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Abstract

Tissue engineering aims to regenerate, repair or replace organs or tissues which have

become defective due to trauma, disease or age related degeneration. This engineering

may take place within the patient’s body or tissue can be regenerated in a bioreac-

tor for later implantation into the patient. Regeneration of soft tissue is one of the

most demanding applications of tissue engineering. Producing proper nutrient sup-

ply, uniform cell distribution and high cell density are the important challenges. Many

experimental models exist for tissue growth in a bioreactor. It is important to put ex-

periments into a theoretical framework. Mathematical modelling in terms of physical

and biochemical mechanisms is the best tool to understand experimental results.

In this work a mathematical model of convective and diffusive transport of nutrients

and cell growth in a perfusion bioreactor is developed. A cell-seeded porous scaffold

is placed in a perfusion bioreactor and fluid delivers the nutrients to the cells for their

growth. The model describes the key features of the tissue engineering processes which

includes the interaction between the cell growth, variation of material porosity, flow of

fluid through the material and delivery of nutrients to the cells. The fluid flow through

the porous scaffold is modelled by Darcy’s law, and the delivery of nutrients to the

cells is modelled by the advection-diffusion equation. A non-linear reaction diffusion

system is used to model the cell growth. The cell diffusion depends on the cell density

and growth of cells is modelled by logistic growth. The effect of shear stress on nutrient

consumption and cell growth is also included in the model. COMSOL (a commercial

finite element solver) is used to numerically solve the model. The results show that

the distribution of cells and total cell number in the scaffold depends on the initial cell

density and porosity. We suggest various seeding strategies and scaffold designs to

improve the cell growth rate and total cell yield.
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CHAPTER 1

Tissue engineering: Introduction

and literature review

1.1 Introduction

Tissue engineering, the regeneration of organs or tissues in the laboratory for the repla-

cement of damaged or lost tissue, is a multidisciplinary science since it aims to apply

the principles of engineering and life sciences to reinstate the functions of devastated

organs or tissues. Tissue engineering faces several challenges of which achieving signi-

ficant cell growth in the supporting scaffold is one. To achieve the optimal cell density

tissue engineers must ensure adequate delivery of nutrients to the inner region of the

scaffold and uniform cell distribution. During cell growth biochemical and physical

mechanisms interact in a very complex manner. To understand the complex interac-

ting phenomena of these mechanisms in the scaffold-bioreactor system a number of

mathematical models have been developed. Translating complex biological systems

into mathematical equations with well defined parameters we aim to provide a better

understanding of these systems. The crucial benefit of mathematical modelling is that

a simple mathematical model can help to predict and analyze the complex mechanisms

involved in the system. Due to these reasons mathematical models of pathological and

physiological processes have already been developed in various areas e.g. solid tu-

mor growth (Britton, 2003). We focus here on developing mathematical models for tis-

sue growth in bioreactors, which will not only enhance the understanding of the mass

transfer and cell growth processes but, will also demonstrate the utility and potential

of computational models in choosing the various parameters for optimal cell growth.
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1.2 REGENERATIVE MEDICINE

1.2 Regenerative medicine

Regenerative medicine is an emerging multidisciplinary field which aims to restore the

functions of damaged or lost tissue due to accident, trauma, disease or age related de-

generation by a variety of approaches, from cell based therapies. This technology uses

the principles of bioengineering and life sciences to treat the diseased tissue. Broadly,

there are two approaches used in regenerative medicine both of which make use of

human cells to regrow or treat damaged or lost tissue. One approach is called "cellular

therapy" which does not involve the use of scaffold and the other approach which uses

a scaffold is called "tissue engineering". Figure 1.1 shows the classification of regenera-

tive medicine depending on the use of scaffold.

Regenerative
 medicine

Without scaffold

Tissue engineering Cellular therapy

Tissue engineering Tissue engineering

With scaffold

in vitro in vivo

Figure 1.1: Classification of regenerative medicine based on the use of scaffold.

1.2.1 Cellular therapy

The replacement of damaged or diseased cells with healthy functioning ones is called

"cell therapy" or "cellular therapy". This regenerative medicine technique describes the

process of introducing new cells into a tissue to treat a disease. Whole blood transfu-

sions, packed red cell transfusions, platelet transfusions, bone marrow transplants, and

organ transplants are all forms of cell therapy. In some limited cases, injections of cells

to patients is sufficient for the medical treatment. However, in many other cases where

lost tissues or organs have a large size with a distinct three-dimensional structure, cell
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1.2 REGENERATIVE MEDICINE

injection alone is not effective as a cure because of the quick scattering of injected cells

from the site of injection. In such cases, a support is required for cells to adhere, expand,

differentiate, and produce extra cellular matrix for neo-tissue formation.

1.2.2 Tissue engineering

The regenerative medicine technique in which the treatment of damaged or lost tissue

involves the use of scaffold is called "tissue engineering". In in vivo tissue engineering

the tissue is grown in the patient’s body. In in vitro tissue engineering the tissue is

grown in the laboratory for later transplant into the patient’s body. In this thesis we

will focus on in vitro tissue engineering. A common strategy to regenerate new tissues

in the laboratory involves different phases: (1) isolation of specific cells through a small

biopsy from a patient or donor, (2) in vitro expansion of cells isolated from the biopsy,

(3) seeding of cells onto 3-D scaffolds to support cell adhesion and proliferation, (4)

appropriate cell culture using a bioreactor (closed culture environment) to mimic the

conditions in vivo, (5) delivery of the construct to the desired site in the patient’s body.

These phases are illustrated in Figure 1.2.

Figure 1.2: Principles of tissue engineering.
(Source: http://www.centropede.com/UKSB2006/ePoster/images/background/TE−model−large.jpg)
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1.2.2.1 Tissue engineering background

Tissue engineering is a relatively new field which aims to bring together chemical and

material engineering, cell biology and medicine, and theoretical and computational

modelling. The main aim of tissue engineering is to regenerate or recreate human tis-

sue in the laboratory for the repair and replacement of damaged or lost tissue as a re-

sult of an accident, trauma or cancer, age related degeneration or to correct congenital

structural anomalies. Living, physiological three dimensional tissues can be fabricated

in the laboratory by utilizing a suitable combination of cells, scaffold and cell signal-

ling, both chemical and mechanical (Griffith, 2002). Tissue engineering approaches

may be used to recreate skin, muscle or bone tissue or may involve regeneration of en-

tire organs such as heart, kidney or liver etc. It is a cell based therapy that enables the

restoration of function to a variety of tissues and organs (Freed et al., 1994). Scientists

working in the field of tissue engineering believe that in the near future patients with

liver/kidney failure will be cured with implanted neo-organs made from the patient’s

own liver/kidney cells and fibres. Tissue engineers are anticipating that in the near

future insulin dependent diabetic patients will not require frequent insulin injections

because they will have semi-synthetic replacement pancreases, and kidney dialysis ma-

chines will no longer be needed because patients with damaged or failed kidneys will

have the option of replacing their damaged or failed kidneys with new ones grown

from their very own cells (Scientific American, 1999).

The term "tissue engineering" was first introduced by the participants of a National

Science Foundation meeting held in 1987 in the USA. In this meeting researchers from

all over the world gathered to discuss the future of bioengineering, and coined a new

term "Tissue engineering" (Ikada, 2006b). Early developments in this interdisciplinary

field are discussed in Langer and Vacanti (1993). In this paper the authors demonstrate

how the principles of engineering and life sciences can be applied to regenerate a biolo-

gical substitute that restores the functions of damaged or lost tissue. Tissue engineering

defined by Langer and Vacanti (Langer and Vacanti, 1993) as "an interdisciplinary field

that applies the principles of engineering and life sciences toward the development

of biological substitutes that restore, maintain, or improve tissue functions or a whole

organ".

Tissue and organ damage or loss as a result of trauma, infection, disease or age related

degeneration is a major human health problem (Whitaker et al., 2001a). Limited hea-

ling capacity of some tissues/organs is a major clinical problem. Certain tissues and

organs cannot heal satisfactorily by themselves and require treatment to reinstate their
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functions e.g. articular cartilage which is a relatively simple structural tissue with only

one main function (load bearing) and has very limited ability for self-repair. However

none of the available treatments can restore the functions of articular cartilage.

At present artificial organs and organ transplantation are the techniques available to

treat patients who need to reinstate diseased or damaged organs or tissues. However

a number of problems are associated with the use of artificial organs and transplanta-

tion as discussed below. Currently used artificial organs and mechanical devices do not

repair the organ functions and are not intended to become a part of the host tissue. Arti-

ficial organs can produce an inflammatory response in the host tissue (Maguire Jr et al.,

1987) and there is also a great concern over the long term performance of the artificial

organs (Chapekar, 2000). In the past decade advances in biomedical engineering has

improved artificial organs, but still they need better biofunctionality and biocompatibi-

lity (Ikada, 2006a). Alternatively, whole organ transplantation is one of the few options

currently available. During the past century many obstacles to organ transplantation

were overcome, including the use of immunosuppressive drugs, advanced surgical

techniques, and improved postoperative care (care after transplantation) (Ikada, 2006a,

Saltzman, 2004). Due to these developments the transplantation of liver, kidney, heart,

blood vessels and all major organs have become a daily reality. Despite the excellent

results of these transplantation techniques this technology has some major problems

such as donor site morbidity and tissue rejection. Furthermore, the supply of donor

tissue is not enough compared to the number of patients requiring transplantation.

With the increase in population size and consequently an increase in demand for or-

gan transplantation, this problem will become more severe in time. Tissue engineering

offers a promising alternative. A characteristic feature which distinguishes tissue engi-

neering from the other techniques is that it can regenerate tissue by using the patient’s

own cells which are entirely free of severe immune rejection, poor biocompatibility, low

biofunctionality and viral infection (Stock and Vacanti, 2001).

Tissue engineering applications can be classified into therapeutic applications, where tis-

sue is grown in vivo or in vitro and later transplanted into the patient, and diagnostic

applications, where the tissue is fabricated in vitro and is used for testing different che-

mical reactions, including drug metabolism and uptake (Griffith, 2002).

Successful in vitro tissue engineering examples include the fabrication of tissue engi-

neered autologous bladders for the replacement of patients with end stage bladder di-

sease (Atala et al., 2006) and transplantation of tissue engineered airway (Macchiarini

et al., 2008). We discuss the key aspects of in vitro tissue engineering in turn below.
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1.3 Key components of tissue engineering

Tissue reconstruction is based on four fundamental components: appropriate cell type,

development of a suitable scaffold to support cell attachment, growth factors, and bio-

reactors. The cells construct the matrix of the new tissue, while the scaffold provides

the cells a structure on which to grow. The growth factors facilitate the cells to rege-

nerate new tissue (Ikada, 2006a) and bioreactors provide a controlled environment to

allow the cells to grow and differentiate to generate the required tissue. Careful consi-

deration must be given to all the aspects of in vitro tissue engineering including the

source of cells, scaffold construction, mechanical properties and cell seeding strategy.

1.3.1 Cells

The body is composed of several organs and tissues. An organ contains several tissues

and each tissue is an assembly of one or more cell types. Cells are one of the most

basic and important materials for tissue engineering. Cells are chosen mainly for their

ability to proliferate, differentiate, undergo cell-to-cell signalling and perform biologi-

cal activities e.g. extracellular matrix production. The starting point for any attempt

to engineer a tissue or organ is a consideration of the types of cells to be employed.

The cell source can be autologous (cells taken from the patient), allogeneic (cells from

other human sources), or xenogeneic (cells from different species). Alternatively stem

cells may be used collected from either autologous, allogeneic or xenogeneic sources

(Griffith and Naughton, 2002). There are both advantages and disadvantages of each

of these. Autologous cells have no legal problems with their use and there is no pro-

blem of immune rejection. The patient will not reject the engineered tissue because it is

synthesized by their own cells and the patient will not have to take immunosuppres-

sive drugs. However the problems associated with the use of autologous cells are (1)

they may be unhealthy and (2) it may be difficult to harvest a sufficient amount of cells

in a reasonable time (Curtis and Riehle, 2001). If the number of cells are insufficient

for clinical use it is first necessary to expand the number of cells by cell culture. This

procedure not only requires a clean cell processing centre but it is also time consuming.

Thus to get the sufficient amount of autologous cells we have to wait for a long time

(Curtis and Riehle, 2001). On the other hand allogeneic cells have the problem of im-

mune rejection but are available in sufficient amounts to rebuild the tissue. Xenogeneic

cells not only have the problem of immune rejection but there may be problems with

animal virus transmission (Lanza et al., 2007). The frequency of pig use as a cell source
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has dramatically reduced after the report which indicated the presence of porcine en-

dogenous retrovirus (Patience et al., 1997).

By definition stem cells are pluripotent which means that they have the ability to dif-

ferentiate virtually into every cell type. Modern research on stem cells has contributed

significantly to the progress of tissue engineering. Stem cells may be derived from ei-

ther fetal tissue or from adult tissue. The use of fetal tissue raises immunological and

ethical issues so recent studies have focused on cells derived from adult tissue (Stock

and Vacanti, 2001). Isolation of several adult stem cells, including mesenchymal, he-

matopoietic, neural and hepatic stem cells, have opened a new avenue for obtaining

a sufficient supply of cells to rebuild the tissue (Chapekar, 2000). Currently stem cell-

based technology has been used to engineer several tissues including epithelia (skin,

cornea) and skeletal tissues (Bianco et al., 2001).

There are two basic approaches to cell harvest. The first approach which is used to

obtain autologous cells is by biopsy. This approach can be applied to most organs

e.g. heart, liver, skin, bone marrow, cartilage and blood vessels. But for some tissues

or organs, such as heart valves, direct biopsy is not feasible and related harvest sites

must be considered. For heart valves peripheral vein segments are considered to be

a suitable cell source. In neural tissues e.g. spinal cord and peripheral nerve, neither

direct or indirect biopsies are feasible (Stock and Vacanti, 2001). One way to counter

this cell source difficulty is to isolate stem cells.

The small numbers of cells isolated from biopsies must be expanded before they are

seeded on a scaffold. 2-D cell culture is an excellent method for increasing the number

of cells. 2-D monolayer cell culture on a flat plate substrate is the most common me-

thod to increase the number of cells. In this method cells are allowed to grow in one

plane under space limiting conditions. This results in an artificial growth environment

which is completely different from the in vivo environment and the cells may lose their

functional behaviour. In the human body most cells occur in a 3-D environment so 3-D

culture has been preferred to 2-D culture (Abbott, 2003). Many cellular processes in-

cluding morphogenesis and organogenesis occur exclusively when cells are organized

in 3-D fashion. In 3-D culture at high cell density enhance cell-cell interaction which

is favorable for extra cellular matrix (ECM) production. 3-D culture is poor for cell ex-

pansion. Cells in 3-D culture are surrounded with a substrate from multiple directions.

However 2-D culture may change to 3-D culture once cells begin to be surrounded by

the matrix produced by the cells themselves (Ikada, 2006a).
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1.3.2 Scaffold

When a tissue is severely damaged or lost not only are a large number of functional

cells damaged but the extra cellular matrix (ECM) is lost. In this situation we need

artificial or biologically derived ECM for the cells to synthesize a neo-tissue. In tissue

engineering we call this ECM template a "scaffold" (Ikada, 2006b). The cells must be im-

planted or seeded onto an artificial structure capable of supporting three-dimensional

tissue formation. The scaffold provides an architecture on which seeded cells can orga-

nize and develop into the desired organ or tissue prior to transplantation. Cell attach-

ment is the first step in starting cell growth and neo-tissue formation. There are many

different types of scaffolds, and Figure 1.3 shows an example of a tissue engineering

scaffold.

Figure 1.3: Tissue engineering scaffold. Poly(lactic-coglycolic acid) porous scaffold for
bone tissue engineering produced by melt casting and particulate leaching.
(Source: http://www.msm.cam.ac.uk/ccmm/research/vam27.html)

To achieve the goal of tissue reconstruction, scaffolds must meet some specific require-

ments.

1. The scaffold should be highly porous with adequate pore size having intercon-

nected micro pores, so that the seeded cells can migrate into the inner region of

scaffold and increase the cell number there. The importance of large porosity is

that the nutrients can reach the cells very easily and it also provides the space

for the cells to grow. The micro pores are responsible for vascular formation and

transport of nutrients and growth factors in and out of the scaffold (Ikada, 2006a).
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2. The scaffold material should be bio-compatible (the material is compatible with

living cells and poses no risk of injury, toxicity and immune rejection) and bio-

degradable because it is essential that scaffold should degrade with the passage

of time without the necessity of surgical removal (Chapekar, 2000, Stock and Va-

canti, 2001). The rate of degradation of scaffold material must coincide as much

as possible with the rate of new tissue formation (Griffith and Naughton, 2002,

Hutmacher, 2000). This means that while cells are fabricating their own natu-

ral matrix structure around themselves, the scaffold is able to provide structural

integrity and maintain the mechanical strength within the body until tissue rege-

neration is almost completed and eventually it will break down leaving the newly

formed tissue which will take over the mechanical load (Chapekar, 2000, Ikada,

2006b). If the scaffold material remains for a longer time than desired then the

remaining scaffold material may slow down the tissue formation rather than pro-

mote it. Premature degradation of scaffold material combined with slow deve-

lopment of replacement tissue may result in reduced mechanical strength, which

may lead to its failure (Chapekar, 2000). Thus the rate of scaffold degradation is

crucial to the success of tissue formation.

Generally the first step in tissue engineering is the seeding of cells into the porous scaf-

fold, which plays an important role in determining the progression of tissue formation

(Vunjak-Novakovic et al., 1998). Achieving a high cell density and the desired cell dis-

tribution in the scaffold are the main challenges of cell seeding technologies in tissue

engineering. Seeding cells into the scaffold at high densities has been associated with

enhanced tissue formation in the 3-D construct (Holy et al., 2000). Furthermore the ini-

tial distribution of cells within scaffold has been shown to influence the distribution of

tissue subsequently formed within the engineered construct. If the number of seeded

cells is small then the tissue formation is poor. If the density of the seeded cells into

scaffold is low, then the distance between the neighboring cells is large; the resulting

tissue that forms is then poor because of insufficient communication between the cells

(Ikada, 2006b).

Formation of tissue with desirable properties is entirely dependent on the scaffold me-

chanical properties at both the macroscopic and microscopic level. Macroscopically

the scaffold should be able to provide stability to the tissue. At the microscopic level

cell growth, differentiation and the ultimate tissue formation are dependent on the lo-

cal mechanical environment and mechanical properties of scaffold such as elasticity,

compressibility, tensile strength etc. are key.
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Various material have been used for the construction of scaffolds in tissue engineering.

Scaffold materials for tissue engineering must be bio-compatible and biodegradable.

Poly(α-hydroxyacid), especially lactide and glycolide polymers, have widely been used

as biomaterials (Whitaker et al., 2001b). A general criterion for selecting a polymer as

a biomaterial is to correlate mechanical properties and degradation time to the needs

of the application (Middleton and Tipton, 2000). Several different materials have been

evaluated as potential scaffold materials for tissue engineering. These include biode-

gradable synthetic polymers such as polyesters, polyurethane, polydioxane etc., and

naturally derived polymers such as collagen, glycosaminoglycan, chitosan and hyalu-

ronic acid. Other materials such as metals (e.g. titanium) and ceramics (e.g. hydroxy-

apatite) have also been in use over the last century, but most of these materials are not

biodegradable and have limited process abilities. Most of the commercially available

biodegradable materials used for tissue engineering are polyesters, derived from lactic

acid, glycolic acid and their co-polymers. These polymeric materials are being inves-

tigated worldwide for applications in fields of surgery (e.g. surgical sutures, pins and

screws), pharmacology (drug delivery system) and tissue regeneration (e.g. scaffolds

for orthopaedics tissue engineering, cartilage, bone skin, ligaments etc). This is due to

their biocompatibility, variable and controlled degradability and approval by the Food

and Drug Administration (Boccaccini and Blaker, 2005).

To process the polymers into desirable, 3-D structure with interconnected pores sui-

table for in vivo or in vitro tissue engineering, a variety of fabrication techniques have

been employed for scaffold production (Hutmacher, 2000). Current techniques include

solvent casting and particulate leaching, fibre extrusion and bonding, solid-free fabrica-

tion, phase separation and emulsion freeze-drying, gas and supercritical fluid foaming.

Supercritical fluid (SCF) technology has been seen as a promising alternative to the

other techniques (Rose and Oreffo, 2002, Woods et al., 2004). This is due the absence

of co-solvents and thermal processing that may be harmful to adherent cells, nearby

tissues and biologically active factors. Therefore, SCFs offer ideal conditions for seve-

ral tissue engineering applications such as the incorporation of growth factors within

polymeric scaffolds, used to stimulate or inhibit the cell growth, differentiation, migra-

tion and extracellular matrix (ECM) production. Osteoconductive materials, such as

hydroxyapatite and tricalcium phosphate, can also be incorporated within polymeric

scaffolds to minimize the mechanical competence concerns. Furthermore this techno-

logy avoids the use of traditional salt leaching methods to improve the porosity and

interconnectivity or even additional drying steps for solvent removal as required by

most of the current techniques.
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In addition to the above techniques, in recent years, sophisticated technologies have

been employed for scaffold fabrication. They include solid free prototype and elec-

trospinning scaffold. Electrospinning scaffold does not require an expensive appara-

tus but solid free prototype needs high cost apparatus. Some special type of scaffolds

such as naturally derived scaffolds, injectable scaffolds, elastic scaffolds, inorganic scaf-

folds and composite scaffolds are fabricated for specific tissue engineering applications.

Scaffolds have also been produced for individuals via custom 3-D printing using a la-

ser stereo lithography technique (Howard et al., 2008). This allows the scaffold to be

built from computed 3-D information derived from patient scans or from computer

simulations (Antonov et al., 2005).

1.3.3 Growth factors

A variety of proteins play a key role in promoting or preventing the cell growth, diffe-

rentiation, migration, adhesion and motility (Whitaker et al., 2001b). These proteins are

called the growth factors (Ikada, 2006a). Within the body these proteins can be genera-

ted by the cells themselves (autocrine) or as a result of communication with the neigh-

bouring cells (paracrine). There are several characteristic properties of growth factors.

