The supercritical processing of mammalian cells for applications in tissue engineeringTools Ginty, Patric J. (2006) The supercritical processing of mammalian cells for applications in tissue engineering. PhD thesis, University of Nottingham.
AbstractConventional methods of combining mammalian cells and synthetic polymers for tissue engineering applications are frequently problematic. This is due to the incompatibility between the sensitive cell component and the harsh polymer processing environments required to form the desired porous scaffold e. g. high temperatures and organic solvents. This results in the necessity for an often inefficient and time consuming two step scaffold seeding process, whereby mammalian cells are added to a pre-fabricated polymer scaffold. High pressure or supercritical CO2 (scCO2) processing is a method of fabricating porous polymer scaffolds at ambient temperatures and without using organic solvents. When pressurised, CO2 becomes highly soluble in a variety of amorphous polymers such as poly(DL-lactic acid) (PDLLA) to produce a high viscosity liquid. Subsequent decompression causes the formation of gas bubbles that become permanent as the polymer vitrifies. Based upon technology at the University of Nottingham, we hypothesised that mammalian cells could be incorporated into poly(DL-lactic acid) (PDLLA) scaffolds using a single step scCO2 process. This would not only make the process more rapid, but it would remove the inefficient scaffold seeding step required in most cell based tissue engineering strategies.
Actions (Archive Staff Only)
|