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ABSTRACHE

The work is concerned with thc applicatioxn Q£ the Liybrid
finite element method to thin vlale and ¢ylindvieal shell otruc-
tures. One plate bending element zrnd three shell elements are
studied. The plate element is the same as one alrezdy epnearing

in the literesture but it is also us2d here to forr the bzsis c¢cf

a flat triargular element ior the onalysis of chells.

The main effort, however, has lLeen devoited to the develop-
ment of two new hybrid cylindrical snell elements. Ore is of
rectangulaxr and the cther of triangvlar planform. The aim has
been to use fully compatible elge dispiacement assumptions (with
exsct representations of rigid body moiions) togetlier with streosa
agsunpiions consisting of complete polynomials., In ascessing ithe

periormance of these elements the primary concern hasg been ihe

quality of stress predictions,

The two elemeants are tested separately on a variety of
problems and found te give good results which compare well, in
some cases, with those obtained using more complicated displace~
ment assumption elements. They are then used together to analyse
2 cylinder intersection problem - that of a mitred bend in &« piye
subjected to an in-plane bending moment. Results comparing well

wvith some aveilable strain gauge readings are obtained.

As a result of the work some general conclusions on the
hybrid method are drawn. More specific ccenclusions relating to
these elements are also noted and suggestions for further ork

are nade.
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Chapter 1

- INTRODUCTION

1.1 Thin Shells

This thesis is concerned with the development of hybrid finite
elements for the analysis of thin cylind»ical shells. Thin shells
are used in many items of modern industrial equipment, for instance,

in the aerospace, nuclear, marine and petrochemical industries.

A shell is a body bhounded by twe curved surfaces and ic "thin"
if the distance between thesz surfaces, the thickness, is small in
comparison with the other dimensions., The other identifying fea-
tures of a thin shell are its edges and iis reference surface (the
locus of points iying'midway ﬁetween the two bounding surfaces).

" Novozhilov(l) defines thin ghells as having & ratio of thickness/

(radius of curvature of reference surface) of less than 1/20.

Within the framework of all thin shell theories the reference
surface is the most significant feature since (a) it defines the
shape and (b) its behaviour governs the behaviour

of the shell. ( see prenclix 1),

1.2 The Finite Element Method for the Analysis of Shells

The Finite Element Method considers a structure to be made up
cf & number of discrete elements, the behaviour in the interior of
each being defendent upon the behaviour of "nodes" situated on its
surface. Elemenis are joined to other elements only at no&es. A
set of linear equations relates (usually) the forces and displace-
ments at the nodes of the sitructure. With the application cf suit-

able boundary cohditions and forces, the displacements of the

structure cun be found by inversion of the matrix.

-
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conical elements to deal with shells of revolution. More generzlly
shaped shells were {irst analysed by means of a gumber of flat
elements (usually of either triangular or rectangular shape) tased
on the common displacement assumption formulation. Bending and
membrane effects within each element ere uncoupled (thus mis-

g apecer

representing the true state of siress in a curved shell) but
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coupling is introduced when elements are-joined together at

angles to model the structure.

There are also two other deficiencies inherent in this method.
Firstly, the geometry of the shell is always mis-represented and
secondly, there is usually d;splacement incompatibility between

- elements, since bending and membrane displacements are of daifferent -
orders of approximation. These deficiencies are explained in gresater
detail in Chapter 4. Often large numbers of elements are needed to
obtain accurate answers but because cf the relative simpliciﬁy of

the elements the method is used quite extensively.

Attempts to reduce the number of elements necessary for
accurate results led initially to the develcpment of curved dis-
placement assumption models capable of representing geometry exactly.
At first these tended to be designed for a particular shape e.g.
cylindrical shell elements; but later, elements for the analysis of

doubly curved shells were produced.

Curved elements were found to be an improvement upon the {lat
elements but at the expense of (a) being more complicated to con-

struct and (b) often using high order derivatives i.e, non-geometric

e

freedoms at nodes. (A "geometric" freedom is considered to be a
L

simple displacement or rotation.) Non-geometric frecedoms are
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difficult to accommodate in the anélysis of a practical shell
structure which may use various element types and have changes

in thickneés between elements.

As an alternative to the common displacement assumption form,
the use of so called "hybrid" models has been proposed. These
make use of a stress-assumpticn over the body of the element with
a displacement assumption only around the boundaries (Chapter 2).
So far, results for the displacements and natural frequencies of
plates and shells have indicated the excellent possibilities of

this approach.

7

An aspect of the performance of hybrid elements which hae,
so far, received relatively little attention, however, is theix
capability for predicting stress distributions. It was decided
during the early part of this work to concentrate on this aspect
since, also, it would give the best insight intc their physical
behaviour. An element having satisfactory performance in terms
of stress predictions is likely to give good estimates of deflec-

tions and natural frequencies.

1.3, The Choice of a Suitable Shell Theory for the Construction

of Finite Elements

If standard works on shell theory, e.g. those of Love(3,9),
Timoshenko(3), Novozhilov(l) or Fligge(2) are studied it is found
that each theory gives slightly differeni sets of equations
relating to a particular shell problem. Warburton(56), among
others, has made a study of the merits of shell theories when
used for the construction ot finite eiements. He considers soiu-

tions to dynamic problems but the findirgs are valuable when

considering static streess analysis.
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Generally, for a shell which is deformed under the action
of a set of loads, four sets of independent equations can be

formulated.

(i) The relationships between stress resultants and strecses

- the stress resultants are formed by the integration of stresses
through the thickness of the shell,

(ii) The equilibrium eqﬁétions for an infinitesimal elenment
of the shell -~ these relate stress resultants, bedy forces and
(in dynamic problems) inertia forces acting on the element.

(iii) The relationship’(usually linear) between stress
resultants and strains.

(iv) The strain-displacement relationships. These equations
express the strains and curvatures as derivatives of the three

displacements u, v and w in the plane of and perpendicular to

the shell surface.

Warburton, for the dynamic case, considers the two basic
methods of solving shell probleme (a) by substituting directly
into the equilibrium eqﬁations and (b) the energy methed. Method
(a) consists of substituting from equations (iii) and (iv) above
into (ii) - resulting in three eguations in the three unknown
displacements u, v and w,. The solution of the problem requires
the determination of u, v and w in terms of the shell coordinates

A

and, in the dynamic case, the time t.

Method (b) uses relations (iii) and (iv) again but instead
of formulating the equilibrium equations, expreesions for the
strain and kinetic energiés of an element of the shell are con-
structed and integrated over the whole volume. I{f appropriate

functions for displacements are used it forms an alternative
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method of obtaining exact solutions to problems. The final
equations are obtained by applying Lagrange‘a equation or

Hamilton's principle.

Warburton states three requirements for an acceptable

finite elemsnt shell theory.

(i) From an engineering-viewpoint - the simplest theory
giving results pf acceptable accuracy is required.

(ii) If the two methods of solution outlined above are
applied to the samé problem ~ then the final set of equations in
each case should be identical (not an essential condition but
advantageous).

(iii) If’figid body displacements are imposed upon a shell
element there should be no resulting strains or curvatures from

the strain-diSplacement relationship,

The above points have all been studied by various workers but
only for specific cases. Cantin{68) shows that for cylindrical
shells most theories do not satisfy criterion (iii) alove. Three

theories which do, however, are those of Novozhilov(l), Naghdi{69)

and Sanders(70).

Considering criterion (ii), that of consistenrcy, Novozhilov's
theory gives exactly the same results for the vibrations of a
cylindrical shell using both approaches., The theories of Love(9)
and Timoshenko(3) are not setisfactory in this respect. The com-

plete theory of Flligge(2) also gives the same resulis using the

two methods - but not the same results as the theory of Novozhilov.

From the point of view of simplicity and accuracy of various

theories Warburton uses the natural frequencies of uniform
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cylindrical shells with simply supported ends as a relative measure.
Using the complete theories, with no simplifications (Warburton

outlines some of the simplications which can be made) the theoriecs

)

A
L]

of Novozhilov, Flligge and Sanders give differences in the

irs
natural frequency of a particular shell of the order of 0,3%.
However, much larger differences can be found if the approximate

forms of these theories are used.

The conclusion is therefore reached, on the basis of this and
other examples, that no advantage is to be gained, from the point
of view of accuracy, in using one theory in preference to the others.
However, considering simplicity and the criteria involving rigid
body motions and consistency outlined above, the thesory <f Novozhilov
is considered the most suitable for use in a general shell finite

element.

These findings led previous workers (53,55) to adopt the
Novozhilov theory for the construction of a hybrid shell element
whiéh gave excellent deflection and natural freguency predictions.
It was therefore decided, on the basis of the above evidenca, to‘

. \

use the Novozhilov theory exclusively for all elements in this

thesis.

1.4 The Work of this Thesis

Initially flat elements are uéed to solve various problenms
'and a three-noded hybrid bending triangle is programmed and shown
to give good stréss and natural freqﬁenéy predictions on flat plate
problems. Membrane effects are then introduced and the element isc
used to~aﬁalyse a test shell problem by approximating the gecnmetry

by a series of flat triengles. The results obtained are comparsad
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with those using one of the moet common displacement assumption

flat triangles and found to be superior.

The work ir mainly concerned, howaver with the develapment
and testing of two hybrid thin cylindrical shell elements. The
first is of rectangular planform and has five simple geonmetric
degrees of freedom at each of the four corner nodes. It was cone
structed after some investigations were made of an existing hybric
elemept of the same ghape due to Henshell et al.(SB). During the
course of these, several unsatisfactory features were discovered
and as a result a new element was ccnstructed. It is particularly
suitable, when used with other elements, for the stress analysis

of ring and axially stiffened cylindrical shells.

The element is tested on & standard problem to determine the
convergence of its stress predictions and is then applied to several
other problems to enable comparisons to be made with other elements.
It is found to give excellent stresses and to compare favourably

with other, often more complex elements.

To extend the application of the rectanguiar elenent, one of
triangular planform is then developed and tested. This again has
four nodes, usés the same geometric freedoms and caﬂ be used in
conjunction with the first to analyse cutouts and intersection
regions in cylindrical shells. It is roughly equivalent in shape
to half of the rectangular element after being cut slong a diagonal
-~ the shape of the "cut" being defined by the position of the
fourth node. The element is tested in its own right on the sanme
standard problem used for the rectangle and is found to give stress

predictions of similar accuracy for the same mesh siZes.
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As a conclugion te the vwork a cylinder-cylinder interscction

problem is thean trezicd using the twe elements. The problen is a

mitred bend in a pipe subjected to anrn in-plane brenditz roment.
tress distributions are ovtained which are found to Lo in good

agreement with some available strain gauge values.

In the whole of this work the suite of routines comprising
the PAFEC 70+ finite element scheme was used extensively to compute

the results.
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Chapter

VARIATICH:L PRINCIPLES AN THE HYBRID LETHOD FOR

B T

TET GONSTRUCTTON OF RTNTTR T1RMRITS

2.1 Introduction

The classical variational principles used in the suoll deflzc-
tion theory of elasticity are the Principle of HMinimum Potential
Energy and the Principle of ilinimum Cowplencutzry Energy. These

contain, respectively, the displacementis and stresses as variables.

Traditional approximate solutions using variational principles
e.g. the Ritz method involve making assumptions for the wariatles in
the functionals. These assumptiong should be continuous znd poasees
derivatives which are also continuous up to the order contelin=d in

the corresponding Fuler differential equations.

The Euler equation, cegcentizglly, is a necessary concdiiion for
the functional in the variational principle to exhibit a minimum,
It can be shown that if the functional contains cderivatives up to
the nth order then the Euler equation is a differential cequation of
order 2n. For example in a plate bending probler the functional in
the Principle of Minimum Potential Energy contains an expression for
G %
the strain energy of the plate and includes terms of the form Juwsfdx
p 3 2 A’- é
dur )5 y 9w[d=dy (where w is the lateral deflection and = and y
are the coordinates of a point on the plate). The Bulcr eguation
for this prodblem is therefore a fourth order differentisl eguation
o 3 \ ¥ . s :
containing terms such as ¢wjo « In the Ritz method, continocus
functions are assumed which are often infinite ceries 2nd therefore

satisfy the above continuity requirement autcmatically.
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The finite ciement method is a variation of thes Ritz proc-durs
which treats the problem in a piecewise manner by splitting it up

into eclements., The unknowns are representcd by functions which

m

need ¢

atisty the above continuity cendition only within each
element. However, if the value of the funciional for the whole
structure is to be represented accurately by the sum of the values
for each individual eiement, then additional inter-element contine-
uity requireménts must be satisfied., These ensure that terms cuvch
2 2
as écd/éxa in the functicnal of the plate bending problem
quoted earlier remain finite in the small region between adjoiuing
elements, PFor this, it can be proved necessary for the veriable
and its derivatives to exhibit inter-element coatinuity up to one
order less than the order of the derivatives appearing in the func-

tional of the variaticnal principle. Thus for the plate bending

problem continuity ¢f w and normal slope is necessary.

If the above continuity conditions are maintained then the
functional in the variational principle is accuralely reprzasented
by the sum of its values within each element. The two classical
variational principles are in this case directly applicable.
Exemples are the compatible (conforming) displacement assumptiocn
model frequently used in finite element analysis and the dual
formulation of the equilibrium model in which inter-element

stress continuity is nmaintained.

It is possible, however, to apply the finite element method
where the above inter-element continuity conditions do not exict.
Variational principles can be constructed to describe this rrocess

by relaxine contirmity requivemente in the bzei~ formme, Such

relaxations are introduced into the functionals as conditions of
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conatraint voing the method of Leneangian Multipliers., "he
multipliers can later be identificd o= vhysical quantitiecs in
the problem e.z. boundary tracticrs or siresges (see 121 £Y ).

In addition to the two basic princivlcs mentionsd carli
(containing respectively displacements and stresscs as veriazbles)
there are other, more general principles derived from ihesc which
are more uscful to consider in the precent context. These are the
Hu-Wasghizu and Hellinger-Reissner Principles which conizoin conbina-
tions of displacements; stresses snd strains in their Tuncticrals.
Pian(?l) gives a particularly good description of how modificd

forms of these can be obtained in which the continuity require-

ments are relaxed.

It is proposed in this chapler to indicnate how the Hu-Washizu
and Hellinger-Reissner Principles can be derived from tire Frinciple
of Minimum Potential Energy and hov the latter of these car be con-
verted into the Principle of Minimum Complementary Energy. A moii-
fied Hellinger-Reissner Principle will then be constructed to
account for the relaxation of inter-element continuity and the
Modified Complementary Energy Principle which is the basis of
"hybrid" elements will be derived. Finally, to demcnstrate the
application of these principles to the construction of hybrid
elements a general dynamic problem is treated and stiffness, mass

and consistent loading vectors for an element are derived.

2.2 Variational Principles

2.2,1 The Punctionals

The Principle of Minimum Potentizl Energy, on wnich ascuued

displacement finite elemcents are based, stztes that a quantity
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kncwn as the iotal petential crnergy (P) of ihe structure ic a

minimum when the siructure deflects uwader load.

The +ntad Potgn{:iaj enerev io osiven
- - ~ - [

v

P = [‘}zéaj (ijﬁua_] i(m,} —| Tiui ds (2.2)

voL. :
‘ Se
where repeated suffices are sunmed following the usual convention

and
65&; - are the streins
GEJ - are Lhe stresses
U

- displacements of structure

Fi - the prescribed body forces

77 - the prescribed surface traction

Se . is the portion of the boundary of the structure

over which the surface tractions are prescribdbed.

If we now wish to introduce the s*iyzins as an additional fielsd
variable we must make use of the strain-displacement celations ag a
constraint and use the method of Lagrange multipliers. If this is
done and the variation of the functional so ocbtained is equated to
zero, it can be shown that the Lagrange multipliers are equal to the

ctresses.,

Hence if the strain-displacement relations are expressed in

T

6;5 = z’(u,aﬂ T+ U.J’,L) (2.2)

(where , denotes differentiation) a functional Tl can be

the form

derived from (2.1) which includes the sirains

' | - —] ~ H .
m = {zég 8 + &J["z(w,j + uj,L)"'tch‘ y U.L} cl{\oz.) (2.2)
s

-

o
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end woacre the constraint is included in the volume integreal.

Simplifying (2.3) gives ”

4

M = ]( {"f—éﬁ; /:'J -+ (ij.“)ij(ui;_j e Uj,é) — ?& ue} u!_(wL)
- j Teuids

1
voL.
S¢

iN)

N
N

Equation (2.4) gives the functional of the Hu-¥ashizy Principle

containing strains, dispiacernents and stresses as field variablea,

If the strains are¢ eliminated from (2.4) by the introduci-on
of the stress-strain relaticnship &ggjkﬁ’being the complizarce
matrix) the functional of the Hellinger-Reissner Princirlie is
obtained
L ""'=f {";,_‘;Saju 65 61t + &3'-'17;((1;,} + uJ',a) ~ Fi ua} ci(vo;,)

VoL , -

“"‘j Tows ds (2.5)
5

&

which contains only the displacements and stresses as variables.

Finally, if the stress-equilibrium equations are introduced
into (2.5) after the second term in the volume integral has been
integrated by parts, the functional of the Principle of Minimum
Complementary Energy is obtained., This contains only the stresses
as field veariables |

m=f{"f (ke ﬁjtﬁlz}d{vu) + (Tl ds (2.52)

VoL Sa
where Su is the portion of the boundary where displacements are

1

prescribed. (The whole boundary S=Sa 't'Su.fSo’ where So iz Zhe
part of the boundary where neither surface traction nor displacement

are prescribed.)

2.2.2 Application to Finite Element Anslysis

If the Hellinger--Reicsner Principle i: applied to & finite



- 15 -

element idealization the functional of {2.5

e =ZU -4 Sipt 65 e + & (J(uL.J4 Uj, i

Va |
~[Tifu-ds - Truads] (2.0)
Gan | s

L3 o -
where Vi is the volume of the n'th element and ODun 1s the porvticn

S
@
[}
D
]

\..._-A‘
]
!
~.
8 u
2 T
.
<
)
L

S'J»n n

of the boundary of the element where the displacements Ui arc
preacribed. The integral around Su~ in the above functionai

irposea the constraint that aleng this part of the boundzrv of

Ui . In this case the ccrresponding Lagrange

AN

the element Wi

il

multipliers can be shown to be T.  the becundary tractions.

In the above functional stresses and displacements are assumed
separately for indivi@ual elements. In this case the inter-clement
continuity reguirements involve continuity of disyleccrmonts but not

streases, -

A possible way of relaxing these displacement continuity
requirements is to use separate functions for the diaplacemernt
field Ui within the element and the displacements 78 zlong the
boundariés. The boundary displacements can be chosen to satisfy
1nter-alement compatibility and the constraint between (i and II;
introduced as in (2.6). The boundery tractions (Lagrangian multi-
pliers) of adjacent elements are independent and the condition of
constraint imposes the compatibility of the two sete of displace-
ments at the eleﬁent boundary. In this case the constreint integral

nust be performed around the entire boundary of each element,)Vh .

The functional can be written as
Trmm :;: j’-—J‘SLJke KJ(M + Z,KJ(LL‘U'*LL"/ H blLLks df./:L-
n
S —~ T;(u.-,-u;) J T:0:ds ‘

Vn SKn

(2.7)
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In the above functional 6% , lii , Tt , and i con ell, in
principle be indepcndent. One of the equaiions obbained bv geltins

- PR e A‘)
the variation of (2.7) to zero, however, is

L= 64 Y (2.5

2
Ne’

where )b is the unit normal,

If this condition is szatisfied TEQ& will contain only thre=>
field variebles i.e, GQ and Ui in the interior of the elemeni and

ﬁk along the element boundary.

~

Integrating the second term in the volume integral in (2.7) by

parts gives

L "‘*Z ”: zSka 8ij 6kt = F ‘ tu:l A\qu

n \v,
- a9\
+[Tcuad3“ lbwota (2.9)
g\’vz 5{._‘
If, in addition, the assumed stresses within each elemcnt are

chosen to satisfy the equilibrium egquation

Si,j + Fi =0 (2.10)
then the second two terms in the volume integral of (2.9) disapgear
and the displacements (i no longer appear in the volume integral.
The only displacements then involved in the functiional are those
along the element boundary. Only two vsriables are present and
the functioﬁal is that of the Modified Complementary Energy
Principle which is the basis of both the Equilibrium end Hybrid

Stress Assumption finite element models.

Tme = “}-‘- Skt &5 o/u] dfpor) fTuuis ﬁ'nmla (2.11)

dVa
In simple static problems it is usually relzatively eazv to
satisfy (2.10) - so the modified Hellinser-Reissuex Principlez of
(2.9) is seldom used. However, in dynanic and iritisl étress

problems it is useful.
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2.2.3 Treatment of & Iviciiic Proﬁlem

As an illustration of the use of tre Bellinger«Reissnox
Principle outlined above, & typical dyramic problem vill ue

treated in finite element terms ongd elerent matrices will Me

o

derived. Such 2 problem could. for instance, be the suaoil

vibrations of a flat plate.

