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Abstract 
 

The planktonic foraminifera are a highly abundant and diverse group of marine 

pelagic protists that are ubiquitously distributed throughout the worlds’ oceans.  These 

unicellular eukaryotes are encased in a calcareous (CaCO3) shell or ‘test’, the 

morphology of which is used to identify individual ‘morphospecies’.  The 

foraminifera have an exceptional fossil record, spanning over 180 million years, and 

as microfossils provide a highly successful paleoproxy for dating sedimentary rocks 

and archiving past climate.    Molecular studies, using the small subunit (SSU) 

ribosomal (r) RNA gene are used here to investigate the biogeographical distributions 

and phylogenetic relationships of the planktonic foraminifera.  Biogeographical 

surveys of two markedly different areas of the global ocean, the tropical Arabian Sea, 

and the transitional/sub-polar North Atlantic Ocean, revealed significant genotypic 

variation within the planktonic foraminifera, with some genetic types being sequenced 

here for the first time.  The foraminiferal genotypes displayed non-random 

geographical distributions, suggestive of distinct ecologies, giving insight into the 

possible mechanisms of diversification in these marine organisms.  The ecological 

segregation of genetically divergent but morphologically cryptic genetic types could, 

however, have serious repercussions on their use as paleoproxies of past climate 

change.  Phylogenetic analyses of the foraminifera based firstly on a partial ~1,000 bp 

terminal 3´ fragment of the SSU rRNA gene, and secondly on the ~3,000 bp almost 

complete gene supported the hypothesis of the polyphyletic origins of the planktonic 

foraminifera, which appear to be derived from up to 5 separate benthic ancestral 

lineages.  The almost complete gene is sequenced here in the planktonic taxa for the 

first time, though amplification was problematic.  In a first step to addressing a 

pressing need for new genetic markers to support data gained from the SSU rRNA 



 

gene, a culture system was established for the benthic foraminifera, in order to provide 

a reliable source of DNA for EST library construction or full genome sequencing.  

Finally, to overcome difficulties associated with the PCR amplification of the 

foraminifera, a new lysis buffer and DNA extraction procedure was developed.  A 

highly successful buffer was created, allowing high quality DNA to be extracted from 

foraminiferal specimens, whilst leaving the delicate calcitic shell intact for 

morphological reference. 
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1: Introduction 
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1 Introduction 
 

1.1 The Foraminifera 

The Foraminifera are a diverse group of marine protists that are ubiquitously 

distributed throughout the world’s marine habitats.  They are unicellular eukaryote 

organisms that likely evolved from an amoeba-like ancestor, and comprise of a single 

cell, usually encased in a protective shell or ‘test’ that may be organic, agglutinated or 

calcareous in nature.  The foraminifera are distinguished from other rhizopod 

protoctists by their pseudopodia, which are finely granular and form intricate 

reticulate networks (reticulopodia) (Lee et al., 1990). 

 

The number of extant foraminiferal species has been estimated at approximately 

10,000 (Vickerman, 1992).  The vast majority of these are benthic taxa, species that 

inhabit marine sediments.  Benthic species first appear in the fossil record during the 

Cambrian period (Culver, 1991), and since this time have radiated into an enormously 

diverse group.  Distributed globally, the benthic foraminifera form distinct 

assemblages on the inner and outer continental shelf, upper and lower continental 

slope, and in deep-sea sediments (reviewed by Sen Gupta, 1999a).  Species may live 

within the sediment (obligate epibenthic), on the sediment (obligate endobenthic), or 

migrate between the two (Linke & Lutze, 1993). 

 

The planktonic foraminifera have adopted a pelagic mode of life, free-floating in the 

water column.  In contrast to the benthic taxa, the planktonic foraminifera, are 

represented by far fewer species, estimated at around 40 – 50.  Planktonic species are 
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younger in comparison to their benthic relatives, first appearing in the fossil record 

during the Jurassic period (Loeblich & Tappan, 1974; Caron & Homewood, 1983). 

 

The planktonic foraminifera show immense diversity and adaptability, both in their 

morphology and biology and have expanded to fill a wide variety of niches within the 

global ocean.  They are classified taxonomically based on the characteristics of their 

calcareous shell.  Identification is based on general morphology as well as the 

ultrastructural and microstructural features of the shell (Hemleben et al., 1989) 

obtained by transmission electron microscope (TEM) (Bé et al., 1966; Takayanagi et 

al., 1968) and scanning electron microscope (SEM) (Lipps, 1966; Hemleben, 1969a,b; 

Scott, 1974; Hemleben, 1975; Saito et al., 1976; Benjamini & Reiss, 1979; Cifelli, 

1982) investigations.  The major morphological split is between the spinose 

planktonic foraminifera (those with spines) and the non-spinose planktonic 

foraminifera (those without spines) (fig. 1.1) (first recognised by Parker, 1962).  The 

non-spinose taxa can be further divided into the macroperforate, microperforate, and 

non-spiral groups (fig. 1.1) (summarised by Hemleben et al., 1989).  Molecular 

phylogenetic studies have led to an extensive increase in our understanding of the 

evolutionary relationships of the planktonic foraminifera, refining our views of their 

taxonomic relationships, as will be discussed later on. 
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Figure 1.1.  Scanning electron microscope (SEM) images of the planktonic foraminifera, showing
their major taxonomic groupings.  References: (1) Departamento de Paleontologia e Estratigrafia da 
UFRGS., 2006. (2), Darling & Wade, 2008, (3) Microfossil image recovery and circulation for 
learning and education (MIRACLE), 2010, (4) Bé, 1977, (5) de Vargas & de Garidel Thoron, 2010 
(6) photographs by K. Finger, Berkeley USA (7) Kimoto et al., 2009, (8) Darling et al., 2009. 
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1.2 Biological characteristics of the Foraminifera 

1.2.1 Cellular structure 

The cytoplasm of the foraminifer’s single cell is contained within an external test, and 

fills the internal space to match its shape. Much of the inner space of the test is filled 

by vacuolated cytoplasm, though the final chamber may be incompletely filled, either 

as a result of poor health or nutrition, or during chamber construction (Hemleben et 

al., 1989).  There are thought to be three zones of intergrading cytoplasm: 1) Compact 

intrashell cytoplasm, 2) frothy or reticulate cytoplasm, usually observed in the final 

chamber or at the aperture between the intrashell and extracell spaces, and 3) external 

cytoplasm comprising of alveolate masses or reticulate to fibrose strands of rhizopodia 

engulfing the outer surface of the shell.  Sticky Rhizopodia (fine cytoplasmic 

filaments) extend outwards into the surrounding environment forming a radial net that 

is used for feeding (Hemleben et al., 1989).  The nucleus is typically located in one of 

the inner chambers, protected from the external environment.  Within the rest of the 

cellular space, cytoplasmic streaming leads to a fluid movement of material, 

particularly so towards the aperture and surrounding extrashell cytoplasm.  The 

extrashell cytoplasmic strands are particularly fluid allowing pseudopodia to be 

extended in all directions, or retracted and flattened to form a covering over the test 

(Hemleben et al, 1989).  Three types of pseudopodia may be observed: 1) rhizopods 

(branching), 2) filopodia (long, thin and straight), and 3) reticulopodia (net-like).  In 

species with spines protruding from the test (spinose foraminifera) rhizopodia may 

extend along the radially arranged structures, to form a fine web. 

 



1: Introduction 

 5

1.2.2 Growth and Test Ontogeny 

In the more primitive forms of foraminifera (e.g. Cribrothalammina alba) the test is 

agglutinated in nature, held together with organic or calcareous cement.  In order for 

growth to occur, material is added to the inner organic lining of the test at sites distant 

from the aperture (Goldstein & Barker, 1988).  For the majority of foraminifera, 

however, growth is accomplished by adding a new chamber to the calcareous test at 

regular intervals, increasing in size each time.  For most calcareous benthic 

foraminifera, (e.g. Rosalina floridana and Ammonia tepida: Order Rotaliida), the 

process begins by the formation of a translucent algal cyst that extends over the entire 

surface of the test.  Pseudopodia then coalesce within the cyst forming a template or 

anlage of the future chamber.   The pseudopodia work over the surface of the anlage, 

forming an inner organic lining (IOL).  Once the IOL is complete, cytoplasm from 

within the test floods the newly formed chamber, forcing the vesicular material of the 

anlage out through the aperture to form a sheath over the test surface.  Calcite 

deposition then occurs over both the new chamber and the entire test surface.  Once 

construction is complete, the foraminifer breaks free of the cyst (Angell, 1967b, 

reviewed by Goldstein, 1999). 

 

In the planktonic foraminifera the process is similar, though with some characteristic 

differences.  Feeding rhizopodia are withdrawn and a translucent bulge of cytoplasm 

emerges from the shell aperture.  Fanlike rhizopodia then radiate from the bulge to 

form the outline of the outer protective envelope.  The cytoplasmic bulge gradually 

extends up to meet the protective envelope.  Construction of the anlage then begins.  

The anlage comprises of a thin cytoplasmic envelope (CE) and the primary organic 

membrane (POM), a non-living filamentous layer.  These ultrastructural elements are 
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associated with the calcification process. The periphery of the bulge smoothens, 

forming the outline of the new chamber.  Then small plaques of calcite are secreted on 

both sides of the POM, gradually building up to form a continuous bilamellar wall 

(unlike in benthic taxa where the wall is unilamellar).  In many taxa, pores form in the 

chamber surface at the sites where cytoplasmic strands passed through sieve-like 

micropores, leaving a perforated mature chamber. Further thickening continues to 

occur, and the whole process is complete in approximately 6 hours (Hemleben et al., 

1989).   

Chamber formation is generally similar in spinose and non-spinose taxa, though with 

spines added in the spinose taxa after the chamber is largely complete (Hemleben et 

al., 1986).  Some species such as Globorotalia menardii develop a keel, to strengthen 

the sharply angled rim of the compressed test (fig. 1.1) (Schott, 1973).  The keel is 

formed by the collapse of the chamber wall along the test periphery (Hemleben et al., 

1977).  Most non-spinose species also bear small conical calcitic protuberances called 

pustules, which serve as anchor points for masses of rhizopodia (Hemleben, 1975; 

Hemleben et al., 1989). 

 

1.2.3 Feeding and Nutrition 

The Foraminifera utilize a broad range of feeding mechanisms and nutritional 

resources.  Algae and diatoms form the staple diet of the majority of foraminifera, 

though bacteria may also form an integral part of the nutritional intake of many 

species (Lee, 1980).  Yeasts, fungi and small animals are also known to be ingested in 

some cases (Lee et al., 1966; Lipps, 1983; Bernhard & Bowser, 1992).  Feeding 

experiments indicate that many species feed selectively (lee et al., 1966; Lee, 1980), 

targeting, for example, a particular species of algae (reviewed by Arnold, 1974; 
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Anderson et al., 1991). Mechanisms employed for feeding include grazing (Jepps, 

1942), suspension feeding (Lipps, 1983), deposit feeding (Goldstein & Corliss, 1994), 

carnivory (Bowser et al., 1992), parasitism (Cedhagen, 1994), feeding on 

phytodetritus (Gooday, 1988, 1993), or even the direct intake of dissolved organic 

carbon (DOC) (DeLaca et al., 1981).  Pseudopodia are used in feeding, functioning to 

gather food (Jepps, 1942) and subdue prey (Bowser et al., 1992).  In some species 

they may also function in extrathalamous digestion (Lee et al., 1991c; Faber & Lee, 

1991). 

 

1.2.4 Symbiosis 

Many species of foraminifera display some kind of relationship with other 

microorganisms.  The nature of the relationship varies from true symbiosis, where 

both individuals benefit, to commensalism, where only one party benefits, but the 

other is not harmed, to parasitism, where one member is exploited by the other 

(Hemleben et al, 1989).  Some species merely sequester chloroplasts on a temporary 

basis (Lee & Anderson, 1991a).  Some 150 extant species of foraminifera harbour 

algal symbionts, though this represents less than 10 % of the total species number 

(Lee & Anderson, 1991a).  Symbiosis is particularly prevalent in the tropical larger 

benthic foraminifera (though certain temperate species also carry symbionts) and in 

the planktonic foraminifera.  Symbiotic relationships with algae are thought to benefit 

the foraminiferal hosts by providing a source of energy from photosynthesis 

(Falkowski et al., 1993; Hallock, 1981a), enhancement of calcification (Duguay, 

1983; ter Kuile, 1991), and possibly the removal of host metabolites by the symbiont 

(reviewed by Hallock, 1999).   
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Figure 1.2.  Microscope images of the spinose planktonic foraminifers Globigerinella sp. (left) and 
Orbulina universa (right), showing algal symbionts enclosed by the foraminiferal cytoplasm along 
the spines.  Pictures taken by O. R. Anderson (2006), licensed to MBL micro*scope. 
 

Within the benthic foraminifera, 4 milliolid, 3 rotaliid, and 5 globigerinid families are 

thought to harbour symbionts (Lee & Anderson, 1991a) including diatoms, 

dinoflagellates, red algae, and chlorophytes (Hemleben et al., 1989).  Symbiosis 

appears to have arisen independently in most of these foraminiferal lineages (Hallock, 

1999).  In contrast, planktonic foraminifera only associate with two types of algal 

symbiont, dinoflagellates and chrysophytes (Hemleben et al., 1989). Within the 

spinose planktonic foraminifera, Globigerinoides ruber, Globigerinoides conglobatus, 

Globigerinoides sacculifer, and Orbulina universa all harbour dinoflagellate 

symbionts (Faber et al., 1985; Gastrich, 1988; Hemleben et al., 1989), possibly of 

only a single species, Gymnodinium béii (Gast & Caron, 1996; Lee & Anderson, 

1991a).   

Turborotalita humilis and Globigerinella siphonifera bear chrysophyte symbionts 

(Faber et al., 1985; Gastrich, 1988; Hemleben et al., 1989).  The symbiotic 

relationship is thought to be obligative (i.e. survival outside of the relationship would 

be impossible) in all of these spinose species (Hemleben et al., 1989).  When 

observed, the algal symbionts can be clearly seen among the radially arranged spines 
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(fig. 1.2).  Globigerina bulloides and Hastigerina pelagica are unusual in being 

symbiont barren, though the latter houses commensals (Spindler & Hemleben, 1980).  

The non-spinose planktonic foraminifera Globigerinita glutinata, Neogloboquadrina 

dutertrei, Pulleniatina obliquiloculata, Globorotalia inflata, and Globorotalia 

menardii all harbour facultative chrysophytes, whilst the remaining taxa (e.g. 

Neogloboquadrina pachyderma, Globorotalia truncatulinoides, Globorotalia hirsuta) 

are symbiont-barren (reviewed in Hemleben et al., 1989).  Facultative symbionts are 

housed on a non-permanent basis, photosynthesising within perialgal vacuoles, but 

may sometimes be digested by the foraminiferan. 

 

1.2.5 Life cycle in the Foraminifera 

Benthic foraminifera typically reproduce by a classical dimorphic life cycle, 

consisting of a regular alternation between sexual and asexual generations (Goldstein, 

1999; Lee et al., 1991b) (fig. 1.3).  The haploid, megalospheric gamont releases 

gametes (~ 1-4 μm), which are fertilized to produce a zygote, eventually giving rise to 

a diploid microspheric agamont.  The agamont then produces haploid megalospheric 

young, by multiple fission, and the cycle begins again.  A biological dimorphism 

usually exists between the gamont, which has a single nucleus and a megalospheric 

test, characterised by a large proloculus (1st chamber) but a relatively small overall 

diameter, and the agamont, which is multinucleate and has a microspheric test, 

characterised by a smaller proloculus, but relatively larger overall test diameter 

(Goldstein, 1999).  Exceptions to this rule do exist in some species, where this size 

relationship may be inverted.  This dimorphic life cycle was first recognised by Lister 

(1895) in a study of the benthic foraminifer, Elphidium crispum, and was later 

confirmed by Schaudinn (1895).   
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Figure 1.3.  Life cycle of the Foraminifera.  Most benthic foraminifera display a classic dimorphic life
cycle, shown on the right of the diagram, which involves a regular alternation between two generations,
the microspheric agamont and the megalospheric gamont.  In some benthic species, the life cycle also
includes a schizont, which is produced from the agamont, and reproduces asexually.  Cyclic asexual
schizont formation (schizogony) may occur at this point.   Planktonic foraminiferal morphospecies
reproduce by sexual reproduction only, seen on the far right of the diagram.  Adapted from the life cycle
of Ammonia tepida, as documented by Stouff et al., 1999a. 

 

 

The alternation of generations may be obligatory (i.e. there is a rigid cycle between 

sexual and asexual phases) in some foraminifera, for example Elphidium crispum 

(Lister, 1985; Jepps, 1942) and Glabratella sulcata (Grell, 1958), or facultative (i.e. 

the sexual/asexual cycle can be broken under certain conditions or stresses) in others, 

e.g. Ammonia tepida (Bradshaw, 1957; Goldstein & Moodley, 1993) and Saccammina 

alba (Goldstein, 1988). The facultative system is often referred to as a biologically 

trimorphic life cycle, and involves successive asexual reproduction that inserts a third, 

biologically distinct form between the agamont and gamont generations, the 

megalospheric schizont (Fig. 1.3; Stouff et al., 1999a).  Schizonts reproduce by 

Sexual
reproduction
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multiple fission, to produce either another schizont generation, or megalospheric 

gamonts, at which point the cycle is closed.  Schizogony may become cyclic, with 

several generations of schizonts following one another (Dettmering et al., 1998).  

Trimorphism was first suggested as a reproductive strategy in foraminifera by 

Rhumbler (1909) and was subsequently proposed to be the dominant life cycle in 

larger foraminifera (Leutenegger 1977; Lee et al., 1991b).  Confirmation of this 

reproductive strategy came when primary successive asexual reproduction was 

recorded in laboratory cultures of Heterostegina depressa (Röttger et al., 1986, 1990), 

and has since been documented in other species such as the larger foraminifer 

Amphistegina gibbosa (Dettmering et al., 1998; Harney et al., 1998), and in Ammonia 

tepida (Stouff et al., 1999a).   

 

In contrast to the variety of reproductive strategies seen in the benthic foraminifera, 

only sexual reproduction has ever been recorded in the planktonic taxa (Goldstein, 

1999; Hemleben et al., 1989). Hemleben et al. (1989) suggest that the agamont and 

multiple fission have been lost, leaving a ‘gamic’ life cycle (fig. 1.3). The planktonic 

foraminifera have developed a number of mechanisms for coping with the difficulties 

of reproduction in an open ocean environment, thus maximising the chances that 

compatible gametes of the correct species will meet (Hemleben et al., 1989).  

Throughout the year most species will migrate throughout the water column, a 

strategy that is thought to maximise the use of available food sources.  Gametogenic 

adults usually settle in the water column and accumulate in the thermocline to release 

their gametes. The deep chlorophyll maximum layer is an optimal zone for 

reproductive success, providing a stable breeding environment and food source for 

juveniles.  Many species exhibit a lunar or semi-lunar reproductive cycle, allowing 



1: Introduction 

 12

gamete release to be synchronised, though food availability may also play some role 

in the timing of reproduction. Gametes are released in their hundreds of thousands and 

though not proven conclusively, evidence suggests that the primary reproductive 

strategy may be dioceous, with gametes mixing from different parents.  The general 

reproductive strategies and life horizons of some modern planktonic foraminifera, as 

recorded by Hemleben et al. (1989), are shown in fig. 1.4.  

 

 

 

 

 

 

Figure 1.4.  Summary of the reproductive strategies and life horizons of some modern planktonic
foraminifera from the tropics and subtropics.  s.R =  sexual reproduction; major patterns span a range from
near-surface dwelling forms that reproduce at shorter time intervals to those that reproduce at depth, and
rise to the surface.  The latter probably have longer reproductive intervals.  Taken from Hemleben et al.
(1989) 
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1.3 Biogeography and ecology of the Planktonic Foraminifera 

Despite an apparent lack of barriers to gene flow in the open ocean, the global ocean 

is not a uniform environment, but one comprised of regionally distinct ecosystems.  

From studies of the global distributions of modern planktonic foraminifera, Bé and 

Tolderlund (1971) divided the global ocean into broad zones, designated as the polar, 

sub-polar, transitional, sub-tropical and tropical faunal provinces (fig. 1.5), and 

demonstrated that specific assemblages of morphospecies are associated with each 

particular region (also see Bé, 1977).  

 

Discrete assemblages are also found in a transitory province associated with regional 

upwelling (summarised in Lipps, 1979; Hemleben et al, 1989).  Individual 

morphospecies may be found across several zones, but each has a characteristic, 

usually temperature dependent distribution (fig. 1.6). Within the faunal provinces, 

Figure 1.5.  World map showing the five major planktonic foraminiferal faunal provinces, devised
by Bé & Tolderlund, 1971.  Tropical 24-30 °C, subtropical 18-24°C, transitional 10-18 °C, subpolar
5-10 °C, polar 0-5 °C.  Areas of seasonal upwelling, considered as the 6th faunal province by
Hemleben et al. (1989) are also shown (see key).  
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other factors such as salinity, prey abundance, nutrient level, turbidity and 

illumination may also affect diversity, abundance and distribution locally.  The fact 

that planktonic foraminiferal morphospecies adhere to these faunal provinces, coupled 

with their widespread global distribution has made them extremely useful in the study 

of both modern and ancient marine ecosystems (Hemleben et al., 1989). 

 

 

 

 

Figure 1.6. Morphospecies assemblages and ranges within the five major planktonic
faunal provinces.  Varying thickness represents relative abundance within each zone.
(Modified from and Bé Tolderlund, 1971 & Darling & Wade, 2008). 
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1.4 The use of planktonic foraminifera as indicators of past 
environmental conditions and climatic change  

When planktonic foraminifera die their calcitic shells slowly sink in the water column 

forming a component of “marine snow” (Bishop et al., 1977; Silver et al., 1978; 

Wefer et al., 1982), which settles on the seabed, forming a layer of sediment in which 

the shells eventually become fossilised. The planktonic foraminifera have an 

exceptional fossil record, spanning approximately 180 million years (Ma), and it is 

this continuous and clearly interpretable fossil record that has afforded planktonic 

foraminifera great utility in reconstructing past climate, ecological conditions and 

geological history (e.g. CLIMAP, 1976; Berger, 1979a; Vincent & Berger, 1981; 

Ruddiman & Sarnthein, 1986; Boersma et al., 1987). 

 

Core samples of oceanic sediments provide information on the foraminiferal 

assemblage (i.e. the species composition/ relative abundances of species) from a given 

geological time period.   Using our knowledge of the ecological habits of extant 

planktonic foraminiferal morphospecies it is then possible to estimate the past climatic 

conditions that existed during that time period, based on the species that were present 

(e.g. Sancetta et al., 1972; Imbrie et al., 1973; Sachs et al., 1977; reviewed by 

Hemleben et al., 1989).  Such methods of course works on the assumption that 

modern planktonic foraminiferal morphospecies respond to their environment in the 

same way as ancient populations.  Only the most abundant morphospecies in the 

assemblage are considered, removing possible interference from species only present 

on the periphery of their natural range. 
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Shell chemical composition, particularly stable isotopes (e.g. the ratio of 18O/16O), is 

also widely employed to estimate water temperatures where the planktonic 

foraminifers grew (reviewed by Anderson & Arthur, 1983; Berger, 1979b; Berger et 

al., 1981; Hemleben et al., 1989; Vincent & Berger, 1981).  When calcification of 

foraminiferal shells occurs, the relative amounts of the two isotopes incorporated is 

dependent on temperature, and thus the ratio of the common isotope 16O to the heavier 

isotope, 18O, may be used to estimate the water temperature at the time that the calcite 

of the shell was deposited. 

 

1.5 Classification of the Foraminifera 

1.5.1 Criteria for the classification of the Foraminifera 

The Foraminifera are numerous and varied in their shell morphology and biology, 

making the task of compiling a single informative classification extremely difficult.  

Traditional foraminiferal classification is based almost exclusively on the 

characteristics of the test, primarily its chemical composition, ultrastructure, mode of 

formation, and mode of growth (continuous or periodic) (Loeblich & Tappan, 1992). 

 

The Foraminifera can be simply divided into three main groups, according to the 

chemical composition of the test: 1) organic test, 2) agglutinated test, and 3) 

calcareous test (Cushman, 1948).  Organic tests are composed of a simple membrane 

comprised of proteins and mucopolysaccharides (“tectin”) (Lee, 1990) (e.g. the 

Allogromiida).  Agglutinated tests have an organic lining, coated with a calcareous or 

ferruginous cement, to which particles of natural materials from the environment are 

affixed (Lee, 1990) (e.g. the Astrorhizida, Lituolida, Trochamminida & Textulariida).  

Calcareous tests are comprised of secreted calcium carbonate (CaCO3), usually 
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calcite, (Lee, 1990) (e.g. the Milliolida, Lagenida, Globigerinida, Buliminida & 

Rotaliida).  The calcite wall may be perforate (e.g. Lagenida, Buliminida, & 

Globigerinida) or imperforate (e.g. the Milliolida, Caterinida, & Spirillinida) in 

structure (Carpenter et al., 1862; Cushman, 1948; Reuss, 1861; Sen Gupta, 1999b), 

monolamellar (single layered) (e.g. Lagenida), or bilamellar (double layered) (e.g. 

Globigerinida, Rotaliida, Buliminida) (Sen Gupta, 1999b), and have either a low 

magnesium content (many orders, e.g. Carterinida, Globigerinida) or high magnesium 

content (Milliolida only) (Sen Gupta, 1999b).  In two orders (the Robertinida and 

Involutinida) the secreted CaCO3 test is made from aragonite rather than calcite and in 

a single order (the Silicoloculinida), the test is formed from opaline silica. 

 

Wall ultrastructure may be used to differentiate between calcitic taxa.  Based on 

crystallographic organisation, three major types of calcareous wall structure are 

recognised: 1) porcelaneous (e.g. Milliolida), 2) microgranular (e.g. Fusulinida), and 

3) hyaline (e.g. Rotaliida) (Lee, 1990).  When viewed under reflected light, 

porcelaneous tests have an opaque, white appearance, compared to microgranular 

tests, which appear sugary, or hyaline tests which appear glassy (Lee, 1990). Polarised 

light interference patterns can be further used to differentiate calcitic hyaline orders 

(Wood, 1949).  The pattern produced can be either radial (caused by the perpendicular 

orientation of the c-axis of calcite crystals in relation to the curvature of the test wall; 

Wood, 1949) (e.g. Lagenida) or granular (oblique orientation or bundles of several 

preferred orientations (Towe & Cifelli, 1967; Stapleton, 1973)) (e.g. Milliolida). 

 

The mode of chamber addition or the arrangement of chambers is also a feature used 

in foraminiferal classification.  The foraminiferal test may be comprised of a single 
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chamber (unilocular), e.g. in certain members of the Astrorhizida, or multiple 

chambers (multilocular), e.g. in the Lituolida and Trochamminida (agglutinated), the 

Robertinida (aragonitic), and the Globigerinida, Buliminida, and Rotaliida (calcitic).  

In unilocular taxa, the chamber may take a simple globular form or a tubular form, 

which may grow in a flat spiral (planispiral).  In multilocular taxa chambers may be 

added in a number of different ways, for example, in a simple row (uniserial), 

alternating rows (biserial), a simple spiral (planispiral), in a helicoids spiral 

(trochospiral), or in a spiral where each chamber forms half a whorl (streptospiral) 

(planktics) (illustrated by Sen Gupta, 1999b, p24-35, redrawn from Loeblich & 

Tappan, 1964).  Such features were once thought key to foraminiferal classification 

(d’Orbigny, 1826; Cushman, 1945), however, as similar shell morphologies are 

present in both agglutinated and calcitic orders, Loeblich & Tappan (1964) argue that 

‘the same chamber arrangement and form of test may have developed in independent 

lineages by parallel evolution, without indicating interrelationship of the similarly 

shaped shells’.  Today chamber arrangement is therefore used largely for classification 

only at the supraordinal level. 

 

Supraordinal classification is usually based on numerous combinations of a diverse 

range of morphological features including wall pores, wall passages, principal 

apertural features (separating superfamilies), free or fixed nature of the test, mode of 

chamber addition, simple or divided nature of the chamber interior and apertural 

modifications (separating families) (Lee, 1990; Loeblich & Tappan, 1987; Haman, 

1988).  Other factors such as geological history, and some biological characters may 

also be taken into account (Loeblich & Tappan, 1987). 

 



1: Introduction 

 19

In evolutionary terms, a progression is thought to have taken place from the most 

primitive organic membranous and single chambered forms, through to agglutinated 

tests, and eventually up to the most advanced calcareous, perforate, trochospiral forms 

(Cushman, 1948).  This progression is usually reflected in modern classifications, 

which place species within evolutionary lineages, exhibiting gradational 

morphological transitions, using evidence from the fossil record (Kennett & 

Srinivasan, 1983; Pearson, 1993).   Phylogenies are usually constructed according to 

shell morphology and geologic occurrence/ biostratigraphy (Tappan & Loeblich, 

1988).   

 

1.5.2 Current classification of the Foraminifera 

The classification of the Foraminifera shown in fig. 1.7 is a much-simplified 

adaptation of the classification of Loeblich & Tappan (1992) with morphology added 

from the large compendium of foraminiferal families also published by Loeblich & 

Tappan (1987), and from Hemleben et al. (1989).  Examples of all known orders are 

shown, with greater detail presented for the Globigerinida (the planktonic 

foraminifera), the main focus of this thesis.  

 

The Foraminifera are designated as a class, as in Loeblich & Tappan (1992).  The 

classification includes 16 orders, 14 of which are listed by Loeblich & Tappan (1992), 

with a further two added in accordance with Sen Gupta (1999b).  These are the 

Involutinida (with an aragonite test), which is separated from the Spirillinida (calcite 

test) and raised to the rank of an order (Sen Gupta, 1999b) and the Silicoloculinida 

(silica test), which is separated from the Milliolida (calcite test) (Sen Gupta, 1999b; 

Lee, 1990).   
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Figure 1.7.  Classification of the Foraminifera, based on the morphological characteristic of the test.
Adapted from Loeblich & Tappan (1992) and Sen Gupta, 1999b.  Morphology is added from Loeblich &
Tappan (1987), Hemleben et al. (1989) and Simmons et al. (1997). The Order Globigerinida, which
represents the planktonic foraminifera, is expanded to show all extant superfamilies, with examples of
genera.  * Split from the Rotaliina of Loeblich & Tappan (1987), in accordance with information from
Grigelis (1978), Haynes (1981) and Loeblich & Tappan (1992).  † Separated from Spirillinida as in
Loeblich & Tappan, 1987.  ‡  Separated from Milliolida as in Lee, 1990.  Two orders, the Fusulinida and
Involutinida are now extinct.   
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Other points to note are that the Rotaliida and Buliminida, are split from the Rotaliina 

of Loeblich & Tappan, 1987, following work by Grigelis (1978), Haynes (1981) and 

Loeblich & Tappan, 1992.   Loeblich & Tappan (1987, 1992) also separated the 

Robertinida from the Spirillinida.  Two of the orders within the classification are now 

extinct (the Fusulinida and Involutinida). 

 

The Order Globigerinida, which represents the planktonic foraminifera, is shown in 

greater detail (to the genus level) and includes 3 extant superfamilies (the 

Heteroheilicacea, Globorotaliacea, and Globigerinacea), and 7 extant families (the 

Guembelitriidae, Chiloguembelinidae, Globorotaliidae, Pulleniatinidae, Candeinidae, 

Globigerinidae, and Hastigerinidae), as in Loeblich & Tappan (1992).  As no details 

of the suprafamilial structure were provided in the Loeblich & Tappan (1992) 

classification, generic level hierarchical information within the Globigerinida is taken 

from Decrouez, 1989 (only extant genera are shown). 

 

1.6 Phylogenetic relationships of the planktonic foraminifera 

Methods for inferring relationships among eukaryote taxa are traditionally based on 

phenotypic characters and the fossil record, as can be seen for the classification of the 

foraminifers (above).  However, genetic sequencing and molecular phylogenies have 

since challenged the findings of these traditionally used methods (Sogin, 1989), and 

have added greatly to our understanding of the interrelationships between the 

foraminiferal taxa, and of the evolutionary mechanisms working on them. 
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1.6.1 The origins of the Foraminifera: Molecular versus fossil evidence 

Much of the early molecular phylogenetic work on the foraminifera focused on their 

placement in the eukaryote “tree of life”.  Phylogenetic studies based on partial 

sequences of the small subunit (SSU) rRNA gene (Darling et al., 1996b; Pawlowski et 

al., 1996b; Wade et al., 1996) and the large subunit (LSU) rRNA gene (Pawlowski et 

al. (1994b) placed the foraminifera in a monophyletic group, branching outside of the 

eukaryote “crown” group diversification.  The foraminifera branched closely to the 

plasmodial and cellular slime molds, early in the eukaryotic tree, far earlier than 

suggested by the fossil record (Pawlowski et al., 1994b).  One study placed the 

foraminifera (Ammonia sp.) in a highly derived position, clustering with the alveolates 

(Ampiomplexa, dinoflagellates, & ciliates) within the major eukaryote radiation, or 

“crown” group (Wray et al., 1995), however, these sequences were later determined to 

be derived from a non-foraminiferal contaminant (Darling et al., 1996b; Wade et al., 

1996). 

 

During these early studies, SSU rRNA sequences were amplified using the “universal” 

eukaryote primers of White et al. (1990), originally designed for use on fungi.  

Confirming the identity of the early foraminiferal DNA sequences was essential, as 

the multiple genomes of the various symbionts, commensals and prey items associated 

with foraminifera could be preferentially amplified over the single genome of the 

foraminiferan.  Early observations indicated that PCR amplification of the SSU rRNA 

gene from foraminiferal samples produced two bands following gel electrophoresis.  

Both bands were sequenced and included in phylogenetic analyses, and those 

sequences clustering together in a monophyletic group, separate from any previously 

sequenced organisms were taken to be foraminiferal in origin.  For both the SSU and 
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LSU rRNA genes it was found that the eukaryote contaminant sequences were far 

shorter than those of the foraminifera, allowing for easy identification of the correct 

band (Darling et al. 1996a,b; Wade et al., 1996; Pawlowski et al., 1994b).  To help 

overcome the potential problem of contamination, gametogenic specimens, with their 

high ratio of foraminiferal genomes compared to contaminants, were sometimes used 

to give a higher chance of procuring foraminiferal DNA (Darling et al., 1996a,b; 

Wade et al., 1996).   

 

The deep phylogenetic position of the foraminifera, according to analyses of 

ribosomal DNA genes, contrasts with their Cambrian appearance in the fossil record 

(Culver, 1991).  Early foraminifera were characterised by the presence of a unilocular 

(single-chambered) agglutinated test (Culver, 1991) and it has been suggested that the 

group may have evolved from a fragile naked ancestral species, which would naturally 

be absent from the fossil record.  The recent discovery of an extant “naked” 

foraminiferan, in the form of freshwater protist, Reticulomyxa filosa, which clustered 

amongst the foraminifera in both SSU and Actin phylogenies, seems to confirm this 

possibility (Pawlowski et al., 1999a,b).  If true, the origin of the group could be much 

earlier than suggested by the fossil record, explaining the conflicting molecular and 

fossil data. 

 

Archibald et al. (2003), however, suggest that the early positioning of the foraminifera 

within the eukaryote tree is an artefact, resulting from the very rapid rates of rDNA 

evolution seen in the group, and the resulting bias caused by the long-branch attraction 

phenomenon (Embley & Hurt, 1998; Philippe & Adoutte, 1998; Philippe et al., 2000), 

which pulls the foraminifera into position alongside ancient lineages at the base of the 
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eukaryote tree.  The same effect is likely to be working on other highly derived groups 

too, for example the Microsporidia (Keeling & Doolittle, 1996; Hirt et al., 1999: 

Keeling et al., 2000). 

 

More recent molecular studies have in fact suggested that the foraminifera are more 

closely related to members of the Cercozoa, in particular Cercomonas and 

chlorarachniophytes (Archibald et al., 2003; Berney & Pawlowski, 2003; Keeling, 

2001; Longet et al., 2003; Flakowski et al., 2005) thus placing their origins once again 

within the main eukaryote radiation (Berney & Pawlowski, 2003; Keeling, 2001; 

Longet et al., 2003).  No members of the Cercozoa had been sequenced at the time of 

the earlier studies (Darling et al., 1996b, Pawlowski et al., 1996; Wade et al., 1996), 

and so this relationship was not apparent in the phylogenies produced.  In the actin 

phylogenies of Keeling (2001), the foraminifera consistently fell within the cercozoa 

and with strong support.  The relationship was backed up by evidence of a 

polyubiquitin amino acid insertion common only to the foraminifera and cercozoa 

(Archibald et al., 2003).  On reanalysing the SSU rRNA gene (complete sequences), 

removing any long-branching lineages from the phylogenetic analyses, Berney & 

Pawlowski (2003) found the foraminifera to branch consistently with the marine 

testate filosean Gromia oviformis, as a sister group to Cercozoa.  The same 

relationship was recovered in subsequent phylogenetic analyses using the RNA 

polymerase II gene Longet et al. (2003) and Actin gene Flakowski et al. (2005).  The 

position of this large clade (Foraminifera, Gromia, Cercozoa) remained poorly 

resolved, as were the locations of all other major groupings within the eukaryote tree.  

Though the close affiliations of the Foraminifera are now better understood, further 

work is needed to pinpoint their exact position in the eukaryote tree. 
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1.6.2 The origins of the planktonic foraminifera: The move from benthos to 
plankton 

Molecular analyses had shown that the Foraminifera form a monophyletic group 

within the eukaryotic phylogeny (Archibald et al., 2003; Berney & Pawlowski, 2003; 

Darling et al., 1996b; Flakowski et al., 2005; Keeling, 2001; Longet et al., 2003; 

Pawlowski et al., 1994b, 1996b; Wade et al., 1996), however it was also important to 

determine the evolutionary relationships within the foraminifera, particularly between 

the benthic and planktonic taxa.  Fossil evidence suggested that the earliest planktonic 

foraminifers evolved from a single benthic lineage, originating in the Mid-Jurassic or 

earlier (Loeblich & Tappan, 1974; Caron & Homewood, 1983).  They may have 

originated from small benthic foraminifera, the Oberhauserellidae (Tappan & 

Loeblich, 1988).  The movement of foraminifers from the benthos to the plankton thus 

significantly post-dates the major diversification of benthic foraminifers  (Tappan & 

Loeblich, 1988). 

 

From this point the planktonic foraminifera were subjected to successive extinction 

and radiation events (Banner & lowry, 1985), and it was assumed that new lineages 

evolved from the surviving taxa following each extinction event (Tappan & Loeblich, 

1988; Norris, 1991; Olsson et al., 1992), rather than arising from new and independent 

adaptations to the planktonic mode of life.   Molecular phylogenetic analyses, 

however, suggest that the planktonic foraminifera are in fact polyphyletic in origin, 

arising from different benthic ancestors on independent occasions (Darling et al., 

1997; de Vargas et al., 1997).   It is unknown how many transitions may have 

occurred from the benthic to planktonic mode of life during the history of the 

foraminifera (de Vargas et al., 1997), however, repeated phases of adaptation to the 

planktonic mode of life may be evident in small globular foraminifera during the 
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Middle and Late Jurassic (Wernli, 1988).  Molecular phylogenies suggest that there 

may be at least 3 extant independent lineages of planktonic foraminifera today 

(Aurahs et al., 2009b; Darling et al., 1997, 1999, 2000, 2006; de Vargas et al., 1997; 

Stewart et al., 2001), consistent with the spinose planktonic foraminifera, non-spinose 

macroperforates, and non-spinose microperforates (Darling et al., 2006; de Vargas et 

al., 1997).   

 

The placement of the spinose Globigerinidae and the non-spinose Globorotaliidae in 

separate lineages contrasts with the traditional paleontological view of their common 

origin.  The Globorotaliidae were thought to have diverged from a Globigerinid 

ancestor in the Neogene (Cifelli, 1982; Pearson, 1993), however, the molecular data 

suggests that the Globorotaliidae are far more closely related to some benthic taxa 

than to the Globigerinidae (Aurahs et al., 2009b; Darling et al., 1997, 1999, 2000, 

2006; de Vargas et al., 1997; Stewart et al., 2001).  There has, in fact, been increasing 

evidence from molecular phylogenies that the planktonic foraminifera are 

polyphyletic in origin, evolving independently up to 3 times from separate benthic 

ancestors (Darling et al., 1997, 1999; de Vargas et al., 1997, 1998; Stewart et al., 

2001). 

 

The fossil record shows that the spinose planktonic foraminifera first appeared 

approximately 65 Ma ago, after the K/T extinctions (Hemleben et al., 1991), followed 

by the first Globorotaliidae (non-spinose), which emerged only 22 Ma ago (Kennett & 

Srinivasan, 1983). There is compelling evidence to support the separate origins of the 

spinose and non-spinose planktonic foraminifera.  For example, a number of 

biological similarities exist between the non-spinose planktonic Globorotaliidae and 
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the benthic foraminifera, suggesting a common ancestry (de Vargas et al., 1997; 

Hilbrecht & Thierstein, 1996; Hemleben et al., 1989). The spinose planktonic 

foraminifera seem highly adapted to the planktonic mode of life, bearing long radial 

spines, which may aid flotation and certainly allow them to capture prey items e.g. 

zooplanton and phytoplanton, and house symbionts, thus making them more versatile 

and able to survive more variable surface water conditions (de Vargas et al., 1997). 

The non-spinose species lack such features, having smooth tests more reminiscent of 

the benthic taxa. The Globorotaliidae are also herbivorous like benthic species rather 

than carnivorous like the spinose planktonics (Hemleben et al., 1989). Moreover, in 

laboratory culture, non-spinose globorotaliid specimens have been known to adopt 

benthic behaviour (Hilbrecht & Thierstein, 1996). 

 

Molecular evidence further indicates that the spinose planktonic foraminifera have 

evolved separately from the non-spinose planktonic foraminifera, which are in turn far 

more closely related to the benthic taxa.  Extensive SSU rRNA sequence variations 

have been observed between planktonic foraminiferal species within both the 

foraminiferal specific insertions and expansion segments (Darling et al., 1997).  

Darling et al. (1997) identified a number of substitutional changes that are 

characteristic of the spinose to non-spinose/ benthic split.  In particular a distinctive 

two base deletion was noted in all planktonic spinose species corresponding to 

position 2093/4 in Allogromia sp. (GenBank accession X86093).  In all of the non-

spinose planktonic and benthic species, two adenine bases were present in these 

positions. 
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Further molecular evidence that the non-spinose foraminifera are more akin to certain 

benthic taxa than to the spinose planktonic foraminifera came when the first studies of 

rates of rDNA evolution in the foraminifera were made.  Pawlowski et al. (1997) 

reported extreme differences in the rate of rDNA evolution within the foraminifera, 

the first time such extreme differences had been discovered within a single group of 

organisms.  Corroborating evidence was obtained by de Vargas et al. (1997) and 

Darling et al. (1997).  Rates of evolution seen in the spinose planktonic foraminifera 

(globigerinids) are estimated at 50 – 100 times that of most benthic taxa (Pawlowski et 

al., 1997).  Most of the globorotaliids (non-spinose macroperforate) show a slower 

rate of evolution than the spinose taxa, comparable to that of the benthic foraminifera 

(with the exception of Globorotalia menardii & truncatulinoides) (de Vargas et al., 

1997). 

 

1.6.3 Evolutionary relationships within the planktonic foraminifera 

As well as their demonstrated utility in tracing the origins of the foraminifera within 

the eukaryotes, SSU rDNA sequences contain sufficient evolutionary information to 

allow the examination of both distant and close relationships within the planktonic 

foraminifera.  In particular, the unprecedented rates of rRNA gene evolution seen in 

the spinose planktonic taxa (Darling et al., 1997; Pawlowski et al., 1997) facilitate 

high-resolution phylogenetic analyses, revealing their interrelationships.   

 

A number of relationships between spinose taxa are consistently recovered in 

phylogenetic analyses, for example the groupings of Globigerinoides ruber with 

Globigerinoides conglobatus (Darling et al., 1999, 2000; de Vargas et al., 1997; de 

Vargas & Pawlowski, 1998; Stewart et al., 2001; Aurahs et al., 2009b), Globigerinella 
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siphonifera with Globigerinella calida (de Vargas et al., 1997; de Vargas & 

Pawlowski, 1998), Globigerina bulloides with Globigerina falconensis and 

Turborotalita quinqueloba (Darling et al., 2006; Stewart et al., 2001; Aurahs et al., 

2009b), and Orbulina universa with Globigerinoides sacculifer (Darling et al., 1999, 

2000, 2006; de Vargas et al., 1997, 2002; de Vargas & Pawlowski, 1998; Stewart et 

al., 2001; Aurahs et al., 2009b).  Hastigerina pelagica has been found to fall at the 

base of the spinose clade, suggesting an ancestral position (Darling et al., 2006; 

Aurahs et al., 2009b). 

 

Within the non-spinose planktonic foraminifera, slower rates of rDNA evolution result 

in poor resolution and difficulties in ascertaining the placement of taxa.  In the 

majority of past studies only a small number of macroperforate species were included 

in phylogenies, and though these usually grouped together (Darling et al., 2000, 2006; 

de Vargas et al., 1997; Stewart et al., 2001), such poor taxon sampling made it 

impossible to say whether the group as a whole would be monophyletic. There is, 

however, some evidence that Globorotalia inflata, Pulleniatina obliquiloculata, 

Neogloboquadrina dutertrei, Neogloboquadrina pachyderma & Neogloboquadrina 

incompta (previously named N. pachyderma right coiling or dextral) form a 

monophyletic group (Aurahs et al., 2009b, Darling et al., 2006).   In addition, the 

phylogeny of Aurahs et al. (2009b) shows a large, monophyletic group of 

macroperforate taxa, however, the tree contains only planktonic foraminiferal taxa, 

and thus cannot confirm the position or monophyly of the macroperforate taxa within 

the whole of the foraminifera.  The microperforate taxa, Globigerinita glutinata & 

Globigerinita uvula fall separate from the other non-spinose planktonic taxa, amongst 
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the benthic foraminifera (Aurahs et al., 2009b, Darling et al., 2000, 2006; Stewart et 

al., 2001).  

 

The phylogenetic relationships between the planktonic foraminifera together with 

their origins from benthic ancestors will be explored further during this study (chapter 

5). 

 

1.6.4 Cryptic Genetic Diversity Revealed 

A degree of morphological plasticity has been observed within the shells of the 

traditionally recognised morphospecies of planktonic foraminifera, originally thought 

to be intraspecific variation, or an ecophenotypic effect in response to differing 

environmental conditions within their adaptive range (Kennett, 1976; Hecht et al., 

1976; Healy-Williams et al., 1985).  However, as more foraminiferal SSU rDNA 

sequences were obtained it became apparent that individual morphospecies were often 

comprised of complexes of several individual genetic types, revealing that traditional 

taxonomy had greatly underestimated planktic foraminiferal diversity.  Many of these 

genetic types were found to display distinct ecologies and novel adaptations, often 

consistent with species-level classification (Darling et al., 1997, 1999, 2004, 2006, 

2007; de Vargas et al., 1997, 1999, 2001, 2002; Huber et al., 1997).  Examples of 

planktonic foraminiferal morphospecies for which several SSU rDNA types have been 

identified are shown in table 1.1.  This represents our knowledge to date, though it is 

likely that more diversity remains to be uncovered. 
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Table 1.1.  Examples of planktonic foraminiferal morphospecies for which 
multiple SSU rDNA types have been identified 
 

 
Morphospecies 

Number of 
known genetic 
types to date 

 

 
References 

Orbulina universa 3 2, 3, 11, 14 
Globigerinella siphonifera >7 2, 3, 5, 9, 13, 16 
Globigerinoides rubber 5 1, 2, 3, 5, 9, 10, 15, 16 
Globigerina bulloides 7 3, 4, 5, 8, 9, 10, 16 
Turborotalita quinqueloba 6 4, 5, 9, 17 
Neogloboquadrina pachyderma 7 4, 6, 8, 9 
Neogloboquadrina incompta 2 5, 7, 9 
Globorotalia truncatulinoides 4 12, 14 
 
The number of genetic types discovered to date are shown. References: (1) Aurahs et al., 2009b; 
(2) Darling et al., 1997; (3) Darling et al., 1999; (4) Darling et al., 2000; (5) Darling et al., 2003; 
(6) Darling et al., 2004; (7) Darling et al., 2006; (8) Darling et al., 2007; (9) Darling et al., 2008; 
(10) de Vargas et al., 1997, (11) de Vargas et al., 1999; (12) de Vargas et al., 2001 (13) de 
Vargas et al., 2002; (14) de Vargas et al., 2004; (15) Pawlowski et al., 1997; (16) Stewart et al., 
2000; (17) Stewart et al., 2001. 

 

The discovery of hidden genetic diversity in the planktonic foraminifera adds 

complexity to our views of their global biogeography, perhaps explaining the apparent 

occupation of single morphospecies in multiple faunal provincial zones (Bé & 

Tolderlund, 1971), a pattern that was originally thought to be indicative of a fairly 

generalist lifestyle.  Significantly, the newly discovered genotypes show non-random 

distributions, suggestive of distinct ecologies (ecotypes) (Darling et al., 1997, 1999, 

2004, 2006, 2007, 2008; de Vargas et al., 1997, 1999, 2001, 2002; Huber et al., 1997).  

Such cryptic diversity particularly impacts on climate change palaeoproxies where the 

presence of these ecotypes may lead to inaccuracy in analysis. It is therefore vital to 

gain a better understanding of their global genetic variability and phylogeography to 

improve quantitative faunal and geochemical palaeoclimate reconstructions.  
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1.7 Summary of the aims of this thesis 

Chapter 1 of this thesis offers a generalised introduction to the Foraminifera and the 

topics that will be covered throughout the thesis, with details of the general methods 

used provided in chapter 2. 

 

Chapters 3 and 4 aim to highlight the extensive genetic diversity seen in the 

planktonic foraminifera, focusing on two contrasting areas of the global ocean, the 

tropical Arabian Sea (chapter 3), and the transitional/sub-polar North Atlantic Ocean 

(chapter 4).  The genetic types found in each region have been incorporated into a 

comprehensive phylogeny of the foraminifera, containing a broad range of both 

planktonic and benthic taxa.  The links between genetic variation and the ecological 

habits of the planktonic foraminiferal genetic types are explored. 

 

In chapter 5, the phylogenetic relationships of the foraminifera are examined, and the 

origins of the planktonic foraminifera investigated.  Traditional classification assumes 

a monophyletic origin for the planktonic foraminifera, however, molecular work 

indicates possible polyphyletic origins.  A comprehensive phylogeny containing a 

broad range of planktonic and benthic taxa is presented, constructed from an ~1,000 

bp 3´ terminal fragment of the small subunit (SSU) ribosomal (r) RNA gene.  The 

phylogenetic relationships of the foraminifera are explored, and the origins of the 

planktonic taxa investigated.  An additional aim of this chapter was to overcome the 

difficulties that are frequently encountered during phylogenetic analyses of the 

foraminifera, including poor resolution of relationships, low bootstrap support of 

clades, and difficulties in placing certain taxa.  It is likely that such problems stem 

from the use of insufficient data, with only an ~1,000 bp fragment, or roughly a third 
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of the length of the foraminiferal SSU rRNA gene, traditionally used.  Here new 

sequence data is also presented for approximately 3,000 bp, or almost the complete 

length of the SSU rRNA gene in the foraminifera.  Phylogenetic reconstruction was 

carried out using a range of methods, and the origins of the planktonic taxa again 

investigated.  For both the shorter ~1,000 bp fragment and the almost full-length 

~3,000 bp of the SSU rRNA gene, various phylogenetic hypotheses were tested to 

assess the rigidity of the optimal phylogenies, and an examination of the relative rates 

of evolution between the foraminiferal taxa made. 

 

In response to some of the problems experienced during molecular work on the 

foraminifera, chapter 6 focuses on the development of a method for culturing 

foraminiferal species (benthic in the first instance) in the laboratory, with the aim of 

providing a continual source of genetic material for molecular work. This would 

ultimately allow for better optimisation of PCR amplification methods, for example by 

allowing extensive experimentation into primer design and PCR conditions.  It would 

also provide a DNA template for genomic sequencing, in order to identify new genetic 

markers for use in phylogenetic work. 

 

The work described in chapter 7 also aims to remedy some of the problems commonly 

encountered in molecular studies of the foraminifera (e.g. in chapters 3 –5 of this 

thesis).  The traditionally employed method of extracting and storing DNA from 

foraminiferal samples can result in poor-quality template DNA, and often leads to 

high failure rates in PCR amplifications.  Here new DNA extraction buffers have been 

designed and tested, with the aim of developing a technique to effectively remove and 
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store genetic material from the single cell of the foraminifera, whilst leaving the 

delicate calcite shell intact, for morphological reference. 

 

The findings of this thesis are summarized and discussed in chapter 8. 
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2 Materials and Methods 
 

2.1 Collection and preparation of foraminiferal specimens 

2.1.1 Planktonic foraminiferal samples 

All planktonic foraminiferal samples were collected by ship, on the following cruises: 

RV Professor Logachev, Denmark Strait, North Atlantic Ocean, Aug/Sept 1997 

(collected by I. Stewart); Discovery, Cruise 262, North Atlantic Ocean, April 2002 

(collected by K.F. Darling); RRS Charles Darwin, cruise CD148, NERC: Arabian Sea, 

June/July 2003 (Collected by K. F. Darling & B. Steel); RRS Charles Darwin, cruise 

CD159, NERC: North Atlantic Ocean, July 2004 (collected by M. Carroll).  Samples 

were collected by pumping (5-6 m depth) from the ship’s non-toxic water supply 

through a plankton screen (83, 150 or 200 μm mesh), or by vertical net tow (0-200 m 

depth, 83 μm mesh) in waters of a depth ranging from approximately 1,000 – 3, 500 

m, dependent on location.  For genetic analysis, a representative sample of specimens 

was collected at each station.  Individual specimens were identified using a 

stereomicroscope, and morphotype and cytoplasmic colouration were recorded by 

digital video imaging. Only adult specimens containing cytoplasm were selected for 

genetic analysis.   

 

In the ship’s laboratory, the live planktonic foraminiferal samples were individually 

crushed in a lysis buffer containing 50 mM Tris buffer (pH 8.6), 2 mM EDTA, 0.1 % 

Triton X-100 and 0.5 % Na deoxycholate (Holzmann & Pawlowski, 1996), and 

incubated for 1 hour at 60 °C.  They were then transported at room temperature to the 
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lab, where they were stored at –80 °C.  Material from this lysis buffer solution was 

subsequently used directly as the DNA template for PCR amplifications. 

 

For transect assemblage assessment, bulk samples were taken at each station with the 

specimens either dried on slides directly or collected as bulk samples in ethanol. The 

preserved assemblages were then individually picked and placed onto 

micropalaeontological slides. 

 

2.1.2 Benthic foraminiferal samples 

Live, benthic foraminifera were collected from Brancaster, Norfolk in May 2007 and 

May 2009.  Sediment was collected at low tide from tidal mudflats, from the green, 

algal-rich surface layer, where the foraminifera are abundant.  The sediment was 

sieved (212 μm) and washed through with seawater, before being transported to the 

lab.  

 

In the lab, thin layers (~50 mm) of the sieved sediment, containing the live 

foraminifera, were placed in plastic tubs, covered with a 5 cm deep layer of fresh 

seawater (collected at high tide on the day of the foraminifera collection), with a loose 

lid to prevent evaporation.  The sediment was washed twice with fresh seawater, 

allowing it to settle in between, and any large organisms, such as nematode worms, 

removed to avoid decay and contamination of the water.  After 24 hours, live forams, 

with a healthy orange cytoplasm (seen on the surface of the sediment), were removed 

by pipette to a 19 cm diameter petri dish containing fresh seawater (salinity ~ 27 – 30 

ppt).  Individuals of particular target species were then selected for use in a) culture 
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experiments and b) experiments into the development of a new DNA extraction 

method. 

 

2.2 DNA amplification by the polymerase chain reaction (PCR) 

2.2.1 The small subunit ribosomal RNA gene 

Ribosomal genes have proven to be of great utility in reconstructing phylogenies.  

Sequences of the large subunit (LSU) (or 28S) and small subunit (SSU) (or 18S) 

ribosomal (r) RNA genes are characterised by the presence of both conserved regions, 

which provide valuable information regarding the origins and phylogenetic 

relationships between distant taxonomic groups (Baroin et al., 1988; Perasso et al., 

1989; Sogin, 1991; Schlegel, 1991), and divergent regions, which may be used for the 

phylogenetic study of closely related taxa (Lenaers et al., 1991).  The SSU rRNA gene 

has proven to be an enormously useful marker for investigating foraminiferal 

evolutionary relationships (Darling et al., 1997, 1999, 2000, 2004; Wade et al., 1996; 

de Vargas et al., 1997, 1999, 2001, 2002; Pawlowski et al., 1997), with unusually high 

rDNA sequence divergence within the foraminifera even allowing for its use in 

inferring within-morphospecies relationships (Darling et al., 2003, 2006, 2007; de 

Vargas et al., 2002). 

 

For phylogenetic studies of the foraminifera, a partial, approximately 1,000 bp 

fragment of the 3´ terminal region of the SSU rRNA gene is typically amplified and 

sequenced, corresponding to the 30-48 region of the eukaryotic SSU rRNA secondary-

structure model (Neefs et al., 1990) (see schematic diagram, fig. 2.1).  The region 

contains 4 expansion segments (V7a, V7b, V8, & V9) that are present in most 

eukaryotes, and 3 foraminiferal specific insertions (F1, F2, & F3), which show  



2: Materials and Methods 

 48

 

considerable length and sequence variability, even within the foraminifera (Darling et 

al., 1996b; Wade et al., 1996).  This ~1000 bp region of the SSU rRNA gene is 

utilised in most phylogenetic studies of the foraminifera (Darling et al., 1996a,b, 

1997, 2000, 2003, 2006, 2007; de Vargas et al., 1999, 2002; Stewart et al., 2001; 

Wade et al., 1996), while a smaller ~500 bp fragment at the start of the same region is 

used to confirm the identity of genotypes within morphospecies (Darling et al., 2003, 

2006, 2007; de Vargas et al., 2002). 

 

2.2.2 PCR primers 

Foraminifera are unicellular organisms, carrying only small amounts of DNA, 

particularly the planktonic foraminifera, which bear only a single copy of the genome.   

Two nested rounds of PCR are therefore necessary to produce sufficient yields of PCR 

product.  Initially, pre-existing “universal” eukaryote PCR primers (White et al., 

1990) were successfully applied to both the benthic and planktonic foraminifera, and 

Figure 2.1.  Schematic diagram of the SSU rRNA gene, showing the ~1,000 bp 3´ terminal region
commonly used in molecular studies of the foraminifera.  V7 – V9 represent variable length expansion
segments present in most eukaryotes and F1 – F3 represent three insertions that are unique to the
foraminifera.  F1 may represent the V6 variable region observed only in prokaryote sequences (Neefs et
al., 1990).  Scale is given according to the complete sequence of Trochammina sp. (accession number
X86095).  Adapted from de Vargas et al., 1997 and Darling et al., 1997. 
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many foraminifera-specific primers have been designed subsequently (Darling et al., 

1997; de Vargas et al., 1997, 2002; Pawlowski et al., 1996). 

 

In this study, the traditionally used partial ~1,000 bp terminal fragment of the SSU 

rRNA gene was utilised to reconstruct phylogenies of the foraminifera.  The fragment 

was amplified in two rounds, by a nested PCR approach.   In the first round (1° PCR) 

primer C5 was coupled with either primer 138 or NS8, and in the second round (2° 

PCR), primer 2082F was coupled with primer 3014R or primer FS3 with 138, 

dependent on success (for primer positions and sequences see figure 2.2 and table 

2.1). 

 

For the identification of the genetic types within morphospecies (used in the 

biogeographical surveys; chapters 3 & 4) an ~500 bp fragment of the SSU rRNA gene 

was utilised, using the 1° PCR described above, plus a secondary PCR using primers 

2082F and 2514R (see figure 2.2 and table 2.1 for primer positions and sequences).   

  

 In addition, a new method was developed for the PCR amplification of almost the 

complete SSU rRNA gene (~3,000 bp), for use in phylogenetic reconstruction of the 

planktonic foraminifera.  This is the first time that an extensive fragment of the SSU 

rRNA gene has been sequenced in the planktonic foraminifera, as previous attempts to 

amplify and visualise the complete planktonic foraminiferal SSU rRNA gene on an 

agarose gel have been unsuccessful (Darling et al., 1996a). Three rounds of nested 

PCR were necessary before strong bands could be achieved on the agarose gels.  A 

large number of new foraminiferal-specific primers were designed for the purpose, 

some of which are in equivalent positions to the ‘universal eukaryote primers’ of 
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White et al. (1990).  Full details of the methodology (including primers used) are 

given in chapter 5.  A schematic diagram of the SSU rRNA gene, indicating primer 

positions and the coverage of the nested PCR fragments are shown in figure 2.2 

(primer sequences shown in table 2.1).  

Figure 2.2.  Schematic diagram of the SSU rRNA gene showing the positions of primers used for both
PCR and sequencing in this study.  Positions are based on the complete sequence of Allogromia sp. 
(GenBank X86093).   The gene fragments produced using a nested PCR approach are shown.  1 = transect
studies (see chapters 3 & 4), A = primary PCR, B = secondary PCR (1000 bp fragment for phylogenetic
reconstruction), C = secondary PCR (500 bp fragment for genotype identification.), 2 = ~3000 bp
amplification (see chapter 5), D = primary PCR, E = secondary PCR, F = tertiary PCR. The exact primers
used varied according to success, as described in chapters 3, 4, & 5. 
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With each of the methods described above, if PCR amplification failed, several 

combinations of primers were tried until a product was amplified.  Conditions of the 

PCR amplifications were varied until an optimal method was attained (see below). 

Table 2.1.  Primers used for the PCR amplification and DNA sequencing of the 
foraminifera 
 

SSU 
Primer 

Sequence Direction Reference 

28Fa 5′ - GATTCTGCCAGCTGTTCATACGC - 3′ Forward This study 
NS1 5′ - GTAGTCATATGCTTGTCTC  - 3′ Forward White et al. 1990 
56F 5′ - TTGAGCTCAAAGATTAAGCCATGCA - 3′ Forward This study 
58F 5′ - GAGCTCAAAGATTAAGCCATGCAAG - 3′ Forward This study 
61F 5′ - CTCAAAGATTAAGCCATGCAAGTGG - 3′ Forward This study 

199F 5′ - CAACTGCGGATAGCTGTTTAATACA - 3′ Forward This study 
202F 5′ - CTGCGGATAGCTGTTTAATACAGTC - 3′ Forward This study 
677F 5′ - ATTCGGAGGAGTAGTTTCTGATCC - 3′ Forward This study 
746R 5′ - GGCAAGTTACGCGCCTGCTGC - 3′ Reverse This study 
1160F 5′ - GGCAAGTCTGGTGCCAGCAGC - 3′ Forward This study 
1201R 5′ - CCAACTACGAACCTCTTAACCGC - 3′ Reverse This study 
1513R 5′ - GGTCAACACATTTCACCGCTCGC  - 3′ Reverse This study 
1536F 5′ - CGAGCGGTGAAATGTGTTGACCC - 3′ Forward This study 
1545F 5′ - GTGAAATGTGTTGACCCTATTAAGAC - 3′ Forward This study 
1693R 5′ - ACGACGAGGGTATCTGATCCTC - 3′ Reverse This study 

C5 5′ - GTAGTATGCACGCAAGTGTGA - 3′ Forward Designed by C.M. Wade 
NS5 5′ - AACTTAAAGGAATTGACGGAAG - 3′ Forward White et al., 1990 

2082F 5′ - TGAAACTTGAAGGAATTGACGGAAG - 3′ Forward Modified from NS5, 
White et al., 1990 

2119R 5′ - GGTAAGATTTCCCGCGTTGAGTC - 3′ Reverse This study 
FS3 5′ - GTGATCTGTCTGCTTAATTGC - 3′ Forward Designed by C.M. Wade 
NS6 5′ - GCATCACAGACCTGTTATTGCCTC - 3′ Reverse White et al.,1990 

2514R 5 ′- GGCATCACAGACCTGTTATTGCC - 3′ Reverse Modified from NS6, 
White et al., 1990 

3009R 5′ - CCGATGCCTTGTTACGACTTCTC - 3′ Reverse This study 
3014R 5′ - GTCGTAACAAGGCATCGGTAG - 3′  Reverse This study 
3024R 5′ - TGCAGGTTCACCTACCGATGCC - 3′ Reverse This study 
3028R 5′ - CCTTCTGCAGGTTCACCTACCGA - 3′ Reverse This study 
3031R 5′ - GATCCTTCTGCAGGTTCACCTAC - 3′ Reverse This study 
NS8 5′ - TCCGCAGGTTCACCTACGGA - 3′ Reverse White et al., 1990 
138 5′ - TGATCCTGCAGGTTCACCTAC - 3′ Reverse Medlin et al., 1988 

3033R 5′ - AATGATCCTTCTGCAGGTTCACCT - 3′ Reverse This study 
M13F 5′ - GTAAAACGACGGCCAG - 3′ Forward 

M13R 5′ - CAGGAAACAGCTATGAC - 3′ Reverse 

Provided with the TOPO® 
TA Cloning® kit 
(InvitrogenTM) 
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2.2.3 PCR components 

Listed in table 2.2 are the PCR components used, and their concentrations in a 50 μl 

reaction volume.  For the amplification of the ~ 500 bp and ~1,000 bp terminal 

3´fragments of the SSU rRNA gene (chapters 3, 4, & 7), 3 μl of template DNA was 

used in the 1° PCR.  For the transect studies (chapters 3 & 4), the lysis buffer in which 

the samples had been crushed (see section 2.1.1) was used directly as the template.  

For the newly developed DNA extraction procedures discussed in chapter 7, purified 

DNA was used as the template.  1 μl of 1° PCR product was then used as the template 

for the 2° PCR.  For amplification of the ~3,000 bp, almost complete SSU rRNA 

gene, 5 μl of the lysis buffer in which samples had been crushed was used as the 

template in the 1° PCR.  In both the 2° and 3° PCR, 1 μl of PCR product from the 

previous round was used as the template.  For all rounds of PCR, negative controls 

(template replaced by distilled water) and positive controls (using a stock of benthic 

foraminiferal DNA stored in lysis buffer at –20 °C) were also included. 
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2.2.4 PCR running conditions 

Thermal cycling was carried out using a Perkin Elmer cycler.  The PCR running 

conditions (tables 2.3 & 2.4) were designed primarily to suit the amplification of the 

approximately 3000 bp full-length SSU rRNA gene (chapter 5), however, they worked 

equally well for the amplification of the shorter fragments (500 – 1000 bp) used in the 

transect studies (chapters 3 & 4), and were therefore adopted as a standard method for 

all.  The temperature of the annealing phase was kept high (55 °C) for the 1°PCR 

reactions in order to discourage random annealing of primers to poorly matched 

contaminant eukaryote templates (table 2.3).  In the 2° and 3° PCR reactions, where a 

greater proportion of foraminiferal templates would be present, this temperature was 

lowered to 50 °C (table 2.4) to promote annealing.  Alternative PCR running 

conditions were also developed for the amplification of the ~500 bp and ~1,000 bp 

fragments of the SSU rRNA gene, following poor success rates in PCR.  Two extra 

Table 2.2.  Concentrations of components used in PCR amplifications 
 

Component Stock 
concentration 

Volume used 
(μl) 

Final 
concentration 

(500–1000 bp amplification) 1.25 mM 8.0 200 μM dNTPs* 
(>1000 bp amplification) 1.25 mM 12.0 300 μM

PCR buffer (Qiagen or neb)† 10X 5.0 1X 
Q solution (Qiagen)‡ 5X 10.0 1X 
MgCl2 2.5 mM 3.0 1.5 mM 
Primer 1 10 μM 1.0 0.2 μM 
Primer 2 10 μM 1.0 0.2μM 

Taq (Qiagen) 5 units/μl 0.2 1 unit DNA polymerase (Taq or 
Vent R

®)§ VentR
® (neb) 2 units/μl 0.5 1 unit 

DNA template - 1-5 μl¶ - 

Sterile distilled water - To make final 
volume of 50 μl - 

 
* dNTP concentration dependent on length of target fragment.  500-1000 bp corresponds to fragments 
A, B, C (fig. 2.1),  > 1000 bp corresponds to fragments D, E, F (fig. 2.1).  † Includes 15 mM MgCl2.  ‡ 
Q solution added when using Taq to increase the yield from weak samples, facilitating the 
amplification of difficult templates by modifying the melting behaviour of DNA.  § Taq polymerase 
used primarily.  Vent R used for repeats of failed samples.  ¶ Template volume varied according to 
PCR round and length of fragment. 
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cycles were added following the hot start, incorporating a lower annealing temperature 

of 45 °C to encourage annealing in the early stages of the PCR. 

