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ABSTRACT

Econometric Inference in Models With Nonstationary Time Series

Michalis P. Stamatogiannis

We investigate the finite sample behaviour of the ordinary least squares (OLS)
estimator in vector autoregressive (VAR) models. The data generating process is
assumed to be a purely nonstationary first-order VAR. Using Monte Carlo simu-
lation and numerical optimization we derive response surfaces for OLS bias and
variance in terms of VAR dimensions both under correct model specification and
under several types of over-parameterization: we include a constant, a constant
and trend, and introduce excess autoregressive lags. Correction factors are intro-
duced that minimise the mean squared error (MSE) of the OLS estimator. Our
analysis improves and extends one of the main finite-sample multivariate analytical
bias results of Abadir, Hadri and Tzavalis (1999), generalises the univariate vari-
ance and MSE results of Abadir (1995) to a multivariate setting, and complements

various asymptotic studies.
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The distribution of unit root test statistics generally contains nuisance para-
meters that correspond to the correlation structure of the innovation errors. The
presence of such nuisance parameters can lead to serious size distortions. To ad-
dress this issue, we adopt an approach based on the characterization of the class of
asymptotically similar critical regions for the unit root hypothesis and the appli-
cation of two new optimality criteria for the choice of a test within this class. The
correlation structure of the innovation sequence takes the form of a moving average
process, the order of which is determined by an appropriate information criterion.
Limit distribution theory for the resulting test statistics is developed and simu-
lation evidence suggests that our statistics have substantially reduced size while
retaining good power properties.

Stock return predictability is a fundamental issue in asset pricing. The con-
clusions of empirical analyses on the existence of stock return predictability vary
according to the time series properties of the economic variables considered as po-
tential predictors. Given the uncertainty about the degree of persistence of these
variables, it is important to operate in the most general possible modelling frame-
work. This possibility is provided by the IVX methodology developed by Phillips
and Magdalinos (2009) in the context of cointegrated systems with no determinis-
tic components. This method is modified in order to apply to multivariate systems
of predictive regressions with an intercept in the model. The resulting modified
IVX approach yields chi-squared inference for general linear restrictions on the

regression coefficients that is robust to the degree of persistence of the predictor
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variables. In addition to extending the class of generating mechanisms for predic-
tive regression, the approach extends the range of testable hypotheses, assessing
the combined effects of different explanatory variables to stock returns rather than

the individual effect of each explanatory variable.
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CHAPTER 1

Introduction

Nonstationarity has dominated the time series literature for the last three
decades. Interest in the topic was initiated by the empirical relevance of nonsta-
tionary data. Fundamental issues in macroeconomics and finance such as growth,
the efficient market hypothesis and business cycles are crucially influenced by the
existence of nonstationarity. Nelson and Plosser (1982) found that many macro-
economic series had a unit root and discussed the implications of such form of
nonstationarity on the theory of business cycles. The impact of nonstationary
variables to both economic theory and economic forecasting created the need for
statistical methods that would detect the persistence properties of economic time
series and provide valid inference in cases where these series exhibit stochastic
trends.

The inadequacy of standard inference when applied to nonstationary series
was exposed by Granger and Newbold (1974) who introduced the idea of spurious
regression. Using Monte Carlo simulations, they showed that standard regression
methods can provide statistical evidence in favour of fallacious relationships among
variables that contain unit roots. Granger (1981) formalised the notion of a mean-

ingful relationship among nonstationary data series by introducing the definition of



co-integration. Phillips (1986) developed asymptotic methods that explained ana-
lytically the problems associated with spurious regressions and provided the correct
regression theory. His elegant method, based on a functional central limit theo-
rem and the preservation of weak convergence by continuous mappings, provided
the foundation for a huge research programme on formal econometric inference for
nonstationary processes that attracted a large number of econometricians, statisti-
cians and probabilists. The topics discussed in this thesis relate to the econometric
estimation and testing in the presence of various forms of nonstationarity.
Chapter 2 investigates certain finite sample properties of ordinary least squares
(OLS) estimation in vector autoregressive (VAR) models. Assuming a data gener-

ating process of the form

Ty = th—l +€t; t= 1,2,...T, (11)

R = I,

where [;, the k X k identity matrix and {Et}f is a sequence of independent and
identically distributed normal random vectors with mean 0 and positive definite

covariance matrix €2, the OLS estimator is given by
T T -1
R= Z TeTiq (Z mtlx;1> ) (1.2)
t=1 t=1
The main contribution of Chapter 2 is the characterisation of the finite sample

behaviour of OLS estimators in relation to the VAR dimension and autoregressive



lag length misspecification in (1.1). We provide expressions for the OLS bias and
variance and derive correction factors that deliver minimum mean squared error
(MSE) estimators.

The finite sample properties of the OLS estimator Rin (1.2) in the univariate
case (k = 1) has been the subject of considerable study. MacKinnon and Smith
(1998) show that Ris negatively biased for R = 1, with bias decreasing with the
sample size and positively biased for certain values of R (notably R = —1). They
also show that the bias function for R is almost linear for R € [—0.85,0.85] and
highly nonlinear for values of R close to 1 and —1. The bias and exact moments of
the OLS estimator in autoregressive models have been discussed recently by inter
alia Nankervis and Savin (1988), Tsui and Ali (1989, 1994), Vinod and Shenton
(1996) and Gonzalo and Pitarakis (1998). Abadir (1993) derives a high-order closed

form approximation of the finite sample bias of R with |R| = 1:
VB
b=E (R) — R="Zpr, (1.3)

where pup = E [T (ﬁ — R) / \/ﬂ Abadir (1993) shows that exponential functions
in polynomials of 7! may be used to describe the bias. A heuristic process
(5 datapoints, no diagnostics reported) gives the simple approximation p, ~
Uoo €xp (—2.6138 T 1), where g and p, are exact values from Evans and Savin

(1981, p. 769, Table III). The univariate bias approximation is obtained from (1.3)



and an OLS regression of In (u/p,,) on 1/T as

1 —2.61
b~ —1.7814 (?) exp (%) , (1.4)

where —1.7814 is the expected value of the limiting distribution of T’ <1§ — 1).

OLS bias in VAR models with k£ > 1 has been studied by Abadir, Hadri and
Tzavalis (1999) (hereafter referred to as AHT'). This Chapter shows that the bias of
R in (1.2) is a scalar matrix, (i.e. a diagonal matrix with equal diagonal elements)
and is not a function of ). In particular, the bias matrix is approximately equal
to the dimension of the VAR times the univariate bias formula:

k —2.6138
VAT ~ —1.7814 (T) exp (T) I, (1.5)

for T'> k + 2, i.e. the bias is proportional to the dimension k£ of the VAR model,
irrespective of the innovation covariance matrix €.

Chapter 2 extends the results of AHT, studying the finite sample properties of
OLS bias for a data series generated by (1.1). We introduce over-parameterization
in two directions: addition of deterministic components and addition of multiple
autoregressive lags in the VAR model. Hence, while the process z; is generated by

(1.1), the estimated model is given by

p—1
Ty = /7/ + ot + th,1 + Z F]Aﬂft,j +gt
j=1



We extend the AHT scalar bias matrix result to OLS estimates obtained by the
above overparametrized model, proving that the matrix £ (E—R) is scalar. We find
that the effect of the overparameterization causes the absolute value of finite sample
bias to increase. An extensive simulation study yields estimated response surfaces
for bias as a function of sample size, VAR dimension and VAR lag length. We also
estimate response surfaces for the variance of the OLS estimator. Combining the
information drawn from the response surfaces for OLS bias and OLS variance we
compute correction factors that lead to minimum MSE estimators.

In Chapter 3 we derive test statistics for the unit root hypothesis that control
size in the presence of autocorrelation in the error term and have comparatively
good power properties. Early work of Fuller (1976), Dickey and Fuller (1979,
1981) and Said and Dickey (1984) led to “augmented” versions of unit root tests
that take into account possible autocorrelation in the innovation errors of the
model. Phillips and Perron (1988) proposed a nonparametric unit root test which
allows for a very wide class of innovations, namely stationary (short memory) linear
processes. Correlation is not assumed to have a specific parametric structure and
is estimated by a nonparametric estimator of the spectral density function at zero
frequency. All the above (and most subsequent) work treats error autocorrelation
as a nuisance parameter that appears on the null asymptotic distribution of unit
root test statistics and hence affects the size of unit root tests. This issue was
highlighted by the numerical study of Schwert (1989) which demonstrated high size

distortion of the ADF and Phillips Perron tests. DeJong et al. (1992) pointed out



the problem of low power of unit root tests against trend-stationary alternatives.
Dufour and King (1991) and Elliott et al. (1996) proposed local GLS detrending of
the data in order to increase the power of the Dickey Fuller statistic. Ng and Perron
(2001) use GLS detrended data to derive modified test statistics and modified
information criteria for the determination of the truncation lag.

Chapter 3 presents an alternative approach based on the derivation of asymp-
totically similar unit root test statistics. Similarity refers to tests whose size is
independent of nuisance parameters, in this case error autocorrelation. The char-
acterisation of the class of similar tests in the context of autocorrelated errors is
achieved using the methodology developed in Hillier (1987). Test statistics are
selected from within the class of similar tests using two different optimality cri-
teria: Bounded Norm Minimising (BNM) and Bounded Estimated Point Optimal
(BEPO). These optimality criteria have been applied by Forchini and Marsh (2000)
for the derivation of similar unit root tests under independence. In Chapter 3 we
start from a uniformly most powerful critical region that accommodates correlated
innovation errors that take the form of an MA(m) process. The BNM and BEPO
optimality criteria are applied to choose statistics from the class of asymptotically
similar tests. Due to the lack of a sufficient statistic for the estimation of the MA
parameters, we estimate these parameters using maximum likelihood. The order
of the MA component is determined by the use of information criteria. The as-
ymptotic distributions of the resulting test statistics are derived for the case where

the deterministic component of the model includes an intercept or an intercept



and a linear trend. Subsequent numerical study shows that the BNM and BEPO
statistics perform well relative to the other unit root tests in terms of both size
distortion and power in finite samples. A feature that further distinguishes the
BNM and BEPO statistics derived in Chapter 3 is that they do not suffer from
the problem of power reversal. This term was introduced in the literature by Seo
(2006) to describe a decrease in power as the true value of the parameter moves
away from the null hypothesis'.

Our simulation study reveals another problem that arises with test statistics
that employ the modified information criteria (MIC) proposed by Ng and Perron
(2001): for a given alternative value of the parameter of interest, there are cases
when power decreases as the sample size increases. In other words, additional
information leads to distorted inference which suggests that the tests are not con-
sistent. The problem is related to a singular feature of MIC relative to traditional
information criteria, namely the imposition of the null hypothesis. This offers ex-
cellent control over size. However, as the true value of the parameter of interest is
moving away from the null, maintaining the null hypothesis through the MIC on
the statistics can have a detrimental effect on the power of the associated tests.

The unit root tests derived in Chapter 3 do not suffer from the aforementioned
problems. The power of the BNM and BEPO statistics increases as the true
value of the autoregressive parameter moves farther away from the null hypothesis

value. For a given alternative value of the parameter of interest, the power of these

ISurprisingly, the statistics resulting from Seo’s procedure suffer from the same problem.



statistics increases as the sample size increases. Additionally, the BNM and BEPO
tests appear to have relatively low size and high power compared to the statistics
proposed by Ng and Perron (2001), Perron and Qu (2007) and Seo (2006).

In Chapter 4 we discuss inference in a broader framework of nonstationarity.
As is often emphasised in applied work, economic and financial time series seem
to exhibit persistence characteristics that do not always conform to the I(0)-I(1)
dichotomy. In practice this means that applied researchers wish to model persis-
tence in cointegrating regressions through series that have autoregressive roots in
a general neighbourhood of unity. Considering persistent regressors that are not
necessarily unit root processes is of particular importance for assessing the pre-
dictive power of economic and financial variables on stock returns. To this end,
a well developed literature (Cavanagh et al., 1995; Torous et al., 2004; Campbell
and Yogo, 2006) considers predictive regressions with local to unity regressors.

Accommodating such a generalisation, however, cannot be accomplished by
standard methods. As Elliott (1998) showed, conventional cointegration methods
such as fully modified OLS and dynamic OLS methods (Phillips and Hansen,
1990 and Stock and Watson, 1993 respectively) do not produce valid asymptotic
inference in cases where the regressors have roots that are local to unity. Local to
unity processes induce additional endogeneity that cannot be removed by standard
methods. Similar problems occur when the regressors exhibit less persistence than
local to unity processes. Such “mildly integrated” regressors were introduced by

Phillips and Magdalinos (2007) and Giraitis and Phillips (2006). Given this wide



class of possible generating mechanisms, there is a need to develop more robust
approaches to estimation and inference that do not rely upon knowledge of the
precise form of regressor persistence.

We apply the IVX method of Phillips and Magdalinos (2009) to the problem of
testing for stock return predictability. The procedure is generalised by including
an intercept in the model and provides robust inference in the following system of

predictive regressions:

Y = W + A"Iitfl + Uoy, (16)
ry = Rpme + Uy, (1.7)
Ry = I,+C/T*, for some «a >0 (1.8)

fort € {1,...,T}, an m X k coefficient matrix A and innovations wg;, u,; that take
the form of a stationary short memory linear process. The matrix C' can be either
zero or negative definite and together with a determine the degree of regressor
persistence induced by the autoregressive matrix Ry in (1.8). If either C' = 0 or
a > 1 in (1.8) the regressor z; behaves as a unit root process. If C' < 0 and
a = 1 the regressor in (1.7) is a local to unity process. If C' < 0 and a € (0,1)
the regressor belongs to the class of less persistent, mildly integrated processes

introduced by Phillips and Magdalinos (2007).
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Least squares limit theory for multivariate systems with mildly integrated re-
gressors was established in Magdalinos and Phillips (2009). Phillips and Magdali-
nos (2009) employ a new instrumental variables procedure for the estimation of
the coefficient matrix A in a cointegrated system. The idea is to construct in-
struments from the regressors by means of a suitable filtering. The approach is
called “IVX estimation” because instruments are generated from the regressors by
means of data differencing without using any external information. The degree
of persistence of each IVX instrument is explicitly controlled so that the process
is mildly integrated. This approach eliminates the local and moderate to unity
endogeneity and produces a mixed normal limit distribution for the IVX estimator
and standard chi-squared inference for restrictions on A irrespective of the degree
of persistence of the regressors.

The contribution of Chapter 4 is twofold: First, motivated by the requirements
of applied literature, the IVX methodology of Phillips and Magdalinos (2009) is
extended to the case where an intercept is included in the model. The IVX es-
timator and the associated Wald test statistic are further modified to take into
account the contemporaneous structure of predictive regressions. Second, an em-
pirical analysis of the issue of predictability of stock returns is conducted by using
the modified IVX methodology.

Apart from its robustness to the time series properties of the data generating
process, the IVX methodology accommodates joint inference in the system (1.6)-

(1.7), i.e. offers the possibility of assessing the predictive power of combinations
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of explanatory variables, or assessing the predictive power of a single regressor on
multiple portfolios. This addresses a crucial empirical issue that could not be taken
into account by previous studies on stock return predictability based on a local to
unity framework (Cavanagh et al., 1995; Torous et al., 2004; Campbell and Yogo,
2006) because of the problems associated with multidimensional confidence interval
construction for C'. These problems do not affect IVX inference which is based on
an endogeneity correction rather than Bonferroni type confidence intervals.

In the empirical part of Chapter 4 that assesses the predictability of the market
portfolio, we use explanatory variables that are commonly employed as potential
predictors. The market portfolio is decomposed to subcategories firstly accord-
ing to the stocks’ market value and secondly according to the stocks’ book to
market value. This categorisation of the market portfolio allows us to investigate
whether the regressors predict specific subcategories of the market portfolio and
also whether a regressor can jointly predict the subcategories of the market portfo-
lio. The predictive power of a variety of explanatory variables is examined exten-
sively in the context of both univariate and multivariate regressions. Throughout
our empirical analysis, the importance of joint inference on more than one pre-
dictive variable is revealed. We present important cases where a set of predictive
variables is jointly significant for stock returns whereas each variable in the set has
insignificant predictive value.

Chapter 5 concludes the discussion of this thesis.



CHAPTER 2

The Finite-Sample Effects of VAR Dimensions on OLS

Bias, OLS Variance, and Minimum MSE Estimators

2.1. Introduction

Vector autoregressions have been extensively studied in econometrics and con-
tinue to be one of the most frequently used tools in time series analysis. However,
little is currently known about the properties of parameter estimators when applied
to finite samples of data, and especially in nonstationary frameworks. In partic-
ular, the form and extent of estimator bias and variance have not yet been fully
investigated. In a paper that is central to this issue, Abadir, Hadri and Tzavalis
(1999) (AHT) study nonstationary multivariate autoregressive series, and derive
an approximate expression for the mean bias of the ordinary least squares estima-
tor of the matrix of autoregressive parameters, in terms of the sample size T" and
VAR dimension k. They consider estimation of a correctly-parameterized first-
order vector autoregression (a VAR(1)), with no constant or trend, given that the
data generating process is a k-dimensional Gaussian random walk. Using Monte
Carlo simulation, they show that their “analytic approximation” provides a good

representation of bias in finite samples, and for small & (AHT, Table I).

12



13

The purposes of this Chapter are twofold. Firstly, we extend the results given
by AHT in a number of directions. In broadening the scope of AHT, we assess
over-parameterization of the estimated VAR model, by including a constant, and
a constant and deterministic trend. This creates additional bias problems, as was
suggested by simulation results for the univariate case in Abadir and Hadri (2000,
p. 97) and Tanizaki (2000, Table 1). We also assess the effects of introducing
p — 1 excess lags into the estimated model. We use Monte Carlo methods to
simulate small sample bias, and then fit a series of response surfaces using weighted
nonlinear least squares. Well-specified and parsimonious response surfaces are
chosen following diagnostic testing, and are shown to perform very well in out-of-
sample prediction. In the correctly-parameterized setting, the prediction error of
our response surface is substantially less than that of the AHT form, across the
parameter space under investigation.

Secondly, we focus attention on the variance and MSE of the least squares
estimator, and generalize the heuristic univariate variance approximation of Abadir
(1995) to rigorous response surfaces. We develop response surfaces for variance,
and show that multiplying the OLS estimator by a scalar correction factor achieves
minimum MSE and removes most of the bias, at the expense of a small increase
in estimator variance.! To our knowledge, no other finite-sample approximations

(analytic or otherwise), and few simulations, were previously available for bias in

1See Hendry and Krolzig (2005, section 4) for a similar form of bias correction, after computer-
automated model selection.



14

the multivariate over-parameterized cases, or for excess lags, or for variance in the
multivariate setting.

The Chapter is organized as follows. Section 2.2 introduces the possibly over-
parameterized VAR model and briefly reviews existing finite-sample results. Sec-
tion 2.3 outlines the response surface methodology, presents the experimental de-
sign, and proposes response surfaces for multivariate bias and variance, based upon
an extensive series of Monte Carlo experiments. Section 2.4 concludes the Chapter.
We represent vector (and scalar) and matrix quantities as a and A respectively.
Special vectors and matrices include the k£ x 1 zero vector 0, and the £ x k identity

matrix I;.

2.2. Models and background

Let {xt}lT be a k x 1 discrete time series that follows a purely nonstation-
ary VAR(1), where T is the sample size, the innovations are independently and

identically distributed with distribution D, and {2 is positive-definite:

Ty = Ty—1 + E¢, & ~ ii.d.D (Ok,Q), t = 1,2,...,T. (21)
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We examine the finite-sample bias, variance and MSE of the least squares estimator

of (2.1), for each of the following estimated VAR(p) models:

p—1
Model A: z, = @z, + ijAg;t_j + 5,
j=1
p—1
Model B: z; = f+ ®x; 1+ ijAxt,j + 7,
j=1
p—1
Model C: x, = Ji+0t+Quy+ Y LAz +7,
j=1

where A is the backward-difference operator, and over-parameterization arises
through inclusion of a constant (Model B), a constant and time trend (Model
C), and when there are multiple lags, with p > 1 (Models A, B, and C).? There are
no elements in the summations if p = 1. Zero initial values are chosen for simplicity
(x—; =0k, j=0,1,...,p—1), and to avoid the problems of bias nonmonotonicity

that can potentially arise when non-zero initial values are considered.?

~

PROPOSITION 2.1: The bias matric B = E(®) — I} is scalar, and bias is invari-

ant to {2, for Models A, B, and C, if the error distribution D is symmetric, and §2

2We are very grateful to the referees of the Journal of Econometrics, who suggested that we
generalize our original models.

3The correctly-parameterized univariate Model A, with & = p = 1, was examined by Abadir
and Hadri (2000), given a (nearly) nonstationary data generating process, and non-zero initial
values. They show, using numerical integration, that the bias of a can be increasing in sample
size T, due to the effect of |xg|. This nonmonotonicity disappears under estimation of univariate
Models B and C, at the expense of higher bias. A small simulation study of (1) and Model A
by Lawford (2001), with £ < 6, p =1 and zy # O, leads to the interesting conjecture that bias
nonmonotonicity also disappears when k& > 1.
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is positive-definite. Furthermore, the variances of each of the diagonal elements of
d are identical, and variance is invariant to (2, for Models A, B, and C, if D is

symmetric, and 2 is both positive-definite and diagonal.

Proof of the above Proposition is given in Section 2.5. Abadir (1993) uses
some results on moment generating functions to derive a high-order closed form
(integral-free) analytical approximation to the univariate finite-sample bias of 5
given Model A, k = p = 1, and with |¢| = 1. The final expression is based upon
parabolic cylinder functions, and is computationally very efficient. Abadir further
shows that bias may be described more simply in terms of exponential functions

in polynomials of 7!, and develops the following heuristic approximation:

bV ~ —1.7814T ' exp (—2.6138T71) , (2.2)

~

where —1.7814 is the expected value of the limiting distribution of T'(¢ — 1), e.g.
see Le Breton and Pham (1989, p. 562)." Heuristic fits such as (2.2) have been
used elsewhere in the literature, e.g. Dickey and Fuller (1981, p. 1064), and we
distinguish here between these approximations and the rigorous response surface
approach that is used in this Chapter. Despite the fact that only 5 datapoints
are used in the derivation of (2.2), it is accurate in-sample to 5 decimal places for

bias, and is more accurate than the special function expression (see Abadir, 1993,

4This constant can be calculated conveniently by using the expression 1 —
Lu(coshu) 2 du = 1 — 2v2 3F5(1/4,1/4,1/2;5/4,5/4;—1) ~ —1.7814, where 3F;
is a hypergeometric function.
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Table 1). We found that (2.2) also performs very well out-of-sample, at least to
1 decimal place of —100xbias. Other studies that examine the exact moments of
OLS in univariate autoregressive models, with a variety of disturbances, include
Evans and Savin (1981), Nankervis and Savin (1988), Tsui and Ali (1994), and
Vinod and Shenton (1996); see also Maeshiro (1999) and Tanizaki (2000), and
references therein.

In the multivariate setting, AHT consider Model A, k£ > 1, p = 1, and prove
that B is exactly a scalar matriz, i.e. diagonal with equal diagonal elements:
B = diag(b,...,b), and that B is invariant to {2, given only a symmetric error
distribution. Furthermore, they develop a simple quantitative approximation to

multivariate finite-sample bias (especially AHT, p. 166, and Abadir, 1995, p. 264):
BAUT o pUNV LT = p AHT T (2.3)

It is clear that bias is approximately proportional to the dimension of the VAR,
even when (2 is diagonal. To facilitate discussion of cointegrating relations, AHT
formulate their model as Az, = Vx;_1 + ¢4, where ¥ = & — [,. Since the bias of
U is equivalent to the bias of </IS, our results may be compared directly to those in
AHT, for p =1, and no deterministics.

Abadir (1995, p. 265) uses the univariate Model A (p = 1) variance definition
v = 27~2$p2, with values for standard deviation “sD” of normalized ¢ taken from

Evans and Savin (1981, Table III), and performs a similar heuristic process to
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that used in derivation of (2.2) for bias. This gives a variance approximation for

k=p=1:
vV ~10.1124 T exp (—5.4462 T +14.519T?) (2.4)

which is shown to be accurate to at least 7 decimal places in small samples. Since
the bias and variance of each of the diagonal elements of d are respectively iden-
tical, we may use MSE(@) = b? + v directly, to compute the MSE.

In the following Section, we present the Monte Carlo experimental design,

develop very accurate response surface approximations to multivariate bias and

variance, and consider a simple correction for the OLS estimator to have minimum

MSE.

2.3. Structure of Monte Carlo analysis

2.3.1. Response surfaces

Response surfaces are numerical-analytical approximations, which can be very use-
ful when summarizing and interpreting the small sample behaviour of tests and
estimators. They have been applied to a variety of econometric problems by, in-
ter alia, Engle, Hendry and Trumble (1985), Campos (1986), Ericsson (1991),
MacKinnon (1994, 1996), Cheung and Lai (1995), MacKinnon, Haug and Michelis

(1999) and Ericsson and MacKinnon (2002). The response surface technique aims
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to summarize the behaviour of the statistic of interest at all points in the admissi-
ble parameter space, i.e. for whole families of DGP’s; and in a more sophisticated
manner than that offered by simple heuristic approximations. The following out-
line of the methodology draws upon Hendry (1984) and Davidson and MacKinnon
(1993, pp. 755-763).

The quantity of interest 7 is a function of the sample size T" and the vector of
variables 6 that appear in the DGP. The relationship is modelled as a functional
form W (T, 0;w), where w is a vector of parameters to be estimated, and W (-)
is chosen by the investigator. Estimated values for the dependent variable, 7;,
are generated using a set of N Monte Carlo experiments. The i'" experiment
is associated with an estimated standard error & (7;), where 7; is approximately
distributed as N(¥ (T, 6;w) o (7)) if the number of replications per experiment
(M) is large. Given that each of the experiments uses different sets of random
numbers, we may then implement generalized least squares (with a fully specified
covariance matrix) and estimate

T W(T,0;w)

(@) o)

using ordinary or nonlinear least squares, depending upon the form chosen for
U (T, 0;w). Division by o (7;) in (2.5) corrects for heteroscedasticity.
There are a number of potential difficulties associated with the approach.

Firstly, precise estimates are needed if W (7', 0;w) is to be accurately specified.
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Since a large number (V) of datapoints is also needed — and in practice this seems
to be rather more important than having extremely accurate datapoints (although
M must be reasonably large) — the method tends to be computationally intensive.
Secondly, the functional form of ¥ (7', 0;w) is generally not known a priori. Thus,
estimation of correctly specified response surfaces becomes very difficult indeed as
the number of parameters in ¥ (7', 0; w) increases. Generally, ¥ (7', §;w) should be
formulated in line with known analytical results (as, e.g. we have here in (2.2) and
(2.3)).

Thirdly, Monte Carlo studies can be subject to specificity of the results, i.e.
while the estimated response surface may fit well in-sample, there is no guarantee
that accuracy will be achieved over the entire domain of approximation (Hendry,
1984). To avoid this, 7" and € should be chosen to span an “interesting” part
of the parameter space, (e.g. more detail may be given to sample sizes that are
typical in economic applications), and the estimated response surface subjected to
a battery of standard diagnostic tests. One useful check of the suitability of the
response surface specification is that we would expect a unit error variance, after
the heteroscedasticity transformation. Inevitably, some (and often a great deal
of) experimentation will be required before correctly specified and parsimonious
equations can be selected. The accuracy of the approximation should then be
examined using out-of-sample parameter values, i.e. points that are not used in
estimation of the response surface. This provides a rigorous test of the accuracy

of the method and, if the response surface is correctly specified, will enable the
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statistic of interest to be approximated at various parameter points without the
need to carry out another simulation. It is important to report the parameter values
used in the simulation experiments; and extreme caution should be exercised when
inferring any findings to more general situations than those defined by the DGP
and the specific parameter environment (see especially Maasoumi and Phillips,

1982).

2.3.2. Monte Carlo design and simulation

The data generating process and models were introduced in (2.1) and Models A,
B, and C. We adopt a minimal complete factorial design, which covers all triples

(T, k,p) from:

T € {20,21,...,30,35,...,80,90,100, 150,200}, k € {1,2,3,4}, p € {1,2,3,4},

(2.6)
giving N = 400 datapoints. The sample sizes that we have chosen are repre-
sentative of those that are commonly used in practice, and our design includes
small £ and p, so that the effects of changes in VAR dimension and model lag
can be explored. From Proposition 1, and with no loss of generality, we set
gy ~ 1.i.d.N(0, I) in the simulations. We calculate the OLS estimate for each
combination of (T, k, p) in the parameter space, from which we directly derive the
bias. Since B is a scalar matrix, we may estimate the scalar b by averaging over the

estimated diagonal elements of B. This results in a further increase in accuracy as
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k increases. We simulate variance v similarly.” The period of our pseudo-random
number procedure is much larger than the total random number requirement. All
simulations were performed most recently on Pentium 4 machines, with 2.5GHz
processors and 512MB of RAM, running GAUSS and/or Python under Microsoft
Windows XP.

Where possible, our numerical results were checked with partial exact and
approximate results in the literature. These include MacKinnon and Smith (1998,
Figure 1), who plot bias functions under Model B (k = p = 1), and Pere (2000,
Table 3), who reports values that correspond to variances in the same model, in
his study of adjusted profile likelihood. Evans and Savin (1981, Table 3) give bias
and standard deviation for 277/2T(¢ — 1) under Model A (k = p = 1), which agree
closely (3 to 5 decimal places) with our simulation results. Roy and Fuller (2001,
Tables 1 and 6) report bias and MSE for 7' = 100, under univariate Models B and

C, for p = 1.

2.3.3. Post-simulation analysis

We regressed the Monte Carlo estimates of bias and variance under Models A,

B, and C, on functions of sample size, VAR dimension and lag order, to reflect

"We experimented with a pseudo-antithetic variate technique, based upon Abadir and Paruolo’s
(2009) univariate “AV4”, and were able to increase the speed of the bias simulations by roughly
50%, for a given precision [Model A, p = 1]. While conventional antithetics are not generally
applicable to the nonstationary setting, the pseudo-antithetic is not valid either for some of the
models considered above, and is therefore not used in this paper.
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the dependence of b and v upon these parameters, and on the degree of over-
parameterization. Following extensive experimentation, and motivated by (2.2),

we fit the following nonlinear bias response surface for each of the models:°

(3?)_1 b(Ti, ki, pi) = (3?)_1 (By + Ba ki) T; exp [(53 + By ki + B kipi + Bg ki) Tz'_l} +u;.
(2.7)
The dependent variable b (7}, k;, p;) is the simulated finite-sample bias for sample
size T;, VAR dimension k;, and lag order p;, which take values from (2.6), and u;
is an error term. We correct for Monte Carlo sampling heteroscedasticity using
the term s?, which is the simulated sampling error standard deviation of bias over
replications (see Doornik and Hendry, 2007, Chapter 15, for details). We denote the
fitted values of the estimated response surface by %, and estimated coefficients
are reported in Table 1. Convergence of the weighted nonlinear least squares
routine was very fast, and required few iterations. Selection criteria included small
residual variance and good in-sample fit, parsimony, and satisfactory diagnostic
performance. The response surface fits are extremely good in-sample, and the
Jarque-Bera statistic for normality is small. The signs of all estimated coefficients

apart from the constant 3, remain the same across the different models. Note

6Some early motivation for numerical refinement of (2.3), for Model A, with p = 1, came from
consideration of low-order partial derivatives of b*HT . Straightforward algebra gives (for T > 1)
VAT <0, ObAT /0K < 0, 920AHT /9K? = 0, (for T > 3) ObAHT /0T > 0, 02021 /OkOT > 0, (for
T > 5) 0?bA1T /9T? < 0. Upon comparing these theoretical partials with approximate numerical
partial derivatives from simulated data, it is found that each holds, except for 92b/9k? = 0 (simu-
lations suggest that 92b/9k? > 0, for T not too large). This finding suggested that improvements
were possible over (2.3), and especially that k entered the formula in a more complicated manner
than in (2.3).
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that the asymptotic bias T;b (as T; — o0) is a linear function of k; alone, which
agrees with numerical observations, and that 3, + (3, k; can be interpreted as the
asymptotic component of bias, with the exponential representing the (analytically
intractable) finite-sample “adjustment”, which depends on k; and p; (and Tj).

