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Abstract

A novel version of the CSA (Chemical Shift Anisotropy) amplification

experiment which results in large amplification factors is introduced. Large xa (up to

48) are achieved by sequences which are efficient in terms of the number of πpulses

and total duration compared to a modification due to Orr et al. (2005), and greater

flexibility in terms of the choice of amplification factor is possible than in our most

recent version. Furthermore, the incorporation of XiX decoupling ensures the overall

sensitivity of the experiment is optimal. This advantage has been proved by extracting

the CSA tensors for a novel vinylphosphonate-linked nucleotide.

The application of CSA amplification experiment to six nucleosides is also

discussed. The measured principal tensor values are compared with those calculated

using the recently developed first-principles methods. Throughout this work, the NMR

parameters of all nucleosides are presented.

Finally, high-resolution multi-nuclear solid-state NMR experiments are used to

study some novel vinyl phosphonate-linked oligo-nucleotides.
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Chapter 1

Introduction

1.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is a phenomenon in which

electromagnetic radiation is absorbed by molecules containing nuclei with a magnetic

moment which arises from their intrinsic spin angular momentum. NMR occurs

because the degeneracy of the nuclear spin energy levels is lifted by the Zeeman

interaction between the nuclear magnetic moment and an external magnetic field B0.

As a result of the Boltzmann population difference across the Zeeman levels, the

sample possesses a macroscopic magnetization aligned with the field direction.

In pulse NMR experiments a radio-frequency (rf) field is applied perpendicular

to B0 in the form of a short pulse which tilts the magnetization into the transverse

plane. After the pulse the magnetization precesses around B0 at the Larmor frequency

which corresponds to the energy difference between the Zeeman levels. The

precessing transverse magnetization induces a voltage in a receiver coil which is

wrapped around the sample. The resulting oscillating signal is recorded as a function

of time by the receiver and is known as the free-induction decay (FID). A Fourier

transform (FT) is used to produce a frequency spectrum from the FID.
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Solution-state NMR spectroscopy has become a powerful method of

examining molecular structure because the internal nuclear spin Hamiltonian is a

sensitive probe of the local environment. For example, the precise value of the

Larmor frequency depends on the surrounding bonds, an effect known as the chemical

shift. Fine structure is observed in solution which is caused by a scalar coupling

interaction between nuclei connected by chemical bonds.

NMR spectroscopy is inherently insensitive because of the small Zeeman

polarization. Solutions to this problem include operating at higher magnetic fields and

lower temperatures. In addition a variety of magnetization transfer methods have been

introduced, such as cross polarization [1, 2], dynamic nuclear magnetization [3], the

nuclear Overhauser effect [4, 5] and optical pumping [6, 7]. These allow optical

polarization or enhanced magnetization on electrons or other nuclei to be transferred

to the spin interest.

Pulsed FT NMR paved the way for modern NMR methodology, with the

internal Hamiltonian manipulated by elaborate sequences of rf pulses. For example,

new time dimensions can be incorporated by the insertion of incremented evolution

periods prior to the detection of the FID, so that the resulting spectrum is a function of

the multiple frequency co-ordinates [8]. Multi-dimensional NMR allows the

separation of difference nuclear spin interaction in order to spread out the information

from crowded spectra [9] and the correlation of pairs of coupled nuclei [10]. Other

possibilities include the indirect observation of forbidden multiple-quantum transitions

[11] and the investigation of dynamic processes [12, 13].
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1.2 Solid State NMR

Solid-state NMR has become an important alternative to diffraction techniques,

particularly for solids which lack long-range translational order. In solution molecules

tumble rapidly, so that the anisotropic parts of the nuclear spin interactions are

averaged to zero, resulting in high-resolution NMR spectra. In solids, however,

molecule motion is usually restricted and for isotropic samples this results in broad

resonances with a characteristic line shape known as powder patterns. Powder

patterns from different chemical sites overlap with each other and resolution is poor.

Fortunately, resolution can be improved in solid-state NMR either by

physically rotating the sample in space or by performing rotations in spin space using

rf pulses. Both approaches mimic the effects of molecular motion in solution which

make the anisotropic interactions time dependent. In the magic angle spinning (MAS)

technique [14, 15] the sample is rotated about an axis inclined at an angle of 54.74° to

B0. In particular, this results in the averaging of the chemical shift interaction to its

isotropic value. In combination with heteronuclear decoupling and cross polarization

from abundant proton spins MAS has become the method of choice for obtaining

high-resolution solid-state NMR spectra of dilute spins –1/2, such as carbon-13 or

nitrogen-15 [16]. However, MAS is not appropriate for narrowing the homogeneous

lines which arise from networks of dipolar-coupled abundant spins, such as proton. In

this situation spin-space averaging using multiple-pulse sequences designed using

average Hamiltonian theory is more effective. Combinations of MAS and rf pulses

CRAMPS (combined Rotation and multipulse spectroscopy) can improve the

resolution further [17].
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1.3 Measuring the Chemical Shift Anisotropy (CSA)

The anisotropic chemical shift provides a more detailed picture of the local

electronic distribution than its isotropic average [18, 19]. With the development of

first- principles computation methods, such as GIPAW [20], based on density

functional theory and the plane-wave pseudopotential approach, the comparison

between calculated and experimental CSA tensors offers a powerful probe of

molecular structure. In principle, the tensor which describes the variation of the

interaction with orientation can be measured directly from the three singularities

observed in the powder pattern. In practice the overlap of different powder patterns

makes this approach impossible. However, in the slow MAS regime when the

spinning frequency is less than the chemical shift anisotropy (CSA) the NMR

spectrum contains manifolds of rotational sidebands centered at each isotropic shift.

The CSA tensor can be determined more accurately from the sideband patterns [21,

22], but a slow MAS rate is required to provide sufficient sidebands for analysis.

However, overlap of different sideband manifolds complicates the analysis, and in

order to overcome this problem a number of two-dimensional experiments have been

developed.

One class of experiments reintroduces scaled or distorted powder patterns in

one dimension, while retaining the isotropic fast MAS spectrum in the other. Direct

approaches include experiments which switch the spinning axis between evolution and

detection [23-26] or which stop the spinning altogether during the evolution period

[27]. These experiments suffer from loss of signal during the long delays required to

effect such changes. To overcome this drawback the magic angle hopping experiment
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[28, 29] successively hops the sample in steps of 120° around the magic angle during

the evolution period, so that the average chemical shift is the isotropic value. To

increase the sensitivity the discrete hopping can be replaced by continuous MAS at

very slow rates in a modification known as magic angle turning (MAT) [30-32].

Another approach involves reconstructing the powder patterns from data recorded as a

function of spinning angle [33]. All the experiments described so far require special

apparatus. An alternative method involves the application of a rotor-synchronized

multiple-pulse sequence which reintroduces a part of the MAS averaged CSA

interaction and hence results in a scaled powder pattern [34-41]. These experiments

suffer from sensitivity to pulse imperfections and off-resonance effects.

Experiments in the second class correlate isotropic shifts in the evolution

dimension with spinning sideband manifolds in the detection dimension. Some early

attempts [42, 43] demonstrated an apparent separation of anisotropic and isotropic

shifts by synchronizing the evolution time with the MAS rotor. However, this

approach results in a concomitant restriction in the spectral width in the evolution

dimension. This problem was alleviated to some extent by the use of a multiple-pulse

sequence which scales the chemical shift during evolution [44]. A direct approach in

which the MAS rate is switched between the two dimensions has also been

demonstrated for this class [45]. An alternative experiment [46] involves sandwiching

the evolution time between a TOSS (total suppression of sidebands) sideband

suppression sequence [47] and its time-reversed counterpart. MAT, mentioned above,

is essentially a constant-time variant of the TOSS-reverse TOSS approach [31, 48].

All the two-dimensional experiments in this class require many increments in order to

obtain sufficient resolution of the isotropic shifts in the evolution dimension.
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The final group of experiments restricts the isotropic shifts to the detection

dimension where good resolution can be achieved without long acquisition times. The

periodic signal in the evolution dimension arises only from the anisotropic part of the

chemical shift and appears at multiples of MAS rate. Therefore, a small number of

increments are sufficient and the time required for the experiment is minimized. The

original PASS sequence proposed by Dixon [49] used a carefully timed sequence of π

pulses prior to detection. This sequence prepares the magnetization such that a phase

shift of magnitude jΘ results for the sideband at a frequency of jωr where the angle Θ

is known as “pitch” of the sequence [50]. By combining spectra recorded with

different Θ, Dixon was able to obtain a series of MAS spectra containing only one

sideband from each site. However, the required pulse sequences have variable

durations resulting in incomplete sideband separation because of differential

transverse relaxation. Later Féaux De Lacroix et al. proposed a two-dimensional

version of PASS [51] using two identical TOSS pulse sequences separated by a

evolution time in which the magnetization is stored along the z-axis. The pitch can be

varied continuously by incrementing the evolution time, during which transverse

relaxation does not operate, so this method overcomes the problem of differential

relaxation. However, only one half of the variable signal is retained by the storage

pulses. Later Antzutkin et al. demonstrated a new 2D-PASS experiment [52] which

dispensed with the storage pulses by employing constant time PASS sequences with

arbitrary pitch. Experiments which belong to this third group are described as PASS-

type experiments in this thesis. PASS-type experiments are generally simpler to

implement and more efficient than the alternatives and are the method of choice for

measuring CSA tensor parameters.
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1.4 CSA Amplification

When the CSA is small PASS-type experiments necessarily involve slow MAS

rates in order to give the optimum number of sidebands for a reliable analysis. This

causes rotor instability and results in perturbations from partially averaged

homonuclear dipolar interactions. In these circumstances PASS-type experiments

which operate at a high MAS rate but still produce a slow-spinning sideband pattern in

the evolution dimension are useful. For example, Kolbert et al. [53] proposed a two-

dimensional MAS spin-echo experiment in which the evolution time is divided evenly

by N – 1  pulses which results in amplification of the modulation due to the CSA in

the evolution dimension. For N = 2 the sideband pattern along a skew projection

through the resulting two-dimensional spectrum is identical to that obtained with half

the actual MAS rate. However, this is not the case when N > 2. A modification,

known as the extended chemical shift (XCS) experiment [54], contains 2N – 1 

pulses applied within N rotor periods. The latter qualifies as a PASS-type experiment,

since the isotropic chemical shift can be eliminated in the evolution dimension using

two complementary datasets and a special transform. The sideband pattern in the

evolution dimension is identical to that obtained with a MAS rate of ωr/2N.

Stroheimer et al. [55] proposed the SPEED experiment which is similar to XCS, but

isotropic shifts remain in the evolution dimension which is “replicated” to reduce the

number of increments required. Finally, in the ROSES experiment [56] the isotropic

shift is scaled in the evolution dimension but not removed and the resulting sideband

patterns are different from those expected for MAS.
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Recently, we have developed the CSA amplification experiment [57-59] which

retains all the advantages of PASS. The isotropic shift is removed from the evolution

dimension, and a minimal number of increments are sufficient to define the resulting

periodic signal. Hence, long acquisition times can be avoided without loss of

resolution of different chemical sites. However, CSA amplification correlates a fast

MAS spectrum in the detection dimension with a sideband pattern in the evolution

dimension in which the intensities are identical to those expected for a sample

spinning at some fraction 1/xa of the actual rate ωr. These sidebands effectively result

from an amplification by a factor xa of the modulation caused by the CSA. CSA

amplification is useful for reliably measuring small anisotropies without the need for

slow MAS rates. More recently, CSA amplification has been combined with rotor

synchronization acquisition to measure orientation distributions in polymer fibers [60]

and with exchange NMR to study slow molecular dynamics [61]. The theoretical

background to CSA amplification experiments is described in Chapter 2 of this thesis,

while the details of their experimental implementation are discussed in Chapter 3.

The original CSA amplification experiment followed the basic PASS scheme

of Féaux de Lacroix et al. The amplification factor xa is determined by the fixed

timings of the two identical sequences of  pulses which surround the evolution time.

This version allowed amplification factors as high as 12 to be realized using up to 14

 pulses in total, but two separate experiments are required to reconstruct the final

two-dimensional FID and so sensitivity is reduced. More recently, it has been shown

[62] that CSA amplification with xa up to 3 can be achieved by sequences of five 

pulses with variable timings, after the fashion of the later 2D-PASS approach of

Antzutkin et al. However, obtaining higher amplification factors using this method



1.4 CSA Amplification 9

requires concatenation of many such sequences, resulting in long durations and large

numbers of pulses. For example, an amplification factor of 11 requires 23  pulses

over 16 rotor periods. Paragraph Chapter 4 describes a modified CSA amplification

experiment [59] in which xa increases linearly with the number of  pulses. This

means that very high amplification factors can be achieved without resort to

prohibitively large numbers of  pulses or long sequences. Therefore, the experiment

operates at fast MAS rates allowing the use of modern heteronuclear decoupling

sequences to further improve resolution. In particular, the combination of high xa and

XiX [63] heteronuclear decoupling is shown to be essential for measurements of the

carbon-13 CSA tensor parameters in a mixture of the two optical isomers of a vinyl

phosphonate modified nucleotide. A detailed experimental and computational study of

the carbon-13 CSA tensors in six nucleosides: adenosine, 2'-deoxythymidine, uridine,

cytidine, guanosine and 5-methyluridine is described in Chapter 5. Finally, Chapter 6

continues this theme with a preliminary high-resolution multi-nuclear solid-state NMR

study of some novel vinylphosphonate-linked oligo-nucleotides.



10

Chapter 2

Theory of CSA Amplification

2.1 Quantum Mechanical Description of NMR

2.1.1 Quantum Mechanics of an Isolated Spin

The Cartesian components of spin angular momentum commute according to:

ˆ ˆ ˆ,I I i I  
     2.1.1

where , ,  = x, y, z and cyclic permutations. From this commutation relation it

follows that spin angular momentum is quantized according to:

 2 2ˆ , 1 ,I I m I I I m  2.1.2

with the spin quantum number I = 0, 1/2, 1, … and:

ˆ ,zI m m I m  2.1.3

with the magnetic quantum number m = I, I – 1, I – 2, … , –I. The 2I + 1

eigenfunctions ,I m are a series of spherical harmonics. The value of I is an intrinsic

property of each isotope and results from the nuclear structure. This thesis is

concerned exclusively with spin-1/2 nuclei. The eigenfunctions span a Hilbert space

of dimension 2I + 1. For spin-1/2 the eigenstates can be written:
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1 0
1/ 2 1/ 2

0 1

   
     
   

2.1.4

and the matrix representations of the three components of the spin angular momentum

operator are:

1 0 0 1 0 11 1 1ˆ ˆ ˆ
0 1 1 0 1 02 2 2

z x yI I I
i

     
             

2.1.5

The nuclear spin wavefunction  is a superposition of the 2I + 1 eigenfunctions of

spin angular momentum:

m
m

a m  2.1.6

where am is a complex amplitude and |am|2 is the probability that the spin is in the state

m . Given the wavefunction the expectation value of a macroscopic observable can

be calculated from:

,

ˆ ˆ
m n

m n

Q a a n Q m   2.1.7

where Q̂ is the corresponding operator and n is the row vector corresponding to the

complex conjugate of state n. The evolution of the wavefunction can be established

from the Schrödinger equation:

 
 ˆ t

H t i
t








 2.1.8

where Ĥ is the Hamiltonian or energy operator for the system which represents the

relevant nuclear spin interactions.

In NMR the degenerate 2I + 1 nuclear energy levels are separated in the

external field B0 by the Zeeman interaction. The corresponding Hamiltonian is:



2.1 Quantum Mechanical Description of NMR 12

0
ˆ ˆ

Z zH B I   2.1.9

The Zeeman eigenstates are proportional to the eigenfunctions of spin angular

momentum and their energies are determined by the magnetic quantum number m

0mE B m   2.1.10

where the magnetogyric ratio  is a characteristic of each isotope.

2.1.2 Statistical Description of an Ensemble of Spins

For a statistical ensemble of spins each with a different wavefunction  the

macroscopic magnetization observed in NMR is a sum of contributions from all the

individual spins. Therefore, it is convenient to introduce a new operator, known as the

density operator ̂ where:

ˆ p


   2.1.11

where p is the probability of finding a spin in the state  . The density operator

allows the expectation value of a macroscopic observable Q̂ to be conveniently

evaluated for the ensemble according to:

 ˆ ˆˆQ Tr Q 2.1.12

The physical interpretation of the density matrix can be understood by considering its

matrix elements:

ˆ
mn m nm n p m n a a



       2.1.13
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where the over bar indicates an average over the ensemble. In the eigenbase of the

Zeeman Hamiltonian, the diagonal elements of the density matrix represent the

populations in the eigenstates m . The off-diagonal elements show a coherent

superposition or “coherence” between the eigenstates m and n . This implies that

the phases of the wavefunctions  are no longer random across the ensemble. The

coherence mn which can be associated with a transition between the connected

eigenstates, and the order of the coherence, p, is defined as the difference in the

magnetic quantum numbers. Coherence of order ±1 corresponds to transverse

magnetization with p = –1 detected by the NMR spectrometer. Coherences with p 

±1 can only be observed indirectly via the evolution dimension of a two-dimensional

NMR experiment.

At thermal equilibrium the populations of the eigenstates m obey a

Boltzmann distribution:

 
 

exp

exp
m

nm

m
m

E kT

E kT






2.1.14

where the denominator is the partition function for the system. Hence, the density

operator for an ensemble of isolated spins-1/2 at thermal equilibrium is:

0

0

1
0

2 4
ˆ

1
0

2 4

B

eq

B

B

k T

B

k T






 
 

 
 

 
 




2.1.15

For positive magnetogyric ratio the population in the lower energy state  is slightly

higher than in  resulting in a macroscopic magnetization. Note that at thermal
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equilibrium there is no coherence. The equilibrium density matrix can be expanded in

terms of spin angular momentum operators:

01 ˆ ˆˆ
2 4

eq z

B

B
I

k T


  1


2.1.16

Only the second term which corresponds to the macroscopic magnetization can be

manipulated by rf pulses, and the first term is normally ignored. The resulting reduced

density operator can be represented by a magnetization vector which indicates the

magnitude and direction of the macroscopic magnetization. The evolution of the

density matrix for an ensemble of isolated spin-1/2 nuclei corresponds to the motion

of the magnetization vector in spin space. This is the basis of the vector picture of

NMR which is not discussed further in this thesis.

