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Abstract

The colon’s epithelial lining exhibits a number of invaginations into the underlying
tissue, called the crypts of Lieberkühn. Housing stem cells at their bases, these crypts
play an essential role in the maintenance of the epithelium; however, the processes by
which crypts form are not conclusively understood. This study deploys mathematical
and experimental modelling to validate one potential mechanism: that cellular growth
in the developing epithelium causes a build up of compressive stresses, resulting in
buckling instabilities which initiate crypt formation.

We begin with an extension to the model of Edwards & Chapman (2007), modelling the
epithelium as a beam tethered to underlying tissue by a series of springs. Modelling
growth parametrically as a sequence of equilibrium configurations attained by beams
of increasing length, we demonstrate that competition between lateral supports and
stromal adhesion determines buckling wavelength. We show how non-equilibrium
relaxation of tethering forces affects post-buckled shapes, and illustrate that growth in-
homogeneity has a much weaker influence upon buckled configurations than do vari-
ations of mechanical properties.

An in-vitro study, in which we culture intestinal epithelial cells upon a flexible sub-
strate, demonstrates that the cells can exert sufficient force to induce buckling upon
reaching confluence. A corresponding one-dimensional model is presented, in which
a growing, confluent cell monolayer adheres to a thin compressible elastic beam. The
model exhibits buckling via parametric growth. Cell–substrate adhesion and growth
inhomogeneity have minimal influence upon configurations. Compressibility is im-
portant only in separating bifurcation points; large-amplitude shapes are accurately
approximated by incompressible solutions. A two-dimensional analogue of this model,
which extends von Kármán plate theory, is then given. Axisymmetric configurations
are compared with an alternative shell theory model, highlighting discrepancies aris-
ing from constitutive assumptions. Examining configurations of an inhomogeneous
plate reveals that generation of multiple crypts by targeted softening alone is difficult;
however, attachment to an elastic foundation can bias high frequency configurations.
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CHAPTER 1

Introduction

The structure and function of the digestive system have become increasingly well-
studied in recent years, both experimentally and mathematically. With cancer of the
large intestine (or colon) prevailing as the second-greatest cause of cancer-related mor-
tality in developed countries (Stewart & Kleihues, 2003), much focus has been placed
upon understanding the cellular dynamics of the colon and, in particular, the epithe-
lial cell layer which forms its internal lining. In its capacity as a self-renewing tissue
housing a ‘stem cell niche’, the colon is of great interest to stem cell biologists, while the
growing benefits of transplant surgery motivate the interest of tissue engineers in recre-
ating the tissue in the laboratory. Replication of intestinal tissue in vitro also has great
potential in aiding the understanding of the underlying biology and for such clinical
applications as drug testing and gene therapy. In this study we aim to couple theoreti-
cal modelling of the large intestine to the experimental research of Nottingham’s Tissue
Engineering group. Many of the concepts discussed in this thesis can be applied to both
small and large intestine. Our choice to focus upon the large intestine is motivated by
the greater availability of large intestinal tissue for experimental studies.

In this chapter we present an overview of the relevant background biology for this
study, beginning with a discussion of the structure of gastrointestinal tissue. We then
examine the gastrointestinal stem cell niche, its cellular dynamics and its important
role in the constant regeneration and maintenance of the intestinal epithelium. We dis-
cuss some prevalent diseases of the large intestine, before introducing common tissue
engineering techniques used to replicate intestinal tissue artificially. We then review
previous modelling of the intestine and mathematical theory pertinent to this study,
before closing this chapter with an overview of the contents of the remainder of this
thesis.
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Figure 1.1: The digestive system. Image adapted from www.britannica.com.

1.1 The digestive system – background biology

The digestive system is responsible for performing the vital function of preparing food
particles for use by the body’s cells. When food particles initially enter the digestive
system, they are too large to pass through cell membranes. They must, therefore, be
broken down into molecules small enough to enter cells. This process of altering the
physical and chemical composition of ingested food is called digestion. Once the food
particles are small enough to pass into the blood stream and lymphatic system, they do
so via a process termed absorption.

The main organs of the digestive system connect to form a tube-like structure known as
the gastrointestinal (GI) tract (see figure 1.1). The walls of the GI tract consist (subject to
local variations) of four tissue layers, as illustrated in figure 1.2. We discuss the struc-
ture and function of these layers here, focussing upon the details of the large intestine
and omitting details of variations found in other areas of the tract.

The serosa is the most superficial layer of the GI tract wall. This connective tissue layer
also forms part of the peritoneum – an external structure connected to the abdominal

2
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Figure 1.2: The geometry of the large intestine, and the constituent layers making up
its wall. Image adapted from www.britannica.com

cavity which provides structure and support for the tract (Thibodeau & Patton, 2007;
Tortora & Grabowski, 1996). Adjacent to the serosa is the muscularis externa, consisting
of two thick layers of smooth muscle tissue. Cells in the innermost layer are arranged
in a tight spiral, and the layer is referred to as ‘circularly oriented’. Cells in the outer-
most layer, however, are oriented longitudinally. Between these two muscle layers is a
thin layer of connective tissue which contains nerve cells, blood vessels and lymphatic
vessels. Contractions of the inner muscle layer cause the compression and mixing of
the intestine’s contents by constricting the lumen. The longitudinal muscle layer, how-
ever, contracts in a slow rhythmic fashion causing peristalsis by which the contents of
the lumen are propelled along the tract (Ross et al., 2003). The next layer, the submu-
cosa, mostly consists of dense, irregular connective tissue. Contained within this are
larger blood vessels whose smaller branches reach the other layers of the tract wall,
lymphatic vessels, nerves and occasional glands. The primary role of this layer is to
innervate (provide nerves to) the smooth muscle layers of the tract wall (Ross et al.,
2003). The innermost layer of the tract wall is the mucosa, and is the focus of this study.
The mucosa contains three sublayers: the muscularis mucosa, containing muscle which
enables the mucosa to fold; the lamina propria, which contains blood and lymphatic ves-
sels; and a monolayered columnar epithelium, a tightly packed layer of cells which lines
the intestinal lumen to protect the underlying tissue from external substances.

3
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Figure 1.3: Cells of the large intestinal epithelium. Cells are oriented such that the api-
cal surfaces of the cells lie at the top of the figure. Image adapted from Crosnier et al.
(2006).

1.1.1 Cells of the intestinal mucosa

The gastrointestinal epithelium is comprised of a number of distinct cell types. We
introduce some of these cells here, focussing on the cells of the large intestine, and
give a brief description of their function. We also introduce intestinal subepithelial
myofibroblast (ISEMF) cells (which reside immediately below the epithelium) since
these cells are of potential importance for future tissue engineering models.

Also known as absorptive cells, columnar cells are the most abundant cells in the ep-
ithelial layer. In the large intestine they are specifically termed colonocytes. The primary
function of these cells is to facilitate the absorption of nutrients from the intestinal lu-
men. As such, the apical surface of the cell (which is oriented towards the lumen) is
lined with a dense array of microvilli which provide the cell with a large absorptive
surface (Crosnier et al., 2006; Ross et al., 2003). Enteroendocrine cells are less abundant
than columnar cells, accounting for approximately 1.5% of the epithelial population.
Their role is to secrete peptide hormones which are important in the regulation of fluid
and electrolyte transport. A large variety of enteroendocrine cells exist, facilitating the
secretion of a large array of gut hormones (Crosnier et al., 2006). Goblet cells serve
to secrete mucus into the lumen to trap and expel micro-organisms (Brittan & Wright,
2004). Their apical cytoplasm is usually distended and packed with mucus-filled secre-
tory granules (Crosnier et al., 2006), as illustrated in figure 1.3.

4
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The intestinal crypts are enclosed within a protective sheath of intestinal subepithe-
lial myofibroblasts (ISEMFs), which reside in the lamina propria. These cells have a
broad range of functions including mucosal protection, wound healing, regulation of
water and electrolyte transport and, with greatest relevance to this study, regulation of
epithelial proliferation and differentiation (Brittan & Wright, 2004; Powell et al., 1999).

1.1.2 The crypts of Lieberkühn, stem cells & epithelial regeneration

The columnar epithelium which lines the lumen is folded to form a series of test-tubed
shaped invaginations into the underlying mucosa known as the crypts of Lieberkühn,
as illustrated in figure 1.2. In mice, these crypts are roughly 45 cells deep, 18 cells in
circumference at the midpoint and each crypt contains 300–450 cells in total (Potten,
1998). Formation of the crypts is known to occur in mice around seven days after birth;
prior to this the intestinal wall is smooth (Crosnier et al., 2006; Barker et al., 2008).

The crypts of Lieberkühn play a crucial role in the maintenance and regeneration of
the epithelium as they house populations of gastrointestinal stem cells (Barker et al.,
2008; Crosnier et al., 2006). A stem cell population may be defined as a population
of proliferative cells which, on division, maintains its own numbers whilst also pro-
ducing pluripotent daughter cells capable of differentiating down various other cell
lineages (Marshman et al., 2002). Determination of the precise location of stem cells
within the crypt has long been hampered by the scarcity of suitable molecular markers
(Barker & Clevers, 2007). In the ascending colon stem cells are thought to reside ap-
proximately half-way up the walls of the crypts (Karam, 1999; Brittan & Wright, 2002).
In the descending colon and small intestine, however, stem cells are thought to re-
side towards the base of the crypts (Karam, 1999; Brittan & Wright, 2002; Crosnier et al.,
2006). Barker & Clevers (2010) recently identified the G-protein–coupled receptor Lgr5
as a suitable marker for stem cell capacity in the small intestine and were able to use
this marker to provide further evidence for the above claim. As the daughter cells dif-
ferentiate they migrate up the wall of the crypt. When they reach the top of the crypt
they are fully differentiated and are ultimately shed into the intestinal lumen. This
continuous production, differentiation, migration and loss of epithelial cells enables
the epithelium to be constantly regenerated, with a full renewal of the layer occurring
every 5–6 days in humans (Ross et al., 2003).

The proliferation and differentiation of cells in the crypt is known to be strongly in-
fluenced by the expression of genes and signalling molecules in the Wnt signalling
pathway (Pinto & Clevers, 2005). A critical component of the pathway is the protein
β-catenin, which resides in the cytoplasm of the cell. Extracellular Wnt protein binds
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to transmembrane ‘frizzled’ (Fz) and low density lipoprotein (LDL) receptors stimu-
lating the overexpression of cytoplasmic β-catenin (Gordon & Nusse, 2006; Booth et al.,
2002). This results in the translocation of β-catenin from the cytoplasm to the nucleus
where it binds with T-cell factor (TCF). TCF is a DNA-binding protein and transcription
factor, which is activated upon its binding with β-catenin. The TCF-β-catenin complex
is known to stimulate cell proliferation (Booth et al., 2002). Such an increase in prolifer-
ation is linked to an upregulation of the transcription factor c-MYC and a repression of
the growth inhibitor p21 (van de Wetering et al., 2002; Booth et al., 2002). In addition to
this, there is evidence to suggest that extremely high levels of Wnt result in the stimula-
tion of apoptosis (Wong, 2004). Extracellular Wnt proteins reside in abundance toward
the base of the crypt and decrease in quantity towards the lumen. This Wnt signalling
gradient is believed to be key in the maintenance of the crypt hierarchy, in which prolif-
eration is restricted to the lower portion of the crypt and differentiation occurs further
up the crypt axis (Wong, 2004).

Batlle et al. (2002) presented evidence that β-catenin/TCF signalling in the small intes-
tine contributes to the control of cell positioning along the crypt axis via its regula-
tion of EphrinB ligands and the associated EphB receptors. β-catenin is also known to
play a role in cell adhesion. Its expression at the cell surface facilitates its interaction
with α-catenin and E-cadherin, resulting in a reduced rate of cell migration (Wong et al.,
1998). Also playing a central role is adenomatous poliposis coli (APC), which competes
with TCF in binding to β-catenin (Booth et al., 2002). As such, high levels of APC act
to suppress cell proliferation (Booth et al., 2002), reduce cell growth and/or stimulate
apoptosis (Morin et al., 1996).

Other notable signalling pathways which have a role in regulating crypt cell dy-
namics include Notch, BMP and Hedgehog signalling. Notch receptors are acti-
vated by transmembrane ligands of the delta and jagged families expressed by neigh-
bouring cells (Radtke & Clevers, 2005; Artavanis-Tsakonas et al., 1999). Notch sig-
nalling has been shown to regulate many events during post-natal development,
including proliferation, apoptosis and cell fate decisions (Wilson & Radtke, 2006;
Artavanis-Tsakonas et al., 1999). In self-renewing organs such as the intestine, Notch
signalling is also linked to inhibition/induction of differentiation and lineage specifica-
tion (Wilson & Radtke, 2006). BMP (bone morphogenetic protein) signalling molecules
reside below the epithelium in the underlying tissue layers. Interactions between these
molecules and the epithelium are known to regulate growth and differentiation in
the epithelium (Batts et al., 2006). Such authors as He et al. (2004) have examined the
disruption of the BMP signalling pathway in mice, providing empirical evidence for
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this. Playing an important role in the BMP signalling pathway is the BMP antagonist
‘noggin’, which is highly expressed in the vicinity of the crypts. When the BMP re-
ceptor (BMPR1A) is knocked out, or noggin is overexpressed, excessive quantities of
crypt-like structures develop (Crosnier et al., 2006). Secreted Hedgehog proteins act as
morphogens during intestinal development, as they control cell fate specification in a
concentration-dependent manner (Sancho et al., 2004). Two members of the Hedgehog
protein family have been identified as particularly important: Sonic Hedgehog (SHH)
and Indian Hedgehog (IHH). Knocking out IHH in embryonic mice results in a mul-
tilayered epithelium which does not develop to exhibit the normal crypt morphology
(van den Brink et al., 2004). Studies of mutant mice reveal that hedgehog signalling
deficiencies impact upon gut regionalisation, radial patterning of the GI tract and self-
renewal of GI tissue from stem cells (Ramalho-Santos et al., 2000). In the intestine in
particular, SHH mutations have been linked with gut malrotation (in which the rota-
tional symmetry of the gut is broken), while IHH mutations are thought to impact upon
stem cell proliferation (Ramalho-Santos et al., 2000).

The four signalling pathways discussed here are not mutually independent. For ex-
ample, active Wnt signalling is known to have the ability to switch on Notch activity,
suggesting that Wnt signalling drives the expression of Notch pathway components
(Crosnier et al., 2006). Wnt signalling is also known to be suppressed by an activation
of either BMP (He et al., 2004) or Hedgehog (van den Brink et al., 2004).

1.2 Diseases of the intestine

Colorectal cancer ranks as the second most prevalent cancer in the developed world,
both in terms of incidence and mortality (Stewart & Kleihues, 2003). The onset of
colorectal cancer is commonly linked to a disruption of the cellular dynamics of the
intestinal epithelium. The development of a cancerous tumour procedes according
to the ‘adenoma–carcinoma sequence’. Here, ‘adenoma’ refers to a benign growth
while ‘carcinoma’ refers to a malignant, cancerous growth. The sequence is initiated
with the formation of an aberrant crypt focus – a small lesion in the colonic epithe-
lium. Such foci expand over time to form macroscopically visible adenomatous polyps,
which may ultimately progress to carcinomas (Radtke & Clevers, 2005). The initial
trigger in the series of genetic events which lead to colorectal cancer is generally re-
garded to be an activating mutation in the Wnt cascade, most commonly a loss of the
tumour-suppressing gene APC (Reya & Clevers, 2005). Since APC reduces net prolif-
eration through increased apoptosis (Morin et al., 1996), its absence results in the on-
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set of hyper-proliferation at the crypt base, an event which is commonly linked to tu-
mour growth (Renehan et al., 2002). Treatment of colorectal cancer commonly requires
a colostomy – surgery in which the affected tissue is removed.

Inflammatory bowel disease (IBD) is another prevalent condition, caused by the inflam-
mation of the gastrointestinal tract wall. The main forms of IBD are ulcerative colitis
and Crohn’s disease. Ulcerative colitis involves the inflammation of the mucosa of the
colon or rectum, while Crohn’s disease can affect any region of the tract and impacts
upon all the layers of the tract wall (Bouma & Strober, 2003). Symptoms of IBD include
vomitting, diarrhoea, rectal bleeding, abdominal pain and weight-loss. IBD can com-
monly be treated with the use of anti-inflammatory medication; however, more severe
cases may require such surgery as bowel restriction or colostomy.

Short bowel syndrome is a condition which can be inherited, or more commonly fol-
lows the removal of a section of small intestine during treatment of e.g. Crohn’s disease.
The condition occurs when the length of the intestine is reduced substantially, resulting
in an insufficient length for the absorption of nutrients (Vanderhoof & Langnas, 1997).
Symptoms include abdominal pain, diarrhoea, weight-loss, malnutrition and fatigue.
Treatments of this condition include medication and prescription of vitamins and min-
eral supplements; however, a notable alternative technique which has been trialled
over recent years is intestinal transplantation from a donor (Vanderhoof & Langnas,
1997). Intestinal transplantation is hindered by both a shortage of donor organs and
a high morbidity rate (Chen & Badylak, 2001; Chen & Beierle, 2004). This illustrates
the importance of tissue engineering studies by which insight may be gained into the
generation of tissue artificially, in such a manner as to maximise acceptance by the
recipient. We further examine such procedures in the following section.

1.3 Tissue engineering

Tissue engineering was defined by Langer & Vacanti (1993) as “an interdisciplinary
field that applies the principles of engineering and the life sciences toward the devel-
opment of biological substitutes that restore, maintain or improve tissue function.”

One fundamental strategy employed by tissue engineers is to implant cells onto a
biodegradable scaffold which initially acts as a supporting structure for the cells and
ultimately degrades or is metabolised as the cells produce extra-cellular matrix. The
initial task, therefore, is to obtain a supply of cells from which to generate a tissue for
implantation. A number of choices of cell source are available, each with advantages
and disadvantages. Cells taken from the eventual recipient of the engineered tissue
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are termed autologous. Such cells are highly immune-acceptable; however, depending
on the specifics of the tissue, they may not be easily obtainable and their supply is
commonly limited. Sourcing of autologous cells may include the use of the healthy
cells which are removed alongside damaged tissue during surgery, as is commonly the
case during intestinal tissue engineering, or may involve the culture of a cell popula-
tion from a sample of the recipient’s stem cells (Lanza et al., 2007). Alternatively, tissue
engineering procedures may utilise allogenic cells, which are obtained from another
donor. Allogenic cells are more easily obtained; however, they may require a greater
degree of engineering to facilitate immune-acceptance. Xenogenic cells originate from
another species and, as such, are in much more abundant supply. However, the use
of such cells raises concerns relating to immune acceptance, animal virus transmission
and ethical issues (Lanza et al., 2007). Over recent years, much interest has been placed
in the use of stem cells to supply a diverse range of cells in the quantity required for
tissue engineering applications. Stem cells may be collected from either autologous,
allogenic or xenogenic sources (Griffith & Naughton, 2002) and their in-vitro culture
conditions can be adjusted to favour differentiation down the desired lineage. To date,
tissues which have been successfully recreated using stem-cell-based tissue engineer-
ing techniques include epithelia (skin, cornea and mucosal membranes) and skeletal
tissues (Bianco & Robey, 2001).

Upon seeding of the cells onto the scaffold, the resulting constructs are allowed to ma-
ture either in vitro or in vivo (Rocha & Whang, 2004). In-vitro tissue engineering draws
many parallels with transplant surgery. However, since the transplanted material is
generated through the culture of cells upon a scaffold, the burden of organ-donation is
avoided. The fundamental challenge, here, is the provision of a suitable physical en-
vironment to allow the cells to survive, proliferate and mature. Typically this task in-
volves placing the cell–scaffold construct in some form of bioreactor, a device in which
cells can be cultured in 3D subject to regulated external factors. Bioreactors are usually
designed to perform some or all of the following functions:

• provide control over the initial distribution of cells over the scaffold;

• provide efficient transfer of gases, nutrients and regulatory factors to the tissue-
engineered constructs during their cultivation;

• expose the developing construct to convective mixing, perfusion and/or mechan-
ical conditioning

(Lanza et al., 2007). Critically, the bioreactor must also provide an environment free
of infection and contamination. Once the tissue has developed to the required de-

9



CHAPTER 1: INTRODUCTION

gree, it is removed from the laboratory culture environment and transplanted into the
recipient’s body in the appropriate manner. In-vitro tissue engineering exhibits the
advantages of high throughput and accurate control of the microenvironment, at the
expense of risking altering the phenotype of cultured cells and potentially obtaining
a non-physiological tissue (Rocha & Whang, 2004). Examples of successful in-vitro tis-
sue engineering include the development of tissue-engineered autologous bladders to
replace those of patients with end-stage bladder disease (Atala et al., 2006) and the clin-
ical transplantation of a tissue engineered airway (Macchiarini et al., 2008).

In-vivo tissue engineering, however, takes a contrasting approach in which a scaf-
fold is placed (either with or without pre-seeded cells) into the recipient in an under-
developed state. Effectively the recipient’s body plays the role of the bioreactor in this
technique, yielding the obvious and substantial advantage of providing the ideal con-
ditions for cell development and, hence, maximising the chance of acceptance of the
newly generated tissue. One approach to in-vivo tissue engineering, which has shown
promising results in many animal trials, is to load cells into a gel which is then injected
into the host. This technique offers a number of advantages over preformed scaffolds,
including minimally invasive implantation, the ability to fill any desired shape and
easy incorporation of therapeutic agents (Gutowska et al., 2001). Examples of clinical
applications of in-vivo tissue engineering in humans are scarce due to the associated
risk of transplanting a tissue of limited (or zero) functionality. However, animal stud-
ies have shown promising progress in replicating tissues such as cartilage (Shieh et al.,
2004), bone (Stevens et al., 2005) and intestine (see below).

1.3.1 Gastrointestinal tissue engineering

In recent years, the prevalence of short bowel disease and colonic cancer have stimu-
lated much interest in engineering both small and large intestinal tissue, the ultimate
goal being the generation of tissue for human transplantation. Here, we review recent
advances toward achieving this goal. Where primary human cells are used, these are
commonly sourced from healthy tissue which is removed from e.g. bowel cancer pa-
tients alongside defective tissue. However, studies are commonly carried out using
cells sourced from murine intestine – a tissue whose use is advantageous in its ready
supply and its high degree of similarity with the human intestine. The ultimate goal of
many murine cell studies is the development of protocols which can be directly trans-
ferred to human tissue engineering.

Successful engineering of intestinal tissue in vivo was first reported by Vacanti et al.
(1988), who sourced cells from minced fetal intestine, attached them to polymer scaf-
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folds and implanted the scaffolds into host animals. Evans et al. (1992) later developed
a protocol by which the small intestine of a rat can be removed from the body, and
the epithelium be detached and broken down by enzymatic digestion, yielding either
whole villi/crypt units (termed epithelial organoid units) or (after more prolonged di-
gestion) a population of individual epithelial cells. The authors determined appropri-
ate conditions for the culture of these cells in vitro, although the cell types cultured
were never fully identified and characterised. Choi & Vacanti (1997) deployed these
methods to isolate rat intestinal epithelial organoid units which were then placed upon
tubular biodegradable scaffolds and transplanted into host rats. This tissue-engineered
small intestine was shown to replicate many of the geometric and cellular characteris-
tics of the healthy intestine, displaying crypt-villus-like structures and appropriate pro-
portions of Paneth1, goblet and columnar epithelial cells. Grikscheit et al. (2002) later
deployed similar methods to engineer rat colon in vivo. On transplantation into host
rats, the tissue-engineered colon was shown to recover many of the functions of the
healthy colon.

Other examples of successful in-vivo gastrointestinal tissue engineering include many
‘autologous patch models’, in which a section of healthy tissue is used as a scaffold
for the repair of a damaged portion of intestine. The patch is located at the damaged
site and, over a number of weeks, becomes covered by the appropriate cell popula-
tion which invades from neighbouring tissue. The reader is directed to Chen & Beierle
(2004) for a review of numerous successful animal trials of such a method. Small in-
testinal submucosa (SIS) has also been identified as a suitable in-vivo scaffold for the
repair of both small bowel and many other tissues (see Chen & Badylak (2001) and
references therein).

In this study we focus upon in-vitro alternatives to the in-vivo gastrointestinal tissue
engineering approaches described above. Successful replication of healthy intestinal
tissue in vitro requires that the complex crypt structure be replicated in the final engi-
neered tissue. Our primary goal is to determine whether this task requires the manu-
facture of a complex, preformed scaffold which imposes the crypt geometry, or whether
the cells possess the inherent ability to generate crypts unaided (as suggested by the re-
cent studies of Viney et al. (2009) and Sato et al. (2009)). Current research, upon which
this study focuses, involves the construction of an experimental framework by which
some of the mechanisms which potentially underlie crypt formation may be investi-
gated. In particular, one hypothesis under consideration is that during the develop-

1Paneth cells are found at the base of crypts in the small intestine. Their primary function is to maintain
mucosal immunity by secreting antimicrobial substances (Ross et al., 2003). Paneth cells are not present in
crypts of the large intestine.
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ment of the intestine the growth of the epithelial layer generates compressive stresses
within the layer itself, causing it to buckle forming crypts. We investigate this hypoth-
esis in the laboratory framework through the culture of intestinal epithelial cells upon
a flexible substrate. Under standard culture conditions upon a rigid surface, prolifera-
tion of these cells ceases due to contact inhibition as the cells become confluent. Upon
our flexible substrate, we examine whether the confluent cell layer is able to generate
sufficient force to deform the substrate, thus increasing the surface area and facilitating
continued proliferation. Should the cells generate sufficient forces to drive deforma-
tion of the substrate, we may infer that future research should exploit this, allowing
the requirement for a preformed scaffold to be relaxed in favour of a more simplistic,
planar substrate which exhibits the required deformability. We provide further details
of this work in chapter 3, and present corresponding in-silico models of this system in
chapters 4–6.

1.4 Biomechanics in cellular development

Discher et al. (2005) presented a discussion of the manner in which cellular behaviour
is affected by the mechanical properties of the substrate on which they sit. Tissue
cells are usually anchorage dependent, by which we mean that their survival (both
in vitro and in vivo) relies on adherence to a solid substrate. Contractile forces in ad-
herent cells may be transmitted to the underlying substrate, potentially inducing de-
formations (Discher et al., 2005). One common approach to estimating cellular expan-
sion/contraction forces is to culture the cells of interest upon a flexible gel, allow the
cells to contract, wrinkling the substrate and then use measurements of the wrinkles to
calculate cell forces.

Fibroblasts have been shown to migrate in directions influenced by gradients of sub-
strate rigidity. Lo et al. (2000) showed that 3T3 fibroblasts migrate preferentially to-
ward stiffer areas of their substrate, generate stronger traction forces upon stiffer sub-
strates and can be guided to migrate in a given direction by prescribing variations
in the degree of substrate stretch. Solon et al. (2007) cultured fibroblasts upon a poly-
acrylamide gel to assess the effects of substrate stiffness upon cell stiffness. These fi-
broblasts were shown to adjust their cellular stiffness to match that of their substrate.
Changes in the cell size were also observed as substrate stiffness was varied. Softer
substrates have also been shown to reduce spreading of isolated smooth muscle cells
(Engler et al., 2004) and promote the aggregation of fibroblasts and epithelial cells into
tissues (Guo et al., 2006).
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The elastic properties of the cell culture surface have also been shown to play a role in
specifying the lineage selected by a differentiating stem cell population (Engler et al.,
2006). Culturing mesenchymal stem cells upon a gel whose rigidity could be altered,
the authors were able to force differentiation along brain, muscle or bone lineages by
increasing the gel’s stiffness. Collinsworth et al. (2002) also observed similar variations
in the stiffness of a differentiating population of skeletal muscle cells.

While many authors have examined the behaviours of individual cells in response to
biomechanical inputs, few have examined the properties of multicellular assemblies.
Saez et al. (2010), however, considered the traction forces generated by a sheet of epithe-
lial cells. The authors cultured a population of Madin-Darby Canine Kidney (MDCK)
cells upon a substrate whose surface was covered with micropillars, the deflections
of which allowed cellular traction forces to be measured. They observed that traction
forces were largest at the edge of the cell sheet, decaying rapidly towards the centre of
the assembly. This suggests that the cell population exerts force as a whole, rather than
on an individual cell basis; cell–cell adhesion seems to inversely modulate the traction
exerted by the cell. Traction forces were also shown to vary linearly as a function of sub-
strate stiffness. For the range of substrates examined, the magnitude of traction forces
was between 1nN and 100nN. For a substrate with anisotropic stiffness, the direction
of both traction forces and growth were shown to align with the stiffest direction.

1.5 Cell-based models of colorectal crypt dynamics

Here we examine previous mathematical models of proliferation, differentiation and
migration of cells within a colorectal crypt. Such models can generally be categorised as
either ‘lattice-based’ (in which cells are located in a regular array of rows and columns,
and their movements are restricted as such) or ‘lattice-free’ (in which cellular move-
ments are unrestricted). We examine each of these approaches in the following sec-
tions.

1.5.1 Lattice-based models

Many previous models have relied upon the assumption that the crypt can be consid-
ered cylindrical and can be unrolled and mapped onto a planar, rectangular 2D grid.
Cells are considered rectangular also, and are arranged in a regular array of rows and
columns. On the division of a cell, a new cell is inserted into the grid according to
some model-specific set of rules. Neighbouring cells are pushed up the column or
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across the row to accommodate this. Loeffler et al. (1986, 1988) assessed numerous in-
sertion rules by comparison of their results with experimental data from cell-labelling
assays. Specifically, the authors utilised labelling index (LI) data, which quantify the
percentage of labelled versus unlabelled cells as a function of crypt row, and vertical
run numbers (RUN), which quantify the number of labelled cell sequences per crypt
column (van Leeuwen et al., 2006). Together, LI and RUN data provide a quantified
measure of both lateral and vertical cell displacements in the entire crypt; comparison
with these data allows optimal insertion rules to be determined.

Paulus et al. (1993) extended the model of Loeffler et al. (1986) to incorporate the devel-
opment of the goblet cell lineage. The 16 × 24 grid of cells used by Loeffler et al. (1986)
was maintained; the authors presented simulations carried out in the presence of four
stem cells whose locations were fixed close to the crypt base. The goblet cell lineage was
introduced to the model through the assumption that a newly formed third-generation
transit cell may acquire goblet cell properties with a likelihood of 5%. For reasons
of simplicity the model does not allow the acquisition of such properties for cells of
other generations (Paulus et al., 1993). Goblet cell division rules were considered to be
consistent with those of columnar cells of the same age. The results of the authors’
simulations were assessed against experimental data obtained via the staining of gob-
let cells in the murine small intestinal crypt. The simulations yielded good agreement
with goblet cell frequency in the lower half of the crypt and successfully captured the
lateral displacement of cells towards the crypt opening. However, the experimental
data illustrated a decline in goblet cell frequency at the top of the crypt which was
not captured by the mathematical model. It was also observed that the model predicts
too few goblet cell clusters, in comparison to the frequency of lone goblet cells. The
authors claim that such discrepencies are rectifiable through a refined choice of cell
migration parameters in the model. In particular, it is suggested that columnar and
goblet cells exhibit distinct cell cycle characteristics, while in this model all parameters
are obtained from the columnar cell lineage. The authors concluded that their model
provides evidence in support of the claim that goblet cells and columnar cells arise from
a common stem cell at the crypt base. This hypothesis was later proven experimentally
by Bjerknes & Cheng (1999).

The lattice-based models discussed in this section rely on a number of unrealistic as-
sumptions. Firstly, the geometry of the crypt is compromised by the assumptions that
the crypt is perfectly cylindrical and that cells are rectangular, of regular size and ar-
ranged in a precise grid. The assumption that migration occurs in discrete cell-sized
steps is also an area of simplification, resulting in the shifting of an entire column of
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cells upon cell division. Many cell–cell interactions must be broken to incorporate new
cells, which may be considered energetically unfavourable (van Leeuwen et al., 2006).
The lattice-free models discussed in the following section make some progress in over-
coming these deficiencies.

1.5.2 Lattice-free models

Meineke et al. (2001) presented a model for cell division in a small-intestinal crypt in
which cell location is not restricted to a grid framework, such as that of Loeffler et al.
(1986). The discrete, stepwise migration of cells discussed above was replaced by a set-
ting in which cells move continuously according to attractive/repulsive cellular forces.
The model crypt is considered cylindrical once more; however, the consequences of
this are minimised through the assumption that the tapering crypt-base is completely
filled with non-proliferative Paneth cells. Each cell within the crypt was represented
by a point on the planar crypt surface. The point is representative of the entire cell, but
may be considered to be located at the centre of the cell nucleus. For a given number of
points, termed generators, a Voronoi diagram is used to divide the plane into regions ac-
cording to which of the generators each point on the plane lies closest to. Each region
can be thought to represent one cell; the polygonal shape of the intestinal epithelial
cell is, thus, recovered. Interactions between the cells are captured through a series
of damped springs linking neighbouring generators. It is assumed that neighbouring
cells will seek to establish equal distances from one another. Cells are not permitted to
move out of the bottom of the crypt, while cells which move beyond the upper crypt
boundary are removed from the system. Stem cells are assumed to reside directly above
the Paneth cells and divide strictly asymmetrically in this model to yield one stem cell
and one transit cell. Dividing transit cells undergo a fixed number of divisions before
becoming mature, non-dividing cells. All cells are assumed to have identical mechan-
ical properties. The authors found that their model exhibits best fit with experimental
data when a complete ring of sixteen stem cells is considered to reside immediately
above the Paneth cells. The (in-vitro) LI and RUN data of Kaur & Potten (1986) were re-
produced with a high degree of success, suggesting that the intricate cell-sorting rules
discussed by Loeffler et al. (1986) are not key in achieving biological accuracy.

Morel et al. (2001) utilised a similar Voronoi diagram approach in the formulation of
a model for proliferation control in a generalised epithelium. The model couples this
spatial representation of cells to a model for the molecular control of cell proliferation
based upon the law of mass action. The cell proliferation model incorporates both
intracellular and extracellular controls, including growth and differentiation factors.
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The 2D simulations presented illustrate the influence of the microenvironment upon
cell proliferation and could potentially be applied to intestinal tissue. However, the
authors comment that these simulations are computationally expensive due to the large
number of parameters involved.

A modular, multiscale model for proliferation in the intestinal crypt has been for-
mulated by van Leeuwen et al. (2009). The authors combined the discrete spatial cell
model of Meineke et al. (2001), an ODE model for the Wnt signalling pathway owing
to van Leeuwen et al. (2007) and a cell-cycle model owing to Swat et al. (2004). A strong
Wnt signal was considered to speed up the progression of the cell cycle, stimulating
rapid division and differentiation; Wnt proteins are greatest in number near the crypt
base and gradually decline towards the lumen, accounting for variations in cell divi-
sion and maturity along the crypt axis. In contrast to Meineke et al. (2001), cell–cell
adhesions were assumed non-uniform and proportional to the degree of contact be-
tween cell edges, while drag forces due to cell–matrix adhesion were assumed to be
dependent upon the cell area. The direction of cell divisions was assumed random and
the stem cells were permitted to move away from the base of the crypt subject to suffi-
cient biomechanical force from their neighbours. The authors illustrated that stem cell
motility enables monoclonal conversion of the crypt, i.e. the progeny of a single stem
cell can ultimately populate the entire crypt. The model is able to predict intracellu-
lar localisation of β-catenin and, thus, enables the connections between Wnt signalling
and cell–cell adhesion to be examined. The model can also be used to provide spatio-
temporal information at the cell level, by analogy with the labelling experiments of
Kaur & Potten (1986), for example.

An alternative to the ‘cell-centre’ approach of Meineke et al. is to represent each cell
by vertices at cell junctions. For further details, and a comparison of these two ap-
proaches, the reader is directed to Walter (2009), Osborne et al. (2010) and references
therein. Osborne et al. (2010) compared the results of a cell-centre model, a cell-vertex
model and an analogous continuum model of cell proliferation and migration in the
crypt. The three models each considered the competing proliferation of healthy and
mutant cell populations within the crypt, with a view to examining relative cell di-
vision and migration characteristics and the extent to which the progeny of a single
(mutant or stem) cell may populate the entire crypt. The authors found that, in most
cases, conclusions were independent of the modelling approach. Cell-based models
were shown to be more convenient for investigation of whether crypts are monoclonal
or polyclonal; however, this approach is computationally expensive. While the contin-
uum model is quicker and easier to implement, the authors comment that determining
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the required parameters from available biological data is difficult.

While the lattice-free models discussed here are more realistic than the 2D-grid mod-
els of section 1.5.1, their construction still relies on a number of key simplifications.
For example, these models assume that healthy crypts are all cylindrical and identi-
cal, and crypt size is considered constant throughout. While these assumptions are not
entirely consistant with the observed crypt structure in vivo, they are justifiable on the
grounds of making the models mathematically tractable. The results of Meineke et al.
(2001) observed a movement of cells out of the crypt which briefly continued in the
absence of cell division. Such behaviour is not observed in reality (van Leeuwen et al.,
2006). Many lattice-free models lack a detailed description of the impact of the mechan-
ical properties of the connective tissue (although cell–matrix adhesion is considered by
such authors as van Leeuwen et al. (2009), for example). To the author’s knowledge, no
model currently utilises a 2D, lattice-free description of the cells to study deformations
of the underlying tissue.

In the above models, migration of cells up the crypt axis is considered to be driven by
a combination of both external cellular signals, and forces exerted upon a cell from its
neighbours. In particular, the rapid proliferation at the base of the crypt can be con-
sidered to place these cells under some compression, resulting in a pressure gradient
which pushes cells up the crypt axis. Resistance to cell proliferation is considered to be
lower in those regions which are less compressed (i.e. further up the crypt). We suggest
that these cell-level mechanisms play a role in patterning the growth and mechanical
properties of the cell layer, the effects of which are evident at the tissue-level. Rapidly
proliferating regions are likely to be more heavily compressed and may buckle more
readily; such variations may play a role in crypt formation during development. In
this study, we examine the buckling of epithelia whose growth rates and mechanical
properties vary spatially, as a result of cell-level patterning mechanisms such as these.

1.6 Pertinent mathematical theory

In this thesis we focus upon the cascade by which epithelial growth induces compres-
sive stresses in the epithelium, the relief of which necessitates buckling. In turn, the
buckling of the epithelium acts as a patterning mechanism which impacts upon crypt
frequency and location. We will examine the manner in which an imposed patterning
of the tissue’s growth or mechanical properties controls the resulting distribution of
colorectal crypts. Such a cascade has previously been postulated in numerous areas of
biology. Authors including Green et al. (1996), Steele (2000) and Dumais (2007) have
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studied the links between growth-induced buckling and pattern formation in plant
leaves, stems and petals, while such authors as Dervaux & Ben Amar (2008) have ex-
amined buckling driven by growth in soft tissues. Ben Amar & Brener (1993) consid-
ered a similar mechanism for the control of pattern selection in dendritic crystals, per-
tinent to many natural processes including snowflake formation. Many such models
involve either the buckling of nonlinear elastic shells (Ben Amar & Goriely (2005), for
example) or modification of the Föppl–von Kármán equations for a deformed plate (e.g.
Dervaux et al. (2009)). We review these two approaches in section 1.6.3; firstly, however,
we discuss some of the fundamentals of elasticity theory and common approaches to
modelling growth.

1.6.1 Elasticity

We begin our review of the mathematical theory required for this study with a brief
summary of the equations which underpin solid mechanics. The fundamental goal
in studying any problem in solid mechanics is to determine the relationship between
applied force and material displacement. The resolution of this problem lies in identi-
fying the appropriate relationship between the material’s distribution of stresses (inter-
nal forces per unit area) and strains (measures of relative change in length of material
elements in certain coordinate directions). The equations below will be presented in
terms of Lagrangian coordinates X∗ =

(
X∗

1 , X∗
2 , X∗

3
)
, which map to Eulerian coordinates

x∗ =
(

x∗
1 , x∗

2 , x∗
3
)

in the deformed configuration. Throughout this thesis stars denote di-
mensional quantities. We relate the two coordinate systems via the deformation gradient
tensor, denoted F, with components defined according to

Fij =
∂x∗

i
∂X∗

j
. (1.1)

The determinant of F quantifies the relative change in volume of material elements
upon deformation. Using (1.1), we can write any line element dxi in the deformed
configuration in terms of the equivalent line element in the undeformed configuration:

dx∗
i = FijdX∗

j . (1.2)

We adopt the Einstein summation convention here, summing any term with a repeated
index (such as the right-hand side of (1.2)) over values 1, 2 and 3.

When measuring stresses, we have a choice to work in either the Eulerian (current)
configuration or the Lagrangian (reference) configuration. The symmetric Cauchy stress
tensor, which we denote σ∗, measures stresses relative to the Eulerian frame. Consider-
ing a small volume element with sides parallel to the Eulerian coordinates (x1, x2, x3),
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Figure 1.4: Distribution of stresses on a surface element, with respect to the La-
grangian frame of reference.

we interpret σ∗
ij as a stress acting upon the side whose normal is x∗

i due to internal forces
directed in the x∗

j direction. However, it is often more convenient to present equations
in terms of Lagrangian quantities. In the Lagrangian frame, stress is characterised by
the first and second Piola–Kirchhoff stress tensors, which we denote T∗ and S∗ respec-
tively. Figure 1.4 illustrates the interpretation of the components of T∗, with reference
to a small volume element with sides parallel to the Lagrangian coordinate directions.

Howell et al. (2009) consider the deformation of an arbitrary body to derive the fol-
lowing relationship between the first Piola–Kirchhoff stress tensor, T∗, and the Cauchy
stress tensor, σ∗:

T∗ = det(F)σ∗
(

F>
)−1

. (1.3)

In general, T∗ is not symmetric; however, we can exploit the symmetry of σ∗ to manip-
ulate (1.3) and obtain the following identity:

T∗F> = FT∗>. (1.4)

The transpose of T∗ is commonly referred to as the nominal stress tensor (Spencer, 1980).

The second Piola–Kirchhoff stress tensor, S∗, is defined according to

S∗ = F−1T∗, (1.5)

and has no direct physical interpretation (Spencer, 1980). However, manipulating (1.3)
to calculate S∗>, we can show that S∗ is symmetric. It is, therefore, convenient to
present equations in terms of S∗ rather than T∗.

Cauchy’s equation for the conservation of momentum, written in terms of Eulerian
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quantities, is

ρ∗
∂2x∗

i
∂t∗2 =

∂σ∗
ij

∂x∗
j

+ ρ∗b∗i , (1.6)

where t∗ is time, ρ∗ (t∗) is the density of the body and b∗ =
(
b∗1 , b∗2 , b∗3

)
captures any

external body forces acting on the material, such as gravity. Equivalently, in terms of
Lagrangian variables, (1.6) is

ρ∗0
∂2x∗

i
∂t∗2 =

∂T∗
ij

∂X∗
j

+ ρ∗0b∗i , (1.7)

where ρ∗
0 = det (F) ρ∗ is the initial density of the body.

The deformation gradient tensor, F, equips us with knowledge of changes in shape of
volume elements upon deformation. However, since F is dependent upon the orienta-
tion of the body, it does not naturally lend itself to the quantification of material strains.
To see this, consider a rigid body displacement of the deformed body, under which x∗

is replaced by
x′∗ = a∗ + Px∗, (1.8)

where a∗ represents a translation and P is an orthogonal matrix representing a rotation.
We expect no generation of strain under this displacement; however, with respect to the
new Eulerian coordinates, the deformation gradient is replaced by F ′ = PF. Consider
instead the combination C = F>F. Under the same rigid body displacement, we have

C′ = F′>F′ = F>P>PF = F>F = C, (1.9)

which illustrates that, unlike F, C is invariant under these transformations. Alterna-
tively, a rotation of the Lagrangian coordinate system according to

X′∗ = a∗ + QX∗, (1.10)

(for orthogonal matrix Q) implies that

F′ = FQ>, C′ = QCQ>, (1.11)

illustrating that C obeys the transformation law of a second-rank tensor (Howell et al.,
2009). We refer to C as the right Cauchy-Green deformation tensor. Formulation of the
problem in terms of C has the further advantage that, since C is symmetric, we have
three fewer variables to consider. Note that under rigid-body motion F is orthogonal
and C = I. This motivates the following definition of the Lagrangian strain, e (also
called the Green strain):

e =
1
2 (C − I) =

1
2
(

F>F − I
)

. (1.12)
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Since F is non-singular, the polar decomposition theorem (Spencer, 1980) states the
existence of an orthogonal matrix M and a positive definite, symmetric matrix U such
that

F = M>U, (1.13)

and since U is positive definite, it is diagonalisable and can be written as

U = R>
ΛR, where Λ =




λ1 0 0
0 λ2 0
0 0 λ3


 , (1.14)

and R is orthogonal. The decomposition in (1.13) separates rotational effects (via M)
from changes in volume (given by U). Note that the entries of Λ are precisely the eigen-
values of U. Since the eigenvectors of Λ are simply the coordinate axes, the eigenvalues
λi (i = 1, 2, 3) represent stretches of the material in these directions. We refer to the λ i

as the principal stretches.

