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ABSTRACT

A granular material is usually an irregular packing of particles and its

constitutive relationship is very complex. Previous researches have shown that

the discrete element method is an effective tool for fundamental research of the

behaviour of granular materials. In this research, discrete element modelling

was used to obtain the macroscopic stress-strain behaviour of granular material

in cavity expansion. The micro mechanical features and the mechanical

behaviour of granular material at particle level have been investigated.

A simple procedure was used to generate the samples with spherical particles

and two-ball clumps. The influence of particle properties on the stress-strain

behaviour within an aggregate was investigated in biaxial test simulations. It

was found that more angular clumps lead to sample more homogeneous and

that the interlocking provided by the angular clumps induces a higher strength

and dilation in the sample response. Interparticle friction was also found to

have significant effect on the strength and dilation of the sample. The sample

macromechanical properties can be obtained from these biaxial simulations.

For investigating the effect of particle shape, the spherical or non-spherical

(two-ball clump) particle shapes were used in the cavity expansion simulations.

Monotonic loading was performed on a fan-shaped sample with various

particle properties under a range of initial cavity pressures. The results were
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compared with calculated analytical solutions and existing experimental data in

order to optimise the micro mechanical parameters governing the behaviour.

The pressuremeter test data were adapted for this comparison since the theory

of cavity expansion has been used to describe the pressuremeter tests in soil

and rocks by many geotechnical researchers and engineers.

This research showed that particle properties play an important role in soil

behaviour of cavity expansion under monotonic loading. The contribution of

this research is to present that it is possible to model a granular material of

boundary value problem (cavity expansion) under static conditions, providing

micro mechanical insight into the behaviour.
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CHAPTER 1

INTRODUCTION

1.1 Background

Cavity expansion analysis plays a significant role in modern soil mechanics

and focuses on the cavity pressure needed to expand a cavity in soil by a

certain amount. It provides a versatile and accurate method to analyze the

expansion of cylindrical and spherical cavities in soil and rock in geotechnical

engineering (Yu, 2000). Cavity expansion theory is concerned with the

theoretical study of stress and displacement caused by the expansion and

contraction of cylindrical or spherical cavities in either linear or nonlinear

media. It used to describe the stress-strain behaviour of soil or rocks, so a

mathematical constitutive model and soil properties are needed. Cavity

expansion theory was first developed for application to metal indentation

problems (Bishop et al., 1945; Hill, 1950). The application of cavity expansion

theory to geotechnical problems came later (Gibson and Anderson, 1961;

Meyerhof, 1951). The analysis of a cylindrical cavity has been applied to

practical problems such as the interpretation of pressuremeter tests (Ladanyi,

1963; Palmer, 1972). The application used the principal of continuum

mechanics and was based on constitutive models of various complexities.

Three completely independent assumptions are made in classical continuum
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mechanics, i.e. continuity, homogeneity and isotropy (Malvern, 1969). The

idealization of material is called a continuum, or more precisely, model of the

material (Khan and Huang, 1995). As granular materials consist of grains in

contact and surrounding voids, the micromechanical behaviour of granular

materials is therefore inherently discontinuous and heterogeneous, and

generally anisotropic.

Kishino (1988) pointed out that in continuum mechanical analysis of granular

materials, the determination of a constitutive model is the most difficult

process. A constitutive model based on continuum approach usually includes a

lot of model parameters, which sometimes have no clear physical meaning

(Kishino, 1988). However, when one observes the granular materials as packed

assemblies of particles, the mechanical interaction between particles is very

simple and the material constants have explicit meaning. So granular media

such as sand is composed of discrete particles and exhibits very complex

macroscopic mechanical responses to externally applied loading. Discrete

element method provides a better way to investigate the mechanic behaviour of

granular material at both micro and macro level. The discrete element method

was first developed by Cundall (1971) for rock mechanics and then is being

increasingly used to simulate the mechanical behaviour of granular materials

(Cundall and Strack, 1979; Ting et al., 1989; Rothenburg and Bathurst, 1992).

The early DEM models usually considered the granular material as assemblies

of interacting spheres and reproduced results qualitatively well. However,

materials consisting of non-spherical particles behave significantly differently

from those consisting of spherical particles (Lin and Ng, 1997). Many

experiments show that the discrete characters of the granular materials and
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disconnection of the sample are not fit application of continuum mechanics,

and many researchers have investigate that DEM is an efficient method in

studying granular materials in terms of both the macromechanical and

micromechanical behaviours. In this case, simulation of cavity expansion in

granular material using DEM is studied.