The time-dependent Schrödinger equation leads to an expression for the time

evolution of the density operator:

     ˆˆ ˆ,
d

t i H t t
dt
      2.1.17

which is known as the Liouville-von Neumann equation. The formal solution is:

       1ˆ ˆˆ ˆ,0 0 ,0t U t U t   2.1.18

where  ˆ0 is the density operator at thermal equilibrium, and  ˆ ,0U t is known as

the propagator which describes the evolution during the period from 0 to t. In general

 ˆ ,0U t is given by:

   ' '

0

ˆ ˆ ˆ,0 exp
t

U t T i H t dt
 

  
 
 2.1.19
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where T̂ is the Dyson time-ordering operator relevant for Hamiltonians containing

non-commuting components [64]. Eq. 2.1.19 is difficult to evaluate, but if the

Hamiltonian is time-independent then  ˆ ,0U t is a simple exponential operator:

 ˆ ˆ( ,0) expU t iHt  2.1.20

Hence the integral in Eq. 2.1.19 is usually approximated by a simple time-ordered

product:

    
1

0

ˆ ˆ,0 exp
n

j

U t iH j t t




    2.1.21

where  Ĥ j t is Hamiltonian for the jth intervals of duration t in which the

Hamiltonian may be considered time-independent. This approach is used for

numerical simulations of NMR experiments, as described in Chapter 3.

2.1.3 The Nuclear Spin Hamiltonian

The NMR Hamiltonian contains internal terms which describe the interactions

of the nuclear spins with their surroundings and external terms which describe

interactions with the experimental apparatus.

int
ˆ ˆ ˆ

extH H H  2.1.22

Following the standard convention in NMR a factor  will be omitted from the

following discussion and the Hamiltonian written in units of angular frequency.

The main internal Hamiltonians are:
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 ˆ
CSH - the chemical shift Hamiltonian. The interaction of the nuclear spin with

magnetic fields which arise from electronic currents induced by the external

magnetic field in the surrounding molecular orbitals.

 ˆ
DDH - the dipolar coupling Hamiltonian. The direct through-space dipole-

dipole interaction between the magnetic moments of neighboring nuclear spins.

 ˆ
JH - the J or scalar coupling Hamiltonian. The indirect through-bond dipole-

dipole interaction between magnetic moments of nuclear spins via the bonding

electrons.

 ˆ
QH - the quadrupolar interaction Hamiltonian. The interaction between the

nuclear quadrupole moment of a spin with I > 1/2 and the surrounding electric

field gradient.

2.1.4 The NMR Experiment

The Hamiltonian of the Zeeman interaction is:

0 0
ˆ ˆ ˆ

z z zH I I   B 2.1.23

where 0  0 B is the Larmor frequency which corresponds to the energy difference

between the Zeeman levels. From the Liouville von-Neumann equation (Eq. 2.1.17)

the effect of the Zeeman Hamiltonian on the density operator is:

       0 0
ˆ ˆˆ ˆexp 0 expz zt i I t i I t     2.1.24

When the initial density operator corresponds to transverse magnetization this

describes a precession about the B0 field at the Larmor frequency.
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In pulsed NMR spectroscopy the transverse magnetization is generated by a rf

field B1 which is applied perpendicular to B0. The rf field oscillates with frequency rf

which is close to resonant with the Larmor frequency and can be written:

 1 1( ) 2 cos 0 0rf rft B t    B 2.1.25

where rf is the phase of the rf pulse. It is convenient to view the oscillating rf field as

a sum of two components which rotate in the xy -plane at the same frequency but in

opposite directions. Only the component that rotates as the same sense as the Larmor

precession affects the motion of the spins. Therefore, the rf field may be approximated

as:

   1 1 1( ) cos sin 0rf rf rf rft B t B t       B 2.1.26

and the rf Hamiltonian is:

     1 1
ˆ ˆ ˆcos sinrf rf rf x rf rf yH t t I t I         2.1.27

with 1 1 1   B . The absolute value of 1 is called the nutation frequency and is a

measure of the amplitude of the rf field.

ˆ
rfH can be made independent of time by transforming to a rotating frame

which rotates about the external magnetic field at rf . In this frame, the external

Hamiltonian becomes:

 1
ˆ ˆ ˆ ˆcos sinext z x rf y rfH I I I      2.1.28

where  =  – rf is the offset. When the rf field is close to resonance with the

Larmor frequency so that  << 1 the first term can be neglected. Assuming rf = 0

and (0) = eq the Liouville von-Neumann equation (Eq. 2.1.18) gives:
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       0 0ˆ ˆ ˆ ˆ ˆˆ exp exp cos sin
4 4

p x z x z y

B B

B B
i I I i I I I

k T k T

 
        

 
2.1.29

where p is the duration of the pulse and  is its flip angle with:

1 p  2.1.30

When  = /2 rad the effect of the pulse is to produce a coherence proportional to ˆ
yI

which corresponds to transverse magnetization along the y-axis of the rotating frame.

The NMR signal is proportional to the expectation value of the raising operator:

ˆ ˆ ˆ
x yI I iI   2.1.31

so that the observed magnetization is:

    ˆM t Tr I t  2.1.32

with (t) given by Eq. 2.1.24.

2.2 Chemical Shift

2.2.1 Chemical Shift Hamiltonian

The chemical shift arises from the interaction between the nucleus and the

magnetic field Binduced due to electronic currents in the surrounding bonds induced by

B0. The nuclear spin experiences a local magnetic field Bloc which can be written:

 loc 0 inducedB B B 2.2.1

Bloc causes the Larmor precession frequency to be slightly altered, so that a shift

appears in the NMR spectrum which reflects the local electronic environment. The

induced field is linearly dependent on the static magnetic field:
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0

0

0 0

0

0induced 0

B

B B

B B

   

    

   

    
           
        

L L L L
xx xy xz xz

L L L L L
yx yy yz yz

L L L L
zx zy zz zz

B 2.2.2

where L is a second-rank Cartesian tensor known as the chemical shift tensor in the

laboratory frame, L. The tensor is required because the induced field is usually in a

different direction to the external magnetic field. For example, the element xy
L

measures the component of the field induced along the x-axis by an external field

along y.

In Cartesian coordinates, the chemical shift Hamiltonian can be written as:

0 0 0

ˆ ˆ

ˆ

ˆ ˆ ˆ

CS

x y z

H

B I B I B I

 



     

   

  

   

L
0

induced

L L L
xz yz zz

I B

I B 2.2.3

In the secular approximation, when the Zeeman interaction is much stronger than the

internal interactions, only the last term of the Eq. 2.2.3 is retained and the chemical

shift Hamiltonian becomes:

0
ˆ ˆ

CS zH B I   L
zz 2.2.4

2.2.2 Principal Axis System

The chemical shift tensor is often specified in its principal axis system (PAS),

P, a frame in which it is diagonal:

0 0

0 0

0 0



 



 
 

  
 
 

P
xx

P P
yy

P
zz

2.2.5
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where the diagonal elements are called the principal components. The orientation of

the PAS is determined by the chemical environment and is fixed relative to the

molecular frame, M. According to convention [65]:

         P P P
zz iso xx iso yy iso 2.2.6

so that yy
P is located between xx

P and zz
P, but closer to xx

P . The isotropic chemical

shift iso is the trace of the chemical shift tensor:

   1 1

3 3
Tr       P P P P

iso xx yy zz 2.2.7

Two further parameters, the chemical shift anisotropy, , and the asymmetry, , are

often used to represent the principal components. These are defined as:

 
  

   



  

P P
yy xxP

zz iso 2.2.8

The anisotropy corresponds to the largest deviation in chemical shift from the

isotropic value. (see Figure 2.1)

Figure 2.1: Powder pattern lineshapes for a single molecular site with CSA.
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In the Herzfeld-Berger convention [22], the principal components of a

tensor are described by three parameters: the isotropic value iso, i.e., span  and

the skew 

 1

3

2

   

  
  

 

  

 
   



iso xx yy zz

xx zz yy

zz xx

zz xx

2.2.9

With the principal components assigned so that xx < yy < zz, span  is always

positive, but varies between –1 and +1 with the extreme values corresponding

to axially symmetric tensors.

2.2.3 Irreducible Spherical Tensors

In addition to expressing spin interactions in terms of Cartesian tensors, they

may also be represented using irreducible spherical tensors. This is more convenient

for calculating the effects of rotations between co-ordinate frames, as well as other

unitary transformations. The relationship between the components of an irreducible

tensor A in the two frames X and Y is:

   
m

mY X
mq mp pq XY

p m

A A D




  2.2.10

where the Wigner matrix elements [66]    m

pq XYD  depend on the Euler angles XY

which describe the relative orientation of the two frames.

In the spherical tensor formalism [67], Eq. 2.2.3 is:
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 
2

0

ˆ ˆ1
k

q L L
CS kq k q

k q k

H A T 
 

  2.2.11

where L
kqA and L̂

k qT  are irreducible spherical tensors of rank k which represent the

space and spin parts of the Hamiltonian, respectively. The spin part involves a

combination of the spin operators and the external magnetic field. In the secular

approximation, Eq. 2.2.11 reduces to [68]:

2

0 0
0

ˆ ˆL L
CS k k

k

H A T


 2.2.12

If B0 is parallel to the z-axis, the tensor components 0
L̂

kT can be written:

00 0

10

20 0

1ˆ ˆ
3

ˆ 0

2ˆ ˆ
3

L
z

L

L
z

T B I

T

T B I

 





2.2.13

The second-rank tensor in the Cartesian representation can be decomposed into three

irreducible tensors of rank k = 0, 1 and 2, with a total of nine components. The rank 0

spatial tensor component 00 3 isoA  is the isotropic part which is invariant to frame

transformations. The anti-symmetric rank 1 tensor component A10 has no first-order

effect on the NMR spectrum, since the corresponding spin operator tensor 10
ˆ 0LT  .

The rank 2 spatial tensor component is the anisotropic part which has a large effect on

the NMR spectrum in solids but vanishes in liquid-state NMR due to fast molecular

tumbling. The rank 2 irreducible spherical tensor components in the PAS can be

expressed as:
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 20

2 1

2 2 20

3 3

2 2

0

6

P

P

P P

A

A

A A

   






  



 

P
zz iso

2.2.14

However, B0 is fixed in the laboratory frame, so it is combined into the space part of

the Hamiltonian giving:

   
2

2

0 2 0
2

ˆ ˆ ˆP
CS iso z m m PL z

m

H I A D I 




   2.2.15

with:

 20 0 0

2 1

2 2 20

0

6

P P
zz iso

P

P P

A B

A

A A

    






    

 

  

2.2.16

2.3 Magic Angle Spinning

2.3.1 Spinning Sidebands

In solution-state NMR the anisotropic part of the chemical shift tensor is

averaged because of rapid molecular tumbling. In contrast molecular motion is usually

restricted in solids, so that the anisotropic information can be extracted from the NMR

spectrum. In solid-state NMR powdered or amorphous samples with a uniform and

continuous distribution of molecular orientations are often used. For isolated spin-1/2

nuclei the spectrum of such an isotropic sample contains a powder pattern for each

chemical site. The powder pattern has a characteristic lineshape as illustrated in Figure
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2.2(a) which shows the wideline carbon-13 cross polarization NMR spectrum of

glycine.

Figure 2.2: Carbon-13 CP spectra of glycine powder: (a) static; (b) CPMAS at a MAS rate of

1.25 kHz; (c) CPMAS at a MAS rate of 15 kHz. Proton decoupling with a field strength of

100 kHz was applied throughout the acquisition period.

MAS involves mechanically rotating the sample about an axis inclined at the

magic angle of 54.74° to the external magnetic field. When the MAS rate is rapid

compared to the chemical shift anisotropy MAS can completely average the
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anisotropic part of the chemical shift interaction, resulting in solution-like spectra

which contain only the isotropic shifts, as shown in Figure 2.2(c) At slower MAS rates,

the spectrum contains a manifold of spinning sidebands, centered at each isotropic line

and separated by the spinning frequency, as shown in Figure 2.2(b).

With MAS the chemical shift Hamiltonian and the resulting precession

frequency become time-dependent. The rotor frame R has its z-axis oriented along the

spinning axis at the magic angle to the external field and rotates at the MAS rate r.

The time-dependent Euler angles which relate the rotor frame to the laboratory frame

are  , ,0RL r RLt   where RL is the magic angle. Since only linear operators are

involved in the chemical shift Hamiltonian, the vector model is sufficient to evolution

of individual crystallites in the sample. Following from Eq. 2.2.15 the time-dependent

precession frequency becomes:

           

          

2 2
2 2

2 ' 0
' 2 2

2 2
2 2

2 ' 0
' 2 2

exp

P
PL iso m' m m PR m RL

m m

P
iso m' m m PR m RL r

m m

t A D D t

A D d t im t

 

  

 
 

 
 

    

  

 

 
2.3.1

If the isotropic frequency iso is incorporated into the summation, Eq. 2.3.1 can be

written as a Fourier series:

       
2

2

; exp
m

PR PR r
m

t im t  


   2.3.2

with coefficients given by

           
2

2 2

2 ' ' 0 0
' 2

m P
PR m m m PR m RL m iso

m

A D d    


    2.3.3
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where m0 is 1 when m = 0, and 0 otherwise, and the isotropic shift depends on the

offset from rf :

 0 1iso iso rf      2.3.4

This analysis separates the time and orientation dependence of the precession

frequency. Hence, we consider a “carousel” of crystallites [69] which have the same

values of PR and PR , but different values of PR . Therefore, the time-dependent

precession frequency  ; PRt  of sites within a carousel may be written as:

     
2

( )

2

; expm
c PR c PR r

m

t im t    


  2.3.5

where the subscript c indicates the carousel. The subscript PR will be dropped for

simplicity.

The complex Fourier components    m

c  have following useful symmetries:

       
         0 exp

m m

c c

m m

c c im

   

   


   


2.3.6

Note that  0

c iso  under the MAS condition.

Neglecting T2 decay, the NMR signal component arising from a site in the

carousel may be written [69] as:

    ; exp ,0;MAS
c cS t i t   2.3.7

The phase angle accumulated by the transverse magnetization from 0 to t,  ,0;c t 

is defined as:
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   

     
0

,0; ;

; 0; 0;

t

c c

iso c c c

t dt t

t t

  

      

 

   

 2.3.8

where:

 
     

      
0

0

exp
;

0 exp

m

c r
c

m r

m

c r

m r

im t
t

im

im t

im

  
 



  
















2.3.9

The difference    ; 0;c ct    is the phase angle accumulated due to evolution

under the anisotropic part of the chemical shift interaction during the acquisition time,

and  0;c  is the initial phase of the magnetization which is independent of

orientation under normal circumstances.

In the limit of very fast spinning the  function vanishes and the NMR spectra

show only isotropic lines as in solution. The intensities of the spinning sidebands can

be extracted using the plane-wave expansion of the Kronecker  function:

       

      

 

2

0

2

0

1
exp 0; exp 0;

2

1
exp exp 0; exp

2

exp

c c

c
j

j
j

i d i

ij d i ij

ij F





      


    












 

 





 



2.3.10

where the coefficients Fj are:

    
2

0

1
exp 0; exp

2
j cF d i ij



   


  2.3.11

Assuming the initial phase  0;c  is zero, Eq. 2.3.7 becomes:
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       '
',

; exp ' expMAS
c j j iso r

j j

S t F F i j j i j t   






   2.3.12

This equation results in a centerband at iso with a manifold of sidebands separated by

multiples of the spinning frequency. Integration over  gives the carousel intensity of

the jth sideband at iso + jr:

  
,

2π

'
' 0

1
exp '

2πj c

MAS
j j j j

j

I F F i j j d F F 


 



    2.3.13

If the distribution of  values in the carousel in uniform and continuous the sideband

intensities are real and positive. In order to obtain the correct sideband intensities for a

powder sample, further integration over the Euler angles αand βis required:

2

0 0

sinMAS
j j jI d d F F

 

      2.3.14

The spinning sideband intensities can be analyzed to extract the principal components

of the chemical shift tensor, following the procedures of Maricq and Waugh [21] and

Herzfeld and Berger [22]. Because of limitations in the computer resources available

at the time, the former rejected explicit calculations of the sideband intensities in

powdered samples as the basis of an iterative method of matching the experimental

sideband envelope. Instead, they proposed a discrete of the moment analysis which

relies on an accurate measurement of the intensities of all the sidebands arising from a

particular site. This is often not feasible due to spectral overlap, and the outer

sidebands make an increasingly large contribution to the moments, but these are of

low intensity and significantly affected by the noise.

To overcome these problems Herzfeld and Berger [22] evaluated the sideband

intensities by numerical integration of Eq. 2.3.14 and then plotted the ratio Ij/I0 as a
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function of two parameters. For historical reasons they chose a reduced span Ω/ωr and

the skew κof the tensor, rather than the now standard anisotropy  and asymmetry .

These were used to provide a graphical determination of the CSA tensor parameters,

since the contours corresponding to each of the observed values of I±j/I0 intersect at

the correct values of Ω/ωr and . If sideband manifolds from different sites overlap

this analysis can be limited to the well-resolved sidebands, since only the intensity

ratio relative to the centerband needs to be measured.

The graphical approach is rarely used these days, but it forms the basis of a

number of iterative fitting procedures for obtaining the shift tensor parameters. For

example, Antzutkin et al. [70] obtained the joint confidence limits on ζand ηfrom

plots of the χ2 error surface. In this approach the single crystallite FID was calculated

directly in the time domain using Eq. 2.3.7 over a single rotor period. The resulting

signal was Fourier transformed and the amplitude evaluated at jωr out to j = ±11

before powder averaging to produce the required sideband intensities. These were

interpolated to provide a dense grid as a function of ζ/ωr and η. The χ2 between

experimental and calculated intensities was then minimized for each point on the pre-

calculated grid by altering only the intensity scaling factor. The resulting error surface

was plotted, allowing the chemical shift tensor parameters to be identified from the

minimum and their joint confidence regions to be evaluated. This procedure has been

used to extract chemical shift tensor parameters and their confidence limits in the

following Chapters.
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2.3.2 Sideband Manipulation

Many solid-state NMR experiments have been devised which manipulate the

spinning sidebands using sequences of  pulses with carefully chosen timings. These

experiments achieve the desired effect by modifying the initial phase  0;c  in Eq.