A Hellinger-Reissner varis:vional funciionsl can be obtained

cerresponding to (2.7) by adding a kinctic energy term

TTmR4 "“j Z_;{[‘[ /gcJM{J{M fZ{J(LLL)J.f.UJ)) FCU,L 2@‘-/!. d(mz,}
f_l (u" (,L OLS fT LAt dt (2.12)
dVn

whereeQ ig the density of the material under question.

Barlier (equaticns (2.9) and (2.10)) the stress-equilibrium
equations only involved the body forces and were easy to satisfy
in the stress assumption. In the present dynamic case, however,
the equations contain the unknown displacements Ui end it is nol
possible to assume element stress distributions to satisfy these.
Also, if a stress assumption is made and (2.8) used to evaluate
boundaxry tractions, these are not likely to be accurats approxima-
tion of the true values. In addition, then, to there being some
freedom in the choice of stress assumptions, the choice of edge
displacements EE nead not be compatible with the interior dis-
placements Wi . There are therefore many possible fiuité element
formulations, each having different assumptions. An important
feature, however, is that in all cases the resulting matrix

equations will only have the nodal displacements az unknowns if

displacement assumptions are ricde in terms of these.
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Corresponding to eouatisn (2.9) the expinded +verzion «f

;s [
{2
L —
WMRZ , L z/)b\;kf ( f{t-e - C{J” Ue - F Uce “'J"()uy {*"!""“)
Ve n ‘: /- - o=\
. m— , RPN,
+Jag>7juad5 fTu a[s; dt
il
A | Gon J
In the finite element approach the egtresses within each
. 4 .. [?
element are approximated by a finite number of paraneters f}
{6} WLP]{P} (2.24)
and the term representing Ti along each boundary (6@3)3)
can be expressed 2lso in terms of {13)
{o/} [ U | (2.15)

~

Next, the boundary displacements i common te two adjecont

- elements are interpolated from the .nodal values common to the two

{ﬁ}' 2[1_.]{14; (2.16)

The displacements (i in the interior can, in principle, be

elements

independent of Ui , but normally these too are interpolated in

terms of the same set of nodal variables
[M} = LNJ” (2.17)
{; 9
Since Ui and C[& are independent, CZ; can easily be chossen

to satisfy inter-element continuity, whereas it is not necessary

for Wi to do this.

The derlvatlve of 62, may be written as
{4 [ ]{ﬁ} (2.18)
and substituling equations (2.14) - (2.18) into (2.13) gives
the varlatiopal Punculonal s

Toes = | 32448 I - G108 -§10- £ 3

+Iﬁ}Tch’icz§~{ MG e

(2.19)
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- where —

[H-] P dos M- | ANTIN] .

[D] =J PJ'[NJ divory G} jw [R] {_] ds (2.20)
Q0[N dy T, = [T

Setting the variation of [ImRe with Tespect to bﬁ} in

(2.19) to zero gives

"[H]{ﬁ} t {[G] ‘[D]}{?/} =0 (2.21)

Solving for{?} from (2.21) and using this expression in

(2.19) glveu

Tl = f Z( [TKley + £ Mgy G ] [C\)) dt (2.22)
where [K] = {[G] ~[D]} H] {[G] “[D]} (2.23)

igs the element stiffness matrix.

[Nﬂ = the element mass matrix

[Q] :[Q]u *{Q.]',. = generalized forces

If the element matrices are assembled to form the respective

%* #* * .
global matrices [KJ ,[Mj and [Q _]variation of (2.19) with

respect to the unrestrained nodal displacemenis will yield the

dynamic equation

Mgy < [KTIRY - 197 (2.2



2.3 Points erising from lhis ‘nalysis

~

2.%3.1 The Element Stiffness llatrix

“mw HlAa shmeea -~ -1 oA -~ LR o R b
e A vii L VA VAR SR N O AR (S e e WD L R v

satisfy the equilibrium equations and twe displacenent assumptions

are made which may be incompatible along the element boundaries.

If the assumed stresszes are madce to satisfy the howmogeneous
equilibrium equations, however, (6@&;¢;0 ) then the matrix [hﬂ
of (2.20) disappears and the stiffness matrix [K] is in fact the
same as that which would be obtained using the Modified Complemen=-

tary Energy Principle (2.11).

2.3.,2 The Mass Matrix

Successful dynamic results using the ahove approach have been
demonstrated by Dungar, Severn & Taylor(33) and are 2lszo included
later in this thesis. If the interior displacements Ui 4o not

(o d
have to be compatible with the edge assumptions {Lli then a good
deal of freedom of choice is involved. However, since in (33
the stresses are only chosen to gatisfy the homogeneous equations
of equilibrium and not the dynamic ones, the solutions are strictly
an application of the Hellinger-~Reissner principle, and not thas
of Minimum Complementary Energy, although for the reasons vointed out

in (2.3.1) the two stiffness matrices are identical.

2.%.3 The Effect of 2 Non-Equilibreting Stress Assumption

If in (2.13) the assumed stresses satisfy the nomogeneous

equilibrium equations (without body forces) or the non-homogeneous

D

{

’ v o S AR N N + =~
set (with body forces) then the ternm involving &, .0 in the
volume integral is no longer present. Thic approach is zdopted

with all the hybrid elements in this thesis.
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Pian(71) has investigated the effecct, however, of using stresc

essumptions which do not satisfy either of the esquilibriuc equatious,

such that the term &<j,j Ui  still appears. From prelivinary stviies

PR U T VU O TV R VS
ginple peam it appzars ihai wi

iy
o
¢

on the vibraticon analysis o
internal displacements Y4t match those at the Voundary of the elei.ent
) M. ”~

e , the extra terms have no effect. However, when U< cnd e do not
coincide then the effect of the 6ijlLL term ir some cages produces

non--convergent solutions.

Pian concludes that it is best to choose the assumed siresses
to satiefy the homogeneous equilibrium equations so that the terms
do not appear. It seens that there must be a ceritzin matcehing

L] - - ~
condition between the assuwsed !Li and Ui which must be satisficd,
otherwise, to gusrantee the convergence of the finite element

solution.

2:.3.4 Loading Vectors

The matrix &Qﬂlof (2.20) indicates how the prescribed body
force Fi can be lumped'using the assumed displacements Wc . If,
however, the stress assumption is chosen to satisfy the equilibrium
equations with body forces present, then the term Fidi in (2.13)
does not appear and [&ﬂ, vanishes. It may therefore be regarded

as an inconsistent loading vector.

If the equilibrating siress assumption is made in two paris,

however, then consistent ncdal loads can be obtained.

Let {5};[Pj{p§+[P]F{FSF where [P_]F{ﬁgf is a (2.25)
particular solution of the equilibriun equations with the pre-
scribed body force andl}ﬂ{?j as before satisfies the homogern<ous
equilibrium equations. If (2.25) is used in (2.13) instead of

(2.14), then the consistent loading vector turns out to bve



§
N\
N

1

[@] - [l [H [, 8], + (5] o
were [S]" = B[], H-r]p ]ds

where IﬁJF performeg & similar ZTunction to (K]

~ N
A\
~

o
N

L /ﬁ -
in (2.1

@ﬂF j [T s Bﬂfziﬂﬂﬁgﬁﬂﬂw9 (2.27)

and other quantities have been defined earlier.

Strictly spesking, this is oxnly a consistent loading vector

if all the columns in [FHF are included in[f] + Therefere, if

{-te

the body force is a high order function of the coordinates, then

a large number of assumed stress modes must be uwsed in [E] to
evaluate the stiffnesg natrix. In practice it is found, certninly
for the elements described later in this thesis, that if ascue

~ higher order terms are used in [Pﬂf , reasonable loading vectors

are still obtained.

2.3.5 The Length of the Stress Assunmption

Theoretically, in equation (2.14) there is no limit to the
number of undetermined coefficients b?; which can be used. The
quality of results obtained, however, derends upon the number of
terms and, as will be shown later, best results are not obtained

with large numbers of terms. There is, however, & theoretical

A3

minimurm length for the assumption.

If the variational cf the functional of (2.19) is taken with
respect to{@& , the displacenents, then it can bte shown that if
N, the total number of assunmed siress modes of 2ll elcments is
smaller than M, the total number of degrees of freedom on the
structure, then there will, in general, be no solution for the

?%.. 4 can te proved, nowvever, that ~f in each individual
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element (wheye §* is the nuuber of stress terms, k is the nurhar of
degrees of freedom and 1 is the number of rigid body modez) the
inequality'm;kk-l is satisfied, then s sclution for{%% is
guaranteed. If too few siress terws arc used it is vossinle for
spurious rigid body moticns to appear in the siiffness matrix

i.e. deformations producing no stresses.

2.3.6 The Bvaluation of Stres

H g

S
—

The relationship (2.21) enablec the coefficients of the stress
assumption to be expressed in terms of the olement displacements.
If, as is usual, the assumption is chosen to satisfy ecuilibrium

: /

N ix [D] i N . . b
and the matrix in (2.21) ceases to exist, then ihe csquaticon

can be re-written as

ERCINELY

: —— .
The computation of the LHJ and B%] matrices is an intrinsic
part of the element routine and these can be put on to backing
store at this stage. When it is reguired to evaluate ctresses

from the displacements they can be recalled and the above relation-

ship used to compute {F%.

2.3.7 Equilibrium, Hybrid and Conforming Displacement Assumvtion

Elements

Both the assumed stress hybrid model and the Equilibrium model
by de Veubeke(36,37) are based on the Modified Complementary Inergy
Principle, (2.11). In a somewhat similar manner to the conlorring
displacement assumption model (where displacements are continuous
between elements), the equilibrium approach ensures continuiiy of

boundary tractions.
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De Veulbeke has used the methoa of dual finite element
analysis by conforming displacement assumption and eguilibrivm
models extcnsively. These analyses yield bounds 1o +the str=zin
enexgy content of the structure. Since the dirvect flemibility
influence coefficient (generalized displacement due to corves-

ponding generalized force of unit magnitude) is equal to the

strain energy, its upper and lower bounds can also be established,

The direct influence coefficient using a hybrid element,
hbwever, may be either an upper or lower bhound. It can be proved,
however, always to lie between that of the conforming cisplaceuent
agssumption model with the same boundary dispiacements znd that of

the equilibrium model using the same interior stresses.

The boundary displacements of the hybrid wodel can be considercd
as constraints on the structure - but only along certain lines (the
element boundaries). A conforming displacemeni assumption model,
however, imposes constraints over the whole of the structure and
can be proved always to underestimate the strain enexrgy content

giving a stiff solution.

The use of a finite number of stress terms in the hybrid
model (with the same edge displacements), introduces flexibility
which offsets the stiffness of the assumed displacenients to some
extent. Increasing the number of stress modes, heowever, makes the
stresses more and more compatible with the edge displacements and

in the limit the solution would approach that of the conforming

displacement assumption element.,
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A TRIANGULAR HYBRID PLATE 2DU0ING ELZI AT

Z Por d e S 3 1
5.1  Existing Plate Tendiug Ilements

v
. A i A . 7 b o~ L = .

X

Excellent accounts ol much of the early work on plate bendinz
finite elements are given by Clough and Tocﬁer(19) and Zienkiewicz
(14,15). Workers concentrazted mainly on the production ol elenents
of rectangular or triangular chepe bascd upon the assumed displace-
ment (Minimum Potential Energy) approach. The majority of these
vsed nen-conforming displacement aszumptions. Lateral displace-

ments between clements were usually compatible, but ncrmal slopes

were often discontinuous.

Two of the more succesaful rectangular elements of this type
were conctructed by Dawe(16) and Melosh(1l7). The first uses a
displacemenf assumption of twelve terms in x and y (the coordinates
of a point on the element). The element of lMelosh was developed
purely on the basis of physical reasoning. The element is assumcd
to distort along its edges with shapes defined by beam functions

end these are assumed to decrease linearly towerds the opposite

edge.

>

~

Two typiQal non-conforming triangles were those of Adini(2C)

and Tocher(2l); These were similar to the Dawe element in that

. . . o+ s
simple polynomial expressions for the displacemenis were used but

gencrally they were not so successful. In the case of the Teccher

. . A 3§ + 2 1 G
triangle, which will be used later, “he displacement assumption

. . o s
for the lateral deflection w congists o. nine terms

q ()

.s ? > 2 2 L"'..'f .
W= [')x)J:xj;”)ﬂl Y, YUY
y

1,}

...
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-

A later devclopment hus teen the uproducticn of goncral

quadviiateral non-conformiing elements. These include midside
noeZes winich enadle the sides to be curved to analyuve, for

3 l_’ M a2
instance, civcular plates.

It was thought necessary, however, in an attempt to immove

results, tc develop conforming elemenis having both displacement

T

st rectansgles were

and normal slope continuity. Two of +l.e bs
(a) that attributed variously %to Bogner, Fox and Schnit(¢z),
Butlin and Leckie(23) and Mason(24), and (b) that of Clough =nd

Féurrq _@8) (which can, in fact, take the form of a general quad-

rilateral). Triangular conforming elcments were produced by

&)

N

Clough and Tocher(19), Bazelcy et al.(%45), Butlin =nd Ford{

and Cowper et 310(27). These conforming elemenis ther use hign

(¢]
it
c*

order derivatives as nodal frecedoms in ovxder to assure conforuity
(the dicsadvantages of this method are cutlined in Chapter 1) or uwve
conplicated in some other way such as teing composed cf sub-clcaents
e.g. the Clough-Tocher triangle(19) and the Clough-felippa auad»i-
1atera1(18)<which uses Clough-Tocher triangles &s sub-elemeut%.
Separate displacement assumptions are nade in each sub-element and
+these are matched at nodes cn the interior sub-2lement boundaries.

In this way conformity between master elements can be obtained.

The use of an alternative variational vprinciple to construct
al-= (Y Y U ()
hvbrid assumed stress elements (see Chapter 2) has also receivsd

attention. The method was originally introduced by Pian(28,79)

1 1 Tt Qasvpone ‘ ;
to produce a rectangular in-plane element bul licter ceveln ang

Taylor(32) constructed rectangular and trianguler tending elemsnis

4 2 - :(-../ . 'xr. Ve g - ‘r'\" -y
which proved successful for vibration anal}SL~\35)- HEvbrid nlote

_ . . Snveaticated Oy
bending elements of various chapes were later investigates oy

Allwood and Cornes(34) and Neule et al.(35).
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3,2 The Present Work

In this chapter the programming and testing of a ;vbrid vlate
bending triangle are describzd. Resnlts for stresses, iellections
ana natoural freqouencies are commared with thace ohtaiinsd naing
other hybrids and comparable displacement assumption forws. The
Tocher element({21l) described in the previous section is progrewmed

for comparison purposes. The results demonsirate well the degree

of improvement possible using the Liybrid aypproach.

The present hybrid element is similar in many ways to that cof
Severn and Taylor(32) and was subsequently found to be identical *o
a particular form of the general poiygonal element of Allwsod anc
Cornés(34). The detail of its formulation differs from thesec, how-
ever, in that assumptions for stress resultants are made instead of

stresses,

The element was programmed as a result of the wor¥ of Henshell
et al.(53) and Neale(55) who introduced the concept of 2r "cptinized"
stress assumption in which the length end form of the zesuxnption are
carefully selected., Stress distributions obtained are demonstrated
to be of good accuracy and generally the static results confirm

those of Allwood and Cornes 1in that the shorter stress ascsumptiorns

give the best results.

To ensble the element to be used on dynamic problems a dis-
placement assumption is made and a mass natrix derived ac descrited

in Chapter 2. Good natural frequency results are obtained,

) P : o id Bendin~ Ylemnent
3,3 The Formulation o the Trianzuiar Hybri e e ==

3,3.,1 introduction

The construction of hybrid elemen*s 1s deseribel in det~il
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in the previcus chapter. For the eveluation of the stiffness

matrix it is necessary to make cosumptions {ocr siresses within

the element and displacements along the boundary. 7oz the con-
el

structicon of a mass mairix a displacensni ascumpbion wust 2lvo

be made within the element.

3.2.2 The Boundary Dicsnlacement Assumptions

The gcometry of the element-and nodzl dopgrees of fieedon are
shown in Fig.(3.1). The freedoms at each node consist of the dig-
placement normal to the element and the iwoe rotations about ihe
element x and y axes. These simple freedoms allow the deviniviorn
of cubic norual displacement and linear norr2l slope 2long edg=es.
Fach edge is treated separately and fow purposes of invecpoliation

the nodal rotations are trensformed into a rotation clong (s

and a rotation perpendicular ( ©.) to the edge wuader conszideration.

Thus, along the edge joining nodes 2 and jin Fig .(3.1) which

is at an angle ? to the x axis as shown

K . ’: i ‘s 2le ) :4§§ﬁ; 427_- (v5

Wl | :sz@@TL@_fg_:-,..1{1(_;‘:5_ (50
o e S A D L SR

Bsp — : '(%X: : | 2} | W3
T T L"”;.f‘é;;"r‘"f':‘:y

of [08) 1 ol 9 (e

Wherc s is the distance along th

{ is the length of tha edge

Wi is the normal displacement &t node 1

a3 A~ . nogd i ’.,,e mal
Osi is the rotation alcrng the cige &t node i (the nor 1

T - ~ ~A 3 + -, -
On: is the rotation rerrendiculer to the odge at node i

clo:
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The functions in (3.1) 2ve standard Hermitian intervolation
formulae expressing the cubic variation of w and line-r variastior
of & . ©O. is obtained by differentiating the expression “o~ w

IS WU

with respect to s,

The rotations ©si and ©n. can be expressed in terms of +he

actual nodal variables on the side 2,3 i.e,
Os. = 93.; don. (P ~ O:icog ‘T-')

Oni = 93; m(/) + @:LLAEM(IU

Therefore by substituting equations (3.2) into (3.1) the
variation of W , ©s and ©n can Le defined uniguely in terms of
the nodal freedoms. Hence the displacements of an adjoining cdge,

with the same nodal displacements, will be compatible in every way.

This treatment is applied tc a8ll edges of the clement.

3.3,3 The Stress Assumption

The stresses are considered to bLe integrated through the
thickness of the plate to form stress resultants which act on the
middle surface (Appendix 1). These are shown acting on an infini-

tesimal element of plate in Fig.(3.2).

Considering the equilibrium of the infinitesimal element under

the action of the stress resultanta it can be shown that the following

three equations apply
b%/)j + be,/Qx, =0
= MMyxfly + IMxfix = Q=

where, in the case of flat plates, AA%J =fﬁjx~
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Equations (3.%) are ihe equilibriun egueticng vwith rno zypplied

load'or "hemogeneous" equilibrium equations described in Cr.zpter 2.
Following the method outlined there, a siress assurption is mede

which setisfies (3.3). 1t is of polynomial torm in the eleron:

coordinates x and y of Fig.(3.1).
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It can be seen that each colurn of (3.4) satisiies {3.3).

Qy ) L

This particular assumption was chesen after corefully concidiring

the results and findings of other workers.

R

The assumption must involve at leanst 2 minimum nuuber of
parametefs &ﬁ , (see previous chapter) otherwise the stiffness
matrix is likely to contain spurious rigid bedy motions. This is
explained fully by Tong and Pian(30,%1,29,28). In the present cose

this minimum length (given by the difference betweer the nurxber of

degrees of freedom and the number of rigid body motions) is 9-3 = G.

Pheoretically, there is no upper limit to the length of the
agssumption, but the work of Allwood arnd Cornes(34) and Severn and

Taylor(%2) has given a guide in the case of a trianzmlar bending

element involving the 9 simple freedoms used here. Allwood and

. ~n [ o) J"rlA —~
Cornes, who make assumptions for siresses {not stress resul tantz)

conclude that a nine-term assumption involving linear distributiors

is best. Longer aasumptions involving quadratic terma give no

- . oy e s 4 .,r_;:ﬁ‘ . Syt Ly
jmprovement and geanesaily cause he elcuent VO TeCCLE VOO Sili..

These findings coincide with those of Neale(55) wio found Jor both
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o hybrid rectengular cylindrical shell and a rectergular plate
bending element that @n assumption close to %he minimum possible

length is usvally the best.

Pian(30) demonstrates, in fact, thal by using higher end
highexr order sirezs funsticns one is only aprproxiwating morc
closely the solution using compatible displacement assunption
elements (having the same edge Gisplacemenis as the hybrid).

These always give a stiff solution. (Sce Section 2.3.7 of

Chapter 2)

It was, then, with these findings in mind that the segsumption
- ° - '; I3
(3.4) was chosen. There are 9 undetermiied parameters &55 , tlirec

more than the necessardy minimum,

3.3,4 The Evaluation of Edge Work and Conplementary Sirain Fnerey

Following the method outlined in Chapter 2 the calculation of
8 stiffness matrix involves the evaluation of (i) the work donc by
the stresses on the edge displacements, and (ii) the complemcntary

strain energy of the element.

