
ECONOMETRIC INFERENCE IN MODELS WITH

NONSTATIONARY TIME SERIES

Michalis P. Stamatogiannis

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

July 2010



ABSTRACT

Econometric Inference in Models With Nonstationary Time Series

Michalis P. Stamatogiannis

We investigate the �nite sample behaviour of the ordinary least squares (OLS)

estimator in vector autoregressive (VAR) models. The data generating process is

assumed to be a purely nonstationary �rst-order VAR. Using Monte Carlo simu-

lation and numerical optimization we derive response surfaces for OLS bias and

variance in terms of VAR dimensions both under correct model speci�cation and

under several types of over-parameterization: we include a constant, a constant

and trend, and introduce excess autoregressive lags. Correction factors are intro-

duced that minimise the mean squared error (MSE) of the OLS estimator. Our

analysis improves and extends one of the main �nite-sample multivariate analytical

bias results of Abadir, Hadri and Tzavalis (1999), generalises the univariate vari-

ance and MSE results of Abadir (1995) to a multivariate setting, and complements

various asymptotic studies.
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The distribution of unit root test statistics generally contains nuisance para-

meters that correspond to the correlation structure of the innovation errors. The

presence of such nuisance parameters can lead to serious size distortions. To ad-

dress this issue, we adopt an approach based on the characterization of the class of

asymptotically similar critical regions for the unit root hypothesis and the appli-

cation of two new optimality criteria for the choice of a test within this class. The

correlation structure of the innovation sequence takes the form of a moving average

process, the order of which is determined by an appropriate information criterion.

Limit distribution theory for the resulting test statistics is developed and simu-

lation evidence suggests that our statistics have substantially reduced size while

retaining good power properties.

Stock return predictability is a fundamental issue in asset pricing. The con-

clusions of empirical analyses on the existence of stock return predictability vary

according to the time series properties of the economic variables considered as po-

tential predictors. Given the uncertainty about the degree of persistence of these

variables, it is important to operate in the most general possible modelling frame-

work. This possibility is provided by the IVX methodology developed by Phillips

and Magdalinos (2009) in the context of cointegrated systems with no determinis-

tic components. This method is modi�ed in order to apply to multivariate systems

of predictive regressions with an intercept in the model. The resulting modi�ed

IVX approach yields chi-squared inference for general linear restrictions on the

regression coe¢ cients that is robust to the degree of persistence of the predictor
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variables. In addition to extending the class of generating mechanisms for predic-

tive regression, the approach extends the range of testable hypotheses, assessing

the combined e¤ects of di¤erent explanatory variables to stock returns rather than

the individual e¤ect of each explanatory variable.
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CHAPTER 1

Introduction

Nonstationarity has dominated the time series literature for the last three

decades. Interest in the topic was initiated by the empirical relevance of nonsta-

tionary data. Fundamental issues in macroeconomics and �nance such as growth,

the e¢ cient market hypothesis and business cycles are crucially in�uenced by the

existence of nonstationarity. Nelson and Plosser (1982) found that many macro-

economic series had a unit root and discussed the implications of such form of

nonstationarity on the theory of business cycles. The impact of nonstationary

variables to both economic theory and economic forecasting created the need for

statistical methods that would detect the persistence properties of economic time

series and provide valid inference in cases where these series exhibit stochastic

trends.

The inadequacy of standard inference when applied to nonstationary series

was exposed by Granger and Newbold (1974) who introduced the idea of spurious

regression. Using Monte Carlo simulations, they showed that standard regression

methods can provide statistical evidence in favour of fallacious relationships among

variables that contain unit roots. Granger (1981) formalised the notion of a mean-

ingful relationship among nonstationary data series by introducing the de�nition of
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co-integration. Phillips (1986) developed asymptotic methods that explained ana-

lytically the problems associated with spurious regressions and provided the correct

regression theory. His elegant method, based on a functional central limit theo-

rem and the preservation of weak convergence by continuous mappings, provided

the foundation for a huge research programme on formal econometric inference for

nonstationary processes that attracted a large number of econometricians, statisti-

cians and probabilists. The topics discussed in this thesis relate to the econometric

estimation and testing in the presence of various forms of nonstationarity.

Chapter 2 investigates certain �nite sample properties of ordinary least squares

(OLS) estimation in vector autoregressive (VAR) models. Assuming a data gener-

ating process of the form

xt = Rxt�1 + "t; t = 1; 2; : : : T; (1.1)

R = Ik,

where Ik the k � k identity matrix and f"tgT1 is a sequence of independent and

identically distributed normal random vectors with mean 0 and positive de�nite

covariance matrix 
, the OLS estimator is given by

bR = TX
t=1

xtxt�1

 
TX
t=1

xt�1x
0
t�1

!�1
: (1.2)

The main contribution of Chapter 2 is the characterisation of the �nite sample

behaviour of OLS estimators in relation to the VAR dimension and autoregressive
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lag length misspeci�cation in (1.1). We provide expressions for the OLS bias and

variance and derive correction factors that deliver minimum mean squared error

(MSE) estimators.

The �nite sample properties of the OLS estimator bR in (1.2) in the univariate
case (k = 1) has been the subject of considerable study. MacKinnon and Smith

(1998) show that bR is negatively biased for R = 1, with bias decreasing with the

sample size and positively biased for certain values of R (notably R = �1). They

also show that the bias function for bR is almost linear for R 2 [�0:85; 0:85] and

highly nonlinear for values of R close to 1 and �1. The bias and exact moments of

the OLS estimator in autoregressive models have been discussed recently by inter

alia Nankervis and Savin (1988), Tsui and Ali (1989, 1994), Vinod and Shenton

(1996) and Gonzalo and Pitarakis (1998). Abadir (1993) derives a high-order closed

form approximation of the �nite sample bias of bR with jRj = 1:
b � E

� bR��R =

p
2

T
�T ; (1.3)

where �T = E
h
T
� bR�R

�
=
p
2
i
. Abadir (1993) shows that exponential functions

in polynomials of T�1 may be used to describe the bias. A heuristic process

(5 datapoints, no diagnostics reported) gives the simple approximation �T �

�1 exp (�2:6138T�1) ; where �T and �1 are exact values from Evans and Savin

(1981, p. 769, Table III). The univariate bias approximation is obtained from (1.3)
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and an OLS regression of ln (�T=�1) on 1=T as

b � �1:7814
�
1

T

�
exp

�
�2:6138

T

�
; (1.4)

where �1:7814 is the expected value of the limiting distribution of T
� bR� 1�.

OLS bias in VAR models with k � 1 has been studied by Abadir, Hadri and

Tzavalis (1999) (hereafter referred to as AHT). This Chapter shows that the bias ofbR in (1.2) is a scalar matrix, (i.e. a diagonal matrix with equal diagonal elements)
and is not a function of 
. In particular, the bias matrix is approximately equal

to the dimension of the VAR times the univariate bias formula:

bAHT � �1:7814
�
k

T

�
exp

�
�2:6138

T

�
Ik, (1.5)

for T > k + 2, i.e. the bias is proportional to the dimension k of the VAR model,

irrespective of the innovation covariance matrix 
.

Chapter 2 extends the results of AHT, studying the �nite sample properties of

OLS bias for a data series generated by (1.1). We introduce over-parameterization

in two directions: addition of deterministic components and addition of multiple

autoregressive lags in the VAR model. Hence, while the process xt is generated by

(1.1), the estimated model is given by

xt = e�+ e�t+ eRxt�1 + p�1X
j=1

e�j�xt�j + e"t:
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We extend the AHT scalar bias matrix result to OLS estimates obtained by the

above overparametrized model, proving that the matrix E( eR�R) is scalar. We �nd
that the e¤ect of the overparameterization causes the absolute value of �nite sample

bias to increase. An extensive simulation study yields estimated response surfaces

for bias as a function of sample size, VAR dimension and VAR lag length. We also

estimate response surfaces for the variance of the OLS estimator. Combining the

information drawn from the response surfaces for OLS bias and OLS variance we

compute correction factors that lead to minimum MSE estimators.

In Chapter 3 we derive test statistics for the unit root hypothesis that control

size in the presence of autocorrelation in the error term and have comparatively

good power properties. Early work of Fuller (1976), Dickey and Fuller (1979,

1981) and Said and Dickey (1984) led to �augmented�versions of unit root tests

that take into account possible autocorrelation in the innovation errors of the

model. Phillips and Perron (1988) proposed a nonparametric unit root test which

allows for a very wide class of innovations, namely stationary (short memory) linear

processes. Correlation is not assumed to have a speci�c parametric structure and

is estimated by a nonparametric estimator of the spectral density function at zero

frequency. All the above (and most subsequent) work treats error autocorrelation

as a nuisance parameter that appears on the null asymptotic distribution of unit

root test statistics and hence a¤ects the size of unit root tests. This issue was

highlighted by the numerical study of Schwert (1989) which demonstrated high size

distortion of the ADF and Phillips Perron tests. DeJong et al. (1992) pointed out
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the problem of low power of unit root tests against trend-stationary alternatives.

Dufour and King (1991) and Elliott et al. (1996) proposed local GLS detrending of

the data in order to increase the power of the Dickey Fuller statistic. Ng and Perron

(2001) use GLS detrended data to derive modi�ed test statistics and modi�ed

information criteria for the determination of the truncation lag.

Chapter 3 presents an alternative approach based on the derivation of asymp-

totically similar unit root test statistics. Similarity refers to tests whose size is

independent of nuisance parameters, in this case error autocorrelation. The char-

acterisation of the class of similar tests in the context of autocorrelated errors is

achieved using the methodology developed in Hillier (1987). Test statistics are

selected from within the class of similar tests using two di¤erent optimality cri-

teria: Bounded Norm Minimising (BNM) and Bounded Estimated Point Optimal

(BEPO). These optimality criteria have been applied by Forchini and Marsh (2000)

for the derivation of similar unit root tests under independence. In Chapter 3 we

start from a uniformly most powerful critical region that accommodates correlated

innovation errors that take the form of an MA(m) process. The BNM and BEPO

optimality criteria are applied to choose statistics from the class of asymptotically

similar tests. Due to the lack of a su¢ cient statistic for the estimation of the MA

parameters, we estimate these parameters using maximum likelihood. The order

of the MA component is determined by the use of information criteria. The as-

ymptotic distributions of the resulting test statistics are derived for the case where

the deterministic component of the model includes an intercept or an intercept
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and a linear trend. Subsequent numerical study shows that the BNM and BEPO

statistics perform well relative to the other unit root tests in terms of both size

distortion and power in �nite samples. A feature that further distinguishes the

BNM and BEPO statistics derived in Chapter 3 is that they do not su¤er from

the problem of power reversal. This term was introduced in the literature by Seo

(2006) to describe a decrease in power as the true value of the parameter moves

away from the null hypothesis1.

Our simulation study reveals another problem that arises with test statistics

that employ the modi�ed information criteria (MIC) proposed by Ng and Perron

(2001): for a given alternative value of the parameter of interest, there are cases

when power decreases as the sample size increases. In other words, additional

information leads to distorted inference which suggests that the tests are not con-

sistent. The problem is related to a singular feature of MIC relative to traditional

information criteria, namely the imposition of the null hypothesis. This o¤ers ex-

cellent control over size. However, as the true value of the parameter of interest is

moving away from the null, maintaining the null hypothesis through the MIC on

the statistics can have a detrimental e¤ect on the power of the associated tests.

The unit root tests derived in Chapter 3 do not su¤er from the aforementioned

problems. The power of the BNM and BEPO statistics increases as the true

value of the autoregressive parameter moves farther away from the null hypothesis

value. For a given alternative value of the parameter of interest, the power of these

1Surprisingly, the statistics resulting from Seo�s procedure su¤er from the same problem.
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statistics increases as the sample size increases. Additionally, the BNM and BEPO

tests appear to have relatively low size and high power compared to the statistics

proposed by Ng and Perron (2001), Perron and Qu (2007) and Seo (2006).

In Chapter 4 we discuss inference in a broader framework of nonstationarity.

As is often emphasised in applied work, economic and �nancial time series seem

to exhibit persistence characteristics that do not always conform to the I(0)-I(1)

dichotomy. In practice this means that applied researchers wish to model persis-

tence in cointegrating regressions through series that have autoregressive roots in

a general neighbourhood of unity. Considering persistent regressors that are not

necessarily unit root processes is of particular importance for assessing the pre-

dictive power of economic and �nancial variables on stock returns. To this end,

a well developed literature (Cavanagh et al., 1995; Torous et al., 2004; Campbell

and Yogo, 2006) considers predictive regressions with local to unity regressors.

Accommodating such a generalisation, however, cannot be accomplished by

standard methods. As Elliott (1998) showed, conventional cointegration methods

such as fully modi�ed OLS and dynamic OLS methods (Phillips and Hansen,

1990 and Stock and Watson, 1993 respectively) do not produce valid asymptotic

inference in cases where the regressors have roots that are local to unity. Local to

unity processes induce additional endogeneity that cannot be removed by standard

methods. Similar problems occur when the regressors exhibit less persistence than

local to unity processes. Such �mildly integrated�regressors were introduced by

Phillips and Magdalinos (2007) and Giraitis and Phillips (2006). Given this wide



9

class of possible generating mechanisms, there is a need to develop more robust

approaches to estimation and inference that do not rely upon knowledge of the

precise form of regressor persistence.

We apply the IVX method of Phillips and Magdalinos (2009) to the problem of

testing for stock return predictability. The procedure is generalised by including

an intercept in the model and provides robust inference in the following system of

predictive regressions:

yt = �+ Axt�1 + u0t; (1.6)

xt = RTxt�1 + uxt; (1.7)

RT = Ik + C=T�; for some � > 0 (1.8)

for t 2 f1; :::; Tg, an m� k coe¢ cient matrix A and innovations u0t; uxt that take

the form of a stationary short memory linear process. The matrix C can be either

zero or negative de�nite and together with � determine the degree of regressor

persistence induced by the autoregressive matrix RT in (1.8). If either C = 0 or

� > 1 in (1.8) the regressor xt behaves as a unit root process. If C < 0 and

� = 1 the regressor in (1.7) is a local to unity process. If C < 0 and � 2 (0; 1)

the regressor belongs to the class of less persistent, mildly integrated processes

introduced by Phillips and Magdalinos (2007).
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Least squares limit theory for multivariate systems with mildly integrated re-

gressors was established in Magdalinos and Phillips (2009). Phillips and Magdali-

nos (2009) employ a new instrumental variables procedure for the estimation of

the coe¢ cient matrix A in a cointegrated system. The idea is to construct in-

struments from the regressors by means of a suitable �ltering. The approach is

called �IVX estimation�because instruments are generated from the regressors by

means of data di¤erencing without using any external information. The degree

of persistence of each IVX instrument is explicitly controlled so that the process

is mildly integrated. This approach eliminates the local and moderate to unity

endogeneity and produces a mixed normal limit distribution for the IVX estimator

and standard chi-squared inference for restrictions on A irrespective of the degree

of persistence of the regressors.

The contribution of Chapter 4 is twofold: First, motivated by the requirements

of applied literature, the IVX methodology of Phillips and Magdalinos (2009) is

extended to the case where an intercept is included in the model. The IVX es-

timator and the associated Wald test statistic are further modi�ed to take into

account the contemporaneous structure of predictive regressions. Second, an em-

pirical analysis of the issue of predictability of stock returns is conducted by using

the modi�ed IVX methodology.

Apart from its robustness to the time series properties of the data generating

process, the IVX methodology accommodates joint inference in the system (1.6)-

(1.7), i.e. o¤ers the possibility of assessing the predictive power of combinations
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of explanatory variables, or assessing the predictive power of a single regressor on

multiple portfolios. This addresses a crucial empirical issue that could not be taken

into account by previous studies on stock return predictability based on a local to

unity framework (Cavanagh et al., 1995; Torous et al., 2004; Campbell and Yogo,

2006) because of the problems associated with multidimensional con�dence interval

construction for C. These problems do not a¤ect IVX inference which is based on

an endogeneity correction rather than Bonferroni type con�dence intervals.

In the empirical part of Chapter 4 that assesses the predictability of the market

portfolio, we use explanatory variables that are commonly employed as potential

predictors. The market portfolio is decomposed to subcategories �rstly accord-

ing to the stocks�market value and secondly according to the stocks� book to

market value. This categorisation of the market portfolio allows us to investigate

whether the regressors predict speci�c subcategories of the market portfolio and

also whether a regressor can jointly predict the subcategories of the market portfo-

lio. The predictive power of a variety of explanatory variables is examined exten-

sively in the context of both univariate and multivariate regressions. Throughout

our empirical analysis, the importance of joint inference on more than one pre-

dictive variable is revealed. We present important cases where a set of predictive

variables is jointly signi�cant for stock returns whereas each variable in the set has

insigni�cant predictive value.

Chapter 5 concludes the discussion of this thesis.



CHAPTER 2

The Finite-Sample E¤ects of VAR Dimensions on OLS

Bias, OLS Variance, and Minimum MSE Estimators

2.1. Introduction

Vector autoregressions have been extensively studied in econometrics and con-

tinue to be one of the most frequently used tools in time series analysis. However,

little is currently known about the properties of parameter estimators when applied

to �nite samples of data, and especially in nonstationary frameworks. In partic-

ular, the form and extent of estimator bias and variance have not yet been fully

investigated. In a paper that is central to this issue, Abadir, Hadri and Tzavalis

(1999) (AHT) study nonstationary multivariate autoregressive series, and derive

an approximate expression for the mean bias of the ordinary least squares estima-

tor of the matrix of autoregressive parameters, in terms of the sample size T and

VAR dimension k. They consider estimation of a correctly-parameterized �rst-

order vector autoregression (a VAR(1)), with no constant or trend, given that the

data generating process is a k-dimensional Gaussian random walk. Using Monte

Carlo simulation, they show that their �analytic approximation�provides a good

representation of bias in �nite samples, and for small k (AHT, Table I).

12
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The purposes of this Chapter are twofold. Firstly, we extend the results given

by AHT in a number of directions. In broadening the scope of AHT, we assess

over-parameterization of the estimated VAR model, by including a constant, and

a constant and deterministic trend. This creates additional bias problems, as was

suggested by simulation results for the univariate case in Abadir and Hadri (2000,

p. 97) and Tanizaki (2000, Table 1). We also assess the e¤ects of introducing

p � 1 excess lags into the estimated model. We use Monte Carlo methods to

simulate small sample bias, and then �t a series of response surfaces using weighted

nonlinear least squares. Well-speci�ed and parsimonious response surfaces are

chosen following diagnostic testing, and are shown to perform very well in out-of-

sample prediction. In the correctly-parameterized setting, the prediction error of

our response surface is substantially less than that of the AHT form, across the

parameter space under investigation.

Secondly, we focus attention on the variance and MSE of the least squares

estimator, and generalize the heuristic univariate variance approximation of Abadir

(1995) to rigorous response surfaces. We develop response surfaces for variance,

and show that multiplying the OLS estimator by a scalar correction factor achieves

minimum MSE and removes most of the bias, at the expense of a small increase

in estimator variance.1 To our knowledge, no other �nite-sample approximations

(analytic or otherwise), and few simulations, were previously available for bias in

1See Hendry and Krolzig (2005, section 4) for a similar form of bias correction, after computer-
automated model selection.
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the multivariate over-parameterized cases, or for excess lags, or for variance in the

multivariate setting.

The Chapter is organized as follows. Section 2.2 introduces the possibly over-

parameterized VAR model and brie�y reviews existing �nite-sample results. Sec-

tion 2.3 outlines the response surface methodology, presents the experimental de-

sign, and proposes response surfaces for multivariate bias and variance, based upon

an extensive series of Monte Carlo experiments. Section 2.4 concludes the Chapter.

We represent vector (and scalar) and matrix quantities as a and A respectively.

Special vectors and matrices include the k�1 zero vector 0k and the k�k identity

matrix Ik.

2.2. Models and background

Let fxtgT1 be a k � 1 discrete time series that follows a purely nonstation-

ary VAR(1), where T is the sample size, the innovations are independently and

identically distributed with distribution D, and 
 is positive-de�nite:

xt = xt�1 + "t; "t � i:i:d:D(0k; 
) ; t = 1; 2; : : : ; T: (2.1)
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We examine the �nite-sample bias, variance and MSE of the least squares estimator

of (2.1), for each of the following estimated VAR(p) models:

Model A : xt = b�xt�1 + p�1X
j=1

b�j�xt�j + b"t;
Model B : xt = �+ �xt�1 +

p�1X
j=1

�j�xt�j + "t;

Model C : xt = e�+ e�t+ e�xt�1 + p�1X
j=1

e�j�xt�j + e"t;
where � is the backward-di¤erence operator, and over-parameterization arises

through inclusion of a constant (Model B), a constant and time trend (Model

C), and when there are multiple lags, with p > 1 (Models A, B, and C).2 There are

no elements in the summations if p = 1. Zero initial values are chosen for simplicity

(x�j = 0k; j = 0; 1; : : : ; p� 1), and to avoid the problems of bias nonmonotonicity

that can potentially arise when non-zero initial values are considered.3

PROPOSITION 2.1: The bias matrix B = E(b�)� Ik is scalar, and bias is invari-
ant to 
, for Models A, B, and C, if the error distribution D is symmetric, and 


2We are very grateful to the referees of the Journal of Econometrics, who suggested that we
generalize our original models.
3The correctly-parameterized univariate Model A, with k = p = 1, was examined by Abadir
and Hadri (2000), given a (nearly) nonstationary data generating process, and non-zero initial
values. They show, using numerical integration, that the bias of b� can be increasing in sample
size T , due to the e¤ect of jx0j. This nonmonotonicity disappears under estimation of univariate
Models B and C, at the expense of higher bias. A small simulation study of (1) and Model A
by Lawford (2001), with k � 6, p = 1 and x0 6= 0k, leads to the interesting conjecture that bias
nonmonotonicity also disappears when k > 1.
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is positive-de�nite. Furthermore, the variances of each of the diagonal elements ofb� are identical, and variance is invariant to 
, for Models A, B, and C, if D is

symmetric, and 
 is both positive-de�nite and diagonal.

Proof of the above Proposition is given in Section 2.5. Abadir (1993) uses

some results on moment generating functions to derive a high-order closed form

(integral-free) analytical approximation to the univariate �nite-sample bias of b�
given Model A, k = p = 1, and with j�j = 1. The �nal expression is based upon

parabolic cylinder functions, and is computationally very e¢ cient. Abadir further

shows that bias may be described more simply in terms of exponential functions

in polynomials of T�1, and develops the following heuristic approximation:

bUNIV � �1:7814T�1 exp
�
�2:6138T�1

�
; (2.2)

where �1:7814 is the expected value of the limiting distribution of T (b� � 1), e.g.
see Le Breton and Pham (1989, p. 562).4 Heuristic �ts such as (2.2) have been

used elsewhere in the literature, e.g. Dickey and Fuller (1981, p. 1064), and we

distinguish here between these approximations and the rigorous response surface

approach that is used in this Chapter. Despite the fact that only 5 datapoints

are used in the derivation of (2.2), it is accurate in-sample to 5 decimal places for

bias, and is more accurate than the special function expression (see Abadir, 1993,

4This constant can be calculated conveniently by using the expression 1 �
1
2

R1
0
u (coshu)

�1=2 du = 1 � 2
p
2 3F2 (1=4; 1=4; 1=2; 5=4; 5=4;�1) � �1:7814, where 3F2

is a hypergeometric function:
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Table 1). We found that (2.2) also performs very well out-of-sample, at least to

1 decimal place of �100�bias. Other studies that examine the exact moments of

OLS in univariate autoregressive models, with a variety of disturbances, include

Evans and Savin (1981), Nankervis and Savin (1988), Tsui and Ali (1994), and

Vinod and Shenton (1996); see also Maeshiro (1999) and Tanizaki (2000), and

references therein.

In the multivariate setting, AHT consider Model A, k � 1, p = 1, and prove

that B is exactly a scalar matrix, i.e. diagonal with equal diagonal elements:

B = diag(b; : : : ; b), and that B is invariant to 
, given only a symmetric error

distribution. Furthermore, they develop a simple quantitative approximation to

multivariate �nite-sample bias (especially AHT, p. 166, and Abadir, 1995, p. 264):

BAHT � bUNIVkIk � b AHTIk: (2.3)

It is clear that bias is approximately proportional to the dimension of the VAR,

even when 
 is diagonal. To facilitate discussion of cointegrating relations, AHT

formulate their model as 4xt = 	xt�1 + "t, where 	 � � � Ik. Since the bias ofb	 is equivalent to the bias of b�, our results may be compared directly to those in
AHT, for p = 1, and no deterministics.

Abadir (1995, p. 265) uses the univariate Model A (p = 1) variance de�nition

v = 2T�2sd2, with values for standard deviation �sd�of normalized b� taken from
Evans and Savin (1981, Table III), and performs a similar heuristic process to
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that used in derivation of (2.2) for bias. This gives a variance approximation for

k = p = 1:

vUNIV � 10:1124T�2 exp
�
�5:4462T�1 + 14:519T�2

�
; (2.4)

which is shown to be accurate to at least 7 decimal places in small samples. Since

the bias and variance of each of the diagonal elements of b� are respectively iden-
tical, we may use MSE(b�) = b2 + v directly, to compute the MSE.

In the following Section, we present the Monte Carlo experimental design,

develop very accurate response surface approximations to multivariate bias and

variance, and consider a simple correction for the OLS estimator to have minimum

MSE.

2.3. Structure of Monte Carlo analysis

2.3.1. Response surfaces

Response surfaces are numerical-analytical approximations, which can be very use-

ful when summarizing and interpreting the small sample behaviour of tests and

estimators. They have been applied to a variety of econometric problems by, in-

ter alia, Engle, Hendry and Trumble (1985), Campos (1986), Ericsson (1991),

MacKinnon (1994, 1996), Cheung and Lai (1995), MacKinnon, Haug and Michelis

(1999) and Ericsson and MacKinnon (2002). The response surface technique aims
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to summarize the behaviour of the statistic of interest at all points in the admissi-

ble parameter space, i.e. for whole families of DGP�s; and in a more sophisticated

manner than that o¤ered by simple heuristic approximations. The following out-

line of the methodology draws upon Hendry (1984) and Davidson and MacKinnon

(1993, pp. 755-763).

The quantity of interest � is a function of the sample size T and the vector of

variables � that appear in the DGP. The relationship is modelled as a functional

form 	(T; �;!), where ! is a vector of parameters to be estimated, and 	(�)

is chosen by the investigator. Estimated values for the dependent variable, e� i;
are generated using a set of N Monte Carlo experiments. The ith experiment

is associated with an estimated standard error e� (e� i), where e� i is approximately
distributed as N

�
	(T; �;!) ; e�2 (e� i)� if the number of replications per experiment

(M) is large. Given that each of the experiments uses di¤erent sets of random

numbers, we may then implement generalized least squares (with a fully speci�ed

covariance matrix) and estimate

e� ie� (e� i) = 	 (T; �;!)e� (e� i) + "i; "i � IN (0; 1) ; i = 1; : : : ; N; (2.5)

using ordinary or nonlinear least squares, depending upon the form chosen for

	(T; �;!). Division by e� (e� i) in (2.5) corrects for heteroscedasticity.
There are a number of potential di¢ culties associated with the approach.

Firstly, precise estimates are needed if 	(T; �;!) is to be accurately speci�ed.
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Since a large number (N) of datapoints is also needed �and in practice this seems

to be rather more important than having extremely accurate datapoints (although

M must be reasonably large) �the method tends to be computationally intensive.

Secondly, the functional form of 	(T; �;!) is generally not known a priori. Thus,

estimation of correctly speci�ed response surfaces becomes very di¢ cult indeed as

the number of parameters in 	(T; �;!) increases. Generally, 	(T; �;!) should be

formulated in line with known analytical results (as, e.g. we have here in (2.2) and

(2.3)).

Thirdly, Monte Carlo studies can be subject to speci�city of the results, i.e.

while the estimated response surface may �t well in-sample, there is no guarantee

that accuracy will be achieved over the entire domain of approximation (Hendry,

1984). To avoid this, T and � should be chosen to span an �interesting� part

of the parameter space, (e.g. more detail may be given to sample sizes that are

typical in economic applications), and the estimated response surface subjected to

a battery of standard diagnostic tests. One useful check of the suitability of the

response surface speci�cation is that we would expect a unit error variance, after

the heteroscedasticity transformation. Inevitably, some (and often a great deal

of) experimentation will be required before correctly speci�ed and parsimonious

equations can be selected. The accuracy of the approximation should then be

examined using out-of-sample parameter values, i.e. points that are not used in

estimation of the response surface. This provides a rigorous test of the accuracy

of the method and, if the response surface is correctly speci�ed, will enable the
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statistic of interest to be approximated at various parameter points without the

need to carry out another simulation. It is important to report the parameter values

used in the simulation experiments; and extreme caution should be exercised when

inferring any �ndings to more general situations than those de�ned by the DGP

and the speci�c parameter environment (see especially Maasoumi and Phillips,

1982).

2.3.2. Monte Carlo design and simulation

The data generating process and models were introduced in (2.1) and Models A,

B, and C. We adopt a minimal complete factorial design, which covers all triples

(T; k; p) from:

T 2 f20; 21; : : : ; 30; 35; : : : ; 80; 90; 100; 150; 200g ; k 2 f1; 2; 3; 4g ; p 2 f1; 2; 3; 4g ;

(2.6)

giving N = 400 datapoints. The sample sizes that we have chosen are repre-

sentative of those that are commonly used in practice, and our design includes

small k and p, so that the e¤ects of changes in VAR dimension and model lag

can be explored. From Proposition 1, and with no loss of generality, we set

"t � i:i:d:N(0k; Ik) in the simulations. We calculate the OLS estimate for each

combination of (T; k; p) in the parameter space, from which we directly derive the

bias. Since B is a scalar matrix, we may estimate the scalar b by averaging over the

estimated diagonal elements of B. This results in a further increase in accuracy as
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k increases. We simulate variance v similarly.5 The period of our pseudo-random

number procedure is much larger than the total random number requirement. All

simulations were performed most recently on Pentium 4 machines, with 2.5GHz

processors and 512MB of RAM, running GAUSS and/or Python under Microsoft

Windows XP.

Where possible, our numerical results were checked with partial exact and

approximate results in the literature. These include MacKinnon and Smith (1998,

Figure 1), who plot bias functions under Model B (k = p = 1), and Pere (2000,

Table 3), who reports values that correspond to variances in the same model, in

his study of adjusted pro�le likelihood. Evans and Savin (1981, Table 3) give bias

and standard deviation for 2�1=2T (b�� 1) under Model A (k = p = 1), which agree

closely (3 to 5 decimal places) with our simulation results. Roy and Fuller (2001,

Tables 1 and 6) report bias and MSE for T = 100, under univariate Models B and

C, for p = 1.

2.3.3. Post-simulation analysis

We regressed the Monte Carlo estimates of bias and variance under Models A,

B, and C, on functions of sample size, VAR dimension and lag order, to re�ect

5We experimented with a pseudo-antithetic variate technique, based upon Abadir and Paruolo�s
(2009) univariate �AV4�, and were able to increase the speed of the bias simulations by roughly
50%, for a given precision [Model A, p = 1]. While conventional antithetics are not generally
applicable to the nonstationary setting, the pseudo-antithetic is not valid either for some of the
models considered above, and is therefore not used in this paper.
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the dependence of b and v upon these parameters, and on the degree of over-

parameterization. Following extensive experimentation, and motivated by (2.2),

we �t the following nonlinear bias response surface for each of the models:6

(sbi)
�1 b (Ti; ki; pi) = (s

b
i)
�1 (�1 + �2 ki)T

�1
i exp

�
(�3 + �4 ki + �5 kipi + �6 k

pi
i )T

�1
i

�
+ui:

(2.7)

The dependent variable b (Ti; ki; pi) is the simulated �nite-sample bias for sample

size Ti, VAR dimension ki, and lag order pi, which take values from (2.6), and ui

is an error term. We correct for Monte Carlo sampling heteroscedasticity using

the term sbi , which is the simulated sampling error standard deviation of bias over

replications (see Doornik and Hendry, 2007, Chapter 15, for details). We denote the

�tted values of the estimated response surface by bRS, and estimated coe¢ cients

are reported in Table 1. Convergence of the weighted nonlinear least squares

routine was very fast, and required few iterations. Selection criteria included small

residual variance and good in-sample �t, parsimony, and satisfactory diagnostic

performance. The response surface �ts are extremely good in-sample, and the

Jarque-Bera statistic for normality is small. The signs of all estimated coe¢ cients

apart from the constant �1 remain the same across the di¤erent models. Note

6Some early motivation for numerical re�nement of (2.3), for Model A, with p = 1, came from
consideration of low-order partial derivatives of bAHT . Straightforward algebra gives (for T � 1)
bAHT < 0, @bAHT=@k < 0, @2bAHT=@k2 = 0, (for T � 3) @bAHT=@T > 0, @2bAHT=@k@T > 0, (for
T � 5) @2bAHT=@T 2 < 0. Upon comparing these theoretical partials with approximate numerical
partial derivatives from simulated data, it is found that each holds, except for @2b=@k2 = 0 (simu-
lations suggest that @2b=@k2 > 0, for T not too large). This �nding suggested that improvements
were possible over (2.3), and especially that k entered the formula in a more complicated manner
than in (2.3).
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that the asymptotic bias Tib (as Ti ! 1) is a linear function of ki alone, which

agrees with numerical observations, and that �1 + �2 ki can be interpreted as the

asymptotic component of bias, with the exponential representing the (analytically

intractable) �nite-sample �adjustment�, which depends on ki and pi (and Ti).

We recalculate Table I in AHT as Table 2 in this Chapter, with increased

accuracy, with additional results reported for T = 400; 800 and k = 6; 7; 8, and

correcting for a typo in AHT Table I: (T; k) = (25; 5). It is convenient to interpret

the scaled bias values as percentages of the true parameter value, e.g. in Model

A, given (T; k) = (25; 8), and p = 1, the absolute bias of each of the estimated

parameters on the diagonal of b� is 46:7% of the true value (unity). Clearly, absolute
bias is strictly increasing in k and decreasing in T . As T increases, bias goes to

zero, as is well-known from asymptotic theory. We see that bAHT gives a good

approximation to bias for k small, and especially for k = 1, where (2.3) reduces to

the excellent heuristic approximation (2.2). However, as k increases, bRS provides

much closer approximations to bias, even for T quite large. Out-of-sample points

reported in Table 2 for bRS are combinations of k = 5; 6; 7; 8, and T = 400; 800.

While bAHT is only applicable for correctly-parameterized Model A, our response

surfaces can be used when p > 1, and also when deterministics are included. The

out-of-sample �t appears to be excellent for all T , and up to about k = p = 6

(as k and p jointly become large, with small T , the term kp will dominate the

bias approximation, and out-of-sample predictions should be used with particular

caution). Although the response surfaces are developed with small sample rather
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than asymptotic considerations in mind, it is interesting to approximate univariate

asymptotic bias by setting k = p = 1 and letting Ti ! 1 in TibRS, from (2.7),

which gives TibRS = b�1 + b�2 of approximately �1:7, �5:4 and �10:3 in Models A,
B and C respectively.

Kiviet and Phillips (2005, equation (14), and Figure 1) consider univariate

Model B, where the data generating process can have a non-zero drift, and write

autoregressive bias in terms of �g-functions � g0 (T ) and g1 (T ), which they cal-

culate using simulations. The function g0 (T ) represents least squares bias when

there is a zero drift in the data generating process, while g1 (T ) appears as the bias

increment due to non-zero drift. Our equation (2.7) simpli�es (when k = p = 1)

to g0 (T ) � �5:3654T�1 exp (�2:6513T�1), which provides a convenient means of

calculating g0 (T ) without further simulations.