Without loss of generality, we can choose our Lagrangian coordinate system such that
R ≡ I. Since (1.9) and (1.13) imply that C = U2, this choice results in C being of
diagonal form with eigenvalues given by the diagonal entries λ2

i (i = 1, 2, 3). It then
follows from (1.12) that e is also diagonal with non-zero entries given by

ei =
1
2
(
λ2

i − 1
)

, (1.15)

termed the principal strains. The characteristic polynomial of C, in terms of some arbi-
trary independent variable ζ, is as follows

det (ζI − C) =
(
ζ − λ2

1
) (

ζ − λ2
2
) (

ζ − λ2
3
)

= ζ3 − I1ζ2 + I2ζ − I3, (1.16)

where

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ2
2 + λ2

2λ2
3 + λ2

3λ2
1, I3 = λ2

1λ2
2λ2

3, (1.17)

(Howell et al., 2009). Since the eigenvalues and characterstic polynomial of C are un-
changed under an orthogonal transformation of Eulerian coordinate axes, the quan-
tities I1, I2 and I3 are independent of choice of Eulerian coordinates. Thus, these are
termed strain invariants. Equivalently, we can write (1.17) as

I1 = Tr (C) , I2 =
1
2
(

Tr (C)2 − Tr
(
C2)) , I3 = det (C) . (1.18)

Note that for an incompressible material I3 ≡ 1.

Given (1.12), the task of relating stresses and strains reduces to that of determining
T∗ as a function of F. Howell et al. (2009) explain that conservation of energy as an
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arbitrary body deforms requires the existence of a function W ∗(F), termed the strain
energy density, such that

T∗
ij =

∂W∗

∂Fij
. (1.19)

Hereafter, we will use the following notation for differentiation by a tensor to write
(1.19) more compactly:

T∗ =
∂W∗

∂F . (1.20)

We can regard W∗ as a measure of the stored elastic energy per unit volume, the elastic
energy of the whole body B being

E ∗
elast =

∫∫∫

B
W∗dV. (1.21)

This justifies the requirement that W∗ is strictly positive, except when F = I. Further
restrictions upon the choice of W∗ can also be justified; however, we omit the details
here. Materials for which there exists a suitable strain energy density function satisfy-
ing (1.20) are termed hyperelastic.

The strain energy density function must be unchanged under rigid-body rotations and,
hence, must satisfy

W∗(F) = W∗(PF), (1.22)

for any orthogonal matrix P. Deploying the decomposition of (1.13) we require

W∗(F) = W∗(PM>U), (1.23)

for any orthogonal matrices P and M. In particular, the case P = M yields the re-
quirement that W∗ can be considered as a function of U alone. Since there is a one-
to-one correspondence between U and C, we can regard W ∗ as W∗(C) (Spencer, 1980;
Atkin & Fox, 1980). The second Piola–Kirchhoff tensor is then given by

S∗
ij =

∂W∗

∂Cij
+

∂W∗

∂Cji
, (1.24)

(Spencer, 1980), or equivalently by

S∗ = 2∂W∗

∂C , (1.25)

since C is symmetric (Howell et al., 2009). We can further simplify the problem by
writing W∗ in terms of the strain invariants, so that

S∗ = 2∂W∗

∂Ik

∂Ik
∂C , (1.26)

the expansion of which is aided by the following identities (Howell et al., 2009):

∂I1
∂C = I, ∂I2

∂C = I1I − C, ∂I3
∂C = I3C−1. (1.27)
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Since C satisfies its own characteristic polynomial, we can use (1.16) to write C−1 in
terms of higher powers of C in (1.27). Expanding (1.26) then gives

S∗ = 2
(

∂W
∂I1

+ I1
∂W
∂I2

+ I2
∂W
∂I3

)
I − 2

(
∂W
∂I2

+ I1
∂W
∂I3

)
C + 2∂W

∂I3
C2. (1.28)

The requirement that W∗ is minimised when F = I is equivalent to ensuring a global
minimum when λi = 1, for all i. Furthermore, for isotropic materials we require W ∗

to be invariant under permutation of the λi. Taking the limit λi → 1 for all i, in which
principal stretches (and, hence, principal strains) are small, we expect the dominant
terms in W∗ to be of the form

W∗ ∼ µ∗
3

∑
i=1

(λi − 1)2 +
λ∗

2
3

∑
i,j=1

(λi − 1)
(
λj − 1

)
, (1.29)

for constants λ∗ and µ∗ (Howell et al., 2009). Substitution of (1.29) into (1.28) gives

S∗ = λ∗Tr(e)I + 2µ∗e, (1.30)

which is the constitutive stress–strain relationship of linear elasticity. The constants λ∗

and µ∗ are known as the Lamé constants and act as measures of a material’s resistance
to elastic deformation. They must satisfy µ > 0 and 3λ + 2µ > 0 to ensure that W ∗ is
positive definite (Howell et al., 2009).

Authors including Fung (1967), Demiray (1972) and Holzapfel et al. (2000) have illus-
trated that the deformation of soft tissues is generally governed by a nonlinear rela-
tionship between applied stresses and material strains. However, despite this, the sim-
plicity and familiarity of linear elasticity theory has led many authors to apply these
methods to soft tissues directly (Humphrey, 2003; Fung, 1967). We note that, while
these methods are suitable in the limit of small strains, the study of larger deflections
requires the deployment of a nonlinear theory. One property exhibited by many bio-
logical tissues is an effective stiffening as strains increase (Goriely et al., 2006).

The strain energy function is commonly decomposed into an isochoric component
(capturing volume-preserving effects) and a volumetric component (which accounts
for changes in volume). Accordingly, we write

W∗ (I1, I2, I3) = W∗
iso (I1, I2) + W∗

vol (I3) . (1.31)

Numerous forms of W ∗
vol have been proposed in the literature (see Doll & Schweizerhof

(2000) and references therein), the key feature being that W ∗
vol attains a minimum as

I3 → 1. We consider the following form here:

W∗
vol = c∗ (I3 − 1)2 + d∗ log I3, (1.32)
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where c∗ and d∗ are constants.

Table 1.1 lists the forms of the isochoric components of the strain energy functions
corresponding to a number of nonlinear theories. Those of Ogden, Fung and Gent
are particularly appropriate for biological materials which exhibit strain-stiffening be-
haviour. We briefly discuss the neo-Hookean strain energy function here, motivated
by its relevance to forthcoming models (c.f. section 1.6.3 and chapters 5 and 6). For a
neo-Hookean material, consider a strain energy function of the form

W∗ =
µ∗

2 (I1 − 3) + c∗ (I3 − 1)2 + d∗ log I3. (1.33)

Substitution of (1.33) into (1.28) yields

S∗ = µ∗I +

(
2c∗ (I3 − 1) +

d∗
I3

) (
2I2I − 2I1C + 2C2) . (1.34)

Now let us consider small strains, e = δê, for some 0 < δ � 1. It follows that

C = I + 2δê (1.35)

and

I1 = 3 + 2δTr (ê) + O
(
δ2) , (1.36a)

I2 = 3 + 4δTr (ê) + O
(
δ2) , (1.36b)

I3 = 1 + 2δTr (ê) + O
(
δ2) . (1.36c)

Substituting (1.35) and (1.36) into (1.34), we have

S∗ = [µ∗ + 2d∗ + 8δc∗Tr (ê)] I − 4dδê + O
(
δ2) . (1.37)

Under the assumption that the material is unstressed in its reference state, we require
d∗ = −µ∗/2. Writing c∗ = λ∗/8, for consistency with linear elasticity, and setting
S∗ = δŜ∗ we then have

Ŝ∗ = λ∗Tr (ê) I + 2µ∗ê + O (δ) , (1.38)

which recovers (1.30). The neo-Hookean formulation thus provides a hyperelastic the-
ory which is valid for large strains, but recovers linear elasticity for small strains.

1.6.2 Growth

Taber (1995) defines growth as the addition of mass occurring due to such processes as
cell division, cell enlargement and secretion of extracellular matrix. Analogously, neg-
ative growth (termed atrophy) occurs due to processes including cell death, cell shrink-
age and resorption. Mathematical models of growing biological organisms have been
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Name Definition Properties
Neo-Hookean W ∗

iso =
µ∗

2 (I1 − 3) Linear response initially, followed by a transition to
a less stiff linear response.

Mooney–Rivlin W ∗
iso = c∗1 (I1 − 3) + c∗2 (I2 − 3) Linear response initially, followed by a transition to

a less stiff linear response.
Varga W∗

iso = 2µ∗ (λ1 + λ2 + λ3 − 3) Failure for finite value of applied force.
Ogden W∗

iso =
2µ∗

α

(
λα

1 + λα
2 + λα

3 − 3
)

For α < 1 force reaches a maximum (as a function of
strain) and decays to zero, giving failure of the ma-
terial for finite force. For 1 < α < 2 behaviour is
similar to Mooney-Rivlin. For α > 2 the stiffness al-
ways increases with increasing strain. Appropriate
for soft tissues for α ≥ 9.

Fung W∗
iso = k∗

2α (exp (α (I1 − 3)) − 1) Exponential stiffening as a function of strain. Appli-
cable to soft tissues for 3 < α < 20.

Gent W∗
iso = − k∗

2β ln (1 − β ( I1 − 3)) Limited extensibility as a function of strain. Appli-
cable to soft tissues for 0.4 < β < 3.

Table 1.1: A selection of nonlinear strain energy functions, where α, β, µ∗, c∗1, c∗2 and k∗ are positive constants. Sources: Howell et al. (2009);
Goriely et al. (2006, 2008) and references therein. The above properties are determined in the aforementioned references via direct computation
of the stress–strain relationship corresponding to each choice of W ∗. ‘Failure’ refers to unbounded strain for finite applied stress.
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published since the 1940’s by such authors as Thompson (1942) (Taber, 1995). Many
early studies focused purely upon deploying arguments of geometry to track the dis-
placements and velocities of material points as functions of some prescribed growth
rate, examples include the study of growing cartilage by Cox & Peacock (1978, 1979).
In such models the interaction between growth and mechanical factors (such as stress)
are not considered.

While such authors as Hsu (1968) and Cowin & Hegedus (1976) considered some spe-
cific problems regarding the mechanical loading of tissues, it was not until the early
1980’s that the study of coupled growth and deformation was placed within the rigor-
ous framework of nonlinear elasticity. Skalak (1980) suggested that the growth and de-
formation of an initially unstressed, unloaded body can be considered as distinct pro-
cesses, happening concurrently and linked via some hypothetical intermediate config-
uration. After a few refinements, the model was presented in detail by Rodriguez et al.
(1994); figure 1.5 illustrates the proposed decomposition of growth and deformation.
Consider an elastic body whose initial configuration is deformed according to a defor-
mation gradient tensor F. Skalak’s suggested approach states that we decompose F as

F = Fg · Fe, (1.39)

where Fg is a growth tensor and Fe is an elastic deformation gradient tensor. Starting
with the unstressed configuration at time t0, which we denote B (t0), initially purely
the growth of the body is considered. Applying Fg to B (t0) yields an intermediate,
hypothetical configuration, B̃(t1), which is enlarged and stress-free. In general we can
write Fg as

Fg = RgUg, (1.40)

where Rg captures any rotational growth behaviour and Ug is the growth stretch tensor.
However, Rodriguez et al. show that we can assume Rg to be the identity without loss
of generality; any rotational effects are simply incorporated in the elastic deformation
phase. We, thus, consider Fg as a pure stretching of material elements. The mapping
B(t0) 7→ B̃(t1) imposes no restrictions upon the compatibility of growth, a condition
which is usually imposed to ensure a single-valued displacement field upon deforma-
tion of the body. Given an incompatible growth regime, the enlarged stress-free body
would exhibit discontinuities or overlappings.

The second mechanism considered is that which acts to instantaneously deform the
new stress-free configuration, B̃(t1), into its final configuration B(t1). This mapping
is determined by Fe alone. If applicable, Fe must also correct for those discontinuities
generated by the growth phase. Taber (1995) considers that the correction of incom-
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PSfrag replacements
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B(t1)

Figure 1.5: A schema of the model of Rodriguez et al. (1994), in which the growth and
elastic deformation of an initially unstressed body are considered. The initial con-
figuration, B(t0), is first considered to undergo growth according to the growth ten-
sor Fg, which maps the body into an intermediate configuration B̃(t1). The growth
regime may be incompatible, suggesting that B̃(t1) may be discontinuous or have
overlappings. The intermediate configuration then experiences elastic deformation,
Fe, correcting the consequences of incompatible growth (if necessary) and giving rise
to residual stresses.

patibilities can be further decoupled, via a second intermediate configuration which is
single-valued. We omit this here. After elastic deformation, the body lies in configu-
ration B(t1), which is now both expanded and deformed, is continuous and is under
residual stress.

This framework has since been utilised for studying the growth of both hard and soft
tissues. Growth of hard tissues (such as bone, horns etc.) occurs via deposition of
new mass upon the surfaces of the body, while that of soft tissues occurs via the gen-
eration of mass internally. The latter is commonly termed volumetric growth; previous
studies have considered such a mechanism in application to such biological processes
as tumour growth (Ambrosi & Mollica, 2002) and vascular mechanics (authors include
Taber (1998) and Rachev et al. (1998)).

While the formalism described above has been deployed extensively by numerous au-
thors, Humphrey & Rajagopal (2002) argue that the theory merely accounts for the con-
sequences of growth rather than the precise nature of the underlying processes. They
suggest that a preferred approach is to use mixture theory to account for the production
and removal of the individual constituents of the tissue. Such a theory would better ac-
count for microscale inhomogeneities; however, it would require more detailed knowl-
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edge of reaction kinetics and rate parameters than is currently available (Humphrey,
2003).

For further details of soft tissue growth and remodelling, the reader is directed to the
reviews of Taber (1995), Humphrey (2003), Cowin (2004) and Goriely et al. (2008).

1.6.3 Reductions of 3D elasticity

In this study we will consider deformations of bodies which are thin in comparison to
their in-plane dimensions. The theory obtained upon reducing the equations of general
elasticity in this limit is termed shell theory. Moreover, if the reference configuration is
flat, further simplification yields plate theory.

Let us assume that the body is thin in the X∗
3 -direction. We denote the upper/lower

surfaces of the plate by X∗
3 = ±h∗/2. Our discussions will now proceed in terms of

stress resultants (rather than stresses) derived by averaging the stress components across
the thickness of the layer. Denoting stress resultants by T̄∗

ij , we have

T̄∗
ij =

∫ h∗/2

−h∗/2
T∗

ij dX∗
3 . (1.41)

We will discuss deformations of the body in terms of bending moments, which capture
variations in the distribution of stresses across the thickness of the layer, i.e.

M∗
ij =

∫ h∗/2

−h∗/2
T∗

ijX∗
3 dX∗

3 , (1.42)

the senses of which are illustrated in figure 1.6. We regard Mij as a bending moment
which acts upon the side of a surface element whose normal is X∗

i , owing to internal
forces directed parallel to X∗

j . Those bending moments for which i = j arise due to
normal stresses and those for which i 6= j arise due to shear stresses. The latter are
sometimes referred to as ‘twisting moments’, to reflect the differing geometric change
to the surface elements upon which they act (Brush & Almroth, 1975). Note that the
conventions used to define bending moments vary between authors. With the excep-
tion of appendix B, in which we discuss an existing model by Pamplona & Calladine
(1993), all model derivations presented in this thesis refer to bending moments as de-
fined by (1.42).

Beam theory

Prior to discussion of common approaches to modelling deforming plates, let us con-
sider the further simplification attained by adopting the plane strain assumption. In
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Figure 1.6: Moments acting upon a surface element.

this limit we can characterise deformations by a cross-section of the plate (oriented
in the X∗

1 -direction, say). The resultant theory is termed beam theory. All mechanical
quantities are now considered to be taken per unit length in the X∗

2 -direction; we refer
to stress resultants per unit length (which have dimensions of stress) and bending mo-
ments per unit length. Under plane strain we have only one non-zero bending moment
(i.e. that whose action is in the (X∗

1 , X∗
3)-plane); we denote this bending moment by M∗

in this section.

Fundamentally, the development of a comprehensive beam theory dates back to Euler
and Bernoulli, who observed that the primary distortion of a beam upon application of
a bending moment is a proportional change in curvature (Calladine, 1989), i.e.

M∗ = −D∗κ∗. (1.43)

The above is now known as the Euler–Bernoulli relation. Historically, determination of
the constant of proportionality, D∗, in (1.43) has proved difficult. The key step was
made by Kirchhoff in 1850 in his study of deforming elastic plates. His approach was
to make the following assumptions, now termed the Kirchhoff assumptions:

1. normals to the plate’s central plane remain straight, normal and inextensible dur-
ing deformation;

2. out-of-plane stresses are small in comparison to in-plane stresses,

(Brush & Almroth, 1975; Calladine, 1989). The assumption that normals to the plate’s
central plane are inextensible requires that out-of-plane normal strains vanish, which
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in turn justifies the following expression for the bending stiffness of the layer:

D∗ =
E∗h∗3

12 (1 − ν2)
, (1.44)

(Calladine, 1989). In the above, the constants E∗ and ν are respectively the Young’s
modulus and Poisson’s ratio of the material under consideration. The Young’s modu-
lus captures proportionality between the magnitude of applied stresses and the mag-
nitude of the strains which they induce. The Poisson’s ratio describes the extent to
which extention of the material in one principal direction induces contraction in the
other two directions. These measures of the material’s deformability are related to the
Lamé constants of (1.30) via

λ∗ =
νE∗

(1 + ν) (1 − 2ν)
, µ∗ =

E∗

2 (1 + ν)
. (1.45)

On dimensional grounds, we require −1 < ν ≤ 0.5; the lower bound being required to
enforce convexity of the strain energy function, while the upper bound is approached
in the limit of incompressibility (i.e. as λ∗ → ∞) (Howell et al., 2009). For incompress-
ible materials, ν = 0.5 and the expression for λ∗ in (1.45) breaks down. In problems
regarding incompressible materials, we must be careful to ensure that the stress–strain
relationship is regular in the limit ν → 0.5; we will return to this issue in chapter 5.

The Euler–Bernoulli relation has been widely deployed in previous models. A common
problem is to consider the deformation of a beam under the action of tangential and
normal forces (T∗

0 and N∗
0 respectively) applied at the boundaries. Performing a force-

balance to determine M∗ yields the following ODE for the angle of inclination of the
beam, θ, as a function of arclength, s∗:

D∗ d2θ

ds∗2 = T∗
0 sin θ − N∗

0 cos θ, (1.46)

(Howell et al., 2009). Commonly used boundary conditions include imposing either
clamping at the beam ends (for which θ vanishes) or simply supported ends which are
stress free (i.e. the derivative of θ vanishes). Without loss of generality, we may assume
s∗ = 0 in the centre of the beam. For small displacements we may linearise (1.46) about
the flat configuration. Taking one derivative of (1.46) yields the linear beam equation
in terms of the out-of-plane displacement u∗

3(x∗
1):

D∗ d4u∗
3

dx∗4
1

= T∗
0

d2u∗
3

dx∗2
1

, (1.47)

where we have used the fact that for small deflections s∗ is x∗
1 to leading order. Many

authors have deployed (1.46) or (1.47) in a wide variety of applications. Examples in-
clude vibration problems (Morgul (1992) and Diken (2000), for example) and studies
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of fracture and mechanical failure (Caddemi & Caliò, 2008). Flaherty & Keller (1973)
extended (1.46) to study contact problems in buckling beams. Euler–Bernoulli beam
theory has also been applied to mechanobiology, including models of buckling epithe-
lia (such as that of Edwards & Chapman (2007), which we discuss in more detail in
section 1.7).

Von Kármán’s equations

In this study, we will examine two broad approaches to deriving models of a deforming
plate. The first of these is the direct use of the von Kármán equations2, derived from the
general theory of elasticity through application of the Kirchhoff assumptions described
above. The derivation of von Kármán’s equations assumes a neo-Hookean strain en-
ergy function; the material is assumed linearly elastic (i.e. there exists a linear relation-
ship between stresses and strains, as in (1.38)); however, the theory is geometrically
weakly nonlinear since strains are not assumed to be linearly related to displacement
gradients (Stoker, 1942; Howell et al., 2009).

Howell et al. (2009) present a derivation of von Kármán’s equations under the assump-
tion that the upper/lower surfaces of the plate remain stress-free throughout buckling.
In terms of appropriately nondimensionalised variables, the resulting equations, in the
absence of inertia and body forces, are

∇4Φ +
1
2 [w, w] = 0, (1.48a)

∇4w = 12
(
1 − ν2) [w, Φ] , (1.48b)

for (dimensionless) out-of-plane displacement w and Airy stress function Φ, defined
according to

T̄11 =
∂2Φ

∂X2
2

, T̄22 =
∂2Φ

∂X2
1

, T̄12 = − ∂2Φ

∂X1∂X2
, (1.49)

chosen in such a manner to ensure that the conservation of momentum equations are
satisfied automatically. In the above, [ f , g] represents the following commutator:

[ f , g] =
∂2 f
∂X2

1

∂2g
∂X2

2
+

∂2 f
∂X2

2

∂2g
∂X2

1
− 2 ∂2 f

∂X1∂X2

∂2g
∂X1∂X2

. (1.50)

Of particular significance is the quantity [w, w]/2, which is the surface’s Gaussian cur-
vature, i.e. the product of the surface’s two principal curvatures. A plate which is
deformed without being stretched will always have zero Gaussian curvature, i.e one of
its principal curvatures will be zero. Once bent in one direction, deformation of a plate

2Interchangeably termed the “Föppl–von-Kármán equations” in some literature.
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in a second direction will be difficult since generating a non-zero Gaussian curvature
requires that a certain stretching energy be overcome. Since this can be energetically
expensive, the configuration will often stretch only in isolated regions; deformation
of the rest of the structure is purely bending. In these regions form pointlike struc-
tures (termed developable cones) or ridges (Boudaoud et al., 2000). A deformed surface
is described as developable if it can be induced without the generation of in-plane strain
(Howell et al., 2009).

Von Kárman’s equations have been deployed in a number of applications, including
the buckling of swelling gels (Mora & Boudaoud, 2006) and viral shells (Lidmar et al.,
2003). Mansfield (1962) added terms proportional to an imposed temperature gradient
to (1.48) for his analysis of the bending, buckling and curling of a heated thin plate.

In chapter 5, we present this derivation in more detail, incorporating material inhomo-
geneities and growth-induced stresses upon the surfaces.

Nonlinear elastic shell models

Many authors have formulated plate/shell buckling models by combining balances of
forces and moments (which yield equilibrium equations) with geometric constraints
and constitutive assumptions, relating bending moments to changes in curvature and
stress resultants to material stretches, for example. Such an approach has the advantage
that the rigorous (and often complex) analytical reduction of the full three-dimensional
elasticity equations can be avoided. The fundamental challenge in this technique lies
in selecting the appropriate constitutive assumptions, often from a choice of many.
Preston et al. (2008) and Reboux et al. (2009) review a number of such assumptions in
their studies of the buckling of compressed spherical vesicles (subcellular, fluid-filled
capsules). The authors referenced below all adopted an alternative convention to (1.42)
when defining bending moments, in which positive bending moments induce positive
curvatures. We use calligraphic notation here to highlight that bending moments are
defined differently to (1.42); assuming axisymmetry3, meridional and azimuthal bend-
ing moments are denoted by M ∗

θ and M ∗
ϕ respectively.

Let us consider, firstly, the manner in which the generation of bending moments in-
duces a change in the curvature of the shell. In two-dimensional models, we have
a choice of a number of constitutive assumptions with which we can replace (1.43).
Evans & Skalak (1980) proposed a constitutive assumption in which the two bending

3Note that the assumption of axisymmetry implies that all twisting moments vanish.
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moments are isotropic and proportional to the mean curvature, i.e.

M
∗
θ = M

∗
ϕ = D∗

(
κ∗

θ + κ∗
ϕ

)
, (1.51)

where subscripts denote quantities measured in the principal directions of a spher-
ical polar coordinate system. The authors suggest that (1.51) is particularly ap-
propriate when the layer exhibits a high resistance to change in area (Preston et al.,
2008). This constitutive assumption has since been deployed by authors includ-
ing Pamplona & Calladine (1993), Parker & Winlove (1999), Preston et al. (2008) and
Reboux et al. (2009). Alternatively, Pozrikidis (2003) suggested the following:

M
∗
ϕ = D∗

(
κ∗

ϕ − κ̃∗
ϕ

)
, M

∗
θ = D∗ (κ∗

θ − κ̃∗
θ ) , (1.52)

where tildes denote the principal curvatures of the reference configuration. Pozrikidis
claims that (1.52) is valid for membranes comprised of thin elastic sheets whose thick-
nesses change on deformation.

We will commonly also require a constitutive relationship between principal stress re-
sultants and principal stretches. Evans & Skalak (1980) deployed thermodynamic ar-
guments to justify the following:

F∗
ϕ − F∗

θ = H∗
(

λ2
ϕ − λ2

θ

)
, (1.53)

for stress resultants F∗
ϕ and F∗

θ and principal stretches λϕ and λθ . The constant of pro-
portionality, H∗, captures the resistance to changes in shape in the plane of of the mem-
brane. Pamplona & Calladine (1993) and Parker & Winlove (1999) adopt a similar as-
sumption of the form

F∗
ϕ − F∗

θ = H∗ (λϕ − λθ

)
; (1.54)

however, as discussed by Preston et al. (2008), for small deflections stretches are small
and the differences between (1.53) and (1.54) are of little significance. The models
of Pamplona et al. (2005), Preston et al. (2008) and Reboux et al. (2009) assume that the
membrane is area-incompressible, writing the principal stretches as

λϕ =
1

λθ
=

1
λ

, (1.55)

for some λ. Under this assumption it is convenient to write the stress resultants in
terms of their isotropic counterpart, F∗. It follows from (1.54) that

F∗
ϕ = F∗ +

H∗

λ
, F∗

θ = F∗ + H∗λ∗. (1.56)

The constitutive assumptions above, termed by some authors the “first approxima-
tion” shell theory equations, assume no direct coupling between bending moments
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Figure 1.7: Schema of the cell division and placement algorithm used in Drasdo (2000).
In (a) a spherical cell of radius R deforms into a dumbbell by progressively increasing
the length of its axis, a, from a = 0 to a = 2R. Having enlarged into a dumbbell with
radius 2R the cell divides, leaving behind two spherical daughter cells. In (b), the
optimal orientation of a non-spherical cell is illustrated. The central cell attempts to
align its axis with the tangent to the larger circle at the point P (representing the local
tangent to the epithelial layer at P).

and stretching effects. The independence of these effects is appropriate for a shell with
a flat reference state; however, these equations are commonly applied to the study of
non-flat shells. Pamplona et al. (2005) suggest that (1.51) and (1.54) ought to contain
additional terms which introduce such a coupling, accounting for the non-zero curva-
ture of the reference state. Considering a spherical reference configuration, in which
κ̃∗

ϕ = κ̃∗
θ = κ∗

0 , the authors propose the following in place of (1.51) and (1.54):

M
∗
θ = M

∗
ϕ = D∗

(
κ∗

θ + κ∗
ϕ − 2κ∗

0

)
≡ M , (1.57a)

F∗
ϕ − F∗

θ = H∗
(

λ−1 − λ
)

+ M

(
κ∗

θ − κ∗
ϕ

)
. (1.57b)

For a shell whose thickness is significantly smaller than its width, the contribution
of these extra terms is negligible (Pamplona et al., 2005). Reboux et al. (2009) showed
that if resistance to bending is much smaller than resistance to in-plane shearing, the
inclusion of these additional terms is insignificant to leading order.

It is noteworthy that the constitutive assumptions above are based around the assump-
tion that the shell is linearly elastic. As such, we regard the applicability of any of these
expressions to be questionable for the study of large strains (Parker & Winlove, 1999).

1.7 Epithelial buckling

We now review previous mathematical models of epithelial buckling, many of which
have deployed the theories of elasticity and growth discussed above.
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Drasdo (2000) considered a vertical cross-section of a colorectal crypt to investigate ep-
ithelial buckling. Individual cells were considered to be linked in a chain, held together
by attractive forces between neighbouring cells. Each cell in the chain was modelled as
spherical initially, deforming into a dumbbell shape upon mitosis. It was assumed that
nonspherical cells look to attain their optimal orientation (which is favourable energet-
ically), and that this corresponds to alignment of the cell axis with the local tangent to
the epithelial layer (as illustrated in figure 1.7). Cells were allowed to grow and divide
provided that this does not cause strong cellular deformations or compressions (c.f.
contact inhibition). Thus, constant division and growth must be coupled to the migra-
tion of either individual cells or the entire layer. The author showed that the resulting
geometry of the tissue is determined by the competition of destabilising cell growth
and the stabilising bending energy of the tissue layer, which locally confines cell move-
ments perpendicular to the layer. As the tissue grows above a certain size, the bending
energy becomes too small to stabilise the local undulations occurring due to mitosis. If
this occurs prior to the prevention of mitosis by the aforementioned rules, cell number
increases exponentially. Such behaviour is dependent upon the cell cycle time being
sufficiently large and the bending rigidity of the layer being specifically small. The
ensuing buckling is reminiscent of a classical Euler buckling instability. In subsequent
papers, this model was used to explore the dependence of crypt fission upon cell cycle
time (Drasdo & Loeffler, 2001) and to examine cleavage, blastulation and gastrulation
processes in the developing embryo (Drasdo & Forgacs, 2000; Drasdo & Loeffler, 2001).

Galle et al. (2005) presented a three-dimensional adaptation of the Drasdo (2000) model
to assess the effect of variations in cell proliferation and apoptosis upon epithelial
growth dynamics. The dependence of growth control mechanisms upon such cellu-
lar properties as cell–substrate adhesion and cell cycle time was examined. The spe-
cific mechanisms of focus were cell contact inhibition, substrate-contact-dependent
cell-cycle arrest and programmed cell death upon removal of the cell from the sub-
strate (anoikis). The authors concluded that, in the presence of a full complement of
these growth-regulating mechanisms, a monolayer is yielded given that cell–cell an-
chorage is stronger than cell–substrate anchorage. In the absence of anoikis, however,
the monolayer structure relies upon weak cell anchorage. If growth is independent of
cell anchorage, it transpires that a mono-layer culture cannot be obtained. For arbitrary
cell properties, it is shown that the absence of contact inhibition has a destabilising ef-
fect upon the monolayered cell structure.

Edwards & Chapman (2007) presented a biomechanical model for colorectal crypt bud-
ding and fission; processes commonly associated with the onset of colorectal cancer by
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which deviations from the healthy crypt morphology occur. A two-dimensional, ver-
tical cross-section of the intestinal epithelium was ‘unfolded’ and modelled as a beam
connected to the underlying tissue by a series of springs. The authors considered the
hypothesis that epithelial buckling is directly driven by the growth of the epithelium,
and examined the consequences of a genetic mutation in the Wnt cascade which causes
the cells at the base of the crypt to hyperproliferate or change their motility or adhesion
properties. To incorporate the dynamic detachment and reattachment of cells as they
migrate up the crypt wall, the springs were considered viscoelastic.

Buckling of the layer is governed by a nonlinear PDE system which is first-order in time
and sixth-order in a space; however, analysis is restriced to the small deflection regime
(for which the problem is linear). Growth is captured through the function γ(x), where
x is a spatial coordinate running along the layer. Specifically, the authors choose

γ(x) = e−λpx6 , (1.58)

which prescribes a proliferative compartment at the base of the crypt (or equivalently,
the centre of the beam), the size of which is controlled by λ p. For a healthy crypt,
the authors set λp = 65, which yields a 60% proliferative region such as that found
in vivo (Bach et al., 2000). The model is also dependent on two further dimensionless
parameters, namely λ0 which captures the relative stiffnesses of beam and springs,
and λT which captures the relative timescales of growth and viscous relaxation of
spring stresses. To determine whether the crypt will deform after a genetic mutation,
the authors examined whether the corresponding change in these three parameters
destabilises the flat steady-state solution. This allowed a surface to be determined in
(λ0, λT, λp)-space, below which the healthy crypt geometry is maintained and above
which buckling occurs.

The downstream effects of an activating mutation in the Wnt cascade are: increasing
the size of the proliferative compartment (i.e. reducing λ p), increasing the net prolif-
eration rate (i.e. reducing λT), altering attachment properties between the epithelium
and the lamina propria (λ0) and stimulating changes of cell motility (λT). The authors
claim that an increase in the net proliferation rate (corresponding to a decrease in λT)
can initiate buckling independently of the other parameters, while enlargement of the
proliferative compartment can only initiate buckling given a sufficiently large λ0. The
model presented here does not include any remodelling of the underlying tissue. In
reality the buckling of the epithelium would cause a permenant deformation of the
lamina propria. The study of budding and fission beyond their initiation requires the
additional consideration of this interaction (Edwards & Chapman, 2007).

Jones & Chapman (2009) presented a model for epithelial buckling driven by apical con-
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striction – a process through which a change in the shape of individual cells results in
a change to the preferred curvature of the epithelium as a whole. Close to the api-
cal surface of an epithelial cell lies a band of fibres termed the apical bundle. Fibres
are oriented both across the cross section of the cell and circumferentially around the
perimeter. In response to an activation in some genetic pathway, the apical bundle
can contract leading to a reduction in the size of the apical surface. To preserve the
cell’s area, this contraction is accompanied by an expansion of the basal surface. Pre-
vious modelling of apical constriction by Odell et al. (1981) considered each cell as a
series of viscoelastic struts, one of which (i.e. that in the region of the apical bundle) is
allowed to contract. Other models have neglected the details of individual cells, mod-
elling the epithelial layer as continuum materials. These models commonly exploit the
thinness of the layer, characterising deformations as functions of the central surface.
Jones & Chapman argue that such an approach forfeits the knowledge of elastic inho-
mogeneities across the thickness of the layer afforded by the apical bundle itself. They
presented a model based upon shell theory in which the epithelium is viewed as a lin-
early elastic sheet with an embedded surface at a prescribed distance from the central
plane, via which the forces exerted by contractions of the apical bundle are transmitted
to the rest of the tissue. The governing equations are simplified significantly through
focussing upon flat, cylindrical and spherical reference states. In the former case the
model incorporates Föppl–von-Kármán plate theory. The authors presented numeri-
cal results for the prolonged buckling of the shell as the prescribed degree of apical
constriction is increased.

Many authors have considered the manner in which buckling instabilities (and the
resulting patterns) can be mediated by elastic, viscous or viscoelastic attachment to
a neighbouring material. Pocivavsek et al. (2008) demonstrated that if a thin sheet is
placed upon a liquid or gelatinous foundation, the primary buckling is of a sinusoidal
nature; fold localisation only occurs under greater forcing. Sultan & Boudaoud (2008)
considered a thin swelling gel attached to a compliant substrate modelled as a Win-
kler foundation (i.e. a network of elastic springs attached to a rigid layer at a finite
distance below the gel). The presence of the foundation yields wrinkled configura-
tions with wavelengths and amplitudes proportional to the gel thickness; observa-
tions which were in agreement with an analogous experimental setup. Consistent with
Pocivavsek et al. (2008), configurations reminiscent of a ‘single crypt’ in models such
as that of Edwards & Chapman (2007) were not observed in the presence of the foun-
dation. Coman (2010) presents a multiscale analysis of a similar model, incorporating
inhomogeneities in the stiffness of the foundation. Both linear and weakly nonlin-
ear analyses are used to determine the primary buckling instability and configurations
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of the post-buckling regime. These weakly nonlinear approximations are validated
against numerical simulations of the full nonlinear model. Huang & Suo (2002) con-
sidered the temporal evolution of an initially wrinkled layer upon a viscous founda-
tion, illustrating that wrinkling occurs as a balance between the driving force of stored
elastic energy and the induction of viscous flow. For short-wavelength wrinkles, the
elastic energy cost is too high and wrinkles decay. For long-wavelength initial condi-
tions, effects of viscous flow are smaller and shape transitions occur only very slowly.
Audoly & Boudaoud (2008) considered a similar two-dimensional analysis, deploying
the Föppl–von Kármán equations to model a plate attached to an elastic substrate. The
authors examined the resulting patterns, illustrating that the primary configuration is
striped while in-plane compression is below a given threshold. Above this threshold,
stripes are destabilised in favour of such patterns as checkerboards and hexagons.

1.8 Thesis overview

The remainder of this thesis is structured as follows. In chapter 2, we consider some
extensions of the model presented by Edwards & Chapman (2007), discussed above.
We shift the focus of the model’s application from crypt budding and fission to crypt
formation, examining perturbations to the initially flat epithelium as cellular growth
generates compression. The model utilises the theories of sections 1.6.2 and 1.6.3, mod-
elling the epithelium as a growing, incompressible beam which buckles under appro-
priate conditions. We extend Edwards and Chapman’s analysis to incorporate non-
linearity, while the modelling of growth is developed through a deeper consideration
of non-uniformity. We examine the degree to which patterning of growth or material
properties affects the resulting configuration.

In chapter 3, we present an in-vitro study which assesses the validity of the proposed
buckling mechanism. A population of intestinal epithelial cells is cultured to conflu-
ence upon a flexible substrate. Since the cells exhibit contact inhibition, continued pro-
liferation requires that the substrate be deformed to increase the available surface area.
The profile of the substrate is monitored over a number of days, allowing the force ex-
erted by the cells to be inferred. Furthermore, we examine the manner in which the
addition of a growth factor (which increases cell proliferation rate) can affect the con-
figuration, and the extent to which this configuration is compromised upon lysis of the
cells. In chapter 4, we present a mathematical model of this system. We model deflec-
tions of the substrate using the beam theory of section 1.6.3 and incorporate a simple
model for the cell layer, regarding the cells as a series of identical springs. We deploy
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a parametric model of growth, progressively increasing the unstressed lengths of the
springs. As buckling is induced, we monitor the sequence of equilibrium configura-
tions attained. We assess the role of cell–substrate adhesion in determining buckled
shapes and examine the extent to which the substrate’s compressibility causes results
to differ from those of chapter 2.

In chapter 5, we derive a two-dimensional analogue of the cell–substrate model of
chapter 4. Our model presents an extension to von Kármán plate theory (see section
1.6.3) which accounts for material inhomogeneities and distributions of surface stresses
due to proliferating cell layers thereon. In chapter 5 we focus upon the homogeneous
case, but move beyond planar geometries by examining axisymmetric deformations of
a circular substrate. The model is then compared with that of Pamplona & Calladine
(1993), the derivation of which combines a thin-shell balance-of-forces approach with
selection of appropriate constitutive assumptions. We compare the results of the two
models, both at the onset of buckling and at large amplitude. In chapter 6, we examine
fully two-dimensional buckling modes for an inhomogeneous substrate. We examine
the manner in which patterning of the substrate’s material properties can be used to
control the geometry of the deformed configuration.

In chapter 7, we summarise the conclusions of the above models and discuss directions
for future investigations.
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In-vivo Buckling of a Developing
Intestinal Epithelium

In this chapter, we introduce a model which considers the buckling of a one-
dimensional cross-section of the developing intestinal epithelium. We consider the
hypothesis that, during development, the growth of cells in the epithelium generates
compressive stresses within the layer causing it to buckle. We consider that this buck-
ling is a contributing mechanism in the formation of the crypts of Lieberkühn. We take
as our theoretical starting point the model presented by Edwards & Chapman (2007) in
which the epithelial layer is modelled as a beam attached to the underlying stroma by
a series of springs.

We present two models in this chapter. In section 2.1, we begin by considering a sim-
plified problem in which buckling is driven by a compressive force applied at the beam
ends. Growth is omitted initially; however, in section 2.1.4 we adapt the model to in-
clude a parametric description of growth which describes the temporal evolution of
the beam’s configuration as a series of equilibrium configurations attained by beams of
increasing length. In this initial model, we consider cellular attachments to behave as
linear springs. In section 2.2 we further develop the model by adding a kinematic de-
scription of growth. We also capture the effects of cellular migration up the crypt wall
by allowing the cellular attachments to exhibit viscous relaxation of stress. We examine
the dependence of the buckled geometry upon spatial variations in the growth profile,
focussing upon the comparison of uniform growth with regimes in which growth is
restricted to a central portion of the beam (analogous to the proliferative compartment
at the crypt base in vivo), stimulated by deep invagination (perhaps due to some un-
derlying chemical signalling gradient) or restricted by high in-plane compression (c.f.
contact inhibition). Finally, we examine the extent to which the shape and distribution
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Figure 2.1: The geometry of the model of section 2.1.

of crypts are influenced by inhomogeneities in the tissue’s growth or mechanical prop-
erties. Variations in mechanical properties are incorporated into the model by allowing
the beam’s bending stiffness to vary as a function of position.

2.1 Buckling due to imposed lateral compression

Prior to the introduction of epithelial growth, we consider a simpler problem in which
buckling is driven by compressive forces applied at the ends of the beam.

2.1.1 Model derivation

We model the thin epithelial layer as a beam whose undeformed, unstressed configura-
tion is flat and of length 2L∗

0 (figure 2.1). The beam has thickness h∗, Young’s modulus
E∗, Poisson’s ratio ν and bending stiffness D∗ = E∗h∗3/12(1 − ν2). Assuming h∗ � L∗

0,
we characterise the profile of the beam by that of its centreline. We assume that cel-
lular attachments to the underlying lamina propria behave as springs with stiffness
parameter k∗ (with dimensions of force/length4).

We characterise the profile of the beam when deformed using coordinates s∗ and θ (s∗),
which are the arc-length from the centre of the beam and the local angle of inclination
of the beam’s centreline to the horizontal respectively. Cartesian coordinates in the
reference and physical frames are denoted X∗, Y∗ and x∗, y∗ respectively, as illustrated
in figure 2.1. In the reference frame the beam is flat and we regard X∗ as a measure
of arc-length. We define the mappings g∗ : X∗ 7→ s∗ and f ∗ : s∗ 7→ X∗ between the
arc-length coordinates in the two configurations.

We assume that the Euler–Bernoulli relation holds, so that the beam’s curvature, κ ∗, is
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proportional to the bending moment, M∗,

κ∗ =
dθ

ds∗ = −M∗

D∗ . (2.1)

We relate M∗(s∗) to beam stress resultants and spring stresses via consideration of the
forces acting upon a small beam element of arc-length ds∗, as illustrated in figure 2.2.
We begin by defining Cartesian unit vectors x̂, ŷ and ẑ, together with the vectors n̂
normal to the beam and t̂ tangential to the beam. In terms of the Cartesian vectors, n̂
and t̂ are given explicitly by

n̂ = − sin θx̂ + cos θŷ, (2.2a)

t̂ = cos θx̂ + sin θŷ. (2.2b)

Conversely, we have

x̂ = cos θ t̂ − sin θn̂, (2.3a)

ŷ = sin θ t̂ + cos θn̂. (2.3b)

It follows from (2.2) that

dt̂
ds∗ =

dθ

ds∗
dt̂
dθ

= κ∗n̂, (2.4a)
dn̂
ds∗ =

dθ

ds∗
dn̂
dθ

= −κ∗ t̂. (2.4b)

We formulate equilibrium equations via consideration of the moments and forces act-
ing tangentially and normally to the beam. We denote the in-plane and out-of-plane
stress resultants per unit length by F∗

T(s∗) and F∗
N(s∗) respectively. The bending mo-

ment, M∗(s∗), acts in a right-handed sense about the ẑ axis.