For the evaluation of edge work the stress resultants along
an edge must be transformed into forces in the direction of the

displacements i.e. a iransverse force and moments parallel and

perpendicular to the edge.

For example along edge 1,2 in Fig.(3.1)

-
-y

Fur ) o o) o o I A&x
o a o hﬁj

Fesr.: 0 -1

F33

r.
L
D
bod
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The same principle hnld: for the cthier tvo ediges but the
eXpressions become nor: irvolved. By then substitutine for the
noments in terms of {ﬁ% it is pessible to express the forces fo-

each cdze in the forr of Chapter 2

] = ol |
{6/) [R]). i (3.0)

For the calculation of the complementary strain encrgy {he

linear relationship between stress-resultrnte and streins vased iy

Ma Py o | [Pl

3 2 z 7
My =—|-2‘E(;%;7 Y I o ) - ‘*"/3\72'\ (3.7)
Mx'j B 0 O :;’ 2 32”/3!.}7)

where VY = Poiscon's Ratio
For the present element ‘the integrals were carried out

numerically using a Gaussg Process of order 2. To evalucie the
strain energy only the bending moments of (3.7) are invclved but

both the bending moments and the shear forces (3.5) are needed ‘o

evaluate the edge work.

3,3.5 The Calculation of Stresses

As with allelements in the PAFEC 70+ scheme the evaluation of

stresses takes place in a stressing routine after the displecenents

of the structure have been found(ll). The structural displac:znernts

relating to a particular element are identified and converted to

displacements in element axes.

For hybrid elements the evaluation of stresses is particulearly
convenient because there is already an explicit expression for thexn.

If, as in the present case, the etress assumption satisiies ilie

equilibrium equationsg, then the matrix Uﬂ in equction (2.19) of

Chapter 2 ceases te exist. Equation (2.21) becones
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vhere f@% is the wvector of nodal displacemsnts of a particialarx

?/ (5.53)

———

. ~ . s
element. ne Dﬂ ba matrix, formed in the element routine, nust

be written tc backingy siove znd

o

called t¢ the siressing routines
during the calculation of siresses for the particular eleunent.
When {P} is known the siresses at any point in the elewent can

be evaluated.

3,%3,6 The Addition of s Mass Matrix

In the previous chapter the method of deriving & necos matueiw
for use with a hybrid element is described. Tais involves a dis-
placement assunption being made over the whole of the cliement,
which need not necessarily be consistent with the edge dicsplace-
ment assumptions. Thic can be justified, as explained eariier,
in terms of a modified Hellinger-Reissner Principle. Heventhele:s,
a mass matrix derived by this method must be inconsistent, even if
the two displacement assumptions are conpatible, since the interior
displacement assumption will not usually be compatible with the

assumed stresses.

It wag decided, in this case, to try various displacement
assumptions. Initially one coinciding with the edge assumpticns
as used - that of Clough and Tocher(19). This involves splitting
the element up into three sub--elements to make the lateral deflec-

tion vary cubically and the normal slope linearly aloag cach edge.

A great deal of computation 1is involved.

Simpler d1Splacement assumptions tguch as that of Tochn1(91)

m- s R v eem -
L1035 ' Q1.2 .

. . 4} o An 3 - . X 1 O
Sceeion 3.1) were thoen wriel, R R

I te
]

(é') iver

found to give answers almost as good as tnose vsing the Clough-
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Tocher mass matrix and bvecause of the simplicity of c¢=2lculetion

was considered to be the mest efficient [ormulation.

5.4 Results Obtained Using the Triangular Fybrid Bending Lleuent

- el el e ) ST e

3.4.1 Simply Supported Square Plate uvnder a Central Point Lood

To investiigate the performance of the elemext in statics o
simply supporied square plate with 2 central point load was
analysed using variovs meshes. The plate is shovu in Fig.(3.%)
together with the properties of the material and a typical mesh
used.. Symmetry conditions allow % of the plate to be analysed

and the mesh shown is designated n = 3.

In Fig.(3.4) there is a plot (line labelled ET) of the ncn-

dimensional central deflection coefficient KFW&KV%LL (where

D=’Etihlo’7ﬂ) ) against the mesh size n. Other curves are
(i) that using the‘simple non-conforming Tocher *triangular dis-
placement assumption element(21) designated T, (ii) that of the
conforming displacement assumption elemert of Clough and Tocher(19)
designated HCT and (iii) that using the elemant of Adini(20)
(1abelled A) which is similar %o the Tocher element excepi that

3
the xy term is omitted from the complete cubic exvpansion (x + ¥)

in the displacement assumption.

The exact value for the central deflection coefficient of

11.6008 is quoted by Timoshenko(3). At all meshes the present

element underestimates the central deflection behaving in a very

similar manner to the conforming Gisplacement assumpiicn elonent
HCT The present resulis are always clozer to the exact. Uhe
L ]

Tocher displzcement assumption eleuent (T) gives stiff solutions



- 35 -

at coarse meshes and "overshoois'" the exact solution to converge
on an answer which iz too flexible. The element of Adini (A) is

much tco sbtiff at g1l mrmeshes.

3,4.2 Clampzd Sguare Plate with Central Point Load

To enable comparisons to be made beitween the present element
and those of Severn and Taylor{32) and Allwood and Cornes(34) the

plate of the yrevious section was next analysed with clamped edges.

The idealizations used were different, however, and these cre shown
in Fig.(3.5). The hypotenuse of each element now points into the
corner B. The deflection under the central load was again ialien

as a measure of the accuracy of the solutions and in Fig3.6) the
ratio of (finite elemsnt deflection)/(exact deflection) is plotted

for various meshes on = of the plate.

The present element again behaves in 2 similar way to the
element of Clough and Tocher (HCT) and at all mesh sizes the

results are again closerto the exact. Compared with the hybrid

-

element of Severn and Taylor (ST) the present element gives slightly
more accurate answers at mcshes n = 2, 4 and € but is not as accur-
ate at the coarsest mesh considered. For the two meshes (n = 2

and n = 4) for which comparisons are available rcsuvlts are, as

expectéd indistinguisnable from those of the triangular version of
g ’

v

the element of Allwood and Cornes(34).

All hybrid models in this problem are underestimating the

central deflection, i.e. behaving in a similar way to a conforming

i : hown in Fig.(3.6), however
displacement assumption model. Also s 5.(3.6), ’

i ' ilibri 1 (see Chapter 2) of de
is the curve using the ecuilibrium model ( AT ,

Veubeke and Sander(B?). This converges to the exact from above
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and in a similar way to the convergence of the conforming dicw
Placement model from below, this can always be proved to be the

cose.

3:4.% Clemped Square Plate under Uniform lLoadins

This problem was concidered to enable bending moments to be
compared with exact distributions and with those obtained using
other elements. One quarter of the plate of Fig.(3.5) was
analysed with a 4 x 4 mesh and the uniform load wos approximated
by a series of point loads. Loads of 1 1bf, were applied at oll

interior nodes and 5 1bf. at all edge nodes except ai D vhero the

load was %+ 1bf. This is equivalent to a distributcd loudinz of

0.445 1bf./in” of plate surface.

The results are shown in Figs.(3.7) and (3.8). Severn znd
Taylor (32) present their results in the form sbhown in Fig.(3.7) -
the exact solution is that given in (22) calcuiated by = fiuite
difference procedure. At a particular node along DC there ~ye
'in general three elements meeting - one of which has a right
angle &t the node. The value given bty the element contairning
the right engle and the avérage given by the tvwo other eiemcnts
are considered separately.\ In both cases the present element

gives wvalues closer to the exact than those of Severn and Taylor.

.

In Fig.(3;8) the results are presented in a different way und

are compared with solutions using the Tocher triangle(21). The

distribution of bending momentg within elements lying along CD

is now plotted and compared with the exact. The hybrid is seen

to give linear digirvibutions which foliow the exact enrve ~Jjonsly

' 1 di stinuiti between clements. The
with relatively small discontinuities bt .

in ¢ ast 14 resses with large
Tocher element, in contrast, gives stress g



discontinvities. The veliuee given at nid-side pesitions ar
S D e

nevertheless seen to be clogse to the correct curve.

An dinteresting roint is that the Tocher aleent sives
slightly different answers along CD snd AD (indicated irn the

Figure). This will be discussed later.

3.4.,4 Natural Freguencies of the Clamped Square Plate
To test the performance of the hybrid element in the prediction
of natural frequencies the same clampzd squarc plate was analysed
with elements again orientated as in Fig.(3.5). Only symmetric
modes were considered and frequencies are expresced in teras of
. . Ry
a non-dimensional frequency factor ol = F/(DL rf}” where:
. 1
p = circular frequency = 27§

D = E&:B/l?.(l -?‘)

Q = mass/unit area.

Table (3.1) compares the frequency factors, at two resh siues,
for the first two doubly symmetric modes. Three elements are used
- (i) the present hybrid HT, (ii) the element of Dungar, Severn
and Taylor (DST) and (iii) the Tocher element (T). The DST
element is the stiffness matrix of Severn and Taylor with 2 umass

matrix derived by using the displacement assumption of Adini(20)

described in Section 3.4.1. The mass matrix used with the present

element is the one derived using the Tocher displacement assumption.

The exact solutions are those given by Claassen and Thorne(72).

The results using the present hybrid element are generally

closest to the correct answer. It will be noted that both hyorid

i i i ighec han the exact whils?t
elements give frequencies which are higher t e L

the Tocher element always underestimates the frequencies of these

two modes.
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In Table (3.2) the effect of using different mass ratrices
with the present nybrid stiffness matrix is examined. The first
10 natural frequencies in stgm>tric/symmetric modes using a (4 ¥ 4)

mesh are given.

The mass matrices used are:

(i) that derived from the conforring Clough=Toclow displace-

ment assumpiion (19)

~
.
}-

g

that derived from the simple non-conforminsg Tocher

assuunption described in Section 3.1.

~~
e
N
.

~—r

that derived from ths displacrment assumptiocn used by
Dungar, Severn and Taylor. This is also the Adini(2C)

assumption.

Alsc included are the frequencies using the Tocher stiffness
and mass matrices. The exact values arc those given by Clazzzsen
and Thorns{(72) evaluated by the summation of a doulle Pourier sine

tlable.

L..:

)
v

oM
}._
s

series., Results for the first four frequencies only zre av

The various mass matrices give results which differ by very
small amounts, certainly on the lower modes, vhen used with the
hybrid stiffness matrix. On this basis it was therefore thought
most efficient always to use the Tocher mass matrix since the com-

putation is much simpler than when using the Clough--Tocher

L

assumption.

A convergence test was then carried out on the first thrce
symmetric frequencies using this form of the element. Table (3.3)
) ! da
shows the frequency factor for various meshes. Convergence te less

; ; + ' [regriency comn~red with tre
than 1% is achieved on ihe fundamental freqrency 1 with

exact solutions of Clzascen and Thorne.
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5.5 The Perfornance of the Hvbrid Trisnela

e
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oinply Supported Plate with Central Point Load
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cn
1o be compared with displacement assumption elements of similer com-

plexity. All elements in Fig.(3.4) make use of the same nine degrces

of freedom.

The most interesting compariscn is between the hybrid end the
conforming displacement assumption element of Clough znd Tocher (H17)
which along its edges has the same displacements as the hybrid. Pian
(30,31) and co-workers come to the conclusion that a hyhrid element
will give a more flexible solution (in terms of the displacerent
under a load) than a éonforming displacement assumption model with

the same edge displacements., This is demonsirated here,

Generally, however, although the conforming displacement
essumption element can be proved to converge monotonically from
below, the result using the hybrid can lie on either side of the
exact and monotonic convergence is not guaranteed. In fact, on

this problem, the present hybrid does exhibit monotonic convergence.

The curves for the Tocher element (T) znd that of Adini (4)

are typical of non-conforming displacement assumption models,

Convergence, monotonic or otherwise, is not guaranteed and indeed

the Adini element has not converged at the finest mesh considered,

The excessive stiffness of this element is due to the omissicn of

the xy term from the displacement assumption. Its absence means

2 3 mracant
that the state of uniform twist (2¢{ﬁx}j ) cannot btz represented.

A . . . +
The Tocher element has convergec to an znswer which is %00

flexible arnd convergence is non-monotonic.
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35,2 The Ciamped Square Platc with Conirsl Point Lonad

(AR TP N

Direct comparisons on thie problen indicate the superiority
of the present hybrid over that of Severn and Teylor at &ll but
the very coarsest mesh considered. This is difficult o cuplain
but must be due in some way to their more complicated stress ascuvar-
tion. In fact, using this mesh Severn and Taylor obtain their mog?

accurate value for the bending noment at the edge of the plate.

They consider this to be fortuitous,.

At the two meshes n = 2 and n = 4 the precent elemsnt gives
the same values as the best trianguler version cof the soencral
element of Allwood and Cornes(34). They make assumptions for
stresses (rather than stress resultants) which are equivalent to
the present ones. Since their ecdge displacement assumptions are

also of the same form the two elements are identical.

3.5.3 The Clamped Scuare Plate under Uniform Loading

The present hybrid gives values for the bending moment =long
a line of symmetry of the plate which are very close to the exact
curve both at nodes and within elements. The laige discountinuities
in stress using the Tocher element are due to the non=-conrorming
nature of the displacement assumption. Slightly different bending

noments are given, also, along the lines CD and AD in Fig.(3.5).
If the displacement assumption »
!

2 1 3 3 :

W= [}r , 0 *) X4, 4"y, ’ﬂfé‘*y)]. i

i11 be seen that since this is not a completz

)

ijs examined it w

bic expansion it is not invariant under a changes of oxee,
cu .

Therefore when elements are orientated in differnt ways along

i in srucutre they wi nerally giv
physically similar lines in the strucuire they will generally give

. . a C aYemer, n T4 z a0
differcnt stresscs. These slight differences are cLowih in rig. (3.5,
> r'S
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3.5.4 HNatural Frcynencies of Clamped Scuare Plate

The results on this problem generaliy confiirm ithe slight
superiority of the present element over that of Severn crnd
Taylor. It is evident, also, thai the type of mass noirix

used is of less importance than the iype of stiffness matwix.
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FIG 35 CLAMPED SQUARE PLATE
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TABLE 3.1 FREQUENCY FACTORS (¢) FUX CLAMPED SQUARE PLAYE
4 \% 3
&« = p/(DL g)" pP=2Tf DaBt /12(1 « y*) ()- pass/uniiorea
Exact 3 x 3 Mesh L x 4 Yesh ]
DULLULIVIL DeDeTl. T nt DedeTe T nr ,
e e e i
1st Doubly .
Symmetric 35.985 36.80 34,10 36.43 365.41 34.47 26,21
Mode
2nd Doubly
Synmetric 132.204 | 146.85| 122.73 {145.90| 139.27 | 124.43 | 138.9¢
Mode
TABLE 3.2 NATDRAL FREQUENCIES (HERTZ) OF CLAMPED SQUARZ PLATE
USING VARIOUS MASS MATRICES (4 x 4 MESH)
HT Stiffness |up stiffness| HT Stiffness .
Freq. + Tocher Exact
No Clough-Tocher M * Triangle xace
¢ Tocher Mass | D.S.T. Mass
Mass
1 245.11 245.12 245.%0 23%3%,3%5 242 .8%
2 93%32.54 9%2.40 936.77 841,26 887.22
3 940.33 940.16 938,63 842.25 | 892.13
4 1548.61 1550.48 1555.50 1374.51 1420.61
5 2359.54 2357.85 23259.24 1957.26
6 2392.52 2389.56 2391.05 1967.12
7 2856.36 2861.55 2914.27 2441.78
8 2949.89 2960.17 2931.39 2458.69 )
9 4170.33 4202.02 4258.58 3437.11
10 5216.05 5180.24 5170.19 3572.95
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 CONVERGENCE OF FIRST TFREN SYID

CLANPED SQU2RE PLATE

WTRIC FREQUZNUIES OF

I A o MIITTIS AT Va3 - T -t

L e il

Freavenev Factor (o)
reantage Error)

/ IR I

B e :m:‘-_j
H
)

\re
Degrees of ﬁ;gg‘gg‘ lode ' ]
Freedon 4+ Plate | (M,n) 1,1 1,3-3,1 1,3+3,1
L"""“‘Vr-. .
1 1x1 AT.3287
(31.5226)
5 2 & 2 37,1163 171.1192 182.0914
(3.1432) | (30.0487) | (37.7343)
21 5 x 3 36,4322 143.6912 145.9420
(1.4608) (9.2038) | (10.3908)
40 4 x 4 %6.2120 137.4407 138.8903
) (0.7412) (4.4534) (5.0559)
65 5 x 5 26,1177 135.2354 136.1326
(0.3682) (2.7117) (2.971)
EXACT FREQUENCY FACTOR 35,9852 131.5800 132,2048

Note: m,n are the numbers of half waves in the x and y coordinate

directions respectively.

The nodal lineg for the 1,3f3,1 nodes are as follows:
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4,) Introductiocn

First epproaches to the analysis of general shell sirucitures
used a number of flat elements containing beth bending and ncezbranc
effects., In each separate element the eflfects are uncoupied;
coupling is only introdvced vwhen elements zre joined together st
angles to mode! the shell. For instance, 2n in-plans force in oue

element will transmit both keniing and mermbrane componote to zn

adjoining element at en angle.

In a2ddition to this there are two cther deficiencircs assoni-~

ated with the approach. Firstiy, it is normal for Vendng ond in-
plane displacements to be of different ovders of =jpjroxineticn so
when two elements are joined at an angle & mis-match or irconpstiie
bility of dispiacements occurs. Hence it is possibie fo. gaps 10
appear between elements. However, the effzct tends to diminish with

decreasing mesh size when eclements become more end more co-planar,

The second deficiency is concerned with the misrepresentztion

of geometry which arises. The assembly of flat plates is onlv an
approximation to the shape of the shell and does not saticfy the

requirements of thin shell theories which de2l with cortirnious

middle surfaces.

Despite the above disadvantages the methed is stilil ucsd
extensively. OFften a large number of elements are needcu tO over-
come geometric and incompatibility protlaenms, hut becausce ha
elements are relatively easy to program and they gea22t1ly ves

smaller emounts of store and computer tize, theiv use is often
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preferred to ihnt of more complex curved eicacnis.

Scme of thz successful anclyses which heve aprpeared in the

+
12

)

literature are those of Hrennikoff =nl Tezecun{4l), Zierliewicz

13

and Cheubﬁﬁ4}, Clough end Johnsoa(42) end Carr{43). Thesec a

t-4

i
used displacement assumption elements of various forms but an
interesting analysis ivem the p&int of view of the present work is
that of Duugar, Severn aad Teylor(33) who, in addition to plate
bending problems, éonsider the vibrations of a single curvature,
constant thickness arch dam. Their element is based on a hybrid
formulation, the plate bending portion being that menticned in the
previous chapter and the in-plane matrices being based cn » lineor

assumption foxr. the variction of stresses within the element.

It was decided here to constiruct a flat triangular hybrid
shell element using the bending stiffness matrix of the previous
chapter. Superimposed upon this is an in-plane natrix hzsed upon
an assumption of constant stresses., To compare results tle s=ame
in-plane matrix was added to the Tocher displacement assumption

element of the previcus chapter.

4,2 The Combination of Bending and liembrane Effects

Fig.(4.1) shows a general three noded bending triangle with
the degrees of freedom used before. Also shown is a membrane
triangle whose effects are to be superimposed upon the firgte
This has two degrees of freedom at each of the nodes, displace-
ments in the element x and y coordinate directions. The flat shell
element formed by superposition of these two then has five Jdegre=zs

of freedom at each node.

The proecedure for combining the two stiffnese matrices and



tvo mase maitrices is exactly ihe ssme., The hending <hiffiness

matrix relates forces and displaccmentzs thus

[»—2 = [kl fo] (£.1)

where p(J is the (9 x 9) syuncirvic stiffness matrlx

K e
= S <, & 7, . LT

( 5
and {Fjeis a vector of forces and moments uorre5pond1no to{i{

Similariy for the menmbrane stiffness matrix

L =[KJR” .

where [K;] is the (6 x 6) stiffness matrix
"
{%&b is the vector cf displacements {%4 Ui Wy (g U, L@}

™m
and {F}e the correspending vector of in-plane forces.

The two stiffnesc matrices can now be combinued to fonw

one (15 x 15) matrix relating the displacements
] 1 - !
{u.' U', wh ex. 93;: U U;, W ex,z_ 65;,; u3 U-g lA.T;'-‘. 81.5 f)’:})f

to the corresponding vector of forces

-

{F“l FU': F‘Jt Fex, FBUI:E Fus Fo, Fus, Foss FGU:«EF“S F’{’, F‘JBJ F@N} Feﬂé)z‘

This involves copying parts of the relevant rows and coluins
from the two component matrices into the correct positions in the

totel stiffness matrix. ‘

In Fig.(4.1) the rotation perpendiculer to the surfacc of the
element is not included as a degree of freedom. 'hen using thin
plate or shell theory the displacemenis of the niddle surface only
are considered. The strains of the middle surface are delined
uniquely by five degrees of freedom - the rotation ncrinal 1o tne

surface does not enter into the expression fcr the sirain energr.