 

Table 2.3.  1° PCR running conditions 
 

Phase Temp (°C) Duration No. of Cycles 
Hot Start 96 2 mins 1 
Denaturation 96 30 Secs 
Annealing 55 30 Secs 
Extension 72 2 - 4 mins* 

 
35 

 
* 2 mins for ~1,000 bp fragment, 4 mins for ~3,000 bp almost complete gene 

 

 

 

 

Table 2.4.  2° and 3° PCR running conditions 
 

Phase Temp (°C) Duration No. of Cycles 
Hot Start 96 2 mins 1 
Denaturation 96 30 Secs 
Annealing 50 30 Secs 
Extension 72 2 - 4 mins* 

 
35† 

 
* 2 mins for ~1,000 bp fragment, 4 mins for ~3,000 bp almost complete gene.  † for samples 
producing very weak bands the no. of cycles were increased to 40 

Table 2.5.  Alternative PCR running conditions 
 

Phase Temp (°C) Duration No. of Cycles 
Hot Start 96 2 mins 1 
Denaturation 96 1 min 
Annealing 45 2 mins 
Extension 72 2 mins 

 
2 

Denaturation 96 30 Secs 
Annealing 55 30 Secs 
Extension 72 2  mins 

 
35 
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2.3 Gel electrophoresis 

PCR products were separated and visualized through gel electrophoresis using the 

following protocol:  

1. PCR products (50 μl volumes) were loaded into wells on a 1.5 % agarose gel 

(1.5g agarose in 100 ml TBE buffer (54 g Tris, 27.5 g boric acid and 20 ml 0.5 

EDTA in 1000 ml distilled water to make 5X TBE buffer, then diluted to 1X 

before use), with 0.5 μg/ml ethidium bromide (EtBr) added), submerged in a 

tank containing 1X TBE.   

2. A current of 100 –120 V was applied through the gel using a portable power 

supply, and run until the negatively charged DNA fragments of the PCR 

product had migrated approximately 2 thirds of the distance towards the next 

set of wells, in the direction of the positive electrode (as indicated by the 

progression of a blue loading buffer).  The DNA fragments become separated 

according to size, larger fragments moving more slowly through the gel matrix 

than smaller fragments. 

3. The agarose gel was then removed from the tank to be visualised and 

photographed using a Bio-Rad gel doc system (ethidium bromide in the 

agarose gel intercalates between the nitrogen bases of the DNA and fluoresces 

under UV light (Reece, 2004). 

4. The target band (visualised on a UV transilluminator), identified according to 

size by comparison to a molecular size marker, was then excised from the gel 

using a scalpel. 
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2.4 Gel extraction 

Extraction of DNA bands from agarose gels was undertaken using the Eppendorf 

Perfectprep® Gel Extraction Kit. The protocol follows the manufacturers’ instructions.  

 

1. The PCR product was excised from the agarose gel with a sterile, sharp scalpel 

and placed in a 1.5 ml microcentrifuge tube. 

2. The gel slice was weighed. Three volumes of Binding Buffer were added to 

every volume of the excised gel (100 mg ∼ 100 μl). 

3. The gel slices were incubated at 50 °C for 10 minutes (or until the gel slice had 

completely dissolved).  To help dissolve the gel, the tubes were inverted every 

2-3 minutes during the incubation. 

4. One gel volume of ice-cold isopropanol was added and mixed to precipitate 

the PCR product.   

5. A spin column with a membrane filter was placed in a 2 ml collection tube.  

To bind the PCR product, the sample was applied to the spin column provided 

and centrifuged at 13,000 rpm for 1 minute.  The flow-through was discarded 

and the column was placed back into the same collection tube.  Maximum 

volume capacity of spin column was 800 μl.  For sample volumes of more than 

800 μl, the remaining samples were also loaded and the collection tube 

centrifuged again until all the samples were used up.   

6. 750 μl of the wash buffer were added to the column and centrifuged at 13,000 

rpm for 1 minute.  After discarding the flow-through the column was replaced 

in the collection tube and centrifuged at 13,000 rpm for another minute to 

completely remove traces of the wash buffer. 
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7. The spin column was placed into a clean 2 ml collection tube.  30 μl of the 

elution buffer (10 mM Tris-Cl, pH 8.5) was added to the centre of the 

membrane filter and the collection tube centrifuged at 13,000 rpm for 1 minute 

to elute the PCR product. 

8. The spin column was discarded, and the eluted product was stored at –20 °C 

until further use. 

 

2.5 DNA quantification 

Eluted PCR products were quantified using a NanoDrop® ND-1000 

spectrophotometer prior to DNA sequencing.   

 

2.6 Cloning 

Cloning of the PCR product prior to sequencing was necessary for those foraminiferal 

morphospecies that carry several different copies of the SSU rRNA gene (certain non-

spinose planktonic taxa).  If such multi-template genomes are sequenced directly, 

variable sites among the different copies often manifest as ambiguous sites in the 

resulting gene sequence, and small insertions or deletions may mean that several 

offset traces are overlaid, rendering them unreadable.  To avoid such problems, three 

clones were made and sequenced for any multi-template taxa in this study.  To 

circumvent the potential problem of Taq errors, which were observed in some of the 

cloned sequences, each clone was sequences three times and a majority rule consensus 

sequence constructed. 
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Cloning was undertaken using the Invitrogen™ TOPO TA Cloning® Kit.  In the 

cloning method used, DNA is incorporated into a pUC plasmid vector, and utilises the 

incorporation of an ampicillin-resistance gene to allow the transformed E. coli bacteria 

to grow on a media inhospitable to most bacteria.  Insertion of the target DNA disrupts 

the lacZ gene, which codes for a subunit of the β-galactosidase enzyme that breaks 

down galactose.  Colonies of successfully transformed bacteria appear white when 

compared to bacterial colonies retaining a functional lacZ gene in the plasmid, which 

appear blue. 

 

The protocol below follows the manufacturers’ instructions for the Invitrogen™ 

TOPO TA Cloning® Kit.  The method was modified to use half volumes of competent 

cells and cloning reaction reagents. 

 

2.6.1 Selective agar plate preparation 

1. 15-20 ml of LB (Luria-Bertani) agar containing 50 mg/ml ampicillin was 

poured into each Petri dish and set aside at room temperature to solidify.  The 

agar plates were left slightly open in a drying cabinet for 30 minutes to remove 

condensation from the lid. 

2. The agar plates were then warmed at 37 °C for 30 minutes.  

3. 80 μl of 20 mg/ml X-gal was spread on each agar plate, after which they were 

incubated at 37 °C until use. 
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2.6.2 Setting up the TOPO TA Cloning® reaction (Invitrogen™) 

1. The following reagents (table 2.6) were mixed gently and incubated for five 

minutes at room temperature (22 – 23 °C): 

 

Table 2.6. Reagents used in the TOPO TA cloning® 
reaction 
 

Reagent Volume (μl) 
PCR product 0.5 to 2 
Salt solution 0.5 
Water Add to total volume of 2.5 
TOPO® vector  0.5 
Final Volume 3 
 
The method was modified to use half the volumes of those suggested 
by the manufacturer 

 

2. The reaction was placed on ice until needed 

 

2.6.3 Transforming One Shot® TOP10 competent cells 

1. 1 μl of the TOPO® cloning reaction was added to 25 μl of One Shot® 

chemically competent E. coli cells, mixed gently, and incubated on ice for 15 

minutes. 

2. The cells were heat-shocked for 30 seconds at 42 °C without shaking.  This 

allowed the cells to take in the plasmids.  The tubes were immediately 

transferred in ice. 

3. 125 μl of room temperature S.O.C medium was added, and the tube then 

capped tightly and shaken horizontally (200 rpm) at 37 °C for one hour. 

4. 20 μl and 50 μl from each transformation were spread on pre-warmed (37 °C) 

selective agar plates containing X-gal and incubated overnight at 37 °C.  Two 
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different volumes were plated to ensure that at least one had well-spaced 

colonies. 

5. 10 white colonies were picked and cultured overnight in 5 ml LB medium 

containing 50 ug/ml ampicillin (dark blue colonies were not used).  

 

2.6.4 Plasmid isolation 

Plasmid DNA was isolated from the overnight LB liquid culture using a QIAprep® 

Spin Miniprep kit (QIAgen®) and a microcentrifuge.  The following protocol follows 

the manufacturers’ instructions (excluding the preparation stages in steps 1-3). 

 

1. A small amount of each culture (~500 µl) was set aside in a separate tube 

where ~125 µl of 80% sterile glycerol was added.  These tubes were then 

stored at –80 °C so that the culture could be re-grown in the near future should 

the need arise. 

2. The remaining culture was transferred to a microcentrifuge tube, and 

centrifuged for five minutes at 13,000 rpm to concentrate the bacterial cells 

into a pellet.  The supernatant was then discarded. 

3. The process was repeated until most of the culture was used up.   

4. The pelleted bacterial cells were re-suspended in 250 μl of Buffer P1 and 

transferred to a microcentrifuge tube. 

5. 250 μl of Buffer P2 was added and the suspension mixed thoroughly by 

inverting the tube 4-6 times. 

6. 350 μl of Buffer N3 was added and mixed immediately and thoroughly by 

inverting the tube 4-6 times. 
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7. The sample was centrifuged for 10 mins at 13,000 rpm in a tabletop 

microcentrifuge, to form a compact white pellet. 

8. The supernatant from step 7 was applied to a QIAprep spin column and 

centrifuged for 30-60 s. 

9. The QIAprep spin column was washed by adding 0.5 ml of Buffer PB and 

centrifuging for 30-60 s, with the flow-through discarded. 

10. The QIAprep spin column was washed again by adding 0.75 ml of Buffer PE 

and centrifuging for 30-60 s, with the flow-through discarded. 

11. The column was centrifuged for an additional 1 min to remove residual wash 

buffer. 

12. The QIAprep column was placed in a clean 1.5 ml microcentrifuge tube.  The 

DNA was eluted by adding 50 μl of Buffer EB (10 mM Tris-Cl, pH 8.5) to the 

centre of the column, and allowing it to stand for 1 min before centrifuging for 

1 min. 

 

2.6.5 Cycle sequencing 

Cycle sequencing was undertaken using the Applied Biosystems™ PRISM™ BigDye® 

Version 3.1 sequencing chemistry. The protocol below is modified from the 

manufacturers’ instructions.  Volumes were reduced by half for most components, and 

less than 20 % of the standard amount of BigDye® was used. 

 

Listed below are the components used for the cycle sequencing reaction (table 2.7), 

and the running parameters used (table 2.8).  Sequencing of the sense and antisense 

strands was carried out in separate tubes.  The primers used are listed in the methods 
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section of each chapter.  See above for primer positions and sequences (fig. 2.2, table 

2.1). 

 

Table 2.7.  Components of the cycle sequencing reaction 
 

Component Stock 
concentration 

Volume used 
(μl) 

Final 
concentration 

BigDye® Ready Reaction 
Mix* (for 500-1000 bp PCR 
product) 

2.5X 1.0 0.25X 

Sequencing Primer 1 μM 1.6 0.16 μM 
Sequencing buffer* 5X 2.0 1X 

Direct 
sequencing - Add 5-20 ng per 500-1000 bp to 

be sequenced 
Template 
(purified PCR 
product)  Sequencing 

from a clone - Add 25-100 ng per 500-1000 bp to 
be sequenced† 

Sterile distilled water - To make a final 
volume of 10 μl 

- 

 
*  Supplied by Applied BiosystemsTM.  † Amount of template multiplied by 5 when using a cloned 
product to allow for the presence of 4/5 plasmid DNA 

 

 

Table 2.8.  Cycle sequencing running parameters 
 

Temperature (°C) Duration No. of cycles 
96 1 min 1 
96 10 sec 
50 5 sec 
60 4 min 

 
25 

 

Once the sequencing reaction was completed, samples were sent to the University of 

Edinburgh or to the Natural History Museum, London to be sequenced directly on an 

Applied Biosystems 377 DNA sequencer. 
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2.7 DNA sequence analysis 

2.7.1 Assembly of the SSU rDNA sequences 

Sense and anti-sense SSU rDNA sequences were assembled to form consensus contigs 

within Gap4 of the Staden package (version 1.5.3) (Staden et al., 2000).  Each 

sequence was carefully checked for errors, and the primer sites removed.  Any 

unreliable sequences were discarded, and the sequencing reaction repeated.  For 

cloned specimens each consensus contig was constructed from three replicates of the 

sequences, to eliminate Taq errors. 

 

Consensus sequences output from Gap4 were aligned manually within version 2.2 of 

the Genetic Data Environment (GDE) package (Smith et al., 1994).  Each new 

sequence was subjected to a BLAST search, to confirm that it was foraminiferal in 

origin, and crosschecked against other published sequences already present in the 

GDE alignment (aligned by C. Wade) to confirm its genotype identity or to highlight 

it as a novel genetic type.  Within the alignment, sequences were again checked by 

eye for unusual bases, and the sequencing trace data consulted to confirm either errors 

or genuine sequence differences. 

 

2.7.2 Selecting nucleotide sites for phylogenetic analysis 

Due to the extreme genetic distances observed within the foraminifera, only a limited 

proportion of nucleotide sites can be reliably aligned across all taxa.  Stringent 

criterions were observed for the selection of sites, and any nucleotides that could not 

be unambiguously aligned were excluded from the subsequent phylogenetic analyses. 

This conservative approach was observed to eliminate positions that could be subject 

to errors in positional homology. 
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2.7.3 Evaluating sequences for evidence of substitution saturation 

When measuring the distance between two strands of aligned DNA we count the 

number of sites at which they differ.  The proportion of homologous sites is known as 

the observed distance (or p-distance), and is expressed as the number of nucleotide 

differences per site.  However, across evolutionary time multiple substitutions (or 

‘hits’) will accumulate per site, until eventually the sequences become random or 

‘saturated’ (Strimmer & von Haeseler, 2009).  In phylogenetic analyses, sequence 

saturation can lead to underestimates of the amount of evolutionary change that has 

taken place, and descendant sequences can appear similar even if the similarity is not 

brought about by descent from a common ancestor (homoplasy) (Graur & Li, 2000).   

If the sequence data is saturated to a severe degree, the optimal model of DNA 

sequence evolution may no longer be able to correct for multiple hits (Xia et al., 

2003).  Before being subjected to phylogenetic estimation, the sequences were 

therefore checked for saturation, using plots based on the number of substitutions; a 

standard procedure used to check for evidence of saturation in sequence datasets 

(Morisson, 2006; Xia et al., 2009).  For this study plots were made firstly of 

uncorrected pairwise transition (ti) and transversion (tv) distances against pairwise 

total uncorrected distances, and secondly of uncorrected pairwise transition (ti) 

distances against transversion (tv) distances.  As highly divergent sequences are more 

prone to substitutions than closely related sequences, saturation (which generally 

occurs in transitions before transversions) would be observed as a curve and eventual 

plateau in the line of best fit (Salemi, 2009).  No evidence of saturation was evident in 

the datasets used in this study, with transitions and transversions increasing linearly 

(discussed in chapter 5). 
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2.8 Phylogenetic Analysis 

2.8.1 Choosing a model of sequence evolution using the likelihood ratio test 
(LRT) 

The model of sequence evolution used in a phylogenetic analysis may be relatively 

simplistic, or more complex (parameter-rich).  Ideally the chosen model should be 

complex enough to explain the observed data, but not so complex as to be subject to 

impractically long computations, or require overly large datasets (Swafford et al., 

1996).  For this study, the simplest models of evolution, including JC69 (Jukes & 

Cantor, 1969), F81 (Felsenstein, 1981), and K2P (Kimura, 1980) were not considered 

for use since more parameter-rich models have been determined to be optimal for 80% 

of 208 published datasets, by Kelchner & Thomas (2007).   Two parameter-rich 

models were considered for use; the general time-reversible (GTR) model (Lanave et 

al., 1984), plus the slightly less sophisticated HKY85 model (Hasegawa, et al. 1985).  

The HKY85 model allows for different rates of substitution for transitions and 

transversions as well as allowing for unequal base frequencies (Hasegawa et al., 

1985).  The GTR model allows all six pairs of substitution to have different 

substitution rates as well as allowing for unequal base frequencies (Rodriguez et al., 

1990).  Both models can be used with or without the addition of a Gamma (Γ) 

correction, which accounts for rate heterogeneity between sites (Yang 1993).  

 

For pairs of evolutionary models that are nested (i.e. where the simpler model is 

nested within the more complex model), their fit to a particular dataset can be 

compared using the likelihood ratio test (LRT) (Goldman, 1993; Schmidt, 2009; 

Swofford et al., 1996), utilising maximum likelihood scores calculated in PAUP* 

(version 4.0d65; Swofford, 1998).  The test statistic is given as LR = 2(1n L1 – 1n L0) 
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where L1 is the log likelihood under the more complex (parameter-rich) model and L0 

is the log likelihood under the simpler model.  The likelihood under the more complex 

model will always be equal to or higher than that of the simpler model, and the 

significance can be determined by deriving the probability or p-value of the obtained 

difference.  With nested models of evolution, twice the difference in the likelihood 

scores between models is approximately Chi squared (χ2) distributed.  The p-value is 

determined by applying the difference in log likelihood scores, together with the 

degrees of freedom (the difference in number of parameters between the models), to a 

Chi squared table.  The simpler model is rejected in favour of the more complicated 

one, if the difference in log likelihood scores is significant. 

 

The LRT test was used to compare the fit of the GTR model (Lanave et al., 1984), and 

the slightly less sophisticated HKY85 model to the datasets in this study, both with 

and without a Gamma (Γ) correction (Yang, 1993).  For all datasets the best model 

proved to be GTR + Γ. 

 

2.8.2 Phylogenetic tree reconstruction 

Molecular phylogenies can be constructed using either the raw character state data 

directly (ie. where each homologous position in a sequence alignment is considered 

directly without conversion to a distance) or by converting the character state data to a 

matrix of pairwise distances from which a tree is then built.  Discrete character-state 

methods include maximum parsimony, maximum likelihood and Bayesian inference. 

Distance methods include neighbour-joining, minimum evolution and Fitch-

Margoliash.   
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Phylogenetic tree reconstruction methods can also be classified according to the 

manner in which they search for the best tree.  Algorithmic methods (e.g. neighbour 

joining) construct trees by clustering sequences following an algorithm, and typically 

generate a single best estimate phylogeny for the data, with the phylogenetic criterion 

defined by the tree-building algorithm.  Optimality criterion methods (eg. minimum 

evolution, Fitch-Margoliash, maximum likelihood, Bayesian inference, and maximum 

parsimony) define a criterion (an objective function), by which alternative trees may 

be compared.  The criterion is used to give each alternative tree a score, which allows 

the optimum tree (under the criterion) to be selected as the best explanation of the data 

(an algorithm is used merely to compute the value of the objective function and for 

searching for trees that optimise this value). 

 

Here phylogenetic trees were constructed using a range of methods including 

Bayesian inference (BI; Ronquist & Huelsenbeck, 2003; Larget & Simon, 1999) 

(character state & optimality criterion), maximum likelihood (ML; Felsenstein, 1981) 

(character state & optimality criterion), neighbour joining (NJ; Saitou & Nei, 1987) 

(distance & algorithmic), Fitch-Margoliash (FM; Fitch & Margoliash, 1967) (distance 

& optimality criterion), minimum evolution (ME; Rzhetsky & Nei, 1992) (distance & 

optimality criterion), and maximum parsimony (MP; Fitch, 1971) (character state & 

optimality criterion).   

 

BI was performed using the MrBayes (version 3.1.2) package (Ronquist & 

Huelsenbeck, 2003) using a GTR+ Γ model (Lanave et al., 1984; Yang 1993) and 

with the tree space explored using four chains of a Markov Chain Monte Carlo 

(MCMC) algorithm for between 1 & 5 million generations, sampling every 100 
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generations.   In order to ensure adequate chain swapping, a range of heating 

parameters were tested with the final tree constructed using the optimal temperature. 

The run was terminated only after the Bayesian MCMC searches had reached a 

stationary phase (plateau), indicating convergence of the chain onto the target 

distribution, and a consensus tree built using the last 1000 trees. Bayesian posterior 

probabilities were obtained within MrBayes from these last 1000 trees. 

 

ML analysis was undertaken within the Phyml package (Guindon & Gascuel, 2003) 

using a GTR+ Γ model (Lanave et al., 1984; Yang 1993), with parameters estimated 

within Phyml.   NJ, FM, ME and MP analyses were performed using PAUP* (version 

4.0d65; Swofford, 1998).  For NJ, FM and ME methods distances were corrected for 

multiple hits using a GTR+ Γ model (Lanave et al., 1984; Yang, 1993).  The rate 

matrix, base frequencies, and shape parameter (α) of the gamma distribution (based 

on 16 rate categories) were estimated using likelihood by iteration from an initial NJ 

tree. The parameters estimated from the initial tree were then used to build a new NJ 

tree and the parameters re-estimated, with this process repeated until there was no 

further improvement in likelihood.  For FM, ME and MP methods, tree searching used 

a heuristic procedure with tree-bisection-reconnection branch swapping.  Bootstrap re-

sampling (Felsenstein, 1985b) was undertaken with 1000 bootstrap replicates in order 

to assign support to particular branches within the tree. 

 

2.8.3 Relative rate tests (RRT) 

The degree of substitutional rate divergence between pairs of taxa or taxon groups, 

within the foraminiferal phylogeny, was assessed by means of the relative rate test 

(RRT) (Sarich & Wilson, 1967).  The RRT allows for the comparison of rates of 
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evolution between two taxa (or groups of taxa), without any knowledge of divergence 

time.  This is achieved simply by comparing the substitutional rates in the two closely 

related taxa, with a third more distantly related outgroup, in the case of this study the 

agglutinated benthic foraminifer, Allogromia sp.  The test was carried out using the 

GRate package (Müller, K, unpublished) (see appendix 2), using Maximum 

Likelihood estimates of substitutions per site (with a GTR + Γ model).  Within the 

package, standard errors were estimated via bootstrapping (Efron, 1982, Felsenstein, 

1985a) and the significance of differences between groups tested using a two-tailed z-

test. 

 

2.8.4 Hypothesis testing  

The topology of an optimal phylogenetic tree may not necessarily appear as expected.  

For example, the relationships shown may not agree with traditional taxonomical 

classifications.  The Kishino–Hasegawa (KH) test (Kishino & Hasegawa, 1989) can 

be used to test the likelihood of alternative phylogenetic hypotheses.  The KH test 

utilised here was based on the resampling estimated log-likelihoods (RELL) method 

(Kishino et al., 1990) (as implemented in PAUP*) a variant of the non-parametric 

bootstrap that is computationally less demanding (Schmidt, 2009). In the test, the 

likelihood score of the optimal tree produced from the original phylogenetic analysis 

is compared to that of a tree in which the topology has been constrained to fit an 

alternative hypothesis.  For example, certain groups of taxa may fall in independent 

groups in the optimal phylogenetic tree, but in a large monophyly in taxonomical 

classifications (see chapter 5).  In this case the likelihood scores of the optimal tree, 

and a tree in which the taxa had been constrained to form a monophyly would be 

compared.   If the likelihood score for the optimal tree is significantly better than for 
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the alternative topology, the alternative hypothesis can be rejected (see appendix 9.5 

for details). 
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3 Genotypic variability in the planktonic 
foraminifera of the central Arabian Sea 

 

3.1 Introduction 

The planktonic foraminifera are a highly abundant, diverse and ubiquitous group of 

marine pelagic protists that can be found throughout the worlds’ oceans.  They have 

an exceptional fossil record, spanning over 180 million years (Ma) and as 

microfossils, their shells provide a highly successful tool for dating rocks and ocean 

sediments, studying evolutionary processes and archiving past climate. Their 

usefulness as indicators of past climate stems from the fact that individual species of 

planktonic foraminifera have characteristic environmental preferences that are 

reflected in their spatial and temporal distribution in the oceans and the chemistry of 

their calcite shells.  The accurate identification of planktonic foraminiferal species 

from the morphological characteristics of their shells (morphospecies) is essential to 

the success of such methods.  However, this is now questioned by evidence from the 

small subunit (SSU) ribosomal (r) RNA gene, which is widely used in studies of their 

evolutionary relationships.  High levels of previously unrecognized diversity have 

been discovered within the traditionally known morphospecies, with individual 

morphospecies often comprised of several genetic types (genotypes), some of which 

may be species in their own right (Darling et al., 1997, 1999, 2004, 2006, 2007; 

Darling & Wade, 2008; de Vargas et al., 1997, 1999, 2001, 2002; Huber et al, 1997).  

Perhaps more significantly, the newly discovered genotypes show non-random 

distributions, suggestive of distinct ecologies (ecotypes) (Darling et al., 1997, 1999, 

2004, 2006, 2007, 2008; de Vargas et al., 1997, 1999, 2001, 2002; Huber et al., 1997).  

Such cryptic diversity particularly impacts on climate change palaeoproxies where the 
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presence of these ecotypes may lead to inaccuracy in analysis. It is therefore vital to 

gain a better understanding of their global genetic variability and phylogeography to 

improve quantitative faunal and geochemical palaeoclimate reconstructions.  

 

Extensive sampling effort is required throughout the different water masses of the 

global ocean to address this issue. Increased taxon sampling will provide valuable 

information about the ecological habits of individual genotypes, the phylogenetic 

relationships within and between sibling clusters and their position within the 

foraminifera. In addition, surveying genotype distribution across the oceans can reveal 

geographical connectivity between different oceanic regions, providing clues to 

present and past ocean circulation, evolutionary drivers and the evolutionary history of 

foraminiferal species (Darling et al, 2000, 2004, 2006 and 2007; de Vargas et al., 

1999, 2001, 2002).  Although genetic surveys of the planktonic foraminifera have now 

been undertaken over a wide range of oceanic water masses (Aurahs, et al., 2009; 

Darling et al., 1996a, b, 1997, 1999, 2000, 2004, 2007; de Vargas et al., 1997, 1999, 

2002, 2004; Stewart, 2001; Ujiié & Lipps, 2009), gradually adding to the global 

picture of genotype distribution, these studies have generally ranged more towards the 

mid to higher latitudes with the tropics remaining relatively under-sampled by 

comparison. In fact, many more morphospecies occur in the transitional to lower 

latitudes than the higher latitudes (Rutherford et al., 1999) and these tropical and 

subtropical regions together with their wind driven upwelling regions, play an equally 

vital role in the Earth's climate system.  

  

The Arabian Sea was chosen as a tropical region of high priority as it is one of the 

richest marine biological areas of the world and is also a major contributor to global 
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ocean productivity and biogenic carbonate burial. It is therefore currently under 

intensive study to understand its role in both the modern and palaeoenvironmental 

global ocean/climate system. The Arabian Sea is known to harbour a wide range of 

planktonic foraminiferal morphospecies (Brummer & Kroon, 1988), providing an 

excellent opportunity to obtain an understanding of the foraminiferal ecosystem in a 

tropical water column.  Moreover, the Arabian Sea has been the focus of a number of 

studies linking physical oceanographic conditions and the distribution of planktonic 

foraminiferal morphospecies (Prell et al., 1981; Cullen & Prell, 1984; Kroon, 1991; 

Schiebel et al, 2004).  These studies were however based entirely on the identification 

of morphospecies from their morphological characteristics alone and evidence from 

other subtropical/tropical regions strongly indicate that the morphospecies of the 

Arabian Sea are highly likely to harbour cryptic genotypes/ecotypes in such a dynamic 

ecosystem.  

 

The Arabian Sea is a unique marine environment since its circulation is completely 

reversed biannually by seasonally reversing monsoon winds (Schott, 1983; Swallow, 

1984).  It is therefore subject to greater seasonal variability than any other ocean basin 

on the globe (Schott & McCreary, 2001; Clemens et al., 1991).  During the summer 

months (June – September), low pressure over Asia and high pressure over the Indian 

Ocean drives strong winds in a southwesterly direction (the southwest monsoon).  

Conversely, in winter (November – February), high pressure over the Asian continent 

and low pressure over the Indian Ocean causes the monsoon winds to reverse and 

weaken (the northeast monsoon).  In summer, the southwest monsoon leads to the 

formation of a major low-level air current, the Findlater jet (Findlater, 1996), which in 

turn causes the formation of upwelling zones in the coastal regions of Somalia, 
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Yemen, and Oman (Lee et al., 2000).  The seasonal effects of the monsoon on mixed-

layer dynamics and upwelling in the Arabian Sea are pronounced and have a major 

effect on the primary productivity (phytoplankton growth) and biogeochemistry of the 

region (Wiggert et al., 2002; Banse, 1987; Banse & English, 2000).  Nutrients brought 

into the euphotic zone by coastal upwelling and offshore Ekman pumping are 

transported into the open ocean by wind-driven mixing (McCreary et al., 1996; Lee et 

al., 2000) and lateral advection (Young & Kindle, 1994; Prasanna Kumar et al., 

2001).  This leads to an enormous increase in primary productivity in the region 

(Banse & English, 1994, Bauer et al., 1991) and the normally oligotrophic waters of 

the Arabian Sea transform into one of the most productive marine environments on 

Earth.  

 

This study describes the SW monsoon phase of the seasonal cycle and represents the 

first genetic study on the planktonic foraminifers of the Arabian Sea.  Wind speeds 

over the Arabian Sea are at their strongest during the SW monsoon limiting the 

deployment of multinet systems for foraminiferal sampling and making CTD 

(conductivity temperature depth) profiling challenging.  Nevertheless, it was possible 

to sample the mixed layer at this time and this study specifically focuses on the 

genetic variation in the SSU rRNA gene of mixed layer planktonic foraminiferal 

morphospecies of the central Arabian Sea during the summer SW monsoon of 2003. 

Environmental effects are most pronounced during this period with a distinct disparity 

between adjacent water masses.  The north/south cruise transect crossed this divide, 

providing an opportunity to compare the adaptations of planktonic foraminiferal 

morphospecies and individual genetic types to the different ecological settings.  Since 

the Arabian Sea is subject to such extreme seasonality, it will be important to sample 
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during the inter-monsoon period in the future to obtain perspective on the planktonic 

foraminiferal genotypes that overlay one another in the sediment throughout the 

seasonal cycle.  

 

3.2 Aims and Objectives 

The aim of this study was to conduct a survey of the planktonic foraminiferal 

morphospecies, and their component SSU rRNA genetic types, within the unique 

marine environment of the central Arabian Sea mixed layer, during the summer SW 

monsoon.  At this time a distinct disparity exists between the more eutrophic, high 

salinity hydrographic conditions of the northern water mass and the oligotrophic, low 

salinity conditions of the southern water mass.  This offers an excellent opportunity to 

investigate the potential effects of divergent ecological adaptations on the 

biogeographical distributions and diversification of the planktonic foraminiferal 

morphospecies and their component genetic types.  Phylogenetic analyses were 

employed to elucidate the positions of the Arabian Sea morphospecies/ genetic types 

within a comprehensive foraminiferal phylogeny, and their biogeographical 

distributions across the region examined.  The data gained here was also compared to 

current knowledge of the global distributions of tropical/ sub-tropical planktonic 

foraminifera, with the view to examining the processes of dispersal and diversification 

in the global ocean. 
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3.3 Materials and Methods 

3.3.1 Cruise track and oceanographic setting 

Specimens of planktic foraminifera were collected at nine stations along a north/south 

cruise transect in the central Arabian Sea (20°22.81N/64°29.36E–

02°36.03S/56°54.75E) during the summer monsoon of late June/July 2003 (fig. 3.1A; 

cruise Charles Darwin CD148, NERC) (collection by Kate Darling & Blair Steel).  

The oceanography of the Arabian Sea during the SW monsoon is shown in figures 

3.1B-E to demonstrate the environmental conditions prevailing along the cruise 

transect. A cyclonic surface circulation appears during the SW monsoon that drives an 

eastward flowing monsoon current (MC), north of 10°S across the equatorial region 

(fig. 3.1B). A temperature gradient forms from west to east, starting where cooler 

water upwells off the Arabian coast increasing gradually to reach temperatures up to 

29 °C in the west (fig. 3.1C). There is a clear north/south differentiation in salinity, 

with high salinity water forming in the upper Arabian Sea due to excess evaporation, 

extending to between stations 4 and 5 on the transect while the southern half of the 

region has a lower salinity, as water is transported in from the Bay of Bengal, where 

excess precipitation and abundant runoff predominate (fig. 3.1D). Elevated levels of 

primary productivity are typical of the northern Arabian Sea during the summer 

months (fig. 3.1E), as nutrient rich water is transported offshore from regions of 

upwelling along the coasts of Somalia and Oman (Wyrtki, 1973).  The southern 

Arabian Sea conversely, is highly oligotrophic with a water mass interface around 

stations 4 -5 of the cruise transect (fig. 3.1E). Conductivity, temperature, depth (CTD) 

profiles from station 3 (15°01.11 N/65°00.02E) indicate that the mixed layer was 75m 

deep at this position with a temperature of 28.5 °C and salinity of 36.7 psu, consistent 

with fig. 3.1C and 3.1D maps.  
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Figure 3.1.  Maps of the Arabian Sea showing: (A) CD148 cruise transect and stations, (B) Surface
currents during August at the SW monsoon peak. Regions of intense seasonal upwelling (dark grey),
weak sporadic upwelling (hatched) SC = Somali Current, MC = Monsoon Current, SEC = Southern
Equatorial Current (modified from Cullen and Prell, 1984), (C) Average sea-surface temperature (SST)
(°C) for the SW Monsoon in July 2005 (adapted from Locarnini et al., 2006), (D) Average sea-surface
salinity (PSU) for the SW Monsoon in July 2005 (adapted from Antonov et al., 2006), (E) Average
primary productivity during the SW monsoon in July – September 1979 (adapted from Coastal Zone
Colour Scanner composite images of the region, NASA Earth-Sun System Division, Earth Sciences
(GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC)). 
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At this position, the thermocline dipped steeply between 75 and 150m (19 °C) and 

then reduced its steepness coincident with a salinity minimum of 35.7psu. Projections 

of mixed layer depth in July from Prasanna Kumar & Narvekar (2005) indicate a 

mixed layer depth of ~50 m north of station 3, shoaling to a 40 m mixed layer depth 

south of station 5. 

 

3.3.2 Planktic foraminiferal sampling 

Samples were collected either by pumping (5 m depth) from the ships’ non-toxic 

water supply through a plankton screen (83 μm mesh) or by vertical net tow (0-100 

and 0-200 m depth, 83 μm mesh) in waters with an average depth of 3,500 m.  For 

genetic analysis, a representative sample of specimens was collected at each station.  

Individual specimens were identified using a stereomicroscope, and morphotype and 

cytoplasmic colouration were recorded by digital video imaging. Only adult 

specimens containing cytoplasm were selected for genetic analysis. These were 

crushed in a lysis buffer (Holzmann & Pawlowski, 1996) and incubated for 1 hour at 

60 °C, before being transported to the lab where they were stored at –80 °C.  For 

assemblage assessment, bulk samples were taken at each station with the specimens 

either dried on slides directly or collected as bulk samples in ethanol.  The preserved 

assemblages were then individually picked and placed onto micropalaeontological 

slides (carried out by K. Darling).  The high incidence of small juveniles compared to 

the low incidence of mature specimens made identification too uncertain to carry out 

relative abundance counts along the transect however visual assessment of the bulk 

assemblages was undertaken. 
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3.3.3 DNA amplification and sequencing 

The PCR amplification of an approximately 1000 bp region of the terminal 3′ end of 

the foraminiferal SSU rRNA gene was carried out using a nested PCR approach.  3 μl 

of template were used in the first round of PCR (1° PCR), using primer C5 coupled 

with either primer 138 or NS8 (see chapter 2, section 2.2.2 for primer sequences and 

positions).  Two secondary (2°) PCR reactions were performed, using 1 μl of product 

from the first round as the template.  The first of these utilised primers 2082F and 

2514R to amplify ~500 bp, for use in the identification of within-morphospecies 

genotypes.  The second involved the amplification of the ~1,000 bp fragment in every 

genotype found in the Arabian Sea, for use in phylogenetic analysis.  Two primer 

combinations were used: primers 2082F and 3014R and primers FS3 and 138, 

dependent on success (see chapter 2, section 2.2.2 for primer sequences and 

positions).   Following poor success rates, an additional pass was made through the 

failed samples using primers designed for the amplification of the full-length SSU 

rRNA gene (see chapter 5) (1° PCR = 56F and 3033R (5 μl template), 2° PCR = 61F 

and 3024R (1 μl template), 3° PCR = 2082F and 2514R (for ~500 bp) or 2082F and 

3014R (for ~1,000 bp) (1μl template), (see chapter 2, section 2.2.2 for primer 

sequences and positions).  Reactions were performed using Taq polymerase in the first 

instance, and again using VentR polymerase, following poor success rates.  PCR 

reaction conditions were as described in chapter 2, sections 2.2.3 and 2.2.4.  

Amplification products were separated by gel electrophoresis and purified using an 

Eppendorf Perfectprep® Gel Extraction Kit (see chapter 2, sections 2.3 & 2.4).  For 

taxa where direct sequencing was impossible due to the presence of multiple 

templates, cloning of the 1000bp fragment was carried out prior to sequencing using 

the TOPO TA cloning® method (InvitrogenTM) (see chapter 2, section 2.6).  Both 
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sense and antisense strands were sequenced directly on an Applied BiosystemsTM 377 

DNA sequencer using Applied BiosystemsTM BigDye® v3.1 terminator cycle 

sequencing (primers 2082F, 2514R (500 bp fragment), primers 2082F, 3014R (1000 

bp fragment), also primers M13R, M13F for clones) (see chapter 2, section 2.6.5 for 

details). 

 

3.3.4 Sequence analysis and phylogenetic reconstruction 

SSU rDNA sequences were assembled using Gap4 in the Staden package (Staden et 

al., 2000) and aligned manually within the Genetic Data Environment (GDE) package 

(version 2.2) (Smith et al., 1994).  Arabian Sea genotypes were identified by BLAST 

search and comparison to existing sequences in a foraminiferal alignment, revealing 

those sequences that were novel to this locality.  90 foraminiferal taxa were selected 

for use in the main phylogenetic analysis based on 407 unambiguously aligned bp 

sites, including all species/genotypes obtained from the Arabian Sea, together with 

examples of every species and genotype of planktic foraminifera currently available in 

GenBank, plus a representative group of benthic foraminiferal taxa (1 per family in 

GenBank) (for taxa list see appendix 9.1, and for alignment see appendix 9.7.1).   

 

To improve resolution, additional phylogenies were constructed for 4 of the most 

common Arabian Sea morphospecies, thus allowing a greater number of 

unambiguously aligned sites to be recruited into the analyses (Globigerinella 

siphonifera/ Globigerinella calida (668 bp), Globigerinoides ruber/ Globigerinoides 

conglobatus (589 bp), Globigerina bulloides (669 bp), Turborotalita quinqueloba 

(748 bp)) (for alignments see appendices 9.7.2, 9.7.3, & 9.7.5).  
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Phylogenetic trees were constructed using Bayesian inference (BI; Ronquist & 

Huelsenbeck, 2003, Larget & Simon, 1999), maximum likelihood (ML; Felsenstein, 

1981), neighbour joining (NJ; Saitou & Nei, 1987), Fitch-Margoliash (FM; Fitch & 

Margoliash, 1967), minimum evolution (ME; Rzhetsky & Nei, 1992), and maximum 

parsimony (MP; Fitch, 1971) (FM, ME, MP sub-set trees only).  In all methods 

multiple hits were accounted for using a general time-reversible (GTR) model with a 

gamma (Γ) correction (Lanave et al., 1984; Yang, 1993)  (see main methods, chapter 

2, section 2.8.2 for details). 
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3.4 Results 

363 specimens of planktonic foraminifera were collected from 8 stations along a 

cruise transect in the Arabian Sea during the summer monsoon of 2003 (fig. 3.1).  

Small subunit rRNA gene sequences were successfully amplified for 213 individual 

specimens.  Twenty different genotypes were recognised from 13 different mixed 

layer morphospecies (spinose: Globoturborotalita rubescens  (pink), Globigerinoides 

ruber, Globigerinoides sacculifer, Globigerinella siphonifera, Globigerina bulloides, 

Orbulina universa, Turborotalita quinqueloba; non-spinose macroperforate: 

Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii, 

Globorotalia ungulata; non-spinose microperforate: Globigerinita glutinata; bi-serial: 

Streptochilus globigerus).  Of these, two morphospecies; G. rubescens (pink) and G. 

ungulata were sequenced for the first time and four new genotypes of G. ruber, G. 

siphonifera, T. quinqueloba and G. glutinata were identified.  In the case of G. 

ungulata, the three specimens sequenced exhibited the discriminating morphological 

features of this morphospecies, which is described as having a keel structure on the 

umbilical shoulder of the test (Hemleben et al, 1989).  However, we do not rule out 

the possibility that they are G. tumida, since some workers believe G. ungulata to be 

an immature form of G. tumida.  Here we continue to call the morphospecies we 

sequenced G. ungulata.  Visual assessments of the bulk samples confirmed that all 

morphospecies found in the central Arabian Sea mixed layer were genotyped. 
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3.4.1 Foraminiferal phylogeny 

A comprehensive phylogeny of the foraminifera based on the analysis of 407 bp of the 

SSU rRNA gene is shown in figure 3.2.  It includes examples of all planktonic 

foraminiferal morphospecies and genotypes sequenced to date plus representatives of 

the major groups of benthic taxa (see appendix 9.1 for taxa list).  The phylogenetic 

positions of the Arabian Sea sequences are highlighted on the tree.  All of the methods 

of phylogeny reconstruction employed in this study were largely consistent in their 

inferred trees. 
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Figure 3.2.   Bayesian inference SSU rDNA phylogenetic tree showing the position of the Arabian Sea
morphospecies and genotypes within the foraminifera. The phylogeny is based on 407 unambiguously
aligned nucleotide sites and is rooted on the benthic foraminifer Allogromia sp. Bayesian posterior
probabilities (from last 1000 trees, obtained within MrBayes) and ML bootstraps (expressed as a
percentage, 1000 replicates) are shown on the tree (BI posterior probabilities/ ML bootstraps).  The
scale bar corresponds to a genetic distance of 2 %.  Benthic foraminiferal taxa are shown in grey text,
and planktonic foraminifera are shown in black.  Morphospecies and genotypes found in the Arabian
Sea are shown on a grey background.      indicates novel sequences obtained from the Arabian Sea
cruise (CD148).  The sequence for S. globigerus is also presented in Darling et al. (2009).  For taxa list
and GenBank accession numbers see appendix 9.1. 
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3.4.1.1 The spinose planktonic morphospecies grouping 

The spinose planktonic foraminifera (G. siphonifera, G. calida, O. universa, G. 

sacculifer, G. rubescens (pink), G. ruber, G. conglobatus, G. bulloides, T. 

quinqueloba, G. falconensis and H. pelagica) form a monophyletic group within the 

SSU phylogeny (fig. 3.2).  This group is recovered with all methods of tree 

construction, though only weakly supported in bootstrap analysis (p= 0.94 BI, 46 % 

ML).  Although there is relatively little structure at the base of the spinose clade, the 

spinose taxa appear partitioned into four principal clusters, consistent with previous 

phylogenetic studies (Darling et al., 1999, 2000, 2006; Stewart et al., 2001).  

 

Globigerinella cluster: Globigerinella siphonifera and G. calida cluster together in a 

well-supported clade within the spinose planktonics (p=1 BI, 96 % ML; fig. 3.2).  A 

phylogeny constructed from 668 bp (fig. 3.3a) shows the relationships among the 

genetic types within this clade more clearly.  Three primary divisions are observed 

within Globigerinella (figs. 3.2 and 3.3a); G. siphonifera Type I (p=1 BI, 100 % ML, 

100 % NJ, 100 % MP; fig. 3.3a), G. siphonifera Type II (p=0.99 BI, 97 % ML, 97 % 

NJ, 96% MP; fig. 3.3a) and G. calida as described by Stewart et al. (2000) and 

Darling & Wade (2008).  Globigerinella siphonifera Type Ia sub-divides into two 

subtle subtypes; Ia(1) and Ia(2).  The Type II clade sub-divides into IIa and IIb and IIa 

again sub-divides into a number of subtle sub-types, previously shown as the IIa 

complex in Darling & Wade (2008).  Three subtypes are apparent, IIa(1) (Accession 

U80788), IIa(2) (Accessions AF102227, AJ3905674, Z83960), and IIa(3) (Arabian Sea). 

Much of the genetic variability within these sub-types occurs in the variable regions of 

the SSU rRNA gene leading to little support for branches within the IIa cluster (fig. 

3.3a). 
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Figure 3.3.  SSU rDNA phylogenetic trees of (A) Globigerinella siphonifera/ Globigerinella calida
(668 unambiguously aligned nucleotide sites), (B) Globigerinoides ruber/ Globigerinoides conglobatus
(589 bp), (C) Globigerina bulloides (669 bp), (D) Turborotalita quinqueloba (748 bp). The phylogenies
were constructed using Bayesian Inference and are unrooted.  Bayesian posterior probabilities and ML,
NJ, and MP bootstraps (expressed as a percentage) are shown on the trees (BI/ML/NJ/MP bootstraps).
The scale bar corresponds to a genetic distance of 1 %.  Morphospecies and genotypes found in the
Arabian Sea are shown on a grey background.         indicates novel sequences obtained from the Arabian
Sea cruise (CD148). 

 

In total, four distinct genotypes of G. siphonifera were found in the Arabian Sea 

mixed layer; Types Ia(1), Ia(2), IIa(1) and the novel IIa(3). 

 

Globigerinoides sacculifer and Orbulina universa cluster: The next grouping within 

the spinose planktonic region of the main foraminiferal tree (fig. 3.2) shows  

G. sacculifer clustering with O. universa as demonstrated by Darling et al (1999), 

with similarly little support  (p= 0.60 BI, 27 % ML; fig. 3.2).  No intra-specific 

genotypic variation has been found to date in G. sacculifer, and indeed the sequences 

from the Arabian Sea are identical to those already in GenBank.  Orbulina universa 

was very rare in the mixed layer.  Only a single individual of O. universa Type I was 

genotyped.  
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Globoturborotalita rubescens (pink), Globigerinoides ruber, and Globigerinoides 

conglobatus cluster: Globoturborotalita rubescens (pink) is included in a 

foraminiferal phylogeny for the first time and falls as the sister taxon to G. ruber/G. 

conglobatus in the main spinose planktonic region of the tree (p= 1.0 BI, 93 % ML; 

fig. 3.2).  A phylogeny constructed from 589 bp shows the relationships among the G. 

ruber/G. conglobatus genotypes (fig. 3.3b).  The overall topology remains the same as 

in previous studies (Darling et al., 1999, 2008), with two primary subdivisions: 

Globigerinoides ruber (pink)/G. ruber (white) Type I and G. conglobatus/ G. ruber 

(white) Type IIa (p=1 BI, 100 % ML, 100 % NJ, 100 % MP; fig. 3.3b).  As in Darling 

et al. (1999, 2000), the G. ruber (white) Type I lineage sub-divides into Ia and Ib (p=1 

BI, 92 % ML, 89 % NJ, 88 % MP; fig. 3.3b).  However, a subtly different variant of Ib 

was discovered in the Arabian Sea, splitting Ib into subtypes Ib(1) and the new Ib(2).  In 

total, four distinct genotypes of G. ruber (white) were found in the Arabian Sea mixed 

layer; Types Ia, Ib(1), the novel Ib(2) and  IIa. Globigerinoides conglobatus was not 

found in the Arabian Sea mixed layer assemblage. 

 

Globigerina bulloides, Turborotalita quinqueloba, and Globigerina falconensis 

cluster: These morphospecies form a distinct clade within the spinose planktonic 

group (p= 1 BI, 78 % ML; fig. 3.2) with three principal divisions (Stewart et al 2001).  

Globigerina falconensis diverges first (p= 1 BI, 78 % ML; fig. 3.2.) followed by the 

divergence of the T. quinqueloba and G. bulloides lineages.  Globigerina bulloides 

(p=1 BI, 100 % ML; fig. 3.2) and T. quinqueloba (p=1 BI, 100 % ML; fig. 3.2) are 

both well supported in the phylogeny with both morphospecies falling on relatively 

long branches in the tree.  A phylogeny of the G. bulloides cluster based on 669 sites 

(fig. 3.3c), shows the complex of genotypes found within this morphospecies to date.  



3: Arabian Sea 

 92

The 7 distinct genotypes split principally into Types I and II (p=1 BI, 100 % ML, 100 

% NJ, 100 % MP; fig. 3.3c).  Type I is associated with warmer waters and subdivides 

into Ia (found in the Arabian Sea mixed layer) and Ib (fig. 3.3c).  Type II is associated 

with cooler waters and comprises 5 individual sub-types that group together strongly 

in the tree (p=1 BI, 100 % ML, 100 % NJ, 100 % MP; fig. 3.3c).  Within this group, 

the topology is consistent with previous studies (Darling et al., 2007, 2008).  No 

specimens of G. bulloides Type II were found in the central Arabian Sea mixed layer.   

A phylogeny of the T. quinqueloba cluster based on 748 sites (fig. 3.3d) again shows a 

principal split between Type I and Type II (p=1 BI, 100 % ML, 100 % NJ, 100 % MP; 

fig. 3.3d).  Again, this split divides the warm (Type I) from cool (Type II) types.  Only 

one specimen of T. quinqueloba was successfully sequenced and was found to be a 

new genotype of Type I.   This has been labelled Type Ib, and falls together with Type 

Ia in the 748 bp tree (p=1 BI, 100 % ML, 100 % NJ, 100 % MP; fig. 3.3d).  Type II 

currently comprises 4 individual sub-types that group together strongly in the tree 

(p=1 BI, 100 % ML, 100 % NJ, 100 % MP; fig. 3.3d).  Within this group, the 

topology is consistent with previous studies (Darling & Wade 2008). 

 

Hastigerina pelagica: This spinose morphospecies falls at the base of the spinose 

group in the 407 bp phylogeny (fig. 3.2).  Although relationships are poorly supported 

in this part of the tree, it appears to be positioned separately from the other spinose 

lineages, falling as a sister taxon to the other spinose groups.  Hastigerina pelagica is 

unique among the planktonic foraminifera, both in its morphology and biology, and its 

ancestry is still strongly debated by micropalaeontologists (Schiebel & Hemleben 

2005).   Hastigerina pelagica was not found in the central Arabian Sea mixed layer. 
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3.4.1.2 The non-spinose planktonic foraminifera 

The non-spinose planktonic foraminifera fall within three separate regions of the tree 

(fig. 3.2), consistent with the macroperforate, microperforate and non-spiral 

planktonic groupings (Hemleben et al, 1989).  Rates of evolution among the non-

spinose planktonics are generally magnitudes lower than the rates observed in the 

planktonic spinose group and are more akin to those observed in benthic species 

(Pawlowski et al, 1997).  There is therefore little resolution among the non-spinose 

planktonics with only a few exceptions. 

 

Non-spinose macroperforates: The macroperforates form a monophyletic group 

within the phylogeny comprising Globorotalia (menardii, ungulata, truncatulinoides, 

crassaformis, hirsuta, scitula and inflata), Neogloboquadrina (incompta, dutertrei and 

pachyderma) and Pulleniatina (obliquiloculata) (fig. 3.2).  This group is recovered 

with all methods of phylogeny reconstruction, though is only weakly supported in 

bootstrap analysis (p= 0.96 BI, - ML).  Of the macroperforates, only G. menardii, G. 

ungulata, N. dutertrei and P. obliquiloculata were found in the central Arabian Sea 

mixed layer.  Due to its very high evolution rate compared with other macroperforate 

taxa, the placement of G. menardii has often proved problematic.  In the current 

phylogeny, the position of G. menardii is consistent with taxonomic classification, 

placing it with the other macroperforates, however, its placement was inconsistent 

across methods of tree construction (data not shown).  Although some very minor 

sequence variation was detected in G. menardii, it cannot be considered sufficient to 

warrant sub-type status.  A closely related morphospecies, G. ungulata, has been 

sequenced in this study for the first time.  Globorotalia menardii and G. ungulata fall 

together on a relatively long branch (with all phylogenetic methods) (p= 1 BI, 100 % 
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ML, fig. 3.2).  Three specimens were sequenced, with no variation detected.  Some 

neogloboquadrinid morphospecies exhibit a degree of intra-individual variation in the 

most variable regions of their SSU gene repeats not used for phylogenetic analysis 

(Darling & Wade, 2008).  The sequences of N. dutertrei obtained in this study did 

show some degree of variation, but without extensive cloning, it is impossible to 

determine whether they reflect the presence of more than one genotype in the water 

column.  All P. obliquiloculata sequences obtained during this study were identical to 

each other, however they differed subtly from those currently available in GenBank. 

As yet, it is unknown whether this is due to sequencing errors in those submitted to 

GenBank, intra-individual variation or whether they are a different genotype.  Though 

not present in the Arabian Sea, a new sequence for Globorotalia scitula was added 

during this study.  Globorotalia scitula consistently fell within the macro-perforate 

clade, though it’s positioning with G. menardii and G. ungulata was not recovered 

with all methods of tree construction (data not shown) and has little support (fig. 3.2).   

 

Non-spinose microperforates: There are possibly 7 morphospecies of non-spinose 

microperforate planktonic foraminifera (Hemleben et al, 1989) of which only three 

have been sequenced to date; G. uvula (Stewart et al., 2001), G. glutinata (Darling et 

al., 2000) and Candeina nitida (Ujiié & Lipps, 2009).  They fall outside of the main 

non-spinose ‘macroperforate’ group falling separately among the benthics (fig. 3.2). 

Only G. glutinata was found along the cruise transect and displayed distinct sequence 

variation between specimens.  Comparing the Arabian Sea sequences to those 

currently in GenBank, it appears that there are three subtly different genotypes, which 

are named here as Type 1a(1), 1a(2) (accession Z83974.1, de Vargas, 1997), and 1a(3).  

Only Types 1a(1) and 1a(3) were found in the central Arabian Sea mixed layer.  Recent 
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cloning of G. glutinata from North-West Pacific assemblages (Ujiié & Lipps, 2009) 

indicates that these are most likely to be genuine subtype differences and not simply 

intra-individual variation in the SSU gene repeats.  

 

3.4.1.3 Non-spiral planktonics (biserial and triserial) 

There are two planktonic morphospecies of the biserial genus Streptochilus 

(Hemleben et al, 1989) and one morphospecies of the triserial genus Gallitellia 

(Kroon and Nederbragt, 1990).  Only Streptochilus globigerus was found in the mixed 

layer of the central Arabian Sea.  This morphospecies also exhibits a degree of intra-

specific variation in the SSU sequences similar to that observed in some benthic 

foraminiferal species (Darling & Wade, 2008).  The sequence gained here for S. 

globigerus is also presented in Darling et al. (2009), where the species was 

surprisingly found to cluster with the infaunal benthic biserial species Bolivina 

variabilis from the Kenyan coastal region (sequence from Ertan et al, 2004).  The tri-

serial morphospecies, Gallitellia vivans, has been sequenced for the first time only 

recently (Ujiié et al., 2008), and falls in an unresolved position within the benthic taxa 

(fig. 3.2). 
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3.4.2 Biogeography 

Analysis of the morphospecies genotype distribution data (fig. 3.4) combined with a 

visual assessment of the bulk assemblage data showed some distinct ecological 

segregation related to the physical oceanography of the Arabian Sea.  

 

3.4.2.1 Globigerinoides ruber (fig. 3.4A; n=75) 

Assessment of the bulk assemblage samples revealed that G. ruber was the dominant 

morphospecies in the Arabian Sea during the SW monsoon.  It was found in high 

numbers in the more eutrophic, high salinity water of the north and occurred in 

significantly lower numbers in the more oligotrophic lower salinity water mass to the 

south.  There are four genotypes of G. ruber in the Arabian Sea assemblage, which 

have distinctive biogeographies.  Only Type IIa (n=24) and Type Ib(2) (n=46) were 

found in the eutrophic high salinity water mass of the northern Arabian Sea.  The 

other G. ruber genotypes Ia (n=4) and Ib(1) (n=1) were not found in the northern water 

mass following extensive genotyping of the water column.  These genotypes were 

found in low numbers within the southern water mass, with only a single specimen of 

G. ruber Type Ia identified at station 9. 

 

3.4.2.2 Globigerinella siphonifera (fig. 3.4B; n=24) 

Globigerinella siphonifera was distributed throughout the transect and four genotypes 

were identified.  The newly recognised Type IIa(3) (n=19) was distributed throughout 

the cruise transect, thriving equally in both the northern and southern water masses. 

The other genotypes appeared more rare.  Type Ia(2) (n=1) was found only in the 

northern water mass and Types Ia(1) (n=1) and IIa(1) (n=3) were found in low numbers 

in the southern water mass. 
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Figure 3.4. Arabian Sea maps showing the spatial
distribution of genotypes of the morphospecies identified
along the cruise transect. Their numbers do not necessarily
reflect the absolute frequency of morphospecies or
genotypes in the water column. The dotted line denotes
approx. water mass boundary (higher productivity, high
salinity in the north/ oligotrophic, low salinity in the south)
as determined from figs. 3.1D & 3.1E. The number of
specimens collected at each station for genetic analysis is
indicated by a number. A key to genotypes is provided on
each map. *denotes species or genotypes sequenced for the
first time. 
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3.4.2.3 Globigerinita glutinata (fig. 3.4C; n=10) 

Globigerinita glutinata was found throughout the transect.   Two potentially distinct 

subtypes of Type Ia were identified in the central Arabian Sea mixed layer; Types 

1a(1) and 1a(3), each distributed along the length of the cruise transect. 

  

3.4.2.4 Globigerina bulloides (fig. 3.4D; n=8) 

Globigerina bulloides was present in very low numbers in the bulk samples and was 

distributed mainly in the more eutrophic, high salinity water mass of the northern 

region.  Genotyping revealed only one genetic type, Type Ia, confined to the northern 

water mass. 

 

3.4.2.5 Globigerinoides sacculifer (fig. 3.4E; n=14) 

Globigerinoides sacculifer was found only in the southern waters, south of station 4. 

Only a single genotype was found, which was identical to all other G. sacculifer 

sequenced to date. 

 

3.4.2.6 Globorotalia menardii (fig. 3.4F; n=18) 

The bulk assemblage data clearly showed that G. menardii increased in numbers 

towards the southern part of the cruise transect though this pattern was not reflected in 

the number of specimens collected for genotyping (fig. 3.4F).  Despite the distribution 

difference between the water masses, only a single genotype was found in the mixed 

layer along the cruise transect. 
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3.4.2.7 Globorotalia ungulata (fig. 3.4G; n=3) 

Assessment of the bulk assemblage showed that Globorotalia ungulata was more 

common in the southern part of the cruise transect.  Only three specimens were 

sequenced and a single genotype found. 

 

3.4.2.8 Globoturborotalita  rubescens (pink) (fig. 3.4H; n=9) 

Globoturborotalita rubescens (pink) was present throughout the transect, though only 

nine specimens were successfully amplified.  This newly sequenced morphospecies 

showed no sequence variation in the specimens collected between stations 1-3. 

 

3.4.2.9 Neogloboquadrina dutertrei (fig. 3.4I; n=22) 

Neogloboquadrina dutertrei was distributed along the length of the cruise transect, 

and is most likely represented by a single genotype in the Arabian Sea.  However, as 

in most Neogloboquadrina, N. dutertrei specimens exhibit intra-individual variation in 

their SSU gene repeats and the presence of more than one genotype cannot be ruled 

out without extensive cloning. 

  

3.4.2.10 Pulleniatina obliquiloculata (fig. 3.4J; n=21) 

Pulleniatina obliquiloculata was distributed along the length of the cruise transect. 

Only a single genotype was found. 

 

3.4.2.11 Orbulina universa  (fig. 3.4K; n=1) 

Orbulina universa was very rare in the water column.  Only a single specimen of Type 

I was identified in the southern water mass at station 6. 
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3.4.2.12 Turborotalita quinqueloba (fig. 3.4L; n=1) 

It is difficult to differentiate T. quinqueloba from tiny juveniles of other 

morphospecies, but mature specimens were rare.  Only a single specimen of Type Ia 

was amplified at station 2. 

 

3.4.2.13 Streptochilus globigerus (fig. 3.4M; n=7) 

The biserial morphospecies, S. globigerus, was found in substantial numbers along the 

length of the cruise transect (bulk sample assessment).  Only a single genotype was 

identified.  
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3.5 Discussion 

3.5.1 The newly sequenced morphospecies and their phylogenetic placement 
within the all foram phylogeny 

The overall structure of the foraminiferal SSU rDNA phylogeny is largely unchanged 

from previous studies (Darling et al., 1997, 1999, 2000, 2006; de Vargas et al., 1997; 

Stewart et al., 2001).  The planktonic foraminifera do not form a single monophyletic 

unit in the tree but instead, the planktonic spinose species fall together in a 

monophyletic group separate from the non-spinose species.  Amongst the non-spinose 

foraminifera, the macroperforates fall together in the molecular phylogeny consistent 

with their taxonomic grouping (Hemleben et al, 1989).  The non-spinose micro-

perforate taxa and the non-spiral biserial planktonic taxa fall separately from the 

macroperforates, though their placement is ambiguous.  Three morphospecies of 

planktonic foraminifera are included within the molecular phylogeny for the first time. 

 

Globoturborotalita rubescens (pink):  This spinose morphospecies is highly 

conspicuous in the sediment assemblage as it is one of only two morphospecies with 

red colouration in its shell.  It is possibly closely related to Globoturborotalita tenella 

(Parker), which has yet to be sequenced.  It is a shallow-dwelling morphospecies that 

is most common in the tropics but is also found into the sub-tropical province (Bé, 

1977).  It can be locally common and has its highest relative frequency in the Arabian 

Sea (12 %) in the western region (Kroon, 1991).  In the main foraminiferal phylogeny 

(fig. 3.2), it diverges first within a well-supported cluster from the G. ruber/G. 

conglobatus group.  Fossil record studies show that it first appeared in the Middle 

Pliocene, around 3.6 million years ago (Kennett and Srinivasan, 1983).  

Globoturborotalita rubescens (pink) is very difficult to distinguish from Globigerina 



3: Arabian Sea 

 102

woodi (Chaisson and Pearson, 1997), from which it may have evolved via the 

morphospecies Globigerina decoraperta (Kennett and Srinivasan, 1983).  Globigerina 

woodi is also the possible ancestral lineage of G. ruber, which would be highly 

consistent with the molecular phylogeny.   

 

Globorotalia ungulata:  This morphospecies is said to occur rather sporadically in 

tropical waters (Hemleben et al, 1989).  It appeared in the Late Pliocene around 2.5 

million years ago and is thought to have evolved from G. tumida (Kennett and 

Srinivasan, 1983).  Globorotalia ungulata and G. menardii fall together at the end of a 

relatively long branch in the main phylogeny (fig. 3.2).  It will not be possible to 

determine globorotaliid relationships and ancestry until all the other extant 

morphospecies have been sequenced. 

 

Streptochilus globigerus:  This is one of the two known morphospecies of extant 

biserially coiled planktonic foraminifera.  Once thought to be extinct, Streptochilus 

was discovered in plankton tows south of India (S. globulosus) (de Klasz et al., 1989) 

and in the North Atlantic (S. globigerus) (Hemleben et al., 1989).  It is a small-sized 

morphospecies that frequents tropical to transitional waters and lives in highly 

productive deep water, appearing abundantly in coastal surface water in areas of 

upwelling, but can also be found in the open ocean (Hemleben et al, 1989).  This is 

the first time that any biserial planktonic morphospecies has been included in a 

comprehensive phylogeny of the foraminifera.  Streptochilus globigerus not only falls 

among the benthic, rather than planktonic foraminifera (fig. 3.2), but also has an 

extremely high sequence identity to the benthic species Bolivina variabilis, sufficient 

to suggest that S. globigerus and B. variabilis are one and the same morphospecies 
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(Darling et al., 2009).  Indeed, subsequent phylogenetic analyses of the SSU rDNA 

sequences of B. variabilis and S. globigerus have revealed that S. globigerus falls well 

within the B. variabilis radiation (Darling et al 2009). 

 

3.5.2 Biogeographical distribution and ecology of the morphospecies and 
genotypes of the central Arabian Sea mixed layer 

The cruise transect was conducted during the SW monsoon, when environmental 

conditions were most pronounced and a strong disparity existed between the northern 

and southern water masses.  This provided the opportunity to determine the ecological 

adaptations of planktonic foraminiferal morphospecies and their individual genetic 

types in the mixed layer of two different water masses.  The high salinity northern 

water mass (stations 1-3 on the cruise transect) has elevated levels of primary 

productivity (fig. 3.1B-E).  The southern water mass, conversely, has a lower salinity 

and is highly oligotrophic, with a boundary separating the two water masses between 

Station 3 and 4 on the cruise transect.  

 

3.5.2.1 Geographical distribution of morphospecies: bulk assemblage data 

Visual assessment of the bulk assemblages (provided by K. Darling) showed that the 

more eutrophic region of the northern Arabian Sea mixed layer in late June/July was 

dominated by G. ruber with lower numbers of N. dutertrei, P. obliquiloculata, G. 

menardii and G. glutinata also present.  This is consistent with assemblages found in 

the surface sediments of the region (G ruber 20-40 %, G. glutinata < 10 %; G. 

menardii 10 %; N. dutertrei 5-10 %; P. obliquiloculata >10 %; G. bulloides <5 %; G. 

siphonifera 3-5 %; Cullen & Prell, 1984) with two notable exceptions.  Firstly, G. 

sacculifer constitutes over 10 % of the core top assemblage of the northern region 

(Cullen & Prell, 1984), but was entirely absent in the SW monsoon water column of 
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the northern eutrophic water mass in July, even in the deep 200 m net.  

Globigerinoides  sacculifer did not appear in the assemblage until reaching the frontal 

zone at station 4.  High numbers of G. sacculifer were also reported in this frontal 

zone during the SW monsoon in June 1984 (Kroon, 1991), consistent with this study.   

The difference between water column and core top abundance in G. sacculifer during 

the SW monsoon indicates that it must be present in higher numbers in the northern 

region of the Arabian Sea during the more oligotrophic inter-monsoon period.  Guptha 

et al, (1994), certainly found a greater proportion of G. sacculifer in the nutrient 

depleted northern water mass in late September/October, though Schiebel et al (2004) 

found considerable numbers of G. sacculifer in the water column at a station 

equivalent to our station 3 in July/August.  The second exception to the core top 

assemblage below the northern water mass is that small species such as G. rubescens 

(pink) may have been underestimated when sieved at 150µm, since G. rubescens 

(pink) was present in the water column in relatively high numbers in this study yet is 

only recorded as constituting less than <1 % in the sediment assemblage (Cullen & 

Prell, 1984).  

 

Bulk samples indicate that the dominant morphospecies in the southern more 

oligotrophic water mass was G. sacculifer during the SW monsoon, with 

proportionately lower numbers of G. ruber.  This indicates that there may be a strong 

element of seasonality in the sediment assemblage in both the northern and southern 

regions, since these differences are not reflected in the sediment assemblage counts 

where both are present in high numbers throughout (Cullen & Prell, 1984).  The other 

major morphospecies that was more prevalent within the southern region was  
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G. menardii, which increased towards the later stations.  This is most likely related to 

the increased mixing and nutrification at the interface with the Southern Equatorial 

Current, since G. menardii is often associated with productive, upwelling regions. 

