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ABSTRACT 

The project examined the static and dynamic fracture mechanics of brittle 

materials. Destructive testing was performed on brittle, elastic, isotropic and 

homogeneous epoxy resin specimens made of Araldite CT-200 with Hardener HT-907. 

Three types of specimen were investigated, namely the three point bend (3PB) 

beam, the compact mixed-mode (CMM) specimen and the pressure tube. The 3PB 

and CMM specimens contained both narrow notches and real cracks. The pressure 

tubes included semi-circular notches. The real cracks were obtained by controlled 

fatiguing. 

The research involved the evaluation of the static mode-I and mode-II real and 

apparent critical stress intensity factors. The fracture surfaces and the phenomenon 

of crack branching were studied. The dynamic mode-I stress intensity factor was 

obtained at the inception of crack instability and also at branching. 

The concept of the existence of a unique relationship between the dynamic 

stress intensity factor and the instantaneous crack velocity was addressed. 
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The possibility of modelling cracks in structural components by using cast 

shim notches in epoxy resin was discussed. The modelling of the static behaviour was 

proposed to be accurate and relatively easy. The dynamic behaviour would be 

approximately modelled; therefore suggestions on how to improve the dynamic 

modelling of propagating cracks were recommended, paying particular attention to the 

branching process and the instantaneous crack velocity. 

In addition to the experimental work, finite element analysis was conducted for 

the 3PB and CMM specimens containing narrow notches. It was shown that the 

specific geometry and loading conditions were unimportant and that the loading was 

conveniently characterised by the stress intensity factors for an equivalent crack. A 

method was devised which provided a relatively cheap and efficient means of 

determining stress concentration factors for what might appear to be complex 

geometries and loading conditions. 
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NOMENCLATURE 

A, Location point defined in Figs. 7.9 & 8.7. 

A2 Location point defined in Figs. 7.9 & 8.7. 

A3 Location point defined in Figs. 7.9 & 8.7. 

a Length of straight notch or crack, or radius of semi-circular notch. 

ac Critical value of a at which crack propagation starts. 

a Crack length at the centre of the crack front. 

aend Crack length at either end of the crack front. 

a. id Crack length at the midway point between the centre and either end of 

the crack front. 

A (=v) : Velocity of crack propagation. 

B Specimen thickness. 

B: Specific value of B defined in Fig. 2.16. 

Bo A value of B defined in Fig. 2.16. 

C Compliance of a plate which is defined in equation (2.9). 

Cl A constant defined in equation (1.1). 

C2 Dimensionless factor defined in equation (2.3). 

C3 Empirical material constant defined in equation (2.34). 

CMM : Compact mixed-mode. 
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cl Velocity of dilatational waves defined in equations (2.36 & 2.37) for 

an infinite elastic solid. 

c2 Velocity of distortional waves defined in equation (2.38) for an infinite 

elastic solid. 

d Internal diameter of pressure tubes. 

ds Element of ark length along r. 

E Modulus of elasticity (Young's modulus). 

E Kinetic energy of the material at the crack tip which is represented in 

Fig. 2.18. 

F Compressive force acting on the 3PB specimen as shown in Figs. 5.8, 

5.15,7.1 & I. I. 

Fc Critical value of F (at failure). 

G Energy release rate (crack extension force) defined in section 2.3. 

Gc Critical value of G. 

GI G in mode-I loading conditions. 

GIc Gc in mode-I loading conditions. 

GII G in mode-II loading conditions. 

Gl G in mode-III loading conditions. 

H: Work preformed by external force on a plate containing a crack which 

is defined in section 2.3. 

I: Second moment of area of beam. 

i: Suffix substituting for x, y or z. 

J J-integral defined in equation (2.15). 

j Suffix substituting for x, y or z. 
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K: Stress intensity factor. 

Kc Fracture toughness, or critical stress intensity factor. 

KD Dynamic stress intensity factor. 

KI Mode-I stress intensity factor (usually for plane strain conditions). 

KIc Plane strain fracture toughness, or critical mode-I stress intensity factor. 

KID Plane strain dynamic fracture toughness or dynamic mode-I stress 

intensity factor. 

KII Mode-II stress intensity factor. 

KIIc Critical mode-II stress intensity factor. 

Km Mode-III stress intensity factor. 

K, Maximum value of K. 

K, j, . Minimum value of K. 

Kl Mode-I stress intensity factor. 

Klc Fracture toughness, or critical mode-I stress intensity factor. 

K' : Apparent stress intensity factor. 

Kc^" Apparent critical stress intensity factor. 

K IAPP : Apparent mode-I stress intensity factor. 

KI APP Apparent critical mode-I stress intensity factor. 

KI Mode-I stress intensity factor for a= 0°. 

K190 : Mode-I stress intensity factor for a= 90°. 

KH : Mode-II stress intensity factor for a= 0°. 

KII Mode-II stress intensity factor for a= 90°. 

L Specimen loading span (shown in Figs. 5.8,5.15 and 7.1). 

M: Dimension shown in Figs. 5.2,5.11 and 5.13. 
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m Empirical material constant defined in equation (2.34). 

N Dimension shown in Figs. 5.2,5.11 and 5.13. 

Ncyc . Number of fatigue cycles. 

N. Number of unbroken electrically-conductive grid lines. 

n Magnitude of W. 

W Normal unit vector defined in Fig. 2.8. 

P Tensile force acting on specimen as shown in Figs. 2.7,6.1,6.5,6.6 

and 8.2. 

PC Critical value of P (at fracture). 

p Hydraulic internal pressure in tubes. 

Q Energy needed for crack formation which is defined in section 2.3. 

R Crack resistance (crack resistance force) defined in equation (2.7) and 

shown in Fig. 2.18. 

Rcyc Fatigue cycle ratio defined in equation (2.35) 

Rl : Electric resistance shown in Figs. 9.5 and 9.6. 

R2 Electric resistance shown in Figs. 9.5 and 9.6. 

R. Electric resistance per grid line shown in Fig. 9.5. 

r Radial position relative to notch or crack tip as shown in Figs. 2.5,7.3 

and 8.1. 

rp Irwin's plastic-zone size (shown in Figs. 2.9 & 2.10). 

s Half the width of notch or crack (occasionally the width is referred to 

as the thickness) - it is assumed to be zero for a crack. 

T : Magnitude of T. 

T : Traction vector defined according to the outward normal along T. 
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Thickness of pressure-tubes side-walls. 

Elastic energy contained in a plate with a crack, which is defined in 

section 2.3. 

The displacement vector (in the x-direction). 

Displacement of load-application point as shown in Fig. 2.7. 

Input voltage shown in Fig. 9.5. 

Output voltage shown in Fig. 9.5. 

Velocity of crack propagation. 

Average value of v. 

Velocity of sound waves in a material. 

Specimen width. 

Cartesian coordinate. 

Dimensionless geometry factor. 

Cartesian coordinate. 

Cartesian coordinate. 

Loading angle shown in Figs. 6.1,6.5,6.6 and 8.2. 

Rigidity modulus (shear modulus of elasticity). 

Contour for the J-integral defined in Fig. 2.8. 

Angle of crack-initiation for the semi-circular notches which is defined 

in Fig. 9.14. 

The change in K as defined in equation (2.33). 

The threshold value of K below which fatigue crack growth does not 

occur (shown in Fig. 2.17). 

Mass density (specific density). 
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e Strain. 

Dugdale plastic-zone size (shown in Fig. 2.11). 

rl Notch shape factor defined in sections 7.2.2 and 8.2.2. 

0 Angular position relative to notch or crack tip as shown in Figs. 2.5, 

7.3 and 8.1. 

x Bulk modulus. 

A Strain-energy density as defined in equation (2.16). 

Lamb's constant. 

p Displacement in x-direction. 

V Displacement in y-direction. 

Gradient of straight-line-graph of F versus deflection of beam in 

appendix I (F and beam are shown in Fig. I. 1). 

p(=Q) Notch corner radius. 

a Stress. 

amu Maximum stress at a point. 

ß Nominal stress. 

ß, ßm 
Remote tensile stress perpendicular to crack. 

ßý Ultimate tensile stress. 

aY : Tensile yield stress. 

a Hoop stress. 

ßl Principal stress whereß, >a2>a3. 

a2 Principal stress whereal>a2>ß3. 

a3 : Principal stress where a1>a2>a3. 

6 Peak stress. 
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ti Shear stress. 

v Poisson's ratio. 

yf Angular position in notch radius as shown in Figs. 7.3(b), 7.9 and 8.7. 

Nfpeak Angular position of peak stress. 

Displacement in z-direction. 

Q(=p) Notch corner radius. 

f (O) . Known function of 0. 

3PB . Three point bend. 
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CHAPTER ONE 

INTRODUCTION: HISTORY REVIEW 

Early this century engineers were becoming increasingly aware of the failure 

of structures due to crack propagation. Recently, Anderson [1] and Broek [2] 

described many accidents which occurred in the last two hundred years. Poor design 

and the lack of knowledge in fatigue and fracture science were the main contributors. 

A few of their examples follow. 

In 1830 about seven hundred people had gathered on Montrose suspension 

bridge when one of its main chains gave way, causing considerable loss of life. 

Between 1860 and 1870 railway accidents in Britain killed about two hundred people 

per year. In 1866 the government received a complaint stating that some fifty to sixty 

boilers exploded annually in the United Kingdom causing the loss of many lives and 

the destruction of property. During the Second World War, 2500 Liberty ships were 

built in which welding was involved; 145 ships broke in two and almost 700 

experienced serious failure. 

The need to improve the predictability of fracture, in order to prevent 

catastrophic structural failures was becoming more imperative. The science of 
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mechanics of fracture is very recent. Engineers and scientists at the beginning of this 

century started developing this field. In 1913, Inglis [3] provided a stress solution for 

a flat plate under uniform tension with an elliptical hole which could be degenerated 

into a crack. Griffith [4] made use of that in 1920. He also referred to the work done 

by Love [5] when he performed his potential and strain energy analysis on "a flat 

homogenous isotropic plate of uniform thickness, containing a straight crack which 

passes normally through it, the plate being subjected to stresses applied in its plane 

at its outer edge". Griffith found an expression for the total energy (potential and 

strain energy) of the cracked plate, and mathematically stated that the crack would 

propagate when the energy released due to crack extension was equal to the energy 

required to produce the new surfaces of the crack. Griffith also derived an expression 

which could be simplified to the following equation. 

ans Y" = Cl (1.1) 

where, ßßm is the remote tensile stress perpendicular to the crack, a is the crack 

length, and Cl is a constant. 

In 1939, Westergaard [6] published his famous paper in which he considered 

the case of a stressed cracked cylinder. He derived an expression which showed that 

the stress tended to infinity at the crack tip. The expression was in the complex form, 

which was developed and relied upon by many later authors. 

In 1946, Sneddon [7] considered two examples of a crack, firstly the Griffith 

crack, in the two-dimensional case, which was described here earlier, and secondly a 
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circular crack in the three-dimensional model. Sneddon's calculations were based on 

a solution of the elastic equations given by Westergaard. Sneddon was the first to 

produce expressions for the stresses in the vicinity of the crack tip. 

In 1957, Irwin [8], using the Westergaard method, developed expressions for 

the stresses in the vicinity of a crack tip, which included the stress intensity factor in 

the opening mode of loading. Irwin referred to the work of other authors such as 

Sneddon [7] and Orowan [9]. He wrote another paper in 1958 [10] stating expressions 

for the stresses and displacements at a crack tip including the stress intensity factor 

in the three different loading modes. These equations were extracted by Paris and Sih 

and written in their well-presented paper in 1964 [11], and later used by the like of 

Knott (1973) [12], Broek (1974) [2] and Parker (1981) [13]. Paris and Sih provided 

a concise historical background for the general development of the science of fracture 

mechanics. A good historical review was also presented by Weiss and Yukawa [14]. 

They started by referring to authors like Griffith and Irwin, and went on to give their 

own interpretation of fracture toughness, commenting on the issue of the plastic zone 

at the crack front. Fuchs and Stephens wrote a book which was published in 1980 

[15]; in the first chapter of their book they presented a historical overview about the 

science of fatigue and fracture mechanics. They explained how Griffith became the 

"father" of fracture mechanics, and how Irwin introduced the stress intensity factor. 

The dynamic side of fracture mechanics was firstly looked upon by Mott [16], 

in 1948, who studied the Griffith crack and produced an expression for its propagation 

velocity, by analytical kinetic energy considerations. He stated "..., the analysis 
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suggests that the velocity of propagation, under uniform stress, of a crack in a material 

that is not ductile, will tend towards a value of the order of the velocity of sound in 

the material and which is independent of the stress applied or of the atomic cohesive 

forces across the cleavage plane". 

Elizabeth Yoffe was one of the pioneers in the dynamic fracture mechanics 

field. Her famous paper [17] was published in 1951. She was the first scientist to 

develop an equation describing the stresses in the vicinity of a propagating crack tip. 

She has shown that, if a crack propagates in a direction normal to the maximum 

tensile stress, there is a critical velocity of about 0.6 c2 at which the crack tends to 

become curved, where c2 is the velocity of propagation of shear waves in the material. 

At a lower velocity the crack extends in a straight line. As the speed increases the 

crack may form branches. At even higher velocities there is a certain preferred 

direction for the propagation of branches which is at approximately 60 degrees to the 

direction of the original crack. 

Yoffe used the stress solution provided by Inglis [3] for a static stress field in 

the case of a straight narrow crack. She also used the solution of the stress field given 

by Westergaard [6] which she thought was presented in a more convenient form. She 

referred to Love's work [5] in her elastic-waves application. 

In her analysis, Yoffe simplified her model by assuming a Griffith crack 

propagating at one tip and healing at the other, thus maintaining a constant crack 

length. She explained by saying, "This is justified by the fact that the stress 
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distribution close to one end of the crack is not influenced by its distance from the 

other end". 

In 1954, Roberts and Wells [18] obtained an expression for the velocity of 

crack propagation for a Griffith crack. They based their analysis on the solution given 

by Mott [16]. Having studied some experimental results, their conclusion was that the 

terminal crack velocity is governed by the supply of kinetic energy to the crack field. 

They also stated that, "The influence of stress waves appears to be to limit the volume 

of material to which kinetic energy must be supplied rather than to modify the stress 

distribution from the static values about the crack". 

Craggs [19], in 1960, developed expressions for the stresses in the vicinity of 

a dynamic crack tip. He made use of the Griffith theory [4] to analyze a semi-infinite 

crack in an infinite medium which was extended by finite forces. He thought his 

method had two advantages over that of Yoffe [17]: his solution might be obtained 

by much more elementary methods; and an estimate of the force required to extend 

the crack could be included. 

Craggs concluded that the force required to maintain a steady rate of crack 

extension would be smaller for a higher rate of extension. The same conclusion was 

arrived at by McClintock and Sukhatme in their paper published in 1960 [20]. They 

used the solution given by Bilby and Bullough [21] for the stress field in the vicinity 

of a travelling crack under shear forces. By analogy, they obtained a solution for the 

tensile-forces case for the same crack studied by Craggs [19]. Their result was in 
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agreement with that of Yoffe [171 when they found that branching of a travelling 

crack would start at a critical velocity of about 0.6 times that of the shear wave 

velocity. In their analysis they compared two different fracture criteria: the Griffith 

energy criterion and that of local average shear strain. As far as McClintock's and 

Sukhatme's results were concerned, both criteria yielded similar results. 

In 1962, Baker [22] obtained a solution for the stresses in the vicinity of a 

crack tip for the case in which a semi-infinite crack suddenly appeared and grew at 

constant velocity in a stretched elastic body. He commented on Yoffe's result for a 

critical crack velocity and indicated a slight disagreement according to the conclusion 

he extracted from Williams' paper [23], which is that in the vicinity of the crack tip 

the hoop stress is not the largest principal stress. 

In 1964, Cotterell [24] did some work on the dynamic elastic-wave equations. 

In his paper, he gave an explanation for the effect of the crack velocity on the surface 

roughness of the fracture surfaces. He associated the increase in surface roughness 

with the increase in fracture toughness for steel. Also, he explained the surface 

roughness generally by referring to the theory that at high crack velocity, the principal 

stresses ahead of the crack tip would not be at right angles to the direction of 

propagation. 

In his paper in 1972, Nilsson [25] considered a strip of a linearly elastic, 

homogenous and isotropic material having finite width and thickness and infinite 

length. The strip contained a through-the-thickness crack of semi-infinite length 
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running along the length of the strip with a constant velocity. The effects of finite 

boundaries were incorporated. He described the problems that he treated to be highly 

idealized, but might still serve as good approximations of real situations in 

experiments carried out in order to study crack propagation. 

He derived an expression for the stress intensity factor, and showed that it 

would decrease with an increase in the crack velocity in a non-linear manner, until it 

reached zero when the crack velocity was equal to the Rayleigh velocity (surface wave 

velocity). 

Nilsson compared his solution with the solution obtained by Willis [26] and 

that obtained by Sih and Chen [27]. Willis found that for infinite sheets, the stress 

intensity factor is independent of the crack velocity. Sih and Chen treated a problem 

similar to the one treated by Nilsson, but in the tearing mode; they obtained a similar 

result to Nilsson. Thus Nilsson concluded that the independence of the stress intensity 

factor, in the opening mode, of the propagation velocity was a feature that arose in the 

idealization of a real problem to an infinite sheet problem. 

Many other authors have written about the dynamic side of crack propagation. 

I 

Freund in his paper published in 1973 [28], and Hartranft and Sih in their paper 

published in 1974 [29], described the effect of stress waves on crack propagation. 

Achenbach published a paper in 1974 [30] which treated the problem of crack 

branching. Also, in 1974, Atkinson [31] looked upon the problem of fracture, paying 

particular attention to a crack running along the interface between two different elastic 
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media. In 1974, Broek [2] gave an elementary account of the general behaviour of 

a dynamic crack in his well-known book which was revised and reprinted in 1978, 

1982 and 1986. 
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CHAPTER TWO 

THEORETICAL BACKGROUND 

2.1. Ductile Tearing and Brittle Fracture 

In general, engineering components can break in two different manners, or in 

a combination of the two. The first is called ductile tearing or ductile fracture and is 

associated with ductile materials. The other is called cleavage or brittle fracture and 

is associated with brittle materials. Fracture occurs due to overloading a component. 

It is very important to be able to predict the critical forces below which safety would 

be maintained. 

Toughness is the term used to describe the ability of a material to deform 

plastically and to absorb energy before and during rupture [2]. If the material is not 

tough, or in other words when its fracture toughness, Kc, is small, then the material 

is described to be brittle. When the material is tough, or has a high fracture 

toughness, the material is ductile. Fig. 2.1 describes the relationship between the 

Charpy impact energy and temperature for steel, which clarifies the relationship 

between toughness and the energy absorption when fracture occurs; the material in 

consideration is steel, showing transition from the brittle state at low temperature to 
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the ductile state at high temperature. 

Charpy 
impact Ductile 

energy 

Loading 
rate 

Brittle 

Temperature 

Fig. 2.1. Brittle-ductile transition of steel. 

The shape of a broken component can give a good indication of how tough the 

material is. This is another aspect of component failure. There are three types of 

fracture: a point, a flat, and a cup and cone fracture [13]. 

When a ductile component is overloaded in uniaxial tension, it can deform by 

necking until the reduction in its cross-sectional area is almost 100%; then, final 

fracture will occur at a point. Slipping occurs on the planes of maximum shear stress 

- Fig. 2.2(a). When the component is brittle it will fail with hardly any plastic 

deformation. The fracture surfaces will be flat and perpendicular to the axis of the 

component; cleavage fracture occurs on the planes of maximum tensile stress - Fig. 

2.2(b). The most common type of fracture is the cup and cone fracture. It is 
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associated with a material which is neither extremely brittle nor extremely ductile. 

A component under uniaxial overloading will start off by slipping on the maximum 

shear stress planes, followed by cleavage fracture on the maximum tensile stress 

planes when the cross-sectional area is not sufficiently large to withstand the tensile 

stress - Fig. 2.2(c). 

T 
(a) (b) (c) 

Fig. 2.2. Types of fracture: (a) point; (b) flat; (c) cup and cone. 

Fig. 2.3 describes the relationship of fracture toughness and the three types 

of fracture. The fracture toughness, Kc, is also called the critical stress intensity 

factor. On the brittle side the fracture toughness is called the critical stress intensity 

factor in mode-I loading, KIc, which will be considered in detail in other sections of 

the thesis. 
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Fracture 
toughness 100% Proportion 

Ka . -- fracture---- 
of flat 

i 

ransiti9ýfj " ; 

(Brittle) / 

(Ductile '. K10 

0" 
Increasing plate thickness 

Fig. 2.3. The effect of Kc on the type of fracture. 

2.2. A Crack in a Structure 

The presence of cracks in a structure, no matter how small, may have some 

significance on the strength of the structure. As the structure is loaded, the cracks will 

be stimulated to grow, and when they reach a critical size they may dictate whether 

the structure will fail. 

A crack in a structure will give rise to a stress concentration at the crack tip. 

Similarly a notch in a component will give rise to a stress concentration at the notch 

tip. The stress at the notch tip can be calculated using a parameter called the stress 

concentration factor, which has been tabulated in numerous publications [e. g. 32,33, 

34,35 and 36]. The stress concentration factor is the stress at the notch tip divided 
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by the nominal stress. 

The stress concentration factor increases with an increase in the sharpness of 

the notch tip. A real crack has an infinitesimally small thickness, and therefore the 

stress concentration factor approaches infinity at the crack tip. 

The theoretical infinitely-large stresses at the crack tips introduce complexity 

to the task of stress analysis. Plasticity at the crack tip re-evaluates and redistributes 

stresses, preventing them from reaching infinity; in fact, they can never exceed the 

ultimate tensile stress. Thus, the insufficiency of the stress concentration factor in 

such problems is disadvantageous. The need for another parameter which describes 

the field stresses in the vicinity of the crack tip prevails. This parameter is called the 

stress intensity factor. The stress intensity factor defines the magnitude of the elastic 

stress field in the vicinity of a crack tip. 

Depending 

on the loading 

conditions, a crack 

can deform in 

three different 

ways, shown in 

Fig. 2.4: the 

opening mode 

. 41000 

Mode-I Mode-II Mode-III 

r ig. 1.4. The three modes of crack deformation. 

(mode-I), the sliding or shear mode (mode-II), and the tearing mode (mode-III). 
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In the opening mode, the c 
Tyx 

displacement of the crack surfaces are 

perpendicular to the plane of the crack. 
o" 

r 
a` 

In the sliding mode, the displacements of 

the crack surfaces are in the plane of the Crack front 

crack and perpendicular to the leading 
z 

edge of the crack (the crack front). In 
Fig. 2S. Stresses in the vicinity 

the tearing mode the crack surface of a crack tip. 

displacements are in the plane of the crack and parallel to the crack front [2]. The 

three modes are called the crack deformation modes or the loading modes. 

There is a stress intensity factor, K, for each of the three modes. For modes 

I, II and III the stress intensity factor is called KI, K. and Km respectively. 

The 

conventions 

concerning the 

stresses in the 

vicinity of the 

crack tip are 

shown in Fig. 2.5. 

cry 
Tyz 

tir= 

tin 
tiyz 

Mode-I Mode-II Mode-III 
oy opening mode sliding mode tearing mode 

Fig. 2.6. Stresses associated with the three loading 
modes. 
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In order to give the mathematical definitions of the stress intensity factors for 

the three modes, Fig. 2.6 shows the relevant stresses. 

Mathematically, the pure stress intensity factors are defined in equations (2.1) 

[37]. 

KI = lim { 2nr vy (r, 0) } (2.1. a) 
r-0 

KK = lim { 27ir zy, (r, 0) } (2.1. b) 
r-O 

Ký = lim { 2nr Ty, (r, 0) } (2.1. c) 
r-0 

The stresses in the vicinity of a crack tip are usually expressed in the form 

Q, (r, O) =Kfi (g) + 
2nr 

non-singular terms (2.2. a) 

T� (re) =Kf ,j 
(0) + 

Znr 
non-singular terms (2.2. b) 

where c;;, t, j, r and 0 are defined in Fig. 2.5 (i and j being any of x, y and z), and f, (6) 

and f; ß(8) are known functions of 0. Both a and ti j are occasionally expressed in the 

form ßj. K can be KI, K. or Km according to the mode of loading. The "other terms" 

contain higher orders of r, and hence can be ignored if the point (r, 9) is sufficiently 

close to the crack tip. Equations (2.2) are called the linear elastic solution for the 

stress field in the vicinity of the crack tip. They predict infinite stresses when r=0. 

This is not realistic since plastic deformation prevents stresses from reaching an 

15 



infinite value. If the region of plastic flow is small compared to the region over 

which the "other terms" can be ignored, "it may be assumed that the behaviour of the 

crack is determined by the elastic stress intensity factor. This assumption forms the 

basis of linear elastic fracture mechanics" [37]. 

Griffith [4] established the energy criterion for fracture mechanics on which 

many later authors based their work. In addition, Griffith was the first to present an 

expression for the stress intensity factor which could be written in the form 

K= C2 are (2.3) 

where a. is the remote tensile stress, a is the length of the crack and Cl is a 

dimensionless factor which depends on the geometry of the plate in question or any 

other component. 

2.3. Energy Considerations 

Griffith [4] stated that a crack would propagate if the energy released by the 

system upon crack growth was sufficient to provide the energy required to break the 

atomic bonds and produce the new surfaces of the crack. 

Broek [2] referred to Griffith [4 & 38] and presented the following equations. 

Consider a crack of length 2a in the centre of a plate (the crack having two 

tips), or a crack of length a at the side of a plate (the crack having one tip). In both 
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cases, for the crack to grow by da, 

(2.4 
d 

(H_U) 
da 

where U is the elastic energy contained in the plate, H is the work performed by the 

external force, and Q is the energy needed for crack formation, all of which are per 

unit thickness of the plate. The energy release rate, sometimes called the crack 

extension force, is denoted by G. 

G=d (H-U) 

t 

(2.5) 

At fracture, G reaches its critical value which is denoted by Gc. 

Corresponding to the three different modes of loading, there are GI, GII and Gm. The 

total energy release rate in combined mode cracking is obtained by adding the 

energies from the different modes - equation (2.6). 

G=GI+Gn+Gm (2.6) 

The crack resistance, sometimes called the crack resistance force, is denoted 

by R. 

R= dQ 
da 

(2.7) 

It is reasonable to assume that the force required to break the molecular bonds 

to produce a crack is constant for a material. In the case of plane strain where there 
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is very little plasticity at the crack tip, most of the work done to produce the new 

surfaces of the crack is lost in the breakage of the molecular bonds. Therefore, it is 

assumed that the crack resistance, R, is constant for a plane strain brittle fracture 

situation in the static stage. In the dynamic stage, after the crack actually starts 

running with a high velocity, complications associated with the dynamic effects occur, 

such as the existence of stress waves. In the static stage, the constant value of R leads 

to a constant value of the critical energy release rate, G,, for a particular material (see 

Fig. 2.18). 

In ductile tearing, plasticity at the crack tip occurs, and a large portion of the 

work done to produce the fracture surfaces is lost in the plastic deformation of the 

material. Here, G cannot be determined from the linear elastic stress field; also, R is 

not constant any more. 

Broek [2] showed that for a cracked plate of thickness B under load P, as 

shown in Fig. 2.7, 

P2 
2B as 

(2.8) 

where a is the crack length and C is the compliance of the plate. As long as there is 

no crack growth, C is defined by 

V=CP (2.9) 

where V is the displacement of the load-application points, as shown in Fig. 2.7. 

From equation (2.9) it is seen that the compliance is the reciprocal of the stiffness. 
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By considering the Griffith 

crack [4], which is a through-the- 

thickness crack of length 2a in a plate 

under tensile stress, ß, along its length, 

having an infinite length and width and 

finite thickness, the crack being 

perpendicular to the length of the plate, 

Broek [2] showed that for plane stress 

GI= na2a 
E 

and for plane strain 

(2.10) 

GI = (1-v2) n E2a (2.11) 

where E is Young's modulus and v is Poisson's ratio. Also, for plane stress 

G= K2 
E 

and for plane strain 

(2.12) 

GI = (1 _u2)K 
(2.13. a) 

E 

(2.13. b) GI, = (1-u2) 
E 

GIR = (1+v) 
E 

and 
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2K 
G= GI+GII+Gý = 

1-v (K2 +K2+ 4 
E 1-u 

(2.14) 

When there is a considerable amount of plasticity at the crack tip, G cannot be 

determined from the linear elastic stress field. Therefore, another parameter is 

introduced for energy considerations. The J-integral is equivalent to the energy release 

rate. 

Rice [39] defined the J- 

integral and proved that it is path 

independent. He considered a 

homogeneous body of linear or 

non-linear (i. e, with significant 

plasticity occurring) material free 

of body forces and subjected to a 

two-dimensional deformation 

field so that all stresses, ß; j, and 

y 
notch 

or x 
crack 

Fig. 2.8.17 contour for the J-integral. 

strains, ;; j, depended only on two Cartesian coordinates x and y, which contained a 

notch or a crack as shown in Fig. 2.8. 

The J-integral is defined as 

J= f(A dy -T 
! ds) (2.15) 

r CIX 

where the strain-energy density, A, is defined by 
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e 
(2.16) A =A(x, y) =A (e) = fQi1dci! 0 

r is a curve surrounding the notch tip, starting from the lower flat notch 

surface and moving anticlockwise to the upper flat notch surface, ü is the 

displacement vector, ds is an element of arc length along r, and T is the traction 

vector defined according to the outward normal along I' by the equation 

Ti=o n1 (2.17) 

When the material is linear elastic and there is no significant plasticity at the 

crack tip, 

J=G (2.18) 

Generally, the J-integral is evaluated from the load-displacement diagrams. 

2.4. Crack Tip Stress and Displacement Equations 

When a brittle, homogeneous, isotropic material, which contains a crack, is 

stressed, the stresses and displacements of the elements of the material at the crack 

tip can be found using a set of equations firstly derived by Irwin [8 & 10] and re- 

stated by many later authors such as Parker [131. 
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The equations predict that at zero distance from the crack tip, the values of the 

stresses approach infinity. This is called stress singularity at the crack tip. In reality 

the stresses are prevented from approaching infinity by the plastic deformation which 

occurs at the crack tip. This plasticity is small when the material behaves in a brittle 

manner. 