- 5L -

However, when two flat elements are joined togzther to
. . ! . s - . .
approximate a shell (Fig.(4.2)) there will! be = contribution %o
8. rotational stiffness perpcndiculier to the shell due to the com-

poenents of in-plane rotational stirfnesz of both elexents. I two

a2

elements become co-planar then it is important not {10 include the
normal rotation as a degree of freedom in the idezlization. When
elenents meet at angles, however, it is possible to (i) leave six
general degrees of freedom at a node or (ii) declare local axes
and have no rotation normal to the surface of the shell, Both
approaches have been tried and little practical difference in the

resvlts has teen found.

4.3 The Evaluution of a Hybrid in-plane Stiffnecs Matrix

To conipute an in-plane stiffness matrix an assumption of con-
stant in-plane stress was made., As befcre there is a minimum lerngih
for the stress assumption which in this case i3 egual Lo three
(degrees of fresdom - number of rigid body modes). A stress
assumption with three unknown coefficients was therefore chosen to

give the well known constant stress triangle.

The assumption can be stated in terms of stressesthus

Sx r-| o o" P|
syl = o l o |.[P (4.3)
'C:uj | © o | i (Fi |

This assumption can be shown to satisfy the homogeneous equilibriun

equations.

For the evaluation of the complementary strain energy the

ex, r' -y 0 ]
Ej("é’ - | o |, 57 (4.4)
(Exs) o o 7.(!””2 T w)

standard nlane stress reiationship for in-plane effects wag veed
X
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It is possiblz, with thz nodal degrees of freedom used for
the in-plane triangle to wmake an assuaption of linearly var; ing
displacement over the whole o7 the element and to take values

only along the edges for the culceulation of edge wonll.

The displacement assumption used ic thereforc of the form

= (x,
U] | = y o o0 0 {5 B
{U'} [:.o o o | x fjj‘{}‘ | (4.5)

g

The coefficients &iz cer: then be related to the nodal quantities
by substituting the coordinates of the nodes in the above exprassion.
Since both the u and v displacements (Fig.(4.1)) only vary lincarly
along the side of an element, displacement continuity is mainiained

between adjacent co-planar elements.

To compute the matrices numerical integration with a second

order Gauss process was again used.,

4.4 The Calculation of Stresses

For the flat shell element fwo matrices (the [}ﬂ-ﬁ;]
matrix of Chapter 2)relating stresses to nodal displacements for
bending and in-plane effects, are carried through on backing store
into the stressing routine. Thc bending and in-nlane displacements
for a particular element are then separated in the stressing routine

and the two sets of stresses evaluated independently.

4.5 An in-plane Disgplacement Assumption Stiffness llatrix for use

with the Tocher Triangle

Foxr comparison purpcses it was necessary to add an in-plane

matrix to the Tocher element of Chapter % to form snother flat



-~ 53 -

shell element. This was cvaluanted by a displaccment assumption
approach using the assumption (4.5). This, in fact, gives the
same in-plane stiffness maitrix as obtaine” using the above hybrid

neithod.

Normally the two assumyptions for stresses and edge displace-
ments made in hybrid elements are incompatibie along the boundarias.
However, in the case of the hybrid in-plane matrix desscribed in
Section 4.3 this is not the case. If the constant stress cssump-
tion (4.3) is inserted in (4.4) and the strains are expressed as
derivatives of uw and ., the following equation is obtained.

(bu./bx m’ -y o (Fu
Dy Bl 0 0 L (4.6)
Oufyrdol) Lo o 2le) (B

P

It is apparent frem (4.6) that the strains can be integroted

to give an equivalent displacement assumption of the form

= Rl~ C:
w=haxs By + G (4.7)

U= fx + sz + Ca2

|
where the constants RL,BL are in terms of the PS , E and
This is identical to (4.5).

is
Therefore an assumption for constant in-plane stressesAin this

case equivalent to an assumption of linearly varying displacements
and the stress and displacement assumptions along the edges of the

element are entirely compatible.

If, then, the linear displacement field is used to evéluate 2
stiffness matrix using the Principle of Minimum Potential Energy,
exactly the same assumption is made as when constructing the matrix
using the Modified Complementary Energy Principie. The two are

simply alternative methods or constructing the well known constant
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stress in-plane stiffness matrix.

Therefore differences between the results using the two flat
shell elements will be due to the differences in.the tending stiff-

ness matirices alone, since the in-plane matrices are identical.

It is evident that in the case of all hybiid elements, when
a stress assumption is made a displacement distribution is implied
by integration of equations equivalent to (4.6). Quite often, how=-
ever, it is either impossible to integrate the stress assumption orx
displacements are given which are incompatible with the edge assumnp-

tions. The present example, then, is a very special case.

4.6 Problems Analysed

4.6.1 The Pinched Cylindrical Shell

The problem is shown diagramatically in Fig.(4.3). The shell
is simply supported at each end ahd is subjected to twoc equal dia-
metrically opposed point loads halfway along its length. This, a
far more severe problem than the more usually quoted "Pinched
Cylinder" in which there are no end supports, is used by Lindbverg
et al.(65).to test their triangular shell element. The exact
results they quote are from a double fourier series solution of

Flligge's equations using 80 terms in each direction.

1

Eoth the present hybrid and the assumed displacement element
were used to predict the displacements of the cylinder. Symmetry
allowed only & of the problem to be treated using uniform (3 x 3),
(4 x 4) and (6 x 6) meshes. These involved 52, 93 and 211 degrees
of freedom after boundary corditions had been applied. The deflections
along the toﬁ (DC) of the cylihder were compared with exact values to

measure the convergence of the solutions.
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Fig.(4.4) shows the normal displacements along DC using the
two elements. At all three mesh sizes the assumed displacenent
element gives the more flexible answers, which in this case lie

closer to the exact. With the {inest mesh considered here the

deflection under the point load is underestimated by 1835 and
305% by the assumed displacement and assumed 'stress elemenis
respectively. The severity of the problem is indicated by the

fact that the (4 x 4) uniform mesh using the complex element of

Lindberg et al.(65) gives an error of over 10% in this deflection.

4.6.2 A Simply Supported Panel under Pressure Loading

To provide a more comprehensive test of the elements it was
<necessary to deal with a problem for which exact values of all
displacements and particularly, stresses are available. A simply
supported, square, cylindrical panel under pressure loading (Fig.
(4.5)) was chosen. The method used to évaluate the exact distribu-
tions isvoutlined in Appendix 2, With the particular geometry and
dimenéions chosen here, stresses due to bending and membrane actions

are of the same order of magnitude.

In the finite element idealizations the pressure loading was
approximated by a series of point loads normal to the surface. In
Chapter 2 it is explained how "consistent" loading vectors can be
derived for hybrid elements. It is also possible to derive these

for displacement assumption models.

The experience of previous workers has been that these con-
sistent vectors give loads which are very little different from
those obtained if the force is simply distributed equally among
the nodes. In view of this fact, but mainly because the geometrical
misrepresentation would complicate matters, it was decided not to

use this method. 1In later chapters of this thesis consistent



pressure loading vectors are obtained.

Both (4 x 4) and (8 x 8) meshes were used on i of the panel.
The arrangement of the elements for the‘(4 X 4) mesh is shown in
Fig.(4.5) and also the positive convention for stress resultants
is defined. The assﬁmed stress bending element of the previous
éhapter was developed using a different convention for bending
moments and this has been téken into account when interpreting
results. The conventions used in Fig.(4.5) are those of Novczhilov(l)

and will be used throughout the remainder of this work.

The results for displacements and stress resultants along
lines of symmetiy of the panel are shown for both meches in Figs.
(4.6) to (4.23). The stresses plotted are those given along edges

of elements lying along the lines under consideration.

At the two mesh sizes the hybrid and assumed displacement
elements give virtually the same displacements an&in-plane stress
resultants. The major difference is seen in the prediction of
bending moments. The hybrid element shows small discontinuities
between elements and also the distributions are closer to the
exact curve. In contrast the bending moments given by the assumed
displacement elément show extremely large jumps between elements -
this being especially noticeable in Mx and M$. However, values
given at midpoints of the sid;s under consideration lie close %o

the exact curve.

4,7 Conclusions

The general superiority of the hybrid element compared with
the assumed displacement model, certainly in predicting stresses,

is evident from these results, This is coansistent with the findings
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regarding the plate bending elements of the previous chapter. The
hybrid shell element,von the present problems,tends to give stiffer
results for displacements which means that in the case of the
pinched cylindrical shell these lie further from the =xact. In
this problem it is obvious, however, that much finer meshes would
be needed to give reasonable answers - possibly with the mesh being

refined locally around the point of application of the load.

Since the edgé displacement assumptions uséd for the hybrid
element are compatible for elements in the same plane, they can be
considered as being better approximations to compatible displace?
ments when the elements are joined at anglés, than those of
the assumed displacement element. The excessive flexibility of
the displacement element, noted for plate bending in the previous
chapter,is thus the fortuitous reason for its better performance

on this problen.

The difference between the deflections obtained on the simply
supported panel is much less marked. The hybrid elements give
marginally the smaller deflections at point D (the centre of the

panel) but the difference is too small to be shown on the figure (+Wo,

From this limited set of results it is difficult to generalize
as to how stress outputs should be interpreted in other problems.
The assumed displacement element does not perform satisfactorily
and cannot be considered seriously as an element to be used for
stress predictions. It is possible that with large numbers of
elements reasonable answers could be obtained if values at mid-

side positions or centroids of elements only are considered.

The hybrid appears, on this basis however, to be very useful.

It will be apparcat from later sections of this work that the results
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using this are comparable with those using more'complicated,
curved hybrids which were developed subsequently. The geometry
of these allows cylindrical éhells 10 be modelled exactly, but
these problems can also be treated using the preéent element.

Furthermore, this element is also capable of analysing general

shells with double curvature. It does, of course, suffer from

the limitations of all flat shell elements (Section 4.1) but its
performance on the ‘problems considered here would seem to Jjustify

more extensive investigations on a variety of shell structures.
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Chapter 5

A THIN BYBRID CYLINDRICAL SHELL LILEMENT OF RECTANGULAR PLANFORI

5.1 TIntroduction

In Section 4.1 of the previous chapter the method of analysing
generally shaped shell structures using flat elements was described.
The advantages and deficiencies of the method were pointed ocut =12

examples of successful analyses by previous workers were given.

Often large numbers of elements are needed with this approach
and in an attempt to obtain accurate answers with fewer elements,
various types with curved surfaces were then developed. Initially
these tended to be of a particular geometry and generally used the
displacement assumption approach based on the Principle of Minimum
Potential Enevgy. Examples are the cylindrical shell elements of
Bogner et al.(44), Cantin and Clough(45) and Olsen and Lindberg(46).
Later, elements capable of modelling shells with general curvature
were produced, e.g. those of Strickland and Loden(50), Bonnes,

Dhatt et al.(51) and Cowper et al.(52).

The construction of curved finite elements presents problems,
however, which are not encountered in flat elements. One of the
important criteria for the satisfactory convergence of a mesh of
finite elements is that each individual element should be abie to
represent the state of uniform strain - and in particular ‘the state
of zero strain associated with rigid-body type motion. This, for
flat elements, is easy to ensure but in curved elements it often
presents problems. Cantin and Clough(54,55) examined this in some
detail and demonstrated that in certain problems it iz imperziive

to represent rigid body motions adequately tor saticfactory

convergence.
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Also, many of the more complicated curved shell elements use
degrees of freedom which are equivalent to strains. The disadvant-
ages of these "non-geometric" freedoms were outlined in Chapter 1.
An example of this type is the shallow shell triangle of Cowper et

al.(52) using 36 degrees of freedom.

Recently Henshell et al.(53,55) have produced a hybrid cylindri-
cal shell element which they demonstrated, in some applications, to
be comparable with the element of Cowper et al. The element, shown
in Fig.(5.1), is of rectangular planform and uses five simple geo-
metric freedoms at each of the four nodes. It generally gives

excellent static deflection and natural frequency predictions.

The element was, however, tested only on deflection and naturai
frequency prcblems ahd no investigations of stress predictions were
made. During the present work some preliminary studies of this were under
baken and results were éuite encouraging. -However, the element inclu-
ded é nﬁmbef of features which were thought to be unsatisfaptory but
whose effect on results céuid not easily be predicted. It was there-
fore decided to construct a new elemént with the intention of elim-~ -

inating these features and then to examine in detail the stress pre-

dictions obtained.

5.2 Unsatisfactory Features of the Existing Element

5.2.1 Edge Displacement Assumptions

To enable both mass and stiffness matrices to be evaluated a
displacement assuuption was made over the whole area of the element
(Chapter 2). For reasons explained in (53) and (55) displacements

in axes parallel and perpendicular to the base plane (Fig.(5.1))
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were assumed and the edge values only were used to compute the
boundary work necessary for the construction of the stiffpess
matrix. The polynomials uvused for the in-plane and transverse dis-
placements were, however, of different orders ané therefcre when
two elements were joined to form a smooth, cylindrical surface,

displacements along the straight edges between elements were not

continuous.

In the new element only edge assumptions are made in terms of
*the "natural" displacements in the tangent plane of and perpendicular
to the shell surface. Continuity of displacements is then assured

for adjoining elements forming part of a continuous surface.

5.2.2 The Stress Assumption

During the development of the existing element the concept of
an "oﬁtimized" stress assumption was introduced. The terms were
chosen carefully, keeping the same edge displacements, to give gqod
answers on all problems. It was thought necessary, since the new
element would use different edge displacement assumptions, to re-

examine the form of the stress assumption.

A feature of the existing assumption was that all stress
resultanis were not represented to the same degree of accuracy in
both directions. Particular resultants were, for instance, con-
strained to be constant in one direction whilst varying linearly
in the other. It was thought possible that although an assumption
such as this might give the best deflection and natural frequency
predictions, it would not be the best to use for the prediction of
stresses. It was therefore decided to conéider stress assumptions
with,as~far as possijible, uniform representatiohs of stress in 2ll

directions. It was also intended to investigate assumptions of

‘different lengths.
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5.2.3 The Stress-Strain Relationship

To enable the stress assumption to satisfy all {he egquilibrium
equations of the shell (given later in Section 5.3.3), Henshell et
al. differentiated between the two in-plane shear stress resultants

N,-,{: and N¢x and the two twisting moments M;uf and fo (Fig.(5.2)).

When these particular stress resultants were evaluated on sample
problems they were found to be serioﬁsly in error. The shell theory
of Novozhilov(1l) was then studied and the conclusion reached that no
distinction should be made between Mz¢ and Méx but the equilibrium
equations should be satisfied by allowing slight differences to
exist between the assumptions for Nx§ and NMgx . This will be

explained in detail later.

5.2.4 The Nodal Degrees of Freedom

As a cbnsequence of the form of the displacement assumption
the nodal degrees of freedom were, 2s in Fig.(5.1), parallel and
perpendicﬁlar to thé base plane. The rotational freedom normal to;
the base plane, considered as being appfoximately noxmal to the
shell surface, was not used giving an element with 20 degrees of
freedom - 5 at each node. In the new formulation (Fig.(5.3)?, the
natural deflections in the surface of the shell are considered as
nodal freedoms. The rotation normal to the shell surface,
beingitapplicable to.thin‘shell analysis, is not used - aggin giving
5 degrees of freedom at each node.

A

For the purpose of merging in the PAFEC 70+ scheme the stiff-
ness matrix must be expressed in terms of degrees of freedom in the
base-plane. This results in a (24 x 24) stiffness matrix (3 dis-

placements and 3 rotations at each node). \
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5.3 The Formulation of the New Element

5.%.1 Element Geometry

The symbols used to specify the size and shape of the element
are shown in Fig.(5.3). The stress-assumption (Section 5.3.4) is
made in terms of the surface coordinates x and s. The length of
the element is denoted by the pérameter 2 and the curved width by

the parameter WID. The angle subtended by the curved side iSJZF .

5e3.2 Edge Displacement Assumptions

As stated earlier, to ensure continuity it was decided t¢ work
in terms of natural shell displacements. For each of the sides,
which are considered separately, it is necessary to express the
displacements of a point along the side in terms of the nodal vari-
ables at the ends (Fig.(5.3)). Two separate formulations are used,

one for thé two straight sides and one for the two curved sides.

Since.it is only necessary to muke displacement assumptions
along the edges of the element, the problems of representing
accurately the rigid body motion are somewhat reduced. t is only

. necessary td represent accurately the rigid body motion of the sides
when considered separately as curves in space. This will ensure

adequate ‘representation in the element as a whole.

5.3.2.1 The Straight Sides 12 and 34

‘The five displaceménts at each end of the straight sides

- allow linear interpolation of u and v displacements and cubic
interpolation of w. Hermitian polynomials are used to express
the displacements of a point directiy in terms of the nodal vari-
.ables. ‘For example along side 12, if x is the distance measured

along the side from node 1 towards node 2, and £ is the length of
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the side then:

/.,W - | | |

w} __...\_’ﬁ'/._.L...__.q__..._._-'__._'.._.._..._....
s GR : !
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or in the matrix terminology of Chapter 2 {U-Sm:- [L]'a hi,,_

The correct_representation of all six rigid body motions
presents no problems in the case of a straight side. If any con-
bination of displacements describing a rigid body movement is
“entered .into (5.1) then the equations give the correct distribu-

tions of'displacements along the side.
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5.3.2,2 The Curved Sides:.13 aznd 24

Basically, as above, it is possible to allow linear variation
of displacements in the tangent plane of the shell and cubic varia-
tion of the normal displacement w. However, if the simple inter-
polation formulae of the previous section were used they would not
represent rigid body motions of -the curved side correctly. Because
of the curvature, displacements are coupled under rigid body move-
ment and it is ﬁecessary to modify certain terms to give an exact
representation. The relationships of Cantin(54) and Cantin and

Clough(45) are used and the assumption is constructed in two stages.

Initially an assumption is made in terms of ten general vari-
ables {X} which can lgter be related to the nodal displacements.
The first six of these general variables can be considered to
represent the six possible.rigid body motions of the curved side
whilst the last four are used to supply the extra variation of dis-
plabements.allowed.. In this case the angle ¢ shown in Fig.(5,3) is
used as a measure of the distance along the curved sides. ?’F and

¢='P determine the two ends of the side.
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The first six columns of this assumption give the distritbution
of displacements along the side associated with the six rigid body

movements of Fig.(5.4).

The ten coefficients {*} of (5.2) can then be related to the
nodal variables at the endsof the side by substitution of ¢=P-and

9b=-73 intoc (5.2)., For example, along side 13
) :
Yl _ A : &3

q“” _ 10 where

The Eﬁ] matrix of (5.3) can then be inverted and used to post-
multiply (5.2). This will then give the displacemeunt at any point
on the curved side in terms of the nodal variables, with rigid body

terms included exactly.

5¢3.3 Equilibrium Equations

The stress resultants acting on an infinitesimal element of a
cylindrical shell are shown in Fig.(5.2). The sign convention is
that used by Novozhilov(l). The relationships between these stress
resultants and the actual stresses in the shell are given in
Appendix 1. The following six equilibrium equations can 'be shown
to hold for no external appliea 1oadihg.
x_direction RbNx/Jx +)N¢x/)¢ = 0 (a)
s direction R)Nxf/c)x t 3/V¢/()¢ 1@ = O (b)
perp. direction AQ¢/Q¢ t+ R)(Px/)x "/Vf‘ =0 (ec)

- ©x direction -bM¢/r)¢ ~ RIMxpfdx +R @p=0 (a)
©s direction Rbe/)x ‘f'bM’SX ()¢ 'Rq)x =0 (e)
© perp. RNap = RNfx - Mgx =0 ()
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If there is an external'appliéd loading, the above eguations
have to be modified. For example, pressure loading of Plt/in
modifies (5.4)(c) to become

0Qpfdp + RIGxfix — Ng = PR (

The variable ¢ is related to s, the distance measured on the

N
»
un

e’

surface of the element by s= R¢.'

5.3.4 The Stress Assumptions

Following the method outlined in Chapter 2, a stress assumption
is made in terms of a finite number of parameters which satisfies
the homogeneous equilibrium equationé (5.4). For the evaluation of
a consistent loading vector to represent, for instance, pressure
loading an additional particular assumption must be made to satisfy
the inhomogeneous equations (5.5) in the manner described by Pian(30)
and Tong and Pian(31). The theory for this is also included in

Chapter 2.