Globigerina bulloides was very rare in the southern water mass during the SW 

monsoon.  

 

The bulk samples show that S. globigerus was present in high numbers along much of 

the cruise transect.  The distribution of S. globigerus is poorly known because of its 

sporadic appearance and small test size. They most likely have a tychopelagic life 

style, occupying a niche in both the benthos and plankton. This is extensively 

discussed in Darling et al (2009).  

 

3.5.2.2 Geographical distribution and ecology of within-morphospecies genotypes 

Within the Arabian Sea mixed layer, two morphospecies; Globigerinoides ruber (fig. 

3.4A) and Globigerinella siphonifera (fig. 3.4B) were each represented by four 

individual genetic types that exhibited apparent ecologically distinct distribution 

patterns during the SW monsoon.  The G. ruber morphospecies is represented by two 

highly divergent lineages, Type I and Type II (see phylogeny: fig. 3.3B), which likely 

represent separate species (Darling & Wade, 2008).  Types Ia, Ib and II were all 

present in the Arabian Sea mixed layer, represented by the genotypes Ia, Ib(1), Ib(2) 

(new subtype) and IIa.  As discussed above, there was an apparent decreasing trend 

from north to south in the proportion of G. ruber present in the mixed layer along the 

cruise track, however, there was also a clear difference in genotype distribution 

between the eutrophic, high salinity northern water mass and the oligotrophic, lower 

salinity southern water mass (fig. 3.4A).  The northern water mass contained only two 
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of the G. ruber genotypes (Ib(2) and IIa), both of which were present in equally high 

numbers.  The other two genotypes (Ia and Ib(1)) were found only in the southern 

water mass.   The absence of these two genotypes from the northern water column 

perhaps suggests that they are not adapted to more eutrophic high salinity conditions.  

The more numerous genotype from the southern region, Type Ia, likely dominates 

during the more oligotrophic periods of the seasonal cycle.  A clear ecological 

distinction could be seen between the G. ruber Type Ia and Type II lineages.  

 

Interestingly, G. ruber Type Ib(1) and the newly recognised Type Ib(2) also appeared 

ecologically distinct in their distribution patterns, despite these subtypes being only 

subtly different at the genetic level.  Type Ib(2) had a dominant presence in the 

Northern Arabian Sea, whilst only a single individual of Type Ib(1) was found, in the 

southern water mass.  As Type Ib(1) was not identified in a population of 70 individual 

specimens in the northern water mass, it could indicate a different ecological optimum 

to that of Type Ib(2), and a possible cause of their recent divergence.   

 

Both major lineages of Globigerinella siphonifera (Types I & II) were present in the 

Arabian Sea mixed layer (fig. 3.4B), represented by subtypes Ia(1), Ia(2), IIa(1) and IIa(3).  

Although their numbers were relatively low, it was clear that G. siphonifera Type II 

(n=22) was the dominant G. siphonifera lineage along the whole cruise transect, 

thriving within the varying hydrographic conditions of both the northern and southern 

water masses.  The two representatives of the G. siphonifera Type I lineage (Types 

Ia(1) & Ia(2)), conversely, were represented by only single individuals.  The newly 

recognised IIa(3) genotype was distributed throughout both water masses in large 

numbers (n=19), whereas Type IIa(1) was found only in small numbers in the southern 
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water mass (n=3).  This suggests that even at this low level of genetic distinction (fig. 

3.3a), Types IIa(1) and IIa(3) may have distinctly different ecologies, possibly driving 

their genetic separation. 

 

The genetic types of G. ruber and G. siphonifera, unarguably have distinct 

geographical distributions within the Arabian Sea mixed layer, a likely indicator of 

ecological differentiation.  Partitioning by the frontal systems between the two quite 

disparate environments is one of the most likely drivers of divergence and speciation 

in the open ocean (Schluter, 2001; Darling et al, 2004).  Unravelling these 

relationships would be a considerable step forward to improve quantitative faunal and 

geochemical palaeoclimate reconstructions.  However, there is an additional 

possibility that such distributions could arise as a result of competitive exclusion, 

whereby, a well-established genotype, by sheer weight of numbers, may prevent 

another from occupying a region, as proposed by Aurahs et al. (2009).  This has 

particularly been noted to take place between closely related types, and could explain, 

for example the mutually exclusive distributions of closely related G. ruber types Ib(1) 

and Ib(2) here.  In addition, G. siphonifera Type IIa(3), the dominant type here, may be 

competitively excluding other G. siphonifera genotypes.  Sympatric occurrence of 

more divergent types is thought to be possible due to pronounced ecological niche 

separation (Aurahs et al. 2009), and indeed here we see distantly related G. ruber 

types Ib(2) and IIa co-existing in the North of the Arabian Sea in great numbers. 

 

The remaining planktonic foraminiferal morphospecies of the Arabian Sea mixed 

layer were largely represented by only single genotypes.  Globigerina bulloides and 

Globigerinoides sacculifer, in particular, displayed non-random biogeographical 
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distributions between the water masses (figs. 3.4D and 3.4E), again pointing to 

selective ecological requirements.   

 

Globigerina bulloides is more typical of sub-polar regions (Bé and Tolderlund, 1971), 

but also characterises upwelling zones in lower latitudes (Naidu and Malmgren, 

1996).  It is a minor background morphospecies in the central Arabian Sea (Cullen 

and Prell, 1984), occurring in low numbers, and mostly confined to the northern water 

mass (bulk sample assessment and fig.3.4D).  The two major G. bulloides lineages 

follow a temperature-dependent distribution globally, with Type I occurring in warm 

waters, and Type II occurring in cold waters (fig. 3.3c; Darling & Wade, 2008).  Of 

the two known tropical/subtropical genotypes (Type Ia and Ib) (Darling & Wade, 

2008), only Type 1a was present in the Arabian Sea mixed layer.  It occurred 

predominately towards the north of the region (fig. 3.4D), being absent from the most 

southerly reaches of the transect (stations 6 – 9).  This absence from the most 

oligotrophic, lower salinity waters perhaps indicates an adaptation to slightly more 

eutrophic, higher salinity conditions.  Interestingly, Globigerina bulloides dominates 

the planktonic foraminiferal assemblages in the upwelling coastal waters of the 

Arabian Sea (Schiebel et al. 2004).  Here temperatures are considerably cooler than 

those found in the central Arabian Sea, and the question therefore remains whether 

this warm water genotype (1a) is ecologically distinct from those found in high 

numbers in the upwelling regions of the Arabian Sea. 

 

The single genotype of G. sacculifer was confined to the southern oligotrophic water 

mass in this study (fig. 3.4E) reflecting its possible adaptation to more oligotrophic 

waters (Halicz and Reiss, 1981; Reiss, 1980).  It has been postulated that other factors 
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such as the chlorophyll maximum or thermocline development may affect its 

distribution (Weikert, 1987), and its status in the Arabian Sea water column has been 

shown to vary with temperature, salinity, nutrients and thermocline depth (Schiebel et 

al, 2004).  Salinity is an unlikely limiting factor as G. sacculifer is a euryhaline 

species, capable of tolerating salinities in a range of 24 ‰ – 47 ‰ (Hemleben et al, 

1989). 

 

 Although G. menardii (fig. 3.4F) was present throughout the transect, the bulk 

samples indicate that its numbers tended to increase in the assemblage towards the 

most southern part of the cruise transect, indicating a possible ecological preference. 

This is in contrast to the other globorotaliid in the assemblage, G. ungulata (fig. 

3.4G), which occurred at relatively low levels throughout. 

 

The remaining prominent morphospecies within the assemblage G. rubescens (pink), 

N. dutertrei and P. obliquiloculata (figs. 3.4H, 3.4I and 3.4J) were represented by only 

single genotypes, exhibiting wide distributions along the whole transect. Although 

different genotypes of N. dutertrei (Darling et al, 2003) and P. obliquiloculata have 

been recognised (unpublished observation), extensive sampling and cloning will be 

required before their biogeographical distribution can be determined.  Microperforate 

morphospecies Globigerinita glutinata, may have been represented by two distinct 

genotypes, however, these too showed broad distributions across the transect area. 

 

Orbulina universa (fig. 3.4K) and T. quinqueloba (fig. 3.4L) were each represented by 

a single genotype and were found in very low numbers in the central Arabian Sea 

mixed layer in June/July.  Insufficient data prevents comment on their ecology, and it 
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may be that these individuals simply arrived in the region by expatriation, a 

phenomenon commonly observed in planktonic foraminifera, whereby individuals are 

carried, by currents, outside of their ecologically optimal range. 

 

The final morphospecies, Streptochilus globigerus, was found throughout the cruise 

transect and is of particular interest.  Streptochilus globigerus (fig. 3.4M) is an 

unusual, sporadically occurring, biserial planktonic foraminifer (de Klasz et al., 1989; 

Schiebel and Hemleben, 2005).  As discussed above, the SSU rDNA sequences for S. 

globigerus showed a surprisingly high level of sequence identity to the benthic species 

Bolivina variabilis from the Kenyan coastal region (Ertan et al, 2004), located south 

west of our central Arabian Sea sampling stations, indicating that they are the same 

species (Darling et al, 2009).  In the benthos, B. variabilis/S. globigerus lives as a 

shallow to intermediate infaunal dweller in the continental shelf sediments. During the 

SW monsoon (fig. 3.1b), its populations become expatriated by the winds and currents 

far offshore, where they continue to live and grow as plankton in the open ocean 

(Darling et al, 2009).  Streptochilus globigerus is therefore tychopelagic in nature 

(McQuoid, and Nordberg, 2003), exploiting both benthic and planktonic habitats 

(Darling et al, 2009).  The high degree of genetic identity within the Arabian Sea 

benthic and planktonic biserial foraminifers indicates that they must represent a single 

genetically connected population.  Whether there is two-way gene flow between the 

benthos and plankton or whether their population identity is maintained by continual 

re-seeding from the benthos is as yet unknown.  
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3.5.3 Global phylogeography of the Arabian Sea genotypes 

The apparent lack of barriers to gene flow in the open ocean in combination with the 

high dispersal potential of pelagic taxa clearly impacts on their rate of diversification 

and speciation.  Indeed, planktonic foraminiferal diversity appears very low at around 

50 morphospecies when compared with their benthic counterparts of several thousand. 

Nevertheless, specific assemblages are found associated with regionally distinct 

ecosystems, which are traditionally divided into polar, sub-polar, transitional, sub-

tropical and tropical faunal provinces (Bé & Tolderlund, 1971; Bé, 1977).  Discrete 

assemblages are also found in a transitory province associated with regional upwelling 

(summarised in Lipps, 1979; Hemleben et al, 1989).  Within all these provinces, other 

factors such as salinity, prey abundance, nutrient level, turbidity and illumination also 

affect their diversity, abundance and distribution locally.  Planktonic foraminiferal 

diversity peaks in the subtropics (Rutherford et al, 1999) where there is vertical niche 

partitioning and decreases steeply towards the poles where there is little permanent 

thermal structure.  The level of genetic variation observed within planktonic 

foraminiferal morphospecies imposes a further tier of complexity as individual genetic 

types within morphospecies clades may also have distinct ecologies and 

biogeographical distributions (summarised in Darling & Wade, 2008).   

 

Genotyping reveals geographical connectivity to other regions of the oceans, 

providing clues to present and past ocean circulation, evolutionary drivers and the 

evolutionary history of foraminiferal species (Darling et al, 2000, 2004, 2006, 2007; 

de Vargas et al., 1999, 2001, 2002).  As yet, sampling in the tropics and subtropics is 

sparse and considerable caution must be taken in interpreting global distribution of 

tropical and subtropical morphospecies and genotypes.  However, some ecological 
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perspective can be gained in comparing central Arabian Sea mixed layer genotypes 

with those in other regions of the tropical and subtropical global ocean.  Twenty 

distinct genotypes of 13 morphospecies were collected from the Arabian Sea mixed 

layer (figs. 3.2 and 3.3).  Global connectivity is discussed below for G. ruber, G. 

bulloides, G. sacculifer, O. universa, G. siphonifera and T. quinqueloba, for which 

sufficient global biogeographical evidence is available (see fig. 3.5). The remaining 

morphospecies G. menardii (fig. 3.4F), G. rubescens (pink) (fig. 3.4H), G. ungulata 

(fig. 3.4G), N dutertrei (fig.4I), P. obliquiloculata (fig. 3.4J), G. glutinata (fig. 3.4C), 

S. globigerus (fig. 3.4M) are either currently represented by single genotypes globally 

or the evidence for the presence of multiple genotypes is unclear.  

 

3.5.3.1 Globigerinoides ruber 

Globigerinoides ruber (figs. 3.4A, 3.5A) is a warm-water specialist, being distributed 

throughout the tropical to transitional provinces globally, but having no true cold-

water representatives (Bé, 1977; Darling et al., 2008).  This Arabian Sea study is the 

first to sample a population of G. ruber in truly tropical waters and sample numbers 

are sufficient to provide clues to their ecological adaptations. Despite the great 

distance separating them genetically (fig. 3.3b), Type I and Type II do not appear to 

represent the major ecological divisions between G. ruber genotypes in the Arabian 

Sea.  Type Ib2 and IIa both frequent the more eutrophic, high salinity northern water 

mass in great numbers.  Subtypes of both Type I and Type II lineages appear globally 

widespread within the tropical to transitional provinces (Darling & Wade, 2008).  To 

date they have been found in three subtropical localities: off the Canary Islands 

(Stewart, 2000), off the Crozet Islands (Darling & Wade, 2008) and in the 

Mediterranean (Aurahs et al., 2009) (fig. 3.5A).   
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 A) 

B) 

C) 
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Figure 3.5.  The global biogeographical distribution of SSU rRNA genotypes isolated to date for some of
the morphospecies found in the Arabian Sea (those for which sufficient data exists).  A) Globigerinoides
ruber (Aurahs et al., 2009; Darling et al., 1997, 1999, 2003; de Vargas et al., 1997; Pawlowski et al.,
1997; Stewart et al., 2000), B) Globigerinella siphonifera (Darling et al., 1997, 1999, 2003, 2008; de
Vargas et al., 2002; Stewart et al., 2000), C) Globigerina bulloides (Darling et al., 1999, 2000, 2003,
2007, 2008; de Vargas et al., 2007; Stewart et al., 2000), D) Orbulina universa (Darling et al., 1997,
1999, 2008; de Vargas et al., 1999, 2004), E) Turborotalita quinqueloba (Darling et al., 2000, 2003,
2008; Stewart et al., 2001).   Genotypes isolated by the Darling et al. group are shown in light grey.
Those isolated by the de Vargas et al., Pawlowski et al., or Aurahs et al. groups are shown in dark grey.
For a full list of collection sites and references see appendix 9.6.  The five major planktonic foraminiferal
faunal provinces (modified from Bé and Tolderlund, 1971) are shown, together with areas of seasonal
upwelling (see key).  Modified from Darling et al. (2008). 

D) 

E) 
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Arabian Sea types Ia, 1b(1) and IIa are cosmopolitan, found in both the Indo-Pacific 

and Atlantic Oceans, whereas Type 1b(2) has so far been found only in the Indo-

Pacific and is potentially endemic to the region.  Considerable evidence suggests that 

G. ruber Types I and II represent a species level divergence, which occurred many 

millions of years ago (Darling et al, 1999).  The lack of clear ecological difference 

between G. ruber Types I and II in the Arabian Sea (fig. 3.4A) suggests that this may 

have been an ancient vicariant divergence, though living in sympatry does not 

necessarily exclude ecological divergence in planktonic foraminifers (Huber et al, 

1997).  Much more work will have to be carried out to determine whether subtle 

ecological differences divide the Type I from the Type II lineages within the global 

population.  Ecological divisions were, however, clearly observed at the subtype level 

between Types Ia and Ib in the Arabian Sea.  Globigerinoides ruber Type Ia occurred 

only in the southern, more oligotrophic and low salinity water mass in the Arabian 

Sea, though their numbers were low (fig. 3.4A).  Further, ecological divisions were 

also observed at the third subtle level between Ib(1) and Ib(2).  In both these cases 

ecological partitioning by the frontal systems are likely drivers of divergence 

(Schluter, 2001; Darling et al, 2004). 

 

3.5.3.2 Globigerinella siphonifera 

Globigerinella siphonifera (figs. 3.4B, 3.5B) is a common sub-tropical to tropical 

morphospecies that diminishes in abundance towards the cooler limits of the 

transitional province, and is commonly found in boundary currents, upwelling areas 

and near continental margins (Bé and Tolderlund, 1971).  The G. siphonifera lineages 

fall into two main groups: Type I and Type II (fig. 3.3a), both of which are 

represented in the Arabian Sea.  Both the degree of genetic divergence and their 
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extensive biological differences indicate that these major divisions represent distinct 

biological species (Huber et al, 1997).  The Type II lineage again splits into two (Type 

IIa and IIb), which de Vargas et al. (2002) also considered different species due to 

their distinct biogeographical and ecological differences.  Two subtle subtypes of G. 

siphonifera Type I have been sequenced to date (Ia(1) and Ia(2)) and both occur in the 

Arabian Sea.  Type Ia(1) appears globally cosmopolitan but Type Ia(2) has yet to be 

found in the Atlantic (Darling & Wade, 2008) and may be confined within the Indo-

Pacific.  It is possible that like some other tropical specialists (Darling et al, 1999, 

2004), Ia(2) may be prevented by its particular specialisation from transiting into the 

Atlantic Ocean by the cool African Cape corridor.  The Type I subtypes occupy the 

same water column as Type IIa in both the Atlantic and Indo-Pacific, appearing 

associated with more oligotrophic to mesotrophic conditions with a deep chlorophyll 

maximum.  The Type IIa genotypes harbour a great deal of low-level genetic variation 

(fig. 3.3a), which has previously been represented as a complex (Darling & Wade, 

2008).  An examination of all Type IIa sequences to date reveals 3 distinct subtypes 

(fig. 3.3a).  Two of these sub-types were found in the Arabian Sea (IIa (1) and IIa (3)). 

Type IIa(1), found previously at the Great Barrier Reef (Darling et al., 1997), shows an 

Indo-Pacific restricted distribution much like that of Type Ia(2).  Type IIa (3), a new 

subtype found only in the Arabian Sea thus far, is either highly restricted in its 

distribution or has yet to be found elsewhere.  Subtype IIa(2) was not found in the 

Arabian Sea but is widespread throughout the Atlantic Ocean (determined from 

GenBank sequences from Darling et al., 1997 and de Vargas et al., 2002).  Type IIb is 

found widely in the Atlantic (de Vargas et al., 2002; Darling & Wade, 2008), but was 

not present in the northern more eutrophic mixed layer of the Arabian Sea during the 

SW monsoon.  Although normally associated with areas of high primary productivity 
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and upwelling (de Vargas et al., 2002), this genotype appeared absent throughout the 

cruise transect, though the number genotyped was low.  

 

3.5.3.3 Globigerina bulloides 

Globigerina bulloides (fig. 3.4D, 3.5C) is most common in sub-polar regions (Bé and 

Tolderlund, 1971).  It also characterises upwelling zones in lower latitudes (Naidu and 

Malmgren, 1996), and has been found in lower numbers in association with non-

upwelling tropical waters (Darling et al., 2000).  Globigerina bulloides is represented 

by two main lineages, Type I and Type II, which display distinctly different ecologies.  

Type I is represented by two known genetic types, which occur in warm tropical to 

sub-tropical waters, while Type II is represented by a complex of five cool water 

genotypes (fig. 3.3c), found from polar to transitional waters (Darling & Wade, 2008).  

 

In the Arabian Sea mixed layer, the warm water G. bulloides Type Ia was present, and 

was restricted to the northern eutrophic water mass (fig. 3.4D).  This genotype has 

also been found in the Coral Sea but not as yet in the Atlantic where a different warm 

water Type, Ib has been identified off the Canary Islands (Stewart, 2000) and in the 

Mediterranean Sea (de Vargas et al., 1997).  Type Ib is highly divergent from Type Ia 

(fig. 3.3c), indicating that they must have been genetically isolated for some 

considerable time.  Type Ia may possibly be confined within the Indo-Pacific, where, 

like some other tropical specialists (Darling et al, 1999, 2004), it may be prevented by 

its particular specialisation from transiting into the Atlantic Ocean through the cool 

African Cape corridor. 
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3.5.3.4 Globigerinoides sacculifer 

Globigerinoides sacculifer (fig. 3.4E) forms a major component of the 

tropical/subtropical assemblage with its peak abundance occurring in a global belt 

between 20°N and 20°S (Bé and Tolderlund, 1971; Bé, 1977), the highest numbers 

being observed in the tropics (Darling & Wade, 2008).  Globally, it has been collected 

for genetic study from the Caribbean (Darling et al., 1996; de Vargas et al., 1997, 

Pawlowski et al., 1997), the Mediterranean Sea (de Vargas et al., 1997), the Great 

Barrier Reef (Darling et al., 1997) and the Northwest Pacific (Ujiié & Lipps, 2009). 

Interestingly, even though this morphospecies exhibits high levels of morphological 

variation (Bijma & Hemleben, 1994), no intra-specific variation has been detected in 

its SSU rRNA gene sequences, indicating that gene flow between the global ocean 

populations must be sufficient to maintain its genetic homogeneity.  This is supported 

by its presence today in the warm Agulhas Current Eddies (Lončarić, 2006), which 

transports them from the Indian Ocean into the South Atlantic around the African 

Cape. 

  

3.5.3.5 Orbulina universa 

Orbulina universa (figs. 3.4K, 3.5D) is a globally ubiquitous species, but is restricted 

to water temperatures of between 10 °C and 30 °C (Bé & Tolderlund, 1971).  The 

localised distribution of O. universa genotypes is strongly correlated to the level of 

primary productivity in the water column (de Vargas et al., 1999, Darling & Wade, 

2008).  Considering the global ubiquity and varied adaptations of O. universa 

genotypes, it is interesting that all three genotypes of O. universa (Types I-III; de 

Vargas et al., 1999) were virtually absent in the central Arabian Sea in both the 
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northern and southern water masses.  Clearly, the physical conditions prevailing in the 

central Arabian Sea are not favourable to any genotype of O. universa. 

 

3.5.3.6 Turborotalita quinqueloba 

The biogeography and evolution of the genotypes of T. quinqueloba (figs. 3.4L, 3.5E) 

has become a point of interest in recent years.  Turborotalita quinqueloba is primarily 

known as a sub-polar morphospecies (Bé and Tolderlund, 1971), though it had been 

recognised in the tropical assemblage (Kroon, 1991).  Small numbers of T. 

quinqueloba were found in the Arabian Sea mixed layer during the SW monsoon 

assemblage along the length of the cruise transect.  As in G. bulloides, there are two 

main lineages in T. quinqueloba, which exhibit distinctly different ecologies.  Type I 

genotypes are associated with warm waters whereas Type II genotypes are associated 

with transitional and cool waters (Darling & Wade, 2008).  Type Ib, found in the 

Arabian Sea mixed layer, is new and clusters closely with the warm water Type Ia 

from the Coral Sea (fig. 3.3D).  Together, they are separated by a great distance from 

the Type II grouping.  Whether Type Ib is endemic to the Arabian Sea remains to be 

determined. 
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3.6 Conclusions 

During the SW monsoon, pronounced environmental conditions lead to a strong 

disparity between the northern and southern water masses of the Arabian Sea.  We 

find a distinct difference in the distribution and ecology of the planktonic foraminifera 

of the Arabian Sea mixed layer at this time, segregating morphospecies and genotypes 

between the high salinity, more eutrophic north and the lower salinity, oligotrophic 

south.  In the north, G. ruber dominated, followed by N. dutertrei, P. obliquiloculata, 

G. menardii, and G. glutinata.  In the south G. sacculifer dominated, followed by G. 

ruber and G. menardii.  For those morphospecies represented by complexes of several 

discrete genetic types, within the Arabian Sea mixed layer, individual genotypes were 

found to have distinct ecologies and novel adaptations to differing physical 

oceanographic conditions.  Globigerinoides ruber showed a clear ecological 

distinction between its Type Ia and Types II lineages, supporting past opinions that 

they represent independent species (Darling & Wade, 2008).  Within both G. ruber 

and G. siphonifera, subtle sub-types were found to display differing geographical 

distributions, indicating that they may have individual ecological habits, though it is 

possible that competitive exclusion may also play some role in their distribution 

(Aurahs et al., 2009).  The ability of the genetic types to become specialised and 

adapted to life in regionally distinct ecosystems is a likely driver of divergence and 

speciation in the open ocean, running counter to the apparent lack of barriers to gene 

flow.  Differences between core top assemblage data (Cullen and Prell, 1984) and 

morphospecies counts from the mixed layer during the SW monsoon indicate a level 

of seasonal variation in morphospecies distribution across the Arabian Sea.  It will 

therefore be important in future work to sample during both the monsoon and inter-

monsoon periods for direct comparison.   
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Comparing the Arabian Sea mixed layer genotypes to those in other regions of the 

tropical and subtropical global ocean reveals geographical connectivity to other ocean 

regions, providing clues to ocean circulation, evolutionary drivers and evolutionary 

history in the planktonic foraminifera.  For example, representatives of the major 

lineages of G. ruber, Type I and Type II, are found to coexist globally suggesting 

ancient vicariant divergence rather than ecological partitioning.  However, this study 

particularly shows that ecological divisions also exist, as demonstrated between the G. 

ruber Types Ia and Ib, and Ib(1) and Ib(2) within the Arabian Sea mixed layer.  Another 

notable pattern indicates an apparent segregation of G. bulloides warm water 

genotypes between the Atlantic Ocean and the Indo-Eastern Pacific Oceans.  The G. 

bulloides Type Ib (Atlantic Ocean) and Type Ia (Indo-Eastern Pacific) are highly 

divergent, suggesting that they have been genetically isolated for some considerable 

time.  In G. siphonifera, Type Ia(1) is cosmopolitan whilst Type Ia(2) has been found 

only in the Indo-Pacific to date.  It is likely that the African landmass forms a barrier 

to the dispersal of tropical/sub-tropical specialists, with the cool and inhospitable 

waters around the South African Cape impeding their transit between the major 

oceans (Darling & Wade, 2008).  Some more widespread genetic types have clearly 

overcome this barrier, allowing gene flow to occur on a global scale.  G. sacculifer has 

a global distribution and genetic homogeneity indicating that sufficient gene flow 

between its global populations must exist. 

 

It is clear that in using morphospecies concepts, the true diversity of the planktonic 

foraminifera has been greatly underestimated, and the individual ecological habits of 

the genetic types overlooked.  The latitudinal provincial definition of the 

biogeography of the planktonic foraminifera (Bé and Tolderlund, 1971; Bé, 1977) is 
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simplistic and fails to recognize that multiple genetic types of a morphospecies may 

co-exist within the same province, whilst actually inhabiting their own ecologically 

defined niches.  The resulting repercussions on the use of planktonic foraminiferal 

morphospecies as palaeoproxies for past climate change is potentially substantial and 

demonstrates the value of diversity studies on this scale.  Additionally, wide-scale 

genotyping of the planktonic foraminifera is proving immensely valuable for our 

understanding of the short and long term global processes involved in marine protist 

evolution and speciation through time.  
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4 Genotypic variability in the planktonic 
foraminifera of the North Atlantic Ocean 

 

4.1 Introduction 

Planktonic foraminiferal sampling of the North Atlantic Ocean allows the exploration 

of a typical high latitude morphospecies assemblage, and provides a complete contrast 

to the sampling of the tropical Arabian Sea.  The morphospecies and genetic types 

found here are highly adapted to colder conditions and have thrived in this setting. 

At these high latitudes foraminiferal diversity is far lower than that of the tropics or 

sub-tropics (Bé & Tolderlund, 1971; Rutherford et al., 1999). The vertical 

stratification and niche partitioning, which lead to high diversity in the tropics/sub-

tropics, are far less pronounced at higher latitudes.  Additionally, high seasonality and 

instability in the hydrographic conditions mean less permanently stable niche spaces 

in which species can differentiate (Darling et al., 2008).  Nevertheless, the high 

latitude planktonic foraminifera have been studied a great deal, primarily due to their 

great utility as a paleoproxy for climate change, but also for the information they can 

provide for investigating patterns of vicariance and gene flow in the global oceans 

(Darling et al., 2000, 2003, 2004, 2006, 2007; de Vargas et al., 1999; Stewart et al., 

2001).  

 

High latitude morphospecies of planktonic foraminifera are highly adapted to cold-

water polar and subpolar conditions and most display a clear bipolar, or anti-tropical 

distribution (Bé & Tolderlund, 1971; Darling & Wade, 2008). Identical genetic types 

have been found in the polar/ subpolar waters of both the northern and southern 

hemispheres in several morphospecies, (Darling et al., 2000, 2006, 2008), suggesting 
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a connectivity between the populations. A continual gene flow would be needed to 

maintain homogeneous bipolar populations and may indicate that individuals are 

continually being transported across the tropics, which should be highly inhospitable 

to these cold-water adapted types (Darling et al., 2000, 2008).   

 

Some genetic types, however, show highly restricted geographical distributions, 

indicating localised endemism and a lack of widespread dispersal.  This is perhaps 

surprising in light of the fact that, like many pelagic organisms, the planktonic 

foraminifera are highly cosmopolitan, and ubiquitously spread throughout the global 

ocean.  They are clearly capable of long-distance transit and dispersal, possessing a 

high potential for gene flow on a global scale (Darling et al., 2000).  The existence of 

rare or isolated genetic types then indicates that in certain cases differentiation is 

occurring either in allopatry, through vicariance, or in sympatry by ecological 

partitioning.  The data examined in this study indicate that probable examples of both 

mechanisms may even be operating within a single morphospecies. 

 

This study focuses on the genetic variation in the SSU rRNA gene of mixed layer 

planktonic foraminiferal morphospecies of the North Atlantic Ocean, collected along a 

transect from Scotland to Newfoundland in July 2004.  The transect traverses both the 

subpolar (5-10 °C) and transitional (10-18 °C) provinces, offering an excellent 

opportunity to study the adaptations of within-morphospecies genetic types to 

localised hydrographical conditions, and thus the process of genetic divergence due to 

ecological partitioning.  7 morphospecies and their genetic types were identified, 

including Globigerina bulloides, Orbulina universa, Turborotalita quinqueloba 

(spinose planktonic), Neogloboquadrina pachyderma (left-coiling), 



4: North Atlantic 

 130

Neogloboquadrina incompta (also known as N. pachyderma (right-coiling): see 

Darling et al., 2006; Ottens, 1992), Neogloboquadrina inflata (non-spinose 

planktonic) and Globigerinita uvula (non-spinose microperforate planktonic).  

Phylogenetic analyses were conducted to ascertain the positioning of the North 

Atlantic genotypes in an all-foraminifera SSU rRNA phylogeny.  The localised 

biogeography of individual genetic types within each North Atlantic foraminiferal 

morphospecies was investigated, highlighting the process of diversification by 

ecological partitioning.  In addition, the global distributions of the North Atlantic 

genetic types were examined in order to investigate the processes of global gene flow 

and vicariance in this marine pelagic group.   

 

The manner in which diversification is occurring within the planktonic foraminifera is 

certainly complex, involving a combination of the effects of current oceanic 

circulation, historical global temperature change, and localised ecological conditions.  

The possible mechanisms by which reproductive isolation, and thereby divergence, is 

occurring are discussed. 
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4.2 Aims and Objectives 

The aim of this study was to conduct a survey of the planktonic foraminiferal 

morphospecies, and their component SSU rRNA genetic types, within the typical high 

latitude setting of the North Atlantic Ocean.  Phylogenetic analyses would be 

employed to elucidate the positions of the North Atlantic morphospecies/ genetic 

types within the Foraminifera, and their biogeographical distributions across the 

region examined.  An additional study of the global biogeography of these high 

latitude foraminiferal genotypes would provide insight into the role of both 

geographical isolation and long-distance dispersal in the diversification of these 

marine organisms. 
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4.3 Materials and Methods 

4.3.1 Cruise track and oceanographic setting 

Specimens of planktic foraminifera were collected at 27 stations along an east/west 

cruise transect in the North Atlantic Ocean (57˚07'N: 11˚09’W-50˚53'N: 49˚54’W), 

between Scotland and Newfoundland in July 2004 (fig. 4.1A; cruise Charles Darwin 

CD159, NERC, collected by M. Carroll).  Water depth ranged from approximately 

1,000 – 3, 500 m.  Figures 4.1B - 4.1E demonstrate the environmental conditions 

prevailing along the cruise transect.  The most notable currents in the area are the 

North Atlantic (NA) current, which transports warmer water up from the south, and 

the East Greenland (EG) current, which transports cold water down from the polar 

Arctic in the north (fig. 4.1B).  A temperature and salinity gradient exists between the 

southeast of the region and the northwest (figs. 4.1C, 4.1D).  In terms of foraminiferal 

provinces, as defined by Bé & Tolderlund (1971), 10 °C represents the approximate 

boundary at which the transitional waters of the east give way to the colder sub-polar 

waters of the west, and 5 °C indicates the start of the true polar province.  The North 

Atlantic is a highly productive region, with primary productivity decreasing slightly 

from north to south (fig. 4.1E).  
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Figure 4.1.  Maps of the North Atlantic Ocean showing: (A) CD159 cruise transect and stations, (B)
Surface currents during July, modified from U.S. Navy, 1976, Marine Climatic Atlas of the World,
Volumes 1 – 5. NA: North Atlantic Current, IR; Irminger Current, EG; East Greenland Current, WG;
West Greenland Current, LA; Labrador Current, PO; Portugal Current, (C) Average sea-surface
temperature (SST) (°C) for July 2005 (adapted from Locarnini et al., 2006), (D) Average sea-surface
salinity (PSU) for July 2005 (adapted from Antonov et al., 2006), (E) Average primary productivity
during July – September 2004 (adapted from Coastal Zone Colour Scanner composite images of the
region, NASA Earth-Sun System Division, Earth Sciences (GES) Data and Information Services Center
(DISC) Distributed Active Archive Center (DAAC)). 
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4.3.2 Planktic foraminiferal sampling 

Samples of foraminifera were collected by passing water from the ship’s ‘non-toxic’ 

water supply, pumped from a depth of ~ 6m, through a plankton screen (200 μm 

mesh) on deck.  During unfavourable weather conditions the ship’s indoor ‘non-toxic’ 

water supply was sieved (150 μm mesh).  Vertical tows to 200 m (with a 150 μm 

mesh) were performed twice, however, no foraminifera were recovered and the 

method was abandoned.  For genetic analysis, a representative sample of specimens 

was collected at each station.  Individual specimens were identified using a 

stereomicroscope, and morphotype and cytoplasmic colouration were recorded by 

digital video imaging.  Only adult specimens containing cytoplasm were selected for 

genetic analysis.  These were crushed in a lysis buffer (Holzmann et al., 1996) and 

incubated for 1 hour at 60 °C, before being transported to the lab where they were 

stored at –80 °C.  Planktonic foraminiferal sampling was carried out by M. Carroll. 

 

4.3.3 DNA amplification and sequencing  

For the identification of the genetic types of planktonic foraminifera found in the 

North Atlantic Ocean, a nested PCR approach was used to amplify an approximately 

500 bp region of the terminal 3′ end of the foraminiferal SSU rRNA gene.  A 1° PCR 

reaction using 3μl template and primer C5 with either primer 138 or NS8 was 

followed by a 2° PCR using 1μl PCR product from the first round as a template and 

either primers 2082F and 2514R or primers FS3 and 138.  Following poor success 

rates, an additional pass was made through the failed samples using primers designed 

for the amplification of the full-length SSU rRNA gene (1° PCR = 56F and 3033R (5 

μl template), 2° PCR = 61F and 3024R (1 μl template), 3° PCR = 2082F and 2514R (1 
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μl template) (see chapter 2, section 2.2.2 for primer sequences and positions). 

Reactions were performed using Taq polymerase in the first instance, and again using 

VentR polymerase, following limited success.  PCR reaction conditions were as 

described in chapter 2, sections 2.2.3 and 2.2.4.   Amplification products were 

separated by gel electrophoresis and purified using an Eppendorf Perfectprep® Gel 

Extraction Kit (see chapter 2, sections 2.3 & 2.4).  Both sense and antisense strands 

were sequenced directly on an Applied Biosystems 377 DNA sequencer using 

Applied BiosystemsTM BigDye® v3.1 terminator cycle sequencing (primers 2082F, 

2514R) (see chapter 2, section 2.6.5 for details). 

 

4.3.4 DNA sequence analysis and phylogenetic reconstruction 

SSU rDNA sequences were assembled using Gap4 in the Staden package (Staden et 

al., 2000) and aligned manually within the Genetic Data Environment (GDE) package 

(version 2.2) (Smith et al., 1994).  North Atlantic genotypes were identified by 

BLAST search and comparison to existing sequences in the alignment.  Sequences for 

the North Atlantic taxa were incorporated into a 407 bp all-foraminifera phylogeny, as 

previously described in chapters 3, section 3.3.4 (taxa list and ~1,000 bp alignment 

shown in appendices 9.1 and 9.7.1).  To improve resolution, additional phylogenies 

were constructed for 4 of the North Atlantic morphospecies/groupings, thus allowing a 

greater number of unambiguously aligned sites to be recruited into the analyses 

(Globigerina bulloides (669 bp), Turborotalita quinqueloba (748 bp), the 

neogloboquadriniids (666 bp), Neogloboquadrina pachyderma (811 bp)) (for 

alignments see appendices 9.7.4, 9.7.5, 9.7.6, & 9.7.7).   
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Phylogenetic trees were constructed using Bayesian inference (BI; Ronquist & 

Huelsenbeck, 2003, Larget & Simon, 1999), maximum likelihood (ML; Felsenstein, 

1981), neighbour joining (NJ; Saitou & Nei, 1987), Fitch-Margoliash (FM; Fitch & 

Margoliash, 1967), minimum evolution (ME; Rzhetsky & Nei, 1992), and maximum 

parsimony (MP; Fitch, 1971) (FM, ME, MP sub- set trees only).  In all methods 

multiple hits were accounted for using a general time-reversible (GTR) model with a 

gamma (Γ) correction (Lanave et al., 1984; Yang 1993)  (see chapter 2, section 2.8.2, 

for details). 
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4.4 Results 

799 specimens of planktonic foraminifera were collected from 27 stations along a 

cruise transect in the North Atlantic Ocean during July 2004 (Fig.1a).  Small subunit 

rRNA gene sequences were successfully amplified for 164 individual specimens.  

Eight different genotypes were recognised from 7 mixed layer morphospecies 

(spinose: Globigerina bulloides, Orbulina universa, Turborotalita quinqueloba; non-

spinose: Neogloboquadrina pachyderma (left-coiling), Neogloboquadrina incompta, 

Neogloboquadrina inflata; microperforate: Globigerinita uvula).  No novel genotypes 

were discovered in the North Atlantic samples. 

 

4.4.1 Placement of the North Atlantic taxa in the foraminiferal SSU rRNA 
phylogeny 

The placement of the North Atlantic foraminiferal sequences in a comprehensive 

phylogeny of the foraminifera based on the analysis of 407 bp of the SSU rRNA gene 

is shown in fig. 4.2.   Examples of all planktonic foraminiferal morphospecies and 

genotypes sequenced to date plus representatives of the major groups of benthic taxa 

are included.  All of the methods of phylogeny reconstruction employed in this study 

were largely consistent in their inferred trees. 
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Figure 4.2.  Bayesian inference SSU rDNA phylogenetic tree showing the position of the North Atlantic
morphospecies and genotypes within the foraminifera. The phylogeny is based on 407 unambiguously
aligned nucleotide sites and is rooted on the benthic foraminifer Allogromia sp. Bayesian posterior
probabilities (from last 1000 trees, obtained within MrBayes) and ML bootstraps (expressed as a
percentage, 1000 replicates) are shown on the tree (BI posterior probabilities/ ML bootstraps).  The scale
bar corresponds to a genetic distance of 2 %.  Benthic foraminiferal taxa are shown in grey text, and
planktonic foraminifera are shown in black.  Morphospecies and genotypes found in the North Atlantic
Ocean are shown on a grey background.  For taxa list and GenBank accession numbers see appendix 9.1. 
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4.4.1.1 Spinose planktonic morphospecies 

Three of the North Atlantic morphospecies, Orbulina universa, Globigerina bulloides, 

and Turborotalita quinqueloba fall into the spinose planktonic region of the 

foraminiferal phylogeny (p= 0.94 BI, 46 % ML; Fig. 4.2).  Only one of the three 

known genetic types of O. universa was identified in the North Atlantic, type III.  A 

phylogeny re-drawn from de Vargas et al. (1999), shows the relationships between the 

three O. universa types, with Type III falling as a sister taxa to Type II (fig 4.3a).  

Globigerina bulloides and Turborotalita quinqueloba fall as sister taxa in the tree (p= 

0.99 BI, 73 % ML; Fig. 4.2), clustering together with Globigerina falconensis to form 

a well-supported group  (p= 1.00 BI, 78 % ML). Seven genotypes have been 

recognised within the Globigerina bulloides morphospecies to date and can be 

separated into two main groups, Type I (warm water adapted) (p= 1.00 BI, 100 % ML, 

100 % NJ, 100 % MP), and Type II (cold water adapted) (p= 1.00 BI, 100% ML,  

100 % NJ, 100 % MP) (fig. 4.3b) (see also fig. 4.2).  The two genotypes of G. 

bulloides collected in the North Atlantic belong to the Type II grouping and were 

identified as types IIa and IIb.  Both cluster together with Types IIc and IId, though 

with only weak support (p= 0.51 BI, 41 % ML, 63 % NJ, 86 % MP).  Type IIe lies 

separate within the Type II group and may represent an earlier divergence.  The 6 

genotypes of Turborotalita quinqueloba can also be split into two main groups, Type I 

(warm water) (p= 1.00 BI, 100 % ML, 100 % NJ, 100 % MP) and Type II (cold water) 

(p= 1.00 BI, 100 % ML, 100 % NJ, 100 % MP) (fig. 4.3c) (see also fig. 4.2).  In the 

North Atlantic, types IIa and IIb were both present.  Type IIb falls together with Types 

IIc and IId in the phylogeny (p= 1.00 BI, 98 % ML, 97 % NJ, 99 % MP).  Type IIa 

falls separate and may represent an earlier divergence. 
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4.4.1.2 Non-spinose macroperforate morphospecies 

Two non-spinose macroperforate morphospecies, Neogloboquadrina pachyderma 

(left-coiling) and Neogloboquadrina incompta, were collected in the North Atlantic.  

Both fall within the monophyletic macroperforate clade, together with Globorotalia 

(menardii, ungulata, truncatulinoides, crassaformis, hirsuta, scitula and inflata),  

Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata (p= 0.96 BI, - ML) (fig. 

4.2) (Clade recovered with all methods of tree construction).   

Figure 4.3.  SSU rDNA phylogenetic trees of (A) Orbulina universa (re-drawn from de Vargas et al., 
1999), (B) Globigerina bulloides (669 unambiguously aligned nucleotide sites) (unrooted), (C)
Turborotalita quinqueloba (748 bp) (unrooted), (D) neogloboquadrinid clade showing the position of
Neogloboquadrina incompta (666 bp) (rooted on G. inflata), (E) Neogloboquadrina pachyderma (811 bp) 
(rooted on G. inflata). The phylogenies were constructed using Bayesian Inference.  Bayesian posterior
probabilities and ML, NJ, and MP bootstraps (expressed as a percentage) are shown on the trees
(BI/ML/NJ/MP bootstraps).  The scale bar corresponds to a genetic distance of 1 %.  Morphospecies and
genotypes found in the North Atlantic Ocean are shown on a grey background. 
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Neogloboquadrina pachyderma and Neogloboquadrina incompta are morphologically 

similar, so much so that N. incompta was originally considered to be a right-coiling 

variety of N. pachyderma (Ottens, 1992).  Genetic data coupled with geographical 

distribution and ecology has since led to them being re-defined as separate species 

(Darling et al., 2000, 2004, 2006).   

 

Two genetic types of N. incompta have been identified to date and it is Type I that is 

found in the North Atlantic.  A phylogeny of the neogloboquadrinids constructed from 

666 bp (fig. 4.3d) shows Types I and II falling together on a long branch (p= 1.00 BI, - 

ML).  The higher resolution of this phylogeny shows N. incompta clustering with N. 

dutertrei and P. obliquiloculata, though with only low support (p= 0.68 BI,  

56 % ML, - NJ, 62 % MP).  This relationship was recovered with all methods of tree 

construction (BI, ML, FM, ME, MP) with the exception of neighbour-joining, which 

grouped N. incompta and N. pachyderma together (50 % bootstrap support), as found 

by Darling et al. (2006). 

 

Seven separate genotypes have been recognised within N. pachyderma so far (figs. 

4.3e), only one of which, Type I, was found in the North Atlantic.   In the phylogeny 

in fig. 4.3e, based on 811 nucleotide sites, the N. pachyderma types fall together in a 

strongly supported clade (p= 1.00 BI, 100 % ML, 100 % NJ, 100 % MP) (fig. 4.3e). 

Within this clade, Type I appears to represent the earliest divergence, with Type IV 

then falling as a sister to the remaining N. pachyderma types (p= 0.71 BI, 67 % ML, 

80 NJ, 49 % MP).  Types II, III, V, VI, & VII fall together (p= 0.85 BI, 77 % ML, 84 

NJ, 69 % MP), probably representing a more recent diversification.  Types VI and VII 
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cluster together within this group (p= 0.60 BI, 64 % ML, 71 NJ, 33 % MP) and seem 

to represent the most recent divergence.  

 

4.4.1.3 Non-spinose microperforate morphospecies  

Only one microperforate morphospecies, Globigerinita uvula, was found in the North 

Atlantic Ocean.  Little molecular work has been carried out on G. uvula to date and 

until recently only a single sequence was available on GenBank (Stewart et al., 2001), 

also derived from a North Atlantic specimen.  The sequences collected during the 

current study showed minor differences to this sequence in the variable regions of the 

SSU rRNA gene, however, they are unlikely to be significant enough to represent a 

new genetic type.   A possible second genetic type of G. uvula has been identified by 

Aurahs et al. (2009), though further work is needed to confirm this identification.  Of 

the 7 microperforate morphospecies thought to exist, only 3 have been sequenced to 

date (G. uvula, Globigerinita glutinata, and Candeina nitida), and these fall separately 

among the benthic foraminiferal taxa in the tree (fig. 4.2).    

 

4.4.2 Biogeography 

Analysis of the morphospecies genotype distribution data (fig. 4.4) reveals 

geographical segregation within the North Atlantic Ocean, likely resulting from a 

difference in ecological requirements of these genetically different types and 

morphospecies. 
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4.4.2.1 Orbulina universa (spinose) (Fig. 4.4A; n=23).   

The single genetic type of Orbulina universa found in the North Atlantic, type III, was 

almost entirely restricted in its distribution to the first 7 stations on the transect, in the 

northeast of the region.  It was completely absent in the west, past station 10. 

 

Figure 4.4.  North Atlantic Ocean maps showing the spatial distribution of genotypes of the planktonic 
foraminiferal morphospecies identified along the cruise transect. Their numbers do not necessarily
reflect the absolute frequency of morphospecies or genotypes in the water column.  A key to genotypes
is provided on each map.  
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4.4.2.2 Globigerina bulloides (spinose) (Fig. 4.4B; n=9).   

Two genetic types of G. bulloides were found in the North Atlantic, types IIa and IIb.  

The majority of samples sequenced belonged to G. bulloides Type IIb, which was 

distributed between stations 4 & 14 on the transect.  Only two specimens of G. 

bulloides Type IIa were sequenced successfully, occurring at either end of the transect 

(stations 1 & 21). 

 

4.4.2.3 Turborotalita quinqueloba (spinose) (Fig. 4.4C; n=9).   

Two genetic types of Turborotalita quinqueloba, types IIa and IIb, were found in the 

North Atlantic.  Neither were particularly numerous and both occurred along the 

length of the transect.  The apparent increase in frequency towards the west of the 

region is an artefact resulting from high numbers of PCR failures in this 

morphospecies.    

 

4.4.2.4 Neogloboquadrina incompta (non-spinose) (Fig. 4.4D; n=24).   

Neogloboquadrina incompta Type I was numerous in the North Atlantic from stations 

1-19, but was completely absent beyond this point (stations 20-27).  

 

4.4.2.5 Neogloboquadrina pachyderma (non-spinose) (Fig. 4.4E; n=12).   

Neogloboquadrina pachyderma Type I was less numerous in the North Atlantic than 

its sister species Neogloboquadrina incompta.  It was restricted in its distribution to 

the south west of the region, from stations 22-27. 
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4.4.2.6 Globigerinita uvula (Macroperforate) (Fig. 4.4F; n=87).   

Globigerinita uvula was by far the most numerous morphospecies found in the North 

Atlantic.  At the time of this transect study its distribution appeared skewed towards 

the west of the region (stations 10-27), being largely absent from the east (stations 1-

9).  
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4.5 Discussion 

4.5.1 Placement of the North Atlantic foraminiferal morphospecies & genetic 
types within the SSU rRNA phylogeny 

The overall topology of the foraminiferal SSU rDNA phylogeny is consistent with 

previous studies (Darling et al., 1997, 1999, 2000, 2006; de Vargas et al., 1997; 

Stewart et al., 2001).  The planktonic spinose species fall together in a monophyletic 

group separate from the non-spinose species. Amongst the non-spinose foraminifera, 

the macroperforates fall together in the molecular phylogeny consistent with their 

taxonomic grouping (Hemleben et al, 1989). The non-spinose micro-perforate taxa 

and the non-spiral biserial planktonic taxa fall separately from the macroperforates, 

though their placement is ambiguous. 

 

4.5.1.1 Spinose planktonic morphospecies 

The placement of the North Atlantic taxa is largely consistent with previous studies.  

Orbulina universa falls together with Globigerinoides sacculifer in the spinose 

planktonic region of the tree, as in Darling et al. (1999, 2000, 2006) and Stewart et al. 

(2001), though as in these studies the support is only weak (p= 0.60 BI, 27 % ML) 

(fig. 4.2).  Orbulina universa Type III (North Atlantic) fell as would be expected with 

O. universa Type I (Darling et al., 1999, 2000, 2006; de Vargas et al., 1997, 1999; 

Stewart et al., 2001).  The relationship between the 3 known genotypes of Orbulina 

universa, differentiated by their adaptations to differing levels of primary productivity 

in the oceans (Darling et al., 2008; de Vargas et al., 1999), is better demonstrated in 

fig. 4.3a (redrawn from de Vargas et al., 1999). 
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Globigerina bulloides and Turborotalita quinqueloba fall together in the spinose 

region of the tree (p= 0.99 BI, 73 % ML) (fig. 4.2), as is consistent with the 

phylogenies of Darling et al. (2000, 2006) and Stewart et al. (2001).  Within the 

complex of genotypes making up the G. bulloides morphospecies, the principal split is 

between Type I (warm-water) and Type II (cold-water) (figs. 4.2 & 4.3b), as was 

found by Darling et al. (2007, 2008).  The North Atlantic types, IIa and IIb both fall 

within the cold-water Type II group (p= 1.0 BI, 100 % ML, 100 % NJ, 100 % MP; 

Fig. 4.3b).  Types IIa, IIb, IIc, & IId fall closely together in the phylogeny, with Type 

IIe diverging slightly earlier.  Within the genetic types of T. quinqueloba, the principal 

division is again between Type I (warm-water) and Type II (cold-water) (Figs. 4.2 & 

4.3c).  Type II comprises 4 individual sub-types that group together strongly in the 

tree (p= 1.0 BI, 100 % ML, 100 % NJ, 100 % MP; Fig. 4.3c).  Of the types found in 

the North Atlantic, Type IIa may represent an early divergence in the group, whereas 

Type IIb clusters closely together with Types IIc & IId (p= 1 BI, 98 % ML 97 % NJ, 

99 % MP; Fig. 4.3c).  The topology is consistent with previous studies (Darling & 

Wade, 2008). 

 

4.5.1.2 Non-spinose macroperforate morphospecies 

In the non-spinose region of the tree, poor resolution often leads to problems defining 

firm groupings, however the two morphospecies found in the North Atlantic, 

Neogloboquadrina incompta and N. pachyderma, fall as part of a loosely-supported 

monophyletic macroperforate group (p=0.96 BI, - ML) (fig. 4.2).  Neogloboquadrina 

incompta and N. pachyderma were once thought to be variants of the same species, 

but have since been re-designated as separate species based on genetic, 

morphological, and biogeographical data (Darling et al., 2000, 2004, 2006).  The two 
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morphospecies are highly divergent genetically and do not cluster together within the 

main foraminiferal phylogeny (fig. 4.2).  Of the two known genetic types of N. 

incompta (Types I & II), only Type I was found in the North Atlantic.  In a phylogeny 

of the neogloboquadrinid taxa, based on 666 bp (fig. 4.3d), the two types fall together 

on a long branch (p= 1.00 BI, 100 % ML, 100 NJ, 100 % MP; fig. 4.3d), grouping 

with N. dutertrei and P. obliquiloculata, though with only low support (p= 0.68 BI, 56  

% ML, - NJ, 62 % MP).  The topology was recovered with 5 methods of tree 

reconstruction (BI, ML, FM, ME, & MP), contradicting the NJ phylogeny of Darling 

et al. (2006), where N. incompta diverged from N. pachyderma.   The current NJ 

analysis differs from the other methods used, supporting the Darling et al. (2006) 

topology. 

 

The relationships between the 7 genotypes of N. pachyderma are poorly resolved 

within the all-foraminifera phylogeny (fig. 4.2).  In the phylogeny based on 811 bp 

(fig. 4.3e), however, the N. pachyderma genotypes fall together in a strongly 

supported clade (p= 1.00 BI, 100 % ML, 100 % NJ, 100 % MP).  Within this clade, 

Type I, the only N. pachyderma type found in the North Atlantic, appears to represent 

the earliest divergence, with type IV then falling as a sister to the remaining N. 

pachyderma types (p= 0.71 BI, 67  % ML, 80 NJ, 49 % MP).  Types II, III, V, VI, & 

VII fall together (p= 0.85 BI, 77  % ML, 84 NJ, 69 % MP), probably representing 

more recent diversifications.  Types VI and VII cluster together within this group (p= 

0.60 BI, 64  % ML, 71 NJ, 33 % MP) and seem to represent the most recent 

divergence.  The topology is consistent with that reported by Darling et al. (2004, 

2007). 
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4.5.1.3 Non-spinose microperforate morphospecies 

The three microperforate planktonic foraminiferal morphospecies included in the 

phylogeny, Globigerinita glutinata, Globigerinita uvula and Candeina nitida fall 

separately among the benthic foraminifera (fig. 4.2).  As in previous studies, 

resolution in this region of the tree is poor (Darling et al., 1999, 2000, 2006; de 

Vargas et al., 1997; Stewart et al., 2001), and although the taxa are closely related 

(uncorrected p distance (PAUP*) between G. uvula & G. glutinata = 0.00737; G. 

uvula & C. nitida = 0.00737; G. glutinata & C. nitida = 0.00246), they quite 

surprisingly do not form a monophyletic group.  Only G. uvula was found in the North 

Atlantic. 

 

4.5.2 Biogeography of the North Atlantic planktonic foraminiferal genotypes 

4.5.2.1 Orbulina universa 

Only a single genetic type of the spinose morphospecies, Orbulina universa, Type III, 

was identified in the North Atlantic.  This type showed a pronounced distribution, 

being almost entirely restricted to the northeast of the region (stations 1-7; Fig. 4.4A, 

maps).  Both SST and salinity are lower here than in the west (fig. 4.1C, 4.1D), 

however, temperature is likely to be the most important factor in restricting its 

distribution. Orbulina universa is a ubiquitous species, but is restricted to water 

temperatures of between 10 °C and 30 °C (Bé & Tolderlund, 1971).  In the North 

Atlantic it occurs only in the transitional waters (~ 10 – 18 °C) of the NA current, at a 

minimum of 11°C (figs. 4.1B, 4.1C, 4.4A), and is absent from the sub-polar waters of 

the west (~ 10 °C – 6 °C).  In addition, localised distribution in O. universa is strongly 

correlated to the level of primary productivity in the water column (de Vargas et al., 

1999, Darling & Wade, 2008).  Type III appears in areas of upwelling and high 
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chlorophyll concentration, as is found in the most northerly reaches of the North 

Atlantic.  Orbulina universa has not been studied in the North Atlantic previously, 

however, it has been sampled further south, in the transitional waters off the west 

coast of France (de Vargas et al., 1999). 

 

4.5.2.2 Globigerina bulloides 

Two genotypes of the spinose morphospecies G. bulloides, types IIa and IIb, were 

identified among the samples collected in the North Atlantic.  Both belong to the cool-

water type II grouping.  The most numerous genotype, Type IIb, was abundant from 

stations 4 – 14, but absent from the western leg of the transect (stations 15 – 27) (fig. 

4.4b).  Poor success of PCR amplifications unfortunately meant that only two 

specimens of G. bulloides Type IIa were amplified, making it difficult to determine its 

geographical distribution in the region.  The two Type IIa samples amplified were 

found at either end of the transect (east & west) (fig. 4.4B), suggesting a broad 

distribution across the region.  Globigerina bulloides has been extensively sampled in 

the North Atlantic (Stewart et al., 2001) and though types IIa and IIb co-habit the 

region, the extent of their distributions is different, reflecting independent ecological 

adaptations.  Both in this study and that of Stewart et al., (2001), G. bulloides Type 

IIb was found to be restricted to the east of the North Atlantic, the western limit of its 

distribution terminating between 30° - 35° W.  Stewart et al., 2001 recorded high 

numbers of Type IIa in the northwest of the region, and only small numbers to the 

east.   Sea surface temperature is the primary factor shaping the distributions of these 

types.  Type IIa predominates in the colder subpolar waters (~ 5 – 10 °C) of the East 

Greenland (EG) Current (figs. 4.1B, 4.1C), whereas Type IIb predominates in the 

warmer, transitional waters (~ 10 – 18 °C) of the Irminger (IR) Current to the east 
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(figs. 4.1B, 4.1C) (Stewart et al., 2001).  Type IIa tolerates colder conditions than 

Type IIb, extending further north in the Atlantic (Darling & Wade, 2008; Stewart et 

al., 2001), whereas Type IIb has a greater abundance in slightly warmer waters and 

extends further south (Stewart, 2000).  Darling & Wade (2008) report that Type IIa 

advances north ahead of Type IIb during the spring plankton blooms of the North 

Atlantic, and is the only genotype present in the most northerly subpolar latitudes. 

 

Globigerina bulloides is a typical eutrophic morphospecies, occurring primarily in 

high-nutrient environments and during phytoplankton blooms (Deuser et al., 1981; 

Ganssen & Kroon, 2000; Hemleben et al., 1989; Kroon, 1988; Ottens, 1991).  It has 

been shown, through carbon isotope analysis, to reflect the northward migrating 

spring bloom in the North Atlantic Ocean (Ganssen & Kroon, 2000).  With greater 

sampling of the Type IIa and IIb genetic types in the North Atlantic it may be possible 

to distinguish different nutrient requirements on an intraspecific level, and thus 

enhance the utility of G. bulloides as a proxy for paleonutrients and productivity. 

  

4.5.2.3 Turborotalita quinqueloba  

Two genetic types of the spinose morphospecies Turborotalita quinqueloba were 

found in the North Atlantic, types IIa and IIb, both belonging to the cold-water group 

II genotypes.  Neither occurred in very high numbers across the transect (fig. 4C), 

though it has been noted by Darling et al. (2008) that the small size of this 

morphospecies can mean that individuals pass through the net or sieve used for 

sampling, leading to their abundance being underestimated.  Stewart et al. (2001), 

found types IIa and IIb to co-exist in the east of the North Atlantic, but found only 

Type IIa in the colder waters of the EG Current in the northwest.  We find both types 
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occurring along the whole transect from east to west, in both transitional (~ 10 – 18 

°C) and subpolar (5 – 10 °C) waters (figs. 4.4C & 4.1C).  Although the western limit 

of the current transect passes further south than that of Stewart et al. (2001), the Sea 

surface temperature (SST) at the stations harbouring type IIb (16 & 19; Figs. 4.1A) is 

actually the same as the EG Current (~ 8 °C; Fig 4.1C).  This suggests that low sample 

numbers were responsible for Type IIb failing to be found in the western part of the 

Stewart et al. (2001) transect, rather than a superior adaptation of type IIa to cooler 

temperatures.   Additionally, in the Norwegian Sea (65°N) only 2 T. quinqueloba 

Type IIa samples were identified compared to 14 of Type IIb, and further north only 

Type IIb was found (Darling et al., 2008).  Although sample numbers were low, this 

points towards an adaptation of Type IIb to colder temperatures than Type IIa, the 

converse of the findings of Stewart et al. (2001).  Clearly further sampling is needed 

to resolve this matter.  It can also be noted that the results of this transect put the range 

of T. quinqueloba into the edge of the Labrador Sea (west of the region), an area 

reported to be devoid of this morphospecies by Bé & Tolderlund (1971). 

 

4.5.2.4 Neogloboquadrina incompta 

Until recently N. incompta was considered to be the right-coiling variety of N. 

pachyderma.  However, they have since been re-designated as separate species based 

on biogeography, ecology, and degree of genetic distinction (Darling et al., 2000, 

2004, 2006, 2008).  Only a single genetic type was found in the North Atlantic, Type 

I.  Neogloboquadrina incompta Type I occurs from station 1-19 and is most numerous 

in the east but is completely absent from the far west (stations 20-27) (fig. 4.4D).  Sea 

surface temperature is most likely determining the distribution of this genetic type.  

Neogloboquadrina incompta Type I has previously been recorded only in subpolar 
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and transitional waters (Darling et al., 2004, 2006; Stewart et al., 2001), and is found 

restricted to the warmer (subpolar ~ 5 – 10 °C & transitional ~ 10 – 18 °C) waters of 

the North Atlantic in this study (figs. 4.1C, 4.4D).  

 

4.5.2.5 Neogloboquadrina pachyderma 

Neogloboquadrina pachyderma Type I, conversely, only begins its range at station 22 

and extends to station 27 (fig. 4.4E).  It appears to be cold-water adapted and has only 

been found in polar waters to date (Darling et al., 2004, 2007).  Here in the North 

Atlantic, N. pachyderma Type I is most likely being transported down from the polar 

waters in the north via the East Greenland (EG) Current.  Stewart et al. (2001) found 

no N. pachyderma Type I in the North Atlantic, only N. Incompta (named right-

coiling N. pachyderma at the time).  The transect extended only from the UK to 

Greenland, passing through the relatively warm North Atlantic (NA) and Irminger 

(IR) currents (Fig 4.1B).  It did not extend to the southwest, into the colder region 

(stations 16-27, current transect), where the Labrador (LA) current flows.  There is a 

striking pattern in the geographical distribution of N. incompta and N. pachyderma 

along the North Atlantic transect.  Each morphospecies occupies a geographical range 

that is completely uninhabited by the other (figs. 4.4D, 4.4E), offering an excellent 

example of separation due to differing ecological requirements. 

 

4.5.2.6 Globigerinita uvula 

The microperforate species Globigerinita uvula was the most abundant morphospecies 

collected along the North Atlantic transect.  All samples belonged to a single genetic 

type, the same as that identified in the same locality by Stewart et al. (2001) (note: 5 

bp different in variable regions).  Stewart et al. (2001), however, found only 4 
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specimens of G. uvula in the North Atlantic, 2 to the east of the region, and 2 in the 

EG current to the northwest.  The distribution of G. uvula specimens found on the 

current transect appears heavily skewed towards the west of the region (stations 10-

27) (fig. 4.4E), an area not covered by the Stewart et al. (2001) transect.  Again, the 

distribution of this morphospecies is likely to be determined by localised differences 

in SST.  Bé (1977) recorded that G. uvula (G. bradyi) only occurs in subpolar waters, 

at temperatures of between 5 °C and 10 °C.  This finding is supported here where the 

majority of specimens were found in an area with a SST of 7 °C to 12 °C (figs. 4.1C, 

4.4E), consistent with the subpolar province (Bé & Tolderlund, 1971).  Some of the 

samples were found just inside the warmer transitional waters, but only 2 in 87 

samples occurred in the transitional waters further to the east (station 5), and are likely 

to have been transported here passively by the IR current.  It is probable that there is 

an aspect of seasonality in the distribution of planktonic foraminifera, such as G. 

uvula, in the North Atlantic Ocean.  The transect of Ottens (1992), bisects the current 

transct at approximately station 10.  In the relatively cool month of April (1988), they 

recorded low numbers of G. uvula at this locality and in the warmer months of 

August/September (1986), they recorded none.   

 
4.5.3 Global biogeography of the North Atlantic planktonic foraminiferal 

genotypes 

4.5.3.1 Orbulina universa  

Orbulina universa (fig. 4.5A) is widely distributed from the tropics to subpolar 

regions (Hemleben et al. 1989), though its abundance peaks in the subtropical and 

transitional zones (Bé & Tolderlund, 1971).  Three genotypes of Orbulina universa 

have been identified, Types I, II, and III (Darling et al., 1997, 1999; de Vargas et al., 

1997, 1999).  These have been extensively sampled by de Vargas et al. (1999, 2004), 
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and were originally named as Caribbean, Sargasso, and Mediterranean types 

respectively.  The geographical distribution of the types is strongly correlated with 

stratification of the water column and primary productivity (Darling & Wade, 2008; 

de Vargas et al., 1999, 2004).  Type III, the only type found in the North Atlantic, is 

found globally in tropical-transitional waters, usually in areas of upwelling and high 

chlorophyll concentration (reviewed in Darling & Wade, 2008; de Vargas et al., 1999, 

2004) (fig. 4.5A).  The North Atlantic is one such area, boasting high levels of 

productivity (fig. 4.1E).  Type III has the broadest temperature tolerance of the three 

types, occurring in tropical, subtropical, and transitional waters.  Type I occurs only in 

tropical and subtropical waters (Darling & Wade, 2008; de Vargas et al., 1999, 2004) 

and the rare type II has been found only in the subtropics (de Vargas et al., 1997, 

1999, 2004).  In contrast to O. universa Type III, both types I and II are adapted to 

oligotrophic conditions (Darling & Wade, 2008; de Vargas et al., 1999, 2004) and 

would not be suited to life in the highly eutrophic North Atlantic. 
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D) 

Figure 4.5.  The global biogeographical distribution of SSU rRNA genotypes isolated to date for some of
the morphospecies found in the Arabian Sea (those for which sufficient data exists).  A) Neogloboquadrina 
pachyderma (Darling et al., 2000, 2004, 2007), B) Neogloboquadrina incompta (Darling et al., 2003, 
2006), C) Globigerina bulloides (Darling et al., 1999, 2000, 2003, 2007, 2008; de Vargas et al., 2007; 
Stewart et al., 2000), D) Turborotalita quinqueloba (Darling et al., 2000, 2003, 2008; Stewart et al., 2001),
E) Orbulina universa (Darling et al., 1997, 1999, 2008; de Vargas et al., 1999, 2004).  Genotypes isolated 
by the Darling et al. group are shown in light grey.  Those isolated by the de Vargas et al. group are shown 
in dark grey.  For a full list of collection sites and references see appendix 9.6.  The five major planktonic
foraminiferal faunal provinces (modified from Bé and Tolderlund, 1971) are shown, together with areas of
seasonal upwelling (see key).  Modified from Darling et al. (2008). 

E) 
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4.5.3.2 Globigerina bulloides 

Globigerina bulloides (fig. 4.5B) is the most abundantly found planktonic 

foraminiferal morphospecies in the subpolar province (Bé & Tolderlund, 1971).  The 

genetic types of G. bulloides can be split into two phylogenetically divergent groups, 

Type I and Type II (fig. 4.3B).  The Type I genotypes (Ia & Ib) are restricted to the 

warm-water tropics and sub-tropics (Darling et al., 1997, 2008; de Vargas et al., 1997; 

Stewart, 2000), and will not be discussed further.  The type II genotypes, of which two 

were found in the North Atlantic (Types IIa & IIb), occur only in colder waters and 

are found globally within the transitional to subpolar provinces (Darling et al., 2000, 

2008; Stewart 2000; Stewart et al., 2001).  Both Types IIa & IIb show a bipolar 

distribution in the Atlantic Ocean (Darling et al., 2000).  In the Pacific Ocean, Type 

IIb is completely absent and only a single specimen of IIa has been identified, in the 

transitional waters of the Santa Barbara Channel (Darling et al., 2003).   