Referring to Fig. 2.5, the stresses and displacements are given by equations (2.19, 

2.20 and 2.21). P is the shear modulus of elasticity. p, v and o are the displacements 

in the x, y and z directions respectively. Other terms with r having a higher order 

than that in the first term (i. e., non-singular terms) have been neglected since r is 

considered to be very small compared to the crack length. The larger the value of r, 

the less accurate the equations become. 

Mode-I (plane strain): 

vý = 
KI 

cos(e[1-sin(2)sin(3] (2.19. a) T2, 
n::: r:: ' 2) 

ay = 
KI 

cos(-) [1 +sin(2)sin(L )] (2.19. b) 
2ýr 

= 
KI 

XY _sjn(. 
2)cDs(. 2)cos(30) (2.19. c) 

2nr 2 

oZ = u(ox s o) (2.19. d) 

z, Z = zyz =0 (2.19. e) 
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ý 
-2v+sin2(2)l 

(2.19.1) 
µ 

KI 
2Co5(2)[1 

KI Lisin(! )[2-2u-cos2(2)] (2.19. g) 

w=0 (2.19. h) 

Mode-II (plane strain): 

ax =- 
KI, O)cos(30 )] (2.20. a) 
2nr 

Qy = 
KI, 

sin(2 )cos(2 )cos(t) (2.20. b) 
2nr 

X, = 
KH 

COS(2)[1-sin(ý)sin( )] (2.20. c) 
ZTCT 

az = u(ex+vy) (2.20. d) 

ixz = to =0 (2.20. e) 

KII 
sin(2)[2-2u+cos2(2)] (2.20.1) 

v= 
KII 

cos(e)[-1+2u+sO(- )] (2.20. g) 
a2 
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=o 
(2.20. h) 

To convert equations (2.19 & 2.20) to apply for plane stress, aZ is set to zero, 

and v is replaced by v/(l+v). 

Mode-III: 

. rz _ _-Ký ý(ý) (2.21. a) 
2nr 

Kam 
-Cos(2-) 

(2.21. b) 
n 2nr 

ax = Or = Qz = Txy =O (2.21. c) 

w= rsin(()) (2.21. d) 

a 

µ=V=0 (2.21. e) 

2.5. Crack Tip Plasticity 

2.5.1. Yield Criteria 

It was discussed previously that plasticity at a crack tip prevents singularity 

from occurring. Considering the stresses in the vicinity of a crack tip, the stresses will 

increase with a decrease in the distance from the crack tip. At some point from the 

crack tip, the stresses will reach the yield stress of the material and plastic 

24 



deformation will commence. This is the simplest method of deciding the inception 

of yielding. 

More realistically, one of the two following yield criteria should be consulted 

for the start of yielding. If a1, a2 and a3 are the principal stresses (al > 62 > a3) and 

ay is the uniaxial yield stress, then Tresca's criterion predicts yielding when, 

101-031 = or (2.22) 

and Von Mises' criterion predicts yielding when, 

(ol-Q2)2 + (a2-o)2 + (Q3-Q1)2 = 24 (2.23) 

2.5.2. Irwin's Plastic Zone Model 

Broek [2] and Parker [13] 

explained how Irwin [10] derived 

and expression for the plastic 

zone size. He assumed a circular 

plastic zone of size rp. The 

redistribution of the stresses due 

to the presence of the plastic zone 

was accounted for, and the final 

stress field was found, as shown 

in Fig. 2.9. 
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Irwin [10] argued that the crack behaved 

as if it had a length (a + rp/2), as shown in Fig. 

2.10 with the dashed line. 

Irwin's plastic zone size is given by, 

I (K )2 plane stress (2.24) 
Fig. 2.10. Irwin's corrected 

rp -n Cr Y 
crack size. 

rp = 3L (Q )2 plane strain (2.25) 
Y 

2.5.3. Dugdale Plastic Zone Model 

Broek [2] and Parker [13] 

presented the model proposed by 

Dugdale [40]. He assumed that the 

effective crack would extend right 

through the plastic zone which is of 

size C, as shown in Fig. 2.11, but in 

fact the length ý on either end of the 

actual crack, 2a, tend to close the 

crack by withstanding the yield 

stress, cry. 

Dugdale derived the expression 

6r= 

rp 

a 
a+(rp /2) 

2a 

6. 

Fig. 2.11. 
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a= cos 
N a"'" 

plane stress (2.26) 
(t+Z 201, 

For low remote stress values, the higher order terms in the series development 

of the cosine in equation (2.26) can be neglected, giving 

=g (ä )2 (2.27) 
Y 

which compares well with Irwin's expression - equation (2.24). 

2.5.4. Plastic Zone Shapes 

The Irwin and Dugdale plastic zone models assumed an oversimplified yield 

criterion and circular plastic zone shape. For a more accurate analysis, either the 

Tresca's or the Von Mises' Criterion is used, together with the stress equations given 

in section 2.4. 

Broek [2] and Parker [13] provided equations (2.28,2.29,2.30,2.31. a and 

2.31. b) for the plastic zone size and Figs. 2.12 & 2.13 for the plastic zone shapes. 

Using Von Mises' criterion, 

2 

rp(8) =K2[ 
! 

sin28 +(1-2u)2(1 +cos8)] plane strain (2.28) 
2 4zt oY 

and 

27 



rp(9) =KZ [1 + 2sin26 
+cos8] plane stress (2.29) 

4it4 

Assuming Tresca's criterion, 

rp(6) _2 (cos(! ) [1 +sin(2)])2 Plane stress (2.30) 
2nc4 

and for plane strain, 

r(0) =Ki cos2(! )[1-2u +sin(ý )]2 (2.31. a) 
21t4Y 

or 
rp(6) _KZ cost(! ) (2.31. b) 

27ur 

whichever is the greater. 

Here, the redistribution of 

the stress due to the presence of 

the plastic zone has not been 

accounted for, otherwise the 

analysis would become too 

complicated. 

The shapes of the plastic 

zones are shown in Figs. 2.12 and 

2.13 for the three loading modes. 

Plane stress 

Plane strain 

(a) Von Mises' criterion (b) Tresca's criterion 

Fig. 2.12. 

28 

Plastic zone shapes in mode-I 
loading conditions. 



The 

shapes 

shown in 

Fig. 2.13 

are based 

on Von 

Mises' 

yield 

criterion. 

I 

(a) Mode- II loading (b) Mode- III loading 

Fig. 2.13. Plastic zone shapes for modes 11 and 111. 

2.5.5. Plane Stress and Plane Strain 

Looking at Fig. 2.14, the 

conditions are described to be plane 

stress conditions if ßZ = 0. If aZ = 

v((Yx + ay), where v is Poisson's 

ratio, then plane strain conditions 

prevail. 

Qr 

Q, 0 plane stress 
=v( a1+ cy) plane strain 

Fig. 2.14. Plane stress and plane 
strain conditions. 

For a brittle material, where plane strain conditions occur inside a thick 

specimen, ßZ at the surface of the specimen must be zero, and therefore the surface 

has plane stress conditions. A transitional region exists between the surface and the 

inside of the specimen where a transformation from plane stress to plane strain 

conditions takes place. The shape of the resulting plastic zone is shown in Fig. 2.15. 
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Apparently the 

thickness of a specimen is 

important in deciding 

whether plane strain or 

plane stress conditions 

dominate. When the ratio 

of rp divided by the 

thickness is appreciably smaller than unity, plane strain prevails. As the ratio 

approaches unity, plane stress becomes more prominent. 

The plastic zone is proportional to (K/(y. )2, where ay is the yield stress. 

Therefore, for plane strain fracture toughness tests, thicker plates are required for 

materials with higher K and lower aY. It has been found that for plane strain 

conditions 

Bi2.5(KIc /(, Y)2 
(2.32) 

where B is the thickness of a specimen [2]. 

Fig. 2.16 shows 

that when B is larger than 

a specific value, B, plane 

strain prevails and KIc has 

a constant value. At 

thickness Bo, the 

KIC 

-Kic 

I 

B0 BS 
thickness B 

Nig. 2.16. Effect of thickness on the toughness. 
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toughness of the specimen, Klc, reaches its highest value. It is usually assumed that 

the real plane stress fracture toughness corresponds to the value Bo. When B is 

smaller than Bo, there is uncertainty in the value of K, c. 

2.5.6. Effect of Temperature 

For most materials, within their practical range of use, Kic increases with 

temperature. On the other hand the yield stress, ay, tends to decrease with an increase 

in temperature. Therefore (KS(; y)2 increases with temperature and so does the 

required thickness of the material for plane strain conditions to prevail. 

2.6. Fatigue Crack Growth 

Bearing in mind that the mechanism of fatigue crack growth depends on the 

plasticity at the crack tip, it can be said that reproducing and controlling fatigue is 

easier in ductile materials than in brittle ones. 

It has been found that the rate of fatigue, da/dNy, 
., 

is a function of AK, where 

AK = K. - K., j. 
(233) 

K.. and 1 mm are the stress intensity factors corresponding to the maximum and 

minimum stresses respectively, a is the crack length and NY, is the number of cycles. 

The stresses acquire their minimum and maximum values as the load is increased from 

the minimum to the maximum value in half a cycle. 
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Broek [2] and Parker [13] state Paris' law which is empirical: 

da 
= C3(AK)m 

dN 

where C3 and m are experimentally determined material constants. 

In Fig. 2.17 log(da/dN,, ) is 

plotted against log(AK), where 

three regions are identified. 

The threshold value of AK, 

AK., occurs in region 1. Below 

this value, crack propagation does 

not occur. Region 2 is a linear 

region where Paris' law is obeyed. 

In region 3, rapid crack growth 

occurs due to the presence of 

relatively large plastic zones when 

K.. approaches K, c. 

(2.34) 

Log (da/dN. y. ) 

Region Region Region 
1I23 

Log OKth Log AK 

Fig. 2.17. Schematic representation of 
fatigue crack propagation 
rate. 

The cycle ratio, k3 , is defined as 

Rcyc _- 
Kd. 

(2.35) 

The effect of varying kyc is generally somewhat limited for steel, but 
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aluminum alloys may be sensitive to the value of k. [13]. For most materials, the 

constant C3 in Paris' law and the value of AK, h depend on the R. 
yý-value. 

2.7. Dynamics of Propagating Cracks 

The dynamic analysis of a propagating crack is much more complex than the 

static analysis of a stationary crack. The reasons behind the complexity of the 

dynamic behaviour are outlined in the following paragraph. 

A crack propagates at such a high velocity that it becomes impossible for a 

solution of the stress field in the vicinity of the crack tip to be obtained using 

equilibrium equations. Instead, equations of motion which include time dependent 

parameters are used to predict the stress field. These equations are mathematically 

complex. In addition, the kinetic energy of the material elements at the crack tip 

plays an important role in deciding whether a crack branches or whether it arrests. 

An important phenomenon is the stress waves travelling in the material. The stress 

waves are introduced at the commencement of crack propagation. They reflect at 

boundaries and travel back to meet the crack front and superimpose on its stress field. 

In this section a basic account of the dynamics of propagating cracks will be 

presented. 

2.7.1. Different Waves in a Material 
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In addition to electromagnetic waves, only one type of wave can exist in 

liquids. Liquids can transmit tensile and compressive stresses but not shear stresses. 

Therefore they can only transmit dilatational waves which are sound waves. On the 

other hand, solids can transmit shear stresses in addition to tensile and compressive 

ones. Therefore solids can transmit distortional as well as dilatational waves. Both 

types are called plane waves. In addition, solids with boundaries can transmit surface 

waves which are called Rayleigh waves. The following is a description of all the 

stress waves which can exist in a solid. 

(i) Plane Waves 

Two types of waves can exist in a solid regardless of whether the solid has 

boundaries. When the solid transmits tensile and compressive stresses the motion of 

its particles is in the direction of wave motion, and the produced waves are 

dilatational. When the solid transmits shear stresses the motion of particles is 

transverse to the direction of propagation; the resulting waves are distortional. 

Dilatational waves are also called irrotational, primary, longitudinal, push and 

pressure waves, while distortional waves can be termed rotational, secondary, shear, 

shake and equi-voluminal waves [41]. 

When a solid is deformed, both types of waves are normally produced. When 

a wave of either type impinges on a boundary and reflects, waves of both types are 

generated 
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The velocity of dilatational waves in an infinite elastic solid is given by 

cl = r[-x+(4p13)j/8 (236) 

where x is the bulk modulus, 0 is the rigidity or shear modulus and 8 is the specific 

density. Also, 

cl = (ý+2ß)l8 (237) 

where A. is Lame's constant 

The distortional wave velocity in an infinite elastic solid is given by 

C2 = 4018 

(ii) Surface Waves 

(2.38) 

Surface waves occur where there is a bounding surface. In the absence of 

boundaries they cannot exist. They were first investigated by Lord Rayleigh in 1887, 

who showed that they decayed exponentially with depth and that their velocity of 

propagation was smaller than body wave (plane wave) velocities [41 & 42]. 

Rayleigh waves are elastic waves which can only spread in two dimensions (on 

the surface) and consequently they decay more slowly with distance than elastic body 

waves. They consist of two wave components: one vibrating in the same direction as 

the Rayleigh wave propagation, and the other vibrating perpendicular to both the 

direction of wave propagation and the surface of the solid. 
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The velocity of the Rayleigh waves is called the Rayleigh velocity. It is 

typically about 90% of the shear wave velocity [2]. 

2.7.2. Limiting Crack Velocity 

Broek [2] in his book presents a basic concept to account for the instability of 

a crack and the development of kinetic energy. 

It is explained that crack instability occurs when the elastic energy release rate 

remains larger than the crack resistance R [2]. The energy available which converts 

into kinetic energy 

is (G - R), 

governing the 

velocity at which 

the crack 

propagates. Broek 

makes the 

following 

simplifying 
rig. l. ltt. The kinetic energy available for crack 

propagation. 

assumptions in 

presenting the concept diagrammatically (Fig. 2.18): 

(i) Crack propagation takes place under a constant stress. 

(ii) The elastic energy release rate does not depend upon crack speed. 

(iii) The crack growth resistance, R, is constant. 
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The shaded area in the diagram represents the kinetic energy of the material, 

Eic., at the crack tip. 

The simultaneous crack length is a and the critical crack length at which 

instability occurs is ac. Aa is the increase in crack length. 

For plane strain, the crack growth resistance, R, is approximately constant. But 

in plane stress it is usually a rising function. However, some materials are strain rate 

sensitive; the higher the strain rate, the more brittle they become and the less energy 

is dissipated due to plastic deformation, which explains the decreasing value of R for 

rate sensitive materials - Fig. 2.18. 

Roberts and Wells [18] derived an expression for the velocity of crack 

propagation for a Griffith crack. They based their analysis on the solution obtained 

by Mott [16]. They found that the terminal (maximum possible) velocity was given 

by 

d=0.38 
4E 

1-a` 
8a 

for plane stress (2.39) 

d=0.38 E 
-a, 

(i-u2) a 
for plane strain (2.40) 

where E is Young's modulus, 8 is the specific density, 2ac is the critical crack length 

at which the crack starts to propagate and 2a is the instantaneous crack length. They 

assumed that the crack propagated at velocity A (= v) at each end. 
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In order to compare their theoretical solution to some experimental results they 

provided the data shown in Table 2.1, in which v is the velocity of crack propagation 

and of is the velocity of sound in the material (= 4"08)) which is equal to the velocity 

of longitudinal waves, c,, in an elastic solid with boundaries. It is interesting to note 

at this stage that many authors non-dimensionalize the velocity of crack propagation 

by dividing it by f(W6), and they refer to 4-(F/S) as being either the velocity of sound 

or the velocity of longitudinal waves in the material In fact, the velocity of 

longitudinal waves in an elastic solid is equal to , i(FýS) only when it has boundaries. 

Investigator Material Type vv(m/s) v(m/s) v/v, Date 

Schardin & 
Struth [43] 

Glass - 5180 1420 to 
1570 

0.27 to 
0.30 

1938 

Fused 
quartz 

- 5180 2190 0.42 1938 

Greenfield & 
Hudson [44] 

Steel Edge 5030 1030 0.20 1947 

Edgerton & 
Barstow [45] 

Glass Internal 
and edge 

5490 1520 0.28 1941 

Ferguson & Cellulose Internal 1130 300 0.27 1950 
Smith [46] acetate Internal 1130 420 0.37 1950 

Kennedy [47] Steel Edge 5030 1370 0.27 1945 

Boodberg & Steel Internal 5030 1400 0.28 1948 
collaborators 

[48] Internal 5030 2010 0.40 1948 

Robertson [49] Steel Edge 5030 1830 0.36 1953 

Table 2.1. Brittle fracture velocity measurements [18]. The values of vj and v are 
accurate to the nearest 10 integers. Only Edgerton and Barstow [45] 
measured v, for their material; conventional values were given for the 
remainder (18]. 
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2.73. The Dynamic Stress Intensity Factor 

The dynamic stress intensity factor, unlike its static equivalent, is dependent 

upon the velocity of crack propagation. Attempts have been made to derive an 

analytical expression in order to quantify it. But in every case, many simplifying 

assumptions have been adopted. Some publications contain useful graphs of how the 

ratio of dynamic to static stress intensity factor varies with the increase in propagation 

velocity [e. g. 25 & 50]. Broek [2] gives a general description of the problem; 

particular reference has been made to other authors such as Yoffe [17], Broberg [51], 

Nilsson [25], Freund [28] and Baker [22]. 

2.7.4. Crack Branching and Arrest 

An analysis of the phenomena of crack branching and arrest has been presented 

by Broek [2]. The analysis is characterised by their complexity in such a way that an 

attempt to explain them with basic mathematics will most certainly be of a qualitative 

nature. It is argued that when the speed of the crack is sufficiently high, the rate of 

energy release at fracture is adequate to cause branching. Moreover, the direction of 

the maximum tensile stress is no longer perpendicular to the direction of propagation. 

The rate of release of strain energy is essential for the production of the new 

fracture surfaces. Once the kinetic energy and the strain energy released are smaller 

than the energy required to break the bondage between the material molecules, the 

crack arrests. 
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2.8. The Texture of Fracture Surfaces 

Andrews [521 has presented a description of the different types of surface 

markings of cracked surfaces together with an explanation of their causes. In this 

section, the relevant characteristics of the surface texture are outlined. 

2.8.1. Conic Markings 1521 

Conic markings are illustrated in Fig. 2.19. They are caused by the 

inhomogeneities in the material. When the stress concentrations at the 
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inhomogeneities superimpose on the stresses of the crack tip, they cause the fracture 

stress of the material to be exceeded in a number of dispersed regions in front of the 

crack tip and to its sides. 

2.8.2. Surface Roughness [52] 

This consists of three regions. The mirror region is the one with the least 

roughness. It reflects light specularly. The mist region is a matt surface and the area 

with the most roughness is the hackle region. The latter can be seen where fracture 

has propagated on different levels over small areas of the surface. When it is 

elongated in the direction of propagation of the fracture it is termed "river markings". 

The three regions can be 

seen in all kinds of solids. 

Surrounding the point at which 

crack propagation initiates, a mirror 

region first appears which is 

associated with slow fracture. 

Further away from the initiation 

point a mist region appears when 
Fig. 2.20. Brittle fracture surface 

the crack propagation is faster. showing fracture origin and 
mirror, mist and hackle 

Finally a hackle region develops. regions. 

The three regions are demonstrated in Fig. 2.20. 
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The increase in roughness can be explained in terns of the energy available. 

The further the crack travels the more energy is released, and thus the excess energy 

is absorbed by the multiplanar fracture and the repeated forking. 

2.8.3. Fracture Markings Caused by the Behaviour of the Fracture Front 

(i) Wallner Lines [52] 

42 

a jj. < .ý". rr ii& "-' ..... w jir vuul, LU uy Lcm-LC//Ll/C/ULu/C uruile fracture to a 

carbon filled rubber. Magnification 110 [521. 



Wallner lines are caused by the reflection of stress waves on the boundaries 

and their superposition on the crack front, which distort the stresses at the front 

causing it to deviate. The stress waves are periodical, and so are the Wallner lines, 

as can be seen in Fig. 2.21. 

In glass, Wallner lines take the form of smooth undulations. In polymers, they 

take the form of periodic variations in surface roughness, because polymers are less 

homogeneous than glass. 

(ii) Stick-Slip Behaviour [52] 

A propagating crack may reach a critical speed leading to the bifurcation of 

the crack into two branches. In the stick-slip behaviour of cracks, the process of 

bifurcation causes a reduction in the speed of propagation. One of the branches 

eventually arrests allowing the other to proceed with an increasing speed. The process 

is repeatedly reproduced. The slow propagation stage of any set of two branches is 

called stick, while the fast stage of any single branch is called slip, for which the 

fracture surface is smooth. The stick region has roughness in the fracture surface 

which is the cause of the reduction in propagation speed in that region. 

(iii) Local Plastic Deformation [52] 

The plasticity at the tip of a propagating crack can allow the crack to deposit 

a region of plastically deformed material forming a layer on each fracture surface. 
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The refractive index is slightly different for these layers and the undeformed material 

underneath. This might explain the colours seen in the fracture surfaces of PMMA, 

although there is a disagreement regarding this issue. 

44 



CHAPTER THREE 

LITERATURE REVIEW 

The historic background and the basic theories for the field of fracture 

mechanics are the subject of the previous chapters. The more recent work and 

discoveries are presented here independently. 

In recent years, the science of fracture mechanics has expanded to include a 

number of new and sophisticated techniques such as the involvement of thermoelastic 

infra-red emissions [53] in the determination of stress intensity factors and crack tip 

velocities (only in the case of very slow velocities of metal fatigue). Many of the 

problems inherent in fracture mechanics have been approached both theoretically and 

experimentally. The literature for this field of science is presented in two sections. 

Static fracture concerns themes which may lead to crack propagation. Dynamic 

fracture deals with more complex issues which arise from the actual propagation of 

cracks. 

3.1. Static Fracture 

Cartwright and Rooke [54] described many useful methods of evaluating stress 
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intensity factors in a concise form. The theoretical methods included the analytical, 

the boundary collocation, the conformal mapping, the stress concentrations, the 

Green's functions, the integral transforms and dislocation models, the force- 

displacement matching, the alternating methods, and the finite element techniques. 

The experimental methods included the compliance, the photoelasticity, the fatigue 

crack growth rate, and the interferometry and Holography techniques. Advice on the 

suitability of some methods was also given. Moreover, the issue of accuracy was 

discussed for some techniques. 

The plane-strain, mode-I critical stress intensity factor, KIc, of Araldite CT-200 

was evaluated by Evans and Barr [55]. Two different methods were used: 

photoelasticity and the quasistatic energy method. The first involved the two- 

dimensional photoelastic strain distribution around the crack tip. The second measured 

the total energy introduced into a test specimen during crack propagation. The energy 

divided by the change in crack area during crack propagation gave the fracture 

toughness value which was defined as the work required to create unit crack area. 

The energy technique gave an average value for KIc of 20.0 N/mm3n, while the 

average value obtained by photoelasticity was 21.6 N/mm3R. It was concluded that 

the value of Kic would be affected by temperature, strain rate and creep. 

Hollmann and Hahn [56] performed brittle fracture tests on compact tension 

specimens. Two materials were used: a ductile and a brittle epoxy. Practical 

difficulties were encountered in precracking the specimens by the fatiguing technique. 

They concluded that KIc decreased with an increase in either the loading rate or the 
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yield stress. 

The difficulty of introducing a real crack in a specimen was also identified by 

Breslauer, Voloshin and Manson [57]. They investigated two methods of introducing 

a crack in compact tension specimens, namely the cyclic fatiguing and the impact 

blow at the notch tip using a very sharp blade. A comparison between machined and 

cast specimens was conducted. It was found that crack initiation was difficult to 

control in machined specimens. Either there was no initiation, or there was initiation 

followed by fast propagation to the final fracture of the specimen. The crack initiation 

in a cast specimen was much easier. Only a few specimens fractured catastrophically 

while initiating a crack. The reason behind the difference in behaviour between both 

types of specimen was explained by the residual stresses concentrated at the notch tip 

of the cast specimens which were not present in the machined specimens. The casting 

process introduced residual tensile stresses at the notch tip, which were instrumental 

during crack initiation. They affected a relatively small area, and thus did not disturb 

the subsequent crack propagation. 

S. Harada, Endo, Y. Harada and Murakami [58] destructively tested a number 

of epoxy resin specimens, containing a single narrow notch each, in order to determine 

the apparent critical stress intensity factor in mode-I loading conditions, KIC P. The 

epoxy resin was prepared by mixing the solutions of Araldite CY-230 and hardener 

HY-956 in the ratio of 5: 1 (weight). The narrow notches were introduced during the 

casting process using a fin with a thickness of 0.02mm. The average value of KI ^Pp 

was found to be 50.3 N/mm3R. 
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The effect of the plastic deformation zone on notched specimens was 

considered by Narisawa, Murayama and Ogawa [59]. The brittle fracture of round- 

notched epoxy resin bars subjected to plane strain bending was studied at varying 

strain rates. The growth of the internal crack was so rapid that it was impossible to 

control the applied moment to observe it. A decrease in the bending rate caused a 

slight decrease in the fracture moment and an increase in the plastic zone size of each 

sample. The experimentation revealed that the internal crack initiated at the plastic- 

elastic boundary when the plastic deformation zone at the notch tip reached a certain 

size. Moreover, fracture occurred when the stress level ahead of the plastic zone was 

raised by a plastic constraint to an ideal fracture stress. 

Maccagno and Knott aimed their investigation at the angle of propagation in 

brittle fracture [60]. Their experimentation was performed on PMMA at room 

temperature. A thorough investigation of the three hypotheses predicting the angle of 

crack propagation in mixed-mode (I and II) loading conditions, which included the 

work of many other researchers, was presented. The maximum tangential tensile 

stress criterion gave the best agreement with the experimental results. The maximum 

elastic energy release rate and the minimum strain energy density criteria gave less 

accurate predictions of the angle of crack propagation. The paper also presented a 

description of the process of crazing which preceded fracture. 

The brittle fracture experimentation performed by Erdogan and Sih [61] 

showed that, under pure mode-II loading conditions, cracks grew in the direction 

approximately 70 degrees from the plane of the crack. The direction of maximum 
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tangential tensile stress was 70.5 degrees. They concluded that a brittle crack under 

combined tension and shear would grow in the direction perpendicular to the largest 

tensile stress at the crack tip. They also plotted KII against KI for a comprehensive 

range of mixed-mode (I and II) loading conditions. 

3.2. Dynamic Fracture 

Dynamic fracture involves parameters and phenomena such as the dynamic 

stress intensity factor, crack propagation velocity, branching, angle of kinking and 

branching, crack arrest and stress waves. They may all have inter-related 

relationships. 

Lo [62] investigated the phenomenon of branching in a two dimensional 

infinite plate containing a finite crack in the plane perpendicular to the uniaxial stress. 

For an asymmetrical (single) branched crack, the angle of initiation was generally 

assumed to be the angle that gave the greatest energy release. The stress intensity 

factors, KI and K., were analytically obtained for asymmetrically, symmetrically and 

doubly symmetrically branched cracks. The results agreed with some publications and 

disagreed with others. 

The parameters affecting the dynamic stress intensity factor were considered 

by Takahashi and Arakawa [63]. Their experiments were performed on single-edge- 

cracked, pin-loading, tensile specimens of PMMA (Acrylite S-001) and epoxy (room- 

temperature hardened Araldite D) at room temperature. The caustics method in 
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combination with high-speed photography demonstrated the velocity effect on the 

dynamic stress intensity factor of fast cracks. The results showed that the dynamic 

stress intensity factor depended not only on the crack velocity but also on crack 

acceleration. The accelerating crack had a smaller value of stress intensity factor than 

that of the decelerating crack at the same velocity. 

A parameter which is closely related to the dynamic stress intensity factor is 

the velocity of crack propagation. During the experimentation of Glover, Johnson and 

Radon [64] on five different polymers it was found that the velocity of crack 

propagation depended on temperature more than testing speed, specimen geometry or 

static stress intensity factor, KIc. They concluded that the velocity of propagation was 

probably a property of the material closely related to the elastic modulus. Their 

distance-time graphs had a point of inflection indicative of a slowing down of the 

crack followed by a final increase in speed near the end of the crack path. 

The effect of the propagation velocity on the branching phenomenon has been 

discussed by many researchers. Ramulu, Kobayashi and Kang [65] have criticised the 

critical crack velocity criterion by saying that although the prebranching distortion of 

the crack tip stress field at a critical crack velocity is the most popular held cause of 

dynamic crack branching, experimentally the crack velocities never reach the high 

velocity predicted by this criterion. Knauss [66] has gone a step further by saying that 

although branching is only observed at high crack speeds, there is increasing evidence 

that the velocity aspects are an adjunct to the branching phenomenon rather than the 

driving factor. 
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The phenomenon of branching has been studied both experimentally and 

theoretically by numerous researchers. The ability to predict when and how branching 

occurs is highly desirable. Therefore, the quantifying of the dynamic stress intensity 

factor at the inception of branching and also the evaluation of the angle of branching 

have been attempted by many authors. 

Kobayashi and Mall [67] conducted photoelastic and caustics experimentation 

on Homalite-100 and compared their results to those published elsewhere. The ratio 

of the dynamic fracture toughness to the static fracture toughness, KID/KIc, was plotted 

against the ratio of the crack velocity to the dilatational-wave velocity, v/cl. The 

propagation of the crack was stable until v/c, was about 0.2. Then, there was an 

unsuccessful attempt of branching at KJK, c of about 3 and a successful branching 

process at KID/KIc of about 4. The ratio KID/KIc was approximately 1 when v/cl lay 

between 0 and 0.15. 

Ramulu, Kobayashi and Kang [65] obtained a value of 5 for the ratio KUJKIc 

at the onset of branching. They compared it with a value of 4 given by other authors. 

They also showed that the crack branching angles were very similar for each specimen 

configuration. 

The characteristics of the angle of branching, were described by Knauss [66]: 

"A persistently recurring question for analytical modelling purposes is whether 

branched cracks form smoothly from the main crack by turning through a deflection 

angle with high curvature or whether the branches emanate with a well defined angle 
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from the main crack; in post mortem examination both seem to occur, but the 

possibility exists that observed definite angles have been formed as flash backs to the 

main crack". 

