in parasite resistance and 

immune response reflects adaptation of host populations to the local 

abundance/prevalence of individual parasites species. We might expect individuals 

from populations facing higher risks of parasitism to be under strong selection to 

evolve defence mechanisms (Schmid-Hempel & Ebert, 2003; Lindström et al., 2004; 

Corby-Harris & Promislow, 2008). However, very few studies have explicitly examined 
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the relationship between natural infection levels and parasite resistance, as 

determined by artificial infection experiments in a laboratory (‘common garden’) 

environment. Even if populations are not selected a priori on the basis of natural 

infection levels, it remains important to quantify population-level variation in parasite 

resistance and immune response, because if such variation has a genetic basis, it 

provides the first line of evidence for the potential of divergent parasite-mediated 

selection (Little, 2002).  

 

Here, I exploit the well-established three spined stickleback (Gasterosteus aculeatus)-

Schistocephalus solidus model (Barber & Scharsack, 2010), by carrying out an artificial 

infection experiment with laboratory-reared sticklebacks from five populations, to 

explore geographic variation in this host-parasite interaction. S. solidus is a common 

body cavity cestode of sticklebacks that has detrimental effects on many aspects of 

stickleback fitness, including body condition (Tierney et al., 1996), growth (Barber & 

Svensson, 2003; Wright et al., 2007; Barber et al., 2008), reproduction (Rushbrook & 

Barber, 2006; Heins & Baker, 2008) and behaviour (Giles, 1983a; Milinski, 1984; Barber 

& Huntingford, 1995). The impacts of S. solidus infection on stickleback reproduction 

are particularly severe. Field data have shown that the majority of infected females 

and males may be unable to produce gametes and sperm (Arme & Owen, 1967; 

McPhail & Peacock, 1983; Tierney et al., 1996), effectively reducing the host’s fitness to 

zero (Lafferty & Kuris, 2002; Heins & Baker, 2008). In one study, mortality of large 

numbers of S. solidus-infected fish over a short time period was recorded (Pennycuick, 

1971c) . Accordingly, S. solidus is frequently cited as an agent of selection in 

stickleback populations, and selection on resistance to this parasite is expected to be 

high (Hammerschmidt & Kurtz, 2005; Scharsack et al., 2007b). It is becoming 

increasingly clear that there may be spatial variation in the impacts of S. solidus 

parasitism on stickleback fitness. For example, field data from several Alaskan 

populations indicate that infected females sticklebacks in these populations are still 

able to produce eggs (Schultz et al., 2006; Heins & Baker, 2008), albeit of a smaller size 

(Heins & Baker, 2003), in contrast to female sticklebacks in many European 

populations. Likewise, MacNab et al. (2009) reported that wild-caught S. solidus-

infected males from two populations in England differed in their ability to build nests 

and court females. These results raise the possibility that populations experience 

different strengths of S. solidus-mediated selection, with a knock-on effect for the 
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evolution of population-level differences in S. solidus resistance and stickleback life 

history. As yet, there is no study that has examined experimentally variation in 

resistance to S. solidus among multiple stickleback populations.  

 

Recent immunological studies have added an additional perspective to the 

stickleback-Schistocephalus interaction (reviewed by Hammerschmidt & Kurtz, 2009). 

For instance, Kurtz et al. (2004) found a relationship between major 

histocompatibility complex (MHC) class IIB diversity and S. solidus parasite index (a 

measure of worm mass in relation to host mass), suggesting that resistance to S. 

solidus may have an immunogenetic basis. It has also been shown that the respiratory 

burst response, an effector mechanism of the cellular innate immune system 

mediated by granulocytes such as neutrophils (Dahlgren & Karlsson, 1999; 

Magnadóttir, 2006), is upregulated in S. solidus-infected fish relative to uninfected 

fish (Kurtz et al., 2004; Scharsack et al., 2004). However, a temporal study of the 

stickleback immune response to S. solidus revealed that upregulation occurs only at a 

late stage of the infection (Scharsack et al., 2007b), rather than at an early stage of 

infection when the respiratory burst response may be more effective at eliminating 

small tapeworms (Secombes & Chappell, 1996; Hammerschmidt & Kurtz, 2007; 

Hammerschmidt & Kurtz, 2009). Lastly, Wedekind & Little (2004) reported that an 

immune response activated independently and prior to exposure to S. solidus reduced 

prevalence of S. solidus infection by 50%. Taken together, these results highlight that 

the stickleback immune response may be important in governing the outcome of S. 

solidus infection, although the interaction of S. solidus with the stickleback immune 

system is likely to be complex and highly variable. As for measures of parasite 

resistance, it is important to assess the immune response to S. solidus in a number of 

populations to evaluate the generality of findings.  

 

Therefore, the aims of the study were to: 1) to assess variation in resistance and the 

innate immune response to S. solidus among populations, 2) examine whether 

variation in resistance was linked to variation in natural S. solidus infection levels, and 

3) determine if S. solidus infection impairs stickleback growth and energy status. Like 

the immunological studies of the stickleback-S. solidus interaction outlined above, I 

used the proportion of granulocytes and the respiratory burst response as measures of 

the innate immune response. The third aim was of interest because, although the 
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impacts of S. solidus-infection on fish growth have been well documented (Barber et 

al., 2008), the extent to which experimental costs of infection vary among populations 

has never been assessed.      

    

6.2 Methods6.2 Methods6.2 Methods6.2 Methods    

 

6.2.1 Fish breeding and natural infection levels6.2.1 Fish breeding and natural infection levels6.2.1 Fish breeding and natural infection levels6.2.1 Fish breeding and natural infection levels    

 

Sexually mature male and female sticklebacks were collected from five geographically 

isolated lochs on North Uist, Outer Hebrides, Scotland in May 2008. Fish were caught 

using minnow traps (Gee traps, Dynamic Aqua, Vancouver) which were set overnight 

and lifted the following day. A small sample (approximately 20 fish per loch) from the 

total caught was dissected to determine natural prevalence and abundance of 

Schistocephalus solidus (Table 6.1). For each population, F1 offspring used in infection 

experiments were obtained by making 8 sets of unrelated full-sib crosses (families) 

from wild-caught fish. To make a cross, eggs were stripped from a gravid female and 

placed into a Petri dish containing a small volume of 1 ‰ salt solution. Males were 

killed, by overdose of anaesthetic (400 mg L-1 MS222), and dissected to remove testes. 

Fine forceps were used to tease apart testes and release sperm, which was gently 

mixed with the eggs (Barber & Arnott, 2000). Two to three hours later, fertilisation 

was confirmed by low-power microscopy (separation of membranes), and testes were 

removed from the fertilised clutches. Fertilised eggs were transferred to a falcon tube 

containing 50 mL of 1 ‰ salt solution. Eggs were then transported on ice to aquaria at 

the University of Nottingham, where they were placed in a plastic cup with a mesh 

screen on the bottom suspended in a well-aerated tank containing dechlorinated 

water (Marchinko & Schluter, 2007). Water was treated with Methylene blue to reduce 

the probability of fungal infection. After 10 days, egg cups were transferred to 

individual half-tank partitions of 100L tanks and the eggs were allowed to hatch. 

Following hatching, full-sib families were thinned to groups of 15. Clutches from each 

population were distributed haphazardly between tanks across the temperature-

controlled room (13.5°C ± 1°C). Fry were fed with infusoria (Colpidium spp.) for the 

first 5 days, then daily with brine shrimp (Artemia salina) naupliae until day 65 post-

hatching. Thereafter, fish received chironomid larvae (‘bloodworm’; defrosted from 
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frozen) daily. Fish were maintained at a daylight regime mimicking the natural 

photoperiod on North Uist.  

 

 

Population 
S. solidus 

abundance 

S. solidus 

prevalence 
N 

Geographic 

location 

Chadha Ruaidh 0 0 (0.0, 15.9) 21 57°35"N; 7°11"W 

Hosta 0.95 ± 0.29  45.0 (24.4, 68.0) 20 57°37"N; 7°29"W 

Lochmaddy 0 0 (0.0, 13.9) 24 57°36"N; 7°10"W 

Reivil 0 0 (0.0, 26.5) 11 57°36"N; 7°30"W 

Tormasad 0.05 ± 0.05  5.0 (0.3, 24.4) 20 57°33"N; 7°19"W 

 

Table 6.Table 6.Table 6.Table 6.1111 The five stickleback populations from North Uist used in the study. Data on 

Schistocephalus solidus prevalence and abundance were obtained by dissecting approximately 

20 sticklebacks from each loch in May 2008. Abundance values are reported with the standard 

error of the mean whereas prevalence values are given with 95% confidence intervals.    

    

6.2.26.2.26.2.26.2.2    ExpeExpeExpeExperimental design rimental design rimental design rimental design     

 

The experiment compared two treatments (‘exposed’ and ‘control’) among five 

stickleback populations and was divided into three replicate blocks. Within blocks, 

seven and three fish per population were assigned to the ‘exposed’ and ‘control’ 

treatments, respectively (50 fish per block; total n = 150). Exposed fish were fed an 

artificially infected copepod, whereas control fish were sham-exposed (fed an 

uninfected copepod) (Fig. 6.1). The imbalance in sample sizes between treatment 

groups ensured that a sufficient number of infected fish was obtained for 

immunological measurement; infection success rates vary enormously among S. 

solidus artificial infection experiments and can be low (see e.g. Arnott et al., 2000; 

Barber & Svensson, 2003; Kurtz et al., 2004). Control fish were included for growth 

comparisons with infected fish and to obtain baseline measures of immunological 

parameters. Due to the lack of statistical power associated with balancing treatments 

across families within blocks, fish family was used as a controlling factor instead of a 

balancing factor; that is, for each population, fish from the same 8 full-sib families 

were included per block. However, since the total sample size per population within 
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blocks was 10, another fish from each of two randomly-selected families was included. 

In the case of the Hosta population only 7 full-sib families were available. Fish were 

randomly assigned to the control or exposure treatment. For logistic purposes, block 3 

was separated from the other two blocks by six weeks. Fish were 13-15 months old at 

the start of the infection experiment and had therefore reached sexual maturity. As a 

result, sex was balanced across populations where possible. Owing to intrinsic 

differences in fish lengths among populations (see Chapter 7) fish could not be size-

matched across populations. Hence, size variation was controlled for post hoc in 

statistical models.    

 

Fish were dissected at 45-47 days after exposure to determine infection status and to 

obtain immunological measurements (the proportion of granulocytes in head kidneys 

and the intensity of the respiratory burst response). This time point was chosen 

because a recent study showed that sticklebacks upregulate the respiratory burst 

response at this stage of S. solidus infection (Scharsack et al., 2007b). As not all fish 

became infected following exposure to a single S. solidus procercoid, they were 

divided into three groups: ‘infected’, ‘exposed-uninfected’ and ‘control’. The number 

of fish that could be processed for respiratory burst analysis was restricted to 32 per 

block; therefore, only six fish per population were selected (30 per block). Three 

infected fish and the three control fish were chosen from each population. If fewer 

than three fish became infected or control fish had died, randomly selected exposed-

not-infected fish were included to make up the number of fish per population to six. 

 

6.2.3 Parasite culture 6.2.3 Parasite culture 6.2.3 Parasite culture 6.2.3 Parasite culture     

 

In order to obtain S. solidus plerocercoids for worm breeding, sticklebacks infected 

with S. solidus were caught from the lower pond of Jubilee Campus, University of 

Nottingham (52°57”N; 1°11”W) using minnow traps. Prevalence and abundance of S. 

solidus in this population remain high throughout the year (personal observation). S. 

solidus was cultured in vitro following the technique of Wedekind (1997). 

Plerocercoids were removed aseptically from fish and transferred to 6.3 mm semi-

permeable dialysis tubing (Visking). Each tube was suspended in a 100-250 ml conical 

flask containing 100ml of sterilised Minimal Essential Medium with Earle’s salts and 

L-glutamine (Sigma-Aldrich), 25mM HEPES-buffer (Sigma-Aldrich), 1 g L-1 
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penicillin/streptomycin and 6.5 g L-1 D-Glucose. Two large (> 100 mg), size-matched 

worms from different fish hosts were selected per culture flask. Large worms were 

chosen because S. solidus egg output is proportional to worm size (Wedekind et al., 

1998) and larger worms produce more outcrossed eggs (Luscher & Milinski, 2003). 

Size-matching further increases the probability of outcrossing (Luscher & Milinski, 

2003), which  in turn increases the hatching rate of eggs (Schjorring, 2004; Milinski, 

2006). Each conical flask was wrapped in aluminium foil and placed in an incubator at 

40°C, a setup that mimics the conditions inside the gut of the final, bird host. Ninety-

six hours post-incubation, worms were removed and the eggs that had collected in the 

tubing were flushed out with tap water into a glass Petri dish. Eggs were rinsed three 

times, transferred to small 20 mL universal tubes containing tap water (wrapped in 

aluminium foil) and stored in a refrigerator at 4°C until use. Twenty-one days prior to 

hatching, eggs were left at room temperature. One day before infection of copepods, 

eggs were transferred to a small glass Petri dish and exposed to fluorescent light for 12 

hours to induce hatching. Eggs from two S. solidus crosses (culture flasks) were used 

for the experiment.   