A growth factor can be produced by the variety of cell types and the same growth

factor can act on many cell types with a diverse range of effects (Babensee et al., 2000,

Whitaker et al., 2001b). Growth factors can be secreted by many cell types and typically

act as signalling molecules between cells (Rose and Oreffo, 2002). For optimized tissue

formation growth factors should be presented to the cells for a limited period of time

in the correct local environment (Babensee et al., 2000, Lanza et al., 2007). The growth

factors that have frequently been applied to tissue engineering include bone morpho-

genetic proteins (BMPs), basic fibroblasts growth factors (BFGF), epidermal growth

factor (EGF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF)

and transforming growth factor-β (TGF-β) (Ikada, 2006a, Whitaker et al., 2001b). Some

growth factors such as platelet derived growth factors (PDGF), epidermal growth fac-

tor (EGF) and hepatocyte growth factors act as powerful agents to stimulate the mitosis

of cell proliferation whereas others such as nerve growth factor (NGF) stimulate cell

migration (Whitaker et al., 2001b).

Growth factors are important for successful repair and regeneration of tissue and,

hence, they play a central role in tissue engineering strategies (Nimni, 1997, Whitaker

et al., 2001b). Application of growth factors in tissue engineering requires enhance-

ment of their activities in vitro by means of adequate delivery system. The method
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with which the growth factors are delivered to the site of action is also very critical

to the success of tissue engineering. The delivery methods include bolus injection;

release of growth factors directly on scaffold surfaces; in collagen sponge or porous

coating; constant delivery via osmotic pump; and controlled release of growth factors

trapped in an absorbable polymer. In tissue engineering there are two potential deli-

very systems. Firstly growth factors can be applied directly into the scaffold at or after

fabrication (Fournier and Doillon, 1996, Tabata et al., 1999). Growth factors delivered

to a biodegradable scaffold system are released as the scaffold degrades. The growth

factor, directly incorporated into a scaffold, is released by a diffusion-controlled me-

chanism (Whang et al., 1998). Secondly, the growth factor delivery device in the form

of microparticles, nanoparticles, fibres or injectable complexes can be incorporated into

the scaffold (Mooney et al., 1996).

A single growth factor can be used for the tissue engineering of one tissue but a combi-

nation of growth factors can be used for the enhancement of tissue regeneration (Ikada,

2006a). For the supply of sufficient nutrients to the cells involved in the tissue regenera-

tion, tissue engineers are working to induce neovascularization using different growth

factors.

1.3.4 Bioreactor

After cell seeding onto the scaffold, it is necessary to allow cell growth in vitro prior to

transplantation. This may be done by culturing the scaffold in a system which aims to

provide the same conditions as in vivo. A bioreactor is a closed culture environment in

which biological and/or biochemical processes develop under controlled environmen-

tal and operating conditions (Ellis et al., 2005). The main aim of bioreactor is to control

the biochemical and biomechanical environment. The variables that are controlled in-

clude: pH, temperature, pressure, nutrient supply, waste removal, media flow rate,

shear stress, mechanical and hydrodynamic forces. The functions of bioreactors are to

provide suitable nutrient, growth factors and oxygen delivery to the cells in the scaf-

fold, and to remove waste products such as lactate and carbon dioxide from the scaffold

(Martin et al., 2004). Different techniques have been used for cell culture in a bioreac-

tor, but seeding efficiencies are not yet at optimal levels. Lower seeding densities affect

the amount of time and resources required to obtain scaffolds ready for implantation.

The most commonly used seeding method is the static loading of cells onto a scaffold,

but the main disadvantage of this technique is the low seeding efficiencies and non-

uniform cell distribution within scaffolds (Kim et al., 1998).
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We can classify the bioreactors by their main mode of operation, e.g. spinner flask,

rotating wall and perfusion bioreactors.

1.3.4.1 Spinner flask bioreactor

A mechanically stirred flask is considered one of the simplest bioreactors and the most

common mechanically stirred bioreactor is the spinner flask bioreactor (Ellis et al.,

2005). Scaffolds are attached to needles hanging from the cover of the flask and suspen-

ded within a stirred suspension of cells. During seeding cells are transported onto and

into the scaffold by convection (Freed and Vunjak-Novakovic, 1997). During culture,

medium stirring enhances mass transfer. This method has favorable results but the

main disadvantages of the technique includes the amount of time required for seeding,

low efficiency at low cell concentrations, non-uniform cell distribution and undesirable

high shear rates which can damage the cells (Ikada, 2006a, Wendt et al., 2003). The de-

gree of shear stress depends on the stirring speed and morphology of scaffold. Figure

1.4 shows a simple spinner flask bioreactor.

Needle

Magnetic bar

Scaffold
Cell suspension

(Stirrer)

Figure 1.4: Spinner flask bioreactor.

1.3.4.2 Rotating wall vessel bioreactor

This is composed of two cylinders and the scaffolds are placed in the annular region

between the two cylinders. The inner cylinder is stationary and gas exchange is allo-

wed through the inner cylinder while the outer cylinder is impermeable and rotates in a

controlled fashion. The vessel is initially seeded with the suspension of cells in culture

media. As the bioreactors turns, the cells continuously fall through the culture media

and, over a period of time, cells self assemble to form a 3-D tissue construct. Scaffolds
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may be added to the vessel at the same time when the cell suspension is introduced to

act as a substrate where cells can adhere (Lappa, 2003, Waters et al., 2006). This bio-

reactor provides dynamic culture environment to the constructs, with two beneficial

factors: efficient mass transfer rate and low shear stress (Martin et al., 2004). The vessel

walls are rotated at a controlled rotation rate which enables the net gravitational force,

drag force and centrifugal force acting on the scaffold to be balanced. Figure 1.5 shows

a simple rotating wall bioreactor.

Inner cylinder
Outer cylinder

Scaffold

Cell suspension

Figure 1.5: Rotating wall vessel bioreactor.

1.3.4.3 Perfusion bioreactor

In this type of bioreactor a pump is used to force the medium through the intercon-

nected pores of the scaffold rather than around the edges. During seeding cells are

transported directly into the pores of the scaffold. During culture the availability of

fresh medium through the construct enhances mass transfer not only at the surface of

the construct but also within the internal porous network.

The perfusion bioreactor has one problem of non-uniform cellular secretions through

the thickness of the construct along with damage to some of the cells. If the fluid is

flowing from one end of the scaffold then the front surface has high shear stress due to

incoming fluid, while the back side does not feel the force except for inside the pores.

Due to this reason a thicker matrix will be formed at the front surface as compared to

the back surface. Figure 1.6 shows an example of perfusion bioreactor.

Using the principles of convective transport for scaffold seeding, the flow of a cell sus-

pension directly through the pores of a 3-D scaffold produces more uniformly seeded

scaffolds compared with static seeding (Li et al., 2001). Higher seeding efficiencies and

more uniform cell distributions were achieved as compared with either static seeding
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Figure 1.6: Perfusion bioreactor.

or stirred flask bioreactor when direct perfusion was incorporated into a bioreactor

capable of performing both 3-D scaffold seeding and subsequent cell culture.

In the early days of bioreactor use in tissue engineering the main aim of the bioreactor

was to provide the nutrient to the inner region of the construct but presently bioreac-

tors not only control the supply of nutrients to the cells but also control the tempera-

ture, pH, medium flow rate, shear stress, waste removal, pressure, hydrodynamic and

mechanical forces. Most commonly used bioreactors are rotating wall and perfusion

bioreactor systems. In rotating wall bioreactors the cell-seeded scaffold are suspended

in the cylindrical chamber that allow the construct to fall through the medium but they

do not hit the sides. In a perfusion bioreactor the medium is pumped into the construct.

Both systems apply mechanical force for example shear stress exerted on the cells and

allow nutrient transport. In these bioreactor systems stresses and strains applied to

cells are not experimentally measurable. These mechanical forces can influence the tis-

sue formation and bioreactor performance, so it is necessary to understand the affect

of these forces between the cells and ECM to produce a functional tissue.

Regenerating tissue in the laboratory is a complex process and several mechanical and

biochemical forces are in operation during the growth of tissue. It has been demons-

trated that the bioreactor environment has a profound impact on tissue morphology

and mechanical environment. So it is very important to identify the effect of these

forces during the formation of tissue. Very little is known about either how these forces

should be applied for specific tissue or how these forces are used by the cells (Martin

et al., 2004). For the successful growth of a tissue in vitro it is very important to tis-

sue engineers to study the effect of biochemical, mechanical or hydrodynamic forces

during the tissue formation.
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1.4 Mechanotransduction

Mechanotransduction is the study of the mechanism by which mechanical forces for

example between cells, between cells and the scaffold, and forces exerted on cells by

fluid shear stress are converted into biochemical signals and how cells respond to these

signals. Externally applied mechanical forces can effect cell proliferation, cell orienta-

tion, gene activity and cell viability (Butler et al., 2000). For example Akhyari et al.

(2002) found that cyclic mechanical stretch enhances the proliferation and matrix orga-

nization of human heart cells seeded on a gelatin -matrix scaffold. Several groups have

studied the mechanical effects induced by the fluid flow (Girard and Nerem, 1995, Ives

et al., 1986). There is also evidence that during in vitro tissue growth the mechanical

input (i.e. hydrostatic pressure and shear stress induced by fluid flow) gives tissue that

has characteristics very similar to in vivo tissue structures (Ellis et al., 2005).

To understand the molecular basis for mechanotransduction we need a detailed know-

ledge of the distribution of forces experienced by an individual cell. Currently we have

sufficient knowledge to measure molecular level forces in only a few cases. The disco-

very of the way in which these forces influence the cellular response will open a new

avenue for many tissue engineering applications. Several authors have used different

techniques to stimulate the individual cell mechanically, but they found that the cel-

lular response is multifaceted and diverse. Similarly there are likely to be a variety of

sensing mechanisms and locations in the cells where forces can be converted from a

mechanical to biochemical signal. Theoretically both continuum and microstructural

approaches can be used to determine the force distribution. For a detailed description

of cell mechanics and mechanotransduction pathways readers are directed to Huang

et al. (2004).

In vitro static culture for cell monolayers and small explants has been employed for

many years. These techniques can provide sufficient nutrients to tissues with a thick-

ness less than few hundred micrometers. Due to limitation of diffusion of nutrients and

waste products throughout the tissue engineered construct, when considering the for-

mation of large tissue such as muscle or breast, it is found that the cell density increases

at the periphery of the construct where the nutrient concentration is high and a necrotic

core can form in the internal regions of the construct (Cartmell and El-Haj, 2005). To

overcome this problem bioreactors capable of perfusion are widely used. These bio-

reactors not only increases the mass transfer to the internal regions of the construct but

can also provide controlled mechanical stimuli such as flow-mediated shear stresses

and hydrostatic pressure (Cartmell et al., 2003, Freed and Vunjak-Novakovic, 1995). It
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has been documented that fluid induced shear stress is proportional to perfusion ve-

locity. Fluid flow can have harmful effect on the tissue regeneration. Several authors

studied effect of fluid flow on the tissue regeneration and found that stimulation via

fluid shear stress enhances tissue regeneration (Bakker et al., 2004, Klein-Nulend et al.,

1995, You et al., 2000, 2001). Cartmell and El-Haj (2005) studied the effect of mechanical

forces applied via fluid induced shear stresses. They applied different patterns of fluid

flow (unidirectional, bi-directional) and different modes of shear stimulus to cells. They

also found that when the cells experience a given force they respond by upregulating

the cell’s proteins and genes. The tissue engineering construct thus formed has more

strength than the non-mechanically stimulated counterparts. The mechanical stimuli

acts in a similar fashion to the growth factors approach (Cartmell and El-Haj, 2005).

It has been found experimentally that the magnitude of the shear stress effects tissue

regeneration. Tissue regeneration is unaffected by low shear stress but intermediate

values of shear stress enhances tissue regeneration. It has been found that high shear

stresses are responsible for the cell death (Cartmell et al., 2003).

To summarize we can say that mechanical stimuli are crucial for formation of tissue

outside the body in the laboratory. Several studies proved that mechanical effects can

enhance the structural and functional properties of engineered tissue (Martin et al.,

2004). Very little is known about the specific mechanical forces that can stimulate the

particular tissue. It is therefore a great challenge for tissue engineers to discover these

mechanisms either experimentally or theoretically so that appropriate methods can be

employed in vitro to fabricate the functional tissue for implantation. The bioreactor can

be very important to study the effect of mechanical forces in developing the engineered

tissue and also the response of engineered tissue to mechanical forces.

1.5 Limitations of nutrient supply in tissue engineering

An important step in the success of tissue engineering is the transport of oxygen and

nutrient to the cells (Kellner et al., 2002). If oxygen concentrations are inadequate, cell

proliferation ceases and viability begins to break down. Indeed, under hypoxic (low

oxygen concentration) conditions the oxygen required for metabolism is very low, and

in this situation cells convert glucose to lactic acid (Boutilier and St-Pierre, 2000). In

this process each glucose molecule gives only 2 ATP molecules(the basic energy unit).

On the other hand under aerobic condition one molecule of glucose produces up to 36

molecules of ATP (Stephanopoulos et al., 1998). That means under hypoxic conditions
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glucose utilization increases which causes a decrease in glucose concentration and an

increase in lactate concentration causes a decrease in pH. If the glucose concentration

becomes too low or the lactate concentration becomes too high then cells begin to die

(Boutilier and St-Pierre, 2000). Tolerance to hypoxic conditions differs widely between

cell types. Some cells can live under the mild hypoxic conditions for several hours but

in the complete absence of nutrients cells can survive only for a few minutes (Boutilier

and St-Pierre, 2000).

In the case of large tissue formation a significant issue is the supply of nutrients to

the cells. The very high cell density in most soft tissues often combined with large im-

plant dimensions, means that the supply of nutrients is a critical factor in the success or

failure of soft tissue scaffold (Croll et al., 2005). Due to the constraint of oxygen trans-

port in the case of cortical bone and cartilage, which are relatively avascular tissues,

scientists have only been able to synthesize functional tissue in the laboratory with a

thickness less than few hundred micrometers (Kellner et al., 2002). In liver tissue engi-

neering, a very low initial density of 106/mL of rat liver cells are seeded on a 5mm thick

PLGA ( poly lactic co-glycolic acid) foam scaffold and cultured under static conditions.

It was found that liver cells lost 50% of their DNA contents after 12 days (Hasirci et al.,

2001). When the cells are seeded uniformly throughout the scaffold then the cells near

the oxygen source consume oxygen and proliferate very quickly; but cells in the dee-

per sections of the scaffold will not get enough oxygen for growth and they experience

hypoxic conditions. The cell density becomes non-uniform giving more cells near the

oxygen source and very few cells in the deeper sections of the scaffold.

Existing techniques to improve the nutrient delivery to, and waste removal from, cells

seeded onto 3-D scaffolds take advantage of the scaffold structure. Scaffolds are often

highly porous with pore size ranging from 250µm to 600µm. The nutrients are delivered

to the cells via a liquid called the culture medium. Nutrients that the cells need to

perform their functions include oxygen, glucose, ascorbic acid (vitamin C) and various

salts. The cells produces waste products e.g. lactic acid and carbon dioxide, which

lowers the pH of the surrounding medium which can be harmful for the cells.

1.6 Mathematical modelling in tissue engineering

In this Section some mathematical models relevant to tissue growth within a dyna-

mic culture environment are reviewed. Two different approaches can be considered

in constructing mathematical models for dynamic cell culture. The first approach is to
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formulate the model by considering the interactions of individual cells. In this case the

position and velocity of each individual cell in the system is considered. The second

approach considers the system as a continuum. In this case the position and velocity

are assumed to be average quantities over some local region. The two approaches have

different advantages and disadvantages. For example, individual cell-based modelling

allows incorporation of rules governing cell behaviour, and gives detailed information

about the dynamics of the cell population such as movement of each cell (Armstrong

et al., 2006). Since individual cell-based models consider the behaviour of each indi-

vidual cell these models are very complex and can only be solved by numerical tech-

niques, which can be numerically expensive and time consuming if the number of cells

are very large. Alternatively, continuum models can be expressed in terms of systems

of coupled partial differential equations, which sometimes allows us to apply classi-

cal applied mathematics techniques such as asymptotic approximations to solve the

system. Alternatively, where analytical solution does not exit we employ numerical

techniques to solve the continuum model which are computationally quicker and easy

to implement.

Slime-mold dictyostelium discoideum is a widely used individual based model system.

Individual based model of this organism have been developed to study several basic

developmental processes, including cell-cell signaling, signal transduction, pattern for-

mation, aggregation and cell motility. Palsson and Othmer (2000) and Palsson (2001)

presented an individual based model for motile dictyostelium discoideum cells. The basic

properties of each individual cell include that each cell is in contact with the neighbo-

ring cell, each cell can generate active forces and the cells may deform. The authors

determined that the individual behaviour of a cell depends on the internal parameter

state and information it receives from the external environment which includes a me-

chanism for interaction between the neighboring cells and ECM . They calculated the

net force on the cell by adding all the forces acting on the cell due to the surrounding

medium. The collective movement of the entire tissue is given by the net movement of

all the cells, which move according to an equation of motion.

There are several classes of discrete tissue models. The most simple are lattice-based

or cellular-automaton models, where cells are forced to lie on a regular grid. In such

models only one cell can exist at one spatial location. It is possible to model cell proli-

feration and cell-cell adhesion. Loeffler et al. (1986) introduced the first comprehensive

model analysis of the 2-D cell layer in the murine crypt. Later several authors discussed

similar models independently (Finney et al., 1989, Isele and Meinzer, 1998). These mo-

dels were based on a 2-D rigid lattice with rectangular cell layout. In these models rules
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are set up for cell interaction, division and movement. There are several weaknesses in

these models, firstly, lattice-based tissue models cannot explain the continuous growth

and migration of individual cells as their movement is restricted to discrete spatial

locations. Secondly these models do not reflect the effect of polygonal packing arran-

gements in crypts. Finally, in these models cell movement and cell mitosis are directly

coupled in spite of the observation that migration can be observed even after complete

mitotic arrest (Kaur and Potten, 1986).

To overcome these limitations lattice-free model have been developed. These models

can be classified in two categories, cell-centre models and vertex models. In cell-centre

models the location of each cell is given by a single point, and the point may be consi-

dered to be located at the centre of the cell nucleus. The total force on any cell is a

function of the set of cell centres. In vertex models each cell is polygonal and defined

by the location of a finite set of vertices (Pathmanathan et al., 2009, Walter, 2009). The

lattice-free model for cell division in a small intestinal crypt is presented by Meineke

et al. (2001). In this model the cell location is not restricted to a grid framework, as

in Loeffler et al. (1986). The model differs from the earlier approaches in using a dy-

namic movement on a lattice-free cylindrical surface. It is a cell-centre model. The

authors used a Voronoi diagram to divide the plane into regions. They assumed that

cells will keep a constant distance between them and captured the distance between

the cells through the series of damped springs. Cells are not allowed to move out of

the crypt from the bottom boundary but the cells that move beyond the upper boun-

dary are removed. The authors compared the model results with experimental data

and found that the both results are in excellent agreement when a complete ring of

sixteen stem cells is considered to reside immediately above the Paneth cells. Using a

similar Voronoi diagram approach Morel et al. (2001) formulated a model for prolifera-

tion control in a generalized epithelium. This model incorporated both cell growth and

differentiation factors. The authors found the effect of the micro environment upon

the cell proliferation. A multiscale model for proliferation in the intestinal crypt has

been presented by Van Leeuwen et al. (2009). Pathmanathan et al. (2009) studied the

mechanical behaviour of a discrete tissue model. They used a discrete cell-centre ap-

proach to model the evolution of a collection of cells. Osborne et al. (2010) compared

the results of cell-vertex model, cell-centre model and an analogous continuum model

of cell proliferation and migration in a crypt. The authors found that the conclusions

are independent of the modelling approach and also cell based models are more conve-

nient to investigate however they are computationally expensive for large numbers of

cells. On the other hand continuum models are computationally quicker and easy to
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implement.

We will now discuss the continuum models. Obradovic et al. (2000) developed a simple

mathematical continuum model to study the synthesis of glycosaminoglycans(GAG)

and local oxygen concentration in a polyglycolic acid (PGA) scaffold seeded with bo-

vine chondrocytes. The oxygen concentration and GAG were modelled by using a

simple diffusion equation,

∂Si

∂t
= Di∇2Si − Qi, (1.6.1)

where species 1 and 2 represents O2 and GAG respectively, Si is the concentration and

Di is the diffusion of each species. Qi is consumption of O2 and G. The QO2
is modelled

by Michaellis Menton kinetics and QG is modelled as follows,

QG = NG.kG

(

1 − SG

S∞

)

SO2
, (1.6.2)

where N is the cell density, kG represents the rate of GAG synthesis and S∞ is the

maximum GAG concentration. Calculated GAG concentrations were qualitatively and

quantitatively consistent with experimental data. They concluded that the spatial va-

riation of oxygen concentration gives heterogeneities in the GAG concentration.

Several mathematical models for cellular proliferation and the diffusion of oxygen in-

side a scaffold, where the cells are distributed uniformly or non uniformly, were discus-

sed by Galban and Locke (1997). They used the volume averaging method to derive

an average reaction diffusion equation for the nutrient concentration in a two phase

system (cellular and void). In the volume averaging method the total amount of a

quantity (say cell or nutrient concentration) of certain volume is averaged over the en-

tire volume. They also determined the effective diffusion coefficient and reaction rate

as a function of local cell volume fraction and local cell volume fraction is determined

as a function of time by using the suitable mass balance equation. Particular attention

was paid to the diffusion coefficient, which was taken to change by an order of magni-

tude between regions full of cells and those without, but in this work cell motility is

neglected.