1.2 Aims and Objectives

Since Cundall in 1971 first introduced the innovative distinct element method

into the research on granular materials, DEM has been developed to different

levels and used to a wide range of engineering applications. The purpose of this

project is to understand the mechanical behaviour of the granular material of

cavity expansion and obtain the interaction at micro level by using discrete

element method. However, real granular materials like sand are very complex

and it is very difficult for the development of theory in this area if there are no

simplifying assumptions. As a first approximation, real particle shape is

ignored and the particles are modelled as spheres and simple clumps. It is also

assumed that the spheres are elastic and no rolling resistance is considered.

In DEM, very little research has been reported on the boundary value problem.

Therefore the aim is to study the cavity expansion using DEM and the

objectives of this thesis can be stated as:

1. to use DEM to analyse cavity expansion in granular materials which is

one of the most useful problems in geotechnical engineering, and

develop a suitable particle model in PFC3D that the response of granular

materials under different loading conditions can be modelled.
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2. to compare the DEM solutions with those predicted using cavity

expansion theory based on continuum mechanics.

3. to check the validity of the DEM solutions by comparing them with the

results of cavity expansion tests conducted in the laboratory.

1.3 Outline of Thesis

The thesis is divided into eight chapters. A brief layout of this thesis is given

below.

Chapter 2 presents a literature review describing granular material, and a brief

review of the development and applications of cavity expansion. In section 2.2

and 2.3, cavity expansion theory and the scope of the application in

geomechanics is introduced. The geotechnical applications like in-situ soil

testing are also discussed in this section. Section 2.4 mainly discusses the

granular material characters and the mechanical behaviour of granular material.

Chapter 3 describes the discrete element method theory and the application,

including the principal and numerical modelling using PFC3D. The concepts

and functions of PFC3D and recent applications of PFC3D in simulating soil

behaviour are presented.

In Chapter 4, the preliminary numerical modelling using PFC3D is presented.

An attempt to simulate a biaxial test using spherical particles and the observed

response is discussed. This simulation aims to obtain the soil parameters from

the soil element parameters by using DEM, so it can give some advices of

choosing the soil parameters when using cavity expansion method to obtain

cavity expansion solution.
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Chapter 5 presents the simulations of cavity expansion and preliminary

numerical modelling using PFC3D. Several simulations of cavity expansion

with different particle parameters are described and show the effect of micro

parameters of particle on the macro behaviour of the assembly in cavity

expansion.

Chapter 6, the solution of DEM simulation using PFC3D is compared with the

analytical solution of cavity expansion method. Some results using cavity

expansion method are explained and the comparison results are described as

well.

Chapter 7 is going to describe the comparison results between DEM simulation

and experimental tests. The self-boring pressuremeter test is presented in this

chapter. The effect of particle parameters under monotonic loading is

investigated in the self-boring pressuremeter test simulations.

Chapter 8, conclusions on the work presented in this thesis are provided and

further developments are suggested.
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CHAPTER 2

REVIEW OF DEVELOPMENT OF CAVITY

EXPANSION AND GRANULAR MATERIAL

2.1. Introduction

Cavity expansion in soil or rock is a fundamental problem in theoretical

geomechanics. Geotechnical engineering problems include the investigation of

capacity of pile foundations, pile loading and earth anchors, the interpretation

of in-situ soil testing, analysis of behaviours of tunnels and underground

excavations, and the prediction of borehole instability. This chapter reviews the

relevant literature, including the development of cavity expansion, the

interpretation of in-situ soil test such as cone penetration test and pressuremeter

test, and DEM investigation on granular materials. It begins with an

introduction to cavity expansion theory and associated applications, followed

by a description of in-situ tests as well as the development of laboratory

devices. Finally, a literature review of recent studies about the investigation on

granular materials, the development of computer technology, and discrete

element modelling method is undertaken.
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2.2 Cavity Expansion Theory

Cavity expansion theory was first developed for application to metal

indentation problems (Bishop et al., 1945; Hill, 1950). The application of

cavity expansion theory to geotechnical problems came later (Gibson and

Anderson, 1961; Meyerhof, 1951). Cavity expansion theory focuses on the

stress and displacement fields around cavities embedded. It has been widely

applied in the in-situ soil testing, deep foundations, tunnels and underground

excavations in soil and rock, and wellbore instability in the oil industry. It

provides a useful and simple tool for many complex geotechnical problems.