 

6.2.4 Copepod infection6.2.4 Copepod infection6.2.4 Copepod infection6.2.4 Copepod infection    

 

Laboratory-reared copepods, Cyclops strenuus, were maintained individually in wells 

of a 24-well ELISA plate containing 2 mL of Chalkley’s medium (per litre of deionised 

water: 20 g NaCl, 0.8 g KCl and 1.2 g CaCl2). To expose copepods to S. solidus, they 

were fed a single coracidium (tapeworm larva). Thereafter, they were fed three times 

weekly with Colpidium spp. and kept on a 16L:8D cycle at 22°C ± 2°C. The infection 

status of copepods was determined ten days post-exposure by placing each copepod in 

a drop of Chalkley’s medium and screening them under a high-power microscope (x 

40). Copepods were maintained for 15-17 days before being fed to sticklebacks; by this 

stage procercoids had developed a cercomer, a characteristic feature of infective 

procercoids (Hammerschmidt & Kurtz, 2009).  
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6.2.5 Stickleback infection6.2.5 Stickleback infection6.2.5 Stickleback infection6.2.5 Stickleback infection    

 

Three days before exposure to a copepod, individual sticklebacks were measured to 

the nearest 0.1 mm and transferred from their family tank to 3L plastic tanks 

containing 1 L of dechlorinated water. During this period fish were starved to increase 

the probability of copepod consumption. On the day of exposure, each fish was fed 

one infected copepod. Fish belonging to the ‘control’ treatment were sham-exposed 

by being fed one uninfected copepod; control fish were handled in an identical 

manner to ‘exposed’ fish. To determine whether the copepod had been consumed, the 

water was filtered through a 70 µm cell strainer (BD Falcon). If the copepod was still 

present, the fish was re-fed the same infected copepod. Fish were re-fed bloodworm 

once they consumed the infected/uninfected copepod. The majority of fish achieved 

this in one day (78.6%), although several fish only consumed the copepod two (14.6%) 

or three (6.8%) days post-exposure. Throughout the experiment, fish were maintained 

on a 16L:8D cycle and water was changed every four days. Fish were fed daily with 

frozen bloodworm (defrosted from frozen) at a standardised ration of 8% body weight 

(sensu Barber & Svensson, 2003).  

 

 

    

Figure Figure Figure Figure 6.16.16.16.1 The experimental design of the S. solidus infection experiment. Exposed fish were 

fed a copepod infected with a single S. solidus procercoid, whereas control fish were fed an 

uninfected copepod (sham-exposed). Stickleback image from Kalbe & Kurtz (2006) and 

copepod image from Hammerschmidt & Kurtz (2005).  
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6.2.66.2.66.2.66.2.6    Dissection and immune measurementsDissection and immune measurementsDissection and immune measurementsDissection and immune measurements    

 

On day 45-47 post-exposure fish were killed, by overdose of MS222 (400 mg L-1) and 

destruction of the brain, and measured to the nearest 0.1mm as before and weighed to 

the nearest 1 mg. As some fish did not consume the copepod on the first day, the 

actual day post-exposure (i.e. post-consumption) varied between 45 days and 47 days. 

Nevertheless, all fish from the same block were processed on the same day. Fish were 

dissected and the body cavity was checked for S. solidus. Plerocercoids were weighed 

to the nearest mg. Livers were also dissected out and weighed to the nearest 1 mg. 

Throughout the experiment, if fish were found in a state of poor health, as defined by 

reduced feeding activity and cessation of movement, they were euthanised by 

overdose of MS222 (400 mg L-1) and destruction of the brain. For the purpose of the 

experiment, this was defined as mortality. If S. solidus-infected fish had to be 

euthanised, infection status was determined immediately after euthanisation, where 

possible. Otherwise, fish were stored in 70% ethanol until infection status could be 

ascertained.  

 

As measures of cellular innate immune system, the proportion of granulocytes and the 

respiratory burst response were quantified. Extraction of head kidney leukocytes 

(HKL) and quantification of HKL cell numbers followed a protocol modified after 

Scharsack et al. (2004). Head kidneys were dissected out using fine forceps. HKLs 

were isolated by squeezing head kidneys through a 40 µm cell strainer (BD-Falcon) 

into a falcon tube containing 2 mL ‘R-90’. R-90 is RPMI-1640 (without phenol red, 

Gibco) diluted with 10% distilled water, a medium that matches stickleback osmolarity 

(Scharsack et al., 2004). Cells were washed once by centrifugation at 4°C and 

resuspended in a final volume of 500 µL R-90. Cells and media were kept on ice 

throughout the protocol.  

 

HKL numbers were quantified by a standard cell dilution assay. To individual flow 

cytometry tubes the following were added: 50 µL of washed HKLs, 100 µL R-90, 5 × 

104 green fluorescent beads (3 µm, Polyscience) and propidium iodide (2 mg L-1, Sigma-

Aldrich). Propidium iodide is a DNA-binding substance that enables the detection of 

dead cells. Using a flow cytometer (FACS, Becton & Dickinson), FSC/SSC 
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characteristics of at least 10,000 events were acquired at linear scale; fluorescent 

intensities at wavelengths of 530 (beads) and 585nm (propidium iodide) were acquired 

at log scale. Data were analysed using FacsDiva software. Cellular debris was easily 

distinguished from viable cells by its low FSC values and was excluded from 

subsequent analyses. Likewise, fluorescent beads (green fluorescence positive) were 

easily differentiated from viable HKLs (propidium iodide negative, green fluorescence 

negative) and dead HKLs (propidium iodide positive, green fluorescence negative). 

The total number of viable HKLs per sample was then calculated as: N [HKLs] = 

events [viable HKL] × number [fluorescent beads]/events [fluorescent beads]. To 

standardise cell volumes for the respiratory burst assay, HKL suspensions were 

adjusted to a final concentration of 6.25 × 105 cells mL-1. The flow cytometric data were 

also used to calculate ratios of granulocytes to lymphocytes, which have 

characteristically high SSC and low SSC profiles, respectively (Scharsack et al., 2004; 

Serada et al., 2005).   

             

Respiratory burst activity was measured using an in vitro luminol-enhanced 

chemiluminescence assay. The luminol buffer was prepared by adding luminol 

dissolved in 0.1M NaOH (10 mg mL-1) to a buffer solution (25 µL of dissolved luminol 

per ml of Hanks’ buffered saline solution (HBSS, Gibco), containing 20mM HEPES 

(Sigma-Aldrich) and 1 g mL-1 bovine serum albumen (BSA, Sigma-Aldrich)). 20 µL of 

luminol buffer was added to 160 µL of HKL suspension (105 cells per well) in wells of 

96-well microtitre plate. To allow the cells to take up luminol, plates were incubated 

at room temperature for 30 minutes. Release of reactive oxygen species (ROS) was 

stimulated by the addition of 20 µL of a zymosan suspension (7.5 g L-1 phosphate-

buffered saline (PBS, Gibco)). When enough cells were available, a duplicate zymosan 

treatment and a control PBS-only treatment were also included. The respiratory burst 

reactions were measured at room temperature at three minute intervals for two hours 

using a microtitre plate luminometer (Berthold Technologies). Relative luminescence 

(RLU) was tracked using WinGlow software (Berthold Technologies). The amount of 

light emitted in a given reaction therefore provides a quantitative measure of the 

number of ROS produced by HKLs in a sample. From each reaction curve, the peak of 

the respiratory burst response was determined (hereafter ‘respiratory burst’).   
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6.2.76.2.76.2.76.2.7    Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

 

6.2.7.1 Natural S. solidus infection 

 

All statistical analyses were conducted in GenStat (release 12, VSN International Ltd., 

Hemel Hempstead, U.K.). Parameter estimates of statistical models are given for 

significant effects only. A generalised linear model (GLM) with a negative binomial 

error distribution and a logarithm link function was used to analyse variation in 

natural abundance of S. solidus. Population was the only fixed effect in this model. 

 

6.2.7.2 Mortality in the infection experiment 

 

Mortality in the artificial infection experiment was analysed with a generalised linear 

mixed model (GLMM). ‘Died?’, the response variable, was modelled with a binomial 

error distribution and a logit link function. Block was included as a random effect, 

whereas sex, length before exposure (‘initial length’), population, infection status 

(‘infection’) and infection × population were included as fixed effects. Likelihood ratio 

(LR) tests, a common method for assessing significance of random effects in mixed 

models (Galwey, 2006), are not possible in GLMMs with one random effect. 

Therefore, an informal significance test was carried out that compares the variance 

component estimate with its standard error; if the standard error exceeded the 

estimate, the random effect was considered non-significant and dropped from the 

model (sensu Galwey, 2006). In this case, the model reverted to a GLM. Stepwise 

model simplification was used to obtain a minimum adequate model (MAM) by 

sequential deletion of non-significant fixed effects (Crawley, 2007). Significance of 

fixed effects was assessed by noting the change in deviance following the deletion of 

the effect and comparing it to a χ2 distribution with the appropriate degrees of 

freedom. If main effects were marginal to interaction effects, significance of main 

effects was tested in the presence of interactions.  
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6.2.7.3 Experimental S. solidus prevalence and size, and the relationship between 

natural S.solidus infection and experimental S. solidus prevalence   

 

Prevalence of S. solidus infection in the artificial infection experiment was modelled 

with a GLMM. Prevalence was interpreted to be inversely proportional to S. solidus 

resistance. Infection success (‘Infected?’) was the binary response variable, taking a 

value of 1 if the fish was infected and a value of 0 if it was uninfected, and was fitted 

with a binomial distribution and logit link function. The fixed effects were 

population, sex, initial length, initial length × population and sex × population. Block 

was included as a random effect. The significance of fixed and random effects was 

assessed as above. A general linear model was used to analyse variation in S. solidus 

plerocercoid weight. The response variable, parasite index (PI), a measure of worm 

weight relative to fish body weight, was calculated using the equation (Arme & Owen, 

1967):  

 

PI = (plerocercoid weight/fish WWG)*100 

 

where WWG represents weight without gonads. WWG was used instead of total body 

weight as some females had reached reproductive maturity and had developed egg 

clutches, which can account for a large proportion of total body weight. WWG did not 

exclude parasite weights due to their negligible contribution to overall host body 

weight (see results). PI was log-transformed to achieve normality. Due to the small 

number of infected fish, the model included only population as a fixed effect. 

Pearson’s correlation analysis was used to determine the relationship at the 

population level between mean natural S. solidus abundance and experimental S. 

solidus prevalence (S. solidus resistance); a two-tailed test was used to assess the 

significance of this correlation.    
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6.2.7.4 Immune measures 

 

Linear mixed models (LMM) were used to analyse immunological data. The first 

model analysed variation in the proportion of granulocytes (‘prop gran’ as the 

response variable). The fixed model consisted of the effects sex, length at time of 

dissection (‘length’), treatment, population and treatment × population. A second 

model was used to analyse variation in the intensity of the respiratory burst response. 

‘Respiratory burst’, square root-transformed to achieve normality, was the response 

variable. Sex, length, treatment, population, prop gran and treatment × population 

were included as fixed effects. Respiratory burst data were missing for four fish as a 

result of insufficient numbers of HKLs and two fish were excluded from the model 

due to very low respiratory burst values. Block was included as a random effect. The 

significance of the block effect was assessed using a LR test, by comparing the 

difference in deviances of the reduced model (without the random effect) and the full 

model to a χ2 distribution with one degree of freedom. This was possible because 

LMMs, in contrast to GLMMs, do not require the specification of a random model. If 

block was not significant, the model reverted to a general linear model. As above, a 

backward procedure was used for model selection with the sequential deletion of non-

significant effects until a MAM was specified. Significance of fixed effects was 

assessed by Wald F tests.     

 

6.2.7.5 Fish growth and condition indices 

 

To examine the effects of S. solidus infection on fish growth a LMM was used, with 

specific growth rate (SGR; sensu Barber, 2005) of individual fish as the response 

variable. SGR, defined as the average daily percentage increase in length, was 

calculated using the equation:  

 

SGR = 100*[ln (Lt1/Lt0)]/(t1-t0) 

 

where Lt1 and Lt0 represent the standard length measured before, and at the end of, 

the experimental infection, respectively, and t1-t0 denotes the number of days between 

measurements. This was 46 for blocks 1 and 3 and 47 for block 2. Block was fitted as a 
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random effect. The fixed model included the effects: sex, initial length, infection, 

population and infection × population. ‘Infection’ comprised only two levels: infected 

(‘1’) and uninfected (‘0’), the latter of which also included exposed-uninfected fish. 

One fish was excluded from this analysis because it had a negative SGR and another 

was excluded as its initial length was not measured. Additionally, the impact of S. 

solidus infection on two measures of energy status, the hepatosomatic index (HSI) 

and the body condition factor (K), was investigated. HSI is a measure of medium-term 

energy reserves (Chellappa et al., 1995) and was calculated using the equation:  

 

HSI = (Wliver/WWG)*100,  

 

where Wliver represents liver weight. HSI was square-root transformed to achieve 

normality. K was calculated using the equation (Bolger & Connolly, 1989):  

 

K = (WWG/L3)*100,000 

 

In both the HSI and K LMMs, sex, population, infection and infection × population 

were included as fixed effects, and block was included as a random effect. Significance 

of fixed and random effects was assessed as described for immune measures.   

 

6.3 Results6.3 Results6.3 Results6.3 Results    

 

6.3.1 Natural 6.3.1 Natural 6.3.1 Natural 6.3.1 Natural S.S.S.S.    solidussolidussolidussolidus    infection  infection  infection  infection      

 

There was significant variation among populations in natural abundance of S. solidus 

(χ24 = 11.07, P < 0.001; Table 6.1). S. solidus was absent from Chadha Ruaidh, 

Lochmaddy and Reivil.   

