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ABSTRACT 

 
Many geological formations consist of crystalline rocks that have very low matrix 

permeability but allow flow through an interconnected network of fractures. 

Understanding the flow of groundwater through such rocks is important in 

considering disposal of radioactive waste in underground repositories. A specific 

area of interest is the conditioning of fracture transmissivities on measured values 

of pressure in these formations. This is the process where the values of fracture 

transmissivities in a model are adjusted to obtain a good fit of the calculated 

pressures to measured pressure values.   

While there are existing methods to condition transmissivity fields on 

transmissivity, pressure and flow measurements for a continuous porous medium 

there is little literature on conditioning fracture networks. Conditioning fracture 

transmissivities on pressure or flow values is a complex problem because the 

measured pressures are dependent on all the fracture transmissivities in the 

network.  

This thesis presents two new methods for conditioning fracture transmissivities in 

a discrete fracture network on measured pressure values. The first approach 

adopts a linear approximation when fracture transmissivities are mildly 

heterogeneous; this approach is then generalised to the minimisation of an 

objective function when fracture transmissivities are highly heterogeneous. This 

method is based on a generalisation of previous work on conditioning 

transmissivity values in a continuous porous medium.  

The second method developed is a Bayesian conditioning method. Bayes’ 

theorem is used to give an expression of proportionality for the posterior 
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distribution of fracture log transmissivities in terms of the prior distribution and 

the data available through pressure measurements. The fracture transmissivities 

are assumed to be log normally distributed with a given mean and covariance, and 

the measured pressures are assumed to be normally distributed values each with a 

given error. From the expression of proportionality for the posterior distribution 

of fracture transmissivities the modes of the posterior distribution (the points of 

highest likelihood for the fracture transmissivities given the measured pressures) 

are numerically computed. 

 Both algorithms are implemented in the existing finite element code NAPSAC 

developed and marketed by Serco Technical Services, which models groundwater 

flow in a fracture network.  
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1 – INTRODUCTION AND LITERATURE 

REVIEW 

 

 

Many geological formations consist of crystalline rocks that have very low 

permeability but allow flow through an interconnected network of fractures. 

Understanding the flow of groundwater through such formations is important to a 

number of industries worldwide, including the nuclear and hydrocarbon 

industries. This thesis focuses on developing methods for assigning 

transmissivities to the fractures in a fracture network model so as to obtain a good 

match to quantities (such as pressure) that can be measured at boreholes. Here we 

shall concentrate on applications to the nuclear industry, though our conditioning 

methods can be exploited in other areas of application. 

In many countries the civil nuclear industry is investigating the feasibility of long 

term disposal of radioactive waste in repositories located deep in geological 

formations consisting of mostly crystalline rock. The main transport route to the 

surface environment, if waste were to leak from its container, would be through 

groundwater flow.  Crystalline rock has a very low permeability and is frequently 

fractured. In this setting, groundwater flow occurs through the network of 

fractures. When there is no interaction between the flow in the fractures and the 

surrounding rock matrix, this is known as a discrete fracture network (DFN). 

In order to develop a DFN model we borrow terminology and ideas that describe 

flow in a continuous porous medium (CPM). Indeed, CPM models can be used as 
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an alternative to DFN models when modelling the area surrounding a nuclear 

waste repository. Thus, this chapter explains the basics of flow in a CPM and also 

discusses the merits of DFN and CPM approaches to modelling groundwater flow 

in geological rocks. 

A DFN approach is most suitable for modelling flow in crystalline rock in the 

area close to a nuclear waste repository because at this scale flow will primarily 

occur through fractures in the rock (whose location may also be known). The 

basic theory and modelling assumptions of flow in a single fracture and in a DFN 

are described. The generation of a DFN and its connectivity is then discussed in 

this chapter. With a DFN in place one must consider how to solve for the pressure 

within this complicated geometry. Both finite difference and finite element 

methods can be exploited, though in this thesis we focus on a finite element 

formulation of the problem which solves for a pressure distribution across the 

DFN. It is these pressures that should agree with available pressure measurements 

for the model to be considered as an accurate representation of the physical 

process. The flow in the network can be obtained by applying Darcy’s law to the 

pressure values in the DFN. Though not part of this thesis, when flow has been 

solved for in the DFN particle transport calculations can also be made. 

When a DFN model has been generated, the model parameters (fracture 

transmissivities) should be calibrated so that the calculated pressures at 

measurement points agree with measured pressure values. This conditioning 

procedure is similar to existing inverse methods. These inverse methods condition 

transmissivity fields on measured transmissivities, pressures or flows in CPMs. 

However, there are no existing methods for conditioning fracture transmissivities 
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in a DFN and this is the purpose of the newly proposed conditioning methods 

presented in this thesis. 

Our problem can be summarised in a continuous setting (before discretisation of 

the domain) as follows 

 

 
( )

( )

min

Determine a field   such that we find,

  ,

under the constraint,
, in ,

subject to appropriate boundary conditions,
∇⋅ ∇ Ω

M M

T

P x - P

T P = 0
 (1.1) 

 
 

where T is a vector of fracture transmissivities (containing hundreds or even 

thousands of fracture transmissivities), MP  is a vector of measured pressures 

which are to be matched, P  is a vector of calculated pressures, Mx  denotes the 

measurement points, Ω  is the domain of the fracture network and ⋅  denotes the 

Euclidean norm. Generally, there are far fewer pressure measurements than 

fracture transmissivities. Boundary conditions are imposed on the boundaries of 

the problem domain Ω  and on fracture intersections and are fully explained in 

chapter 2. The constraint in (1.1) is the steady state groundwater flow equation 

and is formally introduced in the next section. 

Section 1.1 of this chapter describes the basics of flow in a CPM and introduces 

the necessary terminology and equations. Section 1.2 discusses the different 

approaches that can be used to model the area surrounding a nuclear waste 

repository. The merits of these approaches and the scales on which they are most 

relevant are discussed and it is explained why we take a DFN approach. Thus, 

section 1.3 focuses on a DFN approach and describes how one can be generated 
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with given flow properties. The numerical methods that can be utilised to solve 

for pressure distributions and flow in a DFN are discussed in section 1.4. Finally, 

section 1.5 discusses how groundwater flow models are conditioned and 

introduces inverse methods for CPMs from which we borrow many ideas for our 

new conditioning methods for conditioning fracture transmissivities in a DFN.  

 

1.1 – INTRODUCTION TO FLOW IN A POROUS MEDIUM 

 

This section provides an introduction to the basic concepts of flow in a continuous 

porous medium relevant to the work in this thesis. A more detailed description 

can be found in either Bear (1972) or Delleur (1999). A porous medium is a 

medium that is a solid material containing pores (or void spaces) through which 

fluid can flow, provided the pore space is interconnected. The porosity n , of a 

material is defined as the volume of the pore space in the material pV , divided by 

the total volume tV , of both pores and solid material, i.e. , 

  

 p

t

V
n

V
= . (1.2) 

 

We now consider the flow of groundwater through a porous medium. A measure 

of the compressibility of a fluid is given by its isothermal compressibility β . At a 

constant mass and at constant room temperature, the isothermal compressibility of 

water wβ  (Domenico and Schwartz 1990) has a very low value and thus it is 

common in groundwater flow calculations to assume that water is incompressible. 
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Hydraulic head h , is a common measurement used in hydrogeology and is often 

used instead of pressure measurements. It is defined at a point as 

 

 GPh Z
gρ

= + , (1.3) 

 

where Z  is the elevation head, which is the vertical distance of the reference 

point at which h  is measured above a datum point, ρ  is the density of water, GP  

is the groundwater pressure and g  is gravitational acceleration. The term gρ  

represents the specific weight of water. Equation (1.3) is more commonly stated 

as 

 

 h Z= +Ψ , (1.4) 

 

where Ψ is called the pressure head. Hydraulic head has the dimension of length. 

Details of this relationship are explained in Bear (1972). It is also common in 

groundwater calculations to use the residual pressure P  defined as 

 

 .GP P gZρ= +  (1.5) 
 
 

The dynamic viscosity μ  of a fluid gives a measure of the resistance of the fluid 

to flow. For scaler values, it is equal to the ratio of shearing stress τ  to the 

velocity gradient in the fluid. For a fluid flowing past a solid boundary, the 

shearing stress is defined as the stress applied to the fluid which acts in a parallel 
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direction to the boundary. The velocity gradient is denoted xdV
dz

, where x  is the 

direction of the fluid flow and z is the axis normal to the boundary. Thus, the 

dynamic viscosity μ  is defined as 

 

 xdV
dz

μ τ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (1.6) 

 

It should be noted that this explaination assumes scaler values. For three-

dimensional flow, the shearing stress tensor , , 1,..3,ij i jτ =  is related to the 

components of the velocity gradient by 

 

 , , 1,..,3.i
ij

j

dV i j
dx

τ μ
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 (1.7) 

 
 

 The dynamic viscosity μ  is related to the kinematic viscosity υ , by the 

relationship 

 

 μ ρυ= . (1.8) 
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1.1.1 - THE CONSTITUTIVE RELATIONSHIP AND GOVERNING 

EQUATION FOR GROUNDWATER FLOW 

 

 

We start this section by defining some properties of a CPM with respect to its 

hydraulic conductivity. A CPM is said to be homogeneous with respect to its 

hydraulic conductivity if the hydraulic conductivity is independent of position in 

the CPM. Otherwise the CPM is heterogeneous with respect to the hydraulic 

conductivity. A CPM is said to be isotropic with respect to its hydraulic 

conductivity if the hydraulic conductivity is independent of direction within the 

medium. If the hydraulic conductivity varies with direction at any point within the 

CPM then the CPM is said to be anisotropic. 

One of the most important equations in the study of groundwater flow is Darcy’s 

law. This provides a constitutive relationship of the volumetric flow rate, and the 

head gradient; written in 3D form, we have 

 

 .h∇q = -K  (1.9) 

 

where ∇  is the three dimensional gradient operator, q  represents the three 

dimensional volumetric flow rate per unit area, K  is a 3 3×  matrix, which we 

assume is written as KK = I , where K  is a coefficient of proportionality, called 

the hydraulic conductivity, with units of length divided by time, and I  is the 3 3×  

identity matrix. Thus, equation (1.9) represents an isotropic, homogeneous 

medium. For the case of a heterogeneous, anisotropic CPM, K  would be a full 

matrix. Darcy (1856) performed experiments on the filtration of water through 
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sand columns and discovered that the rate of flow through a sand column was 

proportional to the loss of head and empirically stated Darcy’s law. It is possible 

to derive Darcy’s Law from the Navier-Stokes equations (Neuman 1977). 

Furthermore, Bear (1972) gives derivations of Darcy’s law for flow in capillary 

tube models, pipes and open channels. A generalisation of Darcy’s law describing 

the flow of a fluid in a porous medium when the fluid has a variable density (and 

viscosity) can be found in Bear (1972) or Delleur (1999).  

Darcy’s law (1.9) defines the hydraulic conductivity K  as the volumetric flow rate 

per unit head gradient. Hydraulic conductivity describes the properties of both the 

medium and the fluid flowing through it and is expressed as 

 

 k gK ρ
μ

= , (1.10) 

 

where k  is the intrinsic permeability which is the fundamental property 

describing the ease with which a porous medium will transmit a fluid and has 

units of length squared. Different empirical approximations have been suggested 

such as 

 

 2k Cd= , (1.11) 

 

by Krumbein and Monk (1943), where d  is the average pore diameter and C  is 

an empirical constant dependent upon packing and sorting of the pores. Other 

empirical approximations have been suggested, for example, by Archie (1942). 

The intrinsic permeability is dependent on the geometry of the porous medium.  
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When considering layers of porous media, it is more common to use the term 

transmissivity T  which describes the ease with which a fluid moves through a 

large porous medium body, such as a horizontal or layered aquifer where the 

thickness of the aquifer is small compared to its lateral extent. If the z-axis is 

taken to be perpendicular to the direction of flow, the transmissivity T  is defined 

as the product of the average (over a vertical line parallel to the z axis) hydraulic 

conductivity K  and aquifer thickness b . Accordingly, 

 

 T Kb= , (1.12) 

where 

 ( )
0

.
b

K K z dz= ∫  (1.13) 

 
In a homogeneous, isotropic aquifer (1.12) simplifies to 

 

 .T Kb=  (1.14) 

 

Transmissivity has units of length squared divided by time. It is useful to use 

transmissivity when describing fracture properties because b  is taken to be the 

fracture aperture (distance between the walls of the fracture). 

We point out that there there is a range of validity of Darcy’s law. The limit of 

validity of Darcy’s law can be stated in terms of the Reynolds number Re  

 

 Re VD
υ

= , (1.15) 
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where V  is the groundwater velocity, υ  is the kinematic viscosity of the 

groundwater and D  is a representative length (often taken to be equal to the 

average grain diameter of the CPM (Bear and Verruijt 1987). The Reynolds 

number is a dimensionless number that expresses the ratio of inertial to viscous 

forces acting on a fluid. It can be used as a criterion to distinguish between 

laminar flow occurring at low velocities and turbulent flow at higher velocities. 

Deviations from Darcy’s law occur when inertial forces become effective and 

when turbulent flow occurs. The Reynolds number at which Darcy’s law fails is 

dependent on the geometry of the porous medium (Lindquist 1933; Bakhmeteff 

and Feodoroff 1937; Schneebeli 1955). It is generally accepted that Darcy’s law is 

valid as long as the Reynolds number based on average grain diameter does not 

exceed some value between 1 and 10. Due to the low velocities of groundwater in 

crystalline rock fractures, the Reynolds number will be less than one and it is safe 

to assume that Darcy’s law holds as long as there are no large flow sources or 

sinks present.   

 

1.1.3 - THE GROUNDWATER FLOW EQUATION 

 

The main equation used to describe the flow of groundwater through a CPM is the 

groundwater flow equation. It is derived by combining the continuity equation 

with Darcy’s law (1.9). We consider an incompressible fluid (groundwater) in 

steady state conditions. The continuity equation is given as 

 

 ,∇⋅q = 0  (1.16) 
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where ⋅  denotes the dot product. Then inserting Darcy’s law (1.9) into the 

continuity equation (1.16) we obtain the steady state groundwater flow equation, 

namely, 

 

 ( )( )h∇⋅ ∇K = 0 . (1.17) 

 

In a fracture with a constant aperture b  (1.17) can be written in terms of the 

residual pressure P  as 

 

 ( )1 .P
gρ

⎛ ⎞
∇ ⋅ ∇⎜ ⎟

⎝ ⎠
T = 0  (1.18) 

 
 

For an alternative version of the groundwater flow equation derived for the 

transient case with a compressible fluid, see Bear and Verruijt (1987) or Delleur 

(1999). 

The continuum approach to solving groundwater flow problems breaks down at 

the microscopic level. That is, when looking at a small enough volume, the 

concept of a porous medium is no longer valid. At the microscopic level, a point 

is either located in a pore or is part of the solid material and the porosity (1.2) 

becomes either 1 or 0. Similarly, all the subsequent equations in this section break 

down. This ambiguity is avoided by considering only macroscopic properties, 

where the average behaviour is described. In this setting, it does not matter 

whether a point belongs to the solid space or the pore space. This approach was 

addressed by Bear (1972) who developed the concept of a representative 

elementary volume (REV). The size of the REV is not determined but is assumed 
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that it is much larger than the pore scale and much smaller than the scale of the 

porous medium. Macroscopic variables, such as K , are defined as average values 

over the REV. 

 

 

1.2 - REPRESENTATION OF THE GEOLOGICAL AREA 

SURROUNDING UNDERGROUND NUCLEAR WASTE 

REPOSITORIES 

 

 

When considering nuclear waste disposal in underground repositories the main 

transport route to the surface environment, if waste were to leak from its 

container, would be through groundwater flow. The simplest possible approach is 

to model the surrounding rock as a CPM with homogeneous hydraulic 

conductivity. In this case the steady state groundwater flow equation (1.17) would 

be solved for the pressure at each point in the medium along with appropriate 

boundary conditions (such as constant pressure at boundaries or prescribed inflow 

to a boundary) and possibly flow source/sink terms in the domain. The approach 

of approximating the surrounding geological area as a single continuum with a 

homogenous hydraulic conductivity field is not sufficiently accurate as the 

surrounding area will consist of different media, each with separate hydraulic 

conductivity values and separate properties such as fracturing. 

Alternatively, models have been developed where different porous media can be 

modelled by assuming that the hydraulic conductivity field is heterogeneous and 

using the appropriate version of the groundwater flow equation (1.17) to solve for 
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the flow (Bear and Verruijt 1987). This approach assumes that there is a known 

analytic value for each term of the transmissivity tensor. The drawback of this 

CPM approach is that it cannot model small individual fractures in the domain, 

which despite being small can provide a key route for groundwater flow and 

dispersion of waste particles. 

The choice of a CPM or DFN model is dependent on the scale of the problem and 

the geometry of the fracture system. CPM models should be used for rock masses 

with no fractures or with many fractures. The behaviour for a rock mass with 

many fractures is established through equivalent properties (Marsily 1997; Adler 

and Thovert 1999; Bogdanov, Mourzenko et al. 2003); that is, properties that are 

averaged over a given volume or area. CPM models fail to account for large scale 

fractures in a rock mass which will provide major flow routes through the rock. 

The DFN approach is most suitable for moderately fractured rock masses. DFN 

models have the advantage that they correctly describe the physical nature of flow 

in a fractured rock. However, they are limited by the fact that the true fracture 

geometry and hydraulic properties are largely unknown. A DFN model can be 

combined with a CPM model where flow and solute transfer occurs between the 

boundaries of the CPM and the DFN (Grisak and Pickens 1980; Huyakorn, Lester 

et al. 1983). This approach is best used when there are a small number of large 

scale fractures in the domain.   

The scale at which a site is modelled will determine the amount of fracturing that 

is included in the numerical model. Fractures exist on a wide range of scales from 

10-6 m to 104 m. Throughout this scale range the fractures have a significant effect 

on flow properties.  
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Bear (1993) defined four scales in a fractured medium where different approaches 

can be applied. They are the very-near field scale, the near field scale, the far field 

scale and the very-far field scale. The very-near field scale is where flow and 

solute transport is dominated by a single fracture. At the near field scale, flow and 

transport are dominated by a few well defined fractures. The interaction between 

the fractures and the rock matrix may play a role. In the near field scale, major 

fractures are usually defined deterministically and minor fractures are determined 

stochastically. At the far-field scale, multiple continua are used to represent the 

rock matrix, the major fractures and the minor fractures. At the very-far-field 

scale, a single continuum is used to represent the fractured medium with 

equivalent physical properties representing the average value over the medium. 

The modelling of fractured crystalline rock as a DFN as investigated in this thesis 

is at the near field scale. When using a near field approach it is common practice 

for large scale fractures to be inserted into a model deterministically, but the 

majority of fractures will be treated stochastically (Hartley, Holton et al. 2008). 

Selroos et al. (2001) suggested that at a large regional scale, flow should be 

modelled by a stochastic continuum approach, originally proposed by Neuman  

(1987), whilst at a smaller site scale a DFN model should be used. These two 

approaches can then be combined into one model. 

The stochastic field approach is based on the fact that detailed field measurements 

in fractured rocks represent volumes which are often intersected by few fractures. 

It is argued that it is not feasible to interpret these measurements using DFN 

models. Instead, the tests are interpreted by treating the rock as a locally uniform 

continuum. This results in bulk transmissivities that vary erratically from one test 
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interval to another. Thus, it is best if measurements can be taken at regular 

intervals. 

Potential sites for underground nuclear waste repositories have different rock 

types such as clay (which is not fractured), granitic or crystalline rock 

(Witherspoon 1991; Witherspoon 1996; Witherspoon and Bodvarsson 2001; 

Witherspoon and Bodvarsson 2006). This thesis focuses on crystalline rock where 

data is available to us from such sites.  

The exchange of solute mass (through molecular diffusion) between fluid in the 

fractures and fluid in the rock matrix is called matrix diffusion. If fractures were 

to interact with the rock matrix it is through matrix diffusion. In radioactive waste 

disposal, the study of matrix diffusion involves the exchange of radionuclides 

from the fractures to the rock matrix. Grisak and Pickens (1980) concluded that 

matrix diffusion is negligible in solute transport studies in fractured media if the 

rock matrix has a very low porosity and, consequently, there is very little storage 

space. 

Crystalline rock is a very impermeable material and is frequently fractured. While 

there will be an interaction between flow in fractures and the surrounding rock 

matrix in other rock types, a good modelling assumption for crystalline rock is 

that groundwater flow occurs only through the interconnected fracture network. 

This assumption is based on the fact that dense crystalline rock has a small 

porosity value (Freeze and Cherry 1979) and from this we conclude that matrix 

diffusion does not play an important role. Therefore, crystalline rock can be 

modelled as a DFN where the rock matrix is assumed to be impermeable and the 

fractures do not interact with it in any way. 
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Generally, it is assumed that the fractures have a higher transmissivity than the 

rock matrix and provide the main transport route for groundwater. Fracture 

networks are also of interest when fracture transmissivities are lower than that of 

the surrounding rock matrix. They then act as potential barriers to groundwater 

flow. This area has been studied by Neuman and Simpson (1985) and Neuman 

and Neretnieks (1990). 

 

1.3 – GENERATION OF A DISCRETE FRACTURE 

NETWORK MODEL AND ITS FLOW PROPERTIES 

 

 

In this section we focus on the DFN approach to modelling crystalline rock 

around a nuclear waste repository. Firstly, flow in a single fracture is considered 

after which the generation of fractures networks and their flow properties are 

discussed. 

1.3.1 - FLOW IN A SINGLE FRACTURE 

 

 

Before considering a fracture network it is important to consider the flow in a 

single fracture. The classical view of a rock fracture is that it comprises of a pair 

of smooth, parallel plates. In reality the roughness of rock fracture surfaces is 

usually irregular. We first consider the parallel plate model of a fracture where the 

fracture walls are represented as two smooth parallel plates. Groundwater is 

assumed to be a viscous incompressible fluid and is flowing in a channel between 
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the two parallel plates. Thus, the groundwater motion can be described by the 

Navier-Stokes equations.  An important relationship known as the cubic law can 

then be derived (Bear 1972) from the Navier-Stokes equations. Indeed, this states 

that the transmissivity T  of a fracture is proportional to the cube of the fracture 

aperture b   (the distance between the walls of the fracture), i.e. , 

 

 
3

12
gbT ρ
μ

= , (1.19) 

 

where ρ  is the density of groundwater, g  is gravitational acceleration and μ  is 

the dynamic viscosity of water. This transmissivity value is then used to in the 

groundwater flow equation (1.18).  

The critical assumption of the cubic law is that the aperture is constant across a 

fracture. Zimmerman and Bodvarsson (1996) give an analytic analysis to the 

problem of fluid flow through rock fractures. They show that if the aperture varies 

as a continuous function across a fracture surface, then the Reynolds lubrication 

model can be used to solve for the pressure across that fracture. Under the 

assumption that viscous forces dominate inertial forces and changes in aperture 

across the fracture occur gradually, the Navier-Stokes equations reduces to 

Reynolds lubrication equation. Thus, if we consider a fracture where the aperture 

varies in the z-plane the lubrication model is 

 

 3 ( , ) ( , ) 0 ,b x y P x y⎡ ⎤∇ ⋅ ∇ =⎣ ⎦  (1.20) 
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where ( )3 ,b x y  denotes the cube of the fracture aperture as a function of its 

position in the x - y  plane. 

This approach is limited in that we assume there is a gradual change in the 

fracture aperture. Alternatively, wall roughness can be represented by splitting a 

fracture into grid blocks. Each block is assigned a different aperture value and it is 

assumed that the cubic law holds locally in each grid. 

Nordqvist, Tsang et al. (1992) developed a variable aperture fracture network 

model using a fracture network of circular discs randomly and independently 

distributed in space. Each individual fracture was divided into grid blocks with 

different aperture values. The cubic law was assumed to hold on each individual 

block and the pressure difference between two adjacent nodes could be calculated 

due to this assumption. Additionally, the model assumed there was conservation 

of mass between adjacent blocks. Particles were inserted at one face of the cubic 

domain where they were transported due to flow across the fracture network. 

Breakthrough curves were plotted for the particles and showed dispersion on two 

levels. There was a small scale level of dispersion as a result of the variable 

aperture nature of the fractures and a larger scale level of dispersion as a result of 

the number of different transport routes through the network. 

Tsang and Tsang (1987) noted that experimental evidence of channelling in 

fractures suggested the cubic law to be invalid and proposed a channel model of 

flow through fractures. They characterised channels by an aperture density 

distribution and a spatial correlation length. The pressure profile and tracer 

breakthrough curves were obtained for a single fracture. 

Moreno, Tsang et al. (1988) modelled flow and solute transport through a single 

fracture discretised into a square mesh to which variable apertures were assigned. 
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Their calculations showed that flow occurred in preferred paths or channels. The 

solute transport was calculated using a particle tracking method. The spatial and 

time variations of tracer breakthrough were shown; these results were found to be 

dependent on the aperture density function. 

Problems arise with how fracture apertures are measured in a variable aperture 

fracture due to the geometries of the fracture surfaces (Ge 1997). However, this 

problem does not occur when using a parallel plate model of a fracture. 

In our case we do not have nearly enough information about the geometry of 

individual fracture surfaces. We are dealing with hundreds or even thousands of 

fractures with a limited number of measurement values, so it is impossible to have 

a detailed enough picture of the individual fractures to take advantage of variable 

aperture models. Instead, when dealing with a large fracture network where 

information on the fractures is scarce, it is desirable to use simple models of the 

individual fractures, one of which is the parallel plate model. 

 

 

1.3.2 - PROPERTIES OF DISCRETE FRACTURE NETWORKS 

 

 

Fracture networks can be characterised geometrically by their length, orientation, 

location, density and aperture value. These geometric properties are obtained from 

statistical distributions. Recent studies show that power law distributions describe 

many fracture properties and spatial distributions (Bonnet et al. 2001), including 

fracture length (Dreuzy et al. 2001), density and aperture. 
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A power law distribution ( )n w , where w  refers to the fracture property of interest 

(length, orientation etc.) is of the form 

 

 ( ) an w Aw−= , (1.21) 

 

where both A  and a are positive constants. Other distributions such as lognormal, 

exponential and gamma distributions can also be used to adequately describe 

fracture properties. The distributions that are used and their parameters are site 

specific. That is they are dependent on the geology of the site. For example, the 

rock type and the stresses exerted on the rock will determine the value of the 

distribution parameters. The length scale over which power laws adequately 

describe fracture properties varies depending on the parameters used. Bonnet, 

Bour et al. (2001) show parameter values used for power laws in previous 

publications for different length scales and sites; these values vary widely. A 

discussion of fractal characterizations of fracture networks is given in Bonnet, 

Bour et al. (2001). 

We are mostly interested in the distributions of fracture transmissivities. These are 

related to the fracture aperture by the cubic law (1.19). Bonnet, Bour et al. (2001) 

noted that fracture aperture distributions can be described as both log-normal  

(Snow 1970) and power law (Marrett 1996). The distribution that best describes 

the mean value and spread of aperture values will be dependent on the site being 

studied. 

The connectivity is a critical property of a fracture network. Percolation theory 

can be used to characterise the connectivity of a fracture network (Berkowitz and 

Ewing 1998). The percolation threshold is defined as the density of fractures 
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above which the connectivity of fractures is sufficient to permit flow through a 

portion of the network from one side of the network domain to the other. 