The cavity expansion or contraction is a one-dimensional boundary value

problem using continuum mechanics to analyse. Therefore, a mathematical

constitutive model and material properties to describe the stress-strain

behaviour of soil are needed. The main application of cavity expansion theory

in soil mechanics is the interpretation of in-situ testing (the cone penetrometer

test and the pressuremeter test). Many researchers focus on this problem and

papers have been published. Use of cavity expansion theory to solve practical

problems is generally termed cavity expansion method. This method applies

the cavity expansion theory to obtain fundamental solutions for a wide range of

geotechnical problems and the analytical solutions are achieved through the

soil properties (Young’s modulus E, Poisson’s ratio v, Friction angle, Cohesion

and Dilation angle) and boundary conditions.

2.2.1 The development of cavity expansion theory

Originally, cavity expansion theory aimed to solve problems of metal

indentation (Bishop et al., 1945; Hill, 1950). Later cavity expansion was
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applied to geotechnical problems (Meyerhof, 1951). Chadwick (1959) is the

first person who developed the analysis with the consideration of friction,

adopting the Mohr-Coulomb criterion with an associate flow rule. In order to

obtain the properties of soil and the pressure-expansion curve in pressuremeter

test that the analysis of a cylindrical cavity has also been applied to interpret

the pressuremeter tests (Palmer, 1972; Hughes et al., 1977; Houlsby and

Withers, 1988; Ajalloeian and Yu, 1998; Houlsby and Yu, 1990; Yu and

Collins, 1998). The work followed by the contributions of Schnaid and

Mantaras (2003), who were interested in cavity expansion in cemented

materials. Salgado and Randolph (2001) focused on the dependence of the

friction angle on stress state and a numerical analysis of cavity expansion in

sand was described.

An analysis of cylindrical or spherical cavity expansion in dilatant soil was

presented by Yu and Houlsby (1991). Yu and Houlsby (1991) pointed out that

it is very difficult to fit the complete real stress-strain behaviour of sandy soils

satisfactorily (Figure 2.1) with a simple elastic perfectly plastic model in

simple boundary problems such as cylindrical cavity expansion. Figure 2.1

shows the actual behaviour of sand and possible elastic-perfectly plastic

models for this behaviour. A number of results were selected and summarised

by Yu and Houlsby (1991) to indicate the effects of various parameters on the

behaviour of cavity expansion. The pressure-expansion relationship was

plotted in Figure 2.2 (the material’s Poisson’s ratio  is 0.3, friction angle  is

30º and a stiffness index E / {p0+[Y/ (α-1)]} is 260º). The dilation angles for

these three curves are 0º, 15º, 30º respectively. It can be seen that the stiffness

of the response increases with the dilatancy (Figure 2.2).
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Figure 2.1: Actual behaviour of sands and possible elastic-perfectly plastic

models (Yu and Houlsby, 1991)

Figure 2.2: Typical pressure-expansion curves for cylindrical cavities (Yu and

Houlsby, 1991)
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More recently, the large-strain dynamic problem of cavity in granular medium

was described by Institute for Geotechnical Engineering (2005). Rosenberg and

Dekel (2008) described a numerical of simulations following the cavity

expansion process. The constitutive model was considered as elastic-perfectly

plastic solid. The relationship between the cavity wall velocity and the applied

pressure in the cavity showed that the simulation result has a good agreement

with the analytical models for compressible solids. In addition, there is a

simple quadratic relation without a linear term between the dynamic radial

stress and its wall velocity for the spherical cavity. For the cylindrical cavity, a

linear term (in wall velocity) has to be added.

2.2.2 Fundamental solutions of cavity expansion problem (Yu, 2000)

Cavity expansion problems can be solved by considering the equations of

equilibrium, compatibility, stress-strain relationship, and stress boundary

conditions together with the failure criteria. In this case, numerous analytical

solutions have been developed for cavity expansion.

Many existing soil and rock models can be divided into three groups and the

appropriate one is selected for solving different problem conditions (Yu, 2000).

Some fundamental solutions for cavity expansion problems are presented.

1. elastic models (linear or nonlinear)

2. viscoelastic or viscoelastic-plastic models

3. elastic-plastic models (perfectly plastic or strain hardening/softening)
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2.2.2.1. Elastic solutions

For the expansion of thick-walled cylinder, the plane strain condition is

assumed since an infinitely long cylinder is considered.

The final stresses are:
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The radial displacement u can be determined:
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where G=E/2(1+ν) is the shear modulus of the material. 