Noting (2.4), we can express the net force per unit length acting on the beam element
due to variations in F∗

T as follows:

(
F∗

T t̂
)∣∣∣∣

s∗+ds∗
−
(

F∗
T t̂
)∣∣∣∣

s∗
= ds∗ · d

ds∗
(

F∗
T t̂
)

+ O
(
ds∗2)

= ds∗
(dF∗

T
ds∗ t̂ + F∗

Tκ∗n̂
)

+ O
(
ds∗2) . (2.5)

Similarly, the net force per unit length due to variations in F∗
N is

(F∗
Nn̂)

∣∣∣∣
s∗+ds∗

− (F∗
Nn̂)

∣∣∣∣
s∗

= ds∗ · d
ds∗ (F∗

Nn̂) + O
(
ds∗2) ,

= ds∗
(dF∗

N
ds∗ n̂ − F∗

Nκ∗ t̂
)

+ O
(
ds∗2) . (2.6)
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We also have an additional force per unit length appearing due to the cellular attach-
ments which connect the beam to the underlying layer:

−T∗
Nds∗n̂ − T∗

Tds∗ t̂, (2.7)

where T∗
N(s∗) and T∗

T(s∗) denote the normal and tangential components of spring stress
per unit length respectively. Setting the sum of (2.5–2.7) to zero, we obtain

dF∗
T

ds∗ − F∗
Nκ∗ − T∗

T = 0, (2.8a)
dF∗

N
ds∗ + F∗

Tκ∗ − T∗
N = 0. (2.8b)

We now relate the net bending moment acting upon the line element to the normal
component of force, as follows:

(M∗ẑ)

∣∣∣∣
s∗+ds∗

− (M∗ẑ)

∣∣∣∣
s∗

= FNds∗ẑ. (2.9)

Taylor expanding, and truncating at O(ds∗), we obtain

dM∗

ds∗ = F∗
N . (2.10)

For consistency of notation with the linear analysis presented by Edwards & Chapman
(2007), we now resolve the forces into horizontal and vertical components, F∗

x (s∗) and
F∗

y (s∗) respectively. It follows from (2.3) that

F∗
T = F∗

x cos θ + F∗
y sin θ, (2.11a)
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F∗
N = F∗

y cos θ − F∗
x sin θ, (2.11b)

with similar expressions holding for the spring stress components. Substituting (2.11b)
into (2.1) and (2.10) we obtain the dimensional beam equation

d2θ

ds∗2 +
1

D∗

(
F∗

y cos θ − F∗
x sin θ

)
= 0, (2.12)

while from (2.8) we obtain

dF∗
x

ds∗ cos θ +
dF∗

y
ds∗ sin θ − T∗

x cos θ − T∗
y sin θ = 0, (2.13a)

dF∗
y

ds∗ cos θ − dF∗
x

ds∗ sin θ − T∗
y cos θ + T∗

x sin θ = 0. (2.13b)

Since (2.13) holds for any θ, we can equate coefficients of sin θ and cos θ to zero, yielding

dF∗
x

ds∗ = T∗
x ,

dF∗
y

ds∗ = T∗
y . (2.14)

Following Edwards & Chapman (2007), we assume that cellular attachments to the
lamina propria behave as linear springs anchoring each material point to its location
in the undeformed configuration. We note that the x∗ and y∗ coordinates of a material
point can be found through the relations

dx∗

ds∗ = cos θ, x∗(g∗(0)) = 0, (2.15a)
dy∗
ds∗ = sin θ, y∗(g∗(−L∗

0)) = 0, (2.15b)

where the boundary conditions follow from assuming symmetry in x∗ and clamping of
the beam ends respectively. It is, hence, appropriate to define the spring tensions T ∗

x,y

according to

T∗
x = k∗

(∫ s∗

g∗(0)
cos θds∗ − f ∗(s∗)

)
, (2.16a)

T∗
y = k∗

∫ s∗

g∗(−L∗
0)

sin θds∗, (2.16b)

where the right-hand sides of (2.16) are the spring constant k∗ multiplied by the
horizontal and vertical deflections of the material point whose original location was
( f ∗(s∗), 0).

It remains to determine the mapping f ∗(s∗) (and hence g∗ (X∗)). We make the consti-
tutive assumption that the in-plane component of force is proportional to the stretch of
the element. It follows that

∫ s∗+ds∗

s∗
F∗

T(s̄∗)ds̄∗ = β∗
1 ([(s∗ + ds∗) − s∗] − [( f ∗(s∗ + ds∗) − f ∗(s∗)]) . (2.17)
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In the limit ds∗ → 0, we obtain the following expression for f ∗ (s∗):

F∗
x cos θ(s∗) + F∗

y sin θ(s∗) = β∗
1

(
1 − d f ∗

ds∗
)

. (2.18)

By definition, the Young’s modulus E∗ is the constant of proportionality between stress
and strain of a material. However, since our model is formulated in terms of quantities
averaged across the thickness of the beam, we have β∗

1 = E∗h∗.

We consider that the beam is subject to a compressive, horizontal force of magnitude
F∗

0 applied at the beam ends. As such, the seventh order ODE system given by (2.12),
(2.14–2.16) and (2.18) is solved subject to ‘clamped’ boundary conditions, given by

F∗
x = −F∗

0 ,
dF∗

y
ds∗ = 0, θ = 0 at f ∗ (s∗) = ±L∗

0, (2.19)

together with the symmetry condition f ∗(0) = 0. In (2.19) the boundary condition on
F∗

y enforces zero vertical displacement at the beam ends (as is evident from substitution
of (2.16b) and (2.15b) into (2.14b)).

We nondimensionalise this system via the following scalings:

{s∗, X∗, Y∗, f ∗, g∗} = L∗
0 {s, X, Y, f , g} , (2.20a)

{
F∗

x , F∗
y , F∗

0

}
= k∗L∗2

0
{

Fx, Fy, F0
}

, (2.20b)
{

T∗
x , T∗

y

}
= k∗L∗

0
{

Tx, Ty
}

. (2.20c)

We now consider s in the range [g (−L0) , g (L0)], and we recover the dimensionless
system of governing equations presented in Edwards & Chapman (2007),

d2θ

ds2 + β0
(

Fy cos θ − Fx sin θ
)

= 0, (2.21a)

d2Fx
ds2 = cos θ − d f

ds , (2.21b)

d2Fy
ds2 = sin θ, (2.21c)

Fx cos θ + Fy sin θ = β1

(
1 − d f

ds

)
, (2.21d)

which is dependent upon two dimensionless parameters: β0 = k∗L∗4
0 /D∗, which char-

acterises the force required to extend the springs relative to the force required to bend
the beam, and β1 = E∗h∗/k∗L∗2

0 which captures the resistance to extension of the beam
relative to that of the springs. The model is solved subject to dimensionless boundary
conditions given by

Fx = −F0,
dFy
ds = 0, θ = 0 at f (s) = ±1, (2.22)
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together with f (0) = 0.

For the remainder of this section we assume that the beam is approximately incom-
pressible. In this limit β1 � 1 and dependent variables can be expanded in powers
of β−1

1 . To leading order, f (s) = s and the boundaries are fixed at s = ±1. Setting
f (s) = s + β−1

1 f̂ (s), the local stretch can be computed as

−d f̂
ds = Fx cos θ + Fy sin θ, (2.23)

with f̂ (0) = 0. For an incompressible beam, the leading-order problem is given by

d2θ

ds2 + β0
(

Fy cos θ − Fx sin θ
)

= 0, (2.24a)

d2Fx
ds2 = cos θ − 1, (2.24b)

d2Fy
ds2 = sin θ, (2.24c)

subject to

Fx = −F0,
dFy
ds = 0, θ = 0 at s = ±1. (2.25)

We show in appendix A.1.1 that, under the assumption of incompressibility, the corre-
sponding energy of equilibrium states is given by

E =
1
2

∫ 1

−1

(
dFx
ds

)2
+

(dFy
ds

)2
+

1
β0

(
dθ

ds

)2
+ F0

dx
ds ds, (2.26)

which incorporates contributions from stretching of the springs, bending of the beam
and work done at the boundaries respectively.

Assuming incompressibility, the behaviour of this system is characterised by the two
dimensionless parameters β0 and F0. Since insufficient data is available to determine
parameter values in vivo, we present analytical and numerical solutions for a range of
parameter values below. We classify a solution of (2.24–2.25) as ‘type n’ if it exhibits n
local extrema in the region s ∈ (−1, 1). Since the model exhibits a symmetry under the
transformation θ 7→ −θ (under which we also have Fx 7→ Fx and Fy 7→ −Fy), we can fur-
ther subcategorise type n solutions as either type n+ or type n−, where the superscript
reflects the sign of θ close to the left hand boundary. For n odd we obtain a solution
even in x, while for n even we obtain a solution odd in x. For later bifurcation analy-
sis, we define the output variables X0 and Y0 to be the horizontal distance between the
beam endpoints and the amplitude of the first peak/trough respectively, as illustrated
in figure 2.3.
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Figure 2.3: Features tracked during bifurcation analysis: solution amplitude, Y0, and
width, X0.

2.1.2 Analysis of the linearised problem

We now consider (2.24–2.25) in the small deflection limit, rescaling according to θ = εθ̄

and Fy = εF̄y, for 0 < ε � 1. To leading order in ε, the linearisation of (2.24) gives

d2θ̄

ds2 + β0
(

F̄y − θ̄Fx
)

= 0, (2.27a)

d2Fx
ds2 = 0, (2.27b)

d2F̄y
ds2 = θ̄. (2.27c)

It follows from (2.27b) and (2.25a) that Fx = −F0 to leading order. The linearisation of
the remaining boundary conditions gives

θ̄ = 0,
dF̄y
ds = 0 at s = ±1. (2.28)

For convenience we re-express (2.27–2.28) in terms of y(x). Since deflections are small
it is appropriate to rescale y = εȳ. From (2.15) we have that s = x and θ̄ = dȳ/dx to
leading order. Noting that Fx = −F0, we differentiate (2.27a) to obtain

d4ȳ
dx4 + β0

(
d2F̄y
dx2 + F0

d2ȳ
dx2

)
= 0, (2.29)

into which we substitute (2.27c), yielding

d4ȳ
dx4 + β0F0

d2ȳ
dx2 + β0ȳ = 0. (2.30)
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We solve (2.30) subject to the following boundary conditions, analogous to (2.28):

ȳ =
dȳ
dx = 0 at x = ±1. (2.31)

Solutions to (2.30) are of the form

ȳ(x) =
4

∑
i=1

Aiemix, (2.32)

where the mi are the four solutions of the quartic equation

m4 + β0F0m2 + β0 = 0, (2.33)

and the Ai are consants of integration which satisfy



em1 em2 em3 em4

e−m1 e−m2 e−m3 e−m4

m1em1 m2em2 m3em3 m4em4

m1e−m1 m2e−m2 m3e−m3 m4e−m4







A1

A2

A3

A4




= 0. (2.34)

For the remainder of this section the bars upon rescaled variables are omitted. We
obtain a non-flat solution of (2.30–2.31) for those values of β0 and F0 which result in
the matrix in (2.34) having zero determinant. It follows from the linearisation of (2.26)
that E = F0 + O

(
ε2) and, for a given β0, the solution which corresponds to the smallest

value of F0 is energetically favourable. The first three neutral curves are plotted in
figure 2.4, alongside the corresponding type 1−, type 2− and type 3− eigenfunctions.
Illustrations of the type n+ solutions are omitted here for brevity. For sufficiently small
β0 the neutral curves are well-ordered. We thus label the neutral curves according to
their ordering in the small β0 limit; labelling the curve with lowest F0 as 1, etc. We
define the terminology ‘mode n’ to describe an eigenmode pertaining to the n th neutral
curve. Examination of the eigenmodes reveals that a ‘mode n’ solution is also of ‘type
n’ for sufficiently small β0. The ordering of the neutral curves is preserved until β0 is
increased to approximately 55, at which point the lowest two neutral curves cross and
type 2 buckling becomes energetically favourable.

For β0 � 1 the beam bending stiffness dominates the stiffness of the springs and buck-
ling becomes independent of cellular attachment. In this limit, the problem reduces
to that of a classical Euler strut. The wavelength of the buckled profile is controlled
entirely by external forcing, and we expect the dominant terms in (2.30) to exhibit no
explicit dependence on k∗, i.e. we expect (2.30) to become independent of β0. The dom-
inant balance of terms in (2.30) suggests that F0 ∼ 1/β0 as β0 → 0, and it is hence con-
venient for the analysis of this limit to denote the product β0F0 = K2, where K2 = O(1),
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Figure 2.4: In (a), the first three neutral curves of the linearised system given by (2.30–
2.31) are shown, illustrating the force (F0) required to yield buckling instabilities to
modes 1, 2 and 3 as a function of material parameters (β0). The eigenmodes corre-
sponding to these neutral curves are shown in (b) for β0 = 20.

yielding:
d4y
dx4 + K2 d2y

dx2 = 0. (2.35)

Solution of (2.35) subject to (2.31) yields the following expression for y(x):

y(x) =

{
Cn (− cos Kn + cos(Knx)) for profiles of type (2n − 1),
Cn (−x sin(Kn) + sin(Knx)) for profiles of type 2n,

(2.36)

where the Cn are arbitrary constants, Kn = nπ for odd-type profiles, and Kn is the nth

positive root of K = tan(K) for even-type profiles. For small β0, the neutral curves are
precisely

F0 =
K2

n
β0

, n = 1, 2, 3, . . . (2.37)

For β0 � 1 (i.e. for a long domain, for example) local buckling becomes indepen-
dent of the force exerted at the boundaries. Wavelength is instead controlled en-
tirely by the springs. In this limit, we expect F0 ∼ 1/β1/2

0 so that dimensional force
scales as (D∗

maxk∗)1/2, which is independent of L∗
0. We examine the behaviour in the

regime of large β0 via a WKBJ analysis. We adopt notation consistent with that of
Edwards & Chapman, rewriting (2.30) as

d4y
dx4 + αk2 d2y

dx2 + k4y = 0, (2.38)

where αk2 = β0F0, k4 = β0 and k � 1. We seek a solution to (2.38) of the form

y = ekΦ(x), (2.39)
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where
Φ(x) = ϕ0(x) +

1
k ϕ1(x) +

1
k2 ϕ2(x) + . . . , (2.40)

and the ϕi are all O(1). We also adopt a similar expansion for α. Considering terms of
O(k4) in (2.38), we find that

ϕ′4
0 + α0 ϕ′2

0 + 1 = 0, (2.41)

and hence

ϕ0 = ±

√√√√−α0 ±
√

α2
0 − 4

2 x + C0, (2.42)

for arbitrary constant C0. Considering terms of O(k3), and noting that ϕ′′
0 = 0, we have

ϕ′
1

(
±
√

α2
0 − 4

)
+ α1 ϕ′2

0 = 0. (2.43)

For non-trivial solutions which satisfy (2.31), (2.43) requires that α0 = 2 and α1 = 0.
From (2.42) we, therefore, have

ϕ0 = ±ix + C0. (2.44)

At O(k2) we obtain
d2 ϕ1
dx2 +

(
dϕ1
dx

)2
+

α2
4 = 0. (2.45)

We solve (2.45) via the transformation ϕ̄1 = exp(ϕ1), to yield the solution

ϕ̄1(x) = A sin
(√

α2
4 x
)

+ B cos
(√

α2
4 x
)

, (2.46)

for arbitrary constants of integration A and B. Noting our original WKBJ ansatz, the
solution for y(x) is

y(x) = ϕ̄1(x)e±ikx ,

=

(
A sin

(√
α2
4 x
)

+ B cos
(√

α2
4 x
))

e±ikx , (2.47)

where C0 has been absorbed into A and B. For (2.47) to satisfy the boundary conditions
we must have either A = 0 and α2 = (2n − 1)2π2, or B = 0 and α2 = 4n2π2 (for some
n ∈ N). The resulting expression for y(x), having taken real parts, is hence

y(x) =





(
<(An) cos

(
β1/4

0 x
)
−=(An) sin

(
β1/4

0 x
))

sin (nπx) ,(
<(Bn) cos

(
β1/4

0 x
)
−=(Bn) sin

(
β1/4

0 x
))

cos
(

(2n−1)πx
2

)
,

(2.48)

while the neutral curves converge toward

F0 =
2√
β0

+
n2π2

β0
, (2.49)
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Figure 2.5: (a) The first six neutral curves, pertaining to the lateral compression prob-
lem of section 2.1. Dashed lines illustrate the asymptotic limit for β0 � 1 (2.37), while
dash-dotted lines illustrate the asymptotic limits for large β0 (2.49). (b) The buck-
ling types associated with the lowest eigenmode (solid line) and second eigenmode
(dashed line), illustrated at β0 = 10 (A), β0 = 100 (B), β0 = 700 (C), β0 = 2000 (D) and
β0 = 5000 (E).

for some n ∈ N. The neutral curves are plotted over a large range of β0 in figure 2.5. In-
spection of the eigenmodes reveals that as β0 increases a series of symmetry-preserving
type-transitions occurs. The first eigenmode, for example, is of type 1 for small β0. As
β0 increases this mode becomes type 3, followed by type 5 etc. Similarly the second
mode changes from type 2 to type 4, etc. These transitions of type correspond exactly
to the crossing of the neutral curves illustrated in figure 2.5; as the mode 1 solution be-
comes type 3, it becomes more energetically expensive than the type 2 solution on the
second neutral curve, and the curves cross. This type 2 solution remains energetically
favourable until a transition to type 4 occurs, at which point the neutral curves cross
again and type 3 configurations become energetically favoured. Thus, the most ener-
getically favourable buckling type changes progressively from type 1, to type 2, to type
3 etc. as β0 is increased. For sufficiently large β0 a type 1 profile is no longer obtainable
and buckling yields a highly wrinkled configuration.
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2.1.3 Large-amplitude buckling

We seek solutions of (2.24–2.25) using the MATLAB boundary value solver ‘bvp4c’,
which implements a collocation method to obtain a fourth-order accurate solution, as
detailed in Kierzenka & Shampine (2001). In those regions of parameter space which
facilitate buckled profiles of multiple types, we control configuration selection by start-
ing the collocation with a functional form close to the desired profile. Numerical results
are validated primarily via comparison with the previous linear analysis, ensuring that
bifurcations from the flat state occur only for choices of β0 and F0 lying on the neutral
curves of figure 2.5. While mesh-refinement tests are not directly appropriate since the
solver automatically refines the mesh until a default tolerance is met, we ensure that
numerical solutions are accurate through monitoring of the residual errors reported by
the solver. Should the solver report errors deemed too large (relative to a pre-defined
threshold), the algorithm is restarted with more rigorous bounds placed upon the min-
imum number of mesh points used. As a confirmation of the algorithm’s stability, we
ensure that a smooth transition of solutions occurs as we traverse parameter-space. Fi-
nally, numerical results are validated through examination of the physical quantities
associated with each configuration, as discussed below.

The type 1− solutions obtained upon fixing β0 = 10 and varying F0 are illustrated
in figure 2.6. We observe that as F0 is increased from zero, initially the layer resists
buckling and remains in its flat configuration. When F0 is increased to some critical
value, FB1

0 , the layer exhibits type 1 buckling. The forces required for the onset of
buckling agree with those predicted by the linear analysis above; for β0 = 10 (as in
figure 2.6), FB1

0 ' 1.3. Since we assume incompressibility, the length of the beam is
unchanged to leading order in β−1

1 . Further increasing of F0 results in the continued
development of this type 1 profile, as illustrated, until contact occurs between two
distinct points of the beam at F0 = FC1

0 . For the choice of parameters illustrated, FC1
0 '

2.1. Type 1 solutions for F0 > FC1
0 are ignored since they require either buckling out

of the (x, y)-plane, or explicit consideration of the forces exerted at the contact point.
For larger values of F0 we also obtain solutions of higher modes. Consistant with the
linear analysis, we find that on fixing β0 & 55 and increasing F0 from zero, we primarily
obtain type 2 buckling.

Figure 2.7 illustrates the beam stress resultants and spring stresses corresponding to
the type 1 buckling of figure 2.6. We examine these distributions as a means of code
validation. In particular, we confirm that the boundary conditions on Fx and Fy are
enforced, and that the spring stresses Tx and Ty are precisely the displacements x − X
and y respectively. In the flat configuration, we observe that Fx is uniform and equal
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Figure 2.6: Type 1− solutions of (2.24–2.25) for β0 = 10, obtained using MATLAB.
The onset of buckling occurs when F0 = FB1

0 ' 1.3, as predicted by figure 2.5. For
increasing force, the profiles continue to develop until opposite-wall contact occurs
for F0 = FC1

0 ' 2.1. Dashed lines illustrate typical spring locations.

to −F0 across the beam. This is consistent with our linear analysis. As F0 is increased,
stimulating buckling, we see that Fx decreases globally. We note that FT < 0 corre-
sponds to compressive stresses within the beam. Thus, as F0 is increased buckling acts
as a mechanism to releave compression, illustrated by a reduction in the magnitude of
FT over the majority of the beam. Figure 2.7 illustrates that while most of the beam re-
mains compressed for large amplitude configurations, some regions in which bending
is minimal are actually under slight tension. Since springs are anchored to the origi-
nal locations of material points in the results presented here, the horizontal component
of spring stress becomes large as boundaries are displaced inwards. As we examine
the growth of the beam in subsequent parts of this chapter, we refine the boundary
conditions and the details of the spring model to improve upon this.

We observe similar behaviour on holding F0 fixed and increasing β0, corresponding to
increasing the flexibility of the beam relative to that of the springs. Figure 2.8 illustrates
the solution types obtained for a wider choice of F0 and β0.

We further examine the behaviour of the system through consideration of the bifurca-
tion structure. We track the solution width, X0, and amplitude, Y0, as we adjust β0 or
F0. Figure 2.9 illustrates the resultant bifurcation diagrams. In figure 2.9(a,c) we see
that, for fixed β0, the system undergoes supercritical pitchfork bifurcations at each of
the points F0 = FBi

0 (i ∈ R). Amplitude and width data on non-trivial branches are plot-
ted until we reach F0 = FCi

0 , at which point the solutions self-intersect and are rejected.
In figure 2.9(b,d) we observe a similar bifurcation structure for fixed F0 and varying β0.
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Figure 2.9: Bifurcation diagrams illustrating the evolution of (a) X0 and (c) Y0 for fixed
β0 = 10 and increasing F0; and (b) X0 and (d) Y0 for fixed F0 = 4 and increasing β0.
Branches are truncated at the point for which opposite-wall contact occurs.

2.1.4 Parametric growth

As an approach to modelling epithelial growth, we consider the question of how a
beam of arbitrary length L∗ can be confined between boundaries located at x∗ = ±L∗

0.
We consider a sequence of beams of increasing length, starting with the undeformed
configuration for which L∗ = L∗

0. As L∗ is increased above L∗
0, all beams must be

deformed so as to satisfy the boundary conditions. We no longer place a restriction
upon the magnitude of force applied at the beam ends. We refer to this approach, in
which we examine a sequence of equilibrium configurations, as ‘parametric growth’.

Nondimensionalising in a manner consistent with section 2.1.1, scaling all lengths
against L∗

0, we now consider a dimensionless arclength, s, in the range [−L, L] (where
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L = L∗/L∗
0). To ensure that the points of spring anchorage remain independent of the

beam length under consideration, we replace our original spring stress law of (2.16) by
the following:

Tx = x − ŝ, Ty = y, (2.50)

where ŝ = s/L is a measure of arc-length in the reference configuration. The above
ensures that anchorage points always remain in the region x ∈ [−1, 1]. Combining
(2.50) with the dimensionless analogues of (2.12), (2.14) and (2.15), rescaling dependent
variables according to

{x̂, ŷ} =
1
L {x, y} ,

{
F̂x, F̂y

}
=

1
L2
{

Fx, Fy
}

, (2.51)

and rewriting in terms of ŝ yields:

d2θ

dŝ2 + β̂0
(

F̂y cos θ − F̂x sin θ
)

= 0, (2.52a)

d2F̂x
dŝ2 = cos θ − 1

L ,
d2F̂y
dŝ2 = sin θ. (2.52b)

where β̂0 = β0L4. The appropriate boundary conditions, subject to which (2.52) are
solved, are as follows:

θ = 0, dF̂x
dŝ = 0,

dF̂y
dŝ = 0 on ŝ = ±1, (2.53)

which impose clamping and zero horizontal and vertical displacements at the beam
ends respectively.

In appendix A.1.2 we show that the energy corresponding to this system is given by

E =
1
2

∫ 1

−1

(
dF̂x
dŝ

)2
+

(
dF̂y
dŝ

)2

+
1
β̂0

(
dθ

dŝ

)2
dŝ, (2.54)

and that for small deflections (2.54) reduces to

E = 2 (L − 1) F0, (2.55)

where F0 is the force on the boundary. From (2.55) we see that for small deflections
the energy of equilibrium configurations is simply given by the total work done at
the boundaries; F0 effectively represents the force required to move the ends of the
beam by a distance (L − 1), from their locations in the flat configuration to those of the
boundaries of the problem.

Keeping fixed the material properties of beam and springs (k∗, D∗) and the distance
between the boundaries (L∗

0), we examine solutions for fixed β0 and increasing L. As
L is increased, β̂0 increases as L4. Bifurcation diagrams describing solutions obtained
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for β0 = 1 and β0 = 10 are presented in figure 2.10, together with plots of the corre-
sponding energies. Since the beam is inextensible, no solutions exist for L < 1 (since
this corresponds to a beam shorter than the region to which it is confined). When
L = 1 the only available solution is the flat configuration. At L = 1 lies an infinite
family of bifurcations which give rise to all of the solutions described in the previous
section. Solutions can be characterised, for L close to 1, by the magnitude of force ex-
erted on the boundaries; that which exerts the least force is regarded as the preferred
configuration energetically. For β0 = 1 the preferred configuration is of type 1 initially.
As L is increased this configuration develops, increasing in amplitude, and remains
the lowest energy state until the point at which two parts of the beam come into con-
tact. At this point, numerical simulations of this mode are terminated and the mode 2
configuration is regarded as preferred. Similar behaviour is observed on the branches
corresponding to other modes. For β0 = 10, however, we find that the developing type
1− (respectively type 1+) solution enters into the region y > 0 (respectively y < 0) as L
is increased to approximately 1.85 (see figure 2.10(f)). For L & 1.85 this eigenmode dis-
plays type 3 characteristics. These transitions of type act to minimise the extension of
any given spring, particularly those close to the centre of the beam. A wrinkled config-
uration enables stresses to be distributed more uniformly across all of the springs than
does a ‘crypt-like’ configuration (plots of spring stresses are omitted for brevity). For
relatively stiff springs, obtaining a crypt-like profile will commonly be more difficult
than obtaining a wrinkled configuration; we revisit this notion in the following section
as we incorporate viscous relaxation of spring stresses into the model. Transitions of
type were not observed for β0 = 1 since beam self-intersection occurs more rapidly.
Depending on our choice of β0, we are also able to see changes of type occurring on
higher modes. Consistent with the analysis of section 2.1.2, for β0 & 55 we find that
type 1 solutions are not attainable, regardless of the choice of L. Plots are omitted for
brevity. For sufficiently large L (and suitable choice of β0) energy curves can cross,
allowing mode 2 solutions to become the lowest energy state (see figure 2.10(d)).

2.2 Kinematic description of epithelial growth

We now extend the previous model by considering stress to be generated through the
growth of the epithelial layer itself, rather than by an externally applied force. We also
incorporate the effects of the movement of cells along the lamina propria and the conse-
quent relaxation of stress in the layer. Tissue growth is prescribed by the dimensional
growth rate function γ∗(X∗). The derivation below builds upon the dimensionless
framework of the previous section. As discussed in appendix A.3, we nondimension-
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Figure 2.10: Results of parametric growth simulations for (a,c,e) β0 = 1 and (b,d,f)
β0 = 10. (a) and (b) show bifurcation diagrams illustrating amplitude as a function of
L for the first three modes. (c) and (d) show the corresponding energies ((2.54), solid
line) and the small L asymptote ((2.55), dashed line). In (b), ’X’ marks the point at
which mode 1 solutions change from type 1± to type 3±. In (e) and (f), mode 1 profiles
are plotted for L = 1.5 (dashed) and L = 2.5 (solid).
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alise by scaling γ∗ against its maximal value, γ∗
max, and time against 1/γ∗

max.

2.2.1 Model development

We derive the equations which govern the growth of the tissue following the frame-
work presented by Skalak (1980) and Rodriguez et al. (1994), as discussed in section
1.6.2. We first allow the nondimensionalised reference configuration (X, τ) to grow
into an enlarged flat configuration (Z, τ) defined by the spatial mapping g1 : X 7→ Z.
We then map this enlarged configuration into the domain x ∈ [−1, 1]. As a result the
layer is forced to buckle. The coordinates (s, t) in this final configuration are arrived
at through the spatial mapping g2 : Z 7→ s. A schema of this process is illustrated in
figure 2.11. We note that a mapping analogous to g(X) in the previous section may be
defined through the relation g(X, τ) = g2(g1(X, τ), τ). For later use, we also define the
inverses of g1, g2 and g as f1, f2 and f respectively.

As discussed in appendix A.3, conservation of mass requires the following expression
for g1(X, τ):

∂2g1
∂τ∂X = γ(X)

∂g1
∂X , (2.56)

which is solved subject to the symmetry condition g1(0, τ) = 0 and the condition im-
posing the initial length, g1(X, 0) = X. On forcing the beam, we obtain the following
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expression, analogous to the previous stretch condition (2.21d):

Fx cos θ + Fy sin θ = β1

(
∂g2
∂Z − 1

)
, (2.57)

subject to g2(0, τ) = 0; β1 captures the compressibility of the layer and is defined as
following (2.21).

Under the assumption that the layer is essentially incompressible, we have that β1 � 1
and it follows from (2.57) that

g2(Z, τ) = Z +
1
β1

ĝ2(Z, τ), (2.58)

for some O(1) function ĝ2(Z, τ). In particular, we have

g(X, τ) = g2(g1(X, τ), τ) = g1(X, τ) +
1
β1

ĝ2(g1(X, τ), τ), (2.59)

and so to leading order g(X, τ) = g1(X, τ). Again, we can evaluate the local stretch
according to

∂ĝ2
∂Z = Fx cos θ + Fy sin θ. (2.60)

From here onwards we consider only the leading-order problem and, owing to (2.59),
the remainder of the derivation proceeds in terms of g(X, τ).

We look to capture the effects of cell migration, and the resultant relaxation of stresses
in the layer, through the assumption that the springs attaching the epithelium to the
underlying layer are viscoelastic, with viscosity ν∗. Following Edwards & Chapman
(2007), we choose a Maxwell constitutive law for Tx and Ty, motivated by the expecta-
tion that the layer will exhibit elastic behaviour over short timescales. The equations
governing the evolution of Tx and Ty, which replace (2.16a) and (2.16b), are derived in
appendix A.2. The results are

∂Tx
∂τ

+ βTTx =
∂

∂τ

∫ g(X,τ)

0
cos θ

(
s′, t
)

ds′, (2.61a)

∂Ty
∂τ

+ βTTy =
∂

∂τ

∫ g(X,τ)

−1
sin θ

(
s′, t
)

ds′, (2.61b)

which are solved subject to the conditions of zero stress initially,

Tx(X, 0) = 0, Ty(X, 0) = 0. (2.62)

The dimensionless parameter βT = k∗/ν∗γ∗
max captures the ratio of the growth

timescale to the timescale for the viscous relaxation of the attachments.

Equations (2.61–2.62) have been written with respect to the reference configuration,
whereas the remainder of the governing equations in section 2.1 are written with re-
spect to the deformed configuration. Thus, we must consider a change of variable to
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the (s, t)-frame. Denoting derivatives of f and g by subscripts, we have that

gX = f −1
s , gτ = − ft ( fs)

−1 , (2.63)

and hence, (2.61) can be written in the physical frame as
∂Tx
∂t − ft

fs

∂Tx
∂s + βTTx =

∂

∂t

∫ s

0
cos θ

(
s′, t
)

ds′ − ft
fs

∂

∂s

∫ s

0
cos θ

(
s′, t
)

ds′, (2.64a)

∂Ty
∂t − ft

fs

∂Ty
∂s + βTTy =

∂

∂t

∫ s

−1
sin θ

(
s′, t
)

ds′ − ft
fs

∂

∂s

∫ s

−1
sin θ

(
s′, t
)

ds′, (2.64b)

with Tx(s, 0) = 0 and Ty(s, 0) = 0. Similarly, (2.56) becomes

−∂ f
∂s

∂2 f
∂s∂t +

∂2 f
∂s2

∂ f
∂t =

(
∂ f
∂s

)2
γ(s), (2.65)

with f (0, t) = 0 and f (s, 0) = s, from which we obtain

−
(

ft
fs

)

s
= γ(s). (2.66)

Owing to (2.66), we rewrite (2.64) as
∂Tx
∂t + Γ(s)∂Tx

∂s + βTTx =
∂

∂t

∫ s

0
cos θ

(
s′, t
)

ds′ + Γ(s) ∂

∂s

∫ s

0
cos θ

(
s′, t
)

ds′, (2.67a)

∂Ty
∂t + Γ(s)

∂Ty
∂s + βTTy =

∂

∂t

∫ s

−1
sin θ

(
s′, t
)

ds′ + Γ(s) ∂

∂s

∫ s

−1
sin θ

(
s′, t
)

ds′, (2.67b)

where Γ(s) is the cumulative growth function defined by

Γ(s) =

∫ s

0
γ(s′)ds′. (2.68)

Thus, denoting the integrals in (2.67) by x(s, t) and y(s, t) respectively, the full system
of governing equations is

∂2θ

∂s2 + β0
(

Fy cos θ − Fx sin θ
)

= 0, (2.69a)

∂Fx
∂s = Tx,

∂Fy
∂s = Ty, (2.69b)

∂x
∂s = cos θ, ∂y

∂s = sin θ, (2.69c)
∂Tx
∂t + Γ(s)∂Tx

∂s + βTTx =
∂x
∂t + Γ(s)∂x

∂s , (2.69d)
∂Ty
∂t + Γ(s)

∂Ty
∂s + βTTy =

∂y
∂t + Γ(s)∂y

∂s , (2.69e)

and is solved subject to the boundary conditions

θ(±L, t) = 0, x(±L, t) = ±1, y(±L, t) = 0, (2.70)

and the initial conditions

Tx(s, 0) = 0, Ty(s, 0) = 0, L(0) = 1, (2.71)

where L(t) denotes the right-hand moving boundary.
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2.2.2 Reduction to the growth-free model of section 2.1

We demonstrate, below, that imposing zero growth (Γ(s) = 0) on (2.69–2.71) we recover
the model of section 2.1 at short times. We note that (2.69a-c) are unchanged from
section 2.1. Omitting growth from the model, (2.69d) and (2.69e) become

∂Tx
∂t + βTTx =

∂

∂t

∫ s

0
cos θ

(
s′, t
)

ds′, (2.72a)

∂Ty
∂t + βTTy =

∂

∂t

∫ s

−1
sin θ

(
s′, t
)

ds′. (2.72b)

As discussed in appendix A.2, a Maxwell viscoelastic material behaves as a linearly
elastic material over short times; i.e. if the timescale over which growth occurs is much
shorter than the relaxation time of the layer, viscous effects are negligible. In this regime
we have βT � 1 and we obtain the following expression for spring stresses, which is
valid over short times:

∂Tx
∂t =

∂

∂t

∫ s

0
cos θ

(
s′, t
)

ds′, (2.73a)

∂Ty
∂t =

∂

∂t

∫ s

−1
sin θ

(
s′, t
)

ds′. (2.73b)

Integrating (2.73), we obtain

Tx =

∫ s

0
cos θ

(
s′, t
)

ds′ + A(s), (2.74a)

Ty =

∫ s

−1
sin θ

(
s′, t
)

ds′ + B(s), (2.74b)

where A(s) and B(s) are arbitrary functions of s. Requiring the right-hand sides of
(2.74) to be the components of displacement of the point s fixes A(s) = − f (s) and
B(s) = 0, which recovers (2.21b-c). The model of section 2.1 is thus regained.

2.2.3 Code formulation and validation

We develop an iterative method to solve (2.69–2.71) numerically. Given the initial data
corresponding to the flat solution, we first use (2.69d-e) to determine the forms of Tx

and Ty at the next timestep. We then substitute this information into (2.69a-c) to deter-
mine the profile of the beam at this step. We describe this numerical scheme in greater
detail below.

We obtain solutions to (2.69d-e), and track the growth of the domain, via consideration
of the characteristics of the system. Firstly, we consider changes of variable defined as
follows

Tx = Tx − x, Ty = Ty − y. (2.75)
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Under this change of variable (2.69d-e) become

∂Tx
∂t + Γ (s) ∂Tx

∂s + βTTx = −βTx, (2.76a)
∂Ty
∂t + Γ (s)

∂Ty
∂s + βTTy = −βTy. (2.76b)

We parameterise the characteristics with variable ρ defined according to

∂t
∂ρ

= 1, ∂s
∂ρ

= Γ (s) . (2.77)

We impose the initial conditions of (2.71) by setting

s = X, t = 0, Tx = −X, Ty = 0 (2.78)

on ρ = 0. It follows from (2.77–2.78) that ρ = t, and the following equations thus
govern the evolution of Tx and Ty along characteristics:

dTx
dt + βTTx = −βTx, (2.79a)

dTy
dt + βTTy = −βTy. (2.79b)

Noting (2.77) we see that the characteristics themselves satisfy

ds
dt = Γ (s) , (2.80)

from which we deduce that each characteristic represents the path traced out by a ma-
terial point as the layer grows. Since Γ(s) is monotonic, the characteristics cannot cross
and each material point lies on a unique characteristic. As a consequence of (2.80), we
track the moving boundaries at s = ±L(t) according to

dL
dt = Γ (L) . (2.81)

We initiate our numerical solver with a discrete growth step. Applying a forward-Euler
finite difference approximation to (2.80), we obtain

si+1 = si + ∆tΓ
(

si
)

, (2.82)

where ∆t is our timestep size and the i-superscript denotes that s is evaluated at the i th

timestep. We then apply a similar discretisation to (2.79), yielding

T i+1
x − T i

x
∆t + βTT i

x = −βTxi, (2.83a)

T i+1
y − T i

y
∆t + βTT i

y = −βTyi. (2.83b)
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Manipulation of (2.83) yields the following equations,

T i+1
x = T i

x − βT∆t
(
T i

x + xi
)

, (2.84a)

T i+1
y = T i

y − βT∆t
(
T i

y + yi
)

, (2.84b)

which govern the evolution of Tx and Ty from the ith timestep to the (i + 1)th timestep.

Having determined T i+1
x and T i+1

y , it remains to determine the beam profile at the
(i + 1)th timestep. From (2.69a-c) we have

∂2θi+1

∂s2 + β0
(

Fi+1
y cos θi+1 − Fi+1

x sin θi+1
)

= 0, (2.85a)

∂Fi+1
x

∂s = T i+1
x + xi+1, (2.85b)

∂Fi+1
y

∂s = T i+1
y + yi+1, (2.85c)

∂xi+1

∂s = cos θ i+1, (2.85d)

∂yi+1

∂s = sin θ i+1, (2.85e)

which we solve subject to the boundary conditions of (2.70) using MATLAB’s boundary
value solver as described in section 2.1.3.

In addition to the code validation methods discussed in section 2.1.3, we perform the
following checks to ensure that the numerical solutions are accurate. The code is val-
idated initially through examination of the results obtained when β T = 0. In this
limit we recover purely elastic spring behaviour, and hence we expect Tx = x − X
and Ty = y. Testing of the code reveals that numerical results are consistant with this.
For βT > 0 our springs exhibit some viscous relaxation. For short times we expect the
springs to exhibit elastic behaviour. Comparison of the results which we obtain for
βT = 0 and βT = 100 for early timesteps confirms that this short-time elastic behaviour
is present. Since increasing βT results in the relaxation of spring stresses, we further
validate the code by ensuring that Tx and Ty are bounded by x − X and y respectively,
and we observe that as t increases we see a global decay in the magnitude of Tx and Ty.

2.2.4 Uniform growth

Considering uniform growth we set γ(s) ≡ 1, and hence Γ(s) = s. It follows from (2.81)
that the moving boundaries satisfy

L(t) = et, (2.86)

which illustrates that in the case of uniform growth we obtain an exponential increase
in domain size.
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Figure 2.12: Evolution of an initially type 1− profile for β0 = 10, under uniform
growth with no relaxation of tethering forces (βT = 0). Dots illustrate the progres-
sion of material points.

Figure 2.12 illustrates the temporal evolution of a typical solution profile, obtained for
β0 = 10 and βT = 0. We note that choosing βT = 0 corresponds to switching off
viscous relaxation of spring stresses; beam profiles are then qualitatively similar to
those of section 2.1. The illustrated solution is of type 1 initially; however, we may also
obtain solutions of higher modes. We observe that as time evolves our type 1 profile
lifts into the region y > 0, resembling type 3. This is explained by the springs in the
centre of the beam being highly stretched in comparison to those elsewhere and, hence,
it being energetically favourable to transfer the resulting stress to those springs closer
to the boundaries. As such, large deviations from the line y = 0 are prevented. This
behaviour suggests a favouring of wrinkling over crypt-like buckling for large time,
and recovers the equivalent observation in the parametric growth approximation of
section 2.1.4.

The components of beam and spring stresses are shown in figure 2.13. We observe that
as the beam buckles the stresses in the springs are increased in magnitude, owing to the
displacement of material points from their original locations and consequent stretching
of the springs. We also note that in the centre of the beam where bending is greatest,
we have that FT → 0 as t → ∞, illustrating that buckling acts as a mechanism to resist
compression. This observation is consistant with the results of section 2.1.3.

Figure 2.14 illustrates the evolution of a similar type 1 profile with β0 = 10 and βT =

100, corresponding to the limit in which viscous relaxation dominates the evolution
of spring stresses. We see that the beam profile no longer enters the region y > 0
and the solution remains type 1 for all time. This behaviour is consistent with the
spring stress relaxation facilitating more greatly extended springs in the centre of the
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Figure 2.14: Evolution of an initially type 1− profile for β0 = 10, under uniform
growth with rapid relaxation of tethering forces (βT = 100). Dots illustrate the pro-
gression of material points.

beam. Since viscous relaxation permits a greater deviation from the linear state, we
can allow the beam to grow for a more lengthy period of time before self-intersection
occurs. As a result we obtain deeper and broader crypts than in the linear spring regime
(βT = 0). We observe, in figure 2.15, that increasing βT results in a global reduction in
the magnitude of all components of the beam stress resultants and spring stresses. In
figure 2.16 we compare solutions for βT = 1 (intermediate spring stress relaxation) and
βT = 100 (rapid spring stress relaxation). We allow both beams to grow uniformly
until t = 1, at which point growth is stopped. We observe that the two profiles become
indistinguishable as the spring stresses relax; both solutions converge to the solution
obtained in the viscous-dominated limit.

2.2.5 Growth confined to a central region

We now consider a regime in which growth occurs only within the region s ∈ [−s0, s0],
for some constant 0 < s0 < 1. Inside this region growth is considered uniform. We may
liken such behaviour to that of the proliferative compartment at the base of a crypt. The
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Figure 2.15: Beam stress resultants and spring stresses in the regime of uniform growth for β0 = 10 and βT = 0 (solid line), βT = 10 (dashed
line) and βT = 100 (dotted line). These data are plotted at t = 1.08; the last time point at which all three solutions are viable.
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Figure 2.16: Here we observe the long-time profile obtained when growth is switched
off at t = 1. We compare the beam profile obtained when spring stresses are dom-
inated by viscous relaxation (βT = 100; dotted line), against that of a more gradual
relaxation of spring stresses (βT = 1; solid line). Both profiles refer to uniformly grow-
ing layers with β0 = 10. We observe that the profile corresponding to the slowly
relaxing regime converges to that of the viscous-dominated regime for large time.

appropriate definitions of the growth functions are as follows:

γ(s) =





0 s < −s0,
1 −s0 ≤ s ≤ s0,
0 s > s0,

Γ(s) =





−s0 s ≤ −s0,
s −s0 ≤ s ≤ s0,
s0 s ≥ s0.

(2.87)

It follows from (2.81) that
L(t) = s0t + 1, (2.88)

and the size of the domain increases linearly in this regime.

Figures 2.17 and 2.18 illustrate the evolution of type 1 profiles for βT = 0 and βT = 100
respectively, with β0 = 10 and s0 = 0.25. We observe that the geometry of the solutions
is qualitatively similar to that of the uniform growth regime. In the linear spring limit
(βT = 0), the type 1 beam profile develops type 3 characteristics once more. Through
the introduction of viscous relaxation in the spring stresses (β T > 0), we enable greater
deviations from y = 0 and the solutions do not display such behaviour. Since larger
amplitude solutions are then attainable, more prolonged growth is possible prior to op-
posite wall contact occurring. Figures 2.17 and 2.18 show that the crypt-like geometry
is maintained when restricting growth to the centre of the beam (or equivalently the
base of the crypt). We see from the figures that the results now make progress towards
capturing the hierarchical nature of the cells in the crypt, as older cells effectively re-
main close to the intestinal lumen while younger cells reside at the base of the crypt.
Such behaviour is more consistent with that found in vivo, although our model does
not incorporate the loss of cells from the top of the crypt due to apoptosis or shed-
ding. Plots of beam and spring stresses are omitted for brevity; however, examination
of these reveals that the characteristics observed under uniform growth are maintained
under the transition to this ‘proliferative compartment’ model. In particular, the degree
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Figure 2.17: Evolution of an initially type 1 profile corresponding to a beam whose
growth is confined to a central proliferative region, for β0 = 10, βT = 0 and s0 = 0.25.
Dots illustrate the progression of material points.

to which the beam is compressed is reduced upon buckling, and increasing β T yields a
notable reduction in all spring and beam stresses.