Experiments have shown that there is strong evidence of channelling and highly 

preferential flow paths in individual fractures (as previously discussed) and in 

fracture networks (Nordqvist, Tsang et al. 1992). Cacas, LeDoux et al. (1990), 

(1990) suggested that the channelling found in fracture networks is due to a broad 

distribution of fracture transmissivities.   

Sometimes DFNs are generated by placing all the fractures into the model 

deterministically with no stochastic treatment. Fractures can be placed in the 

model to correspond to known observations at a test site. For example, Kurtzman, 

Nativ et al.  (2007) used deterministic fractures in a DFN model, the location of 

which were based on the observation that flow mainly occurred at a given fracture 

outcrop.   

 

 

1.4 - NUMERICAL MODELLING OF GROUNDWATER 

FLOW IN A FRACTURE NETWORK 

 

 

The groundwater flow equation (1.17) can be solved analytically for simple 

domains and boundary conditions (Tolikas, Sidiropoulos et al. 1984). For any 

physically realistic cases it must be solved computationally. An extensive 

description of numerical methods that can be used to model fractured rock is 

given by Jing (2003). 
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Finite Difference Methods (FDM) can be used to numerically model CPMs 

(McDonald and Harbaugh 1988). Due to the regular grid systems used in regular 

FDMs it is difficult to model fracture systems with complex geometries using a 

regular FDM. Finite volume methods have also been developed to model DFNs 

(Jing 2003). However, we shall focus on the FE approach to modelling a DFN as 

the existing code available to us takes this approach. 

The FEM is the most well known discretisation technique used in DFN flow 

models (Jing 2003). The basic concept is that individual fractures are represented 

as planar shapes such as circular discs (Cacas, Ledoux et al. 1990; Cacas, Ledoux 

et al. 1990; Nordqvist, Tsang et al. 1992) or rectangles (Hartley, Holton et al. 

2008) in a domain. A FEM mesh is imposed over individual fractures and the 

flow or pressure equations are solved. The transmissivity field within an 

individual fracture can be constant or can be spatially distributed. Fracture 

intersections are discretised and boundary conditions are imposed on the nodes 

representing the fracture intersections. The FE discretisation used in this thesis is 

described fully in chapter 2. 

Huyakorn et al. (1983) provided early FE techniques used for modelling 

groundwater flow in fractured aquifers. They considered four different small scale 

conceptual models to investigate flow interaction between fractures and a rock 

matrix. An extended version of the transient groundwater flow equation which 

included a term representing the interaction between a porous rock matrix and 

fractures was used. Their FEM was based on a Galerkin discretisation of the flow 

in the fractures. Analytic solutions were available for the four models and it was 

found that the numerical models gave a close match to them using relatively 

coarse discretisations. 
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Grisak and Pickens (1980) considered matrix diffusion by modelling a single two 

dimensional fracture at the centre of matrix blocks. They modelled uni-directional 

flow in the fracture of a porous medium. The effect of matrix diffusion was 

approximated using the one dimensional version of Fick’s second law of 

diffusion. The flow equations including a matrix diffusion term were solved using 

a FE approach. The computed FE solutions gave a good agreement to available 

analytic solutions. 

In our work we employ the FE approach and use the FE code NAPSAC (Hartley, 

Holton et al. 2008). NAPSAC is a software package that models flow and 

transport through fractured rock. The models are based on a direct representation 

of the discrete fractures making up the flow-conducting network. NAPSAC uses a 

stochastic approach to generate networks of planes that have the same statistical 

properties as those that are measured for fractures in field experiments. The 

software allows for the flow through many thousands of fractures to be calculated 

accurately and for deterministic fractures to be included in a model domain. 

 

1.5 - CONDITIONING A GROUNDWATER FLOW MODEL 

 

 

Calibration is the process of modifying or tuning the input parameters to a model 

until the output from the model matches observed data. We need to calibrate our 

computational model of a fracture network to ensure that the output matches 

measured values. This is done by conditioning fracture log transmissivities in the 

model based on the available measurements, ensuring that if a quantity 

corresponding to a measurement is computed in the model, it agrees with the 
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observed value (or matches the observed value as closely as possible). The log of 

fracture transmissivities are used because it ensures that conditioned fracture 

transmissivities have a positive value and are physically admissible. 

A transmissivity field can be conditioned on measured transmissivity values using 

a linear interpolation method known as kriging. However, conditioning fracture 

transmissivities on pressure or flow values is a more complex problem because 

the measurements are not linearly related to the fracture transmissivities and they 

are dependent on all the fracture transmissivities in the network. 

Conditioning is closely related to the inverse problem. This is where model 

parameters are obtained from observed data. The inverse method approach is 

exploited in many fields, here we are interested in using it in a hydrogeological 

setting. Indeed, our new conditioning methods use ideas from existing 

hydrogeological inverse methods in a CPM setting and develop them for a DFN 

setting. It should be noted that one approach is to approximate a fracture network 

as a CPM and then condition the transmissivities in the CPM setting (Yager 1997; 

Tiedeman, Goode et al. 1998). However, we consider conditioning fracture 

transmissivities in a DFN. 

In this section we briefly introduce kriging and then go on to describe the ideas 

behind inverse methods in hydrogeology and how they relate to our new 

conditioning methods. 
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1.5.1 – CONDITIONING POROUS MEDIUM MODELS AND INVERSE 

PROBLEMS 

 

A transmissivity field can be conditioned on measured transmissivity values by an 

interpolation technique known as kriging ( Journel and Huijbregts (1978); Isaaks 

and Srivastava (1989) ). Kriging is a regression technique used in geostatistics to 

approximate or interpolate data. Experimental data to be used may consist of a set 

of n  discrete log transmissivity values , 1,...,iX i n= , (Delhomme 1978).  

Kriging produces a linear interpolant between the n  measured values. The kriging 

interpolant *X  at a point *p  obtained from the set of values iX  at points ip  is 

given by the linear combination 

 

 *

1

n

i i
i

X Xλ
=

=∑ , (1.22) 

 

where , 1 ,i i nλ ≤ ≤  are a set of weights obtained by minimising an estimation 

variance subject to the condition that 
1

1
n

i
i
λ

=

=∑ . 

Pressure values at measurement points are not linearly related to fracture 

transmissivities and an interpolation method such as kriging cannot be used when 

conditioning transmissivities on pressure measurements; instead inverse methods 

are employed. Inverse methods have also been developed in many fields but we 

shall focus on their development in the context of groundwater flow. For a 

concise description of the inverse method in this setting see for example, Sun 
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(1999). Alternatively, Chavent (2009) gives a good description of the 

mathematical foundations of the inverse method. 

We consider a groundwater system governed by a PDE with parameters 

embedded in the equation which are spatially dependent. The inverse problem of 

parameter identification concerns the optimal determination of the parameters by 

observing the output of the dependent variable in the spatial and time domains 

(Yeh 1986). 

As an example, consider a heterogeneous aquifer where the transmissivity field 

contains the parameters we seek. The spatial domain is continuous and the 

dimension of the parameter is theoretically infinite. However, we need to use a 

finite number of parameters. Parameterisation is the reduction of the number of 

parameters from the infinite dimension to a finite dimensional form. Our work is 

based in a DFN setting and the model parameters are the fracture transmissivities. 

They are constant on each fracture and the number of parameters is finite and 

equal to the number of fractures in the DFN model. 

After parameterisation the model parameters are constant and deterministic. 

However, this deterministic approach does not capture the variability of a 

distributed parameter. To remedy this, the model parameter can be represented as 

a random function with given properties such as a mean and variance. In our work 

random functions are characterised by the stochastic law where they are solely 

defined by their mean and covariance values. The inverse method is then used to 

identify these properties. In groundwater modelling, the parameter of interest is 

often the log transmissivity field. A prior estimation of the log transmissivity field 

can be used in a least squares minimisation problem of fitting pressure 

observations (Neuman and Yakowitz 1979). Stochastic inverse methods have 
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been used in two-dimensional steady flow problems (Hoeksema and Kitanidis 

1984) and transient groundwater flow problems (Sun and Yeh 1985). The 

distribution of the initial fracture transmissivities is dependent on the site being 

modelled and the data available. 

The inverse problem is often ill-posed by definition of Hadamard (1902). For our 

problem of interest, a set of fracture transmissivities that yield the measured 

pressures need not be a unique solution. In other words, there may be many sets 

of fracture transmissivities that produce the same set of measured pressure values. 

Additionally, the model parameters can be unstable. That is, small errors in 

pressure measurements will greatly alter the values of the identified 

transmissivities (Chavent 1974). 

Inverse methods can be classified under one of two error criteria (Neuman 1973) 

used in the formulation of the inverse problem; the direct method (also termed the 

equation error criterion) or the the indirect method (also termed output error 

criterion). 

The available literature of inverse methods for groundwater flow systems use a 

CPM model or they use a CPM to approximate a fractured medium (Yager 1997; 

Tiedeman, Goode et al. 1998). An exception is recent work by Frampton and 

Cvetkovic (2010) who condition the parameters of a fracture transmissivity 

distribution in a DFN setting, but they do not condition fracture transmissivities 

directly. The principles of the inverse method are the same in a CPM and DFN 

setting and the discussion in this section applies to both settings. From hereon we 

assume that the model parameters are the fracture log transmissivities, contained 

in the vector X  and the measurements are pressures contained in the vector P . 
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In the direct method the pressure measurements MP  are interpolated across the 

model domain creating “observations” throughout the system. The governing 

equation (the groundwater flow equation) is then used to calculate corresponding 

log transmissivities X  for all “observations” of P . However, the direct method is 

known to be unstable in the presence of common measurement errors (Yeh 1986). 

Most recent inverse methods use the indirect method. It acknowledges that 

measurements contain errors and finds the hydraulic properties that minimise 

these errors. In this approach, X  is determined from a limited number of 

observations scattered in a spatial and possibly space-time domain so that the 

objective function 

 

 2E = MP - P , (1.23) 

 

is minimised, where ⋅ ⋅  denotes the Euclidean norm and MP  are the measured 

pressures at the measurement points. When (1.23) is used as an objective function 

the problem often becomes ill posed. To overcome this an additional term can be 

added so that the objective function becomes 

 

 2 2 ,E λ= +M 0P - P X - X  (1.24) 

 
where 0X  is an initial guess for the log transmissivities and λ  is an 

unknown positive parameter. For a detailed discussion of how to chose an 

optimal value of λ  see Chavent (2009). The addition of the extra term in 

(1.24) was first considered in the context of groundwater flow models by 

Neuman (1973) and was based on the work of Tikhonov (1963). Indeed, the 
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term in (1.24) can be viewed as a Tikhonov regularisation term (Tikhonov 

and Arsenin 1977). Other regularisation methods exist and Chavent (2009) 

provides a summary of these methods. 

The minimisation of (1.23) or (1.24) is usually performed using the Levenberg-

Marquardt method (Cooley 1985; Hill and Tiedeman 2007). This method is 

generally accepted to be the most efficient method for non-linear optimisation 

(Press, Flannery et al. 1986) and is used in the first of our new conditioning 

methods for the minimisation procedure. 

 

 

1.5.3 – GENERAL STRUCTURE OF INVERSE METHODS 

 

 

A common approach (Carrera, Alcolea et al. 2005) used to condition X  on 

measured pressure values P  is known as non-linear least squares minimisation. 

Here, P  is updated using a linear expression whilst minimising an objective 

function E . This linearised expression will be dependent on a sensitivity matrix 

PXL  (Jacobian matrix) containing the derivatives of P  with respect to X . The 

objective function E  is usually given by (1.23), and has a non-linear dependence 

on X .  It is noted (Carrera, Alcolea et al. 2005) that most conditioning codes for 

least squares minimisation follow an iterative procedure as outlined below: 

 

1. Initialisation: Read input data, set iteration counter 0i = , initialise parameters 

0X . 
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2. Solve the simulation problem iP(X ) , compute the objective function E , its 

gradient g  and the Jacobian matrix PXL . 

3. Compute an updating vector d , possibly using information on previous 

iterations, as well as g  and PXL . 

4. Update parameters, i+1 iX = X + d . 

5. If convergence of E  has been reached, then stop. Otherwise, set 1i i= +  and 

return to 2. 

 

The calculation of the sensitivity matrix PXL  is vitally important as it is needed to 

calculate the update to P  and to calculate g . There are two main methods that 

can be used to compute PXL  and they are now discussed. Suppose, in a given 

DFN model, there are n  fracture transmissivities, N nodes where the pressure is 

calculated and m  pressure measurements. One approach is to calculate each 

sensitivity term using a finite difference approximation. This requires P  to be 

calculated at each node N for perturbations in each of the n  fracture 

transmissivities (i.e. n  solves of the governing pressure equation). The order of 

matrix operations required is ( )3O nN  (where it has been assumed that Gaussian 

elimination is used to solve the governing equation). 

Alternatively, an adjoint method can be used to calculate the sensitivity terms. It 

is described fully in chapter 3 as it is used in both of our conditioning methods to 

calculate sensitivities. An adjoint equation is solved to calculate an adjoint matrix 

taking ( )3O mN  matrix operations. This adjoint matrix is then used to calculate 

sensitivities by a matrix multiplication using ( )2O mN  matrix operations. 
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Therefore, the adjoint method for calculating sensitivities requires ( )3O mN  

operations. Thus, the adjoint method is very efficient in large scale models where 

m n . The adjoint method is commonly used in models of this nature (Sun and 

Yeh 1985) and is used in different subject areas such as aeronautics (Giles and 

Pierce 2000). 

The first of our newly proposed methods is based on a method for conditioning 

hydraulic conductivity in a CPM based on measured hydraulic head (Cliffe and 

Jackson 2000). This method has been modified for the case of a DFN and is 

described in detail in chapter 3.  

The second conditioning method developed in this thesis takes a Bayesian 

approach to the conditioning and is described in chapter 5. After applying Bayes’s 

theorem, a mode of the posterior distribution of the fracture log transmissivities is 

computed. This mode corresponds to the most likely set of fracture log 

transmissivities that will produce the measured pressures. This is similar to a 

maximum a posteriori probability approach (Kitanidis 1996) and maximum 

likelihood approach (Carrera and Neuman 1986). The mathematical setting of a 

Bayesian approach to the inverse problem for partial differential equations has 

been thoroughly reviewed by Stuart (2010). This Bayesian conditioning method 

takes a Bayesian interpretation of probability. As such, the next section briefly 

summarises some of the main interpretations of probability. 
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1.5.4 - SUMMARY OF INTERPRETATIONS OF PROBABILITY 

 

The classical view of probability is that an experiment can result in N  

mutually exclusive, equally likely outcomes. If AN  of these outcomes result 

in the occurrence of the an event A  then the probability of  A  is defined as 

( ) ANP A
N

= . The major problem with the classical view of probability is 

that it assumes that there are a finite number of outcomes N that can be 

counted, which in many situations is not the case. 

The frequentist view of probability is that the probability of an event is the 

events relative frequency over time. If An  denotes the number of 

observations of an event A  from n  trials then the probability of A  is given 

by ( ) lim A

n

nP A
n→∞

= . The obvious breakdown of the frequentist view is that it 

requires an infinite number of trials n  to define a probability, which is 

impossible. 

The Bayesian approach (also known as the subjective view) requires the 

specification of some prior probability which is updated in light of new data. 

The Bayesian view of probability regards probability as the “degree of 

belief” of the individual assessing the uncertainty of a given situation 

(Ramsey 1926). For example, in Chapter 5 the “degree of belief” is 

represented by our initial guess of fracture log transmissivities in our model 

and these are updated in light of measured pressure data. 

For a full discussion on the different interpretations of probability see for 

example Fine (1973) or Hajek (2010). 
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1.5.5 – CONDITIONING TRANSIENT GROUNDWATER FLOW 

 

The conditioning methods developed in this thesis condition fracture 

transmissivities on steady state pressure measurements. A possible extension 

of these conditioning methods is to modify them to condition on transient 

groundwater flow (this has not actually been done in this thesis, but is 

mentioned as a natural extension to the existing work). The reason that it 

would be useful to condition on transient groundwater flow is that in 

pumping well tests the pressure at a well will vary with time. To model the 

flow of groundwater with time it is necessary to model groundwater as a 

compressible fluid. Thus, the aim of conditioning in the transient case is to 

match a pressure profile over time at a measurement well. The transient 

groundwater flow equation for pressure P  in a fracture with constant 

transmissivity T  is 

 

 2 ,S P T P
g t gρ ρ
∂

= ∇
∂

 (1.25) 

 
 

where S  is a dimensionless constant known as the fracture storativity. It is 

defined as the volume of water released from (or added to) storage in the 

fracture per unit area of fracture and per unit change of the average pressure 

in the fracture. For the case of a compressible fluid its density will not be 

constant and is a function of pressure ( )Pρ ρ= . 
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A DFN would be discretised in the same way as the steady state case and a 

forward difference could be used to approximate the time derivative in 

(1.25). 

Sensitivities would ideally be calculated at each time step (this may result in 

long computational times, in which case they may have to be re-calculated 

after a given number of time steps) from the transient groundwater flow 

equation (1.25) instead of the steady state version (1.18). 

In our steady state conditioning approach we condition the fracture 

transmissivities on steady state pressure measurements. Thus, it is possible 

to use these conditioned transmissivities as input to the transient 

groundwater flow equation (1.25). 

 

1.5.6 – CONDITIONING MULTIPLE REALISATIONS 

 

Locations and properties of fractures at a site are generally unknown. In the 

case where fracture properties are known they can be inserted into a given 

model of the site, and the model is called a deterministic model. In the case 

where fracture properties are unknown it is common for the statistics of the 

fracture properties to be known (the distribution of fracture orientation or 

length for example). In what is known as a stochastic model, realisations of 

the fracture network geometry that exhibit the same statistics as the physical 

system are generated and used for simulation. Therefore, mean values and 

variances of fracture properties are analysed using multiple realisations of 

the fracture network. 
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There are two approaches that can be taken when conditioning multiple 

realisations. Firstly, the parameters of the distributions from which fracture 

transmissivities are generated, are conditioned on available measurements. 

Secondly, each individual realisation is conditioned. Our conditioning 

methods are designed for the second approach. Both conditioning methods 

developed take a DFN with a fixed geometry as their input. This DFN could 

be a deterministic model or it could be a single realisation from a stochastic 

model where the geometry is fixed for each realisation. 

A high area of uncertainty comes from the geometry of the fractures. When 

using our conditioning methods in a stochastic model each realisation will 

have a different geometry. Thus, uncertainty in fracture geometry is dealt 

with by generating multiple realisations with different geometry, each of 

which has its fracture transmissivities conditioned on measured pressures.  

 

1.6 - THESIS CONTRIBUTIONS 

 

This thesis develops two numerical conditioning methods that condition fracture 

transmissivities on pressure measurements in a DFN. The geometry of the DFN is 

not changed throughout the conditioning procedure. The pressure measurements 

are steady state pressures and as such steady state flow is assumed in the DFN. 

Groundwater is assumed to be incompressible due to the low value of the 

compressibility of water. However, when modelling pumping wells the 

groundwater needs to be modelled as a compressible fluid for flow to occur. Thus, 

if considering conditioning on transient pumping well data, this modification 

would need to be made to the conditioning methods. The conditioning methods 
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introduced in this thesis are the first to be developed for use in a large scale DFN 

setting. 

The pressure in a DFN was calculated using a finite element code called 

NAPSAC, made available to us by Serco Assurance. In Chapter 2 we outline the 

finite element formulation used by NAPSAC to solve the steady state 

groundwater flow equation in a DFN. This chapter does not contain any original 

work, however there is no rigorous formulation available of the methods used, 

and as such this chapter provides a valuable insight into the details of the finite 

element formulation used by NAPSAC. 

Chapter 3 introduces the first conditioning method developed, which we named 

the basis vector conditioning method. It is based on a previous conditioning 

method proposed by Cliffe and Jackson (1995; 2000) in a CPM setting. The 

source code for the basis vector conditioning method was written as a new 

subroutine in NAPSAC. 

Chapter 4 provides results obtained using the basis vector conditioning method on 

four simple test cases and on a large scale test case which models the site for a 

potential nuclear waste repository in Finland. 

Chapter 5 introduces the second conditioning method that was developed. The 

source code for this method was also written as a new subroutine in NAPSAC. 

The method is based on the use of Bayes theorem to calculate the mode of the 

posterior distribution of fracture transmissivities. This Bayesian conditioning 

method was used on the same large scale test case as the basis vector conditioning 

method, as well as two additional large scale test cases. 

 

 



 37

 

2 - FINITE ELEMENT FORMULATION FOR 

GROUNDWATER FLOW IN DISCRETE 

FRACTURE NETWORKS 

 

In this chapter we outline the finite element (FE) formulation employed within 

NAPSAC for calculating the pressure in a DFN. Here, individual fractures are 

discretised into what we call ‘local nodes’ while fracture intersections are 

subsequently discretised into what are referred to as “global nodes”. Within this 

formulation, local and global basis functions are assigned to each local and global 

node, respectively. The construction of the global basis functions differs from that 

of the local basis functions. At fracture intersections, the pressure is calculated by 

enforcing conservation of flow at each intersection; the pressure across the 

network is then approximated as a linear combination of the global basis functions 

and the pressures on fracture intersections. We refer to this method as the global 

basis function FE approach. These ideas are formally introduced in section 2.1 

which considers the case of calculating the pressure field over two intersecting 

fractures. The global basis function FE approach to this problem is described and 

a numerical algorithm for determining the pressure over two intersecting fractures 

using this FE formulation is given. A simple one dimensional example is used to 

clarify the techniques employed. The ideas developed in section 2.1 are then 

extended in section 2.2 to the case of calculating the pressure at fracture 

intersections in a DFN. Section 2.3 addresses the problem that the analytical 

solution of a pumping borehole calculates pressure values that vary 
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logarithmically with the radius from the borehole. When a DFN is discretised into 

a FE mesh, the FE method will struggle to match the analytic solution close to a 

pumping borehole due to the asymptotic nature of the logarithm function. Indeed, 

given the typical mesh size used in the FE discretisation, this scheme can give 

inaccurate results in the area surrounding a pumping borehole. To remedy this, the 

analytical and FE solutions can be combined to produce a more accurate 

numerical model.  

The numerical algorithm to calculate the pressure at fracture intersections in a 

large scale DFN is given in section 2.4. Section 2.5 compares the global basis 

function FE approach to a standard FE approach where all basis functions have a 

similar structure and the system is solved as one with flow boundary conditions 

enforced on fracture intersections (Quarteroni and Valli 1999). Section 2.5 goes 

on to show that when a there is a local node corresponding to every global node in 

the global basis function FE approach, it is equivalent to a standard FE approach. 

The benefit of using the global basis function FE approach is that it allows for 

fracture intersections be discretised using a small number of global nodes which 

reduces the computational time required to solve for pressure in a DFN. This is 

vitally important when dealing with large scale DFNs such as ones we use as test 

cases. 

 

2.1 –CALCULATING THE PRESSURE OVER TWO 

INTERSECTING FRACTURES 

 

The problem domain Ω  is partitioned into two non-overlapping sub-

domains (that represent two fractures) 1f  and 2f with boundaries 1f∂  and 
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2f∂ , respectively. The fracture intersection is defined as 1 2: f fΓ = ∩ . The 

residual pressure 

 

 ( )0 ,GP P g z zρ= + −  (2.1) 

 

is to be calculated across 1f  and 2f , where GP  is the groundwater pressure, 

ρ  is the groundwater density, g  is gravitational acceleration, z  is the 

elevation and 0z  is a reference elevation. Defining : f
f

T
T

gρ
= , the steady 

state groundwater flow equation  

 

 ( ) 0fT P∇⋅ ∇ =  (2.2) 

 

is solved on each fracture 1f  and 2f with constant transmissivities 
1f

T  and 

2f
T , respectively, (therefore fT  is a constant scaler on a fracture f ) where 

∇  is the two dimensional gradient operator. It is assumed that there are 

Dirichlet boundary conditions on the boundaries 1f∂  and 2f∂ . At the fracture 

intersection the following conditions hold: 

 

1 – The groundwater pressure is continuous between intersecting fractures.                                  

That is 
1 2f fP P∩Γ ∩Γ= . 

 

2 – Groundwater is conserved at an intersection, so that groundwater which 

flows out of one fracture flows into the other and there is no build up of 
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groundwater at the intersection. In the continuous setting this is written as 

1 1 1 2 2 2f f f f f fQ T P Q T P= ∇ = = ∇ , where 
1f

Q  and 
2f

Q  are the flows coming from 

1f  and 2f , respectively, and 
1f

P  and 
2f

P  are the pressures on 1f  and 2f , 

respectively. 

The FE approach to solving (2.2) on each fracture along with the intersection 

conditions is now set out. A mesh { }1 1f fτ κ is created over 1f  consisting of 

triangular elements 
1f

κ . Also, 
1f

N  is defined to be the set of 
1f

n  local nodes 

contained in 
1f

τ . Similarly, a mesh { }2 2f fτ κ is created over 2f  consisting of 

triangular elements 
2f

κ . The set of local nodes contained in 
2f

τ  is denoted 

by 
2f

N  and we set { }2 2
cardf fn N= , where {}card ⋅ denotes the cardinality. 

The fracture intersection Γ  is discretised into a set of nΓ  global nodes, 

denoted by NΓ . For simplicity, we assume that each global node on the 

fracture intersection Γ  corresponds to a local node on 1f  and 2f . That is, 

we define the set of global nodes as 
1 2

: f fN N NΓ = ∩ . This requires 
1f

τ  and 

2f
τ  to match on Γ . To formalise this statement, let , 1, 2

if
iε =  denote the set 

of edges in 
if

τ . Then it is necessary that 
1f

εΓ ⊂  and 
2f

εΓ ⊂ . Furthermore, 

11f fε εΓ∃ ∈  such that 
1f

εΓ∪ = Γ  and 
22f fε εΓ ∈  such that 

2f
εΓ∪ = Γ   and 

assume 
1 2f f

ε εΓ Γ= . This implies that the set of local nodes from 1f  and 2f  

are identical on the intersection Γ . 

The local piecewise linear basis function 1f
iφ  corresponding to a node 

1f
i N∈  is defined at all nodes in 

1f
N  as 
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 1

1 1, , , 1,..., ,f
i j ij f fj N j nφ δ= ∈ =  (2.3) 

 

where ijδ  is the Kronecker delta function and 1
,
f

i jφ  denotes the value of 1f
iφ  at 

local node j . Thus, 1f
iφ  takes the value 1 at local node i  and 0 at all other 

local nodes on 1f . Similarly, the local piecewise linear basis function for a 

node 
2f

i N∈  is defined at all nodes in 
2f

N as 

 

 2

2 2, , , 1,..., .f
i j ij f fj N j nφ δ= ∈ =  (2.4) 

 

Now, the FE spaces of the local basis functions are defined as 

 

{ }

{ }

1

1 1
1

2

2 2
2

1

1

Finite element space of piecewise linear functions defined on span ,

Finite element space of piecewise linear functions defined on span .
f

f

f
f f i

i N

f
f f i

i N

V

V

τ φ

τ φ

≤ ≤

≤ ≤

= =

= =

 (2.5) 

 

A Sobolov space ( )1H Ω  for the set of all functions 2u L∈  over a domain 

Ω  is defined as 

 

 ( ) ( )1
2: : , , ,du duH u u L

dx dy
⎧ ⎫

Ω = Ω→ ∈ Ω⎨ ⎬
⎩ ⎭

 (2.6) 

 

where ( )2L Ω  denotes the space of functions that are square integrable in the 

sense of Lebesque, i.e. 