Using (2.4) to motivate the choice of functional form, we �t the variance re-

sponse surface:

(svi )
�1v (Ti; ki; pi) = (svi )

�1 (1 + 2 ki)T
�2
i exp[(3 + 4 ki + 5 pi + 6 kipi)T

�1
i

+(7 kipi + 8 k
pi
i )T

�2
i ] + ui; (2.8)

where v (Ti; ki; pi) is the simulated �nite-sample variance, and svi is the simulated

sampling error standard deviation of the variance over replications. In estimating

(2.8), we did not use datapoints for which Ti = 20; : : : ; 24 (and so N = 320),

since variance becomes very large for such small sample sizes, which makes it
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very di¢ cult to specify good response surfaces across the full parameter space.

Estimated response surfaces vRS are given in Table 3, and are seen to �t very well.

The signs of each of the estimated coe¢ cients, except for 1, remains the same

across the models, the Jarque-Bera statistic is relatively low, and vRS provides a

very good approximation in-sample. The out-of-sample variance approximation

should be used with caution as k and p jointly exceed about 5 or 6, with small T ,

again due to the e¤ect of the term kp. We note that no variance approximations

were previously available for over-parameterized models, excess lags, or even for

k > 1. Similarly to the bias response surfaces, the asymptotic variance T 2i v (as

Ti ! 1) is a linear function of ki alone, and 1 + 2 ki can be interpreted as the

asymptotic component of variance, with the exponential term again representing

the �nite-sample �adjustment�, which depends upon ki and pi (and Ti). The

dependencies of bias and variance on T , k, and p are depicted in Figures 1 and 2,

which plot scaled response surfaces �100 � bRS and 10; 000 � vRS, against T , for

Models A, B, and C, with k = 1; 2 and p = 1; 2.

Bias and variance are not the only criteria to be used in comparison of time

series estimates, and the mean squared error, MSE(b�) = b2+v; is often of interest.

For univariate Model A (p = 1), Abadir (1995) de�nes � as a correction factor

such that MSE(�b�) is minimized, and bm and vm as the bias and variance of the
corrected OLS estimator �b�, with:

� =
1 + b

v + (1 + b)2
; bm =

�v
v + (1 + b)2

; vm = �2v; (2.9)
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when � = 1. Equations (2.7) and (2.8) may be now combined to give an ap-

proximation to MSE, and by substitution of response surface values for bias and

variance into (2.9), we are able to calculate � for various T; k, and p. As an illus-

tration, correction factors are reported in Table 4, for p = 1 and Model A, which

displays qualitatively similar results to those in Abadir (1995, Tables 2 and 3).

It is clear that OLS (� = 1) does not achieve minimum MSE. It is also shown

that the corrected OLS is almost unbiased, unlike OLS. From Table 4, � increases

monotonically with k and decreases monotonically with T (asymptotically, the

OLS achieves minimum MSE). The correction can be particularly large for small

T , e.g. (T; k) = (25; 5) implies a correction of 32%. The corrected estimator is

much less biased than the OLS, and bm tends to zero more rapidly than b. How-

ever, this reduction in bias comes at the expense of a small increase in the variance

of the corrected estimator, vm. It is seen that b2 forms a much larger proportion of

MSE than variance for k � 3, although this does not hold following the minimum

MSE correction; and that MSE e¢ ciency is generally decreasing in T and k.

2.4. Concluding comments

We have performed an extensive set of Monte Carlo experiments on the bias

and variance of the OLS of the autoregressive parameters, given a data generat-

ing process that is a purely nonstationary VAR(1), where the estimated model is

a possibly over-parameterized VAR(p), for small sample sizes, and various VAR

dimensions and lag lengths. Although the univariate framework has been the
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subject of much research, a comprehensive multivariate simulation study has not

previously been performed. We estimate parsimonious and computationally con-

venient response surfaces for bias and variance, that are much more accurate and

more general than existing approximations. In this way, we improve numerically

upon existing �nite-sample analytical bias results, and extend them to p > 1 and

deterministics, and also extend existing �nite-sample variance results to k > 1,

p > 1, and to deterministics. Finally, we investigate the correction factors re-

quired for the OLS to achieve minimum MSE and show that this correction can

signi�cantly reduce bias, at the expense of a small increase in estimator variance.

Our results may provide guidelines for applied researchers as to the behaviour of

VAR models, given that relatively short samples and nonstationary data are often

relevant in empirical work.

Our work complements important asymptotic treatments by Phillips (1987a)

in the univariate framework, and Park and Phillips (1988, 1989), Phillips (1987b),

and Tsay and Tiao (1990) in the multivariate setting. Our results may also be

useful when studying the derivation of exact formulae (for instance, in conjunction

with work by Abadir and Larsson, 1996, 2001, who derive the exact �nite-sample

moment generating function of the quadratic forms that create the basis for the suf-

�cient statistic in a discrete Gaussian vector autoregression). Exact analytical bias

expressions may involve multiple in�nite series of matrix-argument hypergeometric

functions (generalizing, e.g. Abadir, 1993). When such series arise in other areas

of econometrics, they are generally complicated and may be di¢ cult to implement
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for numerical evaluation. We may, therefore, need to rely upon approximations in

practice, even when the exact formulae are available.

2.5. Technical appendix and proofs

Proof of Proposition 2.1. Let "t be i.i.d. N (0k;
)

xt = Rxt�1 + "t =
tX

j=1

Rt�j"j (2.10)

with R = Ik, and setting x0 = 0.

We are going to deal with the most general case, which refers to the estimation

of:

xt = e�+ e�t+ e�xt�1 + p�1X
j=1

e�j�xt�j + "t:

We need to show that the bias of matrix � is scalar. A su¢ cient condition for this,

using the following model

xt = �+ �t+

pX
i=1

Aixt�j + "t; (2.11)

is that the bias of any matrix Ai (for i = 1; :::; p) is a scalar matrix since

� =

pX
i=1

Ai: (2.12)
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Let


 = LL0;

L = I(p+2) 
 L

Wt =

0BBBBBBBBBBBBBBB@

xt

xt�1

...

xt�p+1

1k

(t+ 1) 1k

1CCCCCCCCCCCCCCCA
; Ut =

0B@ "t

0(p+1)k�1

1CA ;

where 1k is a k � 1 vector with each element being 1: and Then (2.11) can be

represented as:

Wt = AWt�1 + Ut; (2.13)
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where

A(p+2)k�(p+2)k =

0BBBBBBBBBBBBBBBBBB@

A1 A2 � � � Ap�1 Ap C D

Ik 0k�k 0k�k 0k�k 0k�k 0k�k

0k�k Ik 0k�k 0k�k
...

...

...
...

. . .
...

...

0k�k 0k�k � � � Ik 0k�k 0k�k 0k�k

0k�k 0k�k 0k�k 0k�k Ik 0k�k

0k�k 0k�k 0k�k 0k�k Ik Ik

1CCCCCCCCCCCCCCCCCCA

;

C =

0BBBBBBBB@

�1 0 � � � 0

0 �2 � � � 0

...
...

. . .
...

0 0 � � � �k

1CCCCCCCCA
;D =

0BBBBBBBB@

�1 0 � � � 0

0 �2 � � � 0

...
...

. . .
...

0 0 � � � �k

1CCCCCCCCA
and

Ut � N

0B@0(p+2)k�k;
0B@ 
 0k�(p+1)k

0(p+1)k�k 0(p+1)k�(p+1)k

1CA
1CA

Now de�ne

Zt = L�1Wt; (2.14)

Ut = L�1Ut: (2.15)
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At this point it is important to list some results:

LL0 =
�
I(p+2) 
 L

� �
I(p+2) 
 L

�0
= I(p+2) 
 LL0 = I(p+2) 
 


L�1 =
�
I(p+2) 
 L

��1
= I(p+2) 
 L�1

L�1Wt =
�
I(p+2) 
 L�1

�

0BBBBBBBBBBBBBBB@

xt

xt�1

...

xt�p+1

1k

(t+ 1) 1k

1CCCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBB@

L�1xt

L�1xt�1

...

L�1xt�p+1

L�11k

L�1 (t+ 1) 1k

1CCCCCCCCCCCCCCCA

Ut = L�1Ut =
�
I(p+2) 
 L�1

�0B@ "t

0(p+1)k�1

1CA =

0B@ L�1"t

0(p+1)k�1

1CA :

Using the Cholesky decomposition

L�1E
� bA�A�L = E

 
nX
t=1

UtZ 0t�1

! 
nX
t=1

Zt�1Z 0t�1

!�1
: (2.16)
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The value of A under the DGP is

A =

0BBBBBBBBBBBBBBBBBB@

Ik 0k�k � � � 0k�k 0k�k 0k�k 0k�k

Ik 0k�k � � � 0k�k 0k�k 0k�k 0k�k

0k�k Ik � � � 0k�k 0k�k 0k�k 0k�k

...
...

. . .
...

...
...

...

0k�k 0k�k � � � Ik 0k�k 0k�k 0k�k

0k�k 0k�k � � � 0k�k 0k�k Ik 0k�k

0k�k 0k�k � � � 0k�k 0k�k Ik Ik

1CCCCCCCCCCCCCCCCCCA

:

Pre-multiplying both parts of (2.13) by L�1 :

L�1Wt = L�1AWt�1 + L�1Ut: (2.17)

A crucial property for the proof is the fact that matrices L�1 and A commute:

L�1A = AL�1: (2.18)

Using (2.18) in (2.17) and de�nitions (2.14) and (2.15) we get

Zt = L�1AWt�1 + Ut = AL�1Wt�1 + Ut

= AZ t�1 + Ut; (2.19)

with
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Ut � N (0;	) ;

	 =

0B@ Ik 0k�(p+1)k

0(p+1)k�k 0(p+1)k�(p+1)k

1CA :

De�ne matrix Gq such that

G1 =

0B@ �1 01�(k�1)

0(k�1)�1 Ik�1

1CA
Gp = diag (Ip�1;�1; Ik�p) p � 2:

Note that G�1q = Gq for all q 2 f1; ::; kg :

De�ne

�q = I(p+2) 
Gq;

and let

eUt = �qUt; (2.20)

eZt = �qZt: (2.21)

Again we use the commutation property that holds for matrices A and �q :

�qA = A�q (2.22)
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Left multiplying both sides of (2.19) by �q; and using de�nitions (2.20) and

(2.21) and commutation property in (2.22) we obtain

�qZt = �qAZ t�1 + �qUt ) eZt = A�qZt�1 + eUt
) eZt = A eZt�1 + eUt (2.23)

with eUt � N (0;	) :

Now let

B = E

 
nX
t=1

UtW
0
t�1

! 
nX
t=1

Wt�1W
0
t�1

!�1

B = E

 
nX
t=1

UtZ 0t�1

! 
nX
t=1

Zt�1Z 0t�1

!�1
(2.24)

eB = E

 
nX
t=1

eUt eZ 0t�1
! 

nX
t=1

eZt�1 eZ 0t�1
!�1

and using the de�nition of eUt and eZt we obtain
L�1E

� bA�A�L =B
B = L�1BL

~B = �qB�q: (2.25)
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In what follows, we prove that

~B = B for all q 2 f1; ::; kg : (2.26)

From (2.19) we have

Zt =
tX

j=1

At�jUj ) Zt�1 =
t�1X
j=1

At�1�jUj; (2.27)

and from (2.23)

eZt�1 = t�1X
j=1

At�1�j eUj: (2.28)

Using (2.27) and (2.28) and the independence of Ut we get that

E

24UnZn�1 nX
t=1

Zt�1Z 0t�1

!�135 = 0:
Combining the above we conclude that

B = h (Un�1; :::;U1) (2.29)

~B = h
�eUn�1; :::; eU1� : (2.30)

for some function h. Denoting by f (Un�1; :::;U1) the joint density of (Un�1; :::;U1),

independence gives

f (Un�1; :::;U1) = f (Un�1) :::f (U1) : (2.31)
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Noting that for any diagonal matrix M we have the property �qM�q =M;

eUt = �qUt � N
�
0;�q	�

0
q

�
= N (0;	)

showing that f
�eUt� = f (Ut) for all t. Therefore, (2.31) and independence of the

sequence
�eUt� give

f (Un�1; :::;U1) = f
�eUn�1� :::f �eU1� = f

�eUn�1; :::; eU1� :
Therefore,

�eUn�1; :::; eU1� has the same distribution as (Un�1; :::;U1), so, for any
function h,

Eh
�eUn�1; :::; eU1� = Eh (Un�1; :::;U1) :

Now (2.29) and (2.30) show (2.26).

Using (2.25) and (2.26) we can conclude that Bi ,matrices (de�ned below) are

diagonal. The argument goes as follows: let

B = L�1E
� bA�A�L

=

0B@ L�1E
� bA1 � A1

�
L � � � L�1E

� bAp � Ap

�
L L�1E

�bC�C�L L�1E
� bD�D�L

0k(p+1)�k � � � 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA

�

0B@ B1 � � � Bp Bp+1 Bp+2

0k(p+1)�k � � � 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA :

Note that A1 = Ik; A2 = A3 = ::: = Ap = C = D =0k�k
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De�ne also

B1 =

0BBBBBBBB@

�11 �12 � � � �1k

�21 �22 � � � �2k
...

...
. . .

...

�k1 �k2 � � � �kk

1CCCCCCCCA
(2.32)

Then (2.25) yields

~B = �1B�1

=

0B@ G1B1G1 G1B2G1 � � � G1BpG1 G1Bp+1G1 G1Bp+2G1

0k(p+1)�k 0k(p+1)�k � � � 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA
and we have that

eB1 := G1B1G1 =

0BBBBBBBB@

�11 ��12 � � � ��1k

��21 �22 � � � �2k
...

...
. . .

...

��k1 �k2 � � � �kk

1CCCCCCCCA
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and comparing this to (2.26) and (2.32) we conclude all elements in the �rst row

and �rst column of E
� bA1 � A1

�
apart from �11 must be 0:

B1 =

0BBBBBBBB@

�11 0 � � � 0

0 �22 � � � �2k
...

...
. . .

...

0 �k2 � � � �kk

1CCCCCCCCA
: (2.33)

Following the same rationale we can understand that matrices B2;B3; :::;Bp all

have elements in the �rst row and �rst column of being 0; apart from the element

at position 11.

Using (2.25) on (2.33) we obtain

~B = �2B�2

=

0B@ G2B1G2 G2B2G2 � � � G2BpG2 G2Bp+1G2 G2Bp+2G2

0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA ;

=

0BBBBBBBBBBB@

B11 0 0 ::: 0

0 B22 �B23 � � � �B2k

0 �B32 B33 � � � B3k

...
...

...
. . .

...

0 �Bk2 Bk3 � � � Bkk

1CCCCCCCCCCCA
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and

B1 =

0BBBBBBBBBBB@

�11 0 0 ::: 0

0 �22 ��23 ::: ��2k

0 ��32 �33 ::: �3k
...

...
...

. . .
...

0 ��k2 �k3 ::: �kk

1CCCCCCCCCCCA
and comparing this to (2.26) and (2.33) we conclude all elements in the second

row and second column of B apart from B22 must be 0 :

B1 =

0BBBBBBBBBBB@

�11 0 0 ::: 0

0 �22 0 ::: 0

0 0 �33 ::: �3k
...

...
...

. . .
...

0 0 �k3 ::: �kk

1CCCCCCCCCCCA
Again the same argument applies to matrices B2;B3; :::;Bp:

Continuing like this for all q 2 f1; ::; kg we obtain that

B1 = diag (�11; :::; �kk) : (2.34)

The same logic applies to B2;B3; :::;Bp:
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To show that each Bi (for i = 1; :::; p) is also scalar, we employ a di¤erent linear

transformation: Let

� =

0B@ 0 1

1 0

1CA

�1 =

0B@ � 02�(k�2)

0(k�2)�2 Ik�2

1CA
�r = diag (Ir�1;�; Ik�r�1) r � 2;

and

�r = I(p+2) 
 �r

For each r 2 f1; ::; kg, let Z t = �rZt and U t = �rUt, and U t = �rUt. As before,

pre-multiplying both sides of (2.19) by �r gives

Z t = Z t�1 + U t:

Letting

�B = E

 
nX
t=1

U tZ
0
t�1

! 
nX
t=1

Z t�1Z
0
t�1

!�1
(2.35)

and noting that �r = �0r = �
�1
r , and �r = �

0
r = �

�1
r we obtain that

�B = �rB�r: (2.36)
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It is useful here to see the structure of �B matrix

�B = �rB�r

=

0B@ �rB1�r �rB2�r � � � �rBp�r �rBp+1�r �rBp+2�r

0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA

�

0B@ B1 B2 � � � Bp Bp+1 Bp+2

0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA
Since U t = �rUt � N (0;�r	�

0
r) = N (0;	), independence of the (Ut) se-

quence yields

f
�
Un�1; :::;U1

�
= f

�
Un�1

�
:::f
�
U1
�
= f (Un�1) :::f (U1)

= f (Un�1; :::;U1)

so
�
Un�1; :::;U1

�
and (Un�1; :::;U1) have the same distribution and hence

Eh
�
Un�1; :::;U1

�
= Eh (Un�1; :::;U1)

for any function h. The above argument establishes that

�B = B for all r 2 f1; ::; kg : (2.37)
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Now the fact that each Bi is a scalar matrix follows by (2.36), (2.37) and the

fact that �r is a permutation matrix: (2.36) and (2.34) give

�B1 = �1B1�1 = diag (�22; �11; �33; :::; �kk) :

Hence, (2.37) implies that �11 = �22. Applying (2.36) with r = 2 implies that

�22 = �33. The same rational applies to the diagonal elements of �B2; �B3; :::; �Bp:

Continuing for all r 2 f1; ::; kg shows that each Bi is a scalar matrix.

Substituting back to (2.16) we obtain, for some constants c1; c2;:::; cp+2,

L�1E
� bA�A�L

= B

=

0B@ B1 B2 � � � Bp Bp+1 Bp+2

0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA

=

0B@ c1Ik c2Ik � � � cpIk cp+1Ik cp+2Ik

0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k 0k(p+1)�k

1CA :

Finally using (2.12), we can show that E
�b�� �� = (c1 + :::+ cp) Ik
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2.6. Tables and �gures

Table 2.1. Estimated bias response surfaces bRS for Models A, B, and
C. Response surfaces (6) were estimated using weighted nonlinear
least squares. White�s heteroscedasticity-consistent standard errors
are given in parentheses, R

2
is the degrees-of-freedom adjusted coef-

�cient of determination, JB is the Jarque-Bera test statistic for nor-
mality, asymptotically distributed as �2 (2), ? denotes signi�cance
at the 5% level, and b�u is the residual standard error. Coe¢ cients
and standard errors are given to 3 d.p. (to 5 d.p. for b�6).

Model A Model B Model C

b�1 0:320 �3:475 �8:522
(0:010) (0:013) (0:053)b�2 �2:044 �1:890 �1:744
(0:004) (0:005) (0:018)b�3 �1:124 �1:788 �1:410
(0:136) (0:094) (0:228)b�4 �1:861 �1:907 �2:632
(0:039) (0:030) (0:081)b�5 0:999 1:038 1:404
(0:010) (0:009) (0:020)b�6 0:00801 0:00621 0:00240
(0:00071) (0:00050) (0:00082)

R
2

0:9995 0:9996 0:9976b�u 6:72 6:16 16:99
JB 1:35 8:95? 8:92?
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Table 2.2. Simulated scaled bias in Models A, B, and C, for p = 1,
and AHT and Model A approximations. All reported bias values
have been multiplied by �100, b is the simulated Model A bias,
bAHT is the AHT approximation (3) to Model A bias, bRS is the re-
sponse surface approximation (6) to Model A bias, b is the simulated
Model B bias, and eb is the simulated Model C bias. In-sample points
correspond to k = 1; 2; 3; 4 and T = 25; 50; 100; 200.

VAR dimension (k)

T 1 2 3 4 5 6 7 8
b 6:4 13:5 20:0 26:1 31:8 37:1 42:1 46:7

bAHT (6:4) (12:8) (19:3) (25:7) (32:1) (38:5) (44:9) (51:3)
25 bRS [6:4] [13:5] [20:1] [26:2] [31:9] [37:2] [42:1] [46:7]

b 19:2 25:0 30:6 35:9 40:9 45:7 50:2 54:5eb 35:3 40:0 44:5 49:0 53:2 57:3 61:2 64:9
b 3:4 7:2 10:8 14:3 17:6 20:9 24:0 27:0

bAHT (3:4) (6:8) (10:1) (13:5) (16:9) (20:3) (23:7) (27:1)
50 bRS [3:3] [7:1] [10:8] [14:3] [17:8] [21:1] [24:3] [27:3]

b 10:1 13:4 16:7 19:9 23:0 26:0 28:9 31:8eb 19:0 21:8 24:7 27:5 30:3 33:0 35:7 38:3
b 1:7 3:7 5:6 7:5 9:3 11:1 12:9 14:6

bAHT (1:7) (3:5) (5:2) (6:9) (8:7) (10:4) (12:1) (13:9)
100 bRS [1:7] [3:7] [5:6] [7:5] [9:4] [11:2] [13:0] [14:8]

b 5:2 7:0 8:7 10:5 12:2 14:0 15:7 17:3eb 9:9 11:4 13:0 14:6 16:3 17:9 19:5 21:1
b 0:9 1:9 2:9 3:8 4:8 5:8 6:7 7:6

bAHT (0:9) (1:8) (2:6) (3:5) (4:4) (5:3) (6:2) (7:0)
200 bRS [0:9] [1:9] [2:9] [3:8] [4:8] [5:8] [6:8] [7:7]

b 2:6 3:6 4:5 5:4 6:3 7:3 8:2 9:1eb 5:0 5:8 6:7 7:6 8:4 9:3 10:2 11:1
b 0:4 0:9 1:4 1:9 2:4 2:9 3:4 3:9

bAHT (0:4) (0:9) (1:3) (1:8) (2:2) (2:7) (3:1) (3:5)
400 bRS [0:4] [0:9] [1:4] [1:9] [2:4] [2:9] [3:4] [3:9]

b 1:3 1:8 2:3 2:7 3:2 3:7 4:2 4:6eb 2:5 3:0 3:4 3:9 4:3 4:8 5:2 5:7
b 0:2 0:5 0:7 1:0 1:2 1:5 1:7 2:0

bAHT (0:2) (0:4) (0:7) (0:9) (1:1) (1:3) (1:6) (1:8)
800 bRS [0:2] [0:5] [0:7] [1:0] [1:2] [1:5] [1:7] [2:0]

b 0:7 0:9 1:1 1:4 1:6 1:9 2:1 2:4eb 1:3 1:5 1:7 1:9 2:2 2:4 2:6 2:9
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Table 2.3. Estimated variance response surfaces vRS for Models A,
B, and C. Response surfaces (7) were estimated using weighted non-
linear least squares. White�s heteroscedasticity-consistent standard
errors are given in parentheses, R

2
is the degrees-of-freedom adjusted

coe¢ cient of determination, JB is the Jarque-Bera test statistic for
normality, asymptotically distributed as �2 (2), ?? denotes signi�-
cance at the 1% level, and b�u is the residual standard error. Coe¢ -
cients and standard errors are given to 3 d.p.

Model A Model B Model C

b1 �0:345 10:430 26:230
(0:055) (0:082) (0:150)b2 10:400 9:895 10:104
(0:040) (0:049) (0:087)b3 �4:469 �9:680 �17:051
(0:203) (0:192) (0:250)b4 �5:302 �4:979 �4:801
(0:077) (0:083) (0:114)b5 1:245 2:059 4:751
(0:093) (0:076) (0:102)b6 2:925 2:957 2:970
(0:041) (0:035) (0:047)b7 13:233 11:646 14:668
(0:884) (0:767) (0:966)b8 0:993 0:889 0:923
(0:041) (0:033) (0:045)

R
2

0:9991 0:9990 0:9982b�u 2:58 2:51 3:40
JB 91:03?? 46:38?? 30:22??
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Table 2.4. Minimum MSE correction in Model A, for p = 1. � is a
correction factor, such that �b� attains minimum MSE, br is the bias
ratio�corrected bias/OLS bias, vr is the variance ratio�corrected
variance/OLS variance

�
vr � �2

�
, bc and �x=y� indicate that b2

forms x% of MSE under OLS, and corrected b2 forms y% of min-
imized MSE, me is the MSE e¢ ciency�MSE after correction/MSE
under OLS (�100). All values are computed using the appropri-
ate response surface approximations (6) and (7). In-sample points
correspond to k = 1; 2; 3; 4 and T = 25; 50; 100; 200.

VAR dimension (k)

T 1 2 3 4 5 6 7 8
� 1:05 1:12 1:19 1:26 1:32 1:39 1:46 1:52
br 0:23 0:24 0:26 0:28 0:31 0:34 0:37 0:40

25 vr 1:11 1:25 1:41 1:58 1:75 1:94 2:13 2:32
bc 24=1 42=3 54=5 61=7 67=10 71=13 74=15 77=19
me 86 75 69 66 65 64 65 66
� 1:03 1:07 1:11 1:15 1:19 1:23 1:28 1:32
br 0:12 0:11 0:12 0:12 0:13 0:13 0:14 0:15

50 vr 1:06 1:14 1:23 1:32 1:41 1:52 1:63 1:74
bc 23=0:4 42=1 53=1 61=2 67=2 71=3 74=3 77=4
me 82 67 58 52 48 45 43 42
� 1:02 1:04 1:06 1:08 1:10 1:12 1:14 1:16
br 0:06 0:06 0:06 0:06 0:06 0:06 0:06 0:06

100 vr 1:03 1:07 1:12 1:16 1:20 1:25 1:30 1:35
bc 23=0:1 41=0:2 53=0:3 61=0:4 66=0:5 71=0:7 74=0:8 77=0:9
me 80 63 53 46 41 37 34 32
� 1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08
br 0:03 0:03 0:03 0:03 0:03 0:03 0:03 0:03

200 vr 1:02 1:04 1:06 1:08 1:10 1:12 1:15 1:17
bc 23=0:0 41=0:1 53=0:1 60=0:1 66=0:1 70=0:2 73=0:2 76=0:2
me 78 61 50 43 38 34 30 28
� 1:00 1:01 1:01 1:02 1:02 1:03 1:04 1:04
br 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01

400 vr 1:01 1:02 1:03 1:04 1:05 1:07 1:07 1:08
bc 23=0:0 41=0:0 52=0:0 60=0:0 66=0:0 70=0:0 73=0:0 76=0:1
me 78 60 49 41 36 32 29 26
� 1:00 1:00 1:01 1:01 1:01 1:01 1:02 1:02
br 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01

800 vr 1:00 1:01 1:01 1:02 1:02 1:03 1:04 1:04
bc 23=0:0 41=0:0 52=0:0 60=0:0 66=0:0 70=0:0 73=0:0 76=0:0
me 77 60 48 41 35 31 28 25
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CHAPTER 3

Asymptotically Similar Unit Root Tests in the Presence of

Autocorrelated Errors

3.1. Introduction

The unit root hypothesis has attracted a great deal of interest in econometrics.

Nelson and Plosser (1982) provided empirical evidence that many macroeconomic

series have a unit root. From the statistical point of view it is important to

know whether or not series are stationary in order to conduct valid inference.

The outcome of nonstationarity introduces the possibility of di¤erencing the series

(Plosser and Schwert, 1978) cointegration (Johansen, 1988) or error-correction

(Engle and Granger, 1987) models. Banerjee et al. (1993) and Maddala and Kim

(1998) give a review of the literature for unit root tests. Fuller (1976) and Dickey

and Fuller (1979, 1981) proposed a unit root test (DF) which is widely used.

As in many testing problems, the fact that the distribution of unit root test

statistics under the null hypothesis depends on nuisance parameters can result in

serious size distortions for the associated unit root tests. Said and Dickey (1984)

showed that the augmented DF (ADF) test is suitable for processes with autore-

gressive moving average (ARMA) errors. Phillips and Perron (1988) proposed a

nonparametric testing procedure (PP) which allowed for a wider class of stationary

50
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time series in the error term. Schwert (1989) used Monte Carlo simulations to show

the existence of size distortions in the ADF and PP tests. His results suggest that

PP has higher power than ADF, but also much higher size distortions in the pres-

ence of negative moving average (MA) parameter in the error term. DeJong et al.

(1992) showed that PP tests perform poorly against trend stationary alternatives

and suggested the use of the Said-Dickey testing procedure.

Ng and Perron (2001) derived a class of unit root tests that take into account

possible autocorrelation in the error term. The local asymptotic power function

of these tests is close to the Gaussian local power envelope. They also derive the

modi�ed Akaike information criterion (MAIC) for the choice of the truncation lag.

Their simulation study suggest that, for the sample sizes considered, size distortion

is very low even in the presence of negative autocorrelation in the innovation

sequence. These statistics are described in detail in Section 3.6. Seo (2006) pointed

out that there a problem exists with the statistics derived by Ng and Perron (2001)

regarding their global power: speci�cally, in �nite samples and for alternatives far

from the null, the possibility of power reversal occurs. Power reversal in this

context means that as the true value of the parameter of interest moves farther

away from the null hypothesis, power decreases. This problem is caused by the fact

that the null of non-stationarity is imposed in the procedure in the construction

of the modi�ed information criteria. This type of information criteria can provide

very good results with respect to control over size, but can also have serious �aws

when the parameter of interest moves far from the null. Seo (2006) suggested
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the use of a two-step procedure in which he �rst �ts an autoregression to get

the estimated residuals and at the second step uses them as a proxy for the MA

component. Perron and Qu (2007) address the issue of power reversal and improve

the performance of the statistics by introducing a two step procedure, using OLS

estimation for the choice of the order of the lagged di¤erenced terms and GLS

estimation for the calculation of the statistics. As can be seen from their results

(Figures 1-4), the problem becomes less severe, but is still evident for the case of

no autocorrelation in the error term.

This Chapter addresses the issue of unit root testing in the presence of corre-

lated innovation errors that take the form of a �nite order moving average process.

Following Hillier (1987), our approach is based on obtaining a characterization

of the class of similar tests. These are tests whose size does not depend on nui-

sance parameters, provided that su¢ cient statistics for the nuisance parameters

exist, under the null hypothesis. Given the fact that a su¢ cient statistic for the

MA parameters is not available, we consistently estimate the MA parameters by

maximum likelihood, and then use the above estimates to characterize the class

of (asymptotically) similar tests. After the characterization of the class of similar

regions we proceed to the selection of some tests within this class by the use of

appropriate optimality criteria. The advantage of such an approach is that we can

focus our attention on a set of tests whose exact size is independent of the nuisance

parameters involved. In this way we can address the serious issue of size stability

at the �rst stage of selecting a test.
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In order to choose statistics from the class of asymptotic similar tests we make

use of the optimality criteria proposed by Forchini and Marsh (2000). They derive

unit root tests according to the Bounded Norm Minimizing (BNM) and Bounded

Estimated Point Optimal (BEPO) criteria under the assumption of i.i.d. innova-

tion errors. We apply the same optimality criteria to derive tests statistics in a

more general framework that allows the presence of possibly correlated innovation

errors that may take the form of a �nite order MA process. The objective is to

derive unit root tests with fairly stable size over MA processes with varying order

and values of associated parameters, and with high global power in comparison to

other unit root tests existing in the literature.

The Chapter is organized as follows. In Section 3.2 we refer to the theory

related to the construction of similar tests. Section 3.3 describes the BNM and

BEPO optimality criteria for the choice test statistics proposed by Forchini and

Marsh (2000). Section 3.4 describes the construction of similar regions in the case

of correlated errors and in Section 3.5 we use the optimality criteria to derive the

test statistics followed by the description of the method of estimation we are using.

The limiting distributions of the resulting test statistics are derived in the presence

of deterministics consisting of an intercept term only and an intercept and a linear

trend. In Section 3.6 the �nite-sample performance of the statistics is assessed

in the context of a simulation study. In Section 3.7 we provide some concluding

remarks. All proofs are included in the technical Appendix of Section 3.8. Tables

and �gures are presented in the last Section of the Chapter.
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3.2. Methodology on the characterization of similar regions

The methodology we follow for the characterization of similar regions is de-

scribed by Hillier (1987). Let z be a vector of random variables with density

f(z; �; �) depending on two vectors of parameters �; and �: If we want to test the

null hypothesis

H0 : � = �0

then � is the vector of parameters of interest and � is the vector of nuisance

parameters. In general the size of any critical region ! in this context will be

dependent on �; i.e., Z
!

f(z; �; �0) = �(�):

Critical regions related to this problem which are independent of nuisance para-

meters Z
!

f(z; �; �0) = �

are called similar critical regions. If there is a su¢ cient statistic t for � under H0

the density function is given by

f(z; �; �0) = pdf(t; �; �0)pdf(zjt; �0)

where pdf(t; �; �0) is the density of the su¢ cient statistic under H0 and pdf(zjt; �0)

is the conditional density of z given t; which is independent of the nuisance para-

meter �: So, provided we have su¢ cient statistics for �; the conditional distribution
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of z given these statistics will be free of nuisance parameters and will result to a

similar critical region.

Hillier (1987) summarizes the procedure for constructing similar regions in the

following theorem.

Let t be a boundedly complete su¢ cient statistic for the nuisance parameter �

under H0: If for almost all t there is a one-to-one transformation z 7�! (t(z); �(z))

for which under H0 � is independent of t; then the statistic � characterizes the

class of similar regions for testing H0 in the sense that a region ! is similar of

size � if and only if ! has size � in the distribution of �:

We are going to use this theorem for the characterization of similar critical

tests in the case where the innovation sequence takes the form of an MA process.

3.3. Optimality criteria

We now address the question of how to select a particular test from within the

class of similar tests. Ideally, we would choose a Uniformly Most Powerful (UMP)

test. A UMP test is a test which has the highest available power for every �; and

�: In unit root tests the power of a test depends on the nuisance parameters � and

the value of the parameter of interest � under H1, so it is not possible to achieve

the UMP criterion. Consequently, we have to use weaker optimality criteria for

the selection of a test. Cox and Hinkley (1974) suggest some alternative optimality

criteria, such as the selection of a typical alternative for � (point optimal (PO))

or the construction of a locally most powerful (LMP) test, which involves the
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maximization of the power of the test in the neighborhood of the null hypothesis.

Selecting a typical value of � could be seen as arbitrary unless there is speci�c

prior information for the parameter. The problem with the LMP tests is that

their power can often be low, especially for alternatives that lie far from the null

(Zaman, 1996, pp. 133-136).

Forchini and Marsh (2000) suggest the use of two alternative optimality criteria.

Their statistical framework can be summarized as follows. Consider a N�1 vector

of observables and a vector of unknown parameters (�; �2) 2 R� (0;1): The null

hypothesis H0 : y � N(0; �2
(�0)) is tested against H1 : y � N(0; �2
(�)) using

the critical region resulting from the rule reject H0 if

y0
�1(�)y

y0
�1(�0)y
< k� (3.1)

where k� is chosen so that � is the size of the test. It is clear that when the

numerator changes with � there is no a UMP test.

In the absence of a UMP test two weaker optimality criteria are presented in

Sections 3.3.1 and 3.3.2 below.