Many approximate shell theories, for instance that of Love
described in Chapter 1, make the assumption in (5.4) that /V%ﬁ::ﬂ@ﬁc
and M%‘M%x This, however, introduces inconsistencies - one
being that (5.4)(f) cannot be satisfied except by having Méx
always equal to zero. This is unsatisfactory. More refined shell
theories such as that of Novozhilov(1l) differentiaté between these
quantities. However, Novozhilov proves that to the accuracy of his
initial thin shell approximations the twisting momeuts M:mf and M}éx
can be considered equal. This is thought to be the reason why the
element of Henshell et al.(53), which makes separate assumptions
for these stress resulténts, gives unsatisfactory answers in this
.respect. It was decided here¢ to use the same expressions for A4x¢

and hﬂ¢;‘but to make slightly different assumptions for /%zf and

N¢gx such that (5.4)(f) ic always satisfied.
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' In this;'és in all hybrids, there is a minimum length of the
stress assumption to prevent the appearance of spurious rigid body
modes (28,29,30,31) bdbut theoretically no maximum. The assumption
is composed of both bending and membrane components. In bending
there are twelve degrees of freedom with three rigid body modes
and the membrane effects are described by eight degrees cf freedon
(three rigid body modes). Therefore there must be at least nine
columns in the bending part of the stress assumption and at least
five in the membrane part. The assumption must then involve a

total of at least fourteen undetermined coefficients.

Two additional features were also included:

(i) The uniform approximation of all stresses. This meant
including at least th; variations 1l,x,s in all stresses.

(ii) When the element is reduced to a fiat pléte the assumptions
should become uncoupled to produce satisfactory separate bending

and membrane assumptions.

Figure (5.5) shows a complete stress assumption involving 29
parameters, having at least quadratic representation of all sfresses
in both x and s. Each éolumn of the assumption satisfies the homo-
geneous equilibrium equations (5.4). Tests using both the complete
assumption and just the first |4 linear terms were carried out and

results will be pfesented later.

Y

To evaluate a consistent pressure loading vector a particular

solution of (5.4) (with (5.5) instead of (§.4)(c)) was chosen to be

Ne Mo N Nk Me Mg Mx Qe O
P<* 0 -Pxs -Ps o o Pxs Px P
2R 2k K Zz 2 2

‘There are many possibilities for choosing a particular assumption

to satisfy the in-homogeneous equations. This particular assumption
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weg chosen since in the flat case the pressure is carried eaually
by the two shezr stress resultantis G%C and(Q¢ « Generally, the
loading vector obtained will depend upon the particulaer assumption
made. It can ve shown, nowever, (5i) ithat il all the terms ol ihe
possible particular solutions are included in the homogeneous

stress assumption, then the loading vector obtained will be

independent of the particular assumption chosen,

In the present case only this particular assumption was used
with both 16 and 29 term homogeneous assumptions and satisfactory

loading vectors were obtained in all cases.

5¢3.5 The Stress-Strain Relationship

In Appendix 1, Novozhilov's relationships between the stress-
resultants and strains of the middle sufface are given and their
derivation is outlined. The analysis is concerned with a general,
doubly curved shell. In the present case, with cylindrical geo-
metry, one of the radii of curvature is infinite and the expres-

sions given in Appendix 1 are somewhat simplified.

If, at this stage, the coordinates x and ¢ are used to replace
1 and 2 of Appendix 1, and the equations for S and H in (A1.9) are

expanded taking into account Rx =o0¢ they become:

/\.M*vax/ﬂ = M = [E(:/Z(Ify)]LQ' .
Mx$ + Méx = [Et"‘/é( /+y)]”c

Equations (5.6) are insufficient to express h&¢ , A@h:,hhx¢

(5.6)

b4

and M¢x wuniquely in terms of &) andT, but it can be shown that

Neg = [efa(e)] (0 + £TIR) = FR

Nex —"[Et’r/l(lﬂﬂ L

- (5.7
 Mxp = {Ef%l(lf)’ Tff Méx 3{,5-}3//2(;“%/[“?

where-é may be chosen to suit convenience.

)
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In general, this indeterminac& is not important, since it is
_not necessary to find separately the forces and moments Mg , Max ,
‘Maaf and M¢z.. They only enter into the equilitrium equations and
boundary conditicns in the combinations denoted by S and H. They

are, however, required separately for the determination of the ghear

stress resultants @x and q% . These, though, are usually of little
practical interest since they are small compared with the other
forces, However, for the construction of a hybrid finite element
the quantities QbL and Q¢ nust be determined for the calculation
of the edge work - hence it is necessary to have the equations in

the form (5.7).

Novozhilov(l), proves that the magnitude of f; in (5.7) is in
fact insignificant, because it introduces changes which are beyond
the limit of the error of the initial thin shell assumptions, It

is possible, then, for practical purposes, for'jg to be neglected.

It was decided, in the present element, to use the individual
stress resultants /\/x¢ and Mfx , but only Mx.¢ (sinvce Mx,é = Mox
in (5.7)) (see Section 5.3.4). The corresponding strains of the
middle surface are Ex¢ ,EPx and the curvature Km? . These are

related to (@ and T by
WO = Exd + Edx

T = Xxf = Kéx + ex{:/ﬂ. (5.6)

A

Using the relationships in Appendix 1 (equations Al.9) and
those in (5.7),'the complementary strain energy of the shell

expressed in terms of the vector of stress-rebultants{&} is

C.S.B. - Jj—;{a}f@{@ Rdedd . (59)

where ) {5}1” {N:r,, Né, Nx.f, N¢x' Mx, MQ; Mx{)}

‘and [Fg is the matrix
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This can be shown to be equivalent to Novozhilov's strain

energy expression (equation (A1.4) of Appendix 1).

5.3.6 The Fvaluation of the Stiffness Matrix

For the calculation of the stiffness matrix and consistent
loading vector, integrals of complementary strain energy and work
around the boundary must be evaluated. These integrals are per-
- formed numerically using Gauss processes of order 4. Tests with
higher order processes were carried out but no change in results
was apparent. It was therefore assumed that processes of order 4

performed the integrations with sufficient accuracy.

Each side of the element is considered separately in the
evaluation of edge work and it is necessary to construct matrices
to transform the edge stresses into forces in the direction of
displacements. Along, for instance, edge 1,2 of Fig.(5.3), the
forces Fu, Fv, Fw, Fox, Fos (per unit length) in the directions

of the u,v,w,0x and ©s displacements are given by the following

relationships:
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- the relevant stress resultants are shown in Fig.(5.2)
Along the other straight edge, joining nodes 3 and 4 the
expression is similar to (5.10) except that the signs in the
matrix are reversed.
Along the curved edge 1,3 the relationship is (
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with the expression along the other curved edge agecin having the
signs reversed. The calculated work for each gide is added into
a matrix which then represents the total edge work. This is the

BE] matrix of Chapter 2.

The calculation of the complementary strain energy for the
element produces the [}ﬂ matrix of Chapter 2 and this, together
with !?ﬂ , is used to form the stiffness matrix as indicdted.
The integrals involving the particular solution are per{ormed

simultaneously with those involving the homogeneous stress

assumption.

5.3.7 The Calculation of Stresses

WVhen the displacements of individual elements have been
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evaluatzed from the structure displacenments it is a relatively

-~

-t
simple matter to calculate the stiresses. The ,}ﬂ @%} natrix

in fact relates displacements directly to the coefficients cf

B - [ {6l (5.1

The stress assumption is then used to evaluate stresses at

the stregs assumption

any required point within the element.

There is one major organizational probvlem involved. The
-1
Hﬂ E{] matrices are calculated in the element routine and mnst
be kept on backing store ready to be used in the stressing routine.
In & large structure, with many different sizes of elements, a con-

siderable area of backing store is required.

It is possible using the [H]-ki] matrix to verify the
correct representation of rigid body motions in the bhoundary dis-
placement assumptions. If nodal displacements I%& which define
rigid body motions are used in conjunction with the {}U ZQ]
matrix, then zero stresses should occur. Six sets of nodal dis-
placements representing the six possible rigid body motions were
used and the stress coefficients were found to bhe zero, or very

small, in all cases.

5.4 Problems Analysed

5.4.1 The Pinched Cylindrical Shell

The present element was used to analyse the same pinched
cylindrical shell as in Section 4.6.1 of the previous chapter
when flat elements were used. The problem is shown in Fig.(4.3)

of Chapter 4. In addition to'exact'displacement distributicng,
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Lindbers; et al.(65) give accurnte values for variocus sitress
distribution$, It was therefore possible to couwpare with theve

the values obtained using the present element.

Firstly, a 4 x 4 mesh (Fig.{5.6)) vas used to enalyse J cf

the shell. Two stress assumptions were used, The first congsisti=3d
of the first 16 terms of Fig.(5.5) having linear representation of
all stresses whilst the gsecond used the full assumption oi 29 teric

baving at least quadratic representation.

Figure (5.6) shows the distribution of normal displacement
along the top line of symmetry DC. The 16 term assumption gives
8lightly better values in the region of the point load and both
distributions are seen to be an improvement upon the 4 x / nozh

of flat triangular elements in Fig.(4.4).

Figures (5.7), (5.8) and (5.9) show stress distributions
obtained with both assumptions. The stresses ploitted arc those
given along the sides of elements lying along the wespective edacs,
The extra terms in the 29 term assumption give no ccusistent inprove-
ment in the results over those using the 16 term assumption. In mcst
cases the linear assumption gives stresses lying clocser to the exact

values,

An 8 x 8 mesh of elements with lineaxr stress assumptions was
then used. Fig.(5.6) also shows the normel displacements along
DC ‘obtained here. The exact distribution is very closely followed,
with the value under the point load being overestimated by about A,
The stresses are shown in Figs. (5.10), (5.11) and (5.12). The

least accurate answers are given in the region of the point load =~

that for N? being the worst.
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Also shown are some resuits quoted by Lindberg et al.(65)

which will be discussed later.

5.4.2 The Simply Supported Panel under Pressure Loading

To examine all stress distributions obtained with the element,
the simply supported panel of Section 4.6.2 was again considered.

The dimensions etc. are givenfin Fig.(4.5) of Chapter 4.

With the present elements the pressure loading vector for
each element was evaluated in a consistent manner, as outlined in
Chapter 2, using the particular stress assumption described earlier.
However, when the loading vectors for individual elements are com-
bined, it turns out that the loading applied to the structure con-
sists of exactly the same set of point loads used in Section 4.6.2

together with some small bending moments along the edges.

Both 16 and 29 term stress assumptions were used with 4 x 4
and 8 x 8 meshes on 3 of the panel. The linear version again gave
marginally better answers and these are shown in Figs. (5.13) to
(5.21). It was apparent from these results that not all stress
resultants had converged to exact answers (e.g. M‘f, along CD) so a
16 x 16 mesh was then used to determine if, in fact, accurate con-
vergence took place. The resul;s demonstrated this to be so and
are shown in Figs. (5.22) to (5.30). 1In addition to giving accu-
rate values for non-zero stresses it was thought important that the
jdealization should also converge to give zero stresses in approp-
riate places (e.g. Nx.¢ along CD and BD) (Fig.(4.5)). Some results from

these investigations are shown in Figs. (5.31) to (5.32).

5.4.3 The Cylindrical Shell Roof Problem

This well known probtlem is shown in Fig.(5.33) and has been
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used by many workers (65,55,66,57) as a measure of performance of
finite elements. The shell is supported on diaphragms at the two
curved ends, is free along its two straight edgeé and is loaded by
its own weight. Most authors use the vertical d;flection at the
centre of a free edge as a measure of convergence and less atten-
tion has beén paid to stress distributions. The problem provides
a good test of finite elements because both bending and stretching
modes of deformation are important. The solutions used for com-

parison purposes are those of Scordelis and Lo(67).

Since all the preceding results had indicated the superiorify
of the 16 term linear stress assumption, this alone was used in
the shell roof problem. Both 4 x 4 and 8 x 8 meshes were used to
model % of the structure and these involved 92 and 344 degrees of
freedom. The loading was applied by approximating the dead weight
by a series of boint loads. The evaluation of a consistent loading
vector would, in principle, have been possible - but complicated.
The direction of the load is.always vertical and therefore the
direction with respect to an element would depend upon the
physical position of the element in the structure. Remembering
the small difference between consistent and non-consistent loading
vectors in the previous problem, it was thought here that the

effort involved was not justified.

| Figurgs (5.34) to (5.36) show the displacements and ;tress
distributions obtained. The vertical deflection at the central
section and the axial deflection at the support are both predicted
with excellent accuracy. The vertical deflection at the centre of

the free edge is given as 3.52" compared with the exact of 3.7".

The longitudinal stress and bending moment distributions awe
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also shown. Generally good agreeﬁent with exact vazlues is obttainad.
In the case of the longitudinal moment &t the central sectiiorn (rig.
(5.36)) fairly large discontinuities between elemente are nresent,
especially at the coarsze wnesh. The reasons for ikis, and pocsible

nethods of improvement will be discussed later.

5.5 Conclusions

5.5.1 The Stress Assumptions

It is apparent from the pinched c¢ylindrical shell and simply
supported panel problems that no real inprovement is gained by
using the 29 term quadratic assumption. It is, perhaps, sonewhat
surprising that the extra terms do not cause nuch larger diiffer-

ences in the results,

Also, from the panel and shell roof problems, it can be seen
that in most cases the linear variations of stresses allowed in the
16 term assumption are useful in approximating exact distributions.
Exceptions are the x variation in Nx and the s variation in N¢ ;
since Nx. and N¢ take up virtually constant values in these direc-
tions. However, it is these variations which are coupled with Nx¢
and Nfx (Fig.(5.5)) to give linear variation in these. In the
pinched cylinder problem, especially at coarse meshes, thg linear
terms in Nx¢ and N¢x are useful - so on balance it was decided to
retain these terms in the sssumption. However, it is apparent on
all problems at fine meshes, that Nx is virtually constant with x,

N¢ constant with s and Nx¢ constant with x and s within each element.

5.5.2 The Boundary Displacement Assumptions

It is possible, by examining the form of the boundary displacenent
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assumptions, to put forward tentative explanations for some of the
phenomena outlined above. In Chaptexr 2 the basis of hybrid elements
wagAdescribed in mathematical terms, but it is also usefui to con-
sider what happens qualitatively in an attempt to explain some of
the results., This type of approach was used when considering the
characteristics of equilibrium stress models, hybrids, and conform-

ing displacement assumption models in Section 2.3.4.7 of Chapter 2.

Basically, the boundary displacement assumptions in each

" element constitute a constraint on the structure, i.e. the bound-
aries‘are only allowed to displace in certairn ways. The minimize-
- tion procedures then arranges for the siress assumptions to be
partially compatible with these displacement assumptions., If the
form of the»dispiaoement assumption imposes restrictions on the
stress distribution, the minimization procedure will tend to
enforce these. Therefore, variations in the stress assumption

not implied by the boundary displacements will tend to be elimine

ated during the minimizatjon process.

It is thought that the behaviour of the Nx and N7$ stresses
outlined in Section 5.5.1 can be explained in this way. The
Novozhilov stress-displacement relations for the two in-plane

stress resultants are:

N = {E(:/(:—v")} {éu/()x + y()v/:)s + v,t«f/ﬁi}
Ng = {Et/é-y’)} {bu/és R fv.éu/bx}

where u, v and w are the three "natural" displacements in the

(5.21)

and

tangent plane and perpendicular to the shell surface. The terms

)u/ax- and )u’/&s dominate the first and second exyressions

respectively. -
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Along a straight side of the element (in the x direction) the
assumption for u is linear with x and therefore 3%/&: is constant.
Similarly for v and 30135 in the curved s direction. The dominant
terms in Nx and N¢ are.therefore constant in the x and s directions
respectively. No such restrictions are present in the other

directions.

Since, in the minimization procedure some attempt is made to
approximately satisfy (5.21), it is understandable why the stresses
- take up approximately constant values in the directions indicated.
However, no such simple arguments can be applied to other (Mx)M(fetc.)
stress distributions since they involve more complicated expressions
and the dominant terms are difficult to determide. From the results
it can be concluded, however, that linear variations, at least,are

implied in the stresses Mx, M¢ and fo'by the displacement assumptions.

5.5.3 The Convergence of Stresses

On all problens, with,the possible exception of the region
around the point load in the pinched cylindrical shell, 8 x 8
meshes are sufficient to ensure convergence with small discontinu-
ities between adjacent elements. It is therefore possible to com-
ment on the accuracy of these solutions compared with exact values.

The simply supported panel will be considered.

Y

An 8 x 8 mesh on + of the panel gives excellent values for
in-plane stresses lying on or close to the exact curves (Figs.
(5.16) to (5.18». Generally the same can be said for the bending
moments except that along CD M¢ has converged to a value much
lower than the exact (Fig.(5.20)). Distributions along lines
| parallel to CD were also examined bﬁt these had all converged to

correct values. It was therefore assumed that the M¢'stress along
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CD wzs in some way difficult for the elenenis to iodel and =

16 x 16 mesh was tried.

These results are verv similar to the 8 x 8 set excepnt that
H¢ has now converged %o an acceptable value. It appears, then,
that the rate of convergence of all stresses is not the same when
the mesh size is successively réfined. This is also dercnstrated
in Figs. (5.3%) to (5.32) vhere the convergence of stiresses to
zero is examined. Reasonable values are given at the 4 x 4 mesh,
but these diverge from zero with the 8 x 8 mesh, only to return to

acceptable values at the very finest mesh used.

Solutions for the shell roof provlem are generally satisfaciory
at an 8 x 8 mesh except for some quite large discontinuities in the
longitudinal moment (Mx) in the § direction. This will be discussed

later (Section 5.5.5).

Stresses in the region of the point load in the pinched
cylinder could, it is thought, be improved by a locally refined

mesh in the region.

5.5.4 Comparison with other Finite Element Results

The pinched cylindrical shell probtlem has heen used by Lindbers
et al.(65) to test their triangular shell element. The Shell Roof

has been used by many workers, e.g. Zienkiewicz et al.(66) and

Neale(55).

The finest uniform mesh used by Lindberg et al., is a 5 x 5
idealization on ¥ of the pinched cylinder. Their element, hcwever,
uses 12 degrees of freedom at each ncde and on a degree cf freedon

basis their 5 x 5 mesh is roughly equivalent to the 8 x 8 mash of

the present elements. Lindberg et al.'s results are also plotted
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in Figs. (5.10) to (5.12) where it can be seen that the resnlts

using the present element are of the same order of accuracy.

More comparisons are possible on the shell xoof problem.
Neale(SS) using the hybrid element which was the forerunner of
the present one obtains an answer of 3.6776" for the deflection
at the centre of the free edge using 393 degrees of freedom. (The
correct value is 3.7033".) The present 8 x 8 mesh using 348 degrees
of freedom gives a stiffer answer of 3.52"., The difference is due,
obviously, to a combination of the new conforming edge displacement
assumptions and the more complete stress assumption. The reason for
the larger number of degrees of freedom used by Neale(55) for nomin-
ally the same idealization is the fact that in his case the normal
rotation to the shell surface was not eliminated, but six general
freedoms in global directions were used at points on the surface.
On the basis of experiments carried out by the present author it is

thought this has negligible effects,

A reasonabie comparison is also possible with the results for
the same problem presented by Zienkiewicz et al.(66). The 4 x 4
mesh of-the present elements uses 92 degrees of freedom and the
2 x 2 mesh in (66) has 76. The element used by Zienkiewicz et al.
is also of rectangular planform and the purpose of the paper is to
demonstrate the very significant improfements possible by "under-

integrating" or using a Gauss process of insufficient order to

evaluate the strain energy.

The results using the present element are superior to those
of Zienkiewicz et al. when accurate integrations are used, but the
modified form of their element gives excellent results which are

marginally better than the present.
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3 = 1 , o4 3 . - i
5¢5.5 nterpretetion of Results in Future Prohlems

rinite element prediciions

£

it is pessible by comparing zvaci au
in ths problems cornsidered here to lay down roush guicdzliness o
enable results to be interpreied acecurately in future ;robleas.
Firstly, a mech should be used, if possible, such that discontinui-
ties in stresses between elements are small. Arswers of similex
accuracy to those obtained for the panel can then be expected.
However, as an additional chock, it would be wise to try a still
finer mesh to determine whether any further convergence takes

place (in a manner similar to the Mé stress in ths panel).

If the ine-plane and bending stresses zre considered scnaraiely,
it can be said that for the in-plane stressges, predictions are good
even al relatively coarse meshes. If discontinuities are fairly
large (for instance in the Nx stress when it takes up virtually

constant values in the x direction (Fig.(S.lé))) it appears vnat

¢

good answers can be obitained by usinz walues oiven holiway «iong

the side of the el ement under consideration.

The interpretation of bending moments is more involved. With
the exception of the Mx stress in the x direction,all bending
moments in the 16 term assumption are allowed to vary linearly
within each element and generally take up values lying on, or cloze
to exact ourves. The lx stress, however, can have quadratic varid-
tion with x and at coarse meshes, e.g. the 4 x 4 mesh on the simply
supported panel (Fig.(5.19)), takes up a marked quadratic shope

within the elements.