 

6.3.26.3.26.3.26.3.2    Mortality in the infection experimentMortality in the infection experimentMortality in the infection experimentMortality in the infection experiment    

    

In total, 22 fish died during the experiment. Mortality did not vary significantly among 

blocks (variance component estimate ± S.E. = 0.37 ± 0.59). Initial length (χ21 = 0.81, P = 

0.368), population (χ24 = 0.45, P = 0.775), S. solidus infection (χ21 = 0.96, P = 0.328) and 



 

120 

 

the interaction between infection and population (χ24 = 0.65, P = 0.625) did not explain 

significant variation in mortality. There was a non-significant trend for males to die at 

a higher rate (χ21 = 2.99, P = 0.084),            

 

6.3.36.3.36.3.36.3.3    ExpExpExpExperimental erimental erimental erimental S. solidusS. solidusS. solidusS. solidus    prevalence and sizeprevalence and sizeprevalence and sizeprevalence and size, and the relationship between , and the relationship between , and the relationship between , and the relationship between 

natural natural natural natural S.solidusS.solidusS.solidusS.solidus    infection and experimental infection and experimental infection and experimental infection and experimental S. solidus S. solidus S. solidus S. solidus prevalence prevalence prevalence prevalence     

 

Due to the shortage of successfully infected copepods, two fish from Tormasad in the 

exposed treatment were not fed an infected copepod. As a result, only 100 exposed 

fish were included in the analysis of S. solidus prevalence. Infection success rate in the 

artificial infection experiment was low: 15 out of the 100 fish exposed to a singly-

infected copepod became infected (15%). S. solidus prevalence did not differ 

significantly among blocks (variance component estimate ± S.E. = 0 ± 0); therefore, 

data from all blocks were pooled and the model reverted to a GLM. Prevalence of S. 

solidus varied significantly among populations (Table 6.2, Fig. 6.2a). Prevalence was 

dependent on initial length, with larger fish more likely to become infected than 

smaller fish (Table 6.2). However, the significant interaction between initial length 

and population indicates that the effect of length was dependent on population (Table 

6.2). In fact, the length × population interaction was strongly influenced by one data 

point: a small, infected fish from Lochmaddy. Removal of this data point altered the 

output of the GLM substantially: initial length × population (χ24 = 7.00, P = 0.136) and 

population (χ24 = 6.18, P = 0.180) became non-significant, although initial length 

remained significant (χ21 = 5.96, P = 0.015). Sex and sex ×  population failed to explain 

significant variation in S. solidus prevalence (Table 6.2). Overall, the worms that were 

recovered were very small (mean weight ± S.E. = 2.9 ± 0.6 mg). Parasite index (PI), a 

measure of worm weight relative to fish weight, did not vary significantly among 

populations (F4,10 = 0.85, P = 0.524; Fig. 6.2b). At the population level, experimental S. 

solidus prevalence was negatively correlated with mean natural S. solidus abundance 

but the relationship was not significant (r = -0.55, P = 0.340; Fig. 6.3). Hosta and 

Tormasad, the two populations in which S. solidus was present, had the lowest 

prevalence of S. solidus in the infection experiment.  
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Fixed effect χ2 df P Estimate ± S.E. 

Population  17.63 4 0.024 

 Chadha Ruaidh 

   

-2.576 ± 1.178 

Hosta 

   

-2.639 ± 1.178 

Lochmaddy 

   

-0.985 ± 0.508 

Reivil 

   

-1.189 ± 0.697 

Tormasad 

   

-12.964 ± 31.907 

Initial  length  14.29 1 0.014   0.143 ± 0.076 

Sex 1.72 1 0.190 - 

Initial length × Population 10.58 4 0.032 

 Chadha Ruaidh × Initial length 

   

  0.438 ± 0.245 

Hosta × Initial length 

   

-0.087 ± 0.331 

Lochmaddy × Initial length 

   

   -0.071 ± 0.121 

Reivil × Initial length 

   

 0.064 ± 0.167 

Tormasad × Initial length  

   

 2.210 ± 5.800 

Sex × Population 2.46 4 0.652 - 

  

TableTableTableTable    6.26.26.26.2 Results from the GLM of S. solidus prevalence in the infection experiment. The 

response variable, infection success (the likelihood of becoming infected), was modelled with a 

binomial distribution and a logit link function.  
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Figure 6.2Figure 6.2Figure 6.2Figure 6.2 a) Variation in the prevalence of S. solidus among the five stickleback populations 

in the infection experiment. Fish were exposed to a copepod infected with one S. solidus 

procercoid and dissected 47 days later to determine infection status. Sample sizes for all 

populations are 21, with the exception Tormasad (19 exposed fish) and Hosta (18 exposed fish). 

Parasite prevalence was interpreted to be inversely proportional to resistance to S. solidus. b) 

Population variation in S. solidus parasite index (PI), a measure of worm weight relative to the 

fish’s weight. PI (% body weight) was calculated using the equation: PI = 100*(worm 

weight/fish weight including worm weight). Error bars are the standard error of the mean.    
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Figure 6.3Figure 6.3Figure 6.3Figure 6.3 Relationship at the population level between S. solidus prevalence in the infection 

experiment and mean S. solidus abundance in the wild (measured in May 2008): r = -0.55, P = 

0.340.     
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6.3.46.3.46.3.46.3.4    Immune measures Immune measures Immune measures Immune measures     

 

The proportion of granulocytes differed significantly between blocks (LR test: χ21 = 

2.78, P = 0.048, variance component estimate ± S.E = 0.0013 ± 0.0017). The proportion 

of granulocytes varied significantly among populations (F4, 71.5 = 2.78, P = 0.034), but 

this effect was dependent on treatment (treatment × population: F8, 71.5 = 2.83, P = 

0.009, Fig. 6.4b). However, there was no overall significant difference in the 

proportion of granulocytes between S.solidus-infected fish, exposed-uninfected fish 

and control fish (F2, 71.7 = 2.71, P = 0.073). Variation in the proportion of granulocytes 

was not associated with length (F1, 71.1 = 0.00, P = 0.971) nor sex (F1, 69.8 = 0.00, P = 0.998). 

Respiratory burst did not vary significantly among blocks (LR test: χ21 = 0.02, P = 

0.444, variance component ± S.E. = 0 ± 0); therefore data from all three blocks were 

pooled. There was no significant difference between the respiratory burst of S. 

solidus-infected fish, exposed-uninfected fish and control fish (F2, 74 = 0.56, P = 0.574), 

and this was consistent across populations (treatment × population: F8, 64 = 1.06, P = 

0.399; Fig. 6.4b). However, respiratory burst varied significantly among populations 

(F4, 76 = 5.08, P = 0.001; Fig. 6.4b). Respiratory burst was positively and significantly 

correlated with the proportion of granulocytes (F1, 76 = 10.42, P = 0.002; parameter 

estimate ± S.E. = 189.1 ± 58.6). Sex (F1, 72 = 0.00, P = 0.984) and length (F1, 73 = 0.05, P = 

0.820) did not have a significant effect on respiratory burst.  
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Figure 6.4Figure 6.4Figure 6.4Figure 6.4    Inter-population variation in measures of the innate immune response in the S. 

solidus infection experiment: a) proportion of granulocytes and b) respiratory burst response. 

Measures of immune parameters were obtained 45-47 days after feeding fish one S. solidus-

infected or uninfected copepod. The proportion of granulocytes was determined by flow 

cytometry, whereas measures of the respiratory burst response were obtained using an in vitro 

luminol-enhanced chemiluminescence assay. ‘C’, ‘ExpNotInf’ and ‘Inf’ denote control, 

exposed-uninfected and infected fish, respectively. Error bars are the standard error of the 

mean. 
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6.3.56.3.56.3.56.3.5    Fish growth and conditionFish growth and conditionFish growth and conditionFish growth and condition    

 

Variation in specific growth rate (SGR) among blocks was not significant (LR test: χ21 = 

0.00, P >> 0.05, variance component estimate ± S.E. = 0 ± 0); hence data from all 

blocks were pooled. There was no significant difference in SGR between S. solidus-

infected fish and uninfected fish (F1, 116 = 2.57, P = 0.111; Fig. 6.5a) and this was similar 

across populations (infection × population: F4, 111 = 0.75, P = 0.561). SGR was dependent 

on population (F4, 117 = 3.9, P = 0.005; Fig. 6.5a) and was negatively correlated with 

initial length (F1, 117 = 5.03, P = 0.027; parameter estimate ± S.E. = -0.0029 ± 0.0015). 

Males and females did not differ significantly in SGR (F1, 115 = 0.16, P = 0.690). 

 

The hepatosomatic index (HSI) did not vary significantly among blocks (LR test: χ21 = 

2.40, P = 0.061, variance component estimate ± S.E. = 0.0034 ± 0.0047). S. solidus 

infection did not affect HSI (F1, 118 = 0.01, P = 0.923; Fig. 6.5b) and this was consistent 

across populations (infection × population: F4, 114 = 1.54, P = 0.195). HSI varied 

significantly among populations (F4, 119 = 21.62, P < 0.001; Fig. 6.5b) and between males 

and females (F1, 119 = 40.70, P < 0.001). Females had a higher HSI than males (parameter 

estimate ± S.E.: males = 3.51 ± 0.15; females = 4.55 ± 0.15). There was no significant 

difference in body condition factor (K) among blocks (LR test: χ21 = 0.15, P = 0.35, 

variance component estimate ± S.E. = 0 ± 0). K did not differ significantly between S. 

solidus-infected fish and uninfected fish (F1, 118 = 0.65, P = 0.422; Fig. 6.5c), and this was 

the same in all populations (infection × population: F4, 114 = 1.30, P = 0.275). Population 

(F4, 119 = 19.65, P < 0.001; Fig. 6.5c) and sex (F1, 119 = 31.62, P < 0.001) explained significant 

variation in K. Males had a higher K than females (parameter estimate ± S.E.: males = 

1.01 ± 0.02; females = 0.88 ± 0.02).   
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Figure Figure Figure Figure 6.56.56.56.5 Differences in specific growth rate (SGR), hepatosomatic index (HSI) and body 

condition factor (K) between S. solidus-infected fish and uninfected fish across populations. 

Specific growth rate, a measure of the average daily percentage increase in fish length, was 

calculated using the equation: SGR = 100*(ln(Lt1/Lt0)/(t1-t0), where Lt1 and Lt0 represent the 

standard length measure before, and at the end of, the experimental infection and t1-t0 

denotes the number of days between measurements (45-47). The hepatosomatic index was 

calculated using the equation: HSI = (liver weight/fish weight without gonads (WWG))*100, 

whereas body condition factor (K) was calculated as: K = (WWG/standard length3)*100000. 

Error bars are the standard error of the mean. 
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6.4 6.4 6.4 6.4 DiscussionDiscussionDiscussionDiscussion    

 

The infection experiment revealed that there was minor but significant variation in 

the prevalence of S. solidus among stickleback populations. As S. solidus prevalence 

was defined to be (inversely) proportional to resistance, it suggests that these 

populations vary in resistance to S. solidus. Previous infection experiments have  

documented variation in the response to S. solidus exposure among families of the 

same population (e.g. Arnott et al., 2000), but to my knowledge, this is the first study 

to examine variation  in resistance among multiple stickleback populations.  

Nevertheless, the low infection success rate (just 15% of exposed hosts became 

infected) warrants a cautious interpretation of this result. The effect of population in 

the statistical (GLM) model of S. solidus prevalence was highly dependent on its 

interaction with fish length, measured before fish were exposed. Overall, larger fish 

were more likely to become infected, but this pattern was not identical across 

populations. The model was sensitive to the addition of a single data point: a small, 

infected Lochmaddy fish that generated the negative relationship between length and 

infection in this population, and also the interaction between length and population. 

Exclusion of this data point changed the model output substantially, such that S. 

solidus prevalence did not vary significantly among populations. Therefore, the five 

populations probably do not vary in resistance to S. solidus.  The low infection success 

rate is comparable to other S. solidus infection experiments that have exposed fish to 

a single procercoid (e.g. Barber & Svensson, 2003: 16.7%). Failure of S. solidus to 

establish may stem from either variation in host response (resistance) or from 

variation in viability of procercoids (infectivity). Given that low infection rates were 

common to all populations, the latter provides a more suitable explanation.  

 

Like S. solidus prevalence, the S. solidus parasite index (PI), a measure of the severity 

of infection (Arme & Owen, 1967), did not vary significantly among populations. In 

fact, growth of plerocercoids over the 47-day period was remarkably limited. In most 

fish, worms attained a final size of less than 3mg, far from the 50mg threshold weight 

required to become infective to the final bird host (Tierney & Crompton, 1992). In a 

comparable experiment, Scharsack et al. (2007b) recorded an average plerocercoid 

weight of just over 50mg at day 47 post-infection. The small worm size, combined 
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with the low infection success rate, suggests that the strain of S. solidus used in the 

experiment may have been avirulent. Use of a local North Uist strain of S. solidus 

rather than a strain derived from a population where prevalence is high throughout 

the year (>70%, personal observation) may present a very different picture of spatial 

variation in resistance to S. solidus. It has been suggested that PI reflects resistance to 

S. solidus (Kurtz et al., 2004), but this seems incompatible with what we know about 

the S. solidus infection process (Hammerschmidt & Kurtz, 2009). Although knowledge 

of the mechanisms conferring resistance to S. solidus is limited, histological and 

immunological studies indicate that tapeworms are probably destroyed only at an 

early stage of infection, before they become established in the body cavity 

(Hammerschmidt & Kurtz, 2007; Scharsack et al., 2007b). Moreover, Wedekind & 

Little (2004) found that resistance to S. solidus is potentially an ‘all-or-nothing’ 

(qualitative) response. Therefore, resistance is probably best defined by host infection 

status (infected vs. uninfected) rather than by growth of the worm once it has 

established in the body cavity. The ability of the host to limit growth of S. solidus in 

the body cavity, which minimises the fitness costs of infection, may instead reflect a 

tolerance response (Corby-Harris et al., 2007; Raberg et al., 2007; Boots, 2008), a 

concept which has not yet been explored for the stickleback-S. solidus interaction.  