2.2.2.2 Elastic-perfectly plastic solutions

Some basic cavity expansion solutions in elastic-perfectly plastic soils are

described. The soil behaviour is assumed to be under either drained or

undrained conditions when modelled by perfect plasticity. The elastic-plastic

solutions for cavity expansion using both Tresca and Mohr-Coulomb plasticity

models are presented.
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For cylindrical cavity expansion in a finite medium, solution for Tresca

criterion is described first. A long, plane strain cylindrical tube is expanded by

an internal pressure. Internal pressure increase from the initial value p0, the

material behaviour first is elastic and then become plastic from the internal

radius to the external radius.

The elastic solutions for stress and displacement are:
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When the internal pressure gets to p1y, yielding begins to occur on internal

surface:
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After the stress reaches p1y, the material behaviour becomes plastic, and the

stresses and displacement in elastic part are:
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The stresses in the plastic region are:
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Solutions of using Mohr-Coulomb criterion for cylindrical cavity expansion in

a finite medium are presented next. Like the situation before, the internal

pressure increase slowly from the initial pressure p0.

Elastic solution:
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When the internal pressure reaches p1y, material starts to yield from the internal

surface.
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Elastic-plastic solution:

In the elastic region:
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In this equation, c is defined as the outer radius of the plastic zone.

When c=b, the whole cylinder becomes plastic, and the internal pressure is

calculated as:
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The outer boundary displacement can be calculated from equation 2.21:
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The equations 2.22 and 2.23 were used to determine the value c/a and a/a0.
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For small strain problem when r=a, the displacement can be expressed in

equation 2.24:
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Solution procedure is:

If n=γ 

Otherwise
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First, decide the suitable soil properties parameters, like E, v, C, Φ, Ψ and then 

choose the initial pressure p0, the internal and external radius a0 b0.

Second, calculate the derived parameters: G, Y, α, β, γ, δ.  
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Third, calculate the yielding pressure p1y. If the internal pressure p is less than

the yielding pressure, then calculate the expansion radius from elastic solution.

If the pressure is larger than the yielding pressure, then calculate the radius

from the elastic-plastic solution. When c=b, the whole cylinder becomes plastic.

2.2.3 The applications of cavity expansion theory

Cavity expansion theory has been widely applied to geotechnical problems to

obtain the fundamental solutions. It is used to describe the in-situ soil testing
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(cone penetrometer testing and pressuremeter testing) and to predict the

behaviour of piles. It is also commonly used for the engineering solutions of

deep foundations, tunnels and underground. The previous studies indicated that

it is possible to apply cavity unloading solutions to conduct stability

calculations for tunnels (Yu, 2000).

Tunnels have played an important role in the development of civilisation. They

are underground structures having significant benefits to public transportations

(Whittaker and Frith, 1990). Tunnel instability occurs from excessive

displacements. In order to ensure its safety, the analysis of tunnel behaviour

concerns both the stresses and displacement around an excavation and the

latter’s effect upon the tunnel lining (Whittaker and Frith, 1990).

Cavity expansion theory was applied to the design and construction of tunnels

based on the two most important design considerations-stability and

serviceability. Stability requires the tunnel to be built without causing failure.

To ensure stability, it is often necessary to provide some support via linings to

the internal boundary after a tunnel is excavated. To satisfy the serviceability

requirement, the tunnelling-induced displacement must be small in order to

avoid serious damage to the surrounding buildings and structures (Yu, 2000).

Figure 2.3 shows a horizontal cross section of an expanding cylindrical cavity

in an infinite soil mass (Salgado and Prezzi, 2007). Initially, the horizontal

stress is equal everywhere before the cavity is created. A plastic zone is then

created after the cavity creation.
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The radius of plastic zone is R. The plastic zone is bounded by a nonlinear

elastic zone, which extends from R to A. The nonlinear elastic zone is bounded

by a linear elastic zone. In the linear elastic zone, the shear strain is smaller

than the threshold strain (typically between 10-6 and 10-4). In this respect, soil

can be assumed to behave as a linear elastic material. In the nonlinear elastic

zone, the stresses have not reached the failure criterion in terms of peak

strength, but the shear strains are larger than the elastic threshold strain

(Salgado and Prezzi, 2007). They focused on penetration processes, which are

associated with cavity creation in soil.

Figure 2.3: Cavity expansion: Cavity and the plastic and elastic zones (Salgado

and Prezzi, 2007)
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The theory of cavity expansion can be utilised in long-rod penetration

mechanics which is elaborated in Rosenberg and Dekel’s paper (2008). A

series of 2D numerical simulations were used to describe the cavity expansion

process in an elastic-plastic solid. The obtained results of strength value pc

were consistent with the analytical results. The incompressible metal critical

pressure to expansion a cylindrical cavity is:
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An analytical value of the critical pressure in a cylindrical cavity for

compressible specimen can be obtained as:
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For steel specimen, the critical pressure of cylindrical cavities in compressible

solid is not far from the correct one.