We recalculate Table I in AHT as Table 2 in this Chapter, with increased
accuracy, with additional results reported for T = 400,800 and k£ = 6,7,8, and
correcting for a typo in AHT Table I: (T, k) = (25,5). It is convenient to interpret
the scaled bias values as percentages of the true parameter value, e.g. in Model
A, given (T, k) = (25,8), and p = 1, the absolute bias of each of the estimated
parameters on the diagonal of  is 46.7% of the true value (unity). Clearly, absolute
bias is strictly increasing in k and decreasing in 7. As T increases, bias goes to
zero, as is well-known from asymptotic theory. We see that AT gives a good
approximation to bias for k small, and especially for k£ = 1, where (2.3) reduces to
the excellent heuristic approximation (2.2). However, as k increases, b5 provides
much closer approximations to bias, even for 7' quite large. Out-of-sample points
reported in Table 2 for b®5 are combinations of k = 5,6,7,8, and T = 400, 800.
While b*HT is only applicable for correctly-parameterized Model A, our response
surfaces can be used when p > 1, and also when deterministics are included. The
out-of-sample fit appears to be excellent for all 7', and up to about £ = p = 6
(as k and p jointly become large, with small 7', the term kP will dominate the
bias approximation, and out-of-sample predictions should be used with particular

caution). Although the response surfaces are developed with small sample rather
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than asymptotic considerations in mind, it is interesting to approximate univariate
asymptotic bias by setting k = p = 1 and letting 7; — oo in T;b%S, from (2.7),
which gives T;b%° = 31 + Bz of approximately —1.7, —5.4 and —10.3 in Models A,
B and C respectively.

Kiviet and Phillips (2005, equation (14), and Figure 1) consider univariate
Model B, where the data generating process can have a non-zero drift, and write
autoregressive bias in terms of “g-functions ” go (T") and g; (7), which they cal-
culate using simulations. The function go (7') represents least squares bias when
there is a zero drift in the data generating process, while ¢g; (T") appears as the bias
increment due to non-zero drift. Our equation (2.7) simplifies (when k£ = p = 1)
to go (T) ~ —5.3654 T ' exp (—2.6513 T~1), which provides a convenient means of
calculating g (7') without further simulations.

Using (2.4) to motivate the choice of functional form, we fit the variance re-

sponse surface:

(5$>_1U <Ti7 ki,pi) = (Sg)_l (71 + 72 kz) Ti_z exp[(% + V4 ki + 5 Di + 76 kipz') Tz‘_l

+ (77 kipi + v K T;%) + wi, (2.8)

where v (T, k;, p;) is the simulated finite-sample variance, and s! is the simulated
sampling error standard deviation of the variance over replications. In estimating
(2.8), we did not use datapoints for which 7; = 20,...,24 (and so N = 320),

since variance becomes very large for such small sample sizes, which makes it
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very difficult to specify good response surfaces across the full parameter space.

Estimated response surfaces v™S

are given in Table 3, and are seen to fit very well.
The signs of each of the estimated coefficients, except for 7v,, remains the same
across the models, the Jarque-Bera statistic is relatively low, and v®5 provides a
very good approximation in-sample. The out-of-sample variance approximation
should be used with caution as k& and p jointly exceed about 5 or 6, with small 7',
again due to the effect of the term k”. We note that no variance approximations
were previously available for over-parameterized models, excess lags, or even for
k > 1. Similarly to the bias response surfaces, the asymptotic variance T?v (as
T; — o0) is a linear function of k; alone, and 7, 4+ v, k; can be interpreted as the
asymptotic component of variance, with the exponential term again representing
the finite-sample “adjustment”, which depends upon k; and p; (and T;). The
dependencies of bias and variance on T, k, and p are depicted in Figures 1 and 2,
which plot scaled response surfaces —100 x b%5 and 10,000 x v®5, against T, for
Models A, B, and C, with £k =1,2 and p =1, 2.

Bias and variance are not the only criteria to be used in comparison of time
series estimates, and the mean squared error, MSE(&;) = b? + v, is often of interest.
For univariate Model A (p = 1), Abadir (1995) defines A\ as a correction factor

such that MSE(A@) is minimized, and ™ and v™ as the bias and variance of the

corrected OLS estimator )\&;, with:

1+0b —v 9
A=——m— "= —m—, " = A, 2.9
v+ (1+0)? v+ (1+0) (2:9)
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when ¢ = 1. Equations (2.7) and (2.8) may be now combined to give an ap-
proximation to MSE, and by substitution of response surface values for bias and
variance into (2.9), we are able to calculate A for various T, k, and p. As an illus-
tration, correction factors are reported in Table 4, for p = 1 and Model A, which
displays qualitatively similar results to those in Abadir (1995, Tables 2 and 3).
It is clear that OLS (A = 1) does not achieve minimum MSE. It is also shown
that the corrected OLS is almost unbiased, unlike OLS. From Table 4, A increases
monotonically with & and decreases monotonically with 7' (asymptotically, the
OLS achieves minimum MSE). The correction can be particularly large for small
T, eg. (T,k) = (25,5) implies a correction of 32%. The corrected estimator is
much less biased than the OLS, and b™ tends to zero more rapidly than b. How-
ever, this reduction in bias comes at the expense of a small increase in the variance
of the corrected estimator, v™. It is seen that b? forms a much larger proportion of
MSE than variance for k£ > 3, although this does not hold following the minimum

MSE correction; and that MSE efficiency is generally decreasing in 7" and k.

2.4. Concluding comments

We have performed an extensive set of Monte Carlo experiments on the bias
and variance of the OLS of the autoregressive parameters, given a data generat-
ing process that is a purely nonstationary VAR(1), where the estimated model is
a possibly over-parameterized VAR(p), for small sample sizes, and various VAR

dimensions and lag lengths. Although the univariate framework has been the
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subject of much research, a comprehensive multivariate simulation study has not
previously been performed. We estimate parsimonious and computationally con-
venient response surfaces for bias and variance, that are much more accurate and
more general than existing approximations. In this way, we improve numerically
upon existing finite-sample analytical bias results, and extend them to p > 1 and
deterministics, and also extend existing finite-sample variance results to k > 1,
p > 1, and to deterministics. Finally, we investigate the correction factors re-
quired for the OLS to achieve minimum MSE and show that this correction can
significantly reduce bias, at the expense of a small increase in estimator variance.
Our results may provide guidelines for applied researchers as to the behaviour of
VAR models, given that relatively short samples and nonstationary data are often
relevant in empirical work.

Our work complements important asymptotic treatments by Phillips (1987a)
in the univariate framework, and Park and Phillips (1988, 1989), Phillips (1987b),
and Tsay and Tiao (1990) in the multivariate setting. Our results may also be
useful when studying the derivation of exact formulae (for instance, in conjunction
with work by Abadir and Larsson, 1996, 2001, who derive the exact finite-sample
moment generating function of the quadratic forms that create the basis for the suf-
ficient statistic in a discrete Gaussian vector autoregression). Exact analytical bias
expressions may involve multiple infinite series of matrix-argument hypergeometric
functions (generalizing, e.g. Abadir, 1993). When such series arise in other areas

of econometrics, they are generally complicated and may be difficult to implement
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for numerical evaluation. We may, therefore, need to rely upon approximations in

practice, even when the exact formulae are available.

2.5. Technical appendix and proofs

Proof of Proposition 2.1. Let ¢; be i.i.d. N (04, )

t
7y =Rz +e =Y R'e (2.10)

j=1
with R = Ij, and setting z¢ = 0.
We are going to deal with the most general case, which refers to the estimation

of:

p—1
Tt = ﬁ + ot + q)l'tfl + ZFJ'ACL},]‘ + &;.

Jj=1

We need to show that the bias of matrix ® is scalar. A sufficient condition for this,

using the following model

p
Ty = ﬂ+5t+ZAifL’t_j + &4, (211)

=1

is that the bias of any matrix A; (for i = 1,...,p) is a scalar matrix since

p
=) A (2.12)
=1
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Let

Q = LI,

£ - .[(p+2)®L

T
T
€t
Wt = 7Ut = >
Tt—pt1 0(p+1)k><1
L
(t+1)1,

where 1 is a k x 1 vector with each element being 1. and Then (2.11) can be

represented as:

Wt == AWt,1 + Ut, (213)
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where
A A - A, A, C D
I Okxk Okxt  Okxk Orxk Opxk
kak ]k kak kak
Apro)kx(prok = : : : : ;
Okpxk Orxk -+ I Opxr Opxr Orxk
Okxt  Okxk Okxk  Okxk Ik Opxk
Opxt  Okxrk Okxi Orxie 1 p
4 0 0 51 0 0
. 0 gy - 0 e 0 8y --- 0
0 0 Lok 0 0 Ok
and
Q Ok x (p+1)k
Ug~N O(p+2)k><k7
Op+1)kxk O@p+1)kx(p+1)k
Now define

Z, = LW, (2.14)

U = L', (2.15)
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At this point it is important to list some results:

LL = (Ipsn) ® L) (Ipro) ® L) = I(pyo) @ LL = I () @ Q

L = (Ipy® L)_l = Iy @ L7}

Tt L_ll‘t

Ti—1 L_lxtfl

E_IWt - (_[(p+2) ® L_l) ' =
Tt—pt1 L% pi
1, Lillk
(t+ 1)1 L7 (t+1)1,
Et L_lgt
U = LU= Ipany® L) =
O(P+1)k><1 0(p+1)k><1

Using the Cholesky decomposition

n n -1
L'E <.,4T — A) L=F (; utz;_1> (; zt_lzg_1> : (2.16)
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The value of A under the DGP is

Ie Okske o+ Ok Oksck Ok Okx
I Okxk ' Oksk Okxk Okxk Ok
Okscke T o+ Oksk Orxk Okxi Ok
A=
Oksck Okxk o+ Ik Orxk Okxk Ok
Ok Ok o+ Ok Ok Lk Okxk
Oksck Okxk o+ Ok Opxne Ik Iy

Pre-multiplying both parts of (2.13) by £~ :

ﬁ_IWt - ﬁ_lAWt_l + L_lUt. (217)

A crucial property for the proof is the fact that matrices £ and A commute:

LMA=ALT (2.18)

Using (2.18) in (2.17) and definitions (2.14) and (2.15) we get

Zt = E_IAWt_l +Z/{t — A£71Wt_1 —H/{t

- Athl +Z/{t, (219)

with
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Z/{t ~ N(O,\If),

v - I, Ok x (p+1)k

Op+1)kxk  Op1)kx(pt+1)k

Define matrix G, such that

-1 O
G, - x(k—1)

Ok—1)x1 Ir—1
Gp = dlag (Ip—h _17Ik—p> p 2 2.

Note that G ' = G, for all ¢ € {1,..,k}.
Define

Eq = [(p+2) ® Gq:

and let

U = =zUy, (2.20)

Zt - Eth. (221)
Again we use the commutation property that holds for matrices A and = :

EgA = A=, (2.22)
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Left multiplying both sides of (2.19) by =,, and using definitions (2.20) and

(2.21) and commutation property in (2.22) we obtain

E,Z = B AZ o +EU = 2= A5, Z, 1 + U
= Z,=AZ,_+U, (2.23)
with
U, ~ N (0,¥).
Now let

n n -1
B = E ZUtwgl) (Zthl/Vt’1>
t=1 t=1
n n -1
B = E ZMZ{l) (Zz“z;1> (2.24)
t=1 t=1
n n -1
B = E ZMZ{l) (Zz“z;1>
t=1 t=1

and using the definition of U, and Z, we obtain
LB (A-A)L=B
B = L'BL

B = Z,BZ, (2.25)
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In what follows, we prove that

B=B forallqe{1,.. k}. (2.26)
From (2.19) we have

t t—1 ‘

Zt = Z .At_juj' = Zt—l = Z .At_l_ju]', (227)
j=1 j=1
and from (2.23)
Z, = Z AU, (2.28)
j=1

Using (2.27) and (2.28) and the independence of U; we get that

n -1
E U2, (Zztlzt’l) = 0.

t=1

Combining the above we conclude that

B = h(Uyy,...U) (2.29)

B = h (uH, ...,211> . (2.30)

for some function h. Denoting by f (U,,_1, ...,U1) the joint density of (U,_1,...,U1),

independence gives

FUnryslhy) = f U)o f W) . (2.31)
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Noting that for any diagonal matrix M we have the property =,M=, = M,
U, =ZU ~ N (0,2,9E) = N (0,9)

showing that f (ﬁt> = f (U;) for all t. Therefore, (2.31) and independence of the

sequence <Z;t> give

FUnr, i lh) = f (ziin,1> f (ziil) —f (ﬁ,ﬂ, L?l) .

Therefore, <Zjn_1, ...,a1> has the same distribution as (U,_1,...,U;), so, for any

function A,

Eh (unfl,...,%) = Bh (U, .., U).

Now (2.29) and (2.30) show (2.26).
Using (2.25) and (2.26) we can conclude that B; ;matrices (defined below) are

diagonal. The argument goes as follows: let

Bzﬁ‘T(ﬁ—A)L

LB (A - A)L o LB (A, - 4,)L L'E(C=C)L L'E(D-D)L
Ok(p+1)xk e Ok(p+1)xk Ok (pr1)xk Ok(p+1)xk
_ B, e B, By By
Okprnyxe  Okpanxk Okpr1)xk Okpe1)xk

Note that Al = Ik7A2 = A3 =..= Ap =C=D :kak



Define also

Then (2.25) yields

B~:

=1B=,

G1B,G

Ok Ok(pt1)xk

and we have that

B,

G1B,G1

gl = GlBlGl ==

511 512 /Blk‘
521 522 5214:
ﬁkl 6/@2 ﬁkk
G1B,G,
Okp+yxk Ok(pt1)xk
/611 _612 _/Blk
_521 522 ﬁ2k
_ﬁkl BkQ ﬁkk

38

(2.32)

G1B,1G1 G1B,isGh

Ok(pr1)xk
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and comparing this to (2.26) and (2.32) we conclude all elements in the first row

and first column of F <E1 - A1> apart from (;; must be 0:

Pu 0
0 [y
0 S

0
Bar

B

(2.33)

Following the same rationale we can understand that matrices By, Bs, ..., B, all

have elements in the first row and first column of being 0, apart from the element

at position 11.

Using (2.25) on (2.33) we obtain

B

= B=,
GaB1Gy  GaBsGy
Or(p+1)xk Ok(pe1)xk
B 0 0

0 By —DBas

0 _B32 B33

0 —DBre Dys

GoB, Gy

Ok(p+1)xk

G2 Bp+1 G2 G2Bp+2 GQ

Ok(p+1)xk



and

B,

P
0

0

0

0 0
By —Das
—Psy P
—Bra s

0

—Bax
Bk

B
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and comparing this to (2.26) and (2.33) we conclude all elements in the second

row and second column of B apart from By must be 0 :

B,

Again the same argument applies to matrices By, Bs, ...

Continuing like this for all ¢ € {1, .., k} we obtain that

Bu 0 0
0 By O
0 0 fBs3
0 0 [y

The same logic applies to Bs, Bs, ..., B),.

0
0

Bax

Bk

B, = diag (5117 ey 5kk¢) .

(2.34)



41

To show that each B; (fori = 1, ..., p) is also scalar, we employ a different linear

transformation: Let

0 1
I =
10
11 O2x (k—2)
m =

Op—2yx2  Ir—2

I, = diag(l,—1,IL, Iy 1) 7> 2,

and

T =Ipio) @11

For each v € {1,...k}, let Z; = Y, Z;, and U; = Y, U;, and U; = T, U;. As before,

pre-multiplying both sides of (2.19) by T, gives

zt - ?tfl + Ht.

Letting

3

n -1
B=E (Z Ut§;_1> ( z_z;_l) (2.35)
t=1 t

=1

and noting that I, = II, = 11!, and T, = Y. = T ! we obtain that

B="T,BY,. (2.36)
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It is useful here to see the structure of B matrix

B = T.BY,
| mBIL WA, - LB, LBl 1B,
Ok(p+1yxk Ok(ps1)xk Ok Okpryxk Orpt1)xk
_ B, B, e B, By By
- Okpr)xk Or(pr1)xk Okp+1)xk  Okp+1)xk  Ok(pt1)xk

Since U, = Y,U; ~ N (0,T,¥Y.) = N (0,¥), independence of the (i4;) se-

quence yields

@ T = @)oo f @) = W) f W)
= f(unfla"'az/[l)
SO (Hn_l, ...,Ul) and (U,_1, ...,U1) have the same distribution and hence
Eh (anl, ...,Hl) == Eh (Un,l, ...,Z/ll)

for any function h. The above argument establishes that

B=B foralre{l,. k}. (2.37)



43

Now the fact that each B; is a scalar matrix follows by (2.36), (2.37) and the

fact that II, is a permutation matrix: (2.36) and (2.34) give

Bl =11, B41I; = diag (ﬁ227 5117ﬁ33a -wﬁkk) .

Hence, (2.37) implies that §;; = (. Applying (2.36) with » = 2 implies that
By = B33. The same rational applies to the diagonal elements of Bs, Bs, ..., B,,.
Continuing for all » € {1, .., k} shows that each B; is a scalar matrix.

Substituting back to (2.16) we obtain, for some constants ¢y, ¢z ..., Cpt2,

L (ﬁ = A) c
= B
B B B e B, Byi1 B2
Okp+1)xk  Ok(pr1)xk Okp+1)xk Okp+1)xk  Ok(pt1)xk
B CIIk Cg[k s Cp[k Cp—i—ljk Cp+2[k
Or(p+1)xt  Ok(pr1)xk Okp+1)xk Okp+1)xk Ok(pt1)xk

Finally using (2.12), we can show that F <EI\> — QD) =(c1+ ... +¢) Ix



2.6. Tables and figures

Table 2.1. Estimated bias response surfaces b®5 for Models A, B, and
C. Response surfaces (6) were estimated using weighted nonlinear
least squares. White’s heteroscedasticity-consistent standard errors
are given in parentheses, R is the degrees-of-freedom adjusted coef-
ficient of determination, JB is the Jarque-Bera test statistic for nor-
mality, asymptotically distributed as x?(2), * denotes significance
at the 5% level, and 7, is the residual standard error. Coefficients
and standard errors are given to 3 d.p. (to 5 d.p. for 36).

Model A Model B Model C

B, 0320  —3475  —8.522
(0.010)  (0.013)  (0.053)
B, —2.044 —1.890 —1.744
(0.004)  (0.005)  (0.018)
By —1.124 —1.788  —1.410
(0.136)  (0.094)  (0.228)
B, —1.861 —1.907 —2.632
(0.039)  (0.030)  (0.081)
B, 0.999 1.038 1.404
(0.010)  (0.009)  (0.020)
B¢ 0.00801  0.00621  0.00240
(0.00071) (0.00050) (0.00082)
R° 09995  0.9996  0.9976
G.  6.72 6.16 16.99
JB 135 8.95* 8.92
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Table 2.2. Simulated scaled bias in Models A, B, and C, for p = 1,
and AHT and Model A approximations. All reported bias values
have been multiplied by —100, b is the simulated Model A bias,
VAT is the AHT approximation (3) to Model A bias, b5 is the re-
sponse surface approximation (6) to Model A bias, b is the simulated
Model B bias, and b is the simulated Model C bias. In-sample points
correspond to k = 1,2,3,4 and T' = 25, 50, 100, 200.

VAR dimension (k)

T 1 2 3 4 5 6 7 8
b 6.4 135 200 261 31.8 371 421 46.7
VAET (6.4) (12.8) (19.3) (25.7) (32.1) (38.5) (44.9) (51.3)

25 bRS  [6.4] [13.5] [20.1] [26.2] [31.9] [37.2] [42.1] [46.7]
b 192 250 306 359 409 457 502 545
b 353 40.0 445 490 53.2 573  61.2 649
b 34 72 108 143 176 209 240 270
VT (3.4)  (6.8) (10.1) (13.5) (16.9) (20.3) (23.7) (27.1)

50  b*S[3.3] [7.1] [10.8] [14.3] [17.8] [21.1] [24.3] [27.3]
b 101 134 167 199 230 260 289 318
b 190 21.8 247 275 303 330 357 383
b 7 37 5.6 75 93 1.1 129 146
VHET (1.7)  (3.5)  (5.2)  (6.9) (8.7) (10.4) (12.1) (13.9)

100 o [17) [3.7]  [5.6] [7.5] [9.4] [11.2] [13.0] [14.§]
b 52 7.0 87 105 122 140 157 173
b 99 114 130 146 163 179 195 21.1
b 09 19 2.9 3.8 48 5.8 6.7 7.6
VT (0.9) (1.8) (2.6) (3.5) (44) (5.3) (6.2) (7.0

200 RS [0.9] [1.9] [29] [3.8] [4.8] [5.8] [6.8] [7.7]
b 26 3.6 4.5 5.4 6.3 7.3 8.2 9.1
b 50 5.8 6.7 7.6 8.4 9.3 102  11.1
b 04 09 14 1.9 2.4 2.9 34 3.9
VAHET (0.4) (09 (1.3)  (1.8) (22) (27) (3.1) (3.5)

400 RS [0.4]  [0.9]  [14]  [19]  [24] [29 [34] [3.9]
b 1.3 1.8 2.3 2.7 3.2 3.7 4.2 4.6
b 2.5 3.0 3.4 3.9 4.3 4.8 5.2 5.7
b 02 05 0.7 1.0 1.2 5 1.7 2.0
VT (0.2) (04) (0.7) (0.9) (1.1) (1.3) (1.6) (1.8)

800 b*S  [0.2] [0.5] [0.7] [t.0] [1.2] [1.B] [17]  [2.0]
b 0.7 09 1.1 1.4 1.6 1.9 2.1 2.4
b 1.3 15 1.7 1.9 2.2 2.4 2.6 2.9
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Table 2.3. Estimated variance response surfaces v?° for Models A,
B, and C. Response surfaces (7) were estimated using weighted non-
linear least squares. White’s heteroscedasticity-consistent standard
errors are given in parentheses, R’ is the degrees-of-freedom adjusted
coefficient of determination, JB is the Jarque-Bera test statistic for
normality, asymptotically distributed as x? (2), ** denotes signifi-
cance at the 1% level, and &, is the residual standard error. Coeffi-
cients and standard errors are given to 3 d.p.

Model A Model B Model C

J, —0345 10430  26.230
(0.055)  (0.082)  (0.150)
9, 10400  9.895  10.104
(0.040)  (0.049)  (0.087)
9, —4.469 —9.680 —17.051
(0.203)  (0.192)  (0.250)
J, —5302 —4979 —4.801
(0.077)  (0.083)  (0.114)
J.  1.245 2059  4.751
(0.093)  (0.076)  (0.102)
J¢  2.925 2957  2.970
(0.041)  (0.035)  (0.047)
9, 13.233  11.646  14.668
(0.884)  (0.767)  (0.966)
Y 0.993  0.889  0.923
(0.041)  (0.033)  (0.045)

R 0.9991 0.9990 0.9982
Oy 2.58 2.51 3.40
JB  91.03*  46.38"*  30.22*




Table 2.4. Minimum MSE correction in Model A, for p = 1. Ais a
correction factor, such that )\gAb attains minimum MSE, br is the bias
ratio=corrected bias/OLS bias, vr is the variance ratio=corrected
variance/OLS variance (Vr = )\2), bc and “z/y” indicate that b?
forms 2% of MSE under OLS, and corrected b* forms y% of min-
imized MSE, me is the MSE efficiency=MSE after correction/MSE
under OLS (x100). All values are computed using the appropri-

ate response surface approximations (6) and (7). In-sample points
correspond to k = 1,2,3,4 and T' = 25, 50, 100, 200.

VAR dimension (k)

25

50

100

200

400

800

1 2 3 4 5 6 7 8
X 105 112z 119 126 132 139 146 152
br 023 024 026 028 031 034 037 040
vr 111 125 141 158 175 194 213 232
be 24/1  42/3  54/5 617 67/10 71/13 T74/15 77/19
me 86 75 69 66 65 64 65 66
X 103 107 L[l 115 119 123 128 132
br 012 011 012 012 013 013 014 015
v 106 114 123 132 141 152 163 174
be 23/04 42/1 53/1 612 67/2 71/3 T4/3  T7/4
me 82 67 58 52 48 45 43 42
X 102 104 106 1.08 110 112 114 116
br  0.06 0.06 006 006 006 006 006 0.06
vr 103 107 112 116 120 125 130  1.35
be 23/0.1 41/0.2 53/0.3 61/0.4 66/0.5 71/0.7 74/0.8 77/0.9
me 80 63 53 46 41 37 34 32
X 101 102 103 104 105 106 1.07 108
br 003 003 003 003 003 003 003 003
vr 102 104 106 108 110 112 115 117
be 23/0.0 41/0.1 53/0.1 60/0.1 66/0.1 70/0.2 73/0.2 76/0.2
me 78 61 50 43 38 34 30 28
X 100 10l 100 1.02 102 103 104 104
br 001 00l 00l 001 00l 00l 001 001
v 101 1.02 103 1.04 105 107 1.07  1.08
be 23/0.0 41/0.0 52/0.0 60/0.0 66/0.0 70/0.0 73/0.0 76/0.1
me 78 60 49 41 36 32 29 26
X 100 100 101 1.0 L0l 10l 1.02 102
br 001 00l 00l 001 00l 00l 001 001
vr 100 101 1.0l 1.02 102 103 1.04 104
be 23/0.0 41/0.0 52/0.0 60/0.0 66/0.0 70/0.0 73/0.0 76/0.0
me 77 60 48 41 35 31 28 25
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Figure 2.2. Variance response surfaces: scaled variance against T, for k = 1,2 and p = 1, 2,

1) and squares

for Models A, B, and C. Simulated values are represented by diamonds (k
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CHAPTER 3

Asymptotically Similar Unit Root Tests in the Presence of

Autocorrelated Errors

3.1. Introduction

The unit root hypothesis has attracted a great deal of interest in econometrics.
Nelson and Plosser (1982) provided empirical evidence that many macroeconomic
series have a unit root. From the statistical point of view it is important to
know whether or not series are stationary in order to conduct valid inference.
The outcome of nonstationarity introduces the possibility of differencing the series
(Plosser and Schwert, 1978) cointegration (Johansen, 1988) or error-correction
(Engle and Granger, 1987) models. Banerjee et al. (1993) and Maddala and Kim
(1998) give a review of the literature for unit root tests. Fuller (1976) and Dickey
and Fuller (1979, 1981) proposed a unit root test (DF) which is widely used.

As in many testing problems, the fact that the distribution of unit root test
statistics under the null hypothesis depends on nuisance parameters can result in
serious size distortions for the associated unit root tests. Said and Dickey (1984)
showed that the augmented DF (ADF) test is suitable for processes with autore-
gressive moving average (ARMA) errors. Phillips and Perron (1988) proposed a

nonparametric testing procedure (PP) which allowed for a wider class of stationary

20
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time series in the error term. Schwert (1989) used Monte Carlo simulations to show
the existence of size distortions in the ADF and PP tests. His results suggest that
PP has higher power than ADF, but also much higher size distortions in the pres-
ence of negative moving average (MA) parameter in the error term. DeJong et al.
(1992) showed that PP tests perform poorly against trend stationary alternatives
and suggested the use of the Said-Dickey testing procedure.

Ng and Perron (2001) derived a class of unit root tests that take into account
possible autocorrelation in the error term. The local asymptotic power function
of these tests is close to the Gaussian local power envelope. They also derive the
modified Akaike information criterion (MAIC) for the choice of the truncation lag.
Their simulation study suggest that, for the sample sizes considered, size distortion
is very low even in the presence of negative autocorrelation in the innovation
sequence. These statistics are described in detail in Section 3.6. Seo (2006) pointed
out that there a problem exists with the statistics derived by Ng and Perron (2001)
regarding their global power: specifically, in finite samples and for alternatives far
from the null, the possibility of power reversal occurs. Power reversal in this
context means that as the true value of the parameter of interest moves farther
away from the null hypothesis, power decreases. This problem is caused by the fact
that the null of non-stationarity is imposed in the procedure in the construction
of the modified information criteria. This type of information criteria can provide
very good results with respect to control over size, but can also have serious flaws

when the parameter of interest moves far from the null. Seo (2006) suggested
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the use of a two-step procedure in which he first fits an autoregression to get
the estimated residuals and at the second step uses them as a proxy for the MA
component. Perron and Qu (2007) address the issue of power reversal and improve
the performance of the statistics by introducing a two step procedure, using OLS
estimation for the choice of the order of the lagged differenced terms and GLS
estimation for the calculation of the statistics. As can be seen from their results
(Figures 1-4), the problem becomes less severe, but is still evident for the case of
no autocorrelation in the error term.

This Chapter addresses the issue of unit root testing in the presence of corre-
lated innovation errors that take the form of a finite order moving average process.
Following Hillier (1987), our approach is based on obtaining a characterization
of the class of similar tests. These are tests whose size does not depend on nui-
sance parameters, provided that sufficient statistics for the nuisance parameters
exist, under the null hypothesis. Given the fact that a sufficient statistic for the
MA parameters is not available, we consistently estimate the MA parameters by
maximum likelihood, and then use the above estimates to characterize the class
of (asymptotically) similar tests. After the characterization of the class of similar
regions we proceed to the selection of some tests within this class by the use of
appropriate optimality criteria. The advantage of such an approach is that we can
focus our attention on a set of tests whose exact size is independent of the nuisance
parameters involved. In this way we can address the serious issue of size stability

at the first stage of selecting a test.
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In order to choose statistics from the class of asymptotic similar tests we make
use of the optimality criteria proposed by Forchini and Marsh (2000). They derive
unit root tests according to the Bounded Norm Minimizing (BNM) and Bounded
Estimated Point Optimal (BEPO) criteria under the assumption of i.i.d. innova-
tion errors. We apply the same optimality criteria to derive tests statistics in a
more general framework that allows the presence of possibly correlated innovation
errors that may take the form of a finite order MA process. The objective is to
derive unit root tests with fairly stable size over MA processes with varying order
and values of associated parameters, and with high global power in comparison to
other unit root tests existing in the literature.

The Chapter is organized as follows. In Section 3.2 we refer to the theory
related to the construction of similar tests. Section 3.3 describes the BNM and
BEPO optimality criteria for the choice test statistics proposed by Forchini and
Marsh (2000). Section 3.4 describes the construction of similar regions in the case
of correlated errors and in Section 3.5 we use the optimality criteria to derive the
test statistics followed by the description of the method of estimation we are using.
The limiting distributions of the resulting test statistics are derived in the presence
of deterministics consisting of an intercept term only and an intercept and a linear
trend. In Section 3.6 the finite-sample performance of the statistics is assessed
in the context of a simulation study. In Section 3.7 we provide some concluding
remarks. All proofs are included in the technical Appendix of Section 3.8. Tables

and figures are presented in the last Section of the Chapter.
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3.2. Methodology on the characterization of similar regions

The methodology we follow for the characterization of similar regions is de-
scribed by Hillier (1987). Let z be a vector of random variables with density
f(z;7n,0) depending on two vectors of parameters 7, and . If we want to test the
null hypothesis

Hy:0 =20,

then 6 is the vector of parameters of interest and 7 is the vector of nuisance
parameters. In general the size of any critical region w in this context will be

dependent on 7; i.e.,
/f(Z;n,Ho) = a(n).