2.3.8. Consider a sequence of duration T consisting of q  pulses applied along the x-

axis of the rotating frame at timings given by –T + tp. Assuming acquisition starts at

time 0t  , the initial phase is given by:

         1 10; 0, ; , ; 1 , ;
n

c c q c q q cT t T t T t T t T                  

2.3.15

which can be written:

           
1

0; 0; 1 2 1 ; ;
q

q p

c iso seq c c p c
p

T t T         


 
         

 
 2.3.16

with:

 
1

2 1
n

n p

seq p
p

T t




   2.3.17

TOSS

The total suppression of spinning sidebands (TOSS) experiment was invented

by Dixon [47] and is used to suppress the spinning sidebands, resulting in a solution-

like spectrum of isotropic shifts. TOSS prepares the initial phases of the magnetization

as:

   0; 0;c c iso seq       2.3.18
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so that the carousel signal is:

       ; exp ; expTOSS
c c iso seqS t i t i t      2.3.19

In practice TOSS sequences also satisfy the spin-echo condition seq = 0, so that the

initial phase is independent of the isotropic shift. Using the plane-wave expansion of

the Kronecker  function:

      ; exp expTOSS
c j iso r

j

S t F i j i j t   




  2.3.20

Integration over  gives the carousel intensity of the TOSS sidebands. Eq. 2.3.20

shows that the sideband have complex intensities with an initial phase which depends

on crystallite orientation. Hence, for an isotropic sample, the sidebands cancel in the

integral over . However, the centerband has a complex amplitude with the same

phase for all crystallites in the carousel. In order to generate the required initial phase

given by Eq. 2.3.18, the  pulse timings must be such that the last term in Eq. 2.3.16 is

zero. Therefore, the TOSS timings satisfy:

     
1

2 1 ; ; 0
q

p

c p c
p

T t T   


      2.3.21

PASS

Dixon’s phase adjusted spinning sidebands (PASS) experiment [49] can be

used to generate spectra containing a single sideband from each manifold. These

sequences of  pulses produce an additional phase shift –j for the jth sideband where

 is a constant for each set of timings known as the pitch. For PASS the initial phase

is:
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     0; 0; ;c c c r         2.3.22

so that the carousel signal for seq = 0 is:

        , ; exp ; ; expPASS
c c c r isoS t i t i t          2.3.23

Using the plane-wave expansion:

         '
, '

, ; exp ' exp ' expPASS
c j j iso r

j j

S t F F i j j ij i j t   






      2.3.24

so that the carousel intensity of the jth sideband is:

        
2

, ' '
' 0

, ; exp ' exp ' expPASS
j c j j j j

j

I t F F i j j ij d F F ij


  


 



         2.3.25

Eq. 2.3.25 shows that the PASS sidebands have the same amplitude as for MAS but

are shifted in phase by –j. A number of sequences with different pitches produce a

series of spectra which can be summed so that all sidebands except one cancel.

Féaux de Lacroix et al. proposed a two-dimensional PASS experiment [51]

which separates the sidebands in the 1 dimension. The pulse sequence shown in

Figure 2.3 contains two consecutive TOSS pulse sequences separated by the evolution

Figure 2.3: Pulse sequence for the two-dimensional PASS experiment due to Féaux de

Lacroix et al.[51] Narrow and broad filled rectangles represent π/2- and π-pulses, respectively.
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time t1 in which the magnetization is temporarily stored along the z-axis as the sample

spins. In this experiment  = rt1 so that the pitch can vary continuously over a full

period in the evolution dimension.

The required FID is reconstructed by taking the echo combination of two

experiments in which the phase of the /2 storage pulse and the receiver phase are

shifted simultaneously. The amplitude of the stored component depends on the phase

accumulated during the first TOSS sequence so that the signals from the two

experiments are:

 
  
  

  2
1 2 2 1 2

cos 0;
, ; exp ;

sin 0;

cD PASS
c iso c

c

S t t i t t t
 

   
 


  

      
  

2.3.26

The echo combination gives:

       2
1 2 2 1 2, ; exp 0; exp ;D PASS

c c iso cS t t i i t t t                2.3.27

The isotropic shifts only evolve in the t2 dimension and the signal is periodic in t1, so

that only a few t1 increments are necessary. Using the plane-wave expansion gives:

         2 *
1 2 ' 1 2

, '

, ; exp ' exp expD PASS
c j j r iso r

j j

S t t F F i j j ij t i j t    






     

2.3.28

Integration over  gives the carousel intensity for the sideband at co-ordinates (jr, jr)

in the two-dimensional spectrum:

2 *D PASS
c j jI F F  2.3.29

which is identical to the result for MAS except that now the sidebands are separated in

1 according to j.
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Following Féaux de Lacroix et al., Antzutkin et al. proposed a modified 2D-

PASS experiment with the pulse sequence shown in Fig. 2.3. In this experiment the

storage period is not necessary, since the pitch is made to vary as required by

continuously changing the timings of five  pulses over a single rotor period. The

timings are solutions to Eq. 2.3.22 which also satisfy the spin-echo condition and are

shown graphically in Figure 2.4.

Figure 2.4: Pulse sequence for the 2D-PASS experiment due to Antzutkin et al. Adapted from

Ref. [52].
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The signal resulting from this experiment is:

        2
2 2, ; exp 0; ; expD PASS

c c c r isoS t i i t              2.3.30

Using the plane-wave expansion:

         2 *
2 ' 2

, '

, ; exp ' exp expD PASS
c j j iso r

j j

S t F F i j j ij i j t   






        

2.3.31

which is identical to Eq. 2.3.28 with  = –rt1. A Fourier transform with respect to the

pitch results in the separation of the sideband manifolds according to j.

CSA Amplification

The CSA amplification experiment [57-59] also produces a two-dimensional

spectrum in which the sidebands are separated in 1 according to j. However, the

sideband intensities are identical to those expected for a sample spinning frequency of

1/xa of the actual rate r where xa is known as the amplification factor. Note that xa is

not necessarily an integer, no greater than 1. The carousel signal necessary for CSA

amplification is:

             0

1 2 1 2 2, ; exp ; 0; exp ; 0;c a c c c c cS t t ix t i t t                  2.3.32

which corresponds to the desired xa-fold amplification of the modulation due to the

anisotropic part of the chemical shift during t1. The CSA amplification sideband

intensities can be extracted using the modified expansion:

    'exp 0; expa c j
j

ix F ij  




  2.3.33
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with coefficients:

    

     
 

 

2π
'

0

2π

00

1
exp 0; exp

2π

0 exp1
exp exp

2π /

j a c

m

c

m r a

F d ix ij

im
ij d

m x

   

 
 



 

  
  

  





2.3.34

which are identical to the Fj in Eq. 2.3.11 except for the replacement of r by r/xa.

The original CSA amplification experiment [57] is shown in Figure 2.5 and

uses two identical sequences each containing p πpulses after the fashion of the two-

dimensional PASS sequence due to Féaux de Lacroix et al. The signal in Eq. 2.3.31 is

obtained if the timings of the pulses are chosen so that the phase accumulated during

one sequence is  0;a cx   . The FID is reconstructed by taking the echo combination

of two experiments recorded with the pulse phase 3 set to /2 and  respectively, is:

      
    

1 2 1

2 2

, ; exp ; 0;

exp ; 0;

c a c a c

iso c c

S t t i x t x

i t t

    

    

    

    

2.3.35

Uisng the expansions of Eqs. 2.3.10 and Eq. 2.3.35 this can be written:

    

    

* *
1 2

', , ',

1 2

, ; exp '

exp exp

c j j k k
j j k k

r iso r

S t t F F F F i j k j k

ij t i k t

 

  



 


     

 


2.3.36

Integration over  gives the intensity of the sideband at co-ordinates (jr, kr) in the

two-dimensional spectrum as:

*
, , '

'
c j k j j j j k k

j

I F F F F



  



   2.3.37
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since the only non-vanishing components are those which have ' ' 0j j k k    .

Projecting onto 1 gives the intensity of the sideband at j1 as:

' '
, , , ' '

'
c j c j k j j j j k k

k j k

I I F F F F
  

 
 

  

    2.3.38

From the normalization condition of exp{ic(0;)}, the coefficients Fk satisfy
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so that the only non-zero component of the summation over k occurs for 'j j , and

Eq.2.3.38 becomes:

' '
,c j j jI F F 2.3.40

The intensities of the sidebands in the 1 projection mimic those that would be

recorded with the CSA amplified by a factor xa or equivalently the sample spinning

rate scaled by 1/xa. In a similar fashion, the intensities in the projection onto2 are

given by:

,c k k kI F F 2.3.41

which is identical to the MAS result.

CSA amplification can be achieved if the timings of q πpulses are chosen so

that the phase accumulated during the sequences is:

   0; 0;c a cx    2.3.42

Following Eq. 2.3.16 and assuming that the spin-echo condition is satisfied, the pulses

timings must satisfy:
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Figure 2.5: The original CSA amplification pulse sequence. Narrow and broad filled

rectangles represent π/2- and π-pulses, respectively.
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 
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Using the definition of c, this can be expanded to give four simultaneous equations

for tp:

       
1

1 1 exp 2 1 exp 1 0
q

q p

a r r p
p

x im T im t 


 
       

 
 2.3.44

for 1m   and 2m   . Many timings for sequences with 2 < xa < 12 for q = 4, 5 and

7 have been found both analytically and numerically and are given in Ref. [58].
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Chapter 3

CSA Amplification Methodology

3.1 Experiments

3.1.1 Pulse Sequence

The original pulse sequence used for CSA amplification is shown in Figure 2.4.

Enhanced magnetization generated by cross polarization evolves under a sequence of

q π pulses applied at timings calculated from the required amplification factor xa.

Subsequently, one component of the magnetization is stored parallel to the z-axis for

an evolution time t1 which is incremented by some convenient fraction, usually 1/16

or 1/32, of the rotor period. The stored magnetization is reconverted to transverse

magnetization by a /2 pulse which evolves under an identical sequence of q  pulses

before detection in t2. In order to reconstruct the required two-dimensional FID two

experiments are necessary in which the phase of the storage pulse is alternated /2, 

when using sequences with an odd number of  pulses. These can be combined in the

receiver by simultaneously shifting the reference phase from 0 to /2.
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Cross Polarization

Carbon-13 has a natural abundance of 1.1 % and a magnetogyric ratio roughly

one quarter that of the proton. Therefore, cross polarization [1, 2] (CP) is often used to

improve the sensitivity of carbon-13 NMR spectra by transferring proton

magnetization to carbon-13 spins before acquiring the signal. In the CP experiment at

low MAS rates, a /2 pulse is applied to the proton channel to generate transverse

magnetization, followed by a spin-locking pulse with rf amplitude B1H and a phase

shifted by /2. Simultaneously, a pulse is applied on the carbon-13 channel with the rf

amplitude carefully calibrated so that the Hartmann-Hahn matching condition [1]


H

B
1H

 
C

B
1C

3.1

is satisfied. Under this condition the Zeeman levels of proton and carbon-13 spins in

the rotating frame have the same energy separation and magnetization can be

transferred between them via the heteronuclear dipolar coupling. The carbon-13 signal

is enhanced by as much as H/C and in addition the relaxation delay is now

determined by the relative rapid spin-lattice relaxation of protons. The combination of

these two factors allows a significant reduction in experiment time.

Decoupling

In organic solids heteronuclear dipolar couplings to the abundant strongly-

coupled proton spin system cause a broadening of the carbon-13 line. As the system is

homogeneous in the definition of Maricq and Waugh [21], the broadening cannot be

completely removed by MAS even at rates in excess of the magnitude of the

heteronuclear dipolar coupling. Therefore, high-power proton decoupling is applied

during periods of carbon-13 chemical shift evolution in the CSA amplification
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experiment. Continuous wave (CW) rf irradiation on the proton channel causes the

heteronuclear dipolar coupling to be averaged to zero over the NMR timescale. The

efficiency of decoupling increases with rf amplitude, but decreases at higher MAS

rates when the resulting rotations in sample and spin space interfere with one another.

The two-pulse phase modulation (TPPM) technique [71] reduces the linewidth

more efficiently than CW decoupling at a comparable rf amplitude, especially at

higher MAS rates. This method involves the application of a train of rf pulses on the

proton channel with flip angles close to  rad and phases which alternate ± /2 where

 is typically between 10° and 70°. The efficiency of the decoupling is sensitive to the

precise setting of the flip angle and the phase modulation angle. More recently, a

variant of TPPM known as XiX [63] was introduced in which  is set to  rad and the

pulse duration depends on the MAS period. Efficient decoupling is achieved

whenever the pulse width exceeds one rotor period and unwanted synchronization

conditions where the decoupling is compromised are avoided. The synchronization

conditions are largely independent of the MAS rate and the decoupling rf amplitude.

Since the phase modulation is fixed only a single parameter, the pulse width, needs to

be calibrated.

Note that for CSA amplification experiments heteronuclear decoupling should

be interrupted during carbon-13  pulses in order to avoid satisfying unwanted

Hartmann-Hahn conditions. CW or XiX decoupling has been used throughout this

thesis.


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3.1.2 Pulse Calibration

All sideband manipulation experiments require that the flip angle of the π

pulses should be carefully calibrated in order to reduce sideband phase and amplitude

distortions. In practice, the quality of the sideband suppression in a TOSS experiment

with an identical number of π pulses is a suitable criterion by which to judge the

accuracy of the calibration. The delays implemented between the  pulses must be

reduced in order to take account of their finite width. If adjacent  pulses overlap, an

additional delay equal in duration to the rotor period can be inserted between them

without affecting the outcome of the experiment. However, in order to preserve the

spin-echo condition, a further delay of equal duration must be inserted at an

appropriate point in the sequence to compensate for the additional evolution of the

isotropic chemical shift. For sequences with five  pulses, errors due to incorrectly

calibrated pulses can be reduced by shifting the relative phases of successive pulses

through the series 0°, 330°, 60°, 330°, 0°. This procedure has been used by Antzutkin

et al.[69] to improve sideband suppression in five-pulse TOSS sequences. Further

error compensation can be achieved by replacing the simple  pulses by composite

pulses, such as (/2)0/2(/2)0 [72] and (/2)0/3(/2)0 [73] or by using phase

cycling.

3.1.3 Phase Cycling

As with all NMR methods the correct operation of the CSA amplification

experiment relies on the observed signal containing only contributions which arise

from a restricted set of the possible coherence transfer processes caused by each pulse.



3.1 Experiments 43

The most common way of selecting the required contributions is by addition of signals

derived from a set of experiments in which the phases of the rf pulses and the receiver

are shifted in some systematic way. This is known as “phase cycling”. A convenient

way to describe the restriction of the final signal is by a “coherence transfer pathway”

which takes the form of a diagram indicating the order of the coherence which is

required to evolve during each delay in the pulse sequence. All coherence transfer

pathways start with equilibrium magnetization and end with single-quantum

coherence of order p = -1 corresponding to the observable operator I+.

The basis of all phase cycling is the transformation of p-quantum coherence

under rotation about the z-axis:

     exp exp expz p z pi I i I ip       3.2

where p is the part of the density operator corresponding to coherence order p. A

pulse represented by a propagator U can cause transfer of coherence of order p into all

possible orders p' so that

U
p

U 1  
p



p

 3.3

where + and - are the density operators before and after the pulse. The effect of

phase shifting the pulse is seen by applying Eq. (3.1)

U   p
U  

1

 
p

 exp ip 
p

 3.4

with p = p – p'. Therefore, the phase shift imposed on the coherence by the pulse

U() depends on the change in coherence order p produced. This property allows the
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separation of different coherence orders, since the phase shifts imposed this way are

carried over into the detected signal.

Phase cycling involves the repetition of the pulse sequence Ni times with the

addition of the resulting signals while incrementing the phase of the ith pulse by an

angle


i
 2n

i
N

i
3.5

where ni = 0 ,1, … Ni – 1. Each of the Ni observed signals arises from all possible

coherence transfer pathways, but their sum can be restricted to contributions from

pathways involving a given change in coherence order by acquisition of the signal

with a corresponding phase shift in the receiver reference signal


ref
 p

i


i
3.6

Note that the change in coherence order selected by the appropriate receiver phase

shift is not unique, and a set of pathways is selected

p
i
 p

i

required  kN
i

3.7

with k an integer. The full coherence transfer pathway can be selected by

independently phase cycling each pulse according to the desired change in coherence

order.

For the CSA amplification experiment undesirable signals arise from

incomplete refocusing by the q  pulses resulting from resonance offset effects or B1

field inhomogeneity. These can be removed and the desired signal retained by

selecting p = ±2 for each pulse independently, but this results in a phase cycle with at

least 3q steps and unacceptably long experiment times. However, the “Cogwheel”
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procedure [73, 74] for designing more efficient phase cycles was introduced recently.

For example, Cogwheel cycling allows the full coherence transfer pathway for

excitation followed by a five-pulse TOSS sequence to be selected by a minimal 11-

step phase cycle. In general for a sequence with q  pulses, 2q + 1 steps are required.

All odd  pulses are cycled through an identical set of phases given by


n
 

2qn

2q 1
3.8

while the excitation pulse and all even  pulses are cycled through


n
 

2 q 1 n
2q 1

3.9

Cogwheel phase cycling is used to remove signal resulting from incomplete

refocusing by  pulses in the modified CSA amplification experiments described in

Chapter 4.



3.1.4 Typical Experimental Parameters

All of the experiments described in this Thesis were performed on a Varian

InfinityPlus dual-channel spectrometer, operating at a proton frequency of 300.07

MHz. Two double-resonance MAS probes were used. These take 4 mm and 7 mm

outside diameter rotors and allow maximum rf field amplitudes of approximately 100

kHz and 62.5 kHz, respectively. Further experimental details for individual

experiments are given in the figure captions.
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3.1.5 Data Processing

In the CSA amplification experiment the periodic nature of the evolution in the

t1 dimension means that there is no linewidth in 1. As a result, there is no need for

the data processing methods [75] normally applied to obtain pure absorption

lineshapes in two-dimensional NMR spectra. Reconstruction of the FID in the receiver

as described in Section 3.1.1 allows the two-dimensional spectrum to be obtained by a

straightforward complex Fourier transform with respect to both t1 and t2 after

weighting and zero filling as normal in the detection dimension. However, to preserve

the periodicity of the signal in t1 it is important that no weighting functions are applied

in the indirect dimension. Because the signal is phase modulated in t1 the two-

dimensional peaks which result have mixed phase “phase-twist” [75] lineshapes.

Fortunately, the vanishing 1 linewidth ensures that there is no detrimental effect on

the resolution in the spectrum. Phase corrections in 2 can be made by inspection of

the 1 = 0 slice. However, a further 1-dependent phase correction is usually required

because of the finite widths of the /2 storage pulses. The processing procedure [58]

for the CSA amplification experiment is illustrated in Figure 3.1. The t1

interferograms produced by a complex Fourier transform with respect to t2 are shown

in (a), while the spectrum resulting from a further complex Fourier transform with

respect to t1 is shown in (b). Phase correction in 2 gives a purely absorptive 1 = 0

slice as in (c), but a small 1-dependent phase error remains. Finally, (d) shows the

result of applying a frequency-dependent phase correction in 1. Because of the mixed

phase nature of the lineshapes, any phase correction in 1 affects the appearance of

the spectrum in the 2 dimension.
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Figure 3.1: Processing procedure for the CSA amplification experiment. (a) Interferograms

produced after weighting in t2, followed by complex Fourier transformation with respect to t2.