Malda et al. (2004b) developed a mathematical model of the oxygen gradient in the ab-

sence of perfusion. They used the simple diffusion equation to model the concentration

of oxygen in the scaffold. They identified the oxygen gradient in the tissue engineering

construct and predicted the oxygen profiles during the in vitro culture. The oxygen

consumption rate is modelled by Monod kinetics (see appendix D for details). They
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found that oxygen gradients occur inside the construct, due to slow diffusion of oxy-

gen and consumption of oxygen by cells. These gradients are higher in the regions of

high cell concentration. However this model did not account for the cell proliferation.

Lewis et al. (2005) developed a model of the spatial and temporal distribution of oxy-

gen concentration and cell proliferation and compared the results with the experimen-

tal data of Malda et al. (2004b). They considered the cell proliferation rate as a linear

function of nutrient concentration and cell number density. The oxygen consumption

rate was assumed to be proportional to cell proliferation rate. They found that for the

first 14 days the behaviour can be explained well with the mathematical model. They

concluded that the cells which only depend on diffusion for the supply of oxygen pro-

duce a proliferation dominated region at the scaffold edge closest to the oxygen source,

which decreases in thickness as time progresses. They considered only diffusion for

the transport of oxygen to the cells.

Croll et al. (2005) developed a model of oxygen diffusion and cell growth during the

early stages of implantation in a dome-shaped PLGA scaffold. The cell’s oxygen con-

sumption was described by Monod’s model. They described the effective diffusivity

by Maxwell’s equation for porous media. Croll et al. (2005) concluded that a homo-

geneous cell density seeding strategy, even with moving oxygen source provided via

vascularization (formation of vessels, especially blood vessels), gives rise to hypoxic

(deficiency in the amount of oxygen reaching body tissues) conditions in some regions

of the scaffold for an unacceptable period of time. They proposed that heterogeneous

seeding strategy is better than the homogeneous seeding for large scale tissue enginee-

ring. In heterogeneous seeding a small amount of native tissue is placed near the blood

supply for the implantation of a large scaffold.

Landman and Cai (2007) extended the work of Croll et al. (2005) and Lewis et al. (2005).

They developed and investigated a one dimensional model of oxygen concentration,

cell proliferation and cell migration inside a scaffold in which the arteriovenous loop

is placed inside a scaffold, in order to form a vascularizing network within a scaffold.

The cell proliferation rate is described by Heaviside step function H(C −Ch), where Ch

is the minimum concentration required for the cells to survive. They considered the ad-

ditional effects of vascular growth, homogeneous and heterogenous seeding, diffusion

of cells and critical hypoxic oxygen concentration.

In all the models discussed above the the transport of nutrients is only by diffusion.

This transport mechanism is useful when the thickness of tissue is less than the few

millimeters. However for soft tissue engineering when the size of the tissue is large
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then the supply of nutrients is limited to the exterior of the scaffold and cells in the

internal regions of the scaffold become hypoxic very quickly. One way to overcome

the diffusion limitations is to exploit advective transport. A mathematical model of

nutrient concentration and cell proliferation inside a scaffold is an important tool for

assessing and planning tissue engineering outcomes. Several authors have developed a

number of mathematical models to study the fluid dynamics and nutrient distribution

in the perfusion bioreactor.

Coletti et al. (2006) developed a comprehensive mathematical model of convection and

diffusion in a perfusion bioreactor. The fluid dynamics of the medium flow inside the

bioreactor is described through the Navier-Stokes equations for incompressible fluid

while convection through the scaffold is modeled by Brinkmans extension to Darcy’s

Law for porous materials. The nutrient uptake rate is described by Michaelis Menton

kinetics and cell growth is modeled as a function of nutrient concentration through the

Contois equation, accounting for contact inhibition.

Chung et al. (2007) developed a mathematical model to investigate the cell growth,

nutrient uptake and culture medium circulation within a porous scaffold under direct

perfusion. They proposed a three layer model consisting of porous scaffold sandwi-

ched between two fluid layers. The nutrient uptake rate was described by Michae-

lis Menton kinetics and cell growth was described by the modified Contois function.

The fluid flow outside the cell scaffold construct was modeled by the Navier-Stokes

equation while the fluid dynamics within the cell scaffold construct is modeled by the

Brinkmann equation for porous media. To examine the media perfusion they also in-

cluded time dependent porosity and permeability changes due to the cell growth. They

concluded that cell growth can be enhanced by media perfusion. In addition to enhan-

cement of cell growth perfusion also gives more uniform spatially distributed cells as

compared to static culture. In a subsequent model Chung et al. (2008) proposed a com-

pact single layer model consisting of only scaffold construct. They studied the cell

growth and nutrient distribution and compared the results with the three layer model.

They found that the single layer model predicts the cell growth and nutrient distribu-

tion as accurately as the three layer model (Chung et al., 2007) developed earlier.

To improve the delivery of nutrients and removal of waste products (lactate acid and

carbon dioxide) a fluid known as the culture medium is forced through the pores of

the scaffold. For tissue with the thickness of few millimeters these method are success-

ful compared to static culture (Cartmell et al., 2003, Glowacki et al., 1998). Perfusion

bioreactors have been used to develop a variety of tissue types. For small tissue types
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direct perfusion techniques are shown to be successful however the problem arises

when tissue size is large. Forcing the fluid through the pores of the scaffold alone is not

sufficient for the transport of nutrients throughout the construct. In order to deliver the

nutrients and remove waste from the centre of the construct in addition to perfusion of

the medium through the scaffold two porous biodegradable polyglycolic acid (PLGA)

fibres can also be incorporated into the scaffold. These fibres deliver the nutrients to

the interior regions of the scaffold. Whittaker et al. (2009) in a Mathematical medicine

study group meeting (MMSG 2006) studied the problem of delivery of nutrients to,

and removal of waste product from the interior region of the scaffold. They develo-

ped a mathematical model to study this problem. But they did not study the oxygen

concentration profiles and cell growth in this model.

A weakness of the above models is that they did not consider the multiphase nature

of tissue growth. These models neither address the mechanical forces generated in

the tissue as a result of tissue growth nor do these models include the possibility of

cell migration (except Landman and Cai (2007)) through the scaffold. Obradovic et al.

(2000) and Lewis et al. (2005) modelled the tissue as a homogeneous mass, however,

tissue is a composite material formed of a "collection of cells and ECM" (Cowin, 2000) as

well as accompanying fluid. In many biological systems there is a complex interaction

between these materials. The tissue composition may change over time due to mitosis,

necrosis and apoptosis (Lemon et al., 2006). A multiphase model is one in which each

phase (e.g. cells, fluid, and ECM) are considered as a separate phase with constitutive

laws describing its material properties and iteraction with neighbouring phase.

Lemon et al. (2006) developed a general multiphase model, consisting of an arbitrary

number of phases, of in vitro tissue growth using multiphase porous flow mixture

theory. The model consists of mass and force balance equations for each tissue com-

ponent, together with appropriate relations defining the material deformation in res-

ponse to stresses. They considered the intraphase (cell-cell interaction) and interphase

pressures (cell-scaffold interactions) and gave their appropriate forms. They used a li-

near stability technique to analyze the dynamics of different phases in the tissue and

considered the mechanical forces acting between the different phases of the tissue.

In a subsequent paper Lemon and King (2007) presented a comprehensive multiphase

model of nutrient limited engineered tissue growth and examined the multiphase na-

ture of tissue mechanics and nutrient transport. They presented a three phase case of

motile cells, water and scaffold. They considered two idealized seeding techniques,

static seeding and dynamic seeding and used the multiphase model for in vitro tissue
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growth developed by Lemon et al. (2006) to analyze the growth processes as a result

of the above two seeding techniques. They also compared the theoretical results with

experimental data of Malda et al. (2004b) for chondrocytes seeded onto a scaffold.

Byrne and Preziosi (2003) developed a two-phase model (cell and liquid phase) of avas-

cular tumour to investigate the influence of the cells environment on their proliferative

rate in the context of tumour growth. The proliferation of tumour was dependent on

the nutrient concentration and cell density. The main features of the model include the

dependence of proliferation rate on cellular stress and incorporation of mass exchange

between the solid and fluid phase. They found that as the value of the parameter which

measures the reduction in cell proliferation due to cell stress, crosses the critical value

the tumour is eliminated.

O’Dea et al. (2008) developed a mathematical model of tissue growth in a perfusion bio-

reactor and analyzed the effect of an imposed flow and mechanotransduction (mecha-

nics by which forces are converted into biochemical signals). They used the multiphase

formulation of Lemon et al. (2006) restricted to two phases (cell population and culture

medium) and examined the mechanical forces acting on the tissue and subsequent mor-

phology of tissue. They also considered the complex interaction involved in the tissue

without considering the precise microscopic details. Later the authors extended their

model to include the third phase as the porous scaffold (O’Dea et al., 2010). The inclu-

sion of third phase allowed the interaction between the cells and porous scaffold. They

observed a different cell behaviour depending upon the relative importance of cell ag-

gregation and repulsion. They also studied the mechanotransduction effects due to cell

density, pressure and fluid shear stress on tissue growth. All of these multiphase mo-

dels described above model the macroscopic effects of the microscopic processes using

the constitutive laws.

Waters et al. (2006) developed mathematical models to investigate the morphology of

tissue construct formed from single-cell suspension in culture media, within a rota-

ting bioreactor. They modelled the construct as a viscous fluid drop surrounded by

an extensible membrane in a viscous fluid. The viscous drop is assumed to be more

dense than the surrounding fluid. They considered both thin-disk and slender-pipe

bioreactors and obtained a series of spatially 2-D problems. They found that construct

morphology is the result of mechanical forces it experiences and the instability is driven

by the density difference between two fluids. They also studied the effects of rotation,

gravitational field, material and geometrical properties on the stability.

In this thesis we have developed a mathematical model of cell growth and nutrient
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transport in a perfusion bioreactor. The nutrients are delivered to the cells by two

mechanisms advection and diffusion. The cells grow according to a logistic law and

spread in the domain via diffusion. The model includes the key features of tissue en-

gineering processes such as fluid flow, nutrient transport, cell growth, porosity and

permeability changes due to cell growth and effect of mechanical forces such as fluid

shear stress on cell growth and nutrient consumption rates. We include non-linear

cell diffusion in our model while none of the models discussed above have considered

non-linear cell diffusion. The model is sensitive to choice of initial seeding strategy and

initial porosity of the scaffold thus we can consider various initial seeding and initial

porosity functions. We also maintain the constant volumetric flow rate in our model.

1.7 Objective of thesis and structure

The main objective of this study is to develop a mathematical model of fluid flow,

nutrient concentration and cell growth in a perfusion bioreactor. One of the challenges

tissue engineering currently faces is the delivery of nutrients into the internal region of

the construct. Cells near the nutrient source grow quickly due to high concentration of

nutrients and cells away from the nutrient source grow slowly due to lack of nutrient

concentration. Our aim is to develop a mathematical model which can predict the

initial conditions required for a uniform cell distribution in the final construct. This

may be achieved by improving the delivery of nutrients in the internal region of the

scaffold.

Mathematical modelling of fluid flow through a porous material is presented in Chap-

ter 2. Darcy’s law governs the flow of fluid through the porous material. We assume

that the permeability of the scaffold is spatially varying. We employ both numerical

and analytical techniques to find the solution of governing equations. Analytic results

are presented for particular choices of permeability for which the solution exists but

numerical results are presented for more general choices of permeability. We present

comparisons of the numerical and analytical results.

In Chapter 3 we present a simple coupled model of fluid flow, nutrient concentration

and cell growth in the perfusion bioreactor. We assume that permeability of the scaf-

fold depends on the spatial coordinates and also on the cell density. We model the

permeability by an exponential function of cell density and spatial coordinates. The

fluid flow through the porous scaffold is governed by Darcy’s law. Nutrients are deli-

vered to the cells by two mechanisms i.e. diffusion and advection, and the advection-
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diffusion equation is used to model the delivery of nutrients. The growth of cells is

modelled by a reaction-diffusion equation. The solution of the flow equation gives

the flow field which is substituted into the advection diffusion equation to obtain the

nutrient concentration which is further substituted into the cell growth equation to ob-

tain the cell density. We update the cell density in the permeability equation and solve

the entire system again for updated cell density. This process continues until system

gets close to steady state. The model is solved numerically by finite element solver

COMSOL. To validate the numerical results we solve the model analytically subject to

some simplifying assumptions. We compare analytic and numerical results and find

excellent agreement. We also check the stability of steady state solution numerically

and analytically.

In Chapter 4 we model the cell growth with non-linear diffusion. The Fisher equation

governs the cell growth with non-linear diffusion. We investigate travelling wave so-

lutions and use phase plane analysis to find the minimum wave speed of the growth

front. We conclude that when the diffusion is linear or weakly non-linear the travelling

wave moves with minimum wave speed but in the case of highly non-linear diffusion

the wave speed increases with increasing non-linearity.

In Chapter 5 we further extend the model presented in the Chapter 3 to accommo-

date non-linear cell diffusion, mechanical stimuli in the form of shear stress induced

by the fluid and also we maintain a constant volumetric flow rate. In this model we

assume that the permeability of the scaffold is a function of porosity, and porosity is

the function of cell density and spatial coordinates. We use the same steps as discussed

in Chapter 3 to solve the coupled system.

In Chapter 6 we present the results for different initial seeding strategies and initial

porosity. Employing a numerical method we conclude that the total cell density in the

scaffold depends on the initial seeding strategy and initial porosity of the scaffold. By

keeping the initial porosity constant and examining various initial seeding strategies

we conclude that when a layer of cell is placed away from the nutrient source then it

spreads in the entire scaffold uniformly and we get a highest total cell density by using

this initial seeding technique. By keeping the initial seeding uniform and examining

different initial porosities we find that if we put three parallel tubes of high porosity in

the scaffold then nutrients will reach to the internal regions of the scaffold and we get

a largest cell yield.

In Chapter 7 we summarize the main conclusions of the thesis and we outline possible

extensions of the model.
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CHAPTER 2

Flow in porous materials

2.1 Introduction

To model the flow of fluid through the porous material, we must define suitable para-

meters which characterize the material’s structure and properties of the fluid. The two

important parameters for the porous material are the dimensionless porosity φ (ratio of

empty to filled space in the material) and the permeability k∗ (ability of porous material

to transmit fluid through its pores) of the material. Stars are used to denote the dimen-

sional quantities throughout. For an inhomogeneous material porosity φ may depend

on both space and time. The permeability k∗ depends upon the porosity and geome-

tric properties of the material. The permeability is often estimated using the Kozeny

equation (Bear, 1988),

k∗ =
ǫ∗2φ3

180(1 − φ)2
, (2.1.1)

where ǫ∗2 is the mean pore diameter. The two important parameters for the fluid are

dynamic viscosity µ∗ and effective viscosity µ̄∗. Dynamic viscosity µ∗ measures the

fluid resistance to flow. It is the ratio of the shear stress exerted on the surface of the

fluid to the velocity gradient. Effective viscosity µ̄∗ is a function of dynamic viscosity

µ∗ and the material structure. µ̄∗ may differ from µ∗ and is likely to depend upon

the tortuosity (a twisted path) of the medium. For a dilute suspension of particles µ̄∗

is approximated by Einstein’s law µ̄∗ = µ∗(1 + 2.5φ) (Brinkman, 1949, Goyeau et al.,

2003). For a more dense suspension µ̄∗ is approximated by µ̄∗ = µ∗(1 − 2.5φ) (Goyeau

et al., 2003).

In 1856 Henry Darcy derived an empirical law known as Darcy’s law, that relates the

velocity of fluid through a porous material to the pressure drop across it. The law
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2.1 INTRODUCTION

was formulated on the basis of the results of experiments on the flow of water through

beds of sand. In the absence of gravitational forces, the Darcy’s law commonly used in

modern texts is

u∗ = − k∗

µ∗∇
∗p∗, (2.1.2)

where u∗ is the mean velocity and not the true velocity of the fluid. Equation (2.1.2) is a

modified version of Darcy’s law. It is also known as "Hazen-Darcy equation"; because

in the original Darcy’s law the effect of viscosity was neglected. However modern

texts refer to this as Darcy’s law (Bear, 1988, Bear and Buchlin, 1991). Equation (2.1.2)

is valid only when flow is incompressible and a Newtonian fluid flows through an

isotropic, homogeneous porous material at low Reynolds number. The effect of inertial

forces and viscous shear stresses, caused by the interaction between fluid and porous

medium, on the flow is neglected. The retention of only the damping force due to

porous material, µ∗u∗/k∗, is a good approximation for small k∗; however it breaks

down as k∗ becomes large (Brinkman, 1949).

Brinkman (1949) addressed the limitation of large k∗ and considered the viscous forces

exerted by the fluid flowing through the porous material having large permeability.

For high porosity porous media the Darcy-Brinkman equation is a governing equation

with an extra viscous term known as Brinkman term added to the Darcy equation,

−∇∗p∗ + µ̄∗∇∗2u∗ =
µ∗

k∗
u∗, (2.1.3)

where u∗ is the mean velocity and µ̄∗ is the effective viscosity. Equations (2.1.2) and

(2.1.3) are the most widely used equations in modelling the flow of fluid through the

porous media.

In this Chapter we study the flow of a Newtonian fluid through a 2-D porous material.

We use the simple Darcy’s law given by equation (2.1.2) to model the flow of fluid

through the porous material. We assume that the permeability k∗ of the porous material

is a function of spatial coordinates. Fluid enters into the porous material with a certain

velocity from one end and leaves it from the other end with certain velocity. Inlet and

outlet velocities may differ but total inflow and outflow fluxes are the same. Results

are presented for different choices of permeability k∗ and inlet and outlet velocities. We

see that the Darcy’s law can be solved numerically for any choice of permeability k∗ but

analytically it is not possible to solve Darcy’s law for every choice of permeability k∗.

Analytic and numerical results are compared for particular choices of permeability k∗.
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2.2 GEOMETRY AND GOVERNING EQUATIONS

2.2 Geometry and governing equations
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Figure 2.1: Reference geometry. Flow of fluid through a porous material. Fluid is pumped
in at the boundary y∗ = L∗ and pumped out at y∗ = −L∗. No fluid flux through the
boundaries x∗ = ±L∗.

Let us consider a Cartesian coordinate system (x∗, y∗) aligned with the porous material

of length 2L∗ and width 2L∗. We assume that the permeability k∗ of the porous material

is spatially varying so that

k∗ = k∗(x∗, y∗). (2.2.1)

We also assume that flow is incompressible and a Newtonian fluid is flowing through

the porous material. Fluid velocities are assumed to be sufficiently small that inertia

can be neglected. Fluid is pumped into the porous material at the boundary y∗ = L∗

and drawn out of the porous material at the boundary y∗ = −L∗ as shown in Figure 2.1.

If the scaffold has a large number of pores and the fluid velocity in the pores is not very

high then the pore Reynolds number is not too large. For low Reynolds number we

can use Darcy’s law to model the flow of fluid through the porous scaffold (Batchelor,

2000, Bear, 1988). Darcy’s law relates the Darcy velocity u∗ to the interstitial pressure
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2.3 NONDIMENSIONALIZATION

p∗. The Darcy velocity is the average of the interstitial velocity, taken over the entire

volume that includes solid scaffold and pore network. The interstitial pressure is the

average fluid pressure in the pores of the scaffold. We write

u∗ = − k∗(x∗, y∗)
µ∗ ∇∗p∗, (2.2.2)

where µ∗ is the dynamic viscosity of the fluid. The continuity equation is

∇∗.u∗ = 0. (2.2.3)

We assume that no fluid is flowing through the boundaries at x∗ = ±L∗. Mathemati-

cally we write

u∗.n̂ = 0 at x∗ = ±L∗, −L∗ ≤ y∗ ≤ L∗. (2.2.4)

Fluid is pumped into the porous material with velocity f ∗(x∗) at the boundary y∗ = L∗

and leaves the porous material with velocity g∗(x∗) from the boundary y∗ = −L∗.

Mathematically we write

u∗.n̂ = − f ∗(x∗) at y∗ = L∗, −L∗ ≤ x∗ ≤ L∗, (2.2.5)

u∗.n̂ = g∗(x∗) at y∗ = −L∗, −L∗ ≤ x∗ ≤ L∗, (2.2.6)

where n̂ is the outward unit normal vector, f ∗(x∗) and g∗(x∗) are the fluid velocities at

the inlet boundary y∗ = L∗ and the outlet boundary y∗ = −L∗ respectively. Also

∫ L∗

−L∗
f (x∗)dx∗ =

∫ L∗

−L∗
g(x∗)dx∗

i.e. inflow and outflow fluxes are the same.