Comparing the large-time profiles illustrated in figures 2.12 and 2.14 to those of figures
2.17 and 2.18, we see that confining growth to the centre of the beam has the effect of
delaying beam self-intersection, enabling simulations to be run for longer and yielding
deeper crypts. This observation is exaggerated in figure 2.19, in which we compare
the results of this growth regime to the profiles of equal length obtained for uniform
growth. We see that, in general, confining growth to a central compartment ultimately
results in a straighter-walled crypt with less of a narrowing at the neck and a less bul-
bous base. As the figure illustrates, the extent to which the geometry differs between
the growth regimes is strongly dependent on β0. For large β0 (corresponding to stiff
springs) the change in geometry is significant, as illustrated in figures 2.19(d-f). How-
ever, for smaller β0 the bending stiffness of the beam dominates spring stiffness and
buckling is largely independent of the springs. As such, the increased flexibility in
the springs counter-acts the dependence on the exact location of growth and the two
geometries become rather similar. We also observe that the distinctions between the
two solutions are much more slight for large βT . In this limit the springs exhibit rapid
viscous relaxation of stresses, and the geometry of the buckled profile becomes inde-
pendent of the springs once more. As such, an explicit dependence on the nature of
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Figure 2.18: Evolution of a type 1 profile corresponding to a beam whose growth is
confined to a central proliferative region, for β0 = 10, βT = 100 and s0 = 0.25. Dots
illustrate the progression of material points.

growth is lost once more. In figures 2.19(b) and 2.19(e) we see a marked difference in
the results obtained for βT = 1, for which growth occurs over a similar timescale to
spring stress relaxation. We observe a transition from the wrinkled configurations ob-
tained under uniform growth to deeper, straighter-sided configurations reminiscent of
colorectal crypts.

2.2.6 Coupling of growth to geometry

Here we consider the dependence of growth upon the geometry of the configuration
into which the beam has buckled, or associated physical quantities. In general, we con-
sider that γ = γ(s, θ, x, y, Fx , Fy). Since the growth rate now evolves with the buckling
of the beam, γ∗ exhibits an implicit dependence upon time. In the nondimensionalisa-
tion of γ∗, we regard γ∗

max to represent the maximal value of γ∗ when the beam is in its
flat configuration.

In this section we focus upon two such growth regimes. Firstly, we consider growth
to be stimulated by the depth of invagination. This may model a chemical gradient
(such as Wnt, for example) which acts to stimulate proliferation towards the base of
the crypt. We choose γ to have an exponential dependence upon y, as follows:

γ = γ(y) = e−αy. (2.89)
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Figure 2.19: Comparison of buckled profiles in the uniform growth regime (dashed
lines) against those of equivalent lengths obtained when growth is confined to a cen-
tral proliferative region of half-width s0 = 0.25 (solid lines). Dots and crosses represent
material points which were equally spaced in the undeformed configuration.
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Here α is a dimensionless parameter which governs the strength of dependence of the
growth profile upon the depth of invagination. With γ prescribed by (2.89), those
regions of the beam which buckle downwards will undergo a rapid acceleration of
growth, while those regions which pertrude into y > 0 experience a sharp decay in
their growth rate.

Secondly, we consider growth to be restricted by compression of the beam. Such a
growth regime draws parallels with contact inhibition, a property exhibited by epithe-
lial cells which causes them to stop proliferating on reaching confluence (Quaroni et al.,
1979). We consider γ to depend upon the in-plane component of beam stress, FT, as fol-
lows:

γ = γ(FT) = eαFT . (2.90)

We recall from section 2.2.3 that the system’s characteristics have gradient dt/ds =

1/Γ(s). Our growth rate formulae (2.89–2.90) have been chosen to be non-negative
functions so that Γ(s) remains monotonic. This is sufficient to ensure that the charac-
teristics do not cross in these growth regimes.

In figures 2.20 and 2.21 the profiles obtained under the two growth regimes described
above are compared to those of equivalent lengths obtained in the uniform growth
regime. We find that differences between the beam shapes are minimal. Some local
variation in the displacements of material points is observed; however, such variations
are not substantial. Increasing α exaggerates the dependence of the growth rate upon
the geometry of the solutions; however, numerical simulations reveal that this does not
yield significantly different buckled profiles to those attained under uniform growth.

2.2.7 Patterning of growth and tissue stiffness

We now examine the manner in which the patterning of growth, γ, or beam stiffness, D,
can be manipulated to generate multiple crypts. Since we regard the beam’s bending
stiffness as a function of position, we solve (2.1), (2.10) and (2.11b) in favour of (2.69a).
We redefine β0 = k∗L∗4

0 /D∗
max to account for the dependence of D∗ upon s∗, allowing

the governing equations to be written in terms of dimensionless bending stiffness D =

D∗/D∗
max. The resulting system of equations is as follows:

∂θ

∂s = −β0
M
D , (2.91a)

∂M
∂s = Fy cos θ − Fx sin θ, (2.91b)

∂Fx
∂s = Tx,

∂Fy
∂s = Ty, (2.91c)
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Figure 2.20: Comparison of buckled profiles in the uniform growth regime (dashed
lines) against those of equivalent lengths obtained when growth is stimulated by
depth of invagination with α = 1 (solid lines).
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Figure 2.21: Comparison of buckled profiles in the uniform growth regime (dashed
lines) against those of equivalent lengths obtained when growth is restricted by com-
pression with α = 1 (solid lines).
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∂x
∂s = cos θ, ∂y

∂s = sin θ, (2.91d)
∂Tx
∂t + Γ(s)∂Tx

∂s + βTTx = Γ(s)∂x
∂s +

∂x
∂t , (2.91e)

∂Ty
∂t + Γ(s)

∂Ty
∂s + βTTy = Γ(s)∂y

∂s +
∂y
∂t , (2.91f)

together with the boundary conditions

θ(±L, t) = 0, x(±L, t) = ±1, y(±L, t) = 0, (2.92)

and the initial conditions

Tx(s, 0) = 0, Ty(s, 0) = 0, L(0) = 1. (2.93)

We prescribe variations of γ and D inside two patches initially separated a distance 2L1

and initially of width L2 (for 0 < L1, L2 < 1). In the grown configuration we denote
the location of the patches by s− ≤ |s| ≤ s+ (where s+

> s−), with s− and s+ evolving
according to

ds−
dt = Γ

(
s−
)

, s−(0) = L1, (2.94a)

ds+

dt = Γ
(
s+
)

, s+(0) = L1 + L2. (2.94b)

We consider two regimes here, independently varying growth and beam stiffness from
the uniform configuration. Firstly, we consider a regime in which growth occurs uni-
formly (γ ≡ 1) and beam stiffness is significantly reduced to D = DP � 1 inside the
patches, i.e.

D(s) =

{
DP s− ≤ |s| ≤ s+,
1 otherwise.

(2.95)

We compare the resulting buckling to that of a second regime in which the beam stiff-
ness is uniform (D ≡ 1) but growth is restricted to the patches described above. Inside
the patches, growth is considered uniform, i.e.

γ(s) =

{
1 s− ≤ |s| ≤ s+,
0 otherwise.

Γ(s) =





0 0 ≤ |s| ≤ s−,
sgn(s) (s − s−) s− ≤ |s| ≤ s+,
sgn(s) (s+ − s−) otherwise.

(2.96)

Figure 2.22 illustrates the buckling attained in each of these regimes. The parameters
used in the figure are selected to best illustrate obtainable crypt profiles. Varying L1 and
keeping L2 fixed, we observe that in the regime of non-uniform beam stiffness (figure
2.22(a-c)) we obtain a single crypt for L1 = 0 and a transition to a two-crypt profile for
L1 > 0. As L1 is increased, the crypts are pushed away from each other towards the
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Figure 2.22: Buckling obtained under patterning of growth and beam stiffness, for
β0 = βT = 1 and L2 = 0.2. In (a-c) we pattern beam stiffness, with DP = 0.001,
yielding a transition from a single-crypt profile for L1 = 0 (a) to two-crypt profiles for
L1 = 0.4 (b) and L1 = 0.8 (c). Profiles are plotted at t = 0.15, heavier lines represent
more flexible regions. In (d-f) we impose a patterning of growth, with D ≡ 1. Profiles
of mode 1 (solid lines) and mode 3 (dashed lines) are plotted at t = 0.59 for (d) L1 = 0,
(e) L1 = 0.4 and (f) L1 = 0.8; heavier lines represent growing regions.

boundaries. Buckling is primarily confined to those regions which exhibit the greatest
flexibility. When considering a patterning of growth, however, such two-crypt profiles
are not obtainable. Solutions corresponding to modes 1 and 3 are illustrated in figure
2.22(d-f); we see that the shapes of these configurations are largely independent of the
location of growth. We conclude, therefore, that the modulation of growth is not a
sufficient mechanism to control the buckling wavelength. Modulating the stiffness of
the beam, however, has the desired effect.

2.3 Summary

In this chapter, we have adapted the model for crypt budding and fission presented
by Edwards & Chapman (2007) to consider colorectal crypt formation. In doing so we
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have built upon the linear analysis presented by Edwards & Chapman to illustrate that
buckling in the nonlinear regime yields profiles reminiscent of colorectal crypts. We
have illustrated the family of buckling modes obtained and have shown how the model
parameters determine selection of configuration type. Our analysis revealed that (as
demonstrated by Edwards & Chapman (2007)) the wavelength of the primary buck-
ling mode is determined by the relative stiffnesses of beam and springs (β0); stronger
attachment to the underlying stroma results in a highly wrinkled configuration.

In section 2.2, we developed the model of epithelial growth presented by Edwards &
Chapman to yield a system of governing equations capable of assessing the effects of
a non-uniform growth pattern upon the buckled epithelial profile. To allow for sub-
strate remodelling due to cellular migration, we also incorporated viscoelastic relax-
ation of cellular attachments. We illustrated that this viscoelastic stress relaxation is
key to the obtaining of a crypt-like geometry, rather than the ‘wrinkled’ configuration
which is ultimately yielded in the regime of linear springs. Our studies of uniform and
non-uniform growth patterns illustrated that buckled states are relatively insensitive
to patterning of growth. Crypt-like profiles are maintained upon the confinement of
growth to a central portion of the layer (analogous to the proliferating compartment
which resides at the crypt base in vivo), and upon allowing growth to be stimulated
by deep invagination or restricted by high compression (analogous to the effects of a
chemical gradient and contact inhibition respectively). Buckling due to growth in a
central compartment was shown to delay the pinching-off of the crypt opening and,
hence, we were able to generate longer crypts within the confines of this model’s va-
lidity. The crypt walls were also shown to be straighter in this growth regime, to an
extent dependent upon the relative stiffnesses of beam and springs (β0). Studies of
spatial patterning of growth and mechanical properties provided significant evidence
that crypt frequency cannot be controlled by patterning of growth. Imposing variations
in tissue stiffness, however, can act as an effective mechanism for the control of crypt
distribution.

We note here that the model presented in this chapter exhibits some short-comings.
Primarily, the model fails to capture the deformation of the sub-epithelial mucosa. As
such, the spring model of cellular attachment could be considered unrealistic since the
points of attachments of the springs are not altered as the epithelium buckles. This
motivates further consideration of how best to model the substrate. We revisit this
issue in chapter 4. Also, we were not able to examine the epithelial geometry once two
distinct points of the epithelium come into contact; this may play an important role in
determining the shape of buckled profiles in vivo.
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CHAPTER 3

In-Vitro Analysis of Cell
Proliferative Forces

In this chapter, we discuss an in-vitro study to investigate the hypothesis that colorec-
tal crypts form due to a build up of compressive stresses in the developing epithelium.
Our approach is to culture a population of intestinal epithelial cells upon a flexible sub-
strate until confluent. Under standard culture conditions upon a rigid surface, prolifer-
ation would be halted due to contact inhibition once the cell layer reached confluence.
We examine whether the cells are able to exert sufficient force to deform the flexible
substrate as they approach confluence. Deformation of the substrate would yield a
greater surface area, perhaps allowing proliferation to continue. We elect to work with
the rat intestinal epithelial cell line IEC6, since these cells are readily available, form a
regular “cobblestone” monolayer which is highly similar to the human intestinal ep-
ithelium, and exhibit the required contact inhibition behaviour (Quaroni et al., 1979;
Beauchamp et al., 1996).

Formulation of a suitable experimental protocol was hindered by a number of techni-
cal challenges. Primarily, the cell culture surface must be sufficiently flexible to allow
cells to induce deformations, while being sufficiently robust to facilitate manipulation
during culture and imaging. Some materials were identified to have the required me-
chanical properties, but their use was not practical since they were not amenable to
the culture of this particular cell line (often resulting in an abnormal cell morphology).
The final challenge lies in measuring deformations. Ideally, we would measure sub-
strate deflections via a side-on microscope image of the substrate. However, with the
equipment available, we were only able to take microscope images from above. Other
techniques, such as X-ray microtomography, were considered; however, these were
not practical due to the size of the samples and the fact that cells would be killed upon
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scanning, potentially disrupting substrate deflections. A number of experimental ap-
proaches were trialled, including fabrication of substrates from agarose, glucose and
collagen gels for subsequent analysis using histology; however, these methods were
unsuccessful. We omit further details of this preliminary work here.

The experimental protocol discussed below was designed in collaboration with
Dr. Daniel Howard (Tissue Engineering & Drug Delivery Group, School of Phar-
macy, University of Nottingham) and was based upon similar work by Feinberg et al.
(2007) in which rat ventricular cardiomyocytes were cultured upon a flexible poly-
dimethylsiloxane (PDMS) membrane. Feinberg et al. (2007) showed that these car-
diomyocytes were able to generate membrane deformations. We note, however, that
cardiomyocytes are able to actively contract to drive these deformations. This is in
strong contrast to the study presented here, in which we focus upon the forces result-
ing from expansion of the cell layer against fixed boundaries.

The protocol of Feinberg et al. required extensive modification prior to this study, pri-
marily focused upon functionalisation of the substrates for IEC6 cell culture and cre-
ation of a supporting structure in which the substrates could be held. Having com-
pleted this preliminary work, the remaining time available was only sufficient for pre-
liminary data to be collected. However, the data presented below do act as a proof of
the principle that in-plane compression in the epithelial cell layer can be sufficient to
induce buckling in the developing intestine in vivo.

3.1 Methods

Our experimental approach can broadly be divided into four tasks: (i) fabrication of
substrates, (ii) modification of the substrates’ surfaces to facilitate cell adhesion, (iii)
cell culture, and (iv) measurement of substrate deflections. For the former, we follow
the protocol of Feinberg et al. (2007) to produce substrates made from PDMS, a silicon-
based elastomer (further details are given in section 3.1.1). Several standard surface
modification techniques were trialled, we briefly discuss the optimal strategy in sec-
tion 3.1.3. Cell culture methods followed published guidelines (see section 3.1.4). The
deflection measurement techniques discussed in section 3.1.5 were designed specifi-
cally for this study.
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3.1.1 Casting substrates

PDMS substrates were fabricated by depositing a prescribed quantity of Sylgard 184
silicone elastomer (PDMS; Dow Corning, density 1.09 g/cm3, prepared as per the man-
ufacturer’s instructions) upon glass disks and spinning at high speed using a Laurell
WS-650SX-23NPP/LITE spin coater.

Prior to coating, circular glass disks of 22mm diameter were cleaned with a 0.01% (w/v)
solution of sodium dodecyl sulphate (SDS, a detergent) before extensively rinsing with
reverse osmosis (RO) water (filtered with resistance of 18MΩ to remove impurities).
These disks were then coated with a 30% (w/v) solution of poly-vinyl alcohol (PVA),
spun at 3000rpm and left flat to dry overnight. This PVA coating forms a sacrificial
layer which can be dissolved to facilitate release of the PDMS from the glass.

A 2ml deposit of PDMS was then added to the PVA-coated disks, which were then
spun at high speed and cured overnight, level in a 50◦C oven. Varying the spin speed
enabled the thickness of the PDMS layer to be controlled. An optimal speed of 8000rpm
was selected, which produces a PDMS layer of 12.22± 0.97µm thickness. This substrate
thickness was chosen since the study of Feinberg et al. (2007) showed that membranes
of thickness less than 25µm are amenable to deformation (albeit by a different cell line).

A nylon washer of 6.5mm internal diameter, 13mm external diameter and 1.5mm thick-
ness was attached to the cured substrate using a 50µm deposit of PDMS and cured in
position. The substrate and washer were then removed from the glass by incubating
the substrate in water at 37◦C over 3 days to remove the PVA layer and then leaching
for a further day to remove excess PVA. A second nylon washer was then attached to
the other side of the substrate by repeating this process.

3.1.2 Mechanical testing of substrates

The final substrates were mechanically tested using a Stable Microsystems TA HD plus
texture analyser equipped with a Peltier temperature control system. Substrates were
submerged in a phosphate buffered saline (PBS) solution and kept at 37◦C to mimic ex-
perimental conditions. A spherically-tipped probe (of radius R∗ = 2.5mm) was moved
into the membrane from above, inducing substrate stretching; the resistive force upon
the probe was recorded as a function of indentation distance. The substrate was held
in a clamp designed to allow free movement of solution around the sample and the
probe tip was submerged prior to the test to avoid surface-tension effects. The probe
was moved into the substrate at 0.1mm/s and the resistive force was measured by a
5kg load cell.
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Figure 3.1: Force–displacement data for PDMS substrates with L∗ = 3.25mm, h∗ =

12mm and R∗ = 2.5mm (dotted). The line of best fit (solid) corresponds to (3.1) with
E∗ = 1.41MPa.

We compare our force–displacement data to a theoretical model of the same system pre-
sented by Begley & Mackin (2004). The authors model the substrate as an incompress-
ible neo-Hookean material which is linearly elastic for small strains (see section 1.6.1).
Deformations are assumed axisymmetric. Taking a membrane approximation, the sub-
strate’s bending stiffness is considered negligible compared to its stretching stiffness.
In the limit of zero pre-stretch, the following relationship between applied force, F ∗,
and vertical displacement, δ∗, is deduced:

F ∗ = E∗h∗R∗ 9π

16

(R∗

L∗

)9/4 ( δ∗

R∗

)3
, (3.1)

where L∗ = 3.25mm is the radius of the substrate, h∗ = 12µm is the substrate’s thick-
ness and E∗ its Young’s modulus. We fit (3.1) to our raw data via a least-squares regres-
sion to determine E∗ (see figure 3.1). Based upon 12 sets of raw data, we estimate the
Young’s modulus of the substrate to be E∗ = 1.41 ± 0.21MPa.

3.1.3 Surface modification

Cell–substrate attachment relies on interactions between cells and proteins embedded
in the substrate surface. Since PDMS does not contain any cell attachment peptides
and is strongly hydrophobic, which limits protein interaction, the PDMS substrates do
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(a) Confluent on tissue culture plastic (b) PDMS, Day 1

(c) PDMS, Day 6 (d) PDMS, Day 14

Figure 3.2: Adherence and coverage of IEC6 cells on PDMS after surface modification
(b-d) in comparison with their normal morphology on tissue culture plastic (a).

not lend themselves well to cell culture. Trials revealed that, when placed upon un-
treated PDMS, cells will either fail to adhere or will change their morphology, losing
the desired cobblestone monolayer conformation. A number of surface modification
processes were investigated, to improve the cell adhesion properties. The most effec-
tive strategy was found to be coating the PDMS with a 350nm layer of plasma poly-
merised allyl amine, previously shown to increase cell adherence (Barry et al., 2005;
Dehili et al., 2006; Zelzer et al., 2008). As figure 3.2 illustrates, IEC6 cells will adhere to
the PDMS substrates after treatment and the characteristic cobblestone morphology is
maintained.
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3.1.4 IEC6 cell culture and addition to the substrates

IEC6 cells were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented
with 5% (v/v) fetal bovine serum, one ITS supplement (providing final concentrations
of 10µg/ml insulin, 5.5µg/ml human transferrin and 5ng/ml sodium selenite), 2mM
L-glutamine and antibiotic solution (giving final concentrations of 100 units penicillin,
0.1mg/ml streptomycin and 500µg/ml gentamicin), as per the guidelines of the Euro-
pean Collection of Cell Cultures (ECACC). When the cells reached approximately 70%
confluence they were ‘passaged’ as follows. Cells were removed from the culture sur-
face by addition of a trypsin solution, incubated at 37◦C until detached, isolated by
centrifugation, placed in fresh media (where the serum inactivates the trypsin), diluted
and added to new flasks to facilitate continued proliferation.

Surface-modified PDMS substrates were added to culture media (5ml per substrate)
one hour prior to the addition of the cells, and placed in an incubator at 37◦C to tem-
perature stabilise. Cells were removed from the source culture flask with with trypsin
as described above, pelleted by centrifugation, resuspended in fresh IEC6 culture me-
dia and counted manually using a haemocytometer. Approximately 27,000 cells were
added to each substrate, representing an approximate surface coverage of 80% (sub-
strate surface area: 33,166,250µm2 , cell area: 989µm2, total coverage requires approxi-
mately 33,535 cells). Cells were maintained in culture at 37◦C for a period of 21 days.
For each substrate, 2ml of the culture media was replaced with fresh stock every two
days.

To confirm that membrane deformation was attributable to the cells, two further assays
were carried out in which cell proliferation was either exaggerated or arrested and
substrate deflections were compared. To one strongly deformed substrate, upon which
cells were confluent, we added (on day 14) a 200ng/ml supplement of basic fibroblast
growth factor (bFGF2) to the culture medium. This growth factor is known to stimulate
epithelial cell proliferation in vitro (Hu et al., 2009) and was used in this study to assess
the effect of enhanced cell proliferation on membrane deformation. Cells were allowed
to proliferate for a further 7 days and membrane deformation measurements taken
before and after treatment were compared.

A second strongly deformed substrate was treated (on day 21) with a cell lysis buffer,
comprising 1% (v/v) Triton X-100, 150mM NaCl, 50mM EDTA, 10mM TRIS-HCl (pH
7.6). The lysis buffer contains a detergent which disrupts lipids such as those in the
cell membranes, effectively killing the cells. Pre-treatment deflections were compared
with deflections 30 minutes after treatment, allowing the extent to which the membrane

84



CHAPTER 3: IN-VITRO ANALYSIS OF CELL PROLIFERATIVE FORCES

PSfrag replacements

1 2 3 4 5

y1 y2 y3 y4 y5

LENS
POSITIONS

SUBSTRATE
REFERENCE LINE

Figure 3.3: Schema of the substrate imaging process. Images are taken at five
points along an arbitrary diameter and the focal distance of each image (y1, . . . , y5)
is recorded. Taking the difference between y1 and y5, we can identify a reference
line (dashed) to account for any inaccuracies in sample orientation. In forthcoming
figures, the deflections plotted refer to the differences between the solid and dashed
lines above.

flattens in the absence of the cells to be quantified.

3.1.5 Image analysis and measurement of membrane deflection

Substrates and cells were observed using a Leica DM-RBE cell culture microscope
equipped with an environmental chamber (images and measurements were taken at
37◦C to avoid any temperature effects). As figure 3.3 illustrates, images were taken
at five equidistant points along an arbitrary diameter. At each point the lens was re-
focused and the focal distance was recorded using Volocity 5 image analysis software.
The magnitude of substrate deflections was calculated by taking the difference in focal
distance between the five points, having corrected the data to set the measurements on
the boundary to zero (accounting for any small errors in the orientation of the sample).
Substrate height could be measured to within an accuracy of ±8.1µm (calculated by
refocussing the lens on 2µm fluorescent beads of known position).

3.2 Results

Figure 3.4 illustrates the substrate deflections observed after fourteen days in culture.
From figure 3.4(a) we confirm that the proliferation of the IEC6 cells is able to generate
sufficient cellular compression to drive substrate deformations. We compare these con-
figurations to control substrates illustrated in figure 3.4(b), which were placed under
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Figure 3.4: (a) Deflections of five substrates after 14 days (each line represents one
substrate). (b) Control membranes under identical conditions, but in the absence of
cells. The horizontal axis represents lens position along a diameter, zero being defined
on the disc’s circumference.

identical environmental conditions but with no cells added. Deflections of the control
substrates were negligibly small (within the experimental error of the measurement
process), giving us a sound basis to attribute deformations to the action of the cells.

As figure 3.4(a) illustrates, both the magnitude of deflections and the shape of adopted
configurations varied greatly between substrates. In the terminology of chapter 2, we
see configurations which broadly resemble types 1, 2 and 3; the maximal deflection
being 122.5µm. We will revisit the issue of configuration selection mathematically in
the model of chapter 4.

In figures 3.5 and 3.6 we briefly expand upon the connection between proliferation rate
and substrate deflection. In figure 3.5 we add a basic fibroblast growth factor (bFGF2)
to a strongly deformed substrate on day 14, promoting cell proliferation. We allow the
cells to continue to proliferate for a further seven days. Comparing figures 3.5(b) and
3.5(c), we see that the cells are more densely packed and are greater in number after
addition of the growth factor. The deflection of the substrate is shown to increase with
cell density (figure 3.5(a)).

In figure 3.6 we take a strongly deformed substrate on day 21 and add a lysis buffer,
which effectively kills the cells by disrupting their cell membranes. In figure 3.6(b) we
see a region in which cells are in focus and a region in which cells are out of focus, indi-
cating a difference in the height of the substrate across this image. Thirty minutes after
the addition of the lysis buffer, we see (figure 3.6(c)) that all cells have now moved out
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(a) Substrate deflection before (dashed line) and
after (solid line) addition of bFGF2.

(b) Before bFGF2 (day 14).

(c) After bFGF2 (day 21).

Figure 3.5: Increased cell density and exaggerated substrate deflection after addition
of growth factor bFGF2 on day 14.
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(a) Substrate deflection before (dashed line) and
after (solid line) addition of lysis buffer.

(b) Before lysis (day 21).

(c) After lysis (+30 mins).

Figure 3.6: Flattening of a substrate 30 minutes after addition of a cell lysis buffer.
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of focus as the substrate flattens (the focal distance of the microscope is unchanged be-
tween these two images). The substrate approximately returns to its flat configuration,
as shown in figure 3.6(a).

3.3 Discussion

While the results above must be regarded as preliminary, given the small sample size,
we do have sufficient evidence to validate the proposed buckling mechanism. Com-
parison with controls suggests that substrate deflections are solely due to cellular pro-
liferation, given that in the absence of the cells significant deflections are not observed.
The magnitude of deflections seems to be dependent upon proliferation rate: config-
urations are exaggerated by the addition of a growth factor and significantly reduced
when cells are lysed in situ.

Our results suggest that replication of colorectal crypts in vitro may not require the fab-
rication of a complex tissue engineering scaffold with a prescribed crypt-like geometry.
We suggest that, given a sufficiently flexible substrate, it may be possible for the ep-
ithelial cell population to form crypts unaided. A rigorous examination of how best to
facilitate the required framework remains as further work.

One immediate direction for future work would be to repeat the procedure described
here to generate data from a greater number of samples. Time constraints prevented
the collection of further data for this study. It would be interesting to compare these
data with a parallel experiment in which a population of intestinal sub-epithelial my-
ofibroblasts (ISEMFs) is cultured upon the underside of the membrane, replicating the
organisation of these cell types in vivo (see section 1.1.1). Comparison of the buckling
in each setup may yield insight into the role of communication between the epithelial
cells and those of the lamina propria in the onset of buckling.
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CHAPTER 4

A One-Dimensional Model for Cell
Culture upon a Deformable

Substrate

In this chapter, we present a mathematical model of the experimental study of chapter
3. We model a cross-section of the silicon substrate via Euler–Bernoulli beam theory, as
in chapter 2. The upper surface of the beam is assumed to be covered by a confluent
monolayer of n identical cells from the outset (figure 4.1). Cells are modelled as rigid
springs connecting at cell boundaries. Cellular growth is incorporated parametrically
via prescribed increases in the springs’ unstressed lengths. Growth of the cell layer
generates compressive stresses therein, which may induce bending and stretching of
the substrate under appropriate conditions.

While the formulation of this model is motivated by in-vitro work, we may also draw
analogy with an epithelium attached to underlying tissue in vivo. The model below can,
therefore, be thought to improve upon the model of the lamina propria in chapter 2,
incorporating large-amplitude deformations thereof. This model separately accounts
for stresses in the two layers: while the cell layer is under compression, the underlying
buckled material is under extension. This presents an extension to chapter 2, in which
the effects of the material’s extensibility upon buckled configurations were not studied.

The silicon substrate is modelled as an extensible beam of undeformed, unstressed
length 2L∗ and thickness h∗. Once more, we assume that h∗ � L∗ and characterise
the profile of the substrate by that of its centreline. The substrate bending stiffness is
denoted D∗ = E∗h∗3/12(1 − ν2), for Young’s modulus E∗ and Poisson’s ratio ν. The
cells’ resistance to expansion is characterised by spring stiffness parameter k∗, with
dimensions of force per unit area. We assume that, to leading order, the cells remain
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Figure 4.1: Schema of a cell layer upon a deformable substrate. The cell layer is mod-
elled as n linear springs connecting at cell junctions, while the substrate is modelled
as an Euler–Bernoulli beam.

flat during deformation. The length of the jth cell is denotedL∗
j , and in the undeformed

configuration L∗
j = 2L∗/n for any j ∈ [1, n]. Preserving the notation of chapter 2,

we denote Cartesian coordinates by x∗ and y∗, respectively oriented horizontally and
vertically. In the reference configuration, the substrate lies along the line y∗ = 0. The
inclination of the substrate to the horizontal is denoted by θ (s∗), where s∗ is the arc-
length from the centre of the substrate in the deformed configuration. In-plane and out-
of-plane substrate stress resultants are denoted F∗

T and F∗
N respectively and the tension

in the cell layer is denoted T∗. The curvature of the substrate is denoted by κ∗.

4.1 Model derivation

4.1.1 Force balances in the cell layer

We begin with a discrete representation of the cells in the cell layer. Cells are treated
as straight line elements, as illustrated in figure 4.2. Denoting the angle of inclination
of cell j to the horizontal by θ j, we define unit vectors t j and nj to lie tangentially and
normally to cell j, so that

tj =
(
cos θj , sin θj

)
, (4.1a)

nj =
(
sin θj,− cos θj

)
. (4.1b)

Since frictional forces between the substrate and the cell layer result in variations in
tension across the length of a cell, we introduce the notation T−∗

j and T+∗
j to denote the

tensions at the left and right boundaries of cell j respectively. We consider that cell j
is under the action of forces (per unit length) generated by tensions in neighbouring
cells, T+∗

j−1 and T−∗
j+1, and due to friction and normal reaction with the substrate, Q∗

j and
R∗

j respectively, which have dimensions of force per unit area and are assumed to act
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Figure 4.2: Schema showing the forces acting upon cell j owing to neighbouring cells,
the substrate and pressure p∗, which acts to deform the layer downwards.

uniformly along the length of the cell to leading order. Furthermore, we incorporate
a constant pressure p∗ (with dimensions of force per unit area) which acts normally to
the layer from above, as illustrated in figure 4.2. The net force per unit length upon cell
j, denoted F∗

j , is given by

F∗
j = T−∗

j+1tj+1 − T+∗
j−1tj−1 + Q∗

j L∗
j tj − R∗

j L∗
j nj + p∗L∗

j nj. (4.2)

Assuming that the angle of inclination, θ, is slowly varying between neighbouring cells,
we can write tj±1 in terms of tj and nj as follows. We expand the trigonometric func-
tions in (4.1a) as functions of θj, treating (θj − θj±1) as a small parameter, yielding

tj±1 =
(
cos θj±1, sin θj±1

)

=
(
cos θj +

(
θj − θj±1

)
sin θj, sin θj −

(
θj − θj±1

)
cos θj

)
+ O

(
(θj − θj±1)

2)

= tj +
(
θj − θj±1

)
nj + O

(
(θj − θj±1)

2) . (4.3)

Thus, neglecting terms of O((θ j − θj±1)
2), (4.2) becomes

F∗
j =

(
T−∗

j+1 − T+∗
j−1 + Q∗

j L∗
j

)
tj +

(
T−∗

j+1
(
θj − θj+1

)
+ T+∗

j−1
(
θj−1 − θj

)
+
(

p∗ − R∗
j

)
L∗

j

)
nj.

(4.4)
If the cell layer is in equilibrium, (4.4) yields

Q∗
j L∗

j = T+∗
j−1 − T−∗

j+1, (4.5a)

R∗
j L∗

j = T−∗
j+1
(
θj − θj+1

)
+ T+∗

j−1
(
θj−1 − θj

)
+ p∗L∗

j . (4.5b)
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4.1.2 Continuum approximation of the cell layer

We wish to couple (4.5) to the substrate equations given in chapter 2. Since the substrate
equations are given in terms of continuous variables, we now formulate a continuum
approximation to the system of discrete equations given above by re-writing in terms of
continuous, smoothly varying functions. The process by which we obtain a continuum
model below is based upon that of Fozard et al. (2010). To avoid confusion between
continuous dependent variables and their discrete counterparts, we denote continuous
dependent variables with hats.

We define the appropriate continuous variables in terms of the independent variable
υ, which replaces the cell index j above. We regard variables evaluated between υ = j
and υ = j + 1 to refer to cell j in the discrete system. Since Q∗

j , R∗
j and θj are constant

along the length of cell j, we have the freedom to define their continuous analogues
such that they are exact at the cell-centre, denoted υ = j + 1/2. Thus, we set

Q∗
j 7→ Q̂∗

∣∣∣∣
υ=j+1/2

, R∗
j 7→ R̂∗

∣∣∣∣
υ=j+1/2

, θj 7→ θ̂

∣∣∣∣
υ=j+1/2

. (4.6)

We define the continuous analogue of L∗
j in a corresponding manner, setting

L∗
j 7→ L̂∗

∣∣∣∣
υ=j+1/2

. (4.7)

When approximating T∗ by its continuous counterpart, we define T̂∗ such that

T−∗
j 7→ T̂∗

∣∣∣∣
υ=j

, T+∗
j 7→ T̂∗

∣∣∣∣
υ=j+1

. (4.8)

For convenience we scale υ against the number of cells in the system, n, setting

υ = nῡ, (4.9)

which facilitates the following Taylor expansions of T̂∗ about the centre of the jth cell,
ῡ = j/n + 1/2n, treating 1/2n as a small parameter:

T̂∗
∣∣∣∣
υ=j

= T̂∗ (ῡ) − 1
2n

dT̂∗

dῡ
+ O

(
1
n2

)
, (4.10a)

T̂∗
∣∣∣∣
υ=j+1

= T̂∗ (ῡ) +
1

2n
dT̂∗

dῡ
+ O

(
1
n2

)
, (4.10b)

where all quantities on the right-hand sides of (4.10) are evaluated at ῡ = j/n + 1/2n.
Similar expansions hold for θ j+1 and θj. In terms of continuous variables, (4.5) becomes

Q̂∗L̂∗ = − 1
n

dT̂∗

dῡ
, (4.11a)
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R̂∗L̂∗ = p∗L̂∗ − 1
n

dθ̂

dῡ
T̂∗, (4.11b)

having neglected terms of O(1/n2) and smaller. We now write (4.11) in terms of the
geometric variable ŝ∗, which measures distance from the centre of the substrate, in
preference to the cell number variable ῡ. We denote the position of the centre of cell j
by

ŝ∗
∣∣∣∣
ῡ=

j
n + 1

2n

. (4.12)

Given that the ŝ∗-locations of the edges of cell j satisfy

ŝ∗
∣∣∣∣ j+1

n

− ŝ∗
∣∣∣∣ j

n

= L∗
j , (4.13)

we have
dŝ∗
dῡ

= nL̂∗, (4.14)

having neglected terms of O(1/n2). Under this change of variable (4.11) becomes

Q̂∗ = −dT̂∗

dŝ∗ , (4.15a)

R̂∗ = p∗ − κ̂∗T̂∗, (4.15b)

where the curvature, κ̂∗, of the layer is given by

κ̂∗ = dθ̂/dŝ∗. (4.16)

In the forthcoming sections, all variables are continuous and we omit hats for brevity.

4.1.3 Substrate equations

It remains to couple the force balances from above to the equations governing the forces
and moments acting upon the substrate (as illustrated in figure 4.3). We once more as-
sume the Euler–Bernoulli relation (2.1), alongside the moment balance on the substrate
given in (2.10):

κ∗ = −M∗

D∗ , dM∗

ds∗ = −F∗
N , (4.17)

which we combine to yield
dκ∗

ds∗ − 1
D∗ F∗

N = 0, (4.18)

which is analogous to (2.12). Performing a force balance upon an element of the sub-
strate of length ds∗, we have

(
F∗

T t̂ + F∗
Nn̂
) ∣∣∣∣

s∗+ds∗
−
(

F∗
T t̂ + F∗

Nn̂
) ∣∣∣∣

s∗
− ds∗Q∗ t̂ + ds∗R∗n̂ = 0. (4.19)
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Figure 4.3: Distribution of forces (per unit length) along an element of the substrate,
and the resultant stresses and bending moments. Internal forces Q∗ and R∗ are equal
and opposite to those acting in the cell layer in figure 4.2. Clockwise arrows indicate
bending moments acting the negative ẑ-direction.

We Taylor expand (4.19), noting the following expressions for the derivatives of the
unit vectors:

dt̂
ds∗ = −κ∗n̂, dn̂

ds∗ = κ∗ t̂. (4.20)

Resolving into tangential and normal components, the resulting equations are

dF∗
T

ds∗ + κ∗F∗
N − Q∗ = 0, (4.21a)

dF∗
N

ds∗ − κ∗F∗
T + R∗ = 0, (4.21b)

to leading order. From (4.15), it follows that

dF∗
T

ds∗ = −κ∗F∗
N − dT∗

ds∗ , (4.22a)
dF∗

N
ds∗ = κ∗F∗

T − p∗ + κ∗T∗. (4.22b)

We also have the following relations between θ (s∗) and the Cartesian coordinate sys-
tem (x∗, y∗)

dx∗

ds∗ = cos θ, dy∗
ds∗ = sin θ. (4.23)

It will be convenient to rewrite the system in terms of the Lagrangian arc-length, de-
noted s̃∗. We define the in-plane stretch, λ, according to

λ =
ds∗
ds̃∗ . (4.24)

We quantify the substrate stretch in a manner consistent with Edwards & Chapman
(2007) and (2.18), via the assumption that material strains are proportional to in-plane
stresses:

F∗
T = E∗h∗ (λ − 1) . (4.25)
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4.1.4 The composite system

To close the system, it remains to prescribe a constitutive assumption for T∗. We restrict
our analysis to two cases: that in which cells are fully adhered to the substrate (Q∗ →
∞) and that in which cells experience no resistance to sliding along the substrate (Q∗ =

0). If cells are fully adhered, the stretch of the cells is equal to that of the substrate and
we prescribe T∗ according to

T∗ = k∗ (λ − λG) , (4.26)

where k∗ captures the stiffness of the springs and λG is a dimensionless parameter
which relates the unstressed length of the cells to the stretch of the substrate. For
λG = 1, the cell layer is stress-free when the substrate is unstretched (i.e. is flat). With
the exception of the limiting cases examined in section 4.5, we regard λG as spatially
invariant. We model cellular growth parametrically by successively increasing λG from
unity, requiring that the substrate must stretch (and hence buckle) to relieve stresses in
the cell layer.

In the absence of friction between the layers (Q∗ = 0) the stretches in the cell layer
and the substrate will, in general, differ. We expect the stretch in the cell layer to be
uniform in this regime and, since the two layers must remain the same length, the
cellular stretch is simply the average of the substrate stretch across the layer, denoted

λ̄ =
1

2L∗

∫ L∗

−L∗
λds̃∗. (4.27)

The corresponding equation for T∗ in this regime is

T∗ = k∗
(
λ̄ − λ̄G

)
. (4.28)

Note that for uniform cell growth λ̄G = λG.

We further simplify the equations by writing in terms of a composite in-plane stress
resultant, F∗ = F∗

T + T∗. Together with a change of variable to the Lagrangian frame,
(4.16), (4.17), (4.22) and (4.23) become

dθ

ds̃∗ = λκ∗, (4.29a)
dκ∗

ds̃∗ =
λ

D∗ F∗
N , (4.29b)

dF∗

ds̃∗ = −λκ∗F∗
N , (4.29c)

dF∗
N

ds̃∗ = λ (κ∗F∗ − p∗) , (4.29d)
dx∗

ds̃∗ = λ cos θ, (4.29e)
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dy∗
ds̃∗ = λ sin θ, (4.29f)

with λ prescribed by
F∗ = E∗h∗ (λ − 1) + k∗ (λ − λG) , (4.30)

in the limit of strong cell–substrate adhesion, or by

F∗ = E∗h∗ (λ − 1) + k∗
(
λ̄ − λ̄G

)
, (4.31)

in the absence of cell–substrate adhesion.

We solve the sixth-order system (4.29) subject to the following boundary conditions.
We impose that the ends of the substrate are held clamped, so that

θ (±L∗) = 0, (4.32)

and we prescribe the (x∗, y∗) coordinates of the endpoints according to

x∗ (±L∗) = ±L∗, y∗ (±L∗) = 0. (4.33)

4.1.5 Nondimensionalisation

We nondimensionalise the governing equations by scaling all lengths against L∗, stress
resultants against k∗ and pressure against k∗/L∗. Under these scalings (4.29) yields

dθ

ds̃ = λκ, (4.34a)
dκ

ds̃ = α0λFN , (4.34b)
dF
ds̃ = −λκFN , (4.34c)

dFN
ds̃ = λ (κF − p) , (4.34d)
dx
ds̃ = λ cos θ, (4.34e)
dy
ds̃ = λ sin θ. (4.34f)

In the regime of strong cell–substrate adhesion, F is given by

F =
λ − 1

α1
+ λ − λG, (4.35)

while in the absence of cell–substrate adhesion

F =
λ − 1

α1
+ λ̄ − λ̄G, λ̄ =

1
2

∫ 1

−1
λds̃. (4.36)
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The appropriate dimensionless boundary conditions (which follow from (4.32) and
(4.33)) are

θ (±1) = 0, x(±1) = ±1, y(±1) = 0. (4.37)

The system is dependent upon two dimensionless parameters: α0 = k∗L∗2/D∗, which
captures the resistance to cellular extension relative to substrate bending resistance,
and α1 = k∗/E∗h∗ , which quantifies the resistance to cellular extension relative to sub-
strate stretching resistance. Noting that D∗ = E∗h∗3/12

(
1 − ν2), we have

α0 = 12
(
1 − ν2)

(L∗

h∗
)2

α1, (4.38)

and it follows that α0 � α1 and a thin substrate will seek to bend in preference to
stretching.

It was not possible to measure directly the stiffness of the cell layer (k∗) used in the ex-
periments of chapter 3. However, if we assume that cells generate a typical force of 1–
10nN (Du Roure et al., 2005), acting over a typical cell height of 2µm, then we are able to
estimate k∗ ' 5 × 10−4Nm−1. Given the dimensions and Young’s modulus of the sub-
strates used in the in-vitro study of chapter 3, and assuming incompressibility (ν = 0.5),
we calculate the bending stiffness of the substrates as D∗ = (2.71 ± 0.40) × 10−10Nm.
It follows that α0 lies in the approximate range 20–200, while α1 is either O

(
10−5) or

O
(
10−4). These values are only approximate, being sensitive to both our estimation of

the magnitude of cell forces and the preliminary nature of our experimental data. For
this reason, and to ensure that we present a thorough catalogue of the mathematical
behaviour of this model, we present numerical results below for a range of character-
istic parameter values. Simplified versions of (4.34–4.37), exploiting the limit α0 � α1,
are presented in section 4.5.