3.3.1. Bounded Norm Minimizing tests

Suppose that y0
�1(�)y � l(�)0	(y)l(�), where l(�) is a vector depending only

upon � and 	(y) is a positive de�nite matrix depending only upon y.
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A su¢ cient condition for

l(�)0	(y)l(�)

y0
�1(�0)y
< k�

is to minimize the norm

 	(y)

y0
�1(�0)y

 < k;

for k such that the size of the test is �: The norm in the above equation can be

any matrix norm (see e.g. Horn and Johnson, 1985). Notice that any norm of the

matrix 	(y)=y0
�1(�0)y gives a norm minimizing (NM) test and when (3.1) holds

with equality and a BNM test when the inequality is strict.

3.3.2. Bounded Estimated Point Optimal Tests

The second optimality criterion is that of using estimated point optimal tests

(EPO). This criterion is related to the PO tests which are discussed above. Even

if the alternative is generally unknown, it is possible to estimate it with the value

�� which satis�es

�� = argmin
�

�
l(�)0	(y)l(�)

y0
�1(�0)y

�
for a set of observations y: In the case where (3.1) holds with equality, the EPO

critical region is given by
l(��)0	(y)l(��)

y0
�1(�0)y
< k; (3.2)
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where k is chosen such that the size of the test is �: As with the case of the

BNM criterion, if (3.1) does not hold with equality, (3.2) is a BEPO test. Another

criterion of this type is to reject H0 if

j�� � �0j > ka; (3.3)

where �0 is the value of the parameter under H0 and ka is chosen such that the

size of the test is a:

Forchini and Marsh (2000) use the above criteria for the derivation of similar

unit root test statistics. Simulation results suggest that these statistics have dis-

torted size in the presence of an MA(1) error. In the presence of an MA process

in the errors, these test statistics are no longer similar due to the fact that their

critical regions depend on the associated MA parameters. The approach in this

Chapter is to modify the construction of the UMP critical region in order to take

into account the possibility of an MA(m) process in the errors. Then we apply the

BNM and BEPO optimality criteria to choose statistics from the class of asymp-

totically similar tests and we �nd that these have good power properties in �nite

samples.

3.4. Construction of similar critical regions

Marsh (2005) considers a linear regression model with an MA term in the errors

and characterizes the class of asymptotically similar tests. We use the BNM and
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BEPO optimality criteria for deriving tests within this class. The model is

y = X� + u; (3.4)

where � is a k � 1 vector of parameters, X a N � k full rank matrix of the

deterministic components (in this Chapter we consider an intercept and a linear

trend), u = (u1; :::; uN)0 and

ut = �ut�1 + �t

�t =
mX
j=0

�j"t�j

"t � NIID(0; �2)

for t = 1; :::; N; u0 = 0 , and �0 = 1:We impose the invertibility condition
���j�� < 1

for j = 1; :::;m: So the parameters involved are � = (�; �0; �2; �0) with parameter

space � = (�1; 1]� Rk � R+ � (�1; 1)m:

In the context of (3.4) the unit root hypothesis takes the form

H0 : � = 1 vs. H1 : j�j < 1;

with �; �2 and � the nuisance parameters for this testing problem. The method

described in Section (3.2) is going to be applied for the construction of similar crit-

ical region for the hypothesis stated above. Invariant transformations are applied

on the data y; which do not a¤ect the decision with respect to H0 and H1; but
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take out the e¤ect of the nuisance parameters. These transformations involve the

use of some matrices de�ned below.

Let L(i) be the lower-triangular matrix with ones on the ith o¤-diagonal and

zeros elsewhere. Multiplying (from any side) L(i) by any vector gives the ith lag of

this vector leaving the �rst element of the vector unchanged. For this reason we

refer to L(i) as the lag-matrix. Using L(i); T� is de�ned as

T� = (IN � �L(1)): (3.5)

Note therefore that T1 = IN �L(1): Multiplying any vector by T1 results the vector

of �rst di¤erences for the last N � 1 elements leaving the �rst element unchanged

(implicitly a zero initial condition is imposed). So T1 acts as a �rst di¤erence

operator that transforms an I(1) series to I(0) except from the the �rst element

which remains unchanged and is asymptotically negligible.

Then, using the L(i) matrix again K� is de�ned as

K� = (IN +
mX
i=1

�iL
(i)): (3.6)

So when the K� matrix is multiplied by a vector of white noise errors this results

in an MA vector series of order m: Using this rationale K�1
� transforms a vector

of MA(m) to a vector of white noise series. De�ning

� = (�1; :::; �m)
0 and " = ("1; "2; :::; "N)

0;
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(3.4) can be expressed as

T�(y �X�) = K�": (3.7)

At this point, the transformation matrices listed above are used to clear the distri-

bution of the vector of observables from the nuisance parameters. We start from

the joint sample density of y; which is

y � N(X�; �2T�K�K
0
�

�
T�1�

�0
):

Then, for notational simplicity, we de�ne

x = K�1
� T1y; (3.8)

Z = K�1
� T1X; (3.9)

and (3.7) is transformed under H0 to

x = Z� + ":

The distribution of x is given by

x � N(Z�; �2��;�)

where

��;� = K�1
� T1T

�1
� K�K

0
�

�
T�1�

�0
T 01
�
K�1
�

�0
: (3.10)
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Note that x under H0 is

x � N(Z�; �2IN)

At this point it is useful to use the following lemma before proceeding.

Lemma 3.1. The matrix ��;� given in (3.10) can be expressed as

��;� � �� = T1T
�1
�

�
T�1�

�0
T 01:

For the characterization of the class of similar tests the methodology by Hillier

(1987) described in Section 2 is applied in this setup. Using the Cholesky decom-

position, the projection matrix

MZ = IN � Z (Z 0Z)
�1
Z 0

can be decomposed as:

CC 0 = MZ

C 0C = IN�k

where C is a N �N � k matrix.

The following transformation are applied using C matrix. First x is transformed

as

x 7�!

0B@ b� = (Z 0Z)�1 Z 0x
w = C 0x

1CA
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and then w as

w 7�!

0B@ s2 = kwk2 = x0MZx

� = w
kwk = C 0x=s

1CA
As it can be seen from the above, b� is not feasible due to the fact that is dependent
on �: It is possible however to proceed by �nding a consistent estimate of �:

The distribution of w is

w � N(0; �2C 0��C)
H0� N(0; �2IN�k) (3.11)

Marsh (2007) gives the density of � with respect to the normalized Haar mea-

sure on the surface of the unit N � k sphere to be

pdf(�) = det (C 0��C)
�1=2

h
�0 (C 0��C)

�1
�
i�N�k

2
; (3.12)

According to the above, the most powerful critical region of H0 vs. H1 has critical

region given by

�0 (C 0��C)
�1
� < k�; (3.13)

where k� is chosen such that the size of the test is �: Note that, in view of Lemma

3.1, the above critical region is independent of the MA parameters of the vector �

under both the null and the alternative hypothesis.
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3.5. Asymptotically similar statistics

After the characterization of the class of asymptotically similar statistics we

use the optimality criteria suggested by Forchini and Marsh (2000) in order to

derive test statistics from this class. Since there is not a su¢ cient statistic for

the MA parameters included in matrix K�, these parameters are estimated using

maximum likelihood estimation (MLE). The matrix K� including the estimated

MA parameters is denoted as Kb�. More explicitly we de�ne

Zb� = K�1b� T1X and � =MZb�K�1b� T1y: (3.14)

The procedure that gives the order of the MA process and the estimation of the

MA parameters is described in detail later in Section 3.5.1. We de�ne

	11 =
�
T�11

�0
T�11 (3.15)

	12 =
�
T�11

�0 �
T�11 � IN

�
(3.16)

	22 =
�
T�11 � IN

�0 �
T�11 � IN

�
: (3.17)

Theorem 3.1. Let k:k denote a norm on the space 2�2 positive de�nite matrices,

and let

	(�) =
1

� 0�

0B@ � 0	11� � 0	12�

� 0	12� � 0	22�

1CA (3.18)
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Then a BNM test is: reject H0 : � = 1 if

N�1 k	(�)k < k� (3.19)

where � is de�ned in (3.14) and k� is chosen such that the size of the test is �:

Theorem 3.1 generates a class of BNM tests, depending upon the choice of par-

ticular norm. A statistic from this class could result from the use of the Euclidean

matrix norm k	(�)k = ftr	(�)0	(�)g1=2 or the spectral norm of 	(�); de�ned as

the square root of the maximal eigenvalue of 	(�)0	(�):

Theorem 3.2. A BEPO test for H0 : � = 1 against H1 : �1 < � < 1 is given by

the following rule:

reject H0 if

BEPO = N

����� 0	12� � � 0	22�

� 0	22�

���� > k� (3.20)

where � is de�ned in (3.14) and ka is such that the size of the tests is �:

3.5.1. Estimation of the MA process

Both the BNM and BEPO statistics contain the matrix Kb� of estimated MA
coe¢ cients. The construction of this matrix requires two steps: a procedure that

detects the order of the MA component and an estimation method for the MA

parameters. Treating both these aspects as a priori unknown makes the inference of

Theorems 3.1 and 3.2 asymptotically feasible and suitable for practical application.
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We �rst discuss the estimation of the MA parameters for a given order. In the

absence of a su¢ cient statistic for �; we need to employ a consistent estimator. It

has to be stressed that the choice of a good estimator for � is of major importance

for the good properties (empirical size near to the nominal one and high power)

of the statistics. We estimate � by conditional maximum likelihood or pseudo-

maximum likelihood if we do not wish to maintain the normality assumption on

the innovation errors. It is a well known fact that, under the invertibility assump-

tion imposed on the moving average process, the (pseudo) maximum likelihood

estimator of � is
p
N -consistent. (see Anderson, 1971).

Having estimated models of certain order m, we use information based rules

to choose one among them. These are the criteria proposed by Akaike (1974),

Schwarz (1978) and Hannan and Quinn (1979), denoted henceforth as AIC, BIC

and HQIC respectively. These are described in detail below.

The algorithm for estimating � is described below. We �rst estimate the fol-

lowing model with least squares:

yt = Xb� + but; (3.21)

where the deterministic component X includes an intercept only, or an intercept

and a trend. We then �t the following ARMA(1;m) model to the residuals of

(3.21)

but = �but�1 + "t +

mX
i=1

�i"t�i;
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for t = 1; 2; :::; N: We set a minimum value mmin; and a maximum value mmax

for the order of the MA component. We estimate ARMA(1;m) models with

mmin � m � mmax: For each model, we condition on the m �rst values of " being

zero:

"0 = "1 = ::: = "m = 0:

From the above assumptions we can iterate on:

"t = (but � �but�1)� mX
i=1

�i"t�i;

for t = 1; 2; :::; N:

The conditional log likelihood is

L
�
�; �; �2

�
= �N

2
log(2�)� N

2
log(�2)�

NX
t=1

"2t
2�2

:

Since we assumed
���j�� < 1 for j = 1; :::;m the e¤ect of the initial condition fades

out as sample size increases (Hamilton, 1994, p.128).

After the estimation of mmax �mmin + 1 models we use information criteria to

choose one of them. These information criteria are the following

ICAIC (m) = �2L
N
+
2 (m+ 1)

N

ICBIC (m) = �2L
N
+
(m+ 1) ln(N)

N

ICHQIC (m) = �2L
N
+
2 (m+ 1) ln (ln(N))

N
:
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We choose m such that the information criterion (used in each case) is minimized:

bm = argmin
m

IC(m):

After choosing the order of the MA component and estimating the MA pa-

rameters, we can substitute them in the su¢ cient statistics for (�; �2) and then

construct the similar critical regions. It is important to note here that, asymptoti-

cally, the test statistics we derive do not depend on the nuisance parameter under

H0 since Z = K�1
�̂
T1X and T1u = K�" which gives

� = MZK
�1
�̂
T1 (X� + u) =MZK

�1
�̂
T1u

= MZK
�1
�̂
K�" = [I + op (1)]MZ":

The above result shows that the statistics we derive are asymptotically similar.

3.5.2. Limiting distribution of BNM and BEPO statistics

Having derived the BNM and BEPO test statistics for the unit root hypothesis,

we proceed to derive their limiting distributions. To this end, we restrict the

deterministic components of the data generating process to an intercept and a

linear trend, i.e. we assume that the matrix of deterministics in (3.4) takes the

form

X 0 =

0B@ 1 1 ::: 1

1 2 ::: N

1CA ; (3.22)
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or

X 0 =

�
1 1 ::: 1

�
; (3.23)

which corresponds to the case where only an intercept is included in the model.

Theorem 3.3. Consider the process in (3.4) and let W (�) be standard Brownian

motion on D [0; 1]. Under the null hypothesis H0 : � = 1 the following limit theory

applies as N !1:

for X satisfying (3.22):

(i) The BNM test of Theorem 3.1 satis�es

BNM ) 2

�Z 1

0

W 2(r)dr � 2W (1)
Z 1

0

rW (r)dr +
1

3
W 2(1)

�
:

(ii) The BEPO test of Theorem 3.2 satis�es

BEPO ) 1

2

1���R 10 W 2(r)dr � 2W (1)
R 1
0
rW (r)dr + 1

3
W 2(1)

��� :
For X satisfying (3.23):

(iii) The BNM test of Theorem 3.1 satis�es

BNM ) 2

�Z 1

0

W 2(r)dr

�
:

(iv) The BEPO test of Theorem 3.2 satis�es

BEPO ) 1

2

����� W 2(1)� 1R 1
0
W 2(r)dr

����� :
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3.6. Numerical Study

The test statistics we develop are motivated asymptotically in the sense that

they are asymptotically similar with respect to the MA parameter. In order to

examine their size and power properties in small samples we employ a Monte

Carlo study. Two models are considered for the simulations: the �rst is based on

(3.4) with X de�ned as in (3.22) for the case of a constant and trend included and

(3.23) for the case of a constant only included. The DGP used for the simulations

has the following speci�cation:

ut = �ut�1 + "t + �"t�1;

"t � NIID(0; 1):

Each Monte Carlo experiment is based on 10000 replications. We investigate

the size distortion and power of the statistics in �nite samples. For the numerical

study related to the size distortion, the following minimal complete factorial design

is used with values for the parameters:

� = �0:8;�0:7; :::; 0:8;

N = 50; 100; 200; 400;

� = 1;

� = 0:05;
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where � is the nominal size of the test statistics.

For the numerical study investigating the �nite sample power of the statistics,

the simulation design includes all combinations of the following parameter values:

� = 0:8; 0:82; :::; 0:98;

N = 50; 100; 200; 400;

� = �0:5; 0;

� = 0:05;

and

� = 0:1; 0:2; :::; 0:7;

N = 50; 100; 200; 400;

� = 0;

� = 0:05:

The statistics BNM0 and BEPO0 correspond to the case in which MA terms

are not estimated. These are the statistics proposed by Forchini and Marsh (2000).

In order to construct statistics BNM0 and BEPO0 we set � = 0 (i.e. K� = IN)

in (3.19) and (3.20). For the BNMa and BEPOa statistics the AIC is used, for

the BNMb and BEPOb the BIC is used, and for BNMh and BEPOh the HQIC

is employed. We refer to these test statistics as similar statistics. The information
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criteria consider MA(m) processes with mmin = 0 and mmax = 5: Initially, we use

exact critical values for the BNM and BEPO statistics. Later in the discussion we

examine the behaviour of BNM and BEPO statistics that use asymptotic critical

values.

We compare the �nite sample performance of the statistics derived in this Chap-

ter with other statistics in the literature. In Ng and Perron (2001) the following

statistics can be found:

MZGLS
a =

N�1~y2N � s2AR

2N�2
NX
t=1

~y2t�1

;

MSBGLS =

0BBBB@
N�2

NX
t=1

~y2t�1

s2AR

1CCCCA
1
2

MZGLS
t = MZGLS

a �MSBGLS;

where ~yt = yt � xtbGLS; (xt being the t-th row of X) and bGLS being the GLS
estimate of : This is calculated by the GLS regression of yat on x

a
t ; where y

a
t =

yt � ayat�1 for t = 2; :::; N and ya1 = y1: Following Elliot et al. (1996), for the case

of a constant only in the model a = 1 � 7
N
; and when a constant and trend are

included a = 1� 13:5
N
:
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Ng and Perron (2001) also modify the feasible point optimal test suggested by

Elliot et al. (1996) which is:

PT =
S (a)� aS (1)

s2AR
;

where S(a) = inf
PN

t=1 (y
a
t � xat )

2 :

The modi�ed feasible point optimal test suggested by Ng and Perron (2001)

for the constant case is:

MPGLS
T =

c2N�2
NX
t=1

~y2t�1 � cN�1~y2N

s2AR
;

and for the case of a constant and trend included in the deterministics is:

MPGLS
T =

c2N�2
NX
t=1

~y2t�1 + (1� c)N�1~y2N

s2AR
:

The autoregressive spectral density estimate of �2 is de�ned as:

s2AR =
�̂2ek 

1�
NX
t=1

b̂i

!2 ;

�̂2ek = N�1
NX

t=k+1

ê2tk;
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with b̂i and e2tk derived from the following OLS regression:

�~yt = b̂0~yt�1 +

kX
i=1

b̂i�~yt�i + êtk:

Note that the above regression is used for the GLS ADF test. More speci�cally a

t-test is run on H0 : b0 = 0:

The Modi�ed Akaike Information Criterion used for the determination of the

autoregressive order k is:

MAIC(k) = ln
�
�̂2k
�
+ 2

�T (k) + k

N � kmax
;

where

�T (k) =

b̂0

NX
t=kmax+1

~y2t�1

�̂2k
;

�̂2k =

NX
t=kmax+1

êtk

N � kmax
:

The upper bound is set to kmax = int
�
12(N=100)1=4

�
: The value of k chosen by

MAIC(k) is such that k = argmink2[0;kmax] :

In the tables of this Chapter, MZa and MZt are the modi�ed PP statistics

and MSB is the modi�ed Sargan-Bhargava statistic. PT refers to the feasible

point optimal test and MPT to its modi�ed variant. All these statistics use GLS

detrending. ADF corresponds to the ADF statistic with GLS detrending and for
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ADFLS; OLS detrending is used. For both ADF and ADFLS the MAIC is used.

MZaLS statistic denotes theMZa statistic based on OLS detrending. Lastly,MZa2

corresponds to the MZa statistic with GLS detrending used for the data and OLS

detrending used for the spectral density estimation.

Tables 3.2 (N = 50; 100) and 3.3 (N = 200; 400) report size distortion of the

statistics for a model including an intercept term only (X de�ned by (3.23)) and

Tables 3.4 (N = 50; 100) and 3.5 (N = 200; 400) report the size distortion of

the statistics for the case of an intercept and a trend included in the model (X

de�ned by (3.22)). A �rst observation is that serious size distortions occur when

the MA parameter is speci�ed to be near to �1: Tables 3.2-3.5 show that the

statistics derived in this Chapter exhibit much lower size distortion in comparison

to the BNM0 and BEPO0 statistics. It can be also seen that the choice of the

speci�c information criterion is crucial for the level of size distortion in small

samples (N = 50; 100). More speci�cally, the size distortion for the BNM and

BEPO statistics is the lowest when the AIC is used. When the HQIC is used,

size distortion becomes higher and the use of BIC gives the highest size distortion

among all information criteria considered for our statistics.

The relatively good performance of BNMa and BEPOa with respect to size

distortion could be explained by the fact that the AIC is the most liberal (tends to

choose comparatively higher order for the MA process) of all information criteria.

This is evident in Figure 3.1 which presents the relative frequencies of the order

chosen by each information criterion under H0 for di¤erent values of � (for a model



76

with an intercept and a trend, sample size N = 100). It can be seen that BIC is the

most conservative information criterion, in the sense that, keeping everything else

constant, it tends to choose the lowest MA order in comparison to the other two

criteria. This has a very detrimental e¤ect (with respect to control over size) for

values of � close to �1 and that is why BNMb and BEPOb give the highest size

distortion in small samples. It is also observed that for sample sizes N = 200; 400;

the di¤erent information criteria deliver almost the same empirical size.

Comparing the statistics derived in this Chapter with other statistics in the

literature, we �nd that they have much lower size distortion for N = 50: For values

of the MA parameter being close to �1; it is obvious that all the the statistics of

Ng and Perron (2001) have extremely high size distortion, making them unreliable

for such small sample sizes. This is important as sample sizes of this kind are

relevant in applied research. For higher sample sizes, statistics MZa, MZt; MSB;

PT and MPT appear to have very small size distortion and perform better than

the similar statistics. Figures 3.2 and 3.3 illustrate graphically the facts mentioned

above.

Another crucial observation for the similar statistics is that their size distortion

reduces as the sample size N increases. For example, in the case of a model with

an intercept only (Tables 3.2 and 3.3), when � = �0:8; BEPOa statistic has size

0:367 for N = 50; 0:22 for N = 100, 0:101 for N = 200; and 0:07 for N = 400.

We observe the same behaviour for BNMb; BEPOb; BNMh and BEPOh: This

observation suggests that the empirical size of the similar statistics derived in this
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Chapter converges to its nominal value (5% in this case), as sample size increases.

This can be attributed to the consistency of the maximum likelihood estimator as

well as the better performance of the information criteria as N increases. This is

not the case for statistics BNM0 and BEPO0: size distortion increases as sample

size N increases. The BEPO0 statistic for example has size 0:673 for N = 50;

0:832 for N = 100 and 0:908 for N = 200, when � = �0:8: This suggests that

empirical size of the BNM0 and BEPO0 statistics can go farther from nominal

size as N increases in the presence of autocorrelation in the errors. In the case of

an intercept and a trend included in the model (Tables 3.4 and 3.5) we observe

that the level of size distortion increases for all the statistics.

We also observe that the size of the Ng and Perron statistics that use the

MAIC does not always move closer to the nominal size as sample size increases.

For example, Tables 3.2 and 3.3 show that the empirical size for � = �0:8 of MZt

is 0:988 for N = 50; 0:039 for N = 100; 0:021 for N = 200 and 0:027 for N = 400:

At �rst view this could be considered as not not necessarily problematic, since

one would be interested to get size less or equal to the nominal one. However,

in cases that empirical size appears to be substantially lower than the nominal

one there could be detrimental e¤ects on the power of the statistic. This problem

could be "hidden" in cases that size-adjusted power results are presented. In cases

in which the empirical size is substantially lower than the nominal one, we would

expect size-unadjusted power to be lower than size-adjusted power, at least for

alternatives close to the null.
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Tables 3.6 and 3.7 report the power of the statistics for models corresponding

to X de�ned by (3.23) and (3.22) respectively, when there is no autocorrelation

in the error term "t (� = 0). This is not a favourable case for the statistics we

derive in this Chapter, since MA processes are considered which do not exist under

the data generating process. However, we observe that the power of BNMb and

BEPOb statistics is very close to the power of BNM0 and BEPO0 (which do not

assume autocorrelation of "t).

The BNMa and BEPOa statistics have substantially lower power than the

BNM and BEPO statistics that use the other two information criteria. The power

of BNMh and BEPOh statistics is lower that the power of BNMb and BEPOb;

but close to it. For sample sizes N = 200; 400 the choice of a speci�c information

criterion does not make any substantial di¤erence with respect to the level of power

of the statistics.

Table 3.6 shows that MZa; MZt and MSB for N = 50 have substantially

higher power than our statistics. For N higher that 100; our statistics appear to

outperform the modi�ed statistics derived by Ng and Perron (2001). The ADF

statistic appears to have comparatively high power across all sample sizes con-

sidered. When an intercept and a trend are included in the model (Table 3.7),

we observe that statistics MZa; MZt, MSB; PT , MPT ; MZaLS and MZa2 have

extremely low power (smaller than the 5% size for alternatives close to H0). The
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ADF and ADFLS statistics appear to have higher power compared to our statis-

tics. For sample sizes higher than 100, BNMb and BEPOb statistics have higher

power than the ADF statistic.

Table 3.8 presents the results for size-adjusted power for the model including

an intercept only, when there is negative autocorrelation (� = �0:5) in the error

term. A �rst observation is that the power of our statistics is lower in comparison

to the case of no autocorrelation (Table 3.6), especially for sample sizes 50 and 100:

We also observe that the BNMb; BEPOb; BNMh and BEPOh statistics appear

to have higher power than BNM0 and BEPO0 for sample size N = 50: For this

sample size the modi�ed statistics perform better than our similar statistics. For

sample size 100; we observe that BNMb; BEPOb; BNMh and BEPOh have higher

power than BNM0 and BEPO0 and the statistics proposed by Ng and Perron

(2001) for alternatives far from the null � = 1: For alternatives 0:98 � � � 0:90 we

�nd that the ADF statistic has higher power that the rest of the statistics. For

the same alternatives, BNM0 and BEPO0 have higher power. For higher sample

sizes, our statistics have comparatively higher (in comparison to the Ng and Perron

statistics) power for most alternatives.

Table 3.9 refers to the case of a model including an intercept and a trend in the

presence of negative autocorrelation in the error term (� = �0:5). First of all, for

sample size N = 50 we observe that all statistics su¤er from the problem of very

low power. We also observe that for most alternatives, BNM0 and BEPO0 exhibit

higher power than our statistics for sample sizes N = 50; 100: Also the statistics
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derived by the procedure of Ng and Perron (2001) have substantially higher power

than ours. For sample sizes higher than N = 100 our statistics appear to have

higher power for most alternatives.

Tables 3.10 and 3.11 contain the �nite sample power of the statistics when

there is no autocorrelation of the error term, for alternatives farther than the ones

investigated in Tables 3.6 and 3.7. The reason for this is to examine the possibility

of power reversal. Table 3.10 corresponds to a model with an intercept only. We

observe that the problem of power reversal is severe for statistics MZa; MZt,

MSB; PT , MPT ; MZaLS and MZa2 for sample sizes N = 100; 200: For example

for sample size N = 100 and alternative � = 0:8 the power of the MZa is 0:839

which is the highest among the values of power computed. Moving away from

alternative � = 0:8 (to alternatives � < 0:8); power decreases gradually, reaching

power 0:715 for alternative 0:1: ADF and ADFLS statistics do not appear to have

this problem.

Regarding the statistics derived in this Chapter, we can see that power reversal

occurs for theBNMa andBEPOa statistics. For the same case (N = 100)BEPOa

statistic has power 0:958 for � = 0:5 and then gradually falls to 0:947 for � = 0:1:

We consider the power reversal of BEPOa to be less serious than that occurring for

MZa mainly because of the magnitude of the power reduction: 1:1% for BEPOa

power reduction from alternative 0:5 to 0:1 is 1.1%, while the power reduction

from alternative 0:8 to 0:1 for MZa is 14:8%: Additionally, we observe that our

statistics have higher power in comparison to the other test statistics existing in
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the literature for alternatives far from the null (� = 1) and close to 0. This can be

seen in Figure 3.4 which presents the power of the BNMb; BNMa; BNMh; ADF;

and MZa for the model including an intercept only. For sample size N = 50; the

ADF statistic appears to have higher power that the BNMb; BNMa and BNMh

statistics. The MZa statistic has higher power for alternatives far from the null.

For higher sample sizes the BNMb; BNMa and BNMh perform better than ADF

andMZa: In this �gure one can see that the power function ofMZa changes slope

for sample sizes N = 100; 200:

The problem of power reversal becomes more apparent in the context of a

model which includes an intercept and a trend. This case is presented for the same

statistics in Figure 3.5. In this case, one can see that even for a sample size as high

as N = 400; theMZa statistic has a decreasing power as the true value of � moves

farther away from H0: Table 3.11 presents the results for power in the absence of

autocorrelation in the errors for all the statistics. For statisticsMZa; MZt, MSB;

PT , MPT ; MZaLS and MZa2 similar conclusions to those of Table 3.10 are drawn.

Table 3.11 shows that the problem of power reversal occurs for statistic ADF as

well, but not for ADFLS: This problem appears for the BNM and BEPO statistics

being less severe (much smaller power reduction as � moves farther away from the

null).

The above discussion highlights the nature as well as the extent of the problem

of power reversal for the statistics derived by Ng and Perron (2001). At this point,

it is necessary to assess the performance of the test statistics which address this
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problem. These are the statistics derived by Perron and Qu (2007) and Seo (2006).

We consider the ADF t-statistic and modi�ed Phillips Perron statistic resulting

from the Perron and Qu procedure (denoted as ADFPQ and MPQ) and the same

statistics resulting from the Seo two-step procedure (denoted as ADFS and MS).

The purpose of our numerical study at this point, is to investigate two main

questions:

� Do the modi�cations proposed by Perron and Qu (2007) and Seo (2006)

solve the problem of power reversal?

� What is the e¤ect of these modi�cations on size distortion as well as the

level of power of the statistics, when compared with the statistics without

the modi�cation and the statistics derived in this Chapter?

We compare these procedures to the BNM and BEPO statistics, using asymp-

totic critical values. The BNM and BEPO statistics that use asymptotic critical

values are denoted as BNM i and BEPOi with i = a; b; h:

Table 3.12 presents the empirical size of the statistics mentioned above in the

context of a model including an intercept only. A �rst observation regarding the

BNM and BEPO statistics is that when using asymptotic critical values (instead

of exact), the size control in small samples is not always better when we use the

AIC. It appears that the use of any of the information criteria results in the almost

the same size distortion for values of � close to �1. For values of � closer to 0 the

AIC appears to deliver higher size distortion than the BIC. For example, in Table
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3.12 for sample size N = 50; � = 0; BEPOb and BEPOa deliver empirical size

0:058 and 0:104; respectively. The reason is the liberal nature of the AIC. In the

absence of autocorrelation in the error term, AIC chooses higher MA order than

the BIC. This di¤erence is more evident in small samples. It is worth noting here

that the BNMb and BEPOb statistics exhibit very close empirical size to BNMb

and BEPOb (see Tables 3.2 and 3.3). This means that BNM and BEPO statistics

that use the BIC are robust to the use of exact or asymptotic critical values.

When comparing the Perron and Qu (2007) and Seo (2006) procedures we

�nd that for a given statistic, the Perron and Qu procedure results in lower size

distortion than the Seo procedure. Additionally, we see that the BNM and BEPO

statistics generally perform better with respect to control over size than the ADFS

statistic. Comparing the statistics derived in this Chapter to the ADFPQ; MPQ

andMS statistics, we �nd that the latter three have lower size distortion. However,

a problem regarding size mentioned above still remains for the modi�ed Phillips

Perron statistics (MPQ and MS): as sample size increases there is the possibility

that empirical size deviates from that of the nominal. This can be seen by observing

the empirical size of MPQ for � = �0:8; which is 0:161; 0:042; 0:018; 0:017 for

sample sizes N = 50; 100; 200; 400 respectively. However, the BNM and BEPO

statistics using asymptotic critical values do not appear to su¤er from this problem

(their empirical size tends to the nominal one as sample size increases).

Table 3.13 presents the results regarding the empirical size of the statistics

in the context of a model containing an intercept and a linear trend. A �rst
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observation is that size distortion is generally higher compared to the case of a

model including an intercept only. We observe now that the BNM and BEPO

statistics perform better than the ADFS with respect to size distortion (as is the

case in Table 3.12), but also BNM and BEPO perform better than MS for sample

size N = 50 and for values of � close to j1j.

Figure 3.6 depicts the empirical size of the BNMb; BEPOb; ADFPQ; MPQ;

ADFS and MS statistics in the context of a model with an intercept only. Figure

3.7 corresponds to a model including an intercept and a trend. These �gures show

that the ADFPQ; andMPQ statistics have low size distortion in comparison to the

rest of the statistics. The BNMb; and BEPOb statistics appear to have lower size

distortion that the ADFS and MS statistics for values of � close to �1:

Tables 3.14 and 3.15 present the performance of the statistics with respect to

power for alternatives close to the null (0:8; 0:82; :::; 0:98), for a model with an

intercept only and a model with an intercept and a trend. We observe that the

power of the statistics (for a given alternatives) is substantially lower in the case

of a model including an intercept and a linear trend. In this case we can make

some interesting observations, the �rst of which, is the detrimental e¤ect of size

being very low comparatively to its nominal level (rather than converging to it).

Table 3.15 suggests that Phillips Perron statistic exhibit very low power in small

samples such as N = 50:We see that the MPQ statistic has a rejection (of the null

hypothesis H0 : � = 1) probability of 0:058 when the true value of the parameter

� = 0:80; and when � = 0:82 its power (0:044) is lower than its nominal size (0:05).
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The empirical size of the MPQ statistic for the same case and sample size N = 50

is 0:009: The extremely low power of the statistic in this case, could be attributed

to the fact that empirical size is far from its nominal value and close to zero.

Additionally, we observe that the ADFS and MS statistics appear to have

higher power than ADFPQ and MPQ statistics. The BNM criterion appears to

deliver statistics with higher power, for most alternatives and especially in small

sample sizes, than the power of the statistics resulting from the BEPO criterion.

Finally, we observe that the ADFS appears to have the highest power compared

to the rest of the statistics for alternatives close to the null (0:80 to 0:98� Tables

3.14 and 3.15).

Tables 3.16 and 3.17 present the results for power for alternatives farther from

the null for the two models considered. The purpose of these tables is to examine

the possibility of power reversal for the statistics. We decide to examine the case

in which there is no autocorrelation in the error term (� = 0), as this is the case

in which power reversal occurs. It is obvious that this problem is minimal (if at all

existent) for the BNM and BEPO statistics, as their power increases as we move

to alternatives farther from the null. However, this is not the case for ADFPQ;

ADFS; MPQ; and MS. We observe that (for a given sample size) the power of the

statistics does not increase monotonically as we move away from the null.

It is very interesting that although the Perron and Qu statistics are constructed

in order to deal with the problem of power reversal, they reduce it but do not elim-

inate it. For example, in the context of a model including an intercept only and
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for sample size N = 100; the power of the MPQ statistic is 0:739 for alternative

� = 0:6; and 0:663 for � = 0:1: The problem is not solved as sample size in-

creases. For sample size N = 400; we observe that the power reversal problem is

obvious in both model speci�cations (presented in Tables 3.16 and 3.17) for statis-

tics ADFPQ; ADFS; MPQ; and MS: Additionally, the power of statistics BNM b;

BEPOb; ADFPQ; ADFS; MPQ; and MS is presented in Figures 3.8 and 3.9, for

a model with an intercept only and a model with an intercept and a trend, re-

spectively. It is obvious that the BNM b; and BEPOb statistics have high power

compared to the rest of the statistics (especially for sample size higher than 100)

and that they do not su¤er from the power reversal problem.

Observation of Tables 3.16 and 3.17 suggests another problem of theADFS; and

MS statistics. There are cases in which, for a given alternative, power decreases

as sample size increases, i.e. more information (higher N) leads to worse inference

(lower probability of rejecting the false null hypothesis). In Table 3.16, for example,

we see that the power of MS for alternative � = 0:1 is 0:9 for N = 50; 0:727 for

N = 100; 0:635 forN = 200 and 0:623 forN = 400: The BNM and BEPO statistics

do not present such behaviour: for given alternatives power increases as sample

size increases.

Figures 3.8 and 3.9 present the power of the BNMb; BEPOb; ADFPQ; MPQ;

ADFS and MS statistics for the two models considered in this Chapter. These

show that for sample sizes higher than N = 100 the BNM and BEPO statistics
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perform comparatively very well. It is also obvious that the BNM and BEPO

statistics do not su¤er from the power reversal problem.