Critical regions related to this problem which are independent of nuisance para-

meters
/f(27n700) =«

are called similar critical regions. If there is a sufficient statistic ¢ for  under H,

the density function is given by

f(z;m,00) = pdf (t; 0, 0o)pdf (2|t; 0o)

where pdf (t; 1, 00) is the density of the sufficient statistic under Hy and pdf (z|t; 0o)
is the conditional density of z given ¢, which is independent of the nuisance para-

meter 7. So, provided we have sufficient statistics for 7, the conditional distribution
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of z given these statistics will be free of nuisance parameters and will result to a
similar critical region.

Hillier (1987) summarizes the procedure for constructing similar regions in the
following theorem.

Let t be a boundedly complete sufficient statistic for the nuisance parameter n
under Hy. If for almost all t there is a one-to-one transformation z — (t(z),v(z))
for which under Hy v s independent of t, then the statistic v characterizes the
class of similar regions for testing Hy in the sense that a region w is similar of
size a if and only if w has size « in the distribution of v.

We are going to use this theorem for the characterization of similar critical

tests in the case where the innovation sequence takes the form of an MA process.

3.3. Optimality criteria

We now address the question of how to select a particular test from within the
class of similar tests. Ideally, we would choose a Uniformly Most Powerful (UMP)
test. A UMP test is a test which has the highest available power for every 7, and
. In unit root tests the power of a test depends on the nuisance parameters 1 and
the value of the parameter of interest # under H;, so it is not possible to achieve
the UMP criterion. Consequently, we have to use weaker optimality criteria for
the selection of a test. Cox and Hinkley (1974) suggest some alternative optimality
criteria, such as the selection of a typical alternative for 6 (point optimal (PO))

or the construction of a locally most powerful (LMP) test, which involves the
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maximization of the power of the test in the neighborhood of the null hypothesis.
Selecting a typical value of 6 could be seen as arbitrary unless there is specific
prior information for the parameter. The problem with the LMP tests is that
their power can often be low, especially for alternatives that lie far from the null
(Zaman, 1996, pp. 133-136).

Forchini and Marsh (2000) suggest the use of two alternative optimality criteria.
Their statistical framework can be summarized as follows. Consider a N x 1 vector
of observables and a vector of unknown parameters (0, 02) € R x (0, 00). The null
hypothesis Hy : y ~ N(0,02Q(6y)) is tested against Hy : y ~ N(0,0%Q(6)) using
the critical region resulting from the rule reject Hy if

Yy (0)y

<k, 3.1
y'Q1(00)y 8.1)

where k, is chosen so that « is the size of the test. It is clear that when the
numerator changes with 6 there is no a UMP test.
In the absence of a UMP test two weaker optimality criteria are presented in

Sections 3.3.1 and 3.3.2 below.

3.3.1. Bounded Norm Minimizing tests

Suppose that y'Q~1(0)y < 1(0)¥(y)l(0), where [(f) is a vector depending only

upon 6 and W(y) is a positive definite matrix depending only upon .
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A sufficient condition for

oy ¥wo) _
y' Q1 (0o)y
is to minimize the norm
Y(y) H
— | < k,
‘ y'Q(0o)y

for k£ such that the size of the test is . The norm in the above equation can be
any matrix norm (see e.g. Horn and Johnson, 1985). Notice that any norm of the
matrix U(y)/y'Q "1 (0o)y gives a norm minimizing (NM) test and when (3.1) holds

with equality and a BNM test when the inequality is strict.

3.3.2. Bounded Estimated Point Optimal Tests

The second optimality criterion is that of using estimated point optimal tests
(EPO). This criterion is related to the PO tests which are discussed above. Even
if the alternative is generally unknown, it is possible to estimate it with the value
0™ which satisfies

0" = i
= arg min
G

{ 1)V (y)l(0) }
y'Q1(0o)y

for a set of observations y. In the case where (3.1) holds with equality, the EPO

critical region is given by
1(67)" ¥ (y)I(0")
y' Q1 (6o)y

<k, (3.2)
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where k is chosen such that the size of the test is «. As with the case of the
BNM criterion, if (3.1) does not hold with equality, (3.2) is a BEPO test. Another

criterion of this type is to reject Hy if

10" — 0| > ka, (3.3)

where 0 is the value of the parameter under Hy and k, is chosen such that the
size of the test is a.

Forchini and Marsh (2000) use the above criteria for the derivation of similar
unit root test statistics. Simulation results suggest that these statistics have dis-
torted size in the presence of an MA(1) error. In the presence of an MA process
in the errors, these test statistics are no longer similar due to the fact that their
critical regions depend on the associated MA parameters. The approach in this
Chapter is to modify the construction of the UMP critical region in order to take
into account the possibility of an MA(m) process in the errors. Then we apply the
BNM and BEPO optimality criteria to choose statistics from the class of asymp-
totically similar tests and we find that these have good power properties in finite

samples.

3.4. Construction of similar critical regions

Marsh (2005) considers a linear regression model with an MA term in the errors

and characterizes the class of asymptotically similar tests. We use the BNM and
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BEPO optimality criteria for deriving tests within this class. The model is
y=XB+u, (3.4)

where 3 is a k x 1 vector of parameters, X a N x k full rank matrix of the
deterministic components (in this Chapter we consider an intercept and a linear

trend), u = (uq,...,uy) and

u = pug—1+ G,

G = Z¢j5t—j
j=0

e, ~ NIID(0,0%)

fort =1,...,N,up =0, and ¢, = 1. We impose the invertibility condition ‘gbj! <1
for j = 1,...,m. So the parameters involved are § = (p, 3,02, ¢') with parameter
space © = (—1,1] x RF x R x (—1,1)™.

In the context of (3.4) the unit root hypothesis takes the form
Ho:p=1vs. Hy:|p| <1,

with 3,02% and ¢ the nuisance parameters for this testing problem. The method
described in Section (3.2) is going to be applied for the construction of similar crit-
ical region for the hypothesis stated above. Invariant transformations are applied

on the data y, which do not affect the decision with respect to Hy and Hy, but
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take out the effect of the nuisance parameters. These transformations involve the
use of some matrices defined below.

Let L be the lower-triangular matrix with ones on the i** off-diagonal and
zeros elsewhere. Multiplying (from any side) L) by any vector gives the i** lag of
this vector leaving the first element of the vector unchanged. For this reason we

refer to L as the lag-matrix. Using L, T, is defined as
T, = (Iy — pLW). (3.5)

Note therefore that Ty = Iy — L. Multiplying any vector by 7} results the vector
of first differences for the last N — 1 elements leaving the first element unchanged
(implicitly a zero initial condition is imposed). So T} acts as a first difference
operator that transforms an I(1) series to I(0) except from the the first element
which remains unchanged and is asymptotically negligible.

Then, using the L® matrix again K, is defined as

Ky=(In+>_ ¢, L9). (3.6)
i=1

So when the K, matrix is multiplied by a vector of white noise errors this results
in an MA vector series of order m. Using this rationale qul transforms a vector

of MA(m) to a vector of white noise series. Defining

&= (Py, .y 0,,) and e = (g1,29,...,enx),
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(3.4) can be expressed as

Ty(y — XB) = Kye. (3.7)

At this point, the transformation matrices listed above are used to clear the distri-
bution of the vector of observables from the nuisance parameters. We start from

the joint sample density of y, which is
y ~ N(XB,0°T,K;K}, (T,*)").
Then, for notational simplicity, we define
T = K;lle, (3.8)

Z=K,'T\X, (3.9)

and (3.7) is transformed under H, to
r=270+c¢.
The distribution of x is given by
x~ N(ZB,0%5,4)

where

Spo = KTV KK (T, T (K1 (3.10)
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Note that x under Hj is

v~ N(ZB,0%Iy)

At this point it is useful to use the following lemma before proceeding.

Lemma 3.1. The matriz X, , given in (3.10) can be expressed as
Spo =X, =TT, (T,%) 11,

For the characterization of the class of similar tests the methodology by Hillier
(1987) described in Section 2 is applied in this setup. Using the Cholesky decom-

position, the projection matrix
My=1Iy—2(Z'2)" 7
can be decomposed as:

CC'" = My

where C' is a N x N — k matrix.
The following transformation are applied using C' matrix. First z is transformed

as
B=(22)"2%
Xr —

w=Czg
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and then w as

s? = |w||® = 2’/ Myx

. w
V= e = C'x/s

As it can be seen from the above, B is not feasible due to the fact that is dependent
on ¢. It is possible however to proceed by finding a consistent estimate of ¢.

The distribution of w is
w ~ N(0,02C'S,C) % N(0,0%Iy_s) (3.11)

Marsh (2007) gives the density of v with respect to the normalized Haar mea-

sure on the surface of the unit N — k sphere to be

N—k
2

pdf (v) = det (C'S,C) " [ (C's,0) o , (3.12)

According to the above, the most powerful critical region of Hy vs. H; has critical
region given by

V' (C"S,0) v < ka, (3.13)

where k, is chosen such that the size of the test is a. Note that, in view of Lemma
3.1, the above critical region is independent of the MA parameters of the vector ¢

under both the null and the alternative hypothesis.
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3.5. Asymptotically similar statistics

After the characterization of the class of asymptotically similar statistics we
use the optimality criteria suggested by Forchini and Marsh (2000) in order to
derive test statistics from this class. Since there is not a sufficient statistic for
the MA parameters included in matrix K, these parameters are estimated using
maximum likelihood estimation (MLE). The matrix K, including the estimated

MA parameters is denoted as K. More explicitly we define
Zy = nglTlX and v = M%K;le. (3.14)

The procedure that gives the order of the MA process and the estimation of the

MA parameters is described in detail later in Section 3.5.1. We define

vy, o= (7Y 1t (3.15)
Uy, = (17 (17! — Iy) (3.16)
Uy = (T7'—1Iy) (7' = In) . (3.17)

Theorem 3.1. Let ||.|| denote a norm on the space 2x2 positive definite matrices,

and let

1 I/,\Ijlll/ I/,\I]12l/

()= — (3.18)

/
V'
V'WUior VW
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Then a BNM test is: reject Hy: p=1 if
N wW)]| < ko (3.19)

where v is defined in (3.14) and k, is chosen such that the size of the test is .

Theorem 3.1 generates a class of BNM tests, depending upon the choice of par-
ticular norm. A statistic from this class could result from the use of the Euclidean
matrix norm || U (v)|| = {tr¥(v)¥(v)}*'* or the spectral norm of W(v), defined as
the square root of the maximal eigenvalue of W(v)'W¥(v).

Theorem 3.2. A BEPO test for Hy: p =1 against H; : =1 < p < 1 is given by
the following rule:
reject Hy if

V'WUiov — V' Wor

BEPO = N > kq (3.20)

V/\IJQQV

where v is defined in (3.14) and k, is such that the size of the tests is a.

3.5.1. Estimation of the M A process

Both the BNM and BEPO statistics contain the matrix K$ of estimated MA
coefficients. The construction of this matrix requires two steps: a procedure that
detects the order of the MA component and an estimation method for the MA
parameters. Treating both these aspects as a priori unknown makes the inference of

Theorems 3.1 and 3.2 asymptotically feasible and suitable for practical application.
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We first discuss the estimation of the MA parameters for a given order. In the
absence of a sufficient statistic for ¢, we need to employ a consistent estimator. It
has to be stressed that the choice of a good estimator for ¢ is of major importance
for the good properties (empirical size near to the nominal one and high power)
of the statistics. We estimate ¢ by conditional maximum likelihood or pseudo-
maximum likelihood if we do not wish to maintain the normality assumption on
the innovation errors. It is a well known fact that, under the invertibility assump-
tion imposed on the moving average process, the (pseudo) maximum likelihood
estimator of ¢ is v/ N-consistent. (see Anderson, 1971).

Having estimated models of certain order m, we use information based rules
to choose one among them. These are the criteria proposed by Akaike (1974),
Schwarz (1978) and Hannan and Quinn (1979), denoted henceforth as AIC, BIC
and HQIC respectively. These are described in detail below.

The algorithm for estimating ¢ is described below. We first estimate the fol-

lowing model with least squares:
g = XB + T, (3.21)

where the deterministic component X includes an intercept only, or an intercept
and a trend. We then fit the following ARM A(1,m) model to the residuals of

(3.21)

m
Up = pU_1 + € + E i€t
i=1
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for t = 1,2,...,N. We set a minimum value m;,, and a maximum value M.y
for the order of the MA component. We estimate ARM A(1,m) models with
Mmin < M < Mpay. For each model, we condition on the m first values of ¢ being
Zero:

50281:...:€m:0.

From the above assumptions we can iterate on:

& = ( Put 1 Z¢5t i

fort=1,2,...,N.

Y

The conditional log likelihood is

Mz

N N
L (107 ¢7 02) = _E 10g(27T) Ty log

0—2
t=1

Since we assumed ‘¢j’ < 1 for j =1,...,m the effect of the initial condition fades
out as sample size increases (Hamilton, 1994, p.128).
After the estimation of myax — Mmin + 1 models we use information criteria to

choose one of them. These information criteria are the following

[Care (m) = _2% N 2 (mN+ 1)
ICsrc(m) = —2 4 (2 DY)
[Crorc (m) = _2% L 20m+ 1)]\1;1 (In(N))
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We choose m such that the information criterion (used in each case) is minimized:
m = argmin IC'(m).
m

After choosing the order of the MA component and estimating the MA pa-
rameters, we can substitute them in the sufficient statistics for (3,0?%) and then
construct the similar critical regions. It is important to note here that, asymptoti-

cally, the test statistics we derive do not depend on the nuisance parameter under

H, since Z = K;lTlx and Thu = Kye which gives

v o= MZKé;lTl(XBJru):MZK;Tlu

= MZK;1K¢5 = [I + 0, (1)] Mze.

The above result shows that the statistics we derive are asymptotically similar.

3.5.2. Limiting distribution of BNM and BEPO statistics

Having derived the BNM and BEPO test statistics for the unit root hypothesis,
we proceed to derive their limiting distributions. To this end, we restrict the
deterministic components of the data generating process to an intercept and a
linear trend, i.e. we assume that the matrix of deterministics in (3.4) takes the

form

X' = : (3.22)
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Or X' = ( 11 .. 1), (3.23)

which corresponds to the case where only an intercept is included in the model.

Theorem 3.3. Consider the process in (3.4) and let W (-) be standard Brownian
motion on D [0,1]. Under the null hypothesis Hy : p = 1 the following limit theory
applies as N — oo:

for X satisfying (3.22):

(i) The BNM test of Theorem 3.1 satisfies

BNM =2 {/01 W2(r)dr — 2W (1) /01 rW (r)dr + %WQ(l)} .

(ii) The BEPO test of Theorem 3.2 satisfies

1
fol W2(r)dr — 2W (1) fol rW(r)dr + %WQ(I)

1
BEPO = 3

For X satisfying (3.23):

(iii) The BNM test of Theorem 3.1 satisfies

BNM = 2 {/01 W2(r)dr} |

(iv) The BEPO test of Theorem 3.2 satisfies

1
2

W2(1) — 1

BEPO = = |- )~
fo W?2(r)dr
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3.6. Numerical Study

The test statistics we develop are motivated asymptotically in the sense that
they are asymptotically similar with respect to the MA parameter. In order to
examine their size and power properties in small samples we employ a Monte
Carlo study. Two models are considered for the simulations: the first is based on
(3.4) with X defined as in (3.22) for the case of a constant and trend included and
(3.23) for the case of a constant only included. The DGP used for the simulations

has the following specification:

U = pu_1 + ¢ + P,

e, ~ NIID(0,1).

FEach Monte Carlo experiment is based on 10000 replications. We investigate
the size distortion and power of the statistics in finite samples. For the numerical
study related to the size distortion, the following minimal complete factorial design

is used with values for the parameters:

¢ = —0.8,—0.7,...,0.8,

N = 50,100,200, 400,

a = 0.05,
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where « is the nominal size of the test statistics.
For the numerical study investigating the finite sample power of the statistics,

the simulation design includes all combinations of the following parameter values:

p = 0.8,0.82,...,0.98,
N = 50,100,200, 400,
¢ = —0.5,0,

a = 0.05,

and

p = 0.1,0.2,....,0.7,
N = 50,100,200, 400,
¢ = 0,

a = 0.05.

The statistics BN My and BEPQO, correspond to the case in which M A terms
are not estimated. These are the statistics proposed by Forchini and Marsh (2000).
In order to construct statistics BN M, and BEPO, we set ¢ =0 (i.e. K, = Iy)
in (3.19) and (3.20). For the BNM, and BEPO, statistics the AIC is used, for
the BN M, and BE PO, the BIC is used, and for BN M,;, and BEPO,, the HQIC

is employed. We refer to these test statistics as similar statistics. The information
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criteria consider MA(m) processes with m;, = 0 and mpy.x = 5. Initially, we use
exact critical values for the BNM and BEPO statistics. Later in the discussion we
examine the behaviour of BNM and BEPO statistics that use asymptotic critical
values.

We compare the finite sample performance of the statistics derived in this Chap-
ter with other statistics in the literature. In Ng and Perron (2001) the following

statistics can be found:

—1~2 2
N7 yx — S$ar

L
Mz o
2N-2y G,
t=1
1
N 2
N2 Z i1
MSBGLS — t=1

SAR
MZFYS = MZIY x MSBY,

where §, = y, — 27", (2, being the t-th row of X) and 7°“° being the GLS
estimate of . This is calculated by the GLS regression of y on x%, where y¢ =
yr —ay? | for t =2,..., N and y§ = y;. Following Elliot et al. (1996), for the case

of a constant only in the model @ = 1 — %, and when a constant and trend are

13.5

included a =1 — =
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Ng and Perron (2001) also modify the feasible point optimal test suggested by

Elliot et al. (1996) which is:

where S(a) = inf Zt L (g8 —yx2)?.

The modified feasible point optimal test suggested by Ng and Perron (2001)
for the constant case is:
N
ENTPY G — N

GLS __ t=1
MPSLS — = :
AR

and for the case of a constant and trend included in the deterministics is:

N2 Zytl + (1 - N7'g%
MP;* =

SAR

The autoregressive spectral density estimate of o2 is defined as:

~9
3,241% = Ok 29
N
=1
N
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with b; and €2, derived from the following OLS regression:
k
Agy = bogi-1 + Z biAGs—i + -
i=1
Note that the above regression is used for the GLS ADF test. More specifically a
t-test is run on Hy : bg = 0.
The Modified Akaike Information Criterion used for the determination of the

autoregressive order k is:
MAIC(k) =1In (63) + 2 ~

where

R N
bo Z Ui

t:kmax+1
k
N
E €tk
6_2 _ t=FKkmax+1
g N — kmax

The upper bound is set t0 kmax = int (12(N/100)"/*) . The value of k chosen by
MAIC(k) is such that k = arg mingep ... -

In the tables of this Chapter, M Z, and M Z; are the modified PP statistics
and MSB is the modified Sargan-Bhargava statistic. Pr refers to the feasible
point optimal test and M Pr to its modified variant. All these statistics use GLS

detrending. ADF' corresponds to the ADF' statistic with GLS detrending and for
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ADFrg, OLS detrending is used. For both ADF and ADFpg the MAIC is used.
M 7,5 statistic denotes the M 7, statistic based on OLS detrending. Lastly, M Z,,
corresponds to the M Z, statistic with GLS detrending used for the data and OLS
detrending used for the spectral density estimation.

Tables 3.2 (N = 50,100) and 3.3 (N = 200,400) report size distortion of the
statistics for a model including an intercept term only (X defined by (3.23)) and
Tables 3.4 (N = 50,100) and 3.5 (N = 200,400) report the size distortion of
the statistics for the case of an intercept and a trend included in the model (X
defined by (3.22)). A first observation is that serious size distortions occur when
the MA parameter is specified to be near to —1. Tables 3.2-3.5 show that the
statistics derived in this Chapter exhibit much lower size distortion in comparison
to the BN M, and BEPQ, statistics. It can be also seen that the choice of the
specific information criterion is crucial for the level of size distortion in small
samples (N = 50,100). More specifically, the size distortion for the BNM and
BEPO statistics is the lowest when the AIC is used. When the HQIC is used,
size distortion becomes higher and the use of BIC gives the highest size distortion
among all information criteria considered for our statistics.

The relatively good performance of BN M, and BEPQO, with respect to size
distortion could be explained by the fact that the AIC is the most liberal (tends to
choose comparatively higher order for the MA process) of all information criteria.
This is evident in Figure 3.1 which presents the relative frequencies of the order

chosen by each information criterion under Hy for different values of ¢ (for a model
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with an intercept and a trend, sample size N = 100). It can be seen that BIC is the
most conservative information criterion, in the sense that, keeping everything else
constant, it tends to choose the lowest MA order in comparison to the other two
criteria. This has a very detrimental effect (with respect to control over size) for
values of ¢ close to —1 and that is why BN M, and BE PO, give the highest size
distortion in small samples. It is also observed that for sample sizes N = 200, 400,
the different information criteria deliver almost the same empirical size.

Comparing the statistics derived in this Chapter with other statistics in the
literature, we find that they have much lower size distortion for N = 50. For values
of the MA parameter being close to —1, it is obvious that all the the statistics of
Ng and Perron (2001) have extremely high size distortion, making them unreliable
for such small sample sizes. This is important as sample sizes of this kind are
relevant in applied research. For higher sample sizes, statistics M Z,, M Z;, M SB,
Pr and M Pr appear to have very small size distortion and perform better than
the similar statistics. Figures 3.2 and 3.3 illustrate graphically the facts mentioned
above.

Another crucial observation for the similar statistics is that their size distortion
reduces as the sample size N increases. For example, in the case of a model with
an intercept only (Tables 3.2 and 3.3), when ¢ = —0.8, BE PO, statistic has size
0.367 for N = 50, 0.22 for N = 100, 0.101 for N = 200, and 0.07 for N = 400.
We observe the same behaviour for BN M,, BEPQO,, BN M, and BEPO,,. This

observation suggests that the empirical size of the similar statistics derived in this
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Chapter converges to its nominal value (5% in this case), as sample size increases.
This can be attributed to the consistency of the maximum likelihood estimator as
well as the better performance of the information criteria as IV increases. This is
not the case for statistics BN My and BE POy: size distortion increases as sample
size N increases. The BFE PO, statistic for example has size 0.673 for N = 50,
0.832 for N = 100 and 0.908 for N = 200, when ¢ = —0.8. This suggests that
empirical size of the BN My and BE PO, statistics can go farther from nominal
size as N increases in the presence of autocorrelation in the errors. In the case of
an intercept and a trend included in the model (Tables 3.4 and 3.5) we observe
that the level of size distortion increases for all the statistics.

We also observe that the size of the Ng and Perron statistics that use the
MAIC does not always move closer to the nominal size as sample size increases.
For example, Tables 3.2 and 3.3 show that the empirical size for ¢ = —0.8 of M Z;
is 0.988 for N = 50, 0.039 for N = 100, 0.021 for N = 200 and 0.027 for N = 400.
At first view this could be considered as not not necessarily problematic, since
one would be interested to get size less or equal to the nominal one. However,
in cases that empirical size appears to be substantially lower than the nominal
one there could be detrimental effects on the power of the statistic. This problem
could be "hidden" in cases that size-adjusted power results are presented. In cases
in which the empirical size is substantially lower than the nominal one, we would
expect size-unadjusted power to be lower than size-adjusted power, at least for

alternatives close to the null.
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Tables 3.6 and 3.7 report the power of the statistics for models corresponding
to X defined by (3.23) and (3.22) respectively, when there is no autocorrelation
in the error term ¢; (¢ = 0). This is not a favourable case for the statistics we
derive in this Chapter, since MA processes are considered which do not exist under
the data generating process. However, we observe that the power of BN M, and
BE PO, statistics is very close to the power of BN M, and BE PO, (which do not
assume autocorrelation of ;).

The BNM, and BEPQ, statistics have substantially lower power than the
BNM and BEPO statistics that use the other two information criteria. The power
of BN M, and BEPOQO,, statistics is lower that the power of BN M, and BEPQO,,
but close to it. For sample sizes N = 200, 400 the choice of a specific information
criterion does not make any substantial difference with respect to the level of power
of the statistics.

Table 3.6 shows that MZ,, MZ, and MSB for N = 50 have substantially
higher power than our statistics. For N higher that 100, our statistics appear to
outperform the modified statistics derived by Ng and Perron (2001). The ADF
statistic appears to have comparatively high power across all sample sizes con-
sidered. When an intercept and a trend are included in the model (Table 3.7),
we observe that statistics M Z,, MZ;,, MSB, Pr, MPr, MZ,;s and M Z,, have

extremely low power (smaller than the 5% size for alternatives close to Hy). The
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ADF and ADFgs statistics appear to have higher power compared to our statis-
tics. For sample sizes higher than 100, BN M, and BE PO, statistics have higher
power than the ADF statistic.

Table 3.8 presents the results for size-adjusted power for the model including
an intercept only, when there is negative autocorrelation (¢ = —0.5) in the error
term. A first observation is that the power of our statistics is lower in comparison
to the case of no autocorrelation (Table 3.6), especially for sample sizes 50 and 100.
We also observe that the BN M,, BEPO,, BNM,; and BEPQO,, statistics appear
to have higher power than BN M, and BE PO, for sample size N = 50. For this
sample size the modified statistics perform better than our similar statistics. For
sample size 100, we observe that BN M,,, BEPO,, BN M, and BE PO, have higher
power than BN M, and BEPQO, and the statistics proposed by Ng and Perron
(2001) for alternatives far from the null p = 1. For alternatives 0.98 < p < 0.90 we
find that the ADF statistic has higher power that the rest of the statistics. For
the same alternatives, BN M, and BE PO, have higher power. For higher sample
sizes, our statistics have comparatively higher (in comparison to the Ng and Perron
statistics) power for most alternatives.

Table 3.9 refers to the case of a model including an intercept and a trend in the
presence of negative autocorrelation in the error term (¢ = —0.5). First of all, for
sample size N = 50 we observe that all statistics suffer from the problem of very
low power. We also observe that for most alternatives, BN My and BE POy exhibit

higher power than our statistics for sample sizes N = 50,100. Also the statistics
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derived by the procedure of Ng and Perron (2001) have substantially higher power
than ours. For sample sizes higher than N = 100 our statistics appear to have
higher power for most alternatives.

Tables 3.10 and 3.11 contain the finite sample power of the statistics when
there is no autocorrelation of the error term, for alternatives farther than the ones
investigated in Tables 3.6 and 3.7. The reason for this is to examine the possibility
of power reversal. Table 3.10 corresponds to a model with an intercept only. We
observe that the problem of power reversal is severe for statistics MZ,, M Z;,
MSB, Pr, MPr, MZ,rs and M Z,, for sample sizes N = 100, 200. For example
for sample size N = 100 and alternative p = 0.8 the power of the M7, is 0.839
which is the highest among the values of power computed. Moving away from
alternative p = 0.8 (to alternatives p < 0.8), power decreases gradually, reaching
power 0.715 for alternative 0.1. ADF and ADF} g statistics do not appear to have
this problem.

Regarding the statistics derived in this Chapter, we can see that power reversal
occurs for the BN M, and BE PO, statistics. For the same case (N = 100) BEPO,
statistic has power 0.958 for p = 0.5 and then gradually falls to 0.947 for p = 0.1.
We consider the power reversal of BEPO, to be less serious than that occurring for
M Z, mainly because of the magnitude of the power reduction: 1.1% for BE PO,
power reduction from alternative 0.5 to 0.1 is 1.1%, while the power reduction
from alternative 0.8 to 0.1 for M Z, is 14.8%. Additionally, we observe that our

statistics have higher power in comparison to the other test statistics existing in



81

the literature for alternatives far from the null (p = 1) and close to 0. This can be
seen in Figure 3.4 which presents the power of the BN M,, BNM,, BNM,, ADF,
and M Z, for the model including an intercept only. For sample size N = 50, the
ADF statistic appears to have higher power that the BN M,, BN M, and BN M,
statistics. The M Z, statistic has higher power for alternatives far from the null.
For higher sample sizes the BN M,, BN M, and BN M), perform better than ADF
and M Z,. In this figure one can see that the power function of M Z, changes slope
for sample sizes N = 100, 200.

The problem of power reversal becomes more apparent in the context of a
model which includes an intercept and a trend. This case is presented for the same
statistics in Figure 3.5. In this case, one can see that even for a sample size as high
as N = 400, the M Z, statistic has a decreasing power as the true value of p moves
farther away from H,. Table 3.11 presents the results for power in the absence of
autocorrelation in the errors for all the statistics. For statistics M Z,, M Z,, MSB,
Pr, MPr, MZ,;s and M Z,5 similar conclusions to those of Table 3.10 are drawn.
Table 3.11 shows that the problem of power reversal occurs for statistic ADF' as
well, but not for ADFyg. This problem appears for the BNM and BEPO statistics
being less severe (much smaller power reduction as p moves farther away from the
null).

The above discussion highlights the nature as well as the extent of the problem
of power reversal for the statistics derived by Ng and Perron (2001). At this point,

it is necessary to assess the performance of the test statistics which address this
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problem. These are the statistics derived by Perron and Qu (2007) and Seo (2006).
We consider the ADF' t-statistic and modified Phillips Perron statistic resulting
from the Perron and Qu procedure (denoted as ADFpg and Mpg) and the same
statistics resulting from the Seo two-step procedure (denoted as ADFs and Mg).

The purpose of our numerical study at this point, is to investigate two main

questions:

e Do the modifications proposed by Perron and Qu (2007) and Seo (2006)
solve the problem of power reversal?

e What is the effect of these modifications on size distortion as well as the
level of power of the statistics, when compared with the statistics without

the modification and the statistics derived in this Chapter?

We compare these procedures to the BNM and BEPO statistics, using asymp-
totic critical values. The BNM and BEPO statistics that use asymptotic critical
values are denoted as BNM,; and BEPO, with i = a, b, h.

Table 3.12 presents the empirical size of the statistics mentioned above in the
context of a model including an intercept only. A first observation regarding the
BNM and BEPO statistics is that when using asymptotic critical values (instead
of exact), the size control in small samples is not always better when we use the
AIC. It appears that the use of any of the information criteria results in the almost
the same size distortion for values of ¢ close to —1. For values of ¢ closer to 0 the

AIC appears to deliver higher size distortion than the BIC. For example, in Table
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3.12 for sample size N = 50, ¢ = 0, BEPO, and BEPO, deliver empirical size
0.058 and 0.104, respectively. The reason is the liberal nature of the AIC. In the
absence of autocorrelation in the error term, AIC chooses higher MA order than

the BIC. This difference is more evident in small samples. It is worth noting here

that the BN M, and BE PO, statistics exhibit very close empirical size to BN M,
and BE PO, (see Tables 3.2 and 3.3). This means that BNM and BEPO statistics
that use the BIC are robust to the use of exact or asymptotic critical values.