Research on brittle polymers performed by Dempsey and Burgers [68] 

confirmed that a branch subtended an angle with the original crack plane ranging 

between ±10 degrees and ±45 degrees. 

Tests conducted by Knauss and Ravi-Chandar [69] on Homalite-100 with the 

aid of direct high-speed photography showed that at sufficiently high crack tip stresses 

associated with branching, the microfractures which were generated away from the 

main crack axis grew and turned smoothly away from the main crack. Experimental 

results indicated that the crack tip stress state was altered when stress waves reflecting 

from the specimen boundaries returned to the crack tip. This resulted in a change of 

crack speed and even caused branching in cases of high-intensity stress waves. 

Ramulu and Kobayashi [70 & 71] employed the maximum tangential tensile 

stress principle to produce two theoretical criteria for the prediction of the angle of 

kinking and that of branching in brittle fracture. The analytical prediction was 

confirmed by experimental results obtained for Homalite-100 and Polycarbonate 

specimens. The dynamic crack curving criterion which involved the remote stress 

component in addition to the singular stresses, predicted the actual crack kinking 

angles in fracturing photoelastic specimens. The dynamic crack branching criterion 

was the same as the curving criterion with the addition of a requirement involving a 
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critical value of the dynamic stress intensity factor. It was used in successfully 

predicting the crack branching angle in a bursting metal pipe. 

The phenomenon of crack arrest is another feature of dynamic fracture. 

Extensive research on brittle and ductile materials performed by Kobayashi [72] 

brought him to the conclusion that there was an apparent existence of a minimum 

dynamic stress intensity factor below which the crack ceased to propagate. The 

dynamic arrest stress intensity factor is another name for the minimum stress intensity 

factor which is always less than or equal to the static fracture toughness [72]. 

Popelar and Gehlen [73] developed a method of analysis for rapid fracture and 

crack arrest in wedge-loaded rectangular fracture specimens by using energy-derived 

difference equations. They also conducted experiments on Araldite B wedge-loaded 

double-cantilever-beam fracture specimens. There was good agreement between the 

analytical and experimental results with regard to the length of crack growth, the 

crack-tip-time history, and the variation of both the stress intensity factor and crack 

speed with crack length during propagation. 

Researchers have strived to substantiate different relationships between the 

various parameters of fracture mechanics. One such relationship is that between the 

dynamic stress intensity factor, KID, and the velocity of crack propagation, v. 

Knauss [66] suggests that there are supporters for the idea that the crack 

velocity is a unique function of the instantaneous stress intensity factor and that there 
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are others who have consistently questioned the generality of such a relationship. The 

small differences between the KID versus v relationships, detected by Knauss [66] 

when testing different types of specimen of the same material, cast some doubt on the 

uniqueness of such a relationship for a given material. 

Kobayashi and Mall [74] presented many plots of the dynamic fracture 

toughness, KID, against crack velocity, v, for different materials and specimen types. 

In their paper, they confirmed the likelihood of the existence of a unique KID versus 

v relationship. 

Dally, Fourney and Irwin [75] performed photoelastic experimentation on the 

propagation of cracks in Homalite-100 over a period of ten years. In addition, they 

produced a review of the experimental results obtained by many other investigators 

establishing the relationship between the dynamic stress intensity factor, KID, and the 

crack velocity, v. The errors introduced during the determination of KID and v due to 

practical difficulties and theoretical assumptions were investigated and quantified. The 

scatter in the KID versus v plots could not be justified beyond doubt by the 

experimental or analytical errors. Therefore, they concluded that the method of 

controlling the crack tip velocity through the uniqueness of the KID versus v 

relationship was in question. 

Kobayashi [72] declares that the relationship between K. and v in polymers 

and steel can be treated as a unique material property within a generous engineering 

tolerance. He proceeds further by proposing that model testing can be used to predict 
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the dynamic fracture response of a prototype structural component provided the 

normalized KID/KIc versus v/cl relations of the model and prototype materials coincide 

and that scaled geometries are used. This suggestion is still in need of verification. 
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CHAPTER FOUR 

RESEARCH PURPOSE 

AND 

MATERIAL PREPARATION AND PROPERTIES 

A few examples of catastrophic accidents have been described in chapter 1. 

The need to understand and anticipate secular misfortunes has also been outlined. 

This lays the foundation for the importance of mechanics of fracture and the ability 

to predict failure to avoid its undesirable outcome. 

4.1. Research Purpose 

The benefits of studying mechanics of fracture and its ramifications are self- 

evident. Brittle fracture is one field in the fracture world which has beleaguered 

scientists and engineers, prompting them to search for means of anticipating such kind 

of failure. The modelling of cracks in engineering components is a way of predicting 

fracture behaviour. Therefore, the effort for this project has been directed towards 

understanding the process of modelling cracks in brittle materials. 

Considering a component with a crack of known shape and size, a model of 
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that component can be cast using a convenient plastic material with the introduction 

of a narrow notch having the same shape and size of the real crack by using a metal 

shim. Although the thickness of the notch can never reach the infinitesimally small 

value associated with that of the crack, nonetheless this can be accounted for. 

Knowing how the crack and the notch behave in relation to one another, the fracture 

of the real component can be predicted by observing the behaviour of the model, 

bearing in mind that Kc/a,. v a must have the same value for both the component and 

the model, where Kc is the critical stress intensity factor, q. is the nominal stress 

and a is the length of either the crack or the notch. Thus, the need for a detailed 

study of notches in relation to real cracks has arisen. It is important to note that 

whenever Kc is considered for a notch, the apparent value is the one in consideration, 

and naturally it is denoted by the suffix "APP". The difficulty and sometimes 

impossibility of introducing a real crack of a specific shape and size into a cast model 

and the relative ease of including a narrow notch promoted the idea of using narrow 

notches in the modelling of cracks. 

The research for this project was channelled into two main categories: static 

and dynamic fracture. The static study covered pure mode-I, pure mode-II and mixed- 

mode loading conditions. It was directed towards understanding and predicting the 

initiation of fracture for real cracks and narrow notches in different specimens. The 

dynamic study aimed at understanding and explaining the phenomena of crack 

propagation and branching paying particular attention to the speed of propagation. 

The above topics were investigated with an experimental approach combined 
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with a computational analysis, in addition to the literature review. 

Experimentation was performed on three different types of specimen: beams 

in bending, compact mixed-mode (CMM) specimens in tension and closed tubes under 

internal hydraulic pressure. The three point bend (3PB) beams were tested to 

investigate the relationship between the real and apparent critical values of the stress 

intensity factor in pure mode-I loading conditions, KIc and KI C respectively. 

Therefore, the beams included two types of stress raisers: the narrow notch and the 

real crack which was grown controllably under fatigue vibration. The CMM 

specimens involved the same type of investigation differing only by having mixed- 

mode loading conditions. The 3PB and CMM specimens were dedicated for the study 

of the static mechanics of fracture. The dynamic side was examined by bursting the 

tubes under internal oil pressure after including semi-circular narrow notches on the 

outer surface, incurring a pure mode-I loading situation. The specimens were all 

destructively tested at ambient temperature. 

The computational work was achieved using finite element analysis which 

eventually provided an accurate description of the peak stresses and the iso-stress 

contours at the tips of the different narrow notches in the 3PB and CMM specimens. 

4.2. Material Preparation and Properties 

The material conveniently chosen throughout this research was the epoxy resin: 
Araldite CT-200 with hardener HT-907. It is a brittle material which has been used 
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in the Department of Mechanical Engineering of the University of Nottingham for 

many years. It has unique photoelastic characteristics and can easily be obtained and 

cast into different shapes. 

The resin and hardener are both obtained from Ciba-Geigy Plastics and 

Additives Company, Duxford, Cambridge. The Chemical name for the hardener HT- 

907 is dicarboxylic acid anhydride (solid). 

The following procedure is followed carefully throughout the research in order 

to obtain an isotropic and homogeneous casting free from residual stresses and air 

bubbles. 

Each aluminium and steel mould (described in detail in later chapters) is 

assembled and treated with the release agent hysol (a mixture of silicon oil in a 

petroleum carrier). One hundred weight units of the resin (Araldite CT-200) are 

placed in an oven at 128°C for 18 hours. Sixty weight units of the hardener HT-907 

together with the prepared mould are placed in another oven at 100°C also for 18 

hours. The hardener is then placed with the resin in the 128°C oven for 2 hours, after 

which they are mixed together thoroughly in a fume cabinet at room temperature using 

a stirring paddle. The mixture is placed once again in the oven at 128°C for 10 

minutes, then carefully poured through a funnel into the mould which is still in the 

100°C oven. This is left to cure for 120 hours at 100°C. The casting is stripped hot 

out of the mould and allowed to cool to room temperature (approximately 2 hours). 

It is placed on a glass surface in an oven to be finally cured at an elevated 

59 



temperature of 142°C for a period of 6 hours. The fully cured casting is slow-cooled 

to room temperature at a cooling rate of 2°C per hour. The casting is now ready to 

be machined to the required specimen dimensions. 

The material, as already stated, is brittle, elastic, isotropic and homogeneous. 

Its modulus of elasticity, mass density, Poisson's ratio, tensile yield stress and ultimate 

tensile stress are respectively given below. 

E= 3900 N/mm2 (appendix I) 

S= 1210 kg/m3 (appendix I) 

v=0.30 (appendix I) 

uy = 42.0 N/mm2 (appendix II) 

a� = 90.8 N/mm2 (appendix II) 
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CHAPTER FIVE 

MODE-I EXPERIMENTATION 

Pure mode-I investigation was carried out using the three-point bend (3PB) 

specimen or beam. To establish the relationship between the apparent and the real 

values of the pure mode-I stress intensity factor, tests included specimens with either 

a narrow notch or with a real crack respectively. 

5.1.3PB Specimen with a Notch 

This type of specimen was produced by immersing a metal shim made of shim 

steel into the casting when the resin was poured into the mould. The effect was to 

produce a notch having a width equal to the thickness of the shim. 

Two different shim shapes were used, the first of which had a flat edge 

involving three thicknesses: 0.20,0.10 and 0.05 mm producing correspondingly-sized 

notches. The second shape was a sharpened edge belonging to a 0.10 mm shim 

producing a notch which effectively had a width of 0.02 mm. In other words, the 

process of sharpening the shim effectively reduced the width of the cast notch by a 

factor of 5. 
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The resulting notches with four different sizes were photographed under the 

microscope demonstrating their sizes and shapes from a practical point of view (Figs. 

5.1(1-24)). 

(1) v. zU mm notcn. Magnification 120 approximately. 
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(2) 0.20 mm notch. Magnification 120 approximately. 

(s) 0.2U mm notch. Magnification 120 approximately. 
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(4) 0.10 mm notch. Magnification 120 approximately. 
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(S) 0.10 mm notch. Magnification 120 approximately. 
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(6) 0.10 mm notch. Magnification 120 approximately. 
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(7) 0.05 mm notch. Magnification 120 approximately. 

65 



(8) 0.05 mm notch. Magnification 120 approximately. 
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(9) 0.05 mm notch. Magnification 120 approximately. 
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(10) Effectively 0.02 mm notch. Magnification 120 approximately. 
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(11) Effectively 0.02 mm notch. Magnification 120 approximately. 
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(12) Effectively 0.02 mm notch. Magnification 120 approximately. 

Iv 13) v. w mm Horen. magnification 460 approximately. 
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(14) 0.20 mm notch. Magnification 460 approximately. 

(15) 0.20 mm notch. Magnification 460 approximation. 
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(16) 0.10 mm notch. Magnification 940 approximately. 

(17) 0.10 mm notch. Magnification 940 approximately. 
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(18) 0.10 mm notch. Magnification 940 approximately. 
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(19) 0.05 mm notch. Magnification 940 approximately. 

71 



týVi v. u.,, yarn nown. magnification Y4U approximately. 

Irv 

ar " 

.r' 

J* 
f: ýt r 

'Ll 
14 

o ()q 

---- ........,,..,.. ... ý6, «ýýýu«wý y4tu approximately. 

72 



Z 

ý, 

ýý 

ýýý" 

ý1 

»r 

"1 

r 

0 14 

ry.. 

r 

M 

ýr 

wý 

". " .. 

: 
_' 

$ ".. 

73 

(22) Effectively 0.02 mm notch. Magnification 940 approximately. 
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(24) Effectively 0.02 mm notch. Magnification 940 approximately. 

Figs. 5.1(1-24). Typical shapes and sizes of the four types of shim-notch-tip in 
the 3PB specimen. 

5.1.1. Specimen 

The three point bend (3PB) specimen with a notch, Fig. 5.2, met all the 

requirements given in BS5447 [76]. 

In BS5447, the recommendations are given for a specimen with a real crack. 

Obviously, the same dimensions were used for both a specimen with a notch and one 

with a real crack in order to reduce the complications of comparing the apparent Kic 

to the real K, c. Such complications might have arisen due to plane strain 

considerations had the size of the specimens been different. 
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All dimensions are in mm, 
Nominal values of a, B and W 
are 17.0.17.0 and 34.0 respectively, 

2s 

a 160ý-F 
M_ 13. D 

B 

1 

2 05,2.10 or 2.20 

2W+55 2W+55 

Fig. 5.2. The 3PB specimen with a notch. 

In Fig. 5.2, the notch tip is shown to be semi-circular (p/s = 1). In reality the 

tip could be anything from a semi-circle to a flat end with sharp corners (p/s -' 0). 

Four values of 2s were tested: 0.20,0.10,0.05 and 0.02 mm as shown in Fig. 

5.1. 

5.1.2. Manufacture 

(a) Casting Technique 

The production of the 3PB specimen involved the casting of a block of resin 

after which machining was required to transfer one block into ten or eleven specimens. 

Some thin slices were also machined out of each block and viewed through an 
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ýý. ý. ý. ne casting mouza jor the 3plt specimen, shown without the shim or 
the trapping plates. 

polariscope to ensure the absence of residual stresses in the castings. Any casting 
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which had not acquired a "high quality standard" was rejected. What characterised 

a "high quality standard" were the absence of residual stresses and air bubbles, the 

achievement of the exact baking time periods and temperatures, the attaining of a 

uniform colour and homogeneity of the casting. In addition, the individual specimens 

were checked thoroughly, with the aid of a microscope and micrometers, for the 

dimensions and notch shapes. 

0 
10 

250 mm 

El 
V- 
Nr 

mm Holes in shim are not shown 
0.10 

r: g.. 3.4.1 ne snarpenea shim used for the casting of the 3PB specimen. 

There were two identical moulds for casting the 3PB specimen blocks. They 

were made of aluminium, with the exception of the shim and the plates trapping the 

shim, being made of steel. Fig. 5.3 shows one of the two identical moulds separately. 

The sharpened shim and the trapping plates can be seen in Figs. 5.4. & 5.5 

respectively. The above components are assembled together in Fig. 5.6. 
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The flat 

shims were 

produced by 

marking a straight 

line on the shim 

steel and cutting it 

with a pair of 

scissors. The burr 

on the edge was 

removed by 

rubbing it with a 

320 grade wet and 

dry paper. 

The 

sharpened shims 

were produced out 

of shim steel by 

trapping each of 

them between two 

flat 6mm-thick 

E 
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0Q od 
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steel plates and 
Fig. 5.5. The trapping plates used for the casting of 

the 3PB specimen. 

grinding them at 

an angle of 10° to the plane of the plates. 
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Fig. 5.6. The complete assembly of the casting mould, the trapping plates and 
a flat-edged shim for the casting of the 3PB specimen. 
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(b) Machining Technique 

Each cast block was fly-cut on a milling machine to the required specimen 

width, W (Fig. 5.2). The block was then sliced into individual specimens of thickness 

B (Fig. 5.2) using a diamond impregnated cutting wheel. The slicing operation was 

carried out using copious quantities of cutting fluid in order to avoid any overheating 

of the material. The specimen with the final dimensions can be seen in Fig. 5.2. 

5.1.3. Loading Apparatus 

It was required to load the 3PB specimens in pure bending. The equipment 

used to achieve this was the Instron Instrument manufactured by Instron Limited 

(Coronation Rd, High Wycombe, Buckinghamshire). The Instron three point bend 

rollers, in conjunction with the Instron 1193 loading machine, provided the desired 

three point bending, as shown in Fig. 5.7. The upper roller was parallel to and of an 

equal distance from the two lower rollers (Fig. 5.8). The lower rollers had a loading 

span, L (= 4W), of 136.0 mm between their centres -a requirement given by BS5447 

[76] for the size of the specimen in hand. The three rollers were 25.0 mm in diameter 

each. 

An acceptable range for the dimensions of the rollers was recommended by 

BS5447 [76]. Also required was the ability of the lower rollers to roll away from 

each other, in the plane containing their axes, against a small spring force, if forced 

to do so, to trivialize any horizontal frictional force component between the specimen 
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and rollers. The rollers satisfied all the requirements. 

The lower 

rollers were fixed 

to the base of the 

Instron 1193 

loading machine 

while the upper 

roller was 

connected to its 

loading cross head 

having a 

controllable 

loading speed set 

at 1.0 mm/minute. 

An Instron 

compression load 

cell was calibrated 

in accordance with 

the Instron 

manual, and used I 
Fig. 5.7. 

to measure the 

load exerted on the 3PB specimens. 
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Nominal values of B and W are 17.0 and 34.0 mm respectively. 
P 

3 of spe3ciB 58 mm 
0 25 mm 

3 
TF 

F/2, 

L/2= 68.0 mm L/2= 68.0 mm 

At fracture F= Fc 

Fig. 5.8. The Instron three point bend rollers used for the loading of the 3PB 

specimen. 

5.1.4. Experimentation 

Each one of the 3PB specimens was carefully placed between the upper and 

lower rollers with the length of the specimen perpendicular to the rollers' axes; its 

location was central in relation to the rollers, as shown in Fig. 5.8. 

The upper roller was brought down onto the specimen, to compress it in pure 

bending, with a constant velocity of 1.0 mm/minute, resulting in an approximate 

loading rate of 860 N/minute. The load cell measured the force, F, exerted by the 

upper roller at the point of contact with the specimen - see Fig. 5.8. The force at 

fracture, Fc, was recorded and used in the stress intensity factor calculations. 
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In every test, the specimen 

would break at the notch tip into 

two symmetric halves with the 

broken surface containing fine 

lines revealing the point along the 

notch tip at which the crack 

initiated, as can be seen in Fig. 

5.9. Occasionally, when the 

crack initiated at either end of the 

notch tip, the results were 

rejected in case there was any 

asymmetric bending in the 

specimen due to uneven specimen 

dimensions caused by infrequent 

and unavoidable imbalance in 

machining tolerances. 

5.1.5. Results 

two halves of a broken 3PB 

specimen showing the 
fracture surface and the lines 

which are indicative of the 
point of crack inception. 

The 3PB specimens had four notch widths, 2s: 0.20mm, 0.10mm, 0.05mm, and 

an effective 0.02mm which was obtained by sharpening a shim with an original 

thickness of 0.10mm. The total number of specimens tested with a valid outcome for 

each of the above four notch sizes is given in Table 5.1. 
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2s (mm) Total number of specimens tested 

0.20 47 

0.10 58 

0.05 46 

0.02 147 

Table 5.1. The number of valid tests for each notch size of the 3PB specimens. 

The tests carried out on the notched 3PB specimens gave the critical force, Fc 

(see Fig. 5.8), at which fracture occurred. That value was in turn utilized to calculate 

the apparent critical values of the stress intensity factor, KIc^PP, by referring to the 

relevant equation (equation 5.1) and table provided in BS5447 [76]. 

KID = 
Fc Y 

B 
(5.1) 

Fc being the critical value of F; F, B and W are defined in Fig. 5.8. Y is a 

dimensionless geometry factor tabulated in BS5447 [76] which depends on a/W, the 

ratio of the crack length to the specimen width, for the particular 3PB specimen. 

The dimensions of the specimens and notches, the fracture loads and the 

apparent critical stress intensity factors can be seen in Tables 5.2,5.3,5.4 and 5.5 for 

the notch widths 0.20,0.10,0.05 and 0.02mm respectively. 

The angle of crack propagation was zero for every 3PB specimen, producing 

two identical halves. 
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Specimen number B (mm) W(mm) a/W Fc(N) Klc "(N/mm3n) 

1 17.02 33.95 0.487 467 47.9 

2 17.03 33.96 0.488 488 50.2 

3 17.05 33.96 0.488 645 66.2 

4 17.06 33.97 0.499 653 69.5 

5 17.02 33.98 0.499 600 64.0 

6 17.05 33.97 0.499 618 65.8 

7 17.04 34.00 0.498 538 57.1 

8 17.02 34.00 0.499 563 60.0 

9 17.06 34.00 0.500 516 55.0 

10 16.99 34.01 0.499 512 54.7 

11 17.00 34.00 0.500 495 53.0 

12 17.06 34.00 0.507 630 68.8 
13 17.07 34.00 0.508 513 56.0 

14 17.06 33.99 0.508 564 61.7 

15 17.02 33.99 0.507 592 64.7 

16 17.01 33.98 0.507 531 58.0 

17 17.09 33.98 0.508 464 50.6 
18 17.06 33.99 0.509 508 55.7 

19 17.05 33.99 0.509 557 61.3 

20 17.11 34.00 0.509 516 56.4 
21 17.05 34.01 0.508 499 54.7 

22 17.06 33.91 0.494 620 65.0 
23 17.10 33.92 0.494 605 63.2 
24 17.04 33.91 0.494 690 72.4 
25 17.12 33.91 0.494 581 60.7 

26 17.03 33.90 0.494 575 60.4 
27 17.12 33.90 0.494 703 73.3 

28 17.06 33.90 0.493 482 50.3 
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29 16.98 33.95 0.507 665 72.3 

30 16.99 33.96 0.504 567 61.6 

31 16.95 33.97 0.505 711 77.6 

32 16.97 34.00 0.490 627 65.0 

33 16.96 34.00 0.489 676 70.1 

34 17.00 34.00 0.489 637 65.8 

35 16.99 33.99 0.488 632 65.1 

36 16.97 33.99 0.487 600 61.7 

37 16.99 33.99 0.488 621 63.9 

38 16.96 33.99 0.487 649 66.8 

ý9 17.04 34.00 0.490 697 72.0 

40 17.03 34.00 0.488 760 78.0 

41 17.04 33.99 0.500 681 72.7 

42 17.00 33.98 0.499 690 73.5 

43 17.01 33.98 0.500 631 67.4 

44 17.00 33.98 0.501 757 81.2 

45 16.96 34.00 0.505 690 75.2 

46 16.95 33.98 0.499 693 74.1 

47 17.01 34.00 0.507 776 84.9 

Table 52. Results for the 3PB specimens with 0.20 mm notch width. 

Specimen number B(mm) W(mm) a/W Fc(N) KI App(N/mmm) 

1 17.08 34.00 0.504 554 59.7 

2 17.04 33.99 0.503 491 53.0 

3 17.02 33.98 0.502 500 53.8 

4 17.04 33.96 0.501 502 53.8 

5 17.06 33.96 0.501 527 56.5 

6 17.08 33.96 0.502 489 52.4 

7 17.07 33.96 0.501 524 56.1 
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8 17.04 33.97 0.503 564 60.8 

9 17.01 33.96 0.501 495 53.1 

10 17.04 33.95 0.500 542 57.9 

11 16.97 33.95 0.499 524 56.0 

12 16.95 33.94 0.498 539 57.5 

13 17.04 34.00 0.512 501 55.6 

14 17.04 34.00 0.511 525 58.1 

15 17.05 33.99 0.511 570 63.1 

16 17.08 33.99 0.512 569 63.0 

17 17.09 33.98 0.512 470 52.0 
18 17.03 33.98 0.512 398 44.2 

19 16.97 33.97 0.513 517 57.8 
20 17.07 33.97 0.513 575 63.9 

21 17.06 33.96 0.512 464 51.5 
22 17.08 34.01 0.492 602 62.4 
23 17.12 33.99 0.489 593 60.9 
24 17.08 33.99 0.487 536 54.8 

25 17.12 33.98 0.488 605 61.8 
26 17.13 33.97 0.488 642 65.7 
27 17.13 33.97 0.488 605 61.9 

28 17.11 33.97 0.487 671 68.5 
29 17.00 33.97 0.488 564 58.0 
30 17.13 33.98 0.488 700 71.6 
31 17.11 33.98 0.487 563 57.4 
32 17.01 34.00 0.494 444 46.6 

33 16.98 33.99 0.493 582 60.9 
34 17.01 33.98 0.497 506 53.7 
35 16.96 33.98 0.494 473 49.8 
36 16.95 33.98 0.494 414 43.6 
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37 17.06 33.98 0.500 618 65.9 

38 17.00 33.99 0.500 627 67.1 

39 17.01 34.00 0.500 617 65.9 

40 17.03 34.01 0.499 625 66.6 

41 17.00 34.02 0.500 556 59.4 

42 17.02 34.02 0.499 671 71.5 

43 17.03 34.03 0.500 605 64.5 

44 17.02 34.03 0.499 705 75.1 

45 17.02 34.04 0.499 710 75.5 

46 17.01 34.05 0.498 611 64.9 

47 17.05 34.04 0.498 571 60.4 

48 17.08 34.07 0.508 508 55.5 

49 16.99 34.07 0.506 540 58.9 

50 17.02 34.07 0.506 511 55.6 

51 17.03 34.07 0.505 498 54.0 

52 17.02 34.07 0.504 541 58.5 

53 17.06 34.07 0.504 456 49.2 

54 17.01 34.07 0.503 490 52.9 

55 17.06 34.07 0.503 451 48.4 

56 17.07 34.07 0.502 611 65.5 

57 17.04 34.07 0.502 475 51.0 

58 17.07 34.07 0.502 476 51.0 

Table 53. Results for the 3PB specimens with 0.10 mm notch width. 

Specimen number B(mm) W(mm) a/W Fc(N) K1 "(N/mm3R) 

1 17.07 34.04 0.494 569 59.5 

2 17.07 34.03 0.497 561 59.2 

3 17.07 34.02 0.498 513 54.3 

4 17.05 34.02 0.502 528 56.5 
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5 17.08 34.02 0.499 545 57.9 

6 17.12 34.02 0.500 546 58.0 

7 17.06 34.02 0.503 445 47.9 

8 17.04 34.02 0.503 522 56.2 

9 17.09 33.96 0.503 457 49.1 

10 17.05 33.96 0.501'- 428 45.8 

11 17.03 33.97 0.500 533 56.9 

12 17.06 33.97 0.501 591 63.2 

13 17.10 33.98 0.501 574 61.3 

14 17.06 33.98 0.500 524 55.8 

15 17.02 34.00 0.502 530 56.6 

16 17.03 34.01 0.502 452 48.6 

17 17.01 33.97 0.517 380 43.0 

18 17.08 33.98 0.511 389 43.0 
19 17.02 33.97 0.512 376 41.8 

20 17.04 33.97 0.514 437 48.8 

21 17.08 33.97 0.514 383 42.7 

22 17.10 33.97 0.513 409 45.4 

23 17.04 33.97 0.514 406 45.4 
24 17.01 33.98 0.513 382 42.6 
25 16.93 34.01 0.509 370 40.9 

26 16.94 34.01 0.509 522 57.8 
27 16.96 34.01 0.509 485 53.6 

28 16.99 34.02 0.508 457 50.2 

29 17.03 34.02 0.509 400 43.9 

30 16.99 34.02 0.512 486 54.0 
31 16.98 34.02 0.512 408 45.4 
32 16.99 34.02 0.511 484 53.6 
33 16.99 34.02 0.512 460 51.2 
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34 17.01 34.02 0.514 443 49.5 

35 16.96 34.02 0.515 360 40.5 

36 17.01 34.01 0.513 410 45.8 

37 17.04 34.01 0.512 432 48.0 

38 17.01 34.00 0.512 414 46.0 

39 17.00 34.00 0.511 451 50.0 

40 17.02 34.00 0.511 505 55.9 

41 17.02 34.00 0.510 437 48.3 

42 17.02 33.99 0.508 471 51.6 

43 17.00 33.99 0.508 400 43.9 

44 16.99 33.99 0.508 455 49.9 

45 17.01 33.99 0.508 524 57.4 

46 17.06 33.98 0.506 436 47.4 

Table 5.4. Results for the 3PB specimens with 0.05 mm notch width. 