 



 42

 ( ) 2
2 : : .L u u

Ω

⎧ ⎫⎪ ⎪Ω = Ω→ < ∞⎨ ⎬
⎪ ⎪⎩ ⎭

∫  (2.7) 

 

Then the finite element function spaces are defined as 

 

 
( ){ }
( ){ }

1

2

1
1 1

1
2 2

: 0 on ,

: 0 on ,

f D

f D

V H f f

V H f f

φ φ

φ φ

= ∈ = ∂

= ∈ = ∂
 (2.8) 

 

where , 1,.., 2i Df i∂ =  is the boundary on , 1,.., 2if i =  with Dirichlet 

boundary conditions.  

For each global node 1,..,I nΓ= , a corresponding global basis function IΨ  is 

calculated over the problem domain Ω . We denote 1f
IΨ  to be the restriction 

of IΨ  over 1f  and 2f
IΨ  to be the restriction of IΨ  over 2f . Therefore, 

1 2f f
I I IΨ = Ψ +Ψ . Now, the global basis function 1f

IΨ  is calculated at all local 

nodes 
1f

i N∈  and is given by the linear combination of the local basis 

functions  1

1
,f

i fi Nφ ∀ ∈ . That is 

 

 
1

1 1 1
,

1

,
fn

f f f
I j I j

j

φ
=

Ψ = Ψ∑  (2.9) 

 

where 1
,

f
I jΨ  represents the value of 1f

IΨ  at local node j . Similarly, on 2f  

we have 
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2

2 2 2
,

1
.

fn
f f f
I j I j

j
φ

=

Ψ = Ψ∑  (2.10) 

 

On each fracture, IΨ  is calculated as the FE solution to the steady state 

groundwater flow equation (2.2) with P  replaced by IΨ  and boundary 

conditions of 1IΨ =  at global node I  and 0I N IΓΨ = ∀ ≠ . Therefore, the 

contributions 1f
IΨ  and 2f

IΨ  to the basis function IΨ  corresponding to the 

global node I  are calculated by solving the PDE systems 

 

 

1
1 1 1 1

1 1 1

1

1

,
1

1

0, 1,..., , ,

1, at global node ,
with 0,

0, on .

fn
f f f f

f I j i j f f
j f

f
I

T i n V

I
N I

f

φ φ φ
=

Γ

Ψ ∇ ⋅∇ = = ∀ ∈

⎧
⎪Ψ = ∀ ≠⎨
⎪ ∂⎩

∑ ∫
 (2.11) 

 

and  

 

 

2
2 2 2 2

2 2 2

2

2

,
1

2

0, 1,..., , ,

1, at global node ,
with 0,

0, on .

fn
f f f f

f I j i j f f
j f

f
I

T i n V

I
N I

f

φ φ φ
=

Γ

Ψ ∇ ⋅∇ = = ∀ ∈

⎧
⎪Ψ = ∀ ≠⎨
⎪ ∂⎩

∑ ∫
 (2.12) 

 

The weak form of the groundwater flow equation is obtained by multiplying 

(2.2) by local basis functions φ and integrating over the fracture. Gauss’s 

divergence theorem is then used to obtain the form seen in (2.11) and (2.12). 

The FE space of the global basis functions is defined as 
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 { }span .I
I N

V
Γ

Γ
∈

= Ψ  (2.13) 

 

It is necessary to calculate a contribution IDΨ  to the global basis function 

that takes the Dirichlet boundary conditions into account. The contributions 

1f
IDΨ  on 1f and 2f

IDΨ  on 2f  to  IDΨ  are calculated by solving the PDE 

systems 

 

 
( )

( )

1
1 1 1 1

1 1 1

1

1

,
1

,
1

0, 1,..., , ,

0, ,
with

, on ,

fn
f f f f

f i j f fID j
j f

f
ID j

D

T i n V

N
P f

φ φ φ
=

Γ

Ψ ∇ ⋅∇ = = ∀ ∈

∀⎧
Ψ = ⎨ ∂⎩

∑ ∫
 (2.14) 

 

and 

 
( )

( )

2
2 2 2 2

2 2

2

2

2,
1

,
2

0, 1,..., , ,

0, ,
with

, on .

fn
f f f f

f i j fID j
j f

f
ID j

D

T i n V

N
P f

φ φ φ
=

Γ

Ψ ∇ ⋅∇ = = ∀ ∈

∀⎧
Ψ = ⎨ ∂⎩

∑ ∫
 (2.15) 

 

Here, ( )
1

,
f
ID jΨ  and ( )

2
,

f
ID jΨ  denote the value of 1f

IDΨ   and 2f
IDΨ , respectively, at 

local node j , and DP  are Dirichlet pressure values. The flow IQ  at a global 

node 1,...,I nΓ=  from a fracture 1 2, ,f f f=  is calculated as 

 

 ( )ˆ ,I I f I
f

Q T P VΓ= ∇Ψ ⋅ ∇ ∀Ψ ∈∫  (2.16) 
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where P̂  is defined as 

 

 ( )
1

ˆ , ,
J

n

JD J
J

P P J N
Γ

Γ Γ
=

= Ψ +Ψ ∈∑  (2.17) 

 

where 
J

PΓ  is the pressure at global node J . The pressure PΓ  at the fracture 

intersection Γ  can be calculated by enforcing the condition that flow is 

conserved at the fracture intersection, and using (2.16) 

 

 ( )( ) ( )( )1 2

1 2

1 2

ˆ ˆ 0, 1,., .f f
I f I f

f f

T P T P I nΓ∇Ψ ⋅ ∇ + ∇Ψ ⋅ ∇ = =∫ ∫  (2.18) 

 

Then inserting (2.17) into (2.18) gives 

 

 

( ) ( )

( ) ( )

1 1 1 1

1 1

1 1

2 2 2 2

2 2

2 2

1

1
0 , 1,., .

J

J

n
f f f f

f I JD f I J
J f f

n
f f f f

f I JD f I J
J f f

T T P

T T P I n

Γ

Γ

Γ
=

Γ Γ
=

⎛ ⎞
∇Ψ ⋅∇Ψ + ∇Ψ ⋅∇Ψ +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

∇Ψ ⋅∇Ψ + ∇Ψ ⋅∇Ψ = =⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∫ ∫

∑ ∫ ∫
 (2.19) 

 

 

Let , :
f

f

a b ab= ∫ , then defining 

 

 1 1 2 2

1 21 2
, , , , 1,.., ,f f f f

IJ f I J f I Jf f
A T T I J nΓ= ∇Ψ ∇Ψ + ∇Ψ ∇Ψ =  (2.20) 

 

and 
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 1 1 2 2

1 21 2
,

1
, , , 1,..,

n n
f f f f

I f I JD f I JDf f
J J

B T T I n
Γ Γ

Γ
=

= − ∇Ψ ∇Ψ − ∇Ψ ∇Ψ =∑ ∑  (2.21) 

 

 the matrix system corresponding to (2.18) can be written as 

 

 
111 1 1

1

...

... ... ... ... ... .
...

n

n

n n n n

A A P B

A A P B

Γ

Γ Γ Γ ΓΓ

Γ

Γ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

 (2.22) 

 

The matrix system (2.22) is then solved for PΓ  and the pressure over 1f  and 2f  

can be calculated using the approximation (2.17). To summarise this section, a 

numerical algorithm for solving the pressure over two intersecting fractures is 

now given. 

 

 

2.1.1 – ALGORITHM TO CALCULATE THE PRESSURE FIELD OVER 

TWO INTERSECTING FRACTURES USING THE FINITE ELEMENT 

APPROACH   

 

 

This section presents a numerical algorithm that calculates the pressure over 

two non-overlapping fractures 1f  and 2f  intersecting along a fracture 

intersection Γ . It is assumed that there are Dirichlet boundary conditions on 

the fracture boundaries 1f∂  and 2f∂ . The algorithm is as follows: 
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- Assign a mesh { }1 1f fτ κ over 1f  consisting of triangular elements 
1f

κ  

and define a set 
1f

N containing 
1f

n  local nodes. Calculate local basis 

functions 1f
iφ  on 1f  using (2.3). 

 

- Assign a mesh { }2 2f fτ κ over 2f  consisting of triangular elements 

2f
κ  and define a set 

2f
N  containing 

2f
n  local nodes. Calculate local 

basis functions 2f
iφ  on 2f  using (2.4). 

 

- Discretise the fracture intersection Γ  into nΓ  global nodes belonging 

to a set NΓ  such that
1 2f fN N NΓ = ∩ . 

 

- DO 1,..,I nΓ= : 

 

- Calculate 1f
IΨ  using (2.11) and 2f

IΨ  using (2.12) 

 

- Calculate 1f
IDΨ  using (2.14) and 2f

IDΨ  using (2.15). 

 

- END DO. 

 

- Calculate IJA  defined in (2.20) and JB  defined in (2.21), 

, 1,...,I J nΓ= . 
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- Calculate , 1,..,
I

P I nΓ Γ=  by solving the matrix system (2.22). 

 

- Calculate the pressure across the fractures using the approximation 

( )
1

ˆ
n

JD J J
J

P P
Γ

Γ
=

= Ψ +Ψ∑ . 

 

 

2.1.2 – ONE DIMENSIONAL EXAMPLE  

 

 

A deliberately simple one dimensional model has been designed to illustrate 

the FE techniques introduced in this chapter. The domain ( 0 4x≤ ≤ ) 

consists of fracture 1, denoted by 1f  ( 0 2x≤ ≤ ) with a transmissivity of 
1f

T  

and fracture 2 denoted by 2f  ( 2 4x≤ ≤ ) with a transmissivity of 
2f

T  which 

intersect at an intersection point Γ  at 2x = . There are pressure boundary 

conditions of ( )0 0AP x P= = ≥  and ( )4 0P x = = . Figure 1 shows the 

problem domain where 1f  and 2f  have each been discretised into two local 

nodes and there is one global node at the fracture intersection. 
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Figure 1. Discretisation of two intersecting fractures. 

 

 

2.1.2.1- ANALYTICAL SOLUTION  

 

The pressure 
1f

P  on 1f , 0 2x≤ ≤  can be written as 

 

 
1

,f AP Ax P= +  (2.23) 

 

where A  is a constant. The pressure 
2f

P  on 2f , 2 4x≤ ≤ , can be written as 

 

 ( )
2

4 ,fP C x= −  (2.24) 

 

where C  is a constant. At the intersection ( )2xΓ =  

 

 
1 2

1 .
2f f AP P C A P⎛ ⎞= ⇒ = − +⎜ ⎟

⎝ ⎠
 (2.25) 
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Additionally, at ( )2xΓ =  

 

 

1 2

1 1 2 2

1 2

1

2

,

1 ,
2

.
2 1

f f
f f f f

f f A

A

f

f

dP dP
Q T Q T

dx dx

T A T A P

PA
T
T

= = =

⎛ ⎞⇒ = − +⎜ ⎟
⎝ ⎠

⇒ = −
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.26) 

Therefore, 

 

( )

1

1

2

2

1

2

,
2 1

1 11 4 .
2

1

A
f A

f

f

f A
f

f

PP x P
T
T

P P x
T
T

⎧ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎜ ⎟

= − +⎪ ⎜ ⎟⎛ ⎞⎪ ⎜ ⎟+⎜ ⎟⎪ ⎜ ⎟⎜ ⎟
⎝ ⎠⎪ ⎝ ⎠

⎨
⎛ ⎞⎪
⎜ ⎟⎪
⎜ ⎟⎪ = − − −⎜ ⎟⎪ ⎛ ⎞⎜ ⎟⎪ +⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

 (2.27) 

 

It follows that the pressure PΓ  at the intersection Γ  is given by 

 

 
1

2

11 .
1

A
f

f

P P
T
T

Γ

⎛ ⎞
⎜ ⎟
⎜ ⎟

= −⎜ ⎟⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.28) 
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2.1.2.2 – GLOBAL BASIS FUNCTION APPROACH  

 

 

The discretisation introduced in Figure 1 is used to apply the global basis 

function approach. The local basis functions 1f
iφ  on 1f  and their derivatives 

are defined as 

 

 

1
1

1
1

1
1

2
2

, 0 1 1, 0 1
0, else 0, else

, 0 1 1, 0 1
2 , 1 2 1, 1 2.

f
f

f
f

x x xd
dx

x x xd
x x xdx

φφ

φφ

− ≤ ≤ − ≤ ≤⎧ ⎧
= =⎨ ⎨
⎩ ⎩

≤ ≤ ≤ ≤⎧ ⎧
= =⎨ ⎨− ≤ ≤ − ≤ ≤⎩ ⎩

 (2.29) 

The local basis functions 2f
iφ  on 2f  and their derivatives are defined as 

 

 

2
2

2 2

1
1

2 2

2, 2 3 1, 2 3
4 , 3 4 1, 3 4

3, 3 4 1, 3 4
0, else 0, else.

f
f

f f

x x xd
x x xdx

x x xd d
dx dx

φφ

φ φ

− ≤ ≤ ≤ ≤⎧ ⎧
= =⎨ ⎨− ≤ ≤ − ≤ ≤⎩ ⎩

− ≤ ≤ ≤ ≤⎧ ⎧
= =⎨ ⎨
⎩ ⎩

 (2.30) 

 

For this 1D example there is only one global basis function 1 2f fΨ = Ψ +Ψ  

corresponding to global node NΓ . Thus, the FE spaces are given by 

 

 

{ }
{ }
{ }

1

2

1 1
1 2

2 2
1 2

span , ,

span , ,

span .

f

f

V

V

V

φ φ

φ φ

Γ

=

=

= Ψ

 (2.31) 
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The global basis function fΨ  on a fracture 1 2,f f f=  is calculated by 

solving 

 

 

2

1
0, 1,2,

1, at ,
with

0, otherwise.

ff
jf i

f j
j f

f

ddT i
dx dx

N

φφ
=

Γ

Ψ = =

⎧
Ψ = ⎨

⎩

∑ ∫
 (2.32) 

 

The basis function 1fΨ  over 1f  is calculated using (2.32) as 

 

 1
1 , 0 2.
2

f x xΨ = ≤ ≤  (2.33) 

Therefore, 

 

 
1 1 , 0 2.

2

fd x
dx
Ψ

= ≤ ≤  (2.34) 

 

The basis vector 2fΨ  over 2f  is calculated using (2.32) as 

 

 ( )2
1 4 , 2 4,
2

f x xΨ = − − ≤ ≤  (2.35) 

and it follows that 

 

 
2 1 , 2 4.

2

fd x
dx
Ψ

= − ≤ ≤  (2.36) 
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The contribution of the Dirichlet boundary conditions to the global basis 

function 1 2f f
D D DΨ = Ψ +Ψ  on a fracture f are calculated as 

 

 

1

2

,
1

2
2

,
1

0, 1, 2,

0, at and ,
with

, at .

jf i
f D j

j f

f
D j f

A

ddT i
dx dx

N N

P N

φφ
=

Γ

Ψ = =

⎧⎪Ψ = ⎨
⎪⎩

∑ ∫
 (2.37) 

 

This yields 

 

 1
11 , 0 2.
2

f
D AP x x⎛ ⎞Ψ = − ≤ ≤⎜ ⎟

⎝ ⎠
 (2.38) 

and 

 

 2 0, 2 4.f
D xΨ = ≤ ≤  (2.39) 

 

Figure 2 shows the global basis functions (2.33), (2.35) and (2.38) calculated 

for this problem compared to the analytical pressure solution (2.28) for the 

values 5AP = , 
1f

T =1.0E-9, 
2f

T =2.0E-9. For this 1D example the pressure is 

approximated as 

 

 ˆ ,DP PΓ= Ψ +Ψ  (2.40) 
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Figure 2. Plot of the analytical pressure over the two fractures compared to the global basis 

vectors 1fΨ , 1f
DΨ  and 2fΨ . 

 

The flow contribution from 1f  is given by 

 

 

( )

1 11 1

1 1

1 1

1

1

2 2

0 0

1 1
4 4

1 .
2

f ff f
D D

f f
f f

f A
x x

f A

d dd dQ T dx P dx
dx dx dx dx

T P dx P dx

T P P

Γ

Γ
= =

Γ

⎛ ⎞Ψ ΨΨ Ψ
= +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

= −

∫ ∫

∫ ∫  (2.41) 

 

Now, the flow contribution from 2f  is given by 
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2 2

2 2

2

2

2

22

0

1
2

1 .
2

f f

f f
f

f
x

f

d dQ T P dx
dx dx

T P dx

T P

Γ

Γ
=

Γ

Ψ Ψ
=

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

∫

∫  (2.42) 

 

At the fracture intersection Γ , the sum of the flow 
1f

Q  from 1f  and the flow 

2f
Q  from 2f  is equal to zero 

 

 
1 2

0.f fQ Q+ =  (2.43) 

 

Inserting equations (2.41) and (2.42) into (2.43) yields 

 

 ( )
1 2

1 1 0.
2 2f A fT P P T PΓ Γ− + =  (2.44) 

 
Thereby, 
 

 

( )
1

1 2

1

2

1

2

1

2

1

11 .
1

f A

f f

f
A

f

f

f

A
f

f

T P
P

T T

T
P

T

T
T

P
T
T

Γ =
+

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟

= −⎜ ⎟⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.45) 
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The pressure PΓ  calculated at the intersection Γ  using the basis function 

approach (2.45) is therefore identical to that given by the analytical solution 

(2.28).  

 

 

2.2 – CALCULATING THE PRESSURE AT FRACTURE 

INTERSECTIONS IN A DISCRETE FRACTURE NETWORK 

 

 

In this section the global basis function FE formulation introduced for two 

intersecting fractures in section 2.1 is extended to the case of a DFN 

containing many fractures. The same approach is taken, however, when 

calculating the flow at a global node, the value is dependent not only on the 

pressures at that fracture intersection but also at separate fracture 

intersections on the intersecting fractures.  

We consider a large scale DFN with a problem domain Ω  partitioned into r  non-

overlapping sub domains (representing the r  fractures) some of which are in 

contact with the boundaries of Ω . There are s  fracture intersections 

, 1,...,I I sΓ = , each of which is discretised into , 1,...,
I

n I sΓ = , global nodes 

contained in the set 
I

NΓ . Thus, the total number of global nodes contained in the 

DFN is 
1

I

s

I
n nΓ Γ

=

=∑ . The continuity of pressure and groundwater flow (introduced 

in section 2.1) are enforced at every fracture intersection. Each global basis 

function on an intersection will belong to the FE space defined as 
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 { }span .
I

I

I
I N

V
Γ

Γ
∈

= Ψ  (2.46) 

 

 For the overall DFN all the nΓ  global nodes are divided into two sets: 

 

D  - The global nodes at which there is a Dirichlet boundary condition for the 

pressure. 

E  - The remaining global nodes, some of which have a specified inflow. 

 

The flow contribution from a fracture f  at a global node 1,..,I nΓ=  resulting 

from the global basis function FE treatment is given by (2.16). Dividing the 

global nodes as described yields 

 

 
f containing I

f containing I
,

I f J J
J E f

I f J J I
J D f

T P

T P Q I E

∈

∈

⎛ ⎞
∇Ψ ⋅ ∇Ψ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ ∇Ψ ⋅ ∇Ψ = − ∈ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫

∑ ∑ ∫
 (2.47) 

 

and 

 

 0 ,I IP P I D= ∈ , (2.48) 

 

where I  and J  refer to the global nodes in the model, 0IP  is the value of the 

pressure at a Dirichlet boundary condition node I and IQ  represents the boundary 
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conditions used and may contain known flow values. Now, defining the terms in 

(2.47) and (2.48) in matrix notation as  

 
f containing I

f containing I

, ,

, ,

I f J
J E f

I f J
J D f

T I E

T I E

∈

∈

⎛ ⎞
= ∇Ψ ⋅ ∇Ψ ∈⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= ∇Ψ ⋅ ∇Ψ ∈⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫

∑ ∑ ∫

EE

ED

A

A

 (2.49) 

 

allows us to combine (2.47) and (2.48) and write the system as 

 

 
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
EEEE ED

D0D

QPA A
= ,

PP0 I
 (2.50) 

 

where the pressure has been split into pressure values EP  on global nodes in set 

E  and pressure values DP  on Dirichlet global nodes D , the values of which are 

contained in D0P . Furthermore, at Dirichlet boundary condition nodes where DP  

is known, the flow to that node DQ  is computed. This is done by adding an extra 

set of equations to (2.50) giving 

 

 
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

EE ED E E

DE DD D

D D0

A A 0 P Q
A A -I P = 0 ,

0 I 0 Q P
 (2.51) 

 

where 

 
f containing I

f containing I

, ,

, .

I f J
J E f

I f J
J D f

T I D

T I D

∈

∈

⎛ ⎞
= ∇Ψ ⋅ ∇Ψ ∈⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= ∇Ψ ⋅ ∇Ψ ∈⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫

∑ ∑ ∫

DE

DD

A

A

 (2.52) 
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The matrix system (2.51) is then solved for the unknown pressure values on 

fracture intersections EP  and the flow into Dirichlet nodes DQ . 

 

 

2.3 – NUMERICAL MODEL OF A PUMPING BOREHOLE 

 

 

This section considers how the FE method approximates flow at a pumping 

borehole intersected by a fracture. A borehole is a well of small radius that has 

been drilled into the rock. Boreholes can be pumped to create a flow or they can 

be non-pumping. Measurements are made at boreholes which generally intersect 

many fractures in a given DFN.  The radius of a borehole is small in comparison 

to the distance between nodes in a FE discretisation of a fracture. This means that 

the pressure calculated from the FE method close to the borehole can be 

inaccurate and differ from the analytical solution. In this section the analytical and 

FE solutions for a pressure field in the vicinity of a pumping borehole are 

introduced. It is then shown how the two solutions are combined to give a 

borehole model equation which can be used with the FE method in a DFN model. 

The analytical solution for steady state flow at a pumping borehole is known as 

the Thiem solution (Mays 2005). It states that the pressure rP  at any radial 

distance r  from a pumping borehole is given by  

 

 ln ,
2

B
r B

B

Q g rP P
T r
ρ
π

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (2.53) 
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where ρ  is the groundwater density, g is gravitational acceleration, T  is the 

transmissivity, Br  is the borehole radius, BP  is the pressure at the borehole and 

BQ  is the borehole flux. 

The FE solution to a pumping borehole which intersects a given fracture with a 

constant transmissivity T  is now considered. This problem is very similar to one 

described in Pinder and Gray (1977) and is described by the PDE system 

 

 

[ ]

( ) ( ) ( )

2 2

2 2 0 in 0 2 , 0 2 ,

, 1,1 1, 1 ,B

P PT Q x L y L
x y

Q x y Q x yδ

⎛ ⎞∂ ∂
+ − = Ω = ≤ ≤ ≤ ≤⎜ ⎟∂ ∂⎝ ⎠

= − −

  (2.54) 

 

where the notation is as before with the addition of  L  representing a constant 

length and δ  is the Kronecker delta function. The pumping borehole is 

represented as a point source at ( )1,1  with a flux at the borehole of BQ . A sub-

section of the fracture that surrounds the intersecting borehole is represented by 

triangular FEs in two dimensions. We consider a node located at the borehole 

along with four nodes that surround it. This setup is shown in Figure 3. There are 

four triangular elements I, II, III, IV. From the Thiem solution (2.53) we know 

that the pressure is constant at a given radius from the borehole. We thus define 

Dirichlet boundary conditions for the pressure at the four nodes equidistant from 

the borehole. Accordingly, nodes 1, 2, 4 and 5 are assigned a constant pressure 

CP  and the pumping borehole is represented at node 3 as a point sink with flux 

BQ . 
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Cartesian coordinates are used for the FE formulation, which may seem an odd 

choice as flow to a pumping borehole is radial as shown by the Thiem solution. 

The FE method can be formulated in radial coordinates (Pinder and Gray 1977) to 

calculate radial flow to a borehole. However, we shall use Cartesian coordinates 

and show that the Cartesian FE solution can be combined with the analytical 

Thiem solution to model flow at a pumping borehole. In large DFNs the majority 

of fractures will not be intersected by a borehole and are modelled in Cartesian 

coordinates. Thus, it is of benefit to model a pumping borehole in Cartesian 

coordinates so that it is in the same coordinate system as the rest of the DFN. 

 

 

 

Figure 3. FE setup representing a pumping borehole at node 3 on a fracture and the surrounding 

nodes with discretization length of 2L. Nodes are represented by circles and are shown with their 

global coordinates in brackets. There are four elements I, II, III and IV. 

 

 

The FE pressure FEP  at the pumping borehole is given by 
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 .
4

B
FE C

QP P
T

= +  (2.55) 

 

For full details on the calculation of the FE pressure in equation (2.55) see Pinder 

and Gray (1977).  

Test sites in groundwater modelling are often modelled on a large scale and when 

using a FE method to model these sites, the discretisation length can be of the 

order 50m. Figure 4 shows the FE discretisation of a sub-section of a fracture 

around an intersecting, pumping borehole with a discretisation length of 2L . 

Drilled boreholes typically have a radius of approximately 5cm which poses a 

scale problem considering the FE discretisation length. Figure 5 shows a sketch of 

how the FE solution struggles to match the Theim solution when the grid spacing 

is much greater than the borehole radius. The FE pressure FEP  at a borehole needs 

to be adjusted, so that it gives an accurate measure of the physical pressure BP  at 

that borehole. 
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Figure 4. The FE grid on a fracture in the vicinity of a pumping borehole with flux BQ . The right 

figure shows the nodes surrounding the borehole node. 

 

 

Figure 5. Sketch in the x-axis comparing the Thiem solution to the FE solution at a pumping 

borehole located at x=0. In this example the discretisation length used for the FE method is a . 

 

 

From the Thiem equation (2.53), the borehole pressure BP  at a borehole of radius 

Br  with a pressure CP  at radius 2r L=  is 



 64

 

 2ln .
2

B
B C

B

Q g LP P
T r
ρ
π

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.56) 

 

Using equations (2.55) and (2.56), it follows that 

 

 1 2ln ,
4 2

B
B FE

B

Qg LP P
r T

ρ
π

⎛ ⎞⎛ ⎞
− = − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.57) 

 

and defining 
1

1 2ln
4 2 B

g L
r

ργ
π

−
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, 

 

 .B
B FE

QP P
Tγ

= +  (2.58) 

 

Equation (2.58) is the borehole model and is used to adjust the FE pressure FEP  

calculated at a pumping borehole so that it is given by BP . In the discretisation of a 

DFN model a borehole global node is introduced corresponding to a 

borehole/fracture intersection. Each borehole node corresponds to a given global 

node. The set of borehole nodes is denoted by B . Thus, the FE flow equations 

(2.51) can be modified to include equation (2.58) and the resulting matrix system 

is given by 
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⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

EE ED E E

DE DD D

D D0

B B B

A A 0 0 P Q
A A -I 0 P 0

=
0 I 0 0 Q P

e 0 0 I P R

 (2.59) 

 

where Be  is equal to -1 for all global nodes corresponding to borehole nodes 

and 0 otherwise and the entries of BR  are given by 

 

 , .Bi
Bi

i i

QR i B
Tγ

= ∀ ∈  (2.60) 

 

 

2.4 –ALGORITHM TO CALCULATE THE PRESSURE AT 

FRACTURE INTERSECTIONS IN A DISCRETE FRACTURE 

NETWORK USING THE FINITE ELEMENT APPROACH 

 

 

This section presents an algorithm to calculate the pressure at fracture 

intersections in a DFN containing a total of r  fractures and s  fracture 

intersections , 1,...,i i sΓ = . 