 

There was no relationship between abundance of S. solidus in the wild and S. solidus 

resistance in the infection experiment. A weak pattern in the data was that the three 

populations where S. solidus was absent showed higher infection levels than the two 

populations where S. solidus was present. Studies on other host-parasite systems have 

recorded a similar pattern (Kalbe & Kurtz, 2006; Bryan-Walker et al., 2007; Hasu et al., 

2009), as have infection experiments I have carried out with two other macroparasite 

species in the same five populations (Chapter 4 and 5). Arguably, these two 

populations are more susceptible to S. solidus infection because there has been less 

selection to maintain resistance (Webster et al., 2004; Lohse et al., 2006), particularly 

if maintaining resistance carries an evolutionary cost (Sheldon & Verhulst, 1996; Rigby 

et al., 2002). However, as Hasu et al. (2009) have pointed out, it is difficult to establish 

reliably that a population is (historically) unexposed to the parasite. This applies 

especially to macroparasites that are usually  distributed in an aggregated manner 

within  host populations: a few individuals carry a disproportionately large parasite 

burden relative to the rest of the population (Shaw et al., 1998; Wilson et al., 2002). 
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Given that the sample size per loch was small and that prevalence of S. solidus in 

North Uist is generally low (Chapter 3), the abundance recorded may not be entirely 

representative of natural infection levels. For example, although S. solidus appeared to 

be absent from Chadha Ruaidh in 2008, more extensive sampling from this loch in 

2009 revealed that S. solidus was actually present at a very low level. Furthermore, S. 

solidus abundance and prevalence are known to vary seasonally (Pennycuick, 1971c). 

This may explain why no pattern was found. 

 

The respiratory burst response varied significantly among populations. This 

component of the innate immune system is known to play an important part in the 

cellular immune response to fish helminths (Whyte et al., 1989; Taylor & Hoole, 1995; 

Secombes & Chappell, 1996), and has previously been shown to be upregulated in S. 

solidus-infected fish relative to sham-exposed control fish (Kurtz et al., 2004; 

Scharsack et al., 2004; Scharsack et al., 2007b). Here, I observed no such change, and 

surprisingly, this was common to all populations. This argues against population-

differences in response to S. solidus infection. As emphasised in the methods, the 47-

day interval was chosen on the basis of an infection experiment by Scharsack et al. 

(2007b), in which the temporal profile of the stickleback immune response was 

monitored. The study demonstrated that upregulation of the respiratory burst 

response was greatest on this day post-infection (Scharsack et al., 2007b). However, it 

is questionable whether mounting a respiratory burst response at a late stage of a S. 

solidus infection is functionally relevant (Hammerschmidt & Kurtz, 2009). Small 

worms, either in the gut or migrating through the intestinal wall to the body cavity, 

presumably are more vulnerable to attack by the reactive oxygen species produced by 

a respiratory burst response than large, well-established worms (Read & Skorping, 

1995; Secombes & Chappell, 1996; Scharsack et al., 2007b). As explained above, it is 

predominantly at this early stage of an infection that procercoids fail to establish 

(Hammerschmidt & Kurtz, 2007). Therefore, measuring the respiratory burst response 

immediately after exposure rather than at day 47 post-infection may increase the 

likelihood of capturing relevant variation in the immune response to S. solidus among 

populations (but see Scharsack et al., 2007b). I acknowledge that this is a limitation of 

the current study, but argue that it is difficult to determine infection status accurately 

when tapeworms are small; therefore, the choice of day 47 post-infection was a 
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compromise between obtaining reliable information about parasite establishment and 

activation of the innate immune response.    

 

The proportion of granulocytes had a strong impact on, and was positively correlated 

with, the intensity of the respiratory burst response. Granulocytes are a group of 

white blood cells that include neutrophils, the main effector cells of the respiratory 

burst response (Secombes, 1996; Dahlgren & Karlsson, 1999). Therefore, it is not 

surprising that quantitative differences in the proportion of granulocytes account for 

a considerable proportion of variation in the respiratory burst response. S. solidus 

infection did not increase the proportion of granulocytes, in contrast to other studies 

that have demonstrated a mobilisation of granulocytes following S. solidus infection 

(Kurtz et al., 2004; Scharsack et al., 2004). However, there was a significant interaction 

between population and treatment for the granulocyte data, hinting at the possibility 

of a population-specific immune response to S. solidus infection. Due to the small 

number of infected fish per population this finding should be interpreted with 

caution, as in the case of the statistical model of S. solidus resistance. Moreover, if 

upregulation of the innate immune response is linked to the size of the tapeworm, the 

small worm sizes at day 47 may have hindered the ability to detect significant changes 

in immune parameters. 

 

I found no evidence for a cost of S. solidus infection in terms of growth or energy 

status indices, neither within nor across populations. The impacts of S. solidus 

infection on stickleback growth have received considerable attention and are known 

to be strongly affected by rearing conditions (Barber et al., 2008). In the current study, 

fish were maintained on a standardised ration of 8% body weight, a feeding regime 

which has been associated with decreases in fish growth following S. solidus infection 

(Barber & Svensson, 2003). A possible explanation for the lack of an observed effect is 

that tapeworms were too small to impair growth. As with impairment of 

reproduction, the effects of S. solidus on growth may be a side-product of the 

infection resulting from nutrient theft (Schultz et al., 2006; Heins & Baker, 2008), 

rather than an adaptive host or parasite life history strategy (Minchella, 1985). 

Presumably, nutrient demands increase proportionately with size of the S. solidus 

plerocercoid, and the small worms may have put little, if any, strain on stickleback 

nutrient allocation. The indices of energy status, the hepatosomatic index and the 
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body condition factor, followed a very similar pattern to growth rates, and the same 

explanation may hold for the lack of an effect of S. solidus infection on these 

measures. It seems that only restricted group feeding conditions or short-term food 

deprivation lead to a negative effect of S. solidus infection on  growth rate and  energy 

indices, at least in a laboratory environment  (Barber et al., 2008).  In fact, ad libitum 

feeding conditions may even increase stickleback growth (Arnott et al., 2000). 

Although there were no differences in the effects of parasitism on growth and energy 

status among populations, there was ample population-level variation in all three 

measures, indicating considerable life history differences between the five stickleback 

populations. Ultimately, such variation could play a role in determining the outcome 

of S. solidus infection, both in the lab and in the wild. For example, Barber et al. (2005) 

showed that S. solidus grows faster in faster-growing sticklebacks. Therefore, the 

impacts of S. solidus on reproduction, and stickleback biology generally, may be 

exacerbated in populations where fish grow faster. 

 

In conclusion, I did not find significant variation in resistance to S. solidus among the 

five stickleback populations, as inferred from variation in S. solidus prevalence in the 

artificial infection experiment. The infection success rate was very low, which may be 

attributable to the low viability (infectivity) of the parasites from the source 

population. Resistance was not correlated with natural S. solidus abundance, 

indicating that population variation in resistance may not be the result of adaptation 

to the local rate of parasite exposure, which was assumed to reflect divergent parasite-

mediated selection. The proportion of granulocytes and the respiratory burst response 

showed substantial population-level variation, but neither innate immune parameter 

was upregulated following S. solidus infection. There was also no effect of S. solidus 

infection on growth or energy indices in any population. However, the ability to 

detect changes in immune, growth and energy measures was probably limited by the 

extremely slow growth of S. solidus worms inside the host, and the associated 

minimal impact on host fitness. A repeat of the experiment, involving a local and 

potentially more virulent North Uist parasite strain as well as a larger host sample size, 

is required to clarify spatial patterns of S. solidus resistance and immune response to 

infection in this system.  
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Chapter 7: Are there trade-offs between 

juvenile growth rate and parasite 

resistance or the innate immune response 

in sticklebacks? 

 

7.1 Introduction7.1 Introduction7.1 Introduction7.1 Introduction    

 

Animal populations in the wild are characterised by genetic variation in parasite 

resistance (Henter & Via, 1995; Ebert et al., 1998; Paterson et al., 1998; Lambrechts et 

al., 2005; Chapters 4-5) and immune response (Mucklow et al., 2004; Cichon et al., 

2006; Cotter et al., 2004; Chapters 5-6). It is relatively straightforward to demonstrate 

that such variation exists, by conducting infection experiments and immune assays 

with outbred, lab-reared individuals from natural populations. However, 

demonstrating how this variation is maintained has proven to be a much more 

difficult task. Costs of resistance and immune response constitute one potential 

mechanism maintaining variation in these traits (Sheldon & Verhulst, 1996; 

Lochmiller & Deerenberg, 2000; Rigby et al., 2002; Zuk & Stoehr, 2002; Schmid-

Hempel, 2003). Investment in parasite resistance may be traded-off with investment 

in other traits. The concept of trade-offs is a central paradigm in life history theory 

and is widely invoked to explain the maintenance of genetic variation in fitness traits 

(Price & Schluter, 1991; Houle, 1992; Stearns, 1992). However, it is only recently that 

parasite resistance and immune responses have been integrated into this framework 

(Sheldon & Verhulst, 1996; Lochmiller & Deerenberg, 2000; Rigby et al., 2002; Zuk & 

Stoehr, 2002; Schmid-Hempel, 2003). Given a finite amount of resources, an organism 

faces competing demands for these resources from different life history traits (Zera & 

Harshman, 2001). Over time, trade-offs mediated by physiology become hard-wired, 

leading to genetic correlations between life history traits, some of which  may be 

negative (antagonistic pleiotropy) (Stearns, 1989; Roff, 1992). Since not all traits can be 

maximised by natural selection, trade-offs constrain the evolution of life histories 

(Reznick et al., 2000; Roff & Fairbairn, 2007).  

 



 

134 

 

There are several well-established examples in the literature of trade-offs between 

parasite resistance and other life history traits. For example, Kraaijeveld & Godfray 

(1997) found a trade-off between larval competitive ability and resistance to the 

parasitoid Asobara tabida in Drosophila melanogaster. Likewise, Webster & 

Woolhouse (1999) reported that Biomphalaria glabrata snails that were more resistant 

to the trematode Schistosoma mansoni suffered reduced fecundity in the absence of 

parasitism. Trade-offs between particular immune components, rather than 

resistance phenotypes, and other life history traits appear to be more pervasive. 

Numerous studies have documented costs associated with immune responses in 

terms of survival (Moret & Schmid-Hempel, 2000; Armitage et al., 2003; Hanssen et 

al., 2004; Eraud et al., 2009) and reproduction (Adamo et al., 2001; Bonneaud et al., 

2003; French et al., 2007; McKean et al., 2008). However, it is necessary to distinguish 

two different types of immune costs: those associated with maintenance of immune 

machinery (costs of immune maintenance) and those associated with mounting an 

immune response (costs of immune activation) (Lochmiller & Deerenberg, 2000; 

Schmid-Hempel, 2003; McKean et al., 2008). Costs of immune activation typically 

have a physiological basis and are highly plastic, whereas costs of immune 

maintenance are partly the product of resource allocation over evolutionary time 

scales, and are thus more likely to have a genetic basis (Schmid-Hempel, 2003; Cornet 

et al., 2009). Importantly, the magnitude of the cost is strongly dependent on the type 

of cost (Shudo & Iwasa, 2001; Armitage et al., 2003; Lee, 2006; Hamilton et al., 2008). 

The vast majority of work in this area has focussed on costs of immune activation, 

presumably because of the ease with which such studies can be conducted in natural 

field populations. Detecting costs of immune maintenance has proven  more difficult 

(Lochmiller & Deerenberg, 2000). Although there are a number of potential trade-offs 

between life history traits and immune components and parasite resistance, costs of 

investment in immune components and parasite resistance cannot be assumed to be 

correlated. This is particularly true if the parameter(s) of the immune system that is 

measured does not accurately reflect parasite resistance (Keil et al., 2001; Adamo, 

2004; Schwarzenbach & Ward, 2007, Chapter 5). Therefore, both costs of immune 

response and costs of parasite resistance should be examined simultaneously. 

 

A life history trade-off that has received little attention thus far in the context of 

ecological immunology is the trade-off between juvenile growth and parasite 
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resistance or immune response (but see e.g. Barber et al., 2001; Coltman et al., 2001). It 

is widely recognised that animal growth rate is an adaptive, heritable life history trait 

that is shaped by natural selection (Case, 1978; Arendt, 1997). In fish, juvenile growth 

rate forms an important component of fitness since faster growth leads to higher 

overwinter survival, a larger body size, and hence increased fecundity (Wootton, 1984; 

Conover & Present, 1990; Schluter, 1995; Brown et al., 1998). Furthermore, rapid 

growth allows fish to attain a size-refuge from predation when predators are gape-

limited (Reimchen, 1991; Abrams et al., 1996). Therefore, juvenile growth rate may be a 

good proxy for fitness (Schluter, 1995; Munch & Conover, 2003). However, growth 

rates are rarely maximised in natural populations. Instead, growth rates are often 

locally adapted to environmental conditions (Niewiarowski & Roosenburg, 1993; 

Schultz et al., 1996; Jensen et al., 2000; Arendt & Reznick, 2005). This implies that 

there may be costs and constraints associated with the evolution of rapid growth rate. 