Tables 3.18 (N = 50; 100) and 3.19 (N = 200; 400) present the performance of

the information criteria across di¤erent values of � under H0; for a model with an

intercept only. This could help to explain the di¤erence among our statistics with

respect to control over size. As mentioned above, the BIC is the most conservative

information criterion and AIC is the most liberal, while HQIC lies between the two

other criteria. As a consequence, statistics that use the AIC have better control

over size in the presence of negative MA parameters in comparison to statistics

using the other criteria. ForN = 50 and value � = �0:8 underH0, the BIC chooses

order 0 (no autocorrelation) 68:6% of the cases, AIC 39:4% and HQIC 52:7%: As

sample size increases the performance of all information criteria is improved (they

tend to choose the correct order) and for N = 400 and value � = �0:8, none

of the information criteria chooses order 0 (i.e. all criteria suggest that there is

autocorrelation in the error term). This is the reason why we do not observe

substantial di¤erence with respect to size distortion among our statistics for large

samples. Information criteria behave similarly in the case of a model with an

intercept and a trend.

Tables 3.20 and 3.21 present the performance of information criteria for mod-

els including an intercept only and an intercept and a trend respectively, across

di¤erent values of alternatives in the case of no autocorrelation in the error term

(� = 0). These tables explain the occurrence of the problem of power reversal for
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some of our statistics. We observe that the AIC performs worse with respect to

identifying the right MA order as the true value of � moves farther away from the

null. In Table 3.20, we see that for N = 100; the AIC chooses order 0 (the true

order under the DGP) for the MA component 70:8% of the cases and for � = 0:1;

61:5%. For the same sample size, under the null, the BIC chooses order 0 for the

MA component 95:6% of the cases and for � = 0:1; 93:9%. Table 3.21 shows that

moving to a model with an intercept and a trend makes the problem of identify-

ing the right order more serious for the AIC. For this model, and for sample size

N = 100; the AIC chooses order 0 67:8% of the cases and for � = 0:1; choice of

zero order falls to 55:5%. Under H0, the BIC chooses order 0 94:8% of the cases

and for � = 0:1; the relative frequency is 92%.

3.7. Conclusion

In this Chapter we derive asymptotically similar statistics for testing the unit

root hypothesis in the presence of autocorrelated errors. Based on the BNM and

BEPO optimality criteria proposed by Forchini and Marsh (2000), we derive test

statistics that take into consideration possible autocorrelation in the error term.

We consider our testing procedure to be feasible with respect to two aspects. The

�rst involves the use of information criteria (BIC, AIC and HQIC) for the choice of

the order of autocorrelation. The second includes the estimation of the parameters

of the chosen model. Limiting distributions for the test statistics are provided

which enable us to use asymptotic critical values for high sample sizes (over N =
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100). In order to assess the �nite sample performance of our statistics under

di¤erent speci�cations, we perform an extensive simulation study.

We believe that we successfully generalize the statistics of Forchini and Marsh

as we substantially improve the size control of the statistics in the presence of

autocorrelation, without any signi�cant power loss even in the case of no autocor-

relation in the error term.

Additionally, we compare our statistics with a variety of other statistics ex-

isting in the literature (mainly those in Ng and Perron, 2001). We �nd that for

a small sample size (such as N = 50) the other statistics could possibly have

so high level of size distortion, that would make inference drawn by them highly

unreliable. Our test statistics perform much better with respect to control over

size. For higher sample sizes, our statistics perform comparatively worse to the

Ng and Perron statistics, but size distortion appears to fall substantially as sample

size increases. With respect to �nite sample power, our statistics achieve higher

power for most alternatives apart from those close to the null hypothesis. Finally,

the asymptotically similar BNM and BEPO statistics (using exact or asymptotic

critical values) do not seem to su¤er seriously from the problem of power reversal.

Moreover, we compare our statistics to the statistics resulting from the Perron

and Qu (2007) and Seo (2006) procedures. A striking observation of the numerical

study on these procedure is the severity of the power reversal problem. In light

of the results provided by Seo (2006), Perron and Qu (2007) modify the Ng and

Perron (2001) statistics in order to solve the power reversal problem. However, even
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if there is improvement, the problem is still evident. Additionally, the statistics

proposed by Seo (2006) su¤er from the same problem.

The above observation leads to a methodological aspect highlighted in this

Chapter regarding the examination of power properties. More speci�cally, the

power of the statistics should be checked for alternatives (comparatively) far from

the null. Investigation of such alternatives could reveal possible power reversal

problems.

Another methodological issue discussed in this Chapter is the caution that

should be exercised for cases in which empirical size tends to zero rather than to

its nominal value. Prima facie this could appear as a good property, as size is the

probability of an error (rejecting the null hypothesis when it is true) which we want

to keep lower than a certain level (nominal size). However, having size tending to

zero comes at the expense of low power. Presenting size-adjusted power could

hide this problem. That is the reason that we believe the size of a well-behaved

statistic should tend to its nominal value as sample size increases, otherwise we

face the possibility of adverse e¤ects on the ability of the statistic to reject the null

hypothesis when this hypothesis is not true.

We examine the �nite sample properties of the statistics derived in this Chapter

for exact and asymptotic critical values. When exact critical values are used, we

observe that the optimality criteria used (BNM and BEPO) deliver statistics that

have very similar empirical size and power in �nite samples. However, what di¤er-

entiates the �nite sample properties of our statistics, is the use of the information
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criterion for the determination of the order of the MA component. The use of AIC

delivers the best results with respect to size control, but also has the lowest power

and for some sample sizes the problem of power reversal occurs. The BIC provides

the best results with respect to power, but the worst for controlling size in small

samples. The HQIC appears to lie in between the other criteria mentioned, deliv-

ering test statistics with power close to BNMb and BEPOb; and size distortion

not much higher than the one of BNMa and BEPOa: We suggest the use of the

HQIC, because the BNMh and BEPOh statistics appear to have, in comparison

to the other asymptotically similar statistics, low size distortion, high power and

not signi�cant (if any) power reduction for alternatives far from the null.

When asymptotic critical values are used, the main �ndings of the numerical

analysis do not change. One di¤erence though is that the empirical size of the

statistics using the BIC tends faster to its nominal value as sample size increases

for � = 0. For values of � close to �1; AIC gives better results with respect to

control over size.

In concluding the discussion about the comparison of the statistics derived in

this Chapter to the other unit root test statistics in the literature, we believe that

the main strength of the statistics is their robustness. More speci�cally they appear

to have comparatively good control over size across di¤erent values of � and high

power across a wide range of alternatives. Additionally, they improve with respect

to size control and power as sample size increases and do not su¤er from the power

reversal problem.
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3.8. Technical Appendix and Proofs

Proposition A1. The lag matrix L(i) commutes with any other lag matrix of

di¤erent or same order L(j) and

K�T� = T�K�;

T�11 K�1
� = K�1

� T�11 ;

T 01K
0
� = K 0

�T
0
1;�

T�11
�0 �

K�1
�

�0
=

�
K�1
�

�0 �
T�11

�0
;

K�1
� T� = T�K

�1
� ;�

K�1
�

�0
T 0� = T 0�

�
K�1
�

�0
;

given that K� and T� are invertible.

Proof. Lag matrix L(i) commutes with any other lag matrix of the same or

di¤erent order L(j) and:

L(i)L(j) = L(j)L(i) =

8><>: L(i+j); for i+ j � N � 1

0; for i+ j > N � 1:
(3.24)
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Noting the de�nitions in (3.5) and (3.6) and the commutative property of lag

matrix L(i) (3.24) we have:

K�T� =

 
IN +

qX
i=1

�iL
(i)

!�
IN � �L(1)

�
= IN � �L(1) +

qX
i=1

�iL
(i) �

 
qX
i=1

�iL
(i)

!
�L(1)

= IN � �L(1) +

qX
i=1

�iL
(i) � �

qX
i=1

�iL
(i)L(1)

= IN � �L(1) +

qX
i=1

�iL
(i) � �L(1)

qX
i=1

�iL
(i)

= IN � �L(1) +
�
IN � �L(1)

� qX
i=1

�iL
(i)

=
�
IN � �L(1)

� 
IN +

qX
i=1

�iL
(i)

!
= T�K�: (3.25)

Equation (3.25) means that K� commutes with T� (and with T1 which is a

special case of T�). Given that K� and T� are nonsingular matrices, we can easily

show that their respective inverse and transpose matrices commute with each other

as well:

K�T� = T�K� , (K�T�)
�1 = (T�K�)

�1 , T�1� K�1
� = K�1

� T�1� ; (3.26)

K�T� = T�K� , (K�T�)
0 = (T�K�)

0 , T 0�K
0
� = K 0

�T
0
�; (3.27)
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and combining (3.26) and (3.27) we get

�
T�11

�0 �
K�1
�

�0
=
�
K�1
�

�0 �
T�11

�0
: (3.28)

Finally, using (3.25) we show that T� commutes with K�1
�

K�T� = T�K� ) T� = K�1
� T�K� ) T�K

�1
� = K�1

� T�; (3.29)

and transposing both sides of (3.25) we can show that
�
K�1
�

�0
T 0� = T 0�

�
K�1
�

�0
:

Proposition A2. Let S = T�11 " and �2 = E ("21). Under the assumptions of

Theorem 3.3 with X satisfying (3.22), the following limit theory applies under the

null hypothesis H0 : � = 1 as N !1:

(i) N�1S 0") 1
2
�2 [W 2(1) + 1]

(ii) N�1S 0PZ") �2W (1)
R 1
0
W (r)dr

(iii) N�2S 0T�11 PZ") �2W (1)
R 1
0
rW (r)dr

(iv) N�2 �T�11 PZ"
�0
T�11 PZ") 1

3
�2W 2(1)

(v) N�1 �T�11 PZ"
�0
PZ") 1

2
�2W 2(1)

(vi) N�1 �T�11 PZ"
�0
") �2W (1)

�
W (1)�

R 1
0
W (r)dr

�
(vii) N�1� 0� !p �

2

For X satisfying (3.23) parts (i) and (vii) continue to apply and:

(viii) N�1S 0PZ", N�1 �T�11 PZ"
�0
PZ" and N�2 �T�11 PZ"

�0
T�11 PZ" have order

Op(N
�1) and N�2S 0T�11 PZ", N�1 �T�11 PZ"

�0
" have order Op(N

�1=2) as

N !1.
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where W (�) denotes standard Brownian motion on D [0; 1].

Proof. By de�nition of the matrix T�11 ; St is a unit root process with i.i.d.

innovations "t. Also, using the particular form of the matrix X of deterministics,

it is easy to obtain the following identities:

PZ" =
1

N � 1 [(N � 1) "1; SN � "1; :::; SN � "1]
0

and

T�11 PZ" =
1

N � 1 [(N � 1) "1; SN�1 + (N � 1) "1; :::; (N � 1)SN�1 + (N � 1) "1]0 :

In what follows, we make use of standard unit root asymptotics, see e.g. Phillips

(1987b) and Phillips and Perron (1988).

For part (i), we have

N�1S 0" = N�1
NX
i=1

Si"i = N�1

 
NX
i=1

Si�1"i +
NX
i=1

"2i

!

= N�1
NX
i=1

Si�1"i +N�1
NX
i=1

"2i

) 1

2
�2
�
[W (1)]2 � 1

	
+ �2

=
1

2
�2
�
W 2(1) + 1

�
:



96

For part (ii),

1

N
S 0PZ" =

1

N � 1

"
S1 (N � 1) "1 +

NX
i=2

Si (SN � "1)

#

=
1

N (N � 1)SN
NX
i=2

Si +Op

 
1

N2

NX
i=2

Si

!

=
1

N1=2
SN

1

N3=2

NX
i=2

Si +Op(N
�1=2)

) �2W (1)

Z 1

0

W (r)dr:

For part (iii),

1

N2
S 0T�11 PZ" =

1

N2

1

N � 1

NX
i=1

fSi [(i� 1)SN�1 + (N � 1) "1]g

=
1

N2

1

N � 1SN�1
NX
i=1

Sii+Op

 
1

N2

NX
i=1

Si

!

=
1

N1=2
SN�1

1

N5=2

NX
i=1

Sii+Op

�
N�1=2�

) �2W (1)

Z 1

0

rW (r)dr:
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For part (iv),

1

N2

�
T�11 PZ"

�0
T�11 PZ" =

1

N2

�
1

N � 1

�2 NX
i=1

[(i� 1)SN�1 + (N � 1) "1]2

=
S2N�1

(N � 1)2
1

N2

NX
i=1

(i� 1)2 +Op

�
1

N
SN�1

�

= [1 + o (1)]
S2N�1
3N

+Op

�
N�1=2�

) 1

3
�2W 2(1):

For part (v),

1

N

�
T�11 PZ"

�0
PZ" =

1

N

�
1

N � 1

�2(
(N � 1)2 "21 +

N�1X
i=1

[(iSN�1 + (N � 1) "1) (SN � "1)]

)

=
1

N (N � 1)2
SN�1SN

N�1X
i=1

i+Op

 
1

N3
SN�1

N�1X
i=1

i

!

= [1 + o (1)]
1

2

SN�1
N1=2

SN
N1=2

+Op

�
N�1=2�

) 1

2
�2W 2(1)

For part (vi),

1

N

�
T�11 PZ"

�0
" =

1

N

(
1

N � 1SN�1
NX
i=1

i"i �
1

N � 1SN�1SN + "1SN

)

= [1 + o (1)]
SN�1
N1=2

1

N3=2

NX
i=1

i"i +Op

�
N�1=2�

) �W (1)

�
�W (1)� �

Z 1

0

W (r)dr

�
:



98

For part (vii), recall that, under H0, Z = K�1
�̂
T1X and T1u = K�" which gives

� = MZK
�1
�̂
T1 (X� + u) =MZK

�1
�̂
T1u

= MZK
�1
�̂
K�" = [I + op (1)]MZ"

using the fact that �̂� � = op (1) : Therefore, since

"0PZ" = "21 +
1

N � 1 (SN � "1)
2 = Op (1) ;

the weak law of large numbers yields

1

N
� 0� = [I + op (1)]

1

N
"0MZ"

= [I + op (1)]

�
1

N
"0"+Op

�
N�1��!p �

2:

For part (viii) PZ corresponds to X including a constant term only which gives

the following results,

S 0PZ" =
�
T�11 PZ"

�0
PZ" = "21 = Op(1);�

T�11 PZ"
�0
T�11 PZ" = N"21 = Op(N);

S 0T�11 PZ" = "1

NX
i=1

Si = Op(N
3=2);

�
T�11 PZ"

�0
" = "1

NX
i=1

"i = "1SN = Op(N
1=2);
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A direct result from the above is that N�1S 0PZ", N�1 �T�11 PZ"
�0
PZ" and

N�2 �T�11 PZ"
�0
T�11 PZ" have order Op(N

�1) and N�2S 0T�11 PZ", N�1 �T�11 PZ"
�0
"

have order Op(N
�1=2) as N !1.

Proof of Lemma 3.1. Using the commutation results given in Proposition A1

we get

��;� = K�1
� T1T

�1
� K�K

0
�

�
T�1�

�0
T 01
�
K�1
�

�0
= T1K

�1
� K�T

�1
�

�
T�1�

�0
K 0
�

�
K�1
�

�0
T 01

= T1T
�1
�

�
T�1�

�0
T 01:

Proof of Theorem 3.1. The most powerful similar test of size � is given by (3.13)

which can be rewritten as:

y0T 01
�
K�1
�

�0
C (C 0��C)

�1C 0K�1
� T1y

y0T 01
�
K�1
�

�0
MZK

�1
� T1y

< k�

Lemma 3 of Forchini and Marsh (2000) shows that the matrix

Q = C 0B�1C � (C 0BC)�1

is positive semi-de�nite. Applying this in our case gives the following result:

y0T 01
�
K�1
�

�0
C (C 0��C)

�1C 0K�1
� T1y

y0T 01
�
K�1
�

�0
MZK

�1
� T1y

�
y0T 01

�
K�1
�

�0
CC 0��1� CC 0K�1

� T1y

y0T 01
�
K�1
�

�0
MZK

�1
� T1y

y0T 01
�
K�1
�

�0
C (C 0��C)

�1C 0K�1
� T1y

y0T 01
�
K�1
�

�0
MZK

�1
� T1y

�
� 0��1� �

� 0�
;
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where � is de�ned above. So (3.13) is bounded above by the ratio of quadratic

forms in �: Inverting �� and expressing T� as T� = IN � �L(1) :

��1� =
h
T1T

�1
�

�
T�1�

�0
T 01

i�1
=
�
T�11

�0
T 0�T�T

�1
1 =�

T�11
�0 �

IN � �L(1)
�0 �

IN � �L(1)
�
T�11 =�

T�11
�0 �

IN � �L(1)
�
T�11 � �

�
T�11

�0
L(1)0

�
IN � �L(1)

�
T�11 =�

T�11
�0
T�11 � �

�
T�11

�0
L(1)T�11 � �

�
T�11

�0
L(1)0T�11 + �2

�
T�11

�0
L(1)0L(1)T�11 :

(3.30)

From equation (3.30) and the de�nition of the matrix 	(�) we obtain:

� 0��1� �

� 0�
=

�
1 ��

�
	(�)

0B@ 1

��

1CA (3.31)

So a su¢ cient condition for (3.13) to hold is that the positive de�nite matrix	(�) is

small with respect to some norm. We can �nd statistics such that Pr fk	(�)k < k�jH0g =

a:

Proof of Theorem 3.2. The �rst BEPO criterion is:

l(��)0	(y)l(��)

y0
�1(�0)y
< ka (3.32)

where k� is such that the size of the test is � and �� is the value of � which

minimizes (3.31). We di¤erentiate (3.31) with respect to parameter � and set it
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equal to zero. From equations (3.18) and (3.31) we get:

�
1 ��

�
	(�)

0B@ 1

��

1CA =
�
�2� 0	22� � 2�� 0	12� + � 0	11�

�
:

1

� 0�

@ (��2� 0	22� � 2��� 0	12� + � 0	11�)

@��
= 0)

2

� 0�
(�� 22 �  12) = 0) �� =

 12
 22

: (3.33)

Combining condition (3.32) with (3.33) and values given by (3.16) and (3.17) we

get the BEPO statistic. Also we need to note that  22 � 0 since 	22 is a positive

semi-de�nite matrix, so
@2(�2 22�2� 12+ 11)

@�2
� 0:

The theorem is proved by substituting (3.33) and in (3.3).

Proof of Theorem 3.3. We make repeated use of the limit theory established in

Proposition A2. For notational simplicity, de�ne

 11 = � 0	11�;  22 = � 0	22� and  12 = � 0	12�

and note that

 22 =  11 � 2
�
T�11 �

�0
� + � 0�

=  11 � 2
h
S 0"� S 0PZ"+

�
T�11 PZ"

�0
PZ"

i
(3.34)

�2
�
T�11 PZ"

�0
"+ � 0�
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and

 12 =  11 � S 0"+ S 0PZ"�
�
T�11 PZ"

�0
PZ": (3.35)

For part (i), it is clear that from Proposition A2 and (3.34) and (3.35) we obtain

that  22 =  11 +Op (N) and  12 =  11 +Op (N). Now by Proposition A2,

1

N2
 11 =

1

N2
S 0S � 2

N2
S 0T�11 PZ"+

1

N2

�
T�11 PZ"

�0
T�11 PZ"

) �2
�Z 1

0

W 2(r)dr � 2W (1)
Z 1

0

rW (r)dr +
1

3
W 2(1)

�
: (3.36)

The BNM test statistic is given by

1

N
k	(�)k =

1

N�1� 0�


1

N2

264  11  12

 12  22

375


=
1

N�1� 0�


1

N2

264  11  12

 12  22

375


=
1

N�1� 0�


 11
N2

264 1 1

1 1

375
+Op

�
N�1�

)


264 1 1

1 1

375

�Z 1

0

W 2(r)dr � 2W (1)
Z 1

0

rW (r)dr +
1

3
W 2(1)

�

and the result follows from Proposition A2(vi) and (3.36).
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Part (iii) corresponds to the case of a constant only included in the model.

Proposition A2(viii) applies here and we get

1

N2
 11 =

1

N2
S 0S +Op(N

�1=2)) �2
Z 1

0

W 2(r)dr: (3.37)

The above result in conjunction with Proposition A2(vii) gives us

1

N
k	(�)k = 1

N�1� 0�


1

N2

264  11  12

 12  22

375
)


264 1 1

1 1

375

Z 1

0

W 2(r)dr:

For part (ii):

1

N
( 12 �  22) =

1

N

�
S 0"� S 0PZ"�

�
T�11 PZ"

�0
"+

�
T�11 PZ"

�0
PZ"� � 0�

�
L! 1

2
�2
�
W 2(1) + 1

�
� �2W (1)

Z 1

0

W (r)dr

��2W (1)
�
W (1)�

Z 1

0

W (r)dr

�
+
1

2
�2W 2(1)� �2

= �2

8><>:
1
2
[W 2(1) + 1]�W (1)

R 1
0
W (r)dr

�W (1)
�
W (1)�

R 1
0
W (r)dr

�
+ 1

2
W 2(1)� 1

9>=>;
= �2

8><>:
1
2
W 2(1) + 1

2
�W (1)

R 1
0
W (r)dr

�W 2(1) +W (1)
R 1
0
W (r)dr + 1

2
W 2(1)� 1

9>=>; = �1
2
�2:

As before, when a constant and trend are included in the model N�2 22 =

N�2 11+Op(N
�1). Combining the above results and the one in (3.36), we get the
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asymptotic distribution of BEPO statistic which is given by

BEPO = N

���� 12 �  22
 22

���� = ����N�1 ( 12 �  22)

N�2 22

����
L!

������ �1
2
�2

�2
hR 1
0
W 2(r)dr � 2W (1)

R 1
0
rW (r)dr + 1

3
W 2(1)

i
������

=

����� �1
2R 1

0
W 2(r)dr � 2W (1)

R 1
0
rW (r)dr + 1

3
W 2(1)

�����
=

1

2

1���R 10 W 2(r)dr � 2W (1)
R 1
0
rW (r)dr + 1

3
W 2(1)

��� :
For part (iv) of the theorem X satis�es (3.23). We use results from Proposition

A2(viii) and we get

1

N
( 12 �  22) =

1

N

�
S 0"� S 0PZ"�

�
T�11 PZ"

�0
"+

�
T�11 PZ"

�0
PZ"� � 0�

�
=

1

N
(S 0"� � 0�) +Op

�
N�1=2�

L! 1

2
�2
�
W 2(1) + 1

�
� �2 =

1

2
�2
�
W 2(1)� 1

�
:

Using the above result and (3.37) we get

BEPO = N

���� 12 �  22
 22

���� = ����N�1 ( 12 �  22)

N�2 22

����
L!
����� 12�2 [W 2(1)� 1]
�2
R 1
0
W 2(r)dr

����� =
1

2

����� W 2(1)� 1R 1
0
W 2(r)dr

����� :
3.9. Tables and Figures
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Table 3.1. Asymptotic critical values.

BNM BEPO
Percentile 1% 5% 10% 90% 95% 99%

Case: Intercept only
0:069173 0:113954 0:15428 5:665921 7:98514 13:69566

Case: Intercept and Trend
0:049464 0:07287 0:091695 10:90568 13:72295 20:21404
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Table 3.12. Empirical size of the tests for model with an intercept only.

� BNMb BEPOb BNMa BEPOa BNMh BEPOh ADFPQ ADFS MPQ MS

50 �0:8 0:522 0:511 0:508 0:496 0:500 0:488 0:246 0:565 0:161 0:481
�0:7 0:381 0:372 0:367 0:355 0:359 0:348 0:175 0:456 0:103 0:388
�0:6 0:291 0:280 0:277 0:266 0:273 0:263 0:141 0:375 0:074 0:321
�0:5 0:235 0:222 0:232 0:221 0:224 0:212 0:120 0:325 0:070 0:273
�0:4 0:207 0:194 0:205 0:196 0:194 0:183 0:116 0:303 0:071 0:240
�0:3 0:175 0:156 0:182 0:167 0:173 0:156 0:112 0:259 0:071 0:192
�0:2 0:130 0:115 0:155 0:142 0:137 0:123 0:105 0:208 0:068 0:145
�0:1 0:092 0:078 0:132 0:121 0:110 0:096 0:088 0:141 0:056 0:093
0:0 0:069 0:058 0:115 0:104 0:088 0:076 0:075 0:104 0:048 0:071
0:1 0:061 0:051 0:113 0:102 0:081 0:071 0:053 0:079 0:035 0:059
0:2 0:059 0:051 0:117 0:108 0:089 0:078 0:042 0:064 0:029 0:057
0:3 0:059 0:050 0:109 0:098 0:082 0:072 0:045 0:059 0:037 0:069
0:4 0:069 0:061 0:114 0:103 0:090 0:081 0:047 0:053 0:046 0:074
0:5 0:069 0:063 0:109 0:099 0:089 0:080 0:048 0:056 0:054 0:088
0:6 0:073 0:060 0:114 0:102 0:091 0:078 0:051 0:059 0:062 0:097
0:7 0:066 0:058 0:109 0:098 0:085 0:076 0:050 0:066 0:070 0:108
0:8 0:063 0:052 0:097 0:085 0:077 0:066 0:045 0:075 0:072 0:117

100 �0:8 0:259 0:256 0:256 0:252 0:246 0:241 0:112 0:276 0:042 0:140
�0:7 0:147 0:140 0:162 0:155 0:146 0:138 0:099 0:152 0:042 0:083
�0:6 0:113 0:106 0:129 0:121 0:116 0:109 0:084 0:097 0:043 0:064
�0:5 0:101 0:095 0:111 0:105 0:103 0:098 0:081 0:080 0:051 0:063
�0:4 0:105 0:100 0:101 0:095 0:094 0:088 0:074 0:096 0:051 0:086
�0:3 0:118 0:112 0:107 0:102 0:106 0:099 0:068 0:131 0:053 0:115
�0:2 0:116 0:111 0:103 0:096 0:105 0:099 0:069 0:133 0:057 0:116
�0:1 0:079 0:073 0:081 0:075 0:077 0:072 0:070 0:115 0:058 0:095
0:0 0:057 0:049 0:076 0:068 0:064 0:055 0:055 0:071 0:044 0:057
0:1 0:046 0:042 0:069 0:065 0:056 0:052 0:041 0:052 0:033 0:043
0:2 0:047 0:042 0:073 0:066 0:058 0:051 0:041 0:048 0:037 0:050
0:3 0:057 0:054 0:075 0:071 0:066 0:061 0:044 0:047 0:042 0:057
0:4 0:056 0:051 0:072 0:066 0:064 0:059 0:057 0:052 0:059 0:064
0:5 0:058 0:054 0:072 0:066 0:062 0:058 0:045 0:055 0:052 0:067
0:6 0:054 0:049 0:069 0:061 0:058 0:052 0:045 0:057 0:052 0:072
0:7 0:061 0:056 0:075 0:070 0:068 0:061 0:042 0:059 0:056 0:078
0:8 0:062 0:056 0:076 0:070 0:067 0:060 0:041 0:063 0:062 0:084

200 �0:8 0:105 0:102 0:114 0:113 0:107 0:104 0:081 0:203 0:018 0:052
�0:7 0:085 0:081 0:093 0:090 0:086 0:083 0:071 0:103 0:028 0:040
�0:6 0:070 0:068 0:080 0:078 0:073 0:071 0:072 0:067 0:043 0:039
�0:5 0:070 0:067 0:076 0:072 0:071 0:068 0:059 0:050 0:043 0:038
�0:4 0:066 0:063 0:073 0:070 0:069 0:065 0:058 0:051 0:050 0:047
�0:3 0:061 0:059 0:064 0:062 0:059 0:057 0:057 0:055 0:049 0:053
�0:2 0:082 0:082 0:070 0:068 0:072 0:071 0:054 0:083 0:050 0:080
�0:1 0:076 0:073 0:068 0:065 0:071 0:068 0:053 0:085 0:050 0:078
0:0 0:053 0:050 0:059 0:057 0:054 0:051 0:046 0:056 0:042 0:050
0:1 0:041 0:039 0:056 0:053 0:048 0:046 0:043 0:045 0:039 0:042
0:2 0:053 0:050 0:064 0:061 0:059 0:056 0:048 0:046 0:046 0:048
0:3 0:055 0:052 0:063 0:060 0:057 0:055 0:050 0:050 0:050 0:056
0:4 0:057 0:054 0:062 0:060 0:058 0:056 0:045 0:052 0:049 0:057
0:5 0:057 0:057 0:062 0:062 0:058 0:058 0:042 0:050 0:047 0:056
0:6 0:051 0:049 0:057 0:054 0:053 0:051 0:043 0:052 0:049 0:059
0:7 0:049 0:045 0:056 0:051 0:052 0:047 0:041 0:054 0:052 0:062
0:8 0:058 0:054 0:064 0:059 0:060 0:056 0:038 0:052 0:053 0:061

400 �0:8 0:078 0:076 0:081 0:080 0:078 0:077 0:071 0:165 0:017 0:038
�0:7 0:068 0:067 0:071 0:070 0:069 0:068 0:067 0:087 0:036 0:038
�0:6 0:066 0:063 0:070 0:066 0:067 0:064 0:061 0:060 0:044 0:040
�0:5 0:060 0:058 0:063 0:061 0:061 0:060 0:054 0:052 0:045 0:044
�0:4 0:058 0:056 0:061 0:059 0:059 0:057 0:053 0:048 0:049 0:045
�0:3 0:054 0:052 0:059 0:057 0:056 0:053 0:054 0:049 0:052 0:048
�0:2 0:059 0:059 0:058 0:059 0:056 0:057 0:048 0:054 0:046 0:054
�0:1 0:072 0:069 0:061 0:060 0:064 0:062 0:053 0:074 0:051 0:073
0:0 0:048 0:046 0:052 0:049 0:049 0:047 0:050 0:055 0:047 0:053
0:1 0:044 0:043 0:053 0:052 0:049 0:047 0:047 0:043 0:047 0:043
0:2 0:050 0:047 0:055 0:051 0:052 0:049 0:051 0:051 0:051 0:052
0:3 0:051 0:049 0:054 0:052 0:052 0:050 0:046 0:048 0:047 0:050
0:4 0:051 0:050 0:055 0:053 0:052 0:051 0:042 0:046 0:044 0:048
0:5 0:052 0:050 0:055 0:052 0:053 0:051 0:047 0:053 0:050 0:056
0:6 0:056 0:054 0:060 0:057 0:056 0:055 0:042 0:048 0:047 0:051
0:7 0:054 0:053 0:058 0:055 0:055 0:053 0:045 0:051 0:051 0:055
0:8 0:051 0:048 0:056 0:053 0:052 0:050 0:044 0:050 0:054 0:055
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Table 3.13. Empirical size of the tests for model with an intercept
and a trend.