When comparing the Perron and Qu (2007) and Seo (2006) procedures we
find that for a given statistic, the Perron and Qu procedure results in lower size
distortion than the Seo procedure. Additionally, we see that the BNM and BEPO
statistics generally perform better with respect to control over size than the ADFg
statistic. Comparing the statistics derived in this Chapter to the ADFpg, Mpg
and Mg statistics, we find that the latter three have lower size distortion. However,
a problem regarding size mentioned above still remains for the modified Phillips
Perron statistics (Mpg and Mg): as sample size increases there is the possibility
that empirical size deviates from that of the nominal. This can be seen by observing
the empirical size of Mpg for ¢ = —0.8, which is 0.161, 0.042, 0.018, 0.017 for
sample sizes N = 50, 100, 200,400 respectively. However, the BNM and BEPO
statistics using asymptotic critical values do not appear to suffer from this problem
(their empirical size tends to the nominal one as sample size increases).

Table 3.13 presents the results regarding the empirical size of the statistics

in the context of a model containing an intercept and a linear trend. A first
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observation is that size distortion is generally higher compared to the case of a
model including an intercept only. We observe now that the BNM and BEPO
statistics perform better than the ADFs with respect to size distortion (as is the
case in Table 3.12), but also BNM and BEPO perform better than Mg for sample

size N = 50 and for values of ¢ close to |1].

Figure 3.6 depicts the empirical size of the BNM,, BEPO,, ADFpq, Mpq,
ADFg and Mg statistics in the context of a model with an intercept only. Figure
3.7 corresponds to a model including an intercept and a trend. These figures show
that the ADFpg, and Mp( statistics have low size distortion in comparison to the
rest of the statistics. The BN M,, and BE PO, statistics appear to have lower size
distortion that the ADFs and Mg statistics for values of ¢ close to —1.

Tables 3.14 and 3.15 present the performance of the statistics with respect to
power for alternatives close to the null (0.8,0.82,...,0.98), for a model with an
intercept only and a model with an intercept and a trend. We observe that the
power of the statistics (for a given alternatives) is substantially lower in the case
of a model including an intercept and a linear trend. In this case we can make
some interesting observations, the first of which, is the detrimental effect of size
being very low comparatively to its nominal level (rather than converging to it).
Table 3.15 suggests that Phillips Perron statistic exhibit very low power in small
samples such as NV = 50. We see that the Mpq statistic has a rejection (of the null
hypothesis Hy : p = 1) probability of 0.058 when the true value of the parameter

p = 0.80, and when p = 0.82 its power (0.044) is lower than its nominal size (0.05).
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The empirical size of the Mp( statistic for the same case and sample size N = 50
is 0.009. The extremely low power of the statistic in this case, could be attributed
to the fact that empirical size is far from its nominal value and close to zero.

Additionally, we observe that the ADFg and Mg statistics appear to have
higher power than ADFpg and Mpg statistics. The BNM criterion appears to
deliver statistics with higher power, for most alternatives and especially in small
sample sizes, than the power of the statistics resulting from the BEPO criterion.
Finally, we observe that the ADFs appears to have the highest power compared
to the rest of the statistics for alternatives close to the null (0.80 to 0.98— Tables
3.14 and 3.15).

Tables 3.16 and 3.17 present the results for power for alternatives farther from
the null for the two models considered. The purpose of these tables is to examine
the possibility of power reversal for the statistics. We decide to examine the case
in which there is no autocorrelation in the error term (¢ = 0), as this is the case
in which power reversal occurs. It is obvious that this problem is minimal (if at all
existent) for the BNM and BEPO statistics, as their power increases as we move
to alternatives farther from the null. However, this is not the case for ADFpq,
ADFg, Mpg, and Mg. We observe that (for a given sample size) the power of the
statistics does not increase monotonically as we move away from the null.

It is very interesting that although the Perron and Qu statistics are constructed
in order to deal with the problem of power reversal, they reduce it but do not elim-

inate it. For example, in the context of a model including an intercept only and
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for sample size N = 100, the power of the Mpq statistic is 0.739 for alternative
p = 0.6, and 0.663 for p = 0.1. The problem is not solved as sample size in-
creases. For sample size N = 400, we observe that the power reversal problem is
obvious in both model specifications (presented in Tables 3.16 and 3.17) for statis-
tics ADFpg, ADFs, Mpg, and Mg. Additionally, the power of statistics BNM,,
BEPO,, ADFpg, ADFg, Mpg, and Mg is presented in Figures 3.8 and 3.9, for
a model with an intercept only and a model with an intercept and a trend, re-
spectively. It is obvious that the BNM,, and BEPO, statistics have high power
compared to the rest of the statistics (especially for sample size higher than 100)
and that they do not suffer from the power reversal problem.

Observation of Tables 3.16 and 3.17 suggests another problem of the AD Fg, and
Mg statistics. There are cases in which, for a given alternative, power decreases
as sample size increases, i.e. more information (higher N) leads to worse inference
(lower probability of rejecting the false null hypothesis). In Table 3.16, for example,
we see that the power of Mg for alternative p = 0.1 is 0.9 for N = 50, 0.727 for
N =100, 0.635 for N = 200 and 0.623 for N = 400. The BNM and BEPO statistics
do not present such behaviour: for given alternatives power increases as sample

size increases.

Figures 3.8 and 3.9 present the power of the BNM,, BEPO,, ADFpg, Mpq,
ADFs and Mg statistics for the two models considered in this Chapter. These

show that for sample sizes higher than N = 100 the BNM and BEPO statistics
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perform comparatively very well. It is also obvious that the BNM and BEPO
statistics do not suffer from the power reversal problem.

Tables 3.18 (N = 50,100) and 3.19 (N = 200,400) present the performance of
the information criteria across different values of ¢ under Hy, for a model with an
intercept only. This could help to explain the difference among our statistics with
respect to control over size. As mentioned above, the BIC is the most conservative
information criterion and AIC is the most liberal, while HQIC lies between the two
other criteria. As a consequence, statistics that use the AIC have better control
over size in the presence of negative MA parameters in comparison to statistics
using the other criteria. For N = 50 and value ¢ = —0.8 under Hy, the BIC chooses
order 0 (no autocorrelation) 68.6% of the cases, AIC 39.4% and HQIC 52.7%. As
sample size increases the performance of all information criteria is improved (they
tend to choose the correct order) and for N = 400 and value ¢ = —0.8, none
of the information criteria chooses order 0 (i.e. all criteria suggest that there is
autocorrelation in the error term). This is the reason why we do not observe
substantial difference with respect to size distortion among our statistics for large
samples. Information criteria behave similarly in the case of a model with an
intercept and a trend.

Tables 3.20 and 3.21 present the performance of information criteria for mod-
els including an intercept only and an intercept and a trend respectively, across
different values of alternatives in the case of no autocorrelation in the error term

(¢ = 0). These tables explain the occurrence of the problem of power reversal for
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some of our statistics. We observe that the AIC performs worse with respect to
identifying the right MA order as the true value of p moves farther away from the
null. In Table 3.20, we see that for N = 100, the AIC chooses order 0 (the true
order under the DGP) for the MA component 70.8% of the cases and for p = 0.1,
61.5%. For the same sample size, under the null, the BIC chooses order 0 for the
MA component 95.6% of the cases and for p = 0.1, 93.9%. Table 3.21 shows that
moving to a model with an intercept and a trend makes the problem of identify-
ing the right order more serious for the AIC. For this model, and for sample size
N = 100, the AIC chooses order 0 67.8% of the cases and for p = 0.1, choice of
zero order falls to 55.5%. Under Hy, the BIC chooses order 0 94.8% of the cases

and for p = 0.1, the relative frequency is 92%.

3.7. Conclusion

In this Chapter we derive asymptotically similar statistics for testing the unit
root hypothesis in the presence of autocorrelated errors. Based on the BNM and
BEPO optimality criteria proposed by Forchini and Marsh (2000), we derive test
statistics that take into consideration possible autocorrelation in the error term.
We consider our testing procedure to be feasible with respect to two aspects. The
first involves the use of information criteria (BIC, AIC and HQIC) for the choice of
the order of autocorrelation. The second includes the estimation of the parameters
of the chosen model. Limiting distributions for the test statistics are provided

which enable us to use asymptotic critical values for high sample sizes (over N =



89

100). In order to assess the finite sample performance of our statistics under
different specifications, we perform an extensive simulation study.

We believe that we successfully generalize the statistics of Forchini and Marsh
as we substantially improve the size control of the statistics in the presence of
autocorrelation, without any significant power loss even in the case of no autocor-
relation in the error term.

Additionally, we compare our statistics with a variety of other statistics ex-
isting in the literature (mainly those in Ng and Perron, 2001). We find that for
a small sample size (such as N = 50) the other statistics could possibly have
so high level of size distortion, that would make inference drawn by them highly
unreliable. Our test statistics perform much better with respect to control over
size. For higher sample sizes, our statistics perform comparatively worse to the
Ng and Perron statistics, but size distortion appears to fall substantially as sample
size increases. With respect to finite sample power, our statistics achieve higher
power for most alternatives apart from those close to the null hypothesis. Finally,
the asymptotically similar BNM and BEPO statistics (using exact or asymptotic
critical values) do not seem to suffer seriously from the problem of power reversal.

Moreover, we compare our statistics to the statistics resulting from the Perron
and Qu (2007) and Seo (2006) procedures. A striking observation of the numerical
study on these procedure is the severity of the power reversal problem. In light
of the results provided by Seo (2006), Perron and Qu (2007) modify the Ng and

Perron (2001) statistics in order to solve the power reversal problem. However, even
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if there is improvement, the problem is still evident. Additionally, the statistics
proposed by Seo (2006) suffer from the same problem.

The above observation leads to a methodological aspect highlighted in this
Chapter regarding the examination of power properties. More specifically, the
power of the statistics should be checked for alternatives (comparatively) far from
the null. Investigation of such alternatives could reveal possible power reversal
problems.

Another methodological issue discussed in this Chapter is the caution that
should be exercised for cases in which empirical size tends to zero rather than to
its nominal value. Prima facie this could appear as a good property, as size is the
probability of an error (rejecting the null hypothesis when it is true) which we want
to keep lower than a certain level (nominal size). However, having size tending to
zero comes at the expense of low power. Presenting size-adjusted power could
hide this problem. That is the reason that we believe the size of a well-behaved
statistic should tend to its nominal value as sample size increases, otherwise we
face the possibility of adverse effects on the ability of the statistic to reject the null
hypothesis when this hypothesis is not true.

We examine the finite sample properties of the statistics derived in this Chapter
for exact and asymptotic critical values. When exact critical values are used, we
observe that the optimality criteria used (BNM and BEPO) deliver statistics that
have very similar empirical size and power in finite samples. However, what differ-

entiates the finite sample properties of our statistics, is the use of the information
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criterion for the determination of the order of the MA component. The use of AIC
delivers the best results with respect to size control, but also has the lowest power
and for some sample sizes the problem of power reversal occurs. The BIC provides
the best results with respect to power, but the worst for controlling size in small
samples. The HQIC appears to lie in between the other criteria mentioned, deliv-
ering test statistics with power close to BN M, and BEPO,, and size distortion
not much higher than the one of BN M, and BEPO,. We suggest the use of the
HQIC, because the BN M, and BE PO, statistics appear to have, in comparison
to the other asymptotically similar statistics, low size distortion, high power and
not significant (if any) power reduction for alternatives far from the null.

When asymptotic critical values are used, the main findings of the numerical
analysis do not change. One difference though is that the empirical size of the
statistics using the BIC tends faster to its nominal value as sample size increases
for ¢ = 0. For values of ¢ close to —1, AIC gives better results with respect to
control over size.

In concluding the discussion about the comparison of the statistics derived in
this Chapter to the other unit root test statistics in the literature, we believe that
the main strength of the statistics is their robustness. More specifically they appear
to have comparatively good control over size across different values of ¢ and high
power across a wide range of alternatives. Additionally, they improve with respect
to size control and power as sample size increases and do not suffer from the power

reversal problem.
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3.8. Technical Appendix and Proofs

Proposition Al. The lag matriz LY commutes with any other lag matriz of

different or same order LY) and

(K,")'T,

given that Ky and T, are invertible.

Proof. Lag matrix L commutes with any other lag matrix of the same or

different order LU) and:

LOLG — 1@ —

L) fori+j <N -1
(3.24)

0, fori+j>N—1
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Noting the definitions in (3.5) and (3.6) and the commutative property of lag

matrix L (3.24) we have:
q .
el (IN 53 W) (1y — o)
i=1
q . q .
= Iy—pLW+ Z ¢, L — (Z ¢iL(Z)) pLM
i=1 i=1
q . q 4
= Iy—pLW+ Zgbi[’(l) _ ,OZCbiL(Z)L(l)
i=1 i=1

q q
= Iy— pL(l) + Z @-L(i) _ pL(l) Z@L(i)
i=1 i=1

q

= Iy —pLY + (Iy — pLW) > ", L0

=1

q
= (Iy — pLW) ([N +) ¢1-L(i)> =T,K,. (3.25)
=1

Equation (3.25) means that K, commutes with 7, (and with 77 which is a
special case of T},). Given that K, and T}, are nonsingular matrices, we can easily
show that their respective inverse and transpose matrices commute with each other

as well:

KT, = T,Ky& (KT, = (T,Ks) " & T,'K;' = K;'T ", (3.26)

KT, = T,Ky& (KT,) = (T,K,) & T)K), = K,T), (3.27)
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and combining (3.26) and (3.27) we get
(1Y) (551) = (551 (1Y) (3.28)
Finally, using (3.25) we show that T, commutes with K"

KT, =T, Ky = T,=K,'T,Ky = T,K;' = K;'T,, (3.29)

!/

and transposing both sides of (3.25) we can show that (K(;l)'T; =T, (qul) .
Proposition A2. Let S = T, 'c and 0> = E(¢?). Under the assumptions of
Theorem 3.3 with X satisfying (3.22), the following limit theory applies under the

null hypothesis Hy : p=1 as N — oo:

(i) N~1S% = 302 [W2(1) + 1]

(i) N71S'Pze = o?W(1 fo
(iii) N=28'T; ' Pye = o?W (1 fo rW(r)dr

(v

(vi

) N
) N
) N

(iv) N2 (7' Pge) Ty ' Pge = 1o?W2(1)
) N=U (T Pge)’ Pre = La®W2(1)
) N ( Pge) e = W) (W) - fy Wrdr)
) N

2

(vii Wy —,0o

For X satisfying (3.23) parts (i) and (vii) continue to apply and:
(viil) N~1S"Pge, N='(T7'Pge) Pze and N2 (T Pge) Ty Pye have order
Op(N™1) and N=2S'T; ' Pye, N~' (T Pge) & have order O,(N~1/?) as

N — 0.
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where W (-) denotes standard Brownian motion on D [0, 1].

Proof. By definition of the matrix Tfl, S; is a unit root process with i.i.d.
innovations ;. Also, using the particular form of the matrix X of deterministics,
it is easy to obtain the following identities:

1
Pre= 55 (N = 1)e1, Sy — 1, Sy — )

and

1 /
Tl_lng = m [(N — ].) €1, SN—I + (N - ].) Elyeeny (N - 1) SN—I + (N — ].) 61} .

In what follows, we make use of standard unit root asymptotics, see e.g. Phillips
(1987b) and Phillips and Perron (1988).

For part (i), we have
N N N
N7'Se = N7'Y Seg=N" (Z Siigit+ Y 53)
i=1 i=1 i=1

N N
= N_lzsi_1€i+N_lz€?
=1 =1

N %oﬁ (WP -1} + o

= %(72 [(W2(1) +1].



For part (ii),

1
NSIPZ&

For part (iii),

1
WS/Tflng

96

—Nl—l [S1(N—1)€1+Z;Si(SN_51)]

1 al 1 &
NS5O (VZS>

1

N
1 —-1/2
TSN D S+ O (V)
1=2

2V (1) /0 W rdr

1 1 & .
ﬁﬁ;{& [(i—1)Sn_1+ (N —1)e]}

11 al 1
NZN 1SN1;S”+OP (W;S>

N
1 1 ) -
N7 Sn_1 CE Z Sit + O, (N 1/2)
i=1

o2W(1) /01 rW (r)dr.
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For part (iv),

1
o

Ty Pge) Ty Pye

For part (v),

97

< (T4 Pe) Ppe = % (ﬁ) {(N BRI ; (iSy 1 + (N — 1) &1) (Sx — 51>]}

1 N-1 1 N-1
—N (N — 1>QSN7].SN ; 1+ Op (mle ; Z)

1Sv-1 Sy B
N %02W2(1)
For part (vi),
N
1 / 1 1 . 1
N (Tflpzé‘) E = N {N— 1SN_IZZ€i — N — 1SN_1SN+€1SN}
i—1
SN 11
= [14+0(1 N1/2N3/22287’+O -1/
= oW (1) (aW(l) —0/ W(r)dr).
0
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For part (vii), recall that, under Hy, Z = K (; 'V X and Tyu = K 4e which gives

v = MK;'Ty (XB+u) = MyK; Ty

= MZKé;qujs = [+ 0, (1)] Mze

using the fact that ¢ — ¢ = 0p (1) . Therefore, since

1

v 1 (Sy—e1)* =0, (1),

£'Pge =€ +
the weak law of large numbers yields

1
—v'v = [+ 0,(1)] NslMZg

= [I+0,(1)] {%5’6 + O, (N‘l)} —, 02

For part (viii) Pz corresponds to X including a constant term only which gives

the following results,

S'Pze = (T7'Pge) Pge =2 = 0,(1),
(T;'Pge) Ty 'Pge = Net = O,(N),

N
S,Tl_lng = & Z Sz = Op(N3/2),

i=1

N
(Tl_lpzé),5 = &1 Z&i = €1SN = Op(N1/2),
=1
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A direct result from the above is that N=1S'Pge, N1 (Tflpzét),PZE and
N2 (Tl_les)/Tl_les have order O,(N~!) and N=28'T, ' Pye, N~! (Tl_lpze)le
have order O,(N~1/2) as N — oo.

Proof of Lemma 3.1. Using the commutation results given in Proposition Al

we get
Spe = K,'TiT,'KyK), (1,1 11 (K(;l)':TlK(;qusTp’l (1,%) K, (K(;I)IT{
= 0T, (1Y) T

Proof of Theorem 3.1. The most powerful similar test of size « is given by (3.13)

which can be rewritten as:

yT) (K1) C(C'S,C)  C'K M Ty §
yT] (K1) MzK; ' Thy

Lemma 3 of Forchini and Marsh (2000) shows that the matrix
Q=0B"'C—(C'BC)™!

is positive semi-definite. Applying this in our case gives the following result:

YT (K1) C(C's,0) " C'K M Ty - YT, (K1) CC'S 1 CCK My
yT] (K1) MzK; ' Thy - yT) (K1) MzK ;' Try

—1\/ — — —
YT (K1) CC,0)  C'R Ty vy
yT] (K1) MzK; Ty A7
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where v is defined above. So (3.13) is bounded above by the ratio of quadratic

forms in v. Inverting ¥, and expressing T, as T, = In — pL)

St = (1 (B = ) T
(17 (I — o) (1 — o) T =
(Tl_l)/ (IN B pL(l)) ' p (Tfl)l JAOL (]N _ pL(l)) Tt =

(Tl_l)/Tl_l —p (Tfl)/L(l)Tfl p (Tfl)/ L(l)/T1—1 1 p? (Tl_l)’L(l)’L(l)Tfl-

(3.30)
From equation (3.30) and the definition of the matrix ¥ () we obtain:
VYol 1
= ( 1 —p ) V() (3.31)

—p
So a sufficient condition for (3.13) to hold is that the positive definite matrix ¥(v) is

small with respect to some norm. We can find statistics such that Pr {||¥(v)|| < ko|Ho} =

a.

Proof of Theorem 3.2. The first BEPO criterion is:

L(p*)" W (y)l(p") <k

Y)Yy (3:32)

where k, is such that the size of the test is @ and p* is the value of p which

minimizes (3.31). We differentiate (3.31) with respect to parameter p and set it
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equal to zero. From equations (3.18) and (3.31) we get:

1
( 1 —p ) U(v) = (pQI/,\IJQQV — 2oV W ov + V’\I/Hl/) )
—p
1 0(p**/ Voo — 20"V U v + V' 1)
— = 0=
V' ap*
2 * * 1/112
o (P*thag —91) = 0= p" = ¢_m (3.33)

Combining condition (3.32) with (3.33) and values given by (3.16) and (3.17) we

get the BEPO statistic. Also we need to note that 1., > 0 since Vo, is a positive

o? (P2w22*2p¢12+¢11>
Op?

semi-definite matrix, so > 0.

The theorem is proved by substituting (3.33) and in (3.3).
Proof of Theorem 3.3. We make repeated use of the limit theory established in

Proposition A2. For notational simplicity, define
Wy = VU1, ey = V' WUgr and 1y, = V' U ov
and note that

Yoy = by —2 (Tfll/)lu + v
= —2 [5,5 — ' Pze + (Tl—lng)’ng] (3.34)

-2 (Tflee)/é? + '
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and

P1g = P11 — S'e + 5" Pge — (T1_1Pz€)l Pge. (3.35)
For part (i), it is clear that from Proposition A2 and (3.34) and (3.35) we obtain
that 1y = 91, + O, (N) and 91, = ¢1; + O, (N). Now by Proposition A2,

1

1 2 1
ﬁ% — mS'S - mS’T;lpzs +— (T Pge) Ty Pye

N2

= o’ {/01 W2(r)dr — 2W (1) /OlrW(r)dr + %W2(1)} . (3.36)

The BNM test statistic is given by

1 1 1 P11 Yo
SOl = |+
_¢12 ¢22_
B 1 1 Y11 Yo
T N-y||N2
_1/)12 7»522_
1 (U 11 1
~ N ||N? 11 +OP(N )

N 1 1 {/Olwg(r)dr—ZW(l)/OITW(T)dr%—%W?(l)}

and the result follows from Proposition A2(vi) and (3.36).
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Part (iii) corresponds to the case of a constant only included in the model.

Proposition A2(viii) applies here and we get

1
N

— ¥ S’S+O N1 = / W2(r (3.37)

The above result in conjunction with Proposition A2(vii) gives us

— || -
180 = = [+

For part (ii):

% (wu - ¢22) =

As before, when a

1 1 Vi Vi /1W2(r)dr
Y1z Vo ’

S'e — S'Pye — (T7 ' Pye) e + (T7 ' Pre)' Pye — w)

/N

1
N
L5 W +1] W) [ Wi

\V)

oW (1) (W(l) - /01 W(r)dr) + %oﬁw?u) o

, LW2(1) + 1] =W (1) [, W(r)dr
~W (1) (W(1) = fy Wirydr) + 3W3(1) -1

\
(

SW2(1) + L = WD) fy W(r)dr -
—W2(1) + W) [y W(r)dr+ 2w2(1) -1

\

constant and trend are included in the model N~21),, =

N~2¢,; 4+ O,(N~1). Combining the above results and the one in (3.36), we get the
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asymptotic distribution of BEPO statistic which is given by

N~ ¢12 ()
N=21hyy

BEPO = ‘wm ¢22

Paa

1.2
L —§U

o2 [f01 W2(r)dr — 2W (1) [Lr WV (r)dr + §W2(1)]

1

fo W2(r)dr — 2W (1 f2 r)dr + sW?2(1)
1
(r)dr — 2W (1) [ W (r)dr + §W2(1)('

| =

For part (iv) of the theorem X satisfies (3.23). We use results from Proposition

A2(viii) and we get

1 1 / / /
N (Y12 — ¥an) = N (Sl@ — S'Pge — (Tflpzé‘) €+ (TflPZE) Pye —v V)

(S'e —V'v) + O, (N7'1?)

=z

L
=

; 2 [WQ( )+ } —0? = Zg? [W2(1) - 1} .

[\]

Using the above result and (3.37) we get

Y12 — Vo | _ Nt wu V)
BEPO = N
‘ Paa N=20g
ALUEL I NEUE
o? fol W?2(r)dr a r)dr

3.9. Tables and Figures



Table 3.1. Asymptotic critical values.

BNM BEPO

Percentile 1% 5% 10% 90% 95% 99%

Case: Intercept only

0.069173 0.113954  0.15428 5.665921  7.98514 13.69566

Case: Intercept and Trend

0.049464 0.07287 0.091695 10.90568 13.72295 20.21404
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Table 3.12. Empirical size of the tests for model with an intercept only.

50

—0.
—0.

|
o

|
o

coooocoooo coooococooo cooooocooo

COO000000

¢ BNM,
8 0.522
7 0.381
6 0.291
5 0.235
4 0.207
3 0.175
2 0.130
1 0.092
0 0.069
1 0.061
2 0.059
3 0.059
4 0.069
5 0.069
6 0.073
7 0.066
8 0.063
8 0.259
7 0.147
6 0.113
5 0.101
4 0.105
3 0.118
2 0.116
1 0.079
0 0.057
1 0.046
2 0.047
3 0.057
4 0.056
5 0.058
6 0.054
7 0.061
8 0.062
8 0.105
7 0.085
6 0.070
5 0.070
4 0.066
3 0.061
2 0.082
1 0.076
0 0.053
1 0.041
2 0.053
3 0.055
4 0.057
5 0.057
6 0.051
7 0.049
8 0.058
8 0.078
7 0.068
6 0.066
5 0.060
4 0.058
3 0.054
2 0.059
1 0.072
0 0.048
1 0.044
2 0.050
3 0.051
4 0.051
5 0.052
6 0.056
7 0.054
8 0.051

j[eNololololoNololoNeNoNoNo o No o No)
o
=
©

co0o0000000O0000O
=)
|
w

BNDM,

0.508
0.367
0.277
0.232
0.205
182
155
132
115
113
117
109
114
109
114
109
097

COOPOO00000000

256
162
129
111
101
107
103
0.081
0.076
0.069
0.073
0.075
0.072
0.072
0.069
0.075
0.076

coo0000

0.114
0.093
0.080
0.076
0.073
0.064
0.070
0.068
0.059
0.056
0.064
0.063
0.062
0.062
0.057
0.056
0.064

0.081
0.071
0.070
0.063
0.061
0.059
0.058
0.061
0.052
0.053
0.055
0.054
0.055
0.055
0.060
0.058
0.056

0000000000000 O0O 00
o
>
~

0co0o0000000O0C0C00O
)
3
=

BEPO,,

0.488
0.348
0.263
0.212
0.183
0.156
0.123
0.096
0.076
0.071
0.078
0.072
0.081
0.080
0.078
0.076
0.066

0.241
0.138
0.109
0.098
0.088
0.099
0.099
0.072
0.055
0.052
0.051
0.061
0.059
0.058
0.052
0.061
0.060

0.104
0.083
0.071
0.068
0.065
0.057
0.071
0.068
0.051
0.046
0.056
0.055
0.056
0.058
0.051
0.047
0.056

0.077
0.068
0.064
0.060
0.057
0.053
0.057
0.062
0.047
0.047
0.049
0.050
0.051
0.051
0.055
0.053
0.050

ADFpg

246
175
141

ADFg

0.565
0.456
0.375
0.325
0.303
0.259
0.208
0.141
0.104
0.079
0.064
0.059
0.053
0.056
0.059
0.066
0.075

0.276
0.152
0.097
0.080
0.096
0.131
0.133
0.115
0.071
0.052
0.048
0.047
0.052
0.055
0.057
0.059
0.063

0.203
0.103
0.067
0.050
0.051
0.055
0.083
0.085
0.056
0.045
0.046
0.050
0.052
0.050
0.052
0.054
0.052

0.165
0.087
0.060
0.052
0.048
0.049
0.054
0.074
0.055
0.043
0.051
0.048
0.046
0.053
0.048
0.051
0.050

Mpo

0.161
0.103
0.074
0.070
0.071
0.071
0.068
0.056
0.048
0.035
0.029
0.037
0.046
0.054
0.062
0.070
0.072

0.042
0.042
0.043
0.051
0.051
0.053
0.057
0.058
0.044
0.033
0.037
0.042
0.059
0.052
0.052
0.056
0.062

0.018
0.028
0.043
0.043
0.050
0.049
0.050
0.050
0.042
0.039
0.046
0.050
0.049
0.047
0.049
0.052
0.053

0.017
0.036
0.044
0.045
0.049
0.052
0.046
0.051
0.047
0.047
0.051
0.047
0.044
0.050
0.047
0.051
0.054

Mg

0.481
0.388
0.321
0.273
0.240
0.192
0.145
0.093
0.071
0.059
0.057
0.069
0.074
0.088
0.097
0.108
0.117

0.140
0.083
0.064
0.063
0.086
0.115
0.116
0.095
0.057
0.043
0.050
0.057
0.064
0.067
0.072
0.078
0.084

0.052
0.040
0.039
0.038
0.047
0.053
0.080
0.078
0.050
0.042
0.048
0.056
0.057
0.056
0.059
0.062
0.061

0.038
0.038
0.040
0.044
0.045
0.048
0.054
0.073
0.053
0.043
0.052
0.050
0.048
0.056
0.051
0.055
0.055

116



50

100

200

400

Table 3.13. Empirical size of the tests for model with an intercept

and a trend.
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Table 3.14. Power of the tests for model with an intercept only, ¢ = 0.
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0.222
0.153

0.983
0.974
0.959
0.930
0.874
0.782
0.638
0.467
0.308
0.169

0.999
0.998
0.998
0.999
0.996
0.989
0.960
0.855
0.602
0.256

1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.998
0.968
0.572

Mpqg

0.501
0.454
0.394
0.333
0.273
0.225
0.182
0.128
0.095
0.066

0.795
0.777
0.756
0.721
0.658
0.565
0.443
0.309
0.197
0.103

0.893
0.903
0.909
0.912
0.904
0.890
0.847
0.723
0.482
0.193

0.960
0.964
0.973
0.977
0.979
0.982
0.980
0.973
0.913
0.506

Ms

0.698
0.629
0.561
0.483
0.402
0.335
0.269
0.194
0.146
0.101

0.974
0.963
0.940
0.901
0.829
0.720
0.568
0.401
0.260
0.137

0.999
0.998
0.998
0.998
0.994
0.986
0.952
0.832
0.569
0.234

1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.998
0.964
0.559
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Table 3.15. Power of the tests for model with an intercept and a
trend, ¢ = 0.