A number of potential trade-offs have been highlighted to attempt to explain the 

extensive variation in growth rate within and among populations (Arendt, 1997); many 

of these invoke proximate mechanisms, mediated by behaviour or physiology. For 

instance, faster growth is normally associated with increased foraging effort which in 

turn increases the risk of mortality through predation (Werner & Anholt, 1993; Stoks 

et al., 2005; Biro et al., 2006).  

 

Rapid growth may also incur evolutionary costs. For example, in Drosophila there is a 

negative genetic correlation between growth rate and larval survival (Chippindale et 

al., 1997) and in the speckled wood butterfly growth rate is traded off with starvation 

endurance (Gotthard et al., 1994). With regards to an evolutionary trade-offs between 

growth and parasite resistance, most evidence for fish comes from the aquaculture 

industry; the main aim of fish breeding is to select increased body size without a 

concomitant decrease in resistance to disease (Gjedrem, 2000). Although some studies 

report a negative genetic correlation between growth and parasite resistance 

(Henryon et al., 2002; Silverstein et al., 2009), a positive correlation has also been 

documented (Rye et al., 1990; Gjedrem et al., 1991; Imsland et al., 2002). Data on this 

trade-off in natural populations are more limited, but the few studies that have been 

conducted suggest that the sign of the relationship may be equally variable. For 

example, Barber et al. (2001) documented a trade-off between juvenile growth and 

resistance to the body cavity tapeworm Schistocephalus solidus in a population of 
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three-spined sticklebacks, whereas Coltman et al. (2001) found a positive genetic 

correlation between growth and resistance to strongylid nematodes in a population of 

Soay sheep. Genetic correlations between growth and parameters of the immune 

system are also unpredictable (Koella & Boete, 2002; Cotter et al., 2004; Seppälä & 

Jokela, 2010) and may depend on the immune components that are measured. 

Therefore, more studies are required, particularly in vertebrate organisms, that 

investigate phenotypic and genetic relationships between growth and parasite 

resistance and growth and the immune response, to determine potential evolutionary 

costs of investment in these life history traits.      

        

Here, I carried out a growth experiment to quantify variation in juvenile growth rates 

in five populations of the three-spined stickleback, Gasterosteus aculeatus, from 

North Uist, Scotland, and, using data collected previously from the same five 

populations, examined whether there are trade-offs at the full-sib family level across 

populations between juvenile growth rate, an innate immune component (the 

respiratory burst response) and resistance to two common stickleback macroparasites: 

Diplostomum spathaceum and Gyrodactylus gasterostei. The three-spined stickleback 

forms a good model for studying variation in growth rate because of the rapid 

evolution of population-level differences in body size over short evolutionary time 

scales (Bell & Foster, 1994). In the North Uist system, fish from different populations 

in close geographic proximity can exhibit up to 10-fold differences in adult body size 

(A. MacColl, unpublished observation). Moreover, previous studies have established 

that variation in growth rates among stickleback populations has a genetic 

component (Snyder & Dingle, 1989; Wright et al., 2004) and that growth may be 

traded off against other fitness-related traits (Schluter, 1995; Barber et al., 2001; 

Robinson & Wardrop, 2002; Barrett et al., 2009). The three-spined stickleback is also 

an amenable model for investigating population divergence in parasite resistance, due 

to the established protocols for carrying out artificial infection experiments (see 

Chapter 4 and 5). The two macroparasite species were chosen because of their 

detrimental effects on stickleback fitness and their putative roles as agents of selection 

(Brassard et al., 1982; Owen et al., 1993; Bakke et al., 2007). The infection experiments 

carried out previously (Chapters 4 and 5) showed that host populations that are 

naturally unexposed to a parasite species exhibit higher susceptibility in infection 

experiments than populations that are naturally exposed to the parasite. As these 
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unexposed populations do not develop resistance (or lose it), it implies that there is a 

cost associated with maintaining resistance. Given that natural selection on parasite 

resistance, the immune response and growth is likely to be strong in stickleback 

populations, a trade-off between these fitness-related traits may arise. In addition to 

investigating trade-offs between growth and parasite resistance or the immune 

response, I tested for a trade-off between resistance to the two parasite species. To my 

knowledge, this is the first study to examine co-variation of experimental resistance to 

different macroparasite species across natural vertebrate populations.  

 

7.2 Methods7.2 Methods7.2 Methods7.2 Methods    

 

7.2.1 Fish breeding7.2.1 Fish breeding7.2.1 Fish breeding7.2.1 Fish breeding    

 

Fish were collected from five geographically isolated lochs on North Uist, Outer 

Hebrides, Scotland during May 2008. These lochs were chosen to represent a range of 

natural parasite infection levels in order to examine spatial variation in parasite 

resistance (see Chapter 4 and 5). Fish were caught using minnow traps (Gee traps, 

Dynamic Aqua, Vancouver) which were set overnight and lifted the following day. For 

each population, F1 offspring were obtained by making 9 unrelated full-sib crosses 

(families) from wild-caught fish. To make a cross, eggs were stripped from a gravid 

female and placed into a petri dish containing a small volume of 1 ‰ salt solution. 

Males were killed, by overdose of anaesthetic (400 mg L-1 MS222), and were dissected 

to remove testes. Fine forceps were used to tease apart testes and release sperm, which 

was gently mixed with the eggs (Barber & Arnott, 2000). Two hours after incubation, 

fertilisation was confirmed by low-power microscopy and testes were removed from 

the fertilised clutches. Fertilised eggs were transferred to a falcon tube containing 50 

mL of 1 ‰ salt solution. Eggs were then transported on ice to aquaria at the University 

of Nottingham, where they were placed in a plastic cup with a mesh screen on the 

bottom, suspended in a well-aerated tank containing dechlorinated water (Marchinko 

& Schluter, 2007). Water was treated with Methylene blue to reduce the possibility of 

fungal infection. After 10 days, egg cups were transferred to individual half-tank 

partitions of 100L tanks and the eggs were allowed to hatch. Following hatching, full-

sib families were thinned to groups of 15. Clutches from each population were 
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distributed haphazardly between tanks across the temperature-controlled room 

(13.5°C ± 1°C). 

    

7.2.1 Growt7.2.1 Growt7.2.1 Growt7.2.1 Growthhhh    experimentexperimentexperimentexperiment    

 

All 9 sib-families per population were included in the growth experiment, with the 

exception of Hosta and Reivil, for which only 8 families were available due to high 

mortality in the remaining family. Throughout the experiment, fish were maintained 

under a 16L:8D photoperiod. Fry were fed daily with infusoria (Colpidium spp.) for the 

first five days, then twice daily with brine shrimp (Artemia salina) naupliae until day 

64 post-hatching. Thereafter, fish received chironomid larvae (‘bloodworm’; defrosted 

from frozen) daily. Food was provided to excess.    

 

Starting on day five post-hatching, fry were digitally photographed (using a Nikon 

D80 camera) at set intervals, following a method modified from Wright et al. (2004). 

Digital photography provides a valuable tool for tracking growth of young fry as it 

minimises the stress associated with handling of fish, to which fry are particularly 

sensitive. Individual fry were transferred from their family tank to a small glass dish 

(60mm diameter) containing water to a standard depth of 20 mm and were 

illuminated from above by fluorescent lighting. A 1-mm laminated calibration grid was 

placed underneath the glass dish to enable calibration of the analysis software, Adobe 

Photoshop (Adobe Systems, Mountain View, CA). Photographs were taken 

immediately after fry adopted a resting position (straightened body and tail) on the 

bottom of the dish, and standard lengths were calculated in Photoshop. 

Photographing every fish per full-sib families was not possible; therefore, five fish 

from each family were haphazardly selected for measurement at each time point. The 

time points were 5, 8, 15, 22, 27, 37, 43, 50, 64, 85, 106, and 127 days post-hatching.  

    

7.2.37.2.37.2.37.2.3    Measures of parasite resistance and Measures of parasite resistance and Measures of parasite resistance and Measures of parasite resistance and the the the the innate immune responseinnate immune responseinnate immune responseinnate immune response    

 

To establish whether there is variation in parasite resistance among North Uist 

stickleback populations, artificial infection experiments were conducted with two 

common macroparasites of sticklebacks: the monogenean Gyrodactylus gasterostei 

and the digenean trematode Diplostomum spathaceum. Fish from 8 full sub-families 
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per population (7 for Hosta) were included in the infection experiments; where 

possible, the same families were used to those in the growth experiment. The 

protocols for the infection experiments are described in greater detail elsewhere 

(Chapter 4 and 5), and will only be touched upon briefly here. To examine variation in 

resistance to G. gasterostei, a fin ectoparasite of freshwater sticklebacks, 10-month old 

fish from each population were infected with two worms, and growth of parasite 

populations on individual fish was monitored over a period of 62 days. The 

Gyrodactylus infection process is characterised by a standard sequence of events: the 

parasite population grows, reaches a peak, then starts to decline and is eventually 

cleared by the host (Bakke et al., 2007). To obtain a general descriptor of resistance to 

G. gasterostei, a principal components analysis was conducted on five parameters of 

each infection response profile: the peak of the infection, the total worm burden 

(AUC), average growth rate of the parasite population (r) to the peak, the time taken 

until peak was reached, and time until the infection was lost following the peak. The 

scores of principal component 1 (PC1; determined mostly by the peak and AUC) from 

this analysis served as a proxy for, and were interpreted to be inversely proportional 

to, G. gasterostei resistance: lower PC1 scores corresponded to greater resistance 

(Chapter 4). For each full-sib family, a mean PC1 score was calculated. 

 

Resistance to D. spathaceum, an eye fluke of sticklebacks, was quantified by exposing 

individual 6-8 month old fish to a standard dose of 20 cercariae, and counting the 

number of metacercariae that established in the eye lenses (Chapter 5). The infection 

experiment comprised two exposure rounds, the first approximately six weeks prior to 

dissection, and the second two days prior to dissection. One group of fish was exposed 

twice, whereas another group was exposed just once, in the second round of exposure. 

Resistance to D. spathaceum was defined to be inversely proportional to the number 

of metacercariae in the lenses of fish after a single parasite exposure: the lower the 

number of metacercariae, the greater the resistance. Data from the two treatments 

(singly-exposed and doubly-exposed) were pooled to increase the sample size when 

calculating the mean number of metacercariae for each full-sib family. In addition to 

the two exposure treatments, a sham-exposed control group was included in the 

experiment. The respiratory burst response, a powerful effector mechanism of the 

cellular innate immune response (Dahlgren & Karlsson, 1999), was quantified in fish in 

all three treatment groups on the day of dissection, to obtain a measure of the innate 
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immune response. This was achieved by means of an in vitro luminol-enhanced 

chemiluminescence assay on leukocytes extracted from the head kidneys of individual 

fish (Chapter 5). As there was no significant upregulation of the respiratory burst 

response following D. spathaceum exposure, data from all three treatments were 

pooled to calculate the mean respiratory burst response per full-sib family.  To 

simplify the interpretation of their relationship to juvenile growth rate and to each 

other, measures of parasite infection from both infection experiments will be referred 

to as measures of susceptibility rather than measures of resistance. Therefore, PC1 

score in the G. gasterostei infection experiment corresponds to susceptibility to G. 

gasterostei whereas the number of metacercariae in the D. spathaceum infection 

experiment corresponds to susceptibility to D. spathaceum.     

 

7.2.47.2.47.2.47.2.4    Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

 

All statistical analyses were carried out in GenStat (release 12, VSN International Ltd., 

Hemel Hempstead, U.K.). Growth trajectories were analysed with a random 

coefficients model, a form of linear mixed model that is commonly used for repeated 

measures data sets (Brown & Prescott, 1999). An advantage of a random coefficients 

model is that it plots a separate regression line for each unit of replication; by setting 

both the unit of replication and each time point, nested with the unit of replication, as 

random effects, the model allows the intercept and the slope of each regression line to 

vary simultaneously. Random coefficients models are particularly useful when the 

repeated measures are not evenly spaced in time (Brown & Prescott, 1999), as was the 

case here. In the growth study, fish family was the unit of replication and day was the 

time point. Day was treated as a continuous variable rather than as a categorical 

variable. To account for non-independence of fish families, family was nested within 

population (population × family). Likewise, the non-independence of repeated 

measurements of individuals from the same fish family was accounted for by nesting 

day within family within population, to form the random effect population × family × 

day. Significance of the population × family × day random effect was assessed using a 

likelihood ratio test. Due to marginality, the significance of the population × family 

effect could only be assessed informally by comparing the variance component 

estimate with its standard error; if the standard error was greater than the estimate, 
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the term was considered non-significant and dropped from the model (sensu Galwey, 

2006).    

 

Standard length (SL) was the response variable. Although the distribution of SLs was 

heavily right-skewed, this was the result of the large number of measurements taken 

at the start of the growth period and the increasing distance between measurement 

time points towards the end of the experiment. Furthermore, the residuals of the 

LMM were approximately normally distributed. Therefore, SL, as the response 

variable, was not transformed. Population, day, initial length (the average length for 

each fish family recorded on day 5, the first day of measurement), population × initial 

length and population × day were included as fixed effects in the model. Due to 

mortality in some full-sib families, ‘family size’ and its interaction with population 

(family size × population) were also included as fixed effects. I predicted that fish in 

smaller families will be disproportionately larger than fish in larger families, since 

stickleback growth is known to be strongly density-dependent (Wootton, 1984). To 

obtain a minimum adequate model, non-significant fixed effects were dropped from 

the model in a stepwise manner (Crawley, 2007). Significance of fixed effects was 

assessed using Wald F tests. If a fixed effect was marginal to an interaction effect, 

significance of this effect was tested in the presence of the interaction by fitting it as 

the last main effect in the model.  