2.3 Nondimensionalization

We nondimensionalize all lengths with L∗ and permeability with respect to a typical

permeability k∗c , so that

x∗ = L∗x, y∗ = L∗y, ∇∗ =
1

L∗∇, (2.3.1)

k∗(x∗, y∗) = k∗c k(x, y). (2.3.2)
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2.4 PERMEABILITY DISTRIBUTION

We nondimensionalize velocity and pressure as follows

u∗ = f ∗maxu, p∗ =
µ∗ f ∗maxL∗

k∗c
p, (2.3.3)

f ∗(x∗) = f ∗max f (x), g∗(x∗) = f ∗maxg(x), (2.3.4)

where f ∗max is the maximum value of the prescribed inlet velocity. Darcy’s law and the

continuity equation can then be written in dimensionless form as

u = −k(x, y)∇p, (2.3.5)

∇.u = 0. (2.3.6)

Substituting equation (2.3.5) into the continuity equation (2.3.6) we get

∇.(k(x, y)∇p) = 0. (2.3.7)

Solution for p always include a constant. The dimensionless boundary conditions are

n̂.∇p = 0 at x = ±1, −1 ≤ y ≤ 1, (2.3.8)

k(x, y)n̂.∇p = f (x) at y = 1, −1 ≤ x ≤ 1, (2.3.9)

k(x, y)n̂.∇p = −g(x) at y = −1, −1 ≤ x ≤ 1. (2.3.10)

2.4 Permeability distribution

In equation (2.3.7) the permeability k(x, y) of porous material can be any function of

spatial coordinates. For simplicity and convenience we assume that k(x, y) is separable

i.e.

k(x, y) = k1(x)k2(y), (2.4.1)

which allows us to seek a separable solution of the form

p(x, y) = X(x)Y(y). (2.4.2)
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2.4 PERMEABILITY DISTRIBUTION

Substituting assumptions (2.4.1) and (2.4.2) into equation (2.3.7) and rearranging the

terms, we get

1

X(x)k1(x)

[

k1(x)
d2X(x)

dx2
+

dk1(x)

dx

dX(x)

dx

]

=

− 1

Y(y)k2(y)

[

k2(y)
d2Y(y)

dy2
+

dk2(y)

dy

dY(y)

dy

]

. (2.4.3)

The left hand side of (2.4.3) is a function of x only and right hand side is a function of

y only. This is possible only when both sides are equal to a constant. We suppose that

the constant is given by −λ2
n, and the corresponding solutions for X(x) and Y(y) are

given by Xn(x) and Yn(y) (where n is an integer). Then we have

1

Xn(x)k1(x)

[

k1(x)
d2Xn(x)

dx2
+

dk1(x)

dx

dXn(x)

dx

]

= −λ2
n, (2.4.4)

− 1

Yn(y)k2(y)

[

k2(y)
d2Yn(y)

dy2
+

dk2(y)

dy

dYn(y)

dy

]

= −λ2
n, (2.4.5)

which may be rewritten in the form

k1(x)
d2Xn(x)

dx2
+

dk1(x)

dx

dXn(x)

dx
+ k1(x)λ2

nXn(x) = 0, (2.4.6)

k2(y)
d2Yn(y)

dy2
+

dk2(y)

dy

dYn(y)

dy
− k2(y)λ2

nYn(y) = 0. (2.4.7)

We solve equation (2.4.6) subject to boundary conditions (2.3.8) which can be written

as,

dXn

dx
= 0 at x = ±1. (2.4.8)

Since boundary conditions are equal to zero so this is an eigenvalue problem. Solution

of equation (2.4.6) gives the eigenvalues −λ2
n and eigenfunctions Xn(x).

Orthogonality of eigenfunctions

Equation (2.4.6) can be rewritten in the form

d

dx

[

k1(x)
dXn(x)

dx

]

+ λ2
nk1(x)Xn(x) = 0. (2.4.9)
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2.5 NUMERICAL SOLUTION

Multiplying (2.4.9) by Xm(x) and integrating with respect to x between −1 and 1 we

get

∫ 1

−1
k1(x)Xn(x)Xm(x)dx = 0, when m 6= n. (2.4.10)

Equation (2.4.10) is the orthogonality condition for the eigenfunctions. Integrating

equation (2.4.9) with respect to x between -1 and 1 gives

∫ 1

−1
k1(x)Xn(x)dx = 0. (2.4.11)

From the solution of (2.4.6) and (2.4.7) we get the functions Xn(x) and Yn(y). Then

using these functions in equation (2.4.2) we can find the pressure p.

In the next Section we will formulate a numerical method for general k1(x) and k2(y) to

solve equations (2.4.6) and (2.4.7). Note that it is not possible to solve these equations

analytically for every choice of functions k1(x) and k2(y). In Section 2.6 we will present

an analytical solution of equations (2.4.6) and (2.4.7) for some suitable functions k1(x)

and k2(y) for which analytical solution exists. In Section 2.7 we will compare numerical

and analytical results.

2.5 Numerical solution

In this Section we solve equations (2.4.6) and (2.4.7) numerically for functions k1(x)

and k2(y). Let us consider the two different cases of λn, i.e. λn = 0 and λn 6= 0.

2.5.1 Case I : λn = 0

Since λn = 0 corresponds to only one solution so we replace Xn(x) and Yn(y) in equa-

tion (2.4.6) and (2.4.7) by X(x) and Y(y). For λn = 0 equation (2.4.6) reduces to the

form

d

dx

[

k1(x)
dX(x)

dx

]

= 0,

whose solution subject to boundary conditions (2.4.8) is given by

X(x) = b,
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2.5 NUMERICAL SOLUTION

where b is an arbitrary constant. Similarly for λn = 0 equation (2.4.7) reduces to the

form

d

dy

[

k2(y)
dY(y)

dy

]

= 0,

whose general solution is

Y(y) = c
∫ y

−1

1

k2(ỹ)
dỹ + d,

where c and d are constants. Substituting values of X(x) and Y(y) into equation (2.4.2)

we obtain,

p = a0

∫ y

−1

1

k2(ỹ)
dỹ + b0,

where a0 = bc and b0 = bd are arbitrary constants.

2.5.2 Case II : λn 6= 0

2.5.2.1 Solution of X dependent equation

Dividing each term of equation (2.4.6) by k1(x) we get

X′′
n (x) +

k′1(x)

k1(x)
X′

n(x) + λ2
nXn(x) = 0, (2.5.1)

where primes denote differentiation with respect to x. We solve equation (2.5.1) subject

to boundary conditions (2.4.8), by using a finite difference method. Finite difference

approximations for X′′
n (x) and X′

n(x) are given by

X′′
n (x) =

X
(m−1)
n − 2Xm

n + X
(m+1)
n

h2
+ O(h2), (2.5.2)

X′
n(x) =

Xm+1
n − Xm−1

n

2h
+ O(h2), (2.5.3)

where Xm
n denotes the value of Xn(x) at xm = x0 + mh, (m = 0, 1, 2, · · · , Ng − 1), x0 =

−1, xNg−1 = 1 and h is the step size which is given by

h =
2

Ng − 1
.
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x0 x1 x2 x3 x4x−1 xNg−1xNg−2 xNg

Figure 2.2: Discretization of interval x0 ≤ x ≤ xNg−1. x−1 and xNg are ghost points.

Ng is the total number of grid points. Substituting these approximations into equation

(2.5.1) gives a linear system of equations.

[

1

h2
− 1

2h

k′1(x)

k1(x)

]

X
(m−1)
n +

[

λ2
n −

2

h2

]

Xm
n +

[

1

h2
+

1

2h

k′1(x)

k1(x)

]

X
(m+1)
n = 0. (2.5.4)

This holds at each grid point except the boundaries x = −1 and x = 1. So these are

(Ng − 2) equations.

At the boundaries x = −1 and x = 1 we have Neumann boundary conditions. To deal

with this type of boundary condition we introduce the new points x−1 and xNg , which

by virtue of their being outside the domain of problem, are called a ghost points as

shown in the Figure 2.2. At the boundaries x = −1 and x = 1 for Neumann boundary

conditions we use equation (2.5.3).

At x = −1 we have

X1
n − X−1

n

2h
= 0 ⇒ X1

n = X−1
n (2.5.5)

At x = 1 we have

X
Ng
n − X

Ng−2
n

2h
= 0 ⇒ X

Ng
n = X

Ng−2
n (2.5.6)

At the boundaries x = −1, and x = 1 we need to evaluate X−1
n and X

Ng
n respecti-

vely. Substituting m = 0 and m = Ng − 1 in equation (2.5.4) respectively, and using

equations (2.5.5) and (2.5.6) we get two more linear equations,

[

λ2
n −

2

h2

]

X
(0)
n +

2

h2
X

(1)
n = 0, (2.5.7)

2

h2
X

(Ng−2)
n +

[

λ2
n −

2

h2

]

X
(Ng−1)
n = 0. (2.5.8)

So we have in total Ng linear equations which can be written in matrix form as

(A + λ2
n I)Xn(x) = 0 (2.5.9)
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where

A =



















































Q −Q 0 0 0 · · · · · · · · · · · · 0

M1 Q R1 0 0 · · · · · · · · · · · · 0

0 M2 Q R2 0 · · · · · · · · · · · · 0

0 0 M3 Q R3 · · · · · · · · · · · · · · ·
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

... MNg−3 Q RNg−3 0

0 0 · · · · · · · · · 0 0 MNg−2 Q RNg−2

0 0 · · · · · · · · · 0 0 0 −Q Q



















































,(2.5.10)

is an (Ng × Ng) matrix and I is an (Ng × Ng) unit matrix. Also

Q = − 2

h2
, Mm =

1

h2
− k′1(xm)

k1(xm)

1

2h
,

Rm =
1

h2
+

k′1(xm)

k1(xm)

1

2h
, where m = 1, 2, · · · , Ng − 2

To find eigenvalues −λ2
n we solve

det(A + λ2
n I) = 0,

and the corresponding eigenfunctions Xn(x) can be found by substituting the values

of −λ2
n into the equation (2.5.9).

2.5.2.2 Solution of Y dependent equation

Dividing equation (2.4.7) throughout by k2(y) we get

Y′′
n (y) +

k′2(y)

k2(y)
Y′

n(y) − λ2
nYn(y) = 0, (2.5.11)

where primes denote the differentiation with respect to y. The above equation is a

second-order ordinary differential equation and will have two linearly independent

solutions Yn1(y) and Yn2(y). Any linear combinations of these solutions is also a so-

lution of equation (2.5.11). We need to evaluate two linearly independent solutions

Yn1(y) and Yn2(y).
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Solution Yn1(y)

To find a solution Yn1(y) of the equation (2.5.11) we impose temporary boundary condi-

tions

Y′
n1(1) = 1, Y′

n1(−1) = 0, (2.5.12)

Using finite difference approximations for Y′′
n (y) and Y′

n(y) and boundary conditions

(2.5.12) in equation (2.5.11) we get linear system of equations

[

1

h2
− 1

2h

k′2(y)

k2(y)

]

Y
(m−1)
n +

[

−λ2
n −

2

h2

]

Ym
n +

[

1

h2
+

1

2h

k′2(y)

k2(y)

]

Ym+1
n = 0. (2.5.13)

where Ym
n denotes the value of Yn(y) at ym = y0 + mh, (m = 0, 1, 2, · · · , Ng − 1), y0 =

−1, yNg−1 = 1 and h is the step size which is given by

h =
2

Ng − 1
.

Notice that again at the boundaries y = −1 and y = 1 we have Neumann boundary

conditions. Hence follow the same steps, as we did in the X dependent equation, to

find the value of Yn1(y) at the boundaries y = 1 and y = −1. At the boundaries y = −1

and y = 1 we get two linear equations given by

[

−λ2
n −

2

h2

]

Y
(0)
n +

2

h2
Y

(1)
n = 0. (2.5.14)

2

h2
Y

(Ng−2)
n +

[

−λ2
n −

2

h2

]

Y
(Ng−1)
n = −2h

[

1

h2
− k′2(1)

k2(1)

1

2h

]

. (2.5.15)

The linear system of Ng equations can be written in the matrix form as

A1Y = C1, (2.5.16)
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where A1 is an (Ng × Ng) matrix given by

A1 =

























































T 2
h2 0 0 0 · · · · · · · · · · · · 0

U1 T V1 0 0 · · · · · · · · · · · · 0

0 U2 T V2 0 · · · · · · · · · · · · 0

0 0 U3 T V3 · · · · · · · · · · · · · · ·
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

... UNg−3 T VNg−3 0

0 0 · · · · · · · · · 0 0 UNg−2 T VNg−2

0 0 · · · · · · · · · 0 0 0 2
h2 T

























































, (2.5.17)

and

T = − 2

h2
− λ2

n, Um =
1

h2
− k′2(ym)

k2(ym)

1

2h
,

Vm =
1

h2
+

k′2(ym)

k2(ym)

1

2h
, where ym = y0 + mh m = 1, 2 · · · , Ng − 2,

and C1 is a (Ng × 1) column matrix given by

C1 =





















0

0

0
...

2h
[

1
h2 − k′2(1)

k2(1)
1

2h

]





















.

Solution Yn2

To determine a second solution Yn2(y) of the equation (2.5.11) we impose the boundary

conditions

Y′
n2(1) = 0, Y′

n2(−1) = 1. (2.5.18)
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2.5 NUMERICAL SOLUTION

Using the finite difference approximations for Y′′
n (y) and Y′

n(y) and boundary condi-

tions (2.5.18) in equation (2.5.11) we get linear system of Ng equations, which can be

written in the matrix form as

A1Y = C2, (2.5.19)

where A1 is given by the equation (2.5.17), and

C2 =





















−2h
[

1
h2 +

k′2(−1)
k2(−1)

1
2h

]

0

0
...

0





















.

Hence

Yn(y) ≈ CnYn1(y) + DnYn2(y) (2.5.20)

We are now in a position to determine the fluid pressure. Substituting the values of

Xn(x) and Yn(y) in equation (2.4.2) we get

p ≈ a0

∫ y

−1

1

k2(ỹ)
dỹ + b0 +

∞

∑
n=1

Xn(x) [CnYn1(y) + DnYn2(y)] . (2.5.21)

By applying the boundary conditions (2.3.9) and (2.3.10) and using orthogonality condi-

tions (2.4.10) and (2.4.11) we can find the values of unknowns i.e.

a0 ≈
∫ 1
−1

f (x)dx
∫ 1
−1 k1(x)dx

,

Cn ≈ 1

k2(1)

∫ 1
−1 f (x)Xn(x)dx
∫ 1
−1 k1(x)X2

ndx
,

Dn ≈ 1

k2(−1)

∫ 1
−1 g(x)Xn(x)dx
∫ 1
−1

k1(x)X2
ndx

.

We approximate the integrals appearing in a0, Cn and Dn by using trapezoidal rule.

Now the only unknown left is b0, which can be calculated by using the condition

p(0, 0) = 0.
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2.6 ANALYTICAL SOLUTION

Apply this condition on equation (2.5.21) we get

b0 = −a0

∫ 0

−1

1

k2(ỹ)
dỹ −

∞

∑
n=1

Xn(0) [CnYn1(0) + DnYn2(0)] .

2.6 Analytical solution

In this Section we will solve equations (2.4.6) and (2.4.7) analytically. To find the ana-

lytic solution of equations (2.4.6) and (2.4.7) for general functions k1(x) and k2(y) is a

difficult task. For simplicity and convenience we consider different forms of functions

k1(x) and k2(y) for which analytic solution exists.

2.6.1 Case I : Permeability function of two spatial coordinates

We assume that

k1(x) = ex, and k2(y) = ey.

For these values of k1(x) and k2(y) equations (2.4.6) and (2.4.7) can be written as

d2Xn(x)

dx2
+

dXn(x)

dx
+ λ2

nXn(x) = 0, (2.6.1)

d2Yn(y)

dy2
+

dYn(y)

dy
− λ2

nYn(y) = 0. (2.6.2)

The solution of (2.6.1) subject to boundary conditions (2.4.8) gives eigenvalues λn and

eigenfunctions Xn(x). We consider two cases for λn.

2.6.1.1 Case I : λn = 0

When λn = 0 the solution of equation (2.6.1) subject to boundary conditions (2.4.8) is

X = b.

Similarly when λn = 0 equation (2.6.2) reduces to the form

d2Y(y)

dy2
+

dY(y)

dy
= 0,
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whose general solution is

Y(y) = ce−y + d.

Substituting X(x) and Y(y) in equation (2.4.2) we get

p = a0e−y + b0.

where a0 = bc and b0 = bd are arbitrary constants.

2.6.1.2 Case II : λn 6= 0

Solution of X dependent equation

For λn 6= 0 equation (2.6.1) is a second order ordinary differential equation. The general

solution of equation (2.6.1) is given by

Xn(x) = e−x/2 [Cn cosh(ωnx) + Dn sinh(ωnx)] , (2.6.3)

where

ωn =

√

1 − 4λ2
n

2
. (2.6.4)

Using the boundary conditions (2.4.8) we get two linear equations in Cn and Dn.

[

−1

2
Cn + ωnDn

]

cosh(ωn) +

[

−1

2
Dn + ωnCn

]

sinh(ωn) = 0, (2.6.5)

[

−1

2
Cn + ωnDn

]

cosh(ωn) −
[

−1

2
Dn + ωnCn

]

sinh(ωn) = 0. (2.6.6)

Adding and subtracting these equations gives

[

−1

2
Cn + ωnDn

]

cosh(ωn) = 0, (2.6.7)

[

−1

2
Dn + ωnCn

]

sinh(ωn) = 0. (2.6.8)

From equations (2.6.7) if cosh(ωn) = 0 then from equation (2.6.8) we must have − 1
2 Dn +

ωnCn = 0, which implies that

ωn = i(2n + 1)
π

2
where n = ±1,±2, · · · and Dn = 2ωnCn.
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Hence

Xn1(x) = Cne−x/2
[

cos
(

(2n + 1)
π

2
x
)

− (2n + 1)π sin
(

(2n + 1)
π

2
x
)]

. (2.6.9)

From equation (2.6.8) if sinh(ωn) = 0 then from equation (2.6.7) we must have − 1
2 Cn +

ωnDn = 0, which implies that

ωn = inπ, and Cn = 2ωnDn.

Hence

Xn2(x) = −Ene−x/2 [2nπ cos(nπx) + sin(nπx)] . (2.6.10)

To summarize we can say that

λ2
n1 =

1

4
[1 + (2n + 1)2π2)] when ωn1 = i(2n + 1)

π

2
.

and

λ2
n2 =

1

4
(1 + 4n2π2) when ωn2 = inπ.

where Xn1(x) are the eigenfunction corresponding to λ2
n1 and Xn2(x) are the eigenfunc-

tion corresponding to λ2
n2.

Solution of Y dependent equation

For λn 6= 0 the general solution of equation (2.6.2) is given by

Yn(y) = e−y/2 [A cosh(υny) + B sinh(υny)] . (2.6.11)

where

υn =

√

1 + 4λ2
n

2
(2.6.12)

Since equation (2.6.2) is a second order ordinary differential equation, we need two

linearly independent solutions Yn1(y) and Yn2(y). We apply two sets of temporary

boundary conditions to find the two linearly independent solutions Yn1(y) and Yn2(y).
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2.6 ANALYTICAL SOLUTION

Solution Yn1(y)

For solution Yn1(y) of the equation (2.6.2) we impose boundary conditions (2.5.12). The

solution of equation (2.6.2) subject to boundary conditions (2.5.12) is

Yn1(y) =
e−y/2e1/2

4υ2
n − 1

[(

2υn

sinh υn
+

1

cosh υn

)

cosh(υny)

+

(

1

sinh υn
+

2υn

cosh υn

)

sinh(υny)

]

. (2.6.13)

Solution Yn2(y)

For solution Yn2(y) of the equation (2.6.2) we impose the boundary conditions (2.5.18).

The solution of equation (2.6.2) subject to boundary conditions (2.5.18) is

Yn2(y) =
e−y/2e−1/2

4υ2
n − 1

[(

− 2υn

sinh υn
+

1

cosh υn

)

cosh(υny)

+

(

− 1

sinhυn
+

2υn

cosh υn

)

sinh(υny)

]

. (2.6.14)

Hence

Yn(y) = AnYn1(y) + BnYn2. (2.6.15)

Now we are in position to find p. Substituting Xn(x) and Yn(y) in equation (2.4.2) we

get

p = a0e−y + b0 +
∞

∑
n=1

Xn(x) [AnYn1(y) + BnYn2] . (2.6.16)

Applying the boundary conditions (2.3.9) and (2.3.10), with f (x) and g(x) both 1, we

get

a0 = − 1

sinh 1
, (2.6.17)

An =

∫ 1
−1 Xn(x)dx

e
∫ 1
−1

exX2
n(x)dx

, (2.6.18)

Bn =

∫ 1
−1 Xn(x)dx

e−1
∫ 1
−1 exX2

n(x)dx
. (2.6.19)

An and Bn depend on the Xn(x), which in turn depends on the values of ωn. We can

therefore consider two different cases
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2.6 ANALYTICAL SOLUTION

ωn1 = i(2n + 1) π
2

An1 =
8(2n + 1)π sin(2n + 1) π

2 cosh(1/2)

eCn(1 + (2n + 1)2π2)2
, (2.6.20)

and

Bn1 =
8e(2n + 1)π sin(2n + 1) π

2 cosh(1/2)

Cn(1 + (2n + 1)2π2)2
. (2.6.21)

ωn2 = inπ

An2 =
−16nπ cos(nπ) sinh(1/2)

eEn(1 + 4n2π2)2
, (2.6.22)

and

Bn2 =
−16enπ cos(nπ) sinh(1/2)

En(1 + 4n2π2)2
. (2.6.23)

hence we can write

p = a0e−y + b0 +
∞

∑
n=1

Xn1(x)
[

An1Y
(ωn1)
n1 (y) + Bn1Y

(ωn1)
n2 (y)

]

+
∞

∑
n=1

Xn2(x)
[

An2Y
(ωn2)
n1 (y) + Bn2Y

(ωn2)
n2 (y)

]

. (2.6.24)

In the above equation Y
(ωn1)
n1 , Y

(ωn1)
n2 are the solutions of equation (2.6.2) corresponding

to ωn1 = i(2n + 1) π
2 and Y

(ωn2)
n1 , Y

(ωn2)
n2 are solutions of equation (2.6.2) corresponding

to ωn2 = inπ.

Also Xn1(x), Xn2(x), An1, Bn1, An2 and Bn2 are given by the equations (2.6.9), (2.6.10),

(2.6.20), (2.6.21), (2.6.22) and (2.6.23) respectively.

The only unknown left in equation (2.6.24) is b0 which can be evaluated by using the

condition

p(0, 0) = 0.
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Applying this condition on equation (2.6.24) we get

b0 = −a0 −
∞

∑
n=1

[

Xn1(0)
{

An1Y
(ωn1)
n1 (0) + Bn1Y

(ωn1)
n2 (0)

}

+Xn2(0)
{

An2Y
(ωn2)
n1 (0) + Bn2Y

(ωn2)
n2 (0)

}]

.