 

The type II group includes 3 further genotypes that are absent from the North Atlantic.  

In the Antarctic, Type IIc is found alongside IIa and IIb (Darling et al., 2000).  In the 

Pacific, two further types are found, Type IIe, which extends far to the north into cold 

subpolar waters (Darling et al., 2007), and Type IId, which has been found only in the 

transitional waters of the Santa Barbara Channel (Darling et al., 2003).  Neither IIe 

nor IId is present in the Atlantic Ocean.   

 

Within G. bulloides some genetic types are bipolar in their global distribution (Types 

IIa & IIb), pointing to the continual transit of individuals between the poles and a 

substantial amount of gene flow, whilst others are not bipolar (Types IIc, IId, & IIe) 

and may have diverged in allopatry as a result of vicariance.  Taking into account 
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phylogenetics and biogeography, it seems likely that an ancestral type of the Type II 

grouping initially split into two; firstly, the ancestor/precursor to Type IIe, which has 

remained restricted to the North Pacific (Type IIe) and secondly a precursor type to 

the rest of the Type II genotypes (IIa, IIb, IIc, IId), which was ubiquitous in its 

distribution and probably bipolar in both the Atlantic and Pacific Oceans.  From this 

ubiquitous type, the remaining Type II genotypes then diverged.  It is possible that 

Type IIe was restricted from dispersing across the warm tropics due to a more rigid 

adaptation to cold subpolar waters (Darling et al., 2007).  Type IIa, which is one of the 

most recently diverged types, has remained ubiquitous, indicating that it is perhaps 

capable of transiting the tropics thus maintaining gene flow and a homogeneous global 

cold-water population.  Type IIb is bipolar only in the Atlantic Ocean (fig. 4.5B, 

Darling et al., 2000, 2007, 2008), suggesting that it is currently unable to transit the 

tropical Pacific.  Genetic types that show a more restricted distribution are Types IIc 

and IId, and these may be more adapted to localised ecological conditions.  Type IIc 

has only been identified in the subpolar Antarctic (fig. 4.5B) (Darling et al., 2000), 

where it likely diverged from the more ubiquitous Type IIa (fig. 4.3B).  Type IId has 

been found to tolerate a wide range of hydrologic conditions, including upwelling and 

non-upwelling regimes, and the presence or absence of a well-developed thermocline.  

Yet despite this flexibility, it is only found in the transitional waters of the North 

Pacific (Santa Barbara Channel; Darling et al., 2003, 2008), and may be endemic to 

this location.  It is completely absent from the neighbouring subpolar waters of the 

North Pacific.   
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4.5.3.3 Turborotalita quinqueloba 

 Turborotalita quinqueloba (fig. 4.5C) is one of the five dominant morphospecies 

within the polar/subpolar assemblage (Bé & Tolderlund, 1971).  As in G. bulloides, 

the genetic types of T. quinqueloba can be split into two major groups; Type I (warm-

water) and Type II (cold-water) (fig. 4.3C).  The two Type I genotypes, Types Ia & Ib 

occur only in the tropics and sub-tropics (Darling et al., 1997, 2008) and will not be 

discussed further.  Of the 4 known Type II genotypes, only two, Types IIa & IIb are 

found in the North Atlantic.  Type IIa has also been sampled in the Antarctic (Darling 

et al., 2000), and in the North Pacific (Darling et al., 2007), giving it a bipolar 

distribution in both major oceans, and indicating that transit of individuals may be 

taking place across the inhospitable tropics, leading to constant gene flow between the 

poles.  Type IIb, conversely, has only been found in the North Atlantic (Darling et al., 

2008; Stewart et al., 2001), possibly indicating an endemism to this region.  In the 

Antarctic Ocean, and the Pacific Ocean (North & South), close relative, Type IIc (fig. 

4.3c) is found instead.  It seems reasonable to assume that either a precursor of Type 

IIc, or a ubiquitous ancestor of both types was once present in the North Atlantic, but 

that trans-tropical transit has since ceased, allowing the new Type IIb to differentiate 

in allopatry. Type IIb being adapted to very cold waters (as was seen in the Norwegian 

Sea; Darling et al., 2008), may have been prevented from transiting the tropics and 

mixing with the Southern hemisphere populations due to warmer global temperatures 

in the recent Quaternary.  Type IId is restricted in its distribution to the North Pacific 

Ocean, being found only in the Santa Barbara channel (Darling et al., 2003) and the 

subpolar North Pacific gyre (Darling & Wade 2008).  Again this may reflect an 

endemism to a single location. 
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4.5.3.4 Neogloboquadrina pachyderma 

Neogloboquadrina pachyderma (fig. 4.5D) is a subpolar to polar specialist that can 

survive within sea ice (certain genetic types), and withstand salinities of up to 82 ‰ 

(Hemleben, 1989).  It is the dominant species of the Arctic and Antarctic Oceans (Bé 

& Tolderlund, 1971), and has an anti-tropical distribution.  7 separate genetic types of 

N. pachyderma have been identified to date (Darling et al., 2004, 2007, 2008).  All are 

cold-water adapted with.  They do, however, have somewhat divergent ecologies, 

within the subpolar and polar provinces (Darling et al, 2008).  Neogloboquadrina 

pachyderma Type I is a true polar type, occurring in waters of –1.5 °C to 10 °C 

(Darling et al., 2008).  In addition to the North Atlantic, Type I has only been found in 

the polar waters of the Arctic Ocean (Darling et al., 2004, 2007).  It appears to be 

restricted to the Northern hemisphere.  Type IV is the only other true polar type, 

however this is found only in the Antarctic (Darling et al., 2004).  The remaining 5 

genotypes of N. pachyderma (Types II, III, V, VI, & VII) are all closely related and 

are restricted to subpolar waters, of temperatures 3 °C – 14 °C and upwelling systems 

(Darling et al., 2004, 2007, 2008).  Type VII is the only type in addition to Type I to 

be found in the northern hemisphere (North Pacific Subpolar Gyre; Darling et al., 

2007).  Like Type I, it appears to be absent from the southern hemisphere.  In fact, 

none of the genotypes of N. pachyderma show a homogeneous bipolar distribution 

(fig. 5D) (Darling et al., 2004, 2008), indicating that the polar populations are 

currently isolated from one-another, thus preventing gene flow.   

 

The genetic types of N. pachyderma provide excellent examples of diversification 

occurring in both allopatry due to vicariance, and in sympatry due to ecological 

partitioning (Darling et al., 2004, 2007, 2008).  Reviewing the phylogenetic and 
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biogeographical evidence (figs. 4.3E, 4.5D), it seems likely that the modern N. 

pachyderma types originated from a cosmopolitan polar/ subpolar ancestral type, 

which had a global or global anti-tropical distribution during the last major cooling 

event of the Tertiary period, 2.5-3.5 Ma (Driscoll & Haug, 1998) (Darling et al., 

2004).  Subsequently, gene flow between the poles has ceased, possibly due to 

increasing global temperatures transforming the tropics into a barrier, geographically 

isolating populations at the different poles.  The ancestral Type I prevailed in the 

Arctic, and is found there today (fig. 4.5D).  In the Antarctic several genetic types 

diverged in allopatry, forming two groups in the phylogeny (fig. 4.3E), firstly Type IV 

which like Type I is a true polar specialist (- 1.6 °C to 10 °C), and secondly a cluster 

of the remaining N. pachyderma types (Types II, III, V, & VI), which are adapted to 

sub-polar or upwelling conditions (3 °C to 14 °C).  Molecular data suggests that the 

divergence between Type I and the remaining types of N. pachyderma occurred ~1.8-

1.5 Ma, during the early Quaternary (Darling et al., 2004).  Observed morphological 

differences between Arctic and Antarctic populations of N. pachyderma (Kennett, 

1970) may reflect their divergence (Darling et al., 2004). 

 

The divergence between Type IV and the remaining N. pachyderma types is thought 

to have occurred during the mid-Pleistocene ~ 1.1-0.5 Ma (Darling et al., 2004).  

Types II, III, V, VI, & VII cluster together in the phylogeny (Fig. 4.3E), and probably 

represent a later divergence.  Most of these types have likely emerged through 

adaptation to differing ecological conditions in the subpolar waters of the southern 

hemisphere (Darling et al., 2004), with the exception of Type VII, which is found only 

in the Northern hemisphere (fig. 4.5D).  Darling et al. (2004) found Type II to be 

distributed within the warmer waters of the Subantarctic Front, whereas Type III had a 
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more widespread distribution.  They proposed that the 3 genetic types of N. 

pachyderma found in the Antarctic (II, III, IV) could also reflect the different 

morphological types of this morphospecies recorded in the Southern Ocean by 

Kennett (1968).  Types V & VI are particularly restricted in their distribution, being 

found only in the Benguela Upwelling System (Darling et al., 2004, 2008), and may 

be adapted to the specific hydrological conditions of this location.  Such types could 

have been seeded from the Southern Ocean during a glacial period, from subpolar 

waters advected into the Benguela current system (Darling et al., 2004).  Type VII is 

likewise restricted in its distribution, being only found in the North Pacific Subpolar 

Gyre (Darling et al., 2007).   

 

It is interesting to note that the two genetic types found in the northern hemisphere 

(Types I & VII) are separated by a larger distance phylogenetically than types VI & 

VII, which are isolated in different hemispheres (fig. 4.3E).  Despite their 

geographical separation, types VI and VII cluster closely in the phylogeny (fig. 4.3E).  

It could be deduced that a common, bipolar ancestor of Types VI and VII once existed 

in the Pacific, with a loss of transit across the tropical pacific subsequently leading to 

Type VII diverging allopatrically in the North Pacific, and Type VI in the Benguela 

upwelling.  The N. pachyderma phylogeny (fig. 4.3E) suggests that such an event 

occurred much later than the original diversification which left Types I and the 

ancestor of the remaining genetic types isolated in different hemispheres. 

 
4.5.3.5 Neogloboquadrina incompta  

Neogloboquadrina incompta (fig. 4.5E) is a true cold-water specialist, being found 

only in transitional and subpolar waters globally (Darling et al., 2006, 2008; Ottens, 

1992).  Only 2 genetic types of N. incompta have been identified to date, Types I & II 
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(Darling et al., 2003, 2006, 2008; Stewart et al., 2001).   In addition to being present 

in the North Atlantic, Type I has been found in subpolar Antarctic waters and the 

Benguela Upwelling System (Darling et al., 2006), making it bipolar in the Atlantic.  

Darling et al. (2008) propose that this type is likely to occur in subpolar and 

transitional waters throughout the whole of the Southern Ocean, being transported by 

the Antarctic Circumpolar Current.  Neogloboquadrina incompta Type I has not been 

identified in the Pacific Ocean as yet; here instead we find the second type of N. 

incompta, Type II.  Type II has been found only in the subpolar waters of the 

Northeast Pacific and is potentially endemic to this area (Darling et al., 2006, 2008).   

 

The bipolar anti-tropical distribution of N. incompta Type I, in the Atlantic Ocean, 

suggests that gene flow must be taking place between the polar populations of the 

Northern and Southern Hemispheres, despite the apparent barrier of the tropics to this 

cold-water adapted type.  However, in the North Pacific Type I is absent, and instead 

the potentially endemic Type II is found in its place.  It seems likely that at one time 

there was a global, bipolar ancestral type of N. incompta (possibly Type I), and that 

though this type has maintained a bipolar distribution in the Atlantic, through regular 

gene flow, in the Pacific such gene flow is not occurring, allowing Type II to diverge 

in allopatry.  Certainly a recent divergence of Types I & II is suggested in the 

phylogeny (fig 4.3D). 

 

4.5.3.6 Globigerinita uvula 

Globigerinita uvula is a very small microperforate morphospecies, which is easily 

distinguished from its close relative Globigerinita glutinata by the high spire of its test 

(Kennett and Srinivasan, 1983).  Its peak abundance occurs in the subpolar region, 
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though it may also be found in polar waters (Bé & Tolderlund, 1971).  Globigerinita 

uvula has not been well studied from a molecular viewpoint.  Until recently only a 

single sequence had been published (Stewart et al., 2001), representing the same 

genetic type that was found in the North Atlantic during this current study.   

Subsequently 5 new sequences have been released, which cluster with the close 

relative of G. uvula, Globigerinita glutinata based on analysis of the SSU rRNA gene 

(Aurahs et al., 2009), identifying them as a possible new genotype of G. uvula. The 

findings were not conclusive, however, and further work is needed on the subject.  

The lack of data makes it impossible to assess the global distribution of genetic types 

within G. uvula, however, as a morphospecies it is said to be typically found in high 

latitude assemblages (Hemleben et al., 1989).  Along with T. quinqueloba and N. 

pachyderma, it is one of the 3 dominant morphospecies in the polar/sub-polar oceans 

(Schiebel & Hemleben, 2005).  Globigerinita uvula primarily inhabits subpolar waters 

between 5 °C to 10 °C, for example it predominates in the subpolar waters of the 

North Atlantic and North Pacific (Bé, 1977). It has a bipolar distribution, and in the 

southern hemisphere has been recorded in the slightly colder waters of the South of 

Antarctic Polar Front (Bé, 1977).  It may also occur in upwelling systems (Benguela 

current; Oberhänsli et al., 1992).  The discovery of the potentially new genetic type of 

G. uvula by Aurahs et al. (2009) in subtropical waters off the Azores (35.0014 N, 

21.0028 W) points to the existence of a possible warm-water type of the 

morphospecies. In the southwestern Atlantic Ocean, samples of G. uvula have also 

been recorded within cold intrusions in the sub-tropical province (Boltovskoy et al., 

2000). 
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4.5.4 Gene flow, vicariance, and speciation in the high latitude planktonic 
foraminifera 

4.5.4.1 Gene flow between polar populations 

Studying the geographical distribution of SSU rRNA genotypes in high latitude 

planktic foraminiferal morphospecies gives great insight into the patterns of gene flow 

or vicariance across the global ocean (Darling et al., 2000, 2004, 2006, 2007).  The 

planktonic foraminifera found at high latitudes, for example the North Atlantic, all 

display cold-water adaptation, and therefore an anti-tropical distribution globally.  

Because of the potential barrier of the warmer, inhospitable tropics, the polar 

populations should exist in complete isolation from one another.  The establishment of 

the polar provinces is thought to have occurred approximately 16 – 8 Ma (Kennett et 

al., 1985; Darling et al., 2000), and if these populations had existed in geographical 

isolation since this time a substantial degree of genetic divergence would be expected.  

However, as we have seen, 3 separate morphospecies contain homogenous bipolar 

genetic types (G. bulloides Types IIa, IIb, T. quinqueloba Types IIa, IIc, IId, and N. 

incompta Type I) (Darling et al., 2000, 2006, 2008). 

 

For genetic homogeneity to exist between polar populations in the different 

hemispheres, genetic exchange must be occurring. The mechanisms by which trans-

tropical mixing of foraminiferal populations could occur is unknown, however, there 

are a number of possibilities.  Genetic homogeneity could be sustained by a continual 

exchange of individuals between the two polar regions.  For genetic exchange to be 

continual, these cold-water adapted genotypes would have to cross the inhospitable 

waters of the tropics.   Darling et al. (2000) proposed that cool boundary currents in 

the east of the subtropical Atlantic Ocean (West African coast) could act as corridors 

for the introduction of cool-water types into cool seasonal upwelling zones, such as 
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the Benguela Current.   From here, foraminifera could pass passively into the 

permanent equatorial upwelling zone (2 – 9 °C cooler than surrounding surface 

water), where a genetic exchange could take place between the northern & Southern 

hemisphere populations meeting in these waters. However, current circulations in the 

Atlantic dictate that these populations would have no cool-water corridor back to their 

respective polar origins, and would need to survive warmer tropical waters in the west 

of the Atlantic as they were passively transported back to the poles.  This is therefore 

unlikely to be the mechanism operating.  A second theory also put forward by Darling 

et al. (2000) was that transit could occur by tropical submergence into the cooler 

levels of the thermocline, however, without sampling foraminiferal assemblages in 

these deep waters this cannot be confirmed.  It has even been suggested that 

foraminifera could be the accidental passengers of the Arctic tern (Sterna paradisaea) 

during its annual migration from the Antarctic to its Arctic breeding grounds (Von 

Hippel, 2001).  However, for genetic homogeneity to be reached between 

foraminiferal populations in the two polar regions, this would have to be occurring on 

a massive scale. 

 

Another possibility is that genetic exchange between the polar populations is 

intermittent, occurring only at times when the global climate is cooler.   During 

cooling cycles planktonic foraminiferal subpolar assemblages could expand into the 

equatorial zone (Darling et al. 2000), thereby allowing individuals to pass between the 

two hemispheres uninterrupted (e.g. during the last glacial period of the quaternary, 

1.8 Ma.).  Sedimentary records of the lower latitudes show the frequent occurrence of 

subpolar foraminiferal assemblages within the equatorial zone during these cooling 

periods (McIntyre et al., 1989), indicating that this scenario is quite likely.  
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The question has been raised as to whether equal levels of genetic exchange take place 

between the polar populations in the Atlantic and the Pacific.  From a study of N. 

pachyderma and G. bulloides, Darling et al. (2007), concluded that far fewer genetic 

types displayed a bipolar distribution in the Pacific Ocean than in the Atlantic, 

suggesting the existence of a more formidable barrier to trans-tropical transport in the 

Pacific Ocean.  However, reviewing the data presented by Darling et al. (2008) on the 

global distributions of the genetic types within 3 morphospecies, T. quinqueloba, N. 

incompta and again G. bulloides (figs. 4.5B, 4.5C, 4.5E), it appears that transport 

between hemispheres may be equally common in both major oceans.  To date, 4 

bipolar genetic types have been identified in the Atlantic (N. incompta Type I, T. 

quinqueloba Type IIa, and G. bulloides Types IIa & IIb) and 4 bipolar types in the 

Pacific Ocean (T. quinqueloba Type IIa, IIc, IId, and G. bulloides Types IIa) (Darling 

et al., 2008). 

 

4.5.4.2 Allopatric divergence of genetic types 

Whilst homogeneous genetic types of planktonic foraminifera have been found 

separated by huge geographical distances (i.e. at separate poles), suggesting long-

distance gene flow, other genetic types represent populations that have diverged in 

allopatry due to vicariance.  Molecular evidence shows that vicariant differentiation 

and allopatric processes prevail in the polar, more isolated regions (Darling et al., 

2004), with some morphospecies showing distinct genetic types at each pole.  For 

example, a number of genetic types of planktonic foraminifera are found only in the 

Southern Hemisphere (Antarctic & Southern Oceans), including Globigerina 

bulloides Type IIc (subpolar), and N. pachyderma Types II, III (subpolar), IV (polar), 

V & VI (Benguela upwelling) (Darling et al., 2003, 2004, 2007, 2008).  Other genetic 
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types are harboured only in the Northern Hemisphere, including N. pachyderma Type 

I (polar), T. quinqueloba Type IIb (Subpolar/polar) (Arctic & North Atlantic Oceans), 

and N. pachyderma Type VII, N. incompta type II, T. quinqueloba Type IId, and G. 

bulloides Types IIe & IId (North Pacific Ocean) (Darling et al., 2003, 2007, 2008; 

Stewart et al., 2001).  Globigerina bulloides Type IId is particularly restricted, being 

found exclusively in the Santa Barbara Channel.  The North Pacific has a high species 

diversity in comparison with the North Atlantic indicating that endemism may be 

prevalent here.  It has been postulated that the region may be the point of origin of 

many genetic types (Darling et al., 2007).   

 

Genetic differentiation has also occurred between populations in the North Pacific and 

North Atlantic Oceans in certain morphospecies.  For example, G. bulloides Types IIe 

and IId, T. quinqueloba IId, N. pachyderma Type VII, and N. incompta Type II occur 

in the North Pacific Ocean, whereas G. bulloides Type IIb, T. quinqueloba IIb and N. 

incompta Type I occur in the North Atlantic.  The North American land mass presents 

a formidable barrier to transit between the North Pacific and North Atlantic Oceans, 

with most types being unable to pass through the extremely cold waters of the Arctic 

Ocean.  However, other factors also affect the transit of planktonic foraminifera across 

the region. 

 

In N pachyderma, Type I is widespread throughout the North Atlantic and Arctic 

Oceans but is absent from the North Pacific, its transit between the two being 

prevented by currents flowing predominately from the North Pacific into the Arctic 

Ocean through the shallow Bering Straight (Darling et al., 2007).   Likewise, the 

transit of genetic types from the North Pacific (G. bulloides Types IIe and IId, T. 
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quinqueloba IId, N. pachyderma Type VII, and N. incompta Type II) into the Arctic 

Ocean and, from there, the North Atlantic is prevented by the inhospitable nature of 

the Bering Straight.  Darling et al. (1997) observed that “although there is a 

considerable flow of water from the North Pacific into the Arctic Ocean that would be 

expected to carry passively floating plankton north (Woodgate et al., 2005), no living 

planktonic foraminifers were found in the shallow region of the Bering Strait and 

Chukchi Sea over a distance of ~1,000 km”. 

 

4.5.4.3 Sympatric divergence of genetic types 

In addition to genetic types developing in allopatry, several genetic types may be 

found co-habiting in a single region, indicating that divergence is occurring in 

sympatry.  For such localised sympatric divergence to occur either ecological 

segregation must occur or reproductive isolation (i.e. gametes released on a different 

time scale).  Adaptation to differing sea surface temperatures is one of the most 

common causes of ecological segregation in the planktonic foraminifera. In the North 

Atlantic T. quinqueloba Types IIa & IIb occur within the same geographical region, 

however, the range of Type IIb (a potentially endemic type) extends further north 

(Darling et al., 2008), suggesting an adaptation to colder conditions.  In the Southern 

Ocean, T. quinqueloba Type IIa also seems adapted to colder waters than Type IIc, 

occurring south of the Subantarctic Front (Darling et al., 2000).  In the Southern 

Ocean, N. pachyderma Types II, III, & IV are all found in close geographical 

proximity, however Type II is restricted to the warmer subpolar waters, Type IV is 

restricted to the very cold polar waters, and Type III is found in both provinces 

(Darling et al., 2000, 2004).  In G. bulloides, Type IIa is found in the coldest subpolar 

waters in both hemispheres (Darling et al., 2000, 2008; Stewart et al., 2001), whereas 
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Type IIb is restricted to slightly warmer transitional waters (Stewart et al., 2001), as is 

confirmed in this study.  In the North Pacific, G. bulloides Types IIa & IId inhabit the 

warm transitional waters of the Santa Barbara Channel, while Type IIe may be 

endemic to the cold subpolar waters of the North Pacific Gyre (Darling et al., 2007). 

Type IIc is found only in the Southern Ocean, and is limited to the warmer waters 

north of the Subantarctic Front (Darling et al., 2000). 

 

Temperature is not always the primary factor determining the distribution and 

segregation of genetic types.  The three genetic types of Orbulina universa, I, II, III, 

for example, can be found co-habiting in waters of the same temperature, across 

multiple provinces globally (de Vargas et al., 1999).  Here it is the degree of 

stratification of the water column and therefore levels of primary productivity that 

determines distribution with Types I & II showing an adaptation to oligotrophic 

waters, and Type III an adaptation to high productivity areas (de Vargas et al., 1999).  

Indeed, though it has not been specifically investigated, there may be genetic types of 

other morphospecies that are distributed according to productivity levels.  There are a 

number of types found specifically in upwelling areas, which are known for their 

nutrient-rich waters.  For example, N. pachyderma Types V and VI are very 

specifically adapted to the conditions of the Benguela Upwelling System (Darling et 

al., 2004) and G. bulloides Type IId is found exclusively in the Santa Barbara Channel 

(Darling et al., 2007). 

 



4: North Atlantic 

 172

4.5.5 Methodological problems 

A particularly high rate of failure was observed in the PCR amplifications undertaken 

during this study, with sequences being gained for only 164 out of 799 specimens.  

Multiple primer pairs were tested but with limited success.  Low success rates are not 

uncommon in PCR amplifications of foraminiferal samples, however, it is clearly a 

problem that needs further attention.  It may be possible some samples were dead on 

collection, though the primary cause of the observed PCR failures is likely to rest with 

the method used to store the samples prior to PCR amplification.  In foraminiferal 

studies the approach almost exclusively used involves the incubation and storage of 

samples in the lysis buffer of Holzmann et al. (1996).  Material is then used directly 

from the buffer for PCR, without a phenol/chloroform or alcohol precipitation stage.  

It is likely that the samples not only deteriorate over time but that unwanted 

contaminants from the buffers themselves are carried over into the PCR, inhibiting the 

reaction.  There is a clear need for the development of a new storage and DNA 

extraction method for use on the foraminifera, a matter that will be covered further in 

chapter 7.  In addition, it may be necessary to re-design the primers used for the PCR 

amplification of the SSU rRNA gene in the foraminifera and to further optimise the 

PCR method used.  There would also be a great benefit to employing additional 

molecular markers, to corroborate the results found.  A continual source of 

foraminiferal DNA would be required in both cases, and could be produced in the lab 

through culturing, as will be discussed in chapter 6. 
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4.6 Conclusions 

The phylogenetic placement of the North Atlantic taxa within the foraminifera was 

found to be consistent with previous studies.  Within the North Atlantic Ocean, 

patterns in geographical distribution of planktonic foraminiferal SSU rDNA genetic 

types supports previous evidence of ecological partitioning (Darling et al., 2003 2006, 

2008; de Vargas et al., 1999; Stewart et al., 2001), a likely mechanism of 

diversification in these marine pelagic organisms.  Sea surface temperature appears to 

be the dominant factor governing the geographical distributions of most 

morphospecies and genetic types within the North Atlantic, though nutrient 

availability/ productivity has also been shown to affect G. bulloides distribution in the 

region (Ganssen & Kroon, 2000).  With further investigation, it may be possible to 

distinguish different nutrient requirements between the genetic types of G. bulloides, 

greatly enhancing their utility as a proxy for paleonutrients and productivity.  The 

existence of genetically homogeneous populations within some morphospecies at the 

northern and southern hemisphere poles (Darling et al., 2000, 2006, 2008) points to 

the continual transit of individuals across the inhospitable tropics, though the 

mechanism by which gene flow is occurring remains unknown.  Despite the high 

dispersal potential of the planktonic foraminifera, the global biogeography of some 

genetic types, coupled with phylogenetic evidence indicates that allopatric 

diversification has taken place, possibly as a result of the geographical isolation of 

these cold-water types during interglacial periods.  Finally, is has become clear that 

the development of superior laboratory methods is needed to improve the yield of 

PCR amplification in molecular studies of the Foraminifera. 
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5 Phylogenetic Relationships of the Planktonic 
Foraminifera 

 

5.1 Introduction 

5.1.1 Adopting the planktonic mode of life 

Of the estimated 10, 000 extant species of foraminifera (Vickerman, 1992), nearly all 

inhabit the benthic environment, dwelling in marine and fresh-water sediments.  A 

relatively small number of foraminiferal species, by comparison, totalling 

approximately 40 – 50 and belonging to 15 genera, have left the benthos and adopted 

a planktonic mode of life, free-floating in the water column (Kennett & Srinivasan, 

1983; Saito et al., 1981; Hemleben et al., 1989). 

 

The planktonic oceanic environment affords numerous advantages, including an 

extensive geographic area, the possibility for rapid dispersal by currents, and the 

availability of resources, including, light, carbon dioxide, oxygen, dissolved nutrients, 

and for zooplankton like the foraminifera, a rapidly regenerating source of food (e.g. 

phytoplankton prey) (Tappan & Loeblich, 1973).   

 

Life in the planktonic environment requires considerable morphological adaptation, 

which is reflected in the convergent evolution of such adaptations in the many groups 

of organisms that have taken this path (Tappan & Loeblich, 1973).  An explosive 

phase of adaptive radiation usually follows when an organism first enters the 

plankton, with selective pressures tending to modify those structures that are 

particularly concerned with life in the new environment (Mayr, 1960; Tappan & 

Loeblich, 1973).  
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Some distinctive morphologies have developed in the planktonic foraminifera that aid 

passive suspension in the water column, an essential feature for planktonic life.  In the 

spinose taxa, elaborate radial spines and a network of pseudopodia provide a high 

surface-to-volume ratio, aiding both suspension and feeding, and may afford some 

protection against predation.  Similar forms are evident in the Radiolaria (De Weaver 

et al., 2001; Petrushevskaya et al., 1976).  Other taxa, such as the non-spinose 

foraminifera, G. menardii and G. ungulata possess a flattened keel structure, which 

may be positioned to maintain the largest possible area at right angles to the direction 

of sinking.  Large or numerous perforations in the calcareous test of most planktonic 

foraminifera reduce the weight of the test, allowing the ornate morphologies to 

develop (Bolli et al., 1957; Douglas & Savin, 1972; Lipps, 1966; Tappan & Loeblich, 

1973).  Such features aid organisms whose method of ‘flotation’ could be more 

accurately described as a controlled descent (Ruttner, 1963), however, other 

adaptations are employed to aid buoyancy. 

 

In certain planktonic organisms, position in the water column may be maintained by 

the use of fat globules within the cytoplasm (e.g. in the green alga, Botryococcus; 

Fogg, 1965), or gas vacuoles (e.g. in marine blue-green algae such as Trichodesmium, 

bacteria, and certain protozoans; Tappan & Loeblich, 1973).  It is not clear if such 

structures exist in the planktonic foraminifera, though certain fibrillar bodies found in 

both spinose and non-spinose taxa may be linked to this function (Anderson & Bé, 

1976). 

 

The buoyancy necessary for planktonic life may have originally evolved as a 

temporary mechanism in the benthic foraminifera, which like other sessile organisms 
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are negatively buoyant, allowing them to stay fixed in the sediment.  Temporary 

buoyancy mechanisms exist in a number of benthic organisms, for example in the 

extant benthic foraminifer, Rosalina globularis.  Here megalospheric individuals, 

produced asexually, may develop a large globular float chamber in order to release 

flagellated gametes into the surface waters, aiding dispersal (Tappan & Loeblich, 

1973).  Other organisms, such as the blue-green alga, Lyngbya, form gas 

“pseudovacuoles” in order to avoid unfavourable conditions in lake sediments by 

rising to the surface (Hutchinson, 1967).  Similar temporary adaptations have been 

noted in the rhizopod thecamoebian, Arcella, which forms gas bubbles in its 

cytoplasm to self-right it, and in Difflugia, which uses oil globules and a gas vacuole 

to become planktonic for ~ 4 months a year (Schönborn, 1962).   

 

Whatever the mechanism, the planktonic foraminifera have become an extremely 

successful and ubiquitous part of the marine plankton.  The question to be asked now 

is did the extant planktonic foraminifera originate from a single benthic ancestor, 

which made a chance transition, or has the event occurred numerous times, giving rise 

to separate modern lineages? 

 

5.1.2 Paleontological evidence for the origins of the planktonic Foraminifera 

Due to their excellent preservation as microfossils, the evolution and phylogenetics of 

the Foraminifera has been well studied and their classification, based on 

morphological characteristics of the test, thoroughly catalogued (Cushman, 1948; 

Decrouez, 1989; d’Orbigny, 1826; Kennett & Srinivasan, 1983; Loeblich and Tappan, 

1987, 1992; Pearson, 1993).  The earliest benthic foraminifera, identified as simple 

agglutinated forms, appear in the fossil record, during the Early Cambrian (~ 540 Ma 
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ago) (Culver, 1991).  The planktonic foraminifera appear far later, during the Early 

Jurassic period (~ 180 - 200 Ma ago) (Caron & Homewood, 1983; Görög, 1994; 

Loeblich & Tappan, 1974), indicating that the planktonic foraminifera evolved from 

pre-existing benthic ancestors, as is the case in a number of other groups of organisms 

(Tappan & Loeblich, 1973).   

 

Though the stratigraphic ranges of the planktonic foraminifera are well known 

(Kennett & Srinivasan, 1983), their precise origin within the benthic group remains 

elusive, as the far-reaching morphological changes that accompany movement into the 

planktonic habitat have obscured their relationships and ancestry (Tappan & Loeblich, 

1973).  The traditional view, reflected in current classifications, is that the extant 

planktonic foraminifera represent a single monophyletic lineage, first appearing in 

“globigerinid” form in the Middle to Early Jurassic (~180 – 200 Ma ago) (Caron & 

Homewood, 1983; Decrouez, 1989; Görög, 1994; Kennett & Srinivasan, 1983; 

Loeblich & Tappan, 1974, 1987, 1992).  Some evidence suggests that they may have 

evolved from a single lineage of small benthic foraminifera, the Oberhauserellidae 

(Tappan & Loeblich, 1988), though other occurrences of small globular forms in the 

fossil record during the Middle and Late Jurassic may indicate independent 

adaptations to the planktonic mode of life (Wernli, 1988). 

 

Throughout their history, the planktonic foraminifera have undergone numerous 

alternating periods of extinctions and radiations (Banner & Lowry, 1985, Tappan & 

Loeblich, 1973), the most devastating extinction event occurring at the boundary of 

the Cretaceous and Tertiary (K/T) periods (65.5 Ma ago) (Brinkhuis & Zachariasse, 

1988; Liu & Olsson, 1992; Olsson et al., 1999), with a second major event at the 
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Eocene/Oligocene boundary (34 Ma ago) (Bolli, 1986).  It is assumed that subsequent 

planktonic radiations, following major extinctions, evolved from surviving planktonic 

forms (Norris, 1991; Olsson et al., 1992; Tappan & Loeblich, 1988), rather than 

arising from new adaptations to the planktic habitat from the benthos.  Olsson et al. 

(1992) and Culver (1993), for example, propose that all Cenozoic globigerinids 

derived from two Cretaceous genera (Guembelitria and Hedbergella), survivors of the 

K/T extinction.   

 

5.1.3 Molecular evidence for the origins of the planktonic foraminifera 

It is, however, possible that the move from benthos to plankton has occurred 

numerous times throughout the history of the foraminifera.  In contrast to their 

assumed monophyly, according to traditional classifications, molecular phylogenetic 

analyses of the SSU rRNA gene in fact suggest that the planktonic foraminifera are 

polyphyletic in origin, arising from more than one benthic ancestor on independent 

occasions (Darling et al., 1997; de Vargas et al., 1997).  It is not precisely known how 

many transitions may have occurred from the benthic to planktonic mode of life (de 

Vargas et al., 1997), however, molecular phylogenies, based on an ~1,000 bp partial 

3´ terminal fragment of the SSU rRNA gene, suggest that there may be at least 3 

independent extant lineages of planktonic foraminifera (Aurahs et al., 2009b; Darling 

et al., 1997, 1999, 2000, 2006; de Vargas et al., 1997; Stewart et al., 2001), broadly 

consistent with the morphological groupings of the spinose, non-spinose 

macroperforate, and non-spinose microperforate planktonic groups (Hemleben et al., 

1989). 

The placement of the planktonic foraminifera in 3 broad groups is consistently 

recovered in molecular studies, across many methods of tree reconstruction (Aurahs et 
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al., 2009b; Darling et al., 1997, 1999, 2000, 2006; de Vargas et al., 1997; Stewart et 

al., 2001), however, poor resolution of the deep relationships within the SSU rDNA 

phylogenies has left the precise benthic origins of the major planktonic groups 

uncertain.  Furthermore, the positions of certain taxa within the phylogeny are often 

inconsistent between different methods of tree reconstruction (de Vargas et al., 1997; 

Pawlowski et al., 1997), and bootstrap support for the major groupings may be low.  

The monophyletic spinose planktonic clade (Globigerinidae & Hastigerinidae), for 

example, has gained high bootstrap support in some analyses (Darling et al., 1997, 

2000, 2006; de Vargas et al., 1997; Stewart et al., 2001), but low bootstrap support in 

others (Darling et al., 1999; de Vargas et al., 1997; Pawlowski et al., 1997).  The non-

spinose macroperforate grouping (Globorotaliidae, & Pulleniatinidae) too generally 

receives low bootstrap support (Darling et al., 2006; de Vargas et al., 1997).  In 

addition, in areas where only small genetic distances exist between closely related 

taxa, little phylogenetic structure may be seen (e.g. between Globigerinita glutinata 

and Globigerinita uvula; Darling et al., 2006; Stewart et al., 2001, or between the 

genetic types of Neogloboquadrina pachyderma; Darling et al., 2000, 2006).   

 

The unusually variable, and sometimes extreme rates of rDNA evolution seen in the 

foraminifera (Darling et al., 1999; de Vargas et al., 1997; de Vargas & Pawlowski, 

1998; Pawlowski et al., 1997) may in part be responsible for some of the difficulties 

associated with the phylogenetic analyses, however, a lack of informative data may 

also be responsible.  To date, molecular studies of the planktonic foraminifera have 

utilised only the last ~1,000 bp of the SSU rRNA gene, approximately a third of its 

length in the foraminifera, and of these only between ~ 400 and 500 nucleotide sites 

can be unambiguously aligned across all taxa, for use in phylogenetic analysis 
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(Darling et al., 1997, 1999, 2000, 2006; de Vargas et al., 1997; Pawlowski et al., 

1997; Stewart et al., 2001) (see chapters 3 & 4).   There is clearly a pressing need to 

increase the amount of data being used in order to resolve some of the difficulties 

encountered. 

 

5.2 Aims and Objectives 

The primary aim of this study was to determine how many independent extant 

lineages exist within the planktonic foraminifera and to elucidate their origins within 

the benthic foraminifera.  The approach was two-fold; firstly the phylogenetic 

relationships of the planktonic foraminifera were re-explored using the traditional 

~1000 bp terminal 3´ fragment of the SSU rRNA gene (with a comprehensive list of 

benthic and planktonic taxa), and secondly the problems of poor resolution and 

support in previous phylogenies were addressed, using phylogenetic analyses based on 

the almost complete SSU rRNA gene. 
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5.3 Methods 

5.3.1 Planktic foraminiferal specimens 

Planktic foraminiferal specimens were obtained via research vessel cruise (various 

locations), with collections made via plankton net tow, or pumping of the ship’s non-

toxic water supply.   Details of the specimens successfully amplified in PCR, and their 

origins are listed in appendix 9.1. 

 

5.3.2 DNA amplification and sequencing  

DNA amplification and sequencing of the partial ~1,000 bp terminal 3΄ fragment of 

the SSU rRNA gene was as described in chapters 3 (see also general materials and 

methods, chapter 2).  

 

For the amplification of the almost complete SSU rRNA gene (approximately 3000 

bp; see chapter 2, section 2.2.2 and fig. 2.2), a nested PCR approach was employed, 

utilising 3 rounds of amplification.  For planktonic foraminifera, which unlike the 

benthic foraminifera do not bear multiple copies of their genome, 3 rounds of 

amplification were necessary in order to produce strong bands, one more than for the 

partial ~1,000 bp fragment.  Many combinations of both existing and newly designed 

foraminifera-specific primers were experimented with.  Trials were conducted using a 

range of 5´ primers (NS1, 28F, 56F, 58F, 61F, & 202F), and 3´ primers (3009R, 

3014R, 3024R, 3028R, NS8, 3031R, 138, & 3033R) in the 1°, 2° and 3° rounds of 

PCR (see chapter 2, section 2.2.2 for primer positions and sequences).  The greatest 

success was gained using primers 56F and 3033R in the 1° PCR (5 μl DNA template), 

followed by a 2° PCR using primers 61F and 3024R  (1 μl DNA template), and a 3° 



5: Phylogenetics 

 185

PCR using primers 199F and 3014R (1 μl DNA template) (see chapter 2, section 2.2.2 

for primer positions and sequences).  Two species, Globorotalia menardii and 

Globorotalia ungulata were amplified using the above 1° and 2° PCR, but for the 

third round, were amplified in three sections using the following primers: 1) 61F & 

2119R, 2) 2082F & 2514R, and 3) FS3 & 3024R. 

 

PCR amplification was attempted for multiple specimens of each planktonic 

foraminiferal morphospecies/genotype available.  For specimens that failed to amplify 

using the standard approach (above), the PCR was repeated using multiple 

combinations of the listed PCR primers.   

 

PCR optimisation experiments were also undertaken, and a number of factors varied, 

including the amount of magnesium added, type of DNA polymerase (Taq or VentR), 

dNTP concentration, annealing temperature, amount of template DNA (1 μl, 3 μl, 5 

μl, 10 μl), dilutions of 1° & 2° PCR products between rounds, and PCR clean up 

between rounds.  The final conditions used are described fully in chapter 2, sections 

2.2.3 and 2.2.4. 

             

Amplification products were separated by gel electrophoresis and purified using an 

Eppendorf Perfectprep® Gel Extraction Kit (chapter 2, section 2.4).  The majority of 

taxa were then cloned using the TOPO TA cloning® method (InvitrogenTM) (see 

chapter 2, section 2.6).   Cloning was necessary in those species that bear multiple 

templates of their genome, which may contain subtle differences that can lead to 

sequencing errors.  For each specimen three clones were isolated and, to circumvent 

the potential problem of Taq errors (observed in some of the cloned sequences), each 
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clone was sequences three times and a majority rule consensus sequence constructed.  

Cloning was also employed for specimens where the yield of PCR product obtained 

was insufficient to enable direct sequencing. 

 

Both sense and antisense strands were sequenced directly on an Applied Biosystems 

377 DNA sequencer using Applied BiosystemsTM BigDye® v3.1 terminator cycle 

sequencing (see chapter 2, section 2.6.5 for details).  Sequencing was undertaken in 

sections of ~ 800 – 1000 bp, using various combinations of the primers shown in the 

schematic diagram (fig. 5.1) (see chapter 2, section 2.2.2 for sequences).  Contigs 

were assembled using Gap4 in the Staden package version 1.5.3 (Staden et al., 2000) 

and a consensus sequence output. 

 

 

 

 

Figure 5.1.  Schematic diagram of the SSU rRNA gene showing the positions of the primers used in the
DNA sequencing of an ~ 3000 bp fragment.  Arrows indicate the direction and length of sequence gained
(~ 800 – 1000 bp) with each primer.  Primers M13F and M13R (InvitrogenTM), were used for cloned
sequences only and are located outside the SSU rRNA gene on the TOPO® plasmid vector. 
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5.3.3 DNA sequence analysis and phylogenetic reconstruction 

Sequence analysis and phylogenetic reconstruction of the partial ~1,000 bp terminal 3΄ 

fragment of the SSU rRNA gene have been previously described in chapters 3 & 4.  

Sequences used are listed in appendix 9.1. 

 

For the ~3,000 bp, almost full-length fragment of the SSU rRNA gene, sequences 

were aligned manually within the Genetic Data Environment (GDE) package (version 

2.2) (Smith et al., 1994).  In total, 1002 nucleotide sites could be unambiguously 

aligned across all foraminiferal taxa.  Phylogenetic analyses were carried out using the 

13 morphospecies of planktonic foraminifera (those for which the ~ 3000 bp fragment 

could be successfully obtained), plus the 21 benthic foraminiferal morphospecies for 

which full-length SSU rRNA sequences are currently available on GenBank (see 

appendix 9.1 for details).  Phylogenetic trees were constructed using Bayesian 

inference (BI; Ronquist & Huelsenbeck, 2003, Larget & Simon, 1999), maximum 

likelihood (ML; Felsenstein, 1981), and neighbour-joining (NJ; Saitou & Nei, 1987).  

In all methods multiple hits were accounted for using a general time-reversible (GTR) 

model with a gamma (Γ) correction (Lanave et al., 1984; Yang 1993)  (see chapter 2, 

section 2.8 for details). 

 

5.3.4 Relative rate tests (RRT) 

The degree of rate variation between pairs of taxa or taxon groups, within the 

foraminiferal phylogeny, was assessed by means of the relative rate test (RRT) (Sarich 

& Wilson, 1967) (chapter 2, section 2.8.3).  The RRT allows for the comparison of 

rates of evolution between two taxa, without any knowledge of divergence time.  This 

is achieved simply by comparing the substitutional rates in the two closely related 
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taxa, with a third more distantly related outgroup, in the case of this study, 

agglutinated benthic foraminifer, Allogromia sp.  The test was carried out using the 

GRate package (Müller, K) (see appendix 9.3), using maximum likelihood estimates 

of substitutions per site (with a GTR + Γ model).  Within the package, standard errors 

were estimated via bootstrapping (Efron, 1982, Felsenstein, 1985) and the significance 

of differences between groups tested using a two-tailed z-test. 

 

5.3.5 Hypothesis testing  

The Kishino–Hasegawa (KH) RELL test (Kishino & Hasegawa, 1989), as 

implemented in PAUP*  (see chapter 2, section 2.8.4) was used to test the likelihood 

of alternative phylogenetic hypotheses. Tree topologies were constrained to fit varying 

hypotheses regarding the origins of the planktonic foraminifera from benthic 

ancestors, and compared to the optimal tree derived from BI analysis. 
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5.4  Results 

5.4.1 Molecular data 

5.4.1.1 Sequence alignments 

Sequences for the ~ 1,000 bp partial fragment of the terminal 3´ region of the SSU 

rRNA gene were aligned across 61 foraminiferal morphospecies (see appendix 9.1 for 

taxa list).  These included 27 morphospecies of planktonic foraminifera (order 

Globigerinida), of which 11 were spinose planktonic (32 sequences), 11 were non-

spinose macroperforate (20 sequences), 2 were non-spiral planktonic (2 sequences), 

and 3 were non-spinose microperforate (3 sequences), together with 34 morphospecies 

of benthic foraminifera (one from every family in GenBank), covering the orders; 

Rotaliida (14 morphospecies), Milliolida (5 morphospecies), Textulariida (10 

morphospecies), Lagenida (2 morphospecies), and Allogromida (2 morphospecies).  

For the ~ 1,000 bp sequence alignment see appendix 9.7.1 

 

Amplification of the complete SSU rRNA gene in the planktonic foraminifera proved 

extremely problematic, and though certain taxa amplified very well in PCR (primarily 

the non-spinose planktonic taxa), others failed to amplify even with extensive 

optimisation of the method (the majority of spinose planktonic taxa).  An 

approximately 3,000 bp fragment of the SSU rRNA gene, representing almost its 

complete length, was successfully amplified and sequenced for 13 morphospecies of 

planktonic foraminifera (order Globigerinida) (see appendix 9.1 for details).  Of these, 

2 were spinose planktonic, 8 were non-spinose macroperforate, 1 was non-spiral 

planktonic, and 2 were non-spinose microperforate.  These were aligned together with 

existing sequences for 22 morphospecies of benthic foraminifera (all those for which 

complete SSU rRNA gene sequences currently exist on GenBank), covering the orders 
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Rotaliida (7 species), Milliolida (10 species), Textulariida (4 species), and 

Allogromida (1 species) (see appendix 9.1 for details).  For the ~ 3,000 bp sequence 

alignment see appendix 9.7.8 

 

5.4.1.2 Summary of molecular data 

A summary of the molecular data for both datasets is shown in Table 5.1.  Using the 

Likelihood ratio test (LRT), the GTR+Γ model was found to be optimal for both 

datasets (see appendix 9.2.1).   

 

From the ~ 1,000 bp partial fragment of the SSU rRNA gene, 407 nucleotide sites 

could be unambiguously aligned across all taxa for use in phylogenetic analyses.  A 

total of 178 (44 %) variable sites were found, of which 137 (34 %) were parsimony-

informative.  The highest base frequency in the 407 bp of the SSU rRNA gene was for 

G (0.276) followed by T (0.253), then A (0.245) and finally C (0.227). 

 

From the ~ 3,000 bp almost complete SSU rRNA gene, 1002 nucleotide sites could be 

unambiguously aligned across all taxa for use in phylogenetic analyses.  A total of 344 

(34 %) variable sites were found, of which 208 (51 %)were parsimony-informative.  

The highest base frequency in the 1002 bp of the SSU rRNA gene was for A (0.280) 

followed by G (0.274), then T (0.242) and finally C (0.203). 
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Table 5.1.  Summary of molecular data for the foraminiferal SSU rRNA gene 
 

Mean base frequencies # of variable 
sites 

# of parsimony 
informative sites 

 
Data set 

 
Optimal 
model 

#  % 

 
A 

 
C 

 
G 

 
T 

#  % 
407 bp GTR + Γ 178 44 0.245 0.227 0.276 0.253 137 34 
1002 bp GTR + Γ 344 34 0.280 0.203 0.274 0.242 208 51 
 
Figures calculated in PAUP* 

 

 

5.4.1.3 Corrected pairwise p-distances 

Within the 407 bp dataset, pairwise distances (corrected) across all taxa ranged from 0 

to 0.479, and within the 1002 bp dataset, ranged from 0 to 0.353.  For both datasets, 

the greatest range in distances occurred within the spinose planktonic foraminifera 

(407 bp dataset: 0 – 0.479; 1002 bp dataset: 0 to 0.353).  The smallest ranges in 

distance occurred within the non-spinose microperforate planktonic foraminifera (407 

bp dataset: 0 - 0.010; 1002 bp dataset: 0.012) and within the non-spiral planktonic 

foraminifera (407 bp dataset: 0.003) (see also appendix 9.4).   

 

Mean corrected pairwise distances, both within and between the major foraminiferal 

groups, are shown in tables 5.2 (407 bp dataset) and 5.4 (1002 bp dataset).   Table 5.3 

shows the mean corrected pairwise distances (407 bp dataset) with certain unusually 

rapidly evolving foraminiferal lineages (discussed in section 5.4.3) excluded, to 

eliminate them as a potential source of error when evaluating between group 

distances.  Mean corrected pairwise distances within and between the major 

foraminiferal groups (tables 5.2 & 5.3: 407 bp dataset, table 5.4: 1002 bp dataset), 

indicate substantial distances between the spinose planktonic foraminifera and both 

the non-spinose (macroperforate, microperforate, & non-spiral) planktonic and benthic 
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foraminifera.  Mean distances between the non-spinose (macroperforate, 

microperforate, & non-spiral) planktonic foraminifera and the benthic foraminifera are 

smaller.  The highest mean distances were actually evident within the spinose and 

non-spinose macroperforate planktonic groups, reflecting the extreme ranges of rates 

of evolution found within planktonic foraminiferal groups (see section 5.4.3). 

 
 
 
 

Table 5.2.  Mean corrected pairwise distances within and between the major 
foraminiferal groups, based on 407 bp of the SSU rRNA gene 
 
407 bp dataset Spinose Macroperforate Microperforate Non-spiral Benthic 
Spinose 0.2127     
Macroperforate 0.1998 0.0586    
Microperforate 0.1619 0.0491 0.0033   
Non-spiral 0.1689 0.0508 0.0030 0.0027  
Benthic 0.1859 0.0700 0.0296 0.0303 0.0491 
 
Corrected pairwise distances calculated in PAUP* using maximum likelihood with a GTR + Γ 
model.  

 

 

Table 5.3.  Mean corrected pairwise distances within and between the major 
foraminiferal groups, based on 407 bp of the SSU rRNA gene, with rapidly-
evolving taxa excluded 
 
407 bp dataset Spinose Macroperforate Microperforate Non-spiral Benthic 
Spinose 0.1147     
Macroperforate 0.1218 0.0182    
Microperforate 0.1086 0.0223 0.0033   
Non-spiral 0.1125 0.0227 0.0030 0.0027  
Benthic 0.1259 0.0305 0.0117 0.0114 0.0196 
 
Corrected pairwise distances calculated in PAUP* using maximum likelihood with a GTR + Γ 
model.  Figures shown represent the relative rates within and between foraminiferal groups after 
the exclusion of certain unusually rapidly evolving taxa (spinose planktonic; Globigerina bulloides, 
Globigerinoides sacculifer, Turborotalita quinqueloba, non-spinose macroperforate planktonic; 
Globorotalia menardii, Globorotalia ungulata, Globorotalia truncatulinoides, and Benthic order 
Milliolida) (see section 5.4.3), in order to eliminate them as a potential source of error. 
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Table 5.4.  Mean corrected pairwise distances within and between the major 
foraminiferal groups, based on 1002 bp of the SSU rRNA gene 
 
1002 bp dataset Spinose Macroperforate Microperforate Non-spiral Benthic 
Spinose 0.2841     
Macroperforate 0.2364 0.0716    
Microperforate 0.1985 0.0589 0.0124   
Non-spiral 0.1971 0.0592 0.0157 N/A  
Benthic 0.2333 0.1059 0.0712 0.0681 0.0728 
 
Corrected pairwise distances calculated in PAUP* using maximum likelihood with a GTR + Γ 
model.   

 

 

5.4.1.4 Evaluating the sequence data for saturation 

Prior to phylogenetic analysis, the sequence data was examined for evidence of 

substitution saturation, which if severe may remain uncorrected by the chosen model 

of evolution, leading to inaccuracies in the phylogeny produced.  For both the 407 bp 

and 1002 bp datasets, transition and transversion distances were plotted against 

uncorrected distances (fig. 5.2a, 5.2b).  For both datasets, transition and transversion 

substitutions can be seen to increase linearly, indicating that saturation has not been 

reached.   As highly divergent sequences are more prone to substitutions than closely 

related sequences, saturation (which generally occurs in transitions before 

transversions) would be observed as a curve and eventual plateau in the line of best fit 

(Salemi, 2009).  The lack of saturation was confirmed by the plots of transition 

distance against transversion distance, which also showed a linear relationship for 

both datasets (fig. 5.2c, 5.2d).  For both types of plots (figs. 5.2a, 5.2b, & 5.2c, 5.2d), 

the transition distances were higher than the transversion distances, as would be 

expected due to the generally more frequent occurrence of transitions relative to 

transversions (Salemi, 2009). 
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5.4.2 Phylogenetic relationships of the planktonic foraminifera 

5.4.2.1 Phylogenetic analyses using an ~ 1,000 bp partial 3´ terminal fragment of 
the SSU rRNA gene  

A comprehensive phylogeny of the foraminifera, based on the analysis of 407 bp of 

the SSU rRNA gene is shown in figure 5.3, including examples of all planktonic 

foraminiferal morphospecies and genotypes sequenced to date plus representatives of 

the major groups of benthic taxa (1 per family).  All methods of phylogenetic 

reconstruction employed were largely consistent in their inferred trees. 

 

Within the foraminiferal phylogeny, the planktonic taxa do not form a monophyly, but 

fall in separate groups throughout the tree, appearing in at least 3, but possibly up to 5 

locations.  The first group is comprised of the spinose planktonic foraminifera 

(Globigerinidae: Globigerinella siphonifera, Globigerinella calida, Orbulina 

universa, Globigerinoides sacculifer, Globoturborotalita rubescens (pink), 

Globigerinoides ruber, Globigerinoides conglobatus, Globigerina bulloides, 

Turborotalita quinqueloba, Globigerina falconensis and Hastigerinidae: Hastigerina 

pelagica), which fall in a monophyletic clade (p= 0.94 BI, 46 % ML, 29 % NJ; Fig. 

5.3).  There is little resolution at the base of the clade, which appears as a polytomy.   

Within the clade there are 5 groupings: 1) O. universa & G. sacculifer (p= 0.60 BI, 27 

% ML, - NJ; Fig. 5.3), 2) G. siphonifera & G. calida (p= 1.00 BI, 96 % ML, 92 % NJ; 

Fig. 5.3), 3) G. rubescens (pink), G. ruber, & G. conglobatus (p= 1.00 BI, 93 % ML, 

92 % NJ; Fig. 5.3), 4) G. bulloides, T. quinqueloba, & G. falconensis (p= 1.00 BI, 78 

% ML, 74 % NJ; Fig. 5.3), and 5) Hastigerina pelagica. 
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Figure 5.3.  Bayesian inference SSU rDNA phylogeny of the benthic and planktonic foraminifera.  The
phylogeny is based on the partial 3’ terminal fragment of the SSU rRNA gene  (407 unambiguously
aligned nucleotide sites) and is rooted on the benthic foraminifer Allogromia sp. Bayesian posterior
probabilities (from last 1000 trees, obtained within MrBayes) and bootstrap support, derived from ML
and NJ methods (expressed as a percentage, 1000 replicates) are shown on the tree (BI posterior
probabilities/ ML bootstraps/ NJ bootstraps).  The scale bar corresponds to a genetic distance of 2 %.
Benthic foraminiferal taxa are shown in grey text, and planktonic foraminifera are shown in black.  The
major planktonic foraminiferal taxonomic groupings are highlighted on a grey background. 
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The second group is comprised of the non-spinose macroperforate planktonic 

foraminifera (Globorotaliidae: Globorotalia (menardii, ungulata, truncatulinoides, 

crassaformis, hirsuta, scitula and inflata), Neogloboquadrina (incompta, dutertrei and 

pachyderma) and Pulleniatinidae: Pulleniatina (obliquiloculata)).  These fall in a 

monophyletic clade, which despite low bootstrap support (p= 0.96 BI, - ML, 27 % NJ; 

Fig. 5.3), is recovered with all methods of phylogenetic reconstruction.  

 

The remaining planktonic foraminifera fall amongst the benthic foraminiferal taxa, in 

an area of the tree with little resolution.  According to shell morphology these can be 

split into two groups: the microperforate planktonic foraminifera (Candeinidae: 

Globigerinita glutinata, Globigerinita uvula & Candeina nitida) and the non-spiral 

planktonic foraminifera (Bolivinidae: Streptochilus globigerus & Guembelitriidae: 

Gallitellia vivans).   

 

The microperforate planktonic foraminifera (Candeinidae: G. glutinata, G. uvula & C. 

nitida) do not form a coherent group in the phylogeny here, though the evolutionary 

distances between them are very small (G. glutinata & G. uvula = 0.0075; G. glutinata 

& C. nitida 0.0006; G. uvula & C. nitida  = 0.0075) (appendix. 9.4.2).   

 

The two extant non-spiral planktonic foraminifera, Streptochilus globigerus (order 

Bolivinidae) and Gallitellia vivans (order Guembelitriidae), fall separately in the 

phylogeny (fig. 5.3).  Biserial morphospecies S. globigerus falls together with benthic 

species Bolivina variabilis and Brizalina alata (p= 0.96 BI, 63  % ML, 60 % NJ; Fig. 

5.3), and triserial morphospecies Gallitellia vivans falls alone.  The evolutionary 

distance between S. globigerus and G. vivans is 0.0027, compared to a distance of 
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0.00 between S. globigerus and benthic morphospecies, Bolivina variabilis and a 

distance of 0.00 between G. vivans and benthic morphospecies, Stainforthia fusiformis 

(appendix 9.4.3). 

 

Despite the clear topological separation of the planktonic foraminiferal groups 

(spinose, non-spinose macroperforate, non-spinose microperforate, and non-spiral) 

within the 407 bp SSU rRNA phylogeny, a planktonic foraminiferal monophyly could 

not be rejected in Kishino–Hasegawa (KH) likelihood tests (table 5.5).  A constrained 

monophyly of the spinose planktonic and non-spinose macroperforate planktonic 

foraminifera produced the best tree according to the KH test (–ln L 3431.69653, best 

tree versus –ln L 3465.04514 for the unconstrained MB tree shown in fig. 5.3), though 

the result was not significant (P = 0.115) (table 5.5). 

 

Table 5.5.  Kishino–Hasegawa test of alternative phylogenetic hypotheses for the 407 
bp dataset 

 
Tree -ln L Diff -ln L P 

1 Unconstrained MB tree 3465.04514 33.34861 0.115 
2 Planktonic foraminiferal monophyly 3442.35658 10.66005 0.236 
3 Planktonic foraminiferal monophyly 

minus non-spiral taxa 3433.35428 1.65776 0.648 

4 Spinose and non-spinose 
macroperforate planktonic 
foraminiferal monophyly 

3431.69653 (best) 
 

5 Spinose planktonic and G. menardii/ 
G. ungulata monophyly 3441.27470 9.57818 0.397 

6 Spinose and non-spinose 
microperforate planktonic 
foraminiferal monophyly 

3436.35306 4.65654 0.606 

7 Spinose planktonic, non-spinose 
microperforate planktonic, and non-
spiral foraminiferal monophyly 

3437.63788 5.94136 0.585 

 
KH test using RELL bootstrap, two-tailed test, with 1000 bootstrap replicates, performed in PAUP* for 
407 bp of the SSU rRNA gene.  * P < 0.05 
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5.4.2.2 Phylogenetic analyses using the ~ 3,000 bp almost complete SSU rRNA 
gene 

Phylogenetic analyses based on the almost complete (~3,000 bp fragment) SSU rRNA 

gene were carried out, incorporating 13 morphospecies of planktonic foraminifera 

(those for which the ~ 3000 bp fragment could be successfully obtained), plus the 21 

benthic foraminiferal morphospecies for which full-length SSU rRNA sequences are 

currently available on GenBank (see appendix 9.1 for details).  Phylogenetic trees 

were constructed using Bayesian inference (BI; fig. 5.4), maximum likelihood (ML; 

fig. 5.5), and neighbour-joining (NJ; fig. 5.6).   

 

 

 

 

 

 

 

 

Figure 5.4.  Bayesian inference phylogeny of the benthic and planktonic foraminifera, based on the
almost complete SSU rRNA gene (1002 unambiguously aligned nucleotide sites).  The phylogeny is 
rooted on the benthic foraminifer Allogromia sp. Bayesian posterior probabilities (from last 1000 
trees, obtained within MrBayes) are shown on the tree.  The scale bar corresponds to a genetic 
distance of 2 %.  Benthic foraminiferal taxa are shown in grey text, and planktonic foraminifera are
shown in black.  The major planktonic foraminiferal taxonomic groupings are highlighted on a grey
background. 
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There are some inconsistencies in the phylogenies produced using the different 

methods (figs. 5.4 – 5.6), with the positioning of some poorly supported groupings 

remaining inconclusive.  However, other relationships within the phylogeny are more 

informative.  

 

Only two morphospecies of spinose planktonic foraminifera, Globigerinoides 

sacculifer and Globigerina bulloides were successfully amplified and sequenced for 

the almost complete (~3,000 bp) SSU rRNA gene.  The pair fall together in a strong 

group in all three phylogenies (figs. 5.4 – 5.6. p= 1.00 BI; 97 % ML; 91 % NJ).  In the 

BI phylogeny, the spinose planktonic foraminifera and the non-spinose 

Figure 5.5.  Maximum likelihood phylogeny of the benthic and planktonic foraminifera, based on the
almost complete SSU rRNA gene (1002 unambiguously aligned nucleotide sites).  The phylogeny is 
rooted on the benthic foraminifer Allogromia sp.  ML bootstrap support values (expressed as a 
percentage, 1000 replicates) are shown on the tree.  The scale bar corresponds to a genetic distance of 
2 %.  Benthic foraminiferal taxa are shown in grey text, and planktonic foraminifera are shown in
black.  The major planktonic foraminiferal taxonomic groupings are highlighted on a grey 
background. 
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Figure 5.6.  Neighbour-joining phylogeny of the benthic and planktonic foraminifera, based on the
almost complete SSU rRNA gene (1002 unambiguously aligned nucleotide sites).  The phylogeny is
rooted on the benthic foraminifer Allogromia sp. ML bootstrap support values (expressed as a
percentage, 1000 replicates) are shown on the tree.  The scale bar corresponds to a genetic distance of
2 %.  Benthic foraminiferal taxa are shown in grey text, and planktonic foraminifera are shown in
black.  The major planktonic foraminiferal taxonomic groupings are highlighted on a grey
background. 

 

macroperforate planktonic foraminifera form a monophyletic grouping (fig. 5.4. 

p=0.94 BI).  However, in the ML tree (fig. 5.5), the spinose taxa fall together with 

only two of the macroperforates, G. menardii and G. ungulata, along with a group of 

benthics (the Milliolida plus two rotalliids; Ammonia beccarii & Elphidium 

aculeatum).  The three lineages join in a polytomy, with little resolution and only poor 

support (fig. 5.5. 30 % ML).  In the NJ phylogeny the spinose taxa again fall alongside 

the same group of benthics, but with little support (fig. 5.6) and the non-spinose 

macroperforate species fall away from the spinose taxa, although not in a cohesive 

group. 
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The macroperforate planktonic taxa do not form a monophyletic group with any of the 

tree-building methods used.  The topologies are highly inconsistent with regards to the 

positioning of individual morphospecies, and their interrelationships are poorly 

resolved.  However, a consistent relationship is observed between Pulleniatina 

obliquiloculata and Neogloboquadrina dutertrei, which fall together with every 

method (fig. 5.4. p= 0.91 BI, (also with N. incompta); fig. 5.5. 88 % ML; fig. 5.6. 86 

% NJ) and also between Globorotalia menardii and Globorotalia ungulata, which fall 

together on a long branch with every tree-building method used (figs. 5.4 – 5.6. p= 

1.00 BI; 100 % ML; 100 % NJ), though the position of this branch varies.  

 

With every method used, the non-spinose macroperforate planktonic taxa, a group of 

benthics (the Milliolida plus two rotalliids; Ammonia beccarii & Elphidium 

aculeatum), and the spinose planktonic taxa fall together (figs. 5.4 – 5.6. p= 1.00 BI; 

57 % ML; 54 % NJ). 

 

The two microperforate morphospecies, Globigerinita glutinata and Globigerinita 

uvula fall together with every tree reconstruction method (figs. 5.4 – 5.6. p= 1.00 BI; 

78 % ML; 68 % NJ), and consistently fall prior to the divergence of the non-spinose 

macroperforate planktonic taxa, certain benthics (the Milliolida plus two rotalliids; 

Ammonia beccarii & Elphidium aculeatum), and the spinose planktonic taxa. 

 

The only non-spiral planktonic morphospecies included, Streptochilus globigerus 

consistently falls together with the benthic foraminifer Bolivina variabilis (figs. 5.4 – 

5.6.  p= 0.69 BI; 52 % ML; 47 % NJ), away from the other planktonic foraminifera. 
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In Kishino–Hasegawa (KH) likelihood tests of the 1002 bp dataset (appendix 9.5), the 

Bayesian inference tree was highlighted as the best tree (-1n L 4594.79599), the ML 

tree had a lower score, but not significantly so (-1n L 4599.52616, P = 0.662), and the 

NJ tree was significantly worse (-1n L 4611.68090, P < 0.05).  As with the 407 bp 

dataset, a planktic foraminiferal monophyly could not be rejected in KH tests (table 

5.6), though the evolutionary distances between some of the planktonic groups, (e.g. 

the spinose and non-spinose macroperforate taxa = 0.2364) were substantial (table 

5.4). The best tree produced was one in which the non-spiral planktonic foraminifera 

were separate from the remaining planktonic taxa, though with no significance.   

 

Table 5.6.  Kishino–Hasegawa test of alternative phylogenetic hypotheses for the 
1002 bp dataset 

 
Tree -ln L Diff. -ln L P 

1 Unconstrained MB tree 4594.79599 6.50404 0.258 
2 Planktonic foraminiferal monophyly 4599.45634 11.16439 0.291 
3 Planktonic foraminiferal monophyly 

minus non-spiral taxa 4588.29195 (best)  

4 Spinose and non-spinose macroperforate 
planktonic foraminiferal monophyly 4589.68957 1.39763 0.429 

5 Unconstrained NJ tree 4611.68090 23.38895 0.020* 
 
KH test using RELL bootstrap, two-tailed test, with 1000 bootstrap replicates, performed in PAUP* for 
1002 bp of the SSU rRNA gene.  * P < 0.05 
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5.4.3 Rates of rDNA evolution in the foraminifera 

Pairwise comparisons of rates of rDNA evolution between major groups in the 

foraminiferal phylogeny were made using the relative rate test (RRT) (Sarich & 

Wilson, 1967), performed in the GRate package (K. Müeller, unpublished: appendix 

9.3).  Rates were firstly examined within the spinose and the non-spinose planktonic 

foraminifera (tables 5.7 & 5.8), and secondly between the major taxonomic groups of 

planktonic foraminifera (tables 5.9 & 5.10). 

 

5.4.3.1 Variation in rates of rDNA evolution within the spinose and non-spinose 
planktonic foraminifera 

Relative rate tests, based on the 407 bp dataset, were used to examine the rates of 

rDNA evolution within the two major groups of planktonic foraminifera, the spinose 

planktonic foraminifera (Globigerinidae & Hastigerinidae) (table 5.7) and the non-

spinose planktonic foraminifera (encompassing macroperforate, microperforate, and 

non-spiral taxa) (table 5.8). 