 

To evaluate the relationships between juvenile growth rate, respiratory burst and 

susceptibility to G. gasterostei and D. spathaceum, Pearson correlation was performed 

on family means of these traits (Lynch & Walsh, 1998). This is a standard method for 

detecting the existence of genetic correlations between life history traits when data 

have  not been collected from the same individuals or from the same experiment (Via, 

1984; Roff, 1997). Strictly speaking, this study examined phenotypic correlations, not 

genetic correlations between stickleback life history traits, which would require a full-

sib/half-sib breeding design (Lynch & Walsh, 1998). Nevertheless, in many cases 

phenotypic correlations are a good approximation for genetic correlations (Roff, 1995; 

Roff, 1996). To obtain a family-level estimate of growth, the specific growth rate (SGR; 

sensu Barber, 2005), a measure of the percentage daily increase in length, was 

calculated using the equation: SGR = 100*[ln (L122) – ln (L0)]/122, where L122 and L0 
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denote the mean standard length at the end and the beginning of the growth study, 

respectively. SGR could not be calculated for two Hosta families, as length 

measurement of individuals from these families commenced on day 27 post-hatching 

only. Due to the varying levels of mortality across families and the resulting variation 

in family sizes, it was not possible to obtain measures of parasite resistance and 

immune response for exactly the same families that were included in the growth 

study. Therefore, the number families included in a correlation analysis was 

dependent on the pairwise combination of traits.   

 

7.3 Results7.3 Results7.3 Results7.3 Results    

 

7.3.17.3.17.3.17.3.1    Growth studyGrowth studyGrowth studyGrowth study    

 

The random effects population × family (variance component estimate ± S.E. = 0.26 ± 

0.07) and population × family × day (LR test: χ2 = 75.69; P < 0.001, variance component 

estimate ± S.E. = 0.42 ± 0.03) were significant, indicating that there was substantial 

variation among fish families in both the intercept and the slope of the growth 

trajectories. Standard length was highly dependent on population, day and the 

interaction between population and day (Table 7.1; Fig. 7.1). Family size and its 

interaction with population also had a significant effect on standard length (Table 7.1). 

However, standard length was not significantly influenced by initial length, and this 

was consistent across populations (Table 7.1). 

    

7.3.27.3.27.3.27.3.2    Relationship Relationship Relationship Relationship betweenbetweenbetweenbetween    juvenile growth rate, parasite susceptibility and juvenile growth rate, parasite susceptibility and juvenile growth rate, parasite susceptibility and juvenile growth rate, parasite susceptibility and the the the the 

innate immune responseinnate immune responseinnate immune responseinnate immune response    

 

There was a significant negative correlation between juvenile growth rate and D. 

spathaceum susceptibility (r = -0.42, n = 36, p = 0.011; Fig. 7.2a). There was no 

significant correlation between D. spathaceum susceptibility and G. gasterostei 

susceptibility (r = -0.08, n = 34, p = 0.638; Fig. 7.2b), between juvenile growth rate and 

G. gasterostei susceptibility (r = 0.12, n = 33, p = 0.504; Fig. 7.2c), nor between juvenile 

growth rate and respiratory burst response (r = -0.19, n = 37, p = 0.261; Fig. 7.2d).  
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Fixed effect F df P 

Family size 139.74 1, 498.7 <0.001 

Population 6.03 4, 36.0 <0.001 

Day 9830.60 1, 54.3 <0.001 

Initial length 0.02 1, 34.4 0.888 

Population × Day 6.51 4, 55.5 <0.001 

Population × Family size 9.91 4, 428.0 <0.001 

Population × Initial length 2.19 1, 30.1 0.094 

 

Table Table Table Table 7777.1.1.1.1    Results from a random coefficient model of standard length (SL) measured at set 

intervals during the 122-day growth experiment. Population × family and population × family 

× day were included as random effects.    

 

 

    

Figure 7.1Figure 7.1Figure 7.1Figure 7.1 Growth trajectories of the five populations over the 122-day growth experiment. Fry 

from 9 full-sib families per population (8 for Hosta and Reivil) were digitally photographed at 

set intervals to determine standard length (SL). The line is the population mean. Fish were fed 

brine shrimp twice-daily until day 64 post-hatching; thereafter, they received bloodworm, 

defrosted from frozen, daily. 
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Figure 7.2Figure 7.2Figure 7.2Figure 7.2 Relationships between family means of life history traits: a) juvenile growth rate 

and Diplostomum spathaceum susceptibility (r = -0.42, p = 0.011), b) Gyrodactylus gasterostei 

susceptibility and D. spathaceum susceptibility (r = -0.08, p = 0.638), c) juvenile growth rate 

and G. gasterostei susceptibility (r = 0.12, p = 0.504), and d) juvenile growth rate and 

respiratory burst (r = -0.19, p = 0.261). Juvenile growth rate was the specific growth rate (SGR) 

during the growth study and was calculated using the equation: SGR = 100*[ln (L122) – ln 

(L0)]/122, where L122 and L0 denote the mean standard length at the end the beginning of the 

growth study, respectively. Resistance to G. gasterostei and D. spathaceum were determined 

from artificial infection experiments. The respiratory burst response, a measure of the innate 

immune system, was quantified during the D. spathaceum infection experiment.         
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7.4 Discussion7.4 Discussion7.4 Discussion7.4 Discussion    

 

I found significant variation in juvenile growth rate among the five populations of 

sticklebacks. By the end of the growth study, there was a 2.5mm (9.3%) difference in 

average length of fry from the slowest and fastest growing populations. These 

differences only became apparent in the latter half of the study, when mean growth 

trajectories starting diverging more noticeably. This study supports other common 

garden experiments in sticklebacks that have also reported considerable levels of 

spatial variation in juvenile growth rate (Snyder & Dingle, 1989; Wright et al., 2004; 

Barrett et al., 2009). The common garden conditions indicate that the observed 

variation has a genetic component. Moreover, since differences in initial length had 

no significant effect on the growth trajectories, this suggests that variation in juvenile 

growth rate is independent of maternal effects (mediated via egg provisioning) which 

are known to can strongly influence the expression of this trait (Einum & Fleming, 

1999; Laugen et al., 2002; McAdam & Boutin, 2003). The physiological mechanisms 

behind the differences in juvenile growth rate have yet to be determined. Both higher 

digestive performance (Nicieza et al., 1994) and higher food conversion efficiency 

(Present & Conover, 1992; Imsland et al., 2000) in faster growing fish may play a role.     

 

Growth rate constitutes an important life history trait in juvenile fish because faster 

growth increases the likelihood of overwinter survival (Conover & Present, 1990; 

Sogard, 1997; Brown et al., 1998), and is therefore expected to be under strong natural 

selection. The differences among the five stickleback populations in this study may be 

the result of divergent natural selection, probably mediated by resource availability or 

predation regime or both (Arendt & Reznick, 2005). Typically, slow growth is 

associated with low resource levels (Winemiller & Rose, 1992; Niewiarowski & 

Roosenburg, 1993; Arendt, 1997). I have yet to quantify spatial variation in resource 

availability and its relation to fish growth and body size in stickleback populations on 

North Uist, but preliminary data indicate that there is considerable variation among 

lochs in densities of zooplankton such as copepods and Daphnia (A. MacColl, 

unpublished data), which form a major component of stickleback diets. Theory 

predicts that predation selects for rapid growth when prey can attain a size-refuge 

(Abrams et al., 1996). Given that the two dominant predatory fish on North Uist, the 
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European eel, Anguilla anguilla, and the brown trout, Salmo trutta, are gape-limited, 

different predation regimes among the five populations may select for different 

juvenile growth rates. Field and experimental studies have shown that predation is a 

major contributor to population divergence of sticklebacks in terms of body size 

(McPhail, 1977; Reimchen, 1991; Marchinko, 2009). Again, I have not quantified spatial 

variation in the intensity of predation in the study populations, but records of the 

North Uist Angling Club suggest that both trout densities and trout size vary 

substantially among lochs (A. MacColl, unpublished data).  

 

Other than spatial variation in predator-mediated selection or resource availability, 

costs associated with rapid juvenile growth may maintain genetic variation in this life 

history trait. Here, I tested for an evolutionary (genetic) cost associated with fast 

growth rate. However, I found no evidence for trade-offs at the full-sib family level 

across populations between juvenile growth rate and resistance to two macroparasite 

species and the respiratory burst response, a parameter of the cellular innate immune 

response, in spite of the significant variation in all four traits within and among 

populations. In fact, I found a significant negative correlation between juvenile 

growth rate and susceptibility to Diplostomum spathaceum, indicating that fish 

families that grow faster are also more resistant to this parasite species. This 

relationship was due mostly to one population, Lochmaddy, which had a substantially 

higher susceptibility to D. spathaceum than the other four populations. The lack of a 

trade-off between Diplostomum resistance and growth rate corroborates findings 

from a recent quantitative genetic study in a population of farmed rainbow trout: 

juvenile fish with more severe cataracts (a measure of susceptibility to Diplostomum) 

tended to have a smaller body size, although the relationship was not significant 

(Kuukka-Anttila et al., 2010). Therefore, positive covariation with growth rate may be 

a general feature of resistance to Diplostomum.  

 

Only the correlation between juvenile growth rate and G. gasterostei susceptibility 

was positive, hinting at the possibility of a trade-off between juvenile growth rate and 

G. gasterostei resistance, but this relationship was weak and non-significant. Cable & 

van Oosterhout (2007a) provided some indirect evidence for the importance of body 

size in mediating the host response to Gyrodactylus infection in guppies. They 

showed that larger guppies developed larger infections of Gyrodactylus turnbulli 
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(Cable & van Oosterhout, 2007a). Regardless of these putative phenotypic correlations 

(see also Chapter 4), I found no evidence for a genetic trade off between growth rate 

and G. gasterostei resistance. There are just two previous studies of which I am aware 

that have examined genetic correlations between host growth rate and parasite 

resistance in natural host populations. Coltman et al. (2001) found a positive 

correlation between nematode resistance and growth in a wild population of Soay 

sheep, whereas Barber et al. (2001) reported a negative genetic correlation between 

juvenile growth rate and resistance to Schistocephalus solidus in a lab-reared 

stickleback population. Therefore, the sign of the relationship appears to be variable 

and specific to the host-parasite system. Although a trade-off between growth rate 

and components of the immune response have been demonstrated in some 

invertebrate species (Koella & Boete, 2002; Cotter et al., 2004; Rantala & Roff, 2005),  I 

did not find a significant genetic correlation between juvenile growth rate and the 

respiratory burst response across stickleback populations. Thus, it seems that juvenile 

growth rate does not constrain the evolution of resistance to macroparasites and the 

immune response in North Uist stickleback populations. Furthermore, there was no 

significant genetic correlation between susceptibility to D. spathaceum and G. 

gasterostei.          

 

There are a number of possible general explanations for why no trade offs were 

detected. First, fitness costs of parasite resistance depend heavily on the defence 

mechanisms involved (Rigby et al., 2002; Moret, 2003; Coustau & Théron, 2004). With 

regards to the immune response, non-specific and constitutively expressed immune 

defences are thought to be less costly to maintain than specific and inducible defences 

(Shudo & Iwasa, 2001; Armitage et al., 2003; Lee, 2006; but see Hamilton et al., 2008). 

This may apply to the partly constitutive, non-specific measure of immune defence 

used in this study, the respiratory burst response, which was not traded off with 

juvenile growth rate. There may be other non-specific components of the innate 

immune response, such as lysozyme or complement activity, or specific ones such as 

natural antibodies which may prove to be more costly in terms of juvenile growth rate. 

For example, Mauck et al. (2005) documented a negative correlation between 

constitutive expression of natural antibodies and growth of nestlings of Leach’s Storm 

Petrel. Although I detected no evolutionary cost of maintaining the respiratory burst, 

physiological costs of mounting a respiratory burst response are potentially severe. 
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Specifically, immunopathology resulting from the release of large numbers of reactive 

oxygen species can contribute to cell damage and ageing (Finkel & Holbrook, 2000; 

Kurtz et al., 2004). This type of physiological cost was not considered in this study and 

warrants further investigation. The immunological mechanisms used to achieve 

resistance to G. gasterostei and D. spathaceum are currently unknown, but probably 

differ and are possibly controlled by different genes, given the dramatic differences in 

infection dynamics of the two parasite species (Chapter 4 and 5). This could explain 

not only the difference in the relationship between juvenile growth rate and 

resistance to D. spathaceum and G. gasterostei, but also the lack of a trade-off 

between resistance to both parasite species. Indeed, the degree of genetic correlation 

between traits is assumed to be proportional to the extent of genetic overlap between 

control of those traits (Schlichting & Pigliucci, 1998) and shared metabolic pathways 

(de Laguerie et al., 1991).  