2.6.2 Case II : Permeability function of one spatial coordinate

Consider the case when k1(x) = ex and k2(y) = 1, then from equations (2.4.6)and (2.4.7)

we have

d2Xn(x)

dx2
+

dXn(x)

dx
+ λ2

nXn(x) = 0, (2.6.25)

d2Yn(y)

dy2
− λ2

nYn(y) = 0. (2.6.26)

For λn = 0 solution of equations (2.6.25) and (2.6.26) subject to boundary conditions

(2.4.8) is

p = a0y + b0. (2.6.27)

For λn 6= 0 solution of equations (2.6.25) subject to boundary conditions (2.4.8) is given

by equations (2.6.9) and (2.6.10). Solution Yn1 and Yn2 of (2.6.26) subject to temporary

boundary conditions (2.5.12) and (2.5.18) is given by

Yn1 =
1

λ(e4λ − 1)

[

e(3+y)λ + e(1−y)λ
]

, (2.6.28)

Yn2 = − 1

λ(e4λ − 1)

[

e(1+y)λ + e(3−y)λ
]

. (2.6.29)

So

Y(y) = CnYn1 + DnYn2. (2.6.30)

By substituting the values of X(x) and Y(y) in equation (2.4.2) we get

p = a0y + b0 +
∞

∑
n=1

[

Xn1(x)
{

A11Y
(ω1)
n1 (y) + Bn1Y

(ω1)
n2 (y)

}

+Xn2(x)
{

An2Y
(ω2)
n1 (y) + Bn2Y

(ω2)
n2 (y)

}]

. (2.6.31)
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where Xn1 and Xn2 are given by equations (2.6.9) and (2.6.10) respectively. Also ap-

plying the boundary conditions (2.3.9) and (2.3.10), with f (x) and g(x) both 1, we get

a0 =
1

sinh 1
,

An1 = Bn1 =
8π(2n + 1) sin((2n + 1) π

2 ) cosh(1/2)

Cn(1 + 4n2π2 + π2 + 4nπ2)2
,

An2 = Bn2 =
−16nπ cos(nπ) sinh(1/2)

En(1 + 4n2π2)2
,

and

b0 = −
∞

∑
n=1

[

Xn1(0)
{

An1Y
(ω1)
n1 (0) + Bn1Y

(ω1)
n2 (0)

}

+Xn2(0)
{

An2Y
(ω2)
n1 (0) + Bn2Y

(ω2)
n2 (0)

}]

.

2.6.3 Case III : Constant permeability

When permeability is uniform everywhere i.e. k(x, y) = constant then equation (2.3.7)

reduces to

∇2 p = 0.

Solution of this equation subject to boundary conditions (2.3.8), (2.3.9) and (2.3.10) is

given by

p = y + d. (2.6.32)

where d is an arbitrary constant. The value of d = 0 when we use the condition

p(0, 0) = 0 in the above equation.

2.6.4 Case IV : Permeability and velocity boundary conditions both func-

tions of spatial coordinates

Let the permeability be a function of two spatial variables e.g.

k(x, y) = exey,
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and inflow and outflow velocities vary e.g.

f (x) = g(x) = 1 − x2,

then in that case we have the solution of the form (2.6.16) where

a0 = − 2

3 sinh 1
,

An =

∫ 1
−1(1 − x2)Xndx

e
∫ 1
−1

exX2
ndx

,

Bn = e

∫ 1
−1(1 − x2)Xndx
∫ 1
−1 exX2

ndx
.

An and Bn can be calculated by using the MAPLE.

2.7 Comparison of Numerical and Analytical Results

In this Section we will compare the numerical and analytical results. We consider in

detail different cases for the permeability k(x, y) and inflow and outflow velocity.

2.7.1 Case I : Permeability function of two spatial variables, Constant inflow

and outflow velocities.

Consider the case when permeability is a function of two spatial variables x and y. Also

we assume that inflow and outflow velocities are constant i.e.

k1(x) = ex, k2(y) = ey, f (x) = 1, g(x) = 1.

Analytical and numerical results of fluid pressure p and fluid velocity u are plotted in

Figure 2.3 and 2.4 respectively.

Figures 2.3(a) and 2.4(a) show analytic and numerical results of pressure contours and

fluid velocity respectively. In this case the permeability of porous material is an ex-

ponential function of x and y, which means that material is less permeable near the

boundary x = −1 and y = −1. Permeability of material increases as we move towards

right along the x direction and upwards along the y direction. Hence the velocity of

fluid is less near the left bottom corner of the porous material and fluid has highest

velocity near the right upper corner. Also near the boundary x = 1 and y = 1 permea-
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Figure 2.3: Analytical results of (a) flow of fluid through the porous material with per-
meability k(x, y) = ex+y. Inflow and outflow velocities are constant i.e. f (x) = g(x) = 1.
The arrows indicate the direction of flow and lines indicate the pressure contours. (b) y
component fluid velocity at different spatial locations.

bility is maximum. Near the left bottom corner the pressure contours are very close

which indicates that high pressure is needed to push the fluid through that region and

also fluid velocity is low in this region. Near the top right corner fluid velocity is high.

These features are evident from the Figures 2.3(a) and 2.4(a).

Figures 2.3(b) and 2.4(b) show the magnitude of the y component of fluid velocity at

the boundaries and along the line y = 0. It is clear from the Figure that boundary

conditions are satisfied i.e. inflow and outflow velocities are 1. Also along the line
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Figure 2.4: Numerical results of (a) flow of fluid through the porous material with permea-
bility k(x, y) = ex+y. Inflow and outflow velocities are constant i.e. f (x) = g(x) = 1. The
arrows indicate the direction of flow and solid lines indicate the pressure contours. (b) y
component of fluid velocity at different spatial locations.
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y = 0 fluid velocity is low near the left boundary x = −1 and it increases as we move

along this line towards the right boundary x = 1.

The maximum absolute and relative errors in pressure p are 0.0059 and 3.93 × 10−5

respectively showing that the analytic and numerical results are in good agreement.

Sice we are using second order central difference method error is O(h2).

2.7.2 Case II : Permeability function of one spatial variable, Constant inflow

and outflow velocities

Consider the case when the permeability is a function of one spatial coordinate only

e.g. x and inflow and out flow velocities are constant i.e.

k1(x) = ex, k2(y) = 1, f (x) = 1, g(x) = 1.

Analytical results of pressure contours and fluid velocities are plotted in Figures 2.5.

In Figure 2.5(a) analytic results of pressure contours and fluid velocity are plotted res-

pectively. Numerical results are identical to Figure 2.5(a), which are not included here.

When the permeability is an exponential function of x, i.e. k = ex then material is less

permeable near the boundary x = −1 and permeability increases as we move towards

right boundary x = 1.

Permeability is minimum near the bottom left corner and maximum near the top right

corner. In this case the fluid velocity should be low near the bottom left corner and it
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Figure 2.5: Analytical results of (a) flow of fluid through the porous material with permea-
bility k(x, y) = ex. Inflow and outflow velocities are constant i.e. f (x) = g(x) = 1. The
arrows indicate the direction of flow and solid lines indicate the pressure contours. (b) y
component of fluid velocity at different spatial locations.
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should be high near the top right corner which is evident from the Figure 2.5(a). Also

near the bottom left corner pressure contours are close together indicating that we need

high pressure to push the fluid through the porous material near the boundary x = −1.

Figure 2.5(b) shows the magnitude of fluid velocity u in y direction at different spatial

locations. It is clear from the Figure that at both the boundaries the velocity is 1 and

along the line y = 0 velocity is low near the boundary x = −1 and velocity is high near

the boundary x = 1. Numerical results are again identical to Figure 2.5(b), which are

not shown here.

The maximum absolute and relative errors in pressure p are 0.0023 and 1.8 × 10−5 res-

pectively. Since absolute and relative errors are small so we conclude that numerical

and analytical results agree. Again the error is O(h2).

2.7.3 Case III : Constant permeability, Constant inflow and outflow veloci-

ties

Consider the case when permeability of the porous material is uniform everywhere

and inflow and out flow velocities are also constant i.e.

k1(x) = 1, k2(y) = 1, f (x) = 1, g(x) = 1.

Figure 2.6 shows the numerical results of fluid pressure p and fluid velocity u. In Figure

2.6(a) solid horizontal lines represents pressure contour and arrow represents the fluid

velocity.

From Figure 2.6(a) we observe that when permeability of the porous material is uni-

form then fluid velocity throughout the porous material remains uniform, which va-

lidates our analytical results given by equation (2.6.32). Also we observe from the

Figure that pressure contours are equally spaced which indicates as expected that a

uniform pressure gradient is needed to push the fluid through the material. From ana-

lysis we find that maximum absolute and relative errors in pressure p are given by

1.0468 × 10−10 and 1.0468 × 10−13 respectively. These numbers are very small which

validates that numerical results of pressure p plotted in Figure 2.6(a) agree well with

the analytical results.

Figure 2.6(b) shows magnitude of the fluid velocity at the top boundary y = 1, bottom

boundary y = −1 and along the line y = 0. It is clear from the Figure that velocity

boundary condition are satisfied at top and bottom boundaries, and fluid velocity is

also 1 along the line y = 0. Analytically magnitude of the fluid velocity in the y direc-
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Figure 2.6: Numerical results of (a) fluid flow through a porous material for constant per-
meability and constant inflow and outflow velocities. The arrows indicate the direction of
flow and horizontal lines indicate the pressure contours. (b) y component of fluid velocity
at different spatial locations.

tion is 1 and numerically fluid velocity in the y direction is 1, which is evident from the

Figure 2.6(b).

2.7.4 Case IV : Permeability, inflow and outflow velocities functions of spa-

tial coordinates

Consider the case when the permeability is a function of two spatial variables and

inflow and outflow velocities are functions of x i.e.
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Figure 2.7: Analytical results of (a) flow of fluid through the porous material with permea-
bility k(x, y) = ex+y. Inflow and outflow velocities are f (x) = g(x) = 1 − x2. The arrows
indicate the direction of flow and lines indicate the pressure contours. (b) y component of
fluid velocity at different spatial locations.
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Figure 2.8: Numerical results of (a) flow of fluid through the porous material with permea-
bility k(x, y) = ex+y. Inflow and outflow velocities are f (x) = g(x) = 1 − x2. The arrows
indicate the direction of flow and lines indicate the pressure contours. (b) y component of
fluid velocity at different spatial locations.

k1(x) = ex, k2(y) = ey, f (x) = 1 − x2 = g(x).

Analytical and numerical results of pressure p and fluid velocity u are plotted in Figure

2.7 and 2.8 respectively.

The maximum absolute and relative errors in pressure p are 1.2469 and 0.0130 respec-

tively. Percentage relative error is 1.3. Since these numbers are small so we conclude

that analytical and numerical results agree well. Again the error in this case is O(h2).

2.8 Summary and conclusions

In this Chapter we have studied the flow of fluid through the porous material. We

used Darcy’s law to model the flow of fluid through the porous material. We have

assumed that the permeability k(x, y) of the porous material is a separable function of

the spatial coordinates. Numerical results are presented for generic k(x, y) but analytic

results are presented for some special k(x, y) for which analytical solutions exist. We

concluded that fluid flows with high velocity in the regions where the permeability

is high and velocity of the fluid is small in the regions where permeability of porous

material is small. We compared analytic and numerical results for different choices of

permeability k(x, y) and found that they agree well.
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CHAPTER 3

Mathematical modelling of cell

growth in a perfusion bioreactor

3.1 Introduction

Tissue engineering aims to repair or replace the damage or lost tissue or organ by trans-

planting the biological substitutes that are grown outside the body in the laboratory. In

Chapter 1 we have briefly discussed the currently available techniques and problems

associated with these techniques. Several experimental and mathematical techniques

have been developed to study the nutrient profile and spatial cell distribution in the

bioreactor. Mathematical modelling can be used for better understanding of experi-

mental results. In this Chapter we describe a simple coupled mathematical model of

nutrient transport and cell growth in the bioreactor. The model includes the important

features of the tissue engineering process including the fluid flow, nutrient transport,

cell growth and permeability variation of the material due to cell growth. We solve

the model numerically by using the finite element solver COMSOL. We apply some

simplifying assumptions to the model equations to solve the model analytically. It is

not possible to find a complete analytic solution of the model so we find the analytic

results for nutrient concentration and cell density when time is small and at steady

state. Numerical and analytic results are compared at initial and large times. We also

study the stability of steady state solution analytically and numerically. As cells grow

and block the scaffold pores it will affect the flow of fluid consequently the flow rate

through the construct decrease continuously. In experiments constant volumetric flow

rate is maintained through the construct so we will also discuss how mathematically

a constant volumetric flow rate can be maintained through the construct. Our calcu-

lations confirm that the coupling between equations is correctly implemented in the
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3.2 CONCEPTUAL MODEL

numerical routine.

Later in Chapter 5 we will consider the detailed model by including the effect of shear

stress on nutrient consumption and cell growth, non-linear cell diffusion and constant

volumetric flow rate.

3.2 Conceptual Model

Cell growth and nutrient transport are the two major phenomena taking place in the

perfusion bioreactor. Apart from these two phenomena, during the cell growth dif-

ferent biochemical and mechanical forces are also in operation in a perfusion bioreactor

and they influence the bioreactor performance. Figure 3.1 shows the main interacting

phenomena taking place in a perfusion bioreactor when convective and diffusive trans-

port of nutrient and cell growth take place within a scaffold. Nutrient transport is due

to convection and diffusion and it affects the nutrient uptake rate i.e. if the nutrient

transport is high then the nutrient uptake rate is also high and as a result cell growth

will also be high. As cells grow and occupy the scaffold voids, the porosity and per-

meability of scaffold decreases from its initial value and the space left for the new cells

is smaller. Due to the decrease in porosity the rate of diffusion of nutrients also de-

creases; on the other hand the decrease in permeability will have a direct effect on the

convective velocity. Consequently the decrease in convective velocity and diffusion

will influence the mass transfer and hence cell growth.

Porosity

Convection

Diffusion

Nutrient
uptakeCell growth

Mass Transfer

Permeability

Figure 3.1: Interacting phenomena in perfusion bioreactor.
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3.3 GEOMETRY AND MODEL EQUATIONS

3.3 Geometry and Model Equations

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fr
es

h 
M

ed
iu

m

Pumpx∗

y∗

L∗

L∗

Figure 3.2: A perfusion bioreactor. Scaffold of length 2L∗ and width 2L∗ is placed within
the bioreactor. Fluid is pumped in at the boundary y∗ = L∗ and pumped out at y∗ = −L∗.
There is no fluid flux through the boundaries x∗ = ±L∗. Pressure at top and bottom
boundaries are p∗0 and p∗1 respectively.

Let us assume that a cell-seeded porous scaffold consisting of interconnected porous

network is placed in the bioreactor. Let the length and width of scaffold be 2L∗ (Stars

are used to denote dimensional quantities throughout). We consider a Cartesian co-

ordinate system (x∗, y∗) aligned with the porous scaffold. The scaffold is characterized

by the usual properties of porous material (porosity, void fraction and permeability).

In this model we assume that the fluid is viscous, incompressible and Newtonian with

viscosity µ∗(kg/m.sec). Fluid is pumped in at the boundary y∗ = L∗ and drawn out at

the boundary y∗ = −L∗ as shown in Figure 3.2.

The model consist of three differential equations, the first representing the flow of fluid

through the porous material, with the velocity denoted by u∗(m/sec) and pressure de-

noted by p∗(kg/m.sec2), the second representing convection and diffusion of nutrients,

with the concentration of nutrient denoted by S∗(moles/m3), and the third representing

the cell growth, in terms of cell density N∗(x∗, y∗)(cells/m3). Nutrients are assumed

to move due to convection and diffusion, with a constant diffusion rate D∗
s (m2/s) and
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3.3 GEOMETRY AND MODEL EQUATIONS

to be consumed by the cells at the rate G∗
s (moles/m3sec). Cells are assumed to diffuse

with a constant diffusion rate D∗
n and they grow in number at a rate Q∗

n(cells/m3sec).

We assume that the initial cell density in the scaffold is N∗
init(x∗, y∗), where the form of

N∗
init(x∗, y∗) is determined by cell seeding strategy i.e. uniform or non-uniform seeding

and k∗0(x∗, y∗) is the permeability of scaffold without cells.

In the next Section we will describe the equations governing the fluid flow, nutrient

delivery and cell growth together with appropriate boundary and initial conditions.

3.3.1 Flow Field

Suppose that the permeability k∗, of the porous material is spatially varying so that

k∗ = k∗(x∗, y∗).

Fluid velocities are assumed to be sufficiently small that inertia can be neglected. The

Darcy velocity u∗ is related to the interstitial pressure p∗ by Darcy’s law,

u∗ = − k∗(x∗, y∗)
µ∗ ∇∗p∗, (3.3.1)

where µ∗ is the dynamic viscosity of the fluid. The continuity equation is

∇∗.u∗ = 0. (3.3.2)

At the boundaries x∗ = ±L∗ we assume that no fluid is flowing through these bounda-

ries. Mathematically we write

u∗.n̂ = 0 at x∗ = ±L∗, −L∗ ≤ y∗ ≤ L∗, (3.3.3)

and at the boundaries y∗ = ±L∗ we apply pressure boundaries conditions

p∗ = p∗0 at y∗ = L∗, −L∗ ≤ x∗ ≤ L∗, (3.3.4a)

p∗ = p∗1 at y∗ = −L∗, −L∗ ≤ x∗ ≤ L∗, (3.3.4b)

where n̂ is the outward unit normal vector, p∗0 is the prescribed pressure at top boun-

dary y∗ = L∗ and p∗1 is the prescribed pressure at bottom boundary y∗ = −L∗, and we

assume that p∗0 > p∗1 .
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3.3 GEOMETRY AND MODEL EQUATIONS

3.3.2 Nutrient Transport

Transport of nutrient to the cells is due to convection and diffusion so that the conser-

vation equation governing the transport and consumption of nutrient is

u∗.∇∗S∗ = D∗
s ∇∗2S∗ + G∗

s , (3.3.5)

where u∗ is the convective velocity, S∗ is the molar concentration of nutrient, D∗
s is the

diffusion coefficient of nutrient and G∗
s is the nutrient uptake rate. In this case D∗

s is

constant and G∗
s is assumed to be a prescribed function of the cell density and nutrient

concentration. We assume that there is no flux of nutrients through the boundaries at

x∗ = ±L∗. Mathematically we write

n̂.∇∗S∗ = 0 at x∗ = ±L∗, −L∗ ≤ y∗ ≤ L∗ (3.3.6)

If the diffusion coefficient D∗
s is very small then in that case the downstream boundary

condition becomes unimportant because it only influences a small boundary layer near

y∗ = −L∗, so we assume that there is no diffusive flux of nutrients through the boun-

dary at y∗ = −L∗. This type of boundary condition was also used by Coletti et al.

(2006). We assume that at the boundary y∗ = L∗ we have a constant nutrient concen-

tration S∗
0 . Mathematically we write,

S∗ = S∗
0 at y∗ = L∗, −L∗ ≤ x∗ ≤ L∗, (3.3.7a)

n̂.∇∗S∗ = 0 at y∗ = −L∗, −L∗ ≤ x∗ ≤ L∗. (3.3.7b)

Mathematically boundary conditions (3.3.6) and (3.3.7b) looks the same but physically

they have different meanings. Boundary conditions (3.3.6) says that there is neither

convective nor diffusive flux through the boundaries x∗ = ±L∗ and boundary condi-

tions (3.3.7b) says that there is no diffusive flux through the boundary y∗ = −L∗.

3.3.3 Cell Growth

The equation governing the growth of cells is given by,

∂N∗

∂t∗
− D∗

n∇∗2N∗ = Q∗
n, (3.3.8)

where D∗
n is the diffusion rate of cells. We assume that there is no flux of cells through

the boundaries at x∗ = ±L∗ and y∗ = ±L∗ and the initial cell density is N∗
init(x∗, y∗) i.e.
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3.3 GEOMETRY AND MODEL EQUATIONS

n̂.∇∗N∗ = 0 at x∗ = ±L∗ and y∗ = ±L∗, (3.3.9a)

N∗(x∗, y∗, 0) = N∗
init(x∗, y∗) at t∗ = 0. (3.3.9b)

Because the cell growth is a very slow process with respect to the time it takes Darcy’s

law and advection-diffusion to reach steady state. As a result Darcy’s law and advec-

tion diffusion equations reach steady state very quickly as compared to the cell growth

equation. Due to this reason in this model Darcy’s law and advection diffusion equa-

tions are quasi static equations while the cell growth equation is a transient equation.

3.3.4 Cell feedback on permeability

When cells grow (over the time interval △t∗ small enough that cell density changes

only by a small amount) they occupy the void spaces in the scaffold and so the per-

meability of the scaffold decreases from its initial value k∗0(x∗, y∗) as the cell density

increases. We assume that the permeability of the scaffold is the function of cell den-

sity. Mathematically we write

k∗(x∗, y∗, N∗) = k∗0(x∗, y∗)e−η∗N∗
, (3.3.10)

where k∗0(x∗, y∗) is the permeability of scaffold without cells and η∗(m3/cell) is a constant.

η∗ controls the change in permeability and is called the blocking parameter. The expo-

nential function ensures that permeability will always remain positive, because nega-

tive permeability has no physical meaning. For small values of the cell density the

permeability equation has linear behaviour.

3.3.5 Consumption and Proliferation Rate

An important part of the modelling is the prescription of the nutrient consumption

and net cell growth rate functions G∗
s and Q∗

n respectively. Let λ∗ be the proliferation

rate of the cells. We suppose that the rate of proliferation of cells is only a function

of nutrient concentration i.e. λ∗(S∗) and the rate of nutrient consumption per cell is

α∗λ∗(S∗), where α∗ is constant.