 

Rates of evolution within the spinose planktonic group were found to be relatively 

constant, with the exception of 3 significantly faster evolving lineages; Globigerina 

bulloides, Turborotalita quinqueloba, and Globigerinoides sacculifer (table 5.7).  The 

greatest rate difference was between T. quinqueloba and Globigerinella siphonifera/ 

Globigerinella calida.  Rates of evolution within the non-spinose planktonic 

foraminifera (encompassing macroperforate, microperforate, and non-spiral taxa) 

were found to be more variable (table 5.8).  Again, certain lineages were found to be 

evolving at a significantly faster rate than the rest (Globorotalia menardii/ 

Globorotalia ungulata & Globorotalia truncatulinoides), whilst others were evolving 

significantly slower (microperforates, Globigerinita glutinata & Candeina nitida). 
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The greatest rate difference was between Globorotalia menardii and Globigerinita 

glutinata/ Candeina nitida.   

 

5.4.3.2 Variation in the rate of rDNA evolution between the 5 major foraminiferal 
taxonomic groups 

The relative rates of rDNA evolution were also compared between the five major 

taxonomic groups within the foraminiferal phylogeny, the spinose planktonic 

(Globigerinidae & Hastigerinidae), non-spinose macroperforate planktonic 

(Globorotaliidae & Pulleniatinidae), non-spinose microperforate planktonic 

(Candeinidae), non-spiral planktonic, and benthic foraminifera (table 5.9).  An 

additional RRT was made, excluding any unusually fast-evolving taxa from each 

group, to ensure that the results were not skewed by their presence (table 5.9).  

Relative rate tests were performed using both the original 407 bp dataset (table 5.9), 

and the extended 1002 bp dataset (table 5.10).  Differences in substitutional rates 

between groups were found to be greater using the 1002 bp dataset than when using 

the 407 bp dataset, though the significant differences in rates between groups were 

generally consistent regardless of the number of nucleotide sites used. 

 

A great deal of rate variation was evident between the major taxonomic groups of 

foraminifera.  The spinose planktonic foraminiferal taxa (Globigerinidae & 

Hastigerinidae) displayed significantly higher rates of evolution than any of the other 

groups of foraminifera, both planktonic and benthic, even with the exclusion of the 

faster evolving spinose morphospecies (G. bulloides, T. quinqueloba, & G. sacculifer) 

(tables 5.9 & 5.10). 
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Table 5.9.  Relative rates of substitution between 5 major foraminiferal groups, based on  
407 bp of the SSU rRNA gene 
 

Taxon group 2 

Taxon group 1 Spinose 
planktonic 

Non-spinose 
macroperforate 

planktonic 

Non-spinose 
microperforate 

planktonic 

Non-spiral 
planktonic 

 
Benthic 

Spinose planktonic - 0.134** 
(0.027*) 

0.174** 
(0.041**) 

0.171** 
(0.037*) 

0.154** 
(0.035*) 

Non-spinose macroperforate 
planktonic 

0.023 
(0.014) - 0.039** 

(0.015*) 
0.037** 
(0.012*) 

0.020* 
(0.009) 

Non-spinose microperforate 
planktonic 

0.025 
(0.015) 

0.009 
(0.006) - -0.003 

(-0.003) 
-0.020** 

(-0.006**) 
Non-spiral planktonic 0.025 

(0.015) 
0.009 

(0.006) 
0.002 

(0.002) - -0.017** 
(-0.003) 

Benthic 0.024 
(0.014) 

0.009 
(0.006) 

0.005 
(0.002) 

0.005 
(0.002) - 

 
Degree of substitutional rate divergence between groups of foraminiferal taxa based on 407 bp of the SSU 
rRNA gene (shown above the diagonal).  Rate divergence was assessed by the relative rate test (Sarich & 
Wilson, 1967), performed in the GRate package (Müller, K, unpublished), using maximum likelihood 
estimates of substitutions per site (with a GTR + Γ model) (appendix 9.3).  The reference taxon was 
benthic species, Allogromia sp.  A positive value indicates that taxon group 1 is evolving faster than taxon 
group 2, and inversely for a negative value.   Figures in brackets represent the relative rates between 
groups after the exclusion of unusual rapidly evolving taxa  (spinose planktonic; Globigerina bulloides, 
Globigerinoides sacculifer, Turborotalita quinqueloba, non-spinose macroperforate planktonic; 
Globorotalia menardii, Globorotalia ungulata, Globorotalia truncatulinoides, and Benthic order 
Milliolida).  Standard errors (shown below the diagonal) were estimated via bootstrapping (300 replicates) 
(Efron, 1982, Felsenstein, 1985).  The significance of differences between groups, tested using a two-
tailed z-test, is indicated by *p=0.05, **p=0.01. 

 

Rates in the non-spinose macroperforate taxa (Globorotaliidae & Pulleniatinidae) 

were significantly slower than in the spinose group, but faster than in the 

microperforate and non-spiral planktonic taxa (tables 5.9 & 5.10), even with the 

exclusion of the faster evolving G. menardii, G. ungulata & G. truncatulinoides from 

the macroperforate group.  With the 407 bp dataset, macroperforate rates of evolution 

were significantly higher than in the benthic taxa (table 5.9), however, with all faster 

taxa removed from the 407 bp dataset, and in the 1002 bp dataset (table 5.10), rates of 

evolution in the macroperforates were equivalent to those in the benthic foraminifera.
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Table 5.10.  Relative rates of substitution between 5 major foraminiferal groups, based 
on 1002 bp of the SSU rRNA gene 
 

Taxon group 2 

Taxon group 1 Spinose 
planktonic 

Non-spinose 
macroperforate 

planktonic 

Non-spinose 
microperforate 

planktonic 

Non-spiral 
planktonic 

 
Benthic 

Spinose planktonic - 0.146** 0.183** 0.188** 0.148** 
Non-spinose macroperforate 
planktonic 0.019 - 0.037** 0.042** 0.003 

Non-spinose microperforate 
planktonic 0.020 0.007 - 0.005 -0.034** 

Non-spiral planktonic 0.020 0.007 0.004 - -0.039** 
Benthic 0.020 0.009 0.008 0.008 - 
 
Degree of substitutional rate divergence between groups of foraminiferal taxa based on 1002 bp of the 
SSU rRNA gene (shown above the diagonal).  Rate divergence was assessed by the relative rate test 
(Sarich & Wilson, 1967), performed in the GRate package (Müller, K, unpublished), using maximum 
likelihood estimates of substitutions per site (with a GTR + Γ model) (appendix 9.3).  The reference taxon 
was benthic species, Allogromia sp.  A positive value indicates that taxon group 1 is evolving faster than 
taxon group 2, and inversely for a negative value.  Standard errors (shown below the diagonal) were 
estimated via bootstrapping (300 replicates) (Efron, 1982; Felsenstein, 1985).  The significance of 
differences between groups, tested using a two-tailed z-test, is indicated by *p=0.05, **p=0.01. 

 

 

Both with and without the rapidly evolving taxa excluded, the non-spinose 

microperforate taxa appeared to be evolving at a significantly slower rate than all 

groups, with the exception of the non-spiral planktonics, which had a roughly 

equivalent rate of evolution (tables 5.9 & 5.10). 

 

The non-spiral planktonic taxa showed significantly slower rates of substitution than 

in the spinose planktonic and non-spinose macroperforate planktonic taxa, and 

equivalent rates to those seen in the microperforate planktonic and benthic 

foraminifera, even with unusually fast-evolving lineages removed (tables 5.9 & 5.10).  
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5.5 Discussion 

5.5.1 Amplification of the ~3,000 bp, almost complete SSU rRNA in the 
foraminifera 

Phylogenetic analyses of the foraminifera, based on the traditionally used ~1,000 bp 

partial 3´ terminal region of the SSU rRNA gene, are commonly afflicted with 

problems of poor resolution and low bootstrap support in deep-lineage relationships, 

and inconsistencies in the phylogenetic positioning of certain taxa.  Extreme rate 

heterogeneity in foraminiferal rDNA evolution may in part be responsible, however, 

limited data may also be a factor, given that only ~500 bp can usually be retained for 

phylogenetic analyses, 407 bp under the stringent conditions used in this study.  In 

order to alleviate these problems, the primary aim of this work was to sequence the 

complete foraminiferal SSU rRNA gene (~ 3,000 bp in length), substantially 

increasing the number of sites available for phylogenetic analyses.  

 

It proved extremely difficult, however, to obtain full-length SSU rDNA sequences for 

the planktonic foraminifera, with high failure rates in PCR.  It is likely that poor DNA 

extraction and preservation techniques, and the resultant presence of inhibitory 

substances in the PCR reactions and degradation of the sample DNA are in part 

responsible for such failures, however, there was also a marked difference in success 

rates between non-spinose and spinose planktonic samples. 

 

The design of anti-sense PCR primers in the 3´ terminal region of the SSU rRNA gene 

is made easy by the availability of extensive sequence information for both benthic 

and planktonic taxa.  At the 5´ end of the gene, in contrast, sequence data is available 

for only a handful of benthic foraminifera, plus other eukaryote taxa, on which the 
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universal primers of White et al. (1990) were based.  High sequence homology 

between the benthic and non-spinose planktonic taxa, allows 5´ region sense primers 

designed on the former, to work well on the latter (although minor sequence variations 

were observed even in some non-spinose taxa in this region), however, it appears that 

they are a poor match for the significantly more divergent spinose taxa, for which 

amplification in most species proved impossible.  With the exception of two species 

(Globigerinoides sacculifer & Globigerina bulloides) all attempts to amplify 

planktonic taxa failed, despite a high throughput of samples of every species, from 

various geographic localities, extensive re-designing of primers, and much 

optimisation of the method. 

 

Even for those specimens that did amplify, the process proved extremely labour 

intensive, with 3 rounds of PCR (in some cases with multiple 3° reactions needed to 

pool enough PCR product), cloning necessary for most samples (x3 replicates each), 

and sequencing reactions undertaken with many primers.  The eventual outcome was 

that an ~3,000 bp fragment, or almost the complete length of the SSU rRNA gene 

(minus ~200 bp and ~20 bp at the 5´ and 3´ ends respectively) was successfully 

amplified for 13 morphospecies of planktonic foraminifera, including 8 non-spinose 

macroperforate species (Globorotalia menardii, Globorotalia ungulata, Globorotalia 

scitula, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, Neogloboquadrina 

pachyderma, Neogloboquadrina incompta, & Globorotalia inflata, 2 non-spinose 

microperforate species (Globigerinita glutinata & Globigerinita uvula), 1 non-spiral 

species (Streptochilus globigerus), and 2 spinose species (Globigerinoides sacculifer 

& Globigerina bulloides).  These were added to the 22 pre-existing complete SSU 

rDNA sequences published for benthic taxa for phylogenetic analysis.  The unusually 
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large genetic distances seen between foraminiferal taxa inevitably meant that only a 

relatively small percentage of the entire gene (1002 bp) could be reliably aligned 

across all taxa, though this more than doubled the number of sites available for 

phylogenetic analysis, compared to traditional analyses. 

 

Phylogenetic analyses based on the almost complete (~3,000 bp) SSU rRNA gene 

(1002 bp dataset) (fig. 5.4 – 5.6), are likely to have been affected by the poor taxon 

sampling resulting from the difficulties amplifying the complete gene in the 

planktonic foraminiferal taxa.  Bootstrap support is low in certain areas of the trees, 

which in turn has led to inconsistent topologies being produced between the various 

methods of tree reconstruction employed (fig. 5.4; Bayesian Inference (BI), fig. 5.5; 

Maximum Likelihood (ML), fig. 5.6; Neighbour-joining (NJ)).  In addition to poor 

taxon sampling, the extreme homogeneity of rates in rDNA evolution observed in the 

foraminifera may be partly responsible for such effects. 

 

5.5.2 Evolutionary origins of the planktonic foraminifera 

Despite the assumption in traditional classifications that the planktonic foraminifera 

represent a monophyletic lineage, first appearing in the Mid-Jurassic (Caron & 

Homewood, 1983; Görög, 1994; Loeblich & Tappan, 1974), the phylogeny based on 

the partial ~ 1,000 bp fragment of the SSU rRNA gene (407 bp dataset) (fig. 5.3), 

provides strong indications that they are in fact polyphyletic in origin, arising from up 

to 5 independent lineages, each representing an evolutionary move from the benthic to 

planktonic environment.  The lineages correspond to three major morphological 

groups; the spinose planktonic (Globigerinidae & Hastigerinidae), non-spinose 

macroperforate planktonic (Globorotaliidae & Pulleniatinidae), and non-spinose 
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microperforate planktonic (Candeinidae) foraminifera, the independent origins of 

which have been indicated in past phylogenetic studies (Aurahs et al., 2009; Darling 

et al., 1997, 1999, 2000, 2006; de Vargas et al., 1997; Stewart et al., 2001).  In 

addition to these are two further groups, represented by the biserial, non-spiral 

morphospecies Streptochilus globigerus (seen here in a comprehensive foraminiferal 

phylogeny for the first time), and the triserial non-spiral morphospecies Gallitellia 

vivans, the independent origin of which has been proposed by Ujiié et al., (2008). 

 

5.5.2.1 The spinose and non-spinose macroperforate planktonic groups 

Two of the largest morphologically distinct groups within the planktonic foraminifera 

are the spinose planktonic and non-spinose macroperforate planktonic taxa.  Though 

both possess the macroperforate test wall structure that is characteristic of the majority 

of planktonic foraminifera, they differ significantly in other respects.  The test of the 

spinose taxa is primarily globular in form, bearing elaborate radiating spines, a likely 

adaptation to the planktonic mode of life, while the non-spinose macroperforate taxa 

lack spines and possess a more flattened, or sometimes carinate smooth test 

(Hemleben et al., 1989; Kennett & Srinivasan, 1983). 

 

In traditional paleontological terms it was thought that the main familial 

representatives of these two groups, the globigerinids (spinose) and the globorotaliids 

(non-spinose) shared a common origin (Hart, 1980; Caron, 1983; Bolli, 1986), arising 

from a single ‘globigerinid-like’ ancestor in the Mid-Jurassic (Loeblich & Tappan, 

1974; Caron & Homewood, 1983).  Fossil records place the first spinose 

globigerinids, 65 Ma ago, after the K/T crisis (Hemleben, 1991), much earlier than the 

first globorotaliids, which appeared only ~22 Ma, during the Miocene, following the 
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Eocene-Oligocene crisis (Kennett & Srinivasan, 1983).  The Globorotaliidae were 

thought to have diverged from a Globigerinidae ancestor in the Neogene (Cifelli, 

1982; Pearson, 1993), with evolution therefore progressing from globular, 

globigerinid-like ancestors to carinate, Globorotaliidae-like endmembers (Hart, 1980; 

Caron, 1983; Bolli, 1986).  However de Vargas et al (1997) point out that the fossil 

evidence for a passage from the spinose honeycomb test wall structure to a non-

spinose smooth wall is extremely weak.  Furthermore, it seems unlikely that such 

highly adaptive features such as the radial spines, which favour life in a planktonic 

environment, would be lost in the macroperforate taxa, to be replaced by a smooth 

form, more consistent with the benthic foraminiferal test. 

 

The spinose planktonic and non-spinose macroperforate planktonic lineages are 

particularly well represented in the 407 bp phylogeny (fig. 5.3).  Each falls as a 

monophyletic group, recovered consistently with all methods of tree reconstruction, 

though with relatively low bootstrap support.  As in past studies, the precise position 

of these groups among the benthic taxa cannot be determined, due to poor resolution 

at the base of the clades, though there may be some association between the non-

spinose macroperforate taxa and the benthic morphospecies, Miliammina fusca 

(weakly supported in 0.58 BI posterior probabilities & 62 % ML bootstraps, fig 5.3). 

 

 The two groups are not as clearly defined in the phylogenies derived from the almost 

complete SSU rRNA gene (~ 3,000 bp) (1002 bp dataset), which offer conflicting 

results, throwing their independent origins into doubt.  In the 1002 bp NJ phylogeny, 

the spinose and non-spinose taxa are separated, supporting their independence (fig. 

5.6), however, in the BI tree (fig. 5.4) (found to be optimal in KH tests, appendix 9.5), 
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the spinose and non-spinose macroperforate taxa fall in a monophyletic group. In the 

ML tree (fig. 5.5), two microperforates, G. menardii and G. ungulata are grouped 

together with the spinose taxa, though this may be due to the long branch attraction 

(LBA) phenomenon (Bergsten 2005; Olsen, 1987) (these two globorotaliids are also 

misplaced in the 407 bp NJ tree, falling basal to the spinose planktonic group, together 

with a number of faster-evolving benthic taxa).   It is impossible to identify, from 

these results, the true relationship between these taxa with any certainty.  Only by 

overcoming the difficulties in amplifying the complete SSU rRNA gene in the 

planktonic foraminifera (particularly in the spinose taxa), could the problem of poor 

taxon sampling be overcome, to produce more informative results. 

 

With both the 407 bp & 1002 bp datasets, a monophyletic relationship between the 

spinose planktonic and non-spinose macroperforate taxa or indeed a complete 

planktonic foraminiferal monophyly could not be rejected in KH tests (tables 5.5 & 

5.6).  Though this does throw some doubt on the multiple origins of the planktonic 

foraminifera, it is also likely that the data itself is insufficient to provide conclusive 

results, making all hypotheses put forward in the KH test equally likely.  For the 407 

bp dataset, too few sites are available for analysis, and for the 1002 bp dataset the 

issue of poor taxon sampling again applies.  The presence of excessively long 

branches within the phylogenies, from those taxa with unusually high rates of 

evolution may also be problematic.  

 

Despite ambiguities in the phylogenetic analyses, additional molecular data gives 

compelling evidence against a common origin of the globigerinids and globorotaliids.  

The foraminifera display unusually variable rates of rDNA evolution, being 50 to 100 
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times faster in the spinose planktonic Globigerinida, than in some benthic lineages 

(Pawlowski et al., 1997).  In this study, relative rates tests (tables 5.9 & 5.10) reveal 

that rates of substitution in the spinose planktonic taxa are indeed significantly faster 

than in the benthic taxa, but also significantly faster than in all other groups of 

planktonic foraminifera, including the non-spinose macroperforate group.  Rates of 

evolution in the macroperforate taxa, excluding certain unusually fast evolving 

lineages (G. menardii, G. ungulata, G. truncatulinoides), are more consistent with 

those of the benthic foraminifera (tables 5.9 & 5.10), setting them apart from the 

spinose planktonic taxa.  Rates of evolution appear to be more stable within the 

spinose planktonic group, than in the non-spinose planktonic foraminifera 

(macroperforate, microperforate, and non-spiral) (tables 5.7 & 5.8).  de Vargas et al., 

(1998) also calculated that rates of evolution in the spinose globigerinids are relatively 

constant, with a mean of  4.3 sub/site/109 years, whereas the globorotaliids display 

more variable rates, ranging from a mean of  1 sub/site/109 yrs in the slower evolving 

taxa (G. inflata, N. dutertrei, G. hirsuta), to 7 sub/site/109 yrs in the faster evolving 

lineages (G. menardii, G. truncatulinoides).  The faster rates of evolution observed in 

the spinose taxa contrasts the taxonomic rates, calculated from the fossil record, which 

indicated that the globorotaliids had undergone a significantly more rapid evolutionary 

turnover than the spinose globigerinids (Stanley et al., 1988).  The two types of rates 

are dependent, however, on very different factors. (de Vargas et al.,1998). 

 

There are a number of possible explanations for the evolutionary rate homogeneity 

observed in the foraminifera, a number of which may be symptomatic of life in the 

pelagic environment. Generation time can influence the rate of evolution (Catzeflis et 

al., 1987; Gaut et al., 1992; Laird et al., 1969; Li et al., 1987; Martin & Palumbi, 
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1993), with a greater reproductive turnover leading to faster rates.  Reproduction in 

the benthic foraminifera (by alternation of asexual & sexual generations) is slow, with 

generation times of up to 1 year.  The planktonic foraminifera, by contrast, reproduce 

sexually, usually in a lunar or semi-lunar cycle (Hemleben et al., 1989).  Pawlowski et 

al., (1997), however, state that this alone is unlikely to explain the extreme rate 

acceleration observed in the spinose planktonic taxa.  Environmental stresses and 

relative exposure to mutagens may also affect the rate of evolution (Adelman et al., 

1988), possibly by altering DNA replication or repair mechanisms (Britten, 1986).  

The thin, delicate shells of the planktonic foraminifera would provide little protection 

against UV radiation, for example, and in other organisms such as diatoms and 

echinoids, pelagic life or proximity to the water surface has certainly been correlated 

with elevated rates of evolution (Kooistra & Medlin, 1996; Smith et al., 1992).  As the 

ancestors of the spinose planktonic foraminifera entered the plankton far earlier than 

those of the non-spinose macroperforate taxa (Kennett & Srinivasan, 1983), their 

longer exposure to the planktonic domain may have resulted in their extreme rates of 

evolution. 

 

A high genetic similarity is also observed between the non-spinose macroperforate 

planktonic taxa and the benthic foraminifera.  The macroperforate planktonic taxa 

show an evolutionary distance of only 0.0700 from the benthic foraminifera, 

compared to a far greater distance of 0.1859 between the spinose planktonic taxa and 

the benthic foraminifera.  In addition, certain substitutional changes, and an 

insertion/deletion event in the SSU rRNA gene, have been found to be specific to the 

spinose taxa (Darling et al., 1997).  The benthic and non-spinose planktonic 

(globorotaliid) species possess 2 extra bases in the C1 conserved region of the SSU 
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rRNA gene, which are lacking in the spinose planktonic taxa.  The close genetic 

homogeneity of the macroperforate and benthic taxa (also observed by de Vargas et 

al., 1997) thus supports the more recent origin of the macroperforate taxa from an 

independent benthic ancestor. 

 

5.5.2.2 The non-spinose microperforate and non-spiral planktonic foraminifera 

The remaining planktonic species fall separately from the spinose and macroperforate 

planktonic taxa amongst the benthic foraminifera, in an area of the tree where rates of 

substitution are generally low, and relationships are generally poorly resolved as a 

result (fig. 5.3).  They can be separated from one-another on the basis of test 

morphology into two groups, the non-spinose microperforate and non-spiral 

planktonic foraminifera (Kennett & Srinivasan, 1983; Hemleben et al., 1989).  

Morphology alone suggests they are not related to the other planktic lineages, as they 

lack the large perforations of the test, common to the other planktonic taxa (Hemleben 

et al., 1989). 

 

The non-spinose microperforate species, Globigerinita glutinata, Globigerinita uvula, 

Candeina nitida belong to the family Candeinidae (Decrouez, 1989; Loeblich & 

Tappan, 1992), and are characterised by their small size and smooth microperforate 

test (Hemleben et al., 1989).  The monophyly of this group is rarely proven in 

phylogenetic analyses (Aurahs et al., 2009; Darling et al., 2006 Stewart et al., 2001), 

and despite the extremely small evolutionary distance between them (407 bp dataset: 

G. glutinata & G. uvula = 0.0075; G. glutinata & Candeina nitida 0.0006; G. uvula & 

Candeina nitida  = 0.0075, appendix 9.4.2), the morphospecies fell separately among 

the benthic taxa in the current analyses based on 407 bp (fig. 5.3).  In the 1002 bp 
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phylogenies (figs. 5.4, 5.5, & 5.6), however, G. glutinata and G. uvula consistently 

fell together, as in Ujiié et al. (2008).  As in past studies utilising the ~1,000 bp partial 

3´ terminal fragment of the SSU rRNA gene, poor resolution in the 407 bp phylogeny 

(fig. 5.3), makes the benthic ancestry of the microperforate Candeinidae impossible to 

ascertain.  The group position in the 1002 bp phylogenies was consistent though, 

placing it basal to the large group of spinose planktonic, non-spinose macroperforate 

planktonic, and certain benthic taxa (figs, 5.4, 5.5, & 5.6).    

 

Additional molecular data support the independence of the non-spinose 

microperforate taxa from the other planktonic foraminiferal groups.  Rates of 

evolution in the microperforate taxa are significantly slower than in the spinose and 

non-spinose macroperforate groups, and are even significantly slower than that of the 

benthic taxa (tables 5.9 & 5.10).  They are also separated from the other planktonic 

groups, with the exception of the non-spiral taxa, by large evolutionary distances, 

sharing a greater genetic homogeneity with the benthic taxa (tables 5.2 & 5.3), 

supporting the null dissimilarity found between G. glutinata and most species of the 

Rotaliida or Textulariida by de Vargas et al. (1997).  Both of these factors indicate a 

recent divergence from benthic taxa, which is consistent with the fossil record 

estimate for the first appearance of the Candeinidae ~34 Ma ago, during the Eocene-

Oligocene crisis (de Vargas et al., 1997).  It should be noted that this may not have 

been the first time that microperforate morphospecies had made the transition from 

benthos to plankton, as other minute microperforate planktonic forms were evident in 

the fossil record following the K/T extinctions (early Paleogene) (Brinkhuis & 

Zachsriasse, 1988; Li & Radford, 1991; Lui & Olsson, 1992). 
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Separate to the microperforate Candeinidae, but also falling amongst the benthic taxa 

phylogenetically, are the non-spiral planktonic foraminifera (fig. 5.3), represented by 

the only extant morphospecies of their kind, Streptochilus globigerus (family 

Chiloguembelinidae) and Gallitellia vivans (family Guembelitriidae).  These have 

been traditionally placed in the superfamily, Heterohelicacea and are characterised by 

a microperforate wall structure and biserial and triserial test, respectively (Loeblich & 

Tappan, 1987). 

 

Rates of evolution in the non-spiral planktonic taxa are comparable to those in the 

majority of benthic foraminifera and also the microperforate Candeinidae (tables 5.9 

& 5.10).  Their evolutionary distance from the microperforate Candeinidae is 

relatively small (0.0030) compared to their distance from the non-spinose 

macroperforate planktonic taxa (0.0508) and the spinose planktonic group (0.1689) 

(see table 5.2). 

 

However, despite sharing the morphological characteristic of a non-spiral test, 

molecular evidence suggests that these morphospecies may actually represent two 

independent transitions from the benthic to planktonic mode of life, rather than 

belonging to a single microperforate lineage.  They do not group together in the 407 

bp phylogeny (fig. 5.3), and though this alone does not prove their independence, the 

fact that both species share a greater genetic homology to other benthic taxa than to 

each other does.  The distance between Streptochilus globigerus and Gallitellia 

vivans, for example is 0.0027 (appendix 9.4.3), compared to a distance of 0.00, or 

complete sequence homology, between Streptochilus globigerus and benthic species 

Bolivina variabilis.  Streptochilus globigerus also consistently clusters with B. 
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variabilis in phylogenetic analyses (figs. 5.3, 5.4, 5.5, & 5.6) (Darling et al., 2009). 

Comparison of the 1,000 bp partial SSU rDNA sequences of 5 clones from the S. 

globigerus specimens to sequences of B. variabilis from various geographical 

localities revealed almost identical variable elements to those in B. variabilis from the 

Kenyan coastal region (see alignment in appendix 9.7.9, data also presented in Darling 

et al., 2009).  It now seems likely that S. globigerus and the benthic species B. 

variabilis actually represent the same biological species (within the family 

Bolivinidae), one that has adopted a tychopelagic lifestyle, utilising both benthic and 

planktonic habitats.  Such an adaptation reveals insights to the possible mechanisms 

by which the passage from benthic to planktonic life may occur in the foraminifera. 

 

Gallitellia vivans too has been shown to cluster closely with two triserial benthic 

species, Stainforthia and Virgulinella in an SSU rDNA phylogeny (Ujiié et al., 2008).  

Though not resolved in the phylogenetic tree here (fig. 5.3), the relationship is 

reflected in the 0.00 distance from Gallitellia vivans to sister species Stainforthia 

(appendix 9.4.3).  Ujiié et al., (2008) estimate that the divergence of G. vivans from 

the benthic Stainforthia lineage took place ~18 Ma ago, in the early Miocene.   
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5.5.3 The future of foraminiferal phylogenetics 

The lack of sufficient information provided by the traditionally used 1,000 bp partial 

3´ terminal fragment of the SSU rRNA gene, has resulted in poor resolution and low 

bootstrap support of the major clades in foraminiferal phylogenetic analyses (fig. 5.3) 

(Darling et al., 1999, 2000, de Vargas et al., 1997; Pawlowski et al., 1997; Stewart et 

al., 2001).  It was hoped that these problems would be alleviated by the use of the 

complete gene, for reconstructing phylogenies, however, poor taxon sampling due to 

difficulties in the PCR amplification of the complete gene in certain taxa has limited 

the success of this strategy.  There are certain questions still unanswered regarding the 

origins of the planktonic foraminifera from the benthic taxa, leaving a clear need to 

obtain supporting data from other independent genes.  Data from other genetic 

markers could corroborate the topologies and evolutionary distances produced during 

analyses of the SSU rRNA gene.  Ideally, a concatenated data set should be formed, 

based on several genes.  A multi-gene approach to phylogenetic analysis would 

provide a far more accurate picture of the evolutionary origins of the planktonic 

foraminifera and the relationships of the closely related genotypes within 

morphospecies. It is important to have data from a variety of genetic markers that 

differ in their rate of change and thus their usefulness in resolving evolutionary 

relationships at different taxonomic levels. 

 

However, our ability to amplify and sequence new genes is severely limited by the 

extreme lack of genetic data available for the foraminifera.  We currently know almost 

nothing about the foraminiferal genome and only a handful of foraminiferal genes 

have been sequenced so far, mostly for benthic taxa.   Protein coding genes such as 

tubulin, ubiquitin and RNA polymerase II largest subunit (RPB1) could be utilised, so 
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far sequenced for a small number of benthic species  (Pawlowski et al., 1999; 

Archibald et al., 2003; Longet et al., 2003; Habura et al., 2005) and 2 planktonic 

species (Globigerinella siphonifera and Globigerinita glutinata) in the case of RPB1 

(Longet & Pawlowski, 2007).  The actin gene, for which a well-represented 

phylogeny already exists for the benthic foraminifera (Flakowski et al. 2005), has 

been sequenced for a single planktonic foraminifer, Globigerinella siphonifera 

(Flakowski et al. 2005) and represents another option.  Whilst amplification of these 

nuclear markers has proven successful in the benthic foraminifera, it could be more 

problematic in the planktonic foraminifera, which unlike their multinucleate benthic 

relatives carry only a single copy of their genome.  The problem could possibly be 

circumvented by the use of gametogenic specimens (as in Darling et al., 1996a,b, 

1997). 

 

The identification of new genetic markers could be achieved by creating an expressed 

sequence tag (EST) library, a quick and inexpensive way to identify unknown genes 

and to map their positions within a genome (Theodorides et al., 2002, Whitton et al., 

2004; Davison & Blaxter 2005; Papanicolaou et al., 2005).  Alternatively, the new 

genome sequencing technique developed by 454 Life Sciences Corporation could be 

utilised, which boasts a 100-fold throughput over previous sequencing technologies 

(Margulies et al., 2005).  In order to achieve such goals, it will first be essential to 

establish a reliable supply of foraminiferal DNA, which could be accomplished 

through laboratory culturing (see chapter 6).  In addition to providing the template for 

genomic work, a sustained supply of genetic material would be invaluable for PCR 

optimisation & primer development, the lack of which, due to unavailability of 

samples, severely limits our current work.   
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Extensive difficulties have also been encountered in the PCR amplification of the 

foraminiferal SSU rRNA gene, with high failure rates resulting in poor taxon 

sampling, particularly for the almost complete gene (~3,000 bp fragment).  In addition 

to primers being a poor match to certain taxa (discussed earlier), the DNA extraction 

method currently employed, using the buffer of Holzmann et al. (1996), may result in 

the transfer of inhibitory substances into the PCR reaction, and long-term storage of 

samples in the extraction buffer, sometimes without freezing, may also lead to 

degradation of the template DNA.  The procurement of fresh samples, and the 

development of an effective DNA extraction and storage method will be necessary to 

overcome such problems (see chapter 7). 

 

5.6 Conclusions 

According to the phylogenetic analyses presented here, the planktonic foraminifera 

are represented by up to 5 extant lineages, each of which may represent an 

independent move from benthic ancestors to the planktonic mode of life.  It is likely 

that the move from benthos to the plankton was not a single unusual event, but one 

that has occurred numerous times throughout geologic history, the necessary 

adaptations developing in parallel in several groups of benthic taxa.  A body of 

evidence consisting of molecular, morphological, and biological data support the 

independence of these major planktonic foraminiferal groups. 

 

Phylogenies constructed from the traditionally used ~1,000bp partial terminal 3´ 

fragment of the SSU rRNA gene, from which 407 bp could be reliably aligned, were 

unfortunately subject to the same shortcomings as in previous studies, with poor 

resolution and low bootstrap support for the major clades.  Furthermore, such 
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problems could not be resolved, as hoped, by the use of the complete SSU rRNA gene 

in phylogenetic analysis, as high PCR failure rates resulted in poor taxon sampling.  

Further work is needed to resolve such issues, and to confirm the validity of the 

current findings regarding the independent origins of the 5 planktonic foraminiferal 

lineages.  The use of new genetic markers will be invaluable in accomplishing this 

task and will hopefully allow the avoidance of the problems associated with the use of 

foraminiferal ribosomal genes in phylogenetic analysis, largely the result of their 

extreme and variable rates of evolution.  Efforts will also continue to obtain the 

complete SSU rDNA sequences for the remaining spinose planktonic taxa, using fresh 

samples and an efficient new method of DNA extraction (see chapter 7). 
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6 Culturing foraminifera: the first step towards 
developing a model organism 

 

6.1 Introduction 

6.1.1 The need for laboratory cultures of foraminifera 

Our ability to amplify and sequence new genes in the foraminifera is severely limited 

by the extreme lack of genetic data available for the group.  There is a pressing need 

to identify new markers for this important group, both to enhance phylogenetic 

analyses of the foraminifera and for use in population genetic studies. Being 

unicellular organisms, each foraminiferan provides only a limited source of DNA to 

work with, leaving a need to pool individuals.  Laboratory culturing could provide an 

invaluable source of the raw genetic material needed for a range of molecular 

applications.  

 

To date, phylogenetic studies of the foraminifera have focused primarily on a single 

gene, the small subunit ribosomal RNA (SSU rRNA) gene (Darling et al., 1997, 1999, 

2000, 2004; Wade et al., 1996b; de Vargas et al., 1997, 1999, 2001, 2002; Pawlowski 

et al., 1997).  Some sequencing has been carried out of the tubulin, ubiquitin and RNA 

polymerase II largest subunit (RPB1) genes, for only a small number of benthic 

species  (Pawlowski et al., 1999; Archibald et al., 2003; Longet et al., 2003; Habura et 

al., 2005) and Longet et al. (2007) gained some sequences of RPB1 in 2 species of 

planktonic foraminifera, Globigerinella siphonifera and Globigerinita glutinata.  The 

actin gene has been more thoroughly sequenced, in benthic taxa, providing a well-

represented phylogeny (Flakowski et al. 2005), though it has only been sequenced for 
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a single species of planktonic foraminifera, Globigerinella siphonifera (Flakowski et 

al. 2005). 

 

While the SSU rRNA gene has proven to be an enormously useful marker for 

investigating foraminiferal evolutionary relationships, only a short region of ~1000bp 

is generally used in phylogenetic analyses and many relationships within the 

foraminifera remain unresolved due to insufficient information.  In addition, 

inconsistencies are often seen among the phylogenies produced using different tree-

building methods.  There is therefore a clear advantage to be gained from the 

introduction of new genes for use in phylogenetic reconstructions, to lend support to 

existing phylogenies and to provide greater resolution to the trees produced.  

 

Population genetic studies of the foraminifera have focused solely the SSU rRNA 

gene, thanks to the unusually high rate of change observed in the rRNA genes of 

planktonic foraminifera (Darling et al., 1999, 2000, 2003, 2004, 2006; de Vargas et 

al., 1999, 2001, 2002; Stewart et al., 2001).  However, the resolution is often weak, 

highlighting an obvious need to identify more variable markers, for example 

mitochondrial genes (Avise et al., 1987), that are better suited for examining 

evolutionary relationships between closely related foraminiferal species and among 

within-morphospecies genetic types.   

 

As discussed in chapter 5, new markers for investigating foraminiferal evolution could 

be identified by the construction of an expressed sequence tag (EST) library 

(Theodorides et al., 2002, Whitton et al., 2004; Davison & Blaxter 2005; 

Papanicolaou et al., 2005), or by full genome sequencing in microfabricated high-
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density picolitre reactors (as developed by the 454 Life Sciences Corporation) 

(Margulies et al., 2005).  However, in order to carry out either of the molecular 

methods above, you first need a large and continual source of genetic material.  

Foraminifera are single-cell organisms, and thus to gain enough genetic material, 

many individuals need to be pooled.  Pooling many individuals collected from the 

field is possible, however, minor genetic variation could lead to sequence ambiguities.  

In order to gain many identical copies of the genome it would therefore be more 

desirable to set up a clonal culture system, in a controlled laboratory environment, 

starting from a single, asexually reproducing individual.   If the whole foraminiferal 

genome was eventually obtained from such a clonal system, it could pave the way to 

their use as a model organism, particularly for the study of evolutionary processes. 

  

In practical terms, the maintenance of a continual culture of foraminifera in the 

laboratory, would eliminate the need for repeated collection trips to the field, which 

can be inconvenient if you are based a great distance from the sea, and would provide 

a constant source of material for several molecular uses.   

 

A large supply of readily available DNA would allow the extensive testing of PCR 

and sequencing primers, prior to use on important samples, something that has been 

impossible until now.  This would be of great benefit when developing primers to 

amplify and sequence new genes as molecular markers and would also allow 

improvements to be made to primers currently used on genes such as the SSU rRNA 

and Actin genes, especially in taxa that have proven difficult to amplify.  
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In addition to developing primers for use on individual genetic markers, a large source 

of genetic material could also allow for genomic studies of the foraminifera, 

something that has not yet been attempted in either the planktonic or benthic taxa.  

Here the whole genome would be mapped, something that is increasingly being 

undertaken for other organisms, for example early work on bacteriophage λ (Sanger et 

al., 1982), and more recently work on many species including members of the 

Bacteria, e.g. Escherichia coli (Blattner et al., 1997), Archaea, e.g. Archaeoglobus 

fulgidus (Klenk et al., 1997), and Eukaryota, e.g. Mus musculus (Waterston et al., 

2002). 

 

6.1.2 Culturing foraminifera 

A number of species of benthic foraminifera have been successfully maintained or 

cultured under laboratory conditions (reviewed in Anderson et al., 1991).  Some are 

simply maintained in the laboratory, meaning that they are kept alive for sustained 

periods, from weeks to years, but do not reproduce.  This can be achieved relatively 

easily.  Culturing, on the other hand, refers to the continuous growth and reproduction 

of several generations in the lab, which can prove more difficult.  The methods used 

for culturing foraminifers vary greatly, some involving sophisticated equipment that 

provide a highly tailored environment, and others that are simple in design, easy to set 

up and less time-consuming. 

 

Sophisticated systems such as circulating and re-circulating marine aquaria and other 

flow-through systems provide a highly successful means of maintaining foraminifera.  

A gentle flow of water is provided and the systems are illuminated, aerated, 

temperature regulated and the pH and salinity usually adjusted daily.  Glass covers are 
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used to reduce evaporation and slow salinity shifts.  Lutze & Wefer (1980) used a 

simple circulating aquarium to culture and observe asexual reproduction in the larger 

foraminifera, Cyclorbiculina compressa.  Re-circulating systems provide the 

additional advantage of reducing the recruitment of new organisms into the aquarium 

that could interfere with the foraminiferal population.  Species such as Ammonia 

beccarii, Rosalina leei and Bolivina vaughni have been kept alive and reproducing for 

years (reviewed in Anderson et al., 1991) using such systems.   However, it has been 

found that the gravel needed to maintain proper filtration in circulating and re-

circulating marine aquaria does make it difficult to harvest and examine the 

foraminifera (Arnold, 1974).  Commercially available chemostats may be used as an 

alternative.  These provide a continuous flow of fresh sterile media into the 

foraminiferal culture, and may be superior to other flow-through systems.  Lee et al. 

(1991b) successfully used a chemostat system to conduct nutritional experiments on 

the larger foraminifera, Amphistegina lobifera, Amphisorus hemprichii and 

Marginopora kudakajimensis.   The disadvantage of all of these sophisticated systems 

is that specialist equipment is required to set them up, which may be costly or difficult 

to make.   

 

Many people instead choose a more simplistic approach to maintaining or culturing 

foraminifera. Petri dishes or beakers make suitable culture vessels for small-scale 

studies.  Light, temperature, salinity and pH can be manipulated manually, using basic 

lab equipment.  Stouff et al. (1999a,b) successfully cultured Ammonia tepida and 

Ammonia beccarii in petri dishes and beakers, with a little sediment, and natural 

seawater changed monthly.  Ammonia tepida has also been cultured by Morvan et al. 

(2004), using simple petri dishes and filtered seawater.  Takata et al. (2009) used a 
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basic method to investigate the substrate preferences of A. beccarii and Lee et al. 

(1991b) maintained cultures of 3 species of symbiont-bearing, large foraminifera  

(A. lobifera, A. hemprichii and M. kudakajimensis) using plastic tissue-culture flasks 

and salinity-adjusted natural seawater.   

 

In this study 3 different species of benthic foraminifer were cultured in the laboratory, 

using a number of basic culturing methods.  The methods and conditions used were 

experimented with and optimised during the course of the study, to best encourage 

growth and reproduction in these foraminifera. 

 

Ultimately, it would also be desirable to culture a species of planktonic foraminifera 

but this is likely to prove considerably more problematic. A number of species of 

planktonic foraminifera have been maintained in laboratory studies, for example 

Orbulina universa (Mashiotta et al., 1997; Russell et al., 2004, Uhle & Macko, 1999), 

Globigerina bulloides (Mashiotta et al., 1997; Russell et al., 2004), Globigerinella 

siphonifera (Bijma et al., 1998), and Globigerinoides sacculifer (Bé, 1980; Spero & 

Lea, 1993), however these were not truly cultured. Whilst benthic foraminifera 

reproduce mainly by asexual multiple fission, planktonic foraminifera reproduce 

entirely by sexual reproduction (Murray, 2006).  To date, they have not been kept in 

continuous culture from generation to generation, but have only been maintained 

during development from young stages to maturity and gamete release.  As Hemleben 

et al. (1989) stated, these can only be considered as maintenance cultures. In addition, 

the sexual nature of planktonic foraminiferal reproduction would make it impossible 

to establish a genetically identical ‘mono-culture’, something that could be achieved 
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with benthic taxa, as they can reproduce asexually for many generations, allowing a 

culture to be established rapidly. 

 

6.1.3 Choosing a target species 

6.1.3.1 Life cycle of the foraminifera 

Benthic foraminifera typically reproduce by a classical dimorphic life cycle, 

consisting of a regular alternation between sexual and asexual generations (Goldstein, 

1999; Lee et al., 1991a) (see chapter 1, fig. 1.3). The haploid, megalospheric gamont 

releases gametes (~ 1-4 μm), which are fertilized to produce a zygote, eventually 

giving rise to a diploid microspheric agamont (sexual reproduction).  The agamont 

then produces haploid megalospheric young, by multiple fission (asexual 

reproduction), and the cycle begins again.  A biological dimorphism usually exists 

between the gamont (sexual), which has a single nucleus and a megalospheric test, 

characterised by a large proloculus (1st chamber) but a relatively small overall 

diameter, and the agamont (asexual), which is multinucleate and has a microspheric 

test, characterised by a smaller proloculus, but relatively larger overall test diameter 

(Goldstein, 1999).  Exceptions to this rule do exist in some species, where this size 

relationship may be inverted.  This dimorphic life cycle was first recognised by Lister 

(1895) in a study of the benthic foraminifer, Elphidium crispum, and was later 

confirmed by Schaudinn (1895).  The alternation of generations may be obligatory 

(fixed) in some foraminifera, for example Elphidium crispum (Lister, 1985; Jepps 

1942) and Glabratella sulcata (Grell, 1958), or facultative (flexible) in others, e.g. 

Ammonia tepida (Bradshaw, 1957; Goldstein & Moodley, 1993) and Saccammina 

alba (Goldstein, 1988). The facultative system is often referred to as a biologically 

trimorphic life cycle, and involves successive asexual reproduction that inserts a third, 
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biologically distinct form between the agamont and gamont generations, the 

megalospheric schizont (chapter 1, fig. 1.3; Stouff et al., 1999a).  Schizonts reproduce 

by multiple fission, to produce either another schizont generation, or megalospheric 

gamonts, at which point the cycle is closed.  Schizogony may become cyclic, with 

several generations of schizonts following one another (Dettmering et al., 1998).  

Trimorphism was first suggested as a reproductive strategy in foraminifera by 

Rhumbler (1909) and was subsequently proposed to be the dominant life cycle in 

larger foraminifera (Leutenegger 1977; Lee et al., 1991a).  Confirmation of this 

reproductive strategy came when primary successive asexual reproduction was 

recorded in laboratory cultures of Heterostegina depressa (Röttger et al., 1986, 1990), 

and has since been documented in other species such as the larger foraminifer 

Amphistegina gibbosa (Dettmering et al., 1998; Harney et al., 1998), and in Ammonia 

tepida (Stouff et al., 1999a).  In contrast to the variety of reproductive strategies seen 

in the benthic foraminifera, only sexual reproduction has ever been recorded in the 

planktonic taxa (Goldstein, 1999; Murray, 2006).  Hemleben et al. (1989) suggest that 

the agamont and multiple fission have been lost, leaving a ‘gamic’ life cycle. 

 

The dimorphic or sometimes trimorphic life cycles of the benthic foraminifera makes 

them particularly well suited to culture in the laboratory, with large numbers of 

offspring being produced asexually.  This may be particularly true of those species 

with a trimorphic life cycle, where the alternation of generations is facultative, and 

successive asexual generations may be produced by schizogony.  It has been 

postulated that, in species with a trimorphic life cycle, alternation of asexual and 

sexual generations is more common in favourable conditions, and that low densities or 

environmental stress may trigger successive asexual generations (cyclic schizogony) 
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(Harney et al., 1998; Röttger, 1990).  The advantage of this strategy is that through 

asexual reproduction, by multiple fission, large numbers of generally larger, 

megalospheric offspring are produced, acquiring their symbionts directly from the 

parent.  The same advantage is not afforded to microspheric agamont offspring, as the 

tiny gametes that form them carry no symbionts, and must be acquired from the 

environment.  Successive asexual generations can quickly increase the population size 

and propagate genetically identical offspring of the genotype that survived the stress.  

In culture systems, where stress is often apparent, this mechanism could be harnessed 

to rapidly produce large populations of genetically identical individuals. 

 

6.1.3.2 Foraminifera and symbionts 

A significant problem faced in molecular studies of the foraminifera is the occurrence 

of potentially contaminating endosymbionts, commensals and prey items in the 

samples.  The presence of algal endosymbionts is prevalent in certain benthic species 

of foraminifera from the families Peneroplidae, Soritidae, Alveolinidae (order 

Milliolida), Amphisteginidae, Calcarinidae and Nummulitidae (order Rotaliida) 

(Hallock, 1988; Lee & Anderson, 1991).  Some families of smaller rotaliid 

foraminifers (e.g. Asterigerinidae) may also contain a few members that host 

endosymbionts, however, these have yet to be studied in detail (Hallock, 1999). In 

addition to these true symbiont-bearing species, some benthic foraminifera of the 

families Nonionidae, Elphidiidae, and Rotaliellidae are known to sequester 

chloroplasts from algal food sources, though they are eventually digested, and must be 

constantly replenished (Goldstein, 1999).  
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Within the planktonic foraminifera many species bear true symbionts, including, 

Orbulina universa, Globigerinella siphonifera, Turborotalita humilis, and all species 

from the genus Globigerinoides.  A number also harbour facultative (non-permanent) 

symbionts, including, Globigerinita glutinata, Neogloboquadrina dutertrei, 

Pulleniatina obliquiloculata, Globorotalia inflata and Globorotalia menardii 

(Hemleben et al., 1989).  

 

When establishing a culture to gain genetic material for molecular work there would 

be an obvious advantage to selecting a species of foraminifera that bears no 

symbionts.  The benthic species Ammonia tepida was chosen as the best candidate. 

This is a species found commonly on the British coast that has been shown to 

reproduce under laboratory conditions in previous studies (de Nooijer et al., 2009; 

Morvan et al., 2004; Stouff et al., 1999a).  Ammonia tepida belongs to the order 

Rotaliina, which contains 3 families with symbiont-bearing members, however A. 

tepida is reportedly symbiont-barren (J. Murray, Pers. Comm.).   Another two species, 

Bolivina variabilis (order Rotaliina) and Cornuloculina balkwilli (order Milliolida) 

were also investigated.  Neither is thought to bear symbionts (J. Murray, Pers. 

Comm.), though Cornuloculina balkwilli belongs to the suborder Miliolina, of which 

many members are symbiont-bearing. 

The eventual aim would also be to culture a member of the planktonic foraminifera.  

Here Globigerina bulloides would be the ideal choice for molecular study, as it is 

unusual in lacking symbionts and has also been maintained in the laboratory to the 

point of gametogenesis in the past (Darling et al., 1996a,b; Mashiotta et al., 1997; 

Russell et al., 2004; Wade et al., 1996).  Other planktonic species lacking symbionts 

could also be considered, including Hastigerina pelagica, Neogloboquadrina 
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pachyderma, Globorotalia truncatulinoides and Globorotalia hirsuta (Hemleben et 

al., 1989). Nevertheless, difficulties associated with culturing planktonic foraminifera 

may well preclude the development of a culture system. 

 

If endosymbionts were present in the species selected, the genetic material could still 

be used, however, it would be important to screen any sequences obtained to ensure 

that they were foraminiferal and not contaminant in origin.   

 

6.1.4 The target species 

6.1.4.1 Ammonia tepida 

Ammonia tepida (Cushman), of the order Rotaliina (fig. 6.1a,b,c) was chosen as the 

most suitable species for use in culturing experiments.  It is a cosmopolitan species of 

benthic foraminifera found abundantly in estuaries throughout Britain and has a 

relatively large size (~ 400 μm) (Murray, 1979), making it easy to pick from 

sediments.  The cytoplasm of this species has a bright orange colouration, which gives 

an excellent indication of the health of each individual.  Ammonia tepida is 

characterised by a biconvex test, rounded in outline.  The spiral side has a low conical 

form with flush sutures.  Chambers are trochospirally coiled, with 6 to 9 in the last 

whorl.  On the umbilical side, the sutures are depressed, and the umbilicus open, 

unlike its close relative Ammonia beccarii, in which the umbilicus is occupied by a 

calcite boss.  6 to 8 chambers may be visible on the umbilical side.  The aperture 

appears as a slit at the base of the last chamber (Murray 1979).   In British estuaries, 

A. tepida tolerates a diurnal salinity variation of 0-35 ‰, with an optimal temperature 

range of 15-20 °C  (Murray 1979). 
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Ammonia tepida has been the subject of many laboratory studies, focusing on its 

adaptation to different ecological conditions (Bradshaw, 1957, 1961; Schnitker, 1974), 

morphological variation (Schnitker, 1974; Walton and Sloan, 1990) and life cycle 

(Schnitker, 1974; Goldstein and Moodley, 1993; Goldstein.1997; Stouff et al. (1999a).  

It has long been considered a species that easily reproduces in laboratory cultures, by 

asexual reproduction, a process that was documented well by Stouff et al. (1999a) and 

utilised in studies by de Nooijer et al. (2009) and Morvan et al. (2004). 

 

100μm 

A B C

D 
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Figure 6.1.  Diagrams of benthic foraminifera.  A, B, C, Ammonia 
tepida (Cushman), Suborder Rotaliina.   A=spiral view, B= 
apertural view, C=umbilical view; D, Bolivina variabilis
(Williamson), Suborder Rotaliina, E, Cornuloculina balkwilli
(Macfadyen), Suborder Miliolina.  Adapted from Murray (1979). 



6: Cultures 

 243

Ammonia tepida has a trimorphic life cycle (Stouff et al., 1999a) (see chapter 1, fig. 

1.3), making it particularly ideal for culturing. Unlike the obligatory (fixed) dimorphic 

life cycles of many benthic species, the facultative (flexible) nature of this life cycle 

means that the sexual/asexual pattern can be broken, and successive asexual 

generations of offspring can be produced to quickly increase the population size.  

Ammonia tepida forms an easily identifiable reproductive cyst just prior to asexual 

reproduction, which could be particularly useful as an indicator of the mode of 

reproduction taking place.  The shape of the asexual reproductive cyst (flattened cyst, 

below the umbilical surface of the test) is easily distinguishable from that of other 

cysts produced during the life cycle such as the growth cyst (covering the entire test) 

and the sexual reproductive cyst (rounded, compact cyst, completely encasing test) 

(Goldstein & Moodley, 1993; Stouff et al., 1999a). It is hoped that a culture of 

genetically identical individuals can be easily established by asexual reproduction, to 

provide a clean source of genetic material for downstream applications. 

 

During the course of the experiment two further species of benthic foraminifera, 

Bolivina variabilis and Cornuloculina balkwilli were also identified as potential 

subjects for culturing.  Both originated from the seawater collected in the field 

alongside the sediment, but soon established well in the stock populations of mixed 

species being maintained alongside the experimental cultures of A. tepida.  

 

6.1.4.2 Bolivina variabilis 

Bolivina variabilis (Williamson), of the order Rotaliina (fig. 6.1d), also known as 

Brizalina variabilis, is a marine inner shelf benthic foraminiferal species that is 

sometimes transported into the muddy parts of estuaries.  It has a dark orange 
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cytoplasm, which again is a good indicator of health.  It has a compressed biserial test, 

comprised of calcitc, radially arranged crystallites, perforate in nature and often 

appearing translucent.  The chamber walls bear coarse pores, each set in a conical 

depression.  The sutures are depressed, straight, and oblique to the margin.  The 

aperture is terminal, with a toothplate.  The average length of an adult specimen is 500 

μm (Murray, 1979).  The life cycle of B. variabilis has not specifically been 

documented, though as a benthic species it is most likely to be dimorphic, with both 

sexual and asexual generations.  Whether or not it can undergo multiple asexual 

generations (a facultative / trimorphic life cycle) is unclear.  

 

6.1.4.3 Cornuloculina balkwilli 

Cornuloculina balkwilli (MacFadyen) (fig. 6.1e), of the suborder Miliolina, is thought 

to be an inner shelf marine species, which is transported into the mouths of muddy 

estuaries (Murray, 1979).  It has a porcellaneous, white, calcitic wall.  The test is oval 

in outline, compressed, with each chamber forming roughly two thirds of a whorl.  

The aperture is simple and terminal.  The average maximum size is 150 μm (Murray, 

1979).  Cornuloculina balkwilli is considered to be epifaunal, attached to the 

substrate, but also able to move freely (Sturrock & Murray, 1981).  As in B. variabilis, 

the specific life cycle of C. balkwilli is not known, though it is most likely to be 

dimorphic, or possibly even trimorphic. 
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6.2 Aims and Objectives 

The primary objective of this work was to produce a continually reproducing, 

genetically identical culture of the benthic foraminifer, Ammonia tepida to provide a 

reliable source of genetic material for use in genomic work and other molecular 

applications.  Ammonia tepida is well suited to this work as it is easy to collect in the 

UK, has a relatively large size for a benthic foraminifer, and has been cultured in 

laboratory studies previously, reproducing for successive generations (de Nooijer et 

al. 2009; Morvan et al. 2004; Stouff et al. 1999a).  In addition it is a symbiont-barren 

species, which reduces the chance of contaminant DNA interfering with subsequent 

genomic work.  Culture experiments were also carried out on two additional species of 

benthic foraminifera, Bolivina variabilis and Cornuloculina balkwilli, neither of 

which have been cultured before.  A series of experiments were performed to ascertain 

the optimal conditions under which to culture these foraminifera in the lab. 
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6.3 Methods 

6.3.1 Collection of benthic foraminifera 

Live, benthic foraminifera were collected from Brancaster, Norfolk in May 2007 and 

May 2009.  Sediment was collected at low tide from tidal mudflats, from the green, 

algal-rich surface layer, where foraminifera are abundant.  The sediment was sieved 

(212 μm) and washed through with seawater.  Sea temperature and salinity were 

recorded on location at both low and high tide. 

 

6.3.2 Picking foraminifera in the lab 

Thin layers (~50 mm) of the sieved sediment, containing the live foraminifera, were 

placed in plastic tubs, covered with a 5 cm deep layer of fresh seawater (collected at 

high tide on the day of the foraminifera collection), with a loose lid to prevent 

evaporation.  During the first 2 hours, the sediment was washed twice with fresh 

seawater, allowing it to settle in between.  Obvious large organisms, such as nematode 

worms, were removed as they can die easily, causing contamination of the water.  

After 24 hours, healthy, live forams could be seen, by eye, to have migrated to the 

surface of the sediment, clinging to small pieces of plant matter and to the sides of the 

tubs. These were removed by pipette to a 19 cm diameter petri dish containing fresh 

seawater (salinity ~ 27 – 30 ‰).  This mixed culture, containing a small amount of the 

original surficial sediment, was maintained for the duration of the experimental period 

as a stock population.  Individuals of the target species, Ammonia tepida, were then 

selected for use in culturing experiments.  Only those with healthy bright yellow 

cytoplasm were used. 
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Two other species, Bolivina variabilis and Cornuloculina balkwilli, were also used in 

culturing experiments.  These originated in seawater from the collection site (see 

section 6.4.1 of the results) but were found thriving in the petri dishes containing the 

stock populations of mixed species.  Again, only healthy individuals were selected.  

These were easily identified in B. variabilis, which has a dark orange cytoplasm, but 

slightly more difficult to see in C. balkwilli which has an opaque shell giving it a paler 

appearance.   

 

6.3.3 Culturing experiments 

A number of different experiments were carried out to assess both the optimal 

conditions under which to culture benthic foraminifera in the lab, and to identify the 

species best suited for this use.  Experiments were developed over time, using the 

results of each to determine the next experiment undertaken.  For all culturing 

experiments samples were kept at 23 °C (ambient laboratory temperature), with 

lighting of 2 x 20w for twelve hours per day.  Light and dark cycles were regulated by 

an automated timer.  Water salinity was maintained between 27 – 30 ‰, within the 

natural range of the estuary collection site. 
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6.3.3.1 Stock populations 

Stock populations containing a mixture of the foraminiferal species found at the 

collection site and a little estuarine sediment sieved to 212 μm, were kept throughout 

the course of the experimental period to provide a possible source of additional 

specimens.  Their condition was observed over time, as a point of interest. They were 

maintained using un-filtered natural seawater, taken from the collection site on an 

incoming tide. 

 

6.3.3.2 Culture experiments with Ammonia tepida 

The largest specimens of A. tepida, with the healthiest orange colouration to their 

cytoplasm, were selected from those collected for use in the following culture 

experiments. 

 

6.3.3.2.1 Experiment 1:  Ammonia tepida in artificial seawater enriched with f/2 
nutrients 

Tests were carried out to determine whether promoting the growth of an algal food 

alongside the A. tepida specimens could be beneficial.  Single adult specimens of A. 

tepida were transferred to 19 cm diameter petri dishes.  All were kept in artificial 

seawater, some enriched with f/2 nutrients (Guillard & Ryther, 1962; Guillard, 1975) 

(20 replicates), and some without (40 replicates).  Two thirds of the water was 

replaced weekly.  500 μl of food, in the form of the algae, Dunaliella tertiolecta was 

added weekly.  
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6.3.3.2.2 Experiment 2:  Ammonia tepida in natural seawater with a leaf substrate 

On collection of fresh foraminiferal specimens from the field, it was observed that A. 

tepida had a tendency to migrate up and cling to portions of leaf substrate in the 

sieved mud. It therefore seemed logical to replicate these conditions in the lab in an 

attempt to promote natural behaviour, and in particular reproduction. Moreover, 

experiment 1 revealed problems of excessive salt crystallisation at the bottom of the 

petri dish with artificial seawater so all specimens were kept in natural seawater, 

filtered to 11 μm (Whatman filter paper 1 quantitative 32 cm).  Single adult specimens 

of A. tepida were transferred to 19 cm diameter petri dishes (10 replicates) Two thirds 

of the water was replaced weekly.  500 μl of food, in the form of the algae, Dunaliella 

tertiolecta was added weekly. As a substrate, all were provided with plant matter 

taken from the surface mud of the collection site. Leaf matter was carefully cleaned to 

remove organisms and checked for foraminifera.  For half, the leaf matter was 

microwaved (30 seconds, 600 w) as an additional precaution to remove 

microorganisms or juvenile forams.  Cultures were maintained for 6 weeks. 

 

6.3.3.2.3 Experiment 3:  Ammonia tepida in natural seawater with a mixed food 
algal lawn 

Tests were carried out to see whether A. tepida survival in culture could be improved 

by providing mixed food.  The diatom Phaeodactylum tricornutum (Blades Biological 

Ltd.) was introduced as a new food source alongside the existing food, D. tertiolecta.  

The P. tricornutum provided had been inoculated onto a gel media.  Two treatments 

were set up.  In treatment A, a diatom lawn of D. tertiolecta was pre-grown in 19 cm 

petri dishes containing a thin layer of f/2 nutrient (with silicates) enriched agar 

(Guillard & Ryther, 1962; Guillard, 1975) for 2 weeks prior to the culture experiment.  

Artificial seawater containing f/2 media (with silicates) was used to promote diatom 
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growth but was removed before the foraminiferal specimens were added. In treatment 

B, empty petri dishes were used at the start of the culturing period.  For each 

treatment, single adult specimens of A. tepida were added to the petri dishes (50 

replicates), and multiple-specimen cultures containing 50 A. tepida were also set up (3 

replicates).  The foraminifera were kept in natural seawater, filtered to 11 μm 

(Whatman filter paper 1 quantitative 32 cm), with two thirds of the volume being 

replaced weekly. All specimens were fed weekly with D. tertiolecta algae (500 μl).  

Specimens in treatment B were also fed P. tricornutum (a small piece of inoculated 

gel, ground up).  

 

6.3.3.2.4 Experiment 4:  Ammonia tepida in natural seawater with mixed liquid food 

Following the results of the feeding test in experiment 3 (see results section), a mixed 

food diet was again used for this next test, but the Phaeodactylum tricornutum 

diatoms were now provided in liquid form.  Single adult specimens of A. tepida were 

added to empty 19 cm petri dishes (50 replicates).  Multiple-specimen cultures 

containing 50 A. tepida each were also set up (3 replicates).  The foraminifera were 

kept in natural seawater, filtered to 11 μm (Whatman filter paper 1 quantitative 32 

cm), with two thirds of the volume replaced weekly.  Specimens were fed weekly on 

D. tertiolecta (500 μl) and 5 drops of a liquid culture of P. tricornutum (Sciento, 

Manchester).  
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6.3.3.2.5 Experiment 5:  Ammonia tepida in 7 cm beakers of natural seawater with 
mixed liquid food 

In the previous experiments (1-4) evaporation from the petri-dish culture vessels had 

been a particular problem.  These were now replaced with deeper plastic beakers.  

Single adult specimens of A. tepida were added to empty 7 cm plastic beakers (30 

replicates).  Multiple-specimen cultures containing 25 A. tepida each (5 replicates) 

were also set up.  The foraminifera were kept in 50 ml natural seawater, filtered to 11 

μm (Whatman filter paper 1 quantitative 32 cm), with two thirds of the volume 

replaced every 2 weeks.  Specimens were fed as in experiment 4. 

 

6.3.3.3 Culture experiments with Bolivina variabilis and Cornuloculina balkwilli 

Experiments 1-5 had focused on the primary species of interest, A. tepida, however 

two other species, Bolivina variabilis and Cornuloculina balkwilli had established 

themselves in the stock cultures and were also identified as possible targets of 

culturing experiments.  Specimens with the healthiest orange colouration to their 

cytoplasm were selected from those collected for use in the following culture 

experiments.  Where it is indicated that adult specimens were used, the largest 

specimens collected were selected. 

 

6.3.3.3.1 Experiment 6:  Bolivina variabilis bulk cultures in 7 cm beakers of natural 
seawater with mixed liquid food 

25 adult specimens of Bolivina variabilis were added to empty 7 cm plastic beakers 

(10 replicates).  The foraminifera were kept in 50 ml natural seawater, filtered to 0.2 

μm (Whatman) (determined to be the best filter size following experiments 1-5), with 

two thirds of the volume replaced every 2 weeks.  Specimens were fed weekly with D. 

tertiolecta (500 μl) and 5 drops of a liquid culture of P. tricornutum. 
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6.3.3.3.2 Experiment 7:  Cornuloculina balkwilli bulk cultures in 7 cm beakers of 
natural seawater with mixed liquid food 

25 adult specimens of Cornuloculina balkwilli were added to empty 7 cm plastic 

beakers (10 replicates).  The foraminifera were maintained and fed as in experiment 6. 

 

6.3.3.3.3 Experiment 8:  Bolivina variabilis individual samples 

To assess whether a culture could be established from a single individual by asexual 

reproduction, 10 individual specimens of B. variabilis were placed in separate 7 cm 

plastic beakers.  5 of the specimens were mature adults, and 5 were juveniles (~ 8 

chambers).  Multiple-specimen cultures containing 20 B. variabilis each were also set 

up (2 replicates) as a control.  The foraminifera were maintained and fed as in 

experiment 6. 

 

6.3.3.3.4 Experiment 9:  Cornuloculina balkwilli individual samples 

10 individual specimens of C. balkwilli were placed in separate 7 cm plastic beakers.  

5 of the specimens were mature adults, and 5 were juveniles (~ 160 μm).  Multiple-

specimen cultures containing 20 C. balkwilli each were also set up (2 replicates) as a 

control.  The foraminifera were maintained and fed as in experiment 6. 
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6.4 Results 

6.4.1 Observations of stock populations 

Stock populations of mixed species from the collected sediment were kept for the 

duration of the experimental period, to provide a possible source of fresh specimens.  

Observations were made of the condition of these individuals during the course of the 

experimental period.  By far the most dominant species of benthic foraminifera found 

in the 212 μm sieved estuarine sediment was Ammonia tepida, of the order Rotaliina.  

 

Over time, however, it became apparent that two species of foraminifera, that had not 

originally been numerous in the sediment were taking over in numbers in the stock 

populations, particularly as the A. tepida started to die out.  These were identified as 

the biserial benthic, Bolivina variabilis of the order Rotaliina and Cornuloculina 

balkwilli of the suborder Miliolina.  As only one or two specimens of these species 

had been identified in the collected sediment it seemed likely that they might have 

been seeded from the unfiltered seawater used to maintain the stock populations.  This 

was confirmed by filtering seawater through a 0.2 μm Whatman filter; examination of 

the filter revealed the presence of juveniles of both foraminiferal species. 

 

A process of succession seemed to take place within the stock populations, with B. 

variabilis first taking a hold as the A. tepida died out and later, especially where 

numbers of B. variabilis were low, C. balkwilli flourished.  Both species seemed to 

thrive in the lab and as a result, were selected in addition to A. tepida for culturing. 
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6.4.2 Culture experiments with Ammonia tepida 

The specimens of Ammonia tepida collected in the field varied in size, but the largest 

individuals, with an average test diameter of 400 μm were selected for culturing.   On 

the spiral side of the test, 20 – 25 chambers were visible (fig. 6.2a), and on the 

umbilical side 8 - 9 chambers could usually be observed (fig. 6.2b).  Cytoplasm, with 

a healthy yellow colouration, could usually be seen in all but the last of the chambers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.2.1 Experiment 1:  Ammonia tepida in artificial seawater enriched with f/2 
nutrients 

After 1 week, the single adult specimens of A. tepida kept in artificial seawater with 

no f/2 nutrients and fed Dunaliella tertiolecta, appeared pale.  Specimens kept in 

Figure 6.2.  Photographs of benthic foraminifera taken under a light
microscope.  A, B, Ammonia tepida (Cushman) A = spiral view, B = 
umbilical view.   Suborder Rotaliina; C, Bolivina variabilis
(Williamson), Suborder Rotaliina; D, Cornuloculina balkwilli
(Macfadyen), Suborder Miliolina. 
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artificial seawater with f/2 nutrients generally had dark green matter attached to their 

underside and green colouration could be seen within the last 4 – 6 chambers of their 

shells.  Two individuals in the f/2-enriched water were dead, leaving empty shells. 