 

- DO i=1,..,r 

- Assign a mesh { }i if fτ κ over if  consisting of triangular elements 
if

κ  

and a set 
if

N  containing 
if

n  local nodes. Calculate local basis 

functions ifφ  on if . 
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- END DO 

 

- DO i=1,..,s 

- Discretise the fracture intersection iΓ  into a set iNΓ  containing inΓ  

global nodes. 

-    DO j=1,.., inΓ  

-    Calculate the global basis function jΨ  corresponding to   

global node 
i

j NΓ∈  over fractures containing global node I using 

(2.11). 

-     END DO 

- END DO 

 

- Calculate EEA and EDA  defined in (2.49), DEA  and DDA  defined in 

(2.52) and BR  defined in (2.60). 

 

- Solve the matrix system (2.59) for the pressure at global nodes EP  

and the adjusted pressure at boreholes BP . 

 

2.5 – COMPARISON OF THE BASIS FUNCTION APPROACH 

TO A STANDARD FINITE ELEMENT APPROACH 

 

We now compare the global basis function FE approach introduced in this 

chapter to a standard FE approach. In a standard FE approach the DFN 

domain is discretised in the same way as the global basis function FE 
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approach. However, all the basis functions corresponding to nodes are equal 

to the local basis functions defined in (2.3). The pressure is calculated on all 

the fractures and the flow boundary condition is enforced on nodes 

corresponding to fracture intersections, see Quarteroni and Valli (1999).  

If every global node in the discretisation of a DFN corresponds to a given 

local node, then the global basis function FE approach is equivalent to a 

standard FE approach. To show this, we consider the two fractures 1f  and 

2f   from the setup described in section 2.1. The global basis function for 

global node 1,...,I nΓ=  over 1f  can be written as 

 

 
1

1 1 1

1,
,

fn
f f f
I i Ik k

k
k i

bφ φ
=
≠

Ψ = +∑  (2.61) 

 
where 1f

iφ  is the local basis function at local node i  corresponding to global 

node I and IKb  are constant coefficients depending on the geometry of the 

fracture. The global basis function 1f
IΨ  is calculated over 1f  by solving 

 

 1 1

1

1

0 , ,f f
n I f

f

T n Nφ∇ ⋅ ∇Ψ = ∈∫  (2.62) 

with boundary conditions 

 

 
1 at ,
0, .

I

I

I
N IΓ

Ψ =
Ψ = ∀ ≠

 (2.63) 

 

The pressure across 1f  is given by 
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∑

∑ ∑
 (2.64) 

 

The flow 1f
IQ  at global node 1,...,I nΓ= , from 1f  is given by 

 

                     1 1

1

1

ˆ , 1,..., ,f f
I I f

f

Q T P i nΓ= ∇Ψ ⋅ ∇ =∫  

 
1

1 1

1
1,

ˆ , 1,..., , ,
n

j Ik k f f
kf
k j

b T P i n k Nφ φ Γ
=
≠

⎛ ⎞
⎜ ⎟= ∇ + ⋅ ∇ = ∈⎜ ⎟⎜ ⎟
⎝ ⎠

∑∫  (2.65) 

 
 
Equation (2.62) can be used to show that the second term in (2.65) is equal 

to zero, and so equation (2.65) simplifies to 

 

 1 1

1

1
ˆ, 1,.., .f f

I i
f

Q T P i nφ Γ= ∇ ⋅ ∇ =∫  (2.66) 

Enforcing the conservation of flow boundary condition at global node I  

yields 

 

 1 2

1 2

1 2

ˆ ˆ 0, 1,.., .f f
i f i f

f f

T P T P i nφ φ Γ∇ ⋅ ∇ + ∇ ⋅ ∇ = =∫ ∫  (2.67) 

 

Equation (2.67) is the weak form of the flow boundary condition on a 

fracture intersection that would be implemented in the standard FE approach 

(Quarteroni and Valli 1999). Therefore, the basis function FE approach and 
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the standard FE approach both solve the pressure on individual fractures 

along with the same condition (2.67) at fracture intersections. It should be 

noted that this is only the case when every global node has a corresponding 

local node. 

The standard FE approach results in a large sparse stiffness matrix in the 

matrix system that is to be solved for pressure values. The advantage of 

using the global basis function approach is that it results in many smaller 

matrix systems that are to be solved. This structure means that it is easy to 

use parallel computing when solving the matrix systems. Furthermore, the 

discretisation of fracture intersections can be coarsened to reduce the total 

number of operations required to calculate the pressure in the DFN. This is 

vital for large scale DFNs such as ones we use for test cases. 

The global basis function FE approach allows for individual fractures to be 

discretised into highly refined meshes or coarse meshes. This means that on 

fracture intersections, there is the possibility that local nodes between the 

fractures do not match. Thus, on some fracture intersections there are more 

local nodes than global nodes. This problem is essentially equivalent to that 

of non-conforming sub-domains. This thesis will not go into the details of 

non-conforming sub-domains but for a concise description of FE methods 

that can handle non-conforming domains, see Quarteroni and Valli (1999). 
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3 - DEVELOPMENT OF THE BASIS VECTOR 

CONDITIONING METHOD 

 

Our new conditioning method is developed in a DFN setting. It is based on a 

previous conditioning method proposed by Cliffe and Jackson (1995; 2000) 

for conditioning hydraulic conductivities in CPM models on head 

measurements. Section 3.1 summarises the conditioning method proposed 

by Cliffe and Jackson (1995; 2000). Section 3.2 then outlines the 

modifications made to Cliffe and Jackson’s method to develop our new 

conditioning method in a DFN setting. The mathematical formulation of our 

new conditioning method is then given in the remaining sections of this 

chapter. 

 

3.1 – SUMMARY OF CLIFFE AND JACKSON’S 

CONDITIONING METHOD 

 

Cliffe and Jackson (1995; 2000) proposed a method for conditioning 

hydraulic conductivities K  in CPM models on head measurements. They 

assumed that a CPM model had been discretised into nodes each of which 

had an initial value of K  (with units m/s) assigned to it, and they defined 

10logY K=  to be the log of the hydraulic conductivities. The Y  values are 

defined by their mean and covariance. The starting point for their method is 
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the observation that when the variability in Y  and the deviations of the head 

from the mean head field are both small there is a linear relationship 

between the perturbations of head from the mean head field and the 

perturbations of Y  from its mean value. As a result of this linear 

relationship, unconditioned values of Y  can be directly conditioned on head 

measurements by the formula 

 

 ( ) ,C U
M CY = Y + W h - h  (3.1) 

 

where CY  is a vector containing the conditioned values of Y , UY  is a 

vector containing the unconditioned values of Y , Mh  is a vector containing  

n  measured head values, Ch  is a vector containing the calculated heads at 

the n  measurement points and W  denotes a matrix containing a set of n  

basis vectors. Each basis vector represents the change to the nodal values of 

Y that results in a unit increase in pressure at one measurement point whilst 

keeping the pressure at the 1n −  remaining measurement points constant. 

These basis vectors are calculated from the system 

 

 ( ) ,T TLCL W = LC  (3.2) 

 

where C  is the covariance matrix of Y  values and L  is the sensitivity 

matrix which contains the sensitivity values for all the measured pressures 

with respect to all the different Y  values . The sensitivity is the derivative of 

a measured pressure value with respect to a Y  value. Thus, it tells us how 



 72

much influence the change in each nodal value of Y  will have on a 

measured pressure. 

This conditioning approach can be extended to that of large variability in Y  

and large deviations of the head from the mean head field. Here, the Y  

values are conditioned using the formula 

 

 
1

,
n

i
i
α

=
∑C U

iY = Y + W  (3.3) 

where iW  is the basis vector corresponding to measurement point i  and iα  

are coefficients obtained from minimising the least squares error function 
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2
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,
,

n
Mi Ci

i
i i

h h Y
E

α
α

σ=

−
=∑  (3.4) 

 

where Mih  is the measured head at measurement point i , Cih  is the 

calculated head at measurement point i  and iσ  is the standard deviation of 

the measured head at measurement point i . The standard deviation tells us 

how reliable we think the measured heads are. Thus, the measurements can 

be given different weightings using iσ . 

Cliffe and Jackson’s conditioning method was tested using a CPM model of 

the Waste Isolation Pilot Plant (WIPP) in the USA (The U.S. Department of 

Energy 2010); a potential location for a repository for the disposal of 

radioactive waste. The CPM model of the site was based on work by Cliffe 

and Jackson (1993) and Cauffman, LaVenue et al. (1990).  Additionally, 

there were 20 head measurements available at the site (Cauffman and 
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LaVenue 1990). The Y  field was heterogeneous and was assumed to have 

an isotropic covariance (C  was a non-diagonal matrix). The model region 

was approximately 20km by 30km and was modelled using a FE grid. Cliffe 

and Jackson’s conditioning method (1995; 2000) was very successful when 

conditioning on the available head values. It reduced the root mean square 

error from 5m to 0.5m. 

 
3.2 – OUTLINE OF THE BASIS VECTOR CONDITIONING 

METHOD 

 
 
In this section, the modifications made to Cliffe and Jackson’s  conditioning 

method (1995; 2000) to develop our new conditioning method for a DFN setting 

(with different governing equations) are outlined. Our new conditioning method 

will be referred to as the basis vector conditioning method. The details of our 

conditioning method are described fully in later sections. For consistency with the 

rest of this thesis we consider pressure measurements instead of head 

measurements. Additionally, when working with fractures, transmissivity is the 

natural hydraulic parameter to use instead of hydraulic conductivity (Bear 1972). 

The proposed basis vector conditioning method conditions fracture log 

transmissivities on measured pressures at the intersection between a borehole and 

a fracture. The transmissivity is assumed to be constant over the fracture. 

Therefore, our conditioning method differs from Cliffe and Jackson’s (1995; 

2000) in that it conditions the log transmissivity of a whole fracture and not the 

nodal value of hydraulic conductivity. The fracture log transmissivities are used 

because it ensures that conditioned fracture transmissivities have a positive value 
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and are physically admissible. It should be noted that log transmissivities are 

dependent on the units used for transmissivity. In this thesis units of m2/s are used 

for fracture transmissivities. The basic approach taken to update fracture log 

transmissivity values in order that the calculated and measured pressure values 

agree, in some appropriate sense, is as follows. A simulation is run with an initial 

distribution of unconditioned fracture log transmissivities. These fracture log 

transmissivities are the parameters of our model which we wish to change. When 

there is a small variance in the values of the fracture log transmissivities, a linear 

relationship between fracture log transmissivities and pressure measurements can 

be assumed. This allows us to condition the fracture log transmissivities directly 

multiplying each basis vector by a given coefficient and adding a linear 

combination of the resulting vectors to the unconditioned log transmissivities 

(similar to (3.1)). The coefficients are the difference between the calculated and 

measured pressures at measurement points. The basis vectors represent the change 

to the log transmissivity of the fractures in the DFN that results in a unit increase 

in the pressure at one measurement point whilst keeping the pressure constant at 

the remaining measurement points, and are calculated using (3.2). However, in a 

DFN setting, C  in equation (3.2) is defined as the covariance matrix of the 

fracture log transmissivities and L is defined as the sensitivity matrix where the 

sensitivity is now the derivative of a measured pressure value with respect to a 

fracture log transmissivity. Thus, in our basis vector conditioning method, 

sensitivities are calculated using a transmissivity value over a whole fracture and 

not for a nodal value of hydraulic conductivity as in Cliffe and Jackson (1995; 

2000). 
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It is physically more realistic for the variance in fracture transmissivities to be 

large and therefore the assumption of a linear relationship between them and the 

pressure measurements may not be valid. In this case, the same basis vectors are 

employed, but the coefficients are now determined by minimising an appropriate 

error function. Thus, the conditioning will proceed iteratively, while the fracture 

log transmissivities are updated until the error function has reached a suitable 

convergence criterion. The error function takes into account the difference 

between measured and calculated (from our numerical simulation) pressure 

values. It is equivalent to (3.4) with head values replaced by pressure values. The 

number of coefficients in the model is equal to the number of measurement 

points. Thus, for large DFNs, the number of model coefficients is much less than 

the total number of log transmissivity values. 

One of the key steps in the conditioning procedure is the calculation of the 

sensitivities. We require the sensitivity value of every measured pressure value 

with respect to each fracture log transmissivity. To this end, adjoint methods can 

be used to calculate the desired sensitivities. Indeed, it is well known that adjoint 

methods are advantageous when the number of observation points is less than the 

number of parameters (Chavent 2009). In this thesis large DFNs containing 

thousands of fractures are to be conditioned on a small number of measured 

pressure values and thus the number of parameters is much greater than the 

observation points; therefore, the adjoint method will be very efficient. Non-linear 

minimisation of the error function is performed by the Levenberg-Marquardt 

method.  

There are no existing methods that condition fracture log transmissivities in a 

DFN based on measured pressures. A concise description of our basis function 
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conditioning method is given in the following sections of this chapter. Firstly, in 

section 3.3, the case of conditioning realisations of the logarithm of the fracture 

transmissivity T , 10logX T= , on measurements of X  at fractures of a DFN 

model (this could be either a FE or FD model) is considered where X  is described 

by its mean and variance. Figure 6 shows an example of a generated DFN; the 

fractures are coloured according to their transmissivity T , which is assumed 

constant across each fracture. Section 3.4 describes the case in which the 

variability is small and so there is a linear relationship between the perturbations 

in X  and the measured pressure values. Furthermore, it explains how an 

unconditioned realisation is conditioned by adding a linear combination of basis 

vectors corresponding to the measurements and coefficients which are the 

difference between the measured pressures and the pressures in the realisation. 

Section 3.5 introduces the adjoint method, then section 3.6 describes how the 

sensitivity matrix is calculated using this approach; this sensitivity matrix is then 

used to calculate the corresponding basis vectors. Finally, section 3.7 considers 

the case of conditioning on pressure measurements when the variability of the 

fracture log transmissivities is large; this involves the minimisation of a 

corresponding error function. 
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Figure 6. Example of a DFN generated within a cubic domain. Fractures are coloured 

according to their transmissivity value. 
 
 

3.3 – CONDITIONING ON FRACTURE LOG 

TRANSMISSIVITIES 

 
 
The work in this section is based on work by Cliffe and Jackson (1995; 2000) . 

This section considers conditioning a DFN model where realisations of fracture 

log transmissivities X are generated conditioned on measurements of X  at 

locations corresponding to the nodes at which X  is generated. These are the 

nodes of a FE numerical flow model, but could equally have been the nodes of a 

FD model. Fracture transmissivities are constant on each fracture. 

We use a stochastic model to describe the model parameters X  where they are 

uniquely described by their mean and covariance. The mean of a log 

transmissivity value iX  of fracture i  is defined by 

 

 ( ) [ ],i i im X E X=  (3.5) 
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where [ ]E ⋅  denotes expectation. The covariance of the log transmissivity between 

two fractures i  and j  is given by 

 

 ( ) ( )( ), ,i j i i j jC X X E X m X m⎡ ⎤= − −⎣ ⎦  (3.6) 

 

 

In applications of this stochastic approach, the mean m and covariance C  are 

inferred from data. The stochastic approach corresponds to taking X  to be a 

Gaussian random vector where the joint distribution of X  at any set of points is a 

multi-variate normal distribution. If we take X to be the vector of log 

transmissivity values X  of each of the n  fractures, i.e. 

 

 

1

2 ,
...

n

X
X

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

X =  (3.7) 

and  

 

( )
( )

( )

1

2 ,
....

n

m X
m X

m X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

m =  (3.8) 

 

to be the mean of the fracture log transmissivities , 1,..,fX f n= , then the 

probability density function for X  is given by (Mood, Franklin et al. 1974) 
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 ( ) ( )1/ 2/ 2

1 1pdf ( ) exp
2(2 )nπ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

T -1X X - m C X - m
C

, (3.9) 

 

where 

 
( ) ( )

( ) ( )

1 1 1

1

, .... ,
.... .... .... ,

, .... ,

n

n n n

C X X C X X

C X X C X X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C =  (3.10) 

 

is the covariance matrix for X  between the various fracture log transmissivities 

and ⋅  denotes the determinant. 

A realisation of X is generated for n  fractures in a DFN model. To simplify the 

notation, the mean m of all fX  values is taken to be zero ( it can be added back in 

at any time in the following analysis if desired) and the vector X  is partitioned 

into two parts 

 

 
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2

X
X =

X
, (3.11) 

 

where 1X corresponds to the m  fractures for which there are log transmissivity 

measurements of fX  (but 1X  is unconditioned and is not equal to the 

measurements of fX ) and 2X  corresponds to the n m−  fractures for which there 

are no measurements. The covariance matrix C  can be partitioned in a similar 

way to X , giving 
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⎛ ⎞
⎜ ⎟
⎝ ⎠

11 12

21 22

C C
C =

C C
. (3.12) 

 

Here 11C  is the m m×  covariance matrix for the m  measurement fractures and 

22C  is the ( ) ( )n m n m− × −  covariance matrix for the n m−  fractures where there 

are no measurements. Unconditioned realisations 
⎛ ⎞
⎜ ⎟
⎝ ⎠

u
U 1

u
2

X
X =

X
 can be generated 

with given mean and covariance values. Consider generating realisations of X , 

that are such that *
1 1X = X , where *

1X   is the vector of measured values of X . 

Due to the fact that X  is a Gaussian spatial process it will have a multi-variate 

normal distribution given by (3.9) with the mean vector m set to zero. Then, we 

write the conditional probability density function for 2X  given measurements 

*
1 1X = X  as (Mood, Franklin et al. 1974) 

 

 ( )
( )

/ 2 1/ 2

/ 2 1/ 2

1 1exp
(2 ) | | 2pdf

1 1exp
(2 ) | | 2

n

m

π

π

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞−⎜ ⎟
⎝ ⎠

T -1

2 1
-1T

1 11 1
11

X C X
CX | X

X C X
C

. (3.13) 

 

 

The aim is to identify the parameters X  of this distribution. An 

TLDL factorisation is used to factorise the inverse of the covariance matrix C as 
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⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞
≡ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

-1-1
11-1 11 12

-1 -1
21 11 22 21 11 12

-1 -1 -1-1
1111 12

-1 -1
22 21 11 12 21 11

-Τ -1
11

-1 -1 -1
21 11 22 21 11 12 21 11

I 0 C 0 I C C
C

C C I 0 C - C C C 0 I

C 0 I 0I C C
=

0 C - C C C C C I0 I

I 0 C 0 I 0
=

C C I 0 C - C C C C C I
,

⎛ ⎞
⎜ ⎟
⎝ ⎠

-1

 (3.14) 

 

where -T  denotes the transpose of the inverse. Equation (3.14) makes use of the 

fact that 

 

 ( ) ,
T-1 -T T -1

21 11 11 21 11 12C C = C C = C C  (3.15) 

 

which in turn uses the relationships T
21 12C = C   and T

11 11C = C . Thus, we may write 

 

 

( ) .
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

-T -1 -1
11 1T -1 T T

1 2 -1 -1 -1
21 11 22 21 11 12 21 11 2

I 0 C 0 I 0 X
X C X = X X

C C I 0 C - C C C C C I X
 (3.16) 

 

Defining 

 

 
′⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

-1
1 1 1

-1 -1
2 21 11 2 2 21 11 1

X I 0 X X
= =

X C C I X X - C C X
, (3.17) 

 

and inserting (3.17) into (3.16) yields 
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( )

( ) .

′⎛ ⎞ ⎛ ⎞
′ ′ ⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

′ ′ ′ ′= +

-1
11 1T -1 T T

1 2 -1
22 21 11 12 2

-1T -1 T -1
1 11 1 2 22 21 11 12 2

C 0 X
X C X = X X

0 C - C C C X

X C X X C - C C C X

 (3.18) 

 

 

Now the exponential in the denominator on the right hand side of (3.13) can be 

cancelled with the term in the exponential in the numerator when it is written in 

the form of (3.18), resulting from the fact that 'T -1 ' T -1
1 11 1 1 11 1X C X = X C X  . From (3.14) 

the determinant of the covariance matrix may be written as  

 

 11 -1
11 22 21 11 12-1

22 21 11 12

C 0
C = = C C - C C C

0 C - C C C
. (3.19) 

 

 

Therefore, the determinant in the denominator of (3.13) can also be cancelled with 

the corresponding factor in the numerator, as can the factor 22
m

π . Thus, the 

conditional distribution for 2X  given 1X  can be written as 

 

( ) ( )

( ) ( ) ( )

( ) / 2 1/ 2

( ) / 2 1/ 2

1 1pdf exp
(2 ) 2

1
(2 )

1exp .
2

n m

n m

π

π

−

−

⎛ ⎞′ ′= −⎜ ⎟
⎝ ⎠

=

⎛ ⎞−⎜ ⎟
⎝ ⎠

-1T -1
2 1 2 22 21 11 12 2-1

22 21 11 12

-1
22 21 11 12

T -1-1 -1 -1
2 21 11 1 22 21 11 12 2 21 11 1

X | X X C - C C C X
| C - C C C |

| C - C C C |

X - C C X C - C C C X - C C X

 (3.20) 
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This is a multi-variate normal distribution with mean  

 

 -1
21 11 1C C X , (3.21) 

and covariance 

 -1
22 21 11 12C - C C C . (3.22) 

  

It can be shown that the probability density function for  

 

 ( )C u -1 * u
2 2 21 11 1 1X = X + C C X - X , (3.23) 

 

is identical to that for 2X  given *
1 1X = X  in (3.20) (the notation C  has been 

introduced to distinguish it from the covariance matrix). To show this we denote 

the mean of C
2X  as E ⎡ ⎤⎣ ⎦

C
2X , then 

  

                           

( )
( )

.

E E

E E E

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C u -1 * u
2 2 21 11 1 1

u -1 * u
2 21 11 1 1

-1 *
21 11 1

X X + C C X - X

X C C X X

= C C X

 (3.24) 

 

This is the same mean as in (3.21) with = *
1 1X X . The covariance of C

2X  is 

defined as 

 

 ( ) ( )( )E E E⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

T
C C C C C
2 2 2 2 2C X = X - X X - X . (3.25) 
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Then using (3.23) and (3.24) this becomes 

 

 

( ) ( )E ⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

TC u -1 * u -1 * u -1 * u -1 *
2 2 21 11 1 1 21 11 1 2 21 11 1 1 21 11 1C X = X + C C (X - X ) - C C X X + C C X - X - C C X

 (3.26) 

 

which simplifies to 

 

 

( ) ( )( )

( ) ( )

( ) ( )

,

.

E

E E

E E

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

TC U -1 U U -1 U
2 2 21 11 1 2 21 11 1

T TU U -1 U U
2 2 21 11 1 2

T T-1 U U -1 -1 U U
21 11 2 1 21 11 21 11 1 1

C X = X - C C X X - C C X

= X X - C C X X

C C X X C C C C X X

 (3.27) 

 

By using the partitioning of the covariance matrix as defined in (3.12) we can 

write this as 

 

                           ( )
,

C -1 -1 -1
2 22 21 11 12 21 11 21 21 11 21

-1
22 21 11 12

C X = C - C C C - C C C + C C C

= C - C C C
 (3.28) 

 

which is the same covariance as (3.22) with. Thus, we have shown that the 

probability density function for C
2X  given in (3.23)  is a Gaussian process with the 

same mean and covariance as (3.20). Therefore, 

 

 ( )
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

*C
11C

u -1 * uC
2 21 11 1 12

XX
X = =

X + C C X - XX
, (3.29) 
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provides the desired conditional realisation for the logarithm of fracture 

transmissivities CX  conditioned on measured values of the logarithm of fracture 

transmissivities *
1X . 

 

 

3.4 CONDITIONING ON LINEAR CONSTRAINTS 

 

For ease of notation we take P  to be a vector of residual pressures at global nodes 

located at fracture intersections. From hereon any reference to a pressure value is 

referring to the residual pressure defined by (1.5). For small perturbations in both 

the pressure and fracture log transmissivities X , we can assume that the 

relationship between these quantities is linear. Thereby, we may condition X  

based on linear constraints. To this end, we write 

 

 MLX = P , (3.30) 

 

where L  is an m n×  matrix of full rank representing a linear constraint and MP  is 

an m -vector containing measured pressure values. The rows of L are 

independent, so we can find a matrix J such that ⎛ ⎞
⎜ ⎟
⎝ ⎠

L
J

 is non-singular.  The 

matrix J  is introduced to ensure that ⎛ ⎞
⎜ ⎟
⎝ ⎠

-1L
J

exists because (as will be seen in the 



 86

following analysis) ⎛ ⎞
⎜ ⎟
⎝ ⎠

L
J

 will then fall out of the conditioning expression and 

hence the value of  J  is not important. Define 

 

 
⎛ ⎞
⎜ ⎟
⎝ ⎠

L
P = X

J
. (3.31) 

 

Then the probability density function for P is given by 

 

        

( )
( )

( )

( )

( )

/ 2 1/ 2

/ 2 1/ 2

/ 2 1/ 2

/ 2 1/ 2

1 1pdf exp
2

2

1 1exp
2

2

1 1exp
2

2

1 ex
2 | |

n

n

n

n

π

π

π

π

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠

=

T -1

T-1 -1
-1

T-1 -1
T -1

P

P X C X
L

C
J

L L
P C P

J JL
C

J

L L
P C P

J JL
C

J

C
1p ,
2

⎛ ⎞−⎜ ⎟
⎝ ⎠

T -1
PP C P

 (3.32) 

 

where PC  is defined as 

 

 

.