N � BNMb BEPOb BNMa BEPOa BNMh BEPOh ADFPQ ADFS MPQ MS

50 �0:8 0:775 0:729 0:679 0:635 0:738 0:690 0:390 0:874 0:266 0:801
�0:7 0:671 0:623 0:582 0:540 0:632 0:586 0:268 0:792 0:156 0:678
�0:6 0:548 0:500 0:472 0:431 0:503 0:458 0:202 0:712 0:100 0:526
�0:5 0:445 0:387 0:389 0:340 0:410 0:358 0:161 0:613 0:066 0:359
�0:4 0:329 0:270 0:301 0:251 0:310 0:256 0:150 0:524 0:053 0:229
�0:3 0:241 0:193 0:245 0:203 0:241 0:195 0:136 0:403 0:036 0:131
�0:2 0:162 0:123 0:181 0:144 0:166 0:127 0:119 0:278 0:025 0:067
�0:1 0:102 0:072 0:149 0:115 0:120 0:090 0:094 0:177 0:013 0:038
0:0 0:071 0:051 0:117 0:094 0:095 0:073 0:070 0:115 0:009 0:036
0:1 0:064 0:042 0:125 0:096 0:094 0:068 0:040 0:072 0:004 0:043
0:2 0:066 0:048 0:120 0:093 0:096 0:072 0:029 0:057 0:004 0:055
0:3 0:076 0:053 0:125 0:095 0:097 0:071 0:017 0:037 0:005 0:066
0:4 0:083 0:058 0:126 0:097 0:107 0:079 0:016 0:027 0:012 0:075
0:5 0:089 0:065 0:130 0:101 0:108 0:080 0:016 0:027 0:019 0:087
0:6 0:073 0:048 0:113 0:085 0:090 0:064 0:018 0:036 0:029 0:100
0:7 0:082 0:058 0:117 0:092 0:098 0:074 0:019 0:051 0:034 0:133
0:8 0:076 0:051 0:115 0:083 0:093 0:065 0:016 0:065 0:042 0:156

100 �0:8 0:601 0:588 0:515 0:499 0:540 0:527 0:171 0:516 0:093 0:449
�0:7 0:361 0:347 0:332 0:312 0:323 0:304 0:116 0:320 0:050 0:283
�0:6 0:237 0:217 0:245 0:223 0:226 0:204 0:087 0:211 0:039 0:197
�0:5 0:199 0:184 0:192 0:173 0:176 0:159 0:083 0:196 0:039 0:179
�0:4 0:184 0:165 0:167 0:150 0:156 0:137 0:072 0:224 0:036 0:181
�0:3 0:188 0:167 0:161 0:143 0:161 0:142 0:063 0:232 0:035 0:163
�0:2 0:136 0:120 0:137 0:120 0:130 0:113 0:060 0:195 0:031 0:115
�0:1 0:095 0:077 0:114 0:095 0:100 0:082 0:059 0:124 0:029 0:064
0:0 0:062 0:050 0:099 0:084 0:076 0:062 0:042 0:067 0:019 0:036
0:1 0:049 0:040 0:094 0:079 0:066 0:055 0:028 0:042 0:012 0:029
0:2 0:047 0:041 0:087 0:074 0:063 0:053 0:021 0:032 0:010 0:043
0:3 0:068 0:055 0:110 0:095 0:081 0:069 0:023 0:025 0:018 0:050
0:4 0:066 0:055 0:097 0:084 0:077 0:065 0:033 0:028 0:032 0:058
0:5 0:061 0:050 0:092 0:078 0:072 0:060 0:031 0:029 0:036 0:066
0:6 0:064 0:050 0:094 0:082 0:076 0:062 0:026 0:036 0:036 0:069
0:7 0:064 0:050 0:101 0:083 0:077 0:061 0:021 0:045 0:035 0:083
0:8 0:060 0:046 0:092 0:076 0:071 0:057 0:018 0:047 0:047 0:094

200 �0:8 0:199 0:190 0:219 0:207 0:200 0:189 0:086 0:203 0:021 0:084
�0:7 0:130 0:121 0:153 0:145 0:137 0:128 0:062 0:068 0:019 0:031
�0:6 0:103 0:096 0:121 0:114 0:108 0:102 0:056 0:034 0:025 0:023
�0:5 0:083 0:075 0:099 0:091 0:089 0:080 0:055 0:026 0:032 0:029
�0:4 0:079 0:072 0:095 0:088 0:081 0:074 0:045 0:027 0:032 0:032
�0:3 0:082 0:076 0:085 0:078 0:074 0:068 0:049 0:067 0:038 0:065
�0:2 0:110 0:102 0:091 0:082 0:094 0:087 0:044 0:109 0:034 0:091
�0:1 0:091 0:082 0:086 0:076 0:084 0:075 0:050 0:104 0:037 0:077
0:0 0:048 0:044 0:063 0:058 0:052 0:048 0:038 0:056 0:024 0:039
0:1 0:043 0:039 0:070 0:063 0:054 0:049 0:024 0:034 0:018 0:031
0:2 0:051 0:045 0:070 0:064 0:059 0:054 0:030 0:034 0:025 0:042
0:3 0:057 0:051 0:070 0:064 0:061 0:055 0:038 0:032 0:038 0:046
0:4 0:056 0:049 0:067 0:060 0:058 0:050 0:035 0:033 0:038 0:047
0:5 0:048 0:044 0:064 0:059 0:054 0:050 0:027 0:036 0:033 0:051
0:6 0:054 0:049 0:067 0:060 0:057 0:051 0:024 0:040 0:035 0:055
0:7 0:059 0:053 0:072 0:065 0:064 0:058 0:024 0:043 0:044 0:064
0:8 0:054 0:050 0:068 0:062 0:059 0:054 0:025 0:047 0:051 0:068

400 �0:8 0:108 0:104 0:118 0:114 0:110 0:106 0:061 0:187 0:007 0:025
�0:7 0:083 0:079 0:091 0:088 0:085 0:082 0:055 0:071 0:017 0:021
�0:6 0:073 0:069 0:084 0:080 0:076 0:072 0:049 0:046 0:027 0:025
�0:5 0:066 0:063 0:073 0:070 0:068 0:065 0:045 0:034 0:035 0:027
�0:4 0:064 0:061 0:073 0:070 0:067 0:063 0:046 0:033 0:038 0:033
�0:3 0:060 0:057 0:068 0:064 0:062 0:059 0:042 0:032 0:037 0:035
�0:2 0:066 0:062 0:063 0:060 0:061 0:058 0:044 0:054 0:039 0:055
�0:1 0:081 0:078 0:068 0:065 0:071 0:067 0:036 0:074 0:033 0:066
0:0 0:051 0:049 0:056 0:054 0:052 0:050 0:039 0:050 0:034 0:043
0:1 0:041 0:039 0:057 0:055 0:050 0:047 0:034 0:038 0:030 0:037
0:2 0:052 0:050 0:063 0:060 0:055 0:053 0:039 0:039 0:040 0:045
0:3 0:055 0:052 0:062 0:059 0:057 0:054 0:036 0:038 0:038 0:046
0:4 0:053 0:049 0:059 0:056 0:055 0:052 0:030 0:037 0:032 0:043
0:5 0:049 0:047 0:054 0:051 0:051 0:048 0:030 0:038 0:036 0:047
0:6 0:052 0:049 0:058 0:055 0:052 0:049 0:032 0:038 0:041 0:044
0:7 0:053 0:050 0:058 0:055 0:053 0:051 0:028 0:039 0:041 0:047
0:8 0:052 0:050 0:057 0:054 0:053 0:050 0:028 0:044 0:051 0:053
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Table 3.14. Power of the tests for model with an intercept only, � = 0:

N � BNMb BEPOb BNMa BEPOa BNMh BEPOh ADFPQ ADFS MPQ MS

50 0:80 0:603 0:576 0:655 0:633 0:625 0:601 0:630 0:831 0:501 0:698
0:82 0:557 0:522 0:617 0:589 0:581 0:548 0:587 0:772 0:454 0:629
0:84 0:497 0:466 0:564 0:540 0:525 0:497 0:525 0:707 0:394 0:561
0:86 0:427 0:395 0:505 0:477 0:461 0:431 0:465 0:630 0:333 0:483
0:88 0:366 0:334 0:455 0:427 0:404 0:374 0:397 0:543 0:273 0:402
0:90 0:305 0:278 0:396 0:372 0:342 0:316 0:345 0:474 0:225 0:335
0:92 0:242 0:218 0:337 0:316 0:278 0:256 0:281 0:385 0:182 0:269
0:94 0:185 0:165 0:269 0:251 0:219 0:201 0:210 0:289 0:128 0:194
0:96 0:139 0:121 0:220 0:202 0:169 0:151 0:159 0:222 0:095 0:146
0:98 0:101 0:087 0:164 0:150 0:126 0:112 0:110 0:153 0:066 0:101

100 0:80 0:924 0:922 0:912 0:911 0:921 0:919 0:818 0:983 0:795 0:974
0:82 0:902 0:900 0:891 0:889 0:897 0:896 0:807 0:974 0:777 0:963
0:84 0:874 0:872 0:869 0:866 0:870 0:868 0:790 0:959 0:756 0:940
0:86 0:824 0:823 0:823 0:821 0:822 0:821 0:759 0:930 0:721 0:901
0:88 0:760 0:755 0:767 0:762 0:763 0:757 0:708 0:874 0:658 0:829
0:90 0:644 0:640 0:664 0:659 0:649 0:644 0:622 0:782 0:565 0:720
0:92 0:509 0:500 0:543 0:534 0:519 0:509 0:505 0:638 0:443 0:568
0:94 0:369 0:360 0:411 0:403 0:382 0:373 0:366 0:467 0:309 0:401
0:96 0:233 0:222 0:273 0:263 0:247 0:237 0:236 0:308 0:197 0:260
0:98 0:121 0:115 0:156 0:149 0:133 0:126 0:129 0:169 0:103 0:137

200 0:80 0:997 0:998 0:991 0:992 0:996 0:997 0:917 0:999 0:893 0:999
0:82 0:997 0:998 0:991 0:992 0:995 0:996 0:923 0:998 0:903 0:998
0:84 0:995 0:995 0:988 0:988 0:993 0:994 0:924 0:998 0:909 0:998
0:86 0:991 0:992 0:982 0:983 0:990 0:991 0:923 0:999 0:912 0:998
0:88 0:984 0:985 0:977 0:978 0:983 0:984 0:914 0:996 0:904 0:994
0:90 0:972 0:974 0:964 0:966 0:970 0:971 0:897 0:989 0:890 0:986
0:92 0:925 0:930 0:914 0:919 0:922 0:926 0:857 0:960 0:847 0:952
0:94 0:796 0:802 0:792 0:796 0:795 0:801 0:745 0:855 0:723 0:832
0:96 0:541 0:543 0:555 0:558 0:546 0:548 0:509 0:602 0:482 0:569
0:98 0:233 0:236 0:255 0:255 0:238 0:240 0:211 0:256 0:193 0:234

400 0:80 1:000 1:000 0:999 0:999 1:000 1:000 0:975 1:000 0:960 1:000
0:82 1:000 1:000 0:999 0:999 1:000 1:000 0:976 1:000 0:964 1:000
0:84 1:000 1:000 1:000 1:000 1:000 1:000 0:982 1:000 0:973 1:000
0:86 1:000 1:000 0:999 0:999 1:000 1:000 0:984 1:000 0:977 1:000
0:88 1:000 1:000 0:999 1:000 1:000 1:000 0:985 1:000 0:979 1:000
0:90 1:000 1:000 0:999 0:999 1:000 1:000 0:987 1:000 0:982 1:000
0:92 0:999 1:000 0:999 0:999 0:999 1:000 0:985 1:000 0:980 1:000
0:94 0:998 0:998 0:995 0:995 0:997 0:998 0:975 0:998 0:973 0:998
0:96 0:954 0:959 0:948 0:953 0:953 0:957 0:917 0:968 0:913 0:964
0:98 0:554 0:569 0:563 0:578 0:556 0:570 0:515 0:572 0:506 0:559
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Table 3.15. Power of the tests for model with an intercept and a
trend, � = 0:

N � BNMb BEPOb BNMa BEPOa BNMh BEPOh ADFPQ ADFS MPQ MS

50 0:80 0:323 0:239 0:372 0:294 0:350 0:268 0:322 0:465 0:058 0:137
0:82 0:286 0:206 0:340 0:268 0:313 0:237 0:283 0:421 0:044 0:115
0:84 0:241 0:176 0:300 0:237 0:270 0:204 0:239 0:360 0:034 0:099
0:86 0:220 0:158 0:282 0:222 0:248 0:186 0:200 0:305 0:028 0:080
0:88 0:179 0:130 0:245 0:197 0:208 0:160 0:170 0:266 0:022 0:074
0:90 0:149 0:105 0:208 0:162 0:176 0:131 0:140 0:222 0:019 0:063
0:92 0:131 0:092 0:193 0:150 0:157 0:117 0:117 0:186 0:012 0:051
0:94 0:103 0:073 0:162 0:125 0:128 0:095 0:096 0:158 0:012 0:047
0:96 0:088 0:059 0:139 0:106 0:111 0:080 0:080 0:131 0:010 0:040
0:98 0:081 0:057 0:133 0:104 0:103 0:076 0:076 0:121 0:008 0:037

100 0:80 0:733 0:685 0:740 0:699 0:736 0:692 0:633 0:883 0:486 0:720
0:82 0:666 0:615 0:690 0:646 0:675 0:627 0:582 0:810 0:420 0:618
0:84 0:600 0:546 0:634 0:588 0:612 0:561 0:510 0:724 0:338 0:515
0:86 0:490 0:436 0:543 0:493 0:507 0:454 0:424 0:613 0:258 0:402
0:88 0:415 0:364 0:472 0:425 0:432 0:383 0:334 0:487 0:192 0:305
0:90 0:308 0:264 0:373 0:331 0:332 0:288 0:249 0:375 0:132 0:216
0:92 0:218 0:183 0:289 0:252 0:241 0:205 0:180 0:268 0:087 0:143
0:94 0:157 0:134 0:220 0:192 0:178 0:154 0:124 0:192 0:056 0:099
0:96 0:102 0:083 0:160 0:137 0:120 0:100 0:080 0:123 0:035 0:064
0:98 0:069 0:056 0:107 0:091 0:080 0:067 0:059 0:089 0:025 0:043

200 0:80 0:975 0:971 0:967 0:963 0:973 0:969 0:862 0:996 0:854 0:997
0:82 0:960 0:953 0:954 0:948 0:958 0:952 0:849 0:996 0:842 0:995
0:84 0:940 0:931 0:933 0:925 0:938 0:929 0:829 0:992 0:816 0:986
0:86 0:901 0:891 0:896 0:887 0:901 0:891 0:807 0:981 0:788 0:966
0:88 0:843 0:825 0:842 0:826 0:843 0:826 0:754 0:945 0:718 0:904
0:90 0:745 0:723 0:757 0:738 0:749 0:727 0:656 0:849 0:595 0:774
0:92 0:589 0:559 0:615 0:589 0:597 0:568 0:507 0:665 0:431 0:566
0:94 0:401 0:372 0:442 0:416 0:411 0:383 0:316 0:438 0:250 0:351
0:96 0:215 0:196 0:249 0:232 0:221 0:204 0:154 0:223 0:115 0:166
0:98 0:095 0:085 0:119 0:109 0:102 0:092 0:067 0:098 0:047 0:070

400 0:80 1:000 1:000 0:998 0:997 0:999 0:999 0:967 1:000 0:950 1:000
0:82 0:999 0:999 0:998 0:998 0:999 0:998 0:964 1:000 0:950 1:000
0:84 0:998 0:998 0:996 0:996 0:998 0:998 0:960 1:000 0:949 1:000
0:86 0:996 0:996 0:994 0:994 0:995 0:995 0:954 1:000 0:951 1:000
0:88 0:992 0:991 0:989 0:988 0:991 0:991 0:951 1:000 0:949 1:000
0:90 0:978 0:976 0:975 0:973 0:978 0:976 0:939 1:000 0:940 1:000
0:92 0:945 0:942 0:943 0:940 0:945 0:942 0:907 0:996 0:909 0:995
0:94 0:851 0:843 0:851 0:844 0:852 0:845 0:819 0:940 0:806 0:921
0:96 0:590 0:576 0:599 0:585 0:591 0:577 0:522 0:639 0:495 0:595
0:98 0:215 0:207 0:233 0:223 0:218 0:209 0:158 0:205 0:139 0:178
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Table 3.16. Power of the tests for model with an intercept only, � = 0:

N � BNMb BEPOb BNMa BEPOa BNMh BEPOh ADFPQ ADFS MPQ MS

50 0:1 0:952 0:947 0:901 0:895 0:934 0:928 0:716 0:928 0:624 0:900
0:2 0:943 0:939 0:898 0:893 0:925 0:921 0:725 0:945 0:645 0:923
0:3 0:932 0:924 0:884 0:877 0:914 0:907 0:739 0:957 0:667 0:943
0:4 0:909 0:901 0:874 0:866 0:895 0:887 0:749 0:966 0:681 0:956
0:5 0:904 0:896 0:880 0:873 0:894 0:885 0:756 0:975 0:695 0:967
0:6 0:850 0:836 0:844 0:832 0:850 0:836 0:753 0:976 0:694 0:960
0:7 0:773 0:754 0:782 0:765 0:774 0:756 0:739 0:954 0:663 0:902
0:8 0:603 0:576 0:655 0:633 0:625 0:601 0:622 0:827 0:495 0:699
0:9 0:305 0:278 0:396 0:372 0:342 0:316 0:342 0:465 0:228 0:331
1:0 0:069 0:058 0:115 0:104 0:088 0:076 0:075 0:102 0:047 0:067

100 0:1 0:993 0:993 0:960 0:962 0:982 0:983 0:728 0:812 0:630 0:727
0:2 0:993 0:992 0:963 0:963 0:984 0:984 0:740 0:843 0:648 0:797
0:3 0:991 0:991 0:963 0:962 0:985 0:985 0:757 0:898 0:677 0:874
0:4 0:990 0:990 0:964 0:964 0:982 0:983 0:771 0:933 0:703 0:923
0:5 0:988 0:988 0:963 0:964 0:980 0:980 0:792 0:962 0:733 0:957
0:6 0:982 0:981 0:962 0:961 0:975 0:975 0:810 0:979 0:764 0:977
0:7 0:968 0:966 0:956 0:955 0:964 0:963 0:826 0:986 0:793 0:984
0:8 0:924 0:922 0:912 0:911 0:921 0:919 0:816 0:982 0:791 0:974
0:9 0:644 0:640 0:664 0:659 0:649 0:644 0:616 0:771 0:558 0:707
1:0 0:057 0:049 0:076 0:068 0:064 0:055 0:054 0:071 0:043 0:059

200 0:1 0:999 0:999 0:976 0:979 0:993 0:993 0:757 0:809 0:639 0:635
0:2 0:999 0:999 0:980 0:982 0:995 0:995 0:778 0:879 0:666 0:773
0:3 0:999 0:999 0:982 0:984 0:996 0:997 0:804 0:932 0:703 0:876
0:4 1:000 1:000 0:982 0:983 0:996 0:997 0:825 0:958 0:736 0:930
0:5 1:000 1:000 0:985 0:985 0:997 0:997 0:849 0:977 0:772 0:965
0:6 0:999 0:999 0:987 0:988 0:998 0:998 0:868 0:991 0:811 0:987
0:7 0:999 0:999 0:991 0:992 0:998 0:998 0:898 0:996 0:855 0:995
0:8 0:997 0:998 0:991 0:992 0:996 0:997 0:920 0:999 0:894 0:998
0:9 0:972 0:974 0:964 0:966 0:970 0:971 0:898 0:988 0:888 0:986
1:0 0:053 0:050 0:059 0:057 0:054 0:051 0:046 0:057 0:042 0:052

400 0:1 0:999 0:999 0:987 0:989 0:997 0:997 0:792 0:880 0:674 0:623
0:2 1:000 1:000 0:987 0:989 0:998 0:998 0:826 0:909 0:723 0:746
0:3 1:000 1:000 0:989 0:989 0:999 0:999 0:844 0:891 0:743 0:756
0:4 1:000 1:000 0:990 0:991 0:998 0:998 0:869 0:894 0:783 0:800
0:5 1:000 1:000 0:994 0:994 0:999 1:000 0:891 0:925 0:825 0:872
0:6 1:000 1:000 0:996 0:996 1:000 1:000 0:926 0:962 0:882 0:945
0:7 1:000 1:000 0:998 0:998 1:000 1:000 0:952 0:991 0:922 0:989
0:8 1:000 1:000 0:999 0:999 1:000 1:000 0:975 1:000 0:958 0:999
0:9 1:000 1:000 0:999 0:999 1:000 1:000 0:986 1:000 0:982 1:000
1:0 0:053 0:050 0:059 0:057 0:054 0:051 0:043 0:051 0:042 0:049
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Table 3.17. Power of the tests for model with an intercept and trend,
� = 0:

N � BNMb BEPOb BNMa BEPOa BNMh BEPOh ADFPQ ADFS MPQ MS

50 0:1 0:950 0:926 0:833 0:786 0:904 0:867 0:726 0:987 0:604 0:972
0:2 0:936 0:906 0:820 0:775 0:890 0:854 0:733 0:982 0:607 0:971
0:3 0:919 0:887 0:807 0:759 0:880 0:845 0:735 0:981 0:607 0:953
0:4 0:882 0:836 0:772 0:724 0:840 0:794 0:729 0:978 0:572 0:899
0:5 0:821 0:752 0:734 0:668 0:792 0:726 0:712 0:966 0:471 0:748
0:6 0:718 0:630 0:656 0:581 0:698 0:615 0:666 0:915 0:314 0:515
0:7 0:542 0:447 0:547 0:464 0:551 0:461 0:537 0:748 0:159 0:289
0:8 0:323 0:239 0:372 0:294 0:350 0:268 0:317 0:464 0:053 0:133
0:9 0:149 0:105 0:208 0:162 0:176 0:131 0:138 0:221 0:017 0:062
1:0 0:071 0:051 0:117 0:094 0:095 0:073 0:070 0:113 0:008 0:035

100 0:1 0:995 0:993 0:927 0:915 0:974 0:969 0:754 0:957 0:663 0:946
0:2 0:993 0:992 0:929 0:916 0:977 0:973 0:765 0:971 0:687 0:965
0:3 0:992 0:990 0:924 0:913 0:974 0:969 0:771 0:976 0:703 0:973
0:4 0:990 0:985 0:920 0:907 0:970 0:963 0:779 0:984 0:727 0:983
0:5 0:981 0:975 0:919 0:908 0:966 0:959 0:780 0:988 0:738 0:987
0:6 0:958 0:948 0:910 0:896 0:945 0:935 0:781 0:991 0:739 0:989
0:7 0:910 0:887 0:879 0:857 0:902 0:880 0:757 0:990 0:701 0:965
0:8 0:733 0:685 0:740 0:699 0:736 0:692 0:636 0:879 0:497 0:722
0:9 0:308 0:264 0:373 0:331 0:332 0:288 0:252 0:365 0:137 0:212
1:0 0:062 0:050 0:099 0:084 0:076 0:062 0:046 0:068 0:019 0:033

200 0:1 0:998 0:998 0:960 0:954 0:988 0:987 0:796 0:877 0:680 0:839
0:2 1:000 1:000 0:967 0:962 0:995 0:995 0:809 0:917 0:703 0:904
0:3 1:000 1:000 0:963 0:959 0:994 0:993 0:820 0:960 0:727 0:961
0:4 1:000 1:000 0:968 0:965 0:996 0:995 0:836 0:987 0:764 0:988
0:5 1:000 1:000 0:967 0:963 0:994 0:993 0:840 0:997 0:785 0:996
0:6 0:999 0:999 0:972 0:970 0:995 0:995 0:859 0:998 0:820 0:999
0:7 0:995 0:994 0:981 0:979 0:993 0:992 0:863 0:999 0:844 0:999
0:8 0:975 0:971 0:967 0:963 0:973 0:969 0:852 0:998 0:845 0:998
0:9 0:745 0:723 0:757 0:738 0:749 0:727 0:671 0:856 0:608 0:783
1:0 0:048 0:044 0:063 0:058 0:052 0:048 0:037 0:053 0:027 0:039

400 0:1 1:000 1:000 0:980 0:979 0:997 0:997 0:874 0:905 0:711 0:793
0:2 1:000 1:000 0:978 0:978 0:998 0:998 0:885 0:961 0:741 0:898
0:3 1:000 1:000 0:980 0:980 0:998 0:998 0:898 0:970 0:769 0:938
0:4 1:000 1:000 0:981 0:980 0:999 0:999 0:921 0:977 0:818 0:961
0:5 1:000 1:000 0:985 0:984 0:999 0:999 0:939 0:990 0:853 0:985
0:6 1:000 1:000 0:989 0:988 0:999 0:999 0:953 0:997 0:895 0:996
0:7 1:000 1:000 0:998 0:998 1:000 1:000 0:962 0:999 0:922 0:999
0:8 1:000 1:000 0:998 0:997 0:999 0:999 0:966 1:000 0:949 1:000
0:9 0:978 0:976 0:975 0:973 0:978 0:976 0:939 1:000 0:939 1:000
1:0 0:051 0:049 0:056 0:054 0:052 0:050 0:037 0:049 0:034 0:042



122

Table 3.18. Relative frequencies of MA order chosen when only an
intercept is included in the model.

N = 50 N = 100
� 0 1 2 3 4 5 0 1 2 3 4 5

�0:8 BIC 0:686 0:249 0:043 0:019 0:004 0:001 0:223 0:731 0:033 0:008 0:003 0:002
AIC 0:394 0:278 0:110 0:087 0:070 0:062 0:094 0:603 0:116 0:072 0:059 0:057
HQIC 0:527 0:291 0:082 0:054 0:028 0:019 0:152 0:713 0:076 0:029 0:019 0:013

�0:7 BIC 0:497 0:416 0:057 0:019 0:011 0:001 0:093 0:863 0:031 0:008 0:004 0:001
AIC 0:271 0:366 0:117 0:085 0:092 0:071 0:031 0:673 0:112 0:072 0:056 0:055
HQIC 0:378 0:406 0:099 0:055 0:044 0:020 0:055 0:814 0:071 0:030 0:017 0:012

�0:6 BIC 0:423 0:485 0:058 0:022 0:008 0:005 0:050 0:904 0:034 0:009 0:003 0:001
AIC 0:199 0:455 0:101 0:088 0:086 0:072 0:014 0:681 0:121 0:071 0:056 0:056
HQIC 0:296 0:501 0:086 0:055 0:042 0:021 0:027 0:834 0:076 0:033 0:018 0:012

�0:5 BIC 0:451 0:458 0:058 0:028 0:005 0:002 0:070 0:889 0:031 0:007 0:002 0:001
AIC 0:207 0:432 0:112 0:098 0:083 0:069 0:014 0:700 0:116 0:069 0:048 0:053
HQIC 0:311 0:485 0:090 0:060 0:035 0:021 0:032 0:843 0:072 0:029 0:013 0:012

�0:4 BIC 0:591 0:333 0:045 0:021 0:008 0:003 0:164 0:792 0:035 0:007 0:001 0:001
AIC 0:298 0:353 0:109 0:091 0:082 0:069 0:039 0:667 0:123 0:070 0:050 0:051
HQIC 0:438 0:384 0:086 0:047 0:033 0:015 0:082 0:786 0:077 0:032 0:014 0:009

�0:3 BIC 0:736 0:212 0:035 0:011 0:005 0:002 0:398 0:567 0:027 0:005 0:002 0:001
AIC 0:410 0:283 0:110 0:071 0:058 0:070 0:132 0:592 0:108 0:064 0:053 0:051
HQIC 0:557 0:283 0:071 0:040 0:028 0:023 0:240 0:647 0:064 0:023 0:015 0:010

�0:2 BIC 0:869 0:090 0:024 0:015 0:002 0:001 0:726 0:246 0:020 0:005 0:002 0:001
AIC 0:561 0:176 0:075 0:069 0:062 0:058 0:365 0:381 0:102 0:062 0:044 0:046
HQIC 0:717 0:150 0:051 0:042 0:024 0:018 0:546 0:353 0:057 0:023 0:012 0:009

�0:1 BIC 0:921 0:045 0:019 0:011 0:004 0:001 0:928 0:060 0:009 0:002 0:001 0:000
AIC 0:666 0:091 0:063 0:061 0:065 0:056 0:641 0:166 0:068 0:047 0:039 0:039
HQIC 0:814 0:072 0:045 0:031 0:026 0:013 0:821 0:115 0:033 0:014 0:010 0:008

0 BIC 0:920 0:055 0:014 0:007 0:005 0:001 0:959 0:031 0:006 0:002 0:001 0:000
AIC 0:645 0:115 0:069 0:062 0:062 0:049 0:706 0:116 0:062 0:043 0:035 0:038
HQIC 0:794 0:091 0:043 0:034 0:026 0:012 0:875 0:073 0:027 0:012 0:009 0:005

0:1 BIC 0:822 0:138 0:027 0:007 0:007 0:001 0:824 0:156 0:014 0:004 0:001 0:001
AIC 0:525 0:208 0:086 0:057 0:063 0:063 0:492 0:289 0:085 0:053 0:042 0:040
HQIC 0:672 0:188 0:058 0:035 0:034 0:014 0:676 0:247 0:044 0:019 0:009 0:006

0:2 BIC 0:624 0:317 0:037 0:013 0:009 0:001 0:500 0:468 0:025 0:005 0:002 0:001
AIC 0:328 0:381 0:102 0:074 0:064 0:053 0:188 0:549 0:104 0:062 0:049 0:048
HQIC 0:460 0:383 0:072 0:042 0:031 0:014 0:320 0:574 0:060 0:024 0:012 0:010

0:3 BIC 0:378 0:547 0:045 0:018 0:011 0:002 0:163 0:794 0:034 0:007 0:002 0:001
AIC 0:140 0:517 0:114 0:087 0:072 0:072 0:034 0:672 0:121 0:070 0:054 0:050
HQIC 0:241 0:579 0:086 0:044 0:034 0:018 0:076 0:795 0:079 0:026 0:016 0:010

0:4 BIC 0:167 0:754 0:047 0:021 0:011 0:002 0:025 0:932 0:033 0:007 0:002 0:002
AIC 0:039 0:612 0:120 0:081 0:072 0:077 0:003 0:709 0:122 0:066 0:052 0:048
HQIC 0:085 0:713 0:094 0:049 0:034 0:027 0:009 0:863 0:076 0:028 0:014 0:010

0:5 BIC 0:038 0:877 0:058 0:016 0:010 0:003 0:002 0:952 0:034 0:008 0:003 0:001
AIC 0:009 0:650 0:127 0:084 0:074 0:058 0:000 0:710 0:117 0:074 0:053 0:046
HQIC 0:018 0:777 0:103 0:049 0:037 0:017 0:000 0:866 0:074 0:031 0:018 0:010

0:6 BIC 0:006 0:912 0:055 0:019 0:007 0:003 0:000 0:954 0:034 0:007 0:003 0:002
AIC 0:001 0:664 0:123 0:077 0:073 0:064 0:000 0:702 0:126 0:074 0:050 0:049
HQIC 0:002 0:804 0:093 0:045 0:036 0:022 0:000 0:865 0:079 0:030 0:015 0:011

0:7 BIC 0:001 0:916 0:055 0:016 0:011 0:003 0:000 0:956 0:034 0:007 0:002 0:001
AIC 0:000 0:682 0:117 0:068 0:072 0:062 0:000 0:712 0:126 0:067 0:046 0:048
HQIC 0:000 0:816 0:094 0:039 0:035 0:017 0:000 0:873 0:077 0:028 0:013 0:009

0:8 BIC 0:001 0:912 0:059 0:021 0:007 0:002 0:000 0:957 0:034 0:006 0:002 0:001
AIC 0:000 0:659 0:132 0:066 0:080 0:064 0:000 0:713 0:121 0:067 0:053 0:046
HQIC 0:001 0:801 0:095 0:043 0:037 0:024 0:000 0:870 0:075 0:029 0:017 0:009
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Table 3.19. Relative frequencies of MA order chosen when only an
intercept is included in the model.

N = 200 N = 400
� 0 1 2 3 4 5 0 1 2 3 4 5

�0:8 BIC 0:014 0:958 0:023 0:004 0:001 0:000 0:000 0:983 0:015 0:001 0:000 0:000
AIC 0:003 0:721 0:121 0:069 0:045 0:042 0:000 0:730 0:123 0:065 0:048 0:035
HQIC 0:007 0:893 0:062 0:023 0:009 0:006 0:000 0:918 0:056 0:017 0:006 0:002

�0:7 BIC 0:002 0:971 0:023 0:003 0:001 0:000 0:000 0:984 0:015 0:001 0:000 0:000
AIC 0:001 0:722 0:123 0:068 0:047 0:039 0:000 0:744 0:117 0:064 0:040 0:036
HQIC 0:001 0:898 0:066 0:022 0:010 0:004 0:000 0:924 0:053 0:016 0:005 0:002

�0:6 BIC 0:001 0:972 0:024 0:003 0:001 0:000 0:000 0:984 0:014 0:002 0:000 0:000
AIC 0:000 0:724 0:122 0:067 0:047 0:040 0:000 0:734 0:125 0:068 0:041 0:033
HQIC 0:000 0:897 0:067 0:022 0:010 0:004 0:000 0:917 0:056 0:018 0:006 0:004

�0:5 BIC 0:001 0:973 0:024 0:002 0:000 0:000 0:000 0:984 0:015 0:001 0:000 0:000
AIC 0:000 0:734 0:119 0:064 0:045 0:038 0:000 0:737 0:121 0:064 0:041 0:037
HQIC 0:000 0:906 0:062 0:019 0:009 0:003 0:000 0:923 0:055 0:015 0:005 0:002

�0:4 BIC 0:003 0:971 0:022 0:004 0:001 0:000 0:000 0:985 0:013 0:001 0:000 0:000
AIC 0:000 0:731 0:119 0:065 0:045 0:039 0:000 0:741 0:124 0:062 0:041 0:032
HQIC 0:001 0:901 0:063 0:020 0:010 0:005 0:000 0:925 0:055 0:014 0:004 0:003

�0:3 BIC 0:065 0:909 0:023 0:003 0:000 0:000 0:001 0:982 0:016 0:002 0:000 0:000
AIC 0:007 0:725 0:123 0:066 0:043 0:037 0:000 0:739 0:122 0:063 0:040 0:036
HQIC 0:023 0:881 0:064 0:020 0:008 0:004 0:000 0:917 0:059 0:016 0:006 0:003

�0:2 BIC 0:420 0:557 0:019 0:003 0:000 0:000 0:092 0:892 0:015 0:001 0:000 0:000
AIC 0:111 0:628 0:115 0:064 0:046 0:036 0:007 0:732 0:115 0:064 0:045 0:037
HQIC 0:237 0:673 0:059 0:018 0:008 0:005 0:029 0:894 0:054 0:015 0:006 0:003

�0:1 BIC 0:868 0:123 0:008 0:001 0:000 0:000 0:729 0:263 0:007 0:001 0:000 0:000
AIC 0:503 0:290 0:085 0:051 0:040 0:031 0:286 0:486 0:101 0:057 0:040 0:029
HQIC 0:716 0:232 0:032 0:013 0:006 0:002 0:512 0:433 0:038 0:011 0:005 0:001

0 BIC 0:975 0:022 0:003 0:001 0:000 0:000 0:983 0:016 0:002 0:000 0:000 0:000
AIC 0:715 0:124 0:062 0:039 0:032 0:028 0:717 0:123 0:064 0:042 0:030 0:023
HQIC 0:901 0:066 0:020 0:009 0:003 0:002 0:915 0:060 0:015 0:007 0:003 0:001

0:1 BIC 0:772 0:216 0:010 0:002 0:000 0:000 0:636 0:353 0:009 0:001 0:000 0:000
AIC 0:369 0:408 0:093 0:055 0:039 0:036 0:204 0:560 0:107 0:056 0:043 0:031
HQIC 0:583 0:354 0:041 0:013 0:006 0:004 0:406 0:532 0:044 0:012 0:004 0:002

0:2 BIC 0:258 0:716 0:022 0:003 0:000 0:000 0:051 0:935 0:012 0:001 0:000 0:000
AIC 0:050 0:687 0:121 0:063 0:042 0:037 0:003 0:739 0:118 0:065 0:041 0:036
HQIC 0:122 0:788 0:058 0:020 0:008 0:005 0:013 0:911 0:052 0:017 0:005 0:002

0:3 BIC 0:022 0:957 0:018 0:003 0:000 0:000 0:000 0:985 0:013 0:002 0:000 0:000
AIC 0:001 0:731 0:119 0:066 0:046 0:036 0:000 0:745 0:119 0:063 0:040 0:034
HQIC 0:005 0:900 0:063 0:018 0:011 0:004 0:000 0:921 0:056 0:016 0:005 0:002

0:4 BIC 0:000 0:974 0:023 0:003 0:000 0:000 0:000 0:984 0:014 0:002 0:000 0:000
AIC 0:000 0:725 0:121 0:067 0:046 0:040 0:000 0:730 0:120 0:069 0:045 0:035
HQIC 0:000 0:901 0:063 0:022 0:009 0:004 0:000 0:923 0:052 0:018 0:004 0:003

0:5 BIC 0:000 0:974 0:022 0:003 0:001 0:000 0:000 0:986 0:013 0:001 0:000 0:000
AIC 0:000 0:727 0:124 0:064 0:047 0:038 0:000 0:741 0:116 0:064 0:044 0:036
HQIC 0:000 0:903 0:064 0:022 0:008 0:004 0:000 0:927 0:051 0:013 0:006 0:003

0:6 BIC 0:000 0:972 0:024 0:003 0:001 0:000 0:000 0:984 0:015 0:001 0:000 0:000
AIC 0:000 0:730 0:120 0:066 0:044 0:040 0:000 0:743 0:117 0:065 0:042 0:033
HQIC 0:000 0:902 0:068 0:019 0:008 0:004 0:000 0:926 0:052 0:014 0:006 0:002

0:7 BIC 0:000 0:976 0:021 0:003 0:001 0:000 0:000 0:981 0:017 0:002 0:000 0:000
AIC 0:000 0:727 0:121 0:066 0:047 0:039 0:000 0:739 0:119 0:066 0:041 0:035
HQIC 0:000 0:904 0:065 0:020 0:009 0:003 0:000 0:920 0:058 0:015 0:005 0:002

0:8 BIC 0:000 0:973 0:023 0:003 0:001 0:000 0:000 0:983 0:016 0:001 0:000 0:000
AIC 0:000 0:736 0:117 0:065 0:044 0:038 0:000 0:737 0:124 0:062 0:043 0:034
HQIC 0:000 0:906 0:065 0:019 0:007 0:003 0:000 0:917 0:060 0:014 0:006 0:003
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Table 3.20. Relative frequencies of MA order chosen when only an
intercept is included in the model.