This has an adverse affect cn the distribution of the moment
obtained in the ¢ direction - shovs in Fig.(5.19) along BD ani

demonstrated even more clearly (in Fig-(5.26)) in the cylindrical



- 104 -

shell roof vhere discontinuities using a 4 x 4 mesh are cguite
large. It is clear, howvever, by inspection of rig.(5.19) that
in the case of the simply supporied panel, good answvers ciose to
the exact would be obtained if average "least squares' straight
lines were fitted to the quazdratic distributions. This mnethod
was tried on the cylindricsl shell roof (Fig.(5.36)) and the
improvement in the longitudinal moment 2t the central section

with a 4 x 4 mesh is gquite marked.
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Chapter 6

A THIN HYBRID CYLINDRICAL SHELL ELEMENT OF TRIANGULAR PLANVCRM

6.1 Introduction

6.1.1 The Uses of the Element

After the successful development and testing of the element of
the previous chapter it was realized that no matter how accurate its
stress predictions, its geometry restricted it to a very narrow class
of problem. Using the rectangular element alone it is impossible to
model accurately any cutouts in a shell, or perhaps more importazntly
any intersection regions. The peed for another thin shell element,
which could be used with the first to freat these problems, was

obvious.

It was apparent, after examining the shapes of cutouts and
intersections in cylindrical shells that the new element would need
to be of roughly triangular planform - similar to the shape formed

if the rectangular element were cut along a diagenal (Fig.(6.1)).

6.1.2 Early Versions of the Element

The final form of the element (Fig.(6.1)) described in this
chapter is the result of much work. Elements with various formu-

lations have been constructed and this final form is consi@ered to

be the best.

The early versions used three nodes - the shape of the hypo-
tenuse being taken as a straight line when the surface was developed
i.e. a helix on the curved surface. This made the integrations along
this side extremely easy. The same freedoms at each node weie used

as in the rectangular element giving this three noded version
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15 degrees of freedom. Tests were performed on the length of the
stress assumption and virtually the same form was decided upon,
However, columns 2 and 6 of Fig.(5.5) were omitted from the 16

term assumption giving 14 terms.

All results using the three noded element tended to be stiff
compared with those using rectadgular elements. Also the neéd was
seen for having a more generally shaped hypotenuse, since lineg of
intersectién in cylindrical shells would not always be conveniently
in the shape of a helix. It was decided, therefore, to introduce a
fourth gode)on the hypotenusg,(?ig.(6.l)) which, it was thought,
would give a double advantage. The shape of the side could be
specified more generally - as a gquadratic curve in the development;
also with the extra fréeaoms agssociated with the fourth node, a

more flexible displacement assumption cculd be made.

6.1.3 Later Developments

The effect of the introduction of the fourth node did not
improve results significantly and as such\wés a disappointment,
When the element was tested on the simply supported panel, discon-
tinuities in stresses were often very large and the results were
in no way comparable with those of the previous chapter, or with
those using the flat triangular element in Chapter 4. Howéver,
although the fourth node was responsible for extira complications
with little gain in the quality of stress predictions, it was

decided to retain it purely for geometrical reasons.

A feature of the element up to this point had been the some-
what unusual form of the displacement assumption along the hypo-
tenuse. Rigid body terms, similar toc those in the rectangular

element, were included in the low order variations. These, as
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before, were expressed in terms of ¢ (Fig.(S.l)) and for convenience
the high order variations were also expressed in terms of«P . Thus
¢%'in effect, was taken as a measure of distance along the hypoienuse.
This wasg found to cause difficulties when the element was disioried
and will be explained later. The final form of the displacenent
assumption still has the rigid body terms included in terms of¢¢ ’
bﬁt the other variations explicitly in ferms of,gh, the distance

-

measured along the hypotenuse. (Fig.(6.2))

A major improvement in the results was found, however, when &
change was made in the approach adOpfed in the assunmptions for ©x
and ©s along the hypotenuse (Figs.(6.1) and (6.2)). 1In this, the
final form of the element, the results are now cf the same crder of
acduracy as those obtained using the rectangle and flat triangle.

It is necessary to have explicit expressions for Gx and ©s
(rather thaé;;he rotations along and perpendicular to the side) for
convenience of integration. In the form of the element giving bad
results,lhowever, Ex was expressed directly in terms of other quant-

R

realized that along all other sides of the element the rotations

ities —L(%-U) , and Bs vas assumed independently. It was then

along and perpendicular to the sides had been assumed independently.
Thus along the side 1,4,3 of Fig.(6.2) the displacements ©s and Ox
instead of being completely unrelated sﬁould, in fact, be‘coupled.
The independent variables must be the rotations along and perpend-

jeular to the side ( Ot and 6. ) and then ©xand &s can be expressed

in terms of these. Details will be given later.

6.2 The Formulation of the Element

6.2.1 Geometry and Degrees of Freedom

The element is 3snown in Fig.(5.1) and has been deccribed in
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general terms already. There are twenty degrees of freedom in all
- five at each node. As in the rectangle the three displacements
and two rotations in "natural® doordinates of the shell surface are

used. This results in a (24 x 24) stiffness matrix in ba

6]

e~plane

coordinates.

The development of the cur?ed surface is shown in Figs.(6.1)
and (6.2); The angle at node 2 is a right angle and the side 1,4,3
(the hypOtenuse) is defined as a curve of the form Y.= AX + BX™.
The tangent to the curve at any point is defined by the angle ql.
In practice the element will join with rectangular elcecments along
gides 1,2 and 2;3 but only with the corresponding sides of other

triangles along side 1,4,3.

6.2.2 Edge Displacement Assumptions

€.2.2.1 Rigid Body Terms

The displacements at any point along a side are again
expressed in terms of the nodal values. The straight side 1,2
and the curved side 2,3 are the same as in the rectangular element
and the displacement assumptions described previously are used.

Rigid body movements are exactly represented.

The side 1,4,3, however, has fifteen degrees of freedom
asséciated with it. A similar approach is used as for the other
curved side, but a longer displacement agssumption in terms of
fifteen general parameters can now be made. The first six of
these parémeters aresgain taken to be exact representations of
the six rigid body movements. If rigid body motions of the side

about point RBM (Fig.(6.1)) are considered the displacements are

givén by
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A —» A, represent the rigid body displacements (Sx,Sy,Sz)
along axes parallel to X,Y,Z and the rotations (@, @,@z) about
the same three axes. The only difference between this set of
rigid body modes and the set used for the -other curved side is
the presence of the terms involving x in the rotations about the
Y and 2 axes. These are nseded because the side is at an acute
angle td the x axis which introduces components of v and w when sub-

jected to these rigid body motions.

6.2.2.2 Extra Variations

Because of the freedoms associated with the side it is pcs-
gible to have quintic variations of v with S (8 being the distance
measured along the side (Fig.(6.2)) from node 1) and quedratic

variation of surface displacements Un and ({t and normal slope Ot.

For a curved line i‘n space, such as th.e gside under considera-

tion,the displacements which can be varied independently are {{u, Ut

@ and 6t (Fig.(6.2)). The rotation ©a is dependent upon W and
the in-plane displacements. Therefore in the present case basic
agssunptions must be made for the above four displacements and the

required quantities (u, ¥, w, Ox and Os) must be derived from tnen.
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It can be shown fro: Fig.(6.2) that e velatvicnship: neaded
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; . . ! ,
The asswipiion for v is to be nude in terms of O so ihe expres-

sion for 6n is

On = “3fd8 + L i f (6.)

Before including the extra variations it must first be cecidad
which terms are included approximately in the rigid body motions of
Equation (6.1). If the in-plane rigid tody motions (Sx, Sy and €2
of Equation (6.1)) are considered tuv act on the side in Pig.(6.2)
it can be seen that these give approximately constant variation of
Un and Wt and 2lso lincar variation of n along the edge. Therefore
the following extra terms involving three additional paremeters
should be added

2
Un = X7 ﬁ;

2 (6.4)
ue = g 8§ + 4 8

If the remaining three rigid body motions of (6.1) are con-
sidered (Sz,@x and ®y) these can be seen to give approximately

constant and linear variation of w and constant variation of Ot.

Therefore the extra terms allowed are
z 3 4 5
w 6(u>;§ + 06; é; +'06L f; 'fads fg
2
Ot Ay G +uis S

thuas using ithe fifteen possible parameters.

(6.5)

If, now, equations (6.2) and (§.3) are applied to the assuu.p-

tions (6.4) «:i.d (6.5), the boundary displacewent escunplion can Le



- 144 -

transfurmed into the required foum involvin: u, v, v, €x and s

m . .
The extre variations to be added on to Equation (6.1} can then be

suniarized in matrix form as:
r \ o 2 | ! 2 ‘ \
u| g | Ferf (57 eop )
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6,2.2.3 The Agsumption in Terms of Nodal Variabdbles

It is now possible with the combined assumption of (6.1) and
(6.6) to express the fifteen general 0(% in terms of the diuplace-
ments at the nodes 1, 4 and 3. Each node has unique.ﬁ,(/), g and (/J
values associated with it and if these are in turn substituted into

the combined (6.1) and (6.6) a matrix eguation of the following

form is obtained.

q/' 0(4
Q3 = ,’ DISPL |, :
CI/- L Xis where CV, = [Ue

U
we
Bx:
Osi)

(6.7)

and DISPL] is a (15 x 15) matrix.
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By inverting [DISPL] in (6.7) the A5 can be expressed in
terms of the nodal variables along the edge. This, then, enables
the assumption (6.1)+(6.6) to be made in terms of the nodal vari-
ables by postmultiplying by [bISPQ}-1. )

A feature of earlier forms of the element was that the assump=-
tion of Equation (6.6) was made in terms of¢ - the angle measured
around the other curved side. HRowever, when the position of the
fourth node was defined such that the side became tangent to the
horizontal at point 3 (Fig.(6.2)), it was found that the [DISPL]
mgtrix:becamé singular. The problem was resolved by including the

variations in terms of S as in (6.6).

6.2.2.4 The Expression for the Distance along the Side

The equation of the hypotenuse joining nodes 1,4, (Fig.(6.1))
when developed into a flat surface with coordinates X and Y centred
at node 1 is of the form Y = AX + BXZ. The constants A and B can
be expressed in terms of the nodal coordinates X4, Y4 and dimensions
of the element WID and L as: |

B = {Y;,, - (WIp/L). x:P}/{X‘: _ L.Xg} (6.8)

A = (WID - B.L*)/L

It is necessary, for the purpose of setting up the displacement
assumption of thé previous section to have an explicit expression
for S (Fig.(6.2)) in terms of X, the distance along the straight

side measuresd from node 1.

The distance 5' is 'g}sve‘n by the i&igra:l calculus as:
S "‘j J 1+ @yfdx)” dX
Xs =z 1
| =L )1 +{@+26%) dX
where the limits are from O to Xg, the value ot X for which ﬁg is

(6.9)

required.
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.
If (1 +4) =4, 4.B.A =B and 48" = ¢' and then
! G (
Q =4'C - B) k' =4c'/0 x"=1a" +B'X+ CX* then it
can be shown that the integral is a standard form having the

result
Xs

5= (ZC‘X*B?F + 1 joje<2. c:'x'+,2,c'x+8)' (6.10)
fc! 2K'Je" | .

o

6.2.3 The Stress Assumption

The same approach as in the rectangular element was used.

The full quadratic assumption of Fig.(5.5) was tried initially on
both 3 and 4 noded versions of the element and was found to give
unsatisfactory stresses. The first 16 terms were then used and
finally the assumption was reduced to its absolute minimum length
by elimination of columns 2 and 6 of Fig.(5.5). It will be re-
called-that these variations proved marginélly useful in the rec-
tangular elemedt but they proved to be of no‘advantage in any of

the problems tested here. The final form of the assumption is

shown in Fig.(6.3).

To evaluate a consistentloading vector for pressure loading

the particular assumption used for the rectangular element was

again used.

'6.2.4 The Evaluation of the Complementary Strain Energy

To evaluate the integral of Complementary Strain Energy over
the area of the element it was decided to construct a transforma-
tion between the natural coordinatqg/of the element surface (X,Y)
and a (Sii)plane (Pig.(6.4)). The transformation is such that the
element in the (X,Y) plane is mapped into a triangle with coordi-

nates (0,0), (2,0) and (2,2) in the(gﬂ‘ plane. The transformation
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was also constructed such that the reverse napping of the line 7‘= %

in the(gjq) plane always gives the line Y = AX + BX™ .

The relationshin which carries out the transformation czan be

shown to Ye

X i ! " d(
= g | { X2

g | e wm— — —— —

¥ : " s {43 (6.11)

where the constants 0ﬂfo,6(3 are expressed in terms of the element

coordinates

OG==X&JZ' Ao = Qé';ZﬁxgyZ

.txs ”(éar{y4'~Q%§)Xﬁ} (X+{—Lﬁxg)

The integral, as for the rectangular element, is evaluated

(6.12)

numerically. Gaués points are chosen in the(gfl plane and trans-
formed into values in the (X,Y) plane using (6.11). The stress
assumption is then evaluated at the point (X,Y) (after expressing
(X,Y) in terms of the coordinates (x,s) in which the stress assump-

tion is made).

The integral is then carried out in thekg)q) plane using

the Jacobian of the transformation I\TI

)x 4z | .
'J, = 33 A — K‘(o(g_ + A3 g) (6.1J).

9 %

In the terminology used in the previous chapter

C.5.E. -=H é—{s}f[pj{of} 7] 0(5 dn  (618)

where the Eé] matrix relating stresses and strains is the same

as that-used in the rectangular element.
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6.2.5 The Evaluation of Edge Work

The work done by the assumed stresses around the boundary of
the element must also be evaluated. The work along sides 1,2 and
2,3 is carried out in exactly the same way as in:the rectangular
element. However along the hypotenuse 1,4,3 a different approach
is now adopted to enable the integration to be carried out more

easily.

The equation of this side in (X,Y) coordinates (Fig.(6.4)) is
Y = AX + BX” where A and B are given by (6.8). The required
integral is 6f the form
Work ij'(stressT.x boundary force matrix) x (displacements) as (6.15)
where ﬁfis the distance measured along the side from node 1.
Equation (6.15) can be transformed into an integral along the
X axis

T
Work =u/l(stress x boundary force matrix) x (displacements)

x (%((_ﬁ_’,) d X (6.1€)

where dS/dX along the side is given by standard calculus as

=T @R = [ easy o

Gauss points can now be chosen along the X axis and stresse

and displacements evaluated at corresponding points on the curved
side. The integration is thus carried out along the X ax?s in

the same part of the program as that along side 1,2.

The boundary force matrix in (6.16) performs the same function
as along the other sides, i.e. it transforms the stress resultants
into forces in the directions of the displacemenis. Al any point
on the side the tangent makes an angle ¢'w&th the X exis and the

following matrix gives the forces Fu, Fv, Fw and the moments Fox
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and Fésimxterms of the stress resultants

:;_ | [ Loy | [ l | - Nx
o fot_ e L1 f
Fol Loyobied o0 ] g
Fulel ¢+ 0 0 i Fop oo | o (6.18)
.—-—T-. - - - .+ r l-_'-'.- —T - - Py S
Fox ____I_____[__m__ '__:_mjlfi""‘_‘y‘__l___ MX?
i i _' . ’ | Mé
Fes) | 1 | ré“ﬁH ¢l ] M
@x
Q4

The angle qlhowever, is a function of position along the side.

Its value can be obtained from

fanm = o('y’/o{x = A + 2BX (6.19)

6.2.6 Calculation of Results

The stiffness matrix and consistent loading vector for the
element are calculated following the theory in Chapter 2 in 2
similar manner as for the rectangle. The[ﬁ]-%%] matrix relating
stress coefficients to displacements for each element uwust again

be kept on backing store for use in the stressing routine.

It was explained in the previous chapter how this matrix can
be used to test the correct representation of rigid body motions
in the displacement assumptions, Similar tests were carried out

here and satisfactory results were obtained.

6.3 Test Problems )

6.3.1 Introduction

The element was designed to be used in conjunction with the
rectangle of the previous chapter to model edge and intersection
regions. It has not, therefore, been tested in its own right on
such a wide variety of problems but a series of basically simple

tests have been carried out to verify that it behaves in a
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reasonable manner, Also, the simply supported panel has been
analysed to gain an idea of the accuracy of stress predictions
possible. Interesting comparisons can therefore be made with the

results using the flat hybrid triangle of Chapter 4.

The simple tests mentioned above were designed to gain
information on the following points:

(i) Can the radius of curvature of the element be declared
negative without producing any anomalies? The work of the next
chapter on intersection problems was anticipated here. It proves
necessary whén analysing an intersection to have, not only an
element such as that in Fig.(6.1) which is convex upwards, but
also one whose shape is concave upwards. Geometrically this is
defined by declaring the radius of curvature negative and altering
the z value of node 4 (Fig.{(6.1)).

| (ii) What is the effect of changing the position of the

fourth node on the hypotenuse? If node 4 is placed in several

different positions, each, however, defining geomeirically similar

hypotenuses, will different results be obtained? It was thought,

before tests were carried out, that exactly the same results

should be obtained irrespective of the position of the fourth node.
(1ii) What is the effect on stress predictions when the hypo-

tenuse is distorted? The simply supported panel was analysed with

b

various shapes of hypotenuse.

6.3.2 Tests Involving Negative Curvature

Three elements, all of the same size were considered separately
as in Fig.(6.5). Elements 1 and 3 were declared 2 1 8 7 and 3 4 10 5,
both with negative curvature. Element 2 was declared 2 3 9 6 with

positive curvature. The elements were consideredto be fixed along
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the x axis as shown and various loads were applied at points 8, 9
and 10. These had components both in the plane of and perrtendicular
to the element surfaces. In all cases, where the lcocadings with
respect to the elements were equivalent, identicsl stress asystens
were set up. This indicated that the element was behaving in a

consistent manner when negative curvature was defined.

6.3.3 Tests on Changing the Position of the Fourth Node

A series of individual elements were again tested. In Fig.(6.6)
elementsvl and 2.are of exactly the same geometrical shape as are
elements 3 and 4., The position of the nodes defining the shapes
of the hypotenuses were different, however, as indicated. Elements
1 and 2 were fixed along the X axis and elements 3 and 4 were fixed
along their shortest curved sides. Identical point loads were
applied to nodes 3 and 6 of elements 1 and 2 and nodes 10 and 14
of elements 3 and 4. The deflections and stresses in the pairs of
elements 1 and 2, and 3 and 4 were identical. It is obvious, there~
fore, that for individual geometrically similar elements results

are unaffected by the position of the fourth node.

6.3.4 The Simply Supported Panel under Pressure Loading

To compare predictions obtained with exact distributions, the
simply supported panel considered in earlier chapters was again
analysed (Fig.(4.5)). Consistent pressure loading vector; were
used and (4 x 4) and (8 x 8) meshes of the present elements were
considered on + of the panel. Fig.(6.7) shows (4 x 4) meshes.

The first (4 x 4) mesh consisted of elements having undistorted
hypotenuses, i.e. the hypotenuse is a straight line in the develop-
ment. Two "distorted" meshes were also considered. The nodes were

(2) moved along the axis of the panel and (t) noved around the
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circumference to form two geometrically identical meshes having
the maximum possible distortion {such that the hypotenuses formed
tengents with the horizontal) as shown. These meshes will be
referred to as "x distortion" and "¢>distortion" respectively.

On the basis of the results of Section 6.3.3, it was thought that

the two distorted meshes should ‘give identical answers.

The displacements and stresses on the panel given by the ihres
(4 x 4) meshes are shown in Figs.(6.8) to (6.16) where it is seen
that: (a) the undistorted mesh gives generally the best answers
for stresses and deflections and (b) the two undistorted meshes
both give reasonable (but not identical) answers. These results
will be discussed later. To investigate convergence of the elements

an 8 x 8 undistorted mesh was then used. These results are shown

in Figs.(6.17) to (6.25).

6.4 Discussion of Results

6.4.1 Tests Involving Negative Curvature

The results of these tests were as expected and really only

provided a test of the correctness of the formulation.

6.4.2 Changing the Position of the Fourth Node

For the geometrically similar elements the displacemgnts along
the hypotenuses are defined as continuous functions of the element
coordinates in terms of fifteen general coefficients. Three points
are chosen and these coefficients are expressed in terms df dis-
placements at the points. The two end points of the side are
always chosen, but the position of the third node can be varied.
However, no matter where it lies on the side, the same displace-

ment distripbution can be defined.
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Therefore, in the tests of Section 6.3.% when similar losds
are placed on nodes 3 and 6of elements 1 and 2 (Fig.{6.6)), the
displacement distributions along the hypotenuses are idenfical
because the values at nodes 4 and 7 are not constrained in any way.
Since the two elements are also the same in all other respects,
identical stresses and displacements are obtained. The same argu-

ments can be applied to elements 3 and 4.

6.4.3 The Simply Supported Panel

6.4.3.1 Comparisons with the Previous Elements

The results of the undistorted 4 x 4 mesh on the panel (Figs.
(6.8) to (6.16)) are comparable with those using a 4 x 4 mesh of
rectangular elements in Chapter 5 (Figs.(5.13) to (5.21)). However,
because of the extra nodes on the hypotenuses the present idealiza-

tion uses twice as many degrees of freedom (160 compared with 80).