The cell density changes only due to cell growth. Because the growth rate is much

higher than the death rate so we assume that the cell death is negligible. We assume

that the cells proliferate according to the logistic law. Thus the net growth rate Q∗
n =
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3.4 NONDIMENSIONALIZATION

λ∗(S∗)N∗(1 − N∗/N∗
max), where N∗

max is the maximum carrying capacity. There is a

significant discussion about the form of the proliferation rate λ∗(S∗), e.g. McElwain and

Ponzo (1977) used a piecewise linear behaviour; whereas Galban and Locke (1999) used

more complex functions such as modified Contois, Moser and nth order heterogeneous

models (see Appendix D). Coletti et al. (2006) also used a Contois function to describe

the cell growth. Landman and Cai (2007) considered a Heaviside step functional form

H(S∗ − S∗
h), where S∗

h is the hypoxic threshold for the nutrient concentration. Lewis

et al. (2005) also used Heaviside step function to represent the proliferation rate λ∗(S∗)

but he used hypoxic threshold for the nutrient concentration S∗
h = 0 so proliferation

rate λ∗(S∗) = H(S∗). Michaelis-Menton (see Appendix D) type behaviour is used by

Malda et al. (2004a). All these forms reduce to simple linear behaviour for small values

of the concentration. The most commonly used functional form, linear and Michaelis-

Menton functions can be chosen here to describe the proliferation rate λ∗(S∗). For

simplicity we consider a simple linear behaviour used by Jones et al. (2000) and Lewis

et al. (2005). So we choose λ∗(S∗) = β∗S∗, where β∗(m3/mole.sec) is a constant. Thus

Q∗
n = β∗S∗N∗(1 − N∗/N∗

max). (3.3.11)

We assume that the dominant mechanism for cell nutrient consumption is entirely de-

pendent on the cellular growth. Hence the nutrient consumption rate

G∗
s = −α∗S∗N∗, (3.3.12)

where α∗(m3/cell.sec) is a constant.

3.4 Nondimensionalization

We nondimensionalize all lengths with L∗ and the permeability with respect to a typical

permeability k∗c , so that

x∗ = L∗x, y∗ = L∗y, ∇∗ =
1

L∗∇, k∗(x∗, y∗) = k∗c k(x, y), k∗0(x∗, y∗) = k∗c k0(x, y).

We nondimensionalize velocity and pressure as follows,

u∗ = U∗
c u, p∗ = (p∗0 − p∗1)p + p∗1 ,
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where (p∗0 − p∗1) is the pressure difference between the top and bottom boundaries, and

U∗
c is the characteristic velocity scale given by

U∗
c =

(p∗0 − p∗1)k∗c
µ∗L∗ .

We nondimensionalize all cell densities N∗ and N∗
init by maximum carrying capacity

N∗
max and nutrient concentration S∗ by initial concentration S∗

0 respectively,

N∗ = N∗
maxN, N∗

init = N∗
maxNinit, S∗ = S∗

0S.

Finally, we nondimensionalize time by

t∗ = T∗t,

where T∗ is a typical time scale. The choice of T∗ will be determined subsequently.

3.4.1 Dimensionless equations and boundary conditions

Darcy’s law (3.3.1) and the continuity equation (3.3.2) can then be written in dimen-

sionless form as

u = −k(x, y)∇p, (3.4.1)

∇.u = 0. (3.4.2)

By combining above two equations we get,

∇.(k(x, y)∇p) = 0. (3.4.3)

The boundary conditions (3.3.3) and (3.3.4) in dimensionless form become,

n̂.∇p = 0 at x = ±1, −1 ≤ y ≤ 1, (3.4.4a)

p = 1 at y = 1, −1 ≤ x ≤ 1, (3.4.4b)

p = 0 at y = −1, −1 ≤ x ≤ 1. (3.4.4c)

The nutrient transport equation (3.3.5) can be written in the dimensionless form as,

u.∇S = Ds∇2S − RsNS (3.4.5)
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and boundary conditions (3.3.6) and (3.3.7) in dimensionless form becomes,

n̂.∇S = 0 at x = ±1, −1 ≤ y ≤ 1, (3.4.6a)

S = 1 at y = 1, −1 ≤ x ≤ 1, (3.4.6b)

n̂.∇S = 0 at y = −1, −1 ≤ x ≤ 1, (3.4.6c)

where

Ds =
D∗

s

U∗
c L∗ , and Rs =

α∗L∗N∗
max

U∗
c

,

are dimensionless numbers. The parameter Ds is the inverse of the Peclet number and

represents the ratio of nutrient diffusion to advection. We assume that the diffusion of

nutrients is slow as compared to advective velocity so that the parameter Ds will be

small which implies that the Peclet number is high. The parameter Rs represents the

rate of nutrient consumption relative to advection. If advective velocity U∗
c is high as

compared to rate of nutrient consumption then the parameter Rs is small which implies

that cells are eating nutrients slowly. The dimensionless form of cell growth equation

(3.3.8) is

1

T∗
∂N

∂t
− D∗

n

L∗2
∇2N = β∗S∗

0SN(1 − N). (3.4.7)

Now we can choose the time scale T∗ in two ways. If we choose the growth rate time

scale i.e. T∗ = 1/β∗S∗
0 , then the cell growth equation in dimensionless form becomes

∂N

∂t
− Γ∇2N = SN(1 − N). (3.4.8)

where Γ = D∗
n/L∗2β∗S∗

0 is a dimensionless number which represents the diffusion rate

of cells relative to cellular growth. But if we choose the diffusion time scale i.e. T∗ =

L∗2/D∗
n then the cell growth equation in dimensionless form becomes

∂N

∂t
−∇2N =

1

Γ
SN(1 − N), (3.4.9)

We will consider the growth rate time scale because we are interested in growth of

cells. Lewis et al. (2005), who neglected cell diffusivity, and Landman and Cai (2007)

both used the growth rate time scale.

Boundary conditions (3.3.9a) and initial condition (3.3.9b) in dimensionless form can
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be written as,

n̂.∇N = 0, at all the four boundaries x = ±1, y = ±1, (3.4.10a)

N = Ninit(x, y) at t = 0. (3.4.10b)

The cell feedback equation (3.3.10) in dimensionless form becomes

k(x, y) = k0(x, y) exp(−ηN), (3.4.11)

where η = N∗
maxη∗. Hence the dimensionless parameters in the model are,

Ds =
D∗

s

U∗
c L∗ , Rs =

α∗L∗N∗
max

U∗
c

Γ =
D∗

n

L∗2β∗S∗
0

, and η = N∗
maxη∗.

Table 3.1 shows the brief summary of model equations, boundary and initial condi-

tions.
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Equations Boundary conditions Initial conditions

Permeability distribution

k(x, y, N) = k0(x, y) exp(−ηN).

Darcy’s law n̂.∇p = 0, at x = ±1, −1 ≤ y ≤ 1,
u = −k(x, y, N)∇p, p = 1, at y = 1, −1 ≤ x ≤ 1,

∇.u = 0. p = 0, at y = −1, −1 ≤ x ≤ 1.

Nutrient Transport n̂.∇S = 0, at x = ±1, −1 ≤ y ≤ 1,
u.∇S = Ds∇2S − RsNS. S = 1, at y = 1, −1 ≤ x ≤ 1,

n̂.∇S = 0 at y = −1, −1 ≤ x ≤ 1.

Cell growth
∂N
∂t − Γ∇2N = SN(1 − N). n̂.∇N = 0 , at x = ±1, y = ±1. N = Ninit(x, y) at t = 0.

Ds =
D∗

s

U∗
c L∗ , Rs =

α∗L∗N∗
max

U∗
c

Γ =
D∗

n

L∗2β∗S∗
0

, and η = N∗
maxη∗.

Table 3.1: Summary of dimensionless model equations, boundary and initial conditions.
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3.5 Numerical solution

The model proposed in the Section 3.4.1 consists of four coupled equations namely, cell

feedback equation, quasi static Darcy’s law, quasi static advection diffusion equation

and the time dependent cell growth equation subject, to appropriate boundary and ini-

tial conditions. We assume that the permeability of the scaffold is the function of cell

density and the cell feedback equation gives the permeability of the scaffold with the

current cell density. First we solve the quasi static Darcy’s law (3.4.3) for fluid veloci-

ties u and pressure p and we substitute the fluid velocity u into quasi-static advection

diffusion equation (3.4.5) to solve for nutrient concentration S and then we substitute

the nutrient concentration S into the cell growth equation (3.4.8) to solve for cell den-

sity N subject to appropriate boundary and initial conditions and finally we update the

cell density in the permeability equation and solve the entire system again for updated

cell density. This process continues until the system approaches steady state. As the

cells grow and increase in numbers they invade the void spaces in the scaffold so the

permeability of the scaffold decreases from its initial value and changes in permeabi-

lity effect the flow field and hence nutrient transport and cell growth. The schematic

diagram of solution is described in the Figure 3.3.

Darcy’s Law

Advection Diffusion Equation

Cell Growth Equation

Permeability = f (N)

Figure 3.3: Schematic diagram of solution.

The set of three partial differential equations and boundary conditions are solved for

2-D Cartesian geometry using the commercially available finite element solver Fem-

lab (Comsol). To get a meaningful results we need to take care of suitable meshing,

finite element approximation (e.g. linear, quadratic or cubic) and numerical solution
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parameters. To get the convergent results we have refined the mesh successively to

increase the number of elements. The refined mesh gives 15680 elements out of which

240 are boundary elements. The total number of mesh vertices are 7961 and we have

used the quadratic finite element approximation. We need to solve for three variables,

pressure p, nutrient concentration S and cell density N. The system has 94803 (31601

x 3) degrees of freedom, 31601 for each variable. In the system Darcy’s law and the

advection-diffusion equation are quasi-static. The only time dependent equation is cell

growth equation. The cell growth equation is solved for time t0 : △tcell : tupdate, where

t0 = 0 is initial time, △tcell is the time step for cell growth equation and tupdate is the

time when we update the effect of cell density on cell feedback equation. We update

the effect of cell density in the permeability equation after each time tupdate and solve

the entire system for updated cell density. This process continues until the system ap-

proaches the steady state.

3.5.1 Parameter values

The model presented in the Section 3.4 includes a number of parameters. Some pa-

rameters depend on the cell and nutrient type and some parameters depend on the

scaffold geometry. Our model is a generic model and can be applied to any cell and

nutrient type. We choose the cell type as Murine immortalized rat cell C2C12 and we

assume that growth of cell is limited to the supply of oxygen O2. Parameter values and

their references for Murine immortalized rat cell C2C12 are given in the Table 3.2.
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Parameter Description Value Units Reference

L∗ Scaffold length 0.01 m Rose et al. (2004)

U∗
c Characteristic velocity 1.5 × 10−4 m/sec Rose et al. (2004)

N∗
max Maximum Carrying capacity 4.7 × 1014 cells/m3 Coletti et al. (2006)

D∗
s Diffusion coefficient of oxygen 1.5 × 10−9 m2/sec Coletti et al. (2006)

α∗S∗
0 Maximum oxygen consumption rate 1.86 × 10−18 moles/cell.sec Obradovic et al. (2000)

S∗
0 Initial nutrient concentration 0.119 (moles/m3) Coletti et al. (2006)

α∗ Constant in consumption rate 1.56 × 10−17 (m3/cell.sec)

β∗S∗
0 Maximum cell growth rate 1.52 × 10−5 1/sec Coletti et al. (2006)

β∗ Constant in cell growth rate 1.27 × 10−4 m3/mole.sec

D∗
n Diffusion coefficient of cells 1.5 × 10−9 m2/sec Ma et al. (2007)

η∗ Blocking parameter 1.06 × 10−15 m3/cell

Values of dimensionless parameters

Ds Inverse Peclet number 0.001 –

Rs Ratio of nutrient consumption to advection 0.5 –

Γ Ratio of cell diffusion to cell growth rate 0.1 –

η Blocking parameter 0.5 –

Table 3.2: Model parameters and values used in this work.
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3.6 Results and discussion

In this Section we present the results of the model developed in Section 3.4.1 for various

initial seeding and initial permeability functions. The growth of cells and concentra-

tion of nutrients in the scaffold is simulated using the model proposed in the Section

3.4. The evolution of velocity, nutrient concentration and cell density can be calculated

at different growth rate times and at each spatial location. In the model initial cell den-

sity Ninit(x, y) and initial permeability of scaffold k0(x, y) are both generic functions

of spatial coordinates x and y. We can consider any initial seeding strategy and initial

permeability of scaffold. Results are discussed for various initial seeding strategies and

initial permeability of scaffold. In Sections 3.6 to 3.9 all the results are presented for mo-

del with linear cell diffusion, constant pressure drop across the scaffold and neglecting

the effect of shear stress induced by fluid on the cell growth and nutrient consumption.

3.6.1 Uniform initial seeding and initial permeability

Let us consider the case when both initial seeding and initial permeability are uniform

throughout the domain. We choose Ninit(x, y) = 0.1 and k0(x, y) = 1. Figure 3.4 shows

a sequence of snapshots of fluid velocity (arrow plot) u, nutrient concentration (color

plot) S and cell density (color plot) N at times t = 2 and time t = 5. These times cor-

respond to an intermediate point of transient solution and a point fairly close to steady

state. We observe from the Figure 3.4 that initially the nutrients are distributed uni-

formly throughout the entire depth of scaffold but as time progresses the concentration

of nutrients becomes non-uniform. The concentration of nutrients is high at the scaf-

fold inlet wall y = 1 and it continuously decreases as we move away from the scaffold

inlet wall. This decrease in nutrients also affects the cell growth. We know that the

initial cell density is uniform and it remains uniform for initial times but as time pro-

gresses this becomes non-uniform giving more cells near the scaffold inlet wall where

the nutrient concentration is high and fewer cells in the deeper sections of the scaffold

where nutrient concentration is low. Since permeability of the scaffold is uniform so

fluid will flow with uniform velocity through the scaffold at early times.

Figure 3.5 shows the cross section plot of nutrient concentration S and cell density N

at x = 0 for different times. It is clear from the Figure 3.5 that at initial times nutrients

are distributed uniformly throughout the scaffold but when cells start to grow nutrient

concentration becomes non-uniform giving more nutrient concentration near the scaf-

fold inlet wall and less nutrient concentration in the deeper sections of the scaffold.
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(a) Cell density N and fluid velocity u at t = 2. (b) Nutrient concentration S and fluid velocity u at
t = 2.

(c) Cell density N and fluid velocity u at t = 5. (d) Nutrient concentration S and fluid velocity u at
t = 5.

Figure 3.4: Snapshots of the cell density N, nutrient concentration S and velocity u at times
t = 2 and t = 5. The initial cell density Ninit(x, y) and initial permeability k0(x, y) both are
uniform i.e. Ninit(x, y) = 0.1 and k0(x, y) = 1. The values of dimensionless parameters
used in the simulation are Ds = 0.001, Rs = 0.5, Γ = 0.1 and η = 0.5. The cell update time
tupdate = 0.25 and △tcell = 0.025.

Similarly initially cells are also distributed uniformly throughout the entire scaffold

but it becomes non-uniform after a short time. Cell grow quickly near the scaffold inlet

wall where high concentration of nutrient is available and growth of cells is slow in the

deeper sections of the scaffold due to low nutrient concentration.
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(a) (b)

Figure 3.5: Cross section plot of (a) nutrient concentration S and (b) cell density N, at times
t = 0.5 : 0.5 : 5 when initial seeding and initial permeability both are uniform. The values
of dimensionless parameters are same as in Figure 3.4.

3.6.2 Non-uniform initial seeding, uniform initial permeability

Let us consider the case when the initial cell density is non-uniform and initial permea-

bility of the scaffold is uniform. In this case initially we place the blob of cells at the

centre of scaffold. Mathematically we represent the initial distribution of cells by

Ninit = 0.17 exp(−x2 − y2). (3.6.1)

Figure 3.6: Non-uniform initial cell density.
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Figure 3.6 shows the initial distribution of cells when a blob of cells is placed at the

centre of the scaffold.

Figure 3.7 shows a sequence of snapshots of fluid velocity (arrow plot), nutrient concen-

tration (color plot) and cell density (color plot) at different times when initial cell den-

sity is non-uniform and initial permeability of the scaffold is uniform. Initially nu-

trients are distributed uniformly throughout the entire depth of scaffold but as time

progresses the concentration of nutrient decreases in the deeper sections of the scaf-

fold. We observe from the Figure 3.7 that initially blob of cells is placed at the middle

of the scaffold but after a few time units the blob of cell grows and spreads throughout

(a) Cell density N and fluid velocity u at t = 2. (b) Nutrient concentration S and fluid velocity u at
t = 2.

(c) Cell density N and fluid velocity u at t = 5. (d) Nutrient concentration S and fluid velocity u at
t = 5.

Figure 3.7: Snapshots of cell density N, nutrient concentration S and velocity u at times
t = 2 and t = 5 when initial cell density is non-uniform and initial permeability is uniform
i.e. Ninit(x, y) = 0.1793 exp(−x2 − y2) and k0(x, y) = 1. The values of dimensionless
parameters are same as in Figure 3.4.
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the entire scaffold but distribution of cells remains non-uniform. When the blob of

cells interacts with the boundaries of the scaffold then the nutrients will not pass easily

through this region. The cells beyond this region will be hypoxic. The cells near the

scaffold inlet wall grow very quickly due to presence of high nutrient concentration.

Most of the nutrients are consumed very quickly by the cells near the inlet wall as a

result nutrient concentration is low in the deeper sections of the scaffold.

(a) (b)

Figure 3.8: Cross section plot of (a) nutrient concentration S and (b) cell density N, at times
t = 0.5 : 0.5 : 5 when initial seeding is non-uniform and initial permeability is uniform.
The values of dimensionless parameters are same as in Figure 3.4.

Figure 3.8 shows the cross section plot of nutrient concentration S and cell density N

at x = 0 for different times when initial cell density is non-uniform and initial permea-

bility is uniform. It is clear from the Figure that the nutrient concentration is high near

the scaffold inlet wall and low in the deeper sections of the scaffold. It also indicates

that the cell density is high near the scaffold inlet wall due to presence of high nutrient

concentration and the cell density decreases in the deeper sections of the scaffold due

to low nutrient concentration.

3.6.3 Non-uniform initial seeding and permeability

Consider the case when both initial cell density and initial permeability are non-uniform.

We assume that the initial distribution of cell density is same as in shown in the Figure

3.6 and permeability of the scaffold without cells is the exponential function of spatial

coordinates i.e. k0(x, y) = exp(x + y).

Figure 3.9 shows the distribution of cell density and nutrient concentration at times

t = 2 and t = 5 when both initial cell density and initial permeability are non-uniform.
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(a) Cell density N and fluid velocity u at t = 2. (b) Nutrient concentration S and fluid velocity u at
t = 2.

(c) Cell density N and fluid velocity u at t = 5. (d) Nutrient concentration S and fluid velocity u at
t = 5.

Figure 3.9: Snapshots of cell density N, nutrient concentration S and velocity u at times
t = 0.5 : 0.5 : 5 when initial seeding and initial permeability are both non-uniform i.e.
Ninit = 0.17 exp(−x2 − y2) and k0 = exp(x + y). The values of dimensionless parameters
are same as in Figure 3.4.

We observe from the Figure 3.9 that cell density and nutrient concentration are high

near the top right corner where the permeability is high and low near the bottom left

corner where the permeability is small. We also observe that fluid velocity is high

where the permeability is high and vice versa.

Figure 3.10 shows the cross section plot of nutrient concentration S and cell density N

at x = 0 for different times when initial cell density and initial permeability are both

non-uniform. We observe that the nutrient concentration in the deeper sections of the

scaffold decreases with time. The cell density is high near the inlet wall and low in the

deeper sections of the scaffold.
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(a) (b)

Figure 3.10: Cross section plot of (a) nutrient concentration S and (b) cell density N are
plotted for different times when initial cell density and initial permeability are both non-
uniform. The values of dimensionless parameters are same as in Figure 3.4.

3.6.4 Effect of parameters

The basic model developed in Section 3.4.1 is a generic model and can be easily em-

ployed to other geometric configurations, cell types or operating conditions. For exam-

ple we can employ different values of flow rate U∗
c and blocking parameter η∗. In all

the initial seeding and permeability techniques discussed above if we increase the va-

lue of flow rate U∗
c then the dimensionless parameters Ds and Rs both will decrease;

since parameter Ds is the ratio of nutrient diffusion to advection and parameter Rs is

the ratio of nutrient consumption to advection. Increase in flow rate U∗
c means that

both nutrient diffusion and consumption decrease in comparison to advection. Due

to decrease in nutrient consumption the growth rate in the deeper sections of the scaf-

fold will increase. The increase in flow rate improves the delivery of nutrients in the

deeper sections of the scaffold. Due to improved nutrient concentration away from

the nutrient source the cell growth will also increase in these sections of the scaffold.

However the decrease in flow rate increases the values of both parameters Ds and Rs.

So both nutrient diffusion and consumption increase in comparison to advection. The

high consumption rate of nutrients effects the cell growth. Due to high consumption

rate most of the nutrients are eaten up very quickly near the inlet walls and cells away

from the nutrient source becomes hypoxic and stop growing. However the high value

of diffusion coefficient Ds does not help too much for the delivery of nutrients in the

deeper sections of the scaffold.

Figure 3.11 shows the cell density N and nutrient concentration S at time t = 5 for
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(a) Cell density N and fluid velocity u at t = 5. (b) Nutrient concentration S and fluid velocity u at
t = 5.

Figure 3.11: Snapshots of cell density N, nutrient concentration S and velocity u at time
t = 5. Initial seeding, initial permeability, tupdate and △tcell are same as in Figure 3.4. In

this case perfusion velocity U∗
c = 3 × 10−4m/sec. The values of dimensionless parameters

are Ds = 0.0005, Rs = 0.25, Γ = 0.1 and η = 0.5.

high perfusion velocity. In this case the perfusion velocity U∗
c is double the perfusion

velocity used to calculate the results in Figure 3.4. We can observe that the cell density

has improved due to improvement in nutrient concentration.

Figure 3.12 shows the cell density N and nutrient concentration S at time t = 5 for low

perfusion velocity. In this case the perfusion velocity U∗
c is half the perfusion velocity

used to calculate the results in Figure 3.4. We can observe that the cell density decreases

due to rapid decrease in nutrient concentration.

Next we fix all the other parameters as in Figure 3.4 and vary the value of parameter

η; this parameter controls the blocking of porous material. The increase in η decreases

the permeability of the scaffold and vice versa. The parameter η also affects the growth

of cells. This means that with an increase in the value of η, pores will block quickly

which decreases the delivery of nutrients in the deeper sections of the scaffold and as

a consequence cell growth also decreases in these sections of the scaffold.