 

After 3 weeks, of the 40 individuals kept in artificial seawater with no f/2 nutrients, 

only 12 were healthy, 20 were pale in colouration, and 8 were dead.  Of the 20 kept in 

nutrient enriched artificial seawater, 9 were healthy, 2 were pale, and 9 were dead.  A 

large amount of green algal matter could be seen covering the bottom of these petri 

dishes, and in some cases, the forams themselves. 

 

After 6 weeks, all of the specimens of A. tepida in both treatments were dead, none 

having reproduced.  As a result of using artificial seawater, excessive salt 

crystallisation was noted in all dishes throughout the duration of the experiment.  

Natural seawater, filtered to remove organisms and debris, was therefore used in 

subsequent experiments. 

 

6.4.2.2 Experiment 2:  Ammonia tepida in natural seawater with a leaf substrate 

After 2 days, the foraminifera had a healthy colouration and almost all were attached 

to the plant matter provided, by their umbilical side.  After 2 weeks all of the 

foraminifera were still healthy and the 5 provided with an un-treated natural leaf 

substrate were all still attached to the leaves.  All of the foraminifera provided with a 

microwaved leaf substrate, however, had dropped off and were on the bottom of the 

dish.  After 4 weeks, the foraminifera from both treatments were pale in colouration 

and after 6 weeks all had died.  
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6.4.2.3 Experiment 3:  Ammonia tepida in natural seawater with a mixed food 
algal lawn 

After 1 week, the A. tepida kept on a pre-grown diatom lawn (P. tricornutum) and fed 

with additional D. tertiolecta algae were found to be attached to the bottom of the 

petri dishes and feeding tracks could be seen through the lawn.  For most, a green 

colouration could be seen in the last 4 – 6 chambers of their tests.  By week 3, 

however, the algae and diatoms had grown excessively and were beginning to 

overwhelm the foraminifera.  Most forams were covered by sheets of green algae, 

most likely the D. tertiolecta, and had become pale in colour.  After 3 months, all 

specimens were dead. 

 

The foraminifera kept without an algal lawn were initially healthy and many secreted 

a cyst (formed during growth and reproduction) about or below their test within the 

first week of culture.  Most survived for the 3-month duration of the experiment, 

however, none reproduced. 

 

6.4.2.4 Experiment 4:  Ammonia tepida in natural seawater with mixed liquid food 

After 2 days, all foraminifera had a healthy yellow colouration, and most had attached 

to the bottom or sides of the petri dish with pseudopodia extended.  In the multi-

specimen cultures, many of the individuals had attached to one-another.  Natural cyst 

formation was evident in some specimens, in a few cases completely encasing the test, 

but for most forming only below the umbilical surface (fig. 6.3b), causing the foram to 

be slightly raised from the bottom of the dish. 
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After 1 week, reproduction had taken place in two of the multiple-specimen cultures, 

with approximately 20 - 25 juveniles per brood.  Juveniles comprised of a large 

proloculus, or first chamber (~ 50 μm), and 4 subsequent chambers, with a mean size 

of 145μm.  Most had attached to either the bottom of the petri dish or to the mature 

foraminifera (fig 6.3a, 6.3b). 

 

At 2 weeks, one of the individually kept specimens had reproduced.  The adult had 

died, leaving an empty shell surrounded by juveniles.  The brood size was consistent 

with those seen in the multi-specimen cultures and each juvenile had approximately 4 

Figure 6.3.  Light microscope photographs of the benthic foraminifer Ammonia tepida in culture. 
A, Adult specimen with juveniles from another parent attached; B, Adult specimens showing 
asexual reproductive cyst formation (indicated by arrows).  Juveniles from another parent are also 
present; C, Adult specimen and juveniles from mixed broods, showing different stages of
development; D, Juvenile specimens showing, 4, 5, and 6 chambers (left to right). 
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chambers, and an average size of 120 μm.  The juvenile brood was separated into 2 

petri dishes to be maintained. 

 

After 2 months, further reproductive events had occurred in the multiple-specimen 

cultures, consistent with only a couple of individuals reproducing.  Figures 4c and 4d 

show the different sizes of juvenile present, from 2 chambers (large proloculi and 1 

additional chamber; size 66 μm) up to 7 chambers (size 155 μm).  No further 

reproduction had been seen in any of the individually kept specimens, though the 

juveniles produced in the second week had now grown to a size of approximately 12 

chambers. 

 

At 3 months, the cultures were no longer healthy, with a great deal of algal material 

present in each (derived from the D. tertiolecta and P. tricornutum added as food).  

The water was cloudy and evaporation had led to higher salinities.  Most of the 

specimens were dead and the cultures had not reached large population sizes.  In the 

multi-specimen cultures only 1 – 3 specimens in 50 had reproduced, and the same was 

reflected in the individually kept specimens, where only 1 in 50 had reproduced.  The 

juveniles produced died before reaching a mature, reproductive size. 

 

6.4.2.5 Experiment 5:  Ammonia tepida in 7 cm beakers of natural seawater with 
mixed liquid food 

After 1 month, reproduction had occurred in 3 out of 5 of the multi-specimen beakers, 

again with small brood sizes of approximately 20 - 25 juveniles each.  In beakers 

containing single individuals, all were alive with a healthy colouration, but none had 

reproduced. 
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By 3 months, the A. tepida were still healthy and multiple reproductive events had 

clearly taken place in the multi-specimen cultures, as was evident in the different sized 

groups of juveniles present, some only 4 chambers in size, others now 8 or 9 chambers 

and some resembling small adults.  No reproduction had taken place in any of the 

single-specimen beakers, though the adults were still alive and healthy.  Conditions in 

the beakers were found to be much better than in the petri dishes previously used.  

Less evaporation was seen and the water stayed clearer. 

 

At approximately 4 months, a problem occurred with the air-conditioning of the lab, 

causing a sudden rise in temperature.  Most of the specimens died off suddenly at this 

point.  By 6 months only one or two specimens were alive in the mixed-specimen 

cultures and all of the single specimens had died.  No reproduction had been observed 

in any of the individually kept specimens. 

 

6.4.3 Culture experiments with Bolivina variabilis and Cornuloculina balkwilli 

The largest specimens of B. variabilis collected in the field, and selected for culturing 

were approximately 290 – 320 μm in size, with around 14 chambers.  The cytoplasm 

was a bright orange/yellow in colour and occupied all but the last 1 – 2 chambers of 

the test (fig. 6.2c).  The test wall was almost transparent, with pores clearly visible.   

 

The largest specimens of C. balkwilli were approximately 300 – 320 μm in size.  They 

had a more opaque test, giving a slightly paler appearance than the other two species 

(fig. 6.2d).  
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6.4.3.1 Experiment 6:  Bolivina variabilis bulk cultures in 7 cm beakers of natural 
seawater with mixed liquid food 

After 4 months, the specimens of B. variabilis were extremely healthy, with a bright 

orange colouration (fig. 6.4a) and reproduction had occurred in 7 of the 10 cultures.  

In two of these, huge populations of B. variabilis now existed, with hundreds of 

juveniles of varying sizes, indicating multiple reproductive events (fig. 6.4b).  

Average sizes were as follows: 6 chambers ~ 65 μm, 8 chambers ~90 μm, 12 

chambers ~ 180 μm.  Nearly all of the forams were attached to portions of an algal 

substrate that had naturally established over the duration of the experiment, 

presumably from the algal and diatom food that was added (fig. 6.4c).   

 

 Figure 6.4.  Light microscope photographs of the benthic foraminifer Bolivina variabilis in culture.
A, Healthy adult specimens; B, A random sample of specimens from the culture population,
showing different stages of development; C, Specimens attached to an algal substrate; D, newly
released juveniles, attached to an algal substrate. 
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Most were attached by the aperture end of their shell, with the tip raised.  Some empty 

shells could be seen, especially of larger specimens.  Some juveniles, at ~ 20μm in 

size, were only just visible under the greatest microscope magnification, indicating 

that reproduction had only just taken place (fig. 6.4d).  These juveniles were scattered 

over a small area, and were again attached firmly to the algal substrate.  A single 

reproductive event had likely taken place in each of the other 4 successful cultures, 

leading to small, localised populations of 50 – 100 individuals on the algal mats. 

 

After 6 months, one of the most successful cultures still contained a large, thriving 

population.  Individuals of many different sizes were present, indicating that multiple 

reproductive events had occurred over time.  Some of the previous batch of juveniles 

had now grown to almost adult size.  A large mass of algal substrate that had formed 

during the experimental period was covered in thousands of individuals.  Huge 

numbers were alive, with a healthy orange colouration though there were empty shells 

of all sizes mixed in with them.  Interestingly, in the other culture that had been 

particularly successful at 4 months, almost the whole colony had died off, leaving 

only a few large individuals.  Of the remaining cultures, 2 were reasonably healthy but 

6 contained almost no living specimens.  Most showed signs that 1 – 2 reproductive 

events had taken place at some point, before the samples died off. 

 

6.4.3.2 Experiment 7:  Cornuloculina balkwilli bulk cultures in 7 cm beakers of 
natural seawater with mixed liquid food 

After 4 months, reproduction had occurred in all 10 of the bulk sample cultures of C. 

balkwilli, and healthy and thriving populations had formed (fig. 6.5a, 6.5b).  Most 

beakers supported a population of many hundreds of individuals, far larger than in the 

B. variabilis cultures.  Again, specimens were attached, in huge numbers, to portions 
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of algal substrate that had formed during the experimental period, (fig. 6.5d) and only 

a few were found loose in the beakers.  A variety of different sizes were present, 

indicating multiple reproductive events (figs. 6.5a, 6.5c).   The smallest juveniles were 

approximately 60 – 70 μm in size.  After 1 week they had grown to ~ 100 μm.  Some 

had grown to ~ 220 μm, about half the size of the specimens originally put in.   

 

 

 

 

After 6 months, 4 of the cultures were still healthy and thriving, each containing many 

different sizes of B. variabilis.  Very small juveniles present in each indicated that 

reproduction was still taking place.  The remaining 6 cultures appeared less healthy, 

with many pale individuals and a greater proportion of empty shells.  It was clear that 

Figure 6.5.  Light microscope photographs of the benthic foraminifer Cornuloculina balkwilli in
culture.  A, Adult specimen (indicated by an arrow) together with immature specimens of different
sizes; B, healthy, immature specimen; C; Many different sized specimens from the culture
population, indicating multiple reproductive events; D, Juvenile specimens attached to an algal
substrate 
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though successful populations had been present at some point, they had now suffered 

a crash.  However, evidence of recent reproduction could still be seen in 4 of them.   

 

In all of the cultures small juveniles greatly outnumbered the larger specimens, and 

many larger specimens had died, leaving empty shells. 

 

6.4.3.3 Experiment 8:  Bolivina variabilis individual samples 

After 3 months, in the individual specimen cultures, 1 of the 5 immature specimens 

had died, but those remaining were healthy and had grown significantly.  All 5 mature 

specimens were still live and healthy.  No reproduction was evident in any of these 

single specimen beakers. 

 

5 or 6 specimens from each of the multi-specimen control cultures (20 each) had died 

but the rest were live and healthy.  In one of the 2 cultures a small number of juveniles 

were found (~ 10) most likely as the result of a single reproductive event, and in the 

other, no reproduction had occurred. 

 

After 6 months, however, only one of the individual specimens, which had started as a 

juvenile, remained alive, and this had never reproduced. 

 

Only 6 of the 20 original specimens in the first of the multi-specimen control cultures 

was still alive, and despite reproduction having occurred in the first 3 months, only a 

single juvenile was now alive.  In the other multi-specimen culture, no reproduction 

had occurred and only 5 adults were still living.  A thin film of algae was present in 

both beakers, though no large lumps had formed. 
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6.4.3.4 Experiment 9:  Cornuloculina balkwilli individual samples 

After 3 months, in the single specimen cultures, 3 of 5 of those that started as adults 

had died and the others were healthy, though none had reproduced.  Surprisingly, in 

the cultures started from single immature specimens, thriving populations had 

established in 4 out of 5.  The remaining specimen had died.  Hundreds of individuals 

of many different sizes were now present in the 4 successful cultures. 

 

Conditions in the two multi-specimen cultures of C. balkwilli were very different.  In 

the first, the samples were not thriving and roughly half had died with no reproduction 

having taken place.  In the second, a huge population had established, with over a 

thousand individuals of all sizes present, indicating many reproductive events.  Unlike 

in previous cultures of C. balkwilli no algal substrate had formed during the course of 

the experiment (algae formed a substrate naturally in some culture vessels, from the 

food added, and was not created intentionally) for specimens to attach to and yet the 

population was still as successful. 

 

After 6 months, of the single specimen cultures, all those that had started as mature 

adults were now dead, none having reproduced.  The 4/5 successful cultures from 

individual immature specimens (as recorded at 3 months) were all still thriving and 

reproducing.  All contained thousands of individuals.  One of these cultures was 

extremely healthy, however, the other showed some signs of algal overgrowth, in the 

form of a thin film covering the specimens.   

 

All specimens from the first of the multi-specimen control cultures had perished.  In 

the other, a large population with individuals of many different sizes was still present, 
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though it did not appear as healthy as at the 3-month point.  A thin film of algae was 

present, but no large masses. 
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6.5 Discussion 

6.5.1 Optimising conditions for culturing benthic foraminifera in the lab 

Methods used for maintaining and culturing benthic foraminifera in the lab vary a 

great deal, and no one set of conditions can be said to be ideal.  It was therefore 

important to experiment with the conditions used, and to tailor them to the 

requirements of the species being used.  A simple approach was taken, using basic 

culture vessels, and a variety of media and foods.  The aim was to attain the best 

conditions possible with the equipment available. 

 

6.5.1.1 Water 

Experiment 1 quickly showed that the benthic foraminifer, A. tepida, did not survive 

well in artificial seawater, a response that has also been noted in the benthic 

foraminifera Amphistegina hemprichii and Amphistegina lobifera (Lee et al.1991b).  

Specimens became pale in colour after only 1 week, an indication of poor health in 

benthic foraminifera (Lee et al.1991b), and no specimens survived past 6 weeks.  Salt 

crystals were evident in most of the culture vessels after the first week of 

experimentation.  The artificial seawater was made up from a powder, using a 

specified volume of distilled water.  It is likely, however, that excessive evaporation 

from the petri dishes caused the salt concentration to become elevated, leading to 

precipitation.  This could have exacerbated the problems caused by using artificial 

seawater, which crystallises to some extent even in a sealed container. 

 

Using an f/2 nutrient enriched media to promote microalgal growth alongside the 

foraminifera, as suggested by Lee et al. (1970, 1975), was also unsuccessful 
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(experiment 1).  The inclusion of f/2 nutrients led to petri dishes becoming overgrown 

with algae, which was detrimental to the foraminifera, quickly overwhelming them.   

 

It was quickly decided that natural seawater, taken from the collection site on an 

incoming tide, would be a better alternative.  Initially, the natural seawater was 

filtered through an 11 μm filter paper, to remove any foraminifera or other biota, 

whilst allowing large volumes of water to be processed quickly.  However, small 

juveniles of B. variabilis and C. balkwilli began appearing in the stock cultures of 

mixed foraminifera, where they had been almost absent to begin with, as well as in 

some of the early cultures of A. tepida.  It was subsequently determined that these had 

originated from the tanks of collected seawater and in all subsequent culture 

experiments the seawater was therefore filtered to 0.2 μm, as in de Nooijer et al. 

(2009) and Morvan et al. (2004). Using a 0.2 μm filter prevents the tiny gametes of 

foraminifera from transferring through to the culture vessels, though it does also make 

it extremely difficult to process large volumes of water. 

 

The use of natural rather than artificial seawater proved immediately successful, with 

the A. tepida specimens retaining their healthy orange colouration for a much longer 

period of time (experiments 2 & 3).  These specimens did not reproduce, however, 

and their health could not be maintained long-term indicating that other factors in the 

culturing process were still sub-optimal for culturing this species.  

 

Frequent changing of the water was also found to be important to the survival of the 

cultures.  When culturing foraminifera in petri dishes or beakers, half of the volume of 

water is usually replaced at regular intervals, varying from every 2 days (Lutze & 
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Wefer, 1980) up to weekly (Lee et al., 1991b) or even monthly (Stouff et al., 1999a, 

b). Cultures have been shown to be more successful when the medium is changed 

frequently (Lee et al., 1991b), though the process can be time consuming.  Both in this 

study, with the water changed every 1 – 2 weeks, and in the studies of Stouff et al. 

(1999a, b), with the water changed monthly, brood sizes in A. tepida were small, at 

approximately 20.  de Nooijer et al. (2009), conversely, reported brood sizes of 50 – 

200 in A. tepida, when the media was changed every 2 days.  It is likely that more 

frequent changing of the media would be beneficial, especially when evaporation from 

the vessels is a problem, as was observed during this study.   

 

6.5.1.2 Substrate 

In their natural habitat, many benthic foraminifera will often attach to pieces of 

substrate, in the form of plant material, algae, wood or rock (Anderson et al., 1991; 

Lutze & Wefer, 1980).  In the lab, it was observed that foraminifera in the freshly 

collected sieved sediment, migrated overnight to take up positions at the tips of any 

pieces of detritus and leaf matter present.  It therefore seemed natural to test whether a 

substrate could be beneficial in promoting natural behaviour such as feeding and 

reproduction.   

 

Substrates are sometimes used in foraminiferal culturing experiments, and may be 

natural or artificial (Lutze & Wefer, 1980; Stouff et al., 1999b).  To create a substrate, 

leaves found in the collected sediment were treated in two different ways.  The leaves 

were cleaned meticulously under a dissection microscope to remove any foraminifera 

present, and half were then sterilised by microwave as an extra precaution to remove 

any biota.  In petri dishes, the specimens of A. tepida quickly attached to the leaves 
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(experiment 2), however, those on the sterile substrate detached again after only a 

short time. This perhaps indicates that attachment is dependent on the presence of 

microorganisms, a food source for the foraminifera and that without them the 

substrate becomes unattractive.  Indeed, it has been shown in the benthic species 

Ammonia beccarii, that a free-living lifestyle is adopted in specimens kept on an 

artificial substrate and that stress may be introduced under such conditions (Takata et 

al., 2009).  Despite seeing some success, with specimens attaching to the untreated 

leaves, none of the individuals reproduced and all became unhealthy and died after 6 

weeks, most likely as a result of other conditions being poor.   

  

Even when not added intentionally, substrates comprising of algal, diatom and 

bacterial material tended to form in the culture vessels.  Both B. variabilis and C. 

balkwilli formed huge thriving populations on these masses (experiments 6 & 7) (figs 

5c, 5d, 6d), though C. balkwilli was found to prosper equally well in an empty petri 

dish (experiment 9).  It seems then that while these species of benthic foraminifera 

certainly have a tendency towards inhabiting substrates, they may not be necessary for 

their survival and growth in culture, provided sufficient food is present. 

 

6.5.1.3 Feeding 

One possible explanation for the lack of longevity and reproduction seen in the A. 

tepida cultures is incorrect feeding, though other factors were undoubtedly also 

involved.  Within the Foraminifera, diet varies a great deal and is specific to each 

individual species.  The food provided for a species in culture can vary, as was shown 

in a review by Anderson et al. (1991), and there is no definitive guide to the diet of the 

three species of foraminifera used here. 
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A number of different methods can be chosen for feeding foraminifera.  Heat-killed 

algae will be readily consumed (Grell, 1954; Bradshaw, 1957), though they begin to 

decay, promoting the growth of bacteria after only a few hours.  Foraminifera can be 

inoculated onto previously grown lawns of algae, whose growth have been promoted 

with a nutrient enriched seawater medium for several days (Anderson et al., 1991).  

Live food can be simply dropped in to foraminifera kept in plain seawater, or food 

organisms can be encouraged to grow along with the foraminifera (Anderson et al., 

1991).  Mixtures of food species have been found to promote more vigorous growth 

and reproduction of foraminifera than single species (Lee et al., 1966; Muller & Lee, 

1969), although availability and cost can limit what food is ultimately used. 

 

Many foraminifera have been successfully fed in culture on species from the algal 

genus Dunaliella (Faber & Lee, 1991; Grell, 1954; Hedley, 1964; Muller, 1975), and 

A. tepida itself has been shown to consume Dunaliella salina (de Nooijer et al., 2009).  

A species that has not specifically been used before, Dunaliella tertiolecta, was 

available in the lab and so became the first food to be tested.   

 

In A. tepida fed purely on D. tertiolecta (experiments 1 & 2), green material was soon 

evident within the last 4-6 chambers of the test in many individuals, a promising 

indication of successful feeding, however, the specimens failed to thrive.  Attempts 

made to grow the food source in the same media as the foraminifera (experiment 1) 

quickly failed as the A. tepida could not survive in the enriched artificial seawater and 

were quickly overwhelmed by algal overgrowth. 
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A new food-source was then tested, in the form of the diatom Phaeodactylum 

tricornutum, impregnated onto an agar gel.  Phaeodactylum tricornutum has been 

shown to form part of the diet of a number of foraminifera (Arnold, 1954; Lee et al., 

1969; Murray, 1963) and was successfully used to feed A. tepida by Morvan et al. 

(2004).  The P. tricornutum was initially grown as a lawn on the bottom of the petri 

dishes for 2 weeks prior to the forams being added, using an f/2 nutrient enriched 

media (experiment 3).  Liquid D. tertiolecta algae were also added as an additional 

food source during the experimental period.  Feeding tracks were seen in the lawn 

soon after the forams were added, a positive sign that the strategy was working.  After 

3 weeks, however, the diatoms and algae had grown excessively and soon 

overwhelmed the forams. Many of the foraminifera were covered over by the algae 

and no-longer mobile. The specimens became pale and died within 3 months.  Algal 

overgrowth has been shown to inhibit foraminiferal growth and reproduction (Arnold, 

1954, 1974), with metabolic by-products of the algae becoming poisonous to the 

foraminifera (Lee et al. 1991b).  Specimens kept without the diatom lawn and fed with 

a combination of D. tertiolecta and fragments of the P. tricornutum agar (experiment 

3) survived well for the 3 month duration of the experiment, and were still healthy 

after this time, however, they failed to reproduce.  Observations indicated that because 

the P. tricornutum was restricted to the pieces of agar, it was not accessible enough 

for the foraminifera to feed on. 

 

Healthy growth and reproductive success was finally gained in cultures of A. tepida 

when a mixture of D. tertiolecta and P. tricornutum, in liquid form, were used for 

feeding (experiments 4 & 5).   This feeding strategy was adopted for subsequent 
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culturing experiments on B. variabilis and C. balkwilli, proving successful for both 

(experiments 6 – 9). 

 

It should be noted that the DNA of the food organisms added to the culture system 

could become a source of contamination during subsequent molecular procedures.  

The genomic DNA of the food organisms would therefore need to be sequenced 

alongside that of the foraminifera (or the sequence gained from GenBank) for 

comparison and elimination from further analysis (the same would apply if any 

symbionts or commensals were present).  In addition, to minimise contamination from 

prey particles, all foraminiferans would be kept without food for a period of time prior 

to the extraction of their RNA. 

 

6.5.1.4 Culture vessel 

Success in the A. tepida cultures was in part dependent on the type of culture vessel 

used. Despite petri dishes being commonly used for culturing foraminifera (Morvan et 

al., 2004; Stouff et al., 1999a,b; Takata et al., 2009), it was found here that 

evaporation from them, particularly during the summer months, was a major factor in 

the failure of culture experiments.  Seawater levels dropped quickly, becoming cloudy 

and clogged with algae and bacteria (experiments 1 – 4).  In experiment 4, the A. 

tepida did reproduce, but deteriorating conditions in the petri dishes led to most of the 

foraminifera and offspring dying within 3 months.   

 

Most foraminifera are adapted to life within a species-specific optimal salinity range.  

Significant divergences from these levels can lead to reduced growth (Arnold, 1954), 

deformities in the growing test (Stouff et al., 1999b), and can delay or even prevent 
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reproduction (Bradshaw, 1961, 1957).  Ammonia tepida can tolerate a diurnal salinity 

variation of 0 – 35 ‰ (Murray, 1979), as would be found in its natural estuary 

environment.  The collected water used in the lab had a salinity of 30 ‰, however 

excessive evaporation from the culture vessels could easily have raised this beyond 

tolerable levels.   

 

Crystallisation jars or plastic beakers are an alternative sometimes used when 

culturing foraminifera (Stouff et al., 1999a; Lee et al., 1991b).  When 7 cm beakers 

covered with a loose lid were used here in place of the petri dishes, an immediate 

improvement in culturing success was seen (experiments 5 – 9).  Greater volumes of 

water could be used (50 ml instead of 20 ml), and evaporation was greatly reduced.   

Salinity was easily maintained within a range of 27 – 30 ‰ and the culture conditions 

were a lot more stable. Although some algal growth still occurred, it was far less 

overwhelming.  In experiments 7 – 9, where 7 cm beakers were in use, multiple 

reproductive events were finally observed in all three species of benthic foraminifera 

being cultured and in the case of B. variabilis and C. balkwilli, populations were still 

thriving at the end of the experimental period. 

 

Nevertheless, despite this eventual success, overall observations indicated that 

permanently keeping a foraminiferal culture in any one vessel eventually leads to 

excessive algal growth and contamination by waste products.  In future work a system 

of transferring the foraminifera to fresh culture vessels at regular intervals (~ every 3 

months) or re-establishing cultures from a subset of the original culture will therefore 

be introduced. 
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6.5.1.5 Light & Temperature 

Light is an important requirement for the survival of benthic foraminifera, particularly 

in those carrying endosymbionts.  Bleaching of the cytoplasm occurs rapidly if 

specimens are kept in the dark (Lee et al., 1991b) and in symbiont bearing species, 

growth rate decreases (Kuile & Erez, 1984), and long-term survival is impossible (Lee 

et al., 1991b).  None of the species utilised in the culture experiments undertaken here 

are believed to harbour symbionts, though they were still observed to bleach if kept in 

the dark.  Using artificial lighting, controlled by a timer, it was easy to maintain a 

suitable level of light for an appropriate number of hours each day.  A cycle of 12 

hours light and dark was used, as in other studies (Krüger et al., 1997; Maréchal-

Abram et al., 2004; Stouff et al., 1999a,b).  Light is therefore unlikely to have been a 

factor in the failure of any of the culture experiments. 

 

A constant temperature was more difficult to maintain, as samples were kept on a lab 

bench, which was subject to temperature variations.  The thermal tolerance limit of 

benthic foraminifera is usually far narrower than that of salinity tolerance (Arnold, 

1954) and should therefore be controlled carefully.  Both the temperature response of 

benthic foraminifera and the lethal temperature limit is species specific (Bradshaw, 

1961).  The optimal temperature range for A. tepida is approximately 15 – 20 °C 

(Murray, 1979), and culturing is usually carried out at 20 – 21 °C (Morvan et al., 

2004; Stouff et al., 1999a, b; Takata et al., 2009), though temperatures as high as 25 

°C have been used (de Nooijer et al., 2009).  For this study, the lab temperature 

should have been maintained at 23 °C, already higher than the optimum, however, 

problems with the air conditioning meant that sudden rises in temperature occurred 

more than once during the summer months.  Such increases would clearly be 
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detrimental, also causing raised salinities as a result of excessive evaporation.  The 

effects were evident in experiment 5 where successfully reproducing multi-specimen 

cultures of A. tepida were maintained in 7 cm beakers for 4 months, until the lab 

temperature suddenly rose and the cultures were decimated as a result.   

 

Ideally, cultures should be kept in an incubator, where a constant temperature and 

programmed light cycle could be maintained, however, such equipment was not 

available at the time of these experiments.  More sophisticated culturing set-ups such 

as circulating and re-circulating marine aquaria (Anderson et al., 1991; Lutze & 

Wefer, 1980), or chemostats (Lee et al., 1991b) would doubtless improve the success 

and reliability of culturing experiments, however, it is at least proven here that a 

continuously reproducing culture can be obtained using a very simplistic approach. 

 

6.5.2 Performance of three species of benthic foraminifera in culture 

The original aim of this study was to gain a continuously reproducing culture of the 

benthic foraminiferan, Ammonia tepida.  This species was chosen as it has been 

successfully cultured in the laboratory in the past, and is known to reproduce 

asexually (de Nooijer et al., 2009; Morvan et al., 2004; Stouff et al., 1999a).  It would 

therefore be possible to grow a large culture population, starting from a single 

individual, which could then be used as a DNA source for molecular applications. 

  

6.5.2.1 Ammonia tepida in culture 

In culture, the specimens of A. tepida initially displayed healthy, normal behaviour.  

Most individuals quickly became orientated with their umbilical side to the surface of 

the culture vessel with pseudopodia extended.  Many became encysted (a process that 
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occurs during growth and reproduction), some so completely that their test was no 

longer visible.  In the presence of the algae Dunaliella tertiolecta, most specimens 

soon showed a green colouration within the last 4 – 6 chambers of their test, a 

promising sign of feeding and when a lawn of the diatom Phaeodactylum tricornutum 

and D. tertiolecta was provided, feeding tracks were seen within the first day. 

 

Nevertheless, it proved difficult to attain longevity in the cultures.  Ammonia tepida 

responded poorly to artificial seawater and did not survive when fed on a single food 

item (D. tertiolecta).  Improvements were seen with the use of natural seawater, the 

introduction of mixed liquid food (P. tricornutum and D. tertiolecta), and with the 

provision of more stable conditions, using 7 cm beakers in place of petri dishes.  

Species of the genus Ammonia are reported to be particularly stress tolerant (Bouchet 

et al., 2007; Bradshaw, 1961; Walton & Sloan, 1990), yet here this species seemed 

particularly sensitive to changes in temperature, and possibly salinity, dying quickly if 

conditions in the culture vessel deteriorated. 

 

6.5.2.2 Ammonia tepida reproduction in culture   

Reproduction was first observed after 1 week, in the multi-specimen cultures of A. 

tepida, kept in natural seawater with a mixed liquid food (experiment 4).  Single 

specimens from two of the populations had produced young, with approximately 20 - 

25 juveniles per brood, as is consistent with other culture studies (Morvan et al., 2004; 

Stouff et al., 1999a, b).  The average proloculus size was 50 - 100 μm, consistent with 

proloculus size found in schizonts by Stouff et al. (1999a), indicating that asexual 

reproduction had occurred.  Stouff et al. (1999a) reports that proloculus size in 
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gamonts is smaller, at 25 – 50 μm, though this size difference may not apply in other 

species. 

 

A further indication that asexual reproduction was taking place in the A. tepida 

cultures came when asexual cyst formation was noted in a number of specimens 

(experiment 4).   Some specimens were fully encysted, completely enclosing the test, 

indicating either growth or sexual reproduction, however, many specimens formed a 

cyst only under the umbilical surface of the test (fig 4b), indicative of asexual 

reproduction (Stouff et al., 1999a).  The shape of the developing proloculi are 

sometimes recognisable as bulges in these cysts, however, under the magnifications 

used they could not be distinguished.  

 

Juveniles were usually first observed at the 4-chamber stage.  Though they are 

released from the adult with only 2 chambers, they develop 3 chambers within 24 

hours, and 4 chambers very quickly after that (Stouff et al., 1999a).  It is therefore 

unusual to observe young at the 3-chamber stage, and 2-chamber young are often 

hidden within the reproductive cyst, which is cast off from the adult after schizogony.  

5 chambers are formed 1 week after release, and in 2 weeks 8 – 9 chambers can be 

seen.  It may take up to 3 months for an individual to reach an adult size, with around 

14 – 20 chambers (Stouff et al., 1999a).  

 

Asexual reproduction was confirmed in week 2 of experiment 4, when juveniles were 

produced by one of the individually kept specimens.  Reproduction in culture from a 

single individual of A. tepida has been reported previously (Stouff et al., 1999a), 

hence it was seen as the ideal species to use here.  The adult specimen had died, 
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leaving behind an empty shell surrounded by a small brood of juveniles (4-5 

chambers).  It is quite common for the adult to die after schizogony, though roughly 

10  % do survive.  Those that survive schizogony are not usually observed to 

reproduce subsequently (Stouff et al., 1999b).   

 

The offspring from the individually kept specimen that reproduced by schizogony 

were separated into 2 vessels to be maintained.  From these, it was hoped that by 

successive asexual reproduction, thriving cultures would be established.   This is a 

mechanism observed in nature to rapidly increase population size under conditions of 

stress (Harney et al., 1998; Röttger, 1990) (see introduction).  Unfortunately, the 

populations were decimated as a result of a sudden temperature rise in the lab and no 

other individually kept specimens were seen to reproduce. 

 

Whilst reproduction was successfully observed in A. tepida in the lab, reproduction by 

schizogony from a single individual only occurred once.  In addition, brood size was 

always small (~ 20 individuals) and only 1-3 in every 50 individuals reproduced.  

Brood sizes are usually smaller in laboratory culture than in the natural environment 

(Lee et al., 1991b) and may be the result of stress due to sub-optimal conditions.  In 

the field, severe stress was found to cause a reduction in brood size when 

Amphistegina gibbosa reproduced by multiple fission, as well as variation in the size 

and shape of juveniles (Harney et al., 1998).  Indeed, larger brood sizes have been 

reported in A. tepida in culture, with the media being changed every 2 days rather than 

weekly (de Nooijer et al., 2009). 
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With reproduction being so infrequent and brood sizes being small, at least under the 

conditions in the culture experiments undertaken here, it would take an unfeasibly 

long time for the population to reach a desirable size, but ultimately, it was the poor 

resistance to variable conditions in the culture vessels that rendered A. tepida 

unsuccessful as a culture subject.   Further optimisation of the culturing method and 

better control of conditions could possibly rectify this situation.  This could be 

achieved by more regular changing of the water (once a week or more), experimenting 

with different food sources, transfer to fresh culture vessels regularly to avoid algal 

overgrowth, and the use of an incubator to regulate light and temperature.  In addition, 

it has been noted that mature specimens of A. tepida can survive schizogony, but are 

not usually seen to reproduce subsequently (Stouff et al., 1999b).  As only the largest 

of the collected specimens were selected for culturing, it may be that they had already 

reproduced.  Indeed, it was observed in C. balkwilli (experiment 9), that only those 

specimens placed in culture at an immature stage of development went on to 

reproduce, and it may be that the same would be found should smaller, immature 

specimens of A. tepida be selected for culturing.  This test was not performed here 

with A. tepida, as all of the specimens had died by the time this finding became 

apparent in C. balkwilli.  It would, however, be interesting to compare culture success 

between mature and immature specimens of A. tepida in the future. 

 

6.5.2.3 Bolivina variabilis in culture 

Bolivina variabilis survived very well in culture initially (experiment 6).  Specimens 

were healthy, with a bright orange colouration and large populations established 

rapidly.  Rather than affixing to the bottom of the culture vessel, specimens had a 

tendency to gather together on clumps of substrate, where they thrived.  The multi-
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specimen cultures proliferated for 4 months, however, at the end of the 6 month period 

many of the populations had been decimated.  The crash likely coincided with a 

sudden increase in temperature in the lab as in A. tepida.  Unlike the A. tepida 

cultures, however, where nearly all specimens died, 3 populations of B. variabilis 

survived the poor conditions, one of which remained very strong.   

 

When the culturing experiment was repeated with individually kept specimens and 

two multi-specimen controls, it was uninterrupted by rises in temperature (experiment 

8).  Most specimens survived well for the first 3 months.  All of the living individuals 

had a good healthy colouration and those that had started as juveniles had grown 

significantly.  After 6 months, however, far fewer individuals were left alive, although 

those that remained were still healthy.  It may be that most specimens had simply 

reached the end of their natural life span, however, a thin film of algae was present in 

most beakers, possibly indicating that over time B. variabilis becomes affected by the 

waste products of algal overgrowth.  Bouchet et al. (2007) reported that A. tepida was 

highly tolerant of unfavourable conditions and that B. variabilis was not.  Here it was 

found that although the B. variabilis cultures did decline eventually, they survived 

better than A. tepida. 

 

6.5.2.4 Bolivina variabilis reproduction in culture 

4 months into the culture period reproduction had occurred in 7 out of 10 of the multi-

specimen trial cultures (experiment 6).  Two large populations had established, with 

hundreds of juveniles of different sizes, indicating multiple reproductive events.  In 

comparison to A. tepida, brood size must be far larger in B. variabilis, for such 

populations to have formed.  Indeed other species of benthic foraminifera have been 
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recorded as producing large numbers of young in culture, for example 500 – 600 

schizonts in Amphistegina lobifera (Lee et al., 1991b) and 500 – 1000 in 

Cyclorbiculina compressa (Lutze & Wefer, 1980).  By 6 months, thousands of 

individuals were present in the cultures, suggesting that individuals grow quickly to 

reproductive maturity.  This together with the large brood size could make B. 

variabilis a good candidate for culturing large populations quickly. 

 

However, subsequent culture experiments with B. variabilis were less successful.  

Reproduction occurred in only 1 of the 2 multi-specimen cultures in experiment 8, and 

this was only a small brood (~10).  Moreover, only one juvenile survived to the 6-

month point.  Furthermore, none of the individually kept specimens reproduced, 

though all were healthy.  Despite the early success, and healthy growth of B. variabilis 

in culture, this lack of reproduction from a single individual may make B. variabilis an 

unsuitable candidate for culturing a large homogeneous population. 

 

6.5.2.5 Cornuloculina balkwilli in culture 

It was difficult to assess the health of C. balkwilli specimens in culture as their slightly 

opaque test gives them a naturally pale appearance in comparison to A. tepida and B. 

variabilis.  Cytoplasm could be seen, however, within the living specimens (fig. 6.5a, 

6.5b) and increasing population size indicated good health.  Again, in this species, 

individuals gathered on any substrate present (experiment 7), though they were also 

found to thrive in the absence of algal matter (experiment 9).  Cornuloculina balkwilli 

seemed more resilient to altering conditions in the culture vessels and though some 

reduction in population size was evident at elevated temperatures (during experiment 

7), on the whole, the cultures survived well.  They also re-established well once 
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conditions stabilised, possibly aided by their larger population sizes.  There was some 

evidence of algal overgrowth affecting the cultures in experiment 9.  After 6 months, 1 

of the 2 multi-specimen cultures was completely decimated and there was evidence of 

a fine algal film over the other cultures.  Most, however, were unaffected by these 

conditions, establishing populations of thousands of individuals. 

 

Cornuloculina balkwilli may be an opportunistic species, as was demonstrated in the 

stock populations. A process of succession was evident, with Ammonia tepida being 

the most numerous initially, but with worsening conditions, dying out to be replaced 

by Bolivina variabilis.  These too eventually succumbed, at which point C. balkwilli 

began to thrive.   If the B. variabilis population remained strong in a particular vessel, 

C. balkwilli did not establish.  A superior ability of C. balkwilli to survive variable 

conditions in the lab is indicated, making it a better candidate for culturing. 

 

6.5.2.6 Cornuloculina balkwilli reproduction in culture 

Of all 3 species, C. balkwilli was clearly the most successful at reproducing in culture.  

After 4 months, reproduction had occurred in all 10 of the multi-specimen trial 

cultures (experiment 7), and the populations were large and healthy.  Hundreds of 

individuals were present, of many different sizes, indicating multiple reproductive 

events.  Many more of the original specimens must have reproduced than in the A. 

tepida cultures.  Specimens were heavily crowded making it impossible to determine 

how many young were produced per brood, however, from the population size, it 

seems reasonable to assume that it is significantly more than in either A. tepida or B. 

variabilis.  The number of large empty shells present suggested that, as in the other 2 

species, the adult specimens frequently died following schizogony. 



6: Cultures 

 283

The populations of C. balkwilli not only established well, but also had longevity.  

Many were still healthy at 6 months and even in those with signs of poor health, 

reproduction was still taking place.  This is unlike A. tepida and B. variabilis, where 

reproduction ceased immediately in poor conditions. 

 

Most importantly, C. balkwilli successfully reproduced in culture from a single 

individual (experiment 9). Interestingly, it was found that only those individuals that 

began as immature specimens reproduced (4/5).  Of those that were mature at the start 

of the culture, 3 died, and 2 remained healthy but failed to reproduce.  It has been 

observed in Ammonia tepida that mature adults surviving prior reproduction don’t 

usually reproduce again (Stouff et al., 1999b), and if this were the case in C. balkwilli 

it could explain the findings here.  Large populations established from each of the 

individually kept C. balkwilli and were still healthy and thriving after 6 months.  They 

will continue to be maintained and will eventually form the basis of future genomic 

work. 
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6.6 Conclusions 

Optimal conditions for culturing were established when 7 cm beakers were used 

containing 50 ml of natural seawater filtered to 0.2 μm.  Two thirds of the volume of 

seawater should be replaced at least once a week, though more frequent changing 

would be advantageous.  Observations indicate that algal overgrowth will almost 

always occur in the culture vessels given enough time, even with regular changing of 

the water.  For future studies it would therefore be better to transfer the samples to a 

fresh vessel, or to seed new cultures using a few individuals from the original culture, 

every few weeks.   Specimens survived well when fed a mixed liquid food (Dunaliella 

tertiolecta & Phaeodactylum tricornutum) weekly.  A light/dark cycle of 12 hours was 

maintained, however, the temperature in the lab was too high at 23 °C and above.  A 

fixed temperature of 20 °C would be preferable.  The use of a constant light and 

temperature incubator would greatly enhance the success of culturing experiments. 

 

Cornuloculina balkwilli was found to be the most suitable species for obtaining a 

continuous culture from a single individual.  Though Ammonia tepida reproduced 

from a single individual, reproduction was infrequent and the brood sizes too small.  

An inability to survive fluctuating conditions in the lab made it particularly unsuitable 

for culturing.  Bolivina variabilis formed large populations in culture, but failed to 

reproduce from individually kept specimens. 

 

A continuously reproducing culture of C. balkwilli was obtained and will be 

maintained and ultimately used as a source of RNA & DNA for EST library 

construction/ genomic sequencing and other molecular work in the future. 
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7 Development of a method for the extraction of 
DNA from within intact foraminiferal shells using 
a lysis buffer 

 

7.1 Introduction 

7.1.1 The need for a new method of extracting foraminiferal DNA  

The identification of planktonic foraminiferal morphospecies from the characteristics 

of their calcium carbonate shells is central to their use as palaeoproxies of past climate 

change.  Planktonic foraminifera are unicellular protists, and since it is difficult to 

observe the features of the cell itself, the characteristics of the shell or ‘test’ are used 

for their identification.  A wealth of morphological variation can be seen between the 

shells of different planktonic foraminiferal morphospecies, and in some cases a level 

of morphological plasticity has even been reported within individual morphospecies  

(Bijma & Hemleben, 1994; de Vargas et al., 1999, 2001; Huber et al., 1997). 

 

For genetic studies of living planktonic foraminifera, samples collected via siphoning 

or plankton net from a ship are initially identified from their shell morphology using a 

binocular microscope, with photographs taken for reference.  The process can be 

difficult, with vibrations and movements of the ship often reducing the quality of the 

photographs.  To extract and preserve DNA from the sample, currently the whole 

specimen is crushed in a lysis buffer containing 50 mM Tris buffer (pH 8.6), 2 mM 

EDTA, 0.1 % Triton X-100, and 0.5 % Na deoxycholate and incubated for 1 hour at 

60 °C (Holzmann et al. 1996).  The solution is then used directly in PCR without a 

subsequent phenol-chloroform/ chloroform extraction or ethanol precipitation, and the 
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shell is destroyed during the process making it impossible to refer back to morphology 

at a later stage. 

 

The work in this study will focus on the development of a method of extracting DNA 

from foraminifera whilst leaving the delicate CaCO3 shell intact.  The ability to 

preserve the shell would be of great benefit, as it would allow direct examination of 

the morphological features of individual specimens being used in genotype studies.  

This could provide more accurate insights into the links between low-level genetic 

variation and the minor morphological plasticity observed within planktonic 

foraminiferal morphospecies.  Such information could greatly enhance the accuracy of 

past climate models, which rely on matching morphologically distinct species to the 

particular environmental conditions to which they are adapted.   

 

The design of a new cell lysis/ DNA extraction method could also greatly improve the 

yield and quality of the DNA obtained from foraminifera.  Currently, the method 

widely employed for the extraction of foraminiferal DNA, based on the work of 

Holzmann et al. (1996), produces highly variable results.   PCR amplifications 

following these extractions can be problematic, producing weak bands or even failing 

completely, though at other times, the results are good (chapters 3 & 4).  Much of this 

difficulty is likely to be the result of the way in which the buffer is used.  A lysis 

buffer is usually employed to rupture the cell wall, releasing DNA, which is then 

purified using phenol-chloroform or chloroform extraction along with alcohol 

precipitation, using ethanol or isopropanol.  The buffer of Holzmann et al. (1996), 

however, is typically used to store samples in long-term, with the solution then being 

used directly in PCR.  Over time degradation of the stored DNA takes place, rendering 
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PCR amplification unsuccessful.  In addition, any inhibitory substances present in the 

lysis buffer itself that would normally be removed in a phenol-chloroform/ chloroform 

and alcohol precipitation stage, remain present and are transferred through to the PCR.   

In this study, it is hoped that by testing new buffers, using a range of available 

reagents, and adding a chloroform extraction and alcohol precipitation stage, the 

factors responsible for the higher than usual failure of foraminiferal PCR 

amplifications may be overcome. 

 

7.1.2 Lysis buffers and DNA extraction methods 

Lysis buffers are widely used for the extraction of crude DNA from a variety of 

sources, from soil microbes (Bruce et el., 1992; Steffan et el., 1988; Tsai and Olson 

1991; Zhou et el., 1996) to clinical samples (Fredricks et el., 2005; Noordhoek et el., 

2009) and forensic specimens (Bienvenue et el., 2006; Gill et el., 1985).  There is no 

standard method for such DNA extraction procedures, and the chemical content of the 

lysis buffers varies greatly.  It is generally accepted that extraction methods using a 

lysis buffer in conjunction with mechanical grinding of the specimen produce the 

greatest yields of crude DNA (Fredricks et el., 2005; Miller et el., 1999; Moré et el, 

1994).  Freeze-thaw treatments can also be also used alongside chemical lysis (Hurt et 

el., 2001; Tsai & Olson 1991; Erb & Wagner-Döbler 1993), though yields have been 

found to be slightly lower than those for lysis buffer with mechanical grinding (Kuske 

et el, 1988; Leff et el., 1995; Zhou et el., 1996).  The need to retain the intact shell of 

the foraminifera, after DNA extraction, however, precludes the use of such methods.  

Instead, a method using a lysis buffer plus a simple high temperature incubation will 

be employed (Bruce et el., 1992; Smith & Tiedje 1992).  Whilst it has been suggested 

that DNA yields from such methods may be lower (Zhou et el., 1996), the more gentle 
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approach avoids the often severe problem of DNA shearing that can result from 

mechanical grinding (Leff et el., 1995; Ogram et el., 1987; Zhou et el., 1996). The 

length and heat of the incubation period will be manipulated along with the chemical 

content of the lysis buffer to obtain the highest yield of crude DNA possible, whilst 

avoiding damage to the shell. 

 

7.1.3 Lysis buffer components 

Lysis buffers may contain a variety of chemical reagents, each of which performs a 

specific role.  They include a buffer, for example Tris pH 8.5 (Hurt et el., 2001; Tsai 

and Olson 1991), to maintain the solution at a constant pH, preventing the 

denaturation of the DNA that may otherwise occur under extremes of pH (pH <3 or 

>10).  NaCl may also be included (Tebbe & Vahjen 1993; Tsai and Olson 1991) to 

induce cells with an osmotic shock, thus breaking down the cell membrane to release 

the genetic material.  Both Tris and NaCl are included in the new buffers. 

 

A detergent is added to promote cell lysis (by disruption of the hydrophobic attraction 

between membrane phospholipids), solubilisation of membrane proteins and lipids, 

and denaturation (denaturing detergents only).  The buffers tested will contain one of 

two denaturing detergents, Sodium dodecyl sulfate (SDS) (Kuske et el., 1998; Tebbe 

& Vahjen 1993), or Sodium N-lauroyl sarcosine (Sarkosyl) (Chakravorty & Tyagi., 

2001; Hurt et el., 2001).  The lysis buffer traditionally used for extraction of DNA 

from planktonic foraminifera (Holzmann et al., 1996) contains a less potent, a non-

denaturing detergent, Triton X-100. 
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Some of the new buffers developed in this study contain Guanidinium isothiocyanate 

(GITC), which is frequently used in DNA extraction procedures (Maciel et el., 2009; 

Noordhoek et el., 2009).  The Guanidine and thiocyanate ions denature proteins and 

lyse the cell.  Isopropanol may be added (Erb & Wagner-Döbler 1993, Hurt et el., 

2001) to precipitate DNA and help dissolve the Guanidinium isothiocyanate.  Urea, a 

non-charged chaotrope that disrupts noncolvalent bonds thereby denaturing proteins 

of the cell wall, may also be included (Walker, 2005).   

 

The lysis buffers developed in this study include a range of reducing agents, which 

reduce disulphide bonds, irreversibly denaturing proteins, to lyse the cell.  They 

include β-mercaptoethanol (β-ME) (Chakravorty & Tyagi., 2001), Dithiothreitol 

(DTT) (Bienvenue et el., 2006), and 2-Aminethanethiol Hydrochloride.  Reducing 

agents may have strong odours, must be handled in a fume cabinet and must be added 

fresh to the buffer as they degrade quickly in solution.  

 

There are a number of other reagents that may be included in a lysis buffer, which are 

not used in this study.  These include enzymes such as lysozyme (Maciel et el., 2009; 

Tsai and Olson 1991), which digests the polysaccharide component of bacterial cell 

walls, and Proteinase K (Maciel et el., 2009; Tebbe et el., 1993), which digests 

contaminating proteins and degrades nucleases that might otherwise damage the target 

DNA.  Neither was used here as their required freezing for storage makes them 

impractical for use on board a ship. Chelating agents, for example, 

ethylenediaminetetraacetic acid  (EDTA) (Chakravorty & Tyagi., 2001; Frostegård et 

el., 1999; Holzmann et al., 1996; Tsai and Olson 1991), may also be included to 
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inhibit protease and deoxyribonuclease (DNase) activity by chelating magnesium 

ions’, though these may be damaging to the CaCO3 shell (discussed later).  

 

In many DNA extraction procedures, a post cell-lysis stage using phenol-chloroform/ 

chloroform is added to remove residual proteins and isolate DNA from the buffer 

solution (Luna et el., 2006; Maciel et el., 2009; Sambrook et al., 1989; Tsai & Olson, 

1991; Erb & Wagner-Döbler 1993).  After mixing to form an emulsion, centrifugation 

is used to separate the liquid into an organic phase (containing cell debris and protein 

matter) and an aqueous phase, which contains the target DNA.  The DNA is then 

precipitated using ice-cold isopropanol or ethanol.  A DNA pellet is obtained by 

centrifugation, which can then be re-suspended in an elution buffer or distilled water.  

This final stage purifies the DNA, removing substances that could interfere with 

downstream molecular applications such as PCR.    

 

7.1.4 Designing a DNA extraction protocol: maximising performance and 
overcoming potential problems 

In order to develop a method of extracting DNA efficiently from individual 

foraminiferal specimens whilst leaving the CaCO3 shell intact, it was necessary to find 

reagents that would maximise performance and provide high yields of crude DNA for 

use in PCR.  The DNA should be undamaged by the process, leading to high success 

in PCR, without interference from inhibitory substances. The new lysis buffer would 

have to be effective enough to penetrate the shell of the foraminifer, without damaging 

the shell itself, even if the sample were stored in the buffer for an extended period, 

something that may be necessary in the field or on a ship.  
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A significant problem faced when designing DNA extraction procedures is that a 

number of the components commonly used are known to have an inhibitory effect on  

 

Table 7.1.  Compounds commonly included in DNA extraction procedures and 
the concentrations at which they cause inhibition to PCR 
 

Final concentration in PCR that gives Compound  
No inhibition Inhibition Reference 

Phenol  0.1  % 0.5  % 1 
Chloroform  5  % n.d 1 
Isopropanol  0.5  % 1  % 1 
Ethanol  2.5 % 5 % 1 
Lysozyme  n.d 0.5 mg/ml 1 
Proteinase K  0.5 mg n.d 1 
NaCl  0.3 % 0.5 % 1 
EDTA  0.1 mM 1 mM 1 
DTT  10 mM n.d 1 
Guanidinium isothiocyanate  20 mM 100 mM 1 
Urea  n.d 0.5M 2 

Detergents     
SDS I 0.005  % 0.01  % 1 
CTAB I 0.001  % 0.01  % 1 
Na-sarkosyl I 0.01  % 0.05  % 1 
Na-deoxycholate I n.d < 0.06  % 3 
Nonidet P40 N n.d > 5  % 3 
Triton X-100 N 1 % 2  % 1 
Tween-20 N 2 % 10  % 1 
N-Octylglucoside N n.d < 0.4  % 3 
 
Figures in the ‘No inhibition’ column indicate levels at which tested compounds caused 
absolutely no inhibition to the PCR.  Figures in the ‘Inhibition’ column indicate the level at 
which inhibition was definitely detected.  n.d. = not determined, I = ionic, N = non-ionic.  
Adapted from Rossen et al., 1992.  References: (1) Rossen et al., 1992; (2) Gelfland et al., 1990, 
(3) Weyant et el., 1990. 

 

PCR, when carried over into the reaction mix (Table 7.1, Rossen et al., 1992; 

Saunders et al., 1999; Tijssen, 1993; Weyant et el., 1990).  The extraction method of 

Holzmann et al. (1996) includes no phenol-chloroform/ chloroform extraction and 

ethanol precipitation stage to purify the DNA, which makes the process quick and 

easy but may leave inhibitory substances in the solution that could interfere with the 

PCR.  
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One of the key components of the lysis buffer of Holzmann et al. (1996) is the 

chelating agent EDTA (ethylenediaminetetraacetic acid).  EDTA is a commonly used 

compound in molecular biology that will strongly complex with most metal ions.  In a 

lysis buffer, it prevents divalent cation-dependent proteases and DNase from 

degrading the DNA, however, it is also a known inhibitor of PCR (table 7.1, Al-Soud 

& Rådström 2001; Rossen et al., 1992).  The inhibitory effect results from its ability 

to chelate Mg2+, which is necessary for the activity of DNA polymerase (McPherson 

et el., 1991) and is also required by the nucleotides (dNTPs) and primers in a PCR 

reaction (Dieffenbach & Gabriela, 1995).  EDTA is tolerated in PCR reactions at 

concentrations equal to and below 0.1 mM.  Above this level problems may start to 

occur, and inhibition is certainly caused at concentrations of 1 mM and above (table 

7.1; Rossen et al., 1992, Khosravinia & Remesha, 2007, Kreader, 1996).  Since the 

DNA being extracted from a foraminifer originates from a single cell, low DNA 

concentrations in the solution often mean that up to 5 μl of template (lysis buffer used 

directly) is added into the PCR reaction (see chapter 3 & 4).  If only1 μl of extraction 

buffer were carried over to a 50 μl PCR reaction as the template, it would lead to a 

concentration of 0.04 mM EDTA, which is below the inhibitory threshold of 0.1 mM 

(table 7.1), however, if 5 μl of extraction solution were used as a template, an EDTA 

concentration of 2 mM would result in the PCR reaction, which is twice the level 

known to cause PCR inhibition (table 7.1). The problem is not necessarily impossible 

to solve.  If an excess of EDTA is carried over into the PCR, the problem can usually 

be overcome by increasing Mg2+ concentrations in the reaction (Khosravinia & 

Remesha, 2007). 
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Perhaps a more significant disadvantage of including EDTA in the new lysis buffers 

would be that in addition to chelating Mg2+, EDTA also strongly chelates calcium ions 

and could therefore cause severe damage to the CaCO3 foraminiferal shell that we are 

trying to preserve.  In fact, EDTA based buffers have been used specifically for 

extracting DNA from within stromatolites, by inducing dissolution of their CaCO3 

structure (Wade & Garcia-Pichel, 2003).  CaCO3 damage was not an issue in previous 

genetic studies of the foraminifera, where the shell was crushed as part of the 

extraction procedure, however, for these new trial buffers, EDTA was excluded to 

avoid damage to the foraminiferal shells. 

 

During DNA extraction, detergents are often used to promote cell lysis and 

denaturation (Tijssen, 1993).   Some methods utilise mild non-ionic detergents such as 

Triton X-100, as was used in the Holzmann et al. (1996) lysis buffer.  However, it has 

been indicated that non-ionic detergents (Triton X-100, Tween 20, Nonidet P40, N-

Octylglucoside) are far less effective in DNA extraction than the stronger ionic 

detergents (SDS, Sarkosyl, Na-deoxycholate), sometimes providing very poor results 

(Simmon et al., 2004).  In order to penetrate the shell of the foraminifera, stronger 

ionic detergents were used in the new trial buffers.  A potential downside of using 

ionic detergents (Sodium dodecyl sulfate (SDS), Na-sarkosyl, Na-deoxycholate) is 

that they are far more inhibitory to PCR (causing denaturation of the polymerase) than 

non-ionic ones (Triton X-100, Tween 20, Nonidet P40, N-Octylglucoside).  Non-ionic 

detergents generally cause no inhibition at concentrations of up to 5 %, whilst ionic 

detergents can only be used at low concentrations (e.g. SDS < 0.01 %) (table 7.1, 

Weyant et al., 1990).   
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Some of the other components of the 9 new lysis buffers (Isopropanol, Guanidinium 

isothiocyanate, Urea) have also been reported to have some inhibitory effect on PCR, 

however, they are effective reagents that are commonly used in extraction procedures 

and should be suitable if used at the right concentrations.  Moreover, the addition of a 

chloroform extraction and ethanol precipitation stage should ensure that any 

remaining inhibitory substances are removed from the final DNA product before PCR 

is carried out, bringing them below the concentrations at which inhibition of PCR may 

be caused (see table 7.1) (Rossen et al., 1992; Weyant et al., 1990).  It is the lack of 

this step that has potentially led to some of the problems experienced when using the 

Holzmann et al. (1996) method, where PCR results are often poor (chapters 3 & 4).  

By cleaning up the extracted DNA before use, it also allows more effective chemicals 

to be used in the new buffers, without the risk of them inhibiting the downstream 

PCR. 

 

As much as possible the new lysis buffers have been re-designed to find better 

performing reagents, whilst avoiding high concentrations of inhibitory substances.  12 

trial lysis buffers were developed incorporating a range of reagents in different 

combinations, including Guanidium Isothiocyanate, Isopropanol, Urea, Tris buffer, 

NaCl, the detergents Sarkosyl and SDS, and the reducing agents β-mercaptoethanol 

(β-ME), Dithiothreitol (DTT) and 2-Aminethanethiol. 

 

7.1.5 Testing the new lysis buffers 

Initial testing of the new buffers and DNA extraction method was carried out on a 

benthic foraminiferan, Ammonia tepida.  Ammonia tepida is a common British 

intertidal species, found in the surface sediments of muddy estuaries (Murray, 1979).  



7: Lysis buffers and DNA extraction 

 301

It was chosen because of its relatively large size compared to other species of benthic 

foraminifera (~ 400 μm), and its ease of collection.  Samples were incubated in 12 

new lysis buffers, created from a variety of reagents, and the incubation temperature 

and duration manipulated to optimise the effectiveness of these buffers.   

 

7.2 Aims and objectives 

The aim of this work was to design a lysis buffer that would allow the DNA of single-

celled foraminifera to be extracted effectively whilst leaving the CaCO3 shell intact.  

The shell should be undamaged, even after prolonged storage in the buffer, allowing 

its morphology to be studied in greater detail at a later date.  The conditions of the 

incubation period (temperature and duration) were manipulated to optimise the 

effectiveness of the buffers.  Testing different reagents in the buffers allowed for the 

selection of the most effective compounds and revealed any that led to shell 

degradation or PCR inhibition.  A chloroform extraction and ethanol precipitation was 

added to limit the transfer of inhibitory substances into the PCR reaction.  It was 

hoped that in designing a new method for cell lysis/ DNA extraction, improvements 

would be seen in the success of PCR amplification in the foraminifera. 
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7.3 Methods 

7.3.1 Collection of benthic foraminifera 

Fresh specimens of foraminifera were required to test the effectiveness of the newly 

designed lysis buffers at removing viable DNA from within the shell.  Live, benthic 

foraminifera were collected from Brancaster, Norfolk in May 2007.  Sediment was 

collected from tidal mudflats, from the green, algal-rich surface layer, where 

foraminifera are abundant.  The sediment was sieved to 212 μm and washed through 

with seawater.  Sea temperature and salinity were recorded on location at both low 

and high tide. 

 

7.3.2 Picking foraminifera in the lab 

Thin layers (~50 mm) of the sieved sediment, containing the live foraminifera, were 

placed in several plastic tubs, covered with a 5 cm deep layer of fresh seawater 

(collected at high tide on the day of the foraminifera collection), and a loose lid to 

prevent evaporation.  During the first 2 hours, the sediment was washed twice with 

fresh seawater, allowing it to settle in between.  Obvious large organisms, such as 

nematode worms, were removed as such organisms had previously been observed to 

die easily, their decay contaminating the water.  After 24 hours, healthy, live forams 

could be seen, by eye, to have migrated to the surface of the sediment, clinging to 

small pieces of plant matter and to the sides of the tubs. These were removed by 

pipette to a petri dish containing fresh seawater (salinity ~ 27 – 30 ‰).  Large, healthy 

individuals of the chosen species, Ammonia tepida, were selected and placed in 1.5 ml 

tubes.  Care was taken to collect individuals of a similar size. 
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7.3.3 Buffer solutions 

Three main buffer solutions were tested (table 7.2a), from each of which, 4 final 

solutions were made, each containing a different reducing agent (Table 7.2b). In total 

12 trial lysis buffers were applied to the Ammonia tepida foraminiferal test samples. 

 

 Table 7.2.  Reagents included in the 12 trial lysis buffer 
solutions and their concentrations 
 

A) BUFFER 
 1 
 Tris buffer pH8.5 100 mM 
 NaCl 100 mM 
 Guanidinium Isothiocyanate 4 M 
 Isopropanol 17 % 
 Sarkosyl 1 % 
 2 
 Tris buffer pH8.5 100 mM 
 NaCl 100 mM 
 Sarkosyl 1 % 
 Urea 8 M 
 3 
 Tris buffer pH8.5 100 mM 
 NaCl 100 mM 
 SDS 2 % 
 Urea 7 M 
  
B) Reducing agent 
 A No reducing agent  - 
 B β-mercaptoethanol 0.1 M 
 C DTT 50 mM 
 D 2-Aminethanethiol  

  Hydrochloride 0.1 M 

  
 A) Reagents included in the 3 main buffer solutions (1M TRIS/NaCl stock 
solution made to pH 8.5).  B) The reducing agents added to these main 
buffer solutions to create the final 12 trial lysis buffers. 
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The lysis buffer of Holzmann et al. (1996) was also used as a control (table 7.3).  This 

buffer has been used routinely to extract and store foraminiferal DNA from single 

individuals in almost all molecular studies on the foraminifera to date.  Samples were 

crushed in the buffer and incubated at 60 °C for 1 hour, to extract DNA from the cell. 

 

Table 7.3.  Reagents included in the control lysis 
buffer  

 
Control lysis buffer 

 
Tris buffer pH 8.6 50 mM 
EDTA 2 mM 
Triton X-100 0.1 % 
Na deoxycholate 0.5 % 
 
Taken from Holzmann et al. (1996) 

 
 
Each new lysis buffer was then tested on the freshly collected samples of the benthic 

foraminifer, Ammonia tepida.   Specimens were placed into 1.5 ml tubes into which 

the buffers were added, and placed on a heat block for incubation.  Optimisation tests 

were performed using a range of temperatures and incubation durations to find the 

conditions that would promote the most effective action of the new buffers. 

 

7.3.4 Cell lysis: optimising conditions for incubation in the lysis buffers 

7.3.4.1 Incubation temperature 

Tests were carried out to determine the optimal temperature at which to incubate 

foraminiferal samples in the lysis buffer solutions, both in the presence and the 

absence of a reducing agent.  Prior to testing, photographs of the Ammonia tepida 

specimens were taken under a Nikon SMZ1500 microscope using a Nikon 
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DXM1200F camera, to establish a record of their appearance before cell lysis.  A 

healthy orange cytoplasm colouration was noted in all specimens. 

 

6 solutions were used, 3 with no reducing agent (1A, 2A, 3A, table 7.1), plus, the 

same solutions with the reducing agent β-mercaptoethanol added (1B, 2B, 3B, table 

7.1).  200 μl of each buffer was added to four 1.5 ml tubes, each containing 3 

Ammonia tepida.  For each buffer, the first tube remained at room temperature (23 

°C), whilst the others were heated to 60 °C, 95 °C or 100 °C for 1 hour.  At the end of 

each incubation period the samples were removed from the lysis buffers for 

examination, and photographed again as described above.  The effectiveness of the 

lysis buffers was then determined by observation of the amount of cytoplasm (orange 

colouration) lost from within the shells of the foraminifera.  The ultimate aim was to 

remove all cellular material from the shell, as would be indicated by a complete loss 

of orange colouration. 

 

7.3.4.2 Incubation length  

Whilst testing the subset of buffers above to determine the optimal incubation 

temperature, an incubation length of 1 hour was found to be insufficient to promote 

the complete removal of cellular material from the shells of the foraminifera.  A new 

test was therefore carried out to find the optimal length of incubation.   

 

200 μl of each of the 12 trial buffers was added to 1.5 ml tubes, containing 3 Ammonia 

tepida.  For each buffer one tube of forams was then incubated for 2, 4, 8, 16, or 24 

hours at 75 °C.   This 75 °C temperature was selected based on the temperature test 

(above), as it fell directly between 60 °C, which seemed insufficient to remove all 
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cellular material from the shell (at least in the 1 hour incubation used), and 90 °C, 

which caused unwanted precipitation in the buffers.  Again, the samples were 

observed and photographed under the microscope (as described above) after 

incubation and compared to un-treated foraminifera photographed at the same time.  

The effectiveness of the buffers was determined by the amount of cytoplasm (orange 

colouration) removed from the shells. 

 

7.3.5 Testing the effectiveness of the 12 trial buffers under optimal incubation 
conditions 

The tests described above established the optimal temperature (75 °C) and incubation 

length (24 hrs) under which to use the new lysis buffers.  The optimums were chosen 

based on observation of cytoplasm removal from the shells, and represent the 

conditions that suit the overall use of all of the buffers.    

 

The next step was to test the integrity of the shells and the quality of the DNA 

produced following incubation in the new lysis buffers under these optimal conditions.  

Specimens of Ammonia tepida were incubated in all 12 buffers, to achieve cell lysis.  

The DNA suspended in the buffer solution was then purified using chloroform 

extraction and ethanol precipitation.  For half of the samples this process was carried 

out only after they had been stored in the buffers for 6 weeks following incubation.  

This was to simulate the extended storage in buffers that could be necessary in the 

field or on a ship, before a lab could be reached to complete the chloroform extraction 

and ethanol precipitation stage.  The effectiveness of the lysis buffers was assessed by 

measurement of crude DNA yield produced, and by carrying out PCR amplification 

(described below). The shells were also inspected for damage. 
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7.3.5.1 Cell lysis incubation 

For each of the 12 final buffer solutions 200 μl was added to a 1.5 ml microcentrifuge 

tube containing a single Ammonia tepida specimen (20 replicates).  These were heated 

to 75 °C for 24 hrs (determined to be optimal in the temperature and incubation length 

experiments described above).  Following incubation, the liquid solution from half of 

the samples in each buffer type (10 replicates) was transferred to a fresh tube, leaving 

the empty shell behind for later use.  The DNA was purified immediately using 

chloroform extraction and alcohol precipitation (described below). The other half (10 

replicates) were stored at room temp for 6 weeks, at which point the liquid was 

removed, the DNA purified, and the shell retained for later use.  