The general accuracy of these results is also very similar to
those using the flat triangular hybrids in Chapter 4. (For both
4 x 4 and 8 x 8 méshes.) The present curved elements give sliighily
better values for the lateral displacements and in-plane stress

resultants, but there is no consistent improvement in the bending

and twisting moments.

On the basis of this simple problem, then, it would seem that
the flat hybrid is more efficient, since it uses fewer freedoms to
give comparable results. However, the purpose of the.present
curved hybrid is to model the geometry of intersection regions
accurately - a job which the flat element is incapable of doing.
The purpose of analysing the panel was to verify that answers of

acceptable accuracy are obtained on a simple problem.
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G.Q:Q:%&vThe,Effects of Distortion

The differences in the results using the iwo distorted meshes
were at first very difficult to understand (having regard for the
results of Section 6.3.5) since the itwo idealizaticns used nominally

- the same shaped elements.

It was eventually realized that the only exflanation fitting
all the facts was that displacement incompatibilities existed alcng
hypotenuses of adjoining elements, For example, in Fig.(6.6), dis~
placements along the hypotenuse of element 3 must be incompatibie |
with those in element 1 when the two hypotenuses are of thé same

geometricallshape. Similarly for elements 2 and 4.

" If this is true the different results given by the ¢)and X=
distorted meshes can be explained. The nodes on the hypotenuses
constrain the two incompatible displacement'assugptions to be the
same at different points. The net result is then different dis-

placement distributions in the two distorted meshes.

The above hypothegis was proved numerically. Elements such
as those in Fig.(6.6) and others subtending larger (e.g. 90°)
angles were considered in matching ﬁairs. Identical, arbitrary,
displacements were imposed at the nodes and the displacemént dis-
tributions along the hypotenuses were piotted. In all cases signi-
ficant incompatibilities were present in the in-plane displacemenis
w and v, slight incompatibilities in ©x and ©5 and smaller ones in
w (the lateral deflection). Elements whose hypotenuses were straight
in the development (i.e. undistorted elements) were also tested in

this way end no incompstibilities were found.

The roassons for these incompatitilities is not immediately

obvious since they are only present in distorted elements. The
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facts are, that when S (the distance along the side) is measured
from node 1 towards 4 (element 1 in Fig. (6.6)) a different dis-
placement distribution is obtained from that when Slis measured
in the opposite direction from node 3 towards 4 (as it is in a

matching element such as 3),

After some thought it has been concluded that the part of the
assumption in Equation (6.6) is not invariant under a change of axes
for a distorted side. When A? is measured from the opposite end of
the hypotenuse as described above, a change of axes must take place.
If;g and ¢'are values measured in one set of axes (such as those for
element 1 in Fig.(6.6)), the values for the same point in the axes of
the matching element are (87-8 ) and ¢ (where ST is the total length
of the side. If (97~8) is used in (6.6) instead of 9 additional
variations.are introduced (because ‘V is variable along a distorted

side) which, it is thought, account for the incompatibilities.

The original reason for undertaking these tests with distorted
meshes was to gain information on the changes introduced in the
stress predictions. It is apparent, generally, that the changes
are relatively small. In practical terms the above displacement
incompatibilities are unimportant. In the analysis of a real struc-
ture (see next chapter), two triangular elements would never be
joined as in the meshes of Fig.(6.7), since it would be more
efficient to use a rectangle., Triangular elements would only be
joined along their hypotenuses where a physical discontinuity in
the shell surface was present. This would introduce displacement
incompatibilities similar to those in the flat elements of Chapter 4
which, it is thought, would be more significant than fhose rresont

for the._reasons discussed here.
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Chapter 7

A MITHED BEND TN A PIPE ANALYSED USING THE

TWO HYBRID CYLINDRICAL SHELL ELEMENTS

T.l Introduction

In previous sections the two curved shell elements have been
tested individually on such problems as the simply supported panel
and shell roof - problems of relatively simple geometrical shape.
Consequently exact or convergent series solutions have been avail-

able for comparison and the elements have been shown to perform well,

One of the advantages of the finite element method, however, is
its applicability to problems where no such exact solutions exist.
Indeed the triangular element of the previous chapter was developed
with shell intersections in mind - problems which fall into this

category.

To demonstrate the simultaneous use of the rectangular and
triangular elements, an intersection problem was sought which had
also beén treated by other methods so comparisons could be made.
The problem chosen was a 90° gusseted or "mitred" bend in a steel
ripe, known also as a "3-weld bend". The bend is subjected to an

in-plane bending moment tending to decrease its radius.

7.2 Details of the Mitred Bend and Previous Solutious

A diagram of the bend is given in Fig.(7.l) together with the
dimensions. The results used here for comparison purposes are those
given by Lane and Rose(74) - obtained by strain gauge methods when
the bend was subjected to an in-plane bending moment of 1 ton-inch.
This was applied through welded end-plates on tangent pipes as

indicated in Fig.(7.1). The length of the tangent pipes was
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approximately two diameters -~ considered sufficient to prevent any
interference with the stress system of the bend due to the method
of application of the loads. Also the stresses due to thrusts are

a negligible proportion of the bending stresses present.

The change in diameter of the bend was measured at section BB
using a large micrometer with a pointed anvil fitting into small
conical depressions in the pipe. The distribution of strain gauges
used at sections BB and AA is also shown in Fig.(7.1). Section BB
is halfway along a segment of the bend whilst AA is §" away from
the intersection. This was'the closest point to the intersection
at which results could be obtained due to the physical size of the
gauges. In (74) Lane and Rose were attempting to measure the stresses
at the actual intersection and they conclude that in all probability
the stresses measured at AA are underestimates of these. It was
expected at the outset of the present work to be able to obtain

values at the intersection in addition to those at sections AA and BB.

Several practical points relating to the strain gauge tests are
worth noting at this stage. Firstly, the pipe was made of good quality
mild steel and the joints were welded. The weld reinforcements were
dressed off to give sharp intersections between the segments and a
gamma-radiographic examination was made of the welds. Only infre-
quent evidence of minor porosity was found. However, in Qhe finite
element analysis no allowance can bg made for possible differences
between the material of the weld and the pipe - nor for any heat-
treatment effects during or after welding. Also, typical values

for Young's modulus and Poisson's ratio for mild steel have to be

assumed.

The strain gauge results quoted are, in fact, averages of
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three tests on three different mitﬁed bends, nominally of the same
size and characteristics in every respect. Lane and Rose(74) found
that the stresses differed by, at the most, 5% between bends. The
arrangement of the strain gauges in Fig.(7.l1) chows a greater con-
centration in the 0°=+ 90° region than in that from 0%+ - 90°, The
stress distributions in the region where more gauges are present are

obviously more reliable. The relevance of this will become apparent

later.

T3 The Finite Element Jdealization

Because of the gymmetry conditions of both the structure and
the loading about OC (Fig.(7.1)) it was sufficient to analyse oaly
one half of the bend. Also, it was only necessary to model 180° of
the circumference. The idealization used is shown in Fig.(7.2).

In the body of each segment eight rectangular elements are used
axround 180o - each thérefore subtending 22;3,,;--0 at the centre of the
pipe. The triangular elements are used only in the intersection

regions, e.g. near sections AA and FK.

Symmetrical displacement conditions were imposed along the
edges EFG and LKJ of Fig.(7.2). These involved allowing no dis-
placement perpendicular to the plane of the figure and also no
rotation about the edges. Around the curved line LME the symmeiry
condition is one of zero displacement in the x direction.- These
symmetry conditions constrain the portion of the bend in Fig.(7.2)
as a rigid body in all except the global z direction. It was

therefore necessary to fix one point in the z direction and the

point M was chosen for this purpose.

The length of the tangent pipe NGJK was chosen in the experi-

ments to be of about two diameters - for reasons explained earliex.
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In the finite element idealization this length was reproduced
approximately and the bending moment applied by three equal hori-
zontal forces as shown, such that the total bending moment about
M was 4 ton-inch, (since half of the total bending moment is
carried by the 180° of the pipe unde? consideration). The forces
were chosen to be equal since this, it was thought, would give the

best approximation to the actual loading condition applied through

a welded end-plate.

The complete idealization involved 204 elements and 1070 degress

of freedom.

T.4 Conversion of the Finite Element Stresses intoc the Form

Necessary for Comparisons

The results quoted in (74) give (a) the change in diameter

of the pipe at section BB and (b) the hoop and longitudinal stresses
at the inner and outer surfaces of the pipe at sections BB and AA,
The stresses quoted are strictly parallel and hormal to the sec-
tions under consideration, so they are truly hoop and longitudinal
only at section BB. Here the element axes are coincident with the
gection so evaluation of stresses is straightforward. At section AA
and at the intersection, however, the element axes are at 15° to the

section so the evaluation of stresses parallel and perpendicular to

AA is more complicated.

If Nx and Mx are the longitudinal stress resultant and bending
moment (in 1b/inch and 1b.inch/inch respectively) given by the
finite element idealization at BB, then the longitudinal stress
6. at a distance z from the middle surface is given by

6r = Ne + 2Mx 2 ffon - (1.1)
t e>
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where t is-the thickness of the pipe and the outer and inaner

surfaces are given by 2 = + 1/2,

A similar relation involving Nﬁb and 114 givas the hoop stress

at section BB (ohn)

6H = _'\_IQ + 1AM4 2 ,46'/&4" (7.2)
t E?

Relations (7.1) and (7.2) can be obtained from the definitions
of the stress-resultants given in Appendix 1 by assuming linear
variation of stress across the thickness (a distribution implied

by the initial thin shell assumptions).

Equations (7.1) and (7.2) can also be applied to the finite
element stress resul tants along AA and at the intersection. How=-
efer, they will give true hoop and longitudinal stresses and not
those parallel and perpendicular to the sections. In order to
calculate these it is alsc necessary to obtain values for the
shears from the finite element idealization. An equaticn similar
to (7.1) and (7.2) gives the shears acting at the outer and inner

surfaces as:

Tocp = Nxé + 12 Mag 2 u,;:(,z: te)  (7.3)
t ¢ 2

I

With the stresses acting along and perpendicular to the axis
of the pipe (from (7.1) and (7.2)) and with the shears from (7.3),
standard theory using the Mohr's circle approach gives equivalent
stresses acting along AA and the intersection. In the following
discussions, when "hoop" and "longitudinal' stresses at AA and the
intersection are referred to, it should be understood that they are
not strictly hoop and longitudinal - buv parallel zul perpeandicular

to the ﬁarticular section.
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7.5 Results Obtained

7.5;1' Change of Diameter at Section BR

Comparisons are possible hatween the finite element and
experimental displacements at section BB. Changes of diameter
are considered. The results are shown in Fig.(7.3) where it can

be seen that good correlation is obtained at all positions.

7.5.2 Stresses at Section BB

To evaluate the longitudinal and hoop siresses around BR (via
equations (7.1) and (7.2)) it is first necessary to plot separately
the distributions of Nx, N¢, Mx and M¢ given in the finite elements
around this section. At each position around BB (Fig.(7.2)) values
can be obtained from the elements each side of BB, thus providing a
check on the continuity of the predictions., The stress resultants
around BB are plotted in Figs.(7.4) to (7.7). Generally good con-
tinuity is obtained between adjacent elements in both the lengi-
tudinal and hoop directions. Smooth curves are drawn through the

predicted values in the elenents.

The values given by these smooth curves are then combined as
in equations (7.1) and (7.2) to give the inside and outside longi-
tudinal and hoop stresses. These are shown plotted in Figs.(7.8)
and (7.9) compared with the strain gauge values quoted by ;ane and

Rose. Good agreement is shown - the largest errors being in the

0° to-90° region.

7.5.3 Stresses at Section AA and the Intersection

Initially stress resultants in the region of the section AA
were plotted around the circunference of the cylinder in the manner

of the previous section. This approach was abandoned because the
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predictions, generally in the triangular elements, showed discon-
tinuities such that accurate interpretations were impossible. This,
however, was seen to be a localized effect, confined to the immediate

region of the intersection.

A rather more laborious approacﬁ was adopted in ordei to cbtain
the best possible predictions in this region. All stress resultants
were plotted along all lines around the circumference parallel to the
axis of the pipe, e.g. lines K'L' and K"L" of Fig.(7.2). In this way
the distribution of stresses throughout the segment was obtained and
it was possible to extrapolate with reasonable accuracy in the inter-

section region.,

As examples of the quality if predictione obtained, the distri-
bution of the stress resultants Nx, N¢, Mx and M¢ along the line at
0% leading to point M (Fig.(7.2)) are plotted in Figs.(7.10) to (7.13).
It can be seen, in general, that reasonable correlation is obtained
between the stresses in the elements above and below this line - but
the correlation becomes worse as the intersection region is approached.
Smooth lines were fitted to the finite element stresses in all cases
and in this way values at the section AA and at the intersection were
obtained. The stress resultants in Figs.(7.10) to (7.13) are typical
of the general quality of the predictions obtained along all lines.
It was noticeable, as shown in Fig.(7.11), that in all cases the N¢

stress resultant showed the largest discontinuities in the inter-

section region.

Figs.(7.14) and (7.15) show the "hoop" and "longitudinal"
stresses at the outside and inside surfaces at section AA - compared
with the strain gauge values. Figs.(7.16) and (7.17) show the pre-

dictéd stresses at the actual intersection. These are seen to be

generally larger than those at AA by, in some cases, 100%.
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7.6 Discussion of Results

7.6.1 Deflections

| Tt is clear from these resnlts that the stresses and deflections
predicted by the finite element idealization are very close to those
measured on the actual pipe. Fig.(?.}) shows the marked flattening
effect at section BB, In the region +45° to -45° the diameter
increases whilst from -900 fo -450 and from +90o to + 45° it
decreases. The difference between the finite element and measured

deflections at 0° is of the order of 5%.

7.6.2 Stresces at BB

The stresses around BB are predicted with excellent accuracy.
The distributioné given in the finite elements (Figs.(7.4) to {7.7))
show good confinuity defining smooth curves very accurately. The
hoop stresses due to bending dominate the direct hoop stress - the
result being that the inside and outside hoop stresses are virtually
mirror images of one another (Fig.(7.8)). This is consistent with
the hoop and radial deflections at BB which amount to squashing of

the pipe.

The longitudinal direct stresses around BB (Fig.(7.5)), however,

are at least as important as those due to the longitudinal moment
Mx (Fig.(7.4)). 1In Fig.(7.5) it is seen that Nx is of similar

o o o
value (but of opposite sign) in the 0° to 90° anda 0° to -90

regions. This represents tension in the upper part of the pipe

and compression in the lower half.

It is of interest to note that in Figs.(7.8) and (7.9) the
largest differences between the measured and predicted stresses

are in the 0° to - 9C°,region. In Fig.(?.l) the distribution of
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strain gauges in this region is seen to be very sparse - with
gauges only at 0°, -450 and -900. Thé actual shape of the strain-
gauge curves, therefore, in this region of Figs.(7.8) and (7.9)
must be a little speculative. This, it is thought, could be one
of the reasons for the differences. Also, results between the
three pipes tested varied by 5%. This difference is small, but

not negligible, on the graphs.

7.6.3 Stresses at Section AA

The correlation between finite element and measured Stresses
is slightly less satisfactory at section AA (Figs.(7.14) and (7.15)).
Here the strain gauges were more evenly distributed dnd greater
weight can be placed on the actual shape of the curves., The ocbvious
new source of error, compared with section‘BB, is that involved in
interpretiﬁg the finite element stresses because of the discontinu~
ities in the‘intersection'regioth(Figs,(Y.lo) to (7.13}). Yever-

theless, the agreement is generally gocd.

The hoop stress distributions at this section are the same
shape as those at BB - but rise to higher values (-0.12 tons/in.2
as opposed to -0.08 tons/in.z). There is a major change, however,
in the form of the longitudinal stress, compared with section BB,
A large component of longitudinal bending siress has arisen in the

0° to -90° segment (compressive at the outer surface) whic¢h radic-

‘ally changes the distribution here. (Compare Figs.(7.15) and (7.9))

7.6.4 Stresses Predicted at the Intersection
Rose and Lane(74) state that stress gradients measured at
section AA were very high and in all probability the stresses at

the actual intersection considerably exceeded those at AA, This is
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confirmed by the finite element predictions. Interpretation of
the results is again subject to the same inaccuracies as at

section AA but certain features are apparent.

Firstly, (Fig.(7.16)) the hoop stresses are not significantly
greater than those at AA and have the same general distribution.
However, the effect noticed at AA - the appearance of a longitud-
inal bending moment has become even more apparent (Fig.(7.17)),
giving extremely large longitudinai stresses at outside (-0.24
tons/in.z) and inside(0.14 tons/in.z) surfaces. Also a ccmponent
of longitudinal bending stress has appeared in the +45° to +90°

region leading to significant changes here also.

7.6.5 The General Performance of the Elements

This problem has demonstrated the accuracy of results which
can be obtained using the two hybrid elements on 2 real problem.
The mesh used seems perfectly adequate in the regiorn of section BB
as shown by the quality of stress predictions there. However, near
the intersection, the discontinuities in the stress predictions

(particularly in the triangular elements) become relatively large.

The obvious explanation for the discontinuities lies in the
physical characteristics of the intersection region. The sharp
discontinuity in the shell surface means that triangular e}ements
must meet at an angle such that there is a discontinuity in their
surfaces. Although along the intersection, the physical shapes of
the hypotenuses are defined by three nodes for each pair of elements
- between these nodes there will not be geometrical compatibility
because of the discontinuity of surface. The discontinuity of sur-
face also leads to an incompatibility in the edge displacement

assumptions in two elenents on each side of the intlersection
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(similar to that introduced when flat elcmconte zre vzed to node)
a shell in Chaptler 4) vnich is superinmposed on any incompatibility

R g

present for the reasons of the previcus chapier, Those featur-s

4

nmust adversely afiect the yuality of stvess predicticns in this

rr

region.

It would be interesting to see tliz results using a finer mech
-~ perhaps using 16 elements sround the circunference. Thig, it iu
thought, would lead to hettewr predictions in the intersection region,
It is impossible, however, using these two elements, to refine the

mesh in the vegion of the intocszction without refiring it throu h-

out the sitructure.



N GN3S GRULIW JHL 1L O3

- 189 -

; N
- / SI5AVD  NIVHLS 30 NOILISO

e °

£ 18aNGILD3S







i
’

HES)

INCREASE (INC

e

o= 5§

e

0004——-—Lot -

DECREASE(NCHES)

e B s
1 =
!
it

AT W B i~
1-0.
|

vl : |
- o) }
{
i
.....‘i.<........> et :
! BN
1

|
[

2 il Al s B
|

I SERI e S




- 192 -

'—Bj; ')\ FLE A g e 1 k—“-:—__"‘.-" .
IN /

L

8B

ENT AT

v

“FIG. 7.4

[

" LONGITUDINAL (Mx) BENDING MOM

r
Sl

I
A e e

-‘::t‘I '

|
e x= iz

s e

|

'

i

] S Ao . Sl Aol Mot SO Bt e LRI AN
i H -

'

g

:
.

L ELEMENTS

L e
- 7y
14 ; !
]




G MOMENT AT BB

__HOOP (M¢) BENDIN

| —— —ELEMENTS RIGHT OF BB

1

S [——"ElEments LerT oF BB

|
=
LT

i e ey Tty =Rk
e e e b

o S

H
I
|
2 |

o
t

. )
S CESEEpE SERERPNS, SO

FIG. 17

HOOP (Nb) STRESS AT 38




’ . '
f e e S e

?

i ‘FINI.E FLEMENT
=R ESINSIDE HOOP STR

{ L

- e DO
Qrares ! = Thma
: : i

- 194 -

“HOOP STRESS

. TONS/IN®

6ﬂoﬂ)

CSQ

T MEIAHS‘I’OOP‘ES‘MDETRESS /

e QST»\\""

N

l . ,
/ : .I,,,.__ o ). 3o i 3 ot e

/wa

=7 e S i 7 2
E SURED OdTSIDE

11153

: s i ELE MENT- g
e woursme HOOP STRESS - =
’- ..... e = .Wv.,_'_-_.,..__._;._.. 10 i I e e

e s R R

LONGI TUDINAL

STRESS 2
- TONS/IN™

i

FIG /B 8 HOOP STRESSES AT SECTION R EE

- (MEASURED)

OUTSIDE

 QUTSIDE

s

LONGITUDINAL', STRESSES AT SECTION BB.




~

N

(L8,
-35

N

m A
| | Bl
| i - _
_ i
_. A R R R SR | 0 A ) e R
jiii i EEUBRL R RERY
HiH
L dopris ek £
N ! ”O
T
IR BEE L
st
i ) o
: _
BEERY

! i :

1
1
|

T

LS
feashicrs
_{llf.‘

i = T R P A e—

H !
A A ag s

= IDIST. FROM- =

......