The results of critical pressure for aluminium, lead and steel were shown in

Figure 2.4. The results (predicted by the analytical model) for each material of

compressible solid in spherical cavity expansion were also plotted in this figure.

It shows that a sound consistency of results, gained through the simulation and

the analytical model, was achieved. From the obtained results of the cavity wall

velocity and the applied pressure in the cavity, there is an agreement between

the numerical solution and the analytical models for compressible solid.
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Figure 2.4: Comparison between simulation results and the analytical model for

compressible steel, aluminium and lead specimens (Rosenberg and Dekel, 2008)

Undrained plane-stain expansion of a cylindrical cavity in clay was studied by

Palmer (1972). In his paper, the problem of interpreting the results of Menard

pressuremeter tests on soil in situ was described. Cylindrical cavity expansion

by internal pressure was performed in these tests and the relationship between

applied pressure and cavity volume change were measured. The condition of

these tests was for undrained and saturated clay.

The condition is considered as plane strain, undrained and axially symmetric of

the pressuremeter axis, the deformation is:
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The volume increase ratio is:
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Use of cavity expansion to analyse the sand behaviour was developed by

Salgado and Randolph (2001). The relationship between shear and volumetric

strain of variations relative density and stress state in the plastic zone was

described. The fully non-linear soil response was considered in this analysis of

sand. This research can be used to evaluate the soil variable in plastic zone

during the expansion and determine the limit pressure. The cavity expansion-

strain curve also can be obtained.

1
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Figure 2.5 shows how R/a varies with relative density and initial effective

stress state in sand for cylindrical cavity expansion. The properties for sand in

this figure are gr= 0.68, Cg=612, eg=2.17, ng=0.44, Q=9, Rq=0.49, emin=0.48,

emax=0.78, v=0.15, and φc=33. These parameters are those of Ottawa sand

(Salgado et al., 2000). The results show that the ratio of plastic to cavity radius

R/a under limited conditions increased with increasing the dilatancy. Limit

pressure increased when the lateral stress increased.

Figure 2.5: Normalized plastic radius (ratio of plastic to cavity radius) at limit

condition as a function of initial soil state (Salgado and Randolph, 2001)

2.3 The Interpretation of In Situ Soil Tests

Pressuremeters and cone penetrometers are two most widely used instruments

for the measurement of soil properties in-situ. The first method accurately

measures the stiffness and strength of soil, while the second method can be

used to obtain approximate soil profiles quickly. The theory of cylindrical
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cavity expansion has been adopted as the most important interpretation method

for self-boring pressuremeter tests in soil and rock (Clarke, 1995). The cone tip

resistance in the cone penetration test has been predicted properly using

spherical cavity expansion (Yu and Mitchell, 1998).

2.3.1 Pressuremeter test

A pressuremeter is defined here as cylindrical probe designed to apply uniform

pressure to the wall of a borehole by means of an expandable flexible

membrane. When a pressuremeter test is carried out in soils, the measured

pressure displacement curve can be used to back-calculate the mechanical

properties of soils (Yu, 2000).

In Mair and Wood’s paper, the pressuremeter test (PMT) is considered as

placing a cylindrical probe in a pre-drilled hole and expanding this probe while

measuring changes in volume and pressure in the probe. A limited pressure can

be estimated from the reading and a pressure meter modulus can be calculated

from the reading of pressure-volume changes during the test. Presuremeters are

normally installed vertically at various depths in the ground, and they are

connected by tubing or cables to a control unit at the ground surface (Mair and

Wood, 1987).

The main advantages of the pressuremeter test are (1) the boundary conditions

are easy to define; (2) this test can measure the deformation and the strength at

the same time; (3) the self-boring pressuremeter test gives a closest approach to

undisturbed soil of other tests (Yu and Collins, 1998). They considered the
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pressuremeter as cylindrical cavity expansion process and the effective stress

analysis was described.

Finite strain analysis of pressuremeter test was presented by George et al.

(1990). The pressuremeter test was considered as plane strain problem in their

study. The assumptions of this analysis included plane strain, small strain and

rigid perfectly plastic constitutive models of the Mohr-Coulomb type. From the

plot of cavity pressure and expansion strain, it can be seen that a “steady state”

condition was reached by reducing the stiffness and the parametric. The factors

to affect the soil characteristics were evaluated in this paper (George et al.,

1990).