4.2 Linear analysis

In order to establish the parameter values for which a departure from the flat configu-
ration first occurs, we linearise (4.34–4.37) about the reference state. Below, we restrict
attention to uniform cellular growth, so that λ̄G = λG. For small deflections, λ = 1 to
leading order and we set

λ = 1 + ελ̆ (4.39)

for some small parameter 0 < ε � 1. In the regime of no cell–substrate adhesion, we
also have

λ̄ = 1 +
1
2 ε

∫ 1

−1
λ̆ds̃ = 1 + ε ¯̆λ. (4.40)
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Thus, in either adhesion regime, assuming ε � α1, it follows from (4.35) that F is con-
stant to leading order and given by

F = 1 − λG + O(ε). (4.41)

We, thus, linearise (4.34) via the following rescalings:

θ = εθ̆, κ = εκ̆, F = 1 − λG + F̆, FN = εF̆N , p = ε p̆, (4.42a)

x = s̃ + εx̆, y = εy̆, λ = 1 + ελ̆, (4.42b)

under which the leading-order terms in (4.34) yield

dθ̆

ds̃ = κ̆, (4.43a)
dκ̆

ds̃ = α0 F̆N , (4.43b)
dF
ds̃ = 0, (4.43c)

dF̆N
ds̃ = κ̆(1 − λG) − p̆, (4.43d)
dy̆
ds̃ = θ̆, (4.43e)

Rearrangement of (4.43) yields the following equation for the substrate profile y̆(x):

d4y̆
dx4 + α0 (λG − 1)

d2y̆
dx2 + α0 p̆ = 0. (4.44)

The corresponding linearised boundary conditions, which follow from (4.37), are

y̆ =
dy̆
dx = 0 on x = ±1. (4.45)

A solution to (4.44) is of the form

y̆(x) = A + Bx −
(

p̆
2 (λG − 1)

)
x2 + C cos (ξx) + G sin (ξx) , (4.46)

where
ξ =

√
α0 (λG − 1), (4.47)

and A, B, C, G are arbitrary constants of integration. Imposing that y̆ must vanish at
the ends of the substrate determines two of the constants as

A = −C cos ξ +
p̆

2 (λG − 1)
, (4.48a)

B = −G sin ξ. (4.48b)

Imposing the derivative conditions gives the following further restrictions:

ξC sin ξ = − p̆
λG − 1 , (4.49a)
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Figure 4.4: The first three eigenfunctions obtained in the absence of pressure, given by
(4.52). In the terminology of chapter 2, these configurations correspond to ‘type n−’.
The equivalent ‘type n+’ configurations can be obtained by reflecting the curves about
y = 0. Illustrations of these are omitted for brevity.

ξG cos ξ = G sin ξ. (4.49b)

If p̆ = 0, (4.49) implies one of the following pairs of constraints. For non-trivial solu-
tions, either

G = 0, ξ = mπ, (4.50)

for some integer m, or
C = 0, tan ξ = ξ. (4.51)

The resulting expression for y̆(x) recovers (2.36):

y̆n(x) =

{
Cn (cos (ξnx) − cos ξn) for n odd,
Gn (sin (ξnx) − x sin ξn) for n even,

(4.52)

where ξn = (n + 1)π/2 for n odd and ξn is the (n/2)th positive root of ξ = tan(ξ) for
n even. The profiles which (4.52) describe for n = 1, 2, 3 are illustrated in figure 4.4.
We denote by λ

(n)
G the values of λG for which a solution of the form (4.52) is attainable,

with values given by

λ
(n)
G = 1 +

ξ2
n

α0
. (4.53)

For non-zero p̆ and any choice of ξ such that ξ 6= mπ (for integer m), we have a solution
for which G ≡ 0 and C is non-zero and given by

C = − p̆
(λG − 1) ξ sin ξ

. (4.54)

The resulting expression for y̆(x) is, thus

y̆(x) =
p̆

(λG − 1) ξ sin ξ
(cos ξ − cos (ξx)) +

p̆
2 (λG − 1)

(
1 − x2) , (4.55)
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(a) λG = 2 (type 1−).
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(b) λG = 4 (type 3−).

Figure 4.5: Configurations corresponding to (4.55) for α0 = 10 and p̆ = 0.01.

with ξ given by (4.47). In the terminology of chapter 2, (4.55) defines deformed con-
figurations of odd type. As ξ → mπ the amplitudes of these solutions become expo-
nentially large. When ξ = mπ, solutions of odd type are not attainable, the only viable
solutions being either flat or of even type, as discussed below. For small ξ (or equiv-
alently λG close to 1) (4.55) defines a deformed configuration of type 1. As ξ (or λG)
increases, this solution’s wavelength decreases and the configuration exhibits a series
of transitions from type 1 to type 3, followed by type 5, etc. Examples of these linear
solutions are illustrated in figure 4.5.

For choices of ξ such that ξ = tan(ξ) (i.e. ξ = ξn for even n) we have a series of
additional solutions of the form

y̆n(x) = G (sin (ξnx) − x sin ξn) +
p̆

(λG − 1)

(
cos ξn − cos (ξnx)

ξn sin ξn
+

1 − x2

2

)
. (4.56)

The linear solutions defined by (4.56) are of even type, and those for which n = 2
are illustrated in figure 4.6. In the absence of pressure, setting n = 2 in (4.52) yields
deformed configurations which exhibit both lateral and vertical reflection symmetries.
Prescribing a non-zero pressure, however, results in configurations defined by (4.56) in
which the vertical symmetry is broken and most of the substrate is moved in a down-
ward direction.

Buckling is driven by compressive stresses generated in the cell layer as the growth
of cells seeks to extend the layer. Mathematically, this is equivalent to increasing λG

gradually from one or, equivalently, increasing ξ from zero. In the absence of pressure
there exists a critical degree of growth, λG = λ

(1)
G , prior to which the substrate will re-

main in its flat configuration. The linear analysis shows that when this critical value of
λG is reached the substrate will buckle into a type 1 configuration. Prolonged growth
facilitates the substrate adopting configurations of higher types; for λG � 1 the sub-
strate may become highly wrinkled. For α0 � 1, which is equivalent to a very small
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Figure 4.6: Type 2 configurations corresponding to (4.56) for α0 = 10, p̆ = 0.01, λG =

2.5 and G = ±0.005.

substrate bending stiffness, the values of the λ
(n)
G are reduced (as per (4.53)) and bifur-

cations from the flat configuration occur more readily. With a pressure difference acting
across the construct, the linear analysis has shown that the substrate can be deformed
in a downward direction regardless of the action of the cells. However, selection of
configurations of higher types is still dependent upon the cells being able to generate
sufficient compression within the cell layer. Figure 4.7 summarises the attainable de-
formed configurations across λG-space and illustrates the manner in which the vertical
symmetry is broken for p̆ > 0.

4.3 Strong cell–substrate adhesion – nonlinear analysis

We begin our numerical study with the assumption that cell–substrate adhesion is suf-
ficiently strong to prevent any sliding of cells along the substrate. For convenience we
use (4.35) to eliminate F from (4.34), and seek solutions to the following sixth-order
ODE system,

dθ

ds̃ = λκ, (4.57a)
dκ

ds̃ = α0λFN , (4.57b)
dλ

ds̃ = − α1
α1 + 1 λκFN , (4.57c)

dFN
ds̃ = λκ

(
1
α1

(λ − 1) + λ − λG

)
− λp, (4.57d)

dx
ds̃ = λ cos θ, (4.57e)
dy
ds̃ = λ sin θ, (4.57f)
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Figure 4.7: The locations of bifurcations in λG-space for α0 = 10, as determined by the
linear analysis (4.52, 4.55, 4.56). The non-trivial branches above are labelled according
to the corresponding deformed configuration type. Solutions corresponding to (4.52)
or (4.56) have arbitrary amplitude, and as such are illustrated by vertical lines. In the
upper panel, p = 0 and the system exhibits vertical symmetry. In the lower panel,
however, p = 1 and bifurcations are imperfect.

subject to the boundary conditions of (4.37). Solutions to (4.57) are determined through
the use of the MATLAB boundary value solver ‘bvp4c’, which uses a collocation al-
gorithm to successively refine a prescribed approximate solution until the governing
equations and boundary conditions are satisfied. Once a non-trivial solution is deter-
mined, it is passed back to the solver for use as the starting point for the algorithm at
the next value of λG. This approach defines a continuation method by which we are
able to track the development of non-trivial branches as λG is increased. Numerical
solutions are validated as discussed in section 2.1.3. For small amplitudes, we also
verify that configurations recover the results of the linear analysis of section 4.2, with
bifurcations from the flat state occurring for values of λG given by (4.53) for p = 0.

Figure 4.8 illustrates the solutions obtained for α0 = 10, α1 = 1 and p = 0, while figure
4.9 illustrates the corresponding distribution of stresses and substrate stretch for a typ-
ical type 1− configuration. Figure 4.9(a) confirms that compression in the cell layer is
relieved through generation of a tension in the substrate; buckling thus acts as a mech-
anism to minimise the composite in-plane stress-resultant. The development of each
configuration type is most easily observed via a bifurcation diagram, plotting solution
amplitude as a function of λG. Figure 4.10 shows two examples of such diagrams, for
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Figure 4.8: Profiles obtained in the regime of strong cell–substrate adhesion for α0 =

10, α1 = 1, p = 0 and increasing λG (indicated by arrows).
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Figure 4.9: Stresses corresponding to the extremal configuration of figure 4.8(a), ob-
tained for α0 = 10, α1 = 1, p = 0 and λG = 3. (a) In-plane stress in the substrate
(dashed line), the cell layer (dash-dotted line) and the composite (solid line). (b) Nor-
mal stress in the substrate. (c) Substrate stretch (which equals the cellular stretch since
cells are fully bound to the substrate).

two parameter choices. As shown in the figures, as λG is increased from one (analogous
to the onset of cellular growth in the upper layer) the substrate initially remains in its
flat configuration. A series of pitchfork bifurcations is observed, the locations of which
agree with the linear analysis above. Analysis of the full, nonlinear system reveals that
the criticality of these bifurcations is dependent upon parameter choice.

For a parameter choice which results in subcritical pitchfork bifurcations (figure
4.10(a)), numerical simulations show that the corresponding branches each exhibit one
turning point, resulting in the existence of a series of saddle-node bifurcations. De-
parture from the substrate’s flat configuration does not occur until λG is increased to
a value at which a bifurcation lies. For the parameter choices corresponding to figures
4.8 and 4.10(a) this occurs at λG ' 2, at which point the configuration rapidly changes
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to that of a well-developed type 1+ or type 1− profile. As λG is further increased these
profiles continue to develop, increasing in amplitude. For higher λG we are able to also
obtain configurations of higher types, such as those illustrated in figure 4.4.

Figure 4.10(b) illustrates a similar bifurcation diagram for larger α0. Since the locations
of the pitchfork bifurcations are determined by (4.47), increasing α0 has the effect of
promoting all non-trivial branches so that buckling can occur for smaller λG. For the
parameter choice illustrated all bifurcations are supercritical. Type 1 deformations oc-
cur most readily, the onset of which is for λG ' 1.2 in this case. Examining the system
numerically reveals that the result of increasing either α0 or α1 (analogous to decreas-
ing the substrate’s stiffness or increasing its extensibility respectively) is the promotion
of a non-trivial configuration for a reduced degree of cellular growth. For fixed α0,
increasing α1 results in a transition of the pitchfork bifurcations from supercritical to
subcritical.

Finally, we discuss the effect of a pressure acting across the layer (appropriate bifurca-
tion diagrams are displayed in figure 4.11). Comparing figure 4.11 with figure 4.10(a),
we find that increasing p from zero has the effect of breaking the vertical symmetry
in the problem, so that downward buckling is favoured. The flat configuration is no
longer a valid solution in this regime and those bifurcations corresponding to configu-
rations of odd type in figure 4.10(a) become imperfect, the result being that a type 1−

configuration is attainable even in the absence of cellular growth (λG = 1). As λG is in-
creased (c.f. the onset of growth) this solution increases in amplitude. A configuration
of type 1+ is still attainable for sufficiently large λG; however, this configuration will
be energetically unfavourable. Neutral curves corresponding to even-type branches
remain symmetrical for p > 0 since the lateral symmetry of the problem results in con-
figurations of even type occurring in pairs. In the case of type 2 profiles, these solutions
are of the forms illustrated in figure 4.6. As p is further increased, the broken symmetry
becomes more evident as illustrated by figure 4.11(b).

4.4 No cell–substrate adhesion – nonlinear analysis

Below we analyse deformations of the substrate under the assumption that the cells
experience no resistance to sliding along the substrate. Once more, we assume uniform
growth so that λ̄G = λG. Having used (4.36) to eliminate F from (4.34), we are left with
the following system:

dθ

ds̃ = λκ, (4.58a)
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Figure 4.10: Bifurcation diagrams illustrating the amplitudes of the configurations
obtained for strong cell–substrate adhesion in the absence of pressure.
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Figure 4.11: Development of imperfect bifurcations as p is increased from zero in the
regime of strong cell–substrate adhesion, for α0 = 10 and α1 = 1.
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dκ

ds̃ = α0λFN , (4.58b)
dλ

ds̃ = − α1
α1 + 1 λκFN , (4.58c)

dFN
ds̃ = λκ

(
1
α1

(λ − 1) + λ̄ − λG

)
− λp, (4.58d)

dx
ds̃ = λ cos θ, (4.58e)
dy
ds̃ = λ sin θ, (4.58f)

where
λ̄ =

1
2

∫ 1

−1
λds̃. (4.59)

For ease of computation we solve (4.58) using the method described in section 4.3, treat-
ing λ̄ − λG as an input parameter which we prescribe. Having determined the config-
uration of the substrate, we use (4.59) to calculate the value of λG to which this config-
uration corresponds. Deploying the continuation scheme of section 4.3 once more, we
trace out a series of bifurcation curves which track the amplitudes of the solutions as
functions of λG.

Figure 4.12 illustrates typical solution profiles obtained in this regime, while figure 4.13
illustrates a typical distribution of stresses and stretches along the length of the do-
main. The illustrated configurations are highly similar to those of figure 4.8, in which
cell–substrate adhesion was strong. This similarity results from the fact that, in the
regime of strong adherence, variations in λ along the substrate are small (as figure
4.9(c) shows). Thus, the integral of λ over the entire domain is well approximated by
λ itself. Numerical simulations reveal that as λG is increased variations in λ become
larger. We suggest that geometric differences between the regimes are likely to be more
significant for large amplitude configurations obtained for larger λG; however, the cel-
lular compression required to generate such configurations is likely to be significantly
greater than that generated by the cell layer in vitro.

Figures 4.14 and 4.15 illustrate the bifurcation diagrams obtained for p = 0 and p > 0
respectively. Once more, we observe a high degree of similarity with the corresponding
figures in section 4.3.

4.5 Limiting cases

We now consider limiting solutions of (4.34–4.37) to determine the extent to which non-
linear buckled states depend upon the patterning of growth. Once more, we compare
results in the case of strong cell–substrate adhesion to those obtained in the absence of
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Figure 4.12: Profiles obtained in the absence of cell–substrate adhesion for α0 = 10,
α1 = 1, p = 0 and increasing λG (indicated by arrows).
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Figure 4.13: Stresses corresponding to the extremal configuration of figure 4.12(a), ob-
tained for α0 = 10, α1 = 1, p = 0 and λG = 3. (a) In-plane stress in the substrate
(dashed line), the cell layer (dash-dotted line) and the composite (solid line). (b) Nor-
mal stress in the substrate. (c) Substrate stretch (solid line) and cellular stretch (dotted
line).

cell–substrate adhesion. Exploiting the fact that α0 � α1 for a thin substrate (see (4.38)),
and assuming p = 0, we show how solutions are approximated by those of an incom-
pressible beam, allowing growth to still be represented parametrically. We separately
consider the two cases α0 � 1 and α0 = O(1) below.

4.5.1 Soft substrate: α0 � 1, α1 = O(1)

We begin by considering a beam whose resistance to bending is small compared with
the resistance to extension of the cells, for which α0 � 1. We rescale the dependent
variables in (4.34) according to F = F̂/α0, FN = F̂N/α0, so that (4.34) becomes

dθ

ds̃ = λκ, dκ

ds̃ = λF̂N , dF̂
ds̃ = −λκF̂N , (4.60 a,b,c)
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Figure 4.14: Bifurcation diagrams illustrating the amplitudes of configurations ob-
tained for p = 0 in the absence of cell–substrate adhesion.
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Figure 4.15: Development of imperfect bifurcations as p is increased from zero in the
regime of no cell–substrate adhesion, for α0 = 10 and α1 = 1.
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dF̂N
ds̃ = λκF̂, dx

ds̃ = λ cos θ, dy
ds̃ = λ sin θ. (4.60 d,e,f)

In the regime of strong cell–substrate adhesion, (4.35) implies that λ is determined by

0 =
λ − 1

α1
+ (λ − λG) + O

(
1
α0

)
. (4.61)

Thus, to leading order
λ =

1 + α1λG
1 + α1

. (4.62)

The degree to which cell growth leads to stretching of the substrate is parameterised
by α1. Since (4.62) allows us to regard λ as prescribed, we introduce a new spatial
coordinate, Σ, defined according to

dΣ

ds̃ = λ, Σ(−1) = −1. (4.63)

Under this change of variable, (4.60) becomes

dθ

dΣ
= κ, dκ

dΣ
= F̂N , dF̂

dΣ
= −κF̂N , dF̂N

dΣ
= κF̂, dx

dΣ
= cos θ, dy

dΣ
= sin θ, (4.64)

subject to
θ = 0, x = ±1, y = 0 on Σ = −1,−1 + 2λ̄. (4.65)

Substituting (4.64b) into (4.64c) and integrating, we determine F̂ as

F̂ = C − 1
2κ2, (4.66)

for some constant C. Noting (4.66), equations (4.64b) and (4.64d) then yield the classical
problem of an incompressible Euler–Bernoulli beam, for which

d2κ

dΣ2 +
1
2κ3 − Cκ = 0. (4.67)

Figure 4.16(a) illustrates the bifurcations exhibited by (4.64–4.65) as λ̄ is increased
through unity, alongside the equivalent curves obtained for α0 = O(1). We have
buckling driven by parametric growth as λ̄ is increased through 1, or equivalently for
λ̄G > 1 (which is consistent with (4.53) in the limit α0 � 1). Significantly, the shape of
the deformed configuration is determined entirely by λ̄ and is, therefore, independent
of the patterning of cellular growth. Non-uniform growth, λG(s), does determine the
distribution of material along the layer, while (4.62) shows how substrate stretching
resistance limits the degree of physical stretch relative to cell remodelling, λG. Fig-
ure 4.16(a) shows that, as a consequence of reducing the problem to that of an incom-
pressible Euler–Bernoulli beam, bifurcations onto non-trivial branches collapse onto
the point λG = 1. In contrast, for α0 = O(1), the composite beam’s compressibility
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Figure 4.16: Comparison of solutions to (4.34–4.37) to the limiting solutions of section
4.5, assuming uniform growth and strong cell–substrate adhesion. In (a) solid lines
are for α0 = 100, α1 = 1 (representing a soft substrate) and dashed lines illustrate
solutions to (4.64,4.65). In (b) α0 = 1, α1 = 0.01 (representing a stiff substrate) and
dashed lines illustrate solutions to (4.75,4.76); note the rescaling of the horizontal axis.

results in the bifurcations lying in distinct locations and the non-trivial configuration
attained first is of type 1.

Consider, now, the regime in which there is no adherence between the cells and the
beam. From (4.36) at leading order in α−1

0 , we have

0 = λ − 1 + α1
(
λ̄ − λ̄G

)
. (4.68)

Integrating over the length of the beam to determine λ̄, it follows that

λ = λ̄ =
1 + α1λ̄G

1 + α1
. (4.69)

This case, therefore, differs from the fully-bound case only in the relationship between
growth, λG, and stretch, λ; the remainder of the problem reduces to (4.64–4.65), a clas-
sical Euler–Bernoulli beam parameterised only by its length. These two extreme cases
differ only in the Lagrangian displacement of material points.

4.5.2 Stiff substrate: α0 = O(1), α1 � 1

Alternatively, when α0 = O(1) and α1 � 1, the substrate has a high resistance to
stretching and cellular growth needs to be powerful to induce buckling (figure 4.16(b)).
Accordingly, we write λG = λ̂G/α1 where λ̂G = O(1). Assuming F remains O(1), (4.35)
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and (4.36) imply that

F =
λ − 1

α1
+ λ − λ̂G

α1
, or F =

λ − 1
α1

+ λ̄ −
¯̂λG
α1

, (4.70)

in the strongly adhered and un-adhered regimes respectively. We expand λ as follows:

λ = 1 + λ̂G + α1λ̂ + O
(
α2

1
)

, or λ = 1 + ¯̂λG + α1λ̂ + O
(
α2

1
)

, (4.71)

so that F is given, to leading order, by

F = 1 + λ̂ + λ̂G, or F = 1 + λ̂ + ¯̂λG. (4.72)

We define the new spatial coordinate Σ according to

dΣ

ds̃ = 1 + λ̂G, or dΣ

ds̃ = 1 + ¯̂λG, (4.73)

with Σ(−1) = −1, from which it follows that

Σ = s̃ +

∫ s̃

−1
λ̂G
(
s′
)

ds′. (4.74)

Under this change of variable (4.34) becomes

dθ

dΣ
= κ, dκ

dΣ
= α0FN , dF

dΣ
= −κFN , dFN

dΣ
= κF, dx

dΣ
= cos θ, dy

dΣ
= sin θ,

(4.75)
and is solved subject to

θ = 0, x = ±1, y = 0 on Σ = −1, 1 + 2 ¯̂λG. (4.76)

Again, we recover (4.67) with

F =
C
α0

− κ2

2α0
, (4.77)

for some constant C. The problem reduces to that of a classical Euler–Bernoulli beam
one more, dependent only upon the beam’s total length, 2 + 2α1λ̄G. As λ̄G increases
through zero we recover the sequence of buckled shapes parameterised by length
alone. Each configuration has an associated in-plane stress C( ¯̂λG) and curvature κ,
related to the beam’s stretch via

1
α0

(
C
( ¯̂λG

)
− 1

2κ2
)

= 1 + λ̂ + λ̂G, or 1
α0

(
C
( ¯̂λG

)
− 1

2κ2
)

= 1 + λ̂ + ¯̂λG. (4.78)

Figure 4.16(b) compares the solutions defined by (4.75–4.76) against numerical simu-
lations obtained for α0 = 1 and α1 = 0.01. While reducing the problem to that of an
incompressible beam fails to capture the disparate nature of the bifurcation points, for
large deflections (4.75–4.76) are shown to be an accurate approximation of solutions to
the full system for moderate parameter values. The profiles obtained are independent
of both cellular adherence and patterning of growth.
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4.6 Conclusions

In the above model we considered a confluent, homogeneous layer of proliferating cells
upon an elastic substrate. The expansion and proliferation of the cells were considered
to generate a compressive in-plane stress within the cell layer, the relief of which neces-
sitates deformation of the underlying substrate. Two regimes of cell–substrate adhe-
sion were considered: that in which cells are tightly bound, preventing any sliding of
the cells against the substrate, and that in which cells experience no resistance to slid-
ing. Numerical simulations revealed that the configurations obtained in each regime
are highly similar, suggesting that the precise mechanism of cell–substrate adhesion
may not be paramount in future models. However, our model does assume that the
two layers remain in contact throughout deformation, which would, in reality, require
some adhesion between the layers.

The model predicts that the shapes of nonlinear buckled states are controlled by the
net cellular growth, rather than by localised patterning of growth. For a thin substrate
(α0 � α1) the model reduces to the simpler problem of a growing, incompressible
beam held between fixed supports (c.f. chapter 2). The compressibility of the substrate
is important only in capturing the disparate nature of the bifurcation points (in com-
parison with an incompressible beam, for which all bifurcations coincide). Including
the compression of the substrate in our analysis illustrates that an initial bifurcation
to a low-order (type 1) mode is favoured. Nonlinear states of types 1 and 3 showed
promising resemblance to colorectal crypts.

While this model has been derived to maximise relevance to the in-vitro study of chap-
ter 3, we may also consider it as a refinement to the in-vivo model of chapter 2. Most
notably, the two layer construct used here allows us to consider the epithelium and the
lamina propria as distinct entities. Since our substrate is flexible, the points of cellular
anchorage are displaced as the epithelium proliferates and bends. This improves upon
the unrealistic aspects of the spring-based stroma model of chapter 2. The primary
weakness of this model lies in the simplistic modelling of the cell layer, which neglects
such aspects as cellular division and apoptosis. Our experimental studies observed
that as the cell layer becomes confluent, older cells become apoptotic and detach from
the substrate, leaving behind a void which is filled by other cells. This behaviour is ne-
glected here. Furthermore, cells were observed to frequently exchange position during
proliferation. Inclusion of such a phenomenon is not possible within the confines of a
one-dimensional model and, as such, is omitted. We omit this from forthcoming two-
dimensional models also, since it cannot easily by considered within a homogenised
framework.
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CHAPTER 5

Growth-Induced Buckling of a
Two-Dimensional Substrate

In this chapter, we present a two-dimensional extension to the model of chapter 4. We
consider an initially unstressed rectangular substrate which deforms due to forces in-
duced by growing cell layers upon its upper or lower surfaces. Modelling the substrate
as a thin plate, we begin with the equations of general, three-dimensional elasticity
(written in Cartesian form) and apply the asymptotic scalings of Howell et al. (2009)
to yield equations analogous to von Kármán’s equations (von Kármán, 1910, 1940).
Our equations exhibit key differences to the standard von Kármán equations, however.
First, we incorporate surface stresses upon the upper and lower surfaces of the plate
to capture the effects of a confluent proliferating cell layer upon either surface. Sec-
ond, our derivation assumes that the substrate is spatially inhomogeneous, resulting
in additional terms in the governing equations.

Dervaux & Ben Amar (2010) previously deployed von Kármán plate theory in their
model of tissue growth. Their model differs from that presented here through its in-
corporation of a fully three-dimensional description of growth through a growth rate
tensor, g, whose components modify the standard strain–displacement relationship of
linear elasticity to account for addition of mass. Buckling was mediated through teth-
ering of the plate to an elastic Winkler foundation, representing underlying tissue. Spa-
tial variations in the plate’s mechanical response were incorporated via the assumption
that the normal force exerted by the substrate can be written as a prescribed function
of transverse displacement; however, their model does not explicitly incorporate vari-
ations in the plate’s Young’s modulus or Poisson’s ratio, as studied here.

In this chapter, we focus upon a simplification of the derived model in which the plate
is homogeneous. We examine a reduction of the full model to one-dimensional beam
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theory, before reformulating the equations in terms of polar coordinates to facilitate
the study of axisymmetric buckling. We examine fully two-dimensional solutions for
inhomogeneous substrates in chapter 6, in which we address the question of how pat-
terning of material properties can influence crypt frequency.

We close this chapter with a comparison of the von Kármán model with an alterna-
tive model presented of Pamplona & Calladine (1993). The formulation of the model
of Pamplona & Calladine takes a different approach, in which the governing equations
are determined by combining force balances with appropriate constitutive assump-
tions. We compare the results of these two models at both the onset of buckling and at
large amplitudes, our goal being to determine the degree to which conclusions are sen-
sitive to the modelling approach. Finally, we identify key differences between the con-
stitutive assumptions in the model of Pamplona & Calladine and equivalent expres-
sions arising from the scalings deployed in the derivation of the von Kármán model.

5.1 Notation and preliminaries

We consider the buckling of a three-dimensional, rectangular plate of in-plane dimen-
sions 2L∗

1 and 2L∗
2, thickness h∗, Young’s modulus E∗ and Poisson’s ratio ν. We assume

that both E∗ and ν vary spatially in the plane of the plate; however, we assume no
variation in either parameter across the plate’s thickness. We assume that the Poisson’s
ratio is positive since we expect the substrate, when stretched on one direction, to con-
tract in another. As discussed in section 1.6.3, we further require ν ≤ 0.5 to ensure that
the Lamé constants (defined in (1.45)) are both positive. For a perfectly incompressible,
linearly elastic material, ν = 0.5.

We use stars to distinguish dimensional quantities from their dimensionless coun-
terparts throughout. Following the notation of section 1.6.1, we denote the position
of a material point in the Lagrangian framework by

(
X∗

1 , X∗
2 , X∗

3
)
, relative to a fixed

Cartesian coordinate system oriented so that X∗
1 and X∗

2 lie in the plane of the un-
deformed plate, and X∗

3 is normal to the undeformed plate in a right-handed sense
(figure 5.1). The plate’s central plane lies at X∗

3 = 0 in the undeformed configuration.
Similarly, we denote the position of a material point in the deformed configuration
by
(

x∗
1 , x∗

2 , x∗
3
)
. The plate undergoes a deformation with Cartesian components of dis-

placement
(
u∗

1, u∗
2, u∗

3
)
, so that

x∗
i = X∗

i + u∗
i . (5.1)

We describe stresses in terms of Piola–Kirchhoff stress tensors, as defined in section
1.6.1. We denote the first and second Piola–Kirchhoff stress tensors by T∗ and S∗ re-
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Figure 5.1: The geometry of the plate in its reference configuration. We denote the
position of a material point in the Lagrangian frame by X∗. Dotted lines illustrate
the central plane, which lies at X∗

3 = 0 in the undeformed configuration. Inset is
an illustration of a typical volume element under deformation. The material point
illustrated undergoes a displacement u∗, and after displacement occupies position x∗

in the Eulerian configuration.

spectively, the two measures being related by

S∗ = F−1T∗, (5.2)

for deformation gradient tensor F. The senses of the components of T∗ are as illustrated
in figure 1.4. In general T∗ is not symmetric; however, noting (1.4), its components are
related via

T∗F> = FT∗>. (5.3)

The Lagrangian strain tensor is denoted by e, and is given by

e =
1
2
(

F>F − I
)

. (5.4)

We assume a neo-Hookean strain energy function and restrict attention to deflections
of O(h∗). It is, therefore, appropriate to restrict attention to small strains, for which we
then have a linear stress–strain relationship (see chapter 1), i.e.

S∗ = λ∗Tr(e)I + 2µ∗e, (5.5)

where (recalling (1.45)) the Lamé constants λ∗ and µ∗ are given by

λ∗ =
νE∗

(1 + ν)(1 − 2ν)
, µ∗ =

E∗

2 (1 + ν)
, (5.6)
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provided ν 6= 0.5. Dervaux et al. (2009) considered an arbitrary incompressible hyper-
elastic plate with L∗ � h∗, whose transverse defelections are of O(h∗), and illustrated
that (to leading order in h∗/L∗) (5.5) is independent of the choice of strain energy func-
tion, up to addition of a material constant (Dervaux & Ben Amar, 2010). Since (5.6)
suggests that λ∗ becomes large in the incompressible limit (ν → 0.5), we expect that
Tr(e) → 0 as ν → 0.5 so that the stresses prescribed by (5.5) are bounded. We consider
the limit ν → 0.5 in more detail in section 5.3.1.

In the following, we use the summation convention in presenting some of our equa-
tions. Any term containing a repeated index i or j should be summed over index val-
ues 1, 2, 3. The starting point for the subsequent derivation is Cauchy’s momentum
equation which, in terms of Lagrangian variables (and in the absence of inertia) is

∂T∗
ij

∂X∗
j

+ ρ∗0b∗i = 0, (5.7)

where b∗ = (b∗1 , b∗2 , b∗3) captures any body forces acting upon the plate and ρ∗
0 is the

initial density of the plate, related to ρ∗ according to (Howell et al., 2009)

ρ∗0 = ρ∗ det(F). (5.8)

We select boundary conditions which are appropriate for modelling the cell culture
substrate used in chapter 3. Consistent with earlier mathematical models, we impose
clamping and zero displacement upon all four of the plate’s boundaries, i.e.

u∗
i (±L∗

1, X∗
2 , X∗

3 ) = u∗
i (X∗

1 ,±L∗
2, X∗

3) = 0 for i = 1, 2, 3, (5.9a)
∂u∗

3
∂X∗

1
(±L∗

1, X∗
2 , X∗

3) =
∂u∗

3
∂X∗

2
(X∗

1 ,±L∗
2, X∗

3 ) = 0. (5.9b)

We regard the plate as a cell culture substrate with confluent cell layers upon the upper
and lower surfaces. As these cells proliferate, the cell layers are placed under com-
pression. We consider the cell layers to be of negligible thickness, and formulate their
governing equations in terms of in-plane stresses which are averaged across the cells’
height. We write T

+∗ and T
−∗ to represent the averaged in-plane stresses of the upper

and lower cell layers respectively; T
±∗ are vectors of length 2 whose components have

dimensions of force per unit length.

The in-plane stresses in the cell layer generate both normal and in-plane stresses upon
the plate’s surfaces, according to some constitutive law which describes assumptions
of cell–substrate adhesion. We proceed through the derivation without considering a
specific constitutive law, however, instead formulating a more general model appro-
priate for studying any imposed distributions of surface stresses. Rather than working
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in terms of T
±∗, we describe the model in terms of the stresses applied to the plate’s

surfaces, which we denote by f±∗. The remaining boundary conditions are then given
by

T∗
i3 (X∗

1 , X∗
2 ,±h∗/2) = ± f ±∗

i (X∗
1 , X∗

2) for i = 1, 2, 3. (5.10)

We return to the issue of selecting constitutive assumptions for cell–substrate adhe-
sion in section 5.3.2, at which point we will also need to refer to the curvature of the
substrate, κ∗, given by

κ∗ = ∇ ·


 ∇u∗

3√
1 + |∇u∗

3|2


 . (5.11)

5.2 Nondimensionalisation and asymptotic scalings

We nondimensionalise the system via the following scalings which depend upon one
small parameter ε = h∗/L∗

1, which captures the slenderness of the plate. We scale the
coordinates according to

X∗
1 = L∗

1X, X∗
2 = L∗

1Y, X∗
3 = h∗Z. (5.12)

In terms of dimensionless coordinates, the plate is bounded by −1 ≤ X ≤ 1, −l ≤ Y ≤ l
(where l = L∗

2/L∗
1) and −1/2 ≤ Z ≤ 1/2. Following Howell et al. (2009), we assume

that deformations in the Z-direction are of small amplitude. Transverse displacements
(i.e. those in the Z-direction) are assumed to be of O(h∗) and the associated in-plane
displacements are assumed to be of O(εh∗). We also retain an O(ε2h∗) correction to the
leading-order transverse displacement, setting

u∗
1 = εh∗u, u∗

2 = εh∗v, u∗
3 = h∗

(
w + ε2w̃

)
. (5.13)

For consistency with the Kirchhoff assumptions introduced in section 1.6.3, we regard
w to be independent of Z; i.e. we assume that the thickness of the plate is unchanged
to leading order during deformation. We scale the Young’s modulus against its maxi-
mum, E∗

max, setting
E∗ = E∗

maxE. (5.14)

We omit a derivation of the appropriate scalings of the stress tensor components, and
simply follow those presented by Howell et al. (2009), which are:

{T∗
11, T∗

12, T∗
21, T∗

22} = ε2E∗
max {T11, T12, T21, T22} , (5.15a)

{T∗
13, T∗

23, T∗
31, T∗

32} = ε3E∗
max {T13, T23, T31, T32} , (5.15b)
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T∗
33 = ε4E∗

maxT33, (5.15c)

{S∗
11, S∗

12, S∗
21, S∗

22} = ε2E∗
max {S11, S12, S21, S22} , (5.15d)

{S∗
13, S∗

23, S∗
31, S∗

32} = ε3E∗
max {S13, S23, S31, S32} , (5.15e)

S∗
33 = ε4E∗

maxS33. (5.15f)

The corresponding rescalings of the components of f±∗ are

f ±∗
1 = ε3E∗

max f ±1 , f ±∗
2 = ε3E∗

max f ±2 , f ±∗
3 = ε4E∗

max f ±3 , (5.16)

while the averaged stresses in the cell layers are nondimensionalised according to

T ±∗
i = ε3E∗

maxL∗
1T ±

i , for i = 1, 2. (5.17)

When discussing cell–substrate adhesion assumptions in section 5.3.2, we will refer to
dimensionless curvature, κ, given by

κ∗ =
ε

L∗
1

κ. (5.18)

Applying the scalings of (5.12), (5.13) and (5.18) to (5.11), we have

κ = ∇2w + O
(
ε2) . (5.19)

For compactness of notation, we abbreviate some of the equations below by denoting
derivatives of displacements by addition of the appropriate subscripts. Noting (5.1), we
substitute (5.12) and (5.13) into (1.1), to determine the form of the deformation gradient
tensor as

F =




1 + ε2uX ε2uY εuZ

ε2vX 1 + ε2vY εvZ

εwX + ε3w̃X εwY + ε3w̃Y 1 + ε2w̃Z


 , (5.20)

and from (5.4) we have the following expression for the Lagrangian strain:

e =
ε

2




0 0 uZ + wX

0 0 vZ + wY

uZ + wX vZ + wY 0




+
ε2

2




2uX + w2
X uY + vX + wXwY 0

uY + vX + wXwY 2vY + w2
Y 0

0 0 2w̃Z + u2
Z + v2

Z


+ O

(
ε3) . (5.21)

Dimensionless boundary conditions are given by

u(±1, Y, Z) = u(X,±l, Z) = 0, (5.22a)
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v(±1, Y, Z) = v(X,±l, Z) = 0, (5.22b)

w(±1, Y, Z) = w(X,±l, Z) = 0, (5.22c)

wX(±1, Y, 0) = wY(X,±l, 0) = 0, (5.22d)

Ti3(X, Y,±1/2) = ± f ±i (X, Y) for i = 1, 2, 3. (5.22e)

5.3 Model derivation

Assuming the absence of body forces, applying the scalings of section 5.2 reduces the
momentum equations of (5.7) to

∂T11
∂X +

∂T12
∂Y +

∂T13
∂Z = 0, (5.23a)

∂T21
∂X +

∂T22
∂Y +

∂T23
∂Z = 0, (5.23b)

∂T31
∂X +

∂T32
∂Y +

∂T33
∂Z = 0. (5.23c)

We integrate (5.23) with respect to Z to obtain expressions for the averaged stress com-
ponents, denoted with overbars and defined according to

T̄ij =

∫ 1/2

−1/2
TijdZ. (5.24)

Since the boundary conditions given by (5.22e) imply that

∂T̄i3
∂Z =

∫ 1/2

−1/2

∂Ti3
∂Z dZ = [Ti3]

1/2
−1/2 = f +

i + f −i , i = {1, 2, 3}, (5.25)

the expressions resulting from averaging (5.23) are as follows:

∂T̄11
∂X +

∂T̄12
∂Y + f +

1 + f −1 = 0, (5.26a)

∂T̄21
∂X +

∂T̄22
∂Y + f +

2 + f −2 = 0, (5.26b)

∂T̄31
∂X +

∂T̄32
∂Y + f +

3 + f −3 = 0. (5.26c)

Similarly, multiplying (5.23a) and (5.23b) by Z and integrating yields equations for the
bending moments,

∂M11
∂X +

∂M12
∂Y − T̄13 +

1
2
(

f +
1 − f −1

)
= 0, (5.27a)

∂M21
∂X +

∂M22
∂Y − T̄23 +

1
2
(

f +
2 − f −2

)
= 0, (5.27b)

where, using the notation of Brush & Almroth (1975),

Mij =

∫ 1/2

−1/2
TijZdZ, (5.28)
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Figure 5.2: Bending moments acting upon a surface element, as defined by 5.28.

the senses of which are illustrated in figure 5.2. We regard Mij as a bending moment
which acts upon the side of a surface element whose normal is X i, owing to internal
forces directed parallel to Xj.

We can eliminate T̄21, T̄31 and T̄32 from the system since (5.3) and (5.20) imply that

T̄21 = T̄12 + O
(
ε2) , (5.29a)

T̄31 = T̄13 + wXT̄11 + wYT̄12 + O
(
ε2) , (5.29b)

T̄32 = T̄23 + wXT̄21 + wYT̄22 + O
(
ε2) . (5.29c)

Equation (5.29a) states that averaged in-plane shear stresses are equal to leading order.

For notational convenience we define a vector F with components given by

Fi = f +
i + f −i for i = 1, 2. (5.30)

The components of F represent the net in-plane stresses acting in each coordinate di-
rection due to forcing upon both upper and lower surfaces of the plate. Deploying the
Helmholtz decomposition theorem, which states that any two-dimensional vector field
can be written as the sum of a conservative component and a rotational component
(Arfken & Webber, 2005), we write

F = ∇χ + ∇× (ψẑ) , (5.31)

for scalar fields χ and ψ. Under this definition, (5.26a) and (5.26b) become

∂

∂X
(
T̄11 + χ

)
+

∂

∂Y
(
T̄12 + ψ

)
= 0, (5.32a)

∂

∂Y
(
T̄22 + χ

)
+

∂

∂X
(
T̄12 − ψ

)
= 0. (5.32b)
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We seek to simplify (5.32) by writing the stress resultants in terms of some Airy stress
function Φ(X, Y). However, we see from (5.32) that the definition of a self-consistent
Airy stress function is not possible for non-zero ψ. We, thus, restrict our attention to
the case ψ ≡ 0, under the assumption that cellular growth upon the upper and lower
surfaces will not typically impose any twisting upon the substrate. From (5.32) we
deduce the appropriate definition of Φ(X, Y) to be

T̄11 =
∂2Φ

∂Y2 − χ(X, Y), (5.33a)

T̄22 =
∂2Φ

∂X2 − χ(X, Y), (5.33b)

T̄12 = − ∂2Φ

∂X∂Y . (5.33c)

Due to (5.33), (5.26a) and (5.26b) are satisfied trivially. For convenience, we define the
vector Ω to represent the couple induced by in-plane surface stresses, i.e.

Ωi = f +
i − f −i for i = 1, 2. (5.34)

Also, we denote by N the net normal force upon the substrate due to the two cell layers,
i.e.

N = f +
3 + f −3 . (5.35)

Using (5.27–5.35) to manipulate (5.26c), we obtain

∂2M11
∂X2 + 2∂2 M12

∂X∂Y +
∂2 M22

∂Y2 +
∂2w
∂X2

∂2Φ

∂Y2 − 2 ∂2w
∂X∂Y

∂2Φ

∂X∂Y +
∂2w
∂Y2

∂2Φ

∂X2

+
1
2∇ · Ω −∇ · (χ∇w) + N = 0. (5.36)

For now, we restrict attention to the case 0 ≤ ν < 0.5, returning to the case ν = 0.5 in
section 5.3.1. In terms of dimensionless quantities, (5.5) and (5.6) give

S =
νE

(1 + ν)(1 − 2ν)
Tr(e)I +

E
1 + ν

e. (5.37)

Following Howell et al. (2009), we use (5.2) and (5.37) to evaluate the components of
T∗. In particular, we find that

ε2T13 = E
(

wX + uZ
2(1 + ν)

)
+ O(ε2), ε2T23 = E

(
wY + vZ
2(1 + ν)

)
+ O(ε2), (5.38)

to lowest order. Thus, to preserve the balance of terms in (5.38), we require

u = ū(X, Y) − ZwX, v = v̄(X, Y) − ZwY, (5.39)

for some undetermined functions ū and v̄ which capture the displacement of the plate’s
central plane. Similarly, using (5.2) and (5.37) to evaluate T33, and employing (5.39) to
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simplify terms, we have

ε2T33 = E
(w2

X + w2
Y + 2ν (uX + vY) + 2 (1 − ν) w̃Z

2 (1 − ν)

)
+ O

(
ε2) , (5.40)

and to ensure consistency between the scalings of (5.15c) and (5.15f), we require

w̃Z = −w2
X + w2

Y + 2ν (uX + vY)

2(1 − ν)
. (5.41)

To leading order, equations (5.39) and (5.41) enforce the Kirchhoff assumptions, which are
commonly deployed in deriving plate theories directly from three-dimensional elastic-
ity. The Kirchhoff assumptions state that (i) normals to the central plane in the un-
deformed configuration remain normal throughout deformation, which follows from
(5.39), and (ii) transverse normal stresses are negligibly small in comparison with in-
plane normal stress components, which follows from (5.41). The further requirement
that normals are inextensible holds to leading order as a consequence of (5.13); how-
ever, transverse normals strains remain O(ε2).