N p BNM, BEPO, BNM, BEPO, BNM, BEPO, ADFpg ADFs Mpqg Ms
50 0.80 0.323 0.239 0.372 0.294 0.350 0.268 0.322 0.465 0.058 0.137
0.82 0.286 0.206 0.340 0.268 0.313 0.237 0.283 0.421 0.044 0.115
0.84 0.241 0.176 0.300 0.237 0.270 0.204 0.239 0.360 0.034 0.099
0.86 0.220 0.158 0.282 0.222 0.248 0.186 0.200 0.305 0.028 0.080
0.88 0.179 0.130 0.245 0.197 0.208 0.160 0.170 0.266 0.022 0.074
0.90 0.149 0.105 0.208 0.162 0.176 0.131 0.140 0.222 0.019 0.063
0.92 0.131 0.092 0.193 0.150 0.157 0.117 0.117 0.186 0.012 0.051
0.94 0.103 0.073 0.162 0.125 0.128 0.095 0.096 0.158 0.012  0.047
0.96 0.088 0.059 0.139 0.106 0.111 0.080 0.080 0.131  0.010 0.040
0.98 0.081 0.057 0.133 0.104 0.103 0.076 0.076 0.121  0.008 0.037
100 0.80 0.733 0.685 0.740 0.699 0.736 0.692 0.633 0.883 0.486 0.720
0.82 0.666 0.615 0.690 0.646 0.675 0.627 0.582 0.810 0.420 0.618
0.84 0.600 0.546 0.634 0.588 0.612 0.561 0.510 0.724 0.338 0.515
0.86 0.490 0.436 0.543 0.493 0.507 0.454 0.424 0.613 0.258 0.402
0.88 0.415 0.364 0.472 0.425 0.432 0.383 0.334 0.487 0.192 0.305
0.90 0.308 0.264 0.373 0.331 0.332 0.288 0.249 0.375 0.132 0.216
0.92 0.218 0.183 0.289 0.252 0.241 0.205 0.180 0.268 0.087 0.143
0.94 0.157 0.134 0.220 0.192 0.178 0.154 0.124 0.192 0.056 0.099
0.96 0.102 0.083 0.160 0.137 0.120 0.100 0.080 0.123 0.035 0.064
0.98 0.069 0.056 0.107 0.091 0.080 0.067 0.059 0.089 0.025 0.043
200 0.80 0.975 0.971 0.967 0.963 0.973 0.969 0.862 0.996 0.854 0.997
0.82 0.960 0.953 0.954 0.948 0.958 0.952 0.849 0.996 0.842 0.995
0.84 0.940 0.931 0.933 0.925 0.938 0.929 0.829 0.992 0.816 0.986
0.86 0.901 0.891 0.896 0.887 0.901 0.891 0.807 0.981 0.788 0.966
0.88 0.843 0.825 0.842 0.826 0.843 0.826 0.754 0.945 0.718 0.904
0.90 0.745 0.723 0.757 0.738 0.749 0.727 0.656 0.849 0.595 0.774
0.92 0.589 0.559 0.615 0.589 0.597 0.568 0.507 0.665 0.431 0.566
0.94 0.401 0.372 0.442 0.416 0.411 0.383 0.316 0.438 0.250 0.351
0.96 0.215 0.196 0.249 0.232 0.221 0.204 0.154 0.223 0.115 0.166
0.98 0.095 0.085 0.119 0.109 0.102 0.092 0.067 0.098 0.047 0.070
400 0.80 1.000 1.000 0.998 0.997 0.999 0.999 0.967 1.000 0.950 1.000
0.82 0.999 0.999 0.998 0.998 0.999 0.998 0.964 1.000 0.950 1.000
0.84 0.998 0.998 0.996 0.996 0.998 0.998 0.960 1.000 0.949 1.000
0.86 0.996 0.996 0.994 0.994 0.995 0.995 0.954 1.000 0.951 1.000
0.88 0.992 0.991 0.989 0.988 0.991 0.991 0.951 1.000 0.949 1.000
0.90 0.978 0.976 0.975 0.973 0.978 0.976 0.939 1.000 0.940 1.000
0.92 0.945 0.942 0.943 0.940 0.945 0.942 0.907 0.996 0.909 0.995
0.94 0.851 0.843 0.851 0.844 0.852 0.845 0.819 0.940 0.806 0.921
0.96 0.590 0.576 0.599 0.585 0.591 0.577 0.522 0.639 0.495 0.595
0.98 0.215 0.207 0.233 0.223 0.218 0.209 0.158 0.205 0.139 0.178
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Table 3.16. Power of the tests for model with an intercept only, ¢ = 0.

N p BNM, BEPO, BNM, BEPO, BNM;, BEPO, ADFpg ADFs Mpqg Ms
50 0.1 0.952 0.947 0.901 0.895 0.934 0.928 0.716 0.928 0.624 0.900
0.2 0.943 0.939 0.898 0.893 0.925 0.921 0.725 0.945 0.645 0.923
0.3 0.932 0.924 0.884 0.877 0.914 0.907 0.739 0.957 0.667 0.943
0.4 0.909 0.901 0.874 0.866 0.895 0.887 0.749 0.966 0.681 0.956
0.5 0.904 0.896 0.880 0.873 0.894 0.885 0.756 0.975 0.695 0.967
0.6 0.850 0.836 0.844 0.832 0.850 0.836 0.753 0.976  0.694 0.960
0.7 0.773 0.754 0.782 0.765 0.774 0.756 0.739 0.954 0.663 0.902
0.8 0.603 0.576 0.655 0.633 0.625 0.601 0.622 0.827 0.495 0.699
0.9 0.305 0.278 0.396 0.372 0.342 0.316 0.342 0.465 0.228 0.331
1.0 0.069 0.058 0.115 0.104 0.088 0.076 0.075 0.102  0.047 0.067
100 0.1 0.993 0.993 0.960 0.962 0.982 0.983 0.728 0.812 0.630 0.727
0.2 0.993 0.992 0.963 0.963 0.984 0.984 0.740 0.843 0.648 0.797
0.3 0.991 0.991 0.963 0.962 0.985 0.985 0.757 0.898 0.677 0.874
0.4 0.990 0.990 0.964 0.964 0.982 0.983 0.771 0.933 0.703 0.923
0.5 0.988 0.988 0.963 0.964 0.980 0.980 0.792 0.962 0.733 0.957
0.6 0.982 0.981 0.962 0.961 0.975 0.975 0.810 0.979 0.764 0.977
0.7 0.968 0.966 0.956 0.955 0.964 0.963 0.826 0.986 0.793 0.984
0.8 0.924 0.922 0.912 0.911 0.921 0.919 0.816 0.982 0.791 0.974
0.9 0.644 0.640 0.664 0.659 0.649 0.644 0.616 0.771  0.558 0.707
1.0 0.057 0.049 0.076 0.068 0.064 0.055 0.054 0.071  0.043 0.059
200 0.1 0.999 0.999 0.976 0.979 0.993 0.993 0.757 0.809 0.639 0.635
0.2 0.999 0.999 0.980 0.982 0.995 0.995 0.778 0.879 0.666 0.773
0.3 0.999 0.999 0.982 0.984 0.996 0.997 0.804 0.932 0.703 0.876
0.4 1.000 1.000 0.982 0.983 0.996 0.997 0.825 0.958 0.736 0.930
0.5 1.000 1.000 0.985 0.985 0.997 0.997 0.849 0.977 0.772 0.965
0.6 0.999 0.999 0.987 0.988 0.998 0.998 0.868 0.991 0.811 0.987
0.7 0.999 0.999 0.991 0.992 0.998 0.998 0.898 0.996 0.855 0.995
0.8 0.997 0.998 0.991 0.992 0.996 0.997 0.920 0.999 0.894 0.998
0.9 0.972 0.974 0.964 0.966 0.970 0.971 0.898 0.988 0.888 0.986
1.0 0.053 0.050 0.059 0.057 0.054 0.051 0.046 0.057 0.042 0.052
400 0.1 0.999 0.999 0.987 0.989 0.997 0.997 0.792 0.880 0.674 0.623
0.2 1.000 1.000 0.987 0.989 0.998 0.998 0.826 0.909 0.723 0.746
0.3 1.000 1.000 0.989 0.989 0.999 0.999 0.844 0.891 0.743 0.756
0.4 1.000 1.000 0.990 0.991 0.998 0.998 0.869 0.894 0.783 0.800
0.5 1.000 1.000 0.994 0.994 0.999 1.000 0.891 0.925 0.825 0.872
0.6 1.000 1.000 0.996 0.996 1.000 1.000 0.926 0.962 0.882 0.945
0.7 1.000 1.000 0.998 0.998 1.000 1.000 0.952 0.991 0.922 0.989
0.8 1.000 1.000 0.999 0.999 1.000 1.000 0.975 1.000 0.958 0.999
0.9 1.000 1.000 0.999 0.999 1.000 1.000 0.986 1.000 0.982 1.000
1.0 0.053 0.050 0.059 0.057 0.054 0.051 0.043 0.051  0.042 0.049
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Table 3.17. Power of the tests for model with an intercept and trend,
¢ =0.

N p BNM, BEPO, BNM, BEPO, BNM, BEPO, ADFpg ADFs Mpqg Ms
50 0.1 0.950 0.926 0.833 0.786 0.904 0.867 0.726 0.987 0.604 0.972
0.2 0.936 0.906 0.820 0.775 0.890 0.854 0.733 0.982 0.607 0.971
0.3 0.919 0.887 0.807 0.759 0.880 0.845 0.735 0.981 0.607 0.953
0.4 0.882 0.836 0.772 0.724 0.840 0.794 0.729 0.978 0.572 0.899
0.5 0.821 0.752 0.734 0.668 0.792 0.726 0.712 0.966 0.471 0.748
0.6 0.718 0.630 0.656 0.581 0.698 0.615 0.666 0.915 0.314 0.515
0.7 0.542 0.447 0.547 0.464 0.551 0.461 0.537 0.748 0.159 0.289
0.8 0.323 0.239 0.372 0.294 0.350 0.268 0.317 0.464 0.053 0.133
0.9 0.149 0.105 0.208 0.162 0.176 0.131 0.138 0.221 0.017 0.062
1.0 0.071 0.051 0.117 0.094 0.095 0.073 0.070 0.113  0.008 0.035
100 0.1 0.995 0.993 0.927 0.915 0.974 0.969 0.754 0.957 0.663 0.946
0.2 0.993 0.992 0.929 0.916 0.977 0.973 0.765 0.971 0.687 0.965
0.3 0.992 0.990 0.924 0.913 0.974 0.969 0.771 0.976 0.703 0.973
0.4 0.990 0.985 0.920 0.907 0.970 0.963 0.779 0.984 0.727 0.983
0.5 0.981 0.975 0.919 0.908 0.966 0.959 0.780 0.988 0.738 0.987
0.6 0.958 0.948 0.910 0.896 0.945 0.935 0.781 0.991  0.739 0.989
0.7 0.910 0.887 0.879 0.857 0.902 0.880 0.757 0.990 0.701 0.965
0.8 0.733 0.685 0.740 0.699 0.736 0.692 0.636 0.879 0.497 0.722
0.9 0.308 0.264 0.373 0.331 0.332 0.288 0.252 0.365 0.137 0.212
1.0 0.062 0.050 0.099 0.084 0.076 0.062 0.046 0.068 0.019 0.033
200 0.1 0.998 0.998 0.960 0.954 0.988 0.987 0.796 0.877 0.680 0.839
0.2 1.000 1.000 0.967 0.962 0.995 0.995 0.809 0.917 0.703 0.904
0.3 1.000 1.000 0.963 0.959 0.994 0.993 0.820 0.960 0.727 0.961
0.4 1.000 1.000 0.968 0.965 0.996 0.995 0.836 0.987 0.764 0.988
0.5 1.000 1.000 0.967 0.963 0.994 0.993 0.840 0.997 0.785 0.996
0.6 0.999 0.999 0.972 0.970 0.995 0.995 0.859 0.998 0.820 0.999
0.7 0.995 0.994 0.981 0.979 0.993 0.992 0.863 0.999 0.844 0.999
0.8 0.975 0.971 0.967 0.963 0.973 0.969 0.852 0.998 0.845 0.998
0.9 0.745 0.723 0.757 0.738 0.749 0.727 0.671 0.856 0.608 0.783
1.0 0.048 0.044 0.063 0.058 0.052 0.048 0.037 0.053 0.027 0.039
400 0.1 1.000 1.000 0.980 0.979 0.997 0.997 0.874 0.905 0.711 0.793
0.2 1.000 1.000 0.978 0.978 0.998 0.998 0.885 0.961 0.741 0.898
0.3 1.000 1.000 0.980 0.980 0.998 0.998 0.898 0.970 0.769 0.938
0.4 1.000 1.000 0.981 0.980 0.999 0.999 0.921 0.977 0.818 0.961
0.5 1.000 1.000 0.985 0.984 0.999 0.999 0.939 0.990 0.853 0.985
0.6 1.000 1.000 0.989 0.988 0.999 0.999 0.953 0.997 0.895 0.996
0.7 1.000 1.000 0.998 0.998 1.000 1.000 0.962 0.999 0.922  0.999
0.8 1.000 1.000 0.998 0.997 0.999 0.999 0.966 1.000 0.949 1.000
0.9 0.978 0.976 0.975 0.973 0.978 0.976 0.939 1.000 0.939 1.000
1.0 0.051 0.049 0.056 0.054 0.052 0.050 0.037 0.049 0.034 0.042



Table 3.18. Relative frequencies of MA order chosen when only an
intercept is included in the model.
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N =50 N = 100

) 0 1 2 3 4 5 0 1 2 3 4 5
—0.8 BIC 0.686 0.249 0.043 0.019 0.004 0.001 0.223 0.731 0.033 0.008 0.003 0.002
AIC 0.394 0.278 0.110 0.087 0.070 0.062 0.094 0.603 0.116 0.072 0.059 0.057
HQIC 0.527 0.291 0.082 0.054 0.028 0.019 0.152 0.713 0.076 0.029 0.019 0.013
—-0.7 BIC 0.497 0.416 0.057 0.019 0.011 0.001 0.093 0.863 0.031 0.008 0.004 0.001
AIC 0.271  0.366 0.117 0.085 0.092 0.071 0.031 0.673 0.112 0.072 0.056 0.055
HQIC 0.378 0.406 0.099 0.055 0.044 0.020 0.055 0.814 0.071 0.030 0.017 0.012
—0.6 BIC 0.423 0.485 0.058 0.022 0.008 0.005 0.050 0.904 0.034 0.009 0.003 0.001
AIC 0.199 0.455 0.101 0.088 0.086 0.072 0.014 0.681 0.121 0.071 0.056 0.056
HQIC 0.296 0.501 0.086 0.055 0.042 0.021 0.027 0.834 0.076 0.033 0.018 0.012
—0.5 BIC 0.451 0.458 0.058 0.028 0.005 0.002 0.070 0.889 0.031 0.007 0.002 0.001
AIC 0.207 0.432 0.112 0.098 0.083 0.069 0.014 0.700 0.116 0.069 0.048 0.053
HQIC 0.311 0.485 0.090 0.060 0.035 0.021 0.032 0.843 0.072 0.029 0.013 0.012
—0.4 BIC 0.591 0.333 0.045 0.021 0.008 0.003 0.164 0.792 0.035 0.007 0.001 0.001
AlIC 0.298 0.353 0.109 0.091 0.082 0.069 0.039 0.667 0.123 0.070 0.050 0.051
HQIC 0.438 0.384 0.086 0.047 0.033 0.015 0.082 0.786 0.077 0.032 0.014 0.009
—0.3 BIC 0.736 0.212 0.035 0.011 0.005 0.002 0.398 0.567 0.027 0.005 0.002 0.001
AlIC 0.410 0.283 0.110 0.071 0.058 0.070 0.132 0.592 0.108 0.064 0.053 0.051
HQIC 0.557 0.283 0.071 0.040 0.028 0.023 0.240 0.647 0.064 0.023 0.015 0.010
—0.2 BIC 0.869 0.090 0.024 0.015 0.002 0.001 0.726  0.246  0.020 0.005 0.002 0.001
AIC 0.561 0.176 0.075 0.069 0.062 0.058 0.365 0.381 0.102 0.062 0.044 0.046
HQIC 0.717 0.150 0.051 0.042 0.024 0.018 0.546  0.353 0.057 0.023 0.012 0.009
—-0.1 BIC 0.921 0.045 0.019 0.011 0.004 0.001 0.928 0.060 0.009 0.002 0.001 0.000
AIC 0.666 0.091 0.063 0.061 0.065 0.056 0.641 0.166 0.068 0.047 0.039 0.039
HQIC 0.814 0.072 0.045 0.031 0.026 0.013 0.821 0.115 0.033 0.014 0.010 0.008
0 BIC 0.920 0.055 0.014 0.007 0.005 0.001 0.959 0.031 0.006 0.002 0.001 0.000
AIC 0.645 0.115 0.069 0.062 0.062 0.049 0.706 0.116 0.062 0.043 0.035 0.038
HQIC 0.794 0.091 0.043 0.034 0.026 0.012 0.875 0.073 0.027 0.012 0.009 0.005
0.1 BIC 0.822 0.138 0.027 0.007 0.007 0.001 0.824 0.156 0.014 0.004 0.001 0.001
AIC 0.525 0.208 0.086 0.057 0.063 0.063 0.492 0.289 0.085 0.053 0.042 0.040
HQIC 0.672 0.188 0.058 0.035 0.034 0.014 0.676 0.247 0.044 0.019 0.009 0.006
0.2 BIC 0.624 0.317 0.037 0.013 0.009 0.001 0.500 0.468 0.025 0.005 0.002 0.001
AlIC 0.328 0.381 0.102 0.074 0.064 0.053 0.188 0.549 0.104 0.062 0.049 0.048
HQIC 0.460 0.383 0.072 0.042 0.031 0.014 0.320 0.574 0.060 0.024 0.012 0.010
0.3 BIC 0.378 0.547 0.045 0.018 0.011 0.002 0.163 0.794 0.034 0.007 0.002 0.001
AlIC 0.140 0.517 0.114 0.087 0.072 0.072 0.034 0.672 0.121 0.070 0.054 0.050
HQIC 0.241 0.579 0.086 0.044 0.034 0.018 0.076 0.795 0.079 0.026 0.016 0.010
0.4 BIC 0.167 0.754 0.047 0.021 0.011 0.002 0.025 0.932 0.033 0.007 0.002 0.002
AIC 0.039 0.612 0.120 0.081 0.072 0.077 0.003 0.709 0.122 0.066 0.052 0.048
HQIC 0.085 0.713 0.094 0.049 0.034 0.027 0.009 0.863 0.076 0.028 0.014 0.010
0.5 BIC 0.038 0.877 0.058 0.016 0.010 0.003 0.002 0.952 0.034 0.008 0.003 0.001
AIC 0.009 0.650 0.127 0.084 0.074 0.058 0.000 0.710 0.117 0.074 0.053 0.046
HQIC 0.018 0.777 0.103 0.049 0.037 0.017 0.000 0.866 0.074 0.031 0.018 0.010
0.6 BIC 0.006 0.912 0.055 0.019 0.007 0.003 0.000 0.954 0.034 0.007 0.003 0.002
AIC 0.001 0.664 0.123 0.077 0.073 0.064 0.000 0.702 0.126 0.074 0.050 0.049
HQIC 0.002 0.804 0.093 0.045 0.036 0.022 0.000 0.865 0.079 0.030 0.015 0.011
0.7 BIC 0.001 0.916 0.055 0.016 0.011 0.003 0.000 0.956 0.034 0.007 0.002 0.001
AIC 0.000 0.682 0.117 0.068 0.072 0.062 0.000 0.712 0.126 0.067 0.046 0.048
HQIC 0.000 0.816 0.094 0.039 0.035 0.017 0.000 0.873 0.077 0.028 0.013 0.009
0.8 BIC 0.001  0.912 0.059 0.021 0.007 0.002 0.000 0.957 0.034 0.006 0.002 0.001
AlIC 0.000 0.659 0.132 0.066 0.080 0.064 0.000 0.713 0.121 0.067 0.053 0.046
HQIC 0.001 0.801 0.095 0.043 0.037 0.024 0.000 0.870 0.075 0.029 0.017 0.009



Table 3.19. Relative frequencies of MA order chosen when only an

intercept is included in the model.

N = 200 N = 400

3 0 1 2 3 4 5 0 1 2 3 4 5
—0.8 BIC 0.014 0.958 0.023 0.004 0.001 0.000 0.000 0.983 0.015 0.001 0.000 0.000
AIC 0.003 0.721 0.121 0.069 0.045 0.042 0.000 0.730 0.123 0.065 0.048 0.035
HQIC 0.007 0.893 0.062 0.023 0.009 0.006 0.000 0.918 0.056 0.017 0.006 0.002
—-0.7 BIC 0.002 0.971 0.023 0.003 0.001 0.000 0.000 0.984 0.015 0.001 0.000 0.000
AIC 0.001 0.722 0.123 0.068 0.047 0.039 0.000 0.744 0.117 0.064 0.040 0.036
HQIC 0.001 0.898 0.066 0.022 0.010 0.004 0.000 0.924 0.053 0.016 0.005 0.002
—0.6 BIC 0.001 0.972 0.024 0.003 0.001 0.000 0.000 0.984 0.014 0.002 0.000 0.000
AIC 0.000 0.724 0.122 0.067 0.047 0.040 0.000 0.734 0.125 0.068 0.041 0.033
HQIC 0.000 0.897 0.067 0.022 0.010 0.004 0.000 0.917 0.056 0.018 0.006 0.004
—0.5 BIC 0.001  0.973 0.024 0.002 0.000 0.000 0.000 0.984 0.015 0.001 0.000 0.000
AIC 0.000 0.734 0.119 0.064 0.045 0.038 0.000 0.737 0.121 0.064 0.041 0.037
HQIC 0.000 0.906 0.062 0.019 0.009 0.003 0.000 0.923 0.055 0.015 0.005 0.002
—0.4 BIC 0.003 0.971 0.022 0.004 0.001 0.000 0.000 0.985 0.013 0.001 0.000 0.000
AlIC 0.000 0.731 0.119 0.065 0.045 0.039 0.000 0.741 0.124 0.062 0.041 0.032
HQIC 0.001 0.901 0.063 0.020 0.010 0.005 0.000 0.925 0.055 0.014 0.004 0.003
—0.3 BIC 0.065 0.909 0.023 0.003 0.000 0.000 0.001 0.982 0.016 0.002 0.000 0.000
AlIC 0.007 0.725 0.123 0.066 0.043 0.037 0.000 0.739 0.122 0.063 0.040 0.036
HQIC 0.023 0.881 0.064 0.020 0.008 0.004 0.000 0.917 0.059 0.016 0.006 0.003
—0.2 BIC 0.420 0.557 0.019 0.003 0.000 0.000 0.092 0.892 0.015 0.001 0.000 0.000
AIC 0.111 0.628 0.115 0.064 0.046 0.036 0.007 0.732 0.115 0.064 0.045 0.037
HQIC 0.237 0.673 0.059 0.018 0.008 0.005 0.029 0.894 0.054 0.015 0.006 0.003
—0.1 BIC 0.868 0.123 0.008 0.001 0.000 0.000 0.729 0.263 0.007 0.001 0.000 0.000
AIC 0.503 0.290 0.085 0.051 0.040 0.031 0.286 0.486 0.101 0.057 0.040 0.029
HQIC 0.716 0.232 0.032 0.013 0.006 0.002 0.512 0.433 0.038 0.011 0.005 0.001
0 BIC 0.975 0.022 0.003 0.001 0.000 0.000 0.983 0.016 0.002 0.000 0.000 0.000
AIC 0.715 0.124 0.062 0.039 0.032 0.028 0.717 0.123 0.064 0.042 0.030 0.023
HQIC 0.901 0.066 0.020 0.009 0.003 0.002 0.915 0.060 0.015 0.007 0.003 0.001
0.1 BIC 0.772 0.216 0.010 0.002 0.000 0.000 0.636 0.353 0.009 0.001 0.000 0.000
AIC 0.369 0.408 0.093 0.055 0.039 0.036 0.204 0.560 0.107 0.056 0.043 0.031
HQIC 0.583 0.354 0.041 0.013 0.006 0.004 0.406 0.532 0.044 0.012 0.004 0.002
0.2 BIC 0.268 0.716 0.022 0.003 0.000 0.000 0.051 0.935 0.012 0.001 0.000 0.000
AlIC 0.050 0.687 0.121 0.063 0.042 0.037 0.003 0.739 0.118 0.065 0.041 0.036
HQIC 0.122 0.788 0.058 0.020 0.008 0.005 0.013 0.911 0.052 0.017 0.005 0.002
0.3 BIC 0.022 0.957 0.018 0.003 0.000 0.000 0.000 0.985 0.013 0.002 0.000 0.000
AlIC 0.001 0.731 0.119 0.066 0.046 0.036 0.000 0.745 0.119 0.063 0.040 0.034
HQIC 0.005 0.900 0.063 0.018 0.011 0.004 0.000 0.921 0.056 0.016 0.005 0.002
0.4 BIC 0.000 0.974 0.023 0.003 0.000 0.000 0.000 0.984 0.014 0.002 0.000 0.000
AIC 0.000 0.725 0.121 0.067 0.046 0.040 0.000 0.730 0.120 0.069 0.045 0.035
HQIC 0.000 0.901 0.063 0.022 0.009 0.004 0.000 0.923 0.052 0.018 0.004 0.003
0.5 BIC 0.000 0.974 0.022 0.003 0.001 0.000 0.000 0.986 0.013 0.001 0.000 0.000
AIC 0.000 0.727 0.124 0.064 0.047 0.038 0.000 0.741 0.116 0.064 0.044 0.036
HQIC 0.000 0.903 0.064 0.022 0.008 0.004 0.000 0.927 0.051 0.013 0.006 0.003
0.6 BIC 0.000 0.972 0.024 0.003 0.001 0.000 0.000 0.984 0.015 0.001 0.000 0.000
AIC 0.000 0.730 0.120 0.066 0.044 0.040 0.000 0.743 0.117 0.065 0.042 0.033
HQIC 0.000 0.902 0.068 0.019 0.008 0.004 0.000 0.926 0.052 0.014 0.006 0.002
0.7 BIC 0.000 0.976 0.021 0.003 0.001 0.000 0.000 0.981 0.017 0.002 0.000 0.000
AIC 0.000 0.727 0.121 0.066 0.047 0.039 0.000 0.739 0.119 0.066 0.041 0.035
HQIC 0.000 0.904 0.065 0.020 0.009 0.003 0.000 0.920 0.058 0.015 0.005 0.002
0.8 BIC 0.000 0.973 0.023 0.003 0.001 0.000 0.000 0.983 0.016 0.001 0.000 0.000
AlIC 0.000 0.736 0.117 0.065 0.044 0.038 0.000 0.737 0.124 0.062 0.043 0.034
HQIC 0.000 0.906 0.065 0.019 0.007 0.003 0.000 0.917 0.060 0.014 0.006 0.003
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Table 3.20. Relative frequencies of MA order chosen when only an
intercept is included in the model.

N =50 N = 100

P 0 1 2 3 4 5 0 1 2 3 4 5
0.1 BIC 0.910 0.054 0.022 0.010 0.003 0.001 0.939 0.044 0.014 0.002 0.001 0.000
AIC 0.605 0.126 0.095 0.070 0.058 0.045 0.615 0.135 0.094 0.061 0.047 0.048
HQIC 0.777 0.099 0.058 0.036 0.020 0.010 0.824 0.092 0.047 0.021 0.010 0.007
0.2 BIC 0.915 0.049 0.023 0.009 0.003 0.001 0.946 0.040 0.012 0.001 0.001 0.000
AIC 0.623 0.109 0.092 0.069 0.058 0.049 0.641 0.128 0.086 0.057 0.047 0.041
HQIC 0.794 0.082 0.055 0.033 0.022 0.013 0.843 0.086 0.040 0.016 0.009 0.007
0.3 BIC 0.914 0.053 0.023 0.007 0.003 0.000 0.951 0.037 0.008 0.003 0.001 0.000
AIC 0.626 0.112 0.087 0.063 0.064 0.049 0.663 0.113 0.076 0.058 0.048 0.042
HQIC 0.788 0.092 0.056 0.032 0.020 0.012 0.855 0.073 0.035 0.020 0.011 0.006
0.4 BIC 0.908 0.059 0.021 0.008 0.003 0.001 0.948 0.039 0.009 0.002 0.000 0.000
AIC 0.635 0.116 0.082 0.058 0.058 0.051 0.671 0.112 0.072 0.058 0.041 0.046
HQIC 0.784 0.096 0.054 0.030 0.023 0.012 0.855 0.077 0.032 0.021 0.007 0.009
0.5 BIC 0.912 0.055 0.022 0.006 0.003 0.001 0.954 0.033 0.010 0.003 0.001 0.000
AIC 0.643 0.115 0.074 0.058 0.061 0.049 0.681 0.112 0.075 0.050 0.046 0.036
HQIC 0.791 0.094 0.054 0.027 0.023 0.011 0.860 0.074 0.034 0.016 0.009 0.006
0.6 BIC 0.909 0.055 0.025 0.006 0.004 0.001 0.954 0.034 0.008 0.002 0.001 0.000
AIC 0.657 0.114 0.073 0.051 0.059 0.045 0.686 0.106 0.072 0.049 0.048 0.040
HQIC 0.802 0.087 0.050 0.026 0.023 0.013 0.861 0.071 0.034 0.014 0.012 0.007
0.7 BIC 0.920 0.049 0.022 0.006 0.002 0.001 0.955 0.031 0.009 0.002 0.003 0.000
AIC 0.658 0.110 0.077 0.062 0.053 0.041 0.690 0.108 0.066 0.049 0.045 0.041
HQIC 0.808 0.082 0.051 0.027 0.022 0.011 0.868 0.072 0.031 0.013 0.010 0.007
0.8 BIC 0.913 0.052 0.022 0.007 0.004 0.001 0.959 0.031 0.006 0.003 0.001 0.000
AIC 0.647 0.112 0.075 0.059 0.066 0.041 0.696 0.116 0.057 0.048 0.043 0.039
HQIC 0.794 0.091 0.049 0.029 0.027 0.009 0.868 0.072 0.027 0.016 0.011 0.006
0.9 BIC 0.915 0.051 0.019 0.010 0.004 0.001 0.958 0.032 0.008 0.002 0.001 0.000
AIC 0.649 0.118 0.066 0.058 0.058 0.051 0.713 0.113 0.060 0.040 0.036 0.038
HQIC 0.807 0.085 0.042 0.029 0.024 0.012 0.874 0.072 0.030 0.010 0.007 0.006
1 BIC 0.913 0.057 0.018 0.007 0.004 0.000 0.956  0.035 0.005 0.002 0.001 0.001
AIC 0.649 0.115 0.069 0.063 0.059 0.046 0.708 0.114 0.063 0.048 0.030 0.037
HQIC 0.803 0.094 0.039 0.029 0.024 0.011 0.871 0.075 0.026 0.016 0.006 0.006

N = 200 N = 400

P 0 1 2 3 4 5 0 1 2 3 4 5
0.1 BIC 0.956 0.034 0.009 0.000 0.000 0.000 0.976  0.020 0.004 0.000 0.000 0.000
AIC 0.630 0.140 0.094 0.060 0.043 0.032 0.637 0.142 0.096 0.056 0.040 0.029
HQIC 0.855 0.090 0.036 0.011 0.006 0.002 0.890 0.071 0.028 0.007 0.003 0.001
0.2 BIC 0.963 0.030 0.006 0.001 0.000 0.000 0.980 0.017 0.003 0.000 0.000 0.000
AIC 0.655 0.128 0.087 0.054 0.039 0.037 0.679 0.108 0.084 0.054 0.040 0.034
HQIC 0.880 0.073 0.028 0.013 0.004 0.002 0.906 0.056 0.025 0.009 0.003 0.001
0.3 BIC 0.974 0.019 0.005 0.002 0.000 0.000 0.980 0.016 0.004 0.000 0.000 0.000
AIC 0.677 0.110 0.073 0.059 0.044 0.037 0.696 0.109 0.070 0.055 0.037 0.033
HQIC 0.890 0.062 0.029 0.012 0.004 0.002 0.912 0.056 0.021 0.008 0.002 0.001
0.4 BIC 0.973 0.019 0.005 0.002 0.000 0.000 0.981 0.017 0.002 0.000 0.000 0.000
AIC 0.688 0.106 0.070 0.056 0.044 0.036 0.699 0.106 0.068 0.054 0.037 0.035
HQIC 0.892 0.056 0.028 0.015 0.005 0.003 0.912 0.055 0.018 0.010 0.004 0.001
0.5 BIC 0.971 0.023 0.006 0.001 0.000 0.000 0.982 0.017 0.001 0.000 0.000 0.000
AIC 0.690 0.117 0.062 0.057 0.038 0.035 0.695 0.118 0.062 0.047 0.041 0.036
HQIC 0.894 0.065 0.021 0.012 0.005 0.003 0.912 0.058 0.020 0.005 0.002 0.003
0.6 BIC 0.980 0.017 0.003 0.000 0.000 0.000 0.984 0.013 0.002 0.000 0.000 0.000
AIC 0.714 0.107 0.061 0.045 0.037 0.035 0.713 0.123 0.063 0.041 0.030 0.030
HQIC 0.902 0.061 0.019 0.011 0.004 0.003 0.919 0.056 0.016 0.007 0.001 0.002
0.7 BIC 0.973 0.024 0.002 0.001 0.000 0.000 0.985 0.015 0.001 0.000 0.000 0.000
AIC 0.715 0.118 0.063 0.041 0.033 0.030 0.735 0.109 0.061 0.039 0.033 0.023
HQIC 0.901 0.063 0.019 0.009 0.005 0.003 0.925 0.052 0.013 0.006 0.002 0.001
0.8 BIC 0.972 0.023 0.004 0.001 0.000 0.000 0.979 0.020 0.002 0.000 0.000 0.000
AIC 0.721 0.108 0.064 0.043 0.036 0.028 0.719 0.122 0.060 0.040 0.036 0.023
HQIC 0.905 0.059 0.019 0.010 0.005 0.002 0.911 0.063 0.017 0.005 0.003 0.001
0.9 BIC 0.978 0.020 0.002 0.000 0.000 0.000 0.985 0.013 0.002 0.000 0.000 0.000
AIC 0.722 0.118 0.061 0.043 0.029 0.026 0.731 0.115 0.061 0.041 0.031 0.021
HQIC 0.909 0.063 0.018 0.006 0.003 0.001 0.927 0.050 0.014 0.007 0.002 0.000
1 BIC 0.972 0.025 0.002 0.001 0.000 0.000 0.984 0.015 0.001 0.001 0.000 0.000
AIC 0.713 0.126 0.057 0.044 0.032 0.028 0.732 0.112 0.060 0.042 0.028 0.026
HQIC 0.898 0.069 0.018 0.008 0.005 0.003 0.926 0.051 0.015 0.005 0.002 0.001
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Table 3.21. Relative frequencies of MA order chosen when an inter-
cept and a trend are included in the model.