 

Following incubation and removal of the buffer solution, the empty shells were stored 

dry for 4 months before being removed and checked for structural integrity under a 

binocular microscope.  Photographs were taken as described above (section 7. 2 .4 .1).  

 

An additional 20 specimens were crushed into 50 μl of the control lysis buffer 

(Holzmann et al., 1996).  Half were stored at room temp for 6 weeks, and half were 

prepared for immediate use. 

 

7.3.5.2 Post-cell lysis chloroform extraction and alcohol precipitation  

After incubation in the buffer solution (+/- 6 weeks storage), 1 μl of tRNA 1 μg/μl was 

added to the sample followed by 200 μl Chloroform-Isoamyl Alcohol (24:1).  The 

tube was inverted for 10 minutes and then centrifuged for 10 minutes at 13000 rpm.  

The aqueous layer was retained (~200 μl), to which was added 2.5 volumes (~500 μl) 

ice-cold ethanol 95  % and 0.1 volumes (~20 μl) 3M Sodium acetate (NaOAc).  
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Samples were stored overnight at –80 °C and then centrifuged for 20 minutes at 13000 

rpm. The supernatant was removed and the pellet washed in 500μl ethanol 70 % 

before being centrifuged for 5 minutes at 13000 rpm.  The remaining ethanol was 

removed and the sample dried for 15 minutes at 45 °C.  The DNA was then re-

suspended in 50 μl Tris buffer.  The total amount of DNA present after extraction 

(crude DNA yield) was measured using a Thermo Scientific NanoDrop 1000. 

 

7.3.5.3 Statistical Analysis of DNA yield 

A one-way between groups analysis of variance (ANOVA) (Harris, 1994) was 

conducted within the SPSS v. 17.0 package (SPSS, 2009) to assess the effect of buffer 

type on the mean yield of crude DNA obtained.  Post-hoc comparisons using Tukey’s 

HSD test (Hsu, 1996) (performed within the SPSS v. 17.0 package: SPSS, 2009) were 

used to indicate differences in mean scores between individual buffers. 

 

7.3.5.4 DNA amplification 

To test the suitability of the DNA for use in downstream applications PCR 

amplification of an approximately 500 bp region of the terminal 3′ end of the 

foraminiferal SSU rRNA gene was carried out using a nested PCR approach.   3 μl of 

extracted DNA was used as the template for the first round of PCR, using primers C5 

(5′-GTAGTATGCACGCAAGTGTGA-3′) and 138 

 (5′-TGATCCTGCAGGTTCACCTAC-3′) (Medlin et al., 1988).  1 μl of product from 

the first round was used as the template in the second round using primers 2082F (5′-

TGAAACTTGAAGGAATTGACGGAAG-3′) and 2514R 

5′ (5′-GGCATCACAGACCTGTTATTGCC-3′) (modified from primers NS5 and 

NS6, White et al. 1990) (for primer sequences and positions see chapter 2, section 
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2.2.2).  PCR amplification was performed using 0.5 units Taq polymerase (Qiagen), 

with 0.2 μM each primer, 200 μM dNTPs, and 3mM magnesium chloride in a 50 μl 

final volume (see chapter 2, section 2.2.2 for details).  Thermal cycling (with a Perkin 

Elmer cycler) was performed with cycling parameters as described in chapter 2, tables 

2.3 and 2.4.  Positive controls using 3 μl of DNA extracted using the traditional lysis 

buffer method of Holzmann et al. (1996) plus negative controls using distilled water 

were included during each round.  Gel electrophoresis was carried out using a 1.5  % 

agarose gel, with gels visualised and photographed using a Bio-Rad gel doc system  

(see chapter 2, section 2.3 for details).   
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7.4 Results 

7.4.1 Cell lysis: optimising conditions for incubation in the lysis buffers 

7.4.1.1 Temperature 

The optimal temperature at which to incubate samples in the buffers, to promote cell 

lysis and the removal of cellular material from the shell, was determined by heating 

benthic foraminifera in a small subset of the new buffers for 1 hour under a range of 

temperatures.  Colour loss could be seen in some of the specimens after incubation, as 

can be seen in the microscope photographs (fig. 7.1), however, none of the shells were 

completely emptied of cellular material, regardless of the temperature used.  Greater 

colour loss could be seen at higher temperatures and in addition, buffers containing a 

reducing agent (1B, 2B, and 3B) were more effective than those without (1A, 2A, and 

3A).  Precipitation was noted in most tubes at 95 °C and 100 °C.  Some damage of the 

shells was noted at 100 °C, particularly in buffer 3B.  No precipitation or shell damage 

was observed at 60 °C or below. 

 

A temperature of 75 °C was chosen for subsequent incubations.  This fell below the 

temperature at which unwanted precipitation occurred in the buffers (90 °C), but was 

higher than the next lowest temperature tested (60 °C), which was ineffective at 

removing cellular material.  As none of the shells were completely emptied of cellular 

material, even at 90 or 100 °C after 1 hour, it was clear that the length of incubation 

would need to be raised, and this was tested next. 
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Figure 7.1.  Benthic foraminifera photographed after incubation in 6 lysis buffers, 3 with no reducing
agent (1A, 2A, 3A) and 3 with ßME (β-mercaptoethanol) (1B, 2B, 3B) for 1 hour at varying temperatures.
Removal of cellular material from the shell is indicated by a loss of the orange colouration. 
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7.4.1.2 Incubation length 

To determine the optimal length of incubation, foraminifera were heated in the 12 new 

buffers to 75 °C, for a range of times, from 2 to 48 hours.  Loss of colouration from 

the shells was taken as an indicator that cell lysis was occurring and that cellular 

material was being removed into solution (fig. 7.2).  Evacuation of cellular material 

was evident sooner in specimens incubated in buffers containing a reducing agent than 

those in buffers lacking a reducing agent (2 hours compared to 8 hours).  The buffers 

varied greatly in the number of hours taken for all material to be removed from the 

shells.  Shells in buffers 1A, 1B, 1C, 1D, 3A and 3B still contained some remnants of 

cytoplasm after 48 hours of incubation.  Shells in buffers 2A, 2B, 2C and 3C still 

contained some material after 24 hours incubation but were clear by 48 hours.  Shells 

in buffer 2D took 24 hours to be clear of cytoplasm and those in buffer 3D were 

empty after only 16 hours.  No damage to the shells was caused by buffers 1A, 1B, 

1C, 2A, 3A and 3B.  Minor damage was caused to shells in buffers 1D, 2B, 2C, and 

3C after 48 hours and to shells in buffer 2D after 24 hours.  For shells in buffer 3D, 

minor damage was seen after 16 and 24 hours, with major damage seen after 48 hours 

incubation.  An incubation length of 24 hours was chosen for subsequent tests, with 

the aim of reaching a compromise between maximum removal of cellular material and 

minimal damage to the shell.   
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Figure 7.2.  Photographs of foraminifera taken after incubation in the 12 trial lysis buffers (1A, 1B, 1C,
1D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D) at 75 °C for varying lengths of time.  Removal of cellular material 
from the shell is indicated by a loss of the orange colouration.  Damage to the shells is shown by a star,
the colour indicating the severity of damage (green = minor, orange = moderate, red = severe).  
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7.4.2 Effectiveness of the 12 trial buffers under optimal incubation conditions 

Having assessed the effectiveness of the new buffers at removing cellular material 

from within the foraminiferal shell, by observing the loss of their orange colouration, 

it was now important to assess their effectiveness in terms of the yield of crude DNA 

gained and success in PCR.  For the next tests individual foraminifera were incubated 

in each of the 12 trial buffers (10 replicates each) under the optimal conditions of  

75 °C for 24 hours.   For half of the samples, the buffer solution was transferred to a 

fresh 1.5 ml tube following incubation, and a post cell lysis chloroform extraction and 

ethanol precipitation stage performed immediately.  The empty shells were left to dry 

at room temperature (21 °C) in the original tubes.  For the other half of the samples, 

the buffer solution was only removed after 6 weeks, to simulate the period of storage 

that could be necessary in the field or on board a ship.   A chloroform extraction and 

ethanol precipitation was performed at this point and the shells left to dry as above. 

 
7.4.2.1 Crude DNA yield 

Mean yields of crude DNA extracted (ng/μl) are presented in fig. 7.3.  A one-way 

between groups analysis of variance (ANOVA) (Harris, 1994) showed a statistically 

significant difference in crude DNA yield between the different buffers at the p<0.05 

level (appendix 9.8.2).  The effect size, calculated using eta squared was 0.6 (appendix 

9.8.3).  Post-hoc comparisons using Tukey’s HSD test (Hsu, 1996) indicate which 

individual buffers differed significantly in mean crude DNA yield (significant at the p 

= 0.05 level)  (appendix 9.8.4).  
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Comparing the basic buffer solutions, the group 3 buffers produced the highest crude 

DNA concentrations on immediate chloroform extraction/ ethanol precipitation after 

incubation (significantly higher than the DOC lysis buffer of Holzmann et al. (1996), 

used as standard in genetic studies of the foraminifera and here as a control), however 

a significant loss of yield took place after storage at room temperature for 6 weeks 

(buffer 3 versus lysis buffer control: fig 7.3, Tukey HSD, appendix 9.8.4).  The group 

1 buffers produced the next highest yields on immediate chloroform extraction/ 

Figure 7.3.  Graph showing the mean yield of crude DNA obtained following incubation in the 12 lysis
buffers and subsequent chloroform extraction/ ethanol precipitation.  Values are shown for chloroform
extraction/ ethanol precipitation carried out immediately after incubation and following 6 weeks storage 
in the buffers.  Crude DNA yield obtained using the control buffer of Holzmann et al. (1996) is also 
shown 
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ethanol precipitation, again significantly higher than the DOC lysis buffer of 

Holzmann et al. (1996)  (buffer 1 versus lysis buffer control: fig. 7.3, Tukey HSD, 

appendix 9.8.4).  Following 6 weeks storage, these yields had only dropped by an 

insignificant amount (fig. 7.3, Tukey HSD, appendix 9.8.4), remaining higher than for 

the control buffer (though not all significantly so; Tukey HSD, appendix 9.8.4).  

Buffer 2 produced the lowest mean yield of crude DNA on immediate chloroform 

extraction/ ethanol precipitation but showed little change after 6 weeks storage.  

Group 2 buffer DNA yields were comparable to those gained using the Holzmann et 

al., 1996 buffer (buffer 2 versus lysis buffer control: fig. 7.3, Tukey HSD, appendix 

9.8.4).  The type of reducing agent included in the buffer (A, B, C, D) had no 

significant effect on mean yield of crude DNA (fig. 7.3, Tukey HSD, appendix 9.8.4).  

The highest overall mean crude DNA yield was produced by incubation in buffer 3A 

followed by immediate chloroform extraction/ ethanol precipitation (218 ng/μl), 

whilst the lowest was from buffer 2C after 6 weeks storage (99 ng/μl). 

 

7.4.2.2  Success in PCR 

There was a great deal of variation in the level of success of PCR after DNA 

extraction from the buffers (fig. 7.4).  All group 1 buffers performed extremely well in 

PCR, both after immediate chloroform extraction/ ethanol precipitation and for most 

after 6 weeks storage, with every sample (3 replicates for each buffer) producing 

strong bands (except buffer 1D after 6 weeks storage, which had 1 strong band, 1 

weak band and one failure).   
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The group 2 buffers did not perform quite as well in PCR as the group 1 buffers.  On 

immediate chloroform extraction/ ethanol precipitation after incubation, successful 

foraminiferal bands were produced in only 1 & 2 replicates out of 3 for buffers 2A and 

2B respectively, although for samples stored for 6 weeks following incubation and 

prior to chloroform extraction/ ethanol precipitation, both buffers produced 3 strong 

bands.  Buffer 2C produced 3 reasonable bands on immediate chloroform extraction/ 

ethanol precipitation after incubation but only 2 bands after 6 weeks storage.  None of 

Figure 7.4.  Agarose gels showing the intensity of bands produced from the PCR amplification of an ~
500 bp fragment of the SSU rRNA gene using DNA extracted with each of the 12 buffers (1A, 1B, 1C,
1D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D). Transfer to the chloroform extraction/ ethanol precipitation
stage was carried out either immediately after cell lysis or following 6 weeks storage of samples in the
lysis buffers, as indicated.  All bands above the 500 bp marker (determined using a 100 bp DNA
ladder: New England Biolabs) are foraminiferal in origin, whilst those below are likely to be from the
amplification of algal symbionts.  For the control, samples were crushed in 50 μl of the Holzmann et
al. (1996) lysis buffer and incubated at 60 °C for 1 hour.  Material was then taken directly from the
buffer for use in PCR both immediately and after 6 weeks storage in the solution.   Negative controls
were included for each round of PCR, and found to be blank when run on the agarose gel. 
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the samples incubated in buffer 2D worked in PCR on immediate chloroform 

extraction/ ethanol precipitation, though 1 sample worked for 2D after 6 weeks 

storage, producing a strong band. 

 

The group 3 buffers performed very poorly in PCR.  After immediate chloroform 

extraction/ ethanol precipitation nearly all samples failed in PCR.   Buffer 3A 

produced 1 reasonable band, 3C produced 1 very weak band, and buffers 3B and 3D 

failed to amplify.  After 6 weeks storage, buffers 3A and 3B produced 1 band each, 

3D produced 1 weak band, and buffer 3C failed completely. 

 

Success of the PCR amplification was generally correlated with the buffer group (1, 2, 

or 3) used.  With regards to the reducing agent included, no reducing (A), β-ME (B), 

or DTT (C) produced better results than the reducing agent 2-Aminethanethiol 

Hydrochloride within the successful buffer solutions (1 & 2). 

 

In comparison to the control samples, prepared using the lysis buffer of Holzmann et 

al. (1996), the performance in PCR of the group 1 and 2 buffers was far superior.  

Only 2 of the control samples were successful in PCR, one used immediately after 

incubation, and the other after 6 weeks storage.  
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7.4.2.3 Damage to shells 

Following cell lysis, the buffer solution was removed from the tubes (either 

immediately or following 6 weeks storage in the buffer) to be taken on to the DNA 

purification stage by chloroform extraction and ethanol precipitation. The empty 

shells were left in the tubes to dry at room temperature (21 °C), and then stored dry for 

6 months.  After this period they were examined for damage (fig. 7.5). 

 

All of the buffer 1 solutions performed very well (fig. 7.5).  Buffer 1A (containing no 

reducing agent) caused no damage to the shells and buffers 1B, 1C, and 1D 

(containing the reducing agents β-ME, DTT & 2-Aminethanethiol Hydrochloride 

respectively) caused only minor damage to 1 or 2 shells.  Storage for 6 weeks in these 

buffers did not cause the level of damage to increase.  

 

The buffer 2 solutions showed some variation in the amount of shell damage they 

caused (fig. 7.5).    Buffer 2A (no reducing agent) caused no damage at all, even after 

6 weeks storage.  Buffer 2B (β-ME) caused no damage to shells that were removed 

immediately after incubation, and only minor damage to 1 shell after 6 weeks storage.  

Buffer 2C (DTT) caused some minor damage to 1 shell both on immediate removal 

after incubation and after storage in the buffer for 6 weeks.  Buffer 2D (2-

Aminethanethiol Hydrochloride) did not perform well.  Though it caused only minor 

to moderate damage to shells that were removed immediately after incubation, those 

shells stored in the buffer for 6 weeks were completely dissolved. 
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Figure 7.5.  Photographs of empty foraminiferal shells, stored dry for 6 months following treatment
with the 12 new lysis buffers.  The two columns represent specimens that were removed from the
buffers immediately after incubation and those that were stored in the buffers for 6 weeks before being
removed.  Damage to the shells is highlighted by a star, with the colour indicating the level of damage
(green = minor, orange = moderate, red = severe) 
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All of the buffer 3 solutions performed very poorly with regards to shell damage.  All 

four (3A, 3B, 3C, 3D, containing no reducing agent, β-ME, DTT & 2-

Aminethanethiol Hydrochloride respectively) caused moderate to severe damage to 

the shells when removed immediately from the buffers after incubation.  6 weeks 

storage in buffers 3A, 3B, and 3C did not cause the severity of the damage to increase, 

however, shells stored in buffer 3D for 6 weeks were dissolved completely. 

 

Within each buffer group (1, 2 and 3) buffers containing no reducing agent caused the 

least damage to the shells (1A, 2A, 3A).  Buffers, 1B and 2B, containing βME, caused 

only minor damage to some of the shells, though buffer 3B, which also contained 

βME caused moderate to severe damage to some shells.  Again, buffers 1C and 2C, 

which contained DTT, caused only very minor damage, whereas buffer 3C, which 

also contained DTT caused moderate to severe damage.  Buffers 2D, and 3D, which 

contained the reducing agent 2-Aminethanethiol Hydrochloride caused the most shell 

damage, though buffer 1D, which also contained 2-Aminethanethiol Hydrochloride 

caused little damage. 
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7.5 Discussion 

7.5.1 Determining the optimal incubation conditions for cell lysis 

Having designed the new buffers, it was important to determine the optimal conditions 

for their use.  Testing the buffers at a range of temperatures, from room temp to  

100 °C for 1 hour, indicated that higher temperatures increased the effectiveness of the 

buffers, promoting cell lysis and removal of cellular material from the shell (fig. 7.1).  

However, at temperatures above 95 °C there was a significant amount of evaporation 

from the solutions leading to precipitation and crystallisation.  Such an effect is 

undesirable making it both difficult to remove the liquid containing the DNA and 

causing possible damage to the shell.  Damage was evident in shells incubated in 

buffer 3B at 100 °C.  A temperature of 75 °C was chosen for subsequent incubations, 

with the aim of keeping the temperature as high as possible, whilst avoiding 

precipitation. 

 

During the temperature test, an incubation of 1 hour had been insufficient to cause 

complete lysis of the cell and dispersal of the cytoplasm into solution (fig. 7.1).  

Incubation of forams in the 12 trial buffers for a range of times at 75 °C (fig. 7.2) 

showed that increasing the incubation time led to more effective removal of cellular 

material from the shell.  Performance differed between buffers, the best causing 

complete evacuation of the shell by 16 hours (buffer 3D), and the worst still 

containing material at 48 hours (buffers 1A, 1B, 1C, 1D, 3A and 3B).  For some 

buffers, shell damage was caused at longer incubation times.  Buffers 1A, 1B, 1C, 2A, 

3A, and 3B caused no shell damage at all, buffers 1D, 2B, 2C, and 3C caused minor 

damage after 48 hours.  Buffer 2D caused minor damage after only 16 hours, and 

major damage after 48 hrs. 
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Taking into account the overall effectiveness of the buffers after different incubation 

periods as well as any damage caused to the shells, 24 hours at 75 °C was selected for 

use in subsequent incubations.  This incubation temperature is slightly higher than the 

60 °C at which crushed foraminifera are traditionally incubated in lysis buffer 

(Holzmann et al., 1996), and the length of incubation is considerably longer at 24 

hours compared to 1 hour (Holzmann et al., 1996).  

 

The temperature and length of incubation used in DNA extraction procedures can vary 

a great deal.  In most bacterial studies a lower temperature of around 37 °C is 

commonly used (Tsai & Olson, 1991; Smith & Tiedje, 1992), and although 

temperatures as high as 70 °C can be used, the length of incubation is only usually 

between 30 minutes to 1 hour (Bruce et al., 1992; Kuske et al., 1998).  A similarly 

low temperature has been used to extract DNA from lymphocytes (37 °C), but with an 

overnight incubation (Godschalk et al., 1998). DNA extractions from blood cells or 

dried blood samples vary from 10 to 90 minutes at 56 °C (Persat et al., 2009; de 

Vange Panteleeff et al., 1999), or may be carried out overnight at 60 °C, (Tani et al., 

2008). DNA extractions from tissues use temperatures of around 50-55 °C, with 

incubations from a few hours to overnight (Sambrook et al., 1989; Stoffberg et al., 

2010).  Higher temperatures can be used, for example, when extracting DNA from 

difficult substrates such as feathers.  Here incubation temperatures of 70-75 °C are 

standard, but samples are usually incubated for less than an hour (Gebhardt et al., 

2009; Malagó et al, 2002). 
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For this study, the fact that the cellular material had to be extracted from within an 

intact foraminiferal shell necessitated the use of a high temperature and long 

incubation time. 

 

7.5.2 Performance of the new lysis buffers 

When assessing the success of each buffer it is important to consider a range of 

factors, such as crude DNA yield after DNA extraction, performance in PCR, and 

damage caused to the CaCO3 shells.  It is also useful to observe how these factors 

change if foraminifera are stored in the buffers for a long period of time (e.g. 6 weeks) 

as they might be after a collection trip.   

 

There was a considerable amount of variation in overall performance between the 

different buffers, which will be discussed firstly in terms of the main buffer groups 1, 

2, and 3, and secondly according to the individual reducing agents added (A, B, C, D). 

 

7.5.2.1 Group 1 buffers 

All of the group 1 buffers (1A, 1B, 1C, 1D) performed well overall, despite early 

indications that they were not effective enough.  During tests to determine the optimal 

length of incubation (fig 7.2), some residual cellular material had been evident in the 

shells after the longest incubation time tested (48 hours at 75 °C), though as a positive 

they also caused little damage to the shells.  When incubated under the selected 

conditions of 75 °C for 24 hours, however, the effectiveness of the group 1 buffers, as 

assessed by crude DNA yield and success in PCR amplification, was extremely good, 

possibly indicating that total removal of cytoplasm from the shell is not essential.  The 

amount of crude DNA produced on immediate chloroform extraction/ ethanol 



7: Lysis buffers and DNA extraction 

 326

precipitation after incubation was high for all of the group 1 buffers and remained 

high for those samples stored in the buffers for 6 weeks (fig. 7.3).  In PCR, all of the 

group 1 buffers were highly successful; the samples chloroform extracted/ ethanol 

precipitated immediately after incubation all producing strong bands (x3 replicates for 

each buffer) (fig. 7.4), and nearly all producing strong bands after 6 weeks storage 

(with the exception of buffer 1D, containing the reducing agent 2-Aminethanethiol 

hydrochloride).  In comparison to the traditional foraminiferal DNA extraction 

method (Holzmann et al., 1996) (used here as a control), the group 1 buffers produced 

higher yields of crude DNA and were far superior in terms of PCR success (most of 

the control samples failed in PCR). 

 

No precipitation was noted in any of the group 1 buffers.  Out of all of the groups of 

buffers, those based on buffer 1 caused the least overall damage to the foraminiferal 

shells, both in those that were removed from the buffers immediately after incubation 

and in those that were stored in the buffers for six weeks before being dried out (fig. 

7.5).  Buffers 1A and 2A caused no shell damage at all. 

 

It is clear that these group 1 buffers are highly suitable for extracting DNA from 

foraminifera for use in PCR, whilst keeping the shell intact, and that their performance 

may be unhindered when storing samples in them for longer periods (6 weeks at 

least), making them an ideal choice for use in the field or on a ship. 
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7.5.2.2 Group 2 buffers 

The group 2 buffers (2A, 2B, 2C, 2D) varied in their performance.  During the test for 

optimising incubation length (fig. 7.2), shells in buffers 2B and 2C were empty of 

cytoplasm within 48 hours, although minor shell damage was evident, and those in 

buffer 2D were empty in only 24 hours, though again with minor damage to the shells.  

Precipitation occurred in buffer 2B from 8 hours onwards and in buffer 2C after 24 

hours.  Precipitation is undesirable, making it difficult to separate the empty shell 

from the buffer at the end of the incubation, and possibly leading to damage of the 

shell.  In addition, the buffer becomes thickened and difficult to pipette. 

 

The group 2 buffers produced the lowest yields of crude DNA overall, though the 

yield was not significantly diminished when samples were stored in the buffers for six 

weeks (fig. 7.3, Tukey HSD, appendix 9.8.4).  The performance in PCR was varied.  

On immediate chloroform extraction/ ethanol precipitation after cell lysis, buffers 2A, 

2B, 2C and 2D, produced 1, 2, 3, and 0 bands respectively (fig. 7.4).  Strangely, for 

buffers 2A, 2B, and 2D the PCRs were slightly more successful for samples that had 

been stored in the buffers for 6 weeks after incubation, with, 3, 3, and 1 bands being 

produced respectively (fig. 7.4).  This perhaps suggests that the 24 hr incubation time 

used is insufficient for these buffers.  DNA yields were comparable to those obtained 

using the control buffer (Holzmann et al., 1996), though PCR success was better (with 

the exception of buffer 2D). 

 

Buffer 2A (containing no reducing agent) caused no damage to the foram shells, even 

after 6 weeks storage (fig. 7.5).  Buffers 2B and 2C caused only minor shell damage, 

however, buffer 2D, which also had the poorest PCR result, caused severe damage to 
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the shells, completely dissolving them after they were stored in the buffer for six 

weeks.  Buffer 2D is clearly not suitable for future use and for the remaining group 2 

buffers performance was relatively poor, though there was little apparent deterioration 

following long-term storage. 

 

7.5.2.3 Group 3 buffers 

The performance of the group 3 buffers varied somewhat, but was probably least 

favourable overall.  During tests to find the optimal length of incubation (fig. 7.2), 

buffer 3B failed to cause the complete evacuation of cytoplasm from the foraminiferal 

shells, however, caused no shell damage.  Shells in buffer 3C were emptied of 

cytoplasm after 48 hours but also sustained minor damage.  Buffer 3D was the fastest 

acting of all the 12 buffers, the shells being empty after only 16 hours, however, minor 

shell damage was sustained in only 16 hours, and severe shell damage was evident 

after 48 hours in the buffer.  Some precipitation was noted in buffer 3D at 16, 24, and 

48 hours  

 

The group 3 buffers produced the highest mean yields of crude DNA of all the buffers, 

on immediate chloroform extraction/ ethanol precipitation after incubation.  However, 

there was a significant loss of yield when shells were stored in the buffers for 6 weeks 

before chloroform extraction/ ethanol precipitation (fig. 7.3, Tukey HSD, appendix 

9.8.4).  It should be noted though that despite this loss, the mean yields were still 

higher than those of the group 2 buffers, even when these were extracted immediately.  

The group 3 buffers produced significantly higher yields of crude DNA than the 

control buffer (Holzmann et al., 1996), on immediate chloroform extraction/ ethanol 
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precipitation, but only equivalent yields to the control after 6 weeks storage (fig. 7.3, 

Tukey HSD, appendix 9.8.4). 

 

In terms of PCR success the group 3 buffers performed extremely poorly, as did the 

control buffer (fig. 7.4).  On immediate chloroform extraction/ ethanol precipitation, 

buffers 3A and 3C produced 1 weak band each, while 3B and 3D failed completely. 

As with the group 2 buffers, PCR seemed slightly more successful for samples stored 

for 6 weeks in the buffers before being chloroform extracted/ ethanol precipitated, 

again suggesting that an incubation time longer than the 24 hrs used may be beneficial 

when using these particular buffers.  Buffers 3A and 3B then produced strong bands 

for 1 in 3 samples each, buffer 3D produced a weak band for 1 in 3 samples, and 

samples in buffer 3C failed completely.    

 

The group 3 buffers clearly produced the worst results in terms of damage to the 

CaCO3 shells (fig. 7.5), all causing moderate to severe damage both on immediate 

removal from the buffers after incubation and after storage for 6 weeks.  The worst of 

all 12 buffers for shell damage was buffer 3D, which caused severe damage when 

shells were removed immediately, and completely dissolved the shells stored in it for 

6 weeks.  

 

Based upon the testing undertaken at the present time, the group 3 buffers performed 

the worst for both PCR and shell damage, indicating that they should not be 

considered for further use.  
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7.5.2.4 The DOC lysis buffer control 

Using the traditional method of foraminiferal DNA extraction (Holzmann et al. 1996), 

the yield of crude DNA produce was respectable, however, almost all of the PCR 

reactions failed, indicating that PCR inhibition had taken place.  This is a problem that 

has surfaced regularly during lab work for the biogeographical and phylogenetical 

studies of this thesis (chapters 3, 4, & 5).  It is possible, however, that such effects 

could be avoided with the addition of a post cell lysis chloroform extraction and 

alcohol precipitation stage, though the method does not afford the advantage of 

preserving the foraminiferal shell. 

 

Overall, the results indicate that the success of DNA extraction and shell preservation 

is strongly influenced by the buffer group used (1, 2, & 3), and therefore the 

component reagents used to create them. 

 

7.5.2.5 What makes certain buffers more effective than others? 

A marked difference in PCR amplification success could be seen between samples 

incubated in the different lysis buffers groups.  Samples incubated in all buffer 2 and 3 

solutions produced poorer PCR results than those incubated in the buffer 1 solutions.  

Inhibition by the detergent Sarkosyl can be ruled out as a cause of poor PCR 

performance, as it is present in both the successful group 1 buffers and the poor group 

2 buffers.  The buffer 2 solutions could simply be inadequate at extracting the DNA 

from the foraminifera, leading to low yields of crude DNA (fig. 7.3), and therefore 

poor PCR results (fig. 7.4).  However, the group 3 buffers produced high yields of 

crude DNA, yet produced the poorest results in PCR of all. Urea (present in buffer 

groups 2 & 3) is likely to have caused some inhibition to PCR (Gelfland et al., 1990), 
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and in addition, does not mix well in solution, explaining why these buffers 

sometimes precipitated when those from group 1 did not.  The detergent SDS was 

present in the poorly performing group 3 buffers alone, and may have caused the most 

severe PCR inhibition.  Inhibition was evident despite the use of the chloroform/ 

ethanol precipitation stage, which should have brought the SDS concentration in the 

final DNA product below its reported inhibition concentration of 0.01  % (Rossen et 

al., 1992, also section 7.1.4: table 7.1).  Though the alternative detergent, Sarkosyl 

(used in buffers 1 & 2) also reputedly has some inhibitory effect on PCR, it may be 

used at higher concentrations before these become apparent (Rossen et al., 1992, 

section 7.1.4: table 7.1).  In addition to their inhibitory effect on PCR, SDS and Urea 

in combination (in buffer group 3), caused high levels of damage to the foraminiferal 

shells. 

 

Of course it may simply be that the reagents unique to the group 1 buffers, 

Guanidinium Isothiocyanate (GITC) and Isopropanol, greatly enhance their 

performance.  Interestingly, Guanidinium Isothiocyanate is a known PCR inhibitor 

(table 7.1, Rossen et al., 1992), but seems to have had no effect here.  It is likely that 

the process of chloroform extraction/ethanol precipitation and subsequent dilution in 

the PCR mix was sufficient to bring the concentration down below its 100 mM 

inhibition threshold.  GITC DNA extraction has recently been used successfully on 

specimens of the planktonic foraminifera Orbulina universa, leaving the shell intact 

(Morard et al., 2009). 

  

The varying amount of damage caused to the shells of the foraminifera by the 

different buffers may also be traced to particular reagents.  The fact that the group 3 
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buffers cause significantly greater levels of damage is likely to be due to the presence 

of the detergent SDS.  This is the only chemical unique to this buffer group.  Sarkosyl, 

the detergent present in buffer groups 1 and 2 seems to be a better alternative. 

 

7.5.3 The effects of including a reducing agent 

Reducing agents may be added to lysis buffers (Bienvenue et el., 2006; Chakravorty 

& Tyagi., 2001) to promote cell lysis, by reducing disulphide bonds and thus 

denaturing the proteins of the cell membrane.  As mechanical lysis of the 

foraminiferal cell was impossible due to the need for shell preservation, reducing 

agents were added to some of the new buffers with the aim of increasing their 

effectiveness (buffers 1B, 2B, 3B (β-mercaptoethanol); buffers 1C, 2C, 3C (DTT); 

buffers 1D, 2D, 3D (2-Aminethanethiol hydrochloride)).  Some of the trial buffers 

were left with no reducing agent (buffers 1A, 2A, 3A) to allow for comparison.  In 

addition to the influence of the overall buffer choice (1, 2, or 3), the reducing agent 

added to each of these was also found to affect performance in terms of the removal of 

cellular material from the foraminiferal shells, PCR success, and damage to the shells.  

 

7.5.3.1 Removal of cellular material from the foraminiferal shell 

When manipulating the duration of the incubation at 75 °C (fig. 7.2), specimens 

incubated in buffers containing a reducing agent (buffers 1B, 2B, 3B, 1C, 2C, 3C, 1D, 

2D, 3D) showed signs of cytoplasm evacuation from their shells far earlier than 

specimens incubated in buffers lacking a reducing agent (buffers 1A, 2A, 3A) (2 hours 

compared to 8 hours).  This perhaps indicates a potential a role of reducing agents in 

minimising the length of incubation needed.  In terms of the time taken for the 

complete removal of cellular material from the foraminiferal shells (fig. 7.2), there 
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was little difference in performance within the group 1 buffers, regardless of the 

reducing agent used.   Of the group 2 & 3 buffers, those containing β-ME (2B & 3B), 

worked only as well as the buffers lacking a reducing agent (buffers 2A & 3A).   DTT 

appears to have enhanced the action of the group 3 buffer (3C) slightly, with all 

cellular material being evacuated in 48 hours, compared to buffer 3A, containing no 

reducing agent, or buffer 3B, containing β-ME, which left some residual material after 

this time.  The addition of the reducing agent 2-Aminethanethiol hydrochloride to the 

group 2 and 3 buffers (2D, 3D), accelerated the complete removal of material from the 

shells particularly well, with total evacuation occurring in only 24 (buffer 2D) and 16 

hours (buffer 3D).   However, the inclusion of this particular reducing agent was 

detrimental in other respects, as is discussed below. 

 

In addition, it should be noted that the complete removal of cellular material from the 

shell might not be necessary to obtain high yields of good quality DNA for PCR.  The 

group 1 buffers, for example, left some residual material after 48 hours at 75 °C, but 

performed extremely well in terms of DNA yield and PCR success.  

 

The inclusion of a reducing agent could be used to lower the required incubation time 

for cell lysis, an advantage when processing large numbers of samples.  However, 

other aspects of performance must also be considered. 

 

7.5.3.2 DNA yield and success in PCR 

Interestingly, there was found to be no apparent correlation between the reducing 

agent used and the yield of crude DNA produced after DNA extraction (fig. 7.3, 

Tukey HSD, appendix 9.8.4), seeming instead to be more dependent on the buffer 
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group used (1, 2, or 3).  Though it was assumed that a reducing agent would be needed 

to promote cell lysis, leading to high yields of DNA, the lysis buffers lacking a 

reducing agent (1A, 2A, 3A) actually produced DNA yields equal to the other buffers 

(fig. 7.3; incubation at 75 oC for 24 hours), perhaps indicating that for a 24 hour 

incubation at 75 °C, a reducing agent may be unnecessary. 

 

Success in PCR was predominately dependent on the buffer group used (1, 2, or 3) 

(fig. 7.5), however, particularly poor results were gained from buffers containing the 

reducing agent 2-Aminethanethiol hydrochloride.   When combined with buffer 1, 

these detrimental effects were only evident after long-term storage of samples in the 

buffer (fig. 7.5: 1D, 6 weeks: only 1 strong band), however, when combined with 

buffer 2 (buffer 2D), PCR failure was high, even on immediate chloroform extraction/ 

ethanol precipitation (fig. 7.5: 2D, Immediate: no bands, 6 weeks: only 1 strong band).  

The success of buffers 1B and 2C indicate that the reducing agents β-ME and DTT 

have no detrimental effect on the PCR. 

 

7.5.3.3 Shell damage 

The point at which performance of the different reducing agents begins to differ 

significantly is when damage to the CaCO3 shell of the foraminiferan is concerned.  

Again, it is clear that the level of shell damage is also dependent on buffer group (1, 2, 

& 3) to a certain extent, with the greatest amount of damage evident in samples 

incubated in the group 3 buffers (fig. 7.5), however, within each buffer group the least 

damage was caused by buffers containing no reducing agent  (fig. 7.5; buffers 1A, 2A, 

3A), with buffers 1A and 2A causing no damage at all, even after specimens had been 

stored in them for 6 weeks.  Overall, the level of damage caused by the buffers 
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containing the reducing agents β-ME and DTT was similar, being only minor when 

they were included in the groups 1 (fig. 7.5; buffers 1B, 1C) & 2 (fig. 7.5; buffers 2B, 

2C) buffers, but moderate within buffer group 3 (fig. 7.5; buffers 3B, 3C).  By far the 

most severe damage was caused by the reducing agent 2-Aminethanethiol 

hydrochloride, when included in the group 2 & 3 buffers (fig. 7.5; buffers 2D, 3D).  

Damage was particularly severe when specimens were stored in these buffers for 6 

weeks, which resulted in the shells being entirely dissolved.  Despite the more rapid 

action of the reducing agent-containing buffers in evacuating cellular material from 

the shells, the results here perhaps indicate some detrimental effects of their inclusion, 

particularly in the case of 2-Aminethanethiol Hydrochloride. 

 

7.5.4 Selecting the best lysis buffer 

Of the three buffer groups tested (1, 2, & 3), group 1 produced the most favourable 

results overall.  Though groups 2 & 3 were possibly more efficient at removing 

cellular material from the foraminiferal shells during incubation (fig. 7.2), they did not 

perform as well in other respects (buffer 2: poorer DNA yield: fig. 7.3, slightly poorer 

PCR performance: fig. 7.4, greater shell damage: fig. 7.5, Buffer 3: poorer PCR 

performance: fig. 7.3, greater shell damage: fig. 7.5).  The group 1 buffers (containing 

GITC and Isopropanol) produced high yields of crude DNA, and performed the best in 

the PCR, outperforming the other new buffers (2 & 3) and the control buffer of 

Holzmann et al. (1996).  They also caused little damage to the delicate CaCO3 shells 

of the foraminifera, leaving them intact for future use.  Most importantly, the 

performance of the group 1 buffers was unhindered when samples were stored in them 

for an extended period of time (6 weeks), as could be required in the field or onboard 

a ship. 
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The inclusion of a reducing agent in the lysis buffer may accelerate the removal of 

cellular material from the shells (fig. 7.2), however, in all other respects it may not be 

necessary (figs 7.3 & 7.4: DNA yield & PCR success), and might even be detrimental 

(fig. 7.5; shell damage).   

 

Buffer 1A, containing no reducing agent, was found to be the best candidate for 

further use, producing a good yield of crude DNA, excellent results in PCR and 

causing no damage to the shells.  Buffers 1B, and 1C (containing the reducing agents 

βME and DTT respectively), could also be good candidates, as these started to remove 

cytoplasm from the shells faster than buffer 1A, produced good yields of crude DNA 

and were extremely successful in PCR.  They did, however, cause minor damage to 

some shells, probably due to their component reducing agents (fig. 7.5).  None of the 

buffers containing 2-Aminethanethiol hydrochloride are likely to be suitable for future 

use.  Though the inclusion of 2-Aminethanethiol hydrochloride appears to speed up 

the evacuation of cytoplasm from the shell during incubation, the detrimental effects 

such as poor PCR success and severe damage to the foraminiferal shells heavily 

outweigh this benefit. 
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7.6 Conclusions 

For the purpose of extracting DNA from foraminifera, whilst preserving the CaCO3 

shell for morphological study, the most successful new lysis buffer was buffer 1A 

(incubated for 24 hours at 75 °C), made from 100mM TRIS, 10mM NaCl, 4M 

Guanidinium Isothiocyanate, 17 % Isopropanol and 1 % Sarkosyl, and containing no 

reducing agent.  Buffer 1A yielded high levels of crude DNA, and produced extremely 

strong results in PCR, both on immediate chloroform extraction/ ethanol precipitation 

after incubation, and after 6 weeks storage.  The yield of DNA obtained was higher 

than that from the traditional foraminiferal DNA extraction method (Holzmann et al., 

1996), and in terms of PCR success was far superior.  The foraminiferal shells 

remained intact after incubation in buffer 1A, even when stored in the buffer for 6 

weeks, and were in good condition following dry storage for 6 months.   The excellent 

results gained using this buffer, even when samples were stored in it for a long period 

before removal of the shell and the final chloroform extraction and alcohol 

precipitation stage, gives it great utility in the field, where extended storage could be 

necessary. 

 

Buffers 1B and 1C, also outperformed the traditional method of foraminiferal DNA 

extraction (Holzmann et al. 1996), in terms of DNA yield and PCR success, and could 

be suitable for future use.  These have the same basic composition as buffer 1A, but 

with the addition of the reducing agents β-ME and DTT (50 mM) respectively.  

Results suggest that the addition of a reducing agent accelerates the rate at which 

cellular material is removed from the foraminiferal shell during incubation (first signs 

seen in 2 hours compared to 8 hours), suggesting a possible mechanism by which the 

incubation time could be decreased, however minor shell damage was also evident 
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with these buffers.  Furthermore, reducing agents must be added fresh to the buffer 

before use, and have to be handled in a fume cupboard.  As the addition of a reducing 

agent offers no overall improvement in performance it is therefore preferable to 

exclude them from the buffer.  

 

Certain reagents were found to be detrimental to PCR success (Urea & SDS), and to 

foraminiferal shell integrity (Urea, SDS, & 2-Aminethanethiol hydrochloride), and are 

therefore unsuitable for use in the extraction of DNA from intact foraminiferal shells. 

 

For future work, it may be beneficial to test some of the trial buffers again, using 

lower temperatures and shorter incubation times, to see if some of their detrimental 

affects could be avoided.  A faster acting lysis buffer could certainly be of benefit 

when processing large numbers of samples.  There are also many other combinations 

of reagents in use for lysis buffers that could be tested.  Finally, it will be essential to 

apply the new DNA extraction method to specimens of planktonic foraminifera, which 

are harder to collect and maintain in the lab. 
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8 Summary and Conclusions 
 

Since the discovery of ‘cryptic’ genetic diversity within the planktonic foraminiferal 

morphospecies (Darling et al., 1997, 1999, 2004, 2006, 2007; de Vargas et al., 1997, 

1999, 2001, 2002; Huber et al., 1997), biogeographical surveys of genotype 

distribution have become essential to our understanding of foraminiferal 

diversification and speciation and give insight into the possible effects of hidden 

diversity on their role as paleoproxies for past climate change. 

 

Here, biogeographical surveys were carried out in two markedly different areas of the 

global ocean, the tropical Arabian Sea, and the transitional/sub-polar North Atlantic 

Ocean.  For each region, the biogeographical distribution of the planktonic 

foraminiferal morphospecies and genetic types was explored, and their positions 

within a comprehensive phylogeny of the foraminifera (containing a broad range of 

both planktonic and benthic taxa) determined. 

 

The Arabian Sea (tropical province; 24 °C – 30 °C), situated at the top of the Indian 

Ocean, represents a unique marine environment, with a circulation that is completely 

reversed biannually due to seasonally reversing monsoon winds (Schott et al., 1983; 

Swallow, 1984).  Whilst long being an area of interest for the study of the planktonic 

foraminifera, this was the first time that an investigation of their genetic diversity in 

the region had been carried out.  Three hundred and sixty three specimens of 

planktonic foraminifera were collected from 8 stations along a cruise transect in the 

Arabian Sea during the summer (SW) monsoon of 2003.  Partial ~ 500 bp small 

subunit rRNA gene sequences were successfully amplified for 213 individual 
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specimens. Twenty different genotypes were recognised from 13 different mixed layer 

morphospecies (spinose: Globoturborotalita rubescens (pink), Globigerinoides ruber, 

Globigerinoides sacculifer, Globigerinella siphonifera, Globigerina bulloides, 

Orbulina universa, Turborotalita quinqueloba; non-spinose: Pulleniatina 

obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii, Globorotalia 

ungulata; microperforate: Globigerinita glutinata; and bi-serial: Streptochilus 

globigerus). Of these, three morphospecies, G. rubescens (pink), G. ungulata and S. 

globigerus, were sequenced for the first time and four new genotypes of G. ruber, G. 

siphonifera, T. quinqueloba and G. glutinata were identified.  Partial (~1,000 bp) SSU 

rDNA sequences were obtained for all new types and added to a comprehensive 

foraminiferal phylogeny. 

 

During the SW monsoon, pronounced environmental conditions lead to a strong 

disparity between the northern and southern mixed layer water masses of the Arabian 

Sea, in terms of both primary productivity (phytoplankton growth) and 

biogeochemistry (Wiggert et al., 2002; Banse, 1987: Banse & English, 2000).  A 

distinct difference in the distribution and ecology of the planktonic foraminifera of the 

Arabian Sea mixed layer was evident at this time, with morphospecies and genotypes 

being segregated between the high salinity, more eutrophic north and the lower 

salinity, oligotrophic south. 

 

In complete contrast to the tropical Arabian Sea, sampling across the North Atlantic 

Ocean, allowed for the study of a typical high latitude morphospecies assemblage.  

Though home to a lower diversity of planktonic foraminiferal morphospecies (the 

result of less vertical stratification and niche partitioning), the morphospecies found 
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here are highly adapted to, and thrive in the colder setting.  Most of the morphospecies 

display a clear bipolar, anti-tropical distribution globally (Bé & Tolderlund, 1971; 

Darling & Wade, 2008), however, localised variation in the biogeographical 

distribution of genetic types within the morphospecies was still evident. 

 

Seven hundred and ninety nine specimens of planktonic foraminifera were collected 

from 27 stations along a cruise transect in the North Atlantic Ocean (July 2004), 

spanning from Scotland to Newfoundland, and traversing both the subpolar (5-10 °C) 

and transitional (10-18 °C) provinces.  Partial (~500 bp) small subunit rRNA gene 

sequences were successfully amplified for 164 individual specimens.  Eight different 

genotypes were recognised from 6 mixed layer morphospecies (spinose: Globigerina 

bulloides, Orbulina universa, Turborotalita quinqueloba; non-spinose: 

Neogloboquadrina pachyderma, Neogloboquadrina inflata; microperforate: 

Globigerinita uvula), though no novel genotypes were discovered.  The phylogenetic 

placement of the North Atlantic taxa within the foraminifera was consistent with 

previous studies.  The geographical distribution of planktonic foraminiferal SSU 

rDNA genetic types supported previous evidence of ecological partitioning (Darling et 

al., 2003 2006, 2008; de Vargas et al., 1999; Stewart et al., 2001). 

 

Ecological partitioning of the planktonic foraminiferal genetic types was evident in 

both the tropical Arabian Sea and transitional/ sub-polar North Atlantic Ocean.  The 

ability of individual genetic types to become specialized and adapted to life in 

regionally distinct ecosystems is a likely driver of divergence and speciation of 

foraminifera in the open ocean, running counter to the apparent lack of barriers to 
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gene flow, though competitive exclusion may also play some role in their distribution 

(Aurahs et al., 2009). 

 

Genotyping additionally reveals geographical connectivity to other regions of the 

oceans, providing clues to present and past ocean circulation, evolutionary drivers and 

the evolutionary history of foraminiferal species (Darling et al, 2000, 2004, 2006, 

2007; de Vargas et al., 1999, 2001, 2002).   Despite limited sampling of the tropics 

and sub-tropics, some ecological perspective could be gained in comparing central 

Arabian Sea mixed layer genotypes with those in other regions of the tropical and 

subtropical global ocean.  Segregation between the warm water genotypes of the 

Atlantic and Indo-Eastern Pacific Oceans, e.g. the highly divergent G. bulloides Types 

Ib (Atlantic Ocean) and Type Ia (Indo-Eastern Pacific), and G. siphonifera Type Ia(2) 

which appears isolated in the Indo-Eastern Pacific, indicated the geographical 

isolation of genetic types by vicariance.   The African landmass represents a likely 

barrier to the dispersal of tropical/sub-tropical specialists, with the cool and 

inhospitable waters around the South African Cape impeding their transit between the 

major oceans (Darling & Wade, 2008).  Some cosmopolitan morphospecies/ genetic 

types (e.g. G. sacculifer, G. siphonifera Type Ia(1)) have clearly overcome this barrier, 

allowing gene flow to occur on a global scale.  

 

Biogeographical analysis of the high latitude morphospecies reveals the existence of 

genetically homogeneous populations of some genotypes at the northern and southern 

hemisphere poles (G. bulloides Types IIa, IIb, T. quinqueloba Types IIa, IIc, IId, and 

N. incompta Type I) (Darling et al., 2000, 2006, 2008), and points to the continual 

transit of individuals across the inhospitable tropics.  The mechanism by which gene 
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flow is occurring, however, remains unknown.  Nevertheless, despite the high 

dispersal potential of the planktonic foraminifera, the global biogeography of some 

genetic types, coupled with phylogenetic evidence indicates that allopatric 

diversification has also taken place.  Certain high latitude genetic types of planktonic 

foraminifera are found only in the Southern Hemisphere (Antarctic & Southern 

Oceans) (Globigerina bulloides Type IIc (subpolar), and N. pachyderma Types II, III 

(subpolar), IV (polar), V & VI (Benguela upwelling)) (Darling et al., 2003, 2004, 

2007, 2008), whilst others are found only in the Northern Hemisphere (N. pachyderma 

Type I (polar), T. quinqueloba Type IIb (subpolar/polar) (Arctic & North Atlantic 

Oceans), and N. pachyderma Type VII, N. incompta type II, T. quinqueloba Type IId, 

and G. bulloides Types IIe & IId (North Pacific Ocean) (Darling et al., 2003, 2007, 

2008; Stewart et al., 2001).  The most likely explanation is that geographical isolation 

of these cold-water types occurred during interglacial periods, following periods of a 

broader distribution during colder times. 

 

The second major topic covered in this thesis addressed the phylogenetic relationships 

of the planktonic foraminifera and their origins in the benthic foraminifera.  In 

contrast to the assumed monophyly of the foraminifera, as derived from 

micropaleontological records and traditional classifications (Caron & Homewood, 

1983; Decrouez, 1989; Görög, 1994; Kennett & Srinivasan, 1983; Loeblich & 

Tappan, 1974, 1987, 1992) molecular phylogenetic analyses of the SSU rRNA gene 

suggest multiple origins of the planktonic foraminifera from different benthic 

ancestors (Aurahs et al., 2009; Darling et al., 1997, 1999, 2000, 2006; de Vargas et 

al., 1997; Stewart et al., 2001).  However, such phylogenetic analyses have 

traditionally utilised only a partial ~1,000 bp 3´ terminal fragment of the SSU rRNA 
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gene, resulting in poor resolution of the deep relationships within the phylogenies, and 

an unclear picture of the precise origins of the major planktonic groups within the 

benthic foraminifera. 

 

The aim of the work here was to overcome these previous difficulties, in order to 

determine how many independent extant lineages exist within the planktonic 

foraminifera and to elucidate their origins within the benthic foraminifera.  Firstly the 

phylogenetic relationships of the planktonic foraminifera were re-explored using the 

traditional partial ~1,000 bp terminal 3´ fragment of the SSU rRNA gene.  Sequences 

were aligned across 61 foraminiferal morphospecies, 27 of which were planktonic 

(order Globigerinida: 11 spinose planktonic (32 sequences), 11 non-spinose 

macroperforate (20 sequences), 2 non-spiral planktonic (2 sequences), and 3 non-

spinose microperforate (3 sequences)), and 34 of which were benthic (one from every 

family in GenBank) (orders; Rotaliida (14 morphospecies), Milliolida (5 

morphospecies), Textulariida (10 morphospecies), Lagenida (2 morphospecies), and 

Allogromida (2 morphospecies). 

 

Phylogenies constructed from the traditionally used ~1,000bp partial terminal 3´ 

fragment of the SSU rRNA gene, from which 407 bp could be reliably aligned, 

supported the polyphyletic origins of the planktonic foraminifera, and indicated that 

they may be represented by up to 5 independent lineages, derived from separate 

benthic ancestors.  The phylogenies were, however, subject to the same shortcomings 

as in previous studies, with poor resolution and low bootstrap support for the major 

clades.  
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Secondly, an approximately 3,000 bp fragment of the SSU rRNA gene, representing 

almost its complete length, was amplified in the planktonic foraminifera for the first 

time, with the aim of addressing the issues of the poor resolution and support evident 

in previous phylogenies.  The ~3,000 bp SSU rDNA sequence was successfully 

amplified for 13 morphospecies of planktonic foraminifera (order Globigerinida: 2 

spinose planktonic, 8 non-spinose macroperforate, 1 non-spiral planktonic, and 2 non-

spinose microperforate), which were aligned together with existing sequences for 22 

morphospecies of benthic foraminifera (all those for which complete SSU rRNA gene 

sequences currently exist on GenBank) (orders Rotaliida (7 species), Milliolida (10 

species), Textulariida (4 species), and Allogromida (1 species)). 

 

Phylogenies were constructed from the ~3,000 bp, almost complete SSU rRNA gene, 

of which 1002 nucleotide sites could be reliably aligned across the foraminifera. 

However, extreme difficulties encountered in amplifying the complete SSU rRNA 

gene in the planktonic foraminifera, particularly for the majority of spinose taxa, 

resulted in poor taxon sampling, which invariably led to some uncertainties in the 

phylogenies produced using the different methods of tree reconstruction employed 

(BI, ML, NJ).  Consistent groupings were observed between the two spinose 

planktonic taxa sequenced, Globigerinoides sacculifer and Globigerina bulloides, 

between two pairs of non-spinose macroperforate taxa; Pulleniatina obliquiloculata / 

Neogloboquadrina dutertrei and G. menardii / G. ungulata, and between the non-

spinose microperforate taxa Globigerinita glutinata and Globigerinita uvula.  

Contrary to the 407 bp dataset, the macroperforate taxa did not form a consistent 

monophyletic group across all methods of phylogenetic tree reconstruction employed 

in the analysis of the in the 1002 bp dataset (BI, ML, NJ), most likely as a result of 
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poor taxon sampling, though with every method used, the non-spinose macroperforate 

planktonic taxa, a group of benthics (the Milliolida plus two Rotalliids; Ammonia 

beccarii & Elphidium aculeatum), and the spinose planktonic taxa fell together. 

 

For both the partial gene and almost complete SSU rRNA gene sequence datasets, 

Kishino–Hasegawa (KH) RELL tests (Kishino & Hasegawa, 1989) could not reject 

the possibility of a planktonic foraminiferal monophyly, although a body of additional 

evidence, consisting of molecular, morphological, and biological data, does support 

the independence of the major planktonic foraminiferal groups.  Data produced during 

this study highlighted the genetic distances between the major planktonic groups, and 

the extreme difference in rates of evolution between them.  As in previous studies, the 

non-spinose planktonic foraminifera were found to share a closer affinity to the 

benthic foraminifera than to the spinose planktonic taxa. 

 

Further work is needed to resolve the issues of poor resolution and bootstrap support 

in foraminiferal SSU rDNA phylogenies, and to confirm the validity of the current 

findings regarding the independent origins of the planktonic foraminiferal lineages. 

There is a clear need to identify new markers for this important group, both to enhance 

phylogenetic analyses of the foraminifera and for use in population genetic studies.   

New markers could be identified by the construction of an expressed sequence tag 

(EST) library (Theodorides et al., 2002, Whitton et al., 2004; Papanicolaou et al., 

2005) or by full genome sequencing in microfabricated high-density picolitre reactors 

(Margulies et al., 2005).  Both methods, nevertheless, require a reliable source of 

DNA from fresh foraminiferal samples. 
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The objective of the next phase of work, therefore, was to produce a continually 

reproducing, genetically identical culture of a benthic foraminifer to provide a reliable 

source of genetic material for use in genomic work and other molecular applications. 

Culture experiments were carried out using 3 target morphospecies of British 

intertidal benthic foraminifera: Ammonia tepida (order Rotaliina), Cornuloculina 

balkwilli (order Milliolida), and Bolivina variabilis (order Rotaliina).  All three are 

easily collected in the U.K. and bear no contaminating algal symbionts.  Culturing 

conditions were optimised with the final method using 7 cm beakers containing 50 ml 

of natural seawater filtered to 0.2 μm, with two thirds of the volume of seawater 

replaced at least once a week, and specimens fed on mixed food (Dunaliella 

tertiolecta & Phaeodactylum tricornutum) weekly.  It was also observed that the 

culture vessel should be changed every few weeks, to avoid the problem of algal 

overgrowth.  A light/ dark cycle of 12 hours was found to be suitable, though the lab 

temperature of 23 °C used in this study was found to be a little high. 

 

Cornuloculina balkwilli proved to be an excellent candidate for laboratory culturing.  

Specimens reproduced from a single individual, soon establishing large, healthy 

populations.  Ammonia tepida reproduced from a single individual, however, 

reproduction was infrequent and the brood sizes too small, and this species seemed 

greatly affected by fluctuating environmental conditions in the lab.  Bolivina variabilis 

formed large populations in culture, but failed to reproduce from individually kept 

specimens.  A continuously reproducing culture of C. balkwilli was successfully 

obtained and will be maintained and ultimately used as a source of RNA & DNA for 

EST library construction/ genomic sequencing and other molecular work in the future. 
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Throughout the molecular work conducted for both the biogeographical (chapters 3 & 

4) and phylogenetic studies (chapter 5), it became increasingly apparent that flaws 

existed in the methods used to extract the foraminiferal DNA from samples.  The 

result was high failure rates of PCR, both when amplifying the traditionally used 

partial ~1,000 bp terminal 3′ fragment of the SSU rRNA gene, and the ~3,000 bp, 

almost complete gene.  The method widely employed for the extraction of 

foraminiferal DNA (Holzmann et al., 1996), produces highly variable results, often 

with weak bands or high failure rates.  The buffer is typically used to store samples in 

long-term, with the solution then being used directly in PCR, with no phenol-

chloroform or chloroform extraction and alcohol precipitation to purify the DNA. 

Such treatment of samples could be leading to degradation of the DNA, and the 

transfer of inhibitory substances to the PCR. 

 

The final piece of work in this study therefore focused on the design of a new cell 

lysis/ DNA extraction method to greatly improve the yield and quality of the DNA 

obtained from the foraminifera.  The aim was to develop a method of extracting DNA 

from foraminiferal specimens whilst leaving their delicate CaCO3 shell intact.  In 

preserving the foraminiferal shell, rather than crushing it, shell morphology could be 

referred to at a later date, and compared to the genotype information gained for a 

particular specimen.  Such information could greatly enhance the accuracy of past 

climate models, which rely on matching morphologically distinct species to the 

particular environmental conditions to which they are adapted. 

 

A range of chemical reagents were used to create three main buffer solutions, each of 

which was combined with 4 reducing agents, to make 12 final trial buffers in total.  
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Specimens of the British benthic intertidal foraminiferal morphospecies, Ammonia 

tepida, were incubated in the buffers under varying conditions to establish an optimal 

method, and to identify the most effective buffer.  A Post-cell lysis chloroform 

extraction and alcohol precipitation stage was added to purify the DNA, removing any 

traces of substances that could be inhibitory to PCR.  Buffer performance was 

assessed by tests of time taken to evacuate cellular material from the foraminiferal 

shells, crude DNA yield obtained, success in PCR, and damage to the delicate CaCO3 

shell.  Performance was compared to that of the control lysis buffer & method of 

Holzmann et al. (1996). 

 

A highly successful method of extracting DNA from within intact foraminiferal shells 

was achieved by the incubation of samples at 75 °C for 24 hours in a buffer containing 

100mM TRIS, 10mM NaCl, 4M Guanidinium Isothiocyanate, 17  % Isopropanol and 

1 % Sarkosyl.  Performance was excellent, even when samples were stored in the 

buffer for 6 weeks after incubation, as they might be in the field or onboard ship.  

Buffers with the same overall composition as the buffer above save for the addition of 

the reducing agents βME and DTT (50 mM), also performed well, evacuating shells 

more rapidly than the buffer without a reducing agent, though with some minor 

damage to the CaCO3 shells.  All three buffers outperformed the control buffer 

(Holzmann et al., 1996), particularly in terms of PCR success.  The next important 

step will be to test the successful buffers on specimens of planktonic foraminifera. 
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9 Appendix 
 

Appendix 9.1 Foraminiferal taxa included in phylogenetic analyses 

 
Appendix 9.1.1 Benthic foraminiferal taxa included in phylogenetic analyses 

Order Family Species GenBank Accession 

Lagynidae Notodendrodes haylinosphaira AJ311214 
Allogromida Allogromiidae Allogromia sp. X86093 

Glandulinidae Glandulina antarctica AY179177 
Lagenida Nodosariidae Dentalina aphelis AJ972511 

Peneroplis sp. AJ132368 Peneropliidae 
Dendritina zhengae† AJ404297 
Sorites orbiculus AJ404310 
Parasorites sp. AJ404305 
Marginopora vertebralis† AJ404312 
Broeckina sp.† AJ404304 
Amphisorus hemprichii† AJ404315 
Cyclorbiluilna compressa† AJ404303 
Laevipeneroplis sp.† AJ404300 

 
 
 
Soritidae 

Borelis schlumbergeri† AJ404295 
Hauerinidae Pyrgo peruviana AY179176 
Massilina Massilina secans Z69606 

 
 
 
 
 
Milliolida 

Miliolinidae Quinqueloculina sp. Z69605 
Elphidium aculeatum Z69618 Elphidiidae 
Elphidium williamsoni† EF534073 

Rotaliacea Ammonia beccarii X86094 
Rotaliacea Pararotalia nipponica† AJ508454 

Nummulites venosus AJ318226 Nummulitidae 
Heterostegina depressa† AJ508453 

Buliminacea Bulimina marginata DQ408646 
Bolivina variabilis AY359140 
Bolivina spathulata† AJ318227 

 
Bolivinacea 

Brizalina alata AF533837 
Turrilinacea Stainforthia fusiformis AY934745 
Virgulinellacea Virgulinella fragilis AY359192 
Cassidulinacea Cassidulinoides porrectus AY934737 
Chilostomellidae Chilostomella ovoidea AY465842 
Discorbacea Glabratella opercularis Z69614 
Discorbinellacea Epistominella vitrea AM491316 
Nonionacea Haynesina germanica AF190721 

 
 
 
 
 
 
 
 
 
Rotaliida 

Planorbulinacea Planorbulina mediterranensis DQ452709 
Trochamminacea Trochammina sp. X86095 
Lituolacea Ammotium pseudocassis AJ312434 
Spiroplectamminacea Spiroplectammina sp. AJ504689 
Textulariacea Textularia sp. Z69612 
Saccaminidae  Saccodendron limosum AJ319988 
Astrorhizidae Astrorhiza triangularis AJ318224 
Saccaminidae Astrammina rara AJ318223 
Rzehakinidae Miliammina fusca AY822040 
Eggerellidae* Eggerelloides scabrum AJ318228 

 
 
 
 
 
Textulariida 
 
 

Trochamminidae* Arenoparrella mexicana AJ307741 
Unclassified Unclassified Toxiscaron alba AJ307749 
 
Classification as shown in GenBank (*some information added from zipcodezoo.com).  Species used in the 
1002 bp phylogeny for chapter 5 are shown in bold.  † Used only in the 1002 bp phylogeny. 
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Appendix 9.1.2 Planktonic foraminiferal taxa included in phylogenetic 

analyses 
Family 

(Within Order 
Rotaliida) 

Species Genetic 
Type 

GenBank Accession/ 
Sample number 

Globigerinella siphonifera  Ia(1) U65631 
Globigerinella siphonifera  Ia(2) Sequence: BR144 
Globigerinella siphonifera  IIa(1) U80788 
Globigerinella siphonifera  IIa(2) AF102227 
Globigerinella siphonifera  IIa(3) Sample:AS2731 
Globigerinella siphonifera  IIb AF102228 
Globigerinella calida  Sequence: AC2-P11b4 
Orbulina universa  I U80791 
Orbulina universa  III AF102229 
Globigerinoides sacculifer  Sample:AS3441 
Globigerinoides ruber  Pink U65634 
Globigerinoides ruber  Ia U80789 
Globigerinoides ruber  Ib(1) Z69599 
Globigerinoides ruber  Ib(2) Sample:AS1281 
Globigerinoides ruber  IIa AF102230 
Globigerinoides conglobatus  U80790 
Globoturborotalita rubescens (pink)  Sample:AS071 
Globigerina bulloides  Ia Sample:AS1651 
Globigerina bulloides  Ib Z83957 
Globigerina bulloides  IIa AF250107 
Globigerina bulloides  IIb AF250109 
Globigerina bulloides  IIc AF250111 
Globigerina bulloides  IId AF250106 
Globigerina bulloides  IIe Sequence:NP194 
Globigerina falconensis   AF387172 
Turborotalita quinqueloba  Ia AF25250116 
Turborotalita quinqueloba  Ib Sample:AS661 
Turborotalita quinqueloba  IIa AF250112 
Turborotalita quinqueloba  IIb AF250114 
Turborotalita quinqueloba  IIc AF250115 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Globigerinidae 

Turborotalita quinqueloba  IId AY241710 
Hastigerinidae  Hastigerina pelagica  Z83958 

Globorotalia menardii  Sample:AS1311 
Globorotalia ungulata  Sample:AS2241 
Globorotalia scitula  Sample:Dis873 
Globorotalia truncatulinoides  Z83968 
Neogloboquadrina pachyderma  I Sample:NA6322 
Neogloboquadrina pachyderma  II AY305330 
Neogloboquadrina pachyderma  III AF250119 
Neogloboquadrina pachyderma  IV AF250120 
Neogloboquadrina pachyderma  V AY305332 
Neogloboquadrina pachyderma  VI EF447102 
Neogloboquadrina pachyderma  VII EF447103 
Neogloboquadrina dutertrei  U65635 
Neogloboquadrina dutertrei   AY241707 
Neogloboquadrina dutertrei  Sample:AS961† 
Globorotalia inflata  Z83971 
Globorotalia inflata  Sample:Dis633† 
Globorotalia crassaformis   AY453134 
Neogloboquadrina incompta  I Sample:NA32 

 
 
 
 
 
 
 
 
 
Globorotaliidae 

Neogloboquadrina incompta  II AY241711 
Pulleniatina obliquiloculata  AY241709 Pulleniatinidae 
Pulleniatina obliquiloculata  Sample:AS1081 
Globigerinita glutinata Type  Ia(1) AF250105 
Globigerinita glutinata Type  Ia(2) Sample:AS711 
Globigerinita glutinata Type  Ia(3) Sample:AS2651 

 
Globigerinidae 

Globigerinita uvula  AF387173 

Cont… 
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Candeinidae Candeina nitida  AB468837 
Bolivinidae Streptochilus globigerus  Sample:AS2491 
Guembelitriidae Gallitellia vivans  AB364520 
 
Species used in the 1002 bp phylogeny for chapter 5 are shown in bold. † Used only in the 1002 bp 
phylogeny. 1 RRS Charles Darwin, Cruise CD148, Arabian Sea, July 2003. 2 RV Professor Logachev, 
Denmark Straight, North Atlantic Ocean, Aug/Sept 1997. 3 RRV Discovery, Cruise 262, North Atlantic, April 
2002. 4 Sequences provided by K. Darling.  See appendix 9.6 for cruise locations & dates. 

 

Appendix 9.2 The Likelihood Ratio Test (LRT) 

 
Appendix 9.2.1 Log Likelihood Scores 

Log Likelihood Score Model 
(A) 407 bp (B) 1002 bp 

HKY85 3771.59318 4813.7670 
HKY85 + Г correction 3447.11592 4619.43778 
GTR 3779.61526 4786.51536 
GTR+ Г correction 3437.68980 4611.68089 
 
Log likelihood scores of the 4 models of evolution tested for use in phylogenetic 
analyses of the foraminifera using (A) 407 unambiguously aligned bp and (B) 
1002 unambiguously aligned bp from the SSU rRNA gene, calculated in PAUP* 
(version 4.0d65; Swofford, 1998).  Scores shown in bold indicate the optimal 
model, as determined by the Likelihood Ratio Test (appendix 9.2.2). 

 
 
 

 

Appendix 9.2.2 Likelihood ratio test score 
 HKY85 HKY85 + Г GTR GTR+ Г 
HKY85 - 684.95 * 16.04* 667.81* 
HKY85 + Г  388.66* - 665.00* 18.85* 
GTR 54.50* 334.16* - 683.85* 
GTR+ Г 404.17* 15.51* 349.67* - 
 
The likelihood ratio test statistic is δ = 2(1n L1 – 1n L0) where L1 is the log likelihood under the 
more complex (parameter-rich) model and L0 is the log likelihood under the simpler model 
(Goldman, 1993; Schmidt, 2009; Swofford et al., 1996).  Above the diagonal corresponds to 
results for the 407 bp dataset, and below the diagonal results for the 1002 bp dataset.  
Significance was calculated by applying the difference in log likelihood and the degrees of 
freedom between nested models to a Chi squared table.  * P < 0.01 
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Appendix 9.3 The Relative Rate Test (RRT) using GRate 

The following information is taken directly from the supporting material provided 

with the GRate package, designed by K. Müeller (unpublished): 

 

Relative rate tests (Fig. 1) based on the concept of Sarich & Wilson (Sarich & Wilson, 

1967) are used to quantify the degree of rate divergence between groups of taxa. Taxa 

are partitioned into groups according to taxonomy, ecology, etc. 