_FIG,7.10 Nx STRESS RES

FROM INTERSECTION

RES, AT 0O

]

N STRESS

_FIG, 7,11

' -
:
4 1 [
1]
4 .
1
SRS SELERASS | AESS b Loy
b4 585
b b
RS (S35 KRR | T
!
3 10 ‘>
t 3
R P 1 P -

Sl —INTERSECTION. - -~ - 1




-1 r - .,l_ill — - .I‘.\a.ll. - -y .“ - !MA‘
! PR L THE A R | NS
|- ey _ m _ o SRR e S T SR | _ |
zathh | = SRR P50 E EY bt RSEH Fltcien bty ) (1T ¢
/cL- - | 154 m i 1l i .
b4 T ! § §5= jitat | . it H
FEEEt e ty TR R i MR S | | " I
Lk 27 R, (Fi ! I | 4 | | g i | L
: , f
13054 ,
{ | i
o p o ,
i L !
| ' |
el _
LTy

8} | !
T v
fased it
i i
JLL ! el }
iy PREEELELS B !
1 ada |
] v o 13

1

i
i

h___:;L;ALa___. .

[

CiRtes WEaA D

s ik dhewa Lovsslries St il B iy 10
e Fat
1

~ INTERSECTION

13 Mg STRESS RES AT 0

S E

el

4
I
{
I

y
!
\
1}
o

¥
LA

~ INTERSECTION |

by

i
b A
et st
Fl

B |
iy (9

L FIG

:

|- +d

LA

......




————
1
‘
: 12
—
:
3
!

INSIDE.
' MEASURED

LISTRESS et




I ' .-
: |
: | {
, | {
| vy
: ! | 8
1 ) |
1 1
1 i { |
fiet &
'
BN ! i
3 : BETOERL D]

Vil
I E ot
i ! i *.
| _ Hiai!
u , “ i

i

S

TE ELEMENT_HOOP STRES

——

= 150 =

L2zl

£ T
T R

A S s

T i T

e st

ZIFIG,

PR &

il (o
[ie) TR




- ] :}:’ -

!

Pl it Su ]
|
i

i s

DINAL STRESSES AT

A ot i |
| | Iy
_ RESA SERE AAE) e 41 £
! 1 ] _ bt —. . M .~— m '
. m Ha'd *
LR, Rt i
u . . m
_ , _ h
! ephy M -
heiity] FESSY CIRS) . siii) i)
| { ! , $ “ : i
fremps. i) w A d
B Kty | s R R e
BE M Hith| |
ik | i i i
_ = Ll o
i “ " h » i
Wt e 13 il -1
i fea « . ,_ ! .
B i
SR . il
| r\u P\J v ;..
{ (58] - et |
STEe = o
= O
a7 9] (Lo
i il
Pt
_..””
i

(7. LONGITU

. INTERSECTION

I e

il |
———— 2

i
g

i
.

i
AN SR

W SESE. SEEue. Tt

]

T
{

F183 153 L S
o QY AT

A
:
L

.

18iss

1153

gt
R
{

ity

707 EINI

+
L=
.

AIG:

bt 3
i :
et os
ok« pika
_rvN 1158
prtidivid
L TR
a5 La Bt S
el B
E==6TRET

j25
g
3




- 200 -

Chapter 8

'CONCLUSIONS, THOUGHTS AND SUGGESTICES FOR FURTHER WORX

8.1 Conclusions from the Work

The aim of the work has been to systematically investigate the
hybrid finite element method when applied to shell structures. The

~method has been demonstrated to work and to give generally good

-
v

stress predictioné. From all the results some general conclusions
can be drawn,

(i).If stress and edge displacement assumptions are carefully
selected, elements produced by the hybrid method are often superiox
to displacement assumption elements using the same nodal freedoms.
They can also compare favourably with more complicated displacement
assumption forms. ' |

(ii) Best results are usually obthined if a stress assumption
close to the minimum lehgﬁh ig"used. For good stress predictions
this assumption should include, as far as possible, the low order
variations in all stresses.

(iii) In qddition‘to étresses given at nodal points, distribu-

tions within the elements themselves are generally quite close to the

correct values.

Also, considering individual elements, several more specific

v

conclusions can be drawn.

(iv) Friom the work on plate bending (Chapter 3), the mass matrix

is relatively less important in determining accurate natural frequen-

cies than the stiffness matrix.

From the work on the rectangular cylindrical shell elemgnt the

following points are apparent:

(v) To satisfy the equilibrium equatiowus for & thin cylindrical
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shell it is dorrect to make separate assumptions for the shear
stress resultants Nx¢ and N¢x but not to distinguish between the
twisting moments Mx¢ and Méx.

(vi) It is possible to include exasct rigid body terms in the
edge displacement assumptions and étill have displacement compati-
bility between elements.

(vii) The rate of convergence of all stresses is not the same.

Some may appear to diverge before converging to acceptable values

—

on refining the mesh.
(viii) Certain stresses, whose distribution is not linear within
the elements, may be improved by a "least squares" straight line

fit to the distributiouns obtained.

Finally, from the work on the curved triangle:
(ix) Reasonable results can be obtained when incompatible dis-
placement assumptions are used (a fact also evident from the analy-

sis of shells using flat elements in Chapter 4).

8.2 Thoughts on the Hybrid Method in General

Some of the advantages and difficulties of programming and

using hybrid elements are worth noting at this stage.

The thsical amount of coding involved in an element routine
is usually quite large .because of the complicated nature of the

formulation. Also relatively large amounts of storage are used

because of the size of some of the matrices which have dimensions

(length of stress assumption) x (number of degrees of freedom).

This is partly compensated by the simple nature of the

stressing routine. It consists mainly of coding designed to trans-

form gldbal displacements into values relating to a particular
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element. However, a complication from the organizational point of
P

view is that the D{] Eﬂ matrices of Chapter 2 must be kept on

backing store and brought into the stressing routine. For 2 large

structure a considerable amount of backing store is required.

The fact that there is no bound to the total strain énergy
when using hybrid elements is c&nsidered & disadvantage by some
 theoreticians. If a structure is subjected only to avpoiﬁt 1oad
it is useful to have a bound (such as provided by conforming dis-
placement and equflibrium models) since the deflection under this
load is a measure of the strain energy. However, in most practical
situations innt loads are‘not present and deflections may not,
indeed, be as-.important as stxgsses. The fact that no bound is.

present is not usually, then, particularly important in practice.

In one of Pian's earliest papers on the hybrid method (29) it
is suggested thdt results can be‘improved if; in addition to hound-
ary displacement constraints, boundary stréss conditions are also
imposed. This, according to the theory outlined in Chapter 2, is
pot necessary for convergence but Pian conc}udes that bvetter

results caﬁ often be obtained. To apply the methed it is neces-

sary to construct special elements to deal with the edges of the

structure.

~

This is difficult to implement in a general finite element
scheme but the approach is also advocated by Wolf(63); who states
that in certain difficult problems the stress boundary condition
must be imposed to give adequate convergence. This situation has
not arisen in any of the work reported here, ‘but il would seem
‘ o establish jus*t in which cases, and why,

worthwhile to attempt t

this occurs.
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In the limited amount of vibration work undertaken here conven-
tional mass matrices are derived from a displacement asgumpiion and
used with hybrid elements. Pian(71) comes to the conclusion {see
Chapter 2) that the method can be justified on %he basis of a modi--
fied form of the Hellinger~Reissner wvariational principle - but he
admits that there are inconsistencies. In fact, the only consistent
hybrid method for vibration analysis is that due to Tabarrok(73).
| Here inertia properties for the element are obtained from the assumed

stresses which are chosen to satisfy the dynamic equilibrium equations.

The formulation, explained fully in (73), leads to a frequency
dependent mass matrix and it proves necessary to solve a deternin-
antal equation rather than the more usual eigenvalue one. Pian(71)
points out that the approach cannot be used for general dynamic
problems such as transient response analysis whilst Henshell et al.
(62) outline}the practical difficulties involved in implementing
the procedure on real éystems. The approach, then, is mathematically

justifiable but of restricted practical use.

8.3 Suggestions for Further Work

8.3.1 Work on Elements Developed in this Thesis

When new elements are developed it is difficult to be certain
when the stage is reachedat which they can be said to be fully tested
and proven. Also, in the present case, since one aspect of the
performance of the elements has been coancentrated upon, there is
room for more work to be done. The following lines of investigation
could be pursued.

(i) Investigation of the performance of the flat triangular

shell element of Chapter 4 on a variety of doubly curved shell

. : 1
problems. For vibration analysis transverse and in-plane mass
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matrices could be added.

(ii) The addition of mass matrices to the rectangular and
triangular curved shell elements to enable cylinder-~cylinder
vibration problems to be analysed.

(iii) Further investigations of the four-noded curved triangle
as an element in its own right. It has not been tested on a wide
range of problems so far,

(iv) Investigation of the possibility of improving the existing
elements by increasing the complexity of both the bounddry displace-~
ment and stress assumptions. This, perhaps, would mean using mid-

side nodes. The obvious restriction on this would be the excessive

amount of storage needed in the element routine for reasons explained

earlier,

8.%3.2 Further Applications of the Hybrid Method

8.%3.2.1 A Doubly Curved Element

A logical extension of the present work would be the develop-
ment of a thin hybrid slement capable of modelling doubly curved
shells exactiy. On the basis of the present results the most
efficient formulation would seem to be a quadrilateral with mid-

side nodes to enable the shapes of the sides to be defined.

Numerical integration would, no doubt, be used and tpe two
principal curvatures and the thickness could then be varied over
the surface of the element. Because of the use of the two radii
of curvatuie the equilibrium equations would be more involved and

the stress assumption correspondingly more difficult to choose,

However, an element such as this would be capable of dealing with

problems such as the ¢ylinder-cylinder intersection of Chapter 7.



- 205 -

8.3,2.2 Thick Shell Elements

All shell elements in this thesis are based on "thin" assuap-
tions which consider transverse shear stresses and shear defornma-
tions as negligible. Also, in the plate vibraticn protlems,

rotary inertia was not considered.

Severn and Taylor(32) point out the convenience of taking
transverse shear effects into account using the hybrid method.
However, Pian(30) draws attention to the fact that the displace-
ment assumptions used in (32) are not sufficient to model thick
behaviour and he suggests that it is necéssary to distinguish
betﬁeen rotations and derivatives of transverse displacements.
Separate assumptions should be made for transverse displacements

and rotations.

It would seem possible, then, using the hybrid method and
the above approach to construct thick shell elements. The

quality of results possible is worthy of investigation.
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Appendix 1 - NOVOZHILOV'S STRAIN ENZRGY EXPRESSION FOR THIW SHELLS

- . ——

AND THE STRESS-~-3TRAIN RELATIONSHIP

Al .1 Tntroduction

Thin shell theory deals with the stresses and displacements of

the middle surface of the shell. The underlying assumptions in thin

shell theory can be stated as:

(i) straight fibres perpendicular to the midile surface before def—

~ormation remain sc after deformation and do not change their length;
(ii) normal stresses acting on planes parallel to the middle

surface may bve neglected in comparison with the other stresses.

These basic assumptions define completely the variations of

deformation and hence ‘stresses through the thickness. It is there-

fore convenient to express deformations in terms of those of the

middle surface and to express the stresses as statically equivaient

stress resultants acting also at the middle surface.

Al.2 The Strain Energy Expression of Novozhilov

The strain energy for a complete shell can be expressed in the

nomenclature of Fig.(Al.l) as

‘ \
V=& (&. En + S + ﬁe.;) A F}L( |+ z/e%l +i/ﬂa.) dordr d2(41.1)

where a(,fim = Curvilinear coordinates in surface
R Ra
ﬂi,AL

Suly efe. = stresses and strains

L

Two principal radii of curvature

Lame parameters relating arc length to ﬂ<l,0(z-

and the first integral extends through the thickness from z = -t/2

to z = +t/2 (t = thickness of shell).

' If the etress normal to the surface is neglected, Hooke's lLaw
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can be stated in the form &) | C
5 =fel(-) e+ ve)

& =lgl(1-] z[ &1 ye ]

Al,2)
| (
% \(?5)
O = {E/A(H-)ﬁ (o
: ' T4 : : () & (?')
where E is Young's Modulus, ¥ = Poissons Ratio and & ) & and

=
b)c) are strains at any point a distance z from the middle surface

and determine the change in length and change in shear at this point.

If é‘, €2 and W are the corresponding strains of the middle
surface and R&, KL and‘z zre the changes in curvature and torsion

of the middle surface, then Novozhilov(1l) shows that the quantities

e‘(z) , 62'(?:)
&P = £ + 2 (X «é./fz,)
D e g+ %(KL-é#EQ
WS a0 322 (T~ (£E)%)

¥
and u)L’ of equation (Al.2) can be expressed as

{(A1.3)

The approximations above are due to simplifications such as

neglecting small terms of the order (z/R).

1f (A1.3) and (Al.2) are substituted into (Al.1) the integration
with respect to z can be carried out. By neglecting powers of z
higher than the second and also by eliminating certain other small
terms, Novozhilov obtains the following strain energy expression in

terme of the deformations of the middle surface.
{E&/?("’)’ % [ [ M" éLL-—- Z,(i "-)’) Ei€r “101/4)]91 HL C'L’(l (1-0(2.
-{"iEe ,Url »> jj 'f'KL Zx( "Y)&X:KL )A AL O(D( 0‘0(2-

the entire middle surface.

(A1.4)

where the integrals extend over

The first term in (Al.4) represents the strain energy of extension

and shear and the second that of bendirg and torsicn.
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Al.3 The Forces at the Middle Suriace

Since the deformations of the mid&le surface only are involved
in (Al1.4) it is convenient to introduce statically equivaient forces
and bending moments also considered to act at the middle surfacs.
Consider the face of the element of Fig.(Al.1l) which is perpendic-

ular to the line o (Fig.(A1.2)).

On the shaded area of this face the stresses dn , O and
53 act. If unit length cf middle surface is considered, the
length of the shaded portion is (!*f'i/ﬂz) and the forces/unit length

acting at the middle surface are

N -':/% 07;(/7“2/,?9 ol 2

-t

Nio =/'Zi’ o’;;(/-r 2‘//29 dzr (41.5)
§ = T g (/+£/R:) oA

-2
Similar expressions hold for the forces N, Nu and Q, acting

on the face perpendicular to 0<2_,

Considering next the moments of the stresses Sn , &2 eacting

on one of the faces, the two quantities

&
M, =j:£ﬁ -E(H—E/ﬁz S A=z (41.6)

h
Mir ’j Z:(/-/' 55/;22. &2 a(i—,
=t
can be formed which are the bending and twisting moments per unit

length of p(,_ . Similar expressions for M2 and My can be formed

for the other face.

The six forces N, Ne , Q5 N2y Ny » Qo and the four moments

M,, Mg, Mp, My completely characterize the state of stress of
1 ’

the sh.ell. Using the basic assumptions, knowledge of these

quantities pernits the calculation of the stresses On , 012 8and 12

at sny point of the shell.
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A1.4’ The Relation between Forces, Moments and Straine
The expression for the variational change of sirain energy of

& thin shell, given from the theory of elasticity, is of £he forn

§{v) -:j [ J [ 6 §(en) +o’»5(eu) + G 5(&»)] (1+ é/RXHy,eL A (a1.7)

deﬁddzdif

If gé?i is used for S(?u) etc. from (Al.3) and equations
(A1.2) are used in (Al.7) above, then using the definitions of the
stress resultants given in the previous section’equation (A1.7)

becomes

§(v) -’-‘J‘ J [ N S(&) # Ny S(éz) +5 S(w> + M S(K.\)

M () +2HS(€)]A,HLMM

(a1.8)

where S = Np - M:u/ﬂa_ 5 Ny - M;?./Rl
H = i(M:'L t Mi)

If, now, the variational increment of strain energy is
obtained from (Al.4) and the coefficients of terms arc compared
with those in (Al.8), the following relationships are found

between the stress-resultants and strains of the middle surface.

N; =[Eb/("')’?](6!+))é> Nz ’[Et/(l')’z)](éz+vé> (41.9)

M; -‘-[El:s/lz(t-vﬂ (XH')’X;) My = [Et”/n-(-vj:} (KLfYXb
5 =}:Et/z.(:+y)]w = [Eé/;;@w)] T
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Appendix 2 - THE EXACT SOLUTION FOR THE RECTANGULAR SIMPLY

SUPPORTED PANEIL UNDER PRESSURE LOADING

A2.7 The Panel

The particular dimensions of the simply supported rectanguliar
panel considered in several sections of this thesis are shown in
Fig.(42.1) but the following analysis is valid for a panel with
any dimensions. Timoshenke et 2al.(3) present a similer aznalysis
but the following is a modification of this using Novozhilov's(1l)

shell theory.

A2.2 Novozhilov's Shell Theory

The stress resulﬁants acting on an infinitesimal elemeni of
the panel are shown in Fig.(A2“2). The sign convention is that
used by Novozhilov and double headed arrows represent moments
whose positive directions are given by a right-hand corkscrew

convention.

From considerations of equilibrium the following three equa-
tions can be shown to relate the forces and bending moments with
a pressure loading q.

RNl + ING=[d¢ = ©
bl\/q‘/égﬁ + K?Nxsf/ax 1—(//R) AMqS//M ¥ éMx%/Jx = 0 (h2.1) |

(/&) ¥Mgfod” + ¥ Magfoxdd + R V[0 1) M fod) - =g R
Novozhilov's relationships between the stresses and strains

can then be stated in the following form (simplified from those in

Appendix 1 as explained in Chapter 5 (Section 5.3.5).

N = EL’/(I '?")}{&w )’5#; Ma {Ef?:,/flé")”;));{\)(x + Y)(:ﬁz

il J{é‘#“’é‘} Mé ’{EC’S/IL(I’PL){{X‘}W}’XX} e
N¢ Z /}(l-f)& f |l
Nag o2 Hv)glwfrf Map = M '{é/’lt"")} |
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where the vector of strains and curvatures of the middle suriace
T
{éﬁc) é»‘Cf)) w} Kx, K% Ig can be defined in terms of the Gisplacements

u, v and w of the middle surface (Fig.(42.1)) by:
x.-"b :({3‘—' ’Léu"} twip = x + 4 du
E .u/éx, o= /¢ /;\_ %) 30/3 +K3 /394 (22.3)
Yo = =Yt Wgo- ez( %o aa/a,s) T (bz /ax9¢+}uax)

If equations (A2.3) are substituted into (A2.2) and these in
turn into (A2.1), the three equilibrium equations can be expressed

in terms of the displacements u, v and w of the middle surface.

A2.%3 Displacement Assumptions

To solve the three differential equations for u, v and w it
is necessary to make :a:s'sumptions concerning the form of these
displacements. They are taken to be the sums of infinite trigono-

metric series in both directions

LL:'ZZ Amn 8in {‘_}Zﬁ) Cdﬂ(':\_'fzr_aj-)

M:"g's... n:l’;’;’.. .

Z 2 Bran m\;jzré) fin @% (A2.4)

m",;,s" n ",3}5"

R DA A Con  Ain (mrrdg) i /M'ITa
NCTPME IR = oL \"Z,
These particular forms are chosen because they represent the

u

U

edge conditions of zero displacement and bending moment accurately.

It is also necessary to represent the uniform pressure loading
acting towards the centre of curvature in the form of an infinite

series. Timoshenko(3) shows that the following gseries does this.

Dmn W@___’%_’:_c;) 44“(%_49 (A2.5)

1 h\ﬂ};; .- n-IBS

2
where the value of Dmn is given by (169/ T =n).
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A2.4 Calculation of Results

It ie now possible, ueing (A2.5) and (A2.4) to substitute iato
the three equilibrium equations (expressed in terms of diéplacemenis)

and after much algebra the following set of equations is obtained.

RmY 1 (1-v)n* "
Hmwf[(‘?) +'ZZ"hJ + anTf’(H)’)RMn ~CmnPRMm = O (A2.6)

248’ 4
Hmn'n’(H'?)an + BM‘IT[ V)R M-+ c(l-V)M +h (; +t/l7.2 2)]
Lot e «* J (42.7)

—CM(G‘[ r('ls){% f(l-ﬁ%‘;ﬂ ~

HM(VTTRM> + Bm{WV\W[I +( Tt :){RL(Z"’ m* + _".‘f} ;;&2.8)

l!-' 0( 2

N -'Cm! | + (‘ﬂ“tj(ﬂ"m ¥ n ] ( ’
AT I-
L ILR* L* %E%fn

Equations (A2.6), (A2.7) and (A2.8) constitute ihree equations
in the three unknown coefficients Amn, Bmn and Cmn for every value
of m and n in the infinite series. For each value of m and n the
three equations can be solved and the exact displacements built up
using (A2.4). Simultaneously it is possible to build up values for
the étress resultants using (A2.3) and (42.2). The process oan be

terminated when convergence to the required accuracy is achieved.

For the panel shown in Fig.(A2.1) convergence to three signi-

ficant figures had taken place when m and n had reached 21.
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