N = 50 N = 100
� 0 1 2 3 4 5 0 1 2 3 4 5

0:1 BIC 0:910 0:054 0:022 0:010 0:003 0:001 0:939 0:044 0:014 0:002 0:001 0:000
AIC 0:605 0:126 0:095 0:070 0:058 0:045 0:615 0:135 0:094 0:061 0:047 0:048

HQIC 0:777 0:099 0:058 0:036 0:020 0:010 0:824 0:092 0:047 0:021 0:010 0:007
0:2 BIC 0:915 0:049 0:023 0:009 0:003 0:001 0:946 0:040 0:012 0:001 0:001 0:000

AIC 0:623 0:109 0:092 0:069 0:058 0:049 0:641 0:128 0:086 0:057 0:047 0:041
HQIC 0:794 0:082 0:055 0:033 0:022 0:013 0:843 0:086 0:040 0:016 0:009 0:007

0:3 BIC 0:914 0:053 0:023 0:007 0:003 0:000 0:951 0:037 0:008 0:003 0:001 0:000
AIC 0:626 0:112 0:087 0:063 0:064 0:049 0:663 0:113 0:076 0:058 0:048 0:042

HQIC 0:788 0:092 0:056 0:032 0:020 0:012 0:855 0:073 0:035 0:020 0:011 0:006
0:4 BIC 0:908 0:059 0:021 0:008 0:003 0:001 0:948 0:039 0:009 0:002 0:000 0:000

AIC 0:635 0:116 0:082 0:058 0:058 0:051 0:671 0:112 0:072 0:058 0:041 0:046
HQIC 0:784 0:096 0:054 0:030 0:023 0:012 0:855 0:077 0:032 0:021 0:007 0:009

0:5 BIC 0:912 0:055 0:022 0:006 0:003 0:001 0:954 0:033 0:010 0:003 0:001 0:000
AIC 0:643 0:115 0:074 0:058 0:061 0:049 0:681 0:112 0:075 0:050 0:046 0:036

HQIC 0:791 0:094 0:054 0:027 0:023 0:011 0:860 0:074 0:034 0:016 0:009 0:006
0:6 BIC 0:909 0:055 0:025 0:006 0:004 0:001 0:954 0:034 0:008 0:002 0:001 0:000

AIC 0:657 0:114 0:073 0:051 0:059 0:045 0:686 0:106 0:072 0:049 0:048 0:040
HQIC 0:802 0:087 0:050 0:026 0:023 0:013 0:861 0:071 0:034 0:014 0:012 0:007

0:7 BIC 0:920 0:049 0:022 0:006 0:002 0:001 0:955 0:031 0:009 0:002 0:003 0:000
AIC 0:658 0:110 0:077 0:062 0:053 0:041 0:690 0:108 0:066 0:049 0:045 0:041

HQIC 0:808 0:082 0:051 0:027 0:022 0:011 0:868 0:072 0:031 0:013 0:010 0:007
0:8 BIC 0:913 0:052 0:022 0:007 0:004 0:001 0:959 0:031 0:006 0:003 0:001 0:000

AIC 0:647 0:112 0:075 0:059 0:066 0:041 0:696 0:116 0:057 0:048 0:043 0:039
HQIC 0:794 0:091 0:049 0:029 0:027 0:009 0:868 0:072 0:027 0:016 0:011 0:006

0:9 BIC 0:915 0:051 0:019 0:010 0:004 0:001 0:958 0:032 0:008 0:002 0:001 0:000
AIC 0:649 0:118 0:066 0:058 0:058 0:051 0:713 0:113 0:060 0:040 0:036 0:038

HQIC 0:807 0:085 0:042 0:029 0:024 0:012 0:874 0:072 0:030 0:010 0:007 0:006
1 BIC 0:913 0:057 0:018 0:007 0:004 0:000 0:956 0:035 0:005 0:002 0:001 0:001

AIC 0:649 0:115 0:069 0:063 0:059 0:046 0:708 0:114 0:063 0:048 0:030 0:037
HQIC 0:803 0:094 0:039 0:029 0:024 0:011 0:871 0:075 0:026 0:016 0:006 0:006

N = 200 N = 400
� 0 1 2 3 4 5 0 1 2 3 4 5

0:1 BIC 0:956 0:034 0:009 0:000 0:000 0:000 0:976 0:020 0:004 0:000 0:000 0:000
AIC 0:630 0:140 0:094 0:060 0:043 0:032 0:637 0:142 0:096 0:056 0:040 0:029

HQIC 0:855 0:090 0:036 0:011 0:006 0:002 0:890 0:071 0:028 0:007 0:003 0:001
0:2 BIC 0:963 0:030 0:006 0:001 0:000 0:000 0:980 0:017 0:003 0:000 0:000 0:000

AIC 0:655 0:128 0:087 0:054 0:039 0:037 0:679 0:108 0:084 0:054 0:040 0:034
HQIC 0:880 0:073 0:028 0:013 0:004 0:002 0:906 0:056 0:025 0:009 0:003 0:001

0:3 BIC 0:974 0:019 0:005 0:002 0:000 0:000 0:980 0:016 0:004 0:000 0:000 0:000
AIC 0:677 0:110 0:073 0:059 0:044 0:037 0:696 0:109 0:070 0:055 0:037 0:033

HQIC 0:890 0:062 0:029 0:012 0:004 0:002 0:912 0:056 0:021 0:008 0:002 0:001
0:4 BIC 0:973 0:019 0:005 0:002 0:000 0:000 0:981 0:017 0:002 0:000 0:000 0:000

AIC 0:688 0:106 0:070 0:056 0:044 0:036 0:699 0:106 0:068 0:054 0:037 0:035
HQIC 0:892 0:056 0:028 0:015 0:005 0:003 0:912 0:055 0:018 0:010 0:004 0:001

0:5 BIC 0:971 0:023 0:006 0:001 0:000 0:000 0:982 0:017 0:001 0:000 0:000 0:000
AIC 0:690 0:117 0:062 0:057 0:038 0:035 0:695 0:118 0:062 0:047 0:041 0:036

HQIC 0:894 0:065 0:021 0:012 0:005 0:003 0:912 0:058 0:020 0:005 0:002 0:003
0:6 BIC 0:980 0:017 0:003 0:000 0:000 0:000 0:984 0:013 0:002 0:000 0:000 0:000

AIC 0:714 0:107 0:061 0:045 0:037 0:035 0:713 0:123 0:063 0:041 0:030 0:030
HQIC 0:902 0:061 0:019 0:011 0:004 0:003 0:919 0:056 0:016 0:007 0:001 0:002

0:7 BIC 0:973 0:024 0:002 0:001 0:000 0:000 0:985 0:015 0:001 0:000 0:000 0:000
AIC 0:715 0:118 0:063 0:041 0:033 0:030 0:735 0:109 0:061 0:039 0:033 0:023

HQIC 0:901 0:063 0:019 0:009 0:005 0:003 0:925 0:052 0:013 0:006 0:002 0:001
0:8 BIC 0:972 0:023 0:004 0:001 0:000 0:000 0:979 0:020 0:002 0:000 0:000 0:000

AIC 0:721 0:108 0:064 0:043 0:036 0:028 0:719 0:122 0:060 0:040 0:036 0:023
HQIC 0:905 0:059 0:019 0:010 0:005 0:002 0:911 0:063 0:017 0:005 0:003 0:001

0:9 BIC 0:978 0:020 0:002 0:000 0:000 0:000 0:985 0:013 0:002 0:000 0:000 0:000
AIC 0:722 0:118 0:061 0:043 0:029 0:026 0:731 0:115 0:061 0:041 0:031 0:021

HQIC 0:909 0:063 0:018 0:006 0:003 0:001 0:927 0:050 0:014 0:007 0:002 0:000
1 BIC 0:972 0:025 0:002 0:001 0:000 0:000 0:984 0:015 0:001 0:001 0:000 0:000

AIC 0:713 0:126 0:057 0:044 0:032 0:028 0:732 0:112 0:060 0:042 0:028 0:026
HQIC 0:898 0:069 0:018 0:008 0:005 0:003 0:926 0:051 0:015 0:005 0:002 0:001
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Table 3.21. Relative frequencies of MA order chosen when an inter-
cept and a trend are included in the model.

N = 50 N = 100
� 0 1 2 3 4 5 0 1 2 3 4 5

0:1 BIC 0:870 0:077 0:038 0:011 0:003 0:001 0:920 0:055 0:020 0:004 0:002 0:000
AIC 0:515 0:149 0:130 0:082 0:061 0:064 0:555 0:151 0:125 0:072 0:050 0:048

HQIC 0:702 0:126 0:087 0:045 0:022 0:018 0:775 0:108 0:070 0:025 0:012 0:010
0:2 BIC 0:877 0:060 0:039 0:018 0:004 0:001 0:925 0:044 0:024 0:005 0:001 0:001

AIC 0:539 0:113 0:132 0:090 0:067 0:059 0:586 0:113 0:123 0:078 0:048 0:052
HQIC 0:719 0:097 0:092 0:050 0:026 0:016 0:798 0:086 0:069 0:026 0:012 0:009

0:3 BIC 0:894 0:052 0:034 0:015 0:005 0:001 0:941 0:035 0:018 0:004 0:001 0:001
AIC 0:566 0:097 0:121 0:094 0:065 0:056 0:611 0:098 0:098 0:085 0:057 0:052

HQIC 0:740 0:087 0:081 0:050 0:023 0:018 0:827 0:070 0:052 0:029 0:012 0:010
0:4 BIC 0:897 0:053 0:031 0:013 0:004 0:002 0:947 0:035 0:012 0:005 0:001 0:000

AIC 0:588 0:097 0:106 0:084 0:066 0:059 0:633 0:102 0:075 0:079 0:061 0:050
HQIC 0:756 0:082 0:074 0:044 0:027 0:018 0:835 0:072 0:042 0:029 0:014 0:008

0:5 BIC 0:908 0:052 0:025 0:010 0:003 0:001 0:948 0:036 0:011 0:003 0:002 0:000
AIC 0:600 0:100 0:093 0:079 0:071 0:056 0:640 0:106 0:070 0:067 0:065 0:052

HQIC 0:774 0:083 0:067 0:036 0:025 0:015 0:844 0:072 0:035 0:024 0:017 0:009
0:6 BIC 0:905 0:057 0:025 0:008 0:004 0:001 0:958 0:031 0:007 0:002 0:002 0:000

AIC 0:613 0:109 0:085 0:073 0:063 0:058 0:668 0:105 0:058 0:059 0:057 0:054
HQIC 0:780 0:094 0:056 0:034 0:025 0:012 0:861 0:070 0:028 0:019 0:015 0:008

0:7 BIC 0:906 0:054 0:027 0:008 0:004 0:001 0:953 0:036 0:008 0:002 0:002 0:000
AIC 0:611 0:115 0:079 0:070 0:074 0:051 0:674 0:114 0:063 0:050 0:048 0:050

HQIC 0:782 0:092 0:054 0:031 0:027 0:014 0:852 0:080 0:033 0:016 0:012 0:007
0:8 BIC 0:907 0:057 0:021 0:012 0:003 0:001 0:952 0:035 0:008 0:003 0:001 0:000

AIC 0:627 0:110 0:069 0:068 0:076 0:050 0:671 0:119 0:066 0:049 0:046 0:049
HQIC 0:786 0:089 0:049 0:037 0:028 0:011 0:854 0:077 0:028 0:019 0:013 0:009

0:9 BIC 0:896 0:063 0:026 0:009 0:004 0:001 0:948 0:040 0:009 0:002 0:001 0:001
AIC 0:610 0:116 0:081 0:070 0:075 0:049 0:679 0:120 0:073 0:047 0:038 0:043

HQIC 0:775 0:098 0:054 0:036 0:028 0:008 0:858 0:082 0:031 0:014 0:010 0:006
1 BIC 0:899 0:059 0:026 0:012 0:003 0:001 0:948 0:040 0:009 0:001 0:001 0:001

AIC 0:597 0:111 0:084 0:080 0:073 0:055 0:678 0:124 0:069 0:045 0:041 0:044
HQIC 0:763 0:096 0:056 0:045 0:029 0:011 0:853 0:082 0:032 0:015 0:010 0:008

N = 200 N = 400
� 0 1 2 3 4 5 0 1 2 3 4 5

0:1 BIC 0:952 0:036 0:011 0:002 0:001 0:000 0:971 0:023 0:006 0:000 0:000 0:000
AIC 0:579 0:140 0:124 0:070 0:047 0:041 0:613 0:130 0:114 0:063 0:043 0:038

HQIC 0:832 0:086 0:053 0:018 0:007 0:004 0:871 0:066 0:044 0:012 0:004 0:002
0:2 BIC 0:958 0:030 0:010 0:002 0:000 0:000 0:978 0:016 0:005 0:001 0:000 0:000

AIC 0:618 0:108 0:113 0:072 0:050 0:041 0:643 0:103 0:098 0:071 0:050 0:035
HQIC 0:856 0:067 0:047 0:019 0:007 0:004 0:888 0:056 0:035 0:014 0:005 0:002

0:3 BIC 0:963 0:027 0:008 0:002 0:000 0:000 0:982 0:014 0:004 0:001 0:000 0:000
AIC 0:636 0:098 0:089 0:080 0:053 0:044 0:657 0:102 0:070 0:077 0:052 0:042

HQIC 0:868 0:061 0:038 0:023 0:007 0:004 0:900 0:051 0:024 0:018 0:005 0:001
0:4 BIC 0:968 0:024 0:006 0:002 0:001 0:000 0:982 0:016 0:002 0:001 0:000 0:000

AIC 0:659 0:101 0:066 0:073 0:058 0:044 0:674 0:109 0:060 0:062 0:052 0:044
HQIC 0:880 0:060 0:029 0:019 0:009 0:004 0:906 0:052 0:018 0:015 0:007 0:003

0:5 BIC 0:972 0:022 0:004 0:002 0:001 0:000 0:982 0:016 0:002 0:000 0:000 0:000
AIC 0:679 0:101 0:058 0:055 0:058 0:048 0:698 0:113 0:058 0:040 0:049 0:043

HQIC 0:887 0:062 0:022 0:015 0:010 0:004 0:916 0:052 0:014 0:009 0:006 0:003
0:6 BIC 0:973 0:023 0:004 0:001 0:000 0:000 0:983 0:015 0:002 0:000 0:000 0:000

AIC 0:696 0:108 0:059 0:043 0:048 0:046 0:710 0:115 0:062 0:036 0:033 0:044
HQIC 0:898 0:064 0:020 0:009 0:006 0:004 0:918 0:055 0:016 0:006 0:004 0:002

0:7 BIC 0:973 0:022 0:004 0:000 0:000 0:000 0:982 0:016 0:002 0:000 0:000 0:000
AIC 0:706 0:112 0:064 0:046 0:035 0:037 0:728 0:114 0:059 0:039 0:033 0:028

HQIC 0:898 0:063 0:022 0:009 0:006 0:002 0:919 0:056 0:016 0:005 0:002 0:002
0:8 BIC 0:974 0:021 0:004 0:001 0:000 0:000 0:986 0:013 0:001 0:000 0:000 0:000

AIC 0:712 0:118 0:063 0:045 0:032 0:030 0:725 0:118 0:063 0:039 0:031 0:023
HQIC 0:899 0:065 0:021 0:010 0:004 0:002 0:923 0:053 0:016 0:006 0:003 0:001

0:9 BIC 0:973 0:023 0:004 0:001 0:000 0:000 0:982 0:016 0:002 0:000 0:000 0:000
AIC 0:724 0:112 0:064 0:041 0:032 0:027 0:728 0:119 0:062 0:040 0:028 0:024

HQIC 0:902 0:064 0:020 0:009 0:003 0:002 0:918 0:057 0:016 0:006 0:002 0:001
1 BIC 0:970 0:026 0:003 0:001 0:000 0:000 0:982 0:016 0:002 0:001 0:000 0:000

AIC 0:702 0:117 0:070 0:044 0:035 0:032 0:722 0:120 0:062 0:042 0:031 0:025
HQIC 0:889 0:071 0:024 0:010 0:004 0:002 0:918 0:058 0:016 0:007 0:001 0:001
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CHAPTER 4

Robust Econometric Inference for Stock Return

Predictability

4.1. Introduction

A fundamental issue in asset pricing is whether future stock returns are pre-

dictable using current publicly available information. The semi-strong form of e¢ -

cient market hypothesis (Fama, 1970) suggests that this is not possible. Neverthe-

less, the seminal studies of Keim and Stambaugh (1986), Fama and French (1988)

and Campbell and Shiller (1988) casted doubt on this traditional assumption and

empirically demonstrated that certain �nancial variables have signi�cant predic-

tive ability over future stock returns. The existence of predictability necessarily

modi�es standard procedures in asset pricing, portfolio choice and performance

evaluation (see Cochrane, 1999, for an excellent discussion). Fama (1991) inter-

preted these results as evidence of time-varying risk premia rather than evidence

against market e¢ ciency.

The early evidence on predictability motivated a signi�cant volume of subse-

quent research despite which the predictability debate remains largely unsettled.

For example Lettau and Ludvigson (2001, p. 842) state that �it is now widely

accepted that excess returns are predictable by variables such as dividend-price

135
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ratios, earning-price ratios, dividend-earnings ratios and an assortment of other

�nancial indicators�. Other researchers (Goyal and Welch, 2008, p. 1505) remain

sceptical claiming that the �profession has yet to �nd some variable that has mean-

ingful and robust empirical equity premium forecasting power both in-sample and

out-of-sample�.

Empirical justi�cation of arguments provided in favour of or against predictabil-

ity relies on statistical inference on a set of predictive regressions and qualitative

features of associated hypothesis tests such as size and power assume fundamental

importance. The most common problem that undermines con�dence in the relia-

bility of predictability tests is uncertainty about the time series properties of the

predictive variables. Whether standard t-tests or more sophisticated methods are

employed, the quality of inference will be conditional upon correct speci�cation of

the time series properties of the predictive regressors.

A series of papers, reviewed in Campbell and Yogo (2006), have recognised

that most predictability tests use �nancial variables that are persistent enough

to be modelled as unit root or local to unity processes and are highly correlated

with stock returns. Such processes assume the form of a �rst order autoregression

with root of the form � = 1 + c=n; where n denotes the sample size. In this

case standard least squares t-tests are no longer applicable for hypothesis testing

(Elliott and Stock, 1994; Stambaugh, 1999) and cointegration methods need to

be employed. However, the use of explanatory variables that exhibit persistence

but are not necessarily pure random walks raises serious technical complications
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in predictive regression and cointegration methodology. Considering for example

the simplest possible bivariate system

yt = �xt�1 + u0t

xt = �xt�1 + uxt

with a local to unity root � = 1 + c=n and innovations u0t, uxt that exhibit long

run correlation the t statistic for testing the null hypothesis of no predictability,

� = 0, has the following limit distribution:

Tn =

�Pn
t=1 x

2
t�1
�1=2 �

�̂n � �
�


̂
1=2
00

) 1



1=2
00

R 1
0
Jxc (t) dB0 (t) + �0xnR 1
0
Jxc (t)

2 dt
o1=2 (4.1)

where �0x =
P1

h=1E (u0tuxt�h) and 
00 =
P1

h=�1E (u0tu0t�h) denote long run

covariances, B0 (t) and Bx (t) are Brownian motions with variances 
00 and 
xx re-

spectively and Jxc (t) =
R t
0
ec(t�s)dBx (s) the Ornstein-Uhlenbeck process associated

with Bx. The distinguishing feature of local to unity limit theory for the t-statistic

is that long run endogeneity cannot be removed by standard cointegration methods

such as the fully modi�ed least squares method of Phillips and Hansen (1990) or

the approaches of Saikkonen (1991) and Stock and Watson (1993) that apply when

the regressor is a pure random walk (c = 0). As pointed out by Elliott (1998),

such endogeneity corrected estimators for � would have the following asymptotic
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behaviour:

n
�
��n � �

�
)  + c
0x


�1
xx

where  is a centred mixed Gaussian random variable and c is the scaling factor

of the local to unity root. Since c cannot be consistently estimated, no endogene-

ity correction based on the above method can deliver an asymptotically mixed

Gaussian estimator for �. Analogous problems arise when the regressor has a

root belonging to a larger neighbourhood of unity than local to unity roots, i.e.

� = 1 + c=n� where � 2 (0; 1). This class of �mildly integrated�processes was

introduced by Phillips and Magdalinos (2007).

Since standard cointegration methods cannot accommodate the presence of

local to unity roots in predictive regressions, a series of papers by Cavanagh, Elliott

and Stock (1995), Torous, Valkanov and Yan (2004) and Campbell and Yogo (2006)

have employed methods based on (4.1) where, rather than removing the additional

endogeneity induced by local to unity roots, they incorporate this endogeneity in

the testing procedure by constructing Bonferroni type tests. This is the current

state of the art methodology for testing the predictability of stock returns.

Practical implementation of the above methodology as a tool for applied re-

searchers presents three main drawbacks: �rst, the method is invalid if the regres-

sor contains non-stationary components that are less persistent than local to unity

processes, such as mildly integrated time series. Hence, each time series in the

predictive regressions has to be at least as persistent as a local to unity process.
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Second, incorporation of endogeneity in the inference procedure results to tests

with limiting distributions that depend on a nuisance parameter that cannot be

estimated, namely the scaling factor c of the local to unity process. As a result,

critical values for this type of test statistics have to be chosen from a family of limit

distributions by means of a Bonferroni type con�dence interval on the localising

coe¢ cient c. Finally, because of the problems associated with multidimensional

con�dence interval construction, the above analysis is restricted to the case of a

scalar regressor, i.e. a single predictive variable.

In recent work, Magdalinos and Phillips (2009) and Phillips and Magdalinos

(2009), hereafter referred to as MP and PM respectively, present results that pro-

vide a framework of limit theory that can be used to validate inference in cointe-

grating models with regressors whose time series characteristics fall into the very

general class of processes having roots in arbitrary neighbourhoods of unity. The

persistence properties of these regressors may range from �near-stationarity� of

mildly integrated processes to pure nonstationarity of unit root processes. Large

sample endogeneity is completely removed by means of a new instrumental vari-

ables procedure, called IVX estimation. In contrast to conventional instrumental

variable estimation, IVX does not use exogenous information and instruments are

constructed by direct �ltering of the regressor variable. The key idea behind suc-

cessful endogeneity correction is explicit control of the degree of persistence of IVX

instruments which are restricted within the class of mildly integrated processes.
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The resulting approach yields standard chi-squared inference for testing general re-

strictions on a multivariate system of predictive regressions. The dimensionality of

the system of predictive regressions is of particular importance for applied research

since hypothesis tests on a multivariate system allow the researcher to assess the

combined e¤ects of di¤erent explanatory variables to stock returns rather than the

individual e¤ect of each explanatory variable. Given a set of explanatory variables,

while each variable may have limited predictive value, there may be combinations

with substantial predictive power.

The contribution of this Chapter is twofold. First, we extend the validity of

the IVX methodology by allowing for the inclusion of an intercept in the predictive

regression. The results of MP and PM are generalised in the above direction accom-

modating the modelling framework used in most applied research on stock return

predictability. The second contribution consists of an empirical application of the

IVX methodology in order to assess the predictive power of explanatory variables

that are commonly considered as potential predictors of stock returns in applied

literature. Using univariate regressions we �nd that the inference resulting from

our methodology di¤ers substantially from the standard least squares methodology.

We decompose the market portfolio into ordered sub-categories �rstly according

to its size and secondly according to its book to market value. In general, we

�nd that predictability is stronger for comparatively smaller size portfolios and

for larger book to market portfolios. This shows that such decomposition of the
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market portfolio is meaningful and that aggregation leads to the loss of important

information.

A further important contribution of our empirical analysis appears with the

introduction of multivariate systems of predictive regressions. The IVX methodol-

ogy allows for joint inference on combinations of di¤erent sets of both explanatory

and explained variables. The importance of joint inference is highlighted in our

results due to the fact that some of the regressors that appear to be insigni�cant

in the context of univariate regressions, turn out to be jointly signi�cant. More-

over, we test for the predictability of a set of dependent variables (decomposed

portfolios with respect to size at �rst instance and then with respect to book to

market value) by a single regressor. In other words, the methodology employed in

this Chapter can be utilised for the purposes of examining whether a regressor can

be a predictor of a number dependent variables simultaneously.

The �nal part of the empirical analysis consists of a robustness control of our

empirical conclusions. First, sub-sample regressions are employed in order to as-

sess whether empirical conclusions on the existence of stock return predictability

present variations over di¤erent time periods. Second, we examine the sensitivity of

our empirical conclusions to the implementation of the IVX method by conducting

IVX hypothesis tests for di¤erent combinations of instrument persistence control

and bandwidth selection for non parametric long run covariance estimation. The

important issue of asymptotically joint optimal selection of IVX instruments and

bandwidth truncation lag is addressed in Remark 4.2(c).
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The proposed methodology has the potential to improve hypothesis testing

with predictive regressions both by extending the range of testable hypotheses and

by robustifying inference with respect to misspeci�cation of regressor persistence.

Successful implementation can shed new light on whether future bond returns,

interest rates and stock returns are predictable given a publicly available informa-

tion set and minimise the risk of distorted inference due to incorrect time series

modelling.

The Chapter is organized as follows. Section 4.2 presents some theoretical as-

pects of IVX inference in systems of predictive regressions. Particular attention

is devoted to accommodating the presence of an intercept in the model and de-

riving the relevant IVX limit theory. Section 4.3 lists the variables used in the

empirical part. In Section 4.4 we apply the IVX methodology on the dataset by

running individual and joint hypothesis tests. In Section 4.5 a sensitivity analysis

of the inference drawn from IVX method is provided. Section 4.6 contains some

concluding remarks. All proofs are included in the technical Appendix of Section

4.7. Tables and �gures are presented in the last section of the Chapter.

4.2. Predictive regressions in the general vicinity of unity and IVX

estimation

As is often emphasised in empirical work, economic and �nancial time series

seem to exhibit persistence characteristics that do not always conform to the I(0)-

I(1) dichotomy. In practice this means that economists wish to model persistence
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in regressions through series that have autoregressive roots in a general neighbour-

hood of unity rather than exactly at one. The primary aim of the present Chapter

is to accommodate this natural relaxation of the form of nonstationarity in indi-

vidual time series in the context a multivariate system of predictive regressions. In

particular, we seek to extend the validity of the IVX methodology of PM to sys-

tems that include an intercept in the model and have a predictive contemporaneous

structure.

We consider the following multivariate system of predictive regressions with

regressors containing explanatory variables with arbitrary degree of persistence:

yt = �+ Axt�1 + u0t; (4.2)

xt = Rnxt�1 + uxt; (4.3)

where A is an m�K coe¢ cient matrix and

Rn = IK +
C

n�
for some � > 0; (4.4)

and some matrix C = diag(c1; :::; cK); with ci � 0 for all i 2 f1; :::; Kg. Following

PM, we assume that regressor xt in (4.3) belongs to one of the following classes of

persistent processes:

P(i) Integrated regressors, if C = 0 or � > 1 in (4.4).

P(ii) Local to unity regressors, if C < 0 and � = 1 in (4.4).

P(iii) Mildly integrated regressors, if C < 0 and � 2 (0; 1) in (4.4).
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The aim of IVX methodology is to provide valid inference on A when there is

uncertainty on the degree of persistence of the explanatory variables, i.e. there is

no a priori knowledge of whether xt belongs to class P(i), P(ii) or P(iii). As in

PM, this is possible for all � > 1=2.

The innovations u0t and uxt are assumed to be correlated linear processes. We

impose an identical correlation structure to that considered in PM by considering

a common Wold representation for u0t and uxt:

ut :=

264 u0t

uxt

375 = 1X
j=0

Fj"t�j; (4.5)

where ("t)t2Z is a sequence of independent and identically distributed (0;�) random

vectors satisfying � > 0 and the moment condition E k"1k4 <1, and (Fj)j�0 is a

sequence of constant matrices satisfying F0 = Im+K and

1X
j=0

j kFjk <1; (4.6)

where k�k denotes spectral norm. In accordance to standard notation, we let

F (z) =
P1

j=0 Fjz
j; and assume that F (1) =

P1
j=0 Fj has full rank.

As in PM, the system may be initialised at some x0 that could be any constant

or a random process x0 (n) = op
�
n(�^1)=2

�
with � speci�ed by the three cases

P(i)-P(iii) listed above.

As discussed in the Introduction, endogeneity in the estimation of the coe¢ cient

matrix A in (4.2) is intimately related to the long run correlation between the
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innovations of the model and those of the regressor. Following standard notational

convention, we denote the long run covariance matrices associated with ut by:


 =
1X

h=�1

E
�
utu

0
t�h
�
= F (1)�F (1)0 (4.7)

� =
1X
h=1

E
�
utu

0
t�h
�

(4.8)

and � = � + E (u1u
0
1). In order to identify the various autocorrelation and cross

correlation e¤ects of u0t and uxt we consider the following partitioned forms of the

matrices in (4.7) and (4.8) conformable to ut = (u00t; u
0
xt)

0 in (4.5):

F (1) =

264 F0 (1)

Fx (1)

375
where F0 (1) and Fx (1) are m� (m+K) and K � (m+K) matrices respectively,

and


 =

264 
00 
0x


x0 
xx

375 and � =

264 �00 �0x

�x0 �xx

375 : (4.9)

In recent work, Phillips and Magdalinos (2009) have introduced a method that

achieves endogeneity and bias correction in the estimation of triangular systems

and is robust to the degree of regressor persistence belonging to cases (i)-(iii)

above. The main idea behind the method is the construction of mildly integrated
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instruments by di¤erencing the regressor xt:

�xt = uxt +
C

n�
xt�1:

Despite the fact that the di¤erence �xt is not an innovation unless the regressor

is a random walk, it behaves asymptotically as an innovation after linear �ltering

by a matrix consisting of moderate to unity roots. Choosing an arti�cial matrix

Rnz = IK +
Cz
n�
; � 2 (0; 1) ; Cz < 0; (4.10)

IVX instruments ~zt are constructed as a �rst order autoregressive process with

autoregressive matrix Rnz and innovations �xt:

~zt = Rnz~zt�1 +�xt; (4.11)

or, equivalently under zero initialisation,

~zt =
tX

j=1

Rt�j
nz �xj: (4.12)

The main result of PM is that, under a relatively mild assumption (� > 1=2) that

prevents the degree of regressor persistence to reach too close to stationarity, a bias-

corrected two stage least squares estimator of A based on the IVX instruments ~zt

is asymptotically mixed Gaussian and yields robust chi-squared inference.

In the present Chapter, we begin by extending the IVX estimation method to

the case where an intercept is present in the model. This consideration is motivated
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by the applied literature on predictive regressions. To this end, we denote sample

averages by

�yn = n�1
nX
t=1

yt; �u0;n = n�1
nX
t=1

u0t

�xn�1 = n�1
nX
t=1

xt�1 and �zn�1 = n�1
nX
t=1

~zt�1:

Following the notation in PM, but noting the predictive regression structure of

(4.2), we construct the data, instrument and innovation matrices as follows:

Y =

266664
y01

:::

y0n

377775 ; U0 =

266664
u001

:::

u00n

377775 (4.13)

X =

266664
x00

:::

x0n�1

377775 and ~Z =

266664
~z00

:::

~z0n�1

377775 : (4.14)

The presence of the intercept in the model can be incorporated to the IVX method

by using a standard trick: Since �yn = �+ A�xn�1 + �u0;n, (4.2) yields

yt � �yn = A (xt�1 � �xn�1) + u0t � �u0;n

so, letting Yt = yt� �yn; Xt = xt� �xn�1 and U0t = u0t� �u0;n, (4.2) can be rewritten

as

Yt = AXt�1 + U0t: (4.15)
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We can now proceed with IVX estimation of A from the regression equation (4.15)

instead of (4.2). Accordingly, we de�ne the new regression matrices

Y =

266664
Y 0
1

:::

Y 0
n

377775 = Y �

266664
�y0n

:::

�y0n

377775

X = X �

266664
�x0n�1

:::

�x0n�1

377775 ; U0 = U0 �

266664
�u00;n

:::

�u00;n

377775 :
where X, Y , U0 and ~Z are de�ned in (4.13) and (4.14).

Our IVX estimator then becomes:

~An =
�
Y 0 ~Z � n�̂0x

��
X 0 ~Z

��1
(4.16)

and

~An � A =
�
U 00 ~Z � n�̂0x

��
X 0 ~Z

��1
(4.17)

where �̂0x is a non parametric estimator of �0x =
P1

h=1E
�
u0tu

0
x;t�h

�
based on

OLS residuals from (4.3) and (4.4). The construction and properties of this non-

parametric estimator is discussed below. The estimator is analogous to the FM-

OLS estimator (Phillips and Hansen, 1990) in terms of its built-in bias correction

term, but unlike FM-OLS there is no need for an endogeneity correction as the
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IVX estimator is asymptotically mixed Gaussian because of the use of the mildly

integrated instruments.

Note that the bias correction term of the IVX estimator in (4.16) involves an

estimator of �0x rather than �0x = �0x +E
�
u0tu

0
x;t

�
as in PM. This modi�cation

is due to the predictive regression structure of the model in (4.2), i.e. the fact that

yt is regressed upon xt�1 rather than xt. Note also that the estimator does not

involve a demeaned version of the matrix of instruments as the IVX estimator in

(4.16) is exactly invariant to demeaning ~Z by �zn�1.

We now discuss the issue of non-parametric estimation of �0x: Letting

A = [�;A] and X t = (1; x
0
t)
0 (4.18)

we can write (4.2) as

yt = A X t�1 + u0t: (4.19)

This yields the following OLS estimator of A:

~AOLS =

 
nX
t=1

ytX
0
t�1

! 
nX
t=1

X t�1X
0
t�1

!�1
: (4.20)

The presence of the the intercept in (4.2) is taken into account by constructing the

estimated residuals of the model from (4.19):

~u0t = yt � ~AOLSX t�1 (4.21)
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where X t and ~AOLS are given by (4.18) and (4.20) respectively. Since there is no

intercept in (4.3), the estimated regressor residuals can be obtained in a standard

way:

ûxt�h = xt�h � R̂nxt�h�1 (4.22)

where R̂n is the OLS estimator of Rn in (4.3). Given the estimated residuals in

(4.21) and (4.22) we can consistently estimate the long run covariance �0x by the

following Newey-West type HAC estimator:

�̂0x =
1

n

MX
h=1

�
1� h

M + 1

� nX
t=h+1

~u0tû
0
xt�h (4.23)

where M is a bandwidth parameter satisfying M !1 as n!1. The estimator

of �00 is constructed in a similar manner, by replacing ûxt�h in (4.23) by û0t�h.

The above estimators have standard consistency properties. Consistency of �̂00

(and hence of 
̂00) is enough for the requirements of IVX limit theory. On the

other hand, �̂0x is part of a �rst order bias correction on the IVX estimator so, in

view of Theorems 3.4 and 3.7 of PM (see also Theorem 4.1 below), its consistency

rate should ensure that the condition

n
1�(�^�)

2

�
�̂0x � �0x

�
!p 0 (4.24)

is satis�ed. The exact consistency rate of �̂0x is given in the following result.

Lemma 4.1.
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(i) Let ut be a linear process given by (4.5) satisfying (4.6) and E k"1k4 <1:

Then, for all � > 1=2,

�̂0x � �0x = Op

�
max

�
M

n1=2
;
1

M

��
:

(ii) Let M = L (n)n for some slowly varying function L and  > 0. Choose

� 2 (2=3; 1). Then a choice of  = 1=4 guarantees the validity of (4.24)

for any � > 1=2. If � > 2=3, (4.24) holds under the optimal choice of

bandwidth  = 1=3.

The proof of Lemma 4.1 is given in Section 7.

Obtaining a limit theory for the modi�ed IVX estimator in (4.16) can be

achieved by using similar methods as in the PM paper. It turns out that ef-

fect of the presence of an intercept in the model is manifest only on the limit

distribution of the X 0 ~Z. As a result, asymptotic mixed normality of the IVX es-

timator continues to apply and the intercept a¤ects only the form of the limiting

random variance. The main result is presented in the following theorem and is

comparable with Theorems 3.4 and 3.7 of PM. All steps of the proof associated

with the presence of the intercept (and hence not covered by PM) are included in

a sequence of lemmata in Section 4.7.

Theorem 4.1. Consider the model (4.2) - (4.4) with instruments ~zt de�ned by

(4.12). Then, the following limit theory applies for the estimator ~An in (4.16):
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(i) If 1=2 < � < min (�; 1):

n
1+�
2 vec

�
~An � A

�
)MN

�
0;
�
~	�1xx

�0
CzVzzCz ~	

�1
xx 
 
00

�
;

as n!1, where

~	xx =

8>>>><>>>>:

xx +

R 1
0
BxdB

0
x under P(i)


xx +
R 1
0
JCdB

0
x +

R 1
0
JCJ

0
CdsC under P(ii)


xx + VxxC under P(iii)

;

Bx is a Brownian motion with variance 
xx and JC the associated Ornstein-

Uhlenbeck process,

Bx (t) = Bx (t)�
Z 1

0

Bx (t) dt; JC (t) = JC (t)�
Z 1

0

JC (t) dt;

Vxx =

Z 1

0

erC
xxe
rCdr and Vzz =

Z 1

0

erCz
xxe
rCzdr:

(ii) If � 2 (1=2; �) then Theorem 3.7 of PM continues to apply.