Utilising (5.39) and (5.41), we calculate the remaining stress components as

T11 = E
(

2uX + w2
X + ν

(
2vY + w2

Y
)

2 (1 − ν2)

)
+ O

(
ε2) , (5.42a)

T12 = E
(uY + vX + wXwY

2 (1 + ν)

)
+ O

(
ε2) , (5.42b)

T22 = E
(

ν
(
2uX + w2

X
)

+ 2vY + w2
Y

2 (1 − ν2)

)
+ O

(
ε2) . (5.42c)

Averaging (5.42), we obtain

T̄11 ≡ ∂2Φ

∂Y2 − χ = E
(

2ūX + w2
X + ν

(
2v̄Y + w2

Y
)

2 (1 − ν2)

)
, (5.43a)

T̄12 ≡ − ∂2Φ

∂X∂Y = E
(

ūY + v̄X + wXwY
2 (1 + ν)

)
, (5.43b)

T̄22 ≡ ∂2Φ

∂X2 − χ = E
(

ν
(
2ūX + w2

X
)

+ 2v̄Y + w2
Y

2 (1 − ν2)

)
. (5.43c)

As a consequence of (5.39) and (5.43), the Lagrangian strain, e, is O(ε2) with in-plane
components given by

e11 = ε2
[

1
E

(
∂2Φ

∂Y2 − ν
∂2Φ

∂X2 − (1 − ν) χ

)
− 1

2wXXZ
]

, (5.44a)

e22 = ε2
[

1
E

(
∂2Φ

∂X2 − ν
∂2Φ

∂Y2 − (1 − ν) χ

)
− 1

2wYYZ
]

, (5.44b)

e12 = −ε2
(

1 + ν

E
∂2Φ

∂X∂Y + wXYZ
)

. (5.44c)
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Rearranging (5.43a) and (5.43c) gives that

ūX +
w2

X
2 =

1
E

(
∂2Φ

∂2Y − ν
∂2Φ

∂2X − (1 − ν) χ

)
, (5.45a)

v̄Y +
w2

Y
2 =

1
E

(
∂2Φ

∂2X − ν
∂2Φ

∂2Y − (1 − ν) χ

)
. (5.45b)

We eliminate ū and v̄ from the system by differentiating (5.43b) with respect to X and
Y and noting (5.45). For notational convenience we introduce the commutator of func-
tions η(X, Y) and Θ(X, Y), denoted [η, Θ] and defined according to

[η, Θ] ≡ ∂2η

∂X2
∂2Θ

∂Y2 +
∂2Θ

∂X2
∂2η

∂Y2 − 2 ∂2η

∂X∂Y
∂2Θ

∂X∂Y . (5.46)

In differentiating (5.43b) we note the following two identities:

∂2

∂X2

(
η

∂2Θ

∂X2

)
+

∂2

∂Y2

(
η

∂2Θ

∂Y2

)
+ 2 ∂2

∂X∂Y

(
η

∂2Θ

∂X∂Y

)
= ∇2 (η∇2Θ

)
− [η, Θ] , (5.47a)

∂2

∂Y2

(
η

∂2Θ

∂X2

)
+

∂2

∂X2

(
η

∂2Θ

∂Y2

)
− 2 ∂2

∂X∂Y

(
η

∂2Θ

∂X∂Y

)
= [η, Θ] , (5.47b)

which allow us to write (5.43b) as

∇2
(

1
E∇2Φ

)
−
[

1 + ν

E , Φ

]
−∇2

(
1 − ν

E χ

)
+

1
2 [w, w] = 0. (5.48)

The bending moments are evaluated by multiplying (5.42) by Z and integrating with
respect to Z, yielding

M11 = − E
12 (1 − ν2)

(
∂2w
∂X2 + ν

∂2w
∂Y2

)
, (5.49a)

M12 = − E
12 (1 + ν)

∂2w
∂X∂Y , (5.49b)

M22 = − E
12 (1 − ν2)

(
∂2w
∂Y2 + ν

∂2w
∂X2

)
. (5.49c)

Substituting (5.49) into (5.36), and noting (5.47) once more, we obtain

∇2
(

E
12 (1 − ν2)

∇2w
)

=

[
E

12 (1 + ν)
, w
]

+ [w, Φ] +
1
2∇ · Ω −∇ · (χ∇w) + N . (5.50)

The corresponding boundary conditions for (5.62) are as follows. Directly from (5.22),
we have the following conditions on w:

w(X,±l) = w(±1, Y) = 0, (5.51a)

wX(±1, Y) = wY(X,±l) = 0. (5.51b)

To obtain conditions upon Φ(X, Y), we substitute (5.22a) and (5.22b) into (5.45) and
note that any partial derivatives of displacements along the boundary vanish. This
yields the following boundary conditions:

∂2Φ

∂X2 − ν
∂2Φ

∂Y2 = (1 − ν) χ on X = ±1, (5.52a)
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∂2Φ

∂Y2 − ν
∂2Φ

∂X2 = (1 − ν) χ on Y = ±l. (5.52b)

We also impose the following condition, which enforces that there is no shear upon the
boundaries:

∂2Φ

∂X∂Y (±1, Y) =
∂2Φ

∂X∂Y (X,±l) = 0. (5.53)

Equations (5.48) and (5.50), together with the boundary conditions of (5.51–5.53), pro-
vide an extension to the standard von Kármán plate equations to incorporate surface
forcing and material nonuniformity.

5.3.1 The incompressible limit

In the case of an incompressible substrate, for which ν = 0.5, the expression for λ∗ in
(5.6) is invalid. For the stress–strain relationship of (5.5) to remain valid, we require
Tr(e) = 0 in this limit. We consider this below.

From (5.20) and (5.21) we have

det (F) = 1 + ε2 (uX + vY + w̃Z − uZwX − vZwY) + O
(

ε4
)

, (5.54a)

Tr (e) = ε2
(

uX + vY + w̃Z +
1
2
(
w2

X + w2
Y + u2

Z + v2
Z
))

+ O
(
ε3) . (5.54b)

Noting the form of w̃Z given in (5.41), (5.54) reduces to

det (F) = 1 +
ε2 (1 − 2ν)

1 − ν

(
uX + vY +

1
2
(
w2

X + w2
Y
))

+ O
(

ε4
)

, (5.55a)

Tr (e) =
ε2 (1 − 2ν)

1 − ν

(
uX + vY +

1
2
(
w2

X + w2
Y
))

+ O
(
ε3) . (5.55b)

It follows, to leading order, that

det (F) = 1 + Tr (e) . (5.56)

Since an incompressible substrate satisfies det (F) = 1, it follows that Tr (e) = 0. Fur-
thermore, noting (5.39) and (5.45), we can write Tr(e) as

Tr(e) = ε2 (1 − 2ν)

(∇2Φ − 2χ

E − Z
1 − ν

∇2w
)

, (5.57)

so that (5.37) becomes

S =
ν

1 + ν

(
∇2Φ − 2χ − EZ

1 − ν
∇2w

)
I +

E
1 + ν

e. (5.58)

Hence, (5.37) is regular in the limit ν → 0.5 and the equations derived in the previous
section are valid for an incompressible substrate.
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5.3.2 Cell layer assumptions

Motivated by the experimental set-up discussed in chapter 3, we consider deformations
induced by the expansion of a cell layer upon the upper surface of the substrate. We
assume that no cells are present upon the lower surface (T − = 0). When studying the
one-dimensional analogue of this model in chapter 4, we focused upon two regimes
of cell–substrate adhesion: that in which cells are fully bound and that in which cells
experience no resistance to sliding against the substrate. We observed that the resulting
configurations were highly similar in each regime. In the analysis of this model we,
therefore, restrict our attention to the simpler case, assuming that cells are free to slide
across the substrate. This assumption implies that there is no in-plane shear upon the
upper surface of the substrate, so that χ = 0 and Ω = 0. Applying these assumptions
to (5.48) and (5.50), we obtain

∇2
(

1
E∇2Φ

)
−
[

1 + ν

E , Φ

]
+

1
2 [w, w] = 0, (5.59a)

∇2
(

E
12 (1 − ν2)

∇2w
)

=

[
E

12 (1 + ν)
, w
]

+ [w, Φ] + N . (5.59b)

Since no friction acts between the cell layer and the substrate, we expect cell growth to
generate an isotropic compression T < 0 in the cell layer, i.e.

T +
1 = T +

2 = T < 0. (5.60)

Extending the normal force balance given in (4.15b) to two dimensions, we expect the
contribution from the stress in the cell layer to be proportional to the substrate’s curva-
ture, κ. We also include a contribution arising from a pressure, p, which acts to deform
the substrate downwards. It follows that

N = κT − p where κ = ∇2w. (5.61)

Note that each of the terms in (5.61) has an opposing sign to the equivalent term in
(4.15b) since the normal upon the upper surface is directed upwards.

For the remainder of this chapter we assume that the substrate is homogeneous, i.e.
E ≡ 1 and ν is constant. In this limit, (5.59) reduces to

∇4Φ +
1
2 [w, w] = 0, (5.62a)

∇4w
12 (1 − ν2)

= [w, Φ] + N , (5.62b)

with N given by (5.61). We return to the problem of an inhomogeneous substrate in
chapter 6.
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5.4 Comparison with earlier 1D models

Here, we examine solutions to (5.62) and (5.51–5.53) which are of long-wavelength in
the Y-direction. Far from the boundaries at Y = ±l, we expect solutions to be slowly-
varying with respect to Y, reducing to the problem of a one-dimensional beam to lead-
ing order. We anticipate the existence of boundary layers close to Y = ±l, in which
the solution undergoes a rapid departure from the one-dimensional solution over a
short lengthscale, so that boundary conditions applied on Y = ±l can be satisfied. In
this section, we examine solutions in the outer region (i.e. far from the Y-boundaries),
comparing results with previous one-dimensional models. Denoting δ = 1/l � 1, we
rescale Y according to

Y =
y
δ

. (5.63)

Since we expect T11 to be of O(1) in general, (5.33a) motivates the following rescaling
of Φ:

Φ =
ϕ

δ2 . (5.64)

Subject to (5.63) and (5.64), equations (5.62) become

∂4 ϕ

∂X4 + 2δ2 ∂4 ϕ

∂X2∂y2 + δ4 ∂4 ϕ

∂y4 + δ4 ∂2w
∂X2

∂2w
∂y2 − δ4

(
∂2w

∂X∂y

)2
= 0, (5.65a)

∂4w
∂X4 + 2δ2 ∂4w

∂X2∂y2 + δ4 ∂4w
∂y4 = 12

(
1 − ν2)

[
∂2w
∂X2

∂2 ϕ

∂y2 +
∂2w
∂y2

∂2 ϕ

∂X2 − 2 ∂2w
∂X∂y

∂2 ϕ

∂X∂y + N
]

,

(5.65b)

and are solved subject to

w =
∂w
∂X =

∂2 ϕ

∂X2 − δ2ν
∂2 ϕ

∂y2 =
∂2 ϕ

∂X∂y = 0 on X = ±1, (5.66a)

w =
∂w
∂y = δ2 ∂2 ϕ

∂y2 − ν
∂2 ϕ

∂X2 =
∂2 ϕ

∂X∂y = 0 on y = ±1. (5.66b)

We expand ϕ and w in powers of δ2 as follows,

ϕ = ϕ0 + δ2 ϕ1 + δ4 ϕ2 + . . . , (5.67a)

w = w0 + δ2w1 + δ4w2 + . . . (5.67b)

We take a similar expansion for N (X, y) also. Considering O(1) terms in (5.65a), we
have

∂4 ϕ0
∂X4 = 0, (5.68)

which suggests the following form for ϕ0(X, y):

ϕ0(X, y) = ϕ00(y) + ϕ01(y)X + ϕ02(y)X2 + ϕ03(y)X3 . (5.69)
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The boundary conditions of (5.66) require that ϕ02(y) = ϕ03(y) = 0 and that ϕ01(y) is
constant, so that

ϕ0(X, y) = ϕ00(y) + ϕ01X. (5.70)

For deflections within the range of validity of this model, we expect in-plane stresses
to be of a lower-order than the leading-order out-of-plane displacement. We therefore
expect d2 ϕ00/dy2 = 0, and we have

1
12 (1 − ν2)

∂4w0
∂X4 = N0, (5.71)

which is one form of the beam equation, subject to an applied normal force N0.

Under the cell layer assumptions of section 5.3.2, (5.61) motivates the following expres-
sion for N0:

N0 = T d2w0
dX2 − p, (5.72)

having neglected y-dependence. Substituting (5.72) into (5.71), we have

d4w0
dX4 + ξ2 d2w0

dX2 + 12
(
1 − ν2) p = 0, (5.73)

where ξ2 = −12
(
1 − ν2) T. Equation (5.73) recovers the linearisation of the model of

chapter 4 (4.44) and, for p = 0, recovers that of section 2.1 in the limit of weak springs
(2.35).

For p = 0, (5.73) suggests that buckling occurs for parameters which give ξ = ξn, where
ξn = (n + 1)π/2 for n odd and ξn is the (n/2)th positive root of ξ = tan(ξ) for n even;
the corresponding forms of w0(X) are given by

w0(X) =

{
An (cos (ξnX) − cos ξn) for n odd,
An (sin (ξnX) − X sin ξn) for n even,

(5.74)

where An are constants determining the solutions’ amplitude, which are arbitrary since
(5.73) is linear. Equation (5.74) describes solutions of types n+ and n−, attained with-
out bias for p = 0; type n− configurations are as illustrated in figure 4.4. In terms of
dimensional quantities, buckling occurs for

T∗ = − E∗
maxh∗3

12 (1 − ν2) L∗2
1

ξ2
n. (5.75)

Recall the buckling condition of chapter 4 (4.53), in terms of dimensional quantities:

k∗L∗2

D∗ (λG − 1) = ξ2
n, (5.76)

where (in the notation of chapter 4) k∗ describes the stiffness of the cell layer, 2L∗ is the
substrate’s undeformed length, D∗ = E∗h∗3/12

(
1 − ν2) is the substrate’s stiffness, λG
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is a growth parameter and ξn is as defined above. The parametric description of growth
used in chapter 4 stated that, for uniform growth in the absence of friction between the
layers, the in-plane stress in the cell layer is given by T∗ = k∗

(
λ̄ − λG

)
, where λ̄ is the

substrate’s averaged in-plane stretch. For small deflections λ̄ ∼ 1 (see (4.40)) and (5.76)
becomes

T∗ = − E∗h∗3

12 (1 − ν2) L∗2 ξ2
n, (5.77)

which recovers (5.75), since E∗ = E∗
max for homogeneous materials.

The leading-order solution given by (5.74) only determines the parameters which give
rise to buckling instabilities, it does not provide any information regarding the nature
of the bifurcations. Note that, in deriving (5.73), we do not explicitly assume small
deflections; equation (5.73) holds in the weakly nonlinear regime also. In the weakly
nonlinear regime, this one-dimensional reduction gives rise to solutions of arbitrary
amplitude (although these amplitudes must be at most O(h∗) for the model to remain
valid). A bifurcation diagram plotting the amplitude of configurations as a function
of T would show branches which are exactly vertical close to the bifurcation. Higher-
order terms must be considered to identify the nature of the bifurcations; however, the
one-dimensional model of chapter 4 predicts that bifurcations are likely to be super-
critical for very slender plates.

As discussed in section 4.2, when p > 0 (5.73) has solutions for any ξ 6= mπ (m ∈ Z)
and cellular growth is no-longer solely responsible for inducing buckling. Solutions
lose the vertical symmetry which they displayed for p = 0, instead becoming biased
downwards; figures 4.5 and 4.6 illustrate typical configurations.

5.5 Axisymmetric buckling

We now consider (5.62) in terms of a Lagrangian polar coordinate system, denoted
(r, ϕ). We distinguish quantities written with reference to polar coordinates by addition
of hats where necessary; the hatted quantities below refer to variables averaged across
the thickness of the plate in a manner consistent with section 5.3. Denoting radial and
azimuthal displacements by û and v̂ respectively, we have

û = ū cos ϕ + v̄ sin ϕ, (5.78a)

v̂ = −ū sin ϕ + v̄ cos ϕ. (5.78b)

We denote the first Piola-Kirchhoff stress tensor by T̂ when written in terms of polar
coordinates and denote its components by T̂αβ. We use Greek letters to distinguish
indices in the polar formulation from those in the Cartesian formulation, signifying
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that their values are to be taken from r, ϕ and z. The senses of these stress components
are illustrated in figure 5.3. We begin by relating the components of T̂ to those of T via
the following transformation law,

T̂αβ = MαiMβjTij, (5.79)

where M is the matrix given by (Riley et al., 1997)

M =




cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1


 . (5.80)

The resulting expressions for the in-plane components of T̂, in terms of Cartesian
stresses, are as follows:

T̂rr = T̄11 cos2 ϕ + T̄22 sin2 ϕ + 2T̄12 sin ϕ cos ϕ, (5.81a)

T̂ϕϕ = T̄11 sin2 ϕ + T̄22 cos2 ϕ − 2T̄12 sin ϕ cos ϕ, (5.81b)

T̂rϕ =
(
T̄22 − T̄11

)
sin ϕ cos ϕ + T̄12

(
cos2 ϕ − sin2 ϕ

)
. (5.81c)
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Cartesian derivatives appearing in section 5.3 may be transformed to polar coordinates
via

∂

∂X = cos ϕ
∂

∂r − 1
r sin ϕ

∂

∂ϕ
, ∂

∂Y = sin ϕ
∂

∂r +
1
r cos ϕ

∂

∂ϕ
, (5.82)

while vector operators may be expanded as follows:

∇2 =
∂2

∂r2 +
1
r

∂

∂r +
1
r2

∂2

∂ϕ2 , (5.83)

∇4 =
∂4

∂r4 +
2
r

∂3

∂r3 − 1
r2

∂2

∂r2 +
1
r3

∂

∂r +
2
r2

∂4

∂ϕ2∂r2 +
1
r4

∂4

∂ϕ4 − 2
r3

∂3

∂ϕ2∂r +
4
r4

∂2

∂ϕ2 . (5.84)

Similarly, given any functions η(r, ϕ) and Θ(r, ϕ), the commutator may be expanded
as follows (Mansfield, 1962):

[Θ, η] =
∂2η

∂r2

(
1
r

∂Θ

∂r +
1
r2

∂2Θ

∂ϕ2

)
+

∂2Θ

∂r2

(
1
r

∂η

∂r +
1
r2

∂2η

∂ϕ2

)
− 2 ∂

∂r

(
1
r

∂Θ

∂ϕ

)
∂

∂r

(
1
r

∂η

∂ϕ

)
.

(5.85)

Noting (5.82) and assuming χ = 0, we substitute (5.43) into (5.81) to obtain the follow-
ing relationships between in-plane stresses and material displacements:

T̂rr =
1
r

∂Φ

∂r +
1
r2

∂2Φ

∂ϕ2 =
E

2 (1 − ν2)

(
2ûr + w2

r +
2ν

r
(
v̂ϕ + û

)
+ ν

(
1
r wϕ

)2
)

, (5.86a)

T̂ϕϕ =
∂2Φ

∂r2 =
E

2 (1 − ν2)

(
2νûr + νw2

r +
2
r
(
v̂ϕ + û

)
+

(
1
r wϕ

)2
)

, (5.86b)

T̂rϕ = − ∂

∂r

(
1
r

∂Φ

∂ϕ

)
=

E
2 (1 + ν)

(
v̂r +

1
r
(
ûϕ − v̂

)
+

1
r wrwϕ

)
. (5.86c)

Under the cell layer assumptions discussed in section 5.3.2, axisymmetric configura-
tions satisfy the following equations, which follow from (5.62):

D2Φ +
1
2 [w, w] = 0, (5.87a)

D2w = 12
(
1 − ν2) {[w, Φ] + N} , (5.87b)

where D denotes the Laplacian operator under the assumption of axisymmetry, i.e.

D =
1
r

d
dr

(
r d

dr

)
. (5.88)

Consistent with (5.61), we set N = κT − p where κ = Dw, i.e.

N = T d2w
dr2 +

T
r

dw
dr − p. (5.89)

In section 5.6 below, we will show that the first term in (5.89) may be associated with
curvature in the radial direction, while the second may be associated with curvature in
the azimuthal direction; T represents an isotropic cellular compression which generates
a normal force proportional to the curvatures in both directions.
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5.5.1 Boundary conditions

We hold the rim of the plate fixed and clamped, so that

w =
dw
dr = 0 on r = 1. (5.90)

Manipulation of (5.86a) and (5.86b) gives the following expression for radial displace-
ment:

û =
1
E

(
r d2Φ

dr2 − ν
dΦ

dr

)
. (5.91)

Hence, we impose zero radial displacement at the rim (r = 1) via the following bound-
ary condition:

d2Φ

dr2 − ν
dΦ

dr = 0 on r = 1. (5.92)

To determine the appropriate boundary conditions at the centre of the disc, we consider
the relative scalings of Φ and w close to r = 0. We expand all dependent variables in
terms of powers of r (for r � 1), setting

Φ = Φ0 + rΦ1 + . . . , (5.93a)

w = w0 + rw1 + . . . , (5.93b)

N = N0 + rN1 + . . . . (5.93c)

Since Φ only appears in the governing equations in differentiated form we assume,
without loss of generality, that Φ0 ≡ 0. Substituting (5.93) into (5.87) and considering
terms of O(1/r3), we find that

Φ1 = 0, w1 = 0. (5.94)

The equations yielded at O(1/r2) are satisfied trivially, while at O(1/r) we have

Φ3 = 0, w3 = 0. (5.95)

Balancing O(1) terms gives

Φ4 = − 1
16 w2

2, w4 =
3
16
(
1 − ν2) (8w2Φ2 + N0) . (5.96)

Under our cell layer assumptions, (5.89) prescribes N0 as

N0 = 4Tw2 − p, (5.97)

assuming that p = O(1). Balancing terms of O(r) gives Φ5 = w5 = N1 = 0, from which
it follows that non-singular solutions have the following local expansion close to r = 0:

Φ = Φ2r2 − 1
16 w2

2r4 + O
(
r6) , (5.98a)
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w = w0 + w2r2 +
3
16
(
1 − ν2) (8w2Φ2 + N0) r4 + O

(
r6) . (5.98b)

Local expansions close to r = 0 are, therefore, dependent upon three undetermined
parameters: Φ2, w0 and w2, which respectively capture the magnitudes of in-plane
stresses, vertical deflection and curvature at the centre of the disc.

Since solutions of (5.87) can be singular at r = 0, we use the local expansion above
to motivate approximate boundary conditions which we impose at r = δ for some
0 < δ � 1, suppressing singular solutions. Taking appropriate derivatives of (5.98)
gives the following boundary conditions at r = δ:

Φ =
δ

2
dΦ

dr , dΦ

dr = δ
d2Φ

dr2 , d3Φ

dr3 = −3δ

8

(
d2w
dr2

)2
, (5.99a)

dw
dr = δ

d2w
dr2 , d3w

dr3 =
9δ

2
(
1 − ν2)

[
2
(

d2Φ

dr2 + T
)

d2w
dr2 − p

]
, (5.99b)

having neglected terms of O(δ2).

5.5.2 Buckling instabilities due to cell growth

We identify the parameter values for which buckling instabilities occur via analysis of
(5.87) for small deformations. We linearise by setting w = ζ w̄ for some 0 < ζ � 1,
assuming that Φ can, in general, remain O(1). We also set p = ζ p̄. For small amplitude
deformations, we have

κ = ζDw̄ (5.100)

to leading order. Neglecting terms of O
(
ζ2), (5.87) becomes

D2Φ = 0, (5.101a)

D2w̄ = 12
(
1 − ν2) {[w̄, Φ] + TDw̄ − p̄} . (5.101b)

Solutions to (5.101a) are of the form

Φ = α1 + α2r2 + α3 log r + α4r2 log r, (5.102)

for constants of integration α1, . . . , α4. Without loss of generality, we can assume α1 = 0
since only derivatives of Φ appear in (5.101). Enforcing that stresses must be bounded
as r → 0, we require α3 = α4 = 0, while the boundary condition of (5.92) forces α2 = 0.
It follows that Φ = O

(
ζ2) to leading order. Thus (5.101b) reduces to

D2w̄ = 12T
(
1 − ν2)Dw̄ − p̄. (5.103)

Assuming that solutions are bounded as r → 0, it follows that w̄(r) takes the following
form:

w̄(r) = C
(

J0
(√

Kr
)
− J0

(√
K
))

− p̄
4K
(
r2 − 1

)
, (5.104)
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Figure 5.4: (a) The first three neutral curves of the linear system given by (5.103,5.90),
showing the critical degree of cellular compression required to stimulate buckling, as
a function of the Poisson’s ratio. In (b) the corresponding eigenmodes are shown,
normalised so as to have unit amplitude.

where K = −12(1 − ν2)T, C is an arbitrary constant and J0 is the zero-order Bessel
function of the first kind. Since T < 0 for a compressed cell layer, and |ν| < 1, we will
always have K > 0.

In the case p̄ = 0, setting dw̄/dr = 0 on r = 1 requires that non-trivial solutions only
exist for choices of K which satisfy

J1
(√

K
)

= 0. (5.105)

Taking the in-plane lengthscales of section 5.2 to be the undeformed disc radius R∗
0, we

write (5.105) in terms of dimensional quantities to conclude that a non-trivial configu-
ration can be obtained provided that the cell layer can generate the following degree of
compression:

T∗ = − E∗h∗3 j2i
12 (1 − ν2) R∗2

0
, (5.106)

where ji is the ith positive root of J1(x) = 0. The first three neutral curves defined
by (5.105), and the corresponding eigenmodes, are illustrated in figure 5.4. In figure
5.4, eigenmodes are normalised in such a manner that they have unit amplitude. We
classify solutions as “type n±”, where n is the number of local extrema in the interval
0 ≤ r < 1 and the superscript reflects the sign of w at r = 0. Since (5.104) exhibits
the symmetry w 7→ −w when p̄ = 0, deformed configurations of both positive and
negative type are attainable without bias.

For non-zero p̄, a buckled configuration is attainable provided J1(
√

K) 6= 0, with C
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given by
C = − p̄

2K3/2 J1
(√

K
) . (5.107)

The configuration type is dependent upon K; for small K (5.104) and (5.107) describe
a buckled configuration of type 1±. For larger K, (5.104) and (5.107) describe buckled
configurations of higher order.

5.5.3 Nonlinear solutions

Here we examine solutions to the full nonlinear system defined by (5.87,5.89), together
with the boundary conditions of section 5.5.1. The von Kármán model is valid for
deflections of O(h∗). In terms of dimensionless variables, it is appropriate for us to
examine solutions for which w is no larger than O(1). Solutions are sought numerically
via the use of MATLAB’s boundary value solver, bvp4c, in a similar manner to that
discussed in chapters 2 and 4. Numerical solutions are validated through comparison
with the linear analysis, and through verification that residual errors reported by the
solver are sufficiently small. We restrict our attention to the case ν = 0.5, since the
cell culture experiments with which we compare our results utilised a silicon-based
substrate which is highly hydrated and approximately incompressible. Solutions of
type 1− and 2−, obtained for p = 0 and ν = 0.5, are illustrated in figure 5.5 together
with plots of typical radial and hoop stress distributions. The figure illustrates that
plate stresses in both radial (T̂rr) and azimuthal (T̂ϕϕ) directions are tensile, since the
plate is in extension. Note, however, that cellular growth generates both radial and
azimuthal compression within the cell layer, the magnitudes of which are much larger
than the tensions in the plate (T = −3 in figure 5.5(b), and T = −7 in figure 5.5(d)).
The composite stresses across both layers are, therefore, compressive in both radial and
azimuthal directions.

In figure 5.6, we track the development of the various configurations for p = 0, plotting
the amplitudes of the profiles as functions of T. The continual growth of the cell layer is
equivalent to traversing the bifurcation diagram in figure 5.6 from left to right. We see
that initially the substrate will resist deformation until a critical level of compression
is present in the cell layer. This behaviour is consistent with the linear analysis above.
Once the required compression is achieved, the substrate can buckle into a type 1±

configuration whose amplitude increases as the compression in the cell layer continues
to grow. For higher levels of compression, the substrate is able to adopt configurations
of higher types.

For p > 0 the symmetry of the bifurcation diagram is broken in a manner analogous to
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Figure 5.5: Type 1− and type 2− deformations for ν = 0.5 and p = 0, together with the
corresponding stress distributions.
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Figure 5.6: Bifurcation diagram illustrating deflections at r = 0 as a function of cell
compression (−T). Axisymmetric configurations of types 1±, 2± and 3± are shown, for
an incompressible plate (ν = 0.5), with p = 0. The dimensionless deflections plotted
here are attained by scaling dimensional displacement against the plate thickness.
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Figure 5.7: Bifurcation diagram illustrating deflections at r = 0 as a function of
cell compression (−T). Axisymmetric configurations of types 1±, 2±, 3± and 4+ are
shown, for an incompressible plate (ν = 0.5), with p = 0.1. The dimensionless deflec-
tions plotted here are attained by scaling dimensional displacement against the plate
thickness.
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that of chapter 4, as illustrated in figure 5.7. Even in the absence of cellular growth, a
type 1− configuration is attained; the flat configuration is no longer valid. As growth
of the cells induces compression of the cell layer, this configuration grows in ampli-
tude. For sufficiently high compression there exist further unstable branches, the first
of which is of type 1+.

5.6 An alternative shell theory model

We now compare the above results to those of an alternative model based upon that of
Pamplona & Calladine (1993). The model of Pamplona & Calladine considers axisym-
metric configurations attained by an initially spherical vesicle under compression. The
authors modelled the vesicle using nonlinear shell equations, derived via the selection
of appropriate constitutive assumptions. We present a detailed derivation of the model
in appendix B. We take, as our reference configuration, a disc of radius R∗ (rather than
the spherical reference configuration originally used by Pamplona & Calladine). The
material has bending stiffness D∗ and shear modulus H∗. In our adaptation of the
model, buckling is driven by the compression required to confine the disc to a circular
boundary of radius R∗

0. We deploy a parametric description of growth, examining the
equilibrium configurations attained by a sequence of discs of increasing undeformed
radius. Figure 5.8 illustrates how we may place the growth studied here into the frame-
work of Rodriguez et al. (1994), discussed in section 1.6.2. Our unstressed reference
configuration is a flat disc of radius R∗

0. This disc is mapped, via growth tensor Fg,
to a hypothetical intermediate configuration in which the disc is enlarged but remains
flat and stress-free. In this configuration, the disc is larger than the boundary region
to which it is ultimately confined. This enlarged configuration is then acted upon by
an elastic deformation gradient tensor, Fe, which acts to confine the rim of the disc to
the specified boundary region, thus inducing buckling. Neither F nor Fg are prescribed
here; however, this model is applicable only to the study of growth patterns which are
compatible and result in an intermediate configuration of an unstressed disc. The na-
ture of Fe is conveniently described in terms of (dimensionless) arc-length coordinates s̃
and s, which measure distance along a meridian from the centre of the disc in the inter-
mediate and buckled configurations respectively. We denote the radial stretch resulting
from elastic deformations by λ−1. We show in appendix B that, under the assumption
that deformations locally preserve the sheet’s area, we have

1
λ

=
ds
ds̃ =

s̃
r , (5.108)

where r denotes radial position in the deformed configuration.
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In appendix B we derive the equations governing this model which, in terms of appro-
priate dimensionless variables, are as follows:

dr
ds̃ =

1
λ

cos θ, (5.109a)
dz
ds̃ =

1
λ

sin θ, (5.109b)
dθ

ds̃ =
κθ

λ
, (5.109c)

dκθ

ds̃ =
1

λr2 sin θ cos θ − Fn
λ

− κθ

λr cos θ, (5.109d)

dFn
ds̃ =

1
λ

[
−κθ

(
F + α

1
λ

)
− 1

r (F + αλ) sin θ − Fn
r cos θ

]
, (5.109e)

dF
ds̃ = −α

d
ds̃

(
1
λ

)
+ α

1
r

(
1 − 1

λ2

)
cos θ +

κθ Fn
λ

, (5.109f)

where z denotes vertical position, θ is the angle of inclination of the plate to the hor-
izontal, κθ is the radial curvature, F is an isotropic in-plane stress resultant and Fn is
the normal stress resultant. The system depends upon the dimensionless parameter
α = H∗R∗2

0 /D∗, which captures the material’s resistance to in-plane shearing relative
to its resistance to bending.

Since solutions to (5.109) may be singular at s̃ = 0, we use a local series expansion close
to s̃ = 0 to motivate the following approximate boundary conditions applied at s̃ = δ

(for some 0 < δ � 1), suppressing singular solutions:

r = δ, θ = κθδ, Fn = −κθ (F + α) δ on s̃ = δ. (5.110)

A derivation of these approximate boundary conditions is given in appendix B. We
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also apply the following conditions, which impose that the rim of the disc is held fixed
and clamped:

r = 1, θ = 0, z = 0 on s̃ = R, (5.111)

where R = R∗/R∗
0.

5.6.1 Linear analysis

We identify the onset of buckling via linearisation of (5.109–5.111) about the flat con-
figuration. For small deflections r ∼ s̃, λ ∼ 1 and F = F0 (for constant F0) to leading
order. We rescale the dependent variables according to

r = s̃ + ζ r̄, λ = 1 + ζλ̄, F = F0 + ζ F̄, (5.112a)

θ = ζθ̄, z = ζ z̄, κ̄θ = ζκ̄θ , Fn = ζ F̄n, (5.112b)

for 0 < ζ � 1. Neglecting terms of O(ζ) and smaller, (5.109) becomes

dr̄
ds̃ = −λ̄, (5.113a)
dz̄
ds̃ = θ̄, (5.113b)

dθ̄

ds̃ = κ̄θ , (5.113c)

dκ̄θ

ds̃ =
θ̄

s̃2 − F̄n −
1
s̃ κ̄θ , (5.113d)

dF̄n
ds̃ = −κ̄θ (F0 + α) − 1

s̃ (F0 + α) θ̄ − 1
s̃ F̄n, (5.113e)

dF̄
ds̃ = α

dλ̄

ds̃ +
2αλ̄

s̃ , (5.113f)

with λ̄ = r̄/s̃. We solve (5.113) subject to linearised boundary conditions given by

r̄ = 0, θ̄ = κ̄θδ, F̄n = −κ̄θ (F0 + α) δ on s̃ = δ, (5.114a)

r̄ = 0, θ̄ = 0, z̄ = 0 on s̃ = 1, (5.114b)

since for small deformations we have R = 1 + O
(
ζ2). We note that (5.113c-e) decouple

from the remainder of the system. For convenience, we define the operator D as

D ≡ d
ds̃ +

1
s̃ (5.115)

and rewrite (5.113c-e) as follows:

Dθ̄ = κ̄θ +
1
s̃ θ̄, (5.116a)

Dκ̄θ =
1
s̃2 θ̄ − F̄n, (5.116b)
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DF̄n = C
(

κ̄θ +
1
s̃ θ̄

)
, (5.116c)

where C = − (F0 + α). From (5.116a) and (5.116c) we deduce

DΨ = 0, (5.117)

where Ψ = F̄n − Cθ̄. We integrate (5.117) to obtain a solution of the form

Ψ =
Ψ0
s̃ , (5.118)

for arbitrary constant of integration Ψ0. It follows that

F̄n − Cθ̄ =
Ψ0
s̃ , (5.119)

and from (5.114a) we require Ψ0 = 0. From (5.113c) we have that

d2θ̄

ds̃2 =
1
s̃2 θ̄ − F̄n − 1

s̃
dθ̄

ds̃ . (5.120)

Since (5.119) implies that F̄n = Cθ̄, we rearrange (5.120) to obtain

d2θ̄

ds̃2 +
1
s̃

dθ̄

ds̃ +

(
C − 1

s̃2

)
θ̄ = 0. (5.121)

Since the disc is under compression, we can expect F0 < 0 in general. Provided F0 <

−α, so that C > 0, we can seek solutions to (5.121) via a change to new independent
variable S = C1/2s̃, reducing (5.121) to Bessel’s equation of order 1:

S2 d2θ̄

dS2 + S dθ̄

dS +
(
S2 − 1

)
θ̄ = 0. (5.122)

Solutions to (5.122) are of the form

θ̄(S) = AJ1(S) + BY1(S), (5.123)

where A and B are arbitrary constants of integration and J1(S) and Y1(S) are the order-
1 Bessel functions of the first and second kind respectively. Since Y1 → −∞ as S → 0,
we require B = 0 for consistency with (5.114a). Since (5.122) is linear, the constant A is
arbitrary.

Since (5.114b) requires θ̄
(√

C
)

= 0, we have an eigenvalue problem in C. Non-trivial
solutions only exist for those values of C satisfying

J1
(√

C
)

= 0. (5.124)

The first three neutral curves are plotted in figure 5.9, the corresponding eigenmodes
recover those illustrated in figure 5.4(b).
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Figure 5.9: The first three neutral curves of the linear system defined by (5.113–5.114).
The dashed line illustrates the line F0 = −α, above which (5.122) is valid. The corre-
sponding eigenmodes are as illustrated in figure 5.4(b).

Writing (5.124) in terms of dimensional variables, we have the following condition for
the onset of buckling:

J1

(√
12 (1 − ν2)

R∗
0

E∗h∗3
(
−F∗

0 − H∗)
)

= 0. (5.125)

Denoting the ith positive root of J1(x) by ji, (5.125) requires that the force required to
yield a buckling instability to a type i configuration is

F∗
0 = −H∗ − E∗h∗3 j2i

12 (1 − ν2) R∗2
0

. (5.126)

5.6.2 Nonlinear buckling

We now examine solutions to the full nonlinear system given by (5.109–5.111). Solu-
tions are determined using MATLAB’s boundary value solver (‘bvp4c’) as described
previously. Configurations upon modes 1 and 2, obtained for various α, are illustrated
in figures 5.10–5.12. Figure 5.13 shows corresponding bifurcation diagrams, illustrating
the amplitude of configurations, z(0), as a function of R. Also plotted in figure 5.13 are
curves illustrating F(0) as a function of R. Consideration of a growing tissue equates
to traversing the plots of figures 5.10–5.13 from left to right.

For R close to unity, nonlinear results recover those of the linear analysis above; since
the sheet’s area is preserved, an infinite family of buckled configurations appears at
R = 1, each configuration being parameterised by the leading-order in-plane compres-
sion, F0. The configurations with F0 of smallest magnitude initially correspond to the
first neutral curve, the corresponding configuration being similar to that labelled ‘1’ in
figure 5.4(b). Since F0 is a measure of the compressive force required to induce buck-
ling, we regard these configurations to be favoured energetically. For all parameters
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Figure 5.10: Nonlinear mode 1 (solid line) and mode 2 (dashed line) solutions of
(5.109–5.111) for α = 10.
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Figure 5.11: Nonlinear mode 1 (solid line) and mode 2 (dashed line) solutions of
(5.109–5.111) for α = 100.
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Figure 5.12: Nonlinear mode 1 (solid line) and mode 2 (dashed line) solutions of
(5.109–5.111) for α = 1000.
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Figure 5.13: Bifurcation diagrams in which deflections at s̃ = 0 are plotted as functions
of R (a,c,e) alongside plots of the corresponding values of F(0) (b,d,f). Solid lines
represent mode 1 solutions, dashed lines represent mode 2.
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studied, the lowest energy configuration becomes that of mode 2 for sufficiently large
R (see figure 5.13(b,d,f)).

5.6.3 Comparison with the von Kármán model

As discussed in chapter 1, various authors have postulated constitutive assumptions
relating stresses to strains and bending moments to principal curvatures etc. Selec-
tion of appropriate constitutive assumptions is a critical exercise which underlies the
derivation of the model of Pamplona & Calladine (1993) (and others). Recall from
(1.53–1.54) the following two constitutive assumptions, giving in-plane stress resul-
tants (F∗

ϕ and F∗
θ ) in terms of principal stretches (λϕ and λθ):

F∗
ϕ − F∗

θ = H∗
(

λ2
ϕ − λ2

θ

)
, F∗

ϕ − F∗
θ = H∗ (λϕ − λθ

)
, (5.127)

the first of which was proposed by Evans & Skalak (1980), while the second was
proposed by Pamplona & Calladine (1993) and later used by authors including
Parker & Winlove (1999), Preston et al. (2008) and Reboux et al. (2009). Evans & Skalak
(1980) and Pozrikidis (2003) have also suggested the following constitutive assump-
tions, relating bending moments (M ∗

ϕ and M ∗
θ ) to principal curvatures (κ∗

ϕ and κ∗
θ ):

M
∗
ϕ = M

∗
θ = D∗

(
κ∗

ϕ + κ∗
θ

)
, (5.128a)

M
∗
ϕ = D∗

(
κ∗

ϕ − κ̃∗
ϕ

)
, M

∗
θ = D∗ (κ∗

θ − κ̃∗
θ ) , (5.128b)

where quantities with tildes refer to the reference configuration. In the above expres-
sions, positive bending moments induce positive curvatures. This convention is used
consistently by all of the above authors; however, this is inconsistent with the conven-
tion used in the derivation of the von Kármán model of this chapter. We use calli-
graphic notation to remind the reader that these bending moments are defined differ-
ently to those of (5.28).

Pamplona & Calladine deploy (5.127b) and (5.128a) in their model, choices which are
believed to be appropriate for modelling lipid bilayers. These constitutive assump-
tions are retained in the adaptation of their model described above; here, we examine
whether these constitutive assumptions are consistent with the von Kármán model.
In the forthcoming comparison of the two models, we present equations in the no-
tation of the von Kármán model. We identify the stress resultants of the model of
Pamplona & Calladine (F∗

θ and F∗
ϕ) with the averaged stresses of the von Kármán model

(T̂∗
rr and T̂∗

ϕϕ). Principal stretches are denoted λr and λϕ in the von Kármán model; we
identify λr with λθ (the meridional stretch) in the model of Pamplona & Calladine. Sim-
ilarly, when comparing bending moments, we identify M∗

rr and M∗
ϕϕ in the von Kármán
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model with −M ∗
θ and −M ∗

ϕ respectively. We denote principal curvatures by κ∗
r and κ∗

ϕ

in the von Kármán model. In appendix B, we derive expressions which relate the prin-
cipal curvatures to the plate’s displacement ((B.7) and (B.8)). Motivated by these, we
give the following expressions for the principal curvatures of the von Kármán model,
which hold at leading order for small deflections:

κ∗
r =

d2w∗

dr∗2 , κ∗
ϕ =

1
r∗

dw∗

dr∗ . (5.129)

We begin by evaluating the strain components of the von Kármán model for axisym-
metric deformations. We determine these via an equation similar to (5.81), writing the
polar strains in terms of their Cartesian counterparts. Noting (5.44), the in-plane strains
upon the plate’s central plane are given by

err =
ε2

E

(
1
r

dΦ

dr − ν
d2Φ

dr2

)
, eϕϕ =

ε2

E

(
d2Φ

dr2 − ν

r
dΦ

dr

)
, erϕ = 0. (5.130)

It follows from (5.130) and (1.15) that the principal stretches, denoted λr and λϕ in the
notation of the von Kármán model, satisfy

λ2
r = 1 +

2ε2

E

(
1
r

dΦ

dr − ν
d2Φ

dr2

)
= 1 +

2ε2

E
(
T̂rr − νT̂ϕϕ

)
, (5.131a)

λ2
ϕ = 1 +

2ε2

E

(
d2Φ

dr2 − ν

r
dΦ

dr

)
= 1 +

2ε2

E
(
T̂ϕϕ − νT̂rr

)
. (5.131b)

It follows from (5.131) that

λ2
r − λ2

ϕ =
2ε2 (1 + ν)

E
(
T̂rr − T̂ϕϕ

)
. (5.132)

Noting the scalings of (5.15a) and (5.14), we write (5.132) in terms of dimensional quan-
tities given by

T̂∗
rr = ε2h∗E∗

maxT̂rr, T̂∗
ϕϕ = ε2h∗E∗

maxT̂ϕϕ, E∗ = E∗
maxE, (5.133)

where the additional h∗ terms in (5.133) arise since T̂rr and T̂ϕϕ refer to quantities aver-
aged across the thickness of the plate. Equation (5.132) then becomes

T̂∗
rr − T̂∗

ϕϕ =
E∗h∗

2 (1 + ν)

(
λ2

r − λ2
ϕ

)
, (5.134)

which recovers the constitutive assumption posed by Evans & Skalak (1980) (5.127a)
with H∗ = E∗h∗/2 (1 + ν). Noting this expression for H∗, we may express the dimen-
sionless parameter α (which appears in the model of Pamplona & Calladine) as follows:

α =
H∗R∗2

0
D∗ = 6 (1 − ν)

R∗2
0

h∗2 � 1, (5.135)
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which shows that α represents an inverse measure of the aspect ratio of the plate, iden-
tifiable with ε−2 in the von Kármán model.