The procedure of pressuremeter tests in sand was described by Juran and

Mahmoodzadegan (1989). In this paper, a new approach for interpretation of

pressuremeter tests to determine the shear strength characteristics, dilatancy

properties and shear modulus was described. An elastic-plastic strain hardening

soil model was developed in the dilating behaviour during the pressuremeter

cavity expansion. The correct engineering properties of sand in the cavity

expansion test were correlated with the conventional triaxial compression tests.

It can be noted that the peak friction angle and dilation angle of plane strain

cavity expansion tests were slightly higher than the conventional triaxial tests.

Antonio (1990) presented the application of pressuremeter test and the radial

expansion of cylindrical cavities in sandy soils. A solution of radial expansion

of cylindrical cavities was developed in his paper and the rigid-plastic model

was used in his research. The curve of the friction angle mobilized at each step

of the test deformation can be obtained from this solution and also some
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discussion about the value of the friction angle was mobilized at the critical

voids ratio. The rheological behaviour of a sand medium during the cylindrical

cavity expansion was explained in his research.

Measurement of shear stiffness in pressuremeter tests in municipal solid waste

was described by Dixon et al. (2006). This paper presented the results from a

programme of pressuremeter tests which was modelled in municipal solid

waste. Shear stiffness properties were measured as well. From the results, it has

been shown that a strong relationship between shear modulus and depth from

the unload-reload loops can be obtained. It can be seen that there is a good

agreement between shear stiffness values calculated from small strain in

pressuremeter tests and shear stiffness values measured using the continuous

surface wave method in their research.

A finite element analysis of the cone pressuremeter test in sand was presented

by Houlsby and Yu (1990) and the test was considered as the cylindrical cavity

expansion in a Mohr-Coulomb material. In their paper, a method to obtain the

strength parameters was developed and cavity expansion theory was applied to

explain this test. Another analysis of self-boring pressuremeter test using the

same finite element method was described later by Yu and Collins (1998). The

material was considered as overconsolidated clays in this paper.

2.3.2 Cone penetration test

The cone penetration test (CPT) is an in situ testing method used to determine

the geotechnical engineering properties of soil. The early application of CPT

was to determine the soil bearing capacity. Most notably, limit pressure was
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calculated in a much more effective way and a new formulation for calculating

cone resistance from cavity limit pressure (which considers the true interface

friction angle between the cone and soil) has been developed and implemented

(Salgado and Prezzi, 2007).

The cone penetration test is an axisymmetric problem and the mechanism is

related to the cavity expansion (Huang and Ma, 1994). A series of simulations

were carried out in his research and it allowed the cone penetration test to be

considered in the microscopic analysis. The results show that the loading

history has the effect on the characteristics of soil failure and dilatancy, but

later stress behind the cone base is not sensitive with the soil history. For the

graded sand, the crushing is easy to occur in the small particles. Moreover, the

cone resistance analysis is linked to the classical cavity expansion theory based

on linear elasticity and perfect plasticity. These analyses would produce

substantially the same values of cavity expansion limit pressure as the present

theory (Salgado and Prezzi, 2007).

In Jiang et al.’s paper (2006), a two-dimensional discrete element method was

used to simulate the deep penetration tests on granular materials. The effect of

soil-penetrometer interface friction was discussed in their paper and it has been

proved to affect the actual penetration mechanisms very much. The results

show that the soil near the penetrometer has a complex displacement path in

deep penetration. The penetration depth and tip-soil friction result an

increasing tip resistance. The penetration leads to high gradients of

displacement and velocity fields. The soil near the penetrometer has a loading,

unloading process and the large rotation of principal stresses (like 180º), as
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well as high gradients of both the value and direction of stress can be observed.

In the penetration, the soil of large deformation (when it arrive the stress state)

has a little higher strength than that of the conventional tests.

2.4 Mechanics of Granular Material

Granular materials consist of individual particles in contact and interstitial

voids, so that they generally comprise a multiphase media of solid, liquid and

gas, and sometimes appear to behaviour as fluids or solids. However, the

behaviour of granular material is more complicated than that of a fluid or a

solid. The discrete characteristics of the granular material result in complex

behaviour under different loading conditions.

