The impact of manufacturing flexibility on system performance: a simulation based approach

Gomez Valdez, Carlos Rafael (2010) The impact of manufacturing flexibility on system performance: a simulation based approach. PhD thesis, University of Nottingham.

[thumbnail of Title page]
Preview
PDF (Title page) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (7kB) | Preview
[thumbnail of Main body]
Preview
PDF (Main body) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview
[thumbnail of Appendices]
Preview
PDF (Appendices) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

Manufacturing systems face now more than ever the effects of an uncertain environment, which is triggered by constantly changing customer needs. Numerous approaches have been proposed to provide manufacturing systems with the capability to satisfactorily perform under situations of uncertainty, particularly by improving their level of responsiveness. Manufacturing flexibility is a dimension of responsiveness which aims at reacting to unpredictable events with little penalty on performance.

Nonetheless, there is a strong perception that the achievement of manufacturing flexibility exclusively depends on the availability of highly automated equipment. This is a misleading belief considering that manufacturing systems are a collection of interacting components sharing a common objective and therefore there must be alternative system’s aspects, other than automation, contributing to the achievement of manufacturing flexibility.

This study expands on existing knowledge by exploring the concept of manufacturing flexibility through the investigation of the dimension of uniformity. The analysis of this dimension has provided a valuable perspective from which to improve understanding of flexibility in manufacturing and identify alternative ways to achieve it. By combining the analytical capabilities of discrete event simulation, statistical design of experiments and optimisation, it has been possible to identify specific factors, optimal system configurations and response trade-offs that, within the context of semi-automated cellular manufacturing systems, constitute a significant contribution in the attainment of manufacturing flexibility.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Gindy, N.N.Z.
Subjects: T Technology > TS Manufactures
Faculties/Schools: UK Campuses > Faculty of Engineering > Department of Mechanical, Materials and Manufacturing Engineering
Item ID: 11795
Depositing User: EP, Services
Date Deposited: 07 Feb 2011 13:18
Last Modified: 11 Jun 2018 07:32
URI: https://eprints.nottingham.ac.uk/id/eprint/11795

Actions (Archive Staff Only)

Edit View Edit View