While the model of Pamplona & Calladine treats H∗ as an independent parameter,
the von Kármán model states that this parameter is actually given as a combination
of material parameters. Substituting the above form of H∗ into (5.126), the model
of Pamplona & Calladine predicts that buckling instabilities occur when the leading-
order in-plane compression, F∗

0 , satisfies

F∗
0 = E∗h∗

(
− 1

2 (1 + ν)
− ε2 j21

12 (1 − ν2)

)
, (5.136)

where ε = h∗/R∗
0 and j1 denotes the first positive root of J1(x). The model of

Pamplona & Calladine therefore predicts that the buckling threshold is dominated by
the plate’s resistance to shear.

Noting (5.81) and the expressions for bending moments in terms of Cartesian coordi-
nates given by (5.49), we can determine the bending moments corresponding to ax-
isymmetric deformations as

Mrr = − E
12 (1 − ν2)

(
d2w
dr2 +

ν

r
dw
dr

)
, (5.137a)

Mϕϕ = − E
12 (1 − ν2)

(
ν

d2w
dr2 +

1
r

dw
dr

)
. (5.137b)

It follows from (5.137) that

Mrr − Mϕϕ = − E
12 (1 + ν)

(
d2w
dr2 − 1

r
dw
dr

)
. (5.138)

In terms of dimensional variables given by

{M∗
rr, M∗

ϕϕ} = ε2h∗2E∗
max{Mrr, Mϕϕ}, w∗ = h∗w, r∗ = R∗

0r, (5.139)

where R∗
0 is the undeformed disc radius, (5.138) becomes

M∗
rr − M∗

ϕϕ = −D∗
(

d2w∗

dr∗2 − 1
r∗

dw∗

dr∗
)

, (5.140)

where D∗ = E∗h∗3/12
(
1 − ν2) is the plate’s bending stiffness. Noting (5.129), we write

(5.140) as
M∗

rr − M∗
ϕϕ = −D∗

(
κ∗

r − κ∗
ϕ

)
. (5.141)

The additional minus sign in (5.141) appears to ensure consistency with (5.28), in which
positive bending moments generate negative curvatures. Equation (5.141) illustrates
that the difference between bending moments in the von Kármán model is consistent
with (5.128b), since the plate has zero curvature in the reference configuration; how-
ever, (5.137) states that the von Kármán model is not entirely consistent with either of
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the constitutive assumptions of (5.128). Writing (5.137) in terms of dimensional quan-
tities, we see that the von Kármán model suggests that the appropriate constitutive
assumption for the bending moments should be as follows:

M∗
rr = −D∗

(
κ∗

r + νκ∗
ϕ

)
, M∗

ϕϕ = −D∗
(

κ∗
ϕ + νκ∗

r

)
. (5.142)

Differences between the constitutive assumptions used in these models underpin any
differences in the resulting configurations and corresponding distributions of stresses.
Below, we compare typical stress distributions obtained at finite amplitude in the two
models. Note the following expressions for the dimensional stresses in each model,
which follow from the scaling above:

von Kármán: {T̂∗
rr, T̂∗

ϕϕ, T ∗} = 12
(
1 − ν2) D∗

R∗2
0
{T̂rr, T̂ϕϕ, T} (5.143a)

Pamplona & Calladine: F∗
θ =

D∗

R∗2
0

F +
H∗

λ
, F∗

ϕ =
D∗

R∗2
0

F + H∗λ, (5.143b)

where T ∗ is the isotropic stress in the cell layer of the von Kármán model. In fig-
ure 5.14, we consider a plate of aspect ratio ε = 1/10 and Poisson’s ratio ν = 0.5 to
illustrate typical differences in stress distributions between the two models. The fig-
ure plots the dimensional stresses of (5.143), divided by D∗/R∗2

0 , so as to be indepen-
dent of dimensional parameters. Consistent with (5.135), we set α = 300 in the model
of Pamplona & Calladine. The figure shows stresses corresponding to configurations
whose deflections are of magnitude h∗ in both models. Note that these deflections are
within the range of validity of both models; comparison of the models for deflections
which are regarded as ‘large’ in the model of Pamplona & Calladine is not appropriate
since these violate the asymptotic assumptions of the von Kármán model. In figure
5.14(a), we show the radial and hoop stresses in the plate in the von Kármán model
(blue curves), together with the net stresses incorporating both the cell layer and plate
(red curves). The figure illustrates that in this model the plate is in extension in both
principal directions, although the composite stresses are both compressive. In figure
5.14(b), we show the equivalent stresses in the model of Pamplona & Calladine (F∗

θ

and F∗
ϕ), showing that the plate is compressed in both radial and azimuthal directions.

Comparing the two figures reveals that the stresses predicted by the two models differ.

The von Kármán model recovers (5.127a), while Pamplona & Calladine assume
(5.127b): we identify this as one potential source for discrepency. However, numeri-
cal tests reveal that replacing (5.127b) with (5.127a) has only a minor effect upon stress
distributions (details omitted). While Pamplona & Calladine deploy (5.128a) in their
model (as opposed to (5.128b) or (5.142)), substitution of (5.128b) or (5.142) into (B.18a)
reveals that additional terms cancel (provided that the reference configuration is flat).
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Figure 5.14: A comparison of stress distributions in the von Kármán model and
the model of Pamplona & Calladine, for a plate with aspect ratio ε = 1/10 and
ν = 0.5. Plots show dimensional stresses divided by D∗/R∗2

0 , so as to be indepen-
dent of dimensional quantities. Maximal dimensional deflections are of magnitude
h∗ in both panels. In (a) we show the radial (blue, solid line) and azimuthal (blue,
dashed line) stresses in the plate, and the net radial (red, solid line) and azimuthal
(red, dashed line) stresses incorporating both plate and cell layer, for T = −4.1. In
(b) we show radial (solid line) and azimuthal (dashed line) stresses in the model of
Pamplona & Calladine, for R = 1.0003 and α = 300 (consistent with (5.135)).

While expressions for corresponding physical quantities will differ, the shapes of con-
figurations predicted by this model are independent of the assumptions upon bending
moments in this case. Furthermore, the model of Pamplona & Calladine assumes (in
(B.20)) absolute inextensibility of the layer in the out-of-plane direction. While the von
Kármán model is consistent with this to leading order, the transverse normal strain is
of the same magnitude (O(ε2)) as in-plane strains. This suggests that (B.21) may not be
entirely appropriate; however, a suitable alternative does not readily present itself as a
result of the von Kármán analysis.

5.7 Conclusions

In this chapter, we have considered two models for growth-induced deformations of a
thin, two-dimensional layer. The first of these deployed von Kármán plate theory, con-
sidering deformations to be driven by the growth of a cell layer upon the plate’s upper
surface. In light of the results of chapter 4, we assumed that the cell layer experiences
no resistance to sliding along the layer; a normal force proportional to curvature was
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then transmitted to the substrate. Solutions were determined numerically for extensive
cellular growth; however, the validity of underlying mechanical assumptions becomes
questionable at large amplitude. While the primary motivation for the development
of this model was centred around epithelial cell culture in vitro, we may also view the
model as applicable to a buckling epithelium resting upon underlying tissue in vivo.

The above model was compared to the nonlinear shell model of Pamplona & Calladine
(1993), derived through selection of appropriate constitutive assumptions. For small
deflections, the two models predicted buckling instabilities for critical values of com-
pression which differ in a manner proportional to the shear modulus of the material
(H∗). For a material whose shear modulus is small, the two models are in agree-
ment to leading order. The model of Pamplona & Calladine treats H∗ as an inde-
pendent parameter; however, comparison with the von Kármán model reveals that
H∗ = E∗h∗/2(1 + ν) for linearly elastic materials. Differences between the two mod-
els were most apparent at large amplitude (i.e. after more prolonged growth). The
von Kármán model motivates the use of the constitutive assumption upon stresses and
strains used by Evans & Skalak (1980), rather than (5.127b). Motivated by the von Kár-
mán model, we suggested a new constitutive assumption upon bending moments in
(5.142). However, brief analyses reveal that results are relatively insensitive to these
choices provided that the reference configuration is flat. The derivation of the model of
Pamplona & Calladine assumes, in (B.20), that there is no change in the thickness of the
plate during deformation: a valid assumption for their study of a lipid bilayer whose
thickness is necessarily fixed. Since the von Kármán model states that transverse nor-
mal strains are of similar magnitude to in-plane strains, we may regard the validity of
(B.20) as questionable for some materials; however, identification of a suitable alterna-
tive remains as further work. It is notable that (B.20) is justifiable in that it facilitates
modelling progress, and can be thought to provide a reasonable approximation of the
full system. Comparison of the two models has highlighted the sensitivity of results
to the choice of underlying constitutive assumptions. Importantly, the validity of both
models is questionable for large amplitude configurations which exhibit large strains.

Neither of the models presented in this chapter incorporate patterned growth; how-
ever, the models of chapters 2 and 4 suggest that patterning of growth is largely in-
significant in determining the shapes of buckled configurations. For such a patterning
to be of any significance at all, cell–substrate adhesion must be strong. The analy-
ses presented in this chapter focus upon one-dimensional (planar and axisymmetric)
reductions of the von Kármán model for homogeneous plates. We examine fully two-
dimensional solutions for inhomogeneous plates in the following chapter.
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CHAPTER 6

Tissue Patterning as a Mechanism of
Crypt Frequency Control

In this chapter, we seek solutions to the von Kármán model of chapter 5 for plates
whose material properties vary spatially. We seek to establish the extent to which vari-
ations in the material properties of the substrate control buckling patterns.

Recall that the equations governing the buckling of the substrate due to a cell layer
upon the upper surface, assuming that the cell layer experiences no resistance to sliding
against the substrate, are

∇2
(

1
E∇2Φ

)
−
[

1 + ν

E , Φ

]
+

1
2 [w, w] = 0, (6.1a)

∇2
(

E
12 (1 − ν2)

∇2w
)

=

[
E

12 (1 + ν)
, w
]

+ [w, Φ] + Tκ, (6.1b)

where T < 0 is the isotropic tension in the cell layer and the curvature of the substrate,
κ, is given by

κ = ∇2w, (6.2)

to leading order. In this chapter, we assume that no external pressure acts across the
layer, setting p = 0 in (5.61).

We solve (6.1) subject to boundary conditions given by (5.51–5.53), in the case of a
Cartesian formulation, or by (5.90,5.92,5.99) when studying axisymmetric deforma-
tions in a polar coordinate system. We begin this chapter with an analysis of long
wavelength solutions on a rectangular domain, allowing (6.1) to be reduced from a
PDE system to an ODE system. We then repeat the same analysis for axisymmetric
deformations of a circular substrate to examine the restrictions placed upon deforma-
tion by the generation of a non-zero hoop stress resultant. We will then examine fully
two-dimensional patternings of a rectangular substrate.
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6.1 Long wavelength solutions on a rectangular domain

Assuming that variations in the Y-direction occur over a long wavelength, we exploit
the small parameter δ = 1/l to recover a one-dimensional beam problem to leading
order. Deploying the rescalings of (5.63,5.64) and expanding dependent variables in
powers of δ2, as in (5.67), (6.1a) implies that Φ is O(δ2) to leading order. From (6.1b),
the leading-order problem is then given by

∂2

∂X2

(
E

12 (1 − ν2)

∂2w
∂X2

)
= T ∂2w

∂X2 , (6.3)

where T is the leading-order compression in the cell layer. We solve (6.3) numerically
using a shooting method. For simplicity we solve on half of the domain, assuming
either odd or even symmetry conditions on X = 0. Thus, we solve (6.3) subject to

w = 0, ∂w
∂X = 0, ∂2w

∂X2 = 1 on X = −1, (6.4)

and adjust T until the resulting solution also satisfies

∂w
∂X =

∂3w
∂X3 = 0 on X = 0, (6.5)

in the case of odd modes, or

w =
∂2w
∂X2 = 0 on X = 0, (6.6)

for even modes. Since the problem is linear, we normalise all eigenmodes such that
their maximal deflections are of unit magnitude.

We restrict attention to non-uniformities of the Young’s modulus of the form

E(X) =
1 + c − c exp

(
p (X − a)m)

1 + c − c exp
(

p (1 − a)m) , (6.7)

for p = −100 and m = 4. Setting c = 0 in (6.7) corresponds to a homogeneous sub-
strate, while increasing c increases the magnitude of inhomogeneities. We examine two
cases below: a = 0, which represents a softened region in the centre of the substrate,
and a = −0.5, which yields a distinct softened region in each half of the domain. Note
that the denominator in (6.7) appears simply to ensure consistency with the nondimen-
sionalisation of (5.14). Throughout all of the analysis below, the Poisson’s ratio remains
fixed at ν = 0.5.

The first three modes attained in each of the above cases are illustrated (for c = 10000)
in figure 6.1, alongside their homogeneous counterparts. With a = 0 the solution ob-
tained upon mode 1 is reminiscent of a single crypt in the centre of the substrate, while
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with a = −0.5 a two-crypt configuration appears upon mode 3. The first three neutral
curves in each regime are illustrated in figure 6.2. The effect of imposing a softening
of the substrate is that the magnitude of cellular compression required to deform the
substrate is reduced. While imposing a patterning with a = −0.5 does not result in a
transition of the primary buckling mode from type 1 to type 3 for parameters investi-
gated, the mode 3 configuration is more easily attained with such a softening than in
the homogeneous case.

6.2 Axisymmetric solutions

Here, we briefly examine the axisymmetric analogue of the solutions above. Following
our analysis of homogeneous materials in chapter 5, we linearise (6.1) via the assump-
tion that if w ∼ ζ for some 0 < ζ � 1, then Φ ∼ ζ2. Under these scalings (6.1b) reduces
to

1
r

d
dr

(
r d

dr

(
E

12 (1 − ν2) r
d
dr

(
r dw

dr

)))
=

1
r

(
d
dr

(
E

12 (1 + ν)

)
d2w
dr2 +

d2

dr2

(
E

12 (1 + ν)

)
dw
dr

)
+

T
r

d
dr

(
r dw

dr

)
,

(6.8)

and (following from (5.90) and (5.99)) is solved subject to

w = −1, dw
dr = δ

d2w
dr2 , d3w

dr3 = 9δT
(
1 − ν2) d2w

dr2 , on r = δ, (6.9a)

w = 0 on r = 1. (6.9b)

The first condition in (6.9a) is a normalisation condition which we can select arbitrarily
since (6.8) is linear. We deploy a shooting method once more, adjusting T until the
configuration also satisfies

dw
dr = 0 on r = 1. (6.10)

We restrict attention to a softening in the centre of the substrate here, prescribing the
Young’s modulus according to

E(r) =
1 + c − c exp (prm)

1 + c − c exp (p)
, (6.11)

for p = −100 and m = 4. Once more, we fix ν = 0.5. Furthermore, we restrict attention
to type 1 solutions in this regime.

Solution of (6.8–6.11) allows us to determine the degree of cellular compression re-
quired to stimulate a buckling instability. The resulting neutral curve is illustrated (for
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(a) Mode 1 solution, a = 0.
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(b) Mode 1 solution, a = −0.5.
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(c) Mode 2 solution, a = 0.
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(d) Mode 2 solution, a = −0.5.
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(e) Mode 3 solution, a = 0.
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(f) Mode 3 solution, a = −0.5.

Figure 6.1: Eigenmodes obtained in the one-dimensional reduction of the von Kármán
model, for incompressible, inhomogeneous plates patterned according to (6.7) with
c = 10000 (solid lines). In (a,c,e), the plate has a reduced resistance to bending in the
centre of the plate, while in (b,d,f) the plate is softened close to x = ±0.5. Dashed lines
illustrate equivalent solutions for homogeneous plates (c = 0).
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Figure 6.2: The first three neutral curves of the one-dimensional reduction of the von
Kármán model given by (6.3–6.7), for ν = 0.5.

ν = 0.5) in figure 6.3, alongside the corresponding eigenmodes for c = 0 (a homoge-
neous layer) and c = 10000. For a homogeneous layer with ν = 0.5, buckling occurs
for T = −1.63. As c is increased from zero, exaggerating the softening in the centre of
the disc, the cellular compression required to stimulate buckling is reduced (see figure
6.3(a)).

Having determined the region of parameter space in which nontrivial solutions ex-
ist, we are then able to examine solutions to the full nonlinear problem defined by
(6.1,5.90,5.92,5.99), for a strongly inhomogeneous substrate. Taking c = 10000, the sub-
strate remains in its flat configuration while T & −0.1. As figure 6.4 shows, decreasing
T from -0.1 yields a configuration which resembles a single crypt in the centre of the
substrate, whose amplitude increases with cellular compression. The configuration
shown at the onset of buckling in figure 6.4(a) recovers that of figure 6.3(b) (however,
since the solution is weakly nonlinear, it is no longer normalised).

6.3 Buckling instabilities on a square domain

We begin with a linearisation of (6.1), setting w = ζw̄ and Φ = ζ2Φ̄ for some 0 < ζ � 1,
which (omitting bars) yields

∇2
(

E
12 (1 − ν2)

∇2w
)

=

[
E

12 (1 + ν)
, w
]

+ T∇2w, (6.12)

to leading order in ζ. For simplicity we restrict attention to a square domain (setting l =

1) and seek solutions to (6.12) subject to the following clamped boundary conditions,
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Figure 6.3: (a) The first neutral curve corresponding to axisymmetric solutions of the
von Kármán model given by (6.8–6.11), for ν = 0.5. (b) The corresponding eigenmodes
for a homogeneous substrate (c = 0, dashed line) and a substrate with a strongly
softened region in the centre (c = 10000, solid line).
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Figure 6.4: Nonlinear solutions to the axisymmetric von Kármán model, for a plate
with Young’s modulus prescribed by (6.11) with c = 10000. In (a) we plot the sub-
strate’s deflection as cell growth induces increasing compression in the cell layer. The
arrow indicates T decreasing from −0.1 to −0.5. In (b) the radial (solid line) and az-
imuthal (dashed line) stress resultants corresponding to the extremal configuration are
shown.
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which carry directly from the previous chapter:

w = 0, dw
dX = 0 on X = ±1, (6.13a)

w = 0, dw
dY = 0 on Y = ±1. (6.13b)

Solutions to (6.12–6.13) are determined numerically using the spectral methods de-
scribed by Trefethen (2000), which we discuss in more detail in appendix C. The do-
main is discretised onto an (N + 1) × (N + 1) Chebyshev mesh, whose mesh points
cluster near the boundaries; Trefethen (2000) states that such a choice of mesh max-
imises the accuracy of the numerical code. Since Dirichlet conditions are imposed upon
the boundaries, the boundary mesh points can be removed from the system. For ease
of computation, the remaining meshpoints are stored in a vector v (of length (N − 1)2),
allowing (6.12) to be written in the form of the following generalised eigenvalue prob-
lem:

A · v = ξL · v, (6.14)

where the matrix A is constructed by taking the appropriate combination of differenti-
ation matrices given in appendix C, L is the Laplacian operator given by (C.10) and ξ is
as defined below. We then deploy MATLAB’s built-in eigenvalue solvers to determine
solutions to (6.14).

In the case of homogeneity, we validate our numerical code by comparison of results
with those published by Leriche & Labrosse (2004). In the case of an inhomogeneous
substrate, we validate the spectral code by solving (6.3–6.7) as a test case and com-
paring results with those of figure 6.2(a). Figure C.1 illustrates this comparison. For
N = 50, the maximal error is of O(10−5); we set N = 50 in all forthcoming simulations.

6.3.1 Buckling of a homogeneous substrate

Assuming homogeneity (E ≡ 1), (6.12) reduces to

∇4w = ξ∇2w, (6.15)

where ξ = 12T
(
1 − ν2)

< 0. We solve (6.15) subject to the clamped bound-
ary conditions of (6.13). Analytical solution of (6.15,6.13) is not possible, since the
clamped boundary conditions do not permit the existence of a separable solution
(Leriche & Labrosse, 2004). We seek solutions of (6.15,6.13) numerically, using the
methods described above.

The solutions of (6.15,6.13) discussed below exhibit various symmetries, all of which
are characterised by the elements of the eighth-order dihedral group, denoted D4 (Hoyle,
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2006). Before examining these solutions, we take a brief aside to summarise some per-
tinant ideas from group theory which will aid the characterisation of our solutions.

The eighth-order dihedral group, D4, has two generators: a reflection, m, about the line
X = 0; and an anticlockwise rotation, ρ, by π/2 radians about the origin. The orders
of these generators are two and four respectively, by which we mean that applying m
twice or ρ four times yields the identity. We can present the group as follows:

D4 =
〈

m, ρ
∣∣∣m2, ρ4, (mρ)2

〉
, (6.16)

the expressions to the left of the vertical bar being the generators, and those to the
right (termed relators) being a list of combinations of the generators which yield the
identity. We determine the elements of D4 by taking all possible combinations of m and
ρ, subject to cancellation via any of the relators of (6.16). We are left with the following
eight elements:

1, ρ, ρ2, ρ3, m, mρ, mρ2, mρ3, (6.17)

where 1 represents the identity. The elements ρ2 and ρ3 represent rotations by π and
3π/2 radians respectively, while mρ2 represents reflection about Y = 0 and mρ and mρ3

are reflections about the square diagonals (Hoyle, 2006). To make further progress we
require the following two definitions.

Definition 6.1. Consider a group G with elements g1 and g2. The elements g1 and g2 are said
to be in the same conjugacy class if there exists some γ ∈ G such that

γg1γ−1 = g2. (6.18)

Definition 6.2. Consider a finite group G and a field F. Let the group comprised of all n × n
invertible matrices whose elements are taken from F be denoted GLn(F). A representation of
G over F is a homomorphism, ϑ : G 7→ GLn(F). Denoting ϑ(g) by Mg for any g ∈ G, we
require

Mg Mh = Mgh ∀g, h ∈ G, (6.19)

since ϑ is a homomorphism. The dimension of the representation is n. The representation
reflects the action of G upon the vector space F

n (Hoyle, 2006). We refer to a representation as
irreducible if it cannot be equivalently expressed in terms of matrices of smaller dimension.

Since we are interested in real solutions to (6.15,6.13), we restrict attention to F = R. It
can be shown (Cornwell, 1984) that D4 has five conjugacy classes, given by:

{1} ,
{

ρ, ρ3} ,
{

m, mρ2} ,
{

mρ, mρ3} ,
{

ρ2} . (6.20)

Cornwell (1984) proves that, for any finite group, the number of irreducible representa-
tions over a given field is equal to the number of conjugacy classes. We therefore know
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{1}
{

ρ, ρ3} {
m, mρ2} {

mρ, mρ3} {
ρ2}

R1 1 1 1 1 1
R2 1 -1 1 -1 1
R3 1 1 -1 -1 1
R4 1 -1 -1 1 1

Table 6.1: The four one-dimensional representations of D4. The table lists the scalars
associated with each group element under each representation, as derived by (6.22).
Column headings list the conjugacy classes of D4; for one-dimensional representa-
tions, the scalars associated with any two elements in the same conjugacy class are
equal.

that D4 has five irreducible representations over R. Each of the solutions to (6.15,6.13)
determined in this section conforms to exactly one representation of D4. Consider, first,
the possible one-dimensional representations, defined entirely by scalars Mm and Mρ

(i.e. the elements of GL1(R) associated with group elements m and ρ under the homo-
morphism ϑ of definition 6.2). From (6.16) we require

M2
m = 1, M4

ρ = 1,
(

MmMρ

)2
= 1. (6.21)

It follows that
Mm = ±1, Mρ = ±1, (6.22)

yielding the four representations of D4 given in table 6.1, which we label R1, . . . , R4.
We can interpret the values given in table 6.1 as the action of the given symmetry upon
our solutions to (6.15). If the value presented in table 6.1 for a given group element
were 1, the solution would be unchanged under the corresponding symmetry. If the
same value were -1, the solution would be negated under this symmetry. Solutions to
(6.15,6.13) can, thus, be associated with one of the representations of D4 on the basis of
whether the configuration is preserved or negated under anticlockwise rotation by π/2
radians (Mρ) and reflection about X = 0 (Mm). If the configuration is invariant under
both of these actions, then it belongs to the R1 solution family. If it is negated under
rotation but preserved under reflection, then it belongs to the R2 classification. Sim-
ilarly, negation under reflection and invariance under rotation implies the R3 family,
and negation under both actions implies R4. Since R1, . . . , R4 are one-dimensional rep-
resentations, configurations belonging to these representations exhibit the same sym-
metries in X as in Y. R1 and R2 solutions are even in both X and Y, while R3 and R4 are
odd in both X and Y.

Having determined four representations, we have one remaining. Any eigenmode
which does not obey one of the above four symmetry rules must belong to this final
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Figure 6.5: Eigenmodes corresponding to the two-dimensional representation of D4.
Solid lines represent lines of symmetry; dashed lines represent lines of anti-symmetry.

family, which we now determine. We consider the natural two-dimensional repre-
sentation given by Hoyle (2006), defined by associating each group element with the
matrix used to make the corresponding transformation to the Cartesian plane, i.e.

M1 =

(
1 0
0 1

)
, Mm =

(
−1 0
0 1

)
, Mρ =

(
0 −1
1 0

)
, (6.23a)

Mρ2 =

(
−1 0
0 −1

)
, Mρ3 =

(
0 1
−1 0

)
, (6.23b)

Mmρ =

(
0 1
1 0

)
, Mmρ2 =

(
1 0
0 −1

)
, Mmρ3 =

(
0 −1
−1 0

)
. (6.23c)

It can be confirmed that the matrices of (6.23) satisfy (6.19) and, thus, that these ma-
trices define a representation of D4. We refer to this two-dimensional representation
as R5. As figure 6.5 illustrates, R5 encompasses solutions which are even in X and
odd in Y (labelled R5c in the figure), and solutions which are odd in X and even in Y
(labelled R5d). Modes corresponding to R5c and R5d are linearly independent. Taking
linear combinations of these modes yields two further subcategories (which we label
R5a and R5b) each of which is symmetrical about one of the square diagonals. These
four subclassifications of R5 recover those given by Hoyle (2006). Below, we present
solutions belonging to the R5a and R5b families only, but use the more general termi-
nology “R5” to refer to any of these four eigenmodes or linear combinations thereof.
We also introduce the terminology “eigenmode R(j)

i ” to describe the jth eigenmode in
the Ri family (i ∈ [1, 5], j ∈ [1, ∞)); R(1)

i refers to the mode corresponding to the least
negative eigenvalue in family Ri, for example.

Solutions to (6.15,6.13) are determined numerically, by writing the problem as

B · w = ξL · w, (6.24)

where B and L are given by (C.16) and (C.10) respectively. Table 6.2 gives the first
seven eigenvalues for each of the five representations of D4 described above. These
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R1 R2 R3 R4 R5

[ 1] -13.0862 [ 5] -38.5314 [12] -67.2802 [ 4] -32.0524 [ 2*] -23.0311
[ 6] -41.7573 [16] -87.329 [25] -125.2549 [13] -69.7698 [ 7*] -47.393
[11] -61.5818 [21] -106.3548 [32] -155.4244 [20] -100.9667 [ 9*] -61.5806
[17] -90.6878 [33] -156.164 [46] -203.5528 [28] -127.9746 [14*] -81.6609
[22] -108.6967 [38] -173.6856 [53] -232.2052 [34] -157.611 [18*] -95.0768
[31] -150.212 [49] -214.4493 [68] -283.3951 [47] -206.1533 [23*] -120.422
[35] -159.672 [57] -244.8421 [73] -301.8406 [48] -209.7246 [26*] -125.9873

Table 6.2: The first seven eigenvalues, ξ, of (6.15,6.13) for each symmetry family. The
numbers in square brackets denote the ordering of the eigenvalues, [1] being the eigen-
value of smallest magnitude. Stars denote eigenvalues with multiplicity 2 – the corre-
sponding eigenmodes are identical, subject to a rotation through π/2 radians.

data recover the equivalent results of Leriche & Labrosse (2004). The eigenmodes cor-
responding to the eigenvalues listed in table 6.2 are illustrated in figure 6.6. As the
onset of cellular growth generates a compression in the cell layer, a normal force is
transmitted to the substrate, inducing buckling instabilities for values of T which cor-
respond to eigenvalues of (6.24). The configuration attained for the lowest magnitude
force is mode R(1)

1 , which exhibits a single extremum in the centre of the domain. For
an incompressible substrate (ν = 0.5), this instability occurs for T = −1.45. We may
regard this configuration as most reminiscent of a single crypt. For greater degrees of
compression (i.e. more prolonged cellular growth) we see higher modes; the next mode
to appear is of the R5 family. Solutions which correspond to R5 arise for eigenvalues
of multiplicity 2, enabling us to select two linearly independent eigenmodes to treat as
basis functions, the linear combination of which (under normalisation) gives rise to a
one-parameter family of R5 modes for each eigenvalue pair. For values of T of large
magnitude we obtain highly wrinkled configurations.

Mode selection via a Winkler foundation

As an aside, we now briefly illustrate the manner in which mode selection can be con-
trolled by addition of a supporting foundation attached to the underside of the plate.
We model this support as a Winkler foundation, i.e. a series of elastic springs connecting
points on the plate to a series of reference points. Such elastic foundations have previ-
ously been used to mediate buckling patterns: examples include Audoly & Boudaoud
(2008), Sultan & Boudaoud (2008) and Coman (2010). The one-dimensional models
of chapter 2 illustrated that strengthening of such springs promoted highly wrinkled
modes, while weaker springs facilitated ‘type 1’ modes, for example. For small deflec-
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R1 R2 R3 R4 R5a R5b

Figure 6.6: The first seven eigenmodes of (6.15,6.13) for each representation of D4, cor-
responding to the eigenvalues given in table 6.2. Solutions are categorised according
to their symmetries under reflection about X = 0 and rotation about π/2 radians, as
discussed above.
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tions, adding such a construct to this model requires the addition of a term linear in w
to N , i.e.

N = T∇2w + kw, (6.25)

where the parameter k captures the stiffness of the foundation. Noting (6.25), (6.15) is
replaced by

∇4w = ξ∇2w + ηw, (6.26)

where η = 12k
(
1 − ν2) and ξ is defined as following (6.15).

In figure 6.7 we examine the first eigenmode (i.e. that obtained for the least degree
of compression in the cell layer) as k is varied. As figure 6.7(a) shows, increasing η

results in crossings of the neutral curves, resulting in transitions of the first eigenmode
from symmetry family R1 to R5 (at η = 134), followed by R4 (at η = 448) etc. As
we traverse along any specific neutral curve, we see transitions of the corresponding
eigenmode which preserve the symmetry properties. Starting with the first neutral
curve for η = 0, for example, we initially see mode R(1)

1 as illustrated in figure 6.6.
As we increase η, the eigenmode on this curve will progress continuously through a
sequence of configurations similar to those illustrated in the left-hand column of figure
6.6 in turn.

6.3.2 Buckling of an inhomogeneous substrate

We now consider a substrate whose Young’s modulus varies spatially. We consider,
firstly, a plate which is softened in its centre with Young’s modulus prescribed accord-
ing to

E(X, Y) =
1 + c − c exp (pXm + pYm)

1 + c − c exp (2p)
, (6.27)

where p = −100 and m = 4. Once more, the denominator in (6.27) is introduced to
ensure consistency with (5.14). As c is increased from zero, the magnitude of variations
in the substrate’s stiffness is increased. The first eigenmode of (6.12,6.13,6.27) is illus-
trated in figure 6.8 for increasing values of c. For a strongly softened central region,
buckling is restricted to the centre of the plate. The resulting configuration bears some
similarity to a single colorectal crypt.

Consider, now, a plate whose Young’s modulus is given by

E(X, Y) =
1 + c − c exp

(
p
(

X2 − a2)m
+ p

(
Y2 − a2)m)

1 + c − c exp
(

p (1 − a2)m
+ p (1 − a2)m) , (6.28)

for a = 0.5, which exhibits a distinct softened region in each quadrant. Figure 6.9
illustrates the first eigenmode obtained under the patterning of (6.28). We find that,
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Figure 6.7: Configurations selected by a homogeneous substrate attached to a Winkler
foundation. In (a) we show the first four neutral curves, illustrating the cellular com-
pression, T, required to buckle the substrate as a function of foundation stiffness, η. In
(b-f) we illustrate the first eigenmode for various η.

while we can encourage buckling within the four softened regions, the resulting con-
figuration also exhibits a large dome in its centre. Our numerical simulations do not
reveal a clear ‘four crypt’ profile in the manner illustrated in previous one-dimensional
model analyses. Within the confines of this linear analysis, the existence of a config-
uration with four clear downward-pointing crypts would be required to exhibit the
symmetries of an R1-configuration; it appears that the closest such profile which we
can obtain is that corresponding to mode R(2)

1 in figure 6.6. Note, in particular, that the
nature of the symmetry group respresentations suggests that the first solution in the R4

family cannot be biased to yield four downward-pointing crypts.
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Figure 6.8: Lowest-order configuration of a plate with a softened region in the centre,
with Young’s modulus given by (6.27) (for increasing c) and ν = 0.5. Panels (e)-(h)
show cross-sections of the configurations in (a)-(d), taken along the line Y = X.
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Figure 6.9: Lowest-order configuration of a plate with a softened region in each quad-
rant, with Young’s modulus given by (6.28) (for increasing c) and ν = 0.5. Panels
(e)-(h) show cross-sections of the configurations in (a)-(d), taken along the line Y = X.
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6.4 Conclusions

In this chapter we have presented an analysis of the buckling of a two-dimensional
plate, with a focus placed upon the manner in which variations in mechanical prop-
erties determine the preferred configuration. Our numerical simulations reveal that
we are able to control the buckled configuration by prescribing variations in the plate’s
stiffness; however, for the effects to be sufficiently significant to yield crypt-like profiles,
we require variations in the Young’s modulus to be substantial. A one-thousand-fold
change in the Young’s modulus has been shown to yield crypt-like profiles; however,
biological evidence to support the existence of such sizeable inhomogeneities is cur-
rently lacking. We discuss this in further detail in the following chapter.

Attempts to generate configurations with multiple crypts exhibited less success in the
two-dimensional framework than in the analogous one-dimensional models. While
prescribing softened regions in each quadrant of the plate did facilitate the generation
of crypt shapes therein, large deflections were also observed in the centre of the plate.
The goal of attaining a configuration with a large number of crypts by imposing high
frequency variations in plate stiffness seems optimistic; for such patternings buckling
seems to be controlled by the average plate stiffness and configurations with few ex-
trema remain attainable.

While patterning of material properties does not appear to be a sufficient mechanism
to control crypt-frequency independently, we have shown that more wrinkled config-
urations can be promoted by addition of a supporting foundation (modelled in section
6.3.1 as a series of springs). We can regard such a foundation to represent the sub-
epithelial mucosa in vivo, or as a support for a cell culture substrate in vitro. Stiffening
of the supporting foundation has been shown to bias wrinkled configurations in pref-
erence to single-crypt modes.

In general, we expect buckling modes to be controlled by a combination of mate-
rial properties, stiffness of the supporting foundation and boundary conditions. The
clamped boundary conditions imposed above are largely motivated by the in-vitro
studies discussed earlier. Buckling patterns in vivo may be more accurately described
using periodic boundary conditions, for example, which naturally provide a mecha-
nism by which high-frequency modes are attained. While mode selection seems to be
a more complicated task in two dimensions, many of the patterns of figure 6.6 display
a reassuring resemblance to multiple-crypt configurations.
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Conclusions & Further Work

In this study, we have presented mathematical and experimental models which inves-
tigate the mechanisms underlying colorectal crypt formation in vivo, motivated by the
long-term goal of replicating intestinal tissue in vitro. An understanding of crypt for-
mation is key to successfully engineering intestinal tissue, since the crypts house stem
cells which are responsible for the maintenance of a healthy epithelium. Our focus
throughout has been placed upon one previously postulated mechanism of crypt for-
mation: that during development, the growth of cells in the epithelial layer generates
a compressive stress within the layer itself, resulting in buckling instabilities which
initiate crypt formation.

In chapter 2, we examined an extention to the model of Edwards & Chapman (2007), in
which the epithelium is modelled as a growing extensible beam tethered to underlying
tissue via a series of springs. To incorporate the effects of cellular migration, spring
stresses were considered elastic over short timescales but exhibited viscous relaxation
over longer times. Focussing on the incompressible limit throughout, our studies ex-
tended those of the original authors, who addressed only linear solutions for a limited
range of parameters. We expanded upon their results through a more thorough con-
sideration of post-buckled states; identification of a simplified version of their model,
in which growth can be modelled parametrically; quantification of the energies corre-
sponding to both linear and large-amplitude solutions, in terms of the force exerted
at the boundaries; and a greater focus placed upon the geometric effects of spatial in-
homogeneities of growth and mechanical properties. Under parametric growth, we
examined the sequence of equilibrium configurations attained by beams of increasing
length, and demonstrated that tuning the stiffness of the beam relative to that of stro-
mal adhesion selects the wavelength of the primary buckling instability: stronger ad-
hesion to the stroma predisposes the system to a more wrinkled configuration. Numer-
ical simulations of the full time-dependent model illustrated how non-uniform growth
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(together with relaxation of adhesive bonds) influences the sequence of intermediate
states through which the system passes; however, the ultimate states were shown to be
relatively insensitive to spatial growth patterns. Patterning can instead be manipulated
via localised softening of the beam, which we modelled by locally reducing its bending
stiffness, to produce multiple crypt-like shapes.

In chapter 3, we presented an in-vitro proof-of-principle experiment which validated
the claim that compressive stresses generated by the growth of an epithelial cell layer
can be sufficient to generate out-of-plane deformations. A rat intestinal epithelial cell
line (IEC6) was cultured to confluence upon a flexible silicon substrate. Under standard
culture conditions, upon a rigid surface, cell proliferation ceases due to contact inhibi-
tion as the cells reach confluence. However, upon our flexible substrate, proliferation
was shown to continue beyond confluence since deflection of the substrate resulted
in an enlarged culture surface area. The amplitudes and modes of deformations were
strongly sample-dependent; further studies are required to elucidate the reasons for
such variations. Substrate deflections were shown to be attributable to the cells alone,
since deflections were enhanced on addition of a suitable growth factor, reduced on
addition of a cell lysis buffer, and were negligible in the absence of the cells.

In chapter 4, we developed a one-dimensional mathematical model of the in-vitro study
of chapter 3, modelling the substrate as an extensible beam covered by a confluent
monolayer of cells, each modelled as a linear spring. A discrete representation of the
cell layer was presented and homogenised following Fozard et al. (2010). The model
compared two regimes of attachment between the cell layer and the substrate: that in
which cells are fully bound, preventing any sliding along the substrate, and that in
which cells experience no resistance to sliding. The model predicted that, while ad-
hesion between the layers is essential in transmitting the compressive stress in the
cell layer to bending of the underlying substrate, the resulting buckled shapes are
highly similar in each regime. For a thin substrate, we exploited the small parame-
ter α1/α0 (which captures beam bending resistance relative to beam stretching resis-
tance) to reduce the model to that of an incompressible beam parameterised by its total
length alone. Large-amplitude solutions were accurately approximated in this limit;
the beam’s compressibility is important only in separating the bifurcations of different
modes, favouring an initial bifurcation to a low-order configuration. For an incom-
pressible substrate, all bifurcation points coinside; this observation is consistent with
our in-vitro study, in which the mode of buckling varied between samples. Shapes of
configurations were shown to be solely determined by the net cell growth, and were
insensitive to non-uniformities in growth patterns.
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In chapter 5, we extended the studies of chapter 4 to two-dimensions, modelling the
substrate as a thin plate which may deform due to surface stresses applied by the cells.
The model constituted an extension to von Kármán plate theory which accounts for
material inhomogeneities in the plate, and for non-zero surface stresses on both up-
per and lower surfaces. Since the model of chapter 4 suggested that buckled profiles
are relatively insensitive to cell–substrate adhesion assumptions, we restricted atten-
tion to a confluent cell layer which experiences no resistance to sliding against the
plate. Growth of the cell layer was considered to generate an isotropic compression
in the cell layer, which was transmitted to the substrate as a normal surface stress pro-
portional to the curvature of the layer. Restricting attention to axisymmetric configu-
rations on a disc initially, large-amplitude solutions were determined and compared
with the results of an adaptation of the model of Pamplona & Calladine (1993), which
was derived from the alternative perspective of a thin-shell balance-of-forces formula-
tion. Growth was incorporated into the latter model parametrically via examination
of the equilibrium configurations of discs of increasing radius confined to a prescribed
boundary region. Comparison of these two models illustrated discrepancies in config-
urations and distributions of stresses, for example, highlighting the degree to which
such two-dimensional models are sensitive to the constitutive assumptions inherent
in their derivation. Analysis of the von Kármán model motivates the constitutive
assumption proposed by Evans & Skalak (1980) above that of Pamplona & Calladine
(1993), while suggesting the new constitutive assumption upon the bending moments
given by (5.142). However, variations in results owing to these choices are small in
magnitude for plates with a flat reference configuration. A potential source for more
significant discrepancies lies in the assumption of absolute inextensibility in the out-
of-plane direction in the model of Pamplona & Calladine. While this holds to leading
order in the von Kármán model, the out-of-plane normal strain was shown to be of the
same order of magnitude as in-plane strains. This suggests that replacing (B.20) with a
more realistic alternative might allow the models to agree; however, identification of a
suitable candidate remains a target for future investigation.

In chapter 6, we considered how we may promote buckled configurations which ex-
hibit multiple crypts within the confines of the von Kármán plate model of chapter 5. A
focus was placed upon localised softening of discrete regions of the plate – an approach
which showed some success in the one-dimensional model of chapter 2. Within planar
and axisymmetric reductions of the von Kármán model, such localised softening acted
as an effective way of determining crypt placement; however, mode selection via lo-
calised softening was shown to be less effective when applied to fully two-dimensional
solutions on a square domain. Considering a softened region in each quadrant of the
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plate, for example, we were able to generate crypt-like downward deformations in
these regions, but only at the expense of some upward deformation at the centre of the
plate. We suggest that this behaviour may partially be a consequence of the clamped
boundary conditions deployed here, which are more easily motivated with regard to
our in-vitro study than in the developing intestine in vivo. Periodic boundary conditions
may be considered more appropriate when modelling crypt formation in vivo; configu-
rations with multiple crypts would appear more readily under such assumptions. We
also demonstrated that mode selection can be influenced by tethering of the plate to an
elastic Winkler foundation. Stiffer foundations promote higher-modes which, in some
cases, show promising resemblance to an array of colorectal crypts (see figures 6.6 and
6.7).

The models presented in this thesis consistently point to localised tissue softening
as a plausible mechanism for controlling crypt distribution in vivo. While much is
known about the role of various signalling factors and chemical gradients in crypt
development and function (Sancho et al., 2004; Barker et al., 2008), little information
upon the role of matrix stiffness is currently available, particularly with reference to
the possible existence of localised regions with reduced stiffness. However, TGF-β is
known to stimulate collagen deposition in tissues, resulting in a stiffening of the ma-
trix (Wells & Discher, 2008). In the intestine, TGF-β is expressed in abundance near the
top of the crypt and barely at all near the base (Avery et al., 1993). This suggests that
the extracellular matrix which surrounds the stem cells may be less stiff than that else-
where in the crypt. Previous studies (such as that of Engler et al. (2006), for example)
have also linked variations in matrix stiffness to differentiated cell behaviour, suggest-
ing that matrix stiffness may play a role in determining the patterning of cell function
up the crypt axis. One currently unanswered question is that of whether significant
variations in matrix stiffness are present in an under-developed intestine prior to crypt
formation and, if so, whether the location of softened regions is linked to stem cell
position.

A recent study by Dervaux & Ben Amar (2010) considered a model for three-
dimensional growth with the von Kármán plate framework. The authors showed
that on reducing their model to unidirectional growth, the geometry of buckled pro-
files was controlled by mechanical properties alone, becoming independent of lo-
calised growth patterns. This conclusion recovers those of the one-dimensional mod-
els of chapters 2 and 4. However, the authors state that the growth process plays
a more important role in determining fully three-dimensional configurations since
more complex energetic constraints then apply. The two-dimensional models pre-
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sented here have focused upon uniform growth; the extension of these models to study
growth patterning is an area for future examination. Future mathematical modelling
might also incorporate reaction-diffusion-driven pattern formation mechanisms, such
as those previously studied in the embryo (Thieffry & Sanchez, 2003), in developing
organs such as the heart (Smith & Armstrong, 1993), and in relation to tumour growth
(Gatenby & Gawlinski, 1996; Ferreira et al., 2002), for example. Such models would re-
quire identification of relevant stimulants (such as those discussed in section 1.1.2),
although information upon the signalling, growth and mechanical behaviour in an
under-developed gut is currently much less extensive than that of the developed tis-
sue. Reaction and diffusion of extracellular signals may by linked to the models of this
study via direct coupling to either tissue growth or mechanical properties.