Specimen number B(mm) W(mm) a/W Fc(N) KI APP(N/mm3R) 

1 16.97 33.97 0.493 275 28.9 

2 16.97 33.96 0.489 288 29.9 
3 16.98 33.95 0.492 333 34.8 

4 17.02 33.95 0.494 294 30.9 

5 17.07 33.95 0.493 317 33.1 

6 16.92 33.95 0.494 293 30.9 
7 16.91 33.95 0.494 304 32.1 

8 16.90 33.96 0.492 292 30.7 

9 17.02 33.96 0.491 300 31.2 

10 16.98 33.96 0.491 305 31.8 

11 17.07 34.01 0.480 306 30.6 
12 17.00 34.00 0.475 318 31.5 

13 17.01 34.00 0.479 311 31.1 
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14 17.05 34.00 0.481 298 29.9 
15 17.00 33.99 0.481 277 27.9 

16 17.01 33.99 0.480 290 29.1 

17 17.07 33.99 0.480 316 31.6 

18 17.07 33.99 0.480 307 30.7 

19 17.04 34.00 0.479 321 32.1 

20 17.01 34.00 0.479 321 32.1 

21 16.87 33.99 0.485 349 35.9 

22 17.02 33.99 0.488 375 38.6 

23 17.02 33.99 0.486 349 35.7 
24 17.01 33.98 0.487 349 35.8 

25 17.00 33.98 0.487 350 36.0 

26 16.89 33.98 0.486 335 34.5 

27 16.95 33.98 0.487 324 33.4 
28 16.95 33.98 0.487 365 37.6 
29 16.97 33.98 0.483 345 35.1 
30 16.96 33.98 0.479 344 34.6 

31 17.00 33.95 0.480 351 35.3 
32 16.98 33.94 0.481 435 43.9 
33 16.94 33.93 0.483 344 35.1 
34 17.01 33.93 0.486 347 35.5 

35 16.92 33.92 0.488 372 38.5 
36 17.01 33.92 0.490 411 42.6 
37 17.04 33.91 0.493 350 36.6 
38 16.97 33.91 0.494 392 41.3 
39 17.02 33.92 0.493 368 38.5 
40 16.98 33.92 0.492 377 39.4 
41 16.97 33.97 0.504 295 32.1 
42 17.02 33.96 0.502 319 34.3 
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43 16.98 33.95 0.501 301 32.4 

44 17.00 33.95 0.500 307 32.9 

45 17.01 33.94 0.499 323 34.5 

46 17.03 33.94 0.498 310 32.9 

47 17.00 33.94 0.498 330 35.1 

48 17.01 33.95 0.497 340 36.1 

49' 17.00 33.95 0.493 373 39.1 

50 17.04 33.94 0.493 316 33.0 

51 16.98 33.95 0.499 295 31.5 

52 17.01 33.95 0.499 320 34.2 
53 16.95 33.94 0.499 313 33.5 

54 17.03 33.93 0.499 309 33.0 

55 16.99 33.93 0.499 314 33.6 

56 17.05 33.93 0.498 318 33.7 
57 17.00 33.92 0.498 336 35.8 

58 16.98 33.92 0.497 339 36.0 
59 17.02 33.93 0.496 322 34.0 
60 17.03 33.94 0.492 323 33.7 
61 16.95 33.95 0.498 255 27.2 

62 17.00 33.94 0.498 324 34.5 
63 17.03 33.93 0.501 367 39.4 
64 16.96 33.92 0.504 337 36.7 
65 17.00 33.93 0.502 310 33.4 
66 17.01 33.93 0.502 305 32.9 
67 17.02 33.94 0.502 290 31.2 

68 17.03 33.94 0.502 300 32.3 
69 16.97 33.94 0.502 274 29.6 
70 17.00 33.94 0.502 270 29.1 
71 17.01 33.92 0.501 282 30.3 
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72 17.01 33.91 0.500 318 34.1 
73 16.90 33.90 0.503 335 36.5 
74 16.98 33.90 0.508 300 33.0 
75 17.01 33.90 0.504 314 34.1 
76 17.00 33.88 0.505 276 30.1 
77 17.03 33.90 0.505 303 32.9 

78 17.04 33.90 0.505 352 38.2 
79 17.03 33.91 0.505 330 35.9 
80 16.95 33.91 0.503 275 29.8 
81 17.03 33.95 0.498 314 33.4 
82 16.99 33.95 0.501 345 37.1 
83 16.97 33.95 0.503 337 36.5 
84 16.95 33.95 0.504 331 36.0 
85 16.97 33.95 0.504 301 32.7 
86 16.92 33.95 0.504 335 36.5 
87 16.92 33.95 0.504 330 36.0 
88 16.97 33.96 0.504 390 42.4 
89 16.95 33.97 0.504 355 38.6 
90 16.95 33.98 0.504 337 36.7 
91 17.00 33.98 0.502 398 42.9 
92 17.03 33.98 0.501 362 38.8 
93 17.00 33.97 0.503 381 41.2 
94 17.01 33.97 0.504 397 43.0 
95 17.02 33.96 0.504 375 40.6 
96 17.03 33.96 0.504 355 38.5 
97 17.07 33.96 0.505 375 40.6 
98 16.98 33.96 0.504 368 40.0 
99 17.03 33.96 0.501 381 40.9 

100 17.01 33.96 0.498 384 40.8 
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101 17.00 33.96 0.491 312 32.5 

102 16.97 33.96 0.489 333 34.5 
103 16.97 33.97 0.490 621 64.5 
104 17.00 33.97 0.492 421 39.9 
105 16.96 33.97 0.494 426 40.6 

106 16.99 33.98 0.495 343 32.8 
107 16.96 33.98 0.494 376 35.9 
108 17.01 33.98 0.495 352 33.6 
109 16.90 33.99 0.495 402 38.6 
110 16.99 33.99 0.490 306 31.8 
111 17.02 33.99 0.490 443 45.9 
112 17.00 33.99 0.492 409 42.7 
113 16.97 33.98 0.495 591 62.4 
114 16.98 33.98 0.496 370 39.2 
115 16.98 33.98 0.497 325 34.5 
116 16.94 33.98 0.498 441 47.1 
117 17.00 33.97 0.497 400 42.4 
118 17.03 33.97 0.497 332 35.2 
119 16.98 33.96 0.498 366 39.0 
120 17.02 34.02 0.491 360 37.4 
121 17.01 34.02 0.491 392 40.7 
122 17.00 34.02 0.492 430 44.8 
123 16.98 34.02 0.495 485 51.1 
124 16.99 34.02 0.495 474 49.9 
125 17.01 34.02 0.495 340 35.8 
126 16.98 34.02 0.496 381 40.3 
127 17.01 34.02 0.493 435 45.5 
128 17.01 34.02 0.492 370 38.6 
129 17.02 34.02 0.490 306 31.7 
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130 16.97 34.01 0.500 435 46.6 

131 16.97 34.00 0.499 468 50.0 

132 16.99 33.99 0.500 337 36.1 

133 16.99 33.99 0.501 376 40.4 

134 17.03 33.99 0.501 470 50.4 

135 16.96 33.98 0.501 385 41.5 

136 16.99 33.98 0.502 418 45.1 

137 17.00 33.97 0.498 460 48.9 

138 17.00 33.96 0.496 341 36.1 

139 16.95 33.95 0.500 295 31.7 

140 17.02 33.95 0.498 397 42.2 

141 17.00 33.95 0.498 395 42.0 

142 16.98 33.95 0.497 474 50.4 

143 16.97 33.96 0.496 338 35.8 

144 16.99 33.97 0.497 335 35.6 

145 17.02 33.97 0.494 380 39.9 

146 16.97 33.98 0.492 313 32.7 

147 17.00 33.98 0.490 276 28.6 

Table 5.5. Results for the 3PB specimens with 0.02 mm notch width. 

Table 5.6 presents some statistical parameters. The number of tested 

specimens, the mean value of the apparent critical stress intensity factor (K, 4* l) and 

its standard deviation and 95% confidence limits are provided for each notch size. 

A histogram of KI " for each notch size is shown in Fig. 5.10. 
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2s(mm) Number of 
tested 

specimens 

Mean value 
of K,, APP 
(N/mm3/2) 

Standard 
deviation of 

KicAPP(N/mm3n) 

95% confidence 
limits of 

K1c APP (N/mm3a) 

0.20 47 64.4 8.56 2.54 

0.10 58 58.5 7.04 1.88 

0.05 46 50.5 6.02 1.81 

0.02 147 36.8 5.96 0.98 

Table 5.6. Statistical analysis of the notched 3PB specimen results. 
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notch widths. 

5.2.3PB Specimen with a real crack 

The 3PB specimen with a real crack was used to find the real critical stress 

intensity factor, K, c. 
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Prior to the destructive testing of each specimen, it was fatigue loaded in order 

to produce a real crack of a certain length which initiated at the tip of a cast chevron 

notch. 

5.2.1. Specimen 

The 3PB specimen with a real crack, shown in Fig. 5.11, met all the 

requirements given in BS5447 [76]. 

All dimensions Nominal values of a, 
are in mm. B and W are 17.0,17.0 

and 34.0 respectively. 

B 
_I b 45° 

45 ° 

W Section 
a through M= 13.0 notch 

L 

--. 
-{; ý---- N=2.00 

2W+ 5.5 j 2W+ 5.5 

Fig. 5.11. The 3PB specimen with a real crack. 

5.2.2. Manufacture 

The two moulds used to produce the 3PB notched specimens, Fig. 5.3, were 

also employed to cast the 3PB specimens with a real crack, by replacing the shim and 
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the trapping plates with a chevron-notch producing plate, shown in Fig. 5.12. 

All dimensions are in mm 

0 
v 

1ý 
22 A--I 

*4DkO4 

Section A-A q5 4 

Z-ý 

600 

Fig. 5.12. The chevron-notch producing plate for the 3PB specimen. 
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The cast blocks of Araldite containing the chevron notches were machined into 

the specimen shown in Fig. 5.13 by applying the same machining technique described 

in section 5.1.2(b). 

The specimens tested were all of a "high quality standard". This description 

has been defined in the casting technique of section 5.1.2(a). 

5.2.3. Fatiguing Apparatus 

The 

Instron three 

point bend 

rollers shown 

in Figs. 5.7 & 

5.8 were 

attached to an 

Instron 

fatiguing 

instrument 

called: Instron 

1341 - see Fig. 

5.14. 
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5.2.4. Fatiguing Process 

Each chevron-notched 3PB specimen was placed centrally between the upper 

and lower rollers with a fatiguing force applied by the Instron 1341 on the specimen 

through the rollers - see Fig. 5.15. 

3 of speciimP en 58 inin 
,0 25 mm 

FB 

F/2 F/2 

OL/2= 

68.0 mm i L/2= 68.0 mm 
) E==] 

Nominal values of B and W are 17.0 and 34.0 mm respectively. 

Fig. 5.15. Fatigue force acting on the chevron-notched 3PB specimen. 

The Instron 1341 cross-head was displacement-controlled to provide a static 

compressive displacement of 0.15mm and a dynamic displacement of ±0.05mm with 

a frequency of 100Hz. In other words, the compressive displacement inflicted on the 

specimen varied between 0.10mm and 0.20mm with a frequency of 100Hz. 

The period of time over which the fatigue crack propagated to the required 

length varied from a few minutes to a few hours. Therefore, a continuous monitoring 
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of each specimen during its fatigue loading was necessary. The fatigue crack was 

propagated until the total crack length, a, was approximately equal to W/2 - see Fig. 

5.11. 

The actual value of the fatiguing force was immaterial since it did not appear r 

in any calculations, results or conclusions. The creation of a real crack in the 

specimen was vital regardless of the method. The same argument rendered the 

description of the crack propagation, of being either a fatiguing process or a set of 

consecutive short brittle propagation-incidents, as being indifferent. 

5.2.5. Loading Apparatus 

The loading apparatus used to destructively test the 3PB specimens with a real 

crack was fully described in section 5.1.3. It was the Instron three point bend rollers 

in conjunction with the Instron 1193 loading machine. 

5.2.6. Experimentation 

The testing of the 3PB specimens with a real crack was identical to that carried 

out on the 3PB notched specimens, a description of which is given in section 5.1.4. 

The specimens with a real crack would break in two symmetric halves with the 

propagation initiating at the crack tip rather than the notch tip as in the case of the 

notched specimens. 
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Another difference between the notched specimens and the specimens with a 

real crack was the smooth fracture surface in the latter case with the absence of any 

lines which would have otherwise indicated the point of crack initiation. 

5.2.7. Results 

The number of valid tests for the 3PB specimens with a real crack was 63. 

Prior to performing the destructive tests, the crack front which had been fatigue- 

produced had to satisfy specific requirements given by BS5447 [76] and ANSI/ASTM 

E 399 - 78a [77]. 

The process of checking the shape of the fatigued crack front had to be 

achieved after the breaking of each specimen into two halves, in order to be able to 

view the crack surfaces under the microscope. As expected, the crack front was a 

curve rather than a straight line, the centre point on the crack front travelling further 

than the end points. The curvature could not exceed certain limits [76 & 77] 

otherwise the test would be invalid. 

The average crack length, a, was calculated by equating it to the arithmetic 

mean of the crack length at the following three locations: the centre of the crack front 

and the two midway points between the centre and each end of the crack front. The 

three points are denoted by the suffixes: "cen", "mid" and "mid" respectively. The 

suffix "end" denotes the end of the crack front from either side. Table 5.7 presents 

the different values of the crack length, for each specimen, at the above mentioned 
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five points on the crack front and the mean value, a, as defined above. 

Table 5.7 also presents the thickness, B, and width, W, of each specimen, the 

ratio of the average crack length to the specimen width, a/W, the load at fracture, Fc, 

and finally the critical stress intensity factor, KIc, which was obtained using the same 

equation, table and method of BS5447 [76] described in section 5.1.5. 

The angle of propagation of the crack was zero in every 3PB specimen 

resulting in breaking the specimen in two halves. 

Specimen 
number 

aCod 
(MM) 

a. 
(mm) 

a,,. 
(mm) 

amid 
(mm) 

a,, od (MM) 
a 

(MM) 

1 15.94 16.93 17.24 16.99 15.60 17.05 

2 16.16 17.35 17.57 17.35 16.15 17.42 

3 15.94 17.05 17.33 17.12 16.02 17.17 

4 16.30 17.52 17.76 17.56 16.55 17.61 
5 16.01 17.24 17.71 17.41 15.96 17.45 

6 16.00 17.08 17.33 17.16 16.08 17.19 

7 16.18 17.50 17.64 16.98 15.67 17.37 

8 16.10 17.40 17.66 17.56 16.39 17.54 

9 16.06 17.11 17.32 17.04 15.81 17.16 

10 15.84 16.88 17.28 17.11 16.00 17.09 
11 16.24 17.68 17.80 17.39 16.06 17.62 
12 15.98 17.17 17.55 17.35 16.13 17.36 

13 15.92 17.29 17.78 17.25 15.99 17.44 
14 16.11 17.23 17.61 17.73. 16.43 17.52 

15 16.18 17.49 18.12 17.73 16.51 17.78 
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16 15.91 17.13 17.45 17.26 16.13 17.28 

17 16.12 16.92 17.01 16.79 16.10 16.91 

18 16.47 17.54 17.87 17.29 16.42 17.57 

19 16.69 17.42 17.56 17.47 16.70 17.48 

20 16.82 17.62 17.90 17.67 16.87 17.73 

21 17.35 18.28 18.59 18.56 17.71 18.48 

22 16.34 16.95 17.12 16.90 15.94 16.99 

23 16.33 17.19 17.45 17.20 16.46 17.28 

24 16.27 17.09 17.29 17.19 16.31 17.19 

25 16.42 17.36 17.41 17.14 16.42 17.30 

26 16.25 17.23 17.53 17.38 16.70 17.38 

27 16.11 17.53 17.93 17.52 15.90 17.66 

28 15.84 17.32 17.80 17.46 15.80 17.53 
29 16.09 17.61 18.00 17.68 16.23 17.76 

30 16.07 17.64 18.07 17.69 16.03 17.80 

31 16.03 17.61 18.01 17.61 16.00 17.74 

32 15.51 17.09 17.47 17.13 15.65 17.23 

33 16.02 17.55 17.96 17.58 16.08 17.70 

34 15.69 17.27 17.71 17.30 15.75 17.43 

35 15.96 17.62 17.99 17.58 16.00 17.73 

36 15.91 17.45 17.82 17.40 15.81 17.56 
37 15.96 17.59 18.01 17.60 16.00 17.73 
38 15.80 17.25 17.62 17.21 15.68 17.36 
39 16.99 18.48 18.84 18.45 16.86 18.59 

40 15.98 17.42 17.84 17.56 16.12 17.61 

41 16.10 17.93 18.42 18.10 16.40 18.15 

42 16.56 18.22 18.67 18.26 16.65 18.38 
43 15.80 17.30 17.65 17.25 15.75 17.40 
44 16.13 17.56 17.96 17.84 16.34 17.79 

104 



45 16.12 17.70 18.16 17.88 16.36 17.91 

46 16.12 16.99 17.25 17.08 16.20 17.11 

47 17.26 18.00 18.09 17.79 16.34 17.96 

48 16.35 17.32 17.54 17.36 16.32 17.41 

49 16.13 17.31 17.56 17.38 16.19 17.42 

50 16.18 17.23 17.39 17.16 16.23 17.26 

51 16.19 17.15 17.45 17.19 16.23 17.26 

52 16.09 17.02 17.44 17.16 16.20 17.21 

53 16.13 16.95 17.40 16.90 16.18 17.08 

54 15.92 17.17 17.05 16.75 15.63 16.99 

55 15.95 17.15 17.37 17.15 15.90 17.22 

56 15.94 16.90 17.13 16.94 15.90 16.99 

57 15.84 16.75 16.95 16.77 15.86 16.82 

58 16.23 17.38 17.44 16.98 16.05 17.27 

59 15.36 16.56 16.84 16.63 15.45 16.68 

60 16.21 17.58 17.90 17.57 16.27 17.68 

61 16.11 17.02 17.32 17.16 16.18 17.17 

62 16.00 16.92 17.16 17.01 16.13 17.03 

63 16.05 17.15 17.60 17.48 16.26 17.41 
l ul 

Specimen 
number 

B(mm) W(mm) a/W Fc(N) Kic(N/mn ) 

1 16.96 33.98 0.502 212 22.9 

2 16.91 33.99 0.513 203 22.8 
3 16.96 34.00 0.505 215 23.4 
4 16.96 34.00 0.518 193 22.0 

5 17.02 33.99 0.513 192 21.5 
6 16.96 33.99 0.506 201 22.0 
7 17.01 33.98 0.511 200 22.1 
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8 17.02 34.00 0.516 210 23.7 

9 17.01 33.99 0.505 212 23.0 

10 16.98 34.01 0.502 213 23.0 

11 16.99 34.01 0.518 196 22.3 

12 17.02 34.01 0.510 216 23.9 

13 17.03 34.01 0.513 200 22.3 

14 17.00 34.02 0.515 205 23.0 

15 17.03 34.02 0.523 200 23.0 

16 17.04 34.03 0.508 213 23.3 

17 16.96 34.02 0.497 254 27.0 

18 17.01 34.01 0.517 230 26.0 

19 17.00 34.00 0.514 236 26.5 

20 17.00 34.00 0.521 236 27.1 

21 16.97 34.00 0.544 212 26.4 

22 17.04 34.02 0.499 257 27.4 

23 17.03 34.01 0.508 251 27.5 

24 17.00 34.00 0.506 251 27.4 

25 17.01 34.04 0.508 251 27.5 

26 17.00 34.03 0.511 250 27.7 

27 16.98 34.08 0.518 209 23.7 

28 16.97 34.05 0.515 222 25.0 
29 17.01 34.07 0.521 219 25.1 

30 17.00 34.07 0.522 220 25.3 

31 17.00 34.03 0.521 210 24.1 

32 17.01 34.02 0.506 203 22.1 
33 16.98 34.01 0.520 205 23.5 
34 17.01 34.01 0.512 220 24.5 
35 17.02 34.00 0.521 208 23.8 
36 17.01 34.00 0.516 196 22.1 
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37 17.00 34.00 0.521 200 22.9 

38 17.01 33.96 0.511 217 24.1 

39 17.02 33.96 0.547 188 23.5 

40 17.01 33.96 0.519 217 24.7 

41 17.03 33.96 0.534 199 23.8 

42 17.01 34.00 0.541 195 23.9 

43 17.02 34.00 0.512 212 23.6 

44 16.99 34.00 0.523 210 24.3 

45 17.01 34.00 0.527 204 23.9 

46 16.95 34.01 0.503 238 25.8 

47 17.00 34.00 0.528 208 24.4 

48 17.00 34.01 0.512 219 24.4 

49 17.00 34.00 0.512 229 25.5 

17.05 34.01 0.507 234 25.5 F 

17.05 34.01 0.507 225 24.6 

C 17.04 34.01 0.506 230 25.0 

53 17.04 33.97 0.503 230 24.8 

54 17.01 33.75 0.503 232 25.1 

55 16.93 33.74 0.510 221 24.6 

56 16.98 33.74 0.504 224 24.4 

57 16.97 33.73 0.499 237 25.4 

58 17.08 34.01 0.508 240 26.2 

59 17.05 34.01 0.490 240 24.8 

60 17.07 34.00 0.520 224 25.5 

61 17.03 34.00 0.505 241 26.2 

62 17.00 34.00 0.501 239 25.7 

63 17.00 34.01 0.512 229 25.5 
7b) 

Table 5.7(a & b). Results for the 3PB specimens with a real crack. 
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The statistical analysis of the critical stress intensity factor values for the 63 

3PB specimens containing a real crack can be seen in Table 5.8. It provides the 

number of tested specimens, the mean value of KIc and its standard deviation and 95% 

confidence limits. 

Number of tested Mean value of Standard 95% confidence 
specimens KIc (N/mm3n) deviation of limits of 

Kjc(N/mms'2) K1c(N/mm3R) 

63 24.5 1.59 0.41 

Table 5.8. Statistical analysis of the 3PB specimens with a real crack. 

A histogram of KIc for this type of specimen is shown in Fig. 5.16. 
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A comparison of the distribution of the KIc for the 3PB specimens containing 

a real crack with that of the KIc ' for the notched 3PB specimens is presented in Fig. 

5.17. 
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Fig. 5.17 is the same as Fig. 5.10 with only two columns of data added from 

the specimens with a real crack. 

5.3. Conclusions 

The need to compare the behaviour of a notched specimen to that of one with 

a real crack was explained in section 4.1. Thus, the ratio of the apparent critical stress 

intensity factor for a notch, Kic"PP, to the critical stress intensity factor for a real crack, 

KID, is significant for modelling a crack in an engineering component with a casting 
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that contains a narrow notch which represents the crack. 

Using the average values of the stress intensity factors stated in sections 5.1.5 

and 5.2.7, Table 5.9 was produced. It presents the ratio Kic P/KIC for the four 

different values of notch width in the 3PB specimens. 

2s(nim) KI CPXIC 

0.20 2.63 

0.10 2.39 

0.05 2.06 

0.02 1.50 

Table 5.9. K, "IK, c for the notched 3PB specimens. 

The real and apparent critical stress intensity factors obtained by testing 63 

3PB specimens with a real crack and 298 notched 3PB specimens respectively are all 

plotted against half the notch width, s, in Fig. 5.18 - assuming s (half the crack width) 

to be zero for a real crack. The figure represents the mean values with a solid line, 

the standard deviation with two dashed lines, and the 95% confidence limits with two 

dotted lines. 

A graph of KIc obtained from the 3PB specimen tests together with KI and KI, 

at fracture obtained from the CMM specimen tests can be seen in Fig. 6.11 of section 

6.3. 
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with a real crack respectively, plotted against half the notch width, s. 
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CHAPTER SIX 

MIXED-MODE EXPERIMENTATION 

The problem of failure and the mechanics of fracture are not limited to mode-I 

loading conditions in real life. Mixed-mode loading is often the case, combining 

mode-I and mode-II in different ratios. Thus, the importance of including mixed- 

mode study was apparent, covering a wide range of mode-mixity. 

The experimentation on mixed-mode loading was performed using the compact 

mixed mode (CMM) specimen, shown in Fig. 6.1, which had been used in the 

Department of Mechanical Engineering at the University of Nottingham to investigate 

creep, fatigue, and fracture problems [78]. Equations describing KI and KII in the 

vicinity of the crack tip had been obtained by the finite element method and confirmed 

photoelastically [78]. 

Similar to that described in chapter 5, the experimentation on the CMM 

specimen was comprised of the testing of specimens containing narrow notches as 

well as others with real cracks. The notched specimens were employed to establish 

the apparent critical values of KI and KII at which fracture occurred, while the 

specimens containing real cracks established the real critical values of KI and KI, at 
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fracture. 

6.1. CMM Specimen with Two Notches 

The notched CMM specimen was cast in the form of a block and then 

machined to size. Each one of the two moulds used had two shims producing the 

narrow notches. Four different shims were employed. The first three had thicknesses, 

2s, of 0.20,0.10 and 0.05mm producing notch widths of 0.20,0.10 and 0.05mm 

respectively. An effective notch width of 0.02mm was obtained with a sharpened 

shim having an original thickness of 0.10mm. The method of sharpening the shims 

was described in section 5.1.2(a). 

6.1.1. Specimen 

The notched CMM 

specimen is shown in Fig. 6.1. 

Hyde and Chambers [78] 

analyzed the CMM specimen 

containing two real cracks by 

finite element and photoelastic 

methods; equations describing KI 

and KI, for different loading 

conditions were presented. 
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The thickness of the specimen, B, and the dimension W were chosen to be 

approximately equal to those of the 3PB specimen of chapter 5, in order to ensure a 

plain-strain prevailing condition. 

The notch tip was similar to that of the 3PB specimen described in section 5.1. 

The tip might be a semi-circle (p/s = 1), a flat end with sharp corners (p/s -+ 0), or 

anything in between. Also, four values of 2s were tested: 0.20,0.10,0.05 and 

0.02mm. 

6.1.2. Manufacture 

The casting and machining techniques were identical to those of the 3PB 
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mm 
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specimen described in section 5.1.2, with the exception of the shape of the mould. 
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One of the two 

identical 

moulds used to 

cast the CMM 

specimens is 

shown in Fig. 

6.3. The 

sharpened shim 

and trapping 

plates are 

shown in Figs. 

6.2 & 6.4 

respectively. 

The flat and 

sharpened 

shims were 

produced as 

described in 

section 5.1.2(a). 
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Fig. 6.4. The trapping plates used for the casting of the 
CMM specimen. 

6.1.3. Loading Apparatus 

The CMM specimens were loaded under tension at different angles by using 

the Instron 1193, shown in Fig. 5.7, having a tension load cell, in conjunction with the 
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tension loading rig made 

of aluminium and steel - 

see Fig. 6.5. The rig 

could provide a loading 

angle, a (Fig. 6.5), of 16, 

50,70,90,100, and 105 

degrees, covering a wide 

range of mode-mixity of 

loading modes I and II. 

The Instron tension 

load cell was electrically calibrated in accordance with the Instron manual instructions. 

6.1.4. Experimentation 

Each CMM specimen was carefully broken into two pieces in the above 

described loading apparatus. The angle of crack propagation, measured from a line 

parallel to the symmetry line of the specimen, depended on the loading mode-mixity. 

The broken surfaces (surfaces of fracture) contained fine lines indicating the 

point of fracture inception along the notch tip. The very few specimens having the 

crack initiating at the edge of the notch were considered to provide invalid data and 

therefore were rejected. This excluded any specimens which might have had an 

imbalance in the machining tolerances which could have caused twisting or bending. 
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6.1.5. Results 

A total of 83 notched CMM specimens were tested which provided valid 

results. Table 6.1 states the number of specimens for each notch size. 

2s(mm) Number of valid tests 

0.20 21 

0.10 21 

0.05 21 

0.02 20 

Table 6.1. The number of valid notched CMM specimens tested for each notch 
width. 

The critical value of the loading force, Pc (see Fig. b. 1), was obtained from the 

above tests. Referring to a paper written by Hyde and Chambers [78], equations 

which calculated K1 and K. from P for different a/W and different loading angles, a, 

were derived (refer to appendix III for details). 

The dimensions of the specimens and notches, the loading angles, the fracture 

loads, the angles of crack propagation and the stress intensity factors at fracture are 

presented in Tables 6.2,6.3,6.4 and 6.5 for the notch widths 0.20,0.10,0.05 and 

0.02mm respectively. 
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Specimen number B(mm) W(mm) a/W a(°) 

1 16.86 34.08 0.442 90 

2 16.83 34.22 0.441 90 

3 17.06 34.23 0.440 100 

4 16.90 34.07 0.441 100 

5 17.03 34.23 0.442 105 

6 17.03 34.29 0.438 105 

7 16.97 34.25 0.445 105 

8 16.91 34.20 0.434 16 

9 16.99 34.26 0.435 16 

10 17.07 34.21 0.433 70 

11 16.93 34.30 0.447 70 

12 17.00 34.18 0.450 70 

13 17.04 34.22 0.449 70 

14 17.00 34.22 0.448 105 

15 17.04 34.28 0.443 105 

16 16.97 34.29 0.448 100 

17 19.96 33.92 0.442 100 

18 16.99 34.28 0.448 90 

19 16.98 34.17 0.445 90 

20 17.03 34.23 0.448 16 

21 17.05 34.28 0.448 16 
la) 

Specimen 
number 

Pc(kN) Propagation 
angle (°) 

KI at fracture 
(N/mdf2) 

KI, at fracture 
(N/mm3n) 

1 0.90 51.5 22.3 15.4 

2 1.31 49.0 32.3 22.1 

3 1.91 61.0 19.5 33: 5 
4 1.79 57.0 18.6 31.8 
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5 1.80 - 5.4 32.2 

6 1.91 67.0 5.6 33.8 

7 2.15 66.0 6.7 38.8 

8 0.80 1.5 65.6 -1.2 

9 0.85 2.0 69.9 -1.3 

10 1.11 29.5 54.1 14.8 

11 0.83 31.0 42.6` 11.5 

12 1.13 31.5 58.5 15.8 

13 1.08 31.5 55.4 15.0 

14 2.63 65.5 8.2 47.4 

15 2.81 66.0 8.5 50.3 

16 2.02 60.5 21.3 36.0 

17 2.39 60.0 24.8 42.7 

18 1.35 47.5 33.8 22.9 

19 1.50 47.5 37.3 25.5 

20 0.89 1.0 75.8 -1.2 

21 1.50 1.0 89.2 -1.4 
(6) 
Table 62(a & b). Results for the CMM specimens with 020mm notch width. 

Specimen number B(mm) W(mm) a/W oc(°) 

1 16.97 34.21 0.426 105 

2 16.98 34.32 0.429 105 

3 17.02 34.22 0.425 100 

4 16.99 34.26 0.427 100 

5 16.78 34.19 0.429 90 

6 17.02 34.20 0.426 90 

7 17.00 34.13 0.430 70 

8 16.94 34.13 0.430 70 

9 17.01 34.14 0.431 16 
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10 16.82 34.14 0.431 16 

11 17.05 34.11 0.431 105 

12 17.05 34.21 0.458 100 

13 17.05 34.19 0.455 100 

14 17.01 34.15 0.455 105 

15 17.05 34.15 0.457 105 

16 17.07 34.24 0.460 90 

17 17.03 34.26 0.459 90 

18 16.95 34.23 0.459 70 

19 16.99 34.21 0.457 70 

20 17.08 34.26 0.460 16 

21 17.07 34.35 0.461 16 
(a) 

Specimen 
number 

Pc(kN) Propagation 
angle (°) 

KI at fracture 
(N/mm3n) 

KI, at fracture 
(N/mm3R) 

1 1.44 - 4.0 25.2 

2 1.65 - 4.6 28.9 

3 1.90 57.5 18.5 32.7 

4 1.48 57.5 14.5 25.6 

5 1.12 49.0 26.7 18.7 

6 1.03 - 23.9 16.8 

7 0.92 31.5 44.6 12.2 

8 0.78 31.5 38.2 10.5 

9 0.61 2.0 49.5 -0.9 
10 0.55 -0.5 44.9 -0.9 
11 1.35 67.0 3.9 23.6 

12 1.72 56.0 18.9 31.1 
13 1.30 57.5 14.1 23.5 

14 1.47 66.5 4.8 26.8 

121 



15 1.65 65.5 5.7 31.0 

16 1.16 46.5 30.2 20.0 

17 1.25 47.0 32.5 21.6 

18 0.65 32.0 34.6 9.2 

19 0.68 30.5 36.0 9.6 

20 0.66 2.0 57.7 -0.7 
21 0.65 1.0 57.5 -0.7 

(b) 
Table 63(a & b). Results for the CMM specimens with 0.10mm notch width. 