(b) Spectrum resulting from a subsequent Fourier transformation with respect to t1. (c)

Spectrum after phase correction in the 2 dimension in which the 1 = 0 slice is purely

absorptive, while a small 1-dependent phase error is apparent across the rest of the spectrum.

(d) Spectrum after application of a frequency-dependent phase correction in the 1 dimension.

Adapted from Ref. [58].
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3.2 Simulations

3.2.1 Spectral Simulations

Simulation of MAS spectra requires numerical evaluation of the Liouville-von-

Neumann equation Eq. 2.1.17 which allows the powder FID to be calculated directly

during each iteration. In simulations the propagator U which describes the spin

dynamics is usually approximated by the product in Eq. 2.1.21. Since the propagators

are generated by diagonalizing the matrix representation of H, optimized linear

algebra algorithms can be used to speed up the calculations [76]. Further efficiency

gains can be made by exploiting symmetry, such as the time-translation relationship

between the MAS rotor phase rt and the Euler angle  [77]. The symmetry of the

problem with respect to the Euler angles  and  is such that the powder average need

only be evaluated over one octant of the unit sphere [77]. Several software packages

are available which combine efficient simulations with least-squares fitting in order to

extract the CSA parameters and evaluate the associated errors from a statistical

analysis. SIMPSON [78] is a powerful software package for simulation solid-state

NMR experiments and is designed to work as a “computer spectrometer”. The

program has been optimized for fast calculation of complicated NMR experiments on

rotating powder samples and can be used to verify of experiment design and check

experimental imperfections.

3.2.2 Powder Averaging

Calculated lineshapes are easily generated by summing a number of single

crystallite contributions to the overall powder lineshape
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8π
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       3.2.1

a procedure often described as “powder averaging”. As mentioned above for the

MAS case the orientations of the crystallites can be limited to a single octant of the

unit sphere because of symmetry considerations. As there is no analytical solution to

the integrals in the above equation, the powder averaging is approximated as a

weighted summation of single-crystal spectra representing a large set of crystalline

orientations uniformly distributed over the unit sphere:

   
1 1

; , ,
N M

k k l k

k l

S t S t
M


  

 

 3.2.2

where the averaging is split into M l angles with contributions from N pairs of k and

k powder angles with normalized weightings . If the crystallite orientations chosen

for the summation are selected at random or fall on a uniform grid, then a dense mesh

is required to reliably reproduce the experimental pattern, resulting in long

computation times. For an iterative fitting procedure it is important that the

calculations are as efficient as possible, so much effort has been expended on

designing powder averaging schemes which allow a sparse sampling of the

orientations without compromising the accuracy of the results. Recent examples are

based on integration by a Gaussian spherical quadrature [77] or involve generating

sets of orientations which are uniformly distributed over the unit sphere by

minimizing a fictional repulsive potential between them [79].

3.2.3 Measurements of CSA Tensor Parameters
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The capabilities of SIMPSON for iterative fitting of experimental spectra have

been enhanced by its interface with the MINUIT optimization package [80] which

allows the combination of different minimization procedures, as well as error

estimation.

CSA parameters were measured from sideband intensities by simulating

spectra using SIMPSON and minimising the root mean square difference between the

experimental and simulated data. The simulated spectra were obtained using 31 (α, β)

crystallite orientations distributed according to the Lebedev scheme [77]. 40 γ angles 

were used according to the gcompute method in SIMPSON. Error analysis was carried

out using the CERN MINUIT optimization package. The confidence regions on the

two CSA parameters ζ and η are bounded by the contours 3.22
min

2   (68.3%

confidence limit) and 17.62
min

2   (95.4 confidence limit) [70].
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Chapter 4

Developments of CSA amplification

Experiment

4.1 Introduction

In this chapter, an alternative CSA amplification experiment is described

which results in large amplification factors up to 48 using the pulse sequence shown in

Figure 4.1. In addition, the two separate experiments required to reconstruct the final

two-dimensional FID in the original version are no longer required, so sensitivity is

increased. With large ax the experiment can operate at higher MAS rates which

allows the incorporation of state-of-art heteronuclear XiX decoupling schemes and it

is this aspect which is demonstrated in particular here.
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Figure 4.1: Modified CSA amplification pulse sequence [59]. Ξ performs a role similar to that 

of the pitch in 2D-PASS. The sequence corresponding to Ξ = 0 is shown in (a), in which red 

and blue rectangles represent odd and even carbon-13 π-pulses, respectively. Even-numbered

π-pulses coincide with a rotor echo; odd-numbered ones occur Ξτr/2πprior to a rotor echo.

Odd-numbered pulses below the line are delayed by an additional rotor period to ensure that

the end of the sequence coincides with a spin echo. The timings for the π-pulses required for

CSA amplification factor of 16 are indicated in (b), along with the corresponding values of Ξ. 

4.2 Theory

As described in Section 2.3 the two-dimensional FID resulting from a CSA

amplification experiment is:
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In the alternative CSA amplification experiment described here, each “t1 increment” is

generated by a different sequence of q π pulses. Each sequence prepares the

magnetization with a different phase at the start of acquisition according to

       ;0;0;0 cacac xx 4.2.2

where the angle Ξ is a function of π-pulse timings, but independent of crystallite 

orientation. Note that Ξ performs a role similar to that of the pitch in 2D-PASS. 

Therefore, the FID resulting from the alternative experiment can be expressed as

        
       
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xiexpt,S




4.2.3

Following the treatment in Section 2.3 by expanding the c function and intergrating

over  gives

       0

2 2
, ,

, ; exp expc j j j j k k c r
j j k

S t F F F F ij i k t  



  

 

      4.2.4

Projecting onto the 1 dimension the intensity of the sideband at rj is

'
j

'
jc,j FFI  4.2.5

which is identical to the original CSA amplification experiment. For a powder sample,

integration over the Euler angles  and  is required to obtain the correct sideband

intensities.

For the modified experiment, the required initial phase in Eq.4.2.1 must be equal to

the phase accumulated during the sequence of π pulses given by Eq. 2.3.16.

Setting 0 , this gives
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For simplicity, T is assumed to be an integer number of rotor periods and q is assumed

to be odd. In this situation Eq. 4.2.6 becomes
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Using the definition and the symmetry of c , Eq. 4.2.7 can be expanded to give
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with 1m and 2m . Therefore, high amplification factors ax can be achieved by

constraining π-pulses with p even to coincide with a rotor echo. Setting 1 axq

resulting in timings for πpulses of the form
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4.2.9

For realizable sequences, Tt p )( and )1()(  pp tt for all p, and seq = 0, so that the

end of the sequence coincides with a spin echo and phase shifts for different sites are

avoided. In addition, the sequences must have T independent of  , otherwise

differential transverse relaxation will cause distortions of the ω1 sideband amplitudes.

Considering these requirements, it is not easy to find timings which can be varied to

provide a continuous variation of  .

Pulse sequences have been considered with timings defined by

  π21and

otherwise

odd1 
 



 

 q

p
p p

p

p
k 4.2.10



4.3 Experimental Set Up 55

For given q only a restricted set of  values give sequences which have seq = 0. In

turn, only a small number of subsets have constant duration T, and so fulfill all the

conditions required for useful CSA amplification sequences. One subset gives

2/)1( q values of  equally spaced between 0 to )1/()1π(2  qq with a spin echo

at a constant time rqT )1(  and an amplification factor 1 qxa . The timings for

the 8 sequences of 15 π pulses which result in 8 values of Ξ/2π between 0 and 7/8 and 

an amplification factor of 16 are shown in Figure 4.1.

4.3 Experimental Set Up

The pulse sequence of Figure 4.1 was used to obtain carbon-13 CSA

amplification spectra with q = 23 or 47, resulting in amplification factors ax = 24 or

48, respectively. Comparing to our recently version [59], modifications were made to

this experiment which have considerably improved its applicability. Enhanced carbon-

13 transverse magnetization generated by cross-polarization evolves under a sequence

of q π-pulses, before the FID is recorded as a function of t2. The timings of the π

pulses are varied and result in an amplification factor of 1 qxa . Sensitivity is

maximized by eliminating the need to store the magnetization along the z-axis for t1.

Since the total number of π-pulses is only 1 axq , the sequences are more efficient

in terms of number of π-pulses and the total duration comparable to a modification

due to Orr et al. [62].

All pulses on the carbon-13 channel, including the contact pulse, were phase

cycled using the Cogwheel procedure. For experiments with q = 23 a 47-step cycle is

required which can be written COG47(-24,-23,-24,-23,-24,-23,-24,-23,-24,-23,-24,-
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23,-24,-23,-24,-23,-24,-23,-24,-23,-24,-23,-24,-23;0,0) in the notation of Ref.

Combination with a conventional phase alternation of the initial proton π/2-pulse

concurrently with the receiver results in a manageable 2(2q + 1)-step overall phase

cycle.

In common with original CSA amplification experiments, the two-dimensional

spectrum is obtained by a straightforward double complex Fourier transformation with

respect to  and t2, after weighting in the detection dimension only. The processing

procedure and further details of can be found in Chapter 3.

4.4 Results and Discussion

Demonstration on Vinyl phosphonate Nucleotide

The interactions of proteins and small molecules with nucleic acids have long

been a subject of extensive study. In light of the biological importance of nucleic acids,

a wide array of biochemical, biophysical and spectroscopic techniques have been used

to pursue an atomic level understanding of molecular recognition, binding and

structural alterations associated with complex formation. Solid-state NMR is widely

used to study the structure of biomolecules that are not easily crystallized or dissolved,

and thus cannot be conveniently studied by X-ray crystallography and solution-state

NMR, respectively [81-86]. Recently, there has been a marked increase in the number

of structural studies of proteins using solid-state NMR, but so far similar

measurements on DNA and RNA have proved problematic. In the main this is because

of relative lack of shift resolution in the carbon-13 magic angle spinning (MAS)
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spectra of the component nucleotides which mean that structural features are difficult

to analyze using solid-state NMR.

Figure 4.2: The structure of the vinyl phosphonate modified nucleotide.

In this chapter we demonstrate the effectiveness of the CSA amplification

experiment in a study of the vinyl phosphonate modified nucleotide shown in Figure

4.2. The carbon–13 CPMAS spectra of the vinyl phosphonate nucleotide with a MAS

rate of 10 kHz together with a comparison between XiX decoupling and CW

decoupling is shown in Figure 4.3. For comparison, the two experiments were

recorded at the same spinning speed and same proton decoupling power. Other

experimental parameters are given in the figure caption. It is apparent that XiX

decoupling gives higher peak height and a corresponding narrower linewidth

compared with CW decoupling. Note that the resolution for the carbonyl groups (i.e.

C2 and C4) become more pronounced than that for CH and CH2 groups of the vinyl

phosphonate modified nucleotide.

Using XiX decoupling the majority of the carbon–13 resonances are resolved

and the peak assignments are based on a comparison with solution NMR spectra [87].

For the t-butyl group the isotropic chemical shifts are the same due to the fast rotation.

The sugar carbons exhibit relatively narrow lines, except for C2' and C5'. The wider
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peaks observed for these two CH2 resonances can most likely be attributed to

insufficient proton decoupling. The carbon atom C2', C4', MeO and CH= exhibits two

lines due to the phosphorus coupling. The resonances of C2, C4 and C5 are doublets,

indicating that there are two optical isomers in a unit cell as expected due to the chiral

centres in the molecule.

Figure 4.3: Carbon–13 MAS spectrum of the vinyl phosphonate modified nucleotide

recorded at a rate of 10 kHz using a 4mm MAS probe and a standard cross-polarization

pulse sequence with a contact time of 3 ms. The MAS rate was stabilized to ±5 Hz. Proton

decoupling with a field strength of 100 kHz was applied throughout the acquisition period.

The spectral width was 50 kHz and 3200 scans were acquired. The various carbon

resonances are assigned according to the literature [87].

Efficient heteronuclear decoupling during the sequences of  pulses is

essential to optimize the sensitivity of the CSA amplification experiment. Therefore, a
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number of different decoupling schemes were tested using original CSA amplification

experiment:

 CW decoupling was applied during the sequences of  pulses and during

detection, but decoupling was interrupted during carbon-13 pulses.(Figure 4.4a)

 XiX decoupling was applied during sequences of  pulses and during detection

period, but decoupling was interrupted during the carbon-13 pulses.(Figure

4.4b)

 XiX decoupling is continuously applied during the pulse sequences and the

detection period. (Figure 4.4c)

Figure 4.4 shows the two-dimensional spectrum of the vinyl phosphonate

modified nucleotide using the original CSA amplification experiment with (a) CW

decoupling and (b, c) XiX decoupling (the second and third scheme). For XiX

decoupling, tp = 2.85 tr was used. Further experimental details are given in the figure

caption. Most of the peak intensities are higher at XiX decoupling compared with CW

decoupling. The intensities of the carbon C2, C4 and C5 increased over 20% at XiX

decoupling compared with CW decoupling. Furthermore, the signal-to-noise was

improved as well. The third scheme is simpler to implement and so this was chosen

for the CSA amplification experiments described here. In this thesis, XiX decoupling

was used in CSA amplification when MAS rates no less than 10 kHz. The length of π-

pulse was also tested in the following way.

Figure 4.5 shows the part of the centerband of the spectra of the vinyl

phosphonate modified nucleotide recorded using the original CSA experiment with

XiX decoupling at a MAS rate of 10 kHz and reduction factor of 8. The π-pulse was (a)
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Figure 4.4: Regions of two-dimensional spectra of the vinyl phosphonate modified nucleotide

recorded using the original CSA amplification experiment with different decoupling schemes

(see in text) at a rate of 10 kHz using a 4mm MAS probe and a standard cross-polarization

pulse sequence with a contact time of 3 ms. The MAS rate was stabilized to ±5 Hz. Proton

decoupling with a field strength of 100 kHz was applied throughout the acquisition period.

The spectral width was 50 kHz and 1408 scans were acquired. The amplification factor was 8,

resulting in an effective MAS rate of 1250 Hz.
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Figure 4.5: Part of the centerband of the original CSA amplification with XiX decoupling of

sample vinyl phosphonate nucleotide recorded at a rate of 10 kHz using 4mm MAS probe and

a standard cross polarization pulse sequence with a contact time 3 ms. Proton decoupling was

with a field of 83.3 kHz and 1408 scans were acquired. The carbon-13 π-pulse lengths were (a)

11 μs, (b) 5 μs and (c) 3.22 μs.



4.4 Results and Discussion 62

Figure 4.6: Part of CSA amplification spectra of the vinyl phosphonate modified nucleotide

recorded using (a) the original pulse sequence (CW decoupling) with an amplification

factor 8 and an MAS rate of 4 kHz, resulting in an effective MAS rate in ω1 of 500 Hz. The

carbon-13 Larmor frequency was 75.46 MHz and the contact time was 3ms. There were 32

t1 values in total with an increment of 7.81 μs, according to 1/32 of the MAS period. Only

the central 12 lines are shown. (b) the modified sequence with an amplification factor 24

and a MAS rate of 12 kHz, resulting in an effective MAS rate in ω1 of 500 Hz. The MAS

rate was stabilized to ±5 Hz, and the contact time was 3 ms. The proton decoupling field

was approximately 85 kHz, and carbon-13 π-pulses were 3.24 μs in duration. The spectral

width in ω2 was 50 kHz and the acquisition time was 40.9 ms. The relaxation delay was 5 s,

and there were 1316 scans for each of the 12 sequences required. For XiX decoupling, tp =

2.85 tr was used.
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11μs, (b) 5μs and (c) 3.22 μs. For XiX decoupling, tp was carefully adjusted as 1.9×tr.

Other experimental parameters are given in the figure caption. In order to avoid the

unwanted Hartmann-Hahn conditions where the decoupling is compromised (Figure

4.5b), shorter π-pulses were used to obtain the modified CSA amplification

experiments.

Figure 4.6(a) shows the two-dimensional spectrum of the vinyl phosphonate

modified nucleotide using the original CSA amplification experiment with an

effective MAS rate of 500 Hz in the ω1 dimension. Figure 4.6(b) shows the carbon-13

CSA amplification spectrum of the vinyl phosphonate modified nucleotide with an

amplification factor of 24 recorded at Larmor frequency of 75.47 MHz and a MAS

rate of 12 kHz. For XiX decoupling, tp = 2.85 tr was used. Further experimental details

are given in the figure caption. The two-dimensional spectrum is obtained using

MatNMR [88] for Spinsight which is limited to a Fourier transform data size of 2^N.

Only isotropic shifts remain in the ω2 dimension due to the relatively high MAS rates

used here. Problems arising from overlap of ω2 sidebands from different chemical sites

are minimized. The sideband intensities extracted from these two experiments are

compared in Figure 4.6. Note that at the spinning rate of 12 kHz, the original sequence

produces a spectrum (data not shown) which contains the optimum number of

sidebands for analysis for the sp2 hybridized carbon sites. However, the modified

sequence results in an effective MAS rate in ω1 which is low enough that sufficient

sidebands from sp3 hybridized carbon sites are observed (Figure 4.6b).

Experimental application of the modified sequence to achieve an amplification

factor of 48 is demonstrated for the vinyl phosphonate modified nucleotide. The

spinning rate of 12 kHz and effective spinning rate of 250/ ar x Hz was used to
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measure the chemical shift anisotropy of the carbon sites with small anisotropy values.

The sideband intensities extracted from this experiment are compared with those

obtained from the original CSA amplification (in Figure 4.7). The good agreement

between the sideband intensities demonstrates that the modified CSA amplification

experiment functions correctly even up to an amplification factor of 48ax .

As a further demonstration, Figure 4.8 shows the values of the chemical shift

anisotropy of five sites extracted from the original and modified CSA amplification

experiment. To accurately estimate CSA parameters from sideband intensities,

simulated spectra calculated using the SIMPSON program were performed by

minimising the root mean square difference between the experimental and simulated

data. The values quoted here were obtained using 31 (α, β) crystallite orientations

distributed according to the Lebedev scheme [77]. 40 γ angles were used according to 

the gcompute method in SIMPSON. The values of shift anisotropy obtained from the

original and the modified CSA amplification experiments are in good agreement.

Therefore, this modified sequence provides a new way to measure small shift

anisotropies without using slow MAS rates.