N =50 N = 100

P 0 1 2 3 4 5 0 1 2 3 4 5
0.1 BIC 0.870 0.077 0.038 0.011 0.003 0.001 0.920 0.055 0.020 0.004 0.002 0.000
AIC 0.515 0.149 0.130 0.082 0.061 0.064 0.555 0.151 0.125 0.072 0.050 0.048
HQIC 0.702 0.126 0.087 0.045 0.022 0.018 0.775 0.108 0.070 0.025 0.012 0.010
0.2 BIC 0.877 0.060 0.039 0.018 0.004 0.001 0.925 0.044 0.024 0.005 0.001 0.001
AIC 0.539 0.113 0.132 0.090 0.067 0.059 0.586 0.113 0.123 0.078 0.048 0.052
HQIC 0.719 0.097 0.092 0.050 0.026 0.016 0.798 0.086 0.069 0.026 0.012 0.009
0.3 BIC 0.894 0.052 0.034 0.015 0.005 0.001 0.941 0.035 0.018 0.004 0.001 0.001
AIC 0.566 0.097 0.121 0.094 0.065 0.056 0.611 0.098 0.098 0.085 0.057 0.052
HQIC 0.740 0.087 0.081 0.050 0.023 0.018 0.827 0.070 0.052 0.029 0.012 0.010
0.4 BIC 0.897 0.053 0.031 0.013 0.004 0.002 0.947 0.035 0.012 0.005 0.001  0.000
AIC 0.588 0.097 0.106 0.084 0.066 0.059 0.633 0.102 0.075 0.079 0.061 0.050
HQIC 0.756 0.082 0.074 0.044 0.027 0.018 0.835 0.072 0.042 0.029 0.014 0.008
0.5 BIC 0.908 0.052 0.025 0.010 0.003 0.001 0.948 0.036 0.011 0.003 0.002 0.000
AIC 0.600 0.100 0.093 0.079 0.071 0.056 0.640 0.106 0.070 0.067 0.065 0.052
HQIC 0.774 0.083 0.067 0.036 0.025 0.015 0.844 0.072 0.035 0.024 0.017 0.009
0.6 BIC 0.905 0.057 0.025 0.008 0.004 0.001 0.958 0.031 0.007 0.002 0.002 0.000
AIC 0.613 0.109 0.085 0.073 0.063 0.058 0.668 0.105 0.058 0.059 0.057 0.054
HQIC 0.780 0.094 0.056 0.034 0.025 0.012 0.861 0.070 0.028 0.019 0.015 0.008
0.7 BIC 0.906 0.054 0.027 0.008 0.004 0.001 0.953 0.036 0.008 0.002 0.002 0.000
AIC 0.611 0.115 0.079 0.070 0.074 0.051 0.674 0.114 0.063 0.050 0.048 0.050
HQIC 0.782 0.092 0.054 0.031 0.027 0.014 0.852 0.080 0.033 0.016 0.012 0.007
0.8 BIC 0.907 0.057 0.021 0.012 0.003 0.001 0.952 0.035 0.008 0.003 0.001 0.000
AIC 0.627 0.110 0.069 0.068 0.076 0.050 0.671 0.119 0.066 0.049 0.046 0.049
HQIC 0.786 0.089 0.049 0.037 0.028 0.011 0.854 0.077 0.028 0.019 0.013 0.009
0.9 BIC 0.896 0.063 0.026 0.009 0.004 0.001 0.948 0.040 0.009 0.002 0.001 0.001
AIC 0.610 0.116 0.081 0.070 0.075 0.049 0.679 0.120 0.073 0.047 0.038 0.043
HQIC 0.775 0.098 0.054 0.036 0.028 0.008 0.858 0.082 0.031 0.014 0.010 0.006
1 BIC 0.899 0.059 0.026 0.012 0.003 0.001 0.948 0.040 0.009 0.001 0.001 0.001
AIC 0.597 0.111 0.084 0.080 0.073 0.055 0.678 0.124 0.069 0.045 0.041 0.044
HQIC 0.763 0.096 0.056 0.045 0.029 0.011 0.853 0.082 0.032 0.015 0.010 0.008

N = 200 N = 400

P 0 1 2 3 4 5 0 1 2 3 4 5
0.1 BIC 0.952 0.036 0.011 0.002 0.001 0.000 0.971 0.023 0.006 0.000 0.000 0.000
AIC 0.579 0.140 0.124 0.070 0.047 0.041 0.613 0.130 0.114 0.063 0.043 0.038
HQIC 0.832 0.086 0.053 0.018 0.007 0.004 0.871 0.066 0.044 0.012 0.004 0.002
0.2 BIC 0.958 0.030 0.010 0.002 0.000 0.000 0.978 0.016 0.005 0.001 0.000 0.000
AIC 0.618 0.108 0.113 0.072 0.050 0.041 0.643 0.103 0.098 0.071 0.050 0.035
HQIC 0.856 0.067 0.047 0.019 0.007 0.004 0.888 0.056 0.035 0.014 0.005 0.002
0.3 BIC 0.963 0.027 0.008 0.002 0.000 0.000 0.982 0.014 0.004 0.001 0.000 0.000
AIC 0.636 0.098 0.089 0.080 0.053 0.044 0.657 0.102 0.070 0.077 0.052 0.042
HQIC 0.868 0.061 0.038 0.023 0.007 0.004 0.900 0.051 0.024 0.018 0.005 0.001
0.4 BIC 0.968 0.024 0.006 0.002 0.001 0.000 0.982 0.016 0.002 0.001 0.000 0.000
AIC 0.659 0.101 0.066 0.073 0.058 0.044 0.674 0.109 0.060 0.062 0.052 0.044
HQIC 0.880 0.060 0.029 0.019 0.009 0.004 0.906 0.052 0.018 0.015 0.007 0.003
0.5 BIC 0.972 0.022 0.004 0.002 0.001 0.000 0.982 0.016 0.002 0.000 0.000 0.000
AIC 0.679 0.101 0.058 0.055 0.058 0.048 0.698 0.113 0.058 0.040 0.049 0.043
HQIC 0.887 0.062 0.022 0.015 0.010 0.004 0.916 0.052 0.014 0.009 0.006 0.003
0.6 BIC 0.973 0.023 0.004 0.001 0.000 0.000 0.983 0.015 0.002 0.000 0.000 0.000
AIC 0.696 0.108 0.059 0.043 0.048 0.046 0.710 0.115 0.062 0.036 0.033 0.044
HQIC 0.898 0.064 0.020 0.009 0.006 0.004 0.918 0.055 0.016 0.006 0.004 0.002
0.7 BIC 0.973 0.022 0.004 0.000 0.000 0.000 0.982 0.016 0.002 0.000 0.000 0.000
AIC 0.706 0.112 0.064 0.046 0.035 0.037 0.728 0.114 0.059 0.039 0.033 0.028
HQIC 0.898 0.063 0.022 0.009 0.006 0.002 0.919 0.056 0.016 0.005 0.002 0.002
0.8 BIC 0.974 0.021 0.004 0.001 0.000 0.000 0.986 0.013 0.001 0.000 0.000 0.000
AIC 0.712 0.118 0.063 0.045 0.032 0.030 0.725 0.118 0.063 0.039 0.031 0.023
HQIC 0.899 0.065 0.021 0.010 0.004 0.002 0.923 0.053 0.016 0.006 0.003 0.001
0.9 BIC 0.973 0.023 0.004 0.001 0.000 0.000 0.982 0.016 0.002 0.000 0.000 0.000
AIC 0.724 0.112 0.064 0.041 0.032 0.027 0.728 0.119 0.062 0.040 0.028 0.024
HQIC 0.902 0.064 0.020 0.009 0.003 0.002 0.918 0.057 0.016 0.006 0.002 0.001
1 BIC 0.970 0.026 0.003 0.001 0.000 0.000 0.982 0.016 0.002 0.001 0.000 0.000
AIC 0.702 0.117 0.070 0.044 0.035 0.032 0.722 0.120 0.062 0.042 0.031 0.025
HQIC 0.889 0.071 0.024 0.010 0.004 0.002 0.918 0.058 0.016 0.007 0.001 0.001

125



JIOH=
Jvm
Jgm

JIOH =
Ve
Mgm

ooog JOH ™
vm

Jig .

0os'o

Q00T

JTH W
: JI0H =
Jiym cooe JITOH =
_ Jivm
Jlam 0oz'0 g Iy 000’0
0oy =
B Jgm —
00s'0
000t

JTH =
JI0H =
JivE JTH ™
Jivm
Jiam iV |
Jgm

Jg .

ue yjm ¢ _ ~ ‘puary e pue jd
YA PPOW 00T = N T = ¢ 10§ BLIOILD TOHEUWIOJUL JO SOUONDIY @E%m %m HMMM



Figure 3.2. Empirical size of tests for a model with an intercept only.

0'F T 8D

0 0§10 Erd e

N I I

o

(1

I

o

g %7

1131} BT

il

£0n

&ird

127



Figure 3.3. Empirical size for a model with an intercept and a trend.
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CHAPTER 4

Robust Econometric Inference for Stock Return

Predictability

4.1. Introduction

A fundamental issue in asset pricing is whether future stock returns are pre-
dictable using current publicly available information. The semi-strong form of effi-
cient market hypothesis (Fama, 1970) suggests that this is not possible. Neverthe-
less, the seminal studies of Keim and Stambaugh (1986), Fama and French (1988)
and Campbell and Shiller (1988) casted doubt on this traditional assumption and
empirically demonstrated that certain financial variables have significant predic-
tive ability over future stock returns. The existence of predictability necessarily
modifies standard procedures in asset pricing, portfolio choice and performance
evaluation (see Cochrane, 1999, for an excellent discussion). Fama (1991) inter-
preted these results as evidence of time-varying risk premia rather than evidence
against market efficiency.

The early evidence on predictability motivated a significant volume of subse-
quent research despite which the predictability debate remains largely unsettled.
For example Lettau and Ludvigson (2001, p. 842) state that “it is now widely

accepted that excess returns are predictable by variables such as dividend-price
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ratios, earning-price ratios, dividend-earnings ratios and an assortment of other
financial indicators”. Other researchers (Goyal and Welch, 2008, p. 1505) remain
sceptical claiming that the “profession has yet to find some variable that has mean-
ingful and robust empirical equity premium forecasting power both in-sample and
out-of-sample”.

Empirical justification of arguments provided in favour of or against predictabil-
ity relies on statistical inference on a set of predictive regressions and qualitative
features of associated hypothesis tests such as size and power assume fundamental
importance. The most common problem that undermines confidence in the relia-
bility of predictability tests is uncertainty about the time series properties of the
predictive variables. Whether standard t-tests or more sophisticated methods are
employed, the quality of inference will be conditional upon correct specification of
the time series properties of the predictive regressors.

A series of papers, reviewed in Campbell and Yogo (2006), have recognised
that most predictability tests use financial variables that are persistent enough
to be modelled as unit root or local to unity processes and are highly correlated
with stock returns. Such processes assume the form of a first order autoregression
with root of the form p = 1 + ¢/n, where n denotes the sample size. In this
case standard least squares t-tests are no longer applicable for hypothesis testing
(Elliott and Stock, 1994; Stambaugh, 1999) and cointegration methods need to
be employed. However, the use of explanatory variables that exhibit persistence

but are not necessarily pure random walks raises serious technical complications
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in predictive regression and cointegration methodology. Considering for example

the simplest possible bivariate system

Yy = Oxi_1 4+ up

Ty = PTi—1 + Uy

with a local to unity root p = 1 + ¢/n and innovations wg,, u,; that exhibit long
run correlation the t statistic for testing the null hypothesis of no predictability,

6 = 0, has the following limit distribution:

~

n 1/2
(>t 7t0) (9n - 9) 1 fo JZ(t)dBo (t) + Ao,
T, = 5 = (4.1)
e e . ) 172
00 00 {fo Jz (t) dt}

where Ao, = D 70 | E (ugttige—p) and Qoo = Y pe . E (ugttios—p) denote long run
covariances, By (t) and B, (t) are Brownian motions with variances g9 and €2, re-
spectively and J? (t) = f(f e“t=*)dB, (s) the Ornstein-Uhlenbeck process associated
with B,. The distinguishing feature of local to unity limit theory for the t-statistic
is that long run endogeneity cannot be removed by standard cointegration methods
such as the fully modified least squares method of Phillips and Hansen (1990) or
the approaches of Saikkonen (1991) and Stock and Watson (1993) that apply when
the regressor is a pure random walk (¢ = 0). As pointed out by Elliott (1998),

such endogeneity corrected estimators for # would have the following asymptotic
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behaviour:

n (0, —0) = ¢ + Q0,27

where 1 is a centred mixed Gaussian random variable and ¢ is the scaling factor
of the local to unity root. Since ¢ cannot be consistently estimated, no endogene-
ity correction based on the above method can deliver an asymptotically mixed
Gaussian estimator for 6. Analogous problems arise when the regressor has a
root belonging to a larger neighbourhood of unity than local to unity roots, i.e.
p =1+ c¢/n® where a € (0,1). This class of “mildly integrated” processes was
introduced by Phillips and Magdalinos (2007).

Since standard cointegration methods cannot accommodate the presence of
local to unity roots in predictive regressions, a series of papers by Cavanagh, Elliott
and Stock (1995), Torous, Valkanov and Yan (2004) and Campbell and Yogo (2006)
have employed methods based on (4.1) where, rather than removing the additional
endogeneity induced by local to unity roots, they incorporate this endogeneity in
the testing procedure by constructing Bonferroni type tests. This is the current
state of the art methodology for testing the predictability of stock returns.

Practical implementation of the above methodology as a tool for applied re-
searchers presents three main drawbacks: first, the method is invalid if the regres-
sor contains non-stationary components that are less persistent than local to unity
processes, such as mildly integrated time series. Hence, each time series in the

predictive regressions has to be at least as persistent as a local to unity process.
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Second, incorporation of endogeneity in the inference procedure results to tests
with limiting distributions that depend on a nuisance parameter that cannot be
estimated, namely the scaling factor ¢ of the local to unity process. As a result,
critical values for this type of test statistics have to be chosen from a family of limit
distributions by means of a Bonferroni type confidence interval on the localising
coefficient ¢. Finally, because of the problems associated with multidimensional
confidence interval construction, the above analysis is restricted to the case of a
scalar regressor, i.e. a single predictive variable.

In recent work, Magdalinos and Phillips (2009) and Phillips and Magdalinos
(2009), hereafter referred to as MP and PM respectively, present results that pro-
vide a framework of limit theory that can be used to validate inference in cointe-
grating models with regressors whose time series characteristics fall into the very
general class of processes having roots in arbitrary neighbourhoods of unity. The
persistence properties of these regressors may range from “near-stationarity” of
mildly integrated processes to pure nonstationarity of unit root processes. Large
sample endogeneity is completely removed by means of a new instrumental vari-
ables procedure, called IVX estimation. In contrast to conventional instrumental
variable estimation, IVX does not use exogenous information and instruments are
constructed by direct filtering of the regressor variable. The key idea behind suc-
cessful endogeneity correction is explicit control of the degree of persistence of IVX

instruments which are restricted within the class of mildly integrated processes.
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The resulting approach yields standard chi-squared inference for testing general re-
strictions on a multivariate system of predictive regressions. The dimensionality of
the system of predictive regressions is of particular importance for applied research
since hypothesis tests on a multivariate system allow the researcher to assess the
combined effects of different explanatory variables to stock returns rather than the
individual effect of each explanatory variable. Given a set of explanatory variables,
while each variable may have limited predictive value, there may be combinations
with substantial predictive power.

The contribution of this Chapter is twofold. First, we extend the validity of
the IVX methodology by allowing for the inclusion of an intercept in the predictive
regression. The results of MP and PM are generalised in the above direction accom-
modating the modelling framework used in most applied research on stock return
predictability. The second contribution consists of an empirical application of the
IVX methodology in order to assess the predictive power of explanatory variables
that are commonly considered as potential predictors of stock returns in applied
literature. Using univariate regressions we find that the inference resulting from
our methodology differs substantially from the standard least squares methodology.
We decompose the market portfolio into ordered sub-categories firstly according
to its size and secondly according to its book to market value. In general, we
find that predictability is stronger for comparatively smaller size portfolios and

for larger book to market portfolios. This shows that such decomposition of the
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market portfolio is meaningful and that aggregation leads to the loss of important
information.

A further important contribution of our empirical analysis appears with the
introduction of multivariate systems of predictive regressions. The IVX methodol-
ogy allows for joint inference on combinations of different sets of both explanatory
and explained variables. The importance of joint inference is highlighted in our
results due to the fact that some of the regressors that appear to be insignificant
in the context of univariate regressions, turn out to be jointly significant. More-
over, we test for the predictability of a set of dependent variables (decomposed
portfolios with respect to size at first instance and then with respect to book to
market value) by a single regressor. In other words, the methodology employed in
this Chapter can be utilised for the purposes of examining whether a regressor can
be a predictor of a number dependent variables simultaneously.

The final part of the empirical analysis consists of a robustness control of our
empirical conclusions. First, sub-sample regressions are employed in order to as-
sess whether empirical conclusions on the existence of stock return predictability
present variations over different time periods. Second, we examine the sensitivity of
our empirical conclusions to the implementation of the IVX method by conducting
IVX hypothesis tests for different combinations of instrument persistence control
and bandwidth selection for non parametric long run covariance estimation. The
important issue of asymptotically joint optimal selection of IVX instruments and

bandwidth truncation lag is addressed in Remark 4.2(c).
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The proposed methodology has the potential to improve hypothesis testing
with predictive regressions both by extending the range of testable hypotheses and
by robustifying inference with respect to misspecification of regressor persistence.
Successful implementation can shed new light on whether future bond returns,
interest rates and stock returns are predictable given a publicly available informa-
tion set and minimise the risk of distorted inference due to incorrect time series
modelling.

The Chapter is organized as follows. Section 4.2 presents some theoretical as-
pects of IVX inference in systems of predictive regressions. Particular attention
is devoted to accommodating the presence of an intercept in the model and de-
riving the relevant IVX limit theory. Section 4.3 lists the variables used in the
empirical part. In Section 4.4 we apply the IVX methodology on the dataset by
running individual and joint hypothesis tests. In Section 4.5 a sensitivity analysis
of the inference drawn from IVX method is provided. Section 4.6 contains some
concluding remarks. All proofs are included in the technical Appendix of Section

4.7. Tables and figures are presented in the last section of the Chapter.

4.2. Predictive regressions in the general vicinity of unity and IVX

estimation

As is often emphasised in empirical work, economic and financial time series
seem to exhibit persistence characteristics that do not always conform to the I(0)-

I(1) dichotomy. In practice this means that economists wish to model persistence
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in regressions through series that have autoregressive roots in a general neighbour-
hood of unity rather than exactly at one. The primary aim of the present Chapter
is to accommodate this natural relaxation of the form of nonstationarity in indi-
vidual time series in the context a multivariate system of predictive regressions. In
particular, we seek to extend the validity of the IVX methodology of PM to sys-
tems that include an intercept in the model and have a predictive contemporaneous
structure.

We consider the following multivariate system of predictive regressions with

regressors containing explanatory variables with arbitrary degree of persistence:

Y = A+ Az + ug, (4.2)

Ty = Rnl’tfl -+ Uyt , (43)
where A is an m x K coefficient matrix and
C
R, = Ix + — for some o > 0, (4.4)
nOl

and some matrix C' = diag(cy, ..., cx), with ¢; <0 for all s € {1, ..., K}. Following
PM, we assume that regressor x; in (4.3) belongs to one of the following classes of

persistent processes:

P(i) Integrated regressors, if C' =0 or o> 1 in (4.4).
P(ii) Local to unity regressors, if C' <0 and a =1 in (4.4).

P(iii) Mildly integrated regressors, if C' <0 and « € (0,1) in (4.4).
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The aim of IVX methodology is to provide valid inference on A when there is
uncertainty on the degree of persistence of the explanatory variables, i.e. there is
no a priori knowledge of whether z; belongs to class P(i), P(ii) or P(iii). As in
PM, this is possible for all o > 1/2.

The innovations uy; and u,; are assumed to be correlated linear processes. We
impose an identical correlation structure to that considered in PM by considering

a common Wold representation for ug; and wu.:

Uot >
= =3 Fe, (4.5)
Jj=0

Uyt

where (&), is a sequence of independent and identically distributed (0, 3) random

vectors satisfying ¥ > 0 and the moment condition E ||e;||* < oo, and (F})

>0 Is a
sequence of constant matrices satisfying Fy = I,,, x and
o0
Y FlEl < oo, (4.6)
=0
where ||-|| denotes spectral norm. In accordance to standard notation, we let

F(2) =72, Fj7/, and assume that F' (1) = >°72 F; has full rank.

As in PM, the system may be initialised at some zy that could be any constant
or a random process zg (n) = o, (n*"/2) with « specified by the three cases
P(i)-P(iii) listed above.

As discussed in the Introduction, endogeneity in the estimation of the coefficient

matrix A in (4.2) is intimately related to the long run correlation between the
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innovations of the model and those of the regressor. Following standard notational

convention, we denote the long run covariance matrices associated with u; by:

= > E(uu,) =F(1)SF (1) (47)
A=>"F (we_y) (4.8)

and A = A+ E (uqu}). In order to identify the various autocorrelation and cross
correlation effects of ug; and u,; we consider the following partitioned forms of the

matrices in (4.7) and (4.8) conformable to u; = (ul,,u,) in (4.5):

Fo (1
ray- | W
Fy (1)
where Fy (1) and F,, (1) are m x (m + K) and K x (m + K) matrices respectively,

and
Q= oo Sos and A= oo o . (4.9)
Qw0 Qpa Avo Aps
In recent work, Phillips and Magdalinos (2009) have introduced a method that
achieves endogeneity and bias correction in the estimation of triangular systems

and is robust to the degree of regressor persistence belonging to cases (i)-(iii)

above. The main idea behind the method is the construction of mildly integrated



146

instruments by differencing the regressor z;:
AZL‘t = Uy + —Ty—1.
nOé

Despite the fact that the difference Az, is not an innovation unless the regressor
is a random walk, it behaves asymptotically as an innovation after linear filtering

by a matrix consisting of moderate to unity roots. Choosing an artificial matrix

C.
R =Ix+ 2. (0.1, C.<0, (4.10)

IVX instruments Z; are constructed as a first order autoregressive process with

autoregressive matrix R,, and innovations Az;:
gt = angt—l + Axt, (411)
or, equivalently under zero initialisation,
t
=Y RiJAz (4.12)
j=1

The main result of PM is that, under a relatively mild assumption (o > 1/2) that
prevents the degree of regressor persistence to reach too close to stationarity, a bias-
corrected two stage least squares estimator of A based on the IVX instruments Z;
is asymptotically mixed Gaussian and yields robust chi-squared inference.

In the present Chapter, we begin by extending the IVX estimation method to

the case where an intercept is present in the model. This consideration is motivated
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by the applied literature on predictive regressions. To this end, we denote sample

averages by

n n
— -1 - -1
Yn =N g Yt, Uopn =N E Uo¢
t=1 t=1
n n

Tpog=n""! E zp_qand Z,.q =n"* E Zi_1.

t=1 t=1

Following the notation in PM, but noting the predictive regression structure of

(4.2), we construct the data, instrument and innovation matrices as follows:

[ Uy,
Y=| .|, U= .. (4.13)
Yr, Uy,
g Z
X=1| _ and Z=1| _ |. (4.14)
T, Zh

The presence of the intercept in the model can be incorporated to the IVX method

by using a standard trick: Since g, = p + AZ,_1 + g, (4.2) yields

Yt — Yn = A (xtfl - fnf1) + Uot — Up,n

so, letting Y; = y; — ¥, Xy = 4 — Tp—1 and Uy, = ugr — Uo , (4.2) can be rewritten

as

}/;5 — AXt—l + UOt' (415)



148

We can now proceed with IVX estimation of A from the regression equation (4.15)

instead of (4.2). Accordingly, we define the new regression matrices

Yy Un
Y = -y —
Y, Un |
‘7_:;171 a(),n
X=X—| .. |, Uy=Uo~
f;@—l | a(),n

where X, Y, Uy and Z are defined in (4.13) and (4.14).

Our IVX estimator then becomes:

A, = (x’Z - nf\ox> (1’2) - (4.16)

and

A, — A= (QgZ - n[\%) (g’Z) - (4.17)

where Ao, is a non parametric estimator of Ao, = > ;o F (uOtu;kh) based on
OLS residuals from (4.3) and (4.4). The construction and properties of this non-
parametric estimator is discussed below. The estimator is analogous to the FM-
OLS estimator (Phillips and Hansen, 1990) in terms of its built-in bias correction

term, but unlike FM-OLS there is no need for an endogeneity correction as the
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IVX estimator is asymptotically mixed Gaussian because of the use of the mildly
integrated instruments.

Note that the bias correction term of the IVX estimator in (4.16) involves an
estimator of Ay, rather than Ay, = Ag, + £ (uOtu;ﬂf) as in PM. This modification
is due to the predictive regression structure of the model in (4.2), i.e. the fact that
y; is regressed upon z;_; rather than x;. Note also that the estimator does not
involve a demeaned version of the matrix of instruments as the IVX estimator in
(4.16) is exactly invariant to demeaning Z by Z,_;.

We now discuss the issue of non-parametric estimation of Ay,. Letting
A=[u,A] and X, =(1,2}) (4.18)

we can write (4.2) as

y=AX, 1+ uo (4.19)

This yields the following OLS estimator of A:

n n -1
ANOLS = (Z yt&2—1> (Z Xt1X:g_1> . (420)
t=1 t=1

The presence of the the intercept in (4.2) is taken into account by constructing the

estimated residuals of the model from (4.19):

ot = Ys — AOLth_l (4.21)
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where X, and A, ¢ are given by (4.18) and (4.20) respectively. Since there is no
intercept in (4.3), the estimated regressor residuals can be obtained in a standard
way:

A

Ugp—p, = Tp—p, — Rpy—p1 (4-22)

where R, is the OLS estimator of R, in (4.3). Given the estimated residuals in
(4.21) and (4.22) we can consistently estimate the long run covariance Ag, by the

following Newey-West type HAC estimator:

M n
A 1 h -,
on = E E (1 — Wi T 1) E UotUgy_p (423)

h=1 t=h+1
where M is a bandwidth parameter satisfying M — oo as n — oo. The estimator
of Ago is constructed in a similar manner, by replacing ;5 in (4.23) by -
The above estimators have standard consistency properties. Consistency of ]\00
(and hence of Q) is enough for the requirements of IVX limit theory. On the
other hand, A, is part of a first order bias correction on the IVX estimator so, in
view of Theorems 3.4 and 3.7 of PM (see also Theorem 4.1 below), its consistency

rate should ensure that the condition
n =528 ([\Um _ AOI) ~, 0 (4.24)

is satisfied. The exact consistency rate of Ao, is given in the following result.

Lemma 4.1.
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(i) Let u, be a linear process given by (4.5) satisfying (4.6) and E |je1]|* < o.

Then, for all o > 1/2,

~ M 1
on — on = Op <max{m, M}) .

(ii) Let M = L (n)n" for some slowly varying function L and ~y > 0. Choose
B € (2/3,1). Then a choice of v = 1/4 guarantees the validity of (4.24)
for any a > 1/2. If o > 2/3, (4.24) holds under the optimal choice of

bandwidth v = 1/3.

The proof of Lemma 4.1 is given in Section 7.

Obtaining a limit theory for the modified IVX estimator in (4.16) can be
achieved by using similar methods as in the PM paper. It turns out that ef-
fect of the presence of an intercept in the model is manifest only on the limit
distribution of the X’Z. As a result, asymptotic mixed normality of the IVX es-
timator continues to apply and the intercept affects only the form of the limiting
random variance. The main result is presented in the following theorem and is
comparable with Theorems 3.4 and 3.7 of PM. All steps of the proof associated
with the presence of the intercept (and hence not covered by PM) are included in
a sequence of lemmata in Section 4.7.

Theorem 4.1. Consider the model (4.2) - (4.4) with instruments Z, defined by

(4.12). Then, the following limit theory applies for the estimator A, in (4.16):
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(i) If 1/2 < B < min (o, 1):

1+8

- AN -
n % vec (An - A) = MN <o, (w;;) CV.CU QOO) ,
as n — 0o, where

Qoo + fol B.dB. under P(i)
Vow = Quu + foy JedBL + [\ JoJndsC under P(ii)

B, is a Brownian motion with variance )., and Jo the associated Ornstein-

Uhlenbeck process,
1 1

B.(f) = B, () / By (1) dt, Jo () = Jo (1) — / Jo () dt,
0 0

(0.0 (0.0
Ve = / ¢"“Q,,eCdr and V., = / "0, dr.
0 0

(i) If a € (1/2,5) then Theorem 3.7 of PM continues to apply.
Remarks 4.1.

(a) Theorem 4.1 shows that the presence of an intercept in the model does
not affect the main asymptotic property of IVX estimation, mixed Gaus-
sianity. Asymptotic bias and endogeneity removal are achieved under the
same restriction (o > 1/2) as the original PM paper.