2.4.1 Granular materials behaviour

In a granular medium composed of discrete particles, forces are transferred

only through the interparticle contacts. The discrete nature makes the

constitutive relationship very complex. The micromechanical behavior of

granular materials is therefore inherently discontinuous and heterogeneous. If

friction does not occur at the contact points, the material cannot sustain applied

shear forces. Some overall resistance to the applied force is generated by the

so-called interlocking effect of particles (Scott, 1963). The movement of

particles takes place as the result of sliding and rolling at contact points,

leading to the macro-deformation. The macroscopic properties of these

materials are obviously related to the basic structure and properties of their

constituents and their interactions (grains and voids).
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2.4.1.1 Internal friction angle

The physics of friction behaviour has been studies for several decades. There is

no doubt that the friction at the contact point plays a dominant role in

controlling the macro-deformation and strength of granular materials. The

Coulomb’s friction law was used to explain the relation between the frictional

force F and the normal force F :

  tanFFF  (2.38)

Where, μ, Φμ are physical constants called frictional coefficient and the

interparticle friction angle respectively. Experiments show that this coefficient

of friction drops when motion begins (the kinematic friction coefficient is less

than the static friction coefficient).

In fact, for granular materials, the internal friction angle Φ has a different

physical meaning compared to inter-particle friction angle Φμ. The internal

friction angle is not a physical constant for a given soil but strongly dependent

on the void ratio, fabric, stress states and other parameters. This angle is low

when grains are smooth or rounded, and it is high for sticky, sharp or very fine

particles. Typically, the value of this angle is between 15°-45°.

2.4.1.2 Stress tensor

In the three-dimensional space with a Cartesian coordinate system, we can

write the total stress tensor for a frictional granular material as:
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Where xx , yy , zz represents the normal stress acting on the YOZ, XOZ and

XOY planes respectively, xy , xz are the shear stresses acting in the Y-direction

and Z-direction respectively on the plane YOZ (whose normal is X), yx , yz

are the shear stress in the X-direction and Z-directions respectively acting on

the plane XOZ (whose normal is Y), and zx , zy are the shear stress in the X

direction and Y direction acting on the plane XOY (whose normal is Z).

Consider a closed continuous domain, with volume V loaded on its boundary S

by a distributed force  xti . Depending on the loads, a stress tensor )(xijij  

belongs to every point of the domain satisfying the boundary condition of

ijij tn  where in is the outwards unit normal vector on S. The volume

average of the stress tensor ( ij ) can be expressed with the help of the Gauss-

Ostrogradski theorem as a surface integral

dStx
V

dV
V

j

S

i

V

ijij  
11

 (2.40)

Where ix is the position vector on the surface S.

There are concentrated forces instead of the distributed loads acting on the

boundary of the domain and between the sub-domains, the above expression
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can be written in a discrete form. Let k
if be the forces acting at the boundary

points k
ix (k=1, 2, …). Then the average stress Equation is modified as

k
j

Sk

k
iij fx

V




1

 (2.41)

Where the index k runs over the external loading forces.

2.4.1.3 Shear and deformation

There are normal stress and shear stress both in the geotechnical construction.

The normal stresses cause volume change due to compression or consolidation.

The shear stresses prevent collapse and help to support the geotechnical

structure. Failure will occur when the shear stress exceeds the limiting shear

stress (strength). Shear strength is a material property, which enables soil to

maintain equilibrium on an inclined surface, such as a natural hillside or the

sloping sides of an embankment or earth dam.

When a granular soil is sheared, homogeneous deformation first takes place.

The elastic strain is dominant at the beginning and is gradually replaced by the

plastic strain. Around a peak stress, the deformation suddenly localizes into

narrow zones (called shear bands), and stress drops sharply to a residual stress

state. The shear strength characteristics of sand can be determined from the

results of either drained triaxial tests or direct shear tests. A soil consists of

discrete particles and its fabric changes easily when subjected to overall shear

distortion. Volume expansion during shear (called dilatancy) is an indication of
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such changes, and is one of the most interesting aspects in the mechanics of

granular media. There is a good reason to believe that external work done is

dissipated through sliding at contact points during non-recoverable deformation.

The experimental obtained relation between dilatancy and mobilized shear

strength in a granular soil on the assumption that sliding is a major micro-

deformation mechanism. This method has been discussed by many engineers,

and also has proposed various possible sliding models to interpret it.

In a dense sand, there is a considerable degree of interlocking between particles.

Before shear failure can take place, this interlocking must be overcome the

frictional resistance at the points of contact. During shearing of a dense sand,

the macroscopic shear plane is horizontal, but sliding between individual

particles takes place on numerous microscopic planes inclined at various angles

above the horizontal as the particles move up and over their neighbours. Rowe

(1962) developed a stress-dilatancy theory relating the ratio of the principal

stresses, the geometry of ideal particle and the relative rates of change of

volumetric and major principal strains. It was shown that:
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Where dεv and dε1 are corresponding small changes in volumetric and major

principal strain respectively (compressive strain being taken as positive) and

'
f is a value of angle of shearing resistance between the limits of  and '

cv

depending on the strain conditions imposed by the test. The value of '
f is a
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function of the instantaneous directions of local interparticle slip as

rearrangement takes place (the preferred directions of local slip would be at

(45°+Φμ/2) to the major principal plane).