Figures 4.9 shows contour plots of χ2, as a function of the anisotropy and

asymmetry parameters for all resolved carbon sites of the vinyl phosphonate modified

nucleotide. Error analysis was carried out using SIMPSON combined with MINUIT

optimization package. The contours were plotted using MATLAB software. The

boundaries of the 68.3% joint confidence region (blue lines) and 95.4% joint

confidence region (brown lines) for the two parameters are shown. The largest joint

confidence region was obtained for sites which are bonded to double bond (C6, CH=
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and CH2=).  The 68.3% confidence limits on the individual parameters ζ and η for all 

the carbon sites are within ±3ppm and ±0.17, respectively.

Figure 4.7: Sideband intensities (red line) extracted from the original CSA amplification

sequence with an effective MAS of (a, b, c, d) 250 Hz and (e, f, g, h) 500 Hz, compared

with those obtained from the modified sequence with an amplification factor of 48 (a, b, c,

d) and 24 (e, f, g, h) and a MAS rate of 12 kHz, resulting in effective MAS rate in ω1 of 250

Hz (triangle) in right hand column and 500 Hz in left hand column. Each row represents the

same carbon site (from the top: base-CH3, TBS-C, TBS-(CH3)3 and OCH3.)
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Figure 4.8: Comparison of the chemical shift anisotropy obtained from: the modified CSA

amplification spectra recorded at a MAS rate of 12 kHz with the amplification factor 48

(diamond) and 24 (triangle); and the original CSA amplification spectra recorded with an

amplification factor 8 and MAS rate 2 kHz (cross) and 4 kHz (square).

The principal components are shown in Table 4.1 calculated from the mean

values (based on the 68.3% confidence limit) of anisotropy and asymmetry parameters.

Using a combination of the original and modified CSA amplification

experiments with a range of MAS rates and amplification factors all the CSA tensors

of the vinyl phosphonate modified nucleotide have been measured. The principal

components of each shift tensor are given in Table 4.1. The values of shift anisotropy

and asymmetry from CSA amplification experiments are shown in Figure 4.10. Many

of the chemical shift anisotropies are quite close for the two optical isomers. For

carbon sites C2', C4' and OMe, the shift anisotropy and asymmetry are different for

the two optical isomers. Note that the lines have not been assigned to the individual

isomers.
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Figure 4.9A: χ2 statistic as a function of the CSA parameters ζ and η of the vinyl phosphonate 

modified nucleotide . Graphs for the carbon sites are presented: (a-c) TBS-Si-CH3, (d, e)

Base-CH3, (f) TBS-C, (g) TBS-CH3(3), (h, i) C2', and (j, k) OCH3, (l, m) C5', (n, o) C3'. The

68.3% joint confidence limit (blue) and 95.4% joint confidence limit (brown) for the two CSA

parameters are shown.
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Figure 4.9B: χ2 statistic as a function of the CSA parameters ζ and η of the vinyl phosphonate 

modified nucleotide . Graphs for the carbon sites are presented: (p) C1', (q, r) C4', (s, t) C5, (u)

CH=, (v) C6, and (w) CH2=, (x, y) C2, (z,*) C4. The 68.3% joint confidence limit (blue) and

95.4% joint confidence limit (brown) for the two CSA parameters are shown
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Table 4.1 CSA amplification measurements of principal components of shift tensors in

the vinyl phosphonate modified nucleotide

Carbona δiso(ppm) δxx
b(ppm) δyy (ppm) δzz (ppm)

–5.8 –9.1 –7 –1.3

–4.9 –7.8 –5.8 –1.1

TBS-Si-

CH3(2)
–3.8 –7.2 –4.8 0.6

11.9 19.4 13.7 2.6Base-CH3

12.9 20.2 15.0 3.5

TBS-C 19.0 22.7 19.5 14.8

TBS-CH3(3) 26.1 21.0 26.1 31.2

38.2 26.6 34.4 53.6C2'

41.3 30.7 37.9 55.3

52.9 74.6 63.8 20.3OCH3

53.8 74.0 62.5 24.9

63.5 79.8 68.8 41.9C5'

64.3 79.7 69.4 43.8

76.6 97.3 76.6 55.9C3'

77.4 97.9 77.4 56.9

C1' 83.3 114.6 83.3 52.0

86.8 110.9 86.4 63.1C4'

87.9 108.8 91.0 63.9

109.6 173.5 117.1 38.2C5

110.9 176.4 118.6 37.7

CH= 124.9 65.1 120.1 189.5

C6 137.0 60.8 124.1 226.1

CH2= 138.7 345.4 134.6 –63.9

149.5 101.6 126.5 220.4C2

150.7 102.5 128.5 221.1

166.4 236.6 166.4 96.2C4

166.9 235.2 168.3 97.2

a. sites are assigned according to Ref. [87].

b. assigned according to |δyy – δiso| < |δxx – δiso| < |δzz – δiso|.
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Figure 4.10: Values of shift anisotropy (ζ) and asymmetry (η) of the vinyl phosphonate 

modified nucleotide extracted from the original and modified CSA amplification

experiments.
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4.5 Conclusions

In summary, first, the original CSA amplification experiment was improved by

using XiX decoupling schemes at modern MAS rates. Second, the modified CSA

amplification experiment which results in large amplification factors up to 48 was

demonstrated on the the vinyl phosphonate modified nucleotide. High resolution of

isotropic shifts resulting from the use of XiX decoupling in ω2 ensures that both the

resolution of different stereoisomers and the overall sensitivity of the experiment are

optimal. For most sites (small) differences between the CSA tensors for each

stereoisomer have been observed.
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Chapter 5

Applications of CSA Amplification

Experiment to Nucleosides

5.1 Introduction

Nucleosides are glycosylamines consisting of a nucleobase (often referred to

simply as a base) bound to a ribose or deoxyribose sugar. Nucleosides can be

phosphorylated by specific kinases in the cell on the sugar's primary alcohol group (-

CH2OH), producing nucleotides, which are the molecular building blocks of DNA and

RNA. Solid-state NMR is a valuable tool for structural studies of nucleosides, since it

allows acquisition of spectra corresponding to a single molecular conformation in

contrast to the average observed with solution-state NMR. The CSA tensor has the

potential to provide a more detailed picture of the local environment and hence the

molecular conformation than the isotropic shift alone. Ying and co-workers [89] have

measured carbon-13 CSA tensors for double-helical RNA and DNA oligomers. Grant

and co-workers [90] have measured carbon-13 CSA tensors for some nucleosides and

compared these with calculations. In this work the carbon-13 chemical shift tensors

for adenosine, 2'-deoxythymidine, uridine, cytidine, guanosine and 5-methyluridine

http://en.wikipedia.org/wiki/Glycosylamine
http://en.wikipedia.org/wiki/Nucleobase
http://en.wikipedia.org/wiki/Ribose
http://en.wikipedia.org/wiki/Deoxyribose
http://en.wikipedia.org/wiki/Sugar
http://en.wikipedia.org/wiki/Phosphorylation
http://en.wikipedia.org/wiki/Kinase
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA


5.2 Experimental 73

(see Figure 5.1) were measured using the CSA amplification experiment and

compared with first-principles calculations.

5.2 Experimental

5.2.1 Materials

Adenosine (≥99%), 2'-deoxythymidine (>99%), uridine (≥99%), cytidine

(≥99%), guanosine (≥98%) and 5-methyluridine (97%) were purchased from

Figure 5.1: The structures of 2'-deoxythymidine, adenosine, uridine, cytidine, guanosine, and

5-methyluridine with atom numbering.



5.2 Experimental 74

Sigma-Aldrich. Their chemical structures are shown in Figure 5.1. Samples of

adenosine, 2'-deoxythymidine, cytidine, and uridine were used in NMR experiments

without further purification. Guanosine was prepared by keeping the sample in a

desiccator for three months, immersed in a saturated water vapor atmosphere [90]. 5-

methyluridine was recrystallized from aqueous ethanol [91] and the crystal structure

was determined by X-ray diffraction.

5.2.2 X-ray diffraction (XRD)

The crystal structure of 5-methyluridine (see Figure 5.2) was confirmed by single-

crystal X-ray diffraction. The XPD pattern was collected using a Bruker SMART1000

CCD area detector diffractometer. The structure was solved by direct methods, and

full-matrix least-squares refinements on F2 were carried out. Other parameters and the

data can be found in Appendix II.

Figure 5.2: The chemical structure of a single molecule of 5-methyluridine determined by X-

ray. In the crystalline form there is one molecule per unit cell.
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5.2.3 NMR Experiments and Computation

Carbon-13 NMR spectra were recorded at a Larmor frequency of 75.46 MHz

on samples of 2'-deoxythymidine, adenosine, cytidine, guanosine and uridine packed

into 4 mm rotors spinning in a double resonance MAS probe. CPMAS spectra were

recorded by co-adding between 8 and 64 scans with a spectral width of 50 kHz. The

MAS rate was 10 kHz, stabilized to ± 5 Hz. Proton decoupling (XiX) with a field

strength of 85 kHz was applied during the acquisition time. For 5-methyluridine, the

CPMAS spectrum was recorded at a MAS rate of 6 kHz using a 7 mm rotor spinning

in a double-resonance MAS probe. The contact time and the relaxation delay were

optimized for each sample and ranged between 2 and 4 ms and 3 to 180 s, respectively.

All carbon-13 chemical shifts were externally referenced indirectly to TMS via the

high-frequency carbon-13 line was assigned a shift of 37.8 ppm. The carbon-13

chemical shift tensors were extracted from the spinning sideband intensities measured

from CSA amplification spectra or one-dimensional spectra recorded with a low MAS

rate. The spin-lattice relaxation times were long for all the nucleosides except

guanosine and uridine. Nonetheless, good signal-to-noise could be obtained within

reasonable acquisition times.

Dr. Jonathan Yates and Mikhail Kibalchenko calculated CSA tensors of these

six nucleosides based on crystal structures [91-96] as shown in Tables 5.7 to 5.12.

Calculations were carried out using the planewave-pseudopotential formalism of

density functional theory, as implemented in the CASTEP code [97]. Magnetic

shielding tensors were calculated for each nucleoside structure using the recently

developed GIPAW [98] approach. All calculations used ultrasoft pseudopotentials [99]
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and a maximum plane-wave energy of 800 eV. The Brillouin zone was sampled using

a Monkhorst-Pack [100] grid with a maximum spacing of 0.055 Å–1. These calculation

parameters were chosen to converge the isotropic chemical shifts to within 0.1 ppm.

Except where explicitly stated all calculations used the PBE [101] exchange-

correlation functional.

For accurate calculation of NMR parameters the quality of the input crystal

structure is paramount. Starting crystal structures for the nucleosides [91-96] were

taken from the Chemical Database Service [102]. The structure for adenosine was

[103] was obtained by neutron diffraction. For this structure the calculated average

force over all atoms was 0.3 eV / Å, with a maximum force on a hydrogen atom of 0.7

eV /Å. For this reason the NMR parameters were computed using diffraction structure

without further optimization. The structure of 2'-deoxythymidine [104], uridine [105],

cytidine [106], guanosine [107], and 5-methymidine [108] had been determined by X-

ray diffraction. Structures obtained by X-ray diffraction are usually less accurate than

neutron derived structures; in particular the positions of hydrogen atoms are poorly

defined. It is not surprising that using the experimental structures for these systems

lead to forces in the order of 10 eV / Å on the hydrogen atoms. However, after a

partial geometry optimization the maximum force in four of five structures was below

1 eV / Å, and so these partially relaxed structures were used to compute the NMR

parameters. The exception was 5-methyluridine in which after partial optimization had

forces which exceeded 3 eV / Å. For this reason the NMR parameters for 5-

methyluridine were computed using a structure in which all atomic positions had been

optimized. Note that all geometry optimizations keep the unit cell parameters fixed to
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their experimental values. Checks were carried out to make sure that full geometry

optimization did not change any site assignments when compared to the experiment.

Electronic structure calculations report the magnetic shielding tensor σwhich

is defined as the ratio of the induced Bin and applied B0 magnetic fields,

in

0

  



5.3.1

For each crystal structure the isotropic shielding σiso was calculated as in Eq. 5.3.2

where σii are the components from the diagonalized symmetric part of the magnetic

shielding tensor.

 iso xx yy zz

1

3
      5.3.2

The isotropic chemical shift δiso is defined relative to a reference shielding σref such

that

iso iso ref( )     5.3.3

The principal components of the chemical shift tensor were calculated from those of

the shielding tensor in a similar fashion.

For carbon-13 we optimized σref to each nucleoside to provide best comparison with

experiment. The value for σref ranged from 167.1 to 170.5 ppm. In a previous

combined experiment and computational study of the NMR chemical shift tensors in

disaccharides it was found that the magnitude of the computed anisotropy was

consistently too large. It was noted that simply scaling the calculated tensor width

facilitiated the comparison to experiment. The tensor width, or span Ω, is defined as

 
zz xx

1

2

 
  


     5.3.4
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The values of the isotropic shift and the asymmetry were not adjusted during this

scaling procedure.

5.3 Results and Discussion

5.3.1 CPMAS Spectra and Carbon-13 Isotropic Shifts

Figure 5.3 shows the carbon-13 CPMAS spectrum of (a) 2'-deoxythymidine, (b)

adenosine, (c) cytidine and (d) uridine. The isotropic chemical shifts for sites in the

sugar rings and in the nucleic acid bases are generally well separated from one another.

Most of the peak positions are in excellent agreement with those observed by Stueber

et al. [90]. The Stueber et al. study found a difference of 0.4 ppm between carbon

atoms C6 and C2 in adenosine, but these peaks are not resolved in this work. For

uridine, the spectrum in Figure 3(d) shows twice the expected number of peaks,

indicating that there are two molecules per asymmetric cell. The resonances were

assigned by comparison with calculated values (see below).

The carbon-13 CPMAS spectrum of the as purchased guanosine sample is

shown in Figure 5.4(a).The broad peaks and the fine structure indicate an anhydrous

state [109]. Figure 5.4(b) shows the spectrum of guanosine dihydrate prepared as

described above in which the lines are substantially less broad. The peaks of carbon

sites (C5, C8, C2’ and C3’) exhibit a small splitting, suggesting the presence of two

molecules in an asymmetric unit cell. For guanosine dihydrate, Stueber et al.

assignedthe resonance at 151.4 ppm to the C2 site and the resonance at 152.1 to the

C4 site. These assignments are based on a comparison with calculated values obtained
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Figure 5.3: Part of carbon-13 CPMAS spectra of (a) 2'-deoxythymidine, (b) adenosine, (c)

cytidine and (d) uridine recorded using parameters described in the text.
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Figure 5.4: Part of carbon-13 CPMAS spectra of guanosine in (a) a nonstoichiometric state of

hydration and (b) the dehydrated state. The spectra were recorded at a MAS rate of 10 kHz

using proton decoupling with a field of 100 kHz. The spectral width was 50 kHz. The

relaxation delay was 5 s and 128 (a) and 1024 (b) scans were acquired.

using EIM and reported by Sugawara et al. [109]. However, some of these

assignments maybe challenged, since the shift differences are small. The calculated

CSA values in Table 5.10 are consistent with a reversed assignment of C2 and C4 in

the case of guanosine dihydrate.
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Figure 5.5(a) shows the carbon-13 CPMAS spectrum of as purchased 5-

methyluridine recorded at a MAS rate of 6 kHz. In this case the majority of the lines

split into two components, suggesting that there are two inequivalent molecules in the

unit cell. However, the crystal structure of 5-methyluridine hemihydrate [91] predicts

one molecule per asymmetric unit cell. Therefore, we carried out powder X-ray

diffraction analysis. The result (Appendix II) indicated that the as purchased 5-

methyluridine is not the hemi-hydrate, but may be some other hydrate or solvate. The

appearance of the carbon-13 spectrum of 5-methyluridine changes considerably after

recrystallization to give the the hemi-hydrated form, as shown in Figure 5.5(b). Other

experimental details are given in the caption. Some spinning sidebands appeared due

to the relatively slow MAS rate of 6 kHz. The peaks were assigned based on the

calculated values (see below).

In summary, the carbon sites of nucleosides can be divided into three different

groups according to their isotropic chemical shifts. The carbon sites of nucleic acid

bases are least shielded. The carbon atoms of sugar rings appear at relatively high field.

The CH3 groups appear at high field. The linewidths of the carbon sites which are

directly bonded to nitrogen are slightly broader than those of the sugar rings due to the

13C-14N dipole interaction.
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Figure 5.5: Part of carbon-13 MAS spectra of 5-methyluridine (a) before crystallization, and

(b) after crystallization recorded at a MAS rate of 6 kHz using a 7 mm MAS probe and

standard polarization pulse sequence with a contact time of 2 ms and a relaxation delay of 30 s.

Proton decoupling with a field of 55.6 kHz was applied throughout the acquisition period

which lasted 40.96 ms. The spectral width was 50 kHz and 8 scans were acquired. The

spinning sidebands are indicated with asterisks.
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5.3.2 CSA Tensors of Nucleosides

Figure 5.6: (a) Part of original CSA amplification spectrum of 2'-deoxythymidine recorded at

a MAS rate of 4 kHz with a decoupling field of 85 kHz. The amplification factor is 8,

resulting in an effective MAS rate in ω1 of 500 Hz. There were 16 t1 values in total with an

increment of 15.6 μs, corresponding to 1/16 of the MAS period. The full spectral width was

50 kHz and the acquisition time was 40.96 ms. The relaxation delay was 60 s, and there were

192 scans for each of the 16 sequences. (b) As (a), except that the MAS rate was 10 kHz with

a XiX heteronuclear decoupling field of 85 kHz.
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Figure 5.6 shows CSA amplification spectra of 2'-deoxythymidine recorded at

MAS rates of (a) 4 kHz and (b) 10 kHz with a constant amplification factor of 8.

Further experimental parameters are given in the caption. At these MAS rates, no

spinning sidebands appear in the ω2 dimension so that the carbon-13 sites can be

resolved by the isotropic chemical shifts, as in the standard CPMAS spectrum of

Figure 5.3(a). Problems arising from overlap of ω2 sidebands from different chemical

sites are minimized. Carbon sites directly bonded to nitrogen suffer low signal-to-

noise ratio due to the 13C-14N dipolar coupling and their larger chemical shift

anisotropies. Similar CSA amplification experiments were carried out on the other

nucleosides. For cytidine, a one-dimensional spectrum was also acquired at slower

MAS rates.

Figures 5.7 to 5.12 show the results for all the carbon sites of six nucleosides.