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

-1T-1 -1
-1

P

T

T T

T T

L L
C = C

J J

L L
= C

J J

LCL LCJ
=

JCL JCJ

 (3.33) 
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Moreover, 

 

 
⎛ ⎞
⎜ ⎟
⎝ ⎠

2

P

L
C = C

J
. (3.34) 

 

 

Generating realisations of X such that MLX = P  is equivalent to generating 

realisations of P such that 1 MP = P , where 1P  is a vector of calculated pressures at 

measurement points. The conditional realisations that are required, CP , can be 

obtained from unconditioned realisations UP . This is done using the method 

discussed in section 3.3 and using (3.29) so that the conditioned realisations are 

given by 

 

 ( )
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

C
M1C

U -1 UC
2 P21 P11 M 12

PP
P = =

P + C C P - PP
. (3.35) 

 

 

The unconditioned realisations UP can be obtained from unconditioned 

realisations of UX . We then find from (3.31) and (3.35) that the conditioned 

realisations are given by 
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( )
( )( ) ( )
( )( ) ( ) ,

C C U U
1 M 1 M 1

-1U T T U
1 M 1

-1U T T U
M 1

LX = P = P = P + P - P

= P + LCL LCL P - P

= LX + LCL LCL P - P

 (3.36) 

 

and 

 

 
( )( ) ( )

( )( ) ( )

-1C C U T T U
2 2 M 1

-1U T T U
M 1

JX = P = P + JCL LCL P - P

= JX + JCL LCL P - P .
 (3.37) 

         

Therefore, we can write 

 

 ( )( ) ( )⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

-1C U T T U
M 1

L L L
X = X + CL LCL P - P

J J J
, (3.38) 

 

and because ⎛ ⎞
⎜ ⎟
⎝ ⎠

L
J

is non-singular, the desired conditioned realisations are given by 

 

 ( )( ) ( )-1C U T T U
M 1X = X + CL LCL P - P , (3.39) 

 

 

which can be written as 

 

 ( )C U U
M 1X = X + W P - P , (3.40) 
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where W  is an n m×  matrix given by 

 

 ( )( )-1T TW = CL LCL . (3.41) 

 

Thus, W is obtained by solving the system 

 

 ( )T TLCL W = LC . (3.42) 

 

The matrix W  comprises of a set of n  basis vectors each of which corresponds to 

a given pressure measurement. The basis vector corresponding to a pressure 

measurement represents the change to the log transmissivity of the fractures in the 

network that results in a unit increase in the pressure at that measurement point 

whilst keeping the pressure constant at the remaining measurement points 

constant. The basis functions may give an exact answer when used in (3.40)  if the 

variance in the fracture transmissivities is small. Non-linear minimization extends 

this approach to deal with large variability in fracture log transmissivities, and 

will be discussed in section 3.7. Thus, we can condition an unconditioned 

realisation of fracture log transmissivities by adding a linear combination of the 

basis vectors and cofficients given by (3.40). The coefficients of the basis vectors, 

( )U
M 1P - P , are the differences between the measured values of pressure and their 

unconditioned values at measurement points. The matrix L  is known as the 

sensitivity matrix. The covariance matrix C  represents the correlation of the log 

transmissivities of the fractures in the network.  
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3.5 – INTRODUCTION TO THE ADJOINT METHOD 

 

We consider a model characterised by a set of pressure values , 1,..,jP j N= , 

where N is the number of global nodes at fracture intersections that the model is 

discretised with. The parameters of the model are the fracture log transmissivities 

, 1,..,fX f n= , where n  is the number of fractures. The equations for the model 

are written in the form 

 

 ( ); 0, 1,..,iF P X i N= = . (3.43) 

 

Suppose one is interested in m  ( n ) measurements or consequences 

( ), , 1,..,s j fG P X s m= ,  (defined as the difference between calculated and 

measured pressure values at measurement locations). The quantities of interest are 

the sensitivities 

 

 , 1,.., , 1,.., ,s

f

dG f n s m
dX

= =  (3.44) 

 

where index notation has been used and will continue to be used when 

considering matrix derivatives in this section. Now,  

 

 , 1,.., , 1,.., , 1,.., .js s s

f j f f

PdG G G f n j N s m
dX P X X

∂∂ ∂
= + = = =
∂ ∂ ∂

 (3.45) 
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The last term in (3.45) gives the sensitivity of sG  to fX  resulting in an explicit 

dependence on fX , while the first term gives the implicit dependence of sG on 

fX  from the model. Now differentiating the equations for the model  (3.43) with 

respect to fX  gives 

 

 0, 1,.., , 1,.., , 1,.., ,ji i i

f j f f

PdF F F f n i N j N
dX P X X

∂∂ ∂
= + = = = =
∂ ∂ ∂

 (3.46) 

 

and it follows that 

 

 
-1

, 1,.., , 1,.., , 1,.., .j i i

f j f

P F F f n i N j N
X P X

⎛ ⎞∂ ∂ ∂
= − = = =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3.47) 

 

Then, substituting (3.47) into (3.45) yields 

 

 

-1

,

1,.., , 1,.., , 1,.., , 1,.., ,

s s i i s

f j j f f

dG G F F G
dX P P X X

f n i N j N s m

⎛ ⎞∂ ∂ ∂ ∂
= − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

= = = =

 (3.48) 

 

which may be written in the form 

 

 
( ) ,

1,.., , 1,.., , 1,.., , 1,.., ,

Ts i s
sj

f f f

dG F G
dX X X

f n i N j N s m

θ ∂ ∂
= +

∂ ∂

= = = =

 (3.49) 
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where  

 ( )
-1

- ,

1,.., , 1,.., , 1,.., .

T s i
sj

j j

G F
P P

i N j N s m

θ
⎛ ⎞∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
= = =

 (3.50) 

 

Rearranging terms gives 

 
( ) ,

1,.., , 1,.., , 1,.., .

T i s
sj

j j

F G
P P

i N j N s m

θ ∂ ∂
= −

∂ ∂

= = =

 (3.51) 

 

 

Equation (3.50) defines the adjoint ( )T

sj
θ , and this can be inserted into equation 

(3.49) to calculate the sensitivities. The key reason for introducing the adjoint is 

that it is computationally cheaper to calculate sensitivities using the adjoint 

approach when m n  than using a direct approach such as a finite difference 

approximation. The term s

f

dG
dX

 can be evaluated from a single solve of (3.51) 

which is independent of the number of fractures n , followed by a single matrix-

matrix product calculated in (3.49). Other direct methods such as a finite 

difference approximation of  s

f

dG
dX

 require the solution of (3.44) n  times. Hence 

in this setting where m n , the adjoint method is computationally cheaper than 

other direct methods. 
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3.6 - CALCULATION OF THE PRESSURE SENSITIVITIES IN 

A DISCRETE FRACTURE NETWORK 

 

 

There will be m  pressure measurements obtained at different boreholes across the 

model domain where the inflow is specified and we suppose that the vector of 

consequences at measurement points , 1,.., ,sG s m=  is given by 

 

 
-

,

B
s s Ms

B Bs
s Ms

s s

G P P
QP P

Tγ

=

= + −
 (3.52) 

 

where , 1,..,B
sP s m= , are borehole pressures, , 1,..,sT s m= , are fracture 

transmissivities at the measurement points, , 1,..,BsQ s m= , are borehole fluxes 

and , 1,..,s s m=γ , are geometric constants all defined in the borehole model 

(2.53). The consequence was chosen to be given by (3.52) because this 

corresponds to the data available to us from test sites. The consequence could 

equally be a flow or transmissivity measurement.  

Given pressures , 1,..,iP i N= ,  at N  global nodes,  and , 1,..,fT f n= , constant 

transmissivities corresponding to n  fractures, the weak form of the flow equation 

defined in (2.47) (without splitting the Dirichlet boundary nodes) at global nodes, 

is  
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 1
0 ,

1,.., , 1,.., , 1,.., ,

N

j j f i i j j
i f

F T P Q

f n i N j N
= ϒ

⎧ ⎫⎪ ⎪= ∇Ψ ⋅ ∇Ψ + Ψ =⎨ ⎬
⎪ ⎪⎩ ⎭
= = =

∑ ∫ ∫  (3.53) 

 

where ϒ  is the boundary where the flux Q  is defined, jΨ  are the FE global basis 

functions and the pressure has been approximated as 
1

ˆ
N

i i
i

P P
=

= Ψ∑ . Differentiating 

(3.53) with respect to iP  we may write  
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,

1,.., , 1,.., , 1,.., .
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j f i
ii f

F
T

P

f n i N j N
=

∂
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∂

= = =

∑∫  (3.54) 

 
 

Similarly, 
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ρ=

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪= ∇Ψ ⋅ ∇Ψ⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
= = =

∑ ∫    (3.55) 

 

 

The partial derivatives of the consequences (3.52) with respect to the log 

transmissivities fX  are 

 

 
ln10

,

1,.., , 1,.., .

Bs sfs

f s f

QG
X T

f n s m

δ
γ

∂
= −

∂

= =

 (3.56) 
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Furthermore, 

 

 
,

1,.., , 1,.., .

s
sj

j

G
P

j N s m

δ∂
=

∂

= =

 (3.57) 

 

Then, using (3.51), (3.54) and (3.57) the equation for the adjoint becomes 

 

 
( )

1
,

1,.., , 1,.., , 1,.., , 1,.., .

N
T
sj j f i sj

i f

T

f n i N j N s m

θ δ
=

∇Ψ ⋅ ∇Ψ = −

= = = =

∑∫  (3.58) 

 

where sj
Tθ  denotes the transpose of the adjoint. This then gives us a defining 

equation for the transpose of the adjoint, T
sjθ , corresponding to measurement point 

s . The adjoint is approximated in the same way as the pressure, namely 

 

 
1

ˆ .
N

i i
i

θ θ
=

= Ψ∑  (3.59) 

 
  

The sensitivities can now be calculated using (3.49), (3.55), (3.56) and (3.59) 
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( ) ln10ˆ ˆln10

1,.., , 1,.., , 1,..,

Bs sfT
s f

s ff

Q
T P

T

f n j N s m

δ
θ

γ
= ∇ ⋅ ∇ −

= = =

∫  (3.60) 

 

 

The integral term in (3.60) can be calculated using a numerical quadrature 

technique while the second term is easily evaluated. The sensitivity values 

calculated in (3.60) can be modified to take into account multiple fracture 

intersections to a borehole, which provide alternative flow routes. This 

modification is explained in Appendix A. 

 

 

3.7 – CONDITIONING ON PRESSURES WHEN VARIABILITY 

IS LARGE 

 

 

So far, only the case of small variability of the fracture transmissivities and small 

deviations of the pressure from the mean pressure field have been considered. 

However, such assumptions are not valid due to the many uncertainties in the 

fracture transmissivities. Therefore, the situation of large variability of the 

fracture log transmissivities and large deviations of the pressure from the mean 

pressure field is considered. Here, the unconditioned fracture log transmissivity 

values are denoted by the vector UX  and basis vectors 

, 1,.., , 1,...,s m f n= =Wsf  are computed as in section 3.4. An update to the log 
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transmissivities is evaluated assuming the following relationship suggested by 

Cliffe and Jackson (1995; 2000): 
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⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠

∑UX = X Wsf

 (3.61) 

 

where m  is the number of pressure measurements, n  the number of fractures and 

sα  are coefficients which are to be determined. Initially, the values of sα  are set 

to zero or they can be set to the difference between the calculated and measured 

pressures in which case (3.61) corresponds to (3.40). This updating formula is 

used to recalculate the pressure in the DFN and then the vector of consequences 

( , )sG P α . The fracture log transmissivities, X , are calculated as in (3.61) and are 

dependent on the coefficients sα ; the pressures , 1,..,iP i N= ,  are also dependent 

on sα . The coefficients sα  are chosen so that they minimise a weighted sum of 

squares of the discrepancies between calculated and measured pressures, namely, 

 

 ( ) ( )2

2
1

,Rm
s s

s
s s

G P
E

α
α

σ=

=∑  , (3.62) 

 

where sσ is a the standard deviation of the measurement of the pressure at the 

measurement point s . 
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The pressure in our DFN model depends non-linearly on sα , therefore 

minimisation of (3.62) will proceed in an iterative manner. There are many 

different algorithms for non-linear minimisation; here we use the Levenberg-

Marquardt method to efficiently minimise the error ( )sE α . The Levenberg-

Marquardt algorithm requires the derivatives 

 

 

 2
1

2 , 1,..., ,
m

s s

sk s k

G GE k m
α σ α=

∂∂
= =

∂ ∂∑  (3.63) 

 

and 
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2
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1 , 1,..., , 1,.., ,
m

s s

sk l k l

G GE l m k m
α α σ α α=

⎡ ⎤∂ ∂∂
= = =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
∑  (3.64) 

 

 

for the s  measurement points. The term s

f

G
α
∂
∂

 can be calculated for a fracture f  

by using the chain rule with the sensitivity values. The increments of the 

coefficients sδα  are calculated by solving the system 

 

 

 , 1,.., , 1,.., ,kl k k l m k mγ δα β= = =  (3.65) 

 

where 
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 , 1,.., ,k
k

E k mβ
α
∂

= =
∂

 (3.66) 

 

and 

 
2

, , 1,.., ,jk jk
j k

E j k mγ δ λ
α α
∂

= + =
∂ ∂

 (3.67) 

 

 

where λ  is a parameter initially set to a small value which will change by a factor 

of ten with each iteration and δ  is the Kronecker delta function. Here, λ  controls 

whether the Levenberg-Marquardt method corresponds to a steepest decent 

method or a Newton method for the minimisation at each iteration. For more 

details on the Levenberg Marquardt method, see Press, Flannery et al. (1986). 

There are two different approaches that can be taken for the minimisation. In the 

first approach the sensitivities are updated with each iteration of the minimisation 

procedure. This means that the terms G
α
∂
∂

 in (3.63) and (3.64) are updated with 

each iteration. In the second approach the sensitivities are not updated. We use the 

terminology updating in this thesis to mean that the sensitivities are updated with 

each iteration. The conditioning algorithm is as follows: 

 

1. Compute the initial log transmissivity field UX , and calculate an initial 

error from (3.62). 

2. Calculate the sensitivities using (3.60). 

3. Calculate the basis vectors using (3.42). 

4. Select an initial guess for the coefficients sα . 
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5. Update X  using (3.61). 

6. Re-calculate pressures with new X  value. 

7. If required, update the new derivatives in (3.63) and  (3.64). Recalculate γ  

and β . 

8. Calculate new increment for the coefficients sδα from (3.65). 

9. If error (3.62) has converged then stop. If error has not been reduced then 

increase λ  by a factor of 10 and return to 6. If the error has been reduced then 

decrease λ  by a factor of 10 and update ( )sαX  to ( )s sα αX +δ  and return to 6. 
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4 – RESULTS OF THE BASIS VECTOR 

CONDITIONING METHOD 

 

Throughout the remainder of this thesis the conditioning method described in 

chapter 3 will be referred to as the basis vector conditioning method. It was 

implemented in NAPSAC, an existing FE code for solving flow problems in a 

DFN. Four simple test cases were initially used to test the basis vector 

conditioning method. These test cases contained deterministically placed fractures 

with simple geometry. For each simple test case a target transmissivity (or target 

transmissivities if there was more than one fracture) was specified (which gives a 

corresponding measured pressure). To test the basis vector conditioning method, 

the target transmissivity was perturbed, and the number of iterations needed to 

return to the target transmissivity (and match the measured pressure) was 

determined. Each test case was conditioned separately with and without updating. 

As explained in chapter 3, updating means that the sensitivities are updated with 

each iteration of the minimisation procedure. 

Finally, the basis vector conditioning method was used to condition a DFN model 

of a potential site for nuclear waste disposal in Finland which was generated 

based on field data. This DFN model contains 501 fractures with 9 pressure 

measurements. Based on results from the simple test cases, the basis function 

conditioning method was run with updating. 

All results in this chapter were obtained by using initial coefficient values 

0α = 0 in step 4 of the conditioning algorithm given in chapter 3. It was found that 
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when using the basis vector conditioning method with initial coefficient values 

B
0 Mα = P - P , where BP is a vector of borehole pressures at measurement points 

and MP  is a vector of measured pressures, an improvement  in the match to 

measured pressures was obtained. However this match was not as good as the 

match to measured pressures obtained by using initial coefficients 0α = 0  with the 

basis vector conditioning method. 

 

 

4.1 – SIMPLE TEST CASES 

 

For all the simple test cases the problem domain is a cube of 10m by 10m by 10m. 

Fractures are placed inside the cubic domain with individual fractures and fracture 

intersections being discretised. Boundary conditions are defined on the cube faces 

as either a pressure, flux or no-flow boundary condition.  The absolute error is 

defined as 

 

 
2

2
1

Absolute Error
Bm

s M s

s s

P P
σ=

⎡ ⎤−⎣ ⎦= ∑ , (4.1) 

 

for m  measurement points, where M sP  is the measured pressure at measurement 

point s  and B
sP  is the calculated pressure at measurement point s  and sσ  is the 

standard deviation of the pressure measurement at measurement point s . It is 

assumed that all pressure measurements are independent and have equal standard 

deviation; accordingly sσ  is set equal to 1 for 1,...,s m= . In other words, we 
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assume that all the pressure measurements are equally accurate and weight them 

equally. The basis vector conditioning method is stopped when the absolute error 

is less than 1 (less than 0 in a log plot).  

 

4.1.1 - TEST CASE 1 

 

Test case 1 consists of a borehole intersecting a single fracture, shown in Figure 7. 

There is a constant flux of 21.0E-7m /s assigned to the left face of the cubic 

domain as a boundary condition.  The right face of the cubic domain has a 

constant pressure value of 0Pa  while the remaining faces of the domain have no 

flow boundary conditions. The borehole is a non-pumping borehole. An initial 

transmissivity value of 21.1E-6m /s was taken and the target transmissivity was set 

to 21.0E-6m /s .  

 

Figure 7. Domain of test case 1 with a borehole intersecting a single fracture. 

 

The log of the absolute error is plotted against the iteration of the Levenberg-

Marquardt algorithm (used to minimise the absolute error) in Figure 8. It shows 

that the log of the absolute error decays linearly with each iteration. The initial 
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transmissivity used was 21.1E-6m /s , which is close to the target transmissivity of 

21.0E-6m /s  and is a reason for the fast convergence. 

To test the basis vector conditioning method further initial guesses of the fracture 

transmissivity up to 3 orders of magnitude from the target transmissivity were 

used. Test case 1 was conditioned separately with and without updating (defined 

in Chapter 3 to be the updating of the sensitivities with each iteration of the 

minimisation procedure). Table 1 shows the number of iterations required to 

converge to the target transmissivity of 1.0E-6m2/s with and without updating, 

where the number of iterations required without updating are shown in brackets. It 

can be seen that when updating is used, the absolute error converges in a 

respectable number of iterations for all the initial transmissivities. However, we 

observe that the convergence of the algorithm may be adversely affected when no 

updating is employed. Indeed, in this case, the absolute error will converge for 

initial transmissivity values smaller than the target transmissivity, but typically 

require a large number of iterations. Furthermore, test case 1 fails to converge for 

an initial transmissivity of 1.1E-3m2/s and greater without updating. 

In this simple one fracture case, the pressure at the measurement point is inversely 

proportional to the fracture transmissivity. The measured pressure 

is5.0E+4Pa (corresponding to the target fracture transmissivity of 1.0E-6m2/s) 

and thus the absolute error can be analytically plotted against fracture 

transmissivity, as shown in Figure 9. Without updating the fracture transmissivity 

is changed by a small increment with each iteration. When the gradient of the 

absolute error is large (as it is for transmissivities ranging from 1.0E-8m2/s to 

1.0E-5m2/s, shown in Figure 9) this still produces a significant change in the 

absolute error. However, when the gradient of the absolute error is small 



 105

(transmissivity values over approximately 1.0E-3m2/s in Figure 9) there is no 

significant change in absolute error and the method may converge to a solution far 

from the minimum.   

 

 

Figure 8. Convergence of the log base 10 of the absolute error with each iteration of the 

Levenberg-Marquardt method for test case 1 with an initial transmissivity of 1.1E-6m2/s and target 

transmissivity of 1.0E-6m2/s. 
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     Initial Transmissivity ( 2m /s )      Number of iterations  

          to convergence 

1.1E-2 15     (N.C.) 

1.1E-3 13     (N.C.) 

1.1E-4                    11     (22) 

1.1E-5                      9     (15) 

1.1E-6                      2     (3) 

1.1E-7                      6     (92) 

1.1E-8  8     (1004) 
Table 1. Number of iterations taken to converge to the measured pressure corresponding to a 

target fracture transmissivity of 1.0E-6m2/s for different initial transmissivity values for test case 

1. The number of iterations required without updating are shown in brackets. N.C. denotes no 

convergence. 

 

 

Figure 9. Analytic plot of the absolute error against fracture transmissivity at the measurement 

point for test case 1. 
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4.1.2 - TEST CASE 2 

 

Test case 2 has the same domain as test case 1, as shown in Figure 7, with a 

borehole intersecting a single fracture. However, the boundary conditions differ; 

in test case 2 the borehole is a pumping borehole with a flux of 1.0E-5m3/s and 

there is a constant pressure boundary condition of 0Pa on all of the faces of the 

cubic domain that are in contact with the fracture. 

A plot of the log of the error against each iteration of the Levenberg-Marquardt 

method is shown in Figure 10 for an initial transmissivity guess of 21.1E-6m /s . It 

shows the absolute error converges to the target transmissivity of 21.0E-6m /s . 

Figure 10 indicates a linear relationship between the log of the error and the 

iteration of the Levenberg Marquardt method when an initial transmissivity of 

21.1E-6m /s  was used. Table 2 shows the convergence of the absolute error for 

different initial transmissivities for test case 2. This test case shows similar 

convergence properties to test case 1 when updating, with the error converging in 

a respectable number of iterations for all choices of the initial transmissivities. 

However, the convergence of the basis vector conditioning method is poor 

without updating. Indeed, as in test case 1 the pressure at the measurement point 

is inversely proportional to the fracture transmissivity and Figure 11 plots the 

absolute error at the measurement point against the fracture transmissivity. 

 



 108

 

Figure 10. Convergence of the log base 10 of the absolute error with each iteration of the 

Levenberg-Marquardt method for test case 2 with an initial transmissivity of 1.1E-6m2/s and target 

transmissivity of 1.1E-6m2/s. 

 

    Initial Transmissivity ( 2m /s )          Number of iterations 

              to convergence 

                        1.1E-2 15     (N.C.) 

                        1.1E-3 13     (N.C.) 

                        1.1E-4 11    (N.C.) 

                        1.1E-5   9     (N.C.) 

                        1.1E-6                           2     (8) 

                        1.1E-7                           6     (94) 

                        1.1E-8   8     (1043) 

Table 2. Number of iterations taken to converge to the measured pressures corresponding to a 

target fracture transmissivity of 1.0E-6m2/s for different initial transmissivity values for test case 2. 

The number of iterations required without updating are shown in brackets. N.C. denotes no 

convergence. 
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Figure 11. Analytic plot of the absolute error against fracture transmissivity at the measurement 

point for test case 2. 
 

4.1.3 - TEST CASE 3 

 

 

The domain of test case 3 is shown in Figure 12 with three unconnected fractures 

intersecting separate boreholes. There is a specified flux of  1.0E-5m3/s at each 

borehole. The pressure is set to 0Pa on all faces of the cubic domain and 3 

individual borehole intersections are used on each fracture. 
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Figure 12. The Domain of test case 3 with 3 unconnected fractures each intersecting a borehole. 

The boreholes are shown as green lines in the middle of each fracture. 

 

 

The initial fracture transmissivities were 21.1E-6m /s , 22.1E-6m /s  and 

23.1E-6m /s . The basis vector conditioning method converged to the target 

transmissivities of 21.0E-6m /s , 22.0E-6m /s  and 23.0E-6m /s , respectively. Figure 

13 shows the convergence of the absolute error with each iteration. Table 3 shows 

the number of iterations required for the absolute error to converge for different 

initial transmissivities. Again, when using updating, the absolute error converges 

in a respectable number of iterations.  Without updating the absolute error 

converges for values of initial transmissivity smaller than the target transmissivity 

but requires a large number of iterations. It fails to converge with initial 

transmissivity values of 1.1E-3m2/s, 2.1E-3m2/s, 3.1E-3m2/s and larger. An 

analytic plot of the absolute error contribution against fracture transmissivity for 

each individual fracture is shown in Figure 14. 
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Figure 13. Convergence of the log base 10 of the absolute error with each iteration of the 

Levenberg-Marquardt method for test case 3 with initial transmissivities of  (1.1E-6, 2.1E-6, 3.1E-

6)m2/s for the 3 fractures to target transmissivities of (1.0E-6, 2.0E-6, 3.0E-6)m2/s. 

 

 

 

    Initial Transmissivity ( 2m /s )              Number of iterations 

                  to convergence 

        1.1E-2, 2.1E-2, 3.1E-2 15     (N.C.) 

        1.1E-3, 2.1E-3, 3.1E-3 13     (N.C.) 

        1.1E-4, 2.1E-4, 3.1E-4                         11     (26) 

        1.1E-5, 2.1E-5, 3.1E-5                          9     (19) 

        1.1E-6, 2.1E-6, 3.1E-6                          3     (8) 

        1.1E-7, 2.1E-7, 3.1E-7                          6     (74) 

        1.1E-8, 2.1E-8, 3.1E-8                          8     (927) 
Table 3. Number of iterations taken to converge to the measured pressures corresponding to target 

transmissivities of (1.0E-6, 2.0E-6, 3.0E-6)m2/s for different initial transmissivity values for test 

case 3. Iterations required without updating are shown in brackets. N.C. denotes no convergence. 

 



 112

 

Figure 14. Analytic plot of the absolute error contribution against fracture transmissivity at the 

measurement point for each of the three fractures in test case 2.  

 

4.1.4 - TEST CASE 4 

 

Test case 4 is the first test case where the fractures are connected. Figure 15 

shows the domain with 3 fractures, two of which are intersected by separate 

boreholes; these boreholes are non-pumping boreholes.  There is a pressure 

boundary condition of 0Pa on the right face of the cubic domain, a flux boundary 

condition of 31.0E-7m /s  on the left face and no flow boundary conditions on the 

remaining faces. When the initial transmissivities are (1.1E-6 , 

2.1E-6 , 3.1E-6 ) 2m /s  they converge to the solution transmissivities of (1.0E-6 , 

2.0E-6 ,3.0E-6 ) 2m /s , respectively, and this convergence is shown in Figure 16; 

it shows a very similar linear decay of the log error to that seen in the previous 

test cases. 
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Table 4 shows the absolute error convergence for different initial fracture 

transmissivities. It can be seen that updating again yields a great reduction in the 

number of iterations required for the absolute error to converge for all the initial 

transmissivities considered, in comparison to the case when no updating is 

employed.  

The pressure at the first measurement point is inversely proportional to all three 

fracture transmissivities and the pressure at the second measurement point is 

inversely proportional to the third fracture transmissivity.  

Figure 17 shows a log plot of the absolute error against the transmissivities of the 

first and second fractures with the transmissivity of the third fracture held at a 

constant value of 3.0E-6m2/s. Similar plots are obtained when holding the first 

fracture transmissivity constant and when holding the second fracture 

transmissivity constant. 

 

 

 

Figure 15. Domain of test case 4 with 3 connected fractures. Boreholes (shown in light blue) 

intersect the fractures connected to the left and right faces of the cube in the plot. 
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Figure 16. Convergence of the log base 10 of the absolute error with each iteration of the 

Levenberg-Marquardt method for test case 4 with an initial transmissivity of 1.1E-6m2/s. 
 

 

 

    Initial Transmissivity ( 2m /s )             Number of iterations 

                 to convergence 

         1.1E-2, 2.1E-2, 3.1E-2 19     (38) 

         1.1E-3, 2.1E-3, 3.1E-3 19     (33) 

         1.1E-4, 2.1E-4, 3.1E-4 17     (24) 

         1.1E-5, 2.1E-5, 3.1E-5 10     (17) 

         1.1E-6, 2.1E-6, 3.1E-6 2     (3) 

         1.1E-7, 2.1E-7, 3.1E-7     6     (106) 

         1.1E-8, 2.1E-8, 3.1E-8       8     (1205) 
Table 4. Number of iterations taken to converge to the measured pressures corresponding to target 

transmissivities of (1.0E-6, 2.0E-6, 3.0E-6)m2/s for different initial transmissivity values for test 

case 4 without updating. Iterations required without updating are shown in brackets. 

 



 115

 

 

Figure 17. Log plot of the absolute error against the first and second fracture transmissivities with 

the third fracture transmissivity held constant at 3.0E-6m2/s. 

 

4.1.3.1 - MULTIPLE SOLUTIONS IN TEST CASE 4 

 

Test case 4 is the first test case where the possibility of multiple solutions arises. 

Using notation from chapter 3, the log transmissivities are updated in the form 

 

 
1

m

i
i
α

=
∑U

iX = X + W , (4.2) 

 

for m  pressure measurements. For test case 4 this can be written as 
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 (4.3) 

 

 

By substitution of  2α , 1X  and 2X  can be written in terms of 1α  
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As shown by (4.6) the log-transmissivities 1X , 2X of fractures 1 and 2, 

respectively, are linearly dependent on each other while 3X is uniquely determined 

from the pressure boundary condition. In fact, the value of the initial guesses of 

the log-transmissivities 1
UX and 2

UX will affect the values of the coefficients 1C  

and 2C  that are selected and thus affect the final values for 1X and 2X . This is 

illustrated in Figure 18 which shows the relationship between 1X and 2X for 

different initial values of 1
UX  and 2

UX . 1X and 2X  are always linearly related 

with the same gradient and it is the initial guesses 1
UX and 2

UX  that essentially 

shift the plots in the 1X - 2X  axis . The crosses on these lines show where the 

absolute error is minimized using these initial guesses. Figure 19 further 

illustrates this by plotting these acceptable transmissivity values against the 

absolute error. Again it can be seen that the acceptable transmissivity lines 

intersect the absolute error at different points. 