Specimen number B(mm) W(mm) a/W a(°) 

1 17.17 34.01 0.437 105 

2 16.95 34.04 0.437 90 

3 16.98 33.99 0.446 70 

4 17.02 34.05 0.448 105 

5 17.03 33.98 0.447 105 

6 17.05 34.02 0.449 90 

7 17.07 34.05 0.448 90 

8 17.04 34.05 0.448 70 

9 17.04 34.05 0.447 70 

10 14.98 34.07 0.446 16 

11 16.86 34.17 0.456 105 

12 16.97 34.12 0.444 105 

13 17.01 34.15 0.448 105 

14 16.92 34.19 0.453 90 

15 16.99 34.34 0.455 90 

16 17.04 34.21 0.453 90 

17 17.05 34.24 0.454 70 

18 17.04 34.23 0.452 70 

19 17.02 34.24 0.451 70 
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20 16.99 34.23 0.452 16 

21 16.14 34.22 0.448 50 
(aj 

Specimen 
number 

Pc(kN) Propagation 
angle (°) 

KI at fracture 
(N/mm3rz) 

KI, at fracture 
(N/mm3R) 

1 2.41 66.0 7.2 42.6 

2 1.07 49.0 26.1 18.0 

3 0.81 29.0 41.4 11.2 

4 1.56 66.5 4.0 28.2 

5 1.48 66.0 4.6 26.6 
6 0.89 46.5 22.3 15.2 

7 0.89 42.5 22.1 15.0 

8 0.76 32.0 39.1 10.5 
9 0.67 29.0 34.3 9.3 

10 0.51 0.5 49.0 -0.8 
11 2.53 67.0 8.4 46.4 

12 2.30 67.0 7.1 41.5 

13 2.34 65.5 7.3 42.2 

14 1.23 47.5 31.3 21.2 

15 1.36 51.0 34.8 23.4 

16 1.13 48.5 28.6 19.3 

17 0.85 32.5 44.1 11.8 
18 0.93 31.5 48.0 12.9 
19 0.90 31.0 46.8 12.6 
20 0.57 3.0 49.3 -0.7 
21 

ýEi 
0.64 18.5 48.0 6.1 

IUl 
Table 6.4(a & b). Results for the CMM specimens with 0.0Smm notch width. 

Specimen number B (mm) W(mm) a/W ado) 
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1 17.07 33.83 0.449 105 

2 17.11 33.85 0.448 100 

3 17.04 33.83 0.447 90 

4 17.06 33.80 0.448 70 

5 17.05 33.83 0.450 16 

6 17.15 33.92 0.449 105 

7 16.94 33.86 0.442 100 

8 16.94 33.86 0.445 90 

9 17.03 33.75 0.444 70 

10 16.99 33.86 0.448 50 

11 17.00 33.84 0.443 105 

12 17.06 33.92 0.442 105 

13 17.06 33.80 0.443 100 

14 17.05 33.93 0.440 100 

15 17.02 33.85 0.440 90 

16 17.01 33.89 0.444 90 

17 17.00 33.79 0.442 70 

18 16.96 33.82 0.444 70 

19 17.06 33.94 0.444 50 

20 16.96 33.75 0.445 16 

(al 

Specimen 
number 

Pc(kN) Propagation KI at fracture 
angle (°) (N/mm3rz) 

K. at fracture 
(N/mm3) 

1 1.89 66.0 5.8 34.3 

2 1.42 58.5 15.0 25.3 

3 0.92 
. 
47.0 22.9 15.6 

4 0.56 30.0 28.8 7.8 

5 0.44 1.0 37.3 -0.6 
6 1.97 66.5 6.0 35.5 
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7 1.25 58.5 13.0 22.3 

8 1.00 47.5 24.9 17.1 

9 0.60 30.5 30.7 8.3 

10 0.42 20.5 30.0 3.8 

11 1.85 66.0 5.6 33.4 

12 1.76 67.0 5.3 31.6 

13 1.39 58.5 14.4 24.7 

14 1.35 58.5 13.9 23.9 

15 0.99 48.0 24.2 16.6 

16 0.95 44.5 23.5 16.0 

17 0.50 - 25.4 6.9 

18 0.53 31.0 27.2 7.4 

19 0.43 21.0 30.5 3.8 

20 0.44 2.5 37.1 -0.6 
(D) 
Table 65(a & b). Results for the CMM specimens with 0.02mm notch width. 

Tables 6.2,6.3 and 6.5 contain a few specimens with no value for the angle 

of crack propagation. Some specimens displayed practical difficulties in measuring 

the propagation angle due to the inability to determine the exact point of crack 

inception or the exact direction of crack propagation. Nevertheless, the large number 

of tests and the consistency of the propagation angles rendered this problem, if 

described as such, insignificant. 

The KI and KII values of the notched CMM specimen tests at fracture can be 

seen, together with those of the tests of the CMM specimens with a real crack, in Fig. 

6.10 of section 6.3. 
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6.2. CMM Specimen with a Real Crack 

The CMM specimens with a real crack were destructively tested to obtain KI 

and KII at fracture for different mode-mixities of mode-I and mode-II loading 

conditions. 

Unlike the notched CMM specimens which contained two identical notches 

each, the CMM specimens with a real crack each contained two identical chevron 

notches of which only one was extended into a real crack. This difference did not 

have any effect on the stress field in the vicinity of the crack tip since the other 

chevron notch was too distant and the existence of a second real crack rather than just 

a chevron notch would have had a local effect not affecting the first crack tip. This 

can be confumed by looking at the finite element analysis and the stress contours 

presented in chapter 8 and appendix V. 

The method of extending a chevron notch into a real crack was achieved by 

fatigue loading each specimen. 

6.2.1. Specimen 

The CMM specimen with a real crack met all the requirements specified by 

Hyde and Chambers in their published paper [78] which gave a precise method of 

obtaining KI and K. for different loading conditions (see appendix III). 

126 



Each specimen had two 

chevron notches from which a 

real crack could be extended by 

fatigue loading. Had there been 

two real cracks in each specimen, 

the local stress field at each crack 

tip would not have affected the 

other due to the adequate distance 

between them. Therefore the 

existence of one real crack in 

B= Specimen thickness 
Nominal values of a. B and W are 
15.0.17.0 and 34.0 mm respectively. 

1 2.37W 

P` ýiý 

ýj 3, 

O 

N 
Co a 

r: 

'L 
2Psiri 

0.06W 
'ý 1.21 W 

1.76 W 

3 hole $d 
(D = 025W) 

P 

Fig. 6.6. The CMM specimen with a 
real crack. At fracture, P= 
PC. 

each specimen was sufficient for the purpose of the test. 

The specimen can be seen in Fig. 6.6. The real crack is shown to extend from 

one chevron notch only. 

6.2.2. Manufacture 

The CMM specimens with a real crack were produced by firstly casting blocks 

of resin in the same moulds used to produce the notched CMM specimens (see Fig. 

6.3), with the exchange of shims and trapping plates with chevron-notch producing 

plates (see Fig. 6.7). 

Secondly, the cast blocks were machined by applying the technique described 

in section 5.1.2(b). Specimens with two chevron notches each, were produced with 
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All dimensions are in mm 

A--'I 250 2H h- 

CO 

lfi 
' 

24 17 22 

44.4 
45p 

600 
Section A-A 

Fig. 6.7. The chevron-notch producing plate for the CMM specimens. 

a "high quality standard" - as 

defined in section 5.1.2(a), (see 

Fig. 6.8), and later fatigued to 

produce one real crack of a 

certain length which was 

necessary for the final test (see 

Fig. 6.6). 

B= Specimen thickness 
Nominal values of B and W are 
17.0 and 34.0 mm respectively. 

2.37 W 

Do a 

0.06 W 
3 hole Od 1.21 W 

(D=0.25W) 1.76W 

Fig. 6.8. The CMM chevron-notched 
specimen before fatiguing. 

6.2.3. Fatiguing Apparatus 

The Instron 1341 Fatiguing Instrument, Fig. 5.14 was employed in conjunction 

with the loading rig shown in Fig. 6.9. 
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rig. 6.9.1'he fatigue toaaing rig jor the c. mm specimen. 

6.2.4. Fatiguing Process 

The fatiguing apparatus described in the previous section was used to fatigue 

load the CMM specimens containing chevron notches. Only one of the two chevron 

notches in each specimen was fatigued. 

The Instron 1341 cross-head was displacement-controlled to provide a static 
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tensile displacement of 0.10mm and a dynamic displacement of ± 0.05mm, with a 

frequency of 100Hz. In other words, the tensile displacement acting upon the 

specimen varied between 0.05mm and 0.15mm with a frequency of 100Hz. 

The time of fatiguing the CMM specimens varied from a few minutes to a few 

hours. The fatigue crack was propagated until the total crack length, a, was 

approximately 0.45W, as shown in Fig. 6.6. 

The fatigue crack was not absolutely straight. But the plane containing the 

cracked surfaces was within 10 degrees from the desired plane which would be I 

perpendicular to the line joining the centres of the three holes of the specimen. The 

accuracy to within ±10 degrees was recommended in BS5447 [76] for other types of 

specimen. 

The length of crack, a, was obtained by measuring the projected length along 

the plane perpendicular to the line joining the centres of the three holes in the 

specimen. 

The specimens were ready to be destructively tested after being fatigued. 

6.2.5. Loading Apparatus 

The same apparatus was used for testing all the CMM specimens with notches 

and with real cracks. It was described in section 6.1.3. 
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6.2.6. Experimentation 

The destructive testing was carried out on the CMM specimens with a real 

crack, breaking each specimen into two pieces. The angle of propagation depended 

on the mode-mixity of mode-I and mode-II loading. 

The fracture surfaces did not contain any fine lines which would have 

otherwise indicated the point of fracture inception. 

6.2.7 Results 

The number of valid tests for the CMM specimen with a real crack was 13. 

The criteria given by BS5447 [76] and ANSI/ASTM E 399 - 78a [77] were consulted 

to establish the validity of the curved fatigued crack front, although no reference was 

made to this particular type of specimen. It was considered sufficient that the above 

two papers referred to other specimens containing cracks used to evaluate the plane 

strain fracture toughness of the tested material. 

The shape of the fatigued crack front could not be checked until the final 

testing of the specimens had been performed: the fatigued crack front could not be 

seen clearly until each specimen broke into two pieces. The specimens which did not 

satisfy the crack front criteria provided in BS5447 [76] and ANSI/ASTM E 399 - 78a 

[77], regarding the curvature of the crack tip, were rejected. 
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The average crack length for each specimen was calculated as described in 

section 5.2.7. The average crack length, a, together with k.. and the two values of 

each of aid and k,, d, is presented in Table 6.6. The crack length at each end of the 

crack front was denoted by aeod, while a.. represented the crack length in the centre 

of the crack front. At the mid-point between the centre and each end, the crack length 

was denoted by a; i. 

The method employed in section 6.1.5 and described in appendix III 

determined the values of KI and KI, for the tests of the CMM specimens with a real 

crack. Table 6.6 presents the values of KI and KII at fracture, the angle of crack 

propagation, the loading angle and the dimensions of the specimens. 

Specimen 
number 

B 
(mm) 

W 
(mm) 

aua 
(mm) 

amp 
(mm) 

a. 
(MM) 

amp 
(mm) 

aid 
(mm) 

1 17.03 34.00 14.99 16.16 16.89 16.48 14.98 
2 17.03 34.13 18.65 19.96 20.57 20.37 19.59 

3 17.06 33.99 16.42 17.56 17.77 17.81 17.08 

4 17.03 34.03 17.02 18.30 19.05 18.93 17.74 

5 17.01 34.05 17.37 18.18 18.46 18.12 17.23 
6 17.01 34.07 16.81 17.65 17.90 17.92 16.95 

7 17.02 34.13 18.90 19.86 20.69 19.98 18.76 
8 17.02 34.11 16.22 17.60 17.99 17.80 16.32 

9 17.05 34.12 17.38 18.20 18.51 17.94 16.65 
10 16.99 34.13 18.66 19.58 19.64 18.92 17.67 
11 17.06 34.11 16.60 17.55 17.75 17.18 16.01 
12 17.03 33.97 16.17 17.50 17.98 17.74 16.16 
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13 17.02 34.08 15.34 16.61 16.60 17.13 15.91 

a 

Specimen a a/W a PC Propaga- KI at K. at 
number (mm) (°) (kN) tion fracture fracture 

angle (°) (Nlmmm) (N/mm ) 

1 16.51 0.486 90 0.71 50.0 2U. 3 12. ZS 

2 20.30 0.595 105 0.89 68.5 4.2 19.6 

3 17.71 0.521 105 1.04 68.0 4.9 20.6 

4 18.76 0.551 70 0.28 30.5 20.4 4.8 

5 18.25 0.536 50 0.28 20.5 27.3 3.3 

6 17.82 0.523 90 0.63 48.0 20.5 12.0 

7 21.18 0.591 90 0.49 48.5 20.2 10.5 

8 17.80 0.522 100 0.78 59.5 11.1 15.5 

9 18.22 0.534 16 0.25 3.5 28.4 0.1 

10 19.38 0.568 16 0.26 5.0 33.8 0.3 

11 17.49 0.513 90 0.67 52.5 21.1 12.6 

12 17.74 0.522 70 0.32 30.0 21.0 5.1 

13 16.78 0.492 50 0.36 25.0 29.2 3.6 

(0) 
Table 6.6(a & b). Results for the CMM specimens with a real crack. 

The KI and KI, values have been plotted with other results from different 

sections in section 6.3. 

6.3. Conclusions 

The stress intensity factor results of all the CMM specimens, which were 96 

specimens, have been plotted in Fig. 6.10. 
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Fig. 6.10. K, and K111 at fracture for the total number of CMM specimens. 

The KID results obtained from the 361 3PB specimen tests were considered 

with the 96 CMM specimen results to plot the graph in Fig. 6.11 which contained a 

total number of 457 results. 

A graph of the angle of crack propagation against K/(KI+KII), for all the CMM 

specimens, has been plotted and shown in Fig. 6.12. The graph demonstrates a very 

close agreement with the results obtained by Maccagno and Knott [60] in their brittle 
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fracture experimentation on PMMA (the amorphous glassy polymer 

Polymethylmethacrylate) at room temperature. They [60] also presented three curves 

predicting the angle of propagation using the three well known hypotheses: the 

maximum tangential tensile stress, the maximum elastic energy release rate and the 

minimum strain energy density hypotheses. The results of Fig. 6.12 show the closest 

agreement with the maximum tangential tensile stress criterion. 
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Fig. 6.12. A graph of the angle of crack propagation against KJ(K, +Kll) for the 
CMM specimens. 
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CHAPTER SEVEN 

MODE-I FINITE ELEMENT ANALYSIS 

The previous two chapters examined the stress intensity factors for specimens 

with cracks or narrow notches. The method of examination was experimental. The 

stress intensity factors described the magnitude of the stress fields in the vicinity of 

the tips of the cracks and notches. 

This chapter has a complementary approach to the previous ones. The stress 

contours and in particular the actual peak stresses, which are of most significance, 

have been acquired for a range of semi-circular and rectangular narrow notches or cut- 

outs subjected to mode-I loading conditions. The rectangular cut-outs have rounded 

corners. The method of finite element analysis has been utilized to achieve the above. 

For very narrow cut-outs, approaching the shape of a crack, with elliptically 

and hyperbolically shaped ends, Creager and Paris [79] has derived solutions for the 

stress fields near the ends of the cut-outs when they are in uniformly stressed (tension 

or shear) infinite plates. Creager and Paris [79] presented the solutions in terms of 

the stress intensity factors related to the stress fields in the vicinity of the tips of 

cracks [6] which are the same length as the narrow cut-outs. It seems likely that 
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Creager's solutions can be used to estimate the magnitudes of the stresses in narrow 

slots with more complex end shapes and in non-uniform stress fields, in components 

of finite size. 

In this chapter, the finite element method has been used for the same 3PB 

specimen of chapter 5. Solutions for the stresses near the ends of narrow rectangular 

slots with rounded corners in a beam subjected to three-point bending, see Fig. 7.1, 

have been obtained. The solutions are compared with those for cracks [6] and with 

predictions based on Creager's analysis. The three-point bend specimen has a non- 

uniform stress field and can therefore be used to assess the applicability of Creager's 

solutions [79] for more complex shapes of the ends of slots in non-uniform stress 

fields. 

7.1. The Geometry, Loading and Finite Element Analyses 

The general dimensions of the three-point bend specimen, shown in Fig. 7.1, 

are those of a standard fracture toughness specimen [76]. The loading is conveniently 

characterised by the nominal maximum bending stress, ßoß,, on the central ligament 

of the component, i. e. 

_ 
3FL 

ý'ý'" 
2B(W-a)z 

The geometry at the end of the notch is shown in Fig. 7.2. It is characterised 

by two dimensions, i. e., the notch width, 2s, and the corner radii, p. 
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Fig. 7.1. Dimensions ana loaaireacnon positions jor me irD specimen, 
thickness B= W/2. 

Fig. 7.2. The notch geometry. 

In this chapter, results are presented for values of s/W in the range 7.35 x 10' 

to 2.35 x 10.2 and s/p values between 1 (semi-circular) and 256. 
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The finite element results were obtained using PAFEC finite element package 

[80]. Eight-noded, plane strain, isoparametric finite elements were used throughout. 

A symmetric half of the component was modelled; typical meshes are shown 

in Figs. 7.3(a-c). The suitability of the meshes was established by ensuring that 

discontinuities of stress, at corresponding nodes, in adjacent elements were negligible. 

Although more sophisticated methods for determining the suitability of finite element 

meshes exist [e. g. 81], these were not available in the finite element package used 

[80]. However, if care is taken, the relatively tedious method of checking to ensure 

that stress discontinuities are negligible is reliable. 

s/W s/p 
7.35x1074 1,2,4,8 

1.47 x 1073 1,2,4,8,16 

2.94 x 1073 1,2,4,8,16,32 

5.88 x 103 64 

1.18 x 10-2 128 

2.35 x 1072 256 

Table 7.1. Notch geometries for which finite element results were obtained. 

A total of eighteen analyses were performed with the notch dimensions defined 

in Table 7.1. Iso-stress contours have been plotted for each case. Numerous 

examples have been included in appendix IV. 
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I 

{b) Mesh for semi-circular notch. 
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(c) General mesh. 

Figs. 73(a-c). Typical meshes used in the finite element analyses. 

7.2. Results 

The results in this chapter are presented in two sub-sections. The first mainly 

talks about semi-circular notches while the second covers rectangular notches with 

rounded corners. 

7.2.1. Semi-Circular (s/p = 1) Notch Ends 

The distributions of the normalised maximum principal stresses obtained from 

the finite element analyses on the surfaces of the semi-circular notches (the tangential 

stress) with angular position, yr (defined in Fig. 7.3(b)), for s/W = 7.35 x 10-4,1.47 

x 1073 and 2.94 x 10-3, are shown in Fig. 7.4. It can be seen that the peak stress 

occurs at yr =0 and that the stress increases with reducing notch width, 2s. 
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Fig. 7.4. Variations of normalized surface tangential stress with yl in 
the semi-circular notches. 

Creager's analysis [79] for elliptical and hyperbolic notches, with notch tip 

radius of curvature, p, gives 

vx = 
KI 

[cos e (1- sine sin 
38) 

-P cos 
30 ] (7.2) 

2nr 222 2r 2 

vy = 
KI 

[cos 
2 

(1 + sin 
0 

sin 2) + 2r cos 2 
0] (7.3) -R- 

L 
2nr 

and 
tX, = 

KI 
[sin 

2 cos- cos- 
e-P 

sin 
3e ] (7.4) 

2nr 22 2r 2 
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where r and 0 are measured from a point p/2 from the centre of curvature, on N' = 0, 

(x, y) is a coordinate system having the same origin as the (r, 9) system, as indicated 

in Fig. 7.3(b), and KI is the mode-I stress intensity factor for an equivalent sharp 

crack. The peak stress predicted, is ßy (p/2,0) at r= p/2 and 0=0, i. e. on the surface, 

in the centre of the notch. Substituting r= p/2 and 0=0 into equation (7.3) gives 

ö 7p =2KI (7.5) 

This predicts that for elliptical and hyperbolic notches, with different notch tip 

radii of curvature, the product of 6 and '[p is a constant. The erv%p values from the 

three, semi-circular notch, finite element analyses were found to be the same to within 

0.5%. Also, the d%r(np) values agreed with that obtained using equation (7.5) to 

within 5%, the finite element results being slightly higher than the Creager predictions 

(equation (7.5)). 

The variations of the normalised stresses, ßx/a,,.. and c; ßc% ,, along 0=0, with 

dimensionless distance from the notch tip, for s/W = 7.35 x 10"4, are shown in Fig. 

7.5; r, y along this line of symmetry is zero. Also shown in Fig. 7.5 are predictions 

based on Creager's solution [79], i. e. equations (7.2) and (7.3), and on Westergaard's 

[6] equations, which apply to a sharp crack tip. The Westergaard equations are the 

same as equations (7.2) and (7.3) with the last term (containing p/2r) omitted. It can 

be seen that the predictions based on equations (7.2) and (7.3) are very close to the 

finite element results. The ay/; values approach each other and for distances 

greater than p/s the difference between them is less than 10%. Beyond this point, the 
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Fig. 7S. Variations of aJßbM and (Ja�om, on E0 = 0, with dimensionless distance 
from the notch tip; sIW = 735 x 10'. 

crack tip stress predictions ((Y1 and ay) are accurate. However, the a. value obtained 

from the finite element analysis and from equation (7.2) is zero at the notch (because 

there are no tractions applied to the notch surface) whereas a value of co is predicted 

for a sharp crack. For distances greater than 0.2 (i. e., 0.2p/s) the crack tip solution 

for ßy is reasonably accurate. However as the notch tip is approached, for distances 

less than 0.2p/s, the crack tip solution becomes progressively worse. Comparison 

between the finite element results, predictions based on Creager's analysis [79] 

(equations (7.2) and (7.3)), and the sharp crack analysis [6] for s/W = 1.47 x 10'3 and 

2.94 x 1073 lead to the same conclusions. This is to be expected since the dimensions 

which characterise the notch geometry, i. e. s and p, are very small compared with all 
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other component dimensions for s/W = 1.47 x 10"3 and 2.94 x 10-3 as well as for s/W 

= 7.35 x 10-4 . 

The contours in Figs. 7.6(a-b) , which join points with equal maximum 

principal stress in the vicinity of the notch tip with s/W = 7.35 x 10', were obtained- 

by finite element analysis. Similar results were obtained for s/W = 1.47 x 1073 and 

2.94 x 10-3. Equations (7.2), (7.3) and (7.4) can be used to obtain the maximum 

principal stress at any position in the vicinity of the notch tip. Similarly, by omitting 

the terms in p/2r in equations (7.2), (7.3) and (7.4), maximum principal 

a 
anum2.09 

O 

anom=3.58 

a 
a nom = 5.07 

(U) 
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a 
Gnom = 7.64 

a 

Qnom = 13.10 

a 
Qmm = 4.91 

(b) 

Figs. 7.6(a-b). Contours joining points of equal maximum principal stress in 
the vicinity of a semi-circular notch (sIW = 735 x 101) 
obtained by finite element analysis; the contours correspond to 
those in Figs. 7.7(a-b) and 7.8(a-b). 

stresses in the vicinity of a crack tip can be obtained. Contours of maximum principal 

stress in the vicinity of a notch based on Creager's analysis (equations (7.2), (7.3) and 

(7.4) are shown in Figs. 7.7(a-b) and those for a sharp crack, are shown in Figs. 7.8(a- 

b). The contours in Figs. 7.7 and 7.8 correspond to the finite element results in Figs. 

7.6. 

From Figs. 7.6(a), 7.7(a) and 7.8(a) it can be seen that the iso-stress contours, 

which are at distances greater than 2p from the notch tip, obtained by finite element, 
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Creager's, and an actual crack analyses, have shapes and sizes which are practically 

the same for the semi-circular notch. Closer to the notch tip, the Creager results, Fig. 

7.7(b), are still in good agreement with the finite element results, Fig. 7.6(b), for the 

semi-circular notch. However, as Fig. 7.8(b) shows, the iso-stress contours predicted 

for a crack tip are not in good agreement with those for a semi-circular notch. 
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O nom = 7.64 

0 
Onom = 13.10 

(b) 

Figs. 7.7(a-b). Contours joining points of equal maximum principal stress 
predicted by Creager's analysis [79] for s/W = 7.35 x 10-4; the 
contours correspond to those of Figs. 7.6(a-b) and 7.8(a-b). 

Comparisons of the results obtained by finite element analysis for semi-circular 

notches (e. g. Figs. 7.4,7.5 and 7.6) with those predicted by equations (7.2,7.3 and 

7.4), obtained by Creager for elliptical and hyperbolic notches, show that equations 
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(7.2,7.3 and 7.4) give a good representation of the stresses near a semi-circular notch. 

However, even though the notches are very narrow, crack tip stress fields do not 

accurately represent the stress fields at a distance less than 2p from the notch tip; at 

a greater distance, predictions obtained for an equivalent crack tip are reasonably 

accurate. 
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0 
Gnom = 4.91- 

0 
Onom=7.64 

0 
Onom = 13.10 

(b) 

Figs. 7.8(a-b). Contours joining points of equal maximum principal stress in 
the vicinity of a crack tip [6]; the contours correspond to those 
in Figs. 7.6(a-b) and 7.7(a-b). 

7.2.2. Rectangular Notches with Rounded Corners (s/p > 1) 

The distribution of the normalised maximum principal stress (the tangential 

stress), obtained by the finite element analysis, on the surface of a rectangular 

152 



24 

. 
""" 

" " 

20 
" 

(" 
" 

16 

Et 
c" 

Of 
d" 

12 "I 

aý i 

" 
" 
" 
" 
" 

" 
" 
" 

" 
" 
" 
" 
" 
" 
" 
I 
" 

" " 

Al 

1 

A2 

1 1 1 

A3 

0 30 60 90 

ip (degrees) 

Fig. 7.9. The variation of normalised surface tangential stress with position (see 
inset drawing) for a rectangular notch with rounded corners (s/p = 
7.35 x 104). 

notch, with s/p = 2, is shown in Fig. 7.9; the particular results are for s/W = 7.35 x 

10'. The form of this stress distribution is similar to that obtained for all of the 
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notches with s/p >1 which are analyzed (see Table 7.1 for details). The peak stress 

was always found to be in the corner radius at a position nearer to A2 than A3. The 

variation of the angular position, %, at which the maximum stress was obtained, 

with p/s, is shown in Fig. 7.10. The position, yr, of the peak stress was found to 

be insensitive to the actual values of p and s and only dependent on their ratio. 

However, the magnitude of the peak stress, ä, was found to increase, for any 

particular value of p/s, as p (or s) decreased. This is to be expected because as p and 

s tend to zero, the notch geometry approaches that of a sharp crack, for which the 

theoretical peak stress is infinite. 

40- 

30- 

20- 

10- 

0 
0.2 0.4 0.6 0.8 1.0 

QIS 

P tg. /. I U. variation of me position at which the peak stress occurs, 
yip,. k, with pls. 

Although equation (7.5) does not apply to rectangular notches with rounded 

corners, it was found that an effectively constant value of ä, rp was obtained from the 
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Fig. 7.11. Variation of 11 with pls. 

finite element analyses with different values of s, but with the same value of s/p. 

These results are conveniently normalised by dividing them by 5fp obtained for semi- 

circular notches. The results are presented in Fig. 7.11, which shows the dfp values 

obtained from the analyses of the rectangular notches with rounded (radius, p) corners 

divided by gfp obtained for semi-circular notches (the ratio is given the symbol 11), 
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each other. The ßx/6nom distributions only converge to the same degree at a depth of 

about 1.6. Up to this depth the ßxýßnom values are significantly smaller that the 

corresponding a,, /ßnom values. This general behaviour is similar for all the rectangular 

notches defined in Table 7.1. 

Finite element contours joining points which have the same value of maximum 

principal stress are shown in Figs. 7.13(a)-(e) for a range of s/p values with s/W = 

1.47 x 10"3. As p decreases, for the same value of s, it can be seen (Figs. 7.13(a-e)) 

that the highest stress regions become more localised. 
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7.3. Discussion and Conclusions 

The solutions due to Creager, for elliptical and hyperbolic notches, were found 

to give accurate predictions of peak stress for semi-circular ended, narrow cut-outs, 

approaching the shape of a crack. In the finite element analyses a bending stress 

distribution was produced whereas Creager's solution is for a uniform applied stress 

field. Thus the agreement implies that only the local, nominal stress field affects the 

stresses near the ends of the sharp notches. Hence Creager's solutions can be applied 

in other loading situations and also, the finite element solutions for the rectangular 

notches with rounded corners (s/p > 1) as well as those for semi-circular notches (s/p 

= 1), can be applied in loading situations other than the bending case for which they 

were derived. Thus the stress concentration factor data presented in this paper can be 

used to predict the stresses in combined bending and tension situations provided the 

appropriate stress field can be determined. The above argument applies to mode-I 

loading. Mode-II and mixed-mode loading will be discussed in the next chapter. 

For a wide range of geometries containing cracks, stress intensity factors (in 

terms of loads, component and crack dimensions), KI, have been determined [e. g. 37, 

82,83 and 84]. The peak stresses at the tips of semi-circular notches can be obtained 

by using equation (7.5) (i. e., 6= 2KJ(np)" ). For rectangular notches with rounded 

corners, the peak stresses can be determined from the result for a semi-circular notch 

together with the results presented in Fig. 7.11. Hence the peak stress is obtained 

from the value of the stress intensity factor for an equivalent crack, equation (7.5) and 

Fig. 7.11. Also, the position of the peak stress, ti , can be obtained for any value 
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of p/s from Fig. 7.10. 
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CHAPTER EIGHT 

MIXED-MODE FINITE ELEMENT ANALYSIS 

In the previous chapter, a method for determining the stresses in narrow 

rectangular notches with rounded corners, in beams in bending, was presented. 