The mean values (based on the 68.3% confidence limit) for the principal components

are shown in Tables 5.1 to 5.6 with δxx, δyy, and δzz, ordered such that | δzz – δiso | ≥ | δxx

– δiso | ≥ | δyy – δiso |. The anisotropy and the asymmetry parameters were calculated

according to the definitions ζ = δzz – δiso and η = (δyy – δxx)/ ζ. For comparison 

purposes, Tables 5.1 to 5.6 also show the previously measured isotropic chemical shift

values and principal components of the chemical shift tensor, according to Stueber et

al.

Figures 5.7 to 5.12 shows contour plots of χ2, as a function of the anisotropy

and asymmetry parameters for all resolved carbon sites of the six nucleosides. Error

analysis was carried out using SIMPSON combined with MINUIT optimization

package. The contours were plotted using MATLAB software. The boundaries of the
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68.3% joint confidence region (blue lines) and 95.4% joint confidence region (brown

lines) for the two parameters are shown.

For 2'-deoxythymidine (Figure 5.7) the joint confidence region for site C2 (c)

is much larger than for the others due to the low signal-to-noise of the corresponding

sidebands. This is the result of the 13C-14N dipolar coupling and the larger chemical

Figure 5.7: χ2 statistic as a function of the CSA parameters ζ and η of 2'-deoxythymidine. 

Graphs for the carbon sites are presented: (a) C4, (b) C6, (c) C2, (d) C5, (e) C1' and C4', (f)

C3', (g) C5', (h) C2', and (i) CH3. The 68.3% joint confidence limit (blue) and 95.4% joint

confidence limit (brown) for the two CSA parameters are shown.
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Figure 5.8: χ2 statistic as a function of the CSA parameters ζ and η of adenosine. Graphs for 

the carbon sites are presented: (a) C2 and C6, (b) C4, (c) C8, (d) C5, (e) C1', (f) C4', (g) C3',

(h) C2', and (i) C5' . The 68.3% joint confidence limit (blue) and 95.4% joint confidence limit

(brown) for the two CSA parameters are shown.

shift anisotropy for this site. For C2' (h) and CH3 (i), the 68.3 % confidence limit for 

extends to ± 0.2 due to the limited number of spinning sidebands observed (5 and 6

spinning sidebands respectively). With the exception of C2, the 68.3 % confidence
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limit on  is within ± 2 ppm, while if C2’ and CH3 are excluded the corresponding

limit for  is ± 0.07.

For adenosine (Figure 5.8) the largest joint confidence region was again

obtained for sites which are directly bonded to nitrogen (C4 (b) and C8 (c)). The sugar

sites have smaller joint confidence regions due to the relatively high signal-to-noise

ratio. The 68.3% confidence limits on the individual parameters ζ and η for all the 

sugar sites are within ± 3ppm and ± 0.07, respectively.

Figure 5.9: χ2 statistic as a function of the CSA parameters ζ and η of cytidine. Graphs for the 

carbon sites are presented: (a) C4, (b) C2, (c) C6, (d) C5, (e) C1', (f) C4', (g) C2', (h) C3', and

(i) C5' . The 68.3% joint confidence limit (blue) and 95.4% joint confidence limit (brown) for

the two CSA parameters are shown.
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For cytidine (Figure 5.9), a one-dimensional CPMAS spectrum was

sufficiently well resolved to allow measurement of the CSA parameters for sites C2 (b)

and C5 (d) with high signal-to-noise ratio. Hence, these sites show particularly small

68.3 % joint confidence regions with the corresponding limits on  and  around ± 1

ppm and 0.05, respectively.

For guanosine (Figure 5.10) large confidence limits were obtained for carbon

C8 (d, e). This is explained by the fact that there are two crystallographically

inequivalent molecules in the unit cell which are not well resolved due to the 13C-14N

dipolar coupling. Once again the 68.3 % confidence limit on  is within ±3 ppm for

most of the remaining sites.

Uridine (Figure 5.11) is a challenging sample since to there are two

crystallographically inequivalent molecules in the unit cell. As with the other

nucleosides, carbon sites directly bonded to nitrogen suffer low signal-to-noise ratio.

These factors reflected in the larger joint confidence regions for sites such as C6

(Figure 5.11A e, f). However, excluding this site, the 68.3 % confidence limit on ζ is 

always within ±5 ppm.


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Figure 5.10: χ2 statistic as a function of the CSA parameters ζ and η of guanosine. Graphs for 

the carbon sites are presented: (a) C6, (b) C4, (c) C2, (d, e) C8, (f, g) C5, (h) C4', (i) C1', (j, k)

C2', (l, m) C3', and (n) C5'. The 68.3% joint confidence limit (blue) and 95.4% joint

confidence limit (brown) for the two CSA parameters are shown.
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Figure 5.11A: χ2 statistic as a function of the CSA parameters ζ and η of uridine. Graphs for 

the carbon sites are presented: (a, b) C4, (c, d) C2, (e, f) C6, (g, h) C5, (i) C1'. The 68.3% joint

confidence limit (blue) and 95.4% joint confidence limit (brown) for the two CSA parameters

are shown.
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Figure 5.11B: χ2 statistic as a function of the CSA parameters ζ and η of uridine. Graphs for 

the carbon sites are presented: (j) C1', (k, l) C4', (m, n) C2', (o, p) C3', (q r) C5'. The 68.3%

joint confidence limit (blue) and 95.4% joint confidence limit (brown) for the two CSA

parameters are shown.

For 5-methyluridine (Figure 5.12) the CSA amplification spectra have

relatively high signal-to-noise ratio, which results in smaller joint confidence regions.
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Figure 5.12: χ2 statistic as a function of the CSA parameters ζ and η of 5-methyluridine. 

Graphs for the carbon sites are presented: (a) C4, (b) C2, (c) C6, (d) C5, (e) C1', (f) C4', (g)

C2', (h) C3', (i) C5' and (j) CH3. The 68.3% joint confidence limit (blue) and 95.4% joint

confidence limit (brown) for the two CSA parameters are shown.
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Table 5.1: Comparison of the principal components of carbon-13 chemical shift

tensorsa of 2'-deoxythymidine measured using CSA amplification with those measured

previously.

This work Stueber et al.[90]Carbon

siteb

xx yy zz
iso xx yy zz iso

C2 94.3 130.1 222.0 148.8 96 124 226 148.6

C4 232.8 168.0 92.4 164.4 243 166 85 164.6

C5 180.2 118.6 29.4 109.4 187 117 24 109.7

C6 54.9 126.1 225.5 135.5 42 128 238 135.6

C1’c 122 88 47 85.2

C4’c 112.1 86.8 56.7 85.2 112 87 57 85.2

C2’ 25.1 37.4 55.1 39.2 20 39 59 39.1

C3’ 84.6 75.6 51.6 70.6 86 77 50 70.6

C5’ 82.4 64.4 31.1 59.3 82 65 31 59.3

CH3 16.8 10.5 0.0 9.1 17 10 1 9.1

a in ppm.
b Sites are assigned according with Ref. [90].
c These sites cannot be resolved in this work.

Tables 5.1 to 5.4 show a comparison between the principal components of the

carbon-13 chemical shift tensors obtained in this work using CSA amplification and

those reported in Ref. [90] of 2'-deoxythymidine, adenosine, cytidine, and guanosine

respectively. Note that the principal components from Stueber et al. were quoted to

the nearest ppm except for cytidine.
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Table 5.2: Comparison of the principal components of carbon-13 chemical shift

tensorsa of adenosine measured using CSA amplification with those measured

previously.

This work Stueber et al.[90]Carbon
siteb

xx yy zz iso xx yy zz iso

C4 212.6 159.6 72.4 148.2 221 166 58 148.5

C5 167.3 140.5 50.7 119.5 167 145 47 119.7

C8 70.7 132.6 209.5 137.6 61 136 216 137.8

C2c 239 158 66 154.8

C6c 222.0 170.7 70.2 154.3 222 191 52 155.2

C1’ 78.7 90.4 107.2 92.1 76 92 109 92.2

C2’ 98.2 75.0 40.1 71.1 100 75 38 71.2

C3’ 87.4 76.4 60.9 74.9 88 78 59 75

C4’ 111.3 91.5 51.3 84.7 113 93 48 84.9

C5’ 88.0 65.5 34.6 62.7 86 68 34 62.7

a in ppm.
b Sites are assigned according with Ref. [90].
c These sites cannot be resolved in this work.

The anisotropies measured in this work are generally less than the

measurements from Stueber et al.

The rmsd between this work and Stueber et al. is 5.8 ppm for 2'-

deoxythymidine which can be separated into contributions of 7.9 ppm for sites in the

base and 2.1 ppm for the sugar ring. For adenosine, the rmsd between the results

obtained in this work and those of Stueber et al. is 6.0 ppm for all the carbon sites and

2.1 ppm for the sugar ring. For cytidine the principal components from CSA

amplification and those from Ref. [90] are in good agreement except for C4 of

cytidine.
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Table 5.3: Comparison of the principal components of carbon-13 chemical shift

tensorsa of cytidine measured using CSA amplification with those measured

previously.

This work Stueber et al.[90]Carbon

siteb

xx yy zz iso xx yy zz iso

C2 97.5 153.9 221.7 157.7 93.2 157.0 222.8 157.7

C4 237.8 200.6 64.4 167.6 248.2 204.2 49.0 167.3

C5 20.5 91.8 175.1 95.8 16.9 94.6 175.9 95.8

C6 240.5 153.4 33.6 142.5 240.7 151.5 34.8 142.2

C1’ 77.8 90.0 109.7 92.5 76.0 90.0 111.8 92.7

C2’ 87.8 79.1 59.9 75.6 89.2 78.2 59.4 75.6

C3’ 94.6 71.9 33.0 66.5 96.9 72.4 30.3 66.5

C4’ 112.6 94.1 45.6 84.1 113.8 93.3 44.4 84

C5’ 84.9 64.7 30.7 60.1 85.1 65.4 29.8 60.1

a in ppm.
b Sites are assigned according with Ref. [90].
c These sites cannot be resolved in this work.

The corresponding two chemical shift tensors differ by 10.4, 3.6, and 15.4 ppm in the

δxx, δyy, and δzz principal values, respectively. The rmsd is 5.1 ppm for all the carbon

sites and 1.6 ppm for the sugar ring. For guanosine, the rmsd between the results

obtained in this work and those of Stueber et al. is 9.5 ppm for all the carbon sites and

2.9 ppm for the sugar ring. These rmsd values indicate that the principal components

measurements of sugar ring are in much better agreement than the carbon sites of base

acid.

The experimental carbon-13 chemical shift tensor principal components and

isotropic chemical shifts obtained using CSA amplification for uridine and 5-methyl
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Table 5.4: Comparison of the principal components of carbon-13 chemical shift

tensorsa of guanosine measured using CSA amplification with those measured

previously.

This work Stueber et.al.[90]Carbon

siteb
xx yy zz iso xx yy zz iso

223 165 66 152.1
C2 211.5 154.7 82.9 149.7

223 165 66 152.1

223 165 66 151.4
C4 214.1 159.2 80.9 151.4

223 165 66 150.0

156.9 134.0 54.7 115.2 159 138 49 115.2
C5c

155.1 134.2 57.8 115.7 160 140 49 115.9

82 154 237 157.7
C6 88.3 156.2 228.3 157.6

82 154 237 157.7

198.5 137.7 75.1 137.1 211 134 66 136.9
C8c

202.8 137.9 73.0 137.9 214 141 59 138.2

112 89 54 85.2
C1’ 111.0 86.6 58.0 85.2

112 89 54 85.2

100.8 78.1 47.3 75.4 105 77 45 75.8
C2’c

104.3 80.2 51.6 78.7 103 79 55 78.9

87.8 74.5 54.0 72.1 89 75 53 72.2
C3’c

91.7 76.3 60.3 76.1 86 80 62 76.2

108 92 60 86.6
C4’ 108.5 89.6 61.1 86.4

108 92 60 86.6

84 65 39 62.7
C5’ 84.1 63.2 40.8 62.7

84 65 39 62.7

a in ppm.
b Sites are assigned according to Ref. [90].
c assignment of resonances to the two distinct molecules per asymmetric unit cell.
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Table 5.5 Experimental principal components of carbon-13 chemical shift tensors and

tensor parametersa for uridine

Carbon siteb
xx yy zz iso

95.9 134.9 219.8 150.2
C2

96.1 135.7 220.3 150.7

228.4 168.5 95.1 164.0
C4

228.9 174.9 95.4 166.4

163.0 102.9 29.3 98.4
C5

159.0 102.1 36.8 99.3

238.6 139.4 40.2 139.4
C6

240.8 141.5 42.1 141.5

74.9 87.8 105.5 89.4
C1’

73.2 88.4 108.1 89.9

56.8 71.9 88.6 73.1
C2’

87.9 73.8 58.2 73.3

93.2 66.7 33.6 64.5
C3’

94.6 71.1 24.7 66.8

105.9 89.5 45.5 80.3
C4’

108.0 91.3 42.6 80.7

80.8 62.9 26.1 56.6
C5’

83.4 66.2 29.5 59.7

a in ppm.
b Sites are assigned in this work by comparison with calculations.

-uridine are shown in Tables 5.5 and Table 5.6, respectively. To our knowledge, there

are no previous reports of the chemical shift tensors of these two nucleosides.

Assignments have been made by a comparison with calculated values, as described

below.
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Table 5.6: Experimental principal components of carbon-13 chemical shift tensors and

tensor parametersa for 5-methyluridine

Carbon siteb
xx yy zz iso

C2 96.7 140.4 219.2 152.1

C4 240.7 170.2 93.1 168.0

C5 182.5 125.0 27.0 111.5

C6 65.5 127.1 228.3 140.3

C1’ 73.2 90.0 111.0 91.4

C2’ 91.2 80.7 63.3 78.4

C3’ 91.4 75.8 38.0 68.4

C4’ 111.8 95.2 48.0 85.0

C5’ 89.9 64.9 25.5 60.1

CH3 25.1 15.9 4.3 15.1

a in ppm.
b Sites are assigned in this work by comparison with calculations.

5.3.3 Comparison with Calculated CSA Tensors

Much of the advancement in NMR today comes from the aid provided by

numerical calculations. A combined experimental and theoretical calculation was used

to explore molecular configuration as well as their NMR properties such as chemical

shifts, spin-spin coupling constants, shieldings (such as 1H, 13C, and15N ), etc. [110-

112]. Calculated carbon-13 chemical shift tensors of 2'-deoxythymidine, adenosine,

cytidine, guanosine, uridine and 5-methyluridine, are shown in Tables 5.7-5.12. The

agreement between experimental and calculated isotropic chemical shifts is in very

good (see Figure 5.15), with the rmsd ranging from 1.3 ppm for adenosine to 3.3 ppm
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Table 5.7: Comparison experimental and calculated principal componentsa of CSA

tensors for 2'-deoxythymidine.

Experiment CalculationCarbon

site δiso ζ η δiso
b ζc η 

C2 148.8 73.2 0.49 146.3 68.3 0.23

C4 164.4 –72.0 0.90 162.3 67.4 0.96

C5 109.4 –80.0 0.77 112.1 –79.7 0.67

C6 135.5 90.0 0.79 136.9 87.0 0.98

C1’ 88.1 –35.4 0.87

C4’ 85.2 –28.5 0.89 86.7 –29.5 0.82

C2’ 39.2 15.9 0.77 36.4 19.1 0.98

C3’ 70.6 –19.0 0.47 73.3 –20.5 0.51

C5’ 59.3 –28.2 0.64 58.8 –30.0 0.51

CH3 9.1 –9.1 0.70 5.7 8.9 0.82

a iso and  in ppm.
b ref = 167.1 ppm.
c anisotropy scaling factor = 0.86.

for uridine. However, the anisotropy parameters are systematically overestimated due

to an underestimation of the paramagnetic contribution to the shielding by the

currently used PBE exchange-correlation functionals as discussed in Ref. [113]. This

in turn results in a over- and under-estimation of the maximum and minimum

principal components, respectively. For this reason a linear scaling of the tensor span

zz - xx is required before comparison with the experimental results. Note that a

single scaling factor sufficies for all sites in a given molecule and that the factor is

consistent across the range of nucleosides studied, varying between 0.84 and 0.90.
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Table 5.8: Comparison experimental and calculated principal componentsa of CSA

tensors for adenosine.

Experiment CalculationCarbon

site δiso ζ η δiso
c ζd η 

C4 148.2 –75.8 0.70 146.8 –80.8 0.61

C5 119.5 –68.8 0.39 120.6 –66.3 0.07

C8 137.6 71.9 0.86 136.2 69.3 0.95

C2b 154.8 –85.4 0.76

C6b 154.3 –84.1 0.61
151.5 –89.7 0.04

C1’ 92.1 15.1 0.77 94.4 –17.9 0.66

C3’* 71.1 –31.0 0.75 71.6 –34.6 0.83

C2’* 74.9 –14.0 0.78 75.8 –15.6 0.65

C4’ 84.7 –33.4 0.59 85.8 –36.8 0.44

C5’ 62.7 –28.1 0.80 61.9 –28.8 0.73

a iso and  in ppm.
b these sites cannot be resolved in this work.
c ref = 168.4 ppm.
danisotropy scaling factor = 0.89.
* corrected assignment based on our calculation when compared to Ref. [90].

For 2'-deoxythymidine, scaling the calculated values by 0.86 results in a rmsd

of 2.9 ppm from the values measured by CSA amplification experiment, whereas a

scaling factor of 0.95 gave a rmsd of 3.6 ppm from the data of Stueber et al. [90].

Figure 5.13a shows a correlation between the chemical isotropic shifts and the

anisotropies obtained from CSA amplification experiments and the scaled values from

calculations. The agreement is very good. For carbon sites of C4 and CH3, the

calculated anisotropy is of opposite sign to the CSA amplification value and those

reported by Stueber et al. However, these sites have η close to unity where the sign of 

anisotropy is poorly defined.
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Table 5.9: Comparison experimental and calculated principal componentsa of CSA

tensors for cytidine.

Experiment CalculationCarbon

site δiso ζ η δiso
b ζc η 

C2 157.7 64.0 0.88 154.8 60.6 0.85

C4 167.6 –103.2 0.36 161.7 –98.5 0.30

C5 95.8 79.3 0.90 95.6 –78.9 0.93

C6 142.5 –108.9 0.80 141.9 –109.0 0.73

C1’ 92.5 17.2 0.71 95.4 –19.7 0.68

C2’ 75.6 –15.7 0.56 77.9 –16.7 0.75

C3’ 66.5 –33.5 0.68 67.1 –37.3 0.65

C4’ 84.1 –38.5 0.48 87.2 –40.4 0.44

C5’ 60.1 –29.4 0.69 60.9 –31.8 0.73

a iso and  in ppm.
b ref = 170.5 ppm.
c anisotropy scaling factor = 0.90.