Figure 3.13 shows the cell density N and nutrient concentration S at time t = 5 for high

value of parameter η. It is evident from the Figure, in comparison with the Figure 3.4,

that cell density lowers due to the larger value of η.
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(a) Cell density N and fluid velocity u at t = 5. (b) Nutrient concentration S and fluid velocity u at
t = 5.

Figure 3.12: Snapshots of cell density N, nutrient concentration S and velocity u at time
t = 5. Initial seeding, initial permeability, tupdate and △tcell are same as in Figure 3.4. In this

case perfusion velocity U∗
c = 7.5× 10−5m/sec. The values of dimensionless parameters are

Ds = 0.002, Rs = 1, Γ = 0.1 and η = 0.5.

(a) Cell density N and fluid velocity u at t = 5. (b) Nutrient concentration S and fluid velocity u at
t = 5.

Figure 3.13: Snapshots of cell density N, nutrient concentration S and velocity u at time
t = 5. Initial seeding, initial permeability, tupdate, △tcell and the values of dimensionless
parameters except η (in this case η = 0.8) are same as in Figure 3.4.

3.7 Analytical solution

The model proposed in the Section 3.4 is a coupled model consisting of four equations.

It is not possible to solve the model analytically. In this Section we will apply some

simplifying assumptions on the nondimensional model proposed in the Section 3.4 so

that we can solve the model analytically and compare the numerical and analytical

results.
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We assume that the initial permeability of the scaffold without cells is constant i.e.

k0(x, y) = constant, and the initial cell density Ninit(x, y) is uniform throughout the

scaffold. From equation (3.4.11) we observe that the permeability of the scaffold is

constant only when N = Ninit or N = 1 in the entire domain. This implies that per-

meability of the scaffold is constant only at initial times and at large times. Hence

kj(x, y, N) = k0(x, y) exp(−ηNj) is constant, when Nj = Ninit, Nmax or if η = 0. After

these simplifying assumptions equation (3.4.3) reduces to

∇2 p = 0. (3.7.1)

Equation (3.7.1) is a second order partial differential equation which can be solved

analytically subject to boundary conditions (3.4.4) using the method of separation of

variables (See Chapter 2 Section 2.6.3). The analytic solution of equation (3.7.1) is

p =
1

2
(1 + y). (3.7.2)

We conclude that when the permeability of the scaffold is constant then the pressure is

a linear function of y only. Let A1 = k0(x, y) exp(−ηNj) then if we choose k0(x, y) = 1

then by substituting the expression for p from equation (3.7.2) into equation (3.4.1) we

get u =
(

0,− A1
2

)

i.e. fluid is moving with uniform velocity in the direction of y.

Since the fluid velocity depends only on one spatial variable y and we apply zero flux

boundary conditions on the side walls of the scaffold at x = ±1 for both nutrient trans-

port and cell growth equations (3.4.5) and (3.4.8), consequently nutrient concentration

S and cell density N are only functions of one spatial variable y. Hence the nutrient

transport equation (3.4.5) reduces to

u.∇S(y) = Ds∇2S(y) − RsS(y)N(y). (3.7.3)

To solve equation (3.7.3) we need two boundary conditions given by

S = 1, at y = 1, −1 ≤ x ≤ 1, (3.7.4a)

dS

dy
= 0, at y = −1 − 1 ≤ x ≤ 1. (3.7.4b)

Substituting u =
(

0,− A1
2

)

in equation (3.7.3) we obtain,

Ds
d2S(y)

dy2
+

A1

2

dS(y)

dy
− RsS(y)N(y) = 0. (3.7.5)
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Similarly, the cell density N is a function of y only and hence equation (3.4.8) reduces

to a second order one dimensional time dependent reaction diffusion equation

∂N(y, t)

∂t
= Γ

∂2N(y, t)

∂y2
+ SN(y, t)(1 − N(y, t)), (3.7.6)

The boundary and initial conditions are

∂N(y, t)

∂y
= 0, at y = ±1, (3.7.7a)

N = Ninit, at t = 0. (3.7.7b)

Equations (3.7.5) and (3.7.6) are coupled equations and we solve this coupled system

analytically when the permeability of the scaffold is constant. Permeability is constant

only when N = Ninit or N = 1 and η = 0 so we consider two cases for the solution

of this coupled system. First we consider the growth of cells at initial times i.e. very

close to t = 0, before going on to the solution at large times i.e. when cell density N

approaches its maximum limit 1.

3.7.1 Case I: Initial time solution

At initial time the cell density N ≈ Ninit, where Ninit is constant. Then equation (3.7.5)

can be approximated as

d2S(y)

dy2
+ A

dS(y)

dy
− BS(y) = 0, (3.7.8)

where

A =
exp(−ηNinit)

2Ds
and B =

RsNinit

Ds
.

Equation (3.7.8) is a second order, constant coefficient, homogeneous ordinary differen-

tial equation. The solution of equation (3.7.8) is,

S(y) = M1eγ1y + M2eγ2y, (3.7.9)

where M1 and M2 are arbitrary constants and

γ1 =
−A +

√
A2 + 4B

2
, γ2 =

−A −
√

A2 + 4B

2
. (3.7.10)
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The values of constants M1 and M2 can be found by using the boundary conditions

(3.7.4), which gives

M1 = − γ2eγ1

(γ1e2γ2 − γ2e2γ1)
, M2 =

γ1eγ2

(γ1e2γ2 − γ2e2γ1)
.

Figure 3.14: Analytical solution (3.7.9) and numerical results of profile of nutrient concen-
tration S at time t = 1. The parameter values used in the simulation are Ds = 0.1, Rs = 0.5,
η = 0.01, k0(x, y) = 1 and Ninit = 0.1.

Figure 3.14 shows the profile of nutrient concentration at time t = 1. Both the analytic

solution (3.7.9) and numerical results of the nutrient concentration at time t = 1 are

plotted on top of each other. At time t = 1 nutrient concentration is high near the

scaffold inlet wall but it decreases continuously as we move towards the scaffold exit

wall. The concentration of nutrients is low in the deeper sections of the scaffold as

compared to the scaffold entrance. It is clear from the Figure 3.14 that the analytic and

numerical results for the nutrient concentration S agree at time t = 1.

At initial times the cell density N is independent of y because the initial cell density in

the entire scaffold is uniform. With this assumption equation (3.7.6) becomes,

dN(y, t)

dt
= S(y)N(y, t)(1 − N(y, t)), (3.7.11)
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whose solution subject to initial condition (3.7.7b) is given by

N =
B1 exp(S(y)t)

1 + B1 exp(S(y)t)
, (3.7.12)

where B1 = Ninit/(1 − Ninit). Hence the cell density N grows exponentially and the

change in cell density N depends on the available nutrient concentration S. Equation

(3.7.12) indicates that if the nutrient concentration is high then the cell density N is

high.

Figure 3.15 shows the analytic solution (3.7.12) and numerical results of cell density N

for various value of y for times 0 ≤ t ≤ 1. It is clear from the Figure that the growth

of cells is high near the scaffold inlet wall y = 1 due to presence of high concentration

of nutrients and the growth of cells decreases as we move away from the scaffold inlet

wall because the concentration of nutrients also decreases in these sections of the scaf-

fold. Analytic and numerical results for various values of y at times 0 ≤ t ≤ 1 are in

good agreement.
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Figure 3.15: � y = 1, � y = 0.5, � y = 0, � y = −0.5, � y = −1. Analytic
solution (3.7.12) and numerical results of cell density N for various values of y at times
0 ≤ t ≤ 1. Solid lines represents the numerical solution and ∗ represents the analytical
solution. Initial cell density Ninit = 0.1 and initial permeability k0(x, y) = 1.The parameter
values used in the simulation are Ds = 0.1, Rs = 0.5, η = 0.01.
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To establish that the numerical coupling is properly implemented we did further checks.

We assume that the coupled transport equation and time dependent cell growth equa-

tions are solved analytically for times 0 ≤ t ≤ 1. In the analytical solution as the cells

grow according to equation (3.7.12) we do not update the nutrient concentration S. But

in the case of numerical coupled system we divide the interval 0 ≤ t ≤ 1 into n time

steps of length tupdate. After each time tupdate as the number of cells increase the system

is solved for updated cell density or in other words we can say that numerical coupling

is two directional. When the number of cells increase they consume more nutrients and

as a result nutrient concentration decreases after each time tupdate. Because the nutrient

concentration decreases after each time tupdate the rate of cell growth also decreases.

We compare the analytic results of nutrient concentration S and cell density N for va-

rious values of y for times 0 ≤ t ≤ 1 (when the coupling is one directional) with the

numerical results (when coupling is two directional). Figure 3.16 shows analytic so-

lution (3.7.9) of profile of nutrient concentration for times 0 ≤ t ≤ 1 (when the cells

are not being updated) and numerical solution for the profile of nutrient concentra-

Figure 3.16: Analytic solution (3.7.9) of profile of nutrient concentration S for times 0 ≤ t ≤
1 when cells are not updated and numerical results of the profile of nutrient concentration
S when cells are updated after each time tupdate = 0.1. ∗ represents the analytic solution
and solid lines represents the numerical results of nutrient concentration. Arrow indicates
that graph is being read from top to bottom. The parameter values used in the simulation
are Ds = 0.1, Rs = 0.5, η = 0.01, Ninit = 0.1 and k0(x, y) = 1.
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tion (when the cells are being updated after each time tupdate = 0.1). It is evident from

the Figure that initially when the cells are not updated both analytical and numerical

solutions agree and after each time tupdate, when the transport equation is solved for

updated cell density, the nutrient concentration decreases after each time because with

the increase in cell density the consumption of nutrient increases. As a result nutrient

concentration decreases especially in the deeper sections of the scaffold which causes a

decrease in cell growth.

Figure 3.17 shows the analytical solution (3.7.12) (when the cells are not updated) and

numerical results (when the cells are updated after each time tupdate) of cell density N at

times 0 ≤ t ≤ 1 for various values of y. In the numerical coupled system we solve for

the flow field, nutrient transport and time dependent cell growth equation respectively.

After each time tupdate the system is solved again for updated cell density. When the

number of cells increases they consume more nutrients for the growth so after each time

step the cell growth decreases. This is because after each time step the available nutrient

concentration is less than the previous step and cell density is more than the previous
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Figure 3.17: � y = 1, � y = 0.5, � y = 0, � y = −0.5, � y = −1. Dotted lines represents
the analytic results and solid lines represents numerical results. Analytic solution of equa-
tion (3.7.12) (when cells are not updated) and numerical results (when cells are updated
after each time step tupdate = 0.1) of cell density N for times 0 ≤ t ≤ 1 are plotted. The
parameter values used in the simulation are Ds = 0.1, Rs = 0.5, η = 0.01, Ninit = 0.1 and
k0(x, y) = 1.
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step. That is why the numerical results deviate from the analytic results which indicates

that our numerical coupling is working properly. We can see from the Figure 3.17 that

both numerical and analytical results agree at the initial times but with the passage of

time when numerical system is solved for updated cell density it starts deviating from

the analytic results. But at the boundary y = 1 both the numerical and analytical results

agree well because at the boundary y = 1 the available nutrient concentration remains

constant. The deviation between analytical and numerical results increases as we move

away from the scaffold inlet boundary y = 1 and this deviation is high at the boundary

y = −1. This is because at the boundary y = −1 the available nutrient concentration is

low.

3.7.2 Case II: Steady state solution

For steady state solution ∂N/∂t = 0, then equation (3.7.6) reduces to,

Γ
∂2N(y)

∂y2
+ SN(y)(1 − N(y)) = 0, (3.7.13)

N(y) = 1 satisfies the equation (3.7.13) and boundary conditions (3.7.7a).

For N(y) = 1, equation (3.7.5) becomes

d2S(y)

dy2
+ Ã

dS(y)

dy
− B̃S(y) = 0, (3.7.14)

where

Ã =
exp(−η)

2Ds
and B̃ =

Rs

Ds
.

The solution of equation (3.7.14) is

S(y) = M̃1eη1y + M̃2eη2y, (3.7.15)

where M̃1 and M̃2 are arbitrary constants and

η1 =
−Ã +

√

Ã2 + 4B̃

2
, η2 =

−Ã −
√

Ã2 + 4B̃

2
. (3.7.16)

The values of constants M̃1 and M̃2 can be found by using the boundary conditions
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Figure 3.18: Analytic solution (3.7.15) and numerical solution of profile of nutrient concen-
tration S at steady state. ∗ represent the analytical result and solid line represent the nume-
rical result. The parameter values used in the simulation are Ds = 0.1, Rs = 0.5, η = 0.01,
Ninit = 0.1 and k0(x, y) = 1.

(3.7.4), which gives

M̃1 = − η2eη1

(η1e2η2 − η2e2η1)
, M̃2 =

η1eη2

(η1e2η2 − η2e2η1)
.

Figure 3.18 shows the analytical solution (3.7.15) and numerical results of profile of

nutrient concentration at steady state. It is clear from the Figure 3.18 that at the steady

state the concentration of nutrients is very low in the deeper sections of the scaffold.

Numerical and analytic solution agree at the steady state. The length scale of nutrient

penetration is 1/η1. In Figure 3.18 the length scale of nutrient penetration is 0.95.

Figure 3.19 shows that the cell density is approaching steady state for various values of

y. Analytically at steady state N = 1 which is shown in the Figure 3.19. Numerically

the system approaches steady state at different rates depending on the availability of

nutrients in the various regions of the scaffold. The region close to the nutrient source

gets to steady state quickly because near the nutrient source the availability of nutrients

is high and as a result the rate of cell growth is high.
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Figure 3.19: Cell density N for the various values of y approaching to steady state. The
parameter values used in the simulation are Ds = 0.1, Rs = 0.1, η = 0.01, Ninit = 0.1 and
k0(x, y) = 1.

3.8 Stability of steady state solution

The steady state solution N = 1 will be stable if every solution close to N = 1 decays to

1. To check the stability of steady state solution N = 1 we perturb the solution N = 1

from the equilibrium position and check that whether the perturbed solution decays to

1 or not. So we write,

N(y, t) = 1 + ǫN1. (3.8.1)

Substituting this solution into equation (3.7.6) and collecting O(ǫ) terms we get an

ordinary differential equations in N1,

∂N1

∂t
= Γ

∂2N1

∂y2
− S(y)N1, (3.8.2)

subject to boundary conditions,

∂N1

∂y
= 0 at y = ±1 − 1 ≤ x ≤ 1. (3.8.3)
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Substituting N1 = eλ̃t f (y) into equation (3.8.2) we get,

Γ
d2 f (y)

dy2
− (λ̃ + S(y)) f (y) = 0. (3.8.4)

Multiplying equation (3.8.4) by f (y) and integrate from -1 to 1 we get,

Γ

∫ 1

−1

(

d f

dy

)2

dy +
∫ 1

−1
(λ̃ + S(y)) f 2(y)dy = 0. (3.8.5)

Solving the equation (3.8.5) for λ̃ we get,

λ̃ = −
Γ
∫ 1
−1

(

d f
dy

)2
dy +

∫ 1
−1 S(y) f 2(y)dy

∫ 1
−1

f 2(y)dy
. (3.8.6)

All the terms on the right hand side of equation (3.8.6) are positive, which implies that

all the eigenvalues λ̃ are negative. Since eigenvalues are negative the solution N1 is

stable. Hence the steady state solution N = 1 is a stable solution. To check the stability
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Figure 3.20: Stability of numerical solution at steady state. The parameter values used in
the simulation are Ds = 0.1, Rs = 0.5, η = 0.1, and Ninit = 1 + 0.1 sin(πy/2).

of numerical solution at the steady state we chose initial cell density N as

Ninit(x, y) = 1 + ǫ f (y) (3.8.7)
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where ǫ ≪ 1 is a very small number and f (y) is any function of y which satisfies the

boundary conditions. If we choose ǫ = 0.1 and f (y) = sin( πy
2 ) then we can see from

the Figure 3.20 that all the solutions close to N = 1 decay exponentially to N = 1. This

indicates that at the steady state the numerical solution is also stable.

3.9 Fixing flow rate

In experiments constant volumetric flow rate is maintained through the scaffold. In

this Section we discuss how the real velocity is rescaled to keep the volumetric flow

rate constant. When the cells grow and occupy the scaffold voids then permeability of

scaffold decreases as a result velocity of the fluid flowing through the porous material

decreases. The fluid velocity continuously decreases with the increase in cell density.

The decrease in fluid velocity effects the delivery of nutrients to the cells. The growth of

cells decreases with the decrease in nutrient concentration. To overcome this problem

we fixed the flow rate and divide the Darcy’s velocity by a constant that ensures that

total flux across every line y = d is constant. By the fixing flow rate delivery of nutrients

to the cells especially in the deeper sections of the scaffold improves. The velocity u

obtained from the solution of Darcy’s law, with zero-flux boundary conditions at the

side walls of the scaffold, has only one component in the direction of y i.e. velocity

u = (0, uy). Since flow is incompressible and has zero-flux through the boundaries

x = ±1. Therefore the total volumetric flux through y = d is

ud =
1

2

∫ 1

−1
k(x, d, N)

∂P

∂y
dx, (3.9.1)

which is independent of d. To keep the flow rate constant we rescale the velocity ob-

tained from Darcy’s law. To do this numerically we divide the actual velocity obtained

from Darcy’s law by the volumetric flux ud at y = d, where −1 ≤ d ≤ 1 i.e.

ur =
u

ud
,

where ur is the rescaled velocity, u is the real velocity obtained from the Darcy’s law

and ud is the flow rate at y = d. Let us calculate the resacled velocity ur for uniform

initial cell density and uniform initial permeability. For a constant initial permeability

the flow rate at y = d is given by

ud =
1

2

∫ 1

−1
exp(−ηN)

∂P

∂y
dx. (3.9.2)
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To keep the flow rate constant we do this rescaling whenever we update the cells. To

Figure 3.21: Analytic solution and numerical results of profile of nutrient concentration for
original and rescaled problem. The parameter values used in the simulation are Ds = 0.1,
Rs = 0.5.

check that numerical coupling is implemented properly we compare the numerical

results with the analytic solution at the steady state.

We know that Darcy’s velocity at the steady state is u =
(

0,− exp(−η)
2

)

. To calculate the

rescaled velocity ur we divide u by ud. From equation (3.9.2) and (3.7.2) we obtain

ud =
1

2
exp(−ηN), (3.9.3)

which implies that ur = (0,−1). Alternatively if in the analytic solution at steady

state we replace the pressure boundary conditions (3.3.4) with the velocity boundary

conditions i.e.

exp(−η)
∂p

∂y
= 1 at y = ±1. (3.9.4)

Solution of equation (3.7.1) subject to boundary conditions (3.9.4) is

p =
1

exp(−η)
(1 + y). (3.9.5)

88



3.10 CONCLUSIONS

If we choose k0(x, y) = 1 then by substituting the expression for p from equation (3.9.5)

into equation (3.4.1) we get ur = (0,−1). Substituting ur = (0,−1) in equation (3.7.3)

we can calculate the nutrient concentration S at the steady state.

Figure 3.21 shows the analytic and numerical results of the profile of nutrient concen-

tration for the original and rescaled problem. It is clear from the Figure that at the

steady state when the flow rate is kept fixed the nutrient concentration in the deeper

sections of the scaffold becomes high as compared to the original problem which are

the expected results. The rescaled problem approaches the steady state quickly as com-

pared to the original problem due to presence of high nutrient concentration in the

deeper sections of the scaffold.

3.10 Conclusions

In this Chapter we have developed a simple mathematical model of fluid flow, nu-

trient concentration and cell growth in a perfusion bioreactor. The cell density in the

final construct depends on the initial seeding technique and initial permeability of the

scaffold. We present numerical results for uniform and non-uniform initial cell density

and initial permeability of the scaffold. We observe from the results that the velocity

of fluid and nutrient concentration are high in the regions where the permeability of

the scaffold is high and vice versa. To solve the system analytically we apply some sim-

plifying assumptions. We solve the system analytically for constant permeability. We

observe that the analytical and numerical results for nutrient concentration S and cell

density N agree at initial times as shown in the figures 3.14 and 3.15. Analytical and

numerical results for nutrient concentration S and cell density N also agree at large

times as shown in the Figures 3.18 and 3.19. We have solved the system analytically

at initial times and at large times. It is not possible to solve the system analytically at

intermediate times. Since analytic and numerical results agree for the initial times and

at the large time (when system reaches steady state) so we conclude that the numerical

coupling is properly implemented. We have also proved analytically and numerically

that all the solutions close to steady state solution N = 1 decay to N = 1.

Later in Chapter 5 we will update the model developed in Section 3.4 by including the

more complicated effects in the model, such as non-linear cell diffusion, effect of fluid

induced shear stress on cell growth and nutrient consumption rates, and fixed flow

rate.
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CHAPTER 4

Fisher-Kolmogorov equation with

non-linear diffusion

4.1 Introduction

The process by which material spreads is called diffusion. It is a fundamental concept

and important in biology and medicine, chemistry and geology, engineering and phy-

sics. Diffusion is the result of constant thermal motion of atoms, molecules and par-

ticles. It transports material from a region of high concentration to a region of low

concentration. Thus the end result of diffusion would be a constant concentration,

throughout space, of each of the components in the environment.

For a long time diffusion has been used as a model for spatial spread in many biologi-

cal systems. Murray (1989) and Okubo (1980) used diffusion in invasion and pattern

formation and Skellam (1991) studied diffusion in the field of ecology. For motile cell

populations diffusion has been used in different situations. Chaplain and Stuart (1993)

used diffusion to model the capillary growth network and Sherratt and Murray (1990)

used it to model wound healing.

In biological models linear diffusion is an established model to study the movement

of cell populations spatially. But it is not suitable for closely packed cell populations

(Sherratt, 2000) such as epithelia, where one cell is in direct contact with its neighboring

cell. For closely packed cells, a reaction diffusion equation can be used to model single

population models (Chaplain and Stuart, 1991, Sherratt and Murray, 1990). But for

different population models, a diffusion term would imply that populations can mix

completely and movement of one cell type is not affected by the presence of the cells

of other type. In reality this is entirely opposite, different cell populations cannot move
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through one another; instead the cell will stop moving when it unexpectedly collides

with another cell. This phenomenon is known as "contact inhibition of migration". This

process has been well documented in many types of cells (Abercrombie, 1970).