This shows that when using the basis vector conditioning method our prior beliefs 

of fracture log transmissivities determine the values of conditioned log 

transmissivities. The ill-posed nature of the problem is also evident with multiple 

solutions existing. 
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Figure 18. Plot of possible values of log transmissivity 1X  and log transmissivity 2X for 

different orders of magnitude of the initial log transmissivities 1
UX  and 2

UX . t0=O(e-a) denotes 

t0=(1.1E-a, 2.1E-a, 3.1E-a)m2/s for a=3,..,8. Crosses denotes the values of 1X and 2X that 
minimse the absolute error. 

 

Figure 19. Plot of possible values of log transmissivity 1X and log transmissivity 2X for different 

guesses of the initial transmissivities 1
UX , 2

UX  intersecting the absolute error. 
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4.2 OLKILOUTO TEST CASE 1 

 

 

In this section a DFN model of a potential site for nuclear waste disposal in 

Finland is used as a test case. The site itself is an island called Olkiluoto which 

lies in the Baltic Sea and is approximately 10 km2 in size. Based on an 

environmental report of potential sites (Posiva OY 1999), it is planned to 

construct an underground repository in the centre of the island. The site has been 

characterised through various surface and subsurface measurements. A lot of data 

is available describing the subsurface geology of Olkiluoto island (Ahokas and 

Koskinen April 2005). Boreholes have been drilled at locations spread across the 

site and provide pressure measurements at given depths. Pumping tests 

undertaken on these boreholes give an idea of approximate transmissivity 

properties of fracture zones located between the drilled boreholes. The location of 

major fracture zones have been inferred from seismic scanning whereby a seismic 

source (usually at the surface) produces seismic waves that can be picked up by 

receivers placed down boreholes. Seismic waves will refract at the interface 

between different matrials and thus give a picture of the surrounding geologic 

structure. 

Data from the Olkilouto site (Ahokas and Koskinen April 2005) was implemented 

in NAPSAC to produce a DFN model of the site (Frampton, Cvetkovic et al. 

February 2008) which we call Olkiluoto test case 1. This DFN model contains 13 

fracture sets that were generated based on pumping test results and seismic 

scanning which gave fracture density, orientation and length estimates. A total of 
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501 fractures are contained in the different fracture sets. The domain of Olkilouto 

test case 1 which contains the fracture sets is approximately 7800m by 7800m by 

1000m. The fracture transmissivities in fracture zones were assumed to be 

homogeneous; that is the transmissivity of each fracture contained in a fracture 

zone is constant. Measured pressure values are obtained at measurement points at 

9 boreholes. The depth of the measurement points range from approximately    

z=-97m to z=-377m. Figure 20 shows the boundaries of the domain of Olkiluoto 

test case 1. The boundary conditions of the model are as follows. The top surface 

at z=0m has head equal to elevation. This surface is not uniform and its elevation 

varies, therefore head varies on the top surface. The lateral sides which are in 

contact with the Baltic Sea have head set to zero. The bottom surface at z=-1000m 

has a no-flow boundary condition. Therefore, a pressure gradient exsists between 

the top surface and the lateral sides of the domain, that results in a flow of 

groundwater. 

The model has been simplified by only modelling borehole measurement points 

instead of including complete boreholes that are intersected by multiple fractures. 

This means that fractures are not connected by any boreholes. 

Figure 21 shows the location of the borehole measurement points and the 

geometry of the 501 fractures; these fractures are coloured according to their 

transmissivity value. The fracture network is shown at the same scale and 

orientation as the domain boundaries in Figure 20. The reason for two separate 

figures is that the domain boundaries hide the fractures when they are plotted 

together. 
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Figure 20. Domain boundaries of Olkiluouto test case 1. 

 

Figure 21. Domain of Olkiluoto test case 1 containing 11 fracture sets coloured by fracture 

transmissivity and 9 borehole measurement points shown as purple dots. 

 

 

The fractures comprise of thirteen different fracture zones whose geometry and 

transmissivities have been determined from field data. Figure 22 to Figure 34 
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show the location of each fracture zone compared to the borehole measurement 

points. The fracture zones are shown at the same scale and orientation as Figure 

20 and Figure 21. Again the fractures are coloured according to their 

transmissivity value. It should be noted that the fracture transmissivity is constant 

for all fractures in an individual fracture zone. Fracture sets 1, 2, 3 and 7 are in 

close proximity to the measurement points and consist of small fractures. The 

remaining fracture sets contain fractures of greater length which are spread across 

the domain and extend further away from the measurement points than the first 

four fracture sets introduced.  Fractures sets 4, 5, 7, 12 and 13 are in direct contact 

with some of the borehole measurement points. 

 

Figure 22. Location of the measurement points and fracture set 1 in Olkiluoto test case 1. 
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Figure 23. Location of the measurement points and fracture set 2 in Olkiluoto test case 1. 

 

 

Figure 24. Location of the measurement points and fracture set 3 in Olkiluoto test case 1. 
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Figure 25. Location of the measurement points and fracture set 4 in Olkiluoto test case 1. 

 

 

 

Figure 26. Location of the measurement points and fracture set 5 in Olkiluoto test case 1. 
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Figure 27. Location of the measurement points and fracture set 6 in Olkiluoto test case 1. 

 

 

 

Figure 28. Location of the measurement points and fracture set 7 in Olkiluoto test case 1. 
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Figure 29. Location of the measurement points and fracture set 8 in Olkiluoto test case 1. 

 

 

 

Figure 30. Location of the measurement points and fracture set 9 in Olkiluoto test case 1. 
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Figure 31. Location of the measurement points and fracture set 10 in Olkiluoto test case 1. 

 

 

 

Figure 32. Location of the measurement points and fracture set 11 in Olkiluoto test case 1. 
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Figure 33. Location of the measurement points and fracture set 12 in Olkiluoto test case 1. 

 

Figure 34. Location of the measurement points and fracture set 13 in Olkiluoto test case 1. 
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When NAPSAC is used to calculate pressures at the boreholes using the set of 

fractures shown in Figure 22 to Figure 34 with unconditioned transmissivities, the 

pressures do not agree very well with the measured pressure values. It should be 

noted that Frampton, Cvetkovic et al.(February 2008) performed a basic trial and 

error approach to calibration of fracture transmissivities in Olkiluoto test case 1 

on pressure measurements assuming homogeneous fracture sets; however, this 

failed to give a good match to the measured pressures. In fact, all conditioning 

methods introduced in this thesis give a better match to measured pressures than 

the trial and error approach used on Olkiluoto test case 1. Our aim here is to get 

the pressure values calculated at measurement points to agree (or match as closely 

as possible) with the measured pressures. The basis vector conditioning method 

was applied and updating was used (based on the results from the simple test 

cases). From hereon in updating has been used on all of the following 

calculations.  

After application of the basis vector conditioning method, the conditioned 

pressures gave a closer match to the measured pressures, but not an exact match. 

Figure 35 compares the conditioned pressure to the measured pressure and initial 

unconditioned pressure at all the measurement points. The pressures in Figure 35 

represent the deviation of the residual pressure from atmospheric pressure. The 

datum point for the measurements was taken to be at z=0m . Therefore, the value 

of Z used in the calculation of head (1.4) and residual pressure (1.5) is negative at 

all the measurement points.  It can be seen that the conditioned pressures give a 

closer match to the measured pressure at every measurement point compared to 

the unconditioned pressures. Figure 36 plots the absolute error against the 

iteration number of the Levenberg-Marquardt method. The absolute error 
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converges to a constant value by the 10th iteration. Indeed, after the first iteration 

the absolute error does not change by a significant amount. Along with the 

absolute error defined in (4.1) we define the relative error as 

 

 
1

1Relative Error ,
m

Bm
s M s

s M s

P P
P=

−
= ∑  (4.7) 

 

 

for the m  measurement points, where ⋅  denotes the absolute value. Table 5 

shows the initial absolute and relative errors between the unconditioned pressures 

and the measured pressures, together with the final respective values between the 

conditioned pressures and measured pressures. With 501 parameters being 

changed to agree with 9 measurement values it is likely that there will be many 

local minima. During the optimisation process the Levenberg-Marquardt method 

may well get stuck in one of these minima. 

 

 

 

  Initial Absolute  

         Error 

  Final Absolute  

         Error 

  Initial Relative 

         Error 

  Final Relative  

        Error 

     1.1128E+5      6.2327E+4        0.6828        0.3574 

Table 5. The initial absolute error and relative error between the measured pressures and the 

unconditioned pressures, compared to the final absolute error and relative error between the 

conditioned and measured pressures. 
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Figure 35. The measured pressures, unconditioned pressures and conditioned pressures for the 

nine measurement points for Olkiluoto test case 1. 

 

 

Figure 36. Absolute error against iteration of the Levenberg-Marquardt for Olkiluoto test case 1. 

 

 

Two techniques were considered in an to attempt to avoid local minima. Firstly, 

in order to improve the match to the measured pressures, the fracture 
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transmissivities that result in the conditioned pressures in Figure 35 were taken as 

the initial fracture transmissivities. The method was then started from the local 

minimum it previously found where the value of λ  in the Levenberg Marquardt 

method (3.67) was set back to its original value. It was hoped that the first 

iteration of the Levenberg-Marquardt may manage to move away from this local 

minimum. With these conditioned transmissivities the whole conditioning process 

was restarted (recalculate adjoints, sensitivities, perform Levenberg-Marquardt 

method etc.). Unfortunately, this approach did not improve the match to measured 

pressures.  

Additionally, a numerical homotopy was considered; the details of which are now 

summarised. The conditioning proceeds in the same manner as the basis vector 

conditioning method, however, the measured pressures on which the fracture 

transmissivities are conditioned on are changed at a number of steps. As in the 

basis vector conditioning method, the vector of all fracture log transmissivity 

values X  is updated using the formula 

 

 
1

m

i i
i
α

=

= +∑UX X W . (4.8) 

 

Each measured pressure used in the homotopy method ( )HMP i  at 1,..,i m=  range 

from ( ) ( ) ( )U
HM MP i P i P i≤ ≤ , where ( )UP i  are the unconditioned pressures shown 

in Figure 35 and ( )MP i  are the measured pressures shown in Figure 35. This 

pressure range was used because all the conditioned pressures were less than the 

measured pressures. The basis vector conditioning method is first used to 

condition pressures HMP  close to the unconditioned pressures, where HMP  is the 
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vector of all homotopy measured pressures. A final value of weights α  is 

obtained and used to calculate X , as defined in (3.61). This process is repeated at 

the next step with the new X  conditioned on HMP  values closer to MP , where MP  

is the vector of all measured pressures. Thus, the basis vector conditioning 

method is used to condition the log transmissivities X  on HMP  values that 

approach MP  with each step. The following algorithm describes the numerical 

homotopy method used:  

 

- Select number of steps μ  between UP and MP . 

- Set UX = X . 

- DO i=1,.., μ  

 -Calculate 1 i i
μ μ

⎛ ⎞
= − +⎜ ⎟
⎝ ⎠

U
HM MP P P . 

- Use the basis vector conditioning method to condition X  using HMP to 

obtain conditioned weghts C
iα  and conditioned log transmissivities C

iX  

using (4.8) . 

 - Set C
i+1 iα = α  and C

i+1 iX = X . 

- END DO 

 

The values of the numerical homotopy conditioned pressures obtained differed 

from those obtained from the basis vector conditioning method but they did not 

improve the match to the measured pressures. Thus, the numerical homotopy was 

unsuccessful in improving the results of the basis vector conditioning method. 
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4.2.1 - SENSITIVITY ANALYSIS 

 

 

The sensitivities calculated give an indication of how much each fracture 

transmissivity affects the calculated pressures. A large sensitivity means that a 

fracture transmissivity has a great influence on the calculated pressure. Figure 37 

to Figure 45 show the sensitivity of each fracture transmissivity in the Olkiluoto 

test case 1 for each of the 9 measurement points. The fractures have been 

arranged into their different fracture sets that make up the model (as shown in 

Figure 22 to Figure 34). It can be seen that some fracture sets affect the calculated 

pressures far more than others. In fact, fracture sets 8 and 9, have only a small 

influence on the calculated pressure at the measurement points. 

 

 

Figure 37. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 1.  
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Figure 38. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 2.  

 

 

Figure 39. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 3.  
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Figure 40. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 4.  

 

 

Figure 41. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 5.  
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Figure 42. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 6. 

 

 

 

Figure 43. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 7.  

 



 138

 

Figure 44. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 8.  

 

 

 

Figure 45. Sensitivity values corresponding to fractures belonging to the different fracture sets for 

measurement point 9.  
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4.2.2 – CONDITIONED FRACTURE TRANSMISSIVITIES 

 

The conditioned values of the fracture transmissivities for the Olkiluoto test case 

1 are plotted in Figure 46 to Figure 58 for each fracture set. The conditioned 

fracture transmissivities are compared to the unconditioned fracture 

transmissivities that were homogeneous on each fracture set. The homogeneous 

unconditioned fracture transmissivities in the figures are represented by a line at a 

constant log transmissivity value. The conditioned transmissivities of each 

fracture are shown as bars and the deviation from their unconditioned value can 

be seen. 

Fracture sets 6, 7, 12, and 13 are the only fractures sets that exhibit a major 

change between the conditioned and unconditioned fracture transmissivities. The 

lack of change in the other fracture sets can be explained by the small sensitivity 

values of the fracture transmissivities in the sets, that can be seen in section 4.2. 

Fracture set 6 contains two small conditioned fracture transmissivities. There are 

two fracture transmissivities two orders of magnitude greater than their 

unconditioned values in fracture set 7. Fracture set 12 contains one very small 

conditioned fracture transmissivity. Fracture set 13 has the most noticeable 

change in conditioned fracture transmissivities from the unconditioned fracture 

transmissivities. There are two very large conditioned fracture transmissivities of 

order 1E+0 and 1E+1 and one very small value. Additionally there is a lot of 

change over many orders of magnitude in the remaining conditioned fracture 

transmissivities compared to the unconditioned fracture transmissivities. 

Assuming the cubic law holds the largest conditioned fracture transmissivity 

corresponds to a fracture aperture value of approximately 2.5cm. While this value 
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is higher than would be expected it is not physically unreasonable. It may well 

indicate that instead of a single fracture there exists a cluster of fractures in the 

area with high transmissivities. 

 

 
 

 

Figure 46. Conditioned fracture log transmissivities for fracture set 1. The unconditioned fracture 

log transmissivities have the value of -7.90 for all fractures and are shown as a black line. 
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Figure 47.Conditioned fracture log transmissivities for fracture set 2. The unconditioned fracture 

log transmissivities have the value of -6.0006 for all fractures and are shown as a black line. 

 

 

 

Figure 48. Conditioned fracture log transmissivities for fracture set 3. The unconditioned fracture 

log transmissivities have the value of -6.20 for all fractures and are shown as a black line. 
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Figure 49. Conditioned fracture log transmissivities for fracture set 4. The unconditioned fracture 

log transmissivities have the value of -6.7999 for all fractures and are shown as a black line. 

 

 

Figure 50. Conditioned fracture log transmissivities for fracture set 5. The unconditioned fracture 

log transmissivities have the value of -5.7999 for all fractures and are shown as a black line. 
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Figure 51. Conditioned fracture log transmissivities for fracture set 6. The unconditioned fracture 

log transmissivities have the value of -5.4998 for all fractures and are shown as a black line. 

 

 

Figure 52. Conditioned fracture log transmissivities for fracture set 7. The unconditioned fracture 

log transmissivities have the value of -6.0006 for all fractures and are shown as a black line. 
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Figure 53. Conditioned fracture log transmissivities for fracture set 8. The unconditioned fracture 

log transmissivities have the value of -7.8002 for all fractures and are shown as a black line. 

 

 

Figure 54. Conditioned fracture log transmissivities for fracture set 9. The unconditioned fracture 

log transmissivities have the value of -6.0999 for all fractures and are shown as a black line. 
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Figure 55. Conditioned fracture log transmissivities for fracture set 10. The unconditioned 

fracture log transmissivities have the value of -7.8002 for all fractures and are shown as a black 

line. 

 

 

 

Figure 56. Conditioned fracture log transmissivities for fracture set 11. The unconditioned 

fracture log transmissivities have the value of -5.0 for all fractures and are shown as a black line. 
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Figure 57. Conditioned fracture log transmissivities for fracture set 12. The unconditioned 

fracture log transmissivities have the value of -5.1110 for all fractures and are shown as a black 

line. 

 

 

Figure 58. Conditioned fracture log transmissivities for fracture set 13. The unconditioned 

fracture log transmissivities have the value of -5.4998 for all fractures and are shown as a black 

line.  
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4.2.3 - CONDITIONING ON DIFFERENT SETS OF FRACTURE 

TRANSMISSIVITIES 

 

 

The basis vector conditioning method gives an improved match to the measured 

pressures but not a close match. The aim of this section is to find out if the basis 

vector conditioning method can match measured pressures when the 

unconditioned pressures are sufficiently close to the measured pressures for the 

Olkiluoto test case 1. To do this a different set of measured pressures were used. 

The basis vector conditioning method was then used on Olkiluoto test case 1. The 

new pressure measurements were obtained by generating random fracture 

transmissivities for each of the fractures. Pressures were obtained at each of the 

measurement points corresponding to the randomly chosen fracture 

transmissivities. These pressures were used as measured pressure values to 

condition the original fracture transmissivities on because we know it is possible 

for these measured pressures to be matched. Note that the geometry of the 

fractures was not changed. Fracture transmissivities were generated from a log-

normal distribution of 

 

 

 ( ) ( )2 2
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where T is the fracture transmissivity, M is the mean of 10log T and σ  is the 

standard deviation of 10log T . Four different sets of fracture transmissivities for 

the 501 fractures were generated using different mean transmissivities and 

standard deviations of the associated normal distribution of the transmissivities 

(4.9); these are shown in Table 6. 

 

 

              Case                  μ                   sd  

                 A                2.0E-6               1.0E-6 

                 B                2.0E-5               1.0E-6 

                 C                2.0E-3               1.0E-6 

                 D                2.0E-5               1.0E-3 

Table 6. The mean transmissivity and standard deviation of the associated normal distribution of 

the fracture transmissivities for the four generated fracture sets. 

 

 

Thus, 10logM μ= , and sd is the standard deviation of the associated normal 

distribution of transmissivities. Figure 59 shows the pressure values at each 

measurement point corresponding to each of the cases from Table 6 compared to 

the unconditioned pressures shown in Figure 35. Cases A, B and C are close to 

the unconditioned pressure values; Case D differs by a greater amount. Note that 

there is no conditioning involved in Figure 59. Another point to note is that the 

pressures from all the randomly generated fracture transmissivities are much 

closer to the unconditioned pressures than the measured pressures in Figure 35. 
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Figure 59. Pressure values at each measurement point corresponding to the unconditioned 

transmissivities and the 4 cases of randomly generated transmissivities from log-normal 

distributions. 

 

 

The fracture transmissivity values corresponding to the unconditioned pressures 

from Figure 35 were used as initial fracture transmissivities; these were then 

conditioned using the pressures from the four different cases from Table 6 and 

shown in Figure 59 as measured pressure values. 

The conditioned pressures agreed exactly with the pressure values calculated in 

cases A, B and C. The conditioned pressures did not agree exactly with the 

pressures obtained from case D, but gave a very close match. Figure 60 shows the 

pressures obtained from cases A, B, C and D compared to the conditioned 

pressure for cases A, B, C and D at each measurement point. Table 7 shows the 

initial absolute error and relative error, final absolute error and relative error and 

the number of Levenberg-Marquardt iterations required for each of the cases. 

The results of this section suggest that the basis vector conditioning method can 

converge to measured pressure values when they are close to the unconditioned 

pressures. However, when the measured pressures differ greatly from the 
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unconditioned pressures, the resulting conditioned pressures do not give a good 

match to the measured pressures. As will be seen in chapter 6, the conditioned 

fracture transmissivities corresponding to the measured pressures in the Olkiluoto 

test case 1 differ greatly from the unconditioned fracture transmissivities. On this 

evidence, the basis vector method does not give a good match to the measured 

pressures when the unconditioned pressures differ greatly from the measured 

pressures.

 

 

Figure 60. Conditioned pressure values compared to the pressure that is to be matched 

corresponding to each test case set of transmissivities (generated using the data in Table 6) for 

each measurement point.
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Case 

  Initial  

Absolute     

  Error 

   Final  

Absolute 

   Error 

    Initial  

  Relative 

     Error 

    Final 

  Relative 

    Error 

 Number  

     of  

Iterations 

  A 1.3063E+4     0.54       0.2542           0      10 

  B 1.0978E+4     0.69       0.2089           0        9 

  C 1.0206E+4     0.35       0.2153           0       10 

  D 3.5117E+4 2.9203E+3       4.1238       0.1915       24 

Table 7. The initial absolute error, the final absolute error, the initial relative error, the final 

relative error and the number of iterations of the Levenberg Marquardt algorithm required to 

converge to the final absolute error, shown for each of the generated fracture transmissivity cases. 

 

 

 

4.3 - CHAPTER SUMMARY AND CONCLUSIONS 

 

 

A new conditioning method has been developed for DFNs based on previous 

work undertaken on CPMs which we have referred to as the basis vector 

conditioning method. The practical driver for the work was the need to reproduce 

measurements of pressure in a DFN based on limited measurement points. The 

basis vector conditioning method conditions fracture transmissivities on measured 
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pressure values. This algorithm was tested on a number of simple test cases, as 

well as on a test case based on data from a real site. 

When the term updating was used it meant the sensitivity values were updated in 

each iteration of the minimisation procedure. When updating was employed in the 

conditioning of simple test cases, the absolute error converged (the value of the 

final absolute error was less than 1Pa) in a relatively small number of iterations so 

that the calculated and measured pressures were in agreement. Without updating it 

was found that convergence would always occur if the initial fracture 

transmissivities were up to three orders of magnitude less than the solution 

transmissivity. However, a large number of iterations were typically required for 

small initial fracture transmissivities. When an initial fracture transmissivity was 

three orders of magnitude greater than the solution transmissivity, the method 

failed to converge for the first three test cases; the method converged for the 

fourth test case for all initial values used. It appears that the convergence of the 

basis vector conditioning method is dependent on the geometry of the fractures 

and the boundary conditions employed, especially if updating is not being 

exploited. 

The basis vector conditioning method was used on a test case based on data from 

a potential site for nuclear waste disposal in Finland consisting of 501 fractures 

with 9 measured pressure values (Olkiluoto test case 1). There was a considerable 

improvement in the match to the measured pressures, when compared to the 

unconditioned pressure values at every measurement point, though the 

conditioned pressures did not agree exactly with the measured pressure values, as 

we would most likely expect.  



  153 

When looking at the sensitivities of the pressure at measurement points with 

respect to fracture transmissivities, it was seen that some fracture sets affect the 

calculated pressures far more than others. In fact, some of the fracture sets have 

almost no influence on the calculated pressure at any of the measurement points. 

The conditioned fracture transmissivities ranged over many orders of magnitude. 

Some fracture sets showed very little change from the conditioned and 

unconditioned fracture transmissivities. Fracture set 13 showed the greatest 

change with two conditioned fracture transmissivities taking large values while 

the rest of the fracture transmissivities in this set varied greatly in their 

conditioned values. 

In an effort to improve the agreement of calculated pressures with measured 

pressures, a homotopy method was investigated. However, the homotopy method 

did not improve the match given by the basis vector conditioning method. 

Additionally, the fracture transmissivity values that corresponded to the 

conditioned pressures were used as initial fracture transmissivities and the basis 

vector conditioning method was re-run. This gave no improvement in the match 

to measured pressures. 

The results in this chapter pose the question of why there are discrepancies 

between the measured and conditioned pressures. Is the basis vector conditioning 

method inaccurate or is the underlying conceptual model to blame for these 

discrepancies? First let us consider our basis vector conditioning method. A likely 

problem is that the conditioning method is converging to a local minimum. Thus, 

the lack of agreement to measured pressure values may occur because the initial 

501 fracture transmissivity values are not sufficiently close to the unknown target 

transmissivities which yield the measured pressures; resulting in the Levenberg 
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Marquardt method getting stuck in a local minimum. This motivated us to 

consider a case with known ‘measured’ pressure values for a particular set of 

fracture transmissivities. In this case, these pressures were used as measured 

pressure values on which to condition our original fracture transmissivities; the 

geometry of the fractures was not changed. 

Four different cases were studied with fracture transmissivities being generated 

from log-normal distributions with different means and variances. The resulting 

pressures for the four cases were used as measured pressures for the purposes of 

conditioning. The conditioning method led to pressures that matched the 

measured pressures exactly for three of the cases considered. In the final test case, 

where the transmissivity distribution had a large variance, the pressures computed 

by the basis vector conditioning agreed well to the (computed) measured 

pressures. 

It appears that the basis vector conditioning method works well when the initial 

unconditioned pressures are sufficiently close to the measured pressures. However 

it struggles when the measured pressures differ greatly from the unconditioned 

pressures.  

Based on the results in this chapter it is inconclusive if the lack of a match to the 

measured pressures was due to the conceptual model or the basis vector 

conditioning method that was employed. For now let us suppose that the basis 

vector conditioning method is not responsible for the observed discrepancies 

between the measured and conditioned pressures. What are the potential causes of 

these discrepancies? 

The lack of a match to measured pressures can suggest that a DFN model is less 

adequate for the site than a CPM approach. In the case that a DFN is an 
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appropriate conceptual model, the fact that the fracture transmissivities are 

assumed to be uncorrelated can also be a source of the observed discrepancies. 

Furthermore, modelling fractures with a constant transmissivity (using a parallel 

plate model of the fracture) is a potential cause of discrepancies between 

conditioned and unconditioned pressures. 

The geometry of the DFN and the boundary conditions employed will affect the 

values of the unconditioned pressure values and the range of possible pressure 

values. 

Instead of changing the conceptual model that was used we focus on the 

conditioning method. To this end, in the next chapter we develop a Bayesian 

conditioning method for application to the Olkiluoto test case 1. 
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5 – BAYESIAN CONDITIONING METHOD 

 

In this chapter a Bayesian conditioning method is developed in an attempt to 

improve the conditioning results obtained from the basis vector conditioning 

method. A mathematical formulation of the Bayesian conditioning method is 

given and results from conditioning fracture transmissivities on measured 

pressures using two large scale test cases are also shown. 

 

5.1 - MATHEMATICAL FORMULATION OF THE BAYESIAN 

CONDITIONING METHOD 

 

As in the basis vector conditioning method, it is assumed that the transmissivity is 

constant over each fracture. The vector of fracture log transmissivities is denoted 

by X  and m denotes the vector of mean fracture log transmissivities. X  is 

assumed to have a prior Gaussian distribution, defined as  

 

 ( ) ( ) ( )1exp ,
2

f ⎧ ⎫= −⎨ ⎬
⎩ ⎭

T -1
1X A X - m C X - m  (5.1) 

 

where the matrix C  is the covariance matrix of the fracture log transmissivities 

X  and 1A  is a constant vector. The fracture log transmissivities X  may or may 

not be correlated. Furthermore, the measured pressures are assumed to be known 

to within some measurement error ε  and it is assumed they are independent, 
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normally distributed random variables with possibly different standard deviations 

for each measurement. The pressures calculated (by NAPSAC) at a measurement 

point CP  are a function of the fracture log transmissivities. This can be written as 

 

 ( ) ,CF X = P  (5.2) 

 

where ( )F X  is the vector of calculated pressure values at measurement points as 

a function of the fracture log transmissivities X . It assumed that the measured 

pressures MP  are equal to the sum of the mean values of the measured pressures 

MP  and a vector of measurement errors ε , i.e. 