Initially, the mode-I stress intensity factor, KI, for the equivalent crack is obtained 

[76]. Then, the peak stress, 6, for a narrow rectangular notch, having semi-circular 

end, with radius p, is obtained using the equations derived by Creager and Paris [79] 

for elliptical and hyperbolic notches, i. e. 6= 2KJ(np)112, where p is taken to be the 

radius of curvature at the tip of the elliptical or hyperbolic notches. Finally, a notch 

shape factor, T, is used to modify the peak stress for a semi-circular ended notch; the 

shape factor, obtained from the results of finite element analyses, depends exclusively 

on the ratio of half the notch width to corner radius, s/p. This method can be used 

to obtain the peak stresses in components which contain narrow rectangular notches 

with rounded corners, provided the notch is subjected to a purely opening mode of ' 

loading and that the mode-I stress intensity factor for the equivalent crack in the same 

component can be obtained. Since stress-intensity factor solutions exist for a wide 

range of cracked geometries [e. g. 37,82,83 and 84], peak stresses for a wide range 

of rectangular notches can be easily determined. 
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The above method is successful for an opening mode of loading. Therefore 

an extension of the method has been developed to deal with the more general case of 

components containing rectangular notches with rounded corners, subjected to shear 

as well as opening loading. This is the subject of this chapter. 

As in the case of opening loading modes, for which stress solutions exist for. 

various shapes of cut-outs in plates and pressure vessels, including rectangular cut-outs 

with rounded corners [e. g. 3,33,34,35 and 36], some solutions exist for shear 

loading of components with cut-outs [e. g. 36]. However, less data exist for the shear 

loading case. In both the opening and shear loading cases, the results which exist are 

not applicable to very narrow cut-outs. Creager's solution [79] for the stresses in the 

vicinity of crack like features, with elliptical or hyperbolic shaped ends, can be applied 

in a shear loading situation as well as in the opening mode case. In this case, the 

mode-II stress intensity factor, Ku, for the equivalent crack, is required, as well as the 

mode-I stress intensity factor. 

In this chapter, the finite element method has been used to obtain the stress 

distributions near narrow rectangular notches, with rounded corners, under opening and 

shear loading modes, with s/p ratios in the range 1 to 256. By superposition of the 

stress distributions of the pure opening and pure shear loading, the positions and 

magnitudes of the peak stresses can be determined for any combination of the two 

loading modes. The magnitudes of the opening and shear loading stresses at the notch 

tips are characterised by the mode-I and mode-Il stress intensity factors for an 

equivalent crack, i. e. KI and K. This is similar to the approach used in the previous 
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(a) General view. 
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Fig. 8.1. Comparison between the semi-circular, elliptical and hyperbolic 
notches, with the same radius of curvature, p, at the notch tip. 

chapter for a pure opening mode situation, where the peak stress for a semi-circular 

164 



notch could be obtained from Creager's solution [79] which was derived for elliptical 

and hyperbolic notches. The prediction accuracy of the peak stress in this case is due 

to the peak stress occurring on the line of symmetry ( see Fig. 8.1) where the local 

geometry in all cases is characterised by the tip radius, p. Under mode-II conditions, 

the peak stresses do not occur on the line of symmetry. Hence, the radial distance 

from the origin, as defined by Creager and Paris [79], (see Fig. 8.1), to the peak 

surface stress position, for the semi-circular notch and for the hyperbolic or elliptical 

notches, is significantly different. This results in the magnitude of the peak stress on 

the surface of the semi-circular notch being significantly different from Creager's 

theoretical prediction under mode-II conditions; preliminary finite element calculations 

showed this to be the case. Hence, unlike the pure mode-I case, it was found that the 

peak stress under mode-II conditions could not be simply obtained from an analytical 

solution. Therefore, an alternative method for obtaining the peak stress positions and 

magnitudes under pure mode-II and mixed-mode conditions is proposed. 

8.1. The Geometry, Loading and Finite Element Analyses 

The actual geometry used to obtain the finite element results is not particularly 

important since the results are presented in terms of the mode-I and mode-II stress 

intensity factors, KI and KII respectively. Hence the results can be applied to any 

narrow rectangular notches, with rounded corners, provided the KI and KII values can 

be determined for the equivalent crack in the same component. However, an 

experimental investigation, carried out in parallel with the finite element study, was 

conducted on the compact mixed-mode (CMM) specimen (chapter 6) shown in Fig. 
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8.2. Therefore, the CMM specimen was chosen as the component to be used to obtain 

mode-I, mode-II and mixed-mode finite element results for narrow rectangular notches 

with rounded corners. In addition, the finite element results for pure mode-I obtained 

previously and presented in chapter 7 have been included in this chapter. 

B Specimen thickness 
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The CMM specimen and the relationships between either KI or KII and the 

component dimensions, characterised by the dimensions W, B and a, the load, P, and 

the loading angle, a, see Fig. 8.2, have been fully described in chapter 6. The 

specimen has been successfully used to investigate the fatigue, creep and creep/fatigue 

mode-Il and mixed-mode crack growth of metallic alloys [e. g. 85,86 and 87]. For 

a/W = 0.45, as used in the present investigation, KI and KII are given by [78] 

KI = 
P(7.93 

cosa + 2.67 sincc) (8.1) 
BJ 

and 
KI, =P (1.71 sina - 0.63 cosa) (8.2) 

BF 

ee 

SS 

rn-_ n ýº-'-º- '-- --- Egg. 0 . a. LVULwc «y'geurrcecry. 
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The geometry at the end of the notch is shown in Fig. 8.3. It is characterised 

by two dimensions: the notch width, 2s, and the radius of the two corners, p. In this 

chapter, results are presented for s/p values in the range 1 to 256, with s/W = 7.35 x 

10', and for s/p = 1, with s/W = 2.94 x 10"3. The study has included mainly one 

value of s/W since in the previous chapter it was shown that the only ratio which 

influenced the peak stress results for narrow rectangular notches, with rounded 

corners, was s/p. The other value of s/W was considered to reconfirm this observation 

for pure mode-II and mixed-mode loading conditions. Indeed, for the same value of 

s/p, the peak stress results, dfp, were constant to within '1%, for different values of 

SIW. 

The finite element results were obtained using the PAFEC finite element 
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package [80]. Eight- 

noded, plane strain, 

isoparametric finite 

elements were used 

throughout. A 

symmetric half of the 

component was 

modelled; typical meshes 

are shown in Figs. 8.4(a- 

e). The suitability of the 

meshes was established 

by ensuring that stress 

discontinuities at 

corresponding nodes in 

adjacent elements were 

negligible. 

Although more 

sophisticated methods 

for determining the 

suitability of finite I 
(e) Mesh at the notch tip for sip = 16. 

element meshes exist Figs. 8.4(a-e). Typical finite element meshes. 
[e. g. 81], these were not 

available in the finite element package used [80]. However, if care is taken, the 
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relatively tedious method of checking to ensure that stress discontinuities are 

negligible is reliable, as have already been mentioned in chapter 7. 

A total of 65 analyses were performed out of which 63 analyses were carried 

out with s/W = 7.35 x 10-4. With s/p values 1,2,16,64 and 256, solutions were 

obtained for KJ(KI + KII) values of 1.086,1.041,0.971,0.907,0.790,0.610,0.411, 

0.225,0.047,0.001, -0.032 and -0.125. Additional solutions were obtained for s/p = 

1 with K1/(KI + KII) values of 1.016 and 1.001 and for s/p =2 with a KJ(KI + KII) 

value of 1.001. 

Two of the 65 analyses were performed with s/W = 2.94 x 103 and s/p = 1, 

with KV(KI + KII) values of 0.411 and 0.001. 

Iso-stress contours were plotted for many of the above cases. Numerous 

examples have been given in appendix V. 

In order to complement this study, the results obtained in the previous chapter, 

for pure mode-I loading conditions, have been employed. 

8.2. Results 

The results are presented under two categories. The semi-circular notch comes 

first. It is followed by the rectangular notch with rounded corners. 
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8.2.1. Semi-Circular (s/p = 1) Notch Ends 

The distributions of normalised maximum principal stresses, a.., obtained 

from the finite element analyses on the surfaces of the semi-circular notches (the 

tangential stress), with angular position, yr, under pure mode-I and pure mode-II 

conditions, are shown in Fig. 8.5. The results apply for any value of s, as have 
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Fig. 8.5. Non-dimensional stress distributions for the semi-circular notch. 

already been shown in the previous chapter and reconfirmed in this one, provided s 

is small in comparison to the notch length, a, and the other component dimensions 

(Fig. 8.2); results have been obtained for 7.35 x 10-4 S s/W 5 2.35 x 10"2. The 

polynomial fits to the data, shown in Fig. 8.5, for mode-I and mode-II conditions, are 

171 



UP = 2.107 + 5.8x1044 - 3.4x104412 + 1.47x10-64r3 (8.3) 
KI 

and 
ap=6.34x10-2* - 1.49x10-4tr2 - 3.94x10-6tr3 (8.4) 

m°" K II 

respectively, where yl, the angular position in degrees, is in the range 0° 5 IV 5 90°. 

Symmetry and skew-symmetry conditions, for mode-I and mode-II situations, 

respectively, can be used to obtain the appropriate values for if in the range -90°S yr 

S 0°. 

Equations (8.3) and (8.4) can be used for a semi-circular notch with any small 

radius, p, in any component for which KI and K. can be obtained for an equivalent 

crack. The resulting variations of a.,. values with yr for the mode-I and mode-II load 

components can then be added to obtain the resultant variation of amu with yv. In 

particular, the position and magnitude of the peak value of stress can be obtained. It 

should be noted that attempts to obtain the variations of stress with yl, around the 

surface of the semi-circular notch, using the analytical solutions derived by Creager 

and Paris [79] gave large errors when compared with those obtained by the finite 

element method. 

The mode-mixity is conveniently described by KJ(KI + K. ) because it lies 

between 0 and 1 for positive values of KI and K. The variation of the position of the 

peak stress, 9J , with mode-mixity is given in Fig. 8.6. The slight scattering of the 

finite element results about the cubic fit to them is due to the finite element peak 

stresses being obtained at discrete nodes of elements. Nodal points are 7.5° apart and 
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therefore the positions are only likely to be accurate to within about ± V. 

70 

60 

a 50 

Gn 40- 

'a 30- 

20- 

10- 

0- 

-10 
-0.1 

00 
0.1 0.3 0.5 0.7 0.9 1.1 

K1l(K1 + Kr1) 

Fig. 8.6. 
= 7.35 x 
Variation o 

10f'. 
ylpeý with Ký/(K, +K,, ) for a semi-circular notch with s/W 

8.2.2. Rectangular Notches with Rounded Corners (s/e > 

The distributions of the normalised maximum principal stress (the tangential 

stress), obtained from the finite element analyses, on the surface of a rectangular 

notch, with s/p = 2, for various mode-mixities, KJ(KI + KI1) are shown in Fig. 8.7. 

The stresses were conveniently normalised by dividing them by (KI + Kn). The 

smooth distributions of stress obtained, together with the low stress discontinuities at 

element boundaries, indicate that the meshes are producing accurate results. The 
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Fig. 8.7. Variation of normalized maximum surface tangential stress with 
position (see inset drawing) for a rectangular notch with rounded 
corners in mixed-mode loading conditions; sip =2 and s/W = 735 x 
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forms of these stress distributions are similar to those obtained for all the other 

notches with s/p >1 which were analyzed. The variations of the positions, yrp"., of 

the nodes having the peak stress, with mode-mixity, are shown in Figs. 8.8(a-d). Two 

factors affect the position and magnitude of the peak stress. These are the ratio s/p 

and the mode-mixity KJ(KI + Kn). However, although the position of the peak stress 

was found to be insensitive to the actual values of p and s, the magnitude of the peak 

stress increased for any particular value of s/p as p (or s) decreased. This is to be 

expected because when p and s tend to zero, the notch geometry approaches that of 

a sharp crack for which the theoretical peak stress is infinite. However, an effectively 

constant value of &p is obtained with different values of s, but with the same value 

of s/p under mode-I, mode-II and mixed-mode conditions. 
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Figs. 8.8(a-d). Variation of yff,, k with KI(K, +Kl1); s/W = 7.35 x 10'. 

The *dp results obtained for the narrow rectangular notches, with rounded 

corners, are conveniently normalised by dividing them by the ädp value obtained for 

semi-circular notches subjected to the same mode-mixity conditions. The results are 

shown in Fig. 8.9, which shows the ov%p values obtained from the analyses of the 

rectangular notches with rounded (radius, p) corners divided by dip obtained for 

semi-circular notches (the ratio is given the symbol TI), plotted against mode-mixity, 

Ký (KI + KII), for various s/p ratios. 

In order to obtain the peak stress in the case of a rectangular notch with 

rounded corners (s/p > 1), the procedure described in the semi-circular notch section 
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should be adopted, followed by multiplying the calculated ddp value by the relevant 

value of TI from Fig. 8.9. When consulting Fig. 8.9 for a value of il, the notch 

geometry, i. e. s/p, and the loading conditions, i. e. KJ(KI + Ku), should be known. 

1.0 
s/Q 

0.9 

s/e=16 
0.8 

s/Q = 64 

s/Q=2 
0.7 s/Q = 256 

ee 

0.6 

° 

0.5 
-0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 

K1/(K1 + KI1) 

Fig. 8.9. Variation of 't) with K/(K, +Kll). 

8.3. Discussion and Conclusions 

Under pure opening (mode-I) loading conditions for narrow rectangular 

notches, with rounded corners, it was found in the previous chapter that the stress 

fields, and in particular the peak stresses, in the vicinity of the notch tips, could be 

simply related to the local geometry, i. e. s/p, and to the mode-I stress intensity factor, 
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KI, for the equivalent crack. In this chapter, it has been shown that under mixed-mode 

conditions, the peak stress is again simply related to the local geometry, i. e. s/p, and 

to the magnitudes of the mode-I and mode-II stress intensity factors obtained for an 

equivalent crack. First, the mode-I and mode-II stress intensity factors for an 

equivalent crack are obtained. The variations of the surface tangential stresses, a,,, , 

with angular positions, yr, for a narrow semi-circular notch can be obtained by using 

equations (8.3) and (8.4). Fig. 8.5 is an alternative to equations (8.3) and (8.4). 

Superposition of these two stress distributions will allow the position, yr, and 

magnitude, 6, of the peak stress to be obtained. Hence, the d 1p value for a narrow 

semi-circular notch with the appropriate KI and KII values can be obtained. For the 

mode-mixity ratio, KJ(KI + Ks), the information in Fig. 8.9 can be interpolated to 

obtain the i value for the required s/p ratio. From this i value and the 6, %p value 

obtained for a semi-circular notch, the Nfp value for the narrow rectangular notch, 

with rounded corners (radius, p) can be obtained. Hence the peak stress, dr, is 

determined for the particular radius, p, which has taken into account the important 

local geometry ratio, s/p, the local loading conditions, characterised by the stress 

intensity factors, KI and Kn, and the actual notch size, characterised by the radius, p. 

The position of the peak stress, yr, is also easily obtained for an s/p value and 

mode-mixity by using Fig. 8.8. 

For a wide range of geometries containing cracks, mode-I and mode-II stress 

intensity factors (in terms of loads, component dimensions and crack lengths), KI and 

KII, have been determined [e. g. 37,82,83 and 84]. Using these solutions for the 

stress intensity factors, together with the information contained in this chapter, it is 
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now possible to obtain the peak stresses, and their positions, in narrow, rectangular 

notches, with rounded corners, having any s/p ratio. If necessary, KI and KU values 

could be obtained, relatively easily, by finite element or boundary element techniques 

using special crack tip elements, and these single solutions could be used to obtain the 

peak stresses, and their positions, for narrow rectangular notches, with rounded 

corners, having a wide range of s/p ratios. The method therefore provides a cheap and 

efficient way of obtaining stress concentration factors. 

180 



CHAPTER NINE 

PRESSURE TUBES 

The static study of modelling cracks was presented in the previous chapters. 

This chapter investigates the dynamic side of the subject. In order to model a crack 

successfully and accurately, not only the period before failure should be investigated, 

but also those during and after failure. Attention should be given to both the direction 

and speed of crack propagation. Another important aspect is the phenomenon of crack 

branching: when and how does it occur ? All these concerns create an urge to 

dedicate part of the research to the dynamic side of fracture. 

Bearing in mind the complexity of dynamic fracture compared to static 

fracture, the results and obvious conclusions are presented in this chapter, leaving the 

less simple matters to be approached in the tenth chapter. 

9.1. Specimen 

The specimen utilised to study the dynamics of fracture was the pressure tube. 

It was comprised of three Araldite cast cylinders glued together to form one open 

tube. Araldite caps were glued to both ends of the resulting tube sealing it for an 
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internal hydraulic pressure to be applied. The 

middle cylinder contained a semi-circular narrow 

notch, at which failure initiated during the 

destructive testing of the specimens - see Fig. 

9.1. 

A diagram of the specimen is given in 

Fig. 9.2. The specimen included two small 

openings at the top, one connected to an oil 

pump to provide the hydraulic pressure and the 

other linked to a pressure gauge. The notch was 

always semi-circular, central, radial and parallel 

to the tube axis, and on the external surface of 

the tube. Its radius, a, had three different values: 

7,5 and 3mm (see Fig. 9.2). It had two 

effective thicknesses produced by two different 

types of shim. Both types were 0.10mm thick. 

One of them had a flat tip while the other had a sharpened tip producing an effective 

thickness of 0.02mm - see Fig. 9.3(c). Therefore, in total, there were six different 

notch sizes. The shape of the shim tips will be discussed in chapter 10 with particular 

reference to any discrepancy between straight shims used for the 3PB and CMM 

specimens on one hand and semi-circular shims used for the pressure tubes on the 

other. 
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Fig. 92. The pressure tube showing the semi-circular narrow notch and the 
electrically-conductive grig. 

An electrically conductive grid was painted on each specimen for the purpose 

of measuring crack propagation velocity. The grid and the specimen dimensions can 

be seen in Fig. 9.2. 
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9.2. Manufacture 

The pressure tubes were manufactured by casting and machining the different 

components which were then glued together; Fig. 9.3 shows the casting moulds. The 

middle cylinder containing the notch was produced using the mould in Fig. 9.3(a). 

The extension cylinders were cast using the moulds in Fig. 9.3(b). The casting 

technique is described fully in section 4.2. 

All dimensions are in min 

ii4! 

Ný Location pin' A 
xxx 

ON 
1ö En 

N 4-1 
U Cu 

u -4 

N Location 
pin 

(a) i ne miaate-cyunaer casting mouta. 
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(b) The extension-cylinder casting mould. 
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(a) Flat shim (b) Sharpened shim 

(c) The semi-circular shims. 

Figs. 9.3(a-c). The pressure tube casting moulds and shims. 

Both end caps were machined out of rectangular Araldite blocks. They were 

employed repeatedly in all the pressure tube tests. On the other hand, the three 

cylinders of each tube fractured in every test and therefore could only be used once. 

Hence, one middle notched cylinder and two extension cylinders had to be cast for 

each tube test. 

After casting the notched cylinder, it was machined on both ends to produce 

5mm long spigots. The extension cylinders were also machined to produce a 

corresponding recess to accommodate the spigots. The recess was 0.1mm over the 

spigot size to allow for the glued joint. Finally, the end caps were similarly machined 

to fit the extension cylinders. 
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The flat semi-circular shims were manufactured by cutting a rectangular piece 

of shim steel to the correct width and trapping it between two 15mm thick steel 

blocks. They were placed on a rotary table and machined with an end mill through 

180 degrees in order to produce the semi-circular profile. 

The sharpened semi-circular shims were produced similarly with the milling 

machine head inclined at an angle of 10 degrees to the vertical while the shim lay in 

the horizontal plane. 

The finished shims are shown in Fig. 9.3(c). 

Prior to connecting the different parts of the tubes together they were cleaned 

with propanone and then an electrically conductive grid was applied on each notched 

cylinder symmetrically at both ends of the notch as shown in Figs. 9.2 & 9.11. The 

material applied was a silver electrically-conductive paint supplied by RS Components 

Ltd, P0 Box 99, Corby, Northants. 

The paint was applied in accordance with the manufactures instructions. The 

volume resistivity of the paint when completely dry (12 hours after application) was 

given as 0.001S2cm. 

The grid lines perpendicular to the notch (and to the cylinder axis) were 0.5mm 

wide and initially 0.05mm thick. They were then manually and carefully filed to a 

smaller thickness until each individual line had a resistance in the range 50 to 3005 
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preferably in an ascending sequence in the direction away from the notch. A digital 

voltmeter was used to measure the resistance. The total resistance of each grid of 

eleven lines was between 10 and 1552. The trigger lines (Figs. 9.2 & 9.11) were not 

filed; the resistance of each two in series was 1052 approximately. All the electric 

contacts on the grids were soldered to electric wires. The electric circuit which 

operated in conjunction with the girds is fully described in section 9.4. 

Following the preparation of the electric grids on the specimens, each set of 

components (two end caps, one notched cylinder and two extension cylinders) was 

placed in an oven at a temperature of 75°C for 24 hours to remove the moisture on 

the Araldite surfaces and hence increase the strength of the glued joints when the 

components were subsequently joined together. On removal from the oven, the 

cylinders and end caps were immediately glued together using Ciba-Geigy Araldite 

2004 two-part (A and B) epoxy paste. Each specimen (Figs. 9.1 & 9.2) was then 

pressed together with dead weights (approximately 10kg) for a period of 24 hours. 

The specimen was then given at least another 24 hours to ensure full curing and 

maximum strength of the glued joints. At that stage the pressure tubes were ready to 

be destructively tested. 

9.3. Loading Apparatus 

The loading apparatus consisted of several litres of hydraulic oil, a manual oil 

pump and a pressure gauge which could measure up to a pressure of 600 psi. The 

pressure gauge was checked with a dead weight tester and found to be very accurate 
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before conducting any tests. 

The specimen to be tested was filled with oil and both the oil pump and the 

pressure gauge were connected to the specimen. In every test, the absence of any air 

in the specimen, the pump and any of the connection tubes was confirmed before the 

specimen could be pressurized, in order to eliminate the danger of compressed air. 

The specimens were placed in a closed metal tank during each test. The tank 

contained the bursting of the tubes and the consequent fragmentation and oil spillage. 

9.4. Apparatus for the Measurement of Crack Propagation Velocity 

The method of measuring the velocity of crack propagation in the fractured 

pressure tubes was based on the breakage of the electrically conductive lines in the 

painted grids. Each grid had an overall electric resistance which underwent a step 

increase in value every time one of the grid lines broke due to the passage of the 

crack. 

The grid was part of an electric circuit shown in Fig. 9.6. The circuit 

transferred the step increase of the grid resistance into an output voltage step increase, 

which was fed into a digitizing oscilloscope. It was the Hewlett-Packard 54501A 

Digitizing Oscilloscope (Fig. 9.4) which displayed the output voltage from both grids 

of each notch on the same screen. A copy of the displayed output voltage was then 

produced by the Hewlett-Packard Think Jet Printer. The printout was a plot of the 
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voltage 

against 

time , 

covering 

the time 

period 

from 0 to 

500µs, as 

shown in 

Figs. 9.7. 

: r 

4.. 

1 

Fig. 9.4. The Hewlett-Packard 54501A Digitizing 
Oscilloscope. 

The equation relating the output voltage to the grid resistance, which is stated 

below, was easily derived from first principles. Referring to Fig. 9.5, and assuming 

that the resistance per line has the same magnitude for all the grid lines, 

v VO = R1 
+ 

NM 
, 
R1 

+1 
(9.1) 

R2 R. 

where V. and V; are the output and input voltages respectively, R, and R2 are the 

resistances of the resistors shown in Fig. 9.5, R. is the resistance per painted grid line, 
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and N. is the number of unbroken grid lines ranging from 0 to 11. Fig. 9.5 explains 

the basic circuit on which the actual circuit used in the testing of the pressure tubes 

was based. The latter circuit, shown in Fig. 9.6, specifies the actual values of the 

resistance and voltages applied in the tests. The choice of these values was entirely 

based on providing a clearly noticeable step change in the output voltage. 

R1 

Vi R,, 
R2 vo 

(resistance per line ) 

pig. Y-3.1ne aasic electric circuit on wnicn the actual circuit used in the tests 
was based. 

The digitizing oscilloscope had to be triggered off every time a crack 

propagated. That was achieved by two electric lines painted at both ends of the notch, 

preceding the lines of the grids. The two lines were connected together to form a 

single triggering mechanism, which operated when either of the two lines was broken, 

setting the digitizing oscilloscope off. The triggering mechanism, which was part of 

the utilized electric circuit, can be seen in Fig. 9.6(b). 
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The testing of the pressure tubes was performed while they rested on their 

bases with their axis being vertical. The top painted electric grid was connected to 

channel 1 on the digitizing oscilloscope while the bottom one was connected to 

channel 4. Channel 3 was designated for the trigger circuit. The signals of channel 

1 and 4 were displayed in the top and bottom halves of the printouts of Figs. 9.7(a j) 

respectively. Three of the printouts also displayed the signal of channel 3 in the 

bottom WE 

TOP GRID BUTTON 

R1=6812 Ri=6892 
GRID 

Digitizing ö Iaput 
C3 

Digitizing 
M Oscilloscope Oscilloscope voltage 

15 Vä( channel 4) (channel i) =v 

5 

(resistance per grid line ranging between 50 and 300 SZ ) 
(a ) Signal circuit 

Resistance = 10 kQ2 

D' itizin 
e volt 

ge 
=1 .5VL 1gIlee oscilloscopg 

( channel 3) 

(b ) Trigger circuit 

r'ig. Y. O. i ne actual electric circuit, used in the testing of the pressure tubes, 
comprising of the signal and trigger circuits. 

The 15V input voltage in the signal circuit of Fig. 9.6(a) was delivered by 

Farnell Instruments Ltd stabilised voltage supply, while the 1.5V input voltage in the 

trigger circuit of Fig. 9.6(b) was provided by a dry 1.5V battery. 
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The actual values of the resistances and output voltages were not significant 

in any of the subsequent calculations of the crack velocities. The important 

parameters were the displacements between the centres of the grid lines and the 

corresponding time changes on the digitizing oscilloscope printouts. These are 

presented in Figs. 9.8(a-f). 

The time change between the breakage of the trigger line and the first grid line 

was not used in any calculations. This precaution was taken to avoid any errors 

arising from the possibility of the digitizing oscilloscope not responding with sufficient 

speed to the triggering action. 

9.5. Experimentation 

The testing of the pressure tubes was carried out in a number of stages. The 

individual resistances of the grid lines were checked. The triggering lines and grids 

on the specimen to be tested were electrically connected to the electric circuit of Fig. 

9.6. The digitizing oscilloscope and the printer were also connected to the circuit. 

The oscilloscope was set in order to achieve a clear, large and complete display of the 

stepped output voltage. The specimen was then placed inside the protective metal 

tank with the lid still open. After completely filling the tube with oil, the oil pump 

and pressure gauge were attached to the tube, making sure that the system was free 

of any air bubbles. The protective tank was then covered and the tube was 

pressurized to failure, which occupied a time period between two and four minutes. 

The process of pressurizing the tubes was achieved manually, paying attention to the 
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increase in pressure to be as steady as possible. 

The tubes failed with a loud bang, the crack initiating at the tip of the semi- 

circular notch and travelling vertically in both directions, cutting through the trigger 

lines and then the grid lines, until branching took place. The digitizing oscilloscope 

displayed a stepped presentation of the output voltage which corresponded to the 

propagation of the crack through the grid lines. 

9.6. Results 

The results obtained from the pressure tube tests covered a few topics in the 

field of fracture mechanics. Consideration has been given to the apparent static Kic 

values which led to fracture. As the cracks propagated from the narrow semi-circular 

notch tips, breaking through the painted grid lines, the corresponding time change at 

each line was registered. That facilitated the displacements and velocities of the 

cracks to be plotted against time. In addition, the branching process has been studied 

giving particular attention to the dynamic stress intensity factor, KD. The surface 

texture of the fracture surfaces has been another subject of scrutiny, for which some 

photographs were taken - see Figs. 9.13. 

A total of ten successful tests were carried out on the pressure tubes. They 

were all destructive tests with the cracks initiating at the tip of the narrow semi- 

circular notches. Table 9.1 states the number of valid tests for each notch radius, a, 

and effective width, 2s. 
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Notch radius, a (mm) Notch width, 2s (mm) Number of valid tests 

7 0.02 2 

7 0.10 2 

5 0.02 1 

5 0.10 2 

3 0.02 2 

3 0.10 1 

Table 9.1. The number of valid tests for each notch radius and width for the 
pressure tubes. 

9.6.1. Apparent Static K1c 

The value of the oil pressure inside the tubes was used to calculate the 

apparent static stress intensity factor, KIM, at the tip of the narrow semi-circular 

notch at the point of fracture. The loading of the material at the notch tip was the 

mode-I type, the nominal stress being the hoop stress. 

Two methods were employed to calculate the KIc"PP: the first method provided 

a value which was considered to be accurate, and the second method confirmed that 

value but was only approximate. 

The first method followed the equations and tables provided by Murakami [84] 

on pages 751-757 of his second volume for internal and external surface cracks in 

cylindrical vessels. It was stated in that reference that the method provided an 

accuracy less than 10%. It is interesting to note that the analysis presented in the 
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reference was based on a cylinder with two diametrically located cracks. Although 

Murakami [84] states that in general the stress intensity factor for a single crack is 

about 4% lower than that for two cracks, but this percentage is seen to be much 

smaller in the particular case of this thesis by referring to the original source of the 

analysis [88]. The fact that the tubes have semi-circular notches rather than semi- 

elliptical ones reduces the above mentioned percentage significantly. Another factor 

which have a reducing effect on the percentage is the actual choice of the notch- 

radius sizes. Although Raju and Newman, Jr. [88] do not quantify the above 

percentage for each possibility, nevertheless from the general description it is 

concluded that the above percentage is negligible for this particular case. 

The final results of this method are given in Table 9.2, which presents the oil pressure 

at failure, p, the KIc ", the notch radius, a, and the notch width, 2s. 