 

 
  
The best fitting model of sequence evolution can be found with Modeltest (Posada & 

Crandall, 1998). According to the user’s choice of the groups to be compared (e.g., 

pair wise comparisons or comparisons to one reference group), GRate generates a 

PAUP (Swofford, 1998) command file and later extracts the values needed in the 

following calculations from a log file.  

 

The ratio between the substitutional rates of a sequence belonging to group A (μA) and 

the rate of a sequence of group B (μB) is calculated as  

r = μA/μB = μAtA/μBtB = KOA/KOB 

with tA = tB = time since divergence, and  
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KOA=KAC-((KBC+KAC-KAB)/2) 

KOB=KBC-((KBC+KAC-KAB)/2). 

Differences are calculated as  

d = μAtA - μBtB = KOA - KOB .  

To compare the two groups A and B using a third group as outgroup, a combined 

estimate of r is obtained as  

 

with KOA(i,j,k) and KOB(i,j,k) being the estimates of KOA and KOB using the ith sequence 

from group A, the jth sequence from group B, and the kth sequence from the outgroup. 

If group A, group B, and the outgroup contain o, p, and q sequences, respectively, 

with N = o p q, the overall d between groups is 

  

The standard error is obtained using the bootstrap (Efron, 1982; Felsenstein, 1985), 

similar to its application in the calculation of confidence intervals for branch lengths 

in phylogenetic trees (Dopazo, 1994). For R bootstrap replicates l (d* = d of a 

bootstrapped data set): 

  

Similarly, the standard error of d is obtained by replacing d with r in the above 

equation. Since the probability distribution does not significantly differ from a normal 

distribution for large R (can be checked by, e.g., a Kolmogorov-Smirnow test), a two-

tailed z-test can be used to evaluate the significance of differences between groups. 

Moreover, 95 % confidence intervals are supplied based on the normal distribution.  
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Appendix 9.4 Corrected pairwise distances 

 
Appendix 9.4.1 Range of corrected pairwise distances between foraminiferal 

SSU rRNA sequences 
 

 
Dataset 

 
Grouping 

Range of 
distances 

(Corrected) 

Complete phylogeny 0 - 0.479 

Within the spinose planktonic foraminifera 0 - 0.479 
Within the non-spinose planktonic foraminifera (all) 0 - 0.190 
      Within the non-spinose macroperforate planktonic 
foraminifera 

0 - 0.190 

      Within the non-spinose microperforate planktonic foraminifera 0 - 0.010 
      Within the non-spiral planktonic foraminifera 0.003 
Within the benthic foraminifera (all) 0 - 0.157 

407 bp 

      Within the benthic foraminifera minus the Milliolida 0 - 0.102 

Complete phylogeny 0 - 0.353 

Within the spinose planktonic foraminifera 0.284 
Within the non-spinose planktonic foraminifera (all) 0.001 - 0.161 
      Within the non-spinose macroperforate planktonic 
foraminifera 

0.001 - 0.161 

      Within the non-spinose microperforate planktonic foraminifera 0.012 
Within the benthic foraminifera (all) 0.001 - 0.134 

1002 bp 

      Within the benthic foraminifera minus the Milliolida 0.001 - 0.074 
 
Corrected pairwise distances calculated in PAUP* (Swofford, 1998) using maximum likelihood with 
a Gtr + Γ model (Rodriguez et al., 1990; Yang 1993). 

 

 
 
 
 

Microperforates 
 

 Non-spirals 

 G. glutinata G. uvula   S. globigerus G. vivans 
G. glutinata    S. globigerus   
G.  uvula 0.0075   G. vivans 0.0027  
C. nitida 0.0006 0.0075  B. variabilis 0.00 0.0027 

S. fusiformis 0.0025 0.00  
Corrected pairwise distances based on 407 bp 
of the SSU rRNA gene, calculated in PAUP* 
(Swofford, 1998) using maximum likelihood 
with a Gtr + Γ model (Rodriguez et al., 1990; 
Yang 1993). 

 
 
Corrected pairwise distances based on 407 bp 
of the SSU rRNA gene, calculated in PAUP* 
(Swofford, 1998) using maximum likelihood 
with a Gtr + Γ model (Rodriguez et al., 1990; 
Yang 1993). 
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Appendix 9.5 Kishino–Hasegawa (KH) likelihood tests 

 

Appendix 9.5.1 KH test between phylogenetic methods for the 
1002 bp dataset 

Tree -ln L Diff. -ln L P 
1 MB 4594.79599 (best)  
2 ML 4599.52616 4.73018 0.662 
3 NJ 4611.68090 16.88491 0.048* 

 
KH test using RELL bootstrap (Kishino & Hasegawa, 1989), two-tailed test, with 
1000 bootstrap replicates, performed in PAUP* (Swofford, 1998) for 1002 bp of the 
SSU rRNA gene.  * P < 0.05 

 

 

Appendix 9.6 Global sampling sites from which planktonic 
foraminifera have been collected to date 

 
Appendix 9.6.1 Map showing global sampling sites from which planktonic 

foraminifera have been collected for molecular study to date 
 

25 
9 

Sites are numbered and marine station and cruise track sampling information is shown in the table
below.  Point sampling localities with black stars and cruise tracks with black lines and letters were
sampled by the Darling et al. group.  Those shown in white lines, letters and stars were sampled by de
Vargas et al. The white triangles in the Eastern Atlantic and Mediterranean were sampled by Aurahs
et al. (abstract published in The Micropalaeontological Society’s Foraminifer and Nannofossil
Groups Joint Spring Meeting. Integrated Studies of Taxonomy, Ecology and Geochemistry, Angers,
France, 2007, pp.10).  The five major planktonic foraminiferal faunal provinces (modified from Bé &
Tolderlund, 1971), which largely correspond to the main hydrographic regions of the global ocean are
shown (see key) (Reproduced from Darling et al., 2008). 
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Appendix 9.6.2 Information on the planktonic foraminiferal sampling 
localities (field stations and cruises) shown in appendix 9.6.1 

No Field station/cruise Location Date Sampling method Reference 

(1) 
Caribbean Marine 
Biological Institute, 
Curaçao 

Off the west coast of 
Curaçao, Caribbean Sea March 1993 

Scuba 
Net (5m) 

Darling et al. 1996a,b 

(2) Puerto Rico Caribbean March 1995 Net (0-100m) de Vargas et al.1997 

(3) Lizard Island Research 
Station 

Off the Great Barrier 
Reef, Coral Sea 

Aug/Sept 1995 
 & 1997 

Net (0-100m) Darling et al. 1997 

(4) Villefranches sur Mer Mediterranean Dec 1995 Net (0-100m) de Vargas et al.1997 

(5) Bermuda Sargasso Sea April 1996 Net (0-100m) de Vargas et al.1997 

(6) Catalina Marine 
Science Centre 

Off Santa Catalina Island, 
Southern California Bight Aug 1996 Scuba Darling et al. 1999 

(7) FS Meteor M37/2 and 
M38/2 Off the Canary Islands 

Dec/Jan 
1996/7 

 April 1997 

Pump (6m) 
Net (0-100m) 

Stewart, 2000 

(8) RRV James Clark Ross 
JR19 

Drake Passage/Antarctic 
Peninsula 

Mar/Apr 1997 
 

Pump (6m) Darling et al. 2000 

(9) RV Professor Logachev Denmark Strait Aug/Sept 1997 
Pump (4.5m) 

Net (0-200m depth) 
Stewart et al, 2001 

(10) 
RRV James Clark Ross 
AMT-5 

UK/Falklands Sept/Oct 1997 Net (0-175m) de Vargas et al.1999 

(11) FS Poseidon P247 Azores to Canary Islands Jan 1999 Pump (4.5m) Stewart et al, 2000 

(12) University of California 
Santa Barbara 

The Santa Barbara 
Channel, California Jan-Dec 1999 

Net 
(10-50m) 

Darling et al. 2003 

(13) Eilat Gulf of Aquaba/Red Sea May 1999 Net (0-100m) de Vargas et al. 2002 

(14) 
RRV James Clark Ross 
AMT-8 

UK/Ascension Island May/June 
1999 Net (0-175m) de Vargas et al.2002 

(15) FS Polarstern Arktis 
XV/1-2 

Norwegian Sea and Fram 
Strait 

June-Aug 
1999 

Pump (6m) 
Multinets (0-500m) 

Darling et al. 2004 

(16) 
Marion Dufresne 
OISO-4 

Southwest Indian Ocean 
and Southern Ocean Jan/Feb 2000 Net (0-300m) de Vargas et al. 2004 

(17) RRV James Clark Ross 
JR 48 

Drake Passage Weddell 
Sea/Scotia Sea 

Feb/April 
2000 

Pump (6m) 
Nets (0-100m) 

Darling et al. 2004 

(18) RV Welwitschia Offshore Namibia Nov 2001 Net (0-50m) Darling et al. 2004 

(19) 
R/V Roger Revelle, 
 

Easter Island to 
New Zealand 

Dec/Jan 
2001/2. 

Net (0-800m) de Vargas et al. 2004 

(20) RRV Discovery D262 North Atlantic from UK 
to Iceland April 2002 Pump (5m) Darling et al., 2008 

(21) CCGS Sir Wilfrid 
Laurier Canadian Arctic July 2002 Net (100m) Darling et al. 2007 

(22) RRS Charles Darwin 
CD148 Arabian Sea July 2003 Pump (5m) Darling et al., 2008 

(23) RRV Discovery D286 South African Cape to 
Crozet Islands Dec 2005 Pump (5m) Darling et al., 2008 

(24) 

RV Poseidon 321, 
RV Poseidon 334 
RV Meteor 69/1, 
RV Meteor 71/2 
RV Meteor 71/3 

Canary Islands-Eastern 
Mediterranean 

May 2005 
March 2006 
Aug 2006  
Dec 2006 
Jan 2007 

Vertical multinet 
(0-700m) 

Darling et al., 2008: 
Aurahs et al. 
Personal 
communication (see 
appendix 9.6.1 legend) 
 

(25) RRS Charles Darwin 
CD159 North Atlantic Ocean July 2004 Pump (6m) This study 

Adapted from Darling et al., 2008 
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Appendix 9.7 SSU rDNA sequence alignments 

See supplementary material DVD for the following: 

 
 
Appendix 9.7.1 DNA sequence alignment of the partial ~1000 bp terminal 3´ 

region of the SSU rRNA gene in the foraminifera, showing the 
407 unambiguously aligned sites used in phylogenetic alysis 

 
Appendix 9.7.2 DNA sequence alignment of the partial ~1000 bp terminal 3´ 

region of the SSU rRNA gene in Globigerinella siphonifera and 
Globigerinella calida, showing the 668 unambiguously aligned 
sites used in phylogenetic alysis 

 
Appendix 9.7.3 DNA sequence alignment of the partial ~1000 bp terminal 3´ 

region of the SSU rRNA gene in Globigerinoides ruber and 
Globigerinoides conglobatus, showing the 589 unambiguously 
aligned sites used in phylogenetic alysis 

 
Appendix 9.7.4 DNA sequence alignment of the partial ~1000 bp terminal 3´ 

region of the SSU rRNA gene in Globigerina bulloides, showing 
the 669 unambiguously aligned sites used in phylogenetic alysis 

 
Appendix 9.7.5 DNA sequence alignment of the partial ~1000 bp terminal 3´ 

region of the SSU rRNA gene in Turborotalita quinqueloba, 
showing the 669 unambiguously aligned sites used in 
phylogenetic alysis 

 
Appendix 9.7.6 DNA sequence alignment of the partial ~1000 bp terminal 3´ 

region of the SSU rRNA gene in the Neogloboquadriinids, 
showing the 666 unambiguously aligned sites used in 
phylogenetic alysis 

 
Appendix 9.7.7 DNA sequence alignment of the partial ~1000 bp terminal 3´ 

region of the SSU rRNA gene in the Neogloboquadrina 
pachyderma (and other Neogloboquadriinids), showing the 811 
unambiguously aligned sites used in phylogenetic alysis 

 
Appendix 9.7.8 DNA sequence alignment of the almost complete ~3000 bp SSU 

rRNA gene in the foraminifera, showing the 1002 
unambiguously aligned sites used in phylogenetic alysis 

 
Appendix 9.7.9 Streptochilus globigerus and Bolivina variabilis 1000 bp 

terminal 3´ fragment DNA sequence alignment 
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Appendix 9.8 Statistical analysis of crude DNA yield 

 
Appendix 9.8.1 Test of Homogeneity of 

Variances 
Crude DNA Yield 

Levene Statistic df1 df2 Sig. 
3.172 25 234 .000 

 
Performed using the SPSS v17.0 package (SPSS, 
2009).  Sig.  <0.05 

 
Appendix 9.8.2 Oneway Analysis of Variance (ANOVA) 
 

Crude DNA Yield 

 Sum of Squares df Mean Square F Sig. 
Between Groups 379555.659 25 15182.226 14.197 .000 
Within Groups 250242.434 234 1069.412   
Total 629798.093 259    
 
Oneway ANOVA (Harris, 1994) performed using the SPSS v17.0 package  (SPSS, 2009).  
Sig.  <0.05 

 
Appendix 9.8.3 Effect size 
 
Effect Size or the ‘strength of Association’ indicates the strength of the differences 
between groups, or the influence of the independent variable (buffer type).  The test 
statistic is given as: Eta2 = sum of squares between groups/ Total sum of squares.  
Calculated here: 
 
Eta2 = 379555.659 / 629798.093  = 0.6026624 
 
Using the guidelines of Cohen (1988) the effect size here can be said to be large at 
0.6. 
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Appendix 9.8.4 Tukey’s HSD Post Hoc Test: Multiple Comparisons 
 

Tukey’s HSD post hoc test (Hsu, 1996) is used here to indicate significant pairwise 

differences in crude DNA yield. 

 
Crude DNA yield 

95 % Confidence Interval (I) 
Buffer 

(J) 
Buffer

Mean Difference 
(I-J) Std. Error Sig. Lower Bound Upper Bound 

1B -10.44000 14.62472 1.000 -64.8898 44.0098 

1C -19.10800 14.62472 1.000 -73.5578 35.3418 

1D -9.29700 14.62472 1.000 -63.7468 45.1528 

1A6 18.13300 14.62472 1.000 -36.3168 72.5828 

1B6 23.60900 14.62472 .997 -30.8408 78.0588 

1C6 -6.72000 14.62472 1.000 -61.1698 47.7298 

1D6 9.32300 14.62472 1.000 -45.1268 63.7728 

2A 59.91100* 14.62472 .014 5.4612 114.3608 

2B 66.45400* 14.62472 .002 12.0042 120.9038 

2C 74.80300* 14.62472 .000 20.3532 129.2528 

2D 76.82200* 14.62472 .000 22.3722 131.2718 

2A6 53.54000 14.62472 .061 -.9098 107.9898 

2B6 56.81000* 14.62472 .029 2.3602 111.2598 

2C6 80.11100* 14.62472 .000 25.6612 134.5608 

2D6 57.11900* 14.62472 .027 2.6692 111.5688 

3A -39.28500 14.62472 .569 -93.7348 15.1648 

3B -38.39500 14.62472 .617 -92.8448 16.0548 

3C -33.16900 14.62472 .859 -87.6188 21.2808 

3D -30.33300 14.62472 .938 -84.7828 24.1168 

3A6 38.58600 14.62472 .607 -15.8638 93.0358 

3B6 31.54200 14.62472 .909 -22.9078 85.9918 

3C6 38.58400 14.62472 .607 -15.8658 93.0338 

3D6 21.38300 14.62472 .999 -33.0668 75.8328 

CB 70.29700* 14.62472 .001 15.8472 124.7468 

1A 

CB6 49.16700 14.62472 .144 -5.2828 103.6168 

1A 10.44000 14.62472 1.000 -44.0098 64.8898 

1C -8.66800 14.62472 1.000 -63.1178 45.7818 

1D 1.14300 14.62472 1.000 -53.3068 55.5928 

1A6 28.57300 14.62472 .967 -25.8768 83.0228 

1B6 34.04900 14.62472 .826 -20.4008 88.4988 

1C6 3.72000 14.62472 1.000 -50.7298 58.1698 

1D6 19.76300 14.62472 1.000 -34.6868 74.2128 

2A 70.35100* 14.62472 .001 15.9012 124.8008 

2B 76.89400* 14.62472 .000 22.4442 131.3438 

2C 85.24300* 14.62472 .000 30.7932 139.6928 

2D 87.26200* 14.62472 .000 32.8122 141.7118 

2A6 63.98000* 14.62472 .005 9.5302 118.4298 

2B6 67.25000* 14.62472 .002 12.8002 121.6998 

2C6 90.55100* 14.62472 .000 36.1012 145.0008 

2D6 67.55900* 14.62472 .002 13.1092 122.0088 

3A -28.84500 14.62472 .964 -83.2948 25.6048 

3B -27.95500 14.62472 .975 -82.4048 26.4948 

1B 

3C -22.72900 14.62472 .998 -77.1788 31.7208 



9: Appendix 

 367

 
3D -19.89300 14.62472 1.000 -74.3428 34.5568 

3A6 49.02600 14.62472 .147 -5.4238 103.4758 

3B6 41.98200 14.62472 .426 -12.4678 96.4318 

3C6 49.02400 14.62472 .147 -5.4258 103.4738 

3D6 31.82300 14.62472 .902 -22.6268 86.2728 

CB 80.73700* 14.62472 .000 26.2872 135.1868 

 

CB6 59.60700* 14.62472 .015 5.1572 114.0568 

1A 19.10800 14.62472 1.000 -35.3418 73.5578 

1B 8.66800 14.62472 1.000 -45.7818 63.1178 

1D 9.81100 14.62472 1.000 -44.6388 64.2608 

1A6 37.24100 14.62472 .678 -17.2088 91.6908 

1B6 42.71700 14.62472 .389 -11.7328 97.1668 

1C6 12.38800 14.62472 1.000 -42.0618 66.8378 

1D6 28.43100 14.62472 .969 -26.0188 82.8808 

2A 79.01900* 14.62472 .000 24.5692 133.4688 

2B 85.56200* 14.62472 .000 31.1122 140.0118 

2C 93.91100* 14.62472 .000 39.4612 148.3608 

2D 95.93000* 14.62472 .000 41.4802 150.3798 

2A6 72.64800* 14.62472 .000 18.1982 127.0978 

2B6 75.91800* 14.62472 .000 21.4682 130.3678 

2C6 99.21900* 14.62472 .000 44.7692 153.6688 

2D6 76.22700* 14.62472 .000 21.7772 130.6768 

3A -20.17700 14.62472 1.000 -74.6268 34.2728 

3B -19.28700 14.62472 1.000 -73.7368 35.1628 

3C -14.06100 14.62472 1.000 -68.5108 40.3888 

3D -11.22500 14.62472 1.000 -65.6748 43.2248 

3A6 57.69400* 14.62472 .024 3.2442 112.1438 

3B6 50.65000 14.62472 .109 -3.7998 105.0998 

3C6 57.69200* 14.62472 .024 3.2422 112.1418 

3D6 40.49100 14.62472 .504 -13.9588 94.9408 

CB 89.40500* 14.62472 .000 34.9552 143.8548 

1C 

CB6 68.27500* 14.62472 .001 13.8252 122.7248 

1A 9.29700 14.62472 1.000 -45.1528 63.7468 

1B -1.14300 14.62472 1.000 -55.5928 53.3068 

1C -9.81100 14.62472 1.000 -64.2608 44.6388 

1A6 27.43000 14.62472 .980 -27.0198 81.8798 

1B6 32.90600 14.62472 .868 -21.5438 87.3558 

1C6 2.57700 14.62472 1.000 -51.8728 57.0268 

1D6 18.62000 14.62472 1.000 -35.8298 73.0698 

2A 69.20800* 14.62472 .001 14.7582 123.6578 

2B 75.75100* 14.62472 .000 21.3012 130.2008 

2C 84.10000* 14.62472 .000 29.6502 138.5498 

2D 86.11900* 14.62472 .000 31.6692 140.5688 

2A6 62.83700* 14.62472 .007 8.3872 117.2868 

2B6 66.10700* 14.62472 .003 11.6572 120.5568 

2C6 89.40800* 14.62472 .000 34.9582 143.8578 

2D6 66.41600* 14.62472 .002 11.9662 120.8658 

3A -29.98800 14.62472 .945 -84.4378 24.4618 

3B -29.09800 14.62472 .960 -83.5478 25.3518 

3C -23.87200 14.62472 .997 -78.3218 30.5778 

3D -21.03600 14.62472 1.000 -75.4858 33.4138 

3A6 47.88300 14.62472 .180 -6.5668 102.3328 

3B6 40.83900 14.62472 .486 -13.6108 95.2888 

3C6 47.88100 14.62472 .180 -6.5688 102.3308 

1D 

3D6 30.68000 14.62472 .931 -23.7698 85.1298 
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CB 79.59400* 14.62472 .000 25.1442 134.0438  

CB6 58.46400* 14.62472 .020 4.0142 112.9138 

1A -18.13300 14.62472 1.000 -72.5828 36.3168 

1B -28.57300 14.62472 .967 -83.0228 25.8768 

1C -37.24100 14.62472 .678 -91.6908 17.2088 

1D -27.43000 14.62472 .980 -81.8798 27.0198 

1B6 5.47600 14.62472 1.000 -48.9738 59.9258 

1C6 -24.85300 14.62472 .994 -79.3028 29.5968 

1D6 -8.81000 14.62472 1.000 -63.2598 45.6398 

2A 41.77800 14.62472 .436 -12.6718 96.2278 

2B 48.32100 14.62472 .167 -6.1288 102.7708 

2C 56.67000* 14.62472 .030 2.2202 111.1198 

2D 58.68900* 14.62472 .019 4.2392 113.1388 

2A6 35.40700 14.62472 .768 -19.0428 89.8568 

2B6 38.67700 14.62472 .602 -15.7728 93.1268 

2C6 61.97800* 14.62472 .008 7.5282 116.4278 

2D6 38.98600 14.62472 .586 -15.4638 93.4358 

3A -57.41800* 14.62472 .025 -111.8678 -2.9682 

3B -56.52800* 14.62472 .031 -110.9778 -2.0782 

3C -51.30200 14.62472 .096 -105.7518 3.1478 

3D -48.46600 14.62472 .163 -102.9158 5.9838 

3A6 20.45300 14.62472 1.000 -33.9968 74.9028 

3B6 13.40900 14.62472 1.000 -41.0408 67.8588 

3C6 20.45100 14.62472 1.000 -33.9988 74.9008 

3D6 3.25000 14.62472 1.000 -51.1998 57.6998 

CB 52.16400 14.62472 .081 -2.2858 106.6138 

1A6 

CB6 31.03400 14.62472 .922 -23.4158 85.4838 

1A -23.60900 14.62472 .997 -78.0588 30.8408 

1B -34.04900 14.62472 .826 -88.4988 20.4008 

1C -42.71700 14.62472 .389 -97.1668 11.7328 

1D -32.90600 14.62472 .868 -87.3558 21.5438 

1A6 -5.47600 14.62472 1.000 -59.9258 48.9738 

1C6 -30.32900 14.62472 .938 -84.7788 24.1208 

1D6 -14.28600 14.62472 1.000 -68.7358 40.1638 

2A 36.30200 14.62472 .725 -18.1478 90.7518 

2B 42.84500 14.62472 .383 -11.6048 97.2948 

2C 51.19400 14.62472 .098 -3.2558 105.6438 

2D 53.21300 14.62472 .065 -1.2368 107.6628 

2A6 29.93100 14.62472 .946 -24.5188 84.3808 

2B6 33.20100 14.62472 .858 -21.2488 87.6508 

2C6 56.50200* 14.62472 .032 2.0522 110.9518 

2D6 33.51000 14.62472 .847 -20.9398 87.9598 

3A -62.89400* 14.62472 .006 -117.3438 -8.4442 

3B -62.00400* 14.62472 .008 -116.4538 -7.5542 

3C -56.77800* 14.62472 .030 -111.2278 -2.3282 

3D -53.94200 14.62472 .056 -108.3918 .5078 

3A6 14.97700 14.62472 1.000 -39.4728 69.4268 

3B6 7.93300 14.62472 1.000 -46.5168 62.3828 

3C6 14.97500 14.62472 1.000 -39.4748 69.4248 

3D6 -2.22600 14.62472 1.000 -56.6758 52.2238 

CB 46.68800 14.62472 .219 -7.7618 101.1378 

1B6 

CB6 25.55800 14.62472 .992 -28.8918 80.0078 

1A 6.72000 14.62472 1.000 -47.7298 61.1698 

1B -3.72000 14.62472 1.000 -58.1698 50.7298 

1C6 

1C -12.38800 14.62472 1.000 -66.8378 42.0618 
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1D -2.57700 14.62472 1.000 -57.0268 51.8728 

1A6 24.85300 14.62472 .994 -29.5968 79.3028 

1B6 30.32900 14.62472 .938 -24.1208 84.7788 

1D6 16.04300 14.62472 1.000 -38.4068 70.4928 

2A 66.63100* 14.62472 .002 12.1812 121.0808 

2B 73.17400* 14.62472 .000 18.7242 127.6238 

2C 81.52300* 14.62472 .000 27.0732 135.9728 

2D 83.54200* 14.62472 .000 29.0922 137.9918 

2A6 60.26000* 14.62472 .013 5.8102 114.7098 

2B6 63.53000* 14.62472 .005 9.0802 117.9798 

2C6 86.83100* 14.62472 .000 32.3812 141.2808 

2D6 63.83900* 14.62472 .005 9.3892 118.2888 

3A -32.56500 14.62472 .879 -87.0148 21.8848 

3B -31.67500 14.62472 .906 -86.1248 22.7748 

3C -26.44900 14.62472 .987 -80.8988 28.0008 

3D -23.61300 14.62472 .997 -78.0628 30.8368 

3A6 45.30600 14.62472 .272 -9.1438 99.7558 

3B6 38.26200 14.62472 .625 -16.1878 92.7118 

3C6 45.30400 14.62472 .272 -9.1458 99.7538 

3D6 28.10300 14.62472 .973 -26.3468 82.5528 

CB 77.01700* 14.62472 .000 22.5672 131.4668 

 

CB6 55.88700* 14.62472 .036 1.4372 110.3368 

1A -9.32300 14.62472 1.000 -63.7728 45.1268 

1B -19.76300 14.62472 1.000 -74.2128 34.6868 

1C -28.43100 14.62472 .969 -82.8808 26.0188 

1D -18.62000 14.62472 1.000 -73.0698 35.8298 

1A6 8.81000 14.62472 1.000 -45.6398 63.2598 

1B6 14.28600 14.62472 1.000 -40.1638 68.7358 

1C6 -16.04300 14.62472 1.000 -70.4928 38.4068 

2A 50.58800 14.62472 .110 -3.8618 105.0378 

2B 57.13100* 14.62472 .027 2.6812 111.5808 

2C 65.48000* 14.62472 .003 11.0302 119.9298 

2D 67.49900* 14.62472 .002 13.0492 121.9488 

2A6 44.21700 14.62472 .318 -10.2328 98.6668 

2B6 47.48700 14.62472 .192 -6.9628 101.9368 

2C6 70.78800* 14.62472 .001 16.3382 125.2378 

2D6 47.79600 14.62472 .183 -6.6538 102.2458 

3A -48.60800 14.62472 .159 -103.0578 5.8418 

3B -47.71800 14.62472 .185 -102.1678 6.7318 

3C -42.49200 14.62472 .400 -96.9418 11.9578 

3D -39.65600 14.62472 .549 -94.1058 14.7938 

3A6 29.26300 14.62472 .957 -25.1868 83.7128 

3B6 22.21900 14.62472 .999 -32.2308 76.6688 

3C6 29.26100 14.62472 .957 -25.1888 83.7108 

3D6 12.06000 14.62472 1.000 -42.3898 66.5098 

CB 60.97400* 14.62472 .011 6.5242 115.4238 

1D6 

CB6 39.84400 14.62472 .539 -14.6058 94.2938 

1A -59.91100* 14.62472 .014 -114.3608 -5.4612 

1B -70.35100* 14.62472 .001 -124.8008 -15.9012 

1C -79.01900* 14.62472 .000 -133.4688 -24.5692 

1D -69.20800* 14.62472 .001 -123.6578 -14.7582 

1A6 -41.77800 14.62472 .436 -96.2278 12.6718 

1B6 -36.30200 14.62472 .725 -90.7518 18.1478 

1C6 -66.63100* 14.62472 .002 -121.0808 -12.1812 

2A 

1D6 -50.58800 14.62472 .110 -105.0378 3.8618 
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2B 6.54300 14.62472 1.000 -47.9068 60.9928 

2C 14.89200 14.62472 1.000 -39.5578 69.3418 

2D 16.91100 14.62472 1.000 -37.5388 71.3608 

2A6 -6.37100 14.62472 1.000 -60.8208 48.0788 

2B6 -3.10100 14.62472 1.000 -57.5508 51.3488 

2C6 20.20000 14.62472 1.000 -34.2498 74.6498 

2D6 -2.79200 14.62472 1.000 -57.2418 51.6578 

3A -99.19600* 14.62472 .000 -153.6458 -44.7462 

3B -98.30600* 14.62472 .000 -152.7558 -43.8562 

3C -93.08000* 14.62472 .000 -147.5298 -38.6302 

3D -90.24400* 14.62472 .000 -144.6938 -35.7942 

3A6 -21.32500 14.62472 .999 -75.7748 33.1248 

3B6 -28.36900 14.62472 .970 -82.8188 26.0808 

3C6 -21.32700 14.62472 .999 -75.7768 33.1228 

3D6 -38.52800 14.62472 .610 -92.9778 15.9218 

CB 10.38600 14.62472 1.000 -44.0638 64.8358 

 

CB6 -10.74400 14.62472 1.000 -65.1938 43.7058 

1A -66.45400* 14.62472 .002 -120.9038 -12.0042 

1B -76.89400* 14.62472 .000 -131.3438 -22.4442 

1C -85.56200* 14.62472 .000 -140.0118 -31.1122 

1D -75.75100* 14.62472 .000 -130.2008 -21.3012 

1A6 -48.32100 14.62472 .167 -102.7708 6.1288 

1B6 -42.84500 14.62472 .383 -97.2948 11.6048 

1C6 -73.17400* 14.62472 .000 -127.6238 -18.7242 

1D6 -57.13100* 14.62472 .027 -111.5808 -2.6812 

2A -6.54300 14.62472 1.000 -60.9928 47.9068 

2C 8.34900 14.62472 1.000 -46.1008 62.7988 

2D 10.36800 14.62472 1.000 -44.0818 64.8178 

2A6 -12.91400 14.62472 1.000 -67.3638 41.5358 

2B6 -9.64400 14.62472 1.000 -64.0938 44.8058 

2C6 13.65700 14.62472 1.000 -40.7928 68.1068 

2D6 -9.33500 14.62472 1.000 -63.7848 45.1148 

3A -105.73900* 14.62472 .000 -160.1888 -51.2892 

3B -104.84900* 14.62472 .000 -159.2988 -50.3992 

3C -99.62300* 14.62472 .000 -154.0728 -45.1732 

3D -96.78700* 14.62472 .000 -151.2368 -42.3372 

3A6 -27.86800 14.62472 .975 -82.3178 26.5818 

3B6 -34.91200 14.62472 .790 -89.3618 19.5378 

3C6 -27.87000 14.62472 .975 -82.3198 26.5798 

3D6 -45.07100 14.62472 .282 -99.5208 9.3788 

CB 3.84300 14.62472 1.000 -50.6068 58.2928 

2B 

CB6 -17.28700 14.62472 1.000 -71.7368 37.1628 

1A -74.80300* 14.62472 .000 -129.2528 -20.3532 

1B -85.24300* 14.62472 .000 -139.6928 -30.7932 

1C -93.91100* 14.62472 .000 -148.3608 -39.4612 

1D -84.10000* 14.62472 .000 -138.5498 -29.6502 

1A6 -56.67000* 14.62472 .030 -111.1198 -2.2202 

1B6 -51.19400 14.62472 .098 -105.6438 3.2558 

1C6 -81.52300* 14.62472 .000 -135.9728 -27.0732 

1D6 -65.48000* 14.62472 .003 -119.9298 -11.0302 

2A -14.89200 14.62472 1.000 -69.3418 39.5578 

2B -8.34900 14.62472 1.000 -62.7988 46.1008 

2D 2.01900 14.62472 1.000 -52.4308 56.4688 

2A6 -21.26300 14.62472 .999 -75.7128 33.1868 

2C 

2B6 -17.99300 14.62472 1.000 -72.4428 36.4568 
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2C6 5.30800 14.62472 1.000 -49.1418 59.7578 

2D6 -17.68400 14.62472 1.000 -72.1338 36.7658 

3A -114.08800* 14.62472 .000 -168.5378 -59.6382 

3B -113.19800* 14.62472 .000 -167.6478 -58.7482 

3C -107.97200* 14.62472 .000 -162.4218 -53.5222 

3D -105.13600* 14.62472 .000 -159.5858 -50.6862 

3A6 -36.21700 14.62472 .730 -90.6668 18.2328 

3B6 -43.26100 14.62472 .363 -97.7108 11.1888 

3C6 -36.21900 14.62472 .730 -90.6688 18.2308 

3D6 -53.42000 14.62472 .062 -107.8698 1.0298 

CB -4.50600 14.62472 1.000 -58.9558 49.9438 

 

CB6 -25.63600 14.62472 .991 -80.0858 28.8138 

1A -76.82200* 14.62472 .000 -131.2718 -22.3722 

1B -87.26200* 14.62472 .000 -141.7118 -32.8122 

1C -95.93000* 14.62472 .000 -150.3798 -41.4802 

1D -86.11900* 14.62472 .000 -140.5688 -31.6692 

1A6 -58.68900* 14.62472 .019 -113.1388 -4.2392 

1B6 -53.21300 14.62472 .065 -107.6628 1.2368 

1C6 -83.54200* 14.62472 .000 -137.9918 -29.0922 

1D6 -67.49900* 14.62472 .002 -121.9488 -13.0492 

2A -16.91100 14.62472 1.000 -71.3608 37.5388 

2B -10.36800 14.62472 1.000 -64.8178 44.0818 

2C -2.01900 14.62472 1.000 -56.4688 52.4308 

2A6 -23.28200 14.62472 .998 -77.7318 31.1678 

2B6 -20.01200 14.62472 1.000 -74.4618 34.4378 

2C6 3.28900 14.62472 1.000 -51.1608 57.7388 

2D6 -19.70300 14.62472 1.000 -74.1528 34.7468 

3A -116.10700* 14.62472 .000 -170.5568 -61.6572 

3B -115.21700* 14.62472 .000 -169.6668 -60.7672 

3C -109.99100* 14.62472 .000 -164.4408 -55.5412 

3D -107.15500* 14.62472 .000 -161.6048 -52.7052 

3A6 -38.23600 14.62472 .626 -92.6858 16.2138 

3B6 -45.28000 14.62472 .273 -99.7298 9.1698 

3C6 -38.23800 14.62472 .626 -92.6878 16.2118 

3D6 -55.43900* 14.62472 .040 -109.8888 -.9892 

CB -6.52500 14.62472 1.000 -60.9748 47.9248 

2D 

CB6 -27.65500 14.62472 .978 -82.1048 26.7948 

1A -53.54000 14.62472 .061 -107.9898 .9098 

1B -63.98000* 14.62472 .005 -118.4298 -9.5302 

1C -72.64800* 14.62472 .000 -127.0978 -18.1982 

1D -62.83700* 14.62472 .007 -117.2868 -8.3872 

1A6 -35.40700 14.62472 .768 -89.8568 19.0428 

1B6 -29.93100 14.62472 .946 -84.3808 24.5188 

1C6 -60.26000* 14.62472 .013 -114.7098 -5.8102 

1D6 -44.21700 14.62472 .318 -98.6668 10.2328 

2A 6.37100 14.62472 1.000 -48.0788 60.8208 

2B 12.91400 14.62472 1.000 -41.5358 67.3638 

2C 21.26300 14.62472 .999 -33.1868 75.7128 

2D 23.28200 14.62472 .998 -31.1678 77.7318 

2B6 3.27000 14.62472 1.000 -51.1798 57.7198 

2C6 26.57100 14.62472 .986 -27.8788 81.0208 

2D6 3.57900 14.62472 1.000 -50.8708 58.0288 

3A -92.82500* 14.62472 .000 -147.2748 -38.3752 

3B -91.93500* 14.62472 .000 -146.3848 -37.4852 

2A6 

3C -86.70900* 14.62472 .000 -141.1588 -32.2592 
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3D -83.87300* 14.62472 .000 -138.3228 -29.4232 

3A6 -14.95400 14.62472 1.000 -69.4038 39.4958 

3B6 -21.99800 14.62472 .999 -76.4478 32.4518 

3C6 -14.95600 14.62472 1.000 -69.4058 39.4938 

3D6 -32.15700 14.62472 .892 -86.6068 22.2928 

CB 16.75700 14.62472 1.000 -37.6928 71.2068 

 

CB6 -4.37300 14.62472 1.000 -58.8228 50.0768 

1A -56.81000* 14.62472 .029 -111.2598 -2.3602 

1B -67.25000* 14.62472 .002 -121.6998 -12.8002 

1C -75.91800* 14.62472 .000 -130.3678 -21.4682 

1D -66.10700* 14.62472 .003 -120.5568 -11.6572 

1A6 -38.67700 14.62472 .602 -93.1268 15.7728 

1B6 -33.20100 14.62472 .858 -87.6508 21.2488 

1C6 -63.53000* 14.62472 .005 -117.9798 -9.0802 

1D6 -47.48700 14.62472 .192 -101.9368 6.9628 

2A 3.10100 14.62472 1.000 -51.3488 57.5508 

2B 9.64400 14.62472 1.000 -44.8058 64.0938 

2C 17.99300 14.62472 1.000 -36.4568 72.4428 

2D 20.01200 14.62472 1.000 -34.4378 74.4618 

2A6 -3.27000 14.62472 1.000 -57.7198 51.1798 

2C6 23.30100 14.62472 .998 -31.1488 77.7508 

2D6 .30900 14.62472 1.000 -54.1408 54.7588 

3A -96.09500* 14.62472 .000 -150.5448 -41.6452 

3B -95.20500* 14.62472 .000 -149.6548 -40.7552 

3C -89.97900* 14.62472 .000 -144.4288 -35.5292 

3D -87.14300* 14.62472 .000 -141.5928 -32.6932 

3A6 -18.22400 14.62472 1.000 -72.6738 36.2258 

3B6 -25.26800 14.62472 .993 -79.7178 29.1818 

3C6 -18.22600 14.62472 1.000 -72.6758 36.2238 

3D6 -35.42700 14.62472 .767 -89.8768 19.0228 

CB 13.48700 14.62472 1.000 -40.9628 67.9368 

2B6 

CB6 -7.64300 14.62472 1.000 -62.0928 46.8068 

1A -80.11100* 14.62472 .000 -134.5608 -25.6612 

1B -90.55100* 14.62472 .000 -145.0008 -36.1012 

1C -99.21900* 14.62472 .000 -153.6688 -44.7692 

1D -89.40800* 14.62472 .000 -143.8578 -34.9582 

1A6 -61.97800* 14.62472 .008 -116.4278 -7.5282 

1B6 -56.50200* 14.62472 .032 -110.9518 -2.0522 

1C6 -86.83100* 14.62472 .000 -141.2808 -32.3812 

1D6 -70.78800* 14.62472 .001 -125.2378 -16.3382 

2A -20.20000 14.62472 1.000 -74.6498 34.2498 

2B -13.65700 14.62472 1.000 -68.1068 40.7928 

2C -5.30800 14.62472 1.000 -59.7578 49.1418 

2D -3.28900 14.62472 1.000 -57.7388 51.1608 

2A6 -26.57100 14.62472 .986 -81.0208 27.8788 

2B6 -23.30100 14.62472 .998 -77.7508 31.1488 

2D6 -22.99200 14.62472 .998 -77.4418 31.4578 

3A -119.39600* 14.62472 .000 -173.8458 -64.9462 

3B -118.50600* 14.62472 .000 -172.9558 -64.0562 

3C -113.28000* 14.62472 .000 -167.7298 -58.8302 

3D -110.44400* 14.62472 .000 -164.8938 -55.9942 

3A6 -41.52500 14.62472 .450 -95.9748 12.9248 

3B6 -48.56900 14.62472 .160 -103.0188 5.8808 

3C6 -41.52700 14.62472 .449 -95.9768 12.9228 

2C6 

3D6 -58.72800* 14.62472 .019 -113.1778 -4.2782 



9: Appendix 

 373

 
CB -9.81400 14.62472 1.000 -64.2638 44.6358  

CB6 -30.94400 14.62472 .924 -85.3938 23.5058 

1A -57.11900* 14.62472 .027 -111.5688 -2.6692 

1B -67.55900* 14.62472 .002 -122.0088 -13.1092 

1C -76.22700* 14.62472 .000 -130.6768 -21.7772 

1D -66.41600* 14.62472 .002 -120.8658 -11.9662 

1A6 -38.98600 14.62472 .586 -93.4358 15.4638 

1B6 -33.51000 14.62472 .847 -87.9598 20.9398 

1C6 -63.83900* 14.62472 .005 -118.2888 -9.3892 

1D6 -47.79600 14.62472 .183 -102.2458 6.6538 

2A 2.79200 14.62472 1.000 -51.6578 57.2418 

2B 9.33500 14.62472 1.000 -45.1148 63.7848 

2C 17.68400 14.62472 1.000 -36.7658 72.1338 

2D 19.70300 14.62472 1.000 -34.7468 74.1528 

2A6 -3.57900 14.62472 1.000 -58.0288 50.8708 

2B6 -.30900 14.62472 1.000 -54.7588 54.1408 

2C6 22.99200 14.62472 .998 -31.4578 77.4418 

3A -96.40400* 14.62472 .000 -150.8538 -41.9542 

3B -95.51400* 14.62472 .000 -149.9638 -41.0642 

3C -90.28800* 14.62472 .000 -144.7378 -35.8382 

3D -87.45200* 14.62472 .000 -141.9018 -33.0022 

3A6 -18.53300 14.62472 1.000 -72.9828 35.9168 

3B6 -25.57700 14.62472 .992 -80.0268 28.8728 

3C6 -18.53500 14.62472 1.000 -72.9848 35.9148 

3D6 -35.73600 14.62472 .753 -90.1858 18.7138 

CB 13.17800 14.62472 1.000 -41.2718 67.6278 

2D6 

CB6 -7.95200 14.62472 1.000 -62.4018 46.4978 

1A 39.28500 14.62472 .569 -15.1648 93.7348 

1B 28.84500 14.62472 .964 -25.6048 83.2948 

1C 20.17700 14.62472 1.000 -34.2728 74.6268 

1D 29.98800 14.62472 .945 -24.4618 84.4378 

1A6 57.41800* 14.62472 .025 2.9682 111.8678 

1B6 62.89400* 14.62472 .006 8.4442 117.3438 

1C6 32.56500 14.62472 .879 -21.8848 87.0148 

1D6 48.60800 14.62472 .159 -5.8418 103.0578 

2A 99.19600* 14.62472 .000 44.7462 153.6458 

2B 105.73900* 14.62472 .000 51.2892 160.1888 

2C 114.08800* 14.62472 .000 59.6382 168.5378 

2D 116.10700* 14.62472 .000 61.6572 170.5568 

2A6 92.82500* 14.62472 .000 38.3752 147.2748 

2B6 96.09500* 14.62472 .000 41.6452 150.5448 

2C6 119.39600* 14.62472 .000 64.9462 173.8458 

2D6 96.40400* 14.62472 .000 41.9542 150.8538 

3B .89000 14.62472 1.000 -53.5598 55.3398 

3C 6.11600 14.62472 1.000 -48.3338 60.5658 

3D 8.95200 14.62472 1.000 -45.4978 63.4018 

3A6 77.87100* 14.62472 .000 23.4212 132.3208 

3B6 70.82700* 14.62472 .001 16.3772 125.2768 

3C6 77.86900* 14.62472 .000 23.4192 132.3188 

3D6 60.66800* 14.62472 .011 6.2182 115.1178 

CB 109.58200* 14.62472 .000 55.1322 164.0318 

3A 

CB6 88.45200* 14.62472 .000 34.0022 142.9018 

1A 38.39500 14.62472 .617 -16.0548 92.8448 

1B 27.95500 14.62472 .975 -26.4948 82.4048 

3B 

1C 19.28700 14.62472 1.000 -35.1628 73.7368 
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1D 29.09800 14.62472 .960 -25.3518 83.5478 

1A6 56.52800* 14.62472 .031 2.0782 110.9778 

1B6 62.00400* 14.62472 .008 7.5542 116.4538 

1C6 31.67500 14.62472 .906 -22.7748 86.1248 

1D6 47.71800 14.62472 .185 -6.7318 102.1678 

2A 98.30600* 14.62472 .000 43.8562 152.7558 

2B 104.84900* 14.62472 .000 50.3992 159.2988 

2C 113.19800* 14.62472 .000 58.7482 167.6478 

2D 115.21700* 14.62472 .000 60.7672 169.6668 

2A6 91.93500* 14.62472 .000 37.4852 146.3848 

2B6 95.20500* 14.62472 .000 40.7552 149.6548 

2C6 118.50600* 14.62472 .000 64.0562 172.9558 

2D6 95.51400* 14.62472 .000 41.0642 149.9638 

3A -.89000 14.62472 1.000 -55.3398 53.5598 

3C 5.22600 14.62472 1.000 -49.2238 59.6758 

3D 8.06200 14.62472 1.000 -46.3878 62.5118 

3A6 76.98100* 14.62472 .000 22.5312 131.4308 

3B6 69.93700* 14.62472 .001 15.4872 124.3868 

3C6 76.97900* 14.62472 .000 22.5292 131.4288 

3D6 59.77800* 14.62472 .014 5.3282 114.2278 

CB 108.69200* 14.62472 .000 54.2422 163.1418 

 

CB6 87.56200* 14.62472 .000 33.1122 142.0118 

1A 33.16900 14.62472 .859 -21.2808 87.6188 

1B 22.72900 14.62472 .998 -31.7208 77.1788 

1C 14.06100 14.62472 1.000 -40.3888 68.5108 

1D 23.87200 14.62472 .997 -30.5778 78.3218 

1A6 51.30200 14.62472 .096 -3.1478 105.7518 

1B6 56.77800* 14.62472 .030 2.3282 111.2278 

1C6 26.44900 14.62472 .987 -28.0008 80.8988 

1D6 42.49200 14.62472 .400 -11.9578 96.9418 

2A 93.08000* 14.62472 .000 38.6302 147.5298 

2B 99.62300* 14.62472 .000 45.1732 154.0728 

2C 107.97200* 14.62472 .000 53.5222 162.4218 

2D 109.99100* 14.62472 .000 55.5412 164.4408 

2A6 86.70900* 14.62472 .000 32.2592 141.1588 

2B6 89.97900* 14.62472 .000 35.5292 144.4288 

2C6 113.28000* 14.62472 .000 58.8302 167.7298 

2D6 90.28800* 14.62472 .000 35.8382 144.7378 

3A -6.11600 14.62472 1.000 -60.5658 48.3338 

3B -5.22600 14.62472 1.000 -59.6758 49.2238 

3D 2.83600 14.62472 1.000 -51.6138 57.2858 

3A6 71.75500* 14.62472 .001 17.3052 126.2048 

3B6 64.71100* 14.62472 .004 10.2612 119.1608 

3C6 71.75300* 14.62472 .001 17.3032 126.2028 

3D6 54.55200* 14.62472 .049 .1022 109.0018 

CB 103.46600* 14.62472 .000 49.0162 157.9158 

3C 

CB6 82.33600* 14.62472 .000 27.8862 136.7858 

1A 30.33300 14.62472 .938 -24.1168 84.7828 

1B 19.89300 14.62472 1.000 -34.5568 74.3428 

1C 11.22500 14.62472 1.000 -43.2248 65.6748 

1D 21.03600 14.62472 1.000 -33.4138 75.4858 

1A6 48.46600 14.62472 .163 -5.9838 102.9158 

1B6 53.94200 14.62472 .056 -.5078 108.3918 

1C6 23.61300 14.62472 .997 -30.8368 78.0628 

3D 

1D6 39.65600 14.62472 .549 -14.7938 94.1058 
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2A 90.24400* 14.62472 .000 35.7942 144.6938 

2B 96.78700* 14.62472 .000 42.3372 151.2368 

2C 105.13600* 14.62472 .000 50.6862 159.5858 

2D 107.15500* 14.62472 .000 52.7052 161.6048 

2A6 83.87300* 14.62472 .000 29.4232 138.3228 

2B6 87.14300* 14.62472 .000 32.6932 141.5928 

2C6 110.44400* 14.62472 .000 55.9942 164.8938 

2D6 87.45200* 14.62472 .000 33.0022 141.9018 

3A -8.95200 14.62472 1.000 -63.4018 45.4978 

3B -8.06200 14.62472 1.000 -62.5118 46.3878 

3C -2.83600 14.62472 1.000 -57.2858 51.6138 

3A6 68.91900* 14.62472 .001 14.4692 123.3688 

3B6 61.87500* 14.62472 .008 7.4252 116.3248 

3C6 68.91700* 14.62472 .001 14.4672 123.3668 

3D6 51.71600 14.62472 .088 -2.7338 106.1658 

CB 100.63000* 14.62472 .000 46.1802 155.0798 

 

CB6 79.50000* 14.62472 .000 25.0502 133.9498 

1A -38.58600 14.62472 .607 -93.0358 15.8638 

1B -49.02600 14.62472 .147 -103.4758 5.4238 

1C -57.69400* 14.62472 .024 -112.1438 -3.2442 

1D -47.88300 14.62472 .180 -102.3328 6.5668 

1A6 -20.45300 14.62472 1.000 -74.9028 33.9968 

1B6 -14.97700 14.62472 1.000 -69.4268 39.4728 

1C6 -45.30600 14.62472 .272 -99.7558 9.1438 

1D6 -29.26300 14.62472 .957 -83.7128 25.1868 

2A 21.32500 14.62472 .999 -33.1248 75.7748 

2B 27.86800 14.62472 .975 -26.5818 82.3178 

2C 36.21700 14.62472 .730 -18.2328 90.6668 

2D 38.23600 14.62472 .626 -16.2138 92.6858 

2A6 14.95400 14.62472 1.000 -39.4958 69.4038 

2B6 18.22400 14.62472 1.000 -36.2258 72.6738 

2C6 41.52500 14.62472 .450 -12.9248 95.9748 

2D6 18.53300 14.62472 1.000 -35.9168 72.9828 

3A -77.87100* 14.62472 .000 -132.3208 -23.4212 

3B -76.98100* 14.62472 .000 -131.4308 -22.5312 

3C -71.75500* 14.62472 .001 -126.2048 -17.3052 

3D -68.91900* 14.62472 .001 -123.3688 -14.4692 

3B6 -7.04400 14.62472 1.000 -61.4938 47.4058 

3C6 -.00200 14.62472 1.000 -54.4518 54.4478 

3D6 -17.20300 14.62472 1.000 -71.6528 37.2468 

CB 31.71100 14.62472 .905 -22.7388 86.1608 

3A6 

CB6 10.58100 14.62472 1.000 -43.8688 65.0308 

1A -31.54200 14.62472 .909 -85.9918 22.9078 

1B -41.98200 14.62472 .426 -96.4318 12.4678 

1C -50.65000 14.62472 .109 -105.0998 3.7998 

1D -40.83900 14.62472 .486 -95.2888 13.6108 

1A6 -13.40900 14.62472 1.000 -67.8588 41.0408 

1B6 -7.93300 14.62472 1.000 -62.3828 46.5168 

1C6 -38.26200 14.62472 .625 -92.7118 16.1878 

1D6 -22.21900 14.62472 .999 -76.6688 32.2308 

2A 28.36900 14.62472 .970 -26.0808 82.8188 

2B 34.91200 14.62472 .790 -19.5378 89.3618 

2C 43.26100 14.62472 .363 -11.1888 97.7108 

2D 45.28000 14.62472 .273 -9.1698 99.7298 

3B6 

2A6 21.99800 14.62472 .999 -32.4518 76.4478 
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2B6 25.26800 14.62472 .993 -29.1818 79.7178 

2C6 48.56900 14.62472 .160 -5.8808 103.0188 

2D6 25.57700 14.62472 .992 -28.8728 80.0268 

3A -70.82700* 14.62472 .001 -125.2768 -16.3772 

3B -69.93700* 14.62472 .001 -124.3868 -15.4872 

3C -64.71100* 14.62472 .004 -119.1608 -10.2612 

3D -61.87500* 14.62472 .008 -116.3248 -7.4252 

3A6 7.04400 14.62472 1.000 -47.4058 61.4938 

3C6 7.04200 14.62472 1.000 -47.4078 61.4918 

3D6 -10.15900 14.62472 1.000 -64.6088 44.2908 

CB 38.75500 14.62472 .598 -15.6948 93.2048 

 

CB6 17.62500 14.62472 1.000 -36.8248 72.0748 

1A -38.58400 14.62472 .607 -93.0338 15.8658 

1B -49.02400 14.62472 .147 -103.4738 5.4258 

1C -57.69200* 14.62472 .024 -112.1418 -3.2422 

1D -47.88100 14.62472 .180 -102.3308 6.5688 

1A6 -20.45100 14.62472 1.000 -74.9008 33.9988 

1B6 -14.97500 14.62472 1.000 -69.4248 39.4748 

1C6 -45.30400 14.62472 .272 -99.7538 9.1458 

1D6 -29.26100 14.62472 .957 -83.7108 25.1888 

2A 21.32700 14.62472 .999 -33.1228 75.7768 

2B 27.87000 14.62472 .975 -26.5798 82.3198 

2C 36.21900 14.62472 .730 -18.2308 90.6688 

2D 38.23800 14.62472 .626 -16.2118 92.6878 

2A6 14.95600 14.62472 1.000 -39.4938 69.4058 

2B6 18.22600 14.62472 1.000 -36.2238 72.6758 

2C6 41.52700 14.62472 .449 -12.9228 95.9768 

2D6 18.53500 14.62472 1.000 -35.9148 72.9848 

3A -77.86900* 14.62472 .000 -132.3188 -23.4192 

3B -76.97900* 14.62472 .000 -131.4288 -22.5292 

3C -71.75300* 14.62472 .001 -126.2028 -17.3032 

3D -68.91700* 14.62472 .001 -123.3668 -14.4672 

3A6 .00200 14.62472 1.000 -54.4478 54.4518 

3B6 -7.04200 14.62472 1.000 -61.4918 47.4078 

3D6 -17.20100 14.62472 1.000 -71.6508 37.2488 

CB 31.71300 14.62472 .905 -22.7368 86.1628 

3C6 

CB6 10.58300 14.62472 1.000 -43.8668 65.0328 

1A -21.38300 14.62472 .999 -75.8328 33.0668 

1B -31.82300 14.62472 .902 -86.2728 22.6268 

1C -40.49100 14.62472 .504 -94.9408 13.9588 

1D -30.68000 14.62472 .931 -85.1298 23.7698 

1A6 -3.25000 14.62472 1.000 -57.6998 51.1998 

1B6 2.22600 14.62472 1.000 -52.2238 56.6758 

1C6 -28.10300 14.62472 .973 -82.5528 26.3468 

1D6 -12.06000 14.62472 1.000 -66.5098 42.3898 

2A 38.52800 14.62472 .610 -15.9218 92.9778 

2B 45.07100 14.62472 .282 -9.3788 99.5208 

2C 53.42000 14.62472 .062 -1.0298 107.8698 

2D 55.43900* 14.62472 .040 .9892 109.8888 

2A6 32.15700 14.62472 .892 -22.2928 86.6068 

2B6 35.42700 14.62472 .767 -19.0228 89.8768 

2C6 58.72800* 14.62472 .019 4.2782 113.1778 

2D6 35.73600 14.62472 .753 -18.7138 90.1858 

3A -60.66800* 14.62472 .011 -115.1178 -6.2182 

3D6 

3B -59.77800* 14.62472 .014 -114.2278 -5.3282 
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3C -54.55200* 14.62472 .049 -109.0018 -.1022 

3D -51.71600 14.62472 .088 -106.1658 2.7338 

3A6 17.20300 14.62472 1.000 -37.2468 71.6528 

3B6 10.15900 14.62472 1.000 -44.2908 64.6088 

3C6 17.20100 14.62472 1.000 -37.2488 71.6508 

CB 48.91400 14.62472 .150 -5.5358 103.3638 

 

CB6 27.78400 14.62472 .976 -26.6658 82.2338 

1A -70.29700* 14.62472 .001 -124.7468 -15.8472 

1B -80.73700* 14.62472 .000 -135.1868 -26.2872 

1C -89.40500* 14.62472 .000 -143.8548 -34.9552 

1D -79.59400* 14.62472 .000 -134.0438 -25.1442 

1A6 -52.16400 14.62472 .081 -106.6138 2.2858 

1B6 -46.68800 14.62472 .219 -101.1378 7.7618 

1C6 -77.01700* 14.62472 .000 -131.4668 -22.5672 

1D6 -60.97400* 14.62472 .011 -115.4238 -6.5242 

2A -10.38600 14.62472 1.000 -64.8358 44.0638 

2B -3.84300 14.62472 1.000 -58.2928 50.6068 

2C 4.50600 14.62472 1.000 -49.9438 58.9558 

2D 6.52500 14.62472 1.000 -47.9248 60.9748 

2A6 -16.75700 14.62472 1.000 -71.2068 37.6928 

2B6 -13.48700 14.62472 1.000 -67.9368 40.9628 

2C6 9.81400 14.62472 1.000 -44.6358 64.2638 

2D6 -13.17800 14.62472 1.000 -67.6278 41.2718 

3A -109.58200* 14.62472 .000 -164.0318 -55.1322 

3B -108.69200* 14.62472 .000 -163.1418 -54.2422 

3C -103.46600* 14.62472 .000 -157.9158 -49.0162 

3D -100.63000* 14.62472 .000 -155.0798 -46.1802 

3A6 -31.71100 14.62472 .905 -86.1608 22.7388 

3B6 -38.75500 14.62472 .598 -93.2048 15.6948 

3C6 -31.71300 14.62472 .905 -86.1628 22.7368 

3D6 -48.91400 14.62472 .150 -103.3638 5.5358 

CB 

CB6 -21.13000 14.62472 1.000 -75.5798 33.3198 

1A -49.16700 14.62472 .144 -103.6168 5.2828 

1B -59.60700* 14.62472 .015 -114.0568 -5.1572 

1C -68.27500* 14.62472 .001 -122.7248 -13.8252 

1D -58.46400* 14.62472 .020 -112.9138 -4.0142 

1A6 -31.03400 14.62472 .922 -85.4838 23.4158 

1B6 -25.55800 14.62472 .992 -80.0078 28.8918 

1C6 -55.88700* 14.62472 .036 -110.3368 -1.4372 

1D6 -39.84400 14.62472 .539 -94.2938 14.6058 

2A 10.74400 14.62472 1.000 -43.7058 65.1938 

2B 17.28700 14.62472 1.000 -37.1628 71.7368 

2C 25.63600 14.62472 .991 -28.8138 80.0858 

2D 27.65500 14.62472 .978 -26.7948 82.1048 

2A6 4.37300 14.62472 1.000 -50.0768 58.8228 

2B6 7.64300 14.62472 1.000 -46.8068 62.0928 

2C6 30.94400 14.62472 .924 -23.5058 85.3938 

2D6 7.95200 14.62472 1.000 -46.4978 62.4018 

3A -88.45200* 14.62472 .000 -142.9018 -34.0022 

3B -87.56200* 14.62472 .000 -142.0118 -33.1122 

3C -82.33600* 14.62472 .000 -136.7858 -27.8862 

3D -79.50000* 14.62472 .000 -133.9498 -25.0502 

3A6 -10.58100 14.62472 1.000 -65.0308 43.8688 

3B6 -17.62500 14.62472 1.000 -72.0748 36.8248 

CB6 

3C6 -10.58300 14.62472 1.000 -65.0328 43.8668 
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3D6 -27.78400 14.62472 .976 -82.2338 26.6658  

CB 21.13000 14.62472 1.000 -33.3198 75.5798 

 
Tukey HSD post hoc test (Hsu, 1996) performed using the SPSS v17.0 package  (SPSS, 2009). 
*The mean difference is significant at the 0.05 level (shown on a grey background).  The 12 
buffers being compared (1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D) are named as in 
chapter 7.  CB = The control lysis buffer of Holzmann et al., 1996.  A number 6 after the buffer 
name indicates that samples were stored in the buffers for 6 weeks after incubation, and prior to 
chloroform extraction/ ethanol precipitation.   

 
 
 
 
 
 

 



9: Appendix 

 379

9.1 References 

Bé, A.W.H., & Tolderlund, D. S. 1971.  Distribution and ecology of planktonic 
foraminifera. In: The Micropaleontology of Oceans (eds Funnell BM, Riedel 
WR), Cambridge University Press, London, pp.105-150 

Cohen, J.  1988.  Statistical power analysis for the behavioural sciences. Hillsdale, 
NJ. Erlbaum 

Darling, K. F, Kucera, M., & Wade, C. M.  2007.  Global molecular phylogeography 
reveals persistent Arctic circumpolar isolation in a marine planktonic protist. 
Proc. Natl. Acad. Sci. USA, 104, 5002-5007 

Darling, K. F., & Wade, C. M.  2008.  The genetic diversity of planktic foraminifera 
and the global distribution of ribosomal RNA genotypes.  Marine 
Micropaleontology, 67, 216 – 238 

Darling, K. F., Kroon, D., Wade, C. M., & Leigh Brown, A. J.  1996a.  The isolation 
and amplification of the 18s ribosomal RNA gene from planktonic foraminifers 
using gametogenic specimens.  In: Microfossils and oceanic environments (eds. 
Moguilevsky, A & Whatley, R.): University of Wales, Aberystwyth Press, 3.1, 
249-259 

Darling, K. F., Kroon, D., Wade, C. M., & Leigh Brown, A. J.  1996b.  Molecular 
phylogeny of the planktonic foraminifera.  Journal of Foraminiferal Research, 
26 (4), 324-330 

Darling, K. F., Kucera, M., Pudsey, C. J., & Wade, C. M.  2004.  Molecular evidence 
links cryptic diversification in polar plankton to Quaternary climate dynamics. 
Proc. Natl. Acad. Sci. USA, 101, 7657-7662 

Darling, K. F., Kucera, M., Wade, C. M., von Langen, P., & Pak, D.  2003.  Seasonal 
distribution of genetic types of planktonic foraminifer morphospecies in the 
Santa Barbara Channel and its paleoceanographic implications.  
Paleoceanography, 18, (2) 1032-1042 

Darling, K. F., Wade, C. M., Kroon, D., & Leigh Brown, A. J.  1997.  Planktic 
foraminiferal molecular evolution and their polyphyletic origins from benthic 
taxa. Marine Micropaleontology, 30, 251-266 

Darling, K. F., Wade, C. M., Kroon, D., Leigh Brown, A. J., & Bijma, J.  1999.  The 
diversity and distribution of modern planktic foraminiferal small subunit 
ribosomal RNA genotypes and their potential as tracers of present and past 
ocean circulation. Paleoceanography, 14, 3-12 

Darling, K. F., Wade, C. M., Steward, I. A., Kroon, D, Dingle, R, & Leigh Brown, A. 
J.  2000.  Molecular evidence for genetic mixing of Arctic and Antarctic 
subpolar populations of planktonic foraminifers. Nature, 405, 43-47 

de Vargas, C., Bonzon, M., Rees, N. W., Pawlowski, J., Zaninetti, L.  2002.   A 
molecular approach to diversity and biogeography in the planktonic foraminifer 
Globigerinella siphonifera (d’Orbigny).  Marine Micropaleontology 870, 1-16 

de Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W., & Pawlowski, J.  1999.   
Molecular evidence of cryptic speciation in planktonic foraminifers and their 
relation to oceanic provinces.  Proceedings of the National Academy of Science 
USA 96, 2864-2868 

de Vargas, C., Sáez, A. G., Medlin, L. K., Thierstein, H. R.  2004.  Super-species in 
the calcareous plankton. In: Coccolithophores-from molecular processes to 
global impact (eds. Thierstein H. R., Young, J. R.). Springer. pp 271-298 



9: Appendix 

 380

de Vargas, C., Zaninetti, L., Hilbrecht, H. and Pawlowski, J.  1997.  Phylogeny and 
rates of molecular evolution of planktonic foraminifera: SSU rDNA sequences 
compared to the fossil record.  J. Mol. Evol. 45 (3), 285-294 

Dopazo, J.  1994.  Estimating errors and confidence intervals for branch lengths in 
phylogenetic trees by a bootstrap approach. J. Mol. Evol. 38, 300-304 

Efron, B. 1982.  The Jackknife, Bootstrap, and other resampling plans. CBMS-NSF 
Regional conference series in applied mathematics, Society for industrial and 
applied mathematics, Philadelphia  

Felsenstein, J. 1985.  Phylogenies and the comparative method. American Naturalist 
125, 1-15 

Goldman, N.  1993.  Statistical tests of models of DNA substitution.  Journal of 
Molecular Evolution, 36, 182-198 

Harris, R. J.  1994.  ANOVA: An analysis of variance primer.  Itasca, I11: Peacock 
Hsu, J. C.  1996.  Multiple Comparisons: Theory and Methods.  Chapman & 

Hall/CRC, Boca Raton, London, New York, Washington, D. C.  pp. 119-121 
Kishino, H., & Hasegawa, M.  1989.  Evaluation of the maximum likelihood estimate 

of the evolutionary tree topologies from DNA sequence data, and the branching 
order in Hominoidea.  Journal of Molecular Evolution, 29, 170-179 

Posada, D. & Crandall, K. A.  1998.  Modeltest: testing the model of DNA 
substitution. Bioinformatics, 14, 817-818  

Rodriguez, F., Oliver, J.L., Marin, A. and Medina, J.R.  1990.  The general stochastic 
model of nucleotide substitution.   Journal of Theoretical Biology, 142, 485-501 

Sarich, V. M. & Wilson, A. C.  1967.  Immunological time scale for hominid 
evolution. Science, 158, 1200-1203 

Schmidt, H. A.  2009.  Testing tree topologies, theory.  In: The Phylogenetic 
Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis 
Testing, 2nd ed. (eds. Lemey, P., Salemi, M. and Vandamme, A-M.).  Cambridge 
University Press, New York, pp. 381-404 

SPSS for Windows, v. 17.0.  2009.  Chicago: SPSS Inc 
Stewart, I. A.  2000.  The molecular evolution of planktonic foraminifera and its 

implications for the fossil record.  Ph.D. thesis, University of Edinburgh 
Stewart, I. A., Darling, K. F., Kroon, D., Wade, C. M., & Troelstra, S. R.  2001.  

Genotypic variability on subarctic Atlantic planktic foraminifera. Marine 
Micropaleontology, 43, 143-153 

Swofford D. L. 1998.  PAUP*. Phylogenetic analysis using parsimony (*and other 
methods). Version 4. Sinauer Associates, Sunderland, Massachusetts 

Swofford, D. L., Olsen, G.J., Waddell, P.J. and Hillis, D.M. 1996. Phylogenetic 
Inference.   In: Molecular Systematics, 2nd ed. (eds. Hillis, D.M., Moritz, C. and 
Mable, B.K.).  Sinauer Associates, Inc., USA, pp. 495-496 

Yang, Z. 1993.  Maximum likelihood estimation of phylogeny from DNA sequences 
when substitution rates vary over sites.  Molecular Biology and Evolution, 10, 
1396-1401 

 
 

 

 
 