In all biological systems the exchange of information at both inter- and intra- cellular

level is almost continuous. In order to get sequential development and generation

of the required pattern such communication is necessary e.g. for development and

growth of an embryo. Propagating waveforms are one of the ways of conveying such

biological information between the cells. Let us consider a simple one-dimensional

diffusion equation

∂N∗

∂t∗
= D∗ ∂2N∗

∂x∗2
, (4.1.1)

where N∗ is chemical (cell or nutrient) concentration and D∗ is diffusion coefficient.

The time to exchange information in the form of changed concentration is O(L∗2/D∗),

where L∗ is the length of domain. We can get this order by dimensional arguments of

equation (4.1.1). At the early stage of growth of an organism the diffusion coefficient

can be very small: values of order 10−9 to 10−11cm2sec−1. If diffusion is the main pro-

cess to convey the biological information then to cover the macroscopic distances of

several millimeters requires a very long time. When the diffusion coefficient is O(10−9

to 10−11cm2sec−1) and L∗ is order of 1mm then the time required to convey the infor-

mation is O(107 to 109sec) , which is very large in the early stages of growth of an orga-

nism. This means that simple diffusion is unlikely to be the main means of exchanging

the information during embryogenesis. Kareiva (1983) and Tilman and Kareiva (1997)

estimated the diffusion coefficient for insect dispersal in interacting population. About

seventy years ago Fisher (1937) and Kolmogorov et al. (1937) introduced a classical mo-

del to describe the propagation of an advantageous gene in a one-dimensional habitat.

The equation describing the phenomenon is a one-dimensional non-linear reaction-

diffusion equation,

∂N∗

∂t∗
= D∗ ∂2N∗

∂x∗2
+ χ∗N∗(1 − N∗), (4.1.2)

where N∗ is chemical concentration, D∗ is the diffusion coefficient and the positive

constant χ∗ represents the growth rate of the chemical reaction. Since then a great deal

of work has been carried out to extend their model to take into account the other biolo-

gical, chemical and physical factors. The equation (4.1.2) is also used in logistic growth

models (Murray, 1977), neurophysiology (Tuckwell, 1988), flame propagation (Frank-
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Kamenetskii, 1955), autocatalytic chemical reactions (Cohen, 1971, Fife and McLeod,

1977), and nuclear reactor theory (Canosa, 1969).

One of the extensions of the Fisher and Kolmogorov model is to introduce a non-linear

diffusion coefficient, which can be taken as a non-linear Fick’s law. The non-linearity

can arise in terms of a space, time or density-dependent diffusion coefficient. In the Fi-

sher and Kolmogorov model the reaction kinetics are coupled to diffusion which gives

travelling waves of chemical concentration and it can affect the biological change very

much faster as compared to the processes governed by simple diffusion without the

kinetic term. In many biological populations density-dependent dispersal has been

observed e.g. Myers and Krebs (1974) studied the population density cycles in small

rodents, Carl (1971) observed that ground squirrels move from highly populated area

to sparsely populated areas. Several mathematical models have been developed to des-

cribe the density-dependent dispersal systems. Gurney and Nisbet (1975, 1976) develo-

ped a first density-dependent diffusion model in ecological context by using a random

walk approach and Montroll and West (1979) developed a one-dimensional model for

single species by using the same approach. But there is not much work on the Fisher

equation with non-linear diffusion. Sánchez-Garduño and Maini (1994) studied a tra-

velling wave solution in a degenerate non-linear diffusion Fisher equation.

Although equation (4.1.2) is known as the Fisher-Kolmogorov equation, the discovery,

investigation and analysis of travelling waves in chemical reactions was first repor-

ted by Luther (1906). He found that the wave speed is a simple consequence of the

differential equations. He obtained the wave speed in terms of parameters associated

with the reactions he was studying. The analytical form is the same as that found by

Kolmogorov et al. (1937) and Fisher (1937).

Equation (4.1.2) has two homogeneous stationary states N∗ = 0 and N∗ = 1. A travel-

ling wave solution of equation (4.1.2) describes a constant velocity front of transition

from one homogeneous state to another. Kolmogorov et al. (1937) introduced a clas-

sical approach to investigate the travelling wave solution N∗(x∗, t∗) = φ(x∗ − v∗t∗),

of the reaction-diffusion system. In this case the original initial and boundary value

problem is re-stated in terms of searching for a set of parameters which includes the

speed v∗ of the wave front for which the ordinary differential equation has trajectories

connecting pairs of equilibrium points. These trajectories can be heteroclinic (a path

in the phase plane which joins two different equilibrium points) and/or homoclinic

(a path in the phase plane which joins an equilibrium point to itself). The boundary

conditions are re-stated in terms of asymptotic behaviour of heteroclinic trajectories as
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time t∗ approaches to ∞ or to −∞.

In this Chapter we study the growth of cells in one and two dimensional scaffolds in

the presence of constant nutrients. The aim of this Chapter is to improve the modelling

of cell growth in a perfusion bioreactor. To improve the existing models of cell growth

in a perfusion bioreactor we have introduced the non-linear cell diffusion. We model

a system in which cell growth and diffusion takes place simultaneously but the cell

diffusion increases with the increase in cell density. The equation governing this sys-

tem is a non-linear Fisher equation in which the diffusion coefficient depends on cell

density. The non-linearity arises in the diffusion coefficient. We represent the diffusion

coefficient as an exponential function of cell density. The form of non-linear diffusion

captures the feature that it is very small for small cell density and increases with the

increase in cell density and it is maximum when cells stop growing. However for li-

near diffusion cells spread immediately in the entire domain. Results are presented

for different values of the parameters. The Fisher equation has such wide applicabi-

lity in itself but also it is the prototype equation which admits travelling wavefront

solutions. We study the travelling wave solution of this equation and find the approxi-

mation for the minimum wave speed. We find that the minimum wave speed depends

on the model parameters and the method of finding the minimum wave speed using

the eigenvalues of the stationary states gives the wrong answer when the diffusion is

strongly non-linear.

4.2 One dimensional Fisher-Kolmogorov equation with non-

linear diffusion

In this Section we describe a spatial and temporal one-dimensional mathematical mo-

del of cell growth in a bioreactor subject to uniform nutrient concentration. Consider

the cells are seeded onto a porous scaffold with interconnected pores, which is placed

in the bioreactor. The scaffold extends from −L∗ ≤ x∗ ≤ L∗, where x∗ denotes the

spatial coordinate. In this model we represent the cell density by N∗, initial cell density

by N∗
init, maximum carrying capacity of the system by N∗

max and diffusion coefficient by

D∗. We assume that the environment is inhomogeneous i.e. the cell density N∗ and dif-

fusion coefficient D∗ depends on spatial coordinate x∗ and time t∗, i.e. N∗ = N∗(x∗, t∗)

and D∗ = D∗(N∗). We know that the cells require some nutrients such as oxygen and

glucose etc. to live and perform specific functions. Suppose that the concentration of

such nutrients remains uniform everywhere in the entire domain at all times. We want
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to model a system in which the change in cell density is due to cell proliferation and

cells disperse in the entire domain due to diffusion. We assume that when the cell

density is small diffusion is also very small and when the cell density N∗ reaches its

maximum carrying capacity N∗
max the cell proliferation stops and cells spread in the

entire domain via diffusion. For that we consider a logistic growth model in which the

cell population spreads via diffusion. That means we have a coupled system of reac-

tion kinetics and diffusion. The one-dimensional coupled reaction-diffusion equation

is given by

∂N∗

∂t∗
=

∂

∂x∗

[

D∗(N∗)
∂N∗

∂x∗

]

+ χ∗N∗
(

1 − N∗

N∗
max

)

, (4.2.1)

where N∗ is cell density, χ∗ is the growth rate of cells (maximum rate at which cells can

proliferate), and D∗(N∗) is the diffusion coefficient. D∗(N∗) can be any function of cell

density. According to our assumption D∗(N∗) increases with increase in cell density so

we choose the diffusion coefficient D∗(N∗) to be an increasing function of cell density

N∗, which is given by

D∗(N∗) = D∗
n exp(γ∗(N∗ − N∗

max)), (4.2.2)

where parameter D∗
n is the cell diffusion when cell density N∗ reaches its maximum

carrying capacity N∗
max, so we can call this the maximum value of cell diffusion and

the parameter γ∗ controls how fast cells are spreading in the domain. The parameters

D∗
n and γ∗ have dimensions m2/sec and m3/cell respectively. The exponential function

in equation (4.2.2) ensures that cell diffusion will remain positive. The non-linear cell

diffusion D∗(N∗) has also its maximum value D∗
n when γ∗ = 0. So we can say that

non-linear cell diffusion is maximum either when cell density N∗ reaches its maximum

carrying capacity N∗
max or the value of parameter γ∗ is zero. The non-linear diffusion

becomes linear when γ∗ = 0. It is also clear from the equation (4.2.2) that when there

are no cells then in that case cell diffusion is D∗
n exp(−γ∗N∗

max), which is the minimum

value of diffusion. So cell diffusion varies in the range,

D∗
n exp(−γ∗N∗

max) ≤ D∗(N∗) ≤ D∗
n. (4.2.3)

From equation (4.2.1) and the form of D∗(N∗) defined by equation (4.2.2) we observe

that cells grow in numbers due to second term on the right hand side of equation (4.2.1)

and they disperse in the entire domain due to first term on the right hand side of equa-

tion (4.2.1). Initially when the cell density N∗ is small, the diffusion coefficient D∗(N∗)
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is also small and D∗(N∗) increases with increasing cell density N∗ but it always re-

mains positive.

We apply zero flux boundary conditions at both the boundaries x∗ = ±L∗. The par-

ticular choice of boundary conditions reflects the assumption that the individual cells

cannot leave the domain. Mathematically we write

∂N∗

∂x∗
= 0, at x∗ = ±L∗. (4.2.4)

We assume that the initial cell density N∗(x∗, 0) is given by

N∗(x∗, 0) = N∗
init(x∗), (4.2.5)

where the form of N∗
init(x∗) depends on initial seeding strategy.

4.3 Nondimensionalization

For convenience and to reduce the parameters in the equation we rescale all the va-

riables to analyze the nondimensional form of the equation. We nondimensionalize all

lengths by L∗ and the cell density by the maximum carrying capacity N∗
max.

x∗ = L∗x, ∇∗ =
1

L∗∇, N∗ = N∗
maxN. (4.3.1)

We nondimensionalize time by the speed of the growth front v∗, where v∗ is given by

equation (4.4.21) and will be determined later.

t∗ =
L∗

v∗
t. (4.3.2)

In the dimensionless form equation (4.2.1) and boundary conditions (4.2.4) can be writ-

ten as

∂N

∂t
= δ

∂

∂x

[

D(N)
∂N

∂x

]

+ χN(1 − N), −1 ≤ x ≤ 1, (4.3.3)

∂N

∂x
= 0, at x = ±1, (4.3.4)

where D(N) = exp(γ(N − 1)) and γ = γ∗N∗
max. The parameters δ and χ are dimen-

sionless parameters in the model which are given by

δ =
D∗

n

L∗v∗
, and χ =

χ∗L∗

v∗
. (4.3.5)
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The parameter χ is the ratio of cell growth rate to speed of growth front and parameter

δ is the ratio of maximum value of non-linear diffusion to the speed of growth front.

The parameter δ controls the diffusion and the parameter χ controls the growth term.

Also boundary condition (4.2.4) and the initial condition (4.2.5) in dimensionless form

becomes

∂N

∂x
= 0, at x = ±1, (4.3.6)

N(x, 0) = Ninit(x). (4.3.7)

Equation (4.3.3) can also be written as

∂N

∂t
= δ

∂D(N)

∂N

(

∂N

∂x

)2

+ δD(N)
∂2N

∂x2
+ χN(1 − N). (4.3.8)

4.4 Travelling wave solution

In the spatially homogeneous situation equation (4.3.3) has two steady states N = 0

and N = 1, which are respectively unstable and stable. This suggests that we should

look for a travelling wave solution of equation (4.3.3) for which 0 ≤ N ≤ 1; negative

cell density has no physical meaning. Since a travelling wave exists over the whole

real line and has no boundaries, it is not sensible to consider L∗ a boundary. Now L∗ is

interpreted as a typical length scale.

Before discussing the travelling wave solution we must decide what we mean by a tra-

velling wave. A travelling wave is a wave which travels without change of shape. If

N(x, t) represents a travelling wave, the shape of the solution will be same for all times

and the propagation speed v of this shape will also remain constant. If we observe this

wave in the travelling frame moving at speed v it will appear stationary. Mathemati-

cally we can write

N(x, t) = N(x − vt) = N(ξ), ξ = x − vt, (4.4.1)

then N(x, t) is travelling wave, and it moves in the positive x-direction with constant

speed v. It is clear from equation (4.4.1) that if x − vt is constant then N is constant, this

means that coordinate system is moving with speed v in the positive x-direction.

If a travelling wave solution exists it can be written in the form

N(x, t) = Φ(ξ), ξ = x − vt, (4.4.2)
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where v is the wave speed. Since equation (4.3.3) is invariant if x → −x, v may be

negative or positive. To be specific we assume that v ≥ 0. We have

∂N

∂t
= −v

dΦ

dξ
,

∂N

∂x
=

dΦ

dξ
, and

∂2N

∂x2
=

d2Φ

dξ2
. (4.4.3)

Substituting the travelling wave solution (4.4.2) into equation (4.3.3) and using rela-

tions from equation (4.4.3) we get a second order ordinary differential equation,

δD(Φ)Φ′′ + δ
dD(Φ)

dΦ
Φ′2 + vΦ′ + χΦ(1 − Φ) = 0, (4.4.4)

where

D(Φ) = exp(γ(Φ − 1)), (4.4.5)

where primes denote the differentiation with respect to ξ. A typical wave front solution

is a solution such that Φ approaches one steady state as ξ → −∞ and approaches the

other steady state as ξ → ∞. Therefore the boundary conditions for travelling wave

solution are usually

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→∞

Φ(ξ) = 1. (4.4.6)

4.4.1 Phase plane analysis

From equation (4.4.4) we observe that we have to determine the values of wave speed

v such that a non-negative solution Φ of equation (4.4.4) exists. We use phase plane

analysis to characterize solutions of equation (4.4.4) in the (Φ, Ψ) phase plane where,

Φ′ = Ψ, Ψ′ =
1

δD(Φ)

[

−vΨ − δ
dD(Φ)

dΦ
Ψ2 − χΦ(1 − Φ)

]

. (4.4.7)

The system of ordinary differential equations (4.4.7) is nearly singular at Φ = 0, since

D(0) ≈ 0 for high values of parameter γ. To remove the near singularity we introduce

a new parameter (Sánchez-Garduño and Maini, 1994), τ in such a way that

dτ

dξ
=

1

D(Φ(ξ))
⇒ τ(ξ) =

∫ ξ

0

ds

D(Φ(s))
. (4.4.8)

Except at Φ = 0, where dτ
dξ is not defined, dτ

dξ > 0. Thus we have

Φ(ξ) = Φ(τ(ξ)), Ψ(ξ) = Ψ(τ(ξ)). (4.4.9)
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and we obtain

Φ′(ξ) =
dΦ

dτ

dτ

dξ
and Ψ′(ξ) =

dΨ

dτ

dτ

dξ
. (4.4.10)

Substituting Φ′(ξ) and Ψ′(ξ) into the system of equations (4.4.7) we get

Φ̇ = D(Φ)Ψ = f (Φ, Ψ), (4.4.11a)

Ψ̇ =
1

δ

[

−vΨ − δ
dD(Φ)

dΦ
Ψ2 − χΦ(1 − Φ)

]

= g(Φ, Ψ), (4.4.11b)

where dot denotes the derivative with respect to τ.

The phase trajectories of (4.4.11) are solutions of

dΨ

dΦ
=

1/δ
[

−vΨ − δ(dD(Φ)/dΦ)Ψ2 − χΦ(1 − Φ)
]

D(Φ)Ψ
. (4.4.12)

The fixed points (Φs, Ψs) are the points where f (Φ, Ψ) = 0 = g(Φ, Ψ), these are steady

states. So in this case fixed points are (0, 0) and (1, 0). The local behaviour of the

trajectories of system (4.4.11) can be obtained by analyzing the linear approximation of

system (4.4.11) around each fixed point.

4.4.2 Stability of fixed points

The system of equations (4.4.11) has two fixed points, but which of these fixed points

are stable? The local stability of a fixed point (Φs, Ψs) is determined by linearization of

the dynamics at the intersection. If the functions f (Φ, Ψ) and g(Φ, Ψ) are analytic near

the fixed points (Φs, Ψs) we can expand f (Φ, Ψ) and g(Φ, Ψ) in a Taylor series and,

retaining only the linear terms, we get

f (Φ, Ψ) = f (Φs, Ψs) + Φ
∂ f

∂Φ
+ Ψ

∂ f

∂Ψ
, (4.4.13a)

g(Φ, Ψ) = g(Φs, Ψs) + Φ
∂g

∂Φ
+ Ψ

∂g

∂Ψ
. (4.4.13b)

So with the linear approximations the system of equations (4.4.11) becomes

Φ̇ = Φ
∂ f

∂Φ
+ Ψ

∂ f

∂Ψ
= aΦ + bΨ, (4.4.14a)

Ψ̇ = Φ
∂g

∂Φ
+ Ψ

∂g

∂Ψ
= cΦ + dΨ, (4.4.14b)
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which can be written in the matrix form as

Ω̇ = AΩ, (4.4.15)

where

Ω̇ =

(

Φ̇

Ψ̇

)

, A =

(

a b

c d

)

=

(

∂ f
∂Φ

∂ f
∂Ψ

∂g
∂Φ

∂g
∂Ψ

)

, Ω =

(

Φ

Ψ

)

. (4.4.16)

Let λ1 and λ2 be eigenvalues of A then we have

det(A − λI) = 0, ⇒ λ2 − (a + d)λ + det(A) = 0. (4.4.17)

λ1, λ2 =
(ΨD′(Φ) − v/δ − 2ΨD′(Φ)) ±

√

(ΨD′(Φ) − v/δ − 2ΨD′(Φ))2 − 4 det(A)

2
(4.4.18)

Eigenvalues λ for the fixed points (0, 0) and (1, 0) are

(0, 0) : λ =
1

2

[

−v

δ
±
√

v2

δ2
− 4χD(0)

δ

]

, (4.4.19a)

(1, 0) : λ =
1

2

[

−v

δ
±
√

v2

δ2
+

4χD(1)

δ

]

. (4.4.19b)

We know that D(0) = exp(−γ) and D(1) = 1. Using values of D(0) and D(1) in

equation (4.4.19) we get

(0, 0) : λ =
1

2

[

−v

δ
±
√

v2

δ2
− 4χ exp(−γ)

δ

]

, (4.4.20a)

(1, 0) : λ =
1

2

[

−v

δ
±
√

v2

δ2
+

4χ

δ

]

. (4.4.20b)

It is clear from the equation (4.4.20a) that fixed point (0, 0) is a stable node if v2 >

4χδ exp(−γ) ⇒ v > vc = 2
√

χδ exp(−γ), the case when v = vc giving a degene-

rate node. The fixed point (0, 0) is a stable spiral if v2 < 4χδ exp(−γ) or v < vc =

2
√

χδ exp(−γ); i.e. Φ oscillates in the vicinity of origin. When v < 2
√

χδ exp(−γ)

then it is not physically realistic because Φ(ξ) = N(x, t) cannot be negative. The fixed

point (1, 0) is a saddle point. The solution of modified Fisher equation evolve to a tra-

velling wave if the fixed point (0, 0) is a stable node and minimum wave speed of wave

front is vc = 2
√

χδ exp(−γ). The condition that (0, 0) is a stable node is a necessary

condition for travelling wave propagation but not sufficient. Sometimes it gives wrong

answer as we shall in see Section 4.6. If the propagation speed of the front is determined
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4.4 TRAVELLING WAVE SOLUTION

by the leading edge of the population distribution the non-linear fronts whose asymp-

totic propagation speed equals vc is called a "pulled front" . In this case the eigenvalues

give the right answer because the wave speed is determined by what happens at the

front edge where Φ ≈ 0. As above vc = 2
√

χδ exp(−γ) is determined by the eigen-

values thus we call vc speed of pulled front. On the other hand if the speed of front

is determined by the whole wave-front but not the behaviour of the leading edge the

front is called the "Pushed front" (Rothe, 1981, Van Saarloos, 2003). In this case simply

computing the eigenvalues gives the wrong answer for the minimum wave speed and

the minimum wave speed is vmin > vc.

Thus the wave speed for a pulled front is given by vc = 2
√

χδ exp(−γ). The wave

speed vc depends on the parameters χ, δ and γ, is directly proportional to the square

root of the product of χ and δ, which implies that if the value of product χδ is high then

the wave will move with high speed. In terms of the original dimensional equation

(4.2.1) the wave speed v∗c is

v∗c = 2
√

χ∗D∗
n exp(−γ∗N∗

max). (4.4.21)

We observe from the system of equations (4.4.19) that for a general function D(Φ) the

wave speed vc is determined by D(0). So in general the wave speed of the pulled front

is vc = 2
√

χδD(0).
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Figure 4.1: Phase plane trajectories of
equation (4.4.11). Here parameter values
are χ = 132.1739, δ = 0.0139 γ = 2 and
v = 1.5 > vc.
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Figure 4.2: Phase plane trajectories of
equation (4.4.11). Here parameter values
are χ = 132.1739, δ = 0.0139 γ = 2 and
v = 0.5 < vc.

Figure 4.1 shows the phase plane sketch of the trajectories of equation (4.4.11) when

v > vc. We see that when v > vc the fixed point (0, 0) is a stable node because all the
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4.4 TRAVELLING WAVE SOLUTION

trajectories from (1, 0) to