2.4.2 The properties of granular material

It is well known that the mechanical behaviour of granular material is affected

by a lot of factors, such as distribution of particle size and particle shape.

Discrete element method has been used in the recent work which gives a

unique opportunity to obtain the properties of granular material from the micro

level.

2.4.2.1 Dynamic properties

Dynamic response of the granular materials has the relationship with the

parameters of shear modulus and damping ratio. The study using triaxial stress

state to investigate dynamic response was developed by Dinesh et al. (2004).

The shear modulus G was obtained by using Young’s modulus E and Poisson’s

ratio μ.

)1(2 


E
G (2.43)

The damping ratio D (in Equation 2.44) was measured from the hysteresis loop

as shown in Figure 2.6:

T

L

A
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D

4
 (2.44)
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Figure 2.6: Hysteretic stress-strain relationship (Dinesh at el., 2004)

Figure 2.7 shows the relationship between the shear modulus and shear strain

for different confining pressure and Figure 2.8 shows the normalized shear

modulus versus shear strain with the confining pressure same as the Figure 2.7.

The damping ratio versus shear strain has been shown in Figure 2.9. It can be

seen that the larger damping can be obtained under the low confining pressure

and damping increased with the reducing confining pressure at any shear strain

level. For the same confining pressure, the damping increased when the shear

strain increased. From all the results in Figure 2.7, 2.8 and 2.9, it has been

improved that they have a good agreement with the experimental results of

Kokusho (1980) and Yasuda and Matsumoto (1993).
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Figure 2.7: Shear modulus versus shear strain (Dinesh at el., 2004)

Figure 2.8: Normalized shear modulus versus shear strain for different confining

pressure (Dinesh at el., 2004)
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Figure 2.9: Damping ratio versus shear strain (Dinesh at el., 2004)

2.4.2.2 Yielding of granular materials

McDowell and Bolton (1998) examined that the micro mechanics of soils was

subjected to one-dimensional compression. Figure 2.10 shows the plot between

voids ratio and the logarithm of vertical effective stress for sands (Golightly,

1990). At low stresses in region 1, the behaviour was quasi-elastic for the

dense silica sand and small irrecoverable deformations may occur because of

particle rearrangement. Region 2 was described as yielding for soil subjected to

one-dimensional compression, and major plastic deformation occurs beyond

this region.
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Figure 2.10: One-dimensional compression plots for carbonate and silica sands

(Golightly, 1990)

Although not all particles are loaded in the same way, it may be assumed that

all particles will eventually be in the path of the columns of strong force that

transmit the macroscopic stress. Cundall and Strack (1979) showed that the

applied major principal stress was transmitted through columns of strong force

in the discrete element method numerical simulation, as shown in Figure 2.11.

McDowell and Bolton (1998) proposed that the yield stress must be

proportional to the average tensile strength of grains. They defined yielding

stress as a value of macroscopic stress which caused maximum rate of grain

fracture under the increasing stress and the value of yielding stress could be

measured by crushing between flat platens.
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Figure 2.11: Discrete element simulation of array of photoelastic discs (Cundall

and Strack, 1979)

One-dimensional normal compression tests on densely compacted silica sand

of uniformly-graded samples have been described by McDowell (2002). An

analysis of the yielding and plastic hardening of the material has been

developed and the results of these tests were shown in Figure 2.12. It is

obvious that the stress level in the yielding region depended on the initial grain

size and it increased with reducing particle size. In these tests, the initial voids

ratio was approximately same for each aggregate. All particles had similar

angularity and the same compacted way was used to obtain the maximum

density of sample.
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Figure 2.12: Compression plots for different uniform gradings of sand

(McDowell, 2002)

McDowell (2002) described that the applied major principal stress was only

transmitted through two or three columns of strong force for an array

approximately 12 particles wide. Aims to predict the yield stress of the

aggregate as ¼ of the 37% tensile strength of the constituent grains in the

aggregate, a simple estimation (the induced characteristic stress in the particle

forming the columns of strong force should be four times as the applied

macroscopic stress) was used. The results were shown in Figure 2.13, it can be

seen that the yield stress was predicted well and the proposition of this further

strengthens statements (yields stress should be proportional to the tensile

strength of the individual grains) was made by McDowell and Bolton (1998).