 

Second, the defence mechanism(s) conferring resistance may be similar between 

populations, but populations exposed to higher levels of parasitism may have evolved 

more efficient defence; that is, the success of defence per unit allocation is higher 

(Jokela et al., 2000). Accordingly, the costs of parasite resistance and the immune 

response may vary among populations. The approach adopted here, correlating traits 

at the full-sib family level across populations, is likely to obscure putative differences 

among populations in the within-population relationship between traits. Third, 

environmental conditions strongly influence the expression of life history traits and 

affect the ability to detect genetic relationships between them (Stearns, 1992; Reznick 

et al., 2000; Sgro & Hoffmann, 2004). Generally, life history traits are more likely to be 

detected in resource-limited environments than in benign, resource-rich ones 

(Reznick et al., 2000; Sgro & Hoffmann, 2004). As fish were fed to satiation in all 

experiments, the high resource conditions may have hindered the ability to detect 

trade-offs. Furthermore, the environmental conditions were not identical across 

experiments. For example, during the growth study and D. spathaceum infection 

experiment fish were housed in groups, whereas fish were housed individually during 

the G. gasterostei infection experiment, which may indirectly have influenced the 

expression of parasite resistance. Fourth, there may a trade-off between parasite 

resistance or the immune response and a life history trait other than juvenile growth 
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rate that I did not measure, such as investment in reproduction or competitive ability 

(Pease & Bull, 1988; Kokko, 1998; Roff & Fairbairn, 2007).  

 

Fifth, identifying correlations between traits from genotypes that represent standing 

genetic variation in the wild, the approach adopted in the current study, may be 

difficult (Lazzaro & Little, 2009). Most evidence for genetic trade-offs between 

parasite resistance and other life history traits comes from selection experiments (e.g. 

Boots & Begon, 1993; Kraaijeveld & Godfray, 1997; Webster & Woolhouse, 1999; Luong 

et al., 2007). However, artificial selection is likely to capture mutations of large effect 

rather than those of small effect, which may occur relatively infrequently in natural 

populations. Therefore, these experiments potentially overstate the importance and 

biological relevance of any observed trade-offs (Lazzaro & Little, 2009). Lastly, this 

study may have lacked the statistical power to detect trade-offs at the full-sib family 

level: family means were calculated from only 2-3 individuals per family. Although the 

data are not presented here, there was some within-family variation in all four traits 

(Chapter 4 and 5). As a result, there is likely to be a large margin of error in these mean 

values. Nevertheless, this study sheds some light onto the (lack of) genetic trade-offs 

between juvenile growth rate, parasite resistance and the innate immune response. 

Quantitative genetic experiments employing a full-sib/half-sib design are required to 

elucidate the genetic architecture of these traits in these five stickleback populations 

and to confirm the negative results reported here.  

 

To conclude, I have demonstrated that there is significant variation in juvenile growth 

rate among North Uist stickleback populations, which has a genetic basis. Integrating 

data from artificial infection experiments conducted previously, I found no evidence 

for genetic trade-offs, at the level of full-sib families across populations, between 

juvenile growth rate and resistance to two common stickleback macroparasite (D. 

spathaceum and G. gasterostei) or a component of the innate immune response (the 

respiratory burst response), in spite of substantial variation in all four traits among 

populations. Likewise, there is no evidence for a trade-off between resistance to both 

parasite species. Thus it appears that these traits do not constrain each other’s 

evolution. The selective factors driving the variation in juvenile growth rate among 

populations have yet to be determined, but divergent predation regimes and resource 

availability may play a role.  
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Chapter 8: General discussion 

 

In this thesis I used the three-spined stickleback as a model organism to explore 

spatial variation in host-parasite interactions and the consequences for host 

population divergence. Here, I re-iterate my main findings, highlight limitations and 

suggest some avenues for further work.  

 

First, I conducted a field survey of twelve stickleback populations over two years to 

examine spatiotemporal variation in macroparasite community composition in the 

study system, North Uist (Chapter 3). I found considerable differences among 

populations in both the overall diversity and richness of the parasite community and 

the abundance and prevalence of individual parasite species. This spatial variation was 

remarkably stable over the two year period, such that the relative differences among 

populations hardly changed. Assuming that differences in parasite community 

composition correspond to differences in parasite-mediated selection, this suggests 

that stickleback populations on North Uist may experience divergent parasite-

mediated selection that is consistent in time, with potentially important 

consequences for the evolution of host traits such as parasite resistance and the 

immune response.  

 

To examine geographic variation in parasite resistance and immune response, I 

carried out a series of infection experiments in outbred, lab-reared fish from five 

stickleback populations with three common stickleback macroparasites: the fin 

monogenean Gyrodactylus gasterostei (Chapter 4), the eye fluke Diplostomum 

spathaceum (Chapter 5) and the body cavity tapeworm Schistocephalus solidus 

(Chapter 6). These parasite species were chosen because they form strong candidates 

for exerting parasite-mediated selection. Populations differed significantly in 

resistance to G. gasterostei and D. spathaceum, but not in resistance to S. solidus. In 

both the D. spathaceum and G. gasterostei experiments, the population not naturally 

exposed to the parasite was substantially more susceptible to infection, which may 

have resulted from reduced selection to maintain or develop resistance. There was 

also some variation in resistance to D. spathaceum and G. gasterostei within-

populations. The common garden design of the infection experiments implies that 
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this variation is partly under genetic control, thereby providing evidence for the 

potential of parasite-mediated selection.  

 

Correlations between natural parasite abundance and experimental resistance were 

generally noisy, but there was a weak but positive correlation between resistance to G. 

gasterostei and natural abundance of G. arcuatus, indicating that variation in 

resistance to this parasite may be the result of divergent Gyrodactylus-mediated 

selection. In Chapter 5 and 6 I also documented considerable spatial variation in a 

component of the innate immune system, the respiratory burst response. The 

respiratory burst tended to increase with natural abundance of D. spathaceum, 

suggesting that divergent Diplostomum-mediated selection may drive investment in 

this measure of innate immune response. However, I found no correlation across 

populations between respiratory burst and resistance to D. spathaceum. Therefore, 

the respiratory burst response appears to be a poor indicator of resistance to this 

parasite. Lastly, in Chapter 7 I carried out a growth experiment and recorded 

significant spatial variation in juvenile growth rate, an important component of fish 

fitness. Integrating data from the infection experiments and the growth experiment, I 

found no evidence for a genetic trade-offs at the level of full-sib families across 

populations between juvenile growth rate and G. gasterostei resistance, D. 

spathaceum resistance or the respiratory burst response, in spite of ample variation 

among populations in all four traits. This suggests that variation in these  traits is 

probably maintained via mechanisms other than trade-offs.  

 

The patterns of spatial variation in resistance differed among the three macroparasite 

species, as did their relationship with natural infection levels. This may stem from 

differences between the three parasites in their virulence (the harm inflicted on their 

hosts). Presumably, the more virulent the parasite, the stronger the selection to evolve 

resistance. Therefore, certain parasite species may be more likely to generate 

population divergence in host traits than others. Parasite life history certainly 

influences the potential of host-parasite coevolution (Barrett et al., 2008). Although 

the effects of S. solidus and D. spathaceum infection on host fitness are well-

established, further infection experiments should determine precisely how 

Gyrodactylus infection impacts host fitness.  
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It has been demonstrated theoretically and empirically that parasites can drive the 

diversification of single host populations (Summers et al., 2003; Duffy & Forde, 2009), 

but less is known about how parasites facilitate divergence among host populations 

(Buckling & Rainey, 2002b). Here, I have shown that divergence in macroparasite 

resistance and the innate immune response is a common feature of stickleback 

populations on North Uist, and that this divergence may the result of adaptation to 

the local rate of parasite exposure (measured as parasite abundance). This thesis adds 

to a small but growing body of work that highlights how adaptation to local parasite 

communities can shape investment in the immune response and parasite resistance 

(Lindström et al., 2004; Kalbe & Kurtz, 2006; Bryan-Walker et al., 2007; Scharsack et 

al., 2007a; Corby-Harris & Promislow, 2008; Hasu et al., 2009). More broadly 

speaking, it demonstrates how an understanding of geographic variation in host 

ecology can help interpret variation in traits underlying host-parasite interactions 

(Sadd & Schmid-Hempel, 2009). Because such information is scarce for vertebrate-

macroparasite interactions, the data presented here provide a valuable addition to our 

knowledge of spatial variation in host-parasite interactions.  

 

To obtain a more complete understanding of the impact of space on stickleback-

macroparasite coevolution in the North Uist system, a number of other features of 

host-parasite interactions must be considered, four of which are described in detail 

below. First, common garden experiments can reveal genetic variation in parasite 

resistance and immune response within and among host populations, but they cannot 

determine the evolutionary significance of this variation in the wild. Since natural 

infection is shaped by variation in parasite exposure and host condition in addition to 

genetic variation in parasite resistance, it is important to distinguish the relative 

importance of all three factors. This has important consequences for the 

interpretation of relationships between natural infection and experimental resistance 

across populations. Second, environmental factors such as temperature and resource 

availability may influence the expression of parasite resistance. If genotypes from 

different host populations respond differently to parasite infection with changes in 

the environment and/or populations vary in abiotic environment, then the strength 

and direction of parasite-mediated selection may also differ among populations, 

which in turn can mediate population divergence. Third, experiments should 

incorporate spatial heterogeneity of parasite populations. Particular combinations of 
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host and parasite genotype can influence the outcome of host-parasite interactions. At 

the population level, host and parasite genotypes can interact via local 

(mal)adaptation, and these spatial patterns can impact the evolution and divergence of 

parasite resistance and the immune response. Lastly, we must seek to understand how 

host divergence resulting from parasite-mediated selection could eventually lead to 

host reproductive isolation and speciation.      

 

8.18.18.18.1    What is the relative contribution of What is the relative contribution of What is the relative contribution of What is the relative contribution of parasite resistance,parasite resistance,parasite resistance,parasite resistance,    parasite parasite parasite parasite 

exposure and host condition to natural infection? exposure and host condition to natural infection? exposure and host condition to natural infection? exposure and host condition to natural infection?     

 

All three infection experiments were carried out under common garden conditions. 

Fish from different populations were maintained at identical temperatures and were 

exposed to a standardised dose of parasite from the same parasite population. The 

advantage of this method is that it allows me to ascribe, at least partially, any variation 

in resistance to genetic differences among populations, even when the precise 

mechanisms conferring resistance are not known. However, it remains to be seen 

whether the variation in resistance to the three macroparasite species that I observed 

among the five stickleback populations is repeatable under more natural infection 

scenarios, for example in transplant experiments. This relates to a general issue in the 

evolutionary ecology of host-parasite interactions, one that has received surprisingly 

little attention: what is the relative role of host genetics and exposure in determining 

natural infection status (Grosholz, 1994; Little & Ebert, 2000; Poulin, 2007b)? If 

populations that differed significantly in infection levels in a common garden 

exposure fail to show such differences in a natural exposure, it argues against the 

evolutionary (adaptive) significance of the variation in parasite resistance. Instead, it 

suggests that the rate of parasite exposure is more important in determining infection 

than host genetics (Scott, 1991; Karvonen et al., 2004a; Jansen et al., 2010). However, 

even in artificial infection experiments the infection dose, a proxy for exposure rate, 

can alter the relative resistance of different host genotypes (Ben-Ami et al., 2008; but 

see Osnas & Lively, 2004).  

 

This issue also reflects a limitation of the method I have used throughout this thesis 

of correlating natural infection with experimental resistance across populations. As I 
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emphasised in the discussion of Chapter 4, the sign of this relationship leads to 

opposite conclusions about the importance of host genetics in shaping infection levels 

in the wild. If the correlation is positive, it suggests that environment (i.e. parasite 

exposure) contributes more to infection, whereas a negative correlation suggests that 

host genetics (i.e. resistance) contributes more infection. In reality, the situation is 

likely to be considerably more complex, with both host resistance and parasite 

exposure shaping parasite distribution (Little, 2002; Wilson et al., 2002). An 

interesting possibility is if the sign of the relationship between experimental 

resistance and natural infection differs within and across populations. For instance, if 

experimental resistance is positively correlated with natural infection across 

populations, it indicates that the local rate of parasite exposure (assumed to be a proxy 

for the strength of parasite-mediated selection) has shaped investment in parasite 

resistance. However, within a population, more resistant genotypes may still have 

lower infection levels than more susceptible genotypes. Then it is simply the case that 

populations exposed to a higher abundance or prevalence of a parasite species on 

average are more resistant than those populations with lower levels of infection.  

   

The discrepancy between exposure and resistance highlights why natural infection 

status cannot be used to infer differential host resistance to parasites (Goater & 

Holmes, 1997). Another reason is that resistance to parasites is likely to be influenced 

by host condition. Hosts in worse condition may be more likely to become infected, 

which in turn may reduce host condition, creating a vicious cycle (Beldomenico & 

Begon, 2010). In fact, this effect may be even override the contribution of genetic 

variation in host resistance (Krist et al., 2004). Therefore, interpreting the relationship 

between natural infection levels and experimental levels of resistance across 

populations becomes very difficult indeed. Disentangling the relative role of 

resistance, parasite exposure and host condition in determining infection status of 

individual hosts, and how this relationship may vary across different host populations, 

strikes me as a particularly important and potentially fruitful area of further work 

because it integrates concepts from disease ecology, ecological immunology and host-

parasite coevolution.  
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8.28.28.28.2    How does variation in theHow does variation in theHow does variation in theHow does variation in the    abiotic environment influence hostabiotic environment influence hostabiotic environment influence hostabiotic environment influence host----

parasite interactions? parasite interactions? parasite interactions? parasite interactions?     