(b) A comparison between Theorems 3.4 and 3.7 of PM and Theorem 4.1

above shows that the effect of the intercept on the limiting distribution
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of the IVX estimator depends on the degree of regressor persistence. For
local to unity and unit root processes, this effect is manifest on the limit
distribution of the n~(*+# X’Z matrix, where the Brownian motion B,
and the Ornstein-Uhlenbeck process Jo are replaced by their demeaned
counterparts B, and J respectively. IVX limit theory remains unaffected

by the presence of an intercept in the case of mildly integrated regressors.
Let Zn—1 = n_l Z?:l 215,1,

~) ~

~ - ~ -1 .
Z=7-| . | ad P,=2(Z2) Z (4.25)

denote theprojection matrix to the column space of the demeaned instrument
matrix Z. The mixed normal limit theory of Theorem 4.1 implies that linear
restrictions on the cointegrating coefficients A generated by (4.2) can be tested by

a standard Wald test. In particular,
Hy : Hvec (A) = h, (4.26)

where H is a known r X mK matrix with rank r and A is a known vector, may be

tested using the Wald statistic

-1

W, = (Hvecd, — 1) [H { (x'P.x) T QOO} H’} (Hvecd, —h)  (427)
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where P is defined in (4.25), A, is the IVX estimator in (4.16) and Qg is a
consistent non parametric estimator of 2y in (4.9).

Theorem 4.2. Under the null hypothesis (4.26) of general linear restrictions on
A, the Wald statistic in (4.27) has the following limit distribution: W, = x* (r)
for every o > 1/2.

Remarks 4.2.

(a) Theorem 4.2 is an immediate corollary of the mixed Gaussian limit the-
ory for the IVX estimator of Theorem 4.1. It shows that the IVX-based
Wald test in (4.27) can provide an inference procedure that is robust to
a wide range of persistent data generating processes, ranging from mildly
integrated processes to pure random walks. It is hoped that this proce-
dure will provide a unifying framework for hypothesis testing in predictive
regressions which maintains good statistical properties under misspecifi-
cation of the time series characteristics of the regressors.

(b) As in the original PM paper, the validity of Theorem 4.2 is restricted
by excluding regressors that contain roots close to the boundary with
stationarity. This limitation of the IVX method is intimately related to
its feasibility: since the IVX instruments in (4.12) are constructed from
the regressors without imposing any exogenous orthogonality assumption,
moving towards the stationary region increases the effect of simultaneity

bias and, eventually, makes estimation impossible. It is well known that
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when z; is a stationary process (a« = 0), the system (4.2)-(4.4) cannot
be identified (or of course estimated) without exogenous information in
the form of instruments that satisfy an orthogonality and a relevance
condition. For mildly integrated systems, a calculation of simultaneity
bias appears in MP for all « € (0,1). This bias takes a simpler form for
o > 1/3 in which case n=" 2" iy (uox,_y — Aoy) has a centred normal
limit distribution. The more stringent restriction o > 1/2 is needed for
for controlling the estimation error in the non parametric estimation bias
correction in the above sum, i.e. ensuring that Aoy — Ao, satisfies (4.24).
Implementation of the method requires a choice for 3 for the construc-
tion of the IVX instruments. As explained in PM, it is recommended to
choose [ from the interval (2/3,1). Such a choice allows mean squared
error (MSE) efficient non parametric estimation of the long run covariance
matrix Ay, for unit root and local to unity regressors as well as mildly inte-
grated regressors with o > 2/3. Recent work in progress by PM suggests
that an asymptotic MSE minimising choice of ( is given by

142y

p=-57,

(4.28)

where 7 is the polynomial rate of growth of the bandwidth parameter M =
L (n) n" of the Newey West estimator of the long run covariance matrix Ag,

in (4.23). Hence there is an one to one correspondence between optimal
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asymptotic MSE choice of IVX instruments and optimal asymptotic MSE
non-parametric estimation of Ag,. Since the optimal rate of bandwidth
growth for the Bartlett kernel employed in (4.23) is n'/?, substituting
v =1/3 in (4.28) yields a choice f = 5/6. We employ this choice of § in
the subsequent empirical analysis.

(d) Note that demeaning the instrument matrix Z in the Wald statistic pro-
duces finite sample gain: The conclusion of Theorem 4.1 (i) without de-

meaning Z can be written informally as:

n—oo

1 . 1 -
n vec ( A, — A) = MN <o, lim (nHﬁ X' ng) ® Qoo> : (4.29)

The identity (4.56) in Section 77 implies that (K’PZX> - < (X’PZXY1
in the positive semidefinite sense, so there is finite sample efficiency gain
associated with demeaning the instrument matrix. This gain dissapears
asymptotically and the Wald statistic with and without demeaning has

the same chi-squared distribution, as (4.53) in Section 77 shows.

4.3. The Dataset

We employ two datasets for the predictability tests we conduct in the following
section. The sample period for both datasets is January 1927 to December 2007.
The first dataset contains the stock portfolio returns used as dependent variables.

The source for these portfolios’ returns is the widely used Kenneth French’s online
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data library'. In particular, U.S. market returns are proxied by the Center for
Research in Security Press (CRSP) value weighted returns. Moreover, we employ
monthly value-weighted returns of ten portfolios formed on the basis of stocks’
market value (Size portfolios) and monthly value-weighted returns of ten portfolios
sorted according to stocks’ book equity to market value of equity ratio (Value
portfolios). We calculate returns in excess of the corresponding 1-month T-bill
rate.

The second dataset contains the variables that are commonly used as regressors
in predictability tests and for which there is uncertainty for their order of integra-
tion®. This is an updated version of the dataset used in Goyal and Welch (2008)?.
These 11 variables refer to:

T-bill rate (tbl): This is the 3-month US Treasury bill rate taken from the
economic research database at the Federal Reserve at St. Louis (FRED). For the
period before 1934 it is extracted from the NBER Macrohistory database. The T-
bill rate has been used as a predictor of future stock returns inter alia by Pesaran
and Timmermann (1995), Pontiff and Schall (1998), Torous et al. (2004), Campbell
and Yogo (2006), Ang and Bekaert (2007), Avramov (2002) and Campbell and

Thompson (2008).

IThis library is available at

http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html

20ur focus is on these variables because our econometric methodology is developed to deal with
the inference problems arising from the uncertainty with respect to their order of integration.
However, it is worth mentioning that various other variables have been used in predictive regres-
sions of future stock returns (see Goyal and Welch, 2008 for an exhaustive list).

3We would like to thank Amit Goyal for providing us with this dataset.
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Long-term yield (lty): This is the long-term US government bond yield from
Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook. The difference between
the long-term yield and the T-bill rate is the term spread (tms). These two
variables have been widely used in predictability tests (see for example, Keim and
Stambaugh (1986), Fama and French (1989), Pontiff and Schall (1998), Torous et
al. (2004) and Campbell and Yogo (2006)).

Default yield spread (dfy): This is the difference between the BAA and
AAA-rated corporate bond yields taken from FRED. Fama and French (1989),
Torous et al. (2004), Avramov (2002) and Campbell and Thompson (2008) provide
examples of studies that have employed dfy as a predictive regressor.

Dividend price ratio (d/p): This is the difference between the log of divi-
dends and the log of stock prices. Dividends are calculated using a 12-month rolling
sum of dividends paid on the S&P 500 index. The difference between the log of
dividends and the log of lagged prices is the dividend yield (d/y). These two
variables have been the most commonly used predictors of future stock returns.
An indicative list of previous studies contains Rozeff (1984), Campbell (1987),
Campbell and Shiller (1988), Fama and French (1988), Hodrick (1992), Lamont
(1998), Stambaugh (1999), Goyal and Welch (2003), Lewellen (2004), Torous et al.
(2004), Lettau and Ludvigson (2005), Campbell and Yogo (2006) and Campbell

and Thompson (2008).
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Earnings price ratio (e/p): This is the difference between the log of earnings
and the log of prices. Earnings are calculated using a 12-month rolling sum of earn-
ings of companies listed on the S&P 500 index. Campbell and Shiller (1988), Fama
and French (1988), Pesaran and Timmermann (1995), Lamont (1998), Lewellen
(2004) and Campbell and Thompson (2008) are examples of studies which em-
ployed this variable.

Dividend payout ratio (d/e): This is the difference between the log of
dividends and the log of earnings, as previously defined. The study of Lamont
(1998) makes a convincing case for using this payout ratio as a potential predictor
of future stock returns.

Book-to-Market ratio (b/m): This is the ratio of book value to market
value for the Dow Jones Industrial Average. The book value is taken from Value
Line’s website, specifically their Long-Term Perspective Chart of the Dow Jones
Industrial Average. This ratio has been used in the studies of Kothari and Shanken
(1997), Pontiff and Schall (1998), Lewellen (2004), Avramov (2002) and Campbell
and Thompson (2008) inter alia.

Net equity expansion (ntis): This is a measure of corporate issuing activity
and it is calculated as the ratio of the 12-month moving sum of net equity issues
by NYSE listed stocks divided by the total end-of-year market capitalization of
these stocks. Net equity issuing activity refers to Initial Public Offerings, Seasoned
Equity Offerings, stock repurchases minus distributed dividends and it is calculated

from CRSP data (see Goyal and Welch, 2008, for details). This variable is closely
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related to the net payout yield that has been proposed by Boudoukh, Michaely,
Richardson and Roberts (2007) as a predictor of future stock returns.
Cross-sectional premium (csp): The cross-section premium measures the
relative valuations of high- and low- CAPM beta stocks and it has been employed in
predictability tests by Polk, Thompson and Vuolteenaho (2006). For this particular

variable, the available data start from May 1937 to December 2002.

4.4. Empirical analysis

We initiate the discussion in this Section by examining the time series prop-
erties of the data. More specifically, we run unit root tests on the series used as
regressors. Three tests are employed: the Augmented Dickey Fuller (ADF) test,
the DF-GLS test derived by Elliot et al. (1996) and the Phillips Perron (PP)
test. For both ADF and DF-GLS the Bayesian information criterion is used for
the determination of lag length. The results of the test statistics are presented in
Table 4.1. The null hypothesis of non-stationarity is not rejected for lty, d/y, d/p
across the different tests used. Strong evidence of stationarity appear for the se-
ries of the term spread. For the rest of the data series, the inference regarding the
null hypothesis of non-stationarity does not remain unchanged when different test
statistics are considered. This is the case, for example, for the T-bill rate which is
suggested to be stationary by the DF-GLS test, and not stationary by the ADF

and PP test. For the series of net equity expansion, the null of non-stationarity
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is strongly (at the 1% level) rejected by ADF and PP tests, but the same null
hypothesis is not rejected by DF-GLS test.

The evidence provided by Table 4.1 confirm the findings of other studies con-
cerning the uncertainty about the time series properties of the data used as pre-
dictors of stock returns, and motivate the use of local to unity framework for the

examination of stock return predictability.

4.4.1. Univariate regressions

The first set of predictability tests we report refers to the case where the depen-
dent variable is the CRSP excess return and the predictor is the lagged value of
each of the 11 variables described in the previous section. In-sample predictabil-
ity of aggregate market returns is the focus of the vast existing literature. Our
contribution is to examine how inference is modified once we employ the proposed
econometric methodology. Table 4.2 contains the results both for a standard least
squares approach and the new IVX estimation approach. Moreover, it reports the
long-run correlation coefficient of the residuals from regression models (4.2) and
(4.3).

The least squares approach would point to the conclusion that the null hypoth-
esis of no predictability can be rejected (at a level lower than 5%) when the lagged
series of the earning-price ratio, the cross-sectional premium and the net equity
expansion are alternatively employed as predictors. The ability of T-bill rate to

predict future stock returns is on the borderline of statistical significance. There is
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some very weak evidence in favour of the predictive ability of the dividend yield,
dividend-price ratio, book to market value ratio and term spread, while there is
no such evidence for the dividend payout ratio, long-term yield and default yield
to be regarded as predictors of next month excess market returns. The signs of
the coefficients are in accordance with the existing literature. An increase in the
d/y, d/p, ¢/p, b/m and tms would be associated with an increase in next period’s
excess market returns, while an increase in the net equity expansion and the T-bill
rate would be associated with negative future returns.

These standard results demonstrate that the overall evidence on short-term
predictability is very weak, hence the debate is still wide open. Moreover, a least
squares approach is well known to yield biased estimates in the presence of highly
persistent regressors (Stambaugh, 1999), especially when the residuals of the sys-
tem’s regressions are highly correlated. We indeed find that the residuals’ long-run
correlation is particularly high when the dividend yield, dividend-price ratio, book
to market value ratio, earnings-price ratio and default yield are used as regres-
sors. This pattern invalidates the inference based on standard least squares and
motivates the examination of the results from the IVX approach.

For each of the employed regressors we report in Table 4.2 the estimated IVX
coefficient as well as the corresponding Wald statistic to test the null hypothesis
that this coefficient is zero. It should be mentioned that the estimated coefficients
are not directly comparable with the ones derived from least squares because they

are derived by using the instrumental variable Z;_;, constructed in equation (4.12).
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Moreover, the reported results refer to the case where § = 5/6 and v = 1/3. In
the following section we perform a rigorous sensitivity analysis to examine how the
choice of these values affects inference.

Using the IVX approach, we derive striking conclusions. Five variables (divi-
dend yield, dividend-price ratio, earnings-price ratio, book to market value ratio
and net equity expansion) are now found to predict excess market returns at the
5% level or lower. In particular, the strongest evidence in favour of predictabil-
ity is documented for net equity expansion and the book to market value ratio.
On the other hand, the previous evidence on the significance of the T-bill rate
and the cross sectional premium as a predictors is overturned when our method-
ology is employed. With respect to the signs of the estimated coefficients on the
constructed Z,_; variable, the standard arguments carry through. A positive rela-
tionship between next period excess market returns and this variable is reported
for the case of the d/y, d/p, e/p and b/m, while a negative one is reported for the
case of ntis. Taken as a whole, inference based on the IVX approach is considerably
different from the standard least squares one, demonstrating the important role
that the regressors’ time series properties play. We argue that there is significant
evidence supporting the case of predictability through a set of commonly used re-
gressors, even when we take into account the uncertainty surrounding their order
of integration, confirming that the market premium is time-varying indeed.

Apart from examining the issue of predictability on the aggregate market port-

folio, an interesting question is whether these variables have predictive ability over
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components of this portfolio. This issue is worth examining for a series of rea-
sons. Most importantly, if components of the market portfolio are predictable,
this would be valuable information for the formation of optimal portfolios (Kandel
and Stambaugh, 1996), performance evaluation of investment managers (Christo-
pherson et al., 1998), asset pricing models (Ferson and Harvey, 1999), and hence
for the implied cost of capital for the companies in that market segment. Keim
and Stambaugh (1986) tested for predictability using size-sorted portfolios, while
Ferson and Harvey (1999) and Avramov (2002) employed double-sorted portfolios
on the basis of size and book to market value. Most recently, Kong et al. (2009)
provided an exhaustive analysis for size, book to market value and industry port-
folios’ returns using a similar set of regressors as well as lagged industry returns.
However, they rely on a least squares approach and a bootstrap procedure for
their inference analysis that may suffer from low power (see Campbell and Yogo,
2006). We sidestep this problem by using the proposed IVX approach to test for
predictability in the returns of each of the ten size and the ten book to market
value sorted portfolios, described in the previous section.

Table 4.3 contains the estimation results corresponding to the ten size portfolios
while Table 4.4 contains the results for the ten book to market value results. With
respect to the size portfolios, we find significant evidence in favour of predictability
across all ten portfolios. However, there are considerable differences between them
with regard to which regressors contain predictive ability and how strong this

evidence is. The most interesting results refer to the smallest size decile. For this
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portfolio, we find that 7 out of the 11 considered variables exhibit significant in-
sample predictive ability at the 5% level or lower. These are the d/y, d/p, b/m,
ntis as well as dfy, tbl and tms. In other words, despite the fact that the last
three variables were not found to be significant predictors of the aggregate market
portfolio’s returns, they have predictive ability over small cap stocks’ returns, in
line with Ferson and Harvey (1999) and Kong et al. (2005). The implication of
this result is that small stocks’ premia are time-varying indeed and that the default
yield, along with the term spread and the 3-month T-bill rate can capture at least
part of this time-variation. On the other hand, the S&P 500 e/p ratio is not
found to be a significant predictor for the future returns of this decile portfolio,
while it was previously found to be significant for the market portfolio. This
finding demonstrates the importance of decomposing the market portfolio into its
components for predictability tests too. The most significant predictors for small
cap stocks’ returns are found to be the book to market value ratio,the default yield
spread and the net equity expansion (rejection of the null of no predictability at
the 1% level).

As we move away from the small size decile towards the big size decile (Size
10), inference with respect to which regressors’ coefficients are significantly different
from zero is modified. The polar case of the biggest size decile yields some quite
intriguing results. In particular, d/p, d/y, e/p, b/m and ntis are found to be
significant predictors at the 5% level or lower. An inspection of the results in

Table 4.3 allows us to derive the following conclusions. The b/m, d/y, d/p and
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ntis have significant in-sample predictive ability for all of the size-sorted portfolios’
returns, as the null hypothesis of no predictability is rejected, at a 5% level or lower,
for any regression combining the each of the decomposed portfolios with these four
variables. The T-bill rate is a significant predictor, at the 5% level, only for the
smallest size portfolio’s returns, while csp, d/e and lty are not found to predict
future returns for any portfolio. Apart from a few big size stock portfolios, the rest
portfolios’ returns are predictable through the default yield and the term spread.
Finally, the earnings-price ratio has predictive ability for most but a few small size
portfolios’ returns. These findings demonstrate the different characteristics in the
cross-section of stock returns, providing support for the argument that the size
premium (i.e. the spread between small and big cap stock returns) is time-varying
indeed and this time-variation exhibits a partly predictable pattern through a
set of commonly used regressors that are thought to contain information for the
underlying economic conditions (see the seminal study of Fama and French, 1992).

Inspecting the results in Table 4.4, for the univariate predictability tests with
respect to the returns of portfolios formed on the basis of stocks’ book to market
value ratio, interesting cross-sectional differences emerge again. As a general rule,
there is much stronger evidence in favour of predictability for value portfolios
(deciles 8, 9 and 10) than for growth portfolios (deciles 1, 2 and 3). This is true
both in terms of the number of regressors that are found to have predictive ability
and the level of significance at which the null of no predictability is rejected. With

respect to the common source of predictability, all portfolios’ returns are found to



167

be predictable through ntis and the b/m ratio at the 5% level or lower?. The S&P
500 earning-price ratio is also found to have strong predictive ability for most but
the smallest value portfolio. As we move towards value portfolios, d/y and d/p
contain statistically significant predictive ability; for growth portfolios, the null of
no predictability cannot be rejected when using these two variables.

Interestingly, the default yield spread is a reliable predictor only for value
portfolios’ returns, supporting the argument of Fama and French (1993) that the
value premium may represent compensation for distress risk, since the default yield
spread tends to widen in periods of adverse economic conditions. Moreover, the
term spread is a statistically significant predictor only for deep value (decile 10)
stocks. On the other hand, the payout ratio (d/e), the long-term yield (lty), the
T-bill rate and the cross-sectional premium (csp) are not found to predict returns
for any value-sorted portfolio considered. Overall, these findings not only confirm
the ability of commonly used regressors to predict future returns for value-sorted
portfolios but they also point to their ability to explain cross-sectional differences
in their returns. As a result, the approach of Petkova and Zhang (2005) to exam-
ine the value premium within a conditional asset pricing framework is legitimate,
motivating also the use of different sets of variables.

Summarizing the previous evidence, our univariate tests show that net equity

expansion (ntis) is the most reliable predictor of future stock returns across all

41t should be reminded that the book-to-market value ratio employed as a regressor corresponds
to the Dow Jones Industrial Average stocks; it is not the b/m ratio of the stocks in each portfolio
considered.
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of the examined portfolios. This finding supports the arguments of Boudoukh et
al. (2007), who introduce a closely related variable, the net payout yield. On the
other hand, the dividend payout ratio suggested by Lamont (1998) and the cross-
sectional premium suggested by Polk et al. (2006) do not contain any statistically
significant information for future stock returns using our testing methodology.
Regarding the rest of the variables, the dividend yield and the dividend-price ratio
are found to predict next month’s returns for most of the examined portfolios, with
the exception of growth portfolios. Nevertheless, we should iterate the standard
finding in predictability studies, that the degree of explanatory power for all of
these regressors is very low. This is an expected feature given that we attempt to

explain a very noisy variable, stock returns, through highly persistent regressors.

4.4.2. Multivariate regressions

The predictability literature has not focussed only on the ability of a single eco-
nomic or financial variable to explain future stock returns. Actually, from the
early contributions to this literature onwards (see e.g. Fama and French, 1989),
multivariate regressions were employed and the joint significance of these regres-
sors was examined, apart from their individual contribution to the explanatory
ability of the model. This approach was informative for tests of the semi-strong
form of market efficiency, because in its original version this form was assuming
lack of predictability from any set of underlying variables, not just each variable

in isolation (Fama, 1970). This approach is still very important for asset pricing
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tests and conditional performance evaluation of investment strategies, because in
these applications the focus is on the explanatory ability and fitness of the whole
regression model, not each variable on its own. Moreover, this evolving litera-
ture has documented the individual predictive ability for a series of variables, and
hence for practical reasons we would like to compare the overall predictive ability
of parsimonious regression models that use only subsets of the suggested variables.

Given the importance of multivariate predictability regressions, it is frustrating
that the recent methodological contributions that correct for the bias in the least
squares estimation are developed for single variable regressions. This is true both
for studies that use asymptotic t-statistics for near-unit root regressors (Torous et
al., 2004 and Campbell and Yogo, 2006) and for studies that rely on conditional
t-tests (Lewellen, 2004)°. As mentioned in Section 4.2, an appealing feature of the
proposed econometric methodology is that we can overcome this limitation and
devise predictability tests that use multiple regressors as well as multiple regres-
sands. The latter case proves particularly useful for testing whether a variable or
a set of variables have predictive ability over the entire cross-section of portfolio
returns, e.g. the ten size or the ten value portfolios that we previously examined.

We perform such tests and comment on the derived results.

5The Bayesian approach of Stambaugh (1999) allows for multiple regressors, but prior belief for
the order of their integration is required.
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Table 4.5 contains the results for multivariate regressions when the excess mar-
ket return is used as the dependent variable and a subset of the previously exam-
ined highly persistent regressors are used as independent variables. It should be
mentioned that we exclude from this exercise the cross-sectional premium due to
the lack of data for the whole sample period. Moreover, the dividend yield has a
correlation coefficient of 0.99 with the dividend-price ratio due to their construc-
tion. Therefore, these variables cannot be included in the same regression model,
given the obvious multicollinearity problem; for the results we present, the divi-
dend yield has been included®. In addition, only two of the T-bill rate, long-term
yield and term spread can be used in the same regression, because each of them is
by definition a linear combination of the other two variables and this feature would
lead to a singular regressors’ matrix. We examine various combinations. Firstly,
we consider whether the null of no predictability can be rejected when all of these
eight regressors are included in the model. We find very strong evidence (rejection
of the null hypothesis of joint insignificance even at the 1%) in favour of joint
predictability. This result confirms the conjecture that even when the uncertainty
regarding the order of their integration is taken into account, these commonly used
regressors can predict, in-sample, excess market returns over the following month.
Given the previous discussion, this results points towards time-varying risk premia
and confirms the ability of these variables to capture, at least partly, the evolution

of these premia.

OResults are very similar when the dividend-price ratio is used instead.
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The second step we take is to separate the variables that were found to be indi-
vidually significant predictors from those that were not and run tests using various
combinations within each of these two subsets. For the significant predictors this
exercise can provide an understanding of which combinations yield the strongest ev-
idence in favour of predictability, while for the individually insignificant variables,
as it is standard in the case of multiple regressions, we are interested to examine
whether some of their combinations can still be jointly significant in predicting
excess market returns. All of the 2-, 3- and 4-variable combinations of the indi-
vidually significant variables are found to be jointly significant too, strengthening
the case in favour of predictability. Very strong evidence for the joint significance
of the variables is reported when net equity expansion and the earnings-price ratio
and/or the dividend yield are included in the model. On the other hand, for no
combination of the individually insignificant variables can we reject the null of no
predictability at the 5% level. Combining the default yield spread with the T-
bill rate and the dividend payout ratio there is evidence for joint significance only
at the 10% level. In summary, using our testing methodology there is no strong
evidence supporting the predictive ability of the T-bill rate, default yield spread,
dividend payout ratio and the term spread, neither individually nor jointly.

Tables 4.6 and 4.7 present the results derived from testing whether a set of
portfolios’ returns can be predicted by each of the 11 lagged variables we examine.
In other words, this is a Wald test for the null hypothesis that the coefficients de-

rived by regressing each portfolio’s returns on the transformation z;_; of the highly
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persistent variable x; ; are jointly equal to zero. With respect to the size portfo-
lios, we have strong evidence against the null hypothesis of no joint predictability
when the dividend payout ratio, the book to market ratio, the default yield spread
and net equity expansion are employed as regressors. This evidence clearly leads
to the conclusion that these variables contain significant information explaining
the time-varying premia across size-ordered portfolios. For the dividend yield and
the dividend-price ratio, the Wald statistic marginally fails to reject the null at
the 5% level. The Wald statistic only rejects the joint null hypothesis for these
regressors at the 10% level. An inspection of the estimated IVX coefficients shows
a clear gradient as we move from small size portfolios (decile 1) towards big size
portfolios (decile 10), with small size portfolios being more sensitive to d/y, d/p
and ntis than big size portfolios. On the other hand, no evidence of predictability
is reported for the long-term yield, the T-bill rate, the earnings-price ratio, the
cross-sectional premium and the term spread.

With respect to the ten book to market value ordered portfolios, no evidence
in favour of joint predictability is found when the dividend payout ratio, long-term
yield, dividend yield, dividend-price ratio, T-bill rate, earnings-price ratio, cross-
sectional premium and the term spread are individually employed as explanatory
variables. More interestingly, using the Dow Jones Industrial Average book to
market value ratio as a regressor we find strong evidence for predictability and
there is a clear pattern with respect to the portfolios’ sensitivities; value portfolios’

returns are much more sensitive to this variable in comparison to growth portfolios’
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returns. The most reliable joint predictor appears to be the default yield spread,
generating also a very clear gradient; the estimated IVX coefficient corresponding
to the value portfolio (decile 10) is almost ten times greater relative to the growth
portfolio (decile 1). Since the default yield spread is related to the prevailing
credit conditions by capturing the evolution of default risk for corporate bonds, it
is legitimate to argue that the time-varying premium across the value portfolios
can be partly attributed to the default risk premium. The net equity expansion
is found to be a significant predictor for all value ordered portfolios jointly. The
Wald test statistic corresponding to the null of no predictability is rejected even

at 1% level.

4.5. Further results
4.5.1. Sub-period analysis

The results we reported in the previous section refer to the whole sample period,
from January 1927 to December 2007. It is common practice in the literature
to test for predictability in sub-periods too, examining whether the whole period
results carry through (see Torous et al., 2004 and Campbell and Yogo, 2006 for
recent examples). There are two main reasons why this exercise is informative.
Firstly, the evidence in favour of predictability may simply be attributed solely
to early periods when this pattern was not widely documented. This explanation
essentially implies that these predictable relationships were due to market ineffi-

ciencies that later disappeared, once investors became aware of them and devised
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asset allocation strategies aiming at exploiting them. On the other hand, if these
predictable patterns persist through time, the implication is that they reflect time-
varying risk premia rather than mispricings (Fama, 1991). Secondly, there is the
possibility that the degree of predictability as well as returns’ sensitivities to these
variables have changed through time, due to the fundamental developments in the
US economy and the structure of financial markets during these 80 years. Along
these lines, Viceira (1997) explicitly tests for structural breaks in the predictability
relationships, while Lettau and van Nieuwerburgh (2008) allow for a time-varying
relationship between expected returns and the commonly used financial ratios.
Gonzalo and Pitarakis (2009) discuss the instability of the predictability hypothe-
sis and suggest that predictability appears for some valuation ratios during periods
of recession.

Table 4.8 presents the results for univariate regressions of excess market returns
on each of the lagged highly persistent variables we consider in this study. We split
the whole sample period into two halves. Panel A contains the results for the sub-
period from February 1927 to June 1967, while Panel B contains the results for the
sub-period from June 1967 to December 2008. When regressor csp is employed,
Panel A contains results from July 1937 to June 1967 and Panel B includes results
from July 1967 to December 2002. The general conclusion one can derive by
inspecting the reported results is that there is no significant evidence in favour of
predictability for excess market returns during the second half of the examined

period in the case of univariate regressions. For all of the variables that we could
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not reject the null hypothesis in the whole sample period (d/e, lty, tbl, dfy and csp),
this conclusion carries through in both of the sub-periods we consider. Therefore,
the inability of these variables to predict next month excess market returns is
robust to the choice of the period of analysis and it cannot be solely attributed to
parameter instability. It is only for the term spread that we find weak evidence,
at the 10% level, in favour of predictability during the second sub-period.
Examining the results for the variables that were found to be statistically sig-
nificant predictors during the whole sample period (d/y, d/p, b/m, e/p and ntis),
there is a degree of ambiguity. With respect to the dividend yield, this is found
to be a significant predictor in the first period only at a 10% level, while there is
no evidence in favour of predictability during the second period. For the dividend-
price ratio we cannot reject the null hypothesis in any of these two periods. This
finding is in line with Campbell and Yogo (2006), who documented much weaker
evidence in favour of predictability in their post-1952 sample. This argument is
further strengthened by the fact that the estimated coefficients are much smaller
in magnitude during the second sub-period relative to the first one. Given that
these are the two most commonly used variables, this evidence casts doubt on
their predictive ability, especially when using recent sample periods and it should
be taken into account by researchers who employ them for conditional asset pricing
tests and conditional performance evaluation. With respect to the book to market
value ratio and net equity expansion, which were among the most reliable predic-

tors in the full sample analysis, we find that they could significantly predict excess
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market returns only for our pre-1967 sample. No such evidence is reported for the
post-1967 sample. Overall our univariate regression results confirm the arguments
of Lettau and van Nieuwerburgh (2008) regarding the notorious parameter insta-
bility due to the time-varying nature of this relationship and provide less support
to strong conclusions derived using very long time series regressions.