Scaling factors of 0.89 and 0.99 were required for experimental results of

adenosine from CSA amplification experiments and those from Stueber et al,

respectively, giving an rmsd of 2.9 ppm from the CSA amplification measurements

and an rmsd 3.6 ppm from that reported by the latter. In solution, C6 possesses a

higher shift than C2 and the two carbons are separated by approximately 4 ppm

[114] ,whereas in the CPMAS spectrum reported here there is only 0.6 ppm difference.

On the other hand, the calculations predict a reversed order assignment and 3.3 ppm

separation for these two carbon atoms. Since C2 and C6 cannot be resolved in the

CSA amplification experiments, the comparison described above is based on the result

omitting these carbon sites. Earlier results of Stuerber et al. assign the isotropic shift
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Table 5.10: Comparison experimental and calculated principal componentsa of CSA

tensors for guanosine.

Experiment CalculationCarbon

site δiso ζ η δiso
c ζd η 

147.6 –66.3 0.56
C2 149.7 –66.8 0.85

149.3 –70.1 0.55

148.5 –72.9 0.71
C4 151.4 –70.5 0.78

149.9 –73.7 0.70

115.2 –60.5 0.38 116.2 –59.3 0.12
C5b

115.7 –57.9 0.36 116.8 –56.9 0.17

153.6 73.8 0.74
C6 157.6 70.7 0.96

153.9 69.9 0.84

137.1 –62.0 0.98 136.2 65.7 0.91
C8b

137.9 –64.9 1.00 136.7 –70.7 0.86

87.2 –29.9 0.66
C1’ 85.2 –27.2 0.90

87.5 –32.1 0.57

75.4 –28.1 0.81 76.8 30.8 0.93
C2’b

78.7 –27.1 0.89 80.7 23.4 0.91

72.1 –18.1 0.73 73.5 –20.0 0.84
C3’b

76.1 –15.8 0.97 78.2 –15.1 0.64

87.2 –29.9 0.46
C4’ 86.4 –25.3 0.75

89.6 –24.4 0.42

62.1 –25.8 0.75
C5’ 62.7 –21.9 0.95

62.9 –21.4 0.84

a iso and  in ppm.
b assignment of resonances to the two distinct molecules per asymmetric unit

cell.
c anisotropy scaling factor = 0.87.
d ref = 169.0 ppm.

of 71.1 ppm and 74.9 ppm to sites C2’ and C3’ respectively. In comparing both the

isotropic shift and the asymmetry our calculations suggest a reversed assignment in
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Table 5.11: Comparison experimental and calculated principal componentsa of CSA

tensors for uridine

Experiment CalculationCarbon site

δiso ζ η δiso
b ζc η 

150.2 69.6 0.56 145.4 63.7 0.35
C2

150.7 68.8 0.57 148.7 64.1 0.46

164.0 –68.9 0.87 159.4 69.2 0.92
C4

166.4 –71.0 0.76 164.2 –68.0 0.95

98.4 –69.1 0.87 97.9 –72.0 0.83
C5

99.3 –62.5 0.91 98.5 –65.7 0.99

139.4 –99.2 1.00 138.8 –96.3 0.88
C6

141.5 –99.3 1.00 140.9 –102.4 0.76

89.4 16.1 0.80 91.6 –17.7 0.39
C1’

89.9 18.2 0.83 92.8 –17.9 0.69

73.1 15.5 0.85 75.1 19.7 0.56
C2’

73.3 –15.1 0.94 75.2 –15.5 0.88

64.5 –30.9 0.86 64.4 –35.5 0.86
C3’

66.8 –32.1 0.73 68.7 –37.4 0.71

80.3 –34.8 0.47 82.6 –37.4 0.38
C4’

80.7 –37.9 0.44 83.0 –38.1 0.31

56.6 –30.5 0.59 56.8 –33.4 0.52
C5’

59.7 –30.2 0.57 60.2 –34.3 0.46

a in ppm, except .
b ref = 168.5 ppm.
c anisotropy scaling factor = 0.84.

which the resonance at 71.1 ppm is assigned to C3’ and that at 74.9 ppm to site C2’.

One exception is C1’ which has the opposite sign for the anisotropy in the CSA

amplification and calculated values.
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For cytidine, scaling the calculated width by 0.90 resulted in a rmsd of 2.7 ppm

from the anisotropies measured by this work, whereas a scaling factor of 0.95 gave a

rmsd of 5.8 ppm from the data from Stueber et al. The anisotropy of carbon atom C4

from Stueber et al. were found to be 9.1 ppm less than the non-scaled calculated data,

suggesting that this anisotropy has been considerably over-estimated by Stueber et al.

Apart from the C4 site, CSA parameters of all other carbons agree well with

calculated data. The very good agreement between the experimental data and scaled

calculations is shown in Figure 5.13 (c). Exceptions are the carbon sites C5 and C1'

for which the calculated anisotropy is of opposite sign to the experimental value.

For guanosine, scaling factors of 0.87 and 0.98 were required for experimental

results from CSA amplification experiments and those from Stueber et al., giving an

rmsd of 2.3 ppm from the CSA amplification measurements and an rmsd 4.3 ppm

from those reported by the latter. Stueber et al. assigned the resonance 152.1 ppm to

C2 and 151.4 ppm to C4. These assignments were based on a comparison of their

calculated results [90]. However, our calculations predict a reversed order for these

two carbon atoms. The CSA parameters in Table 5.10 suggest a revised assignment:

the resonance at 149.7 ppm was assigned to C2 and the resonance at 151.4 ppm was

assigned to C4. With the new assignment the experimental anisotropy of both sites is a

much better match to the calculated values.

Figure 5.14 (a) shows plots of the anisotropy of guanosine from the scaled

calculated values against the calculated isotropic shift, superimposed on a similar plot

of experimental values. The agreement is very good. Exceptions are the carbon atoms

C1' and C8 have experimental and calculated anisotropies of opposite sign.
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Figure 5.13: Plots of the shift anisotropy, ζ, against the isotropic shift (circles) measured using 

CSA amplification and (asterisks) calculated and scaled for (a) 2'-deoxythymidine, (b)

adenosine and (c) cytidine. The experimental points are labeled according to the carbon sites.
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Figure 5.14: Plots of the shift anisotropy, ζ, against the isotropic shift (circles) measured using 

CSA amplification and (asterisks) calculated and scaled for (a) guanosine; (b) uridine and (c)

5-methyluridine. The experimental points are labeled according to the carbon sites.
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Table 5.12: Comparison experimental and calculated principal componentsa of CSA

tensors for 5-methyluridine.

Experiment CalculationCarbon site

δiso ζ η δiso
b ζc η 

C2 152.1 67.1 0.65 149.6 61.4 0.45

C4 168.0 –74.9 0.94 166.1 72.9 0.83

C5 111.5 –84.5 0.68 113.8 –81.9 0.56

C6 140.3 88.0 0.70 142.2 –92.1 0.94

C1’ 91.4 19.6 0.86 93.6 –22.2 0.43

C2’ 78.4 –15.1 0.69 79.7 –15.9 0.97

C3’ 68.4 –30.4 0.51 68.5 –33.8 0.77

C4’ 85.0 –37.0 0.45 86.7 –38.0 0.40

C5’ 60.1 –34.6 0.72 59.1 –35.8 0.67

CH3 15.1 –10.8 0.86 11.0 –10.8 0.62

a in ppm, except .
b ref = 169.1 ppm.
c anisotropy scaling factor = 0.86.

For uridine and 5-methyluridine, there is no previous report about chemical shift

tensors so far. Tables 5.5-5.6 and 5.11-5.12 show the experimental CSA principal

values and the scaled calculated results. Scaling factors of, respectively, 0.84 and 0.86

were required for uridine and 5-methyluridine, giving a rmsd from the CSA

amplification measurements of 3.3 ppm and 2.9 ppm, respectively. A very good

correlation between experimental and scaled calculated results is shown in Fig. 5.14

(b-c). For uridine, there are twice as many isotropic shifts as expected, indicating that

there are two molecules in the unit cell. Exceptions are carbon C4 and C1' for which

the calculated anisotropy is of opposite sign to the CSA amplification value. Carbon
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atom C4, C6 and C1' in 5-methyluridine have the opposite sign between the

experimental and calculated values.

Figure 5.15: Plot showing the correlation between calculated and experimental principal

values and isotropic carbon-13 chemical shifts of 2'-deoxythymidine, adenosine, cytidine,

guanosine, uridine and 5-methyluridine. The calculated data incorporates scaling by a factor

0.84 to 0.90 for the different molecules.

Figure 5.15 shows the correlation between all calculated and experimental principal

values and isotropic carbon-13 chemical shifts. A linear regression equation is

obtained as: y (13C) calc = 0.97*x(13C) exp + 2.22 with R2 = 0.994, indicating a very

good correlation. The rmsd value of the isotropic chemical shift correlation is 2.2 ppm

and 4.86 ppm for the principal values correlation.
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5.4 Conclusions

The chemical shift tensors of 2'-deoxythymidine, adenosine, cytidine,

guanosine, uridine and 5-methyluridine have been determined using chemical shift

anisotropy amplification experiment. To our knowledge, this is the first report about

CSA values of uridine and 5-methyluridine. The first-principles calculations using

density functional theory within the planewave-pseudopotential approach reproduce

the experimental chemical shift anisotropy parameters accurately. The CSA values

suggest a revised assignment of C2 and C4 in the case of guanosine. Larger deviations

were obtained for the base carbon sites due to the 13C-14N dipolar decoupling.
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Chapter 6

Solid-State NMR studies of

vinylphosphonate-linked nucleotides

6.1 Introduction

In the first part of this chapter, the experiment termed MAS-J-HMQC [115]

was used to study the vinylphosphonate-linked nucleotides (sample 1 and 4). In

analogy to liquid-state HMQC experiments, the sequence uses heteronuclear multiple

quantum coherences to provide isotropic chemical shift correlation between proton

and carbons which are directly bonded. In the second part, high-resolution

Phosphorus-31 NMR was used to extract isotropic and anisotropic chemical shift

parameters as well as a sensitive monitor of the progress of solid-phase synthesis of

oligonucleotides.
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Figure 6.1: Structures of the vinylphosphonate-linked nucleotides.

6.2 Experimental

1H- 13C MAS-J-HMQC spectra were recorded at a Larmor frequency of 75.46

MHz on samples 1 and 4 packed into 4 mm rotors spinning in a double-resonance

MAS probe. The MAS rate was 12 kHz. Proton decoupling at a field strength of 100

kHz was used. Phosphorus-31 NMR spectra were recorded at a Larmor frequency of

121.47 MHz packed into 4 mm or 3 mm rotors.
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6.3 High-Resolution Proton-Carbon Correlation Experiment

using DUMBO-1

Figure 6.2: One-dimensional proton spectra of sample 1. The spinning frequency was set to 12

kHz for experiments (a, b). The high-resolution spectrum (b) was acquired using DUMBO-1

homonuclear decoupling. An experimentally determined scaling factor of 0.5 was used to

measure chemical shifts.

Results and Discussion

The proton MAS spectrum (upper) and high resolution proton spectrum (bottom)

using DUMBO-1 decoupling [116] are shown in Figure 6.2. A 4 mm CPMAS probe

was used. The proton decoupling field strength was set 100 kHz. It is obvious that the

DUMBO-1 sequence yields well resolved proton spectra. The spectrum contains sharp
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strong peaks at δ0.1, 0.9 and 1.9 which can be assigned to the Si-methyl, tertbutyl and

methyl of base respectively. The resonances at δ1.9-6.7 can possibly be assigned to

the protons of sugar ring and the peaks at δ6.8-10.0 can be assigned to unsaturated

resonances. To get further structural information, a two dimensional HMQC

experiment was recorded.

Figure 6.3: Pulse sequence and coherence transfer pathway for the MAS-J-HMQC experiment.

The pulse sequence for a MAS-J-HMQC [115] experiment is shown in Figure

6.3. After cross-polarization from 1H, the magnetization of carbon evolves during the

delay τ. DUMBO-1 was used to remove the proton-proton dipolar decoupling during

this period. Figure 6.4 shows the MAS-J-HMQC spectrum recorded on sample 1. The

spinning rate is 12 kHz. The proton rf field strength was set to 100 kHz during both
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Figure 6.4: Carbon–proton two-dimensional MAS-J-HMQC spectrum of a natural abundance

sample 1. The spinning frequency was 12 kHz and τwas 1.5 ms. A total of 128 t1 increments

with 608 scans each were collected. The proton rf. field strength was set to 100 kHz during

both the delays τ(DUMBO-1 decoupling) and acquisition (TPPM decoupling). The contact

time in the cross-polarization step was 3 ms. The 1D CP-MAS 13C spectrum is shown above

the 2D spectrum. In the proton dimension, the Si-methyl resonance of the TBS (t-

butyldimethylsilyl) group is referred to 0 ppm with respect to TMS by analogy with a solution

state spectrum From Ref. [87].
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the τdelays (DUMBO-1 decoupling) and during acquisition (TPPM decoupling). The

value of τwas set to 1.5 ms to ensure only one-bond chemical shift correlations are

presented. Other experimental parameters are given in figure caption. The assignment

of the one-dimensional carbon spectrum has been discussed in Chapter 4. Clearly the

MAS-J-HMQC experiment may lead to the unambiguous assignment of the proton

spectrum and also can further confirm the assignment of carbon spectrum. Three

carbon resonances at low field as well as the one around 20 ppm, which are not

correlated to any proton chemical shift, can be assigned to quaternary carbons. From

carbon chemical shift considerations [117], the carbon resonance at 19 ppm can be

assigned to the quaternary carbon of the t-butyl group, and that around at 110 ppm to

the quaternary carbon C5; the remaining two quaternary resonances must therefore

correspond to the two carbonyl groups (C2 and C4). All the protonated carbons are

correlated with their attached protons except for C2'. This can be possibly attributed to

the low signal-to-noise. In the low-field part of the spectrum two correlation peaks can

be clearly distinguished, the carbon resonance which correlates with proton around 7.0

ppm can be assigned to terminal double bond, and the other carbon resonance

correspond to C6. In the high-field part of the spectrum eight correlation peaks can be

clearly distinguished. The three carbon resonances which correlate with protons

around 1.0 ppm (carbon chemical shifts of –4.9, 11.8 and 26.1 ppm) can be assigned

to methyl groups. Again from carbon chemical shifts, the peak at 26.1 ppm can be

assigned to the t-butyl methyl groups, the carbon at 11.8 ppm to the base methyl group

and the carbon at –4.9 ppm to the methyl group which directly bonded to Si. The

OCH3 can be assigned to the peak at 53.4 ppm which has a proton correlation at 3.0
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ppm. The remaining four peaks between 60 and 90 ppm, therefore, correspond to the

carbons of sugar ring. Note that, for the =CH group, there are two distinct correlation

peaks because of phosphorus-carbon coupling.

Figure 6.5: Two-dimensional MAS-J-HMQC spectrum of a natural abundance sample 4. The

spinning frequency was 12 kHz and τwas 1.5 ms. A total of 128 t1 increments with 2368

scans each were collected. In the proton dimension, the Si-methyl resonance of the TBS group

is referred to 0 ppm with respect to TMS by analogy with a solution state spectrum from Ref.

[87].
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From the above comments, we can see that a MAS-J-HMQC experiment leads

to unambiguous assignment of proton spectrum if the carbon spectrum is assigned. In

this case, we can go towards assignment without the information of assignments of

carbon spectrum, simply by analysing the one bond 1H-13C correlations which

combine carbon proton chemical shift information.

Figure 6.5 shows the MAS-J-HMQC spectrum recorded on sample 4, a methyl

phosphonate T*T dimer which was prepared from sample 1. The experimental

parameters are same as Figure 6.4 except that 2368 scans were acquired. In the high-

field part of the spectrum, 9 correlation peaks can be clearly distinguished. The four

carbon resonances which correlated with protons around 1.5 ppm (carbon chemical

shifts of –4.5, 13.1, 27.4 and 28.0 ppm) can be assigned to methyl groups. Compare to

the spectrum of sample 1, there is some t1 noise. The C2' of sugar ring can be assigned

to the peak at 40.5 ppm, which has a correlation at 3.8 ppm. The peaks of carbons at

53.4 and 64.7 ppm correlate with protons at around 4 ppm and can be assigned to the

OCH3 and C5' of sugar ring, respectively. The remaining two carbons at 76.8 and 86.2

ppm therefore correspond to the C3', C1' and C4' of sugar ring carbons. In the low-

field part of spectrum, the carbons which are not correlated to any proton chemical

shifts correspond to quaternary carbons. Comparing with the spectrum of sample 1,

the carbon resonance at 164.5 ppm can be assigned to the C4 of base groups, and that

at 111.8 pm, to the C5 of the base groups. Considering Ref. [87], the carbon C2 and

one of the C6 of base groups may not be resolved in this work, and therefore a peak of

carbon resonance at 151.6 ppm which correlated with proton at around 8 ppm can be

assigned C6 of one of base groups. The peak of carbon at 136.1 ppm therefore

corresponds to the C6 of the other base group. The =CH can be assigned to the peak at
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around 119.3 ppm, which has two correlation peaks due to the phosphorus-carbon

coupling.

Comparing spectrum of sample 1 to spectrum of sample 4, we can see that the

correlation peak of the terminal double bond has disappeared; therefore, MAS-J-

HMQC can be used as a sensitive monitor of the progress of synthesis of

oligonucleotides in this case.

6.4 Phosphorus-31 Solid State NMR of Vinylphosphonate-

linked Nucleotide

Solid-phase synthesis of oligonucleotides has greatly increased our

understanding of DNA and RNA. Site-specific introduction of modified nucleotides at

any position in a given oligonucleotide has now become routine, allowing easy

chemical probe of define functionalities [118]. Solid-state NMR can be used to study

chemical structure, conformation and dynamics in solid-phase supported syntheses.

Phosphorus-31 studies of DNA and RNA benefit from the 100% abundance of the

isotope which leads to good sensitivity and the restriction of one site per nucleotide.

As demonstrated below, the incorporation of modified phosphonate linkages allows

problems with lack of shift resolution in the spectrum to be overcome. This allows the

use of solid-state phosphorus-31 NMR as a sensitive monitor of the progress of solid-

phase synthesis of oligonucleotides. In this section we also describe measurements of

the phosphorus-31 CSA parameters of the modified synthetic nucleotides 1-3.