 

Parasite exposure forms just one component of the environment. It is becoming 

increasingly clear that small changes in abiotic environmental factors such as 

temperature and resource availability can dramatically alter the expression of parasite 

resistance and the costs of infection (Lazzaro & Little, 2009). In other words, the 

outcome of a host-parasite interaction may be context-dependent. The environment 

can have an overall effect on parasite resistance, independent of host genotype. For 

example, Lambrechts et al. (2006a) have shown that food quality (concentration of 

glucose) has a significant effect on the resistance of the mosquito Anopheles stephensi 

to the malaria parasite Plasmodium yoelii yoelii. However, host genotypes may also 

respond differently to infection in different environment, such that the relative fitness 

of host genotypes varies across environments. For instance, Mitchell et al. (2005) 

exposed clones of Daphnia magna to a bacterial parasite, Pasteuria ramosa, at 4 

different temperatures and found that the rank order of resistance of clones changed 

with increasing temperature. Such host genotype-by-environment (GxE) interactions 

are commonly invoked as a mechanism maintaining genetic variation in traits within 

a population because, provided that the environment is variable, no genotype will be 

universally fit (Schlichting & Pigliucci, 1998). Nevertheless, the extent to which GxE 

maintains genetic variation in parasite resistance and immune response in animal-

parasite interactions is only just beginning to be appreciated (Lazzaro & Little, 2009). 

GxE interactions are typically studied within populations, but they may be just as 

important in maintaining variation in parasite resistance among populations. If the 

abiotic environment differs among populations and the relative resistance of host 

genotypes from different populations changes with environment, then the strength 

and direction of parasite-mediated selection may vary in different environments 

(populations). Importantly, spatially heterogeneous selection associated with the 

environment could contribute to the genetic divergence of parasite resistance and 

immune response (Thompson, 2005; Laine & Tellier, 2008). 

 

There are few studies that have examined the effects of the environment on parasite 

resistance in vertebrate-macroparasite interactions, and even fewer that test for the 
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presence GxE interactions. There is one exception that is relevant to this thesis. 

Kolluru et al. (2006) found that carotenoid availability (a measure of diet quality) had a 

significant effect of on the resistance of male guppies, Poecilia reticulata, to 

Gyrodactylus turnbulli. Stickleback resistance to Gyrodactylus gasterostei may 

similarly depend on carotenoid availability. If stickleback populations on North Uist 

differ in resource availability generally, and carotenoid availability specifically, then 

variation in natural infection with Gyrodactylus in the wild may be governed partially 

by the environment. As I mentioned in Chapter 7, there is some anecdotal evidence 

that resource availability varies substantially among lochs on North Uist. The 

availability of carotenoids in phytoplankton certainly varies (A. MacColl, unpublished 

data). Therefore, this environmental factor may be important in modifying the 

outcome of stickleback-Gyrodactylus interactions in the North Uist system. This idea 

could be tested experimentally by conducting infection experiments at different but 

realistic levels of carotenoid/resource availability across a number of stickleback 

populations. Importantly, if GxE interactions exist, then variation in carotenoid 

availability may alter the direction and strength of Gyrodactylus-mediated selection, 

and potentially lead to the evolution of quantitatively different patterns of resistance 

among host populations. Similar environmental factors should be tested for an 

interaction with resistance to Diplostomum and Schistocephalus. Ultimately, 

reciprocal transplant experiments are necessary to partition the environmental and 

genetic components of variation in parasite resistance (Nuismer & Gandon, 2008).     

    

8.8.8.8.3333    How doesHow doesHow doesHow does    genetic genetic genetic genetic variation variation variation variation within and among within and among within and among within and among parasite populationparasite populationparasite populationparasite populationssss    

affect hostaffect hostaffect hostaffect host----parasite interactionsparasite interactionsparasite interactionsparasite interactions????    

    

In this thesis I have focused exclusively on the evolution and divergence of host 

populations, neglecting the potential impact of variation in the parasite population on 

the expression of host resistance and the immune response: a standard parasite 

population (genotype) was used in all three infection experiments. However, variation 

in host infectivity and virulence among parasite genotypes may be equally as extensive 

as variation in parasite resistance among host genotypes. In some animal host-parasite 

systems specific combinations of host and parasite genotypes (GhxGp) are known to 

strongly affect the outcome of host-parasite interactions (Carius et al., 2001; 
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Mackinnon et al., 2002; Lambrechts et al., 2005). In fact, this specificity is a 

prerequisite for negative frequency dependent models of host-parasite coevolution 

(Agrawal & Lively, 2002). Interestingly, there is evidence for GhxGp effects in the 

stickleback-Diplostomum pseudospathaceum interaction. Rauch et al. (2006a) carried 

out a cross-infection experiment with five F2 full-sib stickleback families and five 

clonal lines of D. pseudospathaceum and found that the number of parasites 

established was dependent on the combination of host and parasite genotypes. This 

study provides a rare example of the potential for coevolution in a vertebrate-

macroparasite interaction. It would be worthwhile conducting similar experiments 

within the five stickleback populations studied here to assess the existence and 

generality of host-parasite specificity. This may be particularly feasible for 

Gyrodactylus, since clonal lines of this parasite can be established by infecting 

individual fish with a single parasite from a donor fish.          

 

Host-parasite specificity is usually dealt with at the within-population level. At the 

between-population level, GhxGp interactions are manifested as local adaptation of the 

host or parasite population (Kaltz & Shykoff, 1998; Greischar & Koskella, 2007). If a 

host population is locally adapted to its parasite population, it is unlikely to show 

universal resistance to allopatric parasite populations and vice versa. However, it is 

important to distinguish between host local adaptation to a parasite population and 

host adaptation to the local parasite community. Local adaptation is a genetic 

interaction between host and parasite populations, whereas host adaptation to the 

local parasite community constitutes a more ecological interaction, as it links the 

differences in the abundance and/or prevalence of a particular, or multiple, parasite 

species to (genetic) variation in parasite resistance and immune response across host 

populations. Both types of host adaptation can maintain geographic variation in host 

traits. In this thesis, I was interested in the latter type of interaction. As I have 

explained in Chapter 4-6, the approach of correlating natural infection levels and 

experimental resistance assumes that differences in parasite abundance and 

prevalence reflect differences in parasite-mediated selection.  

 

It also assumes that all host populations are exposed to parasite populations that are 

genetically identical. This second assumption may be unrealistic, considering that 

spatial variation in host-parasite coevolution is likely to lead to the divergence of both 
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host and parasite populations. Nevertheless, for some parasite species this assumption 

seems justified. For instance, a recent study by Louhi et al. (2010) compared the 

genetic structure of Diplostomum pseudospathaceum cercariae collected from four 

different snail populations covering a geographical range of 300km. In spite of the 

large distance separating parasite populations, no genetic structure was detected 

(Louhi et al., 2010). Therefore, parasite species with complex life cycles, whose 

dispersal is mediated by a highly motile definitive host (such as a bird), may be more 

genetically homogeneous than directly transmitted parasite species over the same 

geographical distance (Criscione & Blouin, 2004; Barrett et al., 2008). Since North Uist 

is a small island (~300km2), this raises the possibility that North Uist stickleback 

populations encounter genetically similar parasite populations, at least for those 

parasite species with a bird as a definitive host (e.g. Diplostomum gasterostei and 

Schistocephalus solidus). Weak genetic differentiation among parasite populations 

may in turn facilitate host local adaptation rather than parasite local adaptation 

(Gandon et al., 1996; Kaltz & Shykoff, 1998).           

 

Local adaptation studies should therefore be carried out to gain a better 

understanding of how coevolutionary dynamics may vary in space. Reciprocal cross-

infection experiments involving a number of stickleback populations and parasite 

populations can reveal spatial heterogeneity among parasite populations as well the 

circumstances in which the variation in resistance to Gyrodactylus, Diplostomum and 

Schistocephalus among host populations observed here is repeatable. However, local 

adaptation can only be detected in naturally coevolving host-parasite interactions, 

since host populations have to be exposed to both sympatric and allopatric parasite 

populations. In all three infection experiments I intentionally removed the possibility 

of close coevolution between host and parasite populations by using either a non-

native parasite species (Gyrodactylus gasterostei instead of Gyrodactylus arcuatus, and 

Diplostomum spathaceum instead of Diplostomum gasterostei) or a non-native 

parasite population (Schistocephalus solidus from Nottingham as opposed to from 

North Uist), to obtain a general overview of spatial variation in parasite resistance and 

the immune response. Local adaptation studies can complement this approach and 

offer an insight into the evolutionary significance of any observed variation among 

populations in host traits. 
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8.8.8.8.4444    CCCCan parasites drive an parasites drive an parasites drive an parasites drive reproductive isolation reproductive isolation reproductive isolation reproductive isolation of host populations?of host populations?of host populations?of host populations?    

 

Ultimately, divergent selection exerted by parasites may lead to reproductive isolation 

and host speciation. This idea was first formulated by Haldane over 60 years ago 

(Haldane, 1949), but the link between parasites and host speciation is still poorly 

understood (Summers et al., 2003). In recent years, it has been well-established that 

ecologically-based divergent selection can drive speciation (Schluter, 2000; Rundle & 

Nosil, 2005). The majority of work on this topic has focused on the role of 

competition (Pfennig et al., 2007) and predation (Rundle et al., 2003; Nosil & Crespi, 

2006). However, given their ubiquity and strong effects on host fitness, parasites 

constitute an equally important agent of selection. The results in this thesis illustrate 

why the three-spined stickleback forms a good model for testing hypotheses of 

parasite-driven reproductive isolation: there are numerous replicate populations that 

harbour different parasite communities, there is pronounced population divergence 

in host resistance and immune response, and life histories are extremely variable. A 

few studies have attempted to identify traits mediating parasite-driven reproductive 

isolation in sticklebacks (Eizaguirre et al., 2009a; MacColl, 2009b; Matthews et al., 

2010a). Functional traits that are under both divergent natural selection and divergent 

sexual selection (‘magic traits’) form particularly strong candidates because they can, 

in theory, accelerate speciation (Gavrilets, 2004).  

 

Two putative ‘magic traits’ in sticklebacks are body size (MacColl, 2009b) and MHC 

genotype (Eizaguirre et al., 2009a; Matthews et al., 2010a). Body size is known to be 

under strong divergent natural selection (Nagel & Schluter, 1998; Bolnick & Lau, 2008) 

and appears to form the basis for assortative mating in several stickleback systems 

(McKinnon et al., 2004). Similarly, MHC diversity may be the product of divergent 

natural selection (Wegner et al., 2003) and has been shown to play a role in mate 

choice (Reusch et al., 2001). Provided that parasites affect the evolution of either body 

size, MHC diversity, or both, then divergent parasite-mediated selection may 

eventually lead to reproductive isolation. This is another one of the reasons why I was 

motivated to examine the correlation between juvenile growth rate and parasite 

resistance: if increased investment in resistance is associated with slower growth, then 

parasites have the potential to drive reproductive isolation in the North Uist system, 
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so long as assortative mating is based on body size. Unfortunately, no such pattern 

was found. It would be interesting to follow up the work in Chapter 7 by investigating 

the relationship between growth rate and parasite resistance across more stickleback 

populations. Furthermore, reciprocal mate choice experiments should be carried out 

to determine which traits mediate assortative mating in the North Uist system. Given 

the dramatic differences between populations in adult size of wild-caught sticklebacks 

(A. MacColl, unpublished data), body size forms a strong candidate. Spatial variation 

in MHC diversity should also be characterised (Wegner et al., 2003; Matthews et al., 

2010a).       

 

Assortative mating based on body size or MHC is a form of pre-zygotic reproductive 

isolation (Coyne & Orr, 2004). Parasites could also drive post-zygotic reproductive 

isolation. For example, if hybrid genotypes are less resistant to parasites (have lower 

fitness) than either locally adapted parental genotype (Moulia, 1999; Summers et al., 

2003), selection against hybrids will reinforce the genetic differences between parental 

populations (Schluter, 2000). Artificial infection experiments incorporating parental 

and hybrid crosses may help understand the quantitative genetic basis of parasite 

resistance and reveal whether hybrid genotypes suffer from lower resistance. Since 

divergent sympatric and allopatric stickleback populations can be readily hybridised, 

this is a feasible approach to studying the role of parasites in post-zygotic reproductive 

isolation. However, hybrid susceptibility is by no means the dominant pattern in 

studies that have compared parasite resistance of parental and hybrid genotypes from: 

hybrid resistance (heterosis) and hybrid dominance are also common (Moulia, 1999; 

Wolinska et al., 2008). The latter two scenarios may be less likely to facilitate 

speciation in rapidly diverging populations. A final mechanism through which 

parasites can contribute to reproductive isolation is selection against migrants, and 

this has been demonstrated experimentally in one saltwater stickleback population on 

North Uist (MacColl & Chapman, 2010). However, in general, empirical tests of the 

link between parasite-mediated selection and host reproductive isolation are lacking. 

This is an underexplored area of research that offers exciting opportunities to study 

the role of parasites as agents of diversification.   
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8.58.58.58.5    Concluding remarksConcluding remarksConcluding remarksConcluding remarks    

 

The comparative approach I have adopted in this thesis has shed some light onto the 

ecology and evolution of stickleback-macroparasite interactions specifically, and 

vertebrate-macroparasite interactions generally. Above all, it has highlighted the 

importance of considering spatial variation in host traits when studying parasite-

mediated selection. However, as emphasised above, there are many important issues 

that remain to be addressed. Perhaps the most pressing of these are how variation in 

host traits, such as parasite resistance and the immune response, observed in the lab 

translates into fitness differences among hosts in the wild, and how variation in the 

abiotic environment influences the expression of parasite resistance among 

populations. Incorporating multiple, geographically isolated host populations and 

their parasite populations into future studies will undoubtedly help with this task.         
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