 

 .M MP = P + ε  (5.3) 
 
 

Bayes theorem (Lee 1997) can be used to write down the posterior distribution for 

X  defined as 

 

 ( ) ( ) ( )
( )

,
f f

f
f

= M
M

M

P X X
X P

P
 (5.4) 

 

where, for a pair of events a  and b , ( )f a b  is defined as the probability density 

function of the event a given the hypotheses b . The structure of ( )f ⋅  is 

determined by the term in its brackets. For example, the ( )f ⋅  terms that appear in 

(5.4) are all different functions. The term  ( )f X  is the prior distribution of 
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fracture log transmissivities defined in (5.1), while the term ( )f MP X  is the 

likelihood function and is given by 

 

 ( ) ( )( ) ( )( )1exp ,
2

f ⎧ ⎫= −⎨ ⎬
⎩ ⎭

T -1
M 2 M MP X A F X - P Σ F X - P  (5.5) 

 

where 2A  is a constant vector, the matrix Σ  is the covariance matrix of the error 

in the measured pressures ε  and will be a diagonal matrix if the measured 

pressures are independent. Our interpretation of Bayes’ theorem is that it 

expresses our posterior beliefs (our beliefs after we have obtained the pressure 

measurement data) about X  taking into account our prior beliefs of X  expressed 

by the distribution of X  given by (5.1) and the data available, which are pressure 

measurements related to X  as given by (5.5). The normalisation constant ( )f MP  

is unknown, but using (5.1),  (5.4) and (5.5) we can state 

 

 

( ) ( ) ( ) ( )( ) ( )( )1 1exp exp .
2 2

f ⎛ ⎞ ⎛ ⎞∝ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

TT -1 -1
M M MX P X - m C X - m F X - P Σ F X - P

 (5.6) 

 

The mode of a probability distribution function such as (5.6) is the value at which 

it attains its maximum value and can be found by solving 
( )df
d

=MX P
0

X
 . The 

mode of (5.6) finds the most probable set of fracture transmissivities that yield the 

given measured pressures. The exponential function is monotonic so it is also true 



  159 

that the posterior mode for X occurs when ( )( ){ }lnd f
d

=MX P 0
X

 and it follows 

from (5.6) that, at the mode of ( )f MX P , 

 

 ( ) ( ) ( )( ) ( )( )1 1 .
2 2

d
d

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞− + =⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

TT -1 -1
M MX - m C X - m F X - P Σ F X - P 0

X
 (5.7) 

 

Using the product rule for vectors 

 

 ( ) ( ) ( ) ( )1 1 ,
2 2

d
d

⎛ ⎞ =⎜ ⎟
⎝ ⎠

T Τ-1 -1 -ΤX - m C X - m X - m C + C
X

 (5.8) 

 

and similarly 

 

 

 ( )( ) ( )( ) ( )( ) ( )1 1 .
2 2

d d
d d

⎛ ⎞ =⎜ ⎟
⎝ ⎠

T T-1 -1 -T
M M M

FF X - P Σ F X - P F X - P Σ +Σ
X X

 (5.9) 

 

Thus, the mode of the posterior distribution ( )f MX P  can be found when 

 

 ( ) ( ) ( )( ) ( ) .d
d

TT -1 -T -1 -T
M

FX - m C + C + F X - P Σ +Σ = 0
X

 (5.10) 

 

For the case where both C  and Σ  are diagonal matrices (assuming uncorrelated 

fracture transmissivities) (5.10) simplifies to 
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 ( ) ( )( ) .
TT -1 -1

M
dFX - m C + F X - P Σ = 0
dX

 (5.11) 

 

Equation (5.10) can be solved using the Newton method (for a description of this 

method, see, for example, Bonnans, Gilbert et al.(2006) ) to compute the posterior 

mode of X . We define the left hand side of (5.10) to be 

 

 ( ) ( ) ( ) ( )( ) ( )≡
TT -1 -T -1 -T

M
dFG X X - m C + C + F X - P Σ +Σ = 0 .
dX

 (5.12) 

 

The Newton method generates a sequence for updating the log transmissivities 

kX at the kth iteration by the recurrence formula 

 

 ,k+1 k kX = X + d  (5.13) 

 

where kd  solves equation (5.12) linearised at kX  given by 

 

 ( ) ( ) ,′k k kG X + G X d = 0  (5.14) 

 

where ( ) ( )d
d

′ = k
k

k

G X
G X

X
. If ( )′ kG X  is non-singular 

 

 ( ) ( ) .′ -1
k k kd = -G X G X  (5.15) 
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Now ( )′ kG X  is given by 

 

 

( ) ( ) ( ) ( )( ) ( ) .d d d
d d d

⎛ ⎞
′ + +⎜ ⎟

⎝ ⎠

T 2
T-1 -T -1 -T -1 -T

k k M 2
k k k

F F FG X = C + C + Σ Σ F X - P Σ +Σ
X X X

 (5.16) 

 

In minimisation problems such as ours it is common (Press, Flannery et al. 1986) 

to drop the 
2

2

∂
∂ k

F
X

 term from (5.16). Thus, from hereon we use the approximation 

 

 ( ) ( ) ( ) .d d
d d

⎛ ⎞
′ ≈ ⎜ ⎟

⎝ ⎠

T
-1 -T -1 -T

k
k k

F FG X C + C + Σ +Σ
X X

 (5.17) 

 

 

The algorithm to condition fracture log transmissivities X  on pressure 

measurements MP solves the system 

( ) ( ) ( ) ( )( ) ( ) d
d

TT -1 -T -1 -T
M

FG X = X - m C + C + F X - P Σ +Σ = 0
X

 using the 

approximation ( ) ( ) ( )d d
d d

⎛ ⎞′ ⎜ ⎟
⎝ ⎠

T
-1 -T -1 -TF FG X = C + C + Σ +Σ

X X
  is as follows: 

 

Bayesian Conditioning Algorithm 

 

1 – Take the initial set of fracture log transmissivities 0X = m  and set 0k = . 
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2 - Compute ( )kG X and ( )′ kG X . 

 

3 - Compute the increment kd  from the system ( ) ( )′ k k kG X d = -G X . 

 

4 - Update the fracture log transmissivities k+1 k kX = X + d . 

 

5 - Calculate the new pressure values ( )k+1F X  . 

 

6 – Update the sensitivities 
( )d

d
k+1

k+1

F X

X
 using the adjoint method from chapter 3. 

 

7 - If the convergence criteria has been met then stop. Otherwise set k=k+1 and 

return to 2. 

 

 

Essentially, as the variance in the pressure measurements is increased, the matrix 

-1Σ  approaches zero and the measured pressure values are of less importance in 

the conditioning procedure. Thus, as the variance of the pressure measurements 

increases the log transmissivities X  will tend to their prior distribution. 
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5.2 – BAYESIAN CONDITIONING USING 

OLKILUOTO TEST CASE 1 

 

 

The Bayesian conditioning method was used to condition 501n = fracture 

transmissivities on 9m =  measured pressure values obtained at borehole/fracture 

intersections as described in the Olkiluoto test case 1 in chapter 4. 

For the results obtained in this chapter, it is assumed that each pressure 

measurement is independent and all measurements have the same standard 

deviation in the measured pressure. Thus, the covariance matrix, Σ , of the error 

in the pressure measurements takes the form 

 

 2
Pσ= mΣ I  , (5.18) 

 

where mI  is the ( )m m×  identity matrix and the variance 2
Pσ  is defined at a 

pressure measurement point i  as 

 

 ( ) ( )( )2 ,i i i i i i
P M M M M M MC P P E P P P Pσ ⎡ ⎤= = − −⎣ ⎦  . (5.19) 

 

Pressure measurements are of the order 1.0E+4Pa, therefore physically we would 

expect the variance to be less than the order of ( )21.0E+4 1.0E+8= . 

As in chapter 4, when studying the Olkiluoto test case 1, it is assumed that the 

fracture transmissivities are uncorrelated and accordingly that the covariance 
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matrix C  of the fracture log transmissivities is set equal to the ( )n n×  identity 

matrix nI . It was found that the final absolute error obtained from the Bayesian 

conditioning method was dependent on the value of the variance in the pressure 

measurements 2
Pσ . Table 8 compares the final absolute errors and relative errors 

of the basis vector conditioning method to the Bayesian conditioning method with 

different values of the variance in the pressure measurements 2
Pσ , in addition, it 

shows the number of iterations required for the algorithm to converge for each 

conditioning method.  
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      Conditioning  

          method 

Final Absolute

     Measure 

 Final Relative 

        Error 

      Number  

   of Iterations 

      Basis vector 

conditioning method 

    6.2327E+4       0.3574         8 

Bayesian ( 2
Pσ =1.0E+0)     6.4532E+4       0.3689         1 

Bayesian ( 2
Pσ =1.0E+1)     6.4532E+4       0.3689         1 

Bayesian ( 2
Pσ =1.0E+2)     6.4527E+4       0.3689         1 

Bayesian ( 2
Pσ =1.0E+3)     4.1522E+4       0.1866         15 

Bayesian ( 2
Pσ =1.0E+4)     6.4518E+4       0.3688         1 

Bayesian ( 2
Pσ =1.0E+5)     4.9403E+4       0.2717         26 

Bayesian ( 2
Pσ =1.0E+6)     5.4049E+4       0.3010         33 

Bayesian ( 2
Pσ =1.0E+7)     4.8304E+4       0.2416         12 

Bayesian ( 2
Pσ =1.0E+8)     7.1635E+4       0.4318         1 

Bayesian ( 2
Pσ =1.0E+9)     9.4867E+4       0.5676         3 

Bayesian ( 2
Pσ =1.0E+10)    1.1011E+5       0.6659         1 

Table 8. Comparison of the conditioning methods on the Olkiluoto test case 1, where the initial 

absolute error is 1.1128E+5 and the initial relative error is 0.6828. 

 

 

The absolute error is plotted against the variance of the pressure measurements 

2
Pσ  in Figure 61. It can be seen that the absolute error is at a minimum when the 

variance in the pressure measurements is 2 =1.0E+3Pσ . The relative error is plotted 

against the variance of the pressure measurements in Figure 62. It can be seen that 

the final absolute error and relative error start to increase as the variance in the 
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pressure measurements 2
Pσ  increases above a value of 1.0E+8. This represents the 

point at which the standard deviation of the pressure measurements is of the same 

magnitude of the pressure measurements themselves. 

 

 

Figure 61. Absolute error against the variance 2
Pσ  of the pressure measurements. 

 
 

 

Figure 62. Relative error against standard deviation Pσ  of the pressure measurements. 
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5.2.1 – DEVELOPMENT OF A NUMERICAL ALGORITHM TO IMPROVE 

RESULTS FROM THE BAYESIAN CONDITIONING METHOD  

 

A numerical algorithm was developed to improve the match to the measured 

pressures given by the Bayesian conditioning method. A given set of initial 

fracture transmissivities was taken and separate runs of the Bayesian conditioning 

method were performed with different variance values 2
Pσ  of the measured 

pressures, with the covariance matrix Σ  of the pressure measurement errors equal 

to 2
Pσ nI . By changing the value of 2

Pσ  used in the Bayesian conditioning method, 

different conditioned fracture transmissivity sets are obtained with corresponding 

final absolute error. The fracture transmissivity set which produced the smallest 

absolute error was selected and used as initial fracture transmissivities in the next 

step of the algorithm. Thus, the Bayesian conditioning method is applied again 

with new initial transmissivity values for a range of 2
Pσ  values. The numerical 

algorithm is as follows: 

Algorithm A 

1 - Set initial fracture log transmissivity values 0X = X  and set 1i = . 

2 - Run the Bayesian conditioning algorithm for step i  on log transmissivities X  

with variance 2
Pσ  of the pressure measurements ranging from 1.0E+0 to 1.0E+10 

as in Table 8 (each variance value corresponds to a separate run as they are held 

constant when using Newton’s method). 
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3 - Take conditioned log transmissivity values CX  that correspond to the variance 

value 2
Pσ  with smallest final absolute error as new initial transmissivities. That is 

set CX = X . 

4 – If absolute error is below a given tolerance then stop. Otherwise,  set 1i i= +  

and go to 2. 

 

It should be noted that Algorithm A is not a normal Bayesian method. The prior 

remains constant throughout the whole process in a Bayesian method. As can be 

seen in the above algorithm, the prior is updated after every step used in 

Algorithm A. The reason for developing Algorithm A is that although the 

Bayesian conditioning method improved on results from the basis vector 

conditioning method it still did not give a close match to measured pressures. 

We define two separate sets of initial fracture transmissivities. Set A1 is the 

unconditioned fracture transmissivities that are homogeneous in each fracture set 

(shown in chapter 3) and set A2 is defined as the conditioned fracture 

transmissivities obtained from the basis vector conditioning method. By using set 

A2 with Algorithm A we are simply starting with different initial fracture 

transmissivities. 

Figure 63 shows the relative error against the variance 2
Pσ  in the measured 

pressure values for each step in Algorithm A using set A1 as initial fracture 

transmissivities. Figure 64 shows the Bayesian conditioned pressure at each 

measurement point for each step of Algorithm A using set A1 as initial fracture 

transmissivities; it can be seen that with each step the conditioned pressure 

approaches the measured pressure value at every measurement point. Figure 65 

shows the final conditioned pressures from Algorithm A using set A1 as initial 
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fracture transmissivities compared to the measured and unconditioned pressures at 

each measurement point. 

Figure 66 shows a plot of the variance 2
Pσ  in the measured pressure values against 

the relative error for each step in Algorithm A using set A2 as initial fracture 

transmissivities. Figure 67 shows the Bayesian conditioned pressure at each 

measurement point for each step of Algorithm A using set A2 as initial fracture 

transmissivities; these pressures are compared to the measured and unconditioned 

pressures. Figure 68 shows the final conditioned pressures from Algorithm A 

using set A2 as initial fracture transmissivities compared to the measured and 

unconditioned pressures at each measurement point. Table 9 shows the absolute 

error and relative error in the conditioned pressures at each step of Algorithm A 

using set A1 as initial fracture transmissivities and Table 10 displays the same 

information for Algorithm A using set A2 as initial fracture transmissivities. 

Table 11 compares the final absolute error and relative error output by the basis 

vector conditioning method to Algorithm A using set A1 and Algorithm A using 

set A2. These results show Algorithm A produces a good fit to the measured 

pressures for both sets of initial fracture transmissivities used. Algorithm A yields 

a similar final absolute and relative error for both initial fracture transmissivity 

sets. The final relative errors from Algorithm A corresponding to the two different 

initial fracture transmissivity set A1 and A2 were both more than 26 times smaller 

than the basis vector conditioning method and 51 times smaller than the 

unconditioned fracture transmissivity values. 

Algorithm A produces a far superior match to the measured pressures than the 

basis vector conditioning method for the Olkiluoto test case 1. This is true when 

using either set A1 or A2 as initial fracture transmissivities. Algorithm A takes 7 
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steps to produce a relative error of approximately 0.01, using the unconditioned 

set A1 as initial fracture transmissivities. When using the pre-conditioned set A2 

as initial fracture transmissivities Algorithm A reaches a similar relative error in 5 

steps. Thus, the time taken by Algorithm A to produce a given relative error will 

be dependent on the initial fracture transmissivities selected.  

 

 

 

Figure 63. The relative error against the variance 2
Pσ  of the pressure measurements, shown for 

each step of Algorithm A using set A1 as initial fracture transmissivities for Olkiluoto test case 1. 



  171 

 

 

Figure 64. Pressure at each measurement point for each step of Algorithm A using set A1 as 

initial fracture transmissivities compared to the measured and unconditioned pressures for 

Olkiluoto test case 1. 

 

 

Figure 65. Final conditioned pressure at each measurement point from Algorithm A using set A1 

as initial fracture transmissivities compared to the measured and unconditioned pressures for 

Olkiluoto test case 1. 
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Figure 66. The relative error against the variance 2
Pσ  of the pressure measurements, shown for 

each step of Algorithm A using set A2 as initial fracture transmissivities for Olkiluoto test case 1. 

 

 

 

Figure 67. Pressure at each measurement point for each step of Algorithm A using set A2 as 

initial fracture transmissivities compared to the measured and unconditioned pressures for 

Olkiluoto test case 1. 
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Figure 68. Final conditioned pressure at each measurement point from Algorithm A using set A2 

as initial fracture transmissivities compared to the measured and unconditioned pressures for 

Olkiluoto test case 1. 

 

 

                Step         Absolute Error          Relative Error 

         Unconditioned            1.1128E+5              0.6828 

                  1            4.1522E+4              0.1866 

                  2            1.4791E+4              0.0587 

                  3            5.6679E+3              0.0243 

                  4            4.7318E+3              0.0175 

                  5            4.5264E+3              0.0158 

                  6            4.3127E+3              0.0141 

                  7            4.2446E+3              0.0133 

Table 9. Absolute error and relative error at each step of Algorithm A using set A1 as initial 

fracture transmissivities for Olkiluoto test case1.  
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            Step              Absolute Error         Relative Error 

   Unconditioned                 6.2327E+4              0.3574 

              1                 2.4569E+4              0.1830 

              2                 1.1798E+4              0.0525 

              3                 5.0186E+3              0.0213 

              4                 3.6417E+3              0.0142 

              5                 3.5309E+3              0.0130 

Table 10. Absolute error and relative error at each step of Algorithm A using set A2 as initial 

fracture transmissivities for Olkiluoto test case1.  

 

 

 

 

            Method     Final Absolute Error     Final Relative Error 

      Unconditioned           1.1128E+5              0.6828 

       Basis Vector  

  Conditioning Method 

          6.2327E+4              0.3574  

   Algorithm A (set A1)           4.2446E+3              0.0133 

   Algorithm A (set A2)           3.5309E+3              0.0130 

Table 11. Comparison of the conditioning methods used for Olkiluoto test case 1. 
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5.2.2 - CONDITIONED FRACTURE SETS 

 

 

After applying Algorithm A using set A2 as initial fracture transmissivities, many 

of the conditioned fracture transmissivities differed from the unconditioned 

fracture transmissivities by several orders of magnitude, whereas some fracture 

transmissivities did not change by a considerable amount. There were two 

fractures whose conditioned transmissivities were far greater than any other 

fracture transmissivities in the model and it appears that these fractures provide an 

easy route for groundwater flow. As seen in chapter 4, there are thirteen different 

fracture sets in this model. 

Fracture sets 1, 2, 3 and 7 are all in close proximity to the measurement points and 

contain fractures of short length. Conditioned fracture transmissivities in fracture 

sets 1 to 3 ( Figure 69 to Figure 71) showed practically no change from the 

unconditioned fracture transmissivities but fracture set 7 (Figure 75) contains a 

significant number of fracture transmissivities that are increased by approximately 

two orders of magnitude. The remaining fracture sets contain fractures of greater 

length which are spread across the domain and extend further away from the 

measurement points than the first four fracture sets introduced. Some of the 

conditioned fracture transmissivities in fracture set 4 (Figure 72) were increased 

by up to two orders of magnitude while the remaining fractures did not change by 

more than one order of magnitude. Conditioned fracture transmissivities did not 

differ from the unconditioned fracture transmissivities by much in fracture sets 8 

to 11 (Figure 76 to Figure 79). The conditioned fracture transmissivities in 

fracture set 5 (Figure 73) contain a significant number of fracture transmissivities 
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that are increased by approximately two orders of magnitude. Fracture set 6 

(Figure 74) has five conditioned fracture transmissivities that vary by 

approximately two orders of magnitude from the unconditioned fracture 

transmissivities. It also contains one very small conditioned fracture 

transmissivity.  A similar pattern of conditioned fracture transmissivities to set 6 

can be seen in fracture set 12 (Figure 80). Fracture set 13 (Figure 81) has the most 

noticeable change over many orders of magnitude in the conditioned fracture 

transmissivities compared to the unconditioned fracture transmissivities. There 

are two very large fracture transmissivities of order 1.0E+0 m2/s (an aperture of 

approximately 2.5cm assuming the cubic law holds) and 1.0E+1 m2/s (an aperture 

of approximately 1cm). However, it was found that these large transmissivity 

values have low sensitivities. As such, both the fracture transmissivities can be 

reduced to values equivalent to an aperture of 0.1cm (which is more physically 

reasonable) without greatly changing the fit to measured pressures. Indeed this 

change resulted in the absolute error increasing by only 17 and the relative error 

increasing by only 2.9E-5. Alternatively, if these two fractures kept their large 

transmissivity values it may well indicate that instead of a single fracture there 

exists a cluster of fractures in the area with high transmissivities. 

Fracture sets 4, 5, 8, 10, 12 and 13 all show a noticeable difference between the 

conditioned fracture transmissivities obtained using the basis vector conditioning 

method to those using the Bayesian conditioning method. 
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Figure 69. Conditioned fracture log transmissivities for fracture set 1. The unconditioned fracture 

log transmissivities have the value of -7.90 for all the fractures and are shown as a black line. 

 

 

 

Figure 70. Conditioned fracture log transmissivities for fracture set 2. The unconditioned fracture 

log transmissivities have the value of -6.0006 for all the fractures and are shown as a black line. 
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Figure 71. Conditioned fracture log transmissivities for fracture set 3. The unconditioned fracture 

log transmissivities have the value of -6.20 for all the fractures and are shown as a black line. 

 

 

 

Figure 72. Conditioned fracture log transmissivities for fracture set 4. The unconditioned fracture 

log transmissivities have the value of -6.7999 for all the fractures and are shown as a black line. 
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Figure 73. Conditioned fracture log transmissivities for fracture set 5. The unconditioned fracture 

log transmissivities have the value of -5.7999 for all the fractures and are shown as a black line. 

 

 

 

Figure 74. Conditioned fracture log transmissivities for fracture set 6. The unconditioned fracture 

log transmissivities have the value of -5.4998 for all the fractures and are shown as a black line. 
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Figure 75. Conditioned log fracture transmissivities for fracture set 7. The unconditioned fracture 

log transmissivities have the value of -6.0006 for all the fractures and are shown as a black line. 

 

 

Figure 76. Conditioned fracture log transmissivities for fracture set 8. The unconditioned fracture 

log transmissivities have the value of -7.8002 for all the fractures and are shown as a black line. 
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Figure 77. Conditioned fracture log transmissivities for fracture set 9. The unconditioned fracture 

log transmissivities have the value of -6.0999 for all the fractures and are shown as a black line. 

 

 

 

Figure 78. Conditioned fracture log transmissivities for fracture set 10. The unconditioned 

fracture log transmissivities have the value of -7.8002 for all the fractures and are shown as a 

black line. 
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Figure 79. Conditioned fracture log transmissivities for fracture set 11. The unconditioned 

fracture log transmissivities have the value of -5.0 for all the fractures and are shown as a black 

line. 

 

 

 

Figure 80. Conditioned fracture log transmissivities for fracture set 12. The unconditioned 

fracture log transmissivities have the value of -5.1110 for all the fractures and are shown as a 

black line. 
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Figure 81. Conditioned fracture log transmissivities for fracture set 13. The unconditioned 

fracture log transmissivities have the value of -5.4998 for all the fractures and are shown as a 

black line. 

 

 

5.3 – OLKILUOTO TEST CASE 2 

 

This test case focuses on a smaller region of the Olkiluoto site to that modelled by 

Olkiluoto test case 1. The problem domain is a 300m by 300m by 500m cube 

approximately centred around nine boreholes located in the middle of the 

Olkiluoto island. This scenario was designed to analyse a series of cross-hole 

pump tests using the nine boreholes, where one borehole is pumped with a given 

flow rate and the responses of the remaining boreholes are recorded as measured 

pressures. 

The geometry of the fracture network is semi-deterministic, containing two large 

scale macro fractures which are known to provide flow paths through the domain. 
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Additionally, there is a background fracture population consisting of many 

smaller fractures throughout the domain. The assertion that the macro fractures 

provide the main flow paths can be backed up by Figure 82; it shows that the 

inclusion of a background fracture population does not greatly change the match 

to measured pressures. It should be noted that Figure 82 shows unconditioned 

results. Conditioning was performed for two cases; first with only the two macro 

fractures and secondly with a background fracture population added to the two 

macro fractures. 

As seen by the results of conditioning Olkiluoto test case 1, Algorithm A yielded 

a far smaller absolute error than the basis vector conditioning method. Algorithm 

A was used without pre-conditioning the initial fracture transmissivities to 

perform all the conditioning for Olkiluoto test case 2. Thus, there was no use of 

the basis vector conditioning method. 

 

 

Figure 82. Measured pressure compared to the pressure calculated with two macro fractures 

including a background fracture population and the pressure calculated with only the two 

macro fractures in the domain at each measurement point. 



  185 

  

5.3.1 OLKILUOTO TEST CASE 2a 
 

The domain contains two large tessellated macro fractures which we call macro 

fracture 1 and macro fracture 2. Tessellation is the process of dividing a fracture 

into smaller sub-fractures and generating the transmissivity on each sub fracture 

independently. Both macro fractures have an area of 300m by 300m and have 

each been tessellated into 900 sub-fractures of area 10m by 10m. Macro fracture 1 

and macro fracture 2 have mean transmissivities estimated from field experiments 

of 2.2E-4 m2/s and 1.0E-5 m2/s, respectively. The initial fracture apertures were 

generated from a normal distribution using corresponding aperture means to the 

transmissivity means. The initial transmissivities of the sub-fractures on each 

macro fracture were then assigned by converting the fracture apertures to fracture 

transmissivities using the cubic law.  

The sub-fractures are assumed to be exponentially correlated. The correlation of 

sub-fractures on a macro fracture k  is defined by the covariance matrix kC . 

Thus, it is assumed that kC  has an exponential structure. Defining the separation 

ijS of two sub-fractures i  and j  as the distance between the centre of sub-fracture 

i  and sub-fracture j , the standard deviation of sub fracture log transmissivities as 

Xσ (assumed to be constant for all sub fractures on the same macro fractures) and 

the correlation scale as μ , then the covariance matrix of the sub-fracture 

transmissivities kC   on macro fracture k  is defined as 
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Thus, a sub-fracture is highly correlated with sub-fractures close to its location; 

this correlation decays exponentially with the separation of the fractures and the 

rate of decay is dependent on the correlation scale.  

There are zero pressure boundary conditions on all sides of the domain. One 

borehole is pumping, creating a borehole flow rate of 4.1667E-4 m3/s while the 

remaining eight boreholes are non pumping. The domain is shown in Figure 83 

with the initial values of fracture hydraulic apertures. The aperture values are used 

in the plot because they show the tessellation more clearly than transmissivity 

values. 

Algorithm A was used with C  given by (5.20) with a correlation scale μ  of 5.0 

and a standard deviation of 1/ 6Xσ = . The initial values of the sub fracture log 

transmissivities on macro fracture 1 are shown in Figure 86 and the initial sub 

fracture log transmissivities on macro fracture 2 are shown in Figure 88. 
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Figure 83. Domain of Olkiluoto test case 2a, where nine boreholes intersect two macro fractures, 

each of which is tessellated into 900 sub-fractures. Macro fracture 1 is mainly green coloured with 

macro fracture 2 mainly blue coloured. 