Specimen a 2s Pressure at 
il 

Kjc'pp (N/mm3R) 
number (mm) (mm) ure, p fa 

(psi) First method 
(accurate) 

Second method 
(approximate) 

1 7 0.02 165 31.7 33.5 

2 7 0.02 170 32.6 34.5 

3 7 0.10 205 39.4 41.6 

4 7 0.10 220 42.2 44.7 

5 5 0.02 265 38.7 41.7 

6 5 0.10 275 40.2 43.3 

7 5 0.10 290 42.3 45.6 

8 3 0.02 320 33.9 36.3 
9 3 0.02 330 35.0 37.4 
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10 3 0.10 375 39.8 42.5 

Table 9.2. The pressure-tube K, c ' values obtained by Murakami's methods [84] 
on internal and external surface cracks in cylindrical vessels [88] 
(more accurate), and on a semi-elliptical surface crack in finite- 
thickness plates [89] (less accurate). 

The second method followed the equations and tables provided by Murakami 

[84] on pages 692-696 of his second volume for a semi-elliptical surface crack in 

finite-thickness plates. An accuracy of 3% was associated with the second method. 

But since treating the tubes as flat plates is a rough approximation, the second method 

was considered to give approximate KI ' values destined merely to reconfirm the 

more accurate values obtained by the first method. The KI "PP values obtained by 

using the less accurate second method are given in Table 9.2. 

Although the two methods concern the general case of the semi-elliptical 

crack, nonetheless they also deal with the particular case of the semi-circular crack. 

The maximum value of KIC "P was associated with the tip of the notch at the external 

surface of the tube for both methods. Moreover, the cracks initiated more or less at 

the notch tips at the external surface, as explained at the end of section 9.6.5. 

Therefore the calculations were done at the same location. 

The derived equations of Murakami [84] assumed a uniform tensile stress 

distribution throughout the cross-section of the plate of the second method, and an 

average hoop stress in the cylinder of the first method. Therefore, for both cases, the 

hoop stress was calculated assuming the tubes to be thin cylinders, i. e., 
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Qe = 2d (9.2) 

where ße is the hoop stress, p is the internal hydraulic pressure, t is the side wall 

thickness of the tubes and d is their internal diameter. 

9.6.2. Displacements of the Cracks 

The printouts of the digitizing oscilloscope display are shown in Figs. 9.7(a j). 

Using these printouts, the displacement against time graphs were plotted. They are 

shown in Figs. 9.8(a-f). The curves drawn are cubic fits. 

/p printing 

379 mV/01v 

ý. r"_,. _. ___ -__ __ 
nfisetl 1.675 V 

`- i_... t. 200 nr, 
"I 

,. , _. a "_., __... u_ a r_. i .. n... _} ß. _5.. i .. a_y, s. a.. ay_..... _1 ýi-ý4.4 i-i ! -4.,.. 
y_y. u.. y... }... ý_a...... _A_w_r.. ý_}.. a. _. 

".,,..... _, -.: ", <--9, "a., ý. -r: �,. r.:,. "H.. -...: ýa,. ý".:: ";:.:.... <,:. ý:., x::,..:.:.::. ".., "..: o:. r,.,,:.. "-,,. "r-,:, r.:. ý.: dpa.: -.., ýra.,. K. ý.,. >a, ý., v-. " 3 1.00 V/dtv 

__... _.. _ . _... + ...... 
C 

. ___.. ---". _. _ 
i.. 

___ . 
offset' I . C, 00 V 

1.000 (Jr 
_ý... }.. I". s_-.. -. }. _:...... ý. rr.,.....;.. r.. ý..; -t.; _., __w. p.. l""ý-"I-aa-: -a-a-; -b-i-a-f-a-t . i-a-"r-a-r"t--}"'ý_}.. ý 

_i 
t; 4 304 mV/div 

}_...., _. _ _.... _.,. . xw. i .. _ .. '_. _. ....: _ _... __ý +. _. . ___.., .. 
Qf f se t' 11 

. 
440 V 

.... .. _. __. _..... _. _ _; 1 000: 1 dc 
0.00000 s 250.000 üS 500.000 us 

50.0 us/div 

3 j' 1.250 V 

(a) )pecimerc-1. 

198 



np stopped 

.... _... i 276 w'd /div 

1,20() 1 dr 

------ 

rift ,i I. 0o1 V 
..... -. __.. -.; _ . _.. _ .. .. I . 000 I dc 

224 m`//div 
r-- ! ; Oi(SQI: 1.565 V 

__.. -.. __ . __... _... _.. " _--. ... __. _ _. __ .............. 1 . 000 1 cc 

O. Q0000 5 250.000 us 500.000 us 
50.0 us/div 

3 -F 1.25() v 

(b) Specimen-2. 

hp printing 

319 mV/dtv 
offset, 1.780 V 

1 200 1 dc 

N.. . ,. wa. _. _C. rv^"!., 
., u_.. . p.. n. .. 4.. .:.. ... l W. p.. " .. { _. _. 

' 
....... s 

_.. v. n.... .... ...:. . . r... u . nNS. r .. i... AWa:.: fi". ý-ý -_c. M'biýta.. + _'.. Tüiw. 'Y. fa^: p'a... aVi ü4x"ý... ý 

1i 
J 1. {ýi' V/did/ 

offset{ 1.090 V 
1.000 t1d, 

4 270 mV/dly 

_i. _.... _... ___.. 
offset: 1.495 V 

<(, rl. (VIA u", 
Iv 

3f1.259 v 

(C) Specimen-3. 

199 



p stopped 

r-- "- i -ýi 276 mV/div I 'T 
; offset 1.6.19 V 

1 200 1 6C 

. ....... n ......:.. w +.... " fie.., _ ... }. ;.. s... _. _. a. , ..; :..;.....,...,.. a........ }..., _.... }..... y.. t. 4 YF^... y..; y .! r 

s_ss. .. exs. _ ...... ý+mxsnrr. _ n.... =-aeaelra .. ssz"soa-svx"+ý+as+w.: rnss+ýv. -cr: 
J 1.00 V/Gfv 

'Offset, 1.000 V 
�. _... _.. _... _.... __... _. _.. ---ý� " _...... _ -_ __1.000 11 dc 

._a.. 
p "-{. ryj .i 4_ -. _ ._...... . H-a_ .. L ..... ý .i4 {_e. . l. {_; i4 224 IhV /div 

--- i ! offset 1.565 V 
1.000 I ac 

0.00000_ 250.000 las 500.000 usr 
50.0 us/div 

JL- 11 - -";, %%1 

(d) Specimen-4. 

hp stopped 

T. 
rT. 

1»__ _, _r. {1 314 aV/d Iv 
i offset+ 1.729 V 

--... -. ----- _. _. _. _.. ý 1.244 1 dc 

... }.. }.... w.., _ý...... ".. ý_.. yýy, _. ry .,.. ry .. _a. ,. _a..;. n... }. j... M. a-f... 1-. i.... L ý. a.. n. {.. 
i. 

_h h""F"1-ý "M_"M"F+ 

. waecv.; zvnuzvxani-.: wr:..: rv..., ana_a ranxuaamre v; v>xa . aru4: yn, x. . avtfr ...! sax-, aq-praepwraeaQ 

1 1.00 V/dIv 
, onset, I . A00 V 

_..., _.. ___.,.. _... _. . _;.... --... s... __, __.,....... _. _. 4... __. _. _. __. _. _... a.. _.. _...... __. _ý 1 040 1 dc 

230 MV / 
y_,..... ý. y. «:.. i.. i..;.. y. +-l,. r";..... F : _, .,.. _.. ý.. f_, .: _:.. _.., _E.....;.. },.., __.. r..,. _4-s+-c-b-r ý+-ý-+;.. e-; -... 

! offset, 1.560 V 
d1 

0.00000 250.000 us 500.000 us 
50.0 us/dtv 

V 3 ý" 1.250 

(e) Specimen-5. 

200 



hp stopped 

r. _ ..... _... _-_ _.... _ 309 mV/div 
; offset: 1.709 V 

;..... _. ... __. _ __ ------__ 1.200 -1 dc 

M.. __. 1.00 V/ dt4 
offset,. 1,000 V t 

.... _ .......... fi........ _........... -_. _ ......... 
i_ 

.....,. _* _... i . 000 i dc 

hJ_r.......:. 3-"I ""I "tiy, y "i". i^4_k, ".. _e.. 4. ,.., .. 
y. 

q_. a. y, «s.. w . N.... "i_}. _i-i"""i"_:... i+4-r^i_i. i""i. +.. -r-Ni--'_F.?.. 1-i 

.... ý" i 
254 6 ITV/d14 

, offset, 1.510 V 
;_ . _.... ;... _.. _. -. . ............... _.. _.....:... _... _... __-_. _. ___... _. _... _ 1.000 "1 dc 

x. 00000 s 250.000 us 500.000 us 
50.0 Ls/div 

3 
.5 L2 Ov 

(f) Specimen-6. 
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(i) Specimen-9. 
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(j) Specimen-10. 

Figs. 9.7(a j). Printouts of the digitizing-oscilloscope display. 
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Figs. 9.8(a J). Displacement against time graphs of the cracks travelling through the 
painted grid lines. 

9.6.3. Velocities of the Cracks and their Branching 

The velocity of crack propagation, v, in the direction perpendicular to the grid 

lines was calculated by measuring the gradient of the tangent on the displacement-time 

graphs half way between every consecutive two points. The velocities were then 

plotted against displacement in Figs. 9.9(a-f) and against time in Figs. 9.10(a-f). The 

curve fit to the graphs was cubic. 
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Figs. 9.9(a f). Velocity against displacement graphs of the crack propagating through 

the grid lines. 
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Figs. 9.10(a . fl. Velocity against time graphs of the crack propagating through 
the grid lines. 
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In addition, it is useful to show the velocities of the crack propagating at each 
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Figs. 9.11(a j). 

-1 21 
ý-ý 19 

---j 15 

------- 13 

-------a 11 

5 

1 

-------ý TOP GRID 

, 

! 'ý22TRIGGER 

--------J 24 

--------26 
--------4 28 

-------J 30 

------- _ 32 
31 

-------ý 36 

------ý 38 

ý- ---- 42 

The crack, the branching phenomenon, the top and bottom grids (dashed line), the trigger (dashed line) and the location 
numbers unfolded and shown in the plane of the paper to a 
scale of 1: 1.43. 

222 



point half way between every two consecutive grid lines, and the time of occurrence 

of fracture at each grid line. Therefore, these locations were numbered from 1 to 21 

for the grid above the semi-circular notch (top grid), and from 22 to 42 for the grid 

below the notch (bottom grid) - see Figs. 9.11(a j). The instantaneous velocities and 

time of occurrences corresponding to the locations on the grids are given in Tables 

9.3(a j). 

Figs. 9.11 also display the crack and all the branches which developed in the 

middle cylinder of each pressure tube. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(us) 

1 - 42 

2 335 _ 
3 - 62 

4 341 - 
5 - 82 

6 347 
_ 

7 - 101 

8 353 

9 - 120 
10 347 _ 
11 - 141 
12 353 _ 
13 - 158 
14 353 
15 177 
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16 366 - 
17 - 195 

18 366 - 
19 - 214 
20 372 

- 
21 - 232 

22 - 9 
23 278 

- 
24 - 34 
25 305 

- 
26 - 53 
27 323 

- 
28 - 77 
29 341 

- 
30 - 95 
31 353 

- 
32 - 116 
33 359 

- 
34 - 134 
35 359 

36 - 152 
37 366 

38 - 169 
39 372 
40 - 
41 372 

42 - 

190 

207 

1'., LJt/4{r i//LGlL-1 
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Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(ps) 

1 - 34 

2 267 - 
3 - 40 

4 305 - 
5 - 63 

6 317 - 
7 - 84 

8 335 - 
9 - 104 

10 353 - 
11 - 122 

12 353 - 
13 - 141 

14 359 - 
15 - 158 

16 366 - 
17 - 179 
18 366 

- 
19 - 195 
20 366 - 
21 - 214 
22 - 50 

23 300 - 
24 - 72 
25 323 

- 
26 - 94 
27 347 

- 
28 - 113 
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29 359 - 
30 - 132 

31 366 - 
32 - 148 

33 366 - 
34 - 170 

35 379 - 
36 - 185 

37 386 - 
38 - 204 

39 386 - 

40 - 222 

41 379 - 
42 - 239 

(b) Specimen-2. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (mis) 

Fracture occurrence time 
(ps) 

1 - 63 

2 347 - 
3 - 79 
4 366 - 
5 - 101 

6 379 - 
7 - 119 

8 386 - 
9 - 133 

10 386 - 
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11 - 152 
12 379 - 
13 - 170 
14 372 - 
15 - 187 

16 379 - 
17 - 205 
18 379 

- 
19 - 223 
20 366 

_ 
21 - 241 
22 - 23 
23 353 _ 
24 - 40 
25 353 

_ 
26 - 59 
27 353 

- 
28 - 80 
29 366 

30 - 99 
31 359 

32 - 118 
33 359 

_ 
34 - 134 
35 366 

_ 
36 - 153 
37 379 

_ 
38 - 171 
39 393 
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40 - 187 

41 407 - 
42 - 205 

(c) Specimen-3. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(µs) 

1 - 48 

2 335 - 
3 - 68 

4 353 - 
5 - 87 
6 386 - 
7 - 104 

8 399 - 
9 - 121 

10 414 

11 - 137 

12 414 - 
13 - 153 
14 421 . 
15 - 168 
16 428 . 
17 - 185 
18 436 . 
19 - 200 
20 436 

. 
21 - 215 
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33 399 - 

34 - 124 

35 407 - 

36 - 143 

37 421 - 

38 - 158 

39 428 - 
40 - 174 

41 436 - 
42 - 189 

(d) Specimen-4. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, Fracture occurrence time 
v (m/s) (ps) 

1 - 13 

2 305 - 
3 - 40 
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4 359 _ 
5 - 55 

6 379 _ 
7 - 74 

8 399 - 
9 - 88 
10 414 _ 
11 - 102 
12 436 _ 
13 - 122 
14 444 

_ 
15 - 137 
16 444 

_ 
17 - 151 
18 451 

_ 
19 - 166 
20 451 

21 - 179 
22 - 38 
23 366 

24 - 58 
25 393 
26 

27 

28 

- 
414 

- 

75 

89 
29 428 
30 

- 
31 436 
32 

- 

103 

122 
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33 444 - 

34 - 136 

35 444 - 
36 - 150 

37 451 - 

38 - 164 

39 451 - 
40 - 181 

41 451 - 
42 - 194 

(e) Specimen-S. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(ps) 

1 - 46 

2 359 - 
3 - 64 

4 393 - 
5 - 83 

6 421 - 
7 - 96 
8 459 - 
9 - 113 

10 468 - 
11 - 127 
12 468 - 
13 - 141 

14 476 - 
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15 - 153 
16 484 

- 
17 - 167 
18 493 

- 
19 - 182 
20 502 - 
21. - 194 

22 - 13 
23 305 - 
24 - 34 
25 329 

- 
26 - 55 
27 366 

- 
28 - 74 
29 386 

30 - 88 
31 421 

32 - 103 
33 444 

34 - 118 
35 444 
36 - 133 
37 520 

38 - 146 
39 558 

40 - 160 
41 568 

42 
- 168 

vi 
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Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(µs) 

1 - 15 

2 317 - 
3 - 36 

4 359 - 
5 - 56 
6 386 - 
7 - 72 

8 407 - 
9 - 88 

10 436 - 
11 - 101 

12 436 - 
13 - 120 

14 436 - 
15 - 134 

16 444 - 
17 - 148 

18 459 
- 

19 - 162 
20 476 - 
21 - 176 
22 - 47 
23 353 _ 
24 - 65 
25 386 

26 - 84 
27 414 

_ 
28 - 101 
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29 451 - 

30 - 115 

31 451 - 

32 - 126 

33 459 - 

34 - 143 

35 468 - 

36 - 156 

37 484 - 

38 - 172 

39 493 - 

40 - 185 

41 502 - 
42 - 196 

(g) Specimen-7. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(ps) 

1 - 15 

2 341 - 
3 - 34 

4 393 - 
5 - 51 

6 428 _ 
7 - 64 

8 468 

9 - 82 
10 493 _ 
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11 - 95 
12 502 - 
13 - 106 
14 510 - 
15 - 118 

16 520 - 
17 - 133 
18 529 - 
19 - 145 
20 529 - 
21 - 158 
22 - 16 

23 272 _ 
24 - 35 
25 379 

_ 
26 - 55 
27 451 

_ 
28 - 70 
29 493 

_ 
30 - 84 
31 520 

_ 
32 - 96 
33 520 

_ 
34 - 110 
35 520 

36 - 121 
37 520 

38 - 129 
39 510 
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40 - 147 

41 484 - 
42 - 160 

(h) Specimen-8. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(ps) 

1 - 21 

2 366 - 
3 - 38 
4 421 - 
5 - 55 
6 459 - 
7 - 68 

8 493 - 
9 - 83 
10 510 - 
11 - 95 

12 510 - 
13 - 109 

14 510 - 
15 - 119 
16 502 - 
17 - 134 

18 502 
- 

19 - 148 
20 484 - 
21 - 161 
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22 - 5 

23 399 - 

24 - 24 

25 414 - 

26 - 40 

27 428 - 

28 - 53 

29 444 - 
30 - 70 

31 459 - 

32 - 84 

33 484 - 

34 - 98 

35 502 - 
36 - 112 

37 510 - 
38 - 123 

39 538 - 
40 - 137 

41 568 - 
42 - 148 

(i) Specimen-9. 

Location at the 
grid - Fig. 9.11 

Instantaneous crack velocity, 
v (m/s) 

Fracture occurrence time 
(us) 

1 - 21 

2 393 - 
3 - 37 
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4 421 
_ 

5 - 47 
6 436 

- 
7 - 70 
8 459 

- 
9 - 83 
10 476 - 
11 - 96 
12 484 

_ 
13 - 109 
14 502 

_ 
15 - 124 
16 520 

_ 
17 - 137 
18 548 

19 - 145 
20 568 

21 - 161 
22 - 38 
23 407 

24 - 55 
25 459 

26 - 70 
27 502 
28 

29 

30 

- 
529 

- 

82 

97 
31 538 
32 

- 106 
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33 529 - 
34 - 120 

35 520 - 
36 - 133 

37 510 - 
38 - 146 

39 484 - 
40 - 161 

41 444 - 
42 - 174 

(j) Specimen-10. 

Tables 9.3(a j). The instantaneous velocity of crack propagation and the time of 
fracture occurrence at consecutive locations at the grid - see 
Figs. 9.11. 

The velocities were nondimensionalized by dividing them by the velocity of 

sound in the tubes, v,, which is given by 

E 
Vs = (9.3) 

where E is the modulus of elasticity and 8 is the mass density of the material. 

Referring to section 4.2 or appendix I, 

v= 1800 m/s 

The dimensionless velocity plotted against time is shown in Figs. 9.12(a-f). 
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Figs. 9.12(a-1). Dimensionless velocity against time graphs of the crack 
propagating through the grid lines. 
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9.6.4. Branching and the Dynamic Stress Intensity Factor, K 

Fracture mechanics is a fairly young field of science. Its pioneers strived at 

establishing the basic theories in the first few decades of this century. The concept 

of the stress intensity factor describing the stress field emerged gradually, and had 

been derived only for the static case until recently. The derivation for the dynamic 

case is more complex and came with some simplifying assumptions. Nilsson [25] 

produced a useful graph in his paper, published in 1972, plotting the ratio of the 

dynamic stress intensity factor for a propagating crack, KID, to the static KI for an 

equivalent stationary crack against the dimensionless velocity of crack propagation. 

His calculations were based on a crack propagating at a constant velocity. He 

considered a crack propagating at one end in a semi-infinite plate, while the other end 

extended to infinity. The pressure tubes which were investigated in this chapter had 

propagating cracks of finite lengths. Therefore, a more applicable model is the one 

presented by Freund [50] with the resulting graph on page 336 of his book, published 

in 1990. The graph plotted the ratio Km/KI against the dimensionless velocity of crack 

propagation. The calculations were based on an infinite plate with a crack of finite 

length propagating at a constant velocity at both tips. The velocities at both tips are 

not necessarily equal in magnitude. It is assumed that in this case Freund [50] gives 

a better approximation compared to that of Nilsson [25] since the finite length of the 

crack is a more realistic assumption. 

The static stress intensity factor for an equivalent stationary crack had to be 

found prior to obtaining a value for the dynamic stress intensity factor of a 
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propagating crack. Referring to pages 1348-1350 in the second volume of Murakami 

[84], the KI value was calculated for the different pressure tubes at the point of initial 

branching, assuming the pressure to be the same as that at the point of failure. Using 

each value of KI and referring to Nilsson's [25] and Freund's [50] graphs, two values 

of KIDwere obtained. Table 9.4 presents the pressure, p, the assumed length of the 

crack, 2a (measured from the point of initial branching at one end of the crack to the 

point of initial branching at the other end), the average value of the two velocities at 

the crack tips, va�8, and the corresponding two values of KID. 

p 2a Vayg KID (N/mmm) 
(psi) (mm) (m/s) 

obtained with reference 
to Nilsson [25] 

obtained with reference 
to Freund [50] 

205 118 378 205 189 

220 146 432 269 241 

265 131 450 286 256 
275 117 498 266 228 

290 110 452 267 229 

320 103 513 266 227 

330 103 506 275 237 

375_.. l- 72 503 217 185 

Table 9.4. KID at the point of initiation of branching assuming the crack length to 
be the distance between the point of initiation of branching at one end 
of the crack and the point of initiation of branching at the other end. 

There are two components of every resultant value of K. The membrane 

component is the major one ranging from 82% to 95%, while the bending component 

is the minor one ranging from 5% to 18% of the resultant value of KID [84]. 
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The length of the crack at the point of initial branching can be defined 

differently. In Table 9.5, the crack length, 2a, has been defined as the distance 

between the point of initiation of branching at one end of the crack where branching 

occurred first and the corresponding point at the other end occurring at the same 

incident of time. In other words, referring to Figs. 9.11 and Tables 9.3, the point at 

which branching initiated was determined paying attention to the crack end at which 

it occurred. The corresponding incident of time was observed and the point at the 

other end of the crack existing at the same incident of time was identified. Thereafter, 

the length of the crack could be measured between the two identified points. Table 

9.5 also provides the internal pressure, p, the instantaneous velocity of the crack at the 

point of initial branching, v, and the corresponding values of KID. 

p 2a v KID (N/mm3 ) 
(psi) (mm) (m/s) 

obtained with reference 
to Nilsson [25] 

obtained with reference 
to Freund [50] 

205 112 379 195 179 

220 130 428 241 216 

265 125 448 274 245 

275 113 520 255 216 

290 109 459 261 231 

320 98 506 256 220 

330 101 502 275 235 

375 68 516 203 173 

Table 9S. KIc at the point of initiation of branching assuming the crack length to 
be the distance between the point of initiation of branching at one end 
of the crack where branching occurred first and the corresponding 
point at the other end occurring at the same incident of time. 
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The two pressure tubes with the largest semi-circular notches produced with 

sharpened shims failed at pressures of 165 and 170 psi and their cracks did not 

contain any branching in the notched middle cylinder. Therefore Tables 9.4 and 9.5 

present the results of the remaining eight tubes only. 

9.6.5. Fracture Surfaces and the Dynamic Stress Intensity Factor 

The 

fracture 

surfaces of the 

pressure tubes 

can be seen in 

Figs. 9.13(a-j). 

Dueto 

similarity 

between the 

fracture 

surfaces of the 

two broken 

parts of each 

tube, only one 

surface was 

shown for each 

tube. 

(a) Specimen -l. 

(b) Specimen-.:. 

(c) Specimen-i. VI 
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The 

fracture 

surfaces 

displayed clear 

characteristics. 

Starting at the 

tip of the 

semi-circular 

notches, shown 

in Figs. 9.13(a- 

j), the crack 

propagated 

giving a 

smooth mirror 

surface. This 

was followed 

by a less- 

smooth mist 

region. Finally 

a rough hackle 

region 

developed with 

the degree of 

(d) Specimen-4. 

(e) Specimen-S. 

Ul apecuincii-u. 

(g) Specimen-7. 
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roughness 

increasing with 

distance away 

from the notch. 

The first two 

regions were 

small 

compared to 

the hackle 

region as 

depicted in 

Figs. 9.13. 

One 

photograph 

exhibits the 

process of 

branching - 

Fig. 9.13(i). 

(h) Specimen-8. 

(i) Specirnert-9. 

(j) Specimen-IU. 

Figs. 9.13(a j). Fracture surfaces of the pressure tubes. 

The inception of both hackle regions in each pressure tube occurred 

simultaneously. This was concluded from observing the fracture surfaces and referring 

to Figs. 9.11 and Tables 9.3. The dynamic stress intensity factor was calculated for 

the tubes as the crack tips were at the commencement of the hackle regions. The 

length of the crack, 2a, was defined to be the distance between the line separating the 
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mist region from the hackle region at one end of the crack and that separating the 

same two regions at the other end of the crack. The velocity of the crack used in the 

calculation was the arithmetic mean of the instantaneous crack velocities at both ends, 

v�, g. 
The internal pressure assumed in the calculation of the membrane stress in the 

tubes was that occurring at failure. The procedure of obtaining KIDwas the one 

followed in section 9.6.4. The results are presented in Table 9.6. 

p 2a vavg KID (N/mdf )7 
(psi) (mm) (m/s) 

obtained with reference 
to Nilsson [25] 

obtained with reference 
to Freund [50] 

165 60 337 83 77 

170 64 335 89 84 

205 54 357 91 84 

220 51 351 92 85 

265 44 374 95 88 

275 41 363 93 86 
290 36 356 86 80 

320 34 360 89 82 

330 30 390 83 75 
375 28 407 86 78 

Table 9.6. KID at the point of inception of the hackle region. 

A close scrutiny of the semi-circular notch tips revealed the point at which the 

cracks initiated. There were fine lines indicative of the point of initiation of the 

cracks, as shown in Fig. 9.14. The figure also defines the angle at which the cracks 

initiated, y, which ranged between 0 and 10 degrees. 
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Mirror region of fracture surface Mist region of fracture surface 

Semi-circular notch Fine lines 
Initiation of crack 

Fig. 9.14. Schematic diagram of the semi-circular notch and fracture surface in 
the pressure tubes. 

It may be interesting to the reader to compare the fine lines of Fig. 9.14 which 

are indicative of the point of inception of fracture to those of Fig. 5.9. 
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CHAPTER TEN 

DISCUSSION AND CONCLUSIONS 

The main area of research for this thesis was carried out experimentally to find 

different values of the stress intensity factor. Both the static and dynamic stress 

intensity factors were scrutinised. The investigation considered pure mode-I and 

mixed-mode (I and II) loading conditions in the static study which involved real and 

apparent stress intensity factors for cracks and narrow notches respectively. The 

dynamic study was limited to the examination of narrow semi-circular notches under 

pure mode-I loading conditions. 

The number of specimens tested in each case was governed by the difficulty 

of manufacture together with the need to achieve statistically reliable results. The 

complexity of producing specimens containing real cracks combined with the 

consistency of their results rendered the testing of a few specimens sufficient. While 

the relative ease of manufacture of notched specimens together with the scatter in the 

results necessitated the testing of a large number of specimens. 

The experimental study was complemented by a finite element computational 

analysis, which described the stress contours and, in particular, the peak stresses at the 

251 



tips of narrow notches with semi-circular tips or with rectangular tips with rounded 

corners. The investigation involved pure mode-I, pure mode-II and mixed-mode (I 

and II) loading conditions. The results of the study would enable the reader to obtain 

the peak stresses in any component containing a narrow notch with a semi-circular or 

rectangular (with rounded corners) tip under any combination of mode-I and mode-II 

loading conditions, provided the notch geometry was known and the stress intensity 

factors KI and KII for an equivalent crack could be obtained. 

10.1. Static Stress Intensity Factors and the Static Modelling of Cracks 

The real and apparent static stress intensity factors for cracks and narrow 

notches respectively were documented in the previous chapters, for the different 

specimens of the project. The results covered almost any combination of mode-I and 

mode-II loading conditions. Four different notch sizes were investigated. 

The results facilitate the modelling of a crack in a real engineering component 

by using a narrow notch in a model. Since the research has exclusively dealt with 

brittle fracture, the modelling of components containing cracks can be achieved 

provided their behaviour is brittle. 

The modelling process is carried out by measuring the exact dimensions of the 

component and the crack. The dimensions of the model and its narrow notch (which 

represents the crack) are thus decided. The model can be of any size, bearing in mind 

that failure must be brittle, and maintaining a proportional relationship between the 
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model and the component. The notch and the crack must also be proportionate, with 

the exception of their thicknesses, and hence the existence of an apparent value of the 

stress intensity factor. The model is cast with the introduction of a narrow notch 

using a shim. The material and casting procedure are described fully in chapter 4. 

The shim can have any one of the four thicknesses considered in this thesis. The 

apparent stress intensity factor used in the calculations must correspond to the selected 

thickness of the notch (referred to as the notch width in earlier chapters: 2s). 

From basic equations it can be shown that 

K )COmpo 
er °nom�Q 

KAPP 
onom' "' 

(10.1) 

where K and K^PP are the real and apparent stress intensity factors respectively, ate� f 
In 

is the nominal stress, and a is the crack or notch length. If the model is taken to 

failure, the critical value of K"" is substituted in the equation. Also, the value of ßpa� 

at failure is substituted in the model-side of the equation 

K' " can take the form of pure mode-I, pure mode-II or any combination of 

the two modes, depending on the loading conditions. At failure, the critical value of 

K' "P is considered. K, c"PP is documented in chapter 5. Fig. 6.11 plots the value of 

KC for almost any combination of mode-I and mode-II loading conditions. 

The actual loading condition on the model, which must be identical to that on 

the component, dictates which value of Kc"PP to use. Subsequently, this value is 
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substituted in equation (10.1). 

The material of the component must be known. Kic or KIIc for the material 

must be obtained from published tables. Thereafter, it is assumed that Kc for the 

material in any combination of mode-I and mode-II loading conditions follows the 

same shape of graph for a real crack which is shown in Fig. 6.11. The appropriate 

value of Kc is thus chosen, corresponding to the actual loading condition. It 

substitutes for K in the component-side of equation (10.1). Ia is substituted for in 

both sides of the equation. The only residual unknown is By solving the 

equation, a value for (ßn. ),.. 
,, t can be obtained and used to calculate the load at 

which failure by brittle fracture is predicted. 