One of the goals of this study was to answer the question of whether replication of in-
testinal tissue in vitro requires a complex preformed scaffold which imposes the crypt
geometry, or whether we can exploit the cells’ ability to form crypts unaided, given
the appropriate environment. Previous intestinal tissue engineering has been heavily
focused around in-vivo approaches, due to the complex structure and function of the
tissue (Day, 2006). Much of our understanding of intestinal cell function, particularly
with regard to the stem cell niche, has been as a result of animal studies. An in-vitro
approach would provide a valuable tool for cancer and stem-cell biologists, and others,
providing protocols which have the potential to yield functional tissues for transplan-
tation. Relatively few previous studies have investigated approaches by which intesti-
nal epithelial cells may form crypts unaided, although the studies of Sato et al. (2009)
and Viney et al. (2009) each enjoyed some success in this area. Our experimental model
has validated the hypothesis that the growth of intestinal epithelial cells can generate
sufficient force to induce out-of-plane deflections of a flexible substrate. We suggest,
therefore, that future replication of intestinal tissue in vitro might exploit this ability.
The conclusions of our mathematical models suggest that a next generation of tissue
engineering scaffolds might comprise a deformable substrate with an array of locally
softened regions which can be deformed more readily. The design of such scaffolds
remains the focus of future research.
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APPENDIX A

Chapter 2 Derivations

A.1 Energy considerations

A.1.1 Buckling under imposed forcing at the boundaries

We define a dimensionless energy functional of the form:

E =

∫ 1

−1
Fds̃ =

∫ 1

−1

{
− 1

2
(

T2
x + T2

y

)
+ Tx (x − s̃) + Tyy

− 1
2β1

Σ2 + Σ

(
ds
ds̃ − 1

)

+
1

2β0

(
dθ

ds̃

)2
−
(

Fx cos θ + Fy sin θ
) ds

ds̃

+ Fx
dx
ds̃ + Fy

dy
ds̃ + F0

dx
ds̃
}

ds̃, (A.1)

where Σ is the tension in the beam and s̃ is the Lagrangian arc-length. We use a vari-
ational approach to illustrate that this energy is pertinent to the system defined by
(2.21–2.22). In (A.1), the first line represents energy due to the stretching of the springs,
the second represents stretching or compression of the beam, the third represents beam
bending and the forth encompasses geometric relations and work done at the bound-
aries.

Following the notation of Arfken & Webber (2005), we describe variations of the nine
dependent variables in terms of the new O(1) functions ηi(s̃) and a scale factor α which
captures the magnitude of the variation. We define

θ(s̃, α) = θ(s̃, 0) + αη1(s̃), (A.2a)

x(s̃, α) = x(s̃, 0) + αη2(s̃), (A.2b)

y(s̃, α) = y(s̃, 0) + αη3(s̃), (A.2c)

s(s̃, α) = s(s̃, 0) + αη4(s̃), (A.2d)
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Fx(s̃, α) = Fx(s̃, 0) + αη5(s̃), (A.2e)

Fy(s̃, α) = Fy(s̃, 0) + αη6(s̃), (A.2f)

Tx(s̃, α) = Tx(s̃, 0) + αη7(s̃), (A.2g)

Ty(s̃, α) = Ty(s̃, 0) + αη8(s̃), (A.2h)

Σ(s̃, α) = Σ(s̃, 0) + αη9(s̃). (A.2i)

The variation of θ, denoted δθ, is given by

δθ = θ(s̃, α) − θ(s̃, 0) = αη1(s̃). (A.3)

Similar expressions hold for the other eight dependent variables. Now E is a functional
which depends upon α, and the condition for selecting an extremum of E is

[
δE
δα

]

α=0
= 0. (A.4)

We evaluate this is follows:

δE
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=

∫ 1

−1
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∂s̃, (A.5)

where additional s̃-subscripts denote derivatives of the dependent variables with re-
spect to s̃. Since F exhibits no dependence upon the derivatives of Σ, Fx,y or Tx,y, the
corresponding terms in (A.5) vanish. From (A.3) we have that δθ/δα = η1 etc. Substi-
tuting these expressions into (A.5) yields

δE
δα

=

∫ 1

−1
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ds̃. (A.6)

Integrating the second set of terms by parts, we obtain the η i as common factors. For
example, we have:

∫ 1

−1
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dη1
ds̃ ds̃ =

[
η1
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−
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Noting (A.7), (A.6) yields
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(A.8)
Of the integrated terms in (A.8), non-zero contributions arise from those terms pertain-
ing to θ, x, y and s only; yielding

[
1
β0

dθ

ds̃ η1 + (Fx + F0) η2 + Fyη3 +
(
Σ − Fx cos θ − Fy sin θ

)
η4

]1

−1
. (A.9)
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We select boundary conditions which result in (A.9) vanishing. Imposing θ = 0 and
y = 0 on s̃ = ±1 forces η1 = η3 = 0 on the boundaries and (A.9) reduces to

[(Fx + F0) η2 + (Σ − Fx) η4]
1
−1 . (A.10)

Since η2 and η4 are non-zero at the boundaries in general, we prescribe Fx = Σ = −F0

at s̃ = ±1. In doing so, (A.10) vanishes.

Considering the remaining non-zero terms in (A.8), we have that the nine bracketed
terms are each equal to zero since the ηi are arbitrary and independent. The resultant
equations are known as the Euler–Lagrange equations. Evaluating the Euler–Lagrange
equations with F prescribed according to (A.1), we have

δF
δθ

− d
ds̃

δF
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= 0 =⇒
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) ds
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d
ds̃

(
dθ

ds̃

)
= 0, (A.11a)
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d
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δF
δys̃

= 0 =⇒ Ty −
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ds̃ Fy = 0, (A.11c)
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ds̃
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= 0, (A.11d)
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= 0 =⇒ − cos θ
ds
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ds̃ = 0, (A.11e)

δF
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− d
ds̃
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δFys̃

= 0 =⇒ − sin θ
ds
ds̃ +
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ds̃ = 0, (A.11f)

δF
δTx

− d
ds̃

δF
δTxs̃

= 0 =⇒ −Tx + (x − s̃) = 0, (A.11g)

δF
δTy

− d
ds̃

δF
δTys̃

= 0 =⇒ −Tx + y = 0, (A.11h)

δF
δΣ

− d
ds̃

δF
δΣs̃

= 0 =⇒ − 1
β1

Σ +

(
ds
ds̃ − 1

)
= 0. (A.11i)

Rearranging, (A.11e) and (A.11f) yield

dx
ds = cos θ, dy

ds = sin θ, (A.12)

while (A.11g) and (A.11h) prescribe spring tensions according to

Tx = x − s̃, Ty = y, (A.13)

and (A.11b) and (A.11c) relate spring tensions to beam stress resultants according to

dFx
ds̃ = Tx,

dFy
ds̃ = Ty. (A.14)

Integrating (A.11d) subject to the constraint that Σ = Fx = −F0 at the boundaries
(where θ = 0), we obtain

Σ = Fx cos θ + Fy sin θ, (A.15)
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and substituting this into (A.11i) we obtain

Fx cos θ + Fy sin θ = β1

(
ds
ds̃ − 1

)
. (A.16)

Finally, from (A.11a) we have

d2θ

ds̃2 + β0
ds
ds̃
(
Fy cos θ − Fx sin θ

)
= 0. (A.17)

For an incompressible beam, β1 → ∞ while Σ = O(1). Therefore, s ∼ s̃ to leading
order. Expanding s in the form s = s̃ + β−1

1 ŝ, (A.16) gives the local stretch as

dŝ
ds̃ = Fx cos θ + Fy sin θ. (A.18)

In this limit (A.12–A.17) yield

d2θ

ds2 + β0
(

Fy cos θ − Fx sin θ
)

= 0, (A.19a)

dFx
ds = Tx,

dFy
ds = Ty, (A.19b)

Tx = x − s, Ty = y, (A.19c)
dx
ds = cos θ, dy

ds = sin θ, (A.19d)

which reduce directly to (2.24). In the incompressible limit, given that the first variation
of E vanishes, we can simplify the expression for E given in (A.1). From (A.19), (A.1)
reduces to

E =
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in which we have energy contributions from stretching of the springs, bending of the
beam and work done at the boundaries respectively.

A.1.2 Parametric growth

We now look to derive a similar expression for the energy corresponding to the formu-
lation of section 2.1.4. Motivated by (A.1), and assuming incompressibility from the
outset, we consider an energy functional of the form

E =

∫ 1

−1
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∫ 1
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dŝ − cos θ

)
+ F̂y

(
dŷ
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where
{

T̂x, T̂y
}

=
{

Tx, Ty
}

/L and all other variables are as defined in section 2.1.4.
For convenience we define x̄ = x̂ − ŝ/L and denote variations of the seven dependent
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variables θ, x̄, ŷ, F̂x, F̂y, T̂x and T̂y by η1, . . . , η7 respectively. Following the approach of
the previous section, (A.9) is replaced by the following:

[
1
β̂0

dθ

dŝ η1 + F̂xη2 + F̂yη3

]1

−1
, (A.22)

which vanishes since θ, x̄ and ŷ are all prescribed on the boundaries (and, hence, their
variations must vanish). Evaluating the Euler–Lagrange equations yields the follow-
ing, for η1, . . . , η7 respectively:

F̂x sin θ − F̂y cos θ =
1
β̂0

d2θ

dŝ2 , T̂x =
dF̂x
dŝ , T̂y =

dF̂y
dŝ , (A.23 a,b,c)

dx̂
dŝ = cos θ, dŷ

dŝ = sin θ, T̂x =

(
x̂ − ŝ

L

)
, T̂y = ŷ, (A.23 d,e,f,g)

which reduces directly to (2.52). Assuming that the first variation of (A.21) vanishes,
we can write the energy expression more compactly as follows:
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dŝ. (A.24)

We now consider the form of (A.24) for small deflections, setting L = 1 + ε2 and

θ = εθ0 + . . . , x̂ = x̂0 + ε2 x̂1 + . . . , ŷ = εŷ0 + . . . , (A.25)

for some 0 < ε � 1. From (A.23d,e), we have

dx̂0
dŝ = 1, dx̂1

dŝ = − θ2
0

2 , dŷ0
dŝ = θ0. (A.26)

Since x̂ = ±1/L on ŝ = ±1, we require x̂0 = ±1 and x̂1 = ∓1 on ŝ = ±1. We, thus, have
x̂0 = ŝ and

x̂1 = A −
∫ ŝ

0

θ2
0

2 dŝ, (A.27)

for some constant A. It follows from (A.26) and (A.27) that
∫ 1

0

θ2
0

2 dŝ −
∫ 0

−1

θ2
0

2 dŝ = 2A. (A.28)

Equivalently, we can write (A.28) as

1
2

∫ 1

0
θ2

0 (ŝ) − θ2
0 (−ŝ) dŝ = 2A. (A.29)

All the configurations which are presented in section 2.1 have θ either odd or even in
ŝ. For such configurations θ2

0(−ŝ) = θ2
0(ŝ) and the integral in (A.29) vanishes, giving

A = 0. From (A.26) and (A.27) we then have
∫ 1

0

θ2
0

2 dŝ = 1, (A.30)
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which provides a normalisation condition which must be satisfied for our asymptotic
expansions to be valid.

Now, it follows from (A.23) that spring stresses satisfy

dT̂x
dŝ = 1 − ε2θ2

0
2 − 1

1 + ε2 + . . . = ε2
(

1 − θ2
0

2

)
+ . . . ,

dT̂y
dŝ = εθ0 + . . . , (A.31)

which motivates the following expansions of beam stress resultants:

F̂x = −F0 + ε2 F̂x1 + . . . , F̂y = εF̂y0 + . . . (A.32)

From (A.23b,c), we have

d2F̂x1
dŝ2 = 1 − θ2

0
2 ,

d2F̂y0
dŝ2 = θ0 =

dŷ0
dŝ . (A.33)

It follows, either from (A.33) or directly from (A.23), that

dF̂y0
dŝ = ŷ0. (A.34)

Leading order terms in (A.24) are as follows:

E =
ε2

2

∫ 1

−1



(

dF̂y0
dŝ

)2

+
1
β̂0

dθ0
dŝ


dŝ. (A.35)

Note, in particular, that the expansion of F̂x in (A.32) implies that the F̂x term does not
contribute at leading order. Given the above results, (A.35) can be written as

E =
ε2

2

∫ 1

−1

(
ŷ2

0 +
1
β̂0

d2ŷ0
dŝ2

)
dŝ (A.36)

Now consider the following integral:
∫ 1

−1

(
d2ŷ0
dŝ2

)2
dŝ =

[
dŷ0
dŝ

d2ŷ0
dŝ2

]1

−1
−
∫ 1

−1

dŷ0
dŝ

d3ŷ0
dŝ3 dŝ

=

[
dŷ0
dŝ

d2ŷ0
dŝ2 − dŷ0

dŝ
d3ŷ0
dŝ3

]1

−1
+

∫ 1

−1
ŷ0

d4ŷ0
dŝ4 dŝ. (A.37)

Since dŷ/dŝ vanishes on the boundaries, the integrated terms are all zero. The leading-
order terms of (A.23a) give

d4ŷ0
dŝ4 + β̂0F0

d2ŷ0
dŝ2 + β̂0ŷ0 = 0, (A.38)

which we substitute into (A.37) to obtain

1
β̂0

∫ 1

−1

(
d2ŷ0
dŝ2

)2
dŝ = −

∫ 1

−1

(
F0ŷ0

d2ŷ0
dŝ2 + ŷ2

0

)
dŝ. (A.39)
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Noting (A.39) and that ε2 = L − 1, (A.36) becomes

E = −1
2 (L − 1) F0

∫ 1

−1
ŷ0

d2ŷ0
dŝ2 dŝ. (A.40)

Integrating by parts once again, we obtain

E = −1
2 (L − 1) F0

{[
ŷ0

dŷ0
dŝ

]1

−1
−
∫ 1

−1

(
dŷ0
dŝ

)2
dŝ
}

. (A.41)

The integrated term vanishes once more, since ŷ = 0 on the boundaries, while the
integral equals four as a consequence of (A.30). So, for small deflections we have

E = 2 (L − 1) F0, (A.42)

which is precisely the total work done at the two boundaries.

A.2 Maxwell viscoelasticity

The model of section 2.2 considers Tx and Ty as viscoelastic in order to capture the mi-
gration of cells along the lamina propria, and the consequent relaxation of stress in the
layer. Here we return to dimensional variables in order to derive the equations which
govern this relaxation. Our derivation is presented in terms of T∗

x , and we simply note
that a corresponding equation holds for T∗

y . We represent the viscoelastic component
of T∗

x by a dashpot, and place this in series with a linear spring with spring constant k∗,
as illustrated in figure A.1. Under tension T∗

x , the linear spring extends by a length u∗
1

according to

T∗
x = k∗u∗

1. (A.43)

Under the same tension, the extension of the dashpot (u∗
2) is governed by

T∗
x = ν∗

∂u∗
2

∂τ∗ , (A.44)

where ν∗ is the coefficient of viscosity, and τ∗ is time measured in the reference frame
(Bland, 1960). The total extension of the layer is then given by

u∗ = u∗
1 + u∗

2, (A.45)

and it follows from (A.43) and (A.44) that

∂u∗

∂τ∗ =
1
k∗

∂T∗
x

∂τ∗ +
1
ν∗

T∗
x . (A.46)

We nondimensionalise (A.46) in a manner consistent with section 2.2, setting u∗ = L∗u,
τ∗ = T∗τ and T∗

x = k∗L∗Tx. The timescale T∗ is left arbitrary here; however, in section
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PSfrag replacements

Linear Spring Dashpot

Force

Figure A.1: Schema of the Maxwell model showing a linear spring and a dashpot in
series.

2.2 we choose T∗ to represent a characteristic growth timescale, which we introduce in
the following section. It follows from (A.46) that

∂u
∂τ

=
∂Tx
∂τ

+
T∗k∗

ν∗
Tx. (A.47)

The quantity ν∗/k∗ is known as the relaxation time of the layer. This is the timescale over
which the layer gradually relaxes after a sudden deformation. The equation governing
Tx is dependent upon one dimensionless parameter: βT = T∗k∗/ν∗, which charac-
terises the relative timescales of growth (T∗) and viscous relaxation of stresses (ν∗/k∗).
For βT � 1, or equivalently T∗ � ν∗/k∗ , (A.47) reduces to Hooke’s law and the springs
behave linearly. It is this linearly elastic behaviour over short times which motivates
the use of the Maxwell model above other viscoelastic models.

Returning to the notation of section 2.2, in which the horizontal displacement of the
point X (in the reference configuration) at time τ is given by

∫ g(X,τ)

g(0)
cos θ

(
s′
)

ds′ − X, (A.48)

we rewrite (A.47) as

∂Tx
∂τ

+ βTTx =
∂

∂τ

∫ g(X,τ)

g(0)
cos θ

(
s′
)

ds′. (A.49)

The corresponding expression for Ty is as follows:

∂Ty
∂τ

+ βTTy =
∂

∂τ

∫ g(X,τ)

g(−1)
sin θ

(
s′
)

ds′. (A.50)

A.3 Derivation of the conservation of mass equation in 2.2.

We regard growth to be a density-preserving process which simply generates an in-
crease in the length (or equivalently mass) of material line elements over a given time
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PSfrag replacements
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g(X∗, τ∗ + dτ∗)

g(X∗ + dX∗, τ∗ + dτ∗)

X∗ X∗ + dX∗

Figure A.2: Deformation of a line element of length dX∗ over time dτ∗.

interval. Returning briefly to dimensional variables, we consider an element of the
beam whose length in the reference configuration is dX∗. As illustrated in figure A.2,
the length of the element at time t∗ = τ∗ is

g∗(X∗ + dX∗, τ∗) − g∗(X∗, τ∗) = dX∗ ∂g∗
∂X∗ (X∗, τ∗), (A.51)

Similarly, the length of the same element at time t∗ = τ∗ + dτ∗ is given, by

dX∗ ∂g∗
∂X∗ (X∗, τ∗ + dτ∗). (A.52)

Thus, the following expression holds for the change in the length of the element over
time dτ∗:

dX∗
(

∂g
∂X∗ (X∗, τ∗ + dτ∗) − ∂g

∂X∗

)
= dX∗dτ∗ ∂

∂τ∗
∂g

∂X∗ (X∗, τ∗). (A.53)

This change in the element’s length is solely due to the growth of the element over time
dτ∗, which is precisely γ∗(s∗) multiplied by the length of the line element (as a function
of time). Thus, the total growth over time dτ∗ is

γ∗(s∗)
∫ τ∗+dτ∗

τ∗
g∗(X∗ + dX∗, t∗) − g∗(X∗, t∗)dt∗

= γ∗(s)dX∗
∫ τ∗+dτ∗

τ∗

∂g∗
∂X∗ (X∗, τ∗)dt∗,

= γ∗(s∗)dX∗
∫ dτ∗

0

∂g∗
∂X∗ (X∗, τ∗ + t̄∗)dt̄∗,

= γ∗(s∗)dX∗
∫ dτ∗

0

∂g∗
∂X∗ (X∗, τ∗) + O(t̄∗)dt̄∗,
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= γ∗(s∗)dX∗dτ∗ ∂g∗
∂X∗ (X∗, τ∗), (A.54)

to leading order. Equating (A.53) and (A.54), the following conservation of mass equa-
tion is obtained:

∂2g∗
∂τ∗∂X∗ = γ∗(s∗) ∂g∗

∂X∗ . (A.55)

We solve (A.55) subject to the symmetry condition g∗(0, τ∗) = 0, and the condition
imposing that the layer is flat initially, g∗(X∗, 0) = X∗. Equation (A.55) is nondimen-
sionalised by setting X = X∗/L∗

0, s = s∗/L∗
0, g = g∗/L∗

0, γ(s) = γ∗(s∗)/γ∗
max and

τ = γ∗
maxτ∗ (where γ∗

max is the maximal value which γ∗ obtains). These changes of
variable reduce (A.55) to

∂2g
∂τ∂X = γ(s) ∂g

∂X , (A.56)

which is solved subject to g(0, τ) = 0 and g(X, 0) = X.
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APPENDIX B

The Model of Pamplona &
Calladine (1993)

Here we adapt the nonlinear shell model for the buckling of a compressed spheri-
cal vesicle presented by Pamplona & Calladine (1993), to derive an alternative two-
dimensional model to the von Kármán model of chapter 5. Rather than the spherical
reference configuration used by Pamplona & Calladine, we consider a sheet of epithe-
lial tissue whose reference configuration is a flat disc. The rim of the disc is compressed
to reside within a specified circular boundary. We deploy a parametric description of
epithelial growth, considering the equilibrium configurations attained by a sequence
of discs of increasing undeformed radius. We restrict our attention to axisymmetric
deformations here. Below, we summarise the model’s derivation (which deploys many
of the constitutive assumptions discussed in section 1.6.3), boundary conditions and
appropriate nondimensionalisation.

B.1 Model derivation

We consider a sheet of epithelial tissue whose undeformed configuration is a disc of
radius R∗ and thickness h∗. The sheet is compressed within a circular boundary of
radius R∗

0 < R∗ which, under appropriate conditions, induces buckling. We assume
that h∗ � R∗ and characterise the profile of the deformed tissue layer by that of its
central plane. We define a right-handed cylindrical polar coordinate system with unit
vectors r̂, ϕ̂ and ẑ which are respectively directed radially from the centre of the disc,
azimuthally in the plane of the undeformed disc, and vertically upwards, as illustrated
in figure B.1. We also define the unit vectors n̂, normal to the surface and directed
downwards when in the reference configuration, and θ̂, tangential to the surface in the
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PSfrag replacements

n̂
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ϕ̂

ϕ̂

r̂

z∗

θ

Figure B.1: Coordinate system used in our adaptation of the model presented by
Pamplona & Calladine (1993).

(r̂, ẑ)-plane. The angle of inclination of θ̂ to the horizontal is denoted θ.

For later use, we note the following relationships between the unit vectors described
above:

n̂ = r̂ sin θ − ẑ cos θ, (B.1a)

θ̂ = r̂ cos θ + ẑ sin θ, (B.1b)

and the corresponding inverse relations:

r̂ = n̂ sin θ + θ̂ cos θ, (B.2a)

ẑ = −n̂ cos θ + θ̂ sin θ. (B.2b)

From the definition of the polar coordinate system, we have

∂r̂
∂θ

= 0, ∂ẑ
∂θ

= 0, ∂r̂
∂ϕ

= ϕ̂, ∂ẑ
∂ϕ

= 0, (B.3)

and (B.1–B.3) imply that

∂n̂
∂θ

= θ̂, ∂θ̂

∂θ
= −n̂, ∂ϕ̂

∂θ
= 0, (B.4a)

∂n̂
∂ϕ

= sin θϕ̂, ∂ϕ̂

∂ϕ
= −r̂, ∂θ̂

∂ϕ
= cos θϕ̂. (B.4b)

We denote the two principal radii of curvature by r∗θ (representing the curvature of
a cross-section of constant ϕ) and r∗ϕ (representing the curvature of a cross-section of
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Figure B.2: Orientation of normals to a surface element inclined at angle θ to the hori-
zontal.

constant θ). The corresponding curvatures are denoted κ∗
θ and κ∗

ϕ respectively, and
satisfy

κ∗
θ = 1/r∗θ , κ∗

ϕ = 1/r∗ϕ . (B.5)

We introduce the spatial variable s∗ as a measure of arclength along a meridian from
the centre of the disc, and note the following geometric relations between s∗, r∗ and z∗

(see figure B.2):
dr∗
ds∗ = cos θ, dz∗

ds∗ = sin θ. (B.6)

For axisymmetric deformations the normals to the surface, for fixed θ, intersect at some
point on the ẑ-axis, marked as P in figure B.2. Noting the geometry illustrated in figure
B.2, it follows that

r∗ = r∗ϕ sin θ. (B.7)

Figure B.3 shows a typical surface element, bounded by meridians separated by dϕ

and parallel circles separated by dθ. Inspection of figure B.3 reveals that

ds∗ = r∗θ dθ. (B.8)

We derive equilibrium equations via consideration of the forces and moments acting
upon a small surface element such as that illustrated in figure B.3. We denote the in-
plane stress resultants by F∗

θ and F∗
ϕ (acting in the meridional and azimuthal directions

respectively), and denote the out-of-plane stress resultant by F∗
n . Since we assume ax-

isymmetry, we have only two non-zero bending moments: M ∗
θ , which acts to bend the

surface in the (n̂, θ̂)-plane; and M ∗
ϕ , which acts to bend the surface in the (n̂,ϕ̂)-plane.

The geometries of these stress resultants and bending moments are illustrated in figure
B.3.
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M ∗
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M ∗
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M ∗
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Figure B.3: Stress resultants and moments acting upon an element of the layer. The
element is bounded by the meridians at ϕ and ϕ + dϕ and the parallel circles located at
θ and θ + dθ. Thus the edges of the element are of lengths r∗dϕ and r∗θdθ respectively.

Variations in F∗
ϕ across the surface element produce a net force given by

(
F∗

ϕr∗θ dθϕ̂
)∣∣∣∣

ϕ+dϕ

−
(

F∗
ϕr∗θ dθϕ̂

)∣∣∣∣
ϕ

=
∂

∂ϕ

(
F∗

ϕr∗θ dθϕ̂
)

dϕ

=

[
∂

∂ϕ

(
F∗

ϕr∗θ
)

ϕ̂− F∗
ϕr∗θ r̂

]
dθdϕ, (B.9)

in which we have Taylor expanded, discarded terms of O(dϕ2) and utilised (B.3) to
differentiate ϕ̂. Resolving the radial term in (B.9) into its normal and azimuthal com-
ponents, we write the force owing to variations in F∗

ϕ as
[

∂

∂ϕ

(
F∗

ϕr∗θ
)

ϕ̂− F∗
ϕr∗θ sin θn̂ − F∗

ϕr∗θ cos θθ̂

]
dθdϕ. (B.10)

Under the assumption of axisymmetry, the first term in (B.10) vanishes. The following
force is also generated as a result of variations in F∗

θ across the element:

(
F∗

θ r∗dϕθ̂
)∣∣∣∣

θ+dθ

−
(

F∗
θ r∗dϕθ̂

)∣∣∣∣
θ

=
∂

∂θ

(
F∗

θ r∗dϕθ̂
)

dθ

=

[
∂

∂θ
(F∗

θ r∗) θ̂− F∗
θ r∗n̂

]
dθdϕ. (B.11)

Similarly, variations in the out-of-plane stress resultant F∗
n generate a net force given by

(−F∗
n r∗dϕn̂)

∣∣∣∣
θ+dθ

− (−F∗
n r∗dϕn̂)

∣∣∣∣
θ

=
∂

∂θ
(−F∗

n r∗dϕn̂) dθ

= −
[

∂

∂θ
(F∗

n r∗) n̂ + F∗
n r∗θ̂

]
dθdϕ. (B.12)
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The net moment upon the element due to M ∗
ϕ is

(
−M

∗
ϕ r∗θ dθθ̂

)∣∣∣∣
ϕ+dϕ

−
(
−M

∗
ϕ r∗θ dθθ̂

)∣∣∣∣
ϕ

=
∂

∂ϕ

(
−M

∗
ϕ r∗θ θ̂

)
dθdϕ

= −M
∗
ϕ r∗θ cos θϕ̂dθdϕ, (B.13)

where we have truncated terms of O(dϕ2) and have utilised (B.4b) in the differentiation
step. Similarly the net moment due to M ∗

θ is

(M ∗
θ r∗dϕϕ̂)

∣∣∣∣
θ+dθ

− (M ∗
θ r∗dϕϕ̂)

∣∣∣∣
θ

=
∂

∂θ
(M ∗

θ r∗ϕ̂) dθdϕ

=
∂

∂θ
(M ∗

θ r∗) ϕ̂dθdϕ. (B.14)

Finally, the moment generated by the out-of-plane stress resultant F∗
n is

F∗
n r∗r∗θ dθdϕϕ̂. (B.15)

In equilibrium the net moment must vanish, and (B.13–B.15) yield
∂

∂θ
(M ∗

θ r∗) −M
∗
ϕ r∗θ cos θ − F∗

n r∗r∗θ = 0, (B.16)

having divided by the common factor dθdϕ. Equilibrium of forces implies (from the
meridional and normal components of (B.10–B.12)) that

θ̂: ∂

∂θ
(F∗

θ r∗) − F∗
n r∗ − F∗

ϕr∗θ cos θ = 0, (B.17a)

n̂: ∂

∂θ
(F∗

n r∗) + F∗
θ r∗ + F∗

ϕr∗θ sin θ = 0. (B.17b)

We utilise (B.8) to rewrite (B.16–B.17) as follows:
d

ds∗ (M ∗
θ r∗) −M

∗
ϕ cos θ + F∗

n r∗ = 0, (B.18a)
d

ds∗ (F∗
θ r∗) − κ∗

θ F∗
n r∗ − F∗

ϕ cos θ = 0, (B.18b)
d

ds∗ (F∗
n r∗) + κ∗

θ F∗
θ r∗ + F∗

ϕ sin θ = 0. (B.18c)

The above equations recover those given in by Pamplona & Calladine (1993).

We now relate the stress resultants in the sheet to the principal stretches, through some
elastic constitutive law. The stretch of a surface element, in some principal direction,
is precisely its length in that direction when deformed divided by the corresponding
length in the reference configuration. We distinguish the variables required to describe
the reference configuration by an over-tilde, denoting the arclength and radial poisition
of a point in the reference configuration by s̃∗ and r̃∗ respectively. We define the two
principal stretches, λθ and λϕ as follows:

λθ =
r∗θ dθ

r̃θ
∗dθ̃

=
ds∗
ds̃∗ , λϕ =

r∗dϕ

r̃∗dϕ̃
=

r∗
r̃∗ , (B.19)
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where the latter equality utilises the fact that dϕ/d ϕ̃ = 1 for axisymmetric deforma-
tions. Following such authors as Pamplona & Calladine (1993), Preston et al. (2008)
and Reboux et al. (2009), we make the constitutive assumption that deformations of
the sheet locally preserve the area of the surface element. We thus write

λθ =
1

λϕ
=

1
λ

, where λ =
ds̃∗
ds∗ =

r∗
r̃∗ . (B.20)

It is then convenient to write F∗
ϕ and F∗

θ in terms of an isotropic stress resultant, denoted
F∗, and relate principal tensions to principal stretches via the assumption that each of
F∗

ϕ and F∗
θ differs from F∗ in a manner proportional to the corresponding principal

stretch. We write
F∗

ϕ = F∗ + H∗λ, F∗
θ = F∗ +

H∗

λ
, (B.21)

where H∗ is the shear modulus of the sheet – a measure of the resistance to changes
in shape in the plane of the surface. We also require a constitutive relationship be-
tween the bending moments, M ∗

θ and M ∗
ϕ , and the principal curvatures, κ∗

θ and κ∗
ϕ.

Following Evans & Skalak (1980), we assume that bending moments are isotropic and
proportional to the mean curvature of the surface:

M
∗
ϕ = M

∗
θ = D∗

(
κ∗

ϕ + κ∗
θ

)
, (B.22)

where D∗ = E∗h∗3/12(1 − ν2) is the bending stiffness of the sheet. We have now deter-
mined 13 equations for the 13 unknowns M ∗

θ , M ∗
ϕ , F∗

θ , F∗
ϕ, F∗

n , F∗, κ∗
θ , κ∗

ϕ, r∗, θ, z∗ and s̃;
noting that r̃ is a prescribed function of s̃. Algebraic manipulations of these equations
reduce the system to:

dr∗
ds∗ = cos θ, (B.23a)
dz∗
ds∗ = sin θ, (B.23b)
dθ

ds∗ = κ∗
θ , (B.23c)

dκ∗
θ

ds∗ =
1

r∗2 sin θ cos θ − F∗
n

D∗ − κ∗
θ

r∗ cos θ, (B.23d)

dF∗
n

ds∗ = −κ∗
θ

(
F∗ +

H∗

λ

)
− 1

r∗ (F∗ + H∗λ) sin θ − 1
r∗ Fn cos θ, (B.23e)

dF∗

ds∗ = −H∗ d
ds∗

(
1
λ

)
+

H∗

r∗
(

λ − 1
λ

)
cos θ + κθ Fn, (B.23f)

with λ prescribed according to
λ =

r∗
s̃∗ , (B.24)

derived as a consequence of (B.20), having noted that the reference configuration satis-
fies r̃∗ = s̃∗. It is convenient to re-express (B.23), treating s̃∗ as the independent variable,
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to yield:

dr∗
ds̃∗ = cos θ/λ, (B.25a)
dz∗
ds̃∗ = sin θ/λ, (B.25b)
dθ

ds̃∗ = κ∗
θ /λ, (B.25c)

dκ∗
θ

ds̃∗ =
1

λr∗2 sin θ cos θ − F∗
n

λD∗ − κ∗
θ

λr∗ cos θ, (B.25d)

dF∗
n

ds̃∗ =
1
λ

[
−κ∗

θ

(
F∗ +

H∗

λ

)
− 1

r∗ (F∗ + H∗λ) sin θ − 1
r∗ F∗

n cos θ

]
, (B.25e)

dF∗

ds̃∗ = −H∗ d
ds̃∗

(
1
λ

)
+

H∗

r∗
(

1 − 1
λ2

)
cos θ +

1
λ

κ∗
θ F∗

n . (B.25f)

Subject to the differing form of λ given in (B.24) (owing to the change in reference con-
figuration), (B.25) recovers equivalent equations given by both Pamplona & Calladine
(1993) and Preston et al. (2008).

B.1.1 Boundary conditions

Following Preston et al. (2008), we derive the appropriate boundary conditions, to
which (B.24–B.25) are solved, as follows. Since (B.25) is singular at the centre of the
disc, where s̃∗ = r∗ = 0, we impose boundary conditions at a point s̃∗ = δ∗ for some
δ∗ � 1. To ensure that solutions are smooth at s̃∗ = 0, we must have that θ → 0
as s̃∗ → 0. Hence, for small s̃∗, r∗ = s̃∗ and λ = 1 to leading order. We expand the
remainder of the dependent variables in powers of s̃∗, denoting

z∗ = z∗0 + s̃∗z∗1 + s̃∗2z∗2 + . . . , (B.26)

for constants z∗i (i = 0, 1, 2, . . .). Similar expansions are adopted for θ, κ∗
θ , F∗ and F∗

n .
Expanding (B.25c) yields

θ1 = κ∗
0 + O(s̃∗), (B.27)

and hence θ = κ∗
0 s̃∗ to leading order. Similar expansions of (B.25e-f) give F∗

n0 = 0 and

F∗
n ∼ −κ∗

0 (F∗
0 + H∗) s̃∗. (B.28)

Noting the forms of the dependent variables in the limit s̃∗ � 1, we suppress singular
solutions by imposing the following approximate boundary conditions:

r∗ = δ∗, θ = κ∗
θ δ∗, F∗

n = −κ∗
θ (F∗ + H∗) δ∗ on s̃∗ = δ∗, (B.29)

which are equivalent to those of Preston et al. (2008). To close our sixth order system,
we thus require three further boundary conditions. We impose that the rim of the disc is
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held fixed at r∗ = R∗
0, for some prescribed R∗

0. Upon the rim, the sheet is held clamped.
We, thus, impose:

θ = 0, r∗ = R∗
0, z∗ = 0 on s̃∗ = R∗. (B.30)

We regard growth as a mechanism by which the layer adopts a sequence of equilibrium
configurations corresponding to discs of increasing radius. We, thus, examine buckled
states as R∗ is increased above R∗

0.

B.1.2 Nondimensionalisation

We nondimensionalise the system by scaling all lengths against the boundary radius,
R∗

0, and all stress resultants against D∗/R∗2
0 . Under these scalings, (B.25) becomes

dr
ds̃ =

1
λ

cos θ, (B.31a)
dz
ds̃ =

1
λ

sin θ, (B.31b)
dθ

ds̃ =
κθ

λ
, (B.31c)

dκθ

ds̃ =
1

λr2 sin θ cos θ − Fn
λ

− κθ

λr cos θ, (B.31d)

dFn
ds̃ =

1
λ

[
−κθ

(
F + α

1
λ

)
− 1

r (F + αλ) sin θ − Fn
r cos θ

]
, (B.31e)

dF
ds̃ = −α

d
ds̃

(
1
λ

)
+ α

1
r

(
1 − 1

λ2

)
cos θ +

κθ Fn
λ

, (B.31f)

where λ = r/s̃ and the dimensionless parameter α = H∗R∗2
0 /D∗ is a measure of the

sheet’s resistance to in-plane shearing relative to its resistance to bending. We solve
(B.31) subject to the nondimensionalised boundary conditions, given by

r = δ, θ = κθδ, Fn = −κθ (F + α) δ∗ on s̃ = δ, (B.32a)

r = 1, θ = 0, z = 0 on s̃ = R, (B.32b)

where δ = δ∗/R∗
0 and R = R∗/R∗

0. Growth of the layer corresponds to a progressive
increase in R from R = 1.
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APPENDIX C

Summary of the Spectral Methods
Deployed in Chapter 6

We determine solutions to (6.12–6.13) numerically, utilising the spectral methods de-
scribed by Trefethen (2000). We briefly introduce these methods below.

Consider, by way of example, a second order ODE of the form

d2u
dx2 = λu, u(±1) = 0, (C.1)

for eigenvalue λ. Following Trefethen (2000), we seek solutions to (C.1) by discretising
the system onto meshpoints denoted x0, x1, . . . , xN (where x0 and xN are the boundaries
of our domain). Trefethen states that for systems whose solutions are not necessarily
periodic, we can construct a spectral method based upon polynomials with maximal
accuracy obtained by choosing meshpoints which “lie in a minimal-energy configura-
tion associated with inverse linear repulsion between points”, rather than in a regular
distribution. We, thus, define our mesh according to

xj = cos (jπ/N) , j = 0, 1, . . . , N. (C.2)

Let us denote u(xj) by uj. Our numerical scheme will be as follows:

• Let p(x) be the unique polynomial of degree at most N with p(x j) = uj for all
0 ≤ j ≤ N.

• We approximate the derivative of u at x j, denoted u′
j, by p′(xj).

It then follows that the process of taking one derivative equates to the following matrix
multiplication:

u′ = DNu, (C.3)
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where DN is an (N + 1) × (N + 1) matrix with elements given by the following rules:

(DN)00 =
2N2 + 1

6 , (DN)NN − 2N2 + 1
6 , (C.4a)

(DN)jj = − xj

2
(

1 − x2
j

) , j = 1, . . . , N − 1, (C.4b)

(DN)ij =
ci
cj

(−1)i+j
(

xi − xj
) , i 6= j, i, j = 0, . . . , N, (C.4c)

where

ci =

{
2 i = 0 or N,
1 otherwise.

(C.5)

Given the Dirichlet boundary conditions of (C.1), we have u0 = uN = 0 and the first
and last columns of DN take no effect when computing (C.3). Similarly, since we have
no interest in u′

0 or u′
N we can ignore these entries. The linear algebra can, therefore,

be simplified by stripping DN of its first and last rows and columns, and working only
with u1, . . . , uN−1. We denote this reduced matrix by D̃N .

We can represent the second derivative in (C.1) by repeated multiplication by D̃N , re-
ducing the problem to

D̃2
Nu = λu. (C.6)

We determine the values of λ for which non-trivial solutions exist by simply deploying
an in-built MATLAB routine to calculate the eigenvalues of D̃2

N .

Now consider the two-dimensional analogue of (C.1), given by

∇2u = λu, u = 0 on x = ±1 and y = ±1. (C.7)

We now denote by uij the solution to (C.7) evaluated at x = xi, y = yj, for 0 ≤ i, j ≤ N.
Our two-dimensional mesh will be defined according to the natural extension of (C.2):

xi = cos (iπ/N) , i = 0, 1, . . . , N, (C.8a)

yj = cos (jπ/N) , j = 0, 1, . . . , N. (C.8b)

Once more, we can ignore all boundary points and work solely with 1 ≤ i, j ≤ N − 1.
For ease of computation we place all of our two-dimensional mesh points into a vector
v of length (N − 1)2, arranging elements according to

uij 7→ v(i−1)(N−1)+j. (C.9)

All that remains in solving (C.7) is to construct the appropriate (N − 1)2 × (N − 1)2

differentiation matrix. We utilise Kronecker products for this. Consider a p × q matrix
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A and an r × s matrix B. The Kronecker product of A and B, denoted A ⊗ B, is a
pr × qs matrix with block form, the ij-block being given by a ijB. Taking the Kronecker
products of D̃N with the identity, I, we can quickly construct matrices representing
second derivatives with respect to each independent variable. To differentiate u(x, y)

twice with respect to x, we simply pre-multiply v by I ⊗ D̃2
N . Similarly, to take two

y-derivatives, we pre-multiply by D̃2
N ⊗ I. We can then define a Laplacian operator, L,

according to
L = I ⊗ D̃2

N + D̃2
N ⊗ I, (C.10)

allowing (C.7) to be written as
Lv = λv. (C.11)

Once more, identifying solutions can be achieved by determining the eigenvalues of L.

Finally, we consider the eigenvalue problem defined by the following fourth order
ODE:

d4u
dx4 = λu, u(±1) = u′(±1) = 0. (C.12)

Since the Neumann boundary conditions in (C.12) are not incorporated in our stan-
dard differentiation matrix above, we cannot evaluate derivatives using DN directly.
However, if we choose a p(x) of the form

p(x) =
(
1 − x2) q(x), (C.13)

where q(±1) = 0, then the Neumann boundary conditions are satisfied automatically.
We evaluate derivatives of u by differentiation of (C.13), i.e.

u′
j =

(
1 − x2

j

)
q′(xj) − 2xjq(xj), (C.14a)

u′′
j =

(
1 − x2

j

)
q′′(xj) − 4xjq′(xj) − 2q(xj), (C.14b)

u′′′
j =

(
1 − x2

j

)
q′′′(xj) − 6xjq′′(xj) − 6q′(xj), (C.14c)

u′′′′
j =

(
1 − x2

j

)
q′′′′(xj) − 8xjq′′′(xj) − 12q′′(xj). (C.14d)

Since q(x) is constructed to satisfy q(±1) = 0 only, we can compute the derivatives of
q(x) in (C.14) via multiplication by DN as above. Our numerical strategy now becomes

• Let q(x) by the unique polynomial of degree at most N with q(±1) = 0 and
q(xj) = uj/(1 − x2

j ).

• Approximate derivatives of u using the formulae of (C.14).

It follows that the appropriate fourth order differentiation matrix (satisfying the bound-
ary conditions of (C.12)) is

D̂(4)
N =

[
diag

(
1 − x2

j

)
D̃4

N − 8diag
(

xj
)

D̃3
N − 12D̃2

N

]
× diag

(
1

1 − x2
j

)
, (C.15)
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Figure C.1: The first three neutral curves of the one-dimensional reduced model of
(6.3–6.7), obtained with the spectral code described in appendix C, for a = 0, m =

4 and p = −100. Solutions obtained via spectral methods are plotted for N = 20
(crosses), N = 30 (triangles), N = 40 (squares) and N = 50 (circles). Solid lines
represent the results of section 6.1, as illustrated in figure 6.2a. For N = 50 the maximal
error between the two methods is O(10−5).

where diag
(

xj
)

represents a diagonal matrix whose jth element is xj. The equivalent
operators for lower derivatives follow immediately from (C.14) and are omitted for
brevity.

We can extend this idea to two spatial dimensions via the natural extension of (C.10).
Thus, we may define a spectral biharmonic operator by

B =
(

I ⊗ D̂(4)
N

)
+
(

D̂(4)
N ⊗ I

)
+ 2

(
I ⊗ D̂(2)

N

)
×
(

D̂(2)
N ⊗ I

)
(C.16)

We deploy the methods of (C.14–C.16) to solve (6.12–6.13) numerically. In the case
of homogeneity we validate our numerical code by comparison of results with those
published by Leriche & Labrosse (2004). We confirm agreement with their results in
section 6.3.1. In the case of an inhomogeneous substrate, we validate the spectral code
by solving (6.3–6.7) as a test case and comparing results with those of figure 6.2(a).
Figure C.1 compares the results of these two numerical methods, with a = 0, m = 4
and p = −100. For N = 20 agreement between the two codes appears relatively poor,
with a maximal error of O(10−1) over the range plotted. However, as N is increased the
results of the codes converge rapidly with the magnitude of errors reducing to O(10−3)

for N = 30 and O(10−5) for N = 50. In the simulations chapter of 6, we fix N = 50.
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