 

 

Figure 84 plots the relative error against the variance in the pressure 

measurements at each of the five steps used in Algorithm A. The conditioned 

pressures after step 5 of Algorithm A at each of the measurement points are 

shown in Figure 85 and compared to the measured and unconditioned pressures. 

Table 12 compares the initial absolute error and relative error to their final values.  

The conditioned values of the sub fracture log transmissivities in macro fracture 1 

are shown in Figure 87 and the conditioned values of the sub fracture log 

transmissivities in macro fracture 2 are shown in Figure 89. 

The conditioned pressures give an excellent match to the measured values. The 

vast majority of conditioned sub fracture transmissivities on macro fracture 1 are 

lower than the mean value of the unconditioned macro fracture 1 transmissivity. 
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However, there are some large values of conditioned fracture transmissivities 

located near the centre of macro fracture 1. There is less variation in the values of 

conditioned fracture transmissivities on macro fracture 2 and they are mostly 

smaller than the mean value of the unconditioned macro fracture 2. 

 

 

Figure 84. Plot of the relative error against variance in the pressure measurements for each step of 

Algorithm A for Olkiluoto test case 2a. 
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Figure 85. Conditioned pressures after step 5 of Algorithm A at each measurement point 

compared to the measured and unconditioned pressure values for Olkiluoto test case 2a. 

 

  Initial Absolute  

          Error 

  Final Absolute  

        Error 

   Initial Relative 

          Error 

    Final Relative 

         Error 

     8.5860E+4        8.1150E+1         0.7929         0.0007 
Table 12. Comparison of the initial absolute error and relative error to the final absolute error and 

relative error for Olkiluoto test case 2a. 

  

               Step          Absolute Error         Relative Error 

       Unconditioned            8.5860E+4              0.7929 

                  1            3.8363E+4              0.4094 

                 2            1.3904E+4              0.1695 

                 3            7.9760E+3              0.1242 

                 4            1.9890E+3              0.0429 

                 5            8.1150E+1              0.0007 

Table 13. Minimum absolute error and corresponding relative error at each step of 

Algorithm A for Olkiluoto test case 2a. 
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Figure 86. Initial sub fracture log transmissivities on macro fracture 1 compared to the mean log 

transmissivity of macro fracture 1 for Olkiluoto test case 2a. 

 

 

Figure 87.  Conditioned sub fracture log transmissivities on macro fracture 1 compared to the 

initial mean log transmissivity of macro fracture 1 for Olkiluoto test case 2a. 
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Figure 88. Initial sub fracture log transmissivities on macro fracture 2 compared to the mean log 

transmissivity of macro fracture 2 for Olkiluoto test case 2a. 

 

 

Figure 89. Conditioned sub fracture log transmissivities on macro fracture 2 compared to the 

initial mean log transmissivity of macro fracture 2 for Olkiluoto test case 2a. 
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5.3.2 – OLKILUOTO TEST CASE 2b 
 
 
In addition to the two tessellated macro fractures a background fracture 

population was added into the model domain. The background fracture 

population provides additional flow paths between the two macro fractures 

and the boreholes contained in the model. Here, 24926 background fractures 

were included and defined from borehole orientation and location data. The 

main unknown of the background fracture population was the fracture size 

which was chosen so that the background fractures were large enough to 

make a well connected system between the macro fractures and domain 

boundaries. The model domain is shown in Figure 90. 

A total of 26726 fractures to be conditioned meant that it was 

computationally too expensive to run the Bayesian conditioning algorithm 

fully. Instead fractures to be conditioned were selected depending on their 

initial sensitivity values. Fractures that had a sensitivity value of 1.0 or 

greater with respect to any of the measured pressures were selected for 

conditioning. A total of 2205 fracture transmissivities (with the greatest 

sensitivity values) were conditioned while leaving the remaining fracture 

transmissivities constant at their initial value throughout the conditioning 

procedure. In other words, only selected fracture transmissivities were 

conditioned, but pressure values were re-calculated using all of the fracture 

transmissivities in the network (including those held constant). Furthermore, 

due to the computational time taken to perform the conditioning of the 

fracture transmissivities the values of 2
Pσ  in each step of Algorithm A were 
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limited to 1.0E+3, 1.0E+4, 1.0E+5 and 1.0E+6. This selection was based on 

results from the previous test cases where no value of 2
Pσ  greater than 

1.0E+6 minimised the absolute error at any step of Algorithm A. 

Additionally, values of 2
Pσ  less than 1.0E+3 did not minimise the absolute 

error for the first few steps in previous test cases. 

Figure 91 plots the relative error against the variance in the pressure 

measurements for each step of Algorithm A. In the first two steps the 

majority of relative error values are greater than the initial relative error. 

This is due to the small measured pressure value at measurement point 8. In 

the first two steps the conditioned pressure at this measurement point was 

greater than the measured value by two or three times. This naturally leads 

to a large relative error value. The absolute error is plotted against the 

variance in the pressure measurement for each step of Algorithm A in Figure 

92. The measured pressure at measurement point 8 does not affect the 

absolute error to the same extent as the relative error and it can be seen that 

the absolute error is reduced with every step of algorithm A. The final 

conditioned pressures are compared at each measurement point to the 

measured and unconditioned pressures in Figure 93. It can be seen that the 

conditioned pressures give an excellent match to the measured pressures at 

all measurement points. Table 14 compares the initial absolute error and 

relative error to their final values and Table 15 shows the minimum absolute 

error and relative error at each step of Algorithm A. 
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Figure 90. Domain of Olkiluoto test case 2b with two macro fractures with a background 

fracture population. 
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Figure 91.  Plot of the relative error against variance in the pressure measurements for each 
step of Algorithm A for Olkiluoto test case 2b. 
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Figure 92. Plot of the absolute error against variance in the pressure measurements for each 
step of Algorithm A for Olkiluoto test case 2b. 
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Figure 93. Conditioned pressures after step 4 of Algorithm A at each measurement point 
compared to the measured and unconditioned pressure values for Olkiluoto test case 2b. 
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  Initial Absolute  

          Error 

  Final Absolute  

          Error 

   Initial Relative 

          Error 

    Final Relative 

         Error 

     8.9737E+4        1.6182E+2         0.7984         0.0048 

Table 14. Comparison of the initial absolute error and relative error to the final absolute error and 
relative error for Olkiluoto test case 2b. 

 
 

Step Absolute Error  Relative Error 

Unconditioned 8.9737E+4 0.7984 

1 4.0773E+4 1.0812 

2 1.5625E+4 0.7318 

3 4.1325E+3 0.0960 

4 1.6182E+2 0.0048 

Table 15. Minimum absolute error and corresponding relative error at each step of 
Algorithm A for Olkiluoto test case 2b. 

 

 

5.4 - CHAPTER SUMMARY AND CONCLUSIONS 

 

A Bayesian method for conditioning fracture transmissivities on measured 

pressures was developed. This algorithm was used to condition 501 fracture 

transmissivities on 9 pressure measurements for the Olkiluoto test case 1; here it 

was assumed that the fracture transmissivities were uncorrelated. When using the 

Bayesian conditioning method it was found that the final absolute error obtained 

after conditioning was dependent on the variance 2
Pσ  of the error in the measured 

pressures. The absolute error was at a minimum for a value of 2 1.0E+3Pσ =  with a 

value of 4.1522E+4 while the final relative error was 0.1866. In comparison, the 
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basis vector conditioning method gave a final absolute error of 6.2327E+4 and a 

final relative error of 0.3574. 

A numerical algorithm (Algorithm A) was developed in an effort to further reduce 

the final absolute error obtained by the Bayesian conditioning method. Algorithm 

A is not a Bayesian method as the prior values of fracture transmissivities are 

changed with each step. A set of initial fracture transmissivities were selected and 

conditioned using the Bayesian conditioning method with different 2
Pσ  values; 

each 2
Pσ  value used produced a different final absolute error. The transmissivity 

set that yielded the smallest final absolute error was further conditioned in the 

next step of Algorithm A. Two different initial fracture transmissivity sets were 

used. Firstly, an unconditioned set was used (set A1) and secondly a set pre-

conditioned using the basis vector conditioning method was used (set A2). 

Algorithm A was run separately using both initial fracture transmissivity sets. 

Algorithm A gave a good match to the measured pressures using both initial 

fracture transmissivity sets, giving final relative errors of 0.0133 and 0.0130, for 

set A1 and set A2, respectively. These final relative errors are more than 26 times 

smaller than the final relative error obtained from the basis vector conditioning 

method and 51 times smaller than the relative error corresponding to the 

unconditioned fracture transmissivity values. 

When Algorithm A was employed the conditioned fracture transmissivities varied 

over many orders of magnitude. Some of the fracture sets showed hardly any 

change in the conditioned fracture transmissivities compared to the unconditioned 

fracture transmissivities, while some of the conditioned fracture transmissivities 

were changed by up to six orders of magnitude compared to the unconditioned 

values. 
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A new test case called Olkiluoto test case 2 was introduced and is a DFN model 

containing two large tessellated macro fractures intersected by nine boreholes 

(one of which was pumping) with a background fracture population. This was 

separated into two test cases; Olkiluoto test case 2a and Olkiluoto test case 2b. 

Olkiluoto test case 2a contained two macro fractures tessellated into 1800 sub-

fractures which were conditioned on 9 pressure measurements. Olkiluoto test case 

2b had the same set up as Olkiluoto test case 2a but with the addition of 24926 

background fractures. Algorithm A was chosen to condition these test cases using 

unconditioned initial fracture transmissivities because it produced good results 

when used with Olkiluoto test case 1 and moreover does not require the 

application of the basis vector conditioning method.   

The conditioned pressures for Olkiluoto test case 2a gave excellent agreement to 

the measured pressures with a final relative error of 0.0007. The majority of the 

conditioned sub fracture transmissivities were smaller than the mean 

transmissivities of the macro fractures but there were still a group of sub fractures 

with large values of conditioned fracture transmissivities. 

Adding a background fracture population to the two macro fractures greatly 

increased the computational time needed for conditioning Olkiluoto test case 

2b. As such, the fractures to be conditioned were filtered by their initial 

sensitivity values. Fracture transmissivities with sensitivity greater than 1.0 

with respect to any pressure measurement were conditioned and the 

remaining fracture transmissivities were held constant at their initial value 

throughout the conditioning algorithm. The conditioned pressures gave an 

excellent agreement to the measured pressures at all measurement points 

with a final relative error of 0.0048 after 4 steps of Algorithm A. 
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6 – SUMMARY AND CONCLUSIONS 

 

The aim of this thesis was to develop numerical methods that condition 

fracture transmissivities on measured pressure values in a DFN. The first 

method developed, referred to as the basis vector conditioning method, 

conditioned fracture transmissivities on measured pressure values by 

adopting a linear approximation when fracture transmissivities were mildly 

heterogeneous; the generalisation of this approach to the minimisation of an 

objective function when fracture transmissivities were highly heterogeneous 

was also considered. This method represents an extension of the ideas 

employed for the conditioning of transmissivities or hydraulic conductivities 

in a CPM. 

The linear approximation exploited certain basis vectors; each basis vector 

represents the change to the log transmissivity of the fractures in the network 

that results in a unit increase in the pressure at one measurement point, 

whilst keeping the pressure at the remaining measurement points constant. 

These basis vectors were calculated using sensitivity values of each of the 

measured pressures with respect to each of the fracture transmissivities in 

the model. To this end, an adjoint method was developed to calculate the 

desired sensitivities.  

In the case of a highly heterogeneous system the same linear approximation 

was exploited whilst minimising an objective function using the Levenberg-

Marquardt method. Thus, fracture transmissivities were updated and the 

objective function minimised in an iterative manner. 
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The basis vector method was first used to condition some small scale test 

cases with few fractures and simple geometry. The conclusions taken from 

testing on these simple test cases were that the sensitivities should be 

updated with each iteration of the minimisation procedure in order to 

improve the robustness of the basis vector conditioning method. It was 

apparent that the convergence of the method was dependent on the geometry 

of the fractures and the boundary conditions employed. Furthermore, the  

basis vector conditioning method was used on a test case based on data from 

a potential site for radioactive waste disposal at Olkiluoto, Finland; this 

fracture network model consisted of 501 fractures with 9 measured pressure 

values (Olkiluoto test case 1). The fractures were divided into 13 separate 

fracture sets; each set had its own mean value of fracture transmissivity 

which all fractures in that set were assigned. 

The fracture transmissivities were conditioned on nine measured pressures 

from field data. The conditioning gave a considerable improvement to the 

calculated pressure at every measurement point but failed to agree exactly 

with the measured pressure values. The initial relative error between 

measured and conditioned pressures was 0.6828 and the final relative error 

after conditioning was 0.3574. 

The sensitivity values computed showed that certain fracture sets had more 

influence on the pressures computed at measurement points. Indeed, the 

fracture transmissivities varied over many orders of magnitude in these 

fracture sets and differed greatly from the unconditioned values. 

To test the robustness of the method, “artificial” pressure values, obtained 

from generated sets of fracture transmissivities, were used to condition the 
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initial fracture transmissivities; the geometry of the fractures was not 

changed. Four different cases were studied, each with different target 

fracture transmissivities. The resulting pressures for the four cases were used 

as “artificial” measured pressures that were conditioned on. The 

conditioning method gave an exact agreement with the “artificial” measured 

pressures for three of the cases where the variance of the fracture 

transmissivities was small. It gave a close but not exact agreement in the 

fourth case, where the fracture transmissivity distribution had a larger 

variance. 

Based on results from chapter 4, the basis vector conditioning method 

showed good convergence properties when the measured pressures were 

close to the unconditioned pressures. However, when the measured pressures 

differ greatly from the unconditioned pressures the method struggles to 

match the measured pressures. 

There were many potential reasons why the conditioned pressures in the 

Olkiluoto test case 1 did not exactly match the measured pressures. The lack 

of a match to measured pressure was either as a result of an inaccurate 

conceptual model or due to convergence problems with the basis vector 

conditioning method. Some assumptions in the conceptual model that could 

give rise to inaccurate calculated pressures were discussed in chapter 4. 

However, it was decided to concentrate on the numerical side of the problem 

in an attempt to get a better match to measured pressures. A homotopy 

method was used with the basis vector conditioning method but failed to 

improve the match to measured pressures. This lack of agreement motivated 

the development of a new Bayesian conditioning method.  
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The Bayesian conditioning method exploited Bayes’ theorem to give an 

expression of proportionality for the posterior distribution of fracture log 

transmissivities in terms of the prior distribution of fracture log 

transmissivities and the data available through pressure measurements. The 

fracture transmissivities were assumed to be normally distributed with a 

given covariance and the measured pressures were assumed to be normally 

distributed values each with a given error. 

From the expression of proportionality for the posterior distribution of 

fracture transmissivities, it was possible to find a mode of the posterior 

distribution; that is the most likely set of fracture transmissivities that would 

produce the measured pressure values. A mode of the posterior distribution 

can be found numerically using Newton’s method. The Bayesian method 

allowed the input of a fracture transmissivity covariance matrix and a 

covariance matrix for the errors in the pressure measurements. It was 

assumed that the fracture transmissivities were uncorrelated and errors in the 

measured pressures were independent. With this assumption, it was found 

that the absolute error (describing the match between measured and 

conditioned pressures) was dependent on the variance in the pressure 

measurements. 

The variance of the pressure measurements was changed for separate runs to 

investigate its effect. It was found that certain values gave a better match to 

the measured pressures than the basis vector conditioning method; these 

variance values were always less than the order of magnitude of the 

measured pressures. In order to improve this match further a numerical 

algorithm (Algorithm A) was devised. A set of initial fracture 
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transmissivities were selected and conditioned using the Bayesian 

conditioning method with different variance values in the pressure 

measurements. The variance which yielded the best match to the measured 

pressure gave an output set of fracture transmissivities and these were used 

as the input in the next step where again different variance values of the 

pressure measurements were employed. Algorithm A was run separately 

using two different sets of initial fracture transmissivities for Olkiluoto test 

case 1. Set A1 contained unconditioned fracture transmissivities while set 

A2 contained fracture transmissivities that were pre-conditioned using the 

basis vector conditioning method. 

Algorithm A gave an excellent match to the measured pressure values using 

both set A1 and A2 for Olkilouto test case 1. The relative error between 

measured and conditioned pressures was 0.3574 for the basis vector 

conditioning method while the relative errors from Algorithm A was 0.0133 

and 0.0130, for set A1 and set A2, respectively. 

The conditioned fracture log transmissivities output from Algorithm A using 

initial fracture transmissivity set A2 were studied. Some of the conditioned 

fracture transmissivities were increased by many orders of magnitude. 

Indeed it was found that the fracture sets that exhibited the greatest change 

in conditioned and unconditioned fracture transmissivities were the same 

sets that exhibited the greatest change in the basis vector conditioning 

method. Some of the fracture transmissivities that were significantly 

changed in these sets had the same conditioned value regardless of the 

conditioning method used. However, a lot of fracture transmissivities that 

were not considerably changed in the basis vector conditioning method had 



  204 

their values changed by several orders of magnitude using the Bayesian 

method. 

Algorithm B was used to condition fracture transmissivities in a further test 

case called Olkiluoto test case 2. Algorithm B was chosen because it gave 

good results when tested on Olkiluoto test case 1 and it has no reliance on 

the basis vector conditioning method. Olkiluoto test case 2 comprised of two 

large macro fractures intersected by nine boreholes (one of which was 

pumping) with a background fracture population. This was split into 

Olkiluoto test case 2a and Olkiluoto test case 2b. Olkiluoto test case 2a 

contained the two macro fractures each tessellated into 900 sub fractures. 

Thus, there were 1800 sub fractures to condition on the 9 pressure 

measurements. Olkiluoto test case 2b had the same setup as Olkiluoto test 

case 2a but with the addition of 24926 background fractures. 

The conditioned pressures for Olkiluoto test case 2a gave excellent 

agreement to the measured pressures reducing the initial relative error from 

0.7929 to a final value of 0.0005. A similarly excellent match to measured 

pressures was obtained for Olkiluouto test case 2b. The initial relative error 

of 0.7984 was reduced to 0.0048 after 4 steps of Algorithm A. 

Despite giving an improvement in the match to measured pressures, the 

basis vector method was not as successful as Algorithm A in conditioning 

fracture transmissivities on measured pressures in a physically relevant case. 

However, it did provide a useful insight to the Olkiluoto test case 1. The 

sensitivity analysis and plots of conditioned fracture transmissivities showed 

the fracture sets and individual fractures that were influential to the 
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measured pressures. As well as this, the adjoint method was used to 

calculate sensitivities in the Bayesian method. 

The use of Algorithm A with the Bayesian method proved to work well 

when an estimate of the fracture transmissivities was given and the variance 

in the pressure measurements was assumed unknown. 

The lack of available conditioning methods applied to DFNs means that 

there is opportunity for future work in this subject area. Based on results 

shown in this thesis a Bayesian conditioning approach would be 

recommended. The Bayesian method could be modified to condition on 

fracture flow measurements and possibly a combination of flow and pressure 

measurements.  This would increase the number of test sites that the method 

is applicable to. Currently, the Bayesian method does not allow known 

fracture transmissivities to be included in the conditioning process. Thus, the 

Bayesian method could be modified so that selected fracture transmissivities 

are held constant throughout the conditioning process. Furthermore, in the 

Bayesian algorithms used, each value for the variance in the pressure 

measurements represents a separate run of the Bayesian conditioning 

method. It would be useful for each of these separate runs to be combined so 

that each Bayesian conditioning algorithm represents a single run. 

Both conditioning methods take a fracture network with a fixed geometry as 

input. The fracture network could be a deterministic model or it could be a 

single realisation from a stochastic model where the geometry is fixed for 

each realisation. A natural extension to this work is to modify the 

conditioning methods so they can be used in a stochastic approach with 

multiple realisations. Each individual realisation would be conditioned and 



  206 

an acceptance criterion would decide whether to keep or disgard a given 

realisation based on the match to measured pressures after conditioning. 

It is common during well tests to monitor the change of pressure with time. 

A useful extension to the conditioning methods would be to modify them so 

that they can condition on the transient case, where measurements are 

pressure variations with time at measurement wells. The approach of the 

conditioning methods would not be changed but sensitivities would have to 

be calculated based on the transient groundwater flow equation. 

Additionally, a new objective function would have to be selected that takes 

into account the difference between measured and calculated pressures over 

time at measurement wells. Furthermore, when conditioning transient 

pumping tests it is necessary to model groundwater as a compressible fluid. 

Thus, a constitutive equation between the groundwater pressure and density 

would need to be selected and incorporated into the transient groundwater 

flow equation. 
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APPENDIX A: MODIFICATION OF THE 

SENSITIVITIES TO HANDLE MULTIPLE 

BOREHOLE INTERSECTIONS 

 

In order to deal with multiple borehole intersections it is necessary to add 

borehole flow equations to the original FE equations (2.59). These borehole 

equations model groundwater flow in the boreholes contained in the DFN. 

Fractures are represented by nodes from a FE approximation, as explained in 

chapter 2. When considering the effect of multiple borehole intersections the 

global nodes are divided into three groups as opposed to two groups as in 

chapter 2. The groups are: 

 

D - global nodes at which there is a Dirichlet boundary condition for the 

pressure. 

A - global nodes corresponding to intersections with a borehole. 

E - the remaining nodes. 

 

Corresponding to each global node in A  is a borehole node, and we define 

the set of borehole nodes as B . The borehole nodes are ordered down the 

borehole with water being abstracted at or above the uppermost borehole 

node. The flow equations originally defined in (2.59) can be written as 
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A A A P = Q
A A A P Q

 (A.1) 

 
with Dirichlet boundary conditions 
 
 ,D D0P = P  (A.2) 
  
Using the notation introduced in chapter 2. 
 
The borehole equation defined in (2.58) can be written as 

 

 ( ) ,A B AQ = S P - P  (A.3) 

 

where S  is a diagonal matrix with entries equal to fTγ−  of the fracture 

f corresponding to the node. On a given borehole, the borehole flow 

equations are expressed as  

 

 

( )
( ) ( )

( ) ( )( ) ( )

1 2 1 21

2 2 1 21 3 2 32

1 1 1

,

0 ,
......

0 ,

A B B

A B B B B

BnA n B n n n

Q P P K Q

Q P P K P P K

Q P P K− − −

+ − =

+ − + − =

+ − =

 (A.4) 

 

where n  denotes the number of borehole intersections, Q  is the pumping 

rate of the borehole, iQ  is the flow into borehole intersection node i , ( 1)i iK −  

is the borehole hydraulic conductivity between nodes i  and 1i − . The 

borehole flow equations (A.4) apply Darcy’s law to the different sections of 

the borehole that are intersected by fractures. Figure 94 shows an example of 

a borehole intersected by 3 fractures. In this case, Darcys law is applied to 
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the two sections of the borehole with hydraulic conductivity 21K  and 23K . 

The borehole flow equations (A.4) can alternatively be written in matrix 

form as 

 

 

21 211 1

21 21 32 322 2

( 1) ( 1)

0 .. .. 0
.. 0

0 .. .. .. .... .. 0
.. .. .. .. .... .. ..
.. .. .. 0.. .. ..
0 .. .. 0 0

A B
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K K K KQ P

K KQ P− −

−⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

,

 (A.5) 

 

or say 

 A B 1Q + KP = Qe , (A.6) 

 

where K  is a tridiagonal matrix taking the form shown in (A.5) and 1e  is a 

n  vector with 1 in the first entry and zeros elsewhere. 
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Figure 94. Example of the borehole model for 3 fractures intersecting a borehole. 

 

The borehole flow equations (A.6) can be used to eliminate AQ  from the 

fracture flow equations (A.1)  to give 

 

 
,

.
Q

Q⇒ + + =
AE E AD D AA A A B 1

AE E AD D AA A B 1

A P + A P + A P = Q = -KP + e
A P A P + A P KP e

 (A.7) 

 

The borehole equation (A.3) is also used to eliminate AQ  from the fracture 

flow equations (A.1) 

 

 
( )

( )
+

+
AE E AD D AA A A B A

AE E AD D AA A B

A P A P + A P = Q = S P - P ,

A P A P + A - S P + SP = 0 .
 (A.8) 

 

Equations (A.7) and (A.8) lead to equations in the form 
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⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

EE ED EA E E

DE DD DA D

AE AD AA A

D D0

AE AD AA B 1

A A A 0 0 P Q
A A A -I 0 P 0

= .A A A + S 0 -S P 0
0 I 0 0 0 Q P

A A A 0 K P Qe

 (A.9) 

 

The matrix system (A.9) can be written in the form 

 

 F = MP - R = 0 . (A.10) 

 

Using the adjoint method, the sensitivity can be expressed as 

 

 ( )
f f f

∂ ∂ ∂
= +

∂ ∂ ∂
TG F Gθ

X X X
, (A.11) 

 

where the adjoint satisfies 

 

 ∂
= −

∂
T

B1
Fθ e
P

, (A.12) 

 

where B1e  is a vector with 1 in the entry corresponding to 1BP  and 0 

elsewhere. 

The matrix M  is the only matrix in (A.10) that is dependent on X . The A  

matrices and the matrix S  shown in (A.9) are linearly dependent on the 

transmissivity of a fracture; the transmissivity is given by 

 

 10 f
f =

XT . (A.13) 
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Thus, we can write 

 

 ( )ln 10

⎛ ⎞
⎜ ⎟
⎜ ⎟∂ ⎜ ⎟

∂ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

EE ED EA

DE DD DA

AE AD AA
f

AE AD AA

A A A 0 0
A A A 0 0

M = A A A + S 0 -S
X

0 0 0 0 0
A A A 0 0

, (A.14) 

 

for a fracture f , and from (A.10) 

 

 ( )ln 10
f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟∂ ⎜ ⎟⎜ ⎟=

∂ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

EE ED EA E

DE DD DA D

AE AD AA A

D

AE AD AA B

A A A 0 0 P
A A A 0 0 P

F A A A + S 0 -S P
X

0 0 0 0 0 Q
A A A 0 0 P

. (A.15) 

 

Thus, the sensitivity is given by 

 

 ( )ln 10 .
f f

d
d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ∂⎜ ⎟⎜ ⎟= +

∂⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

EE ED EA E

DE DD DA D
T

AE AD AA A

D

AE AD AA B

A A A 0 0 P
A A A 0 0 P

G Gθ A A A + S 0 -S P
X X

0 0 0 0 0 Q
A A A 0 0 P

 (A.16) 

 
 

The partial derivative of the consequence 
f

∂
∂

G
X

 is the same as that calculated 

in (3.56). There are three contributions to the evaluation of the sensitivity 

(A.16). The first arises from the A entries in the upper left 3x3 sub-matrix, 

the second arises from the terms in S  and the third arises from the lower 1x3 
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sub-matrix. The first contribution is equivalent to (3.55) that was used in the 

calculation of the sensitivities in section 3.6. The second contribution is 

given by 

 

 ( )ln10 f
T
A B Aθ T γ P - P , (A.17) 

 

for a fracture f , where T
Aθ  denotes the transpose of the adjoint on nodes 

contained in group A . The third term can be expressed as 

 

 ( )ln10 T
B AD D AE E AA Aθ A P + A P + A P . (A.18) 

 

where T
Bθ  denotes the transpose of the adjoint on nodes contained in group 

A . Equation (A.18) can be manipulated using the flow equations (A.1) and 

the borehole equation (A.3) to become 

 

 ( )ln10 T
B B Aθ S P - P . (A.19) 

 

Thus, (A.17) and (A.19) are added to the calculated sensitivities (3.60) to 

represent multiple borehole intersections. 
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