10.2. Discrepancy between the Apparent Critical Static Stress Intensity 

Factors, V"" 

The narrow notches in all the specimens being tested were introduced by 

casting the specimens with a shim being present in the mould. In general, the shape 

of the shims has a direct effect on that of the notches. Since the manufacture and 

machining of the shims influence their shape, particularly at the tip, then the 

subsequent test results will be affected by the process of production of the shims. 

A scanning electron microscope was employed to elucidate the different shapes 

of the shims. The tips were viewed under high magnification as shown in Figs. 

10.1(a-d). Twenty four photographs for four different types of shim were taken. Two 
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of the shims had a straight edge, with either a flat or sharpened tip; the other two had 

a semi-circular edge, also with either type of tip. The straight-edge shims were used 

for the 3PB and CMM specimens, while the semi-circular-edge shims were used for 

the pressure tubes. The shims shown in Figs. 10.1 had a thickness of 0.10mm each. 

Six photographs were taken for each of the four shims: three were of a low 

magnification and the other three were of a high magnification. The direction of 

viewing the shims was almost perpendicular to their plane from either side or parallel 

to it. Sixteen photographs pointed up and eight pointed down for configuration 

reasons inside the scanning electron microscope. 
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(a. 3) Unsharpened side, magnification = 100. 
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(a. 2) Magnification= IUUU. 



(a. 4) Unsharpened side, magnification = 1000. 

(a. -)) 3narpenea stae, magnification = iou. 
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(a. 6) Sharpened side, magnification -- 1000. 
(a) 0.10mm-thick semi-circular 3mm-radius sharpened shim. 
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(b. 1) MVMagrc{/icucuun = 1VU. 
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(b. 2) Magnification = IUUU. 



(b. 4) Magnification = 1000. 
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(b. 6) Magnification = 1000. 
(b) 0.10mm-thick semi-circular 3mm-radius flat shim. 
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(c. 1) magnijecation =i vv. 



(c. 2) Magnification= 1000. 
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(c. 4) Unsharpened side, magnification = 1000. 
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(c. 5) Sharpened side, magnification = 100. 
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(c. 6) Sharpened side, magnification -- 1000. 
(c) 0.10mm-thick straight sharpened shim. 

(d. l) Magnification ý 100. 
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(d. 2) Magnification = 800. 
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(d. 4) Magnification = 1000. 
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(d. 6) Magnification ý 1000. 

(d) 0.10mm-thick straight flat shim. 

Figs. 10.1(a-d). Photographs of straight and semi-circular shims which have flat 
or sharpened tips. Each one of the four different shims was 
photographed almost perpendicularly to its plane from both 
sides and also parallel to it. This was done at both the low and 
high magnifications. 

In spite of the high quality standard to which the shims were manufactured and 

machined, the photographs show irregularities and roughness at the tips. This may 

explain the scatter in the values of K, and K� at failure. It can also be seen that the 

method of machining significantly affects the shape of the tips, which may explain the 

difference between the KIc values in the 3PB specimen testing on one hand and those 

in the testing of the pressure tubes on the other. Both sets of the K, (, values are 

tabulated in chapters 5 and 9 respectively. Therefore, the need to give a description 

of the machining process of the shims is prominent. 
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10.3. Dynamic Stress Intensity Factor, K 

The dynamic stress intensity factor, KID, was obtained for the pressure tube 

tests at two locations during crack propagation: the inception of the hackle region on 

the fracture surfaces and the commencement of branching. All the results are 

tabulated in chapter 9. 

The average value of KID at the inception of the hackle region for the ten 

pressure tubes tested is either 82 N/mmm or 89 N/mm3R depending on the method of 

calculation (see section 9.6.5). This yields a ratio KUJK, c of 3.3 or 3.6 respectively. 

If the hackle region is indicative of the instability of a crack, then the instability of 

the crack commences when KK /KIc is greater than 3. 

The value of KIDranged from 75 to 95 N/mm'R at the inception of the hackle 

region. The corresponding range of KID/KIc is from 3.1 to 3.9. 

The total range of KIDat the initiation of branching is 173 to 286 N/mmm 

including both methods of calculation (see section 9.6.4). This gives a range of 7.1 

to 11.7 for the ratio KID/KIC. 

10.4. The Uniqueness of the Dynamic Stress Intensity Factor 

Instantaneous Crack Velocity Relationship 

The existence of a unique relationship between the dynamic stress intensity 
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factor, KID, and the instantaneous crack propagation velocity, v, has been debated in 

section 3.2. The Kobayashi and Dally [90] unique relationship of KID/KIc versus v/cl 

has been reported by several researchers [e. g. 67 and 66]. It covered a range of 

KID/KIc up to a value of less than 4. Similar graphs of KID versus v have been plotted 

by other authors [e. g. 74,75 and 72]. 

The research conducted in this project has revealed a range of KSKIc between 

3 and 12 which corresponds to a range of v between 0.18 and 0.29. The values of KID 

and v have been presented in Tables 9.4,9.5 and 9.6. The investigated range is an 

extension of the above-described Kobayashi and Dally relationship. In Fig. 10.2, the 

dimensionless K. )KIc has been plotted against the dimensionless v/va using the values 
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of KID obtained by referring to Nilsson [25], while Fig. 10.3 shows the same 

dimensionless parameters using the values of KIDobtained by referring to Freund [50] 

- see section 9.6.4. The scatter in the results underlines the uncertainty of the 

uniqueness of the KID versus v relationship. 
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10.5. Dynamic Modelling of Cracks 

The modelling of a crack in a structural component in the static stage was 

discussed in section 10.1. The destructive testing of a model containing a narrow 

notch predicts the magnitude of the force which may cause the failure of the modelled 

component. 
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In the dynamic stage, although the propagation of the crack in the model, and 

the subsequent instability of the crack including branching, may give an approximate 

representation of how the actual component would dynamically break, nevertheless the 

representation may not be sufficiently accurate. The real and apparent static stress 

intensity factors of the component and model respectively can be utilized to predict 

the failure load of the component, depending on the dimensions of the component and 

model and the forces acting on them (see section 10.1). But the dynamic stress 

intensity factor depends on the velocity of crack propagation. Assuming that the 

stability of crack propagation is dependent upon the ratio KID/Klc, and since the crack 

propagation may not have the same velocity in both the component and model, then 

the instability of propagation may occur at different locations in the component and 

model. This dynamic consideration is the subject of the next chapter. 

Other dynamic factors which can affect the stability of a propagating crack are 

stress waves which may travel through a component and its model at different speeds. 
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CHAPTER ELEVEN 

FUTURE WORK 

The previous chapter describes the method of modelling cracks in an 

engineering component by using a model with a narrow notch, provided that the 

behaviour is brittle. The modelling process is accurate for the static stage. However, 

the dynamic stage of fracture, where the crack propagates with a certain velocity, may 

be different in the component and the model, due to the dependence of the dynamic 

stress intensity factor upon the velocity of crack propagation. 

The future work recommended in this chapter is suggested in the following 

three points. 

Firstly, it should be established further whether the instability and the 

subsequent branching of a crack are dependent upon the ratio KID/Klc (see section 

10.3). This can be achieved by investigating the dynamic fracture of different 

specimens for a number of materials. 

Secondly, it may be rewarding to experiment further with the velocity of crack 

propagation as an attempt to create equations and numerical tables which can be used 
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to predict the velocity of propagation of any crack. 

Thirdly, it is advised to gather enough information from the previous two 

points to enable a reasonably accurate modelling of cracks in the static and dynamic 

stages by using a model with a narrow notch. The dynamic modelling of a crack may 

require either the KID/Klc versus v/cl relations of both the model and component to 

coincide in addition to the use of scaled geometries as has been suggested by 

Kobayashi [72], or the dimensions of the model to be proportionate to those of the 

component in such a ratio that will incite crack instability and branching to occur at 

proportionate locations in both the model and component. 
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APPENDIX I 

MATERIAL PROPERTIES I 

(ARALDITE CT-200 WITH HARDENER HT-907) 

The modulus of elasticity, E, for the epoxy resin Araldite CT-200 with 

Hardener HT-907 was obtained experimentally by testing a beam under three point 

bending, as shown in Fig. I. 1. 

F 

0 

F/2 F/2 23.5 

25.25 L/2 = 124.75 ! L/2 = 124.75 25.25 

Fig. I. I. An epoxy resin seam unaer three point bending - all the dimensions 
are in mm. 

The Instron 1193, shown in Fig. 5.7, which has a displacement-controlled 
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loading cross-head, was used to provide the bending force. The beam was loaded 

from 0 to a maximum of 500 N under a constant loading speed of 5 mm/minute. The 

plot of the force F against the displacement of the cross-head (i. e., F versus the 

deflection of the beam) was a straight line with a gradient 4 of 35.0 N/mm. It can be 

shown from first principles that the modulus of elasticity is given by 

E=L3 
481 

(I. 1) 

where I is the second moment of area of the beam. E was calculated to be 3900 

N/mm2 (accurate to two significant figures). 

The mass density, S, of the epoxy resin was found by accurately weighing a 

known volume of the material. The volume was decided by using a micrometer to 

measure the dimensions of any weighed sample, and the method of water displacement 

confirmed the calculated volume. S was calculated to be 1210 kg/m' (accurate to 

three significant figures). 

The material's Poisson's ratio, o, has been well established in the Department 

of Mechanical Engineering of the University of Nottingham after the experimentation 

of several researchers. v was found to be 0.30. 
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APPENDIX II 

MATERIAL PROPERTIES II 

(ARALDITE CT-200 WITH HARDENER HT-907) 

The tensile yield stress, c y, and the ultimate tensile stress, ßu, of the epoxy 

resin were obtained experimentally by loading the specimen shown in Fig. II. 1 to 

failure. 

Uniaxial 
tension 

0 
N 
N 
tT 

-1 X13.2 mm 

Maximum width of 50 mm 

Minimum width of 5.0 mm 
Radius of curvature of one 
meter approximately 

Fig. 11-1. uniaxial tensue toaaing of a specimen. 

The Instron 1193 in conjunction with the Instron gripping jaws provided the 

uniaxial tension required to test the specimen. The speed of the loading cross-head 
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Uniaxial 
tension 



was 1 mm/minute. A plot of the uniaxial tensile stress (at the minimum cross- 

sectional area) against the cross-head displacement is shown in Fig. 11.2. 

The plot of a against displacement is a straight line up to aß value of 42.0 

N/mm2, and therefore the a. of the material is 42.0 N/mm2. It can also be seen that 

the ß� of the material is 90.8 N/mm2. The graph reveals a small drop in a before final 

fracture occurs. 

c'3 °-4 
c4-4a 

z 
9 

ý. / 0 

{. ý 
u 13 

&± 

1ýý 

N 

tu 
N 
N 

. 
O 

in 
y 

1 
'y 1 , 

' q 1 

2.45 7.00 
Cross-head displacement (mm) 

Fig. 11.2. Uraph of the uniaxial tensue stress against the cross-head displacement 
for the specimen shown in Fig. ILl. 

The specimen broke at the minimum cross-sectional area. The fracture surface 

was flat and perpendicular to the uniaxial tensile stress, which is typical of a brittle 

fracture. The fracture surface texture and lines indicated that fracture initiated at one 

of the corners of the broken surface. 
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APPENDIX III 

Ki AND K11 EVALUATION METHOD 

Hyde and Chambers [78] employed the finite element and photoelastic 

techniques to obtain the mode-I and mode-II static stress intensity factors for the 

CMM specimen. Their results were presented in the form of four graphs of 

KI /(PBW'n), KI90/(PBWIn), KII /(PBW'R) and KII9°/(PBW") against a/W. KI and 

KI ° are the mode-I stress intensity factors for the loading angle, a, of 00 and 90° 

respectively. The parameters a, a, P, B and W are all defined in chapters 6 and 8. 

K. 0 and Kn'* are the mode-II stress intensity factors for the loading angle, a, of 0° and 

90° respectively. The stress intensity factors for any loading angle, o:, are given [78] 

by 

KI = K° cosa + K90 sins (III. 1) 

and KI, = KII cosa +K 90 sinn (111.2) 

The four graphs presented by Hyde and Chambers [781 have been used to 

obtain the values of KI /(P/BW'n), KI90/(P/BW'"2), Ku /(PBW'R) and KII /(P/BW'R) for 

different values of a/W in Table III. I. 

The two values of the loading angle, a, predicted by Hyde and Chambers [78] 
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to give pure mode-I and pure mode-II loading conditions for (a/W = 0.45) agreed with 

those obtained by the author, for the same loading conditions, in the finite element 

analysis presented in chapter 8, which were 20.2° and 108.6° respectively. 

a/W KI /(PBW"2) KI9o/(PBWirz) K11 /(PBW") K /(P/BW1R) 

0.300 5.61 1.70 -0.67 1.32 

0.350 6.25 1.86 -0.67 1.43 

0.369 6.54 1.96 -0.66 1.48 

0.400 7.02 2.13 -0.65 1.57 

0.410 7.24 2.20 -0.64 1.59 

0.420 7.46 2.28 -0.64 1.62 

0.421 7.48 2.29 -0.64 1.62 

0.422 7.50 2.29 -0.64 1.62 

0.423 7.53 2.30 -0.64 1.63 

0.424 7.55 2.31 -0.64 1.63 

0.425 7.57 2.32 -0.64 1.63 

0.426 7.59 2.32 -0.63 1.63 

0.427 7.61 2.33 -0.63 1.63 

0.428 7.64 2.34 -0.63 1.64 

0.429 7.66 2.34 -0.63 1.64 

0.430 7.68 2.35 -0.63 1.64 

0.431 7.70 2.36 -0.63 1.64 

0.432 7.73 2.37 -0.63 1.65 
0.433 7.75 2.37 -0.63 1.65 
0.434 7.77 2.38 -0.63 1.65 

0.435 7.80 2.39 -0.63 1.66 

0.436 7.82 2.40 -0.63 1.66 
0.437 7.84 2.41 -0.63 1.66 
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0.438 7.86 2.41 -0.63 1.66 

0.439 7.89 2.42 -0.63 1.67 
0.440 7.91 2.43 -0.63 1.67 
0.441 7.93 2.44 -0.63 1.67 

0.442 7.95 2.44 -0.63 1.68 
0.443 7.98 2.45 -0.63 1.68 
0.444 8.00 2.46 -0.63 1.68 
0.445 8.02 2.47 -0.62 1.69 

0.446 8.04 2.47 -0.62 1.69 
0.447 8.06 2.48 -0.62 1.69 
0.448 8.09 2.49 -0.62 1.69 
0.449 8.11 2.49 -0.62 1.70 
0.450 8.13 2.50 -0.62 1.70 
0.451 8.16 2.51 -0.62 1.70 
0.452 8.18 2.52 

-0.62 1.70 
0.453 8.21 2.53 -0.62 1.71 
0.454 8.23 2.54 -0.62 1.71 
0.455 8.26 2.55 -0.62 1.71 
0.456 8.29 2.56 -0.61 1.71 
0.457 8.31 2.57 -0.61 1.71 
0.458 8.34 2.58 -0.61 1.72 
0.459 8.36 2.59 -0.61 1.72 
0.460 8.39 2.60 -0.61 1.72 
0.461 8.42 2.61 -0.61 1.72 
0.462 8.44 2.62 -0.61 1.73 
0.463 8.47 2.63 -0.61 1.73 
0.464 

0.465 

8.49 

8.52 

2.64 

2.65 
-0.61 

-0.61 

1.73 

1.74 
0.466 8.55 2.66 -0.60 1.74 
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0.467 8.57 2.67 -0.60 1.74 

0.468 8.60 2.68 -0.60 1.74 
0.469 8.62 2.69 -0.60 1.75 
0.470 8.65 2.70 -0.60 1.75 

0.471 8.68 2.71 -0.60 1.75 
0.472 8.70 2.72 -0.60 1.76 
0.473 8.73 2.73 -0.60 1.76 
0.474 8.75 2.74 -0.60 1.76 
0.475 8.78 2.75 -0.60 1.77 
0.476 8.81 2.76 -0.60 1.77 
0.477 8.83 2.77 -0.60 1.77 
0.478 8.86 2.78 -0.60 1.77 

0.479 8.88 2.79 -0.60 1.78 
0.480 8.91 2.80 -0.60 1.78 
0.481 8.94 2.81 -0.60 1.78 
0.482 8.96 2.82 -0.60 1.79 
0.483 8.99 2.83 -0.60 1.79 
0.484 9.01 2.84 -0.60 1.79 
0.485 9.04 2.85 -0.60 1.80 
0.486 9.07 2.86 -0.59 1.80 
0.487 9.09 2.87 -0.59 1.80 
0.488 9.12 2.88 -0.59 1.80 
0.489 9.14 2.89 -0.59 1.81 
0.490 9.17 2.90 -0.59 1.81 
0.491 9.20 2.91 -0.59 1.81 
0.492 9.22 2.92 -0.59 1.82 
0.493 9.25 2.93 -0.59 1.82 
0.494 9.27 2.94 -0.59 1.82 
0.495 9.30 2.95 -0.59 1.83 
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0.496 9.33 2.95 -0.58 1.83 

0.497 9.35 2.96 -0.58 1.83 
0.498 9.38 2.97 -0.58 1.83 
0.499 9.40 2.98 -0.58 1.84 
0.500 9.43 2.99 -0.58 1.84 
0.501 9.47 3.00 -0.58 1.84 
0.502 9.50 3.01 -0.58 1.85 
0.503 9.54 3.02 -0.57 1.85 
0.504 9.58 3.03 -0.57 1.85 
0.505 9.62 3.05 -0.57 1.86 
0.506 9.65 3.06 -0.57 1.86 
0.507 9.69 3.07 -0.57 1.86 
0.508 9.73 3.08 -0.56 1.86 
0.509 9.76 3.09 -0.56 1.87 
0.510 9.80 3.10 

-0.56 1.87 
0.511 9.84 3.11 -0.56 1.87 
0.512 9.88 3.12 -0.56 1.88 
0.513 9.91 3.14 -0.56 1.88 
0.514 9.95 3.15 -0.56 1.88 
0.515 9.99 3.16 -0.56 1.89 
0.516 10.03 3.17 -0.55 1.89 
0.517 10.07 3.18 -0.55 1.89 
0.518 10.10 3.20 -0.55 1.89 
0.519 10.14 3.21 -0.55 1.90 
0.520 10.18 3.22 -0.55 1.90 
0.521 10.22 3.23 -0.55 1.90 
0.522 

0.523 

10.25 

10.29 

3.24 

3.25 
-0.55 

-0.54 

1.91 

1.91 
0.524 10.33 3.26 -0.54 1.91 

291 



0.525 10.37 3.28 -0.54 1.92 

0.526 10.40 3.29 -0.54 1.92 
0.527 10.44 3.30 -0.54 1.92 
0.528 10.48 3.31 -0.53 1.92 

0.529 10.51 3.32 -0.53 1.93 
0.530 10.55 3.33 -0.53 1.93 
0.531 10.59 3.34 -0.53 1.93 
0.532 10.62 3.35 -0.53 1.94 
0.533 10.66 3.36 -0.53 1.94 
0.534 10.70 3.37 -0.53 1.95 
0.535 10.74 3.39 -0.53 1.95 
0.536 10.77 3.40 -0.52 1.95 
0.537 10.81 3.41 -0.52 1.96 
0.538 10.85 3.42 -0.52 1.96 
0.539 10.88 3.43 -0.52 1.97 
0.540 10.92 3.44 -0.52 1.97 
0.541 10.96 3.45 -0.52 1.97 
0.542 10.99 3.46 -0.52 1.98 
0.543 11.03 3.47 -0.51 1.98 
0.544 11.07 3.48 -0.51 1.98 
0.545 11.11 3.50 -0.51 1.99 
0.546 11.14 3.51 -0.51 1.99 
0.547 11.18 3.52 -0.51 1.99 
0.548 11.22 3.53 -0.50 1.99 
0.549 11.25 3.54 -0.50 2.00 
0.550 11.29 3.55 -0.50 2.00 
0.551 11.34 3.56 -0.50 2.00 
0.552 11.40 3.58 -0.50 2.01 
0.553 11.45 3.59 -0.49 2.01 
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0.554 11.51 3.61 -0.49 2.01 

0.555 11.56 3.62 -0.49 2.02 
0.556 11.61 3.63 -0.49 2.02 
0.557 11.67 3.65 -0.49 2.02 

0.558 11.72 3.66 -0.48 2.02 
0.559 11.78 3.68 -0.48 2.03 
0.560 11.83 3.69 -0.48 2.03 
0.561 11.88 3.70 -0.48 2.03 

0.562 11.94 3.72 -0.48 2.04 
0.563 11.99 3.73 -0.48 2.04 
0.564 12.05 3.74 -0.48 2.04 
0.565 12.10 3.76 -0.48 2.05 
0.566 12.15 3.77 -0.47 2.05 
0.567 12.21 3.78 -0.47 2.05 
0.568 12.26 3.79 

-0.47 2.05 
0.569 12.32 3.81 -0.47 2.06 
0.570 12.37 3.82 -0.47 2.06 
0.571 12.43 3.83 -0.47 2.06 
0.572 12.48 3.85 -0.47 2.07 
0.573 12.54 3.86 -0.46 2.07 
0.574 12.59 3.88 -0.46 2.08 
0.575 12.65 3.89 -0.46 2.08 
0.576 

0.577 

12.70 

12.76 

3.90 

3.92 
-0.46 

-0.46 

2.08 

2.09 
0.578 12.81 3.93 -0.45 2.09 
0.579 12.87 3.95 -0.45 2.10 
0.580 12.92 3.96 -0.45 2.10 
0.581 12.97 3.97 -0.45 2.10 
0.582 13.03 3.99 -0.45 2.11 
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0.583 13.08 4.00 -0.45 2.11 

0.584 13.14 4.01 -0.45 2.11 

0.585 13.19 4.03 -0.45 2.12 

0.586 13.24 4.04 -0.44 2.12 

0.587 13.30 4.05 -0.44 2.12 

0.588 13.35 4.06 -0.44 2.12 

0.589 13.41 4.08 -0.44 2.13 

0.590 13.46 4.09 -0.44 2.13 

0.591 13.51 4.10 -0.44 2.13 

0.592 13.57 4.12 -0.44 2.14 

0.593 13.62 4.13 -0.43 2.14 

0.594 13.68 4.15 -0.43 2.14 

0.595 13.73 4.16 -0.43 2.15 

0.596 13.78 4.17 -0.43 2.15 

0.597 13.84 4.19 -0.43 2.15 

0.598 13.89 4.20 -0.42 2.15 

0.599 13.95 
--- 

4.22 -0.42 2.16 

0.600 14.00 
T 

4.23 -0.42 2.16 

Table III. 1. The dimensionless mode-I and mode-II stress intensity factors 
for 0° and 90° loading angles for different values of a/W for the 
CMM specimen (78]. 
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APPENDIX IV 

MODE-I STRESS CONTOUR PLOTS 

The iso-stress contours presented in this appendix have all been obtained for 

the 3PB specimen - see Figs. IV. 1(1-36). The notch tip is shown in every figure. The 

force, F, has been given the value 472 N throughout the analysis. All the dimensions 

and definitions have been given in chapter 7. The s/W and sip ratios are provided for 

each iso-stress figure. The contours have been produced using the PAFEC Interactive 

Graphics Suite (PIGS) computer package. Half of the 3PB specimen has been 

modelled since both halves are symmetrical. The maximum stresses are all given in 

N/mm2. 
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(1) s/W = 7.35 x 10-0 and s/p = 1. 

(2) sIW = 7.35 x 10-4 and s1 p=1. 
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MAX STRESS DIUIDED BY 10 TO THE POWER =2 

(3) s1 W=7.35 x 1074 and s1 p=2. 

MAX STRESS DIVIDED BY 10 TO THE POWER =2 

(4) sIW = 7.35 x 10-4 and s1 p=2. 
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(5) s/W = 7.35 x 10 ° and s/p = 4. 

MAX STRESS DIVIDED BY 10_TO THE POWER 
  

'u 
1 

Jýý- , 'ýý`i I'd 
u .: 

qm 
1u 

(6) s1 W=7.35 x 10-4 and s1 p=4. 
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FIHX 3Iaa - 

U uu. r U US 
(7) s/W = 7.35 x 10-4 and s/p = 8. 
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(8) s/W = 7.35 x 10-4 and s/p = 8. 



- ww - 

(9) s/W = 1.47 x 10-3 and s1 p=1. 

MAX STRESS DIVIDED BY 10 TO THE POWER =1 

(10) s1 W=1.47 x 10-3 and s1 p=1. 
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301 

(11) s/W = 1.47 x 10"3 and s/p = 2. 

(12) sIW = 1.47 x 10-3 and s/p = 2. 



(13) sIW = 1.47 x 10-3 and s/p = 4. 

(14) s/W = 1.47 x 10-3 and s/p =4 
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MAX STRESS DIUIDED BY 10 TO THE POWER =2 

qua K 
(15) s/W = 1.47 x 10-3 and s/p = 8. 

(16) sIW = 1.47 x 10-3 and s/p =8. 
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(18) s/W = 1.47 x 10-3 and s/p = 16 . 

304 

(17) s/W = 1.47 x 10-3 and s1 p= 16. 



305 

(19) s/W = 2.94 x 10-3 and s/p = 1. 

(20) sIW = 2.94 x 10-3 and s1 p=I. 



ý '.! bät' MINE 'ý 

(21) sIW = 2.94 x 10-3 and s/p = 2. 
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(22) sIW = 2.94 x 10-3 and s1 p=2. 



-ý, 

(23) s/W = 2.94 x 10"3 and sip = 4. 

MAY STRESS DIVIDED TO THE POWER =1 

R , N,  , 
(24) sIW = 2.94 x 10-3 and s/p = 4. 
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MAX STRESS DIVIDED BY 10 TO THE POWER =2 

(28) sIW = 2.94 x 10"3 and s/ p= 16. 
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(27) s/W = 2.94 x 10"3 and s/p = 16 



MAX STRESS DIVIDED BY 10 TO THE POWER =2 

(30) s/W = 2.94 x 10-3 and s/p = 32. 
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(29) sIW = 2.94 x 10-3 and s/p = 32. 



(32) sIW = 5.88 x 10-3 and s/p = 64 . 
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(31) s/W = 5.88 x 10-3 and s1 p= 64. 



(34) s/W = 1.18 x 10-2 and s/p = 128. 

312 

(33) s/W = 1.18 x 10"2 and s/p = 128. 



(35) s/W = 2.35 x 10"2 and s/p = 256. 

Figs. IV. 1(1-36). The iso-stress contours of the ß,,, ý 
(N/mm2) 

at the notch tips of the 3PB specimens. 
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(36) s/W = 2.35 x 10-2 and s/p = 256. 



APPENDIX V 

MIXED-MODE STRESS CONTOUR PLOTS 

The CMM specimen iso-stress contours at the notch tip are presented in this 

appendix - see Figs. V. 1(1-26). The force, P, has the value 1000 N throughout the 

analysis. All the dimensions and definitions have been given in chapter 8. The values 

of s/W, s/p and KJ(KI+Ka) are stated for each iso-stress figure. The contours have 

been produced by PIGS. The maximum stresses are all given in N/mm2. 
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MAX STRESS DIVIDED By 10 TO THL KUU =9! 

(1) s/W = 7.35 x 10-4, s/p =1 and K, /(K1 + K�) = 1.016. 

(2) s/W = 7.35 x 10-4, s/p =1 and K1/(K1 + K�) = 1.016. 
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I 

ý -, j 
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(3) s/W = 7.35 x 10-4, s/p =1 and K, l(K, + K�) = 1.001. 

(4) s/W = 7.35 x 10-4, sip =1 and K, l(K, + K�) = 1.001. 



(6) s/W = 7.35 x 10-4, sl p=1 and K, l(K, + K�) = 0.790 
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(5) s/W = 7.35 x 10-4, s/p =I and K1/(K, + K�) = 0.790. 



. 

4 

(7) s/W = 7.35 x 10-4, s/ p=1 and K1/(K1 + K11) = 0.610 

(8) s/W = 7.35 x 10-0, s1 p=1 and K, l(K, + K�) = 0.610 
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TI 

(9) s/W = 7.35 x 10-4, s/p =1 and KI/(K1 + K11) = 0.411. 

(10) s/W = 7.35 x 10"4, sl p=1 and K, 1(K1 + K�) = 0.411. 
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T{: 

:t 

1' 

(12) sIW = 7.35 x 10-4, S/ p=1 and K1/(K, + K�) = 0.225. 
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(11) s/W = 7.35 x 10-4, s/p =1 and K1/(K1 + K�) = 0.225. 



(13) s/W = 7.35 x 10-4, s/p =1 and K1/(K1 + K�) = 0.047. 

321 

(14) sIW = 7.35 x 10-4, S/ p=1 and K, l(K, + K,, ) = 0.047. 



-e- _1- EM 2eß 

(16) s/W = 2.94 x 10"3, s/p =1 and K, /(K1 + K�) = 0.001. 
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(15) sIW = 2.94 x 10-3, s/p =1 and K, /(K1 + K�) = 0.001. 



r_�. 

Y 
ýe 

(17) sIW = 7.35 x 10-4, s1 p=2 and K1/(K1 + K�) = 1.001. 

(18) s/W = 7.35 x 10-4, s/p =2 and K, /(K, + K�) = 1.001. 
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w riah 

(19) s/W = 7.35 x 10-4, s/p =2 and K1/(K1 + K�) = 0.610. 

(20) sIW = 7.35 x 10-4, s/p =2 and K, /(K, + K�) = 0.610. 
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(21) slW=7.35x10-4, slp=2and K, l(K, +K�)=0.411. 

(22) s/W = 7.35 x 10-4, sl p=2 and K, l(K, + K�) = 0.411. 
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(23) s/W = 7.35 x 10-4, s/p =2 and K1/(K1 + K11) = 0.047. 

(24) sIW = 7.35 x 10-4, sl p=2 and K, /(K1 + K�) = 0.047. 
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I 

i-t- ý 11-1 - -- ---, 

(25) s/W = 7.35 x 10-4, s/p = 256 and K, /(K1 + K�) = 0.047. 

sIW = 7.35 x 10-4, s/p = 256 and K, l(K, + K�) = 0.047. 

The iso-stress contours of the 6�. (Nlmm2) 

at the notch tips of the CMM specimens. 