At this point, it is very interesting to test the instability of inference with re-
spect to the sub-periods investigated above, in the context of multivariate regres-
sions. Table 4.9 presents the results for multivariate regressions of excess market
returns on combinations of a subset of the regressors. The first line of each case
reports the coefficient estimates of the regressors and the Wald statistic for over-
all significance for Panel A, while the second line reports the same quantities for
Panel B. Due to limitations regarding the data mentioned above (lack of data of
csp for the whole sample period, and interaction between dividend yield and divi-
dend -price ratio, and interaction among the T-bill rate, long-term yield and term
spread) we use only eight of the variables as regressors. All eight regressors are
found to be insignificant in the context of univariate regressions for Panel B, apart
from the term spread which exhibits weak evidence of significance (rejection of
the null hypothesis of no significance at the 10% level). However, Table 4.9 shows
that the same regressors appear to be jointly highly significant in the context of a
multivariate regression. More specifically, the Wald statistic for overall significance
of the regressors is 23.60739, resulting rejection of the no predictability hypothesis

at 1%. At the second case (rows 3 and 4) of Table 4.9 the only regressor found to
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be weakly significant (tms), in the context of univariate regressions for Panel B,
is dropped. A test of overall significance of the remaining regressors finds them
to be jointly significant (rejection of the null hypothesis of no predictability at the
1% level). The difference in the conclusions drawn from univariate regressions and
a multivariate regression (for the same set of regressors) is impressive. The Wald
statistic, in the context of univariate regressions, cannot reject (not even at the
10% level of significance) the null of no predictability for any of the variables d/e,
d/y, tbl, e/p, b/m dfy and ntis. In contradiction, when the joint significance of the
aforementioned variables is tested, the Wald statistic strongly (at the 1% level)
rejects the null hypothesis of no predictability. The third case of the same table
refers to an equation including d/e, d/y, e/p, b/m dfy and ntis as regressors. In
this case the regressors are found to be jointly insignificant for Panel B and jointly
significant for Panel A. We then move to test the overall significance of the re-
gressors found to be significant in the context of univariate regressions for the full
sample period. These are variables d/y, e/p, b/m, dfy, and ntis. A test for their
joint significance results to the rejection of the null hypothesis of no predictabil-
ity for Panel A and no rejection of the same hypothesis for Panel B. Univariate
regression analysis suggests insignificance of regressors d/e, tbl, dfy and tms for
Panels A and B (with the exception of tms being significant at 10% level). A test
of joint significance for these regressors suggests their significance at the 5% level

for Panels A, while insignificance cannot be rejected for Panel B.
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Comparison of the results presented in Tables 4.8 and 4.9 highlights the fact
that a joint hypothesis test can lead to substantially different conclusion than
the one resulting from the respective individual hypothesis tests. A characteristic
example is testing the hypothesis of predictability using data from Panel B: in-
dividual hypothesis tests suggest that there is no predictability of stock returns,
while a joint test of significance leads to the opposite answer. Table 4.9 shows
that the magnitude of the Wald statistic is always higher, for each combination
of regressors, for Panel A in comparison to Panel B. This could be considered as

evidence of stronger predictability in the 1st period of the dataset examined.

4.5.2. Sensitivity to parameter choice

The results reported above are derived for a specific combination of the parameters
[ and ~ that characterize the degree of persistence of the constructed instrumental
variable and length of the truncation lag. The initial choice was to set 3 = 5/6 and
v = 1/3. The values of these parameters affect the derived Wald statistic, so it is
legitimate to ask how this behaves for different combinations as well as if and how
inference is modified relative to the benchmark case we have analyzed. To this end,
we consider 170 combinations of these parameter values for the entire admissible
set (i.e. (B,7) € [2/3,1) x [0.25,0.35]). More specifically, we consider values of
£ = 0.67,0.69,...,0.99, and v = 0.25,0.26, ...,0.35. To visualize the sensitivity of

the Wald statistic to the choice of parameter values, we plot the implied 3D surface
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along with a hyperplane that corresponds to the critical value at the 5% level for
the degrees of freedom characterizing the examined case.

We perform this sensitivity analysis for each of the 11 variables employed to
predict excess market returns in univariate regressions. With respect to the vari-
ables for which the null hypothesis of no predictability could not be rejected in the
benchmark case (i.e. d/e, tbl, csp, dfy and tms), this conclusion is very robust to
the combination of the parameter values we use. As an example of the variables
in this category we plot in Figure 4.1 the corresponding 3D surface for the case
when the T-bill rate is used as a regressor. It is evident that the Wald statistic
(red surface) is not very sensitive to either 5 or v values and it is always below the
5% critical value (blue hyperplane). With respect to the dividend-yield and the
dividend-price ratio, this sensitivity analysis weakens further the evidence in favour
of their individual predictive ability. Figure 4.2 plots the corresponding surface for
the dividend yield. It is obvious that there are combinations of parameter values
for which the null hypothesis of no predictability can be rejected, while for other
combinations this is not true since the black hyperplane corresponding to the 5%
critical value cuts through the coloured surface. This is particularly true for low
values of v as well as for very high or very low values of 5. On the other hand,
the earnings-price ratio is found to be a robust predictor of excess market returns
for the full sample period. The most robust evidence in favour of predictability
is provided by the book to market value ratio and net equity expansion. For any

combination of these parameters’ values, the null hypothesis of no predictability
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can be reliably rejected at levels even lower than 5%. For example, we plot in Fig-
ure 4.3 the generated surface for the book to market value ratio; this is well above
the hyperplane corresponding to the critical value at the 5% level, robustifying the
previous evidence in favour of predictability through this variable.

The overall conclusion with respect to the proposed methodology is that the
Wald statistic does not seem to follow any monotonic pattern with respect to
and ~ values, but its behaviour is case-specific. With respect to inference on pre-
dictability, we confirm that the borderline cases (i.e. cases where we marginally
reject or fail to reject the null hypothesis at a specific confidence level) are subject
to further ambiguity because the value of the Wald statistic depends on these para-
meters indeed. However, it should be stressed that the inference regarding marginal
cases is always a notorious problem for any flexible econometric methodology that
requires the use to choose parameter values. On the positive side, inference is not
very sensitive to the choice of parameter values for cases where we reliably reject

the null hypothesis of no predictability.

4.6. Conclusion

In this Chapter we employ the IVX methodology to the problem of testing the
hypothesis of stock return predictability. The methodology built by MP and PM
is extended by the inclusion of an intercept term in the predictive regression. This
generalisation is motivated by the needs of applied work, as practitioners almost

always include an intercept in the predictive regression in empirical studies. We
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apply this new methodology on data series that have been previously investigated
as potential predictors of the market portfolio.

The empirical part of this Chapter describes the main conclusions drawn by
the use of IVX methodology. The first is that the lagged series of the dividend
price ratio, the dividend yield, the earnings price ratio, the book to market ratio
and the net equity expansion appear to be significant for the determination of
the market portfolio in the context of individual tests of significance and in the
context of a joint test of overall significance. This can be considered as strong
evidence of stock return predictability. The rest of the variables examined appear
to be (individually and jointly) insignificant for the full sample period. The signs
of the coefficients given by the IVX estimator are found to be compatible with
both finance theory and previous empirical studies. Additionally, we investigate
the answers provided by the IVX methodology when decomposed portfolios are
used as explanatory variables. The results are interesting and suggest that there
is a strong pattern linking predictability and the size of the portfolios. More
specifically, predictability appears to be more evident for smaller market portfolios
rather than larger ones. For portfolios ordered with respect to book to market value
we find that, in the context of univariate regressions, predictability is in general
present more often for high book to market portfolios. Book to market ratio and
net equity expansion appear to be significant predictors for the aforementioned

portfolios. However, joint hypothesis tests suggest that default yield spread is the
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only significant predictor for all portfolios decomposed according to their book to
market value.

The inference drawn by the IVX methodology is also examined for two sub-
periods of the available sample size. Using univariate regressions we find that
predictability of stock returns exists in the first period but vanishes in the second
period. Interestingly, using multivariate regressions (i.e. testing the joint signifi-
cance of the regressors) provides a different answer with respect to predictability in
the second period: variables that are individually insignificant appear to be jointly
significant (even at the 1% level).

The above observation is only one of numerous examples discovered throughout
this study where conclusions based on joint inference on a multiple system of pre-
dictive regressions may differ from those drawn from individual hypothesis tests.
This highlights one of the advantages of IVX methodology over existing methods
based on local to unity univariate regressions. The ability of the IVX method to
accommodate joint testing of general linear restrictions on the predictive variables
can be a valuable tool for practitioners, as it extends the range of testable hypothe-
ses and models and can provide different answers on more sophisticated empirical
problems than individual tests of significance.

Another appealing feature of IVX inference is its robustness to various time
series modelling frameworks including unit root, local to unity and moderate to

unity persistence structure. Robustness of the method to the degree of regressor
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persistence is crucial given the fact that the parameters ¢; and a cannot be jointly

estimated and misspecification can lead to seriously distorted inference.
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4.7. Technical appendix and proofs

This Section contains the proof Lemma 4.1 and Theorem 4.1. We begin by
establishing some technical lemmata that facilitate the above proofs.
Lemma 7.1. Let u, be a linear process given by (4.5) satisfying (4.6) and E ||e1|* <

0o, and let T, (k) = E (wuj_,). Then, there exists B > 0 such that

1 < ,
W Z [ututfh — Fu (h)}

t=h+1

max F < B < .

h<n

Lemma 7.1 can be proved by an identical argument to that used in the proof
of Proposition A2 in MP.
Lemma 7.2. Let «« > 1/2 and M = L (n)n” with v € (0,1/2). The following

orders of magnitude apply uniformly for any h € {1,...,M}:

(i) Yoimp w0ty = Oy (n) .
(ii) Z?:h+1 Ty = Op (n).

() D2 Zewi gy = Op (n119)

Proof. For part (i), the BN decomposition and summation by parts yield

n n n
/ ! ~ !
E unTi_p = Fo(1) E EtLy_p1 — E A&ty p 4

t=h+1 t=h+1 t=h+1
n
_ = (1+a)/2
= — E Aeuxy_p_q + Op (n )
t=h+1

n

= Z EaAxy_, + O, (n(Ha)/Z)

t=h+1
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— n—]-a Z éotnghflc + Z g‘Otu;tih + Op (n(lJrOé)/Q)

1 < n
= — D Eur 1O+ Y Fotly g+ Oy (M) + 0, (nF7)
t=1

t=h+1

= Op(n)

by the ergodic theorem since

1 " ~ 1 n )
Y @ @) < e S Eleenall lEal)
t=h+1 t=h+1
1 - 2\ 1/2 - oy 1/2
< D (Blaenal’) ™ (B 2nl)

t=1

n1+a/2 1
= O<n1+a):O<W).

For part (ii), write

n n n
/ ’ ,
Z TtUyp p = Z Tph—1Ugy_p, + E (T4 — Toop—1) Upy_p,

t=h+1 t=h+1 P
n—nh n
= a3 s e
t=1 t=h+1
n
= D (@ —mn 1)U+ Op (1) (4.30)

t=h+1
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by an identical argument to part (i). Recall that z; = R!xo + Z;Zl Ry, So,
ignoring for the moment the initial condition, x; — z;_,_1 can be written as
¢ t—h—1 ¢ t—h—1
S SR = 3 R+ ) S
=1 j=1 j=t—h j=1

(4.31)

and note that, since h < M < n?,

[K . R;h*l _ R;h*l (RZJrl . [K)

= R [exp {(h + 1) log (I + C/n*)} — Ii]

= fon {0 [ o ()]} 0]

= —C+0 (W) : (4.32)
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Combining (4.31) and (4.32) we obtain

n n t
! t—j !
E (l’t - fEt—h—l) Ugtp = § E Rn ]uwj Ugt—n

t=h+1 t=h+1 \j=t—h
M n t—h—1
t—J ) /
+ﬁc § : Rn uz] Uzt p
t=h+1 7j=1

+(Ix = Ry"Y) Y Rlagul, . (4.33)
t=h+1

By (4.32) and a standard CLT, the last term in (4.33) has order
O, (Mn_axgna/Q) =0, (M).

For the first term of (4.33), letting & = ¢ — j, we obtain

n t n h
t—j !/ k /
E : E : Rn ]ij Ugt—p = E : E : Rnuit—kul’t—h

t=h+1 \j=t—h t=h+1 k=0
h n

= Z Rﬁ Z [Umt—kugst—h —Dow (h — k)]
k=0

t=h+1

h
+> RE(n—h) Ty (h— k)
k=0

= Oy (n)
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because the second term is bounded by n) r [Tz (k)| and, letting ¢ = ¢ — h,

the first term is bounded in L; norm by

n—h
max B ;[u$i+hku;i_ aa (h— k)] Z”RkH
n—h
< MOIQZ%E ;[Umt%i—rm ()]

= 0 (Mnl/Q) =o0(n)

for any v < 1/2 by Lemma 7.1.

The second term of (4.33) can be dealt with in the usual way since the “re-
gressor” belongs to the past of the “innovation”: using the BN decomposition and
summation by parts

n t—h—1
w3 (X )

t=h+1 J

n t—h—1 n t—h—1
A (S ) 25 (Zwm) <

t h+1 j=1 t=h4+1 j=1

M - t+1— - t—j =/
o) 5 (S S

t=h+1 j=1
1+«
Mn™=
+0,
ne
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M
= RhH Z Ut —h—1E gy h+ (Rn — Ix) Ry U i€,

t=h+1 t=h+1 j=1
Mn1/2
0, (_nm )
t—h—1

= O (AZ:> +C@ Z (Z R, Jux]> Ert—h

for any o > 1/2 and v < 1/2. The result follows by (4.30) and (4.33).

For part (iii), using the recursive property of z; we obtain
Ty = Rawy 1%, g oRn + Ry Uy g 1 + Uty oFRn + UgUly p 1,
so summing and using (i), (ii) and the LLN we obtain

1 n
LS vl =0y,

t=h+1

Lemma 7.3.

(i) Partitioning the OLS estimator in (4.20) Ao g = [ﬁOLSaAOLS} con-

formably to A = [, A] the OLS estimators of p and A are given by

. I - z
Hors = . (Z Y+ — Aors Z xtl) (4.34)
no\t=1 t=1
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and

n ! n -1
Aors = Aors — fiors (Z $t—1> <Z xt—1$2_1> : (4.35)
=1

t=1

where

¢p =1 — (Z xt—l) <Z xt—1$2_1> (Z l‘t—l) (4.36)

and Ao = vy (0, a:t_lxg_l)_l is the OLS estimator when
pn=0.
(ii) For any o > 0 the OLS estimators in (4.35) and (4.34) have consistency

rates

AOLS —A = Op (n_(a/\l))
fors — 1 = Op (”_1/2) :

Proof. Part (i) of the lemma is a consequence of a standard partitioned inverse
formula, see 5.29 in Abadir and Magnus (2005).
For part (ii), note that ¢,, has exact order of magnitude equal to O, (n) for all

o > 0 since

l -1
Sn 11 L&, L Z"
In_1 - Ty Ty 1T4_ Te—1 |
n nl—a n%Jroz ; nlta ; t—1 n%Jra —
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so, if a =1,
-1

% —1- (/01 chs>/ </01 JCJ’Cds) </01 chs> , (4.37)

and ¢,/n —, 1 if o € (0,1). As usual, the limit of ¢, /n unit root case may be
obtained by setting C' = 0 in the local to unity case which amounts to replacing
Jo by B, in (4.37).

Let

n n -1
/ /
v, = g Ut Ty_q E Ty_1Ty_4 .
t=1 t=1

Of course, ¥, is not affected by the presence of an intercept and ¥,, = O, (n™%)

as before. Using the identities

n n / n n
Z Yy 4 = (Z xt1> + A Z %y + Z (A (4.38)
=1 =1 =1 t=1

and
Zyt =np+ AZ%—l + ZUOt
t=1 t=1 t=1

we obtain

[ n n n -1 n
fois = - zyt—<zytx;_l> (z) S
| =1 =1 =1 =1

1 B n n n n
= gb_ nu+Ath_1+Zu0t—<,u(n—gbn)+Ath_1+\Pn2xt_1>]
L t=1 t=1 t=1 t=1



(Zn:um v, th 1)
(n™7?)

L1
<b
+0,

by the CLT, since ¢, = O, (n) and ¥, Y, z, = O, (n*nY/?™) = O, (n*/?).

For Appg first note that, using (4.38), we obtain

n n -1
Aors = (Z ytﬂr:;_l) (Zwt_1x2_1>
t=1 t=1

n ! n -1
= A+u (Z xt_1> (Z xt_lmg_l) +U,.
t=1 t=1
Substituting into (4.35) we get
/ n -1
Aops —A = W, — (fiops — (Z Ty 1) (Z xt_1x21>
t=1

= U, +0,(n")

= 0, (n™)

as required.

Proof of Lemma 4.1 (i). Using the identities
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INLOt = Ugt — (AOLS — A> Ti—1 — ([/“OLS — ,u) . (439)

and

~

ﬂzt—h = Ugt—h — <Rn - Rn) Tt—h—1



we obtain the following expansion of (4.23):

AW — AW AP AP £ AP AP £ AW

=h+1
M n
1 h . /
= a2 (1 arrr) 3 et (- o)
h=1 t=h+1
1 & h .
= <AOLS — A) — Z (1 — ) Z Tl
n h=1 M + 1 t=h+1
1| & h g
= <AOLS — A) — Z <1 — ) Z TtLy_p_q
n h=1 M - 1 t=h+1
M n
1 h ,
= (MOLS_N)EZ (1_ M+1) Z Ugt—h
h=1 t=h+1

i 1 & h , .
= (NOLS_:“)EZ(:L_ ]\/[+1) Z Ti_p—1 <Rn_
t=

h=1
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(4.40)

Using Lemma 7.2, Lemma 7.3 and the fact that, by equation (11) of MP, R,—R, =

O, (n™*) we obtain that

A(n A(n M
AQ:AP+@(E).

(4.41)
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Therefore, since a > 1/2, establishing
o M 1
-0, (20 0, (1) o

is sufficient to for the proof of the lemma. To prove (4.42), letting

POa: (]’L) = E (Ugt’u;t_h)

we can write

+% ; (1 - Mh+ 1) (n— h) Ty (h). (4.43)

The first term of (4.43) has order O, (H%Q) since it is bounded in L; norm by
M
‘ v=0(7)

by Lemma 7.1. The summability assumption (4.6) implies that

n

> [uortihy—p — Tox ()]

t=h+1

1
—max F
n h<M

> " h|To, (h)]| < oo (4.44)



195

Using (4.44), the second term of (4.43) can be written as

é(l_MZJ (1‘%)““’” = éfmméMLﬂrm(mm(%)
= g;POx(h)—i‘O(%)

1
because

M [e'e) [e’e)
Ao — > Toa(W)|| = || D Toa(W)|| < Y [Tou (W)

h=1 h=M+1 h=M+1

R 1
< > mmwmi=o(1).
h=M+1

This shows (4.42) and the lemma.
Proof of Lemma 4.1 (ii). Set § € (2/3,1) and M = L (n)n” for v > 1/4. We
distinguish between the cases a >  and a < .

When « > 3, part (i) of the lemma yields

nw (AOI - Am) = nl% <[\0:c - A0x>
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because M/n’/? > n's /M for any v > 1/4. Since slowly varying functions
increase to infinity slower than any polynomial, the above order of magnitude will
tend to 0 if and only if 5/2 > 7. So, any choice of § in (2/3, 1) achieves the optimal
bandwidth selection v = 1/3.

When a < 3, an identical calculation yields

1-(anB)

n-_ 2 </A\0m — A0$> = nz (on - AOa:)
() o ()

Therefore, in order for condition (4.24) to be satisfied for all « > 1/2, the band-
width choice is restricted to v = 1/4. The optimal bandwidth selection v = 1/3

only applies if we impose the additional restriction o > 2/3.

Most of the sample moment limit theory needed for the proof of Theorem 4.1
can be found in the original papers by MP and PM. The next lemma discusses the
asymptotic behaviour of the sample mean of the IVX instruments in (4.12) that
arises as a result of including an intercept in (4.2).

Lemma 7.4. The following approximations are valid as n — oo:

(i) When 5 < min (a, 1):

1 . a1 C < _1-8)2
ey a0 (St i e £ 0, ). 0
= t=1 t=1
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(ii) When 1/3 <a < p < 1:

T Z (4.46)

Proof. For part (i), using the decomposition Z; = z; + %wnt we obtain

n n

1 . 1
nath ;Zt T e E;Zt T e Z%t (4.47)

For the first term of (4.47), summing z; = R,,2;_1 + uy yields

(IK - an) Z 2t = Z Ugt + Op (Zn) .
t=1 t=1

Since Ix — R,. = —C,/n” and 2, = O, (nﬁ/Q) we obtain

n

1 1 <&
52 = O )t + 0 (n7TO). (4.48)
t=1 t=1

For the second term of (4.47), summing the recursive formula (see equation (44)

of PM)

wnt = an¢n,t—1 + T

we obtain

1 - - b,
nl/2+a+pB Z 77bm€ Cz 1/2+ Z Tiq+ O (W) (449)
t=1
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By Proposition A2 of PM, v, ,, = O, (n®/*™7) for all § < a so

77Z)n,n nﬁ _1=8
nl/2+a Oy e = O (n ’ ) '
Part (i) now follows by combining (4.47), (4.48) and (4.49).

For part (ii), using the decomposition
C
2t = Ty — wafo + n_;w"t’

see equation (23) in PM, we obtain

n

1 B 1 <« C, "
nl/2+a Z A= nl/2+a Z Ty + nl/2+a+p Z Yot +0p (1)
t=1 t=1

Substituting (4.49) to the above display we obtain

1 . U
nl/2+a ; = n1/2+a th 1/2+a th 1+ 0, <n1/2+a)
In €T wnn
- 1/24a 1/20+a +0p < 1/27+a)
n n n

since z,, = O, (n*/?) and ¢,,,, = O, (n*™/?) for all 8 > « by Proposition A2 of

PM.

Proof of Theorem 4.1. We use Lemma 4.7 throughout.
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For part (i), we start with the signal matrix:

X'7Z = X'Z-nz, 7

n—1

n n !
vt (S (50)
t=1 t=1

The limit distribution of n~(*%) X’Z is given by Lemma 3.1(ii) and equation (20)

of PM. Using (4.45) we obtain

~ /
1, X'Z R~ J
n1+ﬁXZ = W — <Wtzl$t—1) (n%‘i‘ﬂ - t—l)
~ /
X'Z 1 < 1 < C .
T e + (n3/2 fot—1> <n1/2 Zuﬂ + ni/2ta Z£t—1) C;
t:1 = =

+o, (1).

Note that all of the above normalised sums are bounded in probability for all & > 0.

When a =1 (x; is a local to unity process),

1 1
X7 = —{ / JodB. + Qi + / Jo! C} o
nl+8 0 0 C
!

() o ([ )

1 1
- —[Qw+ / J.dB. + / icl’cdsC] ot (4.50)
0 0

C«fl

where Jo. (t) = Jo (t) — [ Jo (t) dt and Je (t) = [ e®*)°dB, (s). In the unit root

case of P(i), the limit distribution of n~(*+%) X’Z can be obtained by substituting
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C =0 in (4.50):

1
nwgz = — {Qm + /O ﬁmdB;] ch (4.51)

where B, (t) = B, (t) — fol B, (t)dt. In the mildly integrated case, Y, x4 1 =

O, (n*/?**) with a < 1,s0 n ™32 Y}" | 21 = 0, (1) giving

4 0,(1) = = (Quu + Vo) C; + 0, (1) (4.52)

by equation (7) of MP and Lemma 3.1(ii) and equation (20) of PM. Combining
(4.50), (4.51) and (4.52) and taking into account multiplication by —C ! yields
U, of Theorem 4.1.

Next, we show that the presence of an intercept in (4.2) has no effect on the

asymptotic behaviour of the Uj)Z matrix:

n—(1+5)/2Q62 = n_(1+6)/2U(l)Z — n(l_ﬁ)/QaO,nZ;z—l

/
. 1 < R
—(1+8)/2 N - B
n Uy Z <n1/2 E u0t> <n1+5/2 g Zt—l)

t=1 t=1

= U2 7 40, (n’%)

by (4.45) and the CLT.
When o < 8 < 1 we show that the presence of an intercept in (4.2) has no

effect on IVX limit theory. Since n=32Y"  z, ; and n=+*/2 3"  Z are both
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0p (1), The signal matrix

n_(1+a)i/2 — n_(1+a)X/Z - n_ajn—lziz_l

/
. 1 < 1 <
_ —(14a) yr 7 § : § =
= n X'Z <_n3/2 $t1> ( Tia Zt1>

t=1

= n X' Z 1 0,(1)
and

n—(1+a)/2Q62 = n—(1+0‘)/2U62—n(l_a)ﬂﬂo,nzé

/
. R R
o —Qtey2 s L ~
= n UoZ <n1/2 Zu0t> <n1+a/2 Zzt)
t=1

t=1

= 2 7 4o (1),

so both sample moment matrices n~ (% X' Z and n~(4®)/2U} Z are asymptotically
equivalent to n~ 9 X’Z and n~ 1+ X’'Z respectively and Theorem 3.7 of PM
continues to apply.

Theorem 4.1 follows under the conditions of Lemma 4.1(ii), which guarantee
the validity of (4.24).

Proof of Theorem 4.2. The proof will follow by first showing that the “unde-

meaned” statistic

W = (HvecAn - h)' [H {(X’PZX)_l ® QUO} H’} B (Hvec[ln - h)
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has a x? (r) limit distribution under Hy, and then that W and W, are asymp-

totically equivalent in the sense that

1
W, — W~ o, (nl_ B) | (4.53)

We start with the case § < a. By PM, n='#2'Z —, V.., so (4.50), (4.51) and

(4.52) yield

L xpx) = (-Lzx) (-Lzz)(Lxz) -z
nit8— z4 - nl+8= = nits RSN E = gz, (454)

- -1 ~ ~
where =, := <\I/fm> C,V,.C,¥_l and ¥, is the random matrix defined in The-

orem 4.1. With this notation, the conclusion of Theorem 4.1 (i) becomes

n' 3 vec (An — A) = MN (0,2, ® Qo) - (4.55)
The Wald statistic in (4.27) can be written as a simple quadratic form: W,, = £,.&,,,

where
) L ~1/2 -
- [H {(g PX) '@ QOO} H’} (HvecAn - h) .
Under the null hypothesis (4.26),
~1/2

1 o 15 [
€& = [H { (nl+ . X’PZ&> ® QOO} H’] Hveen™ %" (4, - A)

-1/2

= [H (E;; ® QOO> H’] MN (0, H (S0 @ Qo0) H')

= N (07 Ir)
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by (4.54) and (4.55), where the random covariance matrix algebra is justified by
mixed normality. This shows Theorem 4.2 for 5 < a.

The proof of Theorem 4.2 for § > « follows an identical argument as is con-
tained in PM since the presence of an intercept in the model does not affect IVX
limit theory when « € (0,1). We have established that, under the assumptions of
Theorem 4.2, a Wi{") = X2 (r) under H,.

It remains to show (4.53). We need to compare X'P;X and X' Pz X: the

identity
X'Z = X'Z—nZp 17 ,+nTnaZ, .
= X'Z
yields
-1 VN -1
(x'Px) = [XZ (22) Z’x]

By Lemma 7.4 (i),
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so (4.56) implies that

-1
X'P; X X'P;X -1 ) _ -1 N1
o <\ <X . +/8 — —

(W) —(W> = (7)) man (X2)

= 0, (n”ﬁn’l’ﬁnﬂ?’ln’l’lg)

showing (4.53) and the theorem.



4.8. Tables and figures

Table 4.1. Unit root tests for the regressors. ADF is the augmented
Dickey Fuller test, DF-GLS refers to the Elliot et al. (1996) DF-GLS
test statistic and PP is the Phillips-Perron statistic. For the ADF
and DF-GLS statistics the Bayesian Information Criterion is used.

ADF  DF —GLS PP
d/e —3.388"* —3.361"*  —2.798*

Ity —1.266  —0.988 ~1.341
d/y —1.966  —1.285 —1.837
d/p —1962  —1.304 ~1.916
thl —2.301  —2.242% 2929
e/p —2.786* —2.025*  —2.917*
b/m —3.072" —2.667  —2.917*
csp —2.816*  —1.410 —2.261
dfy —3.369* —3.312%*  —3.399**
ntis —3.897°* —0.798 —4.293%%

tms —5.170"* —3.901*** —4.709***
** and *** imply rejection of the Hy
at 10%, 5% and 1% levels respectively
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Table 4.2. Univariate regressions of (CRSP) value weighted returns.
tyw refers to the t-ratio statistic with Newey-West HAC standard
errors. ¢ is the long-run correlation coefficient of the residuals from

regression models (4.2) and (4.3).

Aors INw Arvx Wald d

d/e —0.00087 —0.0742 —0.00063 0.00777 —0.17604
Ity —0.07592 —1.2635 —0.05620 0.52806 —0.18181
d/y 0.00952 1.6500* 0.01063 5.68342** —0.83763
d/p  0.00834 1.5440 0.01016 5.22706** —0.90559
tbl —0.10191 —-1.7369* —0.08386 1.54609 0.02900
€/p 0.01197 2.7502*** 0.01199 5.41182** —0.66132
b/m 0.01939 1.6963* 0.01993 6.97862**  —0.87121
csp 2.12837 2.8403*** 0.34676 0.14463 0.22458
dfy 0.47542 0.7053 0.31200 1.26074 —0.63393
ntis —0.21689 —2.5459** —0.38653 13.55450*** 0.25155
tms 0.20935 1.5497 0.21426 2.00926 —0.14941

* implies rejection at 10% level
** implies rejection at 5% level
% implies rejection at 1% level
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CHAPTER 5

Conclusion

The present thesis discusses econometric inference under a variety of nonsta-
tionary frameworks.

In Chapter 2 we perform an extensive simulation study for the finite sample
properties of the OLS estimator in vector autoregressive models. We broaden the
scope of the results by Abadir, Hadri and Tzavalis (1999) by introducing overpa-
rameterized models including deterministic components and excessive lag terms.
Their scalar bias matrix result is generalised to the overparameterized case. We
apply the response surface methodology to derive numerical approximations for
the bias and variance. In the absence of analytical results for finite samples these
approximations can be valuable for practitioners using vector autoregressions.

In Chapter 3 we generalise the BNM and BEPO test statistics proposed by
Forchini and Marsh (2000) to account for autocorrelation in the error term. Auto-
correlation is introduced in the form of a finite order moving average process and
is accounted for in the construction of the test statistics. Therefore, the result-
ing BNM and BEPO tests are free of nuisance parameters. The feasibility of our
procedure is achieved by maximum likelihood estimation of the moving average

parameters and by the use of information criteria for moving average lag order
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determination. Comparing the finite sample properties of our generalised BNM
and BEPO tests with the ones originally proposed by Forchini and Marsh, we
achieve an enormous reduction of size distortion in the presence of autocorrelated
errors. In the absence of autocorrelated errors our simulation study suggests that
the power loss of the generalised statistics is relatively small. We also compare
the generalised BNM and BEPO statistics to the statistics derived by Ng and
Perron (2001), Perron and Qu (2007) and Seo (2006) and observe that our statis-
tics exhibit small size and high power. Our simulation experiments reveal serious
problems associated with the finite sample properties of the Ng and Perron (2001)
statistics: power reversal, power non-monotonicity with respect to the sample size
for some alternatives and extremely low power (lower than the nominal size) in
some cases. A further observation is that the power reversal problem is not elimi-
nated neither by Seo (2006), who first reported it, nor from Perron and Qu (2007)
who attempted to solve it. What makes our tests stand out is their robustness
to the presence of autocorrelation in the errors and their improved performance:
their size is comparatively low and reduces substantially as sample size increases
and they have high power across a variety of alternatives which always increases
with the sample size.

Chapter 4 makes a methodological contribution to testing the hypothesis of
predictability of stock returns. The IVX methodology of Phillips and Magdali-
nos (2009) is modified and extended in order to apply to a system of predictive

regressions with an intercept. The proposed approach has two main advantages
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over existing methods. First, it provides inference that does not depend on a
priori knowledge of the degree of regressor persistence. Second, it easily accom-
modates joint inference in multiple predictive regression models. The importance
of assessing the combined predictive power of a set of explanatory variables is an
interesting empirical finding. In one characteristic example (testing predictability
for the second half of our sample), all available explanatory variables appear to be
individually insignificant (at the 5% level) as predictors of the market portfolio as
a result of performing a individual hypothesis test for each explanatory variable.
However, a joint hypothesis test for the same variables leads to strong rejection of
the null hypothesis of no predictability (even at the 1% level). In this example,
while each explanatory variable has limited predictive value, their combination has
significant predictive power. The methodology of Chapter 4 addresses important
issues for applied research in predictive regressions by extending both the valid-
ity of inference (by accommodating a large class of persistent regressors) and the
range of testable hypotheses to include general linear restrictions on a multivariate

regression framework.
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