Results and discussion
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Solid-state phosphorus-31 NMR of free oligonucleotides 1-3

Figure 6.6: Phosphorus-31 MAS spectrum of sample 1 recorded at a rate of 4 and 7 kHz using

a 4 mm MAS probe and a pulse delay of 25 s. The full spectral width was 50 kHz and 64

scans were acquired. The isotropic resonances are indicated as δiso and other peaks are

spinning sidebands.

Figure 6.6 and 6.7 show the phosphorus-31 MAS spectra at two MAS rates (7

kHz and 4 kHz) of samples 1 and 2 respectively. In both cases the isotropic resonance

is flanked by a series of spinning sidebands. Figure 6.8 shows similar phosphorus-31

MAS spectrum and CSA amplification spectrum for the dimer 3. For the CSA

amplification experiment the MAS rate was 16 kHz and the reduction factor was 8,



6.4 Phosphorus-31 Solid State NMR of Vinylphosphonate-linked Nucleotide 120

resulting in an apparent MAS rate in the ω1 dimension of 2 kHz. Other experimental

parameters are given in figure caption. Hence, the high resolution of the isotropic sites

in the ω2 dimension is combined with a large number of spinning sidebands in ω1

which can be accurately analyzed to give the CSA parameters. Figure 6.8 (b)

demonstrates the utility of CSA amplification in studies of vinylphosphonate-linked

nucleotides.

Figure 6.7: Phosphorus-31 MAS spectrum of sample 2 recorded at a rate of 4 and 7 kHz using

a 4 mm MAS probe and the pulse delay is 20 s. The full spectral width was 50 kHz and 64

scans were acquired. The isotropic resonances are indicated as δiso and other peaks are

spinning sidebands.
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Figure 6.8: (a) Phosphorus-31 MAS spectrum of sample 3 recorded at a rate of 4.5 kHz using

a 3mm MAS probe and the pulse delay is 15 s. The full spectral width was 50 kHz and 2048

scans were acquired. The isotropic resonances are indicated by arrows and other peaks are

spinning sidebands. (b) Phosphorus-31 CSA amplification spectrum of 3 recorded at a MAS

rate of 16 kHz. The amplification factor was 8, resulting in an effective MAS rate of 2 kHz.

There are 16 t1 values in total with an increment of 3.91 μs, corresponding to 1/16 of the MAS

period. The acquisition time was 40.96 ms and 1024 scans were acquired.
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Table 6.1 Phosphorus-31 chemical shift tensors of sample 1-3

Sample 1

Spinning rate (kHz) δa
iso（ppm） ζaniso(ppm) η

4 21.1 –117.4 0

7 21.3 –118.1 0.01

11 21.1 –117.8 0

Sample 2

Spinning rate (kHz) δa
iso(ppm) ζaniso(ppm) η

4 17.2 –99.4 0

7 17.0 –99.5 0.03

11 17.4 –97.2 0.01

Sample 3

Spinning rate (kHz) δa
iso(ppm) ζaniso(ppm) η

15.1 –92.1 04.5

-8.0 –103.2 0

15.1 –91.2 08.0

-8.0 –104.8 0.12

15.1 –89.9 0CSA amplification (16 kHz)

-8.0 –102.6 0.17

a. All chemical shifts were referenced to ATP.
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Table 6.1 lists the phosphorus-31 CSA parameters extracted from an analysis

of the spinning sideband intensities of the three samples. This analysis was carried out

using a least-squares fitting procedure. This involves comparing the experimental

sideband intensities to those simulated for a standard MAS spectrum using SIMPSON.

The variation of the extracted ζ and η obtained by employing an increasing number of 

crystallite orientations for powder averaging was investigated to ensure convergence

to within an acceptable margin of error. The powder averaging was achieved using 20

(α, β) crystallite angles distributed according to the REPULSION scheme[79]. 40 γ 

angles were used according to the gcompute method in SIMPSON. Essentially

identical values of the CSA parameters were obtained from one-dimensional MAS

spectra and the CSA amplification experiments.

Solid-state phosphorus NMR of oligonucleotides bound to CPG

Figure 6.9 shows phosphorus-31 MAS spectra recorded in a solid-phase

oligomer synthesis. The solid-phase support used here is controlled-pore glass (CPG).

In the second spectrum the vinyl phosphonate nucleotide has a resolved phosphorus-

31 chemical shift and integration of the two peaks reveals that they are in the expected

ratio of 1:3, indicating a largely successful conversion of (a) to (b). In the last

spectrum the vinyl phosphonate nucleotide has a resolved phosphorus-31 chemical

shift and integration of the two peaks reveals that they are in the expected ratio of 1:4,

indicating that phosphorus-31 MAS NMR can be used to follow the reactions

involved in oligonucleotide elongation synthesis. Hence, it seems likely that

individual steps during a solid-phase oligonucleotides synthesis can be monitored

conveniently using a combination of phosphorus-31 MAS NMR and synthetic
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Figure 6.9: Phosphorus-31 CPMAS NMR spectra of oliginucleotides attached to a CPG solid-

phase support. The spinning rate was 11 kHz for those experiments.
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Vinyl phosphonate nucleotides without the need to remove the oligomer from the

solid-support.
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Chapter 7

Summary and Outlook

This thesis describes a modified CSA amplification experiment which

correlates the standard magic angle spinning (MAS) spectrum in the ω2 dimension

with a sideband pattern in ω1 in which the intensities are identical to those expected

for a sample spinning at some fraction 1/xa of the actual rate ωr. This experiment is a

PASS-type experiment with the advantage that only a few t1 increments are required

without losing the resolution of different chemical sites. The need to store the

magnetization along the z-axis for t1 which was a feature of our original CSA

amplification experiment is eliminated. This version has π-pulse sequences with

different timings to generate a series of Ξ values varying from 0 to 2π in the evolution 

dimension. Double Fourier transform of the two-dimensional FID produces the

required the CSA amplification spectrum. The sideband patterns in the ω1 dimension

can be used to measure the principal components of CSA tensors by conventional

methods. The CSA amplification experiment is suitable for measuring very small

anisotropies without the need for very slow MAS rates which lead to rotor instability.

An amplification factor xa of up to 48 has been demonstrated by experiment using a
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sequence of 47 πpulses. With large xa the experiment can operate at higher MAS rates

which allows the incorporation of state-of-art heteronuclear XiX decoupling schemes.

By comparison of chemical shift tensors from experiments and those from the

first-principles calculations, conformational information can be elucidated. This

comparison can also be used to assign NMR spectra where resolution of isotropic

chemical shifts is poor.

In Chapter 6, we demonstrated that solid-state NMR can be a very useful tool

to study vinylphosphonate-linked nucleotides as well as a sensitive monitor of the

progress of solid-phase synthesis of oligonucleotides.

In future, the CSA amplification methodology will be extended to

measurements of heteronuclear dipolar couplings since the heteronuclear dipolar

Hamiltonian similar to CSA, can be manipulated by π-pulse sequences applied to one

of the coupled nuclei [119].



128

Appendix

A.I Analytical Timing Solutions for the CSA Amplification

Sequences of Five πPulses

Sequence which contain five pulses disposed symmetrically about their

midpoint T/2 with a total duration equal to an integer number of rotor periods were

found by Crockford et al. [57], i.e.

         15243 2/ tTttTtTtnT r   A.1

Therefore, the imaginary part of Eq.2.4.38 is zero and the equation system becomes
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   

    4
12

3
11

π2
8

2
cos1

π2
8

2
cos1π

2

1

k
x

t

k
x

t

ak

r

ak

r








 









 










A.3

and

   

   
  4

2
12

3

2
11

π2
48

616
cos1

π2
)4(8

1016
cos1π

2

1

k
x

xx
t

k
x

xx
t

a

aak

r

a

aak

r





































A.4

Respectively, where k1 to k4 are integers. The maximum amplification factor which

can be achieved using five πpulses is 8ax . The shortest realizable sequences with
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t1 < t2 < t3 < t4 < t5 < T can be found in Table A.1 with amplification factors ax ranging

from 2 to 8. It should be noted that the timings in Table A.1 are well spaced, so that

there are no problems of overlap with finite lengths.

Table A.1: Examples of the shortest realizable pulse timings tp for five-pulse

sequences

ax  
rt /1  

rt /2
rt /3  

rt /4  
rt /5

rT /

2 0.25000 0.33333 0.50000 0.66667 0.75000 1

3 0.35745 0.41957 0.50000 0.58043 0.64255 1

4 0.29022 0.88497 1.00000 1.11502 1.70978 2

5 0.31118 0.91957 1.00000 1.08040 1.68882 2

6 0.16667 1.00000 1.50000 2.00000 2.83333 3

7 0.21656 1.04611 1.50000 1.95390 2.78340 3

8 0.25000 1.00000 1.50000 2.00000 2.75000 3

A.II The X-Ray Report of 5-methyluridine

Table 1. Crystal data and structure refinement for 5-methyluridine at 296(2)K.

Empirical formula C10 H15 N2 O6.50

Formula weight 267.24

Crystal description colourless tablet

Crystal size 0.31 x 0.26 x 0.17 mm

Crystal system Orthorhombic

Space group P 21 21 2

Unit cell dimensions a = 14.0399(11) A alpha = 90 deg.
b = 17.3222(14) A beta = 90 deg.
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c = 4.8633(4) A gamma = 90 deg.

Volume 1182.76(16) A^3

Reflections for cell refinement 1553

Range in theta 2.25 to 21.65 deg.

Z 4

Density (calculated) 1.501 Mg/m^3

Absorption coefficient 0.127 mm^-1

F(000) 564

Diffractometer type Bruker SMART1000 CCD area detector

Wavelength 0.71073 A

Scan type omega

Reflections collected 7469

Theta range for data collection 2.25 to 27.47 deg.

Index ranges -17<=h<=17, -22<=k<=22, -6<=l<=6

Independent reflections 1600 [R(int) = 0.037]

Observed reflections 1334 [I>2sigma(I)]

Absorption correction None

Decay correction None

Structure solution by direct methods

Hydrogen atom location difmap

Hydrogen atom treatment refall

Data / restraints / parameters 1600/0/229 (least-squares on F^2)

Final R indices [I>2sigma(I)] R1 = 0.0290, wR2 = 0.0702

Final R indices (all data) R1 = 0.0372, wR2 = 0.0741

Goodness-of-fit on F^2 1.02

Absolute structure parameter not reliably determined

Extinction coefficient 0.019(3)

Final maximum delta/sigma 0.001
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Weighting scheme
calc w=1/[\s^2^(Fo^2^)+(0.047P)^2^] where P=(Fo^2^+2Fc^2^)/3

Largest diff. peak and hole 0.143 and -0.142 e.A^-3

Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic
displacement parameters (A^2 x 10^3) for 5-methyluridine. U(eq) is defined
as one third of the trace of the orthogonalized Uij tensor.

_________________________________________________

x y z U(eq)
_________________________________________________

C1 11256(1) 3096(1) 9179(4) 32(1)
C2 10863(1) 1904(1) 11602(4) 34(1)
C3 10752(1) 3762(1) 10637(4) 33(1)
C4 11581(1) 4312(1) 11190(4) 29(1)
C5 11998(1) 1318(1) 14868(4) 36(1)
C6 12173(1) 4217(1) 8601(4) 31(1)
C7 12671(1) 1916(1) 14207(4) 32(1)
C8 13209(2) 4438(1) 8783(5) 42(1)
C9 12406(1) 2456(1) 12385(4) 32(1)
C10 13627(2) 1926(1) 15594(5) 45(1)
N1 11534(1) 2464(1) 11089(3) 32(1)
N2 11134(1) 1361(1) 13502(4) 38(1)
O2 12092(1) 3401(1) 7964(3) 36(1)
O3 10083(1) 1901(1) 10490(3) 49(1)
O4 10098(1) 4070(1) 8730(4) 48(1)
O5 11258(1) 5074(1) 11631(3) 44(1)
O6 12129(1) 791(1) 16528(4) 57(1)
O7 13685(1) 4102(1) 11081(3) 43(1)
O1W 10000 0 5576(5) 43(1)

_________________________________________________

Table 3. Bond lengths [A], angles and torsions [deg]
for 5-methyluridine.

____________________________________________________________________________

C1-O2 1.416(2) N1-C1-C3 112.83(15)
C1-N1 1.489(2) O3-C2-N2 122.96(16)
C1-C3 1.528(3) O3-C2-N1 122.48(18)
C2-O3 1.221(2) N2-C2-N1 114.54(16)
C2-N2 1.373(2) O4-C3-C1 106.39(16)
C2-N1 1.375(2) O4-C3-C4 112.06(16)
C3-O4 1.409(2) C1-C3-C4 101.49(14)
C3-C4 1.528(2) O5-C4-C6 113.78(16)
C4-O5 1.412(2) O5-C4-C3 111.42(14)
C4-C6 1.518(3) C6-C4-C3 101.74(16)
C5-O6 1.233(2) O6-C5-N2 118.93(18)
C5-N2 1.385(2) O6-C5-C7 125.59(19)
C5-C7 1.437(3) N2-C5-C7 115.48(16)
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C6-O2 1.451(2) O2-C6-C8 109.60(15)
C6-C8 1.507(3) O2-C6-C4 103.86(14)
C7-C9 1.341(3) C8-C6-C4 116.91(18)
C7-C10 1.502(3) C9-C7-C5 117.88(17)
C8-O7 1.426(3) C9-C7-C10 122.44(17)
C9-N1 1.377(2) C5-C7-C10 119.67(17)
O2-C1-N1 108.50(14) O7-C8-C6 113.27(18)
O2-C1-C3 107.23(14) C7-C9-N1 123.81(16)
C2-N1-C9 121.28(15) C2-N1-C1 116.89(14)
C9-N1-C1 121.77(14) C2-N2-C5 127.00(16)
C1-O2-C6 109.84(13)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 5-methyluridine.
The anisotropic displacement factor exponent takes the form:
-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

_____________________________________________________

U11 U22 U33 U23 U13 U12
_____________________________________________________
C1 33(1) 27(1) 36(1) -1(1) -5(1) -2(1)
C2 30(1) 25(1) 47(1) -4(1) -2(1) 1(1)
C3 26(1) 33(1) 41(1) -3(1) -1(1) 2(1)
C4 27(1) 28(1) 32(1) -3(1) 0(1) 4(1)
C5 36(1) 30(1) 42(1) 2(1) 0(1) 5(1)
C6 38(1) 25(1) 31(1) 1(1) 2(1) 1(1)
C7 29(1) 28(1) 39(1) -3(1) -3(1) 3(1)
C8 39(1) 41(1) 46(1) 1(1) 12(1) -3(1)
C9 26(1) 29(1) 40(1) -2(1) -2(1) -3(1)
C10 36(1) 46(1) 52(1) 3(1) -10(1) 1(1)
N1 30(1) 24(1) 41(1) 1(1) -5(1) -1(1)
N2 32(1) 28(1) 53(1) 5(1) 0(1) -3(1)
O2 43(1) 29(1) 36(1) -5(1) 8(1) 2(1)
O3 35(1) 40(1) 72(1) 6(1) -15(1) -7(1)
O4 38(1) 40(1) 67(1) -8(1) -22(1) 10(1)
O5 36(1) 32(1) 63(1) -17(1) -4(1) 6(1)
O6 52(1) 46(1) 72(1) 27(1) -10(1) -2(1)
O7 32(1) 44(1) 54(1) -6(1) 2(1) 7(1)
O1W 32(1) 47(1) 50(1) 0 0 2(1)
__________________________________________________

Table 5. Hydrogen coordinates ( x 10^4) and isotropic
displacement parameters (A^2 x 10^3) for 5-methyluridine.

_________________________________________________

x y z U(eq)
_________________________________________________

H3 10426(14) 3601(11) 12340(50) 36(5)
H4 11969(13) 4107(10) 12780(40) 24(4)
H6 11867(15) 4515(11) 7060(50) 38(6)
H8A 13512(17) 4326(13) 7020(60) 49(7)
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H8B 13219(14) 5032(14) 8990(40) 51(6)
H9 12789(13) 2868(10) 11820(40) 27(5)
H10A 14018(18) 1469(14) 14980(60) 73(8)
H10B 13976(19) 2388(15) 15140(70) 77(8)
H10C 13540(20) 1877(15) 17570(70) 70(8)
H1 10845(15) 2861(12) 7750(50) 45(6)
H2N 10687(18) 983(14) 13810(60) 67(8)
H4O 9647(19) 4393(14) 9740(60) 74(9)
H5O 11722(17) 5340(13) 12220(50) 52(7)
H7O 14070(20) 3766(16) 10480(60) 77(9)
H1W 9563(16) 203(13) 6590(50) 58(8)

___________________________________________________

A.III Studies of Reliability of Chemical Shift Tensors Fitting

Recently, Hodgkinson and Emsley [120] investigated the reliability of the

determination of CSA parameters by calculating variance bounds. In this section, the

determination of CSA parameters has been investigated in three aspects:

 reliability of determination of tensor parameters using different fitting

programs

 comparison of static and MAS

 comparison of CSA amplification and MAS

A series of carbon-13 CP/MAS spectra of singly labeled glycine-1-13C

recorded at different MAS rates. Also two carbon-13 CSA amplification spectra were

recorded with an amplification factor 8 and MAS rates of 8 and 10 kHz, resulting in

an effective MAS rate in the ω1 dimension of 1 kHz and 1.25 kHz. Three different

simulation methods (SIMPSON, DMFIT and matNMR) were used to study the

anisotropic chemical shift. The good agreement shown in Table A.2 indicates that all

simulation methods function correctly.
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Table A.2 Comparison anisotropy (ζ) and asymmetry (η) for glycine-1-13C

SIMPSON

ζ(ppm) η 

CP-1kHz -67.4 1

CP-1.25kHz -68.0 1

CP-1.5kHz -68.7 1

CP-2kHz -68.5 1

static -68.5 1

CSA amplification-8kHz -66.5 1

CSA-amplification-10kHz -68.3 1

Average -68.0 1

DMFIT

ζ(ppm) η 

CP-1kHz -68.7 1

CP-1.25kHz -67.9 1

CP-1.5kHz -67.6 1

CP-2kHz -69.0 0.95

static -68.8 1

CSA amplification-8kHz -67.6 1

CSA-amplification-10kHz -67.9 1

Average -68.2 0.99

matNMR

ζ(ppm) η 

CP-1kHz -67.3 1

CP-1.25kHz -67.8 1

CP-1.5kHz -68.2 1

CP-2kHz -68.1 1

static -69.0 1

CSA amplification-8kHz -66.6 1

CSA-amplification-10kHz -68.1 1

Average -67.9 1

Ref. [121] 71.0
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