Remarks 4.1.

(a) Theorem 4.1 shows that the presence of an intercept in the model does

not a¤ect the main asymptotic property of IVX estimation, mixed Gaus-

sianity. Asymptotic bias and endogeneity removal are achieved under the

same restriction (� > 1=2) as the original PM paper.

(b) A comparison between Theorems 3.4 and 3.7 of PM and Theorem 4.1

above shows that the e¤ect of the intercept on the limiting distribution
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of the IVX estimator depends on the degree of regressor persistence. For

local to unity and unit root processes, this e¤ect is manifest on the limit

distribution of the n�(1+�)X 0 ~Z matrix, where the Brownian motion Bx

and the Ornstein-Uhlenbeck process JC are replaced by their demeaned

counterparts Bx and JC respectively. IVX limit theory remains una¤ected

by the presence of an intercept in the case of mildly integrated regressors.

Let �zn�1 = n�1
Pn

t=1 ~zt�1,

~Z = ~Z �

266664
�z0n�1

:::

�z0n�1

377775 and P ~Z =
~Z
�
~Z
0 ~Z
��1

~Z
0

(4.25)

denote theprojection matrix to the column space of the demeaned instrument

matrix ~Z. The mixed normal limit theory of Theorem 4.1 implies that linear

restrictions on the cointegrating coe¢ cients A generated by (4.2) can be tested by

a standard Wald test. In particular,

H0 : Hvec (A) = h; (4.26)

where H is a known r�mK matrix with rank r and h is a known vector, may be

tested using the Wald statistic

Wn =
�
Hvec ~An � h

�0 �
H

��
X 0P ~ZX

��1

 
̂00

�
H 0
��1 �

Hvec ~An � h
�

(4.27)
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where P ~Z is de�ned in (4.25), ~An is the IVX estimator in (4.16) and 
̂00 is a

consistent non parametric estimator of 
00 in (4.9).

Theorem 4.2. Under the null hypothesis (4.26) of general linear restrictions on

A, the Wald statistic in (4.27) has the following limit distribution: Wn ) �2 (r)

for every � > 1=2.

Remarks 4.2.

(a) Theorem 4.2 is an immediate corollary of the mixed Gaussian limit the-

ory for the IVX estimator of Theorem 4.1. It shows that the IVX-based

Wald test in (4.27) can provide an inference procedure that is robust to

a wide range of persistent data generating processes, ranging from mildly

integrated processes to pure random walks. It is hoped that this proce-

dure will provide a unifying framework for hypothesis testing in predictive

regressions which maintains good statistical properties under misspeci�-

cation of the time series characteristics of the regressors.

(b) As in the original PM paper, the validity of Theorem 4.2 is restricted

by excluding regressors that contain roots close to the boundary with

stationarity. This limitation of the IVX method is intimately related to

its feasibility: since the IVX instruments in (4.12) are constructed from

the regressors without imposing any exogenous orthogonality assumption,

moving towards the stationary region increases the e¤ect of simultaneity

bias and, eventually, makes estimation impossible. It is well known that
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when xt is a stationary process (� = 0), the system (4.2)-(4.4) cannot

be identi�ed (or of course estimated) without exogenous information in

the form of instruments that satisfy an orthogonality and a relevance

condition. For mildly integrated systems, a calculation of simultaneity

bias appears in MP for all � 2 (0; 1) : This bias takes a simpler form for

� > 1=3 in which case n�
1+�
2

Pn
t=1

�
u0tx

0
t�1 � �0x

�
has a centred normal

limit distribution. The more stringent restriction � > 1=2 is needed for

for controlling the estimation error in the non parametric estimation bias

correction in the above sum, i.e. ensuring that �̂0x � �0x satis�es (4.24).

(c) Implementation of the method requires a choice for � for the construc-

tion of the IVX instruments. As explained in PM, it is recommended to

choose � from the interval (2=3; 1) : Such a choice allows mean squared

error (MSE) e¢ cient non parametric estimation of the long run covariance

matrix �0x for unit root and local to unity regressors as well as mildly inte-

grated regressors with � > 2=3. Recent work in progress by PM suggests

that an asymptotic MSE minimising choice of � is given by

� =
1 + 2

2
; (4.28)

where  is the polynomial rate of growth of the bandwidth parameterM =

L (n)n of the NeweyWest estimator of the long run covariance matrix �0x

in (4.23). Hence there is an one to one correspondence between optimal
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asymptotic MSE choice of IVX instruments and optimal asymptotic MSE

non-parametric estimation of �0x. Since the optimal rate of bandwidth

growth for the Bartlett kernel employed in (4.23) is n1=3, substituting

 = 1=3 in (4.28) yields a choice � = 5=6. We employ this choice of � in

the subsequent empirical analysis.

(d) Note that demeaning the instrument matrix ~Z in the Wald statistic pro-

duces �nite sample gain: The conclusion of Theorem 4.1 (i) without de-

meaning ~Z can be written informally as:

n
1+�
2 vec

�
~An � A

�
)MN

 
0; lim

n!1

�
1

n1+�
X 0P ~ZX

��1

 
00

!
: (4.29)

The identity (4.56) in Section ?? implies that
�
X 0P ~ZX

��1
� (X 0P ~ZX)

�1

in the positive semide�nite sense, so there is �nite sample e¢ ciency gain

associated with demeaning the instrument matrix. This gain dissapears

asymptotically and the Wald statistic with and without demeaning has

the same chi-squared distribution, as (4.53) in Section ?? shows.

4.3. The Dataset

We employ two datasets for the predictability tests we conduct in the following

section. The sample period for both datasets is January 1927 to December 2007.

The �rst dataset contains the stock portfolio returns used as dependent variables.

The source for these portfolios�returns is the widely used Kenneth French�s online
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data library1. In particular, U.S. market returns are proxied by the Center for

Research in Security Press (CRSP) value weighted returns. Moreover, we employ

monthly value-weighted returns of ten portfolios formed on the basis of stocks�

market value (Size portfolios) and monthly value-weighted returns of ten portfolios

sorted according to stocks� book equity to market value of equity ratio (Value

portfolios). We calculate returns in excess of the corresponding 1-month T-bill

rate.

The second dataset contains the variables that are commonly used as regressors

in predictability tests and for which there is uncertainty for their order of integra-

tion2. This is an updated version of the dataset used in Goyal and Welch (2008)3.

These 11 variables refer to:

T-bill rate (tbl): This is the 3-month US Treasury bill rate taken from the

economic research database at the Federal Reserve at St. Louis (FRED). For the

period before 1934 it is extracted from the NBER Macrohistory database. The T-

bill rate has been used as a predictor of future stock returns inter alia by Pesaran

and Timmermann (1995), Ponti¤and Schall (1998), Torous et al. (2004), Campbell

and Yogo (2006), Ang and Bekaert (2007), Avramov (2002) and Campbell and

Thompson (2008).

1This library is available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
2Our focus is on these variables because our econometric methodology is developed to deal with
the inference problems arising from the uncertainty with respect to their order of integration.
However, it is worth mentioning that various other variables have been used in predictive regres-
sions of future stock returns (see Goyal and Welch, 2008 for an exhaustive list).
3We would like to thank Amit Goyal for providing us with this dataset.



158

Long-term yield (lty): This is the long-term US government bond yield from

Ibbotson�s Stocks, Bonds, Bills and In�ation Yearbook. The di¤erence between

the long-term yield and the T-bill rate is the term spread (tms). These two

variables have been widely used in predictability tests (see for example, Keim and

Stambaugh (1986), Fama and French (1989), Ponti¤ and Schall (1998), Torous et

al. (2004) and Campbell and Yogo (2006)).

Default yield spread (dfy): This is the di¤erence between the BAA and

AAA-rated corporate bond yields taken from FRED. Fama and French (1989),

Torous et al. (2004), Avramov (2002) and Campbell and Thompson (2008) provide

examples of studies that have employed dfy as a predictive regressor.

Dividend price ratio (d/p): This is the di¤erence between the log of divi-

dends and the log of stock prices. Dividends are calculated using a 12-month rolling

sum of dividends paid on the S&P 500 index. The di¤erence between the log of

dividends and the log of lagged prices is the dividend yield (d/y). These two

variables have been the most commonly used predictors of future stock returns.

An indicative list of previous studies contains Roze¤ (1984), Campbell (1987),

Campbell and Shiller (1988), Fama and French (1988), Hodrick (1992), Lamont

(1998), Stambaugh (1999), Goyal and Welch (2003), Lewellen (2004), Torous et al.

(2004), Lettau and Ludvigson (2005), Campbell and Yogo (2006) and Campbell

and Thompson (2008).
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Earnings price ratio (e/p): This is the di¤erence between the log of earnings

and the log of prices. Earnings are calculated using a 12-month rolling sum of earn-

ings of companies listed on the S&P 500 index. Campbell and Shiller (1988), Fama

and French (1988), Pesaran and Timmermann (1995), Lamont (1998), Lewellen

(2004) and Campbell and Thompson (2008) are examples of studies which em-

ployed this variable.

Dividend payout ratio (d/e): This is the di¤erence between the log of

dividends and the log of earnings, as previously de�ned. The study of Lamont

(1998) makes a convincing case for using this payout ratio as a potential predictor

of future stock returns.

Book-to-Market ratio (b/m): This is the ratio of book value to market

value for the Dow Jones Industrial Average. The book value is taken from Value

Line�s website, speci�cally their Long-Term Perspective Chart of the Dow Jones

Industrial Average. This ratio has been used in the studies of Kothari and Shanken

(1997), Ponti¤ and Schall (1998), Lewellen (2004), Avramov (2002) and Campbell

and Thompson (2008) inter alia.

Net equity expansion (ntis): This is a measure of corporate issuing activity

and it is calculated as the ratio of the 12-month moving sum of net equity issues

by NYSE listed stocks divided by the total end-of-year market capitalization of

these stocks. Net equity issuing activity refers to Initial Public O¤erings, Seasoned

Equity O¤erings, stock repurchases minus distributed dividends and it is calculated

from CRSP data (see Goyal and Welch, 2008, for details). This variable is closely
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related to the net payout yield that has been proposed by Boudoukh, Michaely,

Richardson and Roberts (2007) as a predictor of future stock returns.

Cross-sectional premium (csp): The cross-section premium measures the

relative valuations of high- and low- CAPM beta stocks and it has been employed in

predictability tests by Polk, Thompson and Vuolteenaho (2006). For this particular

variable, the available data start from May 1937 to December 2002.

4.4. Empirical analysis

We initiate the discussion in this Section by examining the time series prop-

erties of the data. More speci�cally, we run unit root tests on the series used as

regressors. Three tests are employed: the Augmented Dickey Fuller (ADF) test,

the DF-GLS test derived by Elliot et al. (1996) and the Phillips Perron (PP)

test. For both ADF and DF-GLS the Bayesian information criterion is used for

the determination of lag length. The results of the test statistics are presented in

Table 4.1. The null hypothesis of non-stationarity is not rejected for lty, d/y, d/p

across the di¤erent tests used. Strong evidence of stationarity appear for the se-

ries of the term spread. For the rest of the data series, the inference regarding the

null hypothesis of non-stationarity does not remain unchanged when di¤erent test

statistics are considered. This is the case, for example, for the T-bill rate which is

suggested to be stationary by the DF-GLS test, and not stationary by the ADF

and PP test. For the series of net equity expansion, the null of non-stationarity
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is strongly (at the 1% level) rejected by ADF and PP tests, but the same null

hypothesis is not rejected by DF-GLS test.

The evidence provided by Table 4.1 con�rm the �ndings of other studies con-

cerning the uncertainty about the time series properties of the data used as pre-

dictors of stock returns, and motivate the use of local to unity framework for the

examination of stock return predictability.

4.4.1. Univariate regressions

The �rst set of predictability tests we report refers to the case where the depen-

dent variable is the CRSP excess return and the predictor is the lagged value of

each of the 11 variables described in the previous section. In-sample predictabil-

ity of aggregate market returns is the focus of the vast existing literature. Our

contribution is to examine how inference is modi�ed once we employ the proposed

econometric methodology. Table 4.2 contains the results both for a standard least

squares approach and the new IVX estimation approach. Moreover, it reports the

long-run correlation coe¢ cient of the residuals from regression models (4.2) and

(4.3).

The least squares approach would point to the conclusion that the null hypoth-

esis of no predictability can be rejected (at a level lower than 5%) when the lagged

series of the earning-price ratio, the cross-sectional premium and the net equity

expansion are alternatively employed as predictors. The ability of T-bill rate to

predict future stock returns is on the borderline of statistical signi�cance. There is
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some very weak evidence in favour of the predictive ability of the dividend yield,

dividend-price ratio, book to market value ratio and term spread, while there is

no such evidence for the dividend payout ratio, long-term yield and default yield

to be regarded as predictors of next month excess market returns. The signs of

the coe¢ cients are in accordance with the existing literature. An increase in the

d/y, d/p, e/p, b/m and tms would be associated with an increase in next period�s

excess market returns, while an increase in the net equity expansion and the T-bill

rate would be associated with negative future returns.

These standard results demonstrate that the overall evidence on short-term

predictability is very weak, hence the debate is still wide open. Moreover, a least

squares approach is well known to yield biased estimates in the presence of highly

persistent regressors (Stambaugh, 1999), especially when the residuals of the sys-

tem�s regressions are highly correlated. We indeed �nd that the residuals�long-run

correlation is particularly high when the dividend yield, dividend-price ratio, book

to market value ratio, earnings-price ratio and default yield are used as regres-

sors. This pattern invalidates the inference based on standard least squares and

motivates the examination of the results from the IVX approach.

For each of the employed regressors we report in Table 4.2 the estimated IVX

coe¢ cient as well as the corresponding Wald statistic to test the null hypothesis

that this coe¢ cient is zero. It should be mentioned that the estimated coe¢ cients

are not directly comparable with the ones derived from least squares because they

are derived by using the instrumental variable ~zt�1, constructed in equation (4.12).
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Moreover, the reported results refer to the case where � = 5=6 and  = 1=3. In

the following section we perform a rigorous sensitivity analysis to examine how the

choice of these values a¤ects inference.

Using the IVX approach, we derive striking conclusions. Five variables (divi-

dend yield, dividend-price ratio, earnings-price ratio, book to market value ratio

and net equity expansion) are now found to predict excess market returns at the

5% level or lower. In particular, the strongest evidence in favour of predictabil-

ity is documented for net equity expansion and the book to market value ratio.

On the other hand, the previous evidence on the signi�cance of the T-bill rate

and the cross sectional premium as a predictors is overturned when our method-

ology is employed. With respect to the signs of the estimated coe¢ cients on the

constructed ~zt�1 variable, the standard arguments carry through. A positive rela-

tionship between next period excess market returns and this variable is reported

for the case of the d/y, d/p, e/p and b/m, while a negative one is reported for the

case of ntis. Taken as a whole, inference based on the IVX approach is considerably

di¤erent from the standard least squares one, demonstrating the important role

that the regressors�time series properties play. We argue that there is signi�cant

evidence supporting the case of predictability through a set of commonly used re-

gressors, even when we take into account the uncertainty surrounding their order

of integration, con�rming that the market premium is time-varying indeed.

Apart from examining the issue of predictability on the aggregate market port-

folio, an interesting question is whether these variables have predictive ability over
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components of this portfolio. This issue is worth examining for a series of rea-

sons. Most importantly, if components of the market portfolio are predictable,

this would be valuable information for the formation of optimal portfolios (Kandel

and Stambaugh, 1996), performance evaluation of investment managers (Christo-

pherson et al., 1998), asset pricing models (Ferson and Harvey, 1999), and hence

for the implied cost of capital for the companies in that market segment. Keim

and Stambaugh (1986) tested for predictability using size-sorted portfolios, while

Ferson and Harvey (1999) and Avramov (2002) employed double-sorted portfolios

on the basis of size and book to market value. Most recently, Kong et al. (2009)

provided an exhaustive analysis for size, book to market value and industry port-

folios�returns using a similar set of regressors as well as lagged industry returns.

However, they rely on a least squares approach and a bootstrap procedure for

their inference analysis that may su¤er from low power (see Campbell and Yogo,

2006). We sidestep this problem by using the proposed IVX approach to test for

predictability in the returns of each of the ten size and the ten book to market

value sorted portfolios, described in the previous section.

Table 4.3 contains the estimation results corresponding to the ten size portfolios

while Table 4.4 contains the results for the ten book to market value results. With

respect to the size portfolios, we �nd signi�cant evidence in favour of predictability

across all ten portfolios. However, there are considerable di¤erences between them

with regard to which regressors contain predictive ability and how strong this

evidence is. The most interesting results refer to the smallest size decile. For this
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portfolio, we �nd that 7 out of the 11 considered variables exhibit signi�cant in-

sample predictive ability at the 5% level or lower. These are the d/y, d/p, b/m,

ntis as well as dfy, tbl and tms. In other words, despite the fact that the last

three variables were not found to be signi�cant predictors of the aggregate market

portfolio�s returns, they have predictive ability over small cap stocks�returns, in

line with Ferson and Harvey (1999) and Kong et al. (2005). The implication of

this result is that small stocks�premia are time-varying indeed and that the default

yield, along with the term spread and the 3-month T-bill rate can capture at least

part of this time-variation. On the other hand, the S&P 500 e/p ratio is not

found to be a signi�cant predictor for the future returns of this decile portfolio,

while it was previously found to be signi�cant for the market portfolio. This

�nding demonstrates the importance of decomposing the market portfolio into its

components for predictability tests too. The most signi�cant predictors for small

cap stocks�returns are found to be the book to market value ratio,the default yield

spread and the net equity expansion (rejection of the null of no predictability at

the 1% level).

As we move away from the small size decile towards the big size decile (Size

10), inference with respect to which regressors�coe¢ cients are signi�cantly di¤erent

from zero is modi�ed. The polar case of the biggest size decile yields some quite

intriguing results. In particular, d/p, d/y, e/p, b/m and ntis are found to be

signi�cant predictors at the 5% level or lower. An inspection of the results in

Table 4.3 allows us to derive the following conclusions. The b/m, d/y, d/p and
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ntis have signi�cant in-sample predictive ability for all of the size-sorted portfolios�

returns, as the null hypothesis of no predictability is rejected, at a 5% level or lower,

for any regression combining the each of the decomposed portfolios with these four

variables. The T-bill rate is a signi�cant predictor, at the 5% level, only for the

smallest size portfolio�s returns, while csp, d/e and lty are not found to predict

future returns for any portfolio. Apart from a few big size stock portfolios, the rest

portfolios�returns are predictable through the default yield and the term spread.

Finally, the earnings-price ratio has predictive ability for most but a few small size

portfolios�returns. These �ndings demonstrate the di¤erent characteristics in the

cross-section of stock returns, providing support for the argument that the size

premium (i.e. the spread between small and big cap stock returns) is time-varying

indeed and this time-variation exhibits a partly predictable pattern through a

set of commonly used regressors that are thought to contain information for the

underlying economic conditions (see the seminal study of Fama and French, 1992).

Inspecting the results in Table 4.4, for the univariate predictability tests with

respect to the returns of portfolios formed on the basis of stocks�book to market

value ratio, interesting cross-sectional di¤erences emerge again. As a general rule,

there is much stronger evidence in favour of predictability for value portfolios

(deciles 8, 9 and 10) than for growth portfolios (deciles 1, 2 and 3). This is true

both in terms of the number of regressors that are found to have predictive ability

and the level of signi�cance at which the null of no predictability is rejected. With

respect to the common source of predictability, all portfolios�returns are found to
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be predictable through ntis and the b/m ratio at the 5% level or lower4. The S&P

500 earning-price ratio is also found to have strong predictive ability for most but

the smallest value portfolio. As we move towards value portfolios, d/y and d/p

contain statistically signi�cant predictive ability; for growth portfolios, the null of

no predictability cannot be rejected when using these two variables.

Interestingly, the default yield spread is a reliable predictor only for value

portfolios�returns, supporting the argument of Fama and French (1993) that the

value premium may represent compensation for distress risk, since the default yield

spread tends to widen in periods of adverse economic conditions. Moreover, the

term spread is a statistically signi�cant predictor only for deep value (decile 10)

stocks. On the other hand, the payout ratio (d/e), the long-term yield (lty), the

T-bill rate and the cross-sectional premium (csp) are not found to predict returns

for any value-sorted portfolio considered. Overall, these �ndings not only con�rm

the ability of commonly used regressors to predict future returns for value-sorted

portfolios but they also point to their ability to explain cross-sectional di¤erences

in their returns. As a result, the approach of Petkova and Zhang (2005) to exam-

ine the value premium within a conditional asset pricing framework is legitimate,

motivating also the use of di¤erent sets of variables.

Summarizing the previous evidence, our univariate tests show that net equity

expansion (ntis) is the most reliable predictor of future stock returns across all

4It should be reminded that the book-to-market value ratio employed as a regressor corresponds
to the Dow Jones Industrial Average stocks; it is not the b/m ratio of the stocks in each portfolio
considered.
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of the examined portfolios. This �nding supports the arguments of Boudoukh et

al. (2007), who introduce a closely related variable, the net payout yield. On the

other hand, the dividend payout ratio suggested by Lamont (1998) and the cross-

sectional premium suggested by Polk et al. (2006) do not contain any statistically

signi�cant information for future stock returns using our testing methodology.

Regarding the rest of the variables, the dividend yield and the dividend-price ratio

are found to predict next month�s returns for most of the examined portfolios, with

the exception of growth portfolios. Nevertheless, we should iterate the standard

�nding in predictability studies, that the degree of explanatory power for all of

these regressors is very low. This is an expected feature given that we attempt to

explain a very noisy variable, stock returns, through highly persistent regressors.

4.4.2. Multivariate regressions

The predictability literature has not focussed only on the ability of a single eco-

nomic or �nancial variable to explain future stock returns. Actually, from the

early contributions to this literature onwards (see e.g. Fama and French, 1989),

multivariate regressions were employed and the joint signi�cance of these regres-

sors was examined, apart from their individual contribution to the explanatory

ability of the model. This approach was informative for tests of the semi-strong

form of market e¢ ciency, because in its original version this form was assuming

lack of predictability from any set of underlying variables, not just each variable

in isolation (Fama, 1970). This approach is still very important for asset pricing
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tests and conditional performance evaluation of investment strategies, because in

these applications the focus is on the explanatory ability and �tness of the whole

regression model, not each variable on its own. Moreover, this evolving litera-

ture has documented the individual predictive ability for a series of variables, and

hence for practical reasons we would like to compare the overall predictive ability

of parsimonious regression models that use only subsets of the suggested variables.

Given the importance of multivariate predictability regressions, it is frustrating

that the recent methodological contributions that correct for the bias in the least

squares estimation are developed for single variable regressions. This is true both

for studies that use asymptotic t-statistics for near-unit root regressors (Torous et

al., 2004 and Campbell and Yogo, 2006) and for studies that rely on conditional

t-tests (Lewellen, 2004)5. As mentioned in Section 4.2, an appealing feature of the

proposed econometric methodology is that we can overcome this limitation and

devise predictability tests that use multiple regressors as well as multiple regres-

sands. The latter case proves particularly useful for testing whether a variable or

a set of variables have predictive ability over the entire cross-section of portfolio

returns, e.g. the ten size or the ten value portfolios that we previously examined.

We perform such tests and comment on the derived results.

5The Bayesian approach of Stambaugh (1999) allows for multiple regressors, but prior belief for
the order of their integration is required.
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Table 4.5 contains the results for multivariate regressions when the excess mar-

ket return is used as the dependent variable and a subset of the previously exam-

ined highly persistent regressors are used as independent variables. It should be

mentioned that we exclude from this exercise the cross-sectional premium due to

the lack of data for the whole sample period. Moreover, the dividend yield has a

correlation coe¢ cient of 0.99 with the dividend-price ratio due to their construc-

tion. Therefore, these variables cannot be included in the same regression model,

given the obvious multicollinearity problem; for the results we present, the divi-

dend yield has been included6. In addition, only two of the T-bill rate, long-term

yield and term spread can be used in the same regression, because each of them is

by de�nition a linear combination of the other two variables and this feature would

lead to a singular regressors�matrix. We examine various combinations. Firstly,

we consider whether the null of no predictability can be rejected when all of these

eight regressors are included in the model. We �nd very strong evidence (rejection

of the null hypothesis of joint insigni�cance even at the 1%) in favour of joint

predictability. This result con�rms the conjecture that even when the uncertainty

regarding the order of their integration is taken into account, these commonly used

regressors can predict, in-sample, excess market returns over the following month.

Given the previous discussion, this results points towards time-varying risk premia

and con�rms the ability of these variables to capture, at least partly, the evolution

of these premia.

6Results are very similar when the dividend-price ratio is used instead.
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The second step we take is to separate the variables that were found to be indi-

vidually signi�cant predictors from those that were not and run tests using various

combinations within each of these two subsets. For the signi�cant predictors this

exercise can provide an understanding of which combinations yield the strongest ev-

idence in favour of predictability, while for the individually insigni�cant variables,

as it is standard in the case of multiple regressions, we are interested to examine

whether some of their combinations can still be jointly signi�cant in predicting

excess market returns. All of the 2-, 3- and 4-variable combinations of the indi-

vidually signi�cant variables are found to be jointly signi�cant too, strengthening

the case in favour of predictability. Very strong evidence for the joint signi�cance

of the variables is reported when net equity expansion and the earnings-price ratio

and/or the dividend yield are included in the model. On the other hand, for no

combination of the individually insigni�cant variables can we reject the null of no

predictability at the 5% level. Combining the default yield spread with the T-

bill rate and the dividend payout ratio there is evidence for joint signi�cance only

at the 10% level. In summary, using our testing methodology there is no strong

evidence supporting the predictive ability of the T-bill rate, default yield spread,

dividend payout ratio and the term spread, neither individually nor jointly.

Tables 4.6 and 4.7 present the results derived from testing whether a set of

portfolios�returns can be predicted by each of the 11 lagged variables we examine.

In other words, this is a Wald test for the null hypothesis that the coe¢ cients de-

rived by regressing each portfolio�s returns on the transformation ~zt�1 of the highly
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persistent variable xt�1 are jointly equal to zero. With respect to the size portfo-

lios, we have strong evidence against the null hypothesis of no joint predictability

when the dividend payout ratio, the book to market ratio, the default yield spread

and net equity expansion are employed as regressors. This evidence clearly leads

to the conclusion that these variables contain signi�cant information explaining

the time-varying premia across size-ordered portfolios. For the dividend yield and

the dividend-price ratio, the Wald statistic marginally fails to reject the null at

the 5% level. The Wald statistic only rejects the joint null hypothesis for these

regressors at the 10% level. An inspection of the estimated IVX coe¢ cients shows

a clear gradient as we move from small size portfolios (decile 1) towards big size

portfolios (decile 10), with small size portfolios being more sensitive to d/y, d/p

and ntis than big size portfolios. On the other hand, no evidence of predictability

is reported for the long-term yield, the T-bill rate, the earnings-price ratio, the

cross-sectional premium and the term spread.

With respect to the ten book to market value ordered portfolios, no evidence

in favour of joint predictability is found when the dividend payout ratio, long-term

yield, dividend yield, dividend-price ratio, T-bill rate, earnings-price ratio, cross-

sectional premium and the term spread are individually employed as explanatory

variables. More interestingly, using the Dow Jones Industrial Average book to

market value ratio as a regressor we �nd strong evidence for predictability and

there is a clear pattern with respect to the portfolios�sensitivities; value portfolios�

returns are much more sensitive to this variable in comparison to growth portfolios�
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returns. The most reliable joint predictor appears to be the default yield spread,

generating also a very clear gradient; the estimated IVX coe¢ cient corresponding

to the value portfolio (decile 10) is almost ten times greater relative to the growth

portfolio (decile 1). Since the default yield spread is related to the prevailing

credit conditions by capturing the evolution of default risk for corporate bonds, it

is legitimate to argue that the time-varying premium across the value portfolios

can be partly attributed to the default risk premium. The net equity expansion

is found to be a signi�cant predictor for all value ordered portfolios jointly. The

Wald test statistic corresponding to the null of no predictability is rejected even

at 1% level.

4.5. Further results

4.5.1. Sub-period analysis

The results we reported in the previous section refer to the whole sample period,

from January 1927 to December 2007. It is common practice in the literature

to test for predictability in sub-periods too, examining whether the whole period

results carry through (see Torous et al., 2004 and Campbell and Yogo, 2006 for

recent examples). There are two main reasons why this exercise is informative.

Firstly, the evidence in favour of predictability may simply be attributed solely

to early periods when this pattern was not widely documented. This explanation

essentially implies that these predictable relationships were due to market ine¢ -

ciencies that later disappeared, once investors became aware of them and devised
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asset allocation strategies aiming at exploiting them. On the other hand, if these

predictable patterns persist through time, the implication is that they re�ect time-

varying risk premia rather than mispricings (Fama, 1991). Secondly, there is the

possibility that the degree of predictability as well as returns�sensitivities to these

variables have changed through time, due to the fundamental developments in the

US economy and the structure of �nancial markets during these 80 years. Along

these lines, Viceira (1997) explicitly tests for structural breaks in the predictability

relationships, while Lettau and van Nieuwerburgh (2008) allow for a time-varying

relationship between expected returns and the commonly used �nancial ratios.

Gonzalo and Pitarakis (2009) discuss the instability of the predictability hypothe-

sis and suggest that predictability appears for some valuation ratios during periods

of recession.

Table 4.8 presents the results for univariate regressions of excess market returns

on each of the lagged highly persistent variables we consider in this study. We split

the whole sample period into two halves. Panel A contains the results for the sub-

period from February 1927 to June 1967, while Panel B contains the results for the

sub-period from June 1967 to December 2008. When regressor csp is employed,

Panel A contains results from July 1937 to June 1967 and Panel B includes results

from July 1967 to December 2002. The general conclusion one can derive by

inspecting the reported results is that there is no signi�cant evidence in favour of

predictability for excess market returns during the second half of the examined

period in the case of univariate regressions. For all of the variables that we could
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not reject the null hypothesis in the whole sample period (d/e, lty, tbl, dfy and csp),

this conclusion carries through in both of the sub-periods we consider. Therefore,

the inability of these variables to predict next month excess market returns is

robust to the choice of the period of analysis and it cannot be solely attributed to

parameter instability. It is only for the term spread that we �nd weak evidence,

at the 10% level, in favour of predictability during the second sub-period.

Examining the results for the variables that were found to be statistically sig-

ni�cant predictors during the whole sample period (d/y, d/p, b/m, e/p and ntis),

there is a degree of ambiguity. With respect to the dividend yield, this is found

to be a signi�cant predictor in the �rst period only at a 10% level, while there is

no evidence in favour of predictability during the second period. For the dividend-

price ratio we cannot reject the null hypothesis in any of these two periods. This

�nding is in line with Campbell and Yogo (2006), who documented much weaker

evidence in favour of predictability in their post-1952 sample. This argument is

further strengthened by the fact that the estimated coe¢ cients are much smaller

in magnitude during the second sub-period relative to the �rst one. Given that

these are the two most commonly used variables, this evidence casts doubt on

their predictive ability, especially when using recent sample periods and it should

be taken into account by researchers who employ them for conditional asset pricing

tests and conditional performance evaluation. With respect to the book to market

value ratio and net equity expansion, which were among the most reliable predic-

tors in the full sample analysis, we �nd that they could signi�cantly predict excess
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market returns only for our pre-1967 sample. No such evidence is reported for the

post-1967 sample. Overall our univariate regression results con�rm the arguments

of Lettau and van Nieuwerburgh (2008) regarding the notorious parameter insta-

bility due to the time-varying nature of this relationship and provide less support

to strong conclusions derived using very long time series regressions.

At this point, it is very interesting to test the instability of inference with re-

spect to the sub-periods investigated above, in the context of multivariate regres-

sions. Table 4.9 presents the results for multivariate regressions of excess market

returns on combinations of a subset of the regressors. The �rst line of each case

reports the coe¢ cient estimates of the regressors and the Wald statistic for over-

all signi�cance for Panel A, while the second line reports the same quantities for

Panel B. Due to limitations regarding the data mentioned above (lack of data of

csp for the whole sample period, and interaction between dividend yield and divi-

dend -price ratio, and interaction among the T-bill rate, long-term yield and term

spread) we use only eight of the variables as regressors. All eight regressors are

found to be insigni�cant in the context of univariate regressions for Panel B, apart

from the term spread which exhibits weak evidence of signi�cance (rejection of

the null hypothesis of no signi�cance at the 10% level). However, Table 4.9 shows

that the same regressors appear to be jointly highly signi�cant in the context of a

multivariate regression. More speci�cally, the Wald statistic for overall signi�cance

of the regressors is 23:60739; resulting rejection of the no predictability hypothesis

at 1%: At the second case (rows 3 and 4) of Table 4.9 the only regressor found to
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be weakly signi�cant (tms), in the context of univariate regressions for Panel B,

is dropped. A test of overall signi�cance of the remaining regressors �nds them

to be jointly signi�cant (rejection of the null hypothesis of no predictability at the

1% level). The di¤erence in the conclusions drawn from univariate regressions and

a multivariate regression (for the same set of regressors) is impressive. The Wald

statistic, in the context of univariate regressions, cannot reject (not even at the

10% level of signi�cance) the null of no predictability for any of the variables d/e,

d/y, tbl, e/p, b/m dfy and ntis. In contradiction, when the joint signi�cance of the

aforementioned variables is tested, the Wald statistic strongly (at the 1% level)

rejects the null hypothesis of no predictability. The third case of the same table

refers to an equation including d/e, d/y, e/p, b/m dfy and ntis as regressors. In

this case the regressors are found to be jointly insigni�cant for Panel B and jointly

signi�cant for Panel A. We then move to test the overall signi�cance of the re-

gressors found to be signi�cant in the context of univariate regressions for the full

sample period. These are variables d/y, e/p, b/m, dfy, and ntis. A test for their

joint signi�cance results to the rejection of the null hypothesis of no predictabil-

ity for Panel A and no rejection of the same hypothesis for Panel B. Univariate

regression analysis suggests insigni�cance of regressors d/e, tbl, dfy and tms for

Panels A and B (with the exception of tms being signi�cant at 10% level). A test

of joint signi�cance for these regressors suggests their signi�cance at the 5% level

for Panels A, while insigni�cance cannot be rejected for Panel B.
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Comparison of the results presented in Tables 4.8 and 4.9 highlights the fact

that a joint hypothesis test can lead to substantially di¤erent conclusion than

the one resulting from the respective individual hypothesis tests. A characteristic

example is testing the hypothesis of predictability using data from Panel B: in-

dividual hypothesis tests suggest that there is no predictability of stock returns,

while a joint test of signi�cance leads to the opposite answer. Table 4.9 shows

that the magnitude of the Wald statistic is always higher, for each combination

of regressors, for Panel A in comparison to Panel B. This could be considered as

evidence of stronger predictability in the 1st period of the dataset examined.

4.5.2. Sensitivity to parameter choice

The results reported above are derived for a speci�c combination of the parameters

� and  that characterize the degree of persistence of the constructed instrumental

variable and length of the truncation lag. The initial choice was to set � = 5=6 and

 = 1=3. The values of these parameters a¤ect the derived Wald statistic, so it is

legitimate to ask how this behaves for di¤erent combinations as well as if and how

inference is modi�ed relative to the benchmark case we have analyzed. To this end,

we consider 170 combinations of these parameter values for the entire admissible

set (i.e. (�; ) 2 [2=3; 1) � [0:25; 0:35]). More speci�cally, we consider values of

� = 0:67; 0:69; :::; 0:99; and  = 0:25; 0:26; :::; 0:35: To visualize the sensitivity of

the Wald statistic to the choice of parameter values, we plot the implied 3D surface
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along with a hyperplane that corresponds to the critical value at the 5% level for

the degrees of freedom characterizing the examined case.

We perform this sensitivity analysis for each of the 11 variables employed to

predict excess market returns in univariate regressions. With respect to the vari-

ables for which the null hypothesis of no predictability could not be rejected in the

benchmark case (i.e. d/e, tbl, csp, dfy and tms), this conclusion is very robust to

the combination of the parameter values we use. As an example of the variables

in this category we plot in Figure 4.1 the corresponding 3D surface for the case

when the T-bill rate is used as a regressor. It is evident that the Wald statistic

(red surface) is not very sensitive to either � or  values and it is always below the

5% critical value (blue hyperplane). With respect to the dividend-yield and the

dividend-price ratio, this sensitivity analysis weakens further the evidence in favour

of their individual predictive ability. Figure 4.2 plots the corresponding surface for

the dividend yield. It is obvious that there are combinations of parameter values

for which the null hypothesis of no predictability can be rejected, while for other

combinations this is not true since the black hyperplane corresponding to the 5%

critical value cuts through the coloured surface. This is particularly true for low

values of  as well as for very high or very low values of �. On the other hand,

the earnings-price ratio is found to be a robust predictor of excess market returns

for the full sample period. The most robust evidence in favour of predictability

is provided by the book to market value ratio and net equity expansion. For any

combination of these parameters�values, the null hypothesis of no predictability
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can be reliably rejected at levels even lower than 5%. For example, we plot in Fig-

ure 4.3 the generated surface for the book to market value ratio; this is well above

the hyperplane corresponding to the critical value at the 5% level, robustifying the

previous evidence in favour of predictability through this variable.

The overall conclusion with respect to the proposed methodology is that the

Wald statistic does not seem to follow any monotonic pattern with respect to �

and  values, but its behaviour is case-speci�c. With respect to inference on pre-

dictability, we con�rm that the borderline cases (i.e. cases where we marginally

reject or fail to reject the null hypothesis at a speci�c con�dence level) are subject

to further ambiguity because the value of the Wald statistic depends on these para-

meters indeed. However, it should be stressed that the inference regarding marginal

cases is always a notorious problem for any �exible econometric methodology that

requires the use to choose parameter values. On the positive side, inference is not

very sensitive to the choice of parameter values for cases where we reliably reject

the null hypothesis of no predictability.

4.6. Conclusion

In this Chapter we employ the IVX methodology to the problem of testing the

hypothesis of stock return predictability. The methodology built by MP and PM

is extended by the inclusion of an intercept term in the predictive regression. This

generalisation is motivated by the needs of applied work, as practitioners almost

always include an intercept in the predictive regression in empirical studies. We
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apply this new methodology on data series that have been previously investigated

as potential predictors of the market portfolio.

The empirical part of this Chapter describes the main conclusions drawn by

the use of IVX methodology. The �rst is that the lagged series of the dividend

price ratio, the dividend yield, the earnings price ratio, the book to market ratio

and the net equity expansion appear to be signi�cant for the determination of

the market portfolio in the context of individual tests of signi�cance and in the

context of a joint test of overall signi�cance. This can be considered as strong

evidence of stock return predictability. The rest of the variables examined appear

to be (individually and jointly) insigni�cant for the full sample period. The signs

of the coe¢ cients given by the IVX estimator are found to be compatible with

both �nance theory and previous empirical studies. Additionally, we investigate

the answers provided by the IVX methodology when decomposed portfolios are

used as explanatory variables. The results are interesting and suggest that there

is a strong pattern linking predictability and the size of the portfolios. More

speci�cally, predictability appears to be more evident for smaller market portfolios

rather than larger ones. For portfolios ordered with respect to book to market value

we �nd that, in the context of univariate regressions, predictability is in general

present more often for high book to market portfolios. Book to market ratio and

net equity expansion appear to be signi�cant predictors for the aforementioned

portfolios. However, joint hypothesis tests suggest that default yield spread is the
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only signi�cant predictor for all portfolios decomposed according to their book to

market value.

The inference drawn by the IVX methodology is also examined for two sub-

periods of the available sample size. Using univariate regressions we �nd that

predictability of stock returns exists in the �rst period but vanishes in the second

period. Interestingly, using multivariate regressions (i.e. testing the joint signi�-

cance of the regressors) provides a di¤erent answer with respect to predictability in

the second period: variables that are individually insigni�cant appear to be jointly

signi�cant (even at the 1% level).

The above observation is only one of numerous examples discovered throughout

this study where conclusions based on joint inference on a multiple system of pre-

dictive regressions may di¤er from those drawn from individual hypothesis tests.

This highlights one of the advantages of IVX methodology over existing methods

based on local to unity univariate regressions. The ability of the IVX method to

accommodate joint testing of general linear restrictions on the predictive variables

can be a valuable tool for practitioners, as it extends the range of testable hypothe-

ses and models and can provide di¤erent answers on more sophisticated empirical

problems than individual tests of signi�cance.

Another appealing feature of IVX inference is its robustness to various time

series modelling frameworks including unit root, local to unity and moderate to

unity persistence structure. Robustness of the method to the degree of regressor
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persistence is crucial given the fact that the parameters ci and a cannot be jointly

estimated and misspeci�cation can lead to seriously distorted inference.
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4.7. Technical appendix and proofs

This Section contains the proof Lemma 4.1 and Theorem 4.1. We begin by

establishing some technical lemmata that facilitate the above proofs.

Lemma 7.1. Let ut be a linear process given by (4.5) satisfying (4.6) and E k"1k4 <

1, and let �u (h) = E
�
utu

0
t�h
�
. Then, there exists B > 0 such that

max
h�n

E

 1

n1=2

nX
t=h+1

�
utu

0
t�h � �u (h)

� � B <1:

Lemma 7.1 can be proved by an identical argument to that used in the proof

of Proposition A2 in MP.

Lemma 7.2. Let � > 1=2 and M = L (n)n with  2 (0; 1=2). The following

orders of magnitude apply uniformly for any h 2 f1; :::;Mg:

(i)
Pn

t=h u0tx
0
t�h = Op (n) :

(ii)
Pn

t=h+1 xtu
0
xt�h = Op (n) :

(iii)
Pn

t=h+1 xtx
0
t�h�1 = Op (n

1+�) :

Proof. For part (i), the BN decomposition and summation by parts yield

nX
t=h+1

u0tx
0
t�h�1 = F0 (1)

nX
t=h+1

"tx
0
t�h�1 �

nX
t=h+1

�~"0tx
0
t�h�1

= �
nX

t=h+1

�~"0tx
0
t�h�1 +Op

�
n(1+�)=2

�
=

nX
t=h+1

~"0t�x
0
t�h +Op

�
n(1+�)=2

�
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=
1

n�

nX
t=h+1

~"0tx
0
t�h�1C +

nX
t=h+1

~"0tu
0
xt�h +Op

�
n(1+�)=2

�
=

1

n�

nX
t=h+1

~"0tx
0
t�h�1C +

nX
t=1

~"0tu
0
xt�h +Op (M) +Op

�
n(1+�)=2

�
= Op (n)

by the ergodic theorem since

E

 1

n1+�

nX
t=h+1

(xt�h�1 
 ~"0t)
 � 1

n1+�

nX
t=h+1

E (kxt�h�1k k~"0tk)

� 1

n1+�

nX
t=1

�
E kxt�h�1k2

�1=2 �
E k~"0tk2

�1=2
= O

�
n1+�=2

n1+�

�
= O

�
1

n�=2

�
:

For part (ii), write

nX
t=h+1

xtu
0
xt�h =

nX
t=h+1

xt�h�1u
0
xt�h +

nX
t=h+1

(xt � xt�h�1)u
0
xt�h

=
n�hX
t=1

xt�1u
0
xt +

nX
t=h+1

(xt � xt�h�1)u
0
xt�h

=

nX
t=h+1

(xt � xt�h�1)u
0
xt�h +Op (n) (4.30)
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by an identical argument to part (i). Recall that xt = Rt
nx0 +

Pt
j=1R

t�j
n uxj. So,

ignoring for the moment the initial condition, xt � xt�h�1 can be written as

tX
j=1

Rt�j
n uxj �

t�h�1X
j=1

Rt�h�1�j
n uxj =

tX
j=t�h

Rt�j
n uxj +

�
IK �R�h�1n

� t�h�1X
j=1

Rt�j
n uxj

(4.31)

and note that, since h �M � n�,

IK �R�h�1n = R�h�1n

�
Rh+1
n � IK

�
= R�h�1n [exp f(h+ 1) log (IK + C=n�)g � IK ]

= R�h�1n

�
exp

�
(h+ 1)

�
C

n�
+O

�
1

n2�

���
� IK

�

= R�h�1n

h
e
M
n�

C+O( M
n2�
) � IK

i
= R�h�1n

M

n�
C +O

�
M2

n2�

�
=

�
IK +O

�
M

n�

��
M

n�
C +O

�
M2

n2�

�
=

M

n�
C +O

�
M2

n2�

�
: (4.32)
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Combining (4.31) and (4.32) we obtain

nX
t=h+1

(xt � xt�h�1)u
0
xt�h =

nX
t=h+1

 
tX

j=t�h

Rt�j
n uxj

!
u0xt�h

+
M

n�
C
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Rt�j
n uxj

!
u0xt�h

+
�
IK �R�h�1n

� nX
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Rt
nx0u

0
xt�h: (4.33)

By (4.32) and a standard CLT, the last term in (4.33) has order

Op

�
Mn��x0n

�=2
�
= op (M) :

For the �rst term of (4.33), letting k = t� j, we obtain

nX
t=h+1
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j=t�h

Rt�j
n uxj

!
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nX
t=h+1
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k=0
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0
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=
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Rk
n
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�
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�
+
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n (n� h) �xx (h� k)

= Op (n)



188

because the second term is bounded by n
P1

k=0 k�xx (k)k and, letting i = t � h,

the �rst term is bounded in L1 norm by

max
h;k

E


n�hX
t=1

[uxi+h�ku
0
xi � �xx (h� k)]


hX
k=0

Rk
n


� M max

0�l�h
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n�hX
t=1
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0
xi � �xx (l)]


= O

�
Mn1=2

�
= o (n)

for any  < 1=2 by Lemma 7.1.

The second term of (4.33) can be dealt with in the usual way since the �re-

gressor�belongs to the past of the �innovation�: using the BN decomposition and

summation by parts
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= Rh+1
n
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�
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n�

�
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for any � > 1=2 and  < 1=2. The result follows by (4.30) and (4.33).

For part (iii), using the recursive property of xt we obtain

xtx
0
t�h�1 = Rnxt�1x

0
t�h�2Rn +Rnxt�1u

0
xt�h�1 + uxtx

0
t�h�2Rn + uxtu

0
xt�h�1;

so summing and using (i), (ii) and the LLN we obtain

1

n�

nX
t=h+1

xtx
0
t�h�1 = Op (n) :

Lemma 7.3.

(i) Partitioning the OLS estimator in (4.20) ~AOLS =
h
~�OLS; ~AOLS

i
con-

formably to A = [�;A] the OLS estimators of � and A are given by

~�OLS =
1

�n

 
nX
t=1

yt � ÂOLS

nX
t=1

xt�1

!
(4.34)
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and

~AOLS = ÂOLS � ~�OLS

 
nX
t=1

xt�1

!0 nX
t=1

xt�1x
0
t�1

!�1
; (4.35)

where

�n = n�
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xt�1

!0 nX
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!�1 nX
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!
(4.36)

and ÂOLS =
�Pn

t=1 ytx
0
t�1
� �Pn

t=1 xt�1x
0
t�1
��1

is the OLS estimator when

� = 0.

(ii) For any � > 0 the OLS estimators in (4.35) and (4.34) have consistency

rates

~AOLS � A = Op

�
n�(�^1)

�
~�OLS � � = Op

�
n�1=2

�
:

Proof. Part (i) of the lemma is a consequence of a standard partitioned inverse

formula, see 5.29 in Abadir and Magnus (2005).

For part (ii), note that �n has exact order of magnitude equal to Oe (n) for all

� > 0 since
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n1��

 
1

n
1
2
+�

nX
t=1

xt�1

!0 
1

n1+�

nX
t=1

xt�1x
0
t�1

!�1 
1

n
1
2
+�

nX
t=1

xt�1

!
;



191

so, if � = 1,

�n
n
) 1�

�Z 1

0

JCds

�0�Z 1

0

JCJ
0
Cds

��1�Z 1

0

JCds

�
; (4.37)

and �n=n !p 1 if � 2 (0; 1). As usual, the limit of �n=n unit root case may be

obtained by setting C = 0 in the local to unity case which amounts to replacing

JC by Bx in (4.37).

Let

	n =
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0
t�1

! 
nX
t=1

xt�1x
0
t�1

!�1
:

Of course, 	n is not a¤ected by the presence of an intercept and 	n = Op (n
��)

as before. Using the identities

nX
t=1

ytx
0
t�1 = �

 
nX
t=1

xt�1

!0
+ A

nX
t=1

xt�1x
0
t�1 +

nX
t=1

u0tx
0
t�1 (4.38)

and
nX
t=1

yt = n�+ A
nX
t=1

xt�1 +
nX
t=1

u0t

we obtain

~�OLS =
1

�n

24 nX
t=1

yt �
 

nX
t=1

ytx
0
t�1

! 
nX
t=1

xt�1x
0
t�1

!�1 nX
t=1

xt�1

35
=

1

�n

"
n�+ A

nX
t=1

xt�1 +
nX
t=1

u0t �
 
� (n� �n) + A

nX
t=1

xt�1 +	n

nX
t=1

xt�1

!#
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= �+
1

�n

 
nX
t=1

u0t �	n
nX
t=1

xt�1

!
= �+Op

�
n�1=2

�
by the CLT, since �n = Oe (n) and 	n

Pn
t=1 xt = Op

�
n��n1=2+�

�
= Op

�
n1=2

�
.

For ~AOLS �rst note that, using (4.38), we obtain

ÂOLS =

 
nX
t=1

ytx
0
t�1

! 
nX
t=1

xt�1x
0
t�1

!�1

= A+ �

 
nX
t=1

xt�1

!0 nX
t=1

xt�1x
0
t�1

!�1
+	n:

Substituting into (4.35) we get

~AOLS � A = 	n � (~�OLS � �)

 
nX
t=1

xt�1

!0 nX
t=1

xt�1x
0
t�1

!�1
= 	n +Op

�
n�1
�

= Op

�
n��

�
as required.

Proof of Lemma 4.1 (i). Using the identities

~u0t = u0t �
�
~AOLS � A

�
xt�1 � (~�OLS � �) : (4.39)

and

ûxt�h = uxt�h �
�
R̂n �Rn

�
xt�h�1
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we obtain the following expansion of (4.23):

�̂
(n)
0x = �̂

(n)
1 � �̂(n)2 � �̂(n)3 + �̂

(n)
4 � �̂(5)4 + �̂

(6)
4 (4.40)

where

�̂
(n)
1 =

1

n

MX
h=1

�
1� h

M + 1

� nX
t=h+1

u0tu
0
xt�h

�̂
(n)
2 =

1

n

MX
h=1

�
1� h

M + 1

� nX
t=h+1

u0tx
0
t�h�1

�
R̂n �Rn

�0
�̂
(n)
3 =

�
~AOLS � A

� 1
n

MX
h=1

�
1� h

M + 1

� nX
t=h+1

xtu
0
xt�h

�̂
(n)
4 =

�
~AOLS � A

� 1
n

"
MX
h=1

�
1� h

M + 1

� nX
t=h+1

xtx
0
t�h�1

#�
R̂n �Rn

�0
�̂
(n)
5 = (~�OLS � �)

1

n

MX
h=1

�
1� h

M + 1

� nX
t=h+1

u0xt�h

�̂
(n)
6 = (~�OLS � �)

1

n

MX
h=1

�
1� h

M + 1

� nX
t=h+1

x0t�h�1

�
R̂n �Rn

�
:

Using Lemma 7.2, Lemma 7.3 and the fact that, by equation (11) of MP, R̂n�Rn =

Op (n
��) we obtain that

�̂
(n)
0x = �̂

(n)
1 +Op

�
M

n�

�
: (4.41)
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Therefore, since � > 1=2, establishing

�̂
(n)
1 = �0x +Op

�
M

n1=2

�
+Op

�
1

M

�
(4.42)

is su¢ cient to for the proof of the lemma. To prove (4.42), letting

�0x (h) = E
�
u0tu

0
xt�h

�
we can write

�̂
(n)
1 =

1

n

MX
h=1

�
1� h

M + 1

��
u0tu

0
xt�h � �0x (h)

�
+
1

n

MX
h=1

�
1� h

M + 1

�
(n� h) �0x (h) : (4.43)

The �rst term of (4.43) has order Op

�
M
n1=2

�
since it is bounded in L1 norm by

1

n
max
h�M

E


nX

t=h+1

�
u0tu

0
xt�h � �0x (h)

�M = O

�
M

n1=2

�

by Lemma 7.1. The summability assumption (4.6) implies that

1X
h=1

h k�0x (h)k <1: (4.44)
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Using (4.44), the second term of (4.43) can be written as

MX
h=1

�
1� h

M + 1

��
1� h

n

�
�0x (h) =

MX
h=1

�0x (h) +

MX
h=1

h

M + 1
�0x (h) +O

�
M

n

�

=

MX
h=1

�0x (h) +O

�
1

M

�

= �0x +O

�
1

M

�

because �0x �
MX
h=1

�0x (h)

 =


1X

h=M+1

�0x (h)

 �
1X

h=M+1

k�0x (h)k

� 1

M

1X
h=M+1

h k�0x (h)k = O

�
1

M

�
:

This shows (4.42) and the lemma.

Proof of Lemma 4.1 (ii). Set � 2 (2=3; 1) and M = L (n)n for  � 1=4. We

distinguish between the cases � > � and � � �.

When � > �, part (i) of the lemma yields

n
1�(�^�)

2

�
�̂0x � �0x

�
= n

1��
2

�
�̂0x � �0x

�
= Op

�
M

n�=2

�
+Op

 
n
1��
2

M

!

= Op

�
M

n�=2

�
= Op

�
L (n)n

n�=2

�
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because M=n�=2 � n
1��
2 =M for any  � 1=4. Since slowly varying functions

increase to in�nity slower than any polynomial, the above order of magnitude will

tend to 0 if and only if �=2 > . So, any choice of � in (2=3; 1) achieves the optimal

bandwidth selection  = 1=3.

When � � �, an identical calculation yields

n
1�(�^�)

2

�
�̂0x � �0x

�
= n

1��
2

�
�̂0x � �0x

�
= Op

�
M

n�=2

�
= Op

�
L (n)n

n�=2

�
:

Therefore, in order for condition (4.24) to be satis�ed for all � > 1=2, the band-

width choice is restricted to  = 1=4. The optimal bandwidth selection  = 1=3

only applies if we impose the additional restriction � > 2=3.

Most of the sample moment limit theory needed for the proof of Theorem 4.1

can be found in the original papers by MP and PM. The next lemma discusses the

asymptotic behaviour of the sample mean of the IVX instruments in (4.12) that

arises as a result of including an intercept in (4.2).

Lemma 7.4. The following approximations are valid as n!1:

(i) When � < min (�; 1):

1

n
1
2
+�

nX
t=1

~zt = �C�1z

 
1

n1=2

nX
t=1

uxt +
C

n1=2+�

nX
t=1

xt�1

!
+Op

�
n�(1��)=2

�
: (4.45)
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(ii) When 1=3 < � � � < 1:

1

n
1
2
+�

nX
t=1

~zt !p 0: (4.46)

Proof. For part (i), using the decomposition ~zt = zt +
C
n�
 nt we obtain

1

n
1
2
+�

nX
t=1

~zt =
1

n
1
2
+�

nX
t=1

zt +
C

n
1
2
+�+�

nX
t=1

 nt: (4.47)

For the �rst term of (4.47), summing zt = Rnzzt�1 + uxt yields

(IK �Rnz)
nX
t=1

zt =
nX
t=1

uxt +Op (zn) :

Since IK �Rnz = �Cz=n� and zn = Op

�
n�=2

�
we obtain

1

n
1
2
+�

nX
t=1

zt = �C�1z
1

n1=2

nX
t=1

uxt +Op

�
n�(1��)=2

�
: (4.48)

For the second term of (4.47), summing the recursive formula (see equation (44)

of PM)

 nt = Rnz n;t�1 + xt�1:

we obtain

1

n1=2+�+�

nX
t=1

 nt = �C�1z
1

n1=2+�

nX
t=1

xt�1 +Op

�
 n;n
n1=2+�

�
: (4.49)
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By Proposition A2 of PM,  n;n = Op

�
n�=2+�

�
for all � < � so

 n;n
n1=2+�

= Op

�
n�

n
1+�
2

�
= op

�
n�

1��
2

�
:

Part (i) now follows by combining (4.47), (4.48) and (4.49).

For part (ii), using the decomposition

~zt = xt �Rt
nzx0 +

Cz
n�
 nt;

see equation (23) in PM, we obtain

1

n1=2+�

nX
t=1

~zt =
1

n1=2+�

nX
t=1

xt +
Cz

n1=2+�+�

nX
t=1

 nt + op (1) :

Substituting (4.49) to the above display we obtain

1

n1=2+�

nX
t=1

~zt =
1

n1=2+�

nX
t=1

xt �
1

n1=2+�

nX
t=1

xt�1 +Op

�
 n;n
n1=2+�

�

=
xn

n1=2+�
� x0
n1=2+�

+Op

�
 n;n
n1=2+�

�
= Op

�
n�

1��
2

�
since xn = Op

�
n�=2

�
and  n;n = Op

�
n�+�=2

�
for all � � � by Proposition A2 of

PM.

Proof of Theorem 4.1. We use Lemma 4.7 throughout.
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For part (i), we start with the signal matrix:

X 0 ~Z = X 0 ~Z � n�xn�1�z
0
n�1

= X 0 ~Z � 1

n

 
nX
t=1

xt�1

! 
nX
t=1

~zt�1

!0
:

The limit distribution of n�(1+�)X 0 ~Z is given by Lemma 3.1(ii) and equation (20)

of PM. Using (4.45) we obtain

1

n1+�
X 0 ~Z =

X 0 ~Z

n1+�
�
 
1

n3=2

nX
t=1

xt�1

! 
1

n
1
2
+�

nX
t=1

~zt�1

!0

=
X 0 ~Z

n1+�
+

 
1

n3=2

nX
t=1

xt�1

! 
1

n1=2

nX
t=1

uxt +
C

n1=2+�

nX
t=1

xt�1

!0
C�1z

+op (1) :

Note that all of the above normalised sums are bounded in probability for all � > 0.

When � = 1 (xt is a local to unity process),

1

n1+�
X 0 ~Z ) �

�Z 1

0

JCdB
0
x + 
xx +

Z 1

0

JCJ
0
CC

�
C�1z

+

�Z 1

0

JC

�"
Bx (1)

0 +

�Z 1

0

JC

�0
C

#
C�1z

= �
�

xx +

Z 1

0

JCdB
0
x +

Z 1

0

JCJ
0
CdsC

�
C�1z (4.50)

where JC (t) = JC (t)�
R 1
0
JC (t) dt and JC (t) =

R t
0
e(t�s)CdBx (s). In the unit root

case of P(i), the limit distribution of n�(1+�)X 0 ~Z can be obtained by substituting
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C = 0 in (4.50):
1

n1+�
X 0 ~Z ) �

�

xx +

Z 1

0

BxdB
0
x

�
C�1z ; (4.51)

where Bx (t) = Bx (t) �
R 1
0
Bx (t) dt. In the mildly integrated case,

Pn
t=1 xt�1 =

Op

�
n1=2+�

�
with � < 1, so n�3=2

Pn
t=1 xt�1 = op (1) giving

1

n1+�
X 0 ~Z =

X 0 ~Z

n1+�
+ op (1) = � (
xx + VxxC)C

�1
z + op (1) (4.52)

by equation (7) of MP and Lemma 3.1(ii) and equation (20) of PM. Combining

(4.50), (4.51) and (4.52) and taking into account multiplication by �C�1z yields

~	xx of Theorem 4.1.

Next, we show that the presence of an intercept in (4.2) has no e¤ect on the

asymptotic behaviour of the U 00 ~Z matrix:

n�(1+�)=2U 00 ~Z = n�(1+�)=2U 00
~Z � n(1��)=2�u0;n�z

0
n�1

= n�(1+�)=2U 00
~Z �

 
1

n1=2

nX
t=1

u0t

! 
1

n1+�=2

nX
t=1

~zt�1

!0
= n�(1+�)=2U 00 ~Z +Op

�
n�

1��
2

�
by (4.45) and the CLT.

When � � � < 1 we show that the presence of an intercept in (4.2) has no

e¤ect on IVX limit theory. Since n�3=2
Pn

t=1 xt�1 and n
�(1+�=2)Pn

t=1 ~zt are both
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op (1), The signal matrix

n�(1+�)X 0 ~Z = n�(1+�)X 0 ~Z � n���xn�1�z
0
n�1

= n�(1+�)X 0 ~Z �
 
1

n3=2

nX
t=1

xt�1

! 
1

n
1
2
+�

nX
t=1

~zt�1

!0
= n�(1+�)X 0 ~Z + op (1)

and

n�(1+�)=2U 00
~Z = n�(1+�)=2U 00

~Z � n(1��)=2�u0;n�z
0
n

= n�(1+�)=2U 00 ~Z �
 
1

n1=2

nX
t=1

u0t

! 
1

n1+�=2

nX
t=1

~zt

!0
= n�(1+�)=2U 00 ~Z + op (1) ;

so both sample moment matrices n�(1+�)X 0 ~Z and n�(1+�)=2U 00 ~Z are asymptotically

equivalent to n�(1+�)X 0 ~Z and n�(1+�)X 0 ~Z respectively and Theorem 3.7 of PM

continues to apply.

Theorem 4.1 follows under the conditions of Lemma 4.1(ii), which guarantee

the validity of (4.24).

Proof of Theorem 4.2. The proof will follow by �rst showing that the �unde-

meaned�statistic

W (1)
n =

�
Hvec ~An � h

�0 h
H
n
(X 0P ~ZX)

�1 
 
̂00
o
H 0
i�1 �

Hvec ~An � h
�
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has a �2 (r) limit distribution under H0, and then that W
(1)
n and Wn are asymp-

totically equivalent in the sense that

Wn �W (1)
n = Op

�
1

n1��

�
: (4.53)

We start with the case � < �. By PM, n�1�� ~Z 0 ~Z !p Vzz, so (4.50), (4.51) and

(4.52) yield

�
1

n1+�
X 0P ~ZX

��1
=

�
1

n1+�
~Z 0X

��1�
1

n1+�
~Z 0 ~Z

��
1

n1+�
X 0 ~Z

��1
) �xx; (4.54)

where �xx :=
�
~	0xx

��1
CzVzzCz ~	

�1
xx and ~	xx is the random matrix de�ned in The-

orem 4.1. With this notation, the conclusion of Theorem 4.1 (i) becomes

n
1+�
2 vec

�
~An � A

�
)MN (0;�xx 
 
00) : (4.55)

The Wald statistic in (4.27) can be written as a simple quadratic form: Wn = �0n�n,

where

�n =
h
H
n
(X 0P ~ZX)

�1 
 
̂00
o
H 0
i�1=2 �

Hvec ~An � h
�
:

Under the null hypothesis (4.26),

�n =

"
H

(�
1

n1+�
X 0P ~ZX

��1

 
̂00

)
H 0

#�1=2
Hvecn�

1+�
2

�
~An � A

�
)

h
H
�
��1xx 
 
̂00

�
H 0
i�1=2

MN (0; H (�xx 
 
00)H 0)

= N (0; Ir)
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by (4.54) and (4.55), where the random covariance matrix algebra is justi�ed by

mixed normality. This shows Theorem 4.2 for � < �.

The proof of Theorem 4.2 for � � � follows an identical argument as is con-

tained in PM since the presence of an intercept in the model does not a¤ect IVX

limit theory when � 2 (0; 1). We have established that, under the assumptions of

Theorem 4.2, a W (1)
n ) �2 (r) under H0.

It remains to show (4.53). We need to compare X 0P ~ZX and X 0P ~ZX: the

identity

X 0 ~Z = X 0 ~Z � n�xn�1�z
0
n�1 + n�xn�1�z

0
n�1

= X 0 ~Z

yields

�
X 0P ~ZX

��1
=

�
X 0 ~Z

�
~Z
0 ~Z
��1

~Z 0X

��1
=

�
~Z 0X

��1
~Z
0 ~Z
�
X 0 ~Z

��1
=

�
~Z 0X

��1 �
~Z 0 ~Z � n�zn�1�z

0
n�1

��
X 0 ~Z

��1
= (X 0P ~ZX)

�1 � n
�
~Z 0X

��1
�zn�1�z

0
n�1

�
X 0 ~Z

��1
: (4.56)

By Lemma 7.4 (i),

X 0 ~Z = Op

�
n1+�

�
�zn�1 = Op

�
n��1=2

�
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so (4.56) implies that 
X 0P ~ZX

n1+�

!�1
�
�
X 0P ~ZX

n1+�

��1
= �n2+�

�
~Z 0X

��1
�zn�1�z

0
n�1

�
X 0 ~Z

��1
= Op

�
n2+�n�1��n2��1n�1��

�
= Op

�
1

n1��

�
;

showing (4.53) and the theorem.
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4.8. Tables and �gures

Table 4.1. Unit root tests for the regressors. ADF is the augmented
Dickey Fuller test, DF-GLS refers to the Elliot et al. (1996) DF-GLS
test statistic and PP is the Phillips-Perron statistic. For the ADF
and DF-GLS statistics the Bayesian Information Criterion is used.

ADF DF �GLS PP
d=e �3:388��� �3:361��� �2:798�
lty �1:266 �0:988 �1:341
d=y �1:966 �1:285 �1:837
d=p �1:962 �1:304 �1:916
tbl �2:301 �2:242�� �2:229
e=p �2:786� �2:025�� �2:917��
b=m �3:072�� �2:667��� �2:917��
csp �2:816� �1:410 �2:261
dfy �3:369�� �3:312��� �3:399��
ntis �3:897��� �0:798 �4:293���
tms �5:170��� �3:901��� �4:709���
�;�� and ��� imply rejection of the H0

at 10%; 5% and 1% levels respectively
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Table 4.2. Univariate regressions of (CRSP) value weighted returns.
tNW refers to the t-ratio statistic with Newey-West HAC standard
errors. � is the long-run correlation coe¢ cient of the residuals from
regression models (4.2) and (4.3).

~AOLS tNW ~AIV X Wald �
d=e �0:00087 �0:0742 �0:00063 0:00777 �0:17604
lty �0:07592 �1:2635 �0:05620 0:52806 �0:18181
d=y 0:00952 1:6500� 0:01063 5:68342�� �0:83763
d=p 0:00834 1:5440 0:01016 5:22706�� �0:90559
tbl �0:10191 �1:7369� �0:08386 1:54609 0:02900
e=p 0:01197 2:7502��� 0:01199 5:41182�� �0:66132
b=m 0:01939 1:6963� 0:01993 6:97862��� �0:87121
csp 2:12837 2:8403��� 0:34676 0:14463 0:22458
dfy 0:47542 0:7053 0:31200 1:26074 �0:63393
ntis �0:21689 �2:5459�� �0:38653 13:55450��� 0:25155
tms 0:20935 1:5497 0:21426 2:00926 �0:14941
* implies rejection at 10% level
** implies rejection at 5% level
*** implies rejection at 1% level
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CHAPTER 5

Conclusion

The present thesis discusses econometric inference under a variety of nonsta-

tionary frameworks.

In Chapter 2 we perform an extensive simulation study for the �nite sample

properties of the OLS estimator in vector autoregressive models. We broaden the

scope of the results by Abadir, Hadri and Tzavalis (1999) by introducing overpa-

rameterized models including deterministic components and excessive lag terms.

Their scalar bias matrix result is generalised to the overparameterized case. We

apply the response surface methodology to derive numerical approximations for

the bias and variance. In the absence of analytical results for �nite samples these

approximations can be valuable for practitioners using vector autoregressions.

In Chapter 3 we generalise the BNM and BEPO test statistics proposed by

Forchini and Marsh (2000) to account for autocorrelation in the error term. Auto-

correlation is introduced in the form of a �nite order moving average process and

is accounted for in the construction of the test statistics. Therefore, the result-

ing BNM and BEPO tests are free of nuisance parameters. The feasibility of our

procedure is achieved by maximum likelihood estimation of the moving average

parameters and by the use of information criteria for moving average lag order
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determination. Comparing the �nite sample properties of our generalised BNM

and BEPO tests with the ones originally proposed by Forchini and Marsh, we

achieve an enormous reduction of size distortion in the presence of autocorrelated

errors. In the absence of autocorrelated errors our simulation study suggests that

the power loss of the generalised statistics is relatively small. We also compare

the generalised BNM and BEPO statistics to the statistics derived by Ng and

Perron (2001), Perron and Qu (2007) and Seo (2006) and observe that our statis-

tics exhibit small size and high power. Our simulation experiments reveal serious

problems associated with the �nite sample properties of the Ng and Perron (2001)

statistics: power reversal, power non-monotonicity with respect to the sample size

for some alternatives and extremely low power (lower than the nominal size) in

some cases. A further observation is that the power reversal problem is not elimi-

nated neither by Seo (2006), who �rst reported it, nor from Perron and Qu (2007)

who attempted to solve it. What makes our tests stand out is their robustness

to the presence of autocorrelation in the errors and their improved performance:

their size is comparatively low and reduces substantially as sample size increases

and they have high power across a variety of alternatives which always increases

with the sample size.

Chapter 4 makes a methodological contribution to testing the hypothesis of

predictability of stock returns. The IVX methodology of Phillips and Magdali-

nos (2009) is modi�ed and extended in order to apply to a system of predictive

regressions with an intercept. The proposed approach has two main advantages
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over existing methods. First, it provides inference that does not depend on a

priori knowledge of the degree of regressor persistence. Second, it easily accom-

modates joint inference in multiple predictive regression models. The importance

of assessing the combined predictive power of a set of explanatory variables is an

interesting empirical �nding. In one characteristic example (testing predictability

for the second half of our sample), all available explanatory variables appear to be

individually insigni�cant (at the 5% level) as predictors of the market portfolio as

a result of performing a individual hypothesis test for each explanatory variable.

However, a joint hypothesis test for the same variables leads to strong rejection of

the null hypothesis of no predictability (even at the 1% level). In this example,

while each explanatory variable has limited predictive value, their combination has

signi�cant predictive power. The methodology of Chapter 4 addresses important

issues for applied research in predictive regressions by extending both the valid-

ity of inference (by accommodating a large class of persistent regressors) and the

range of testable hypotheses to include general linear restrictions on a multivariate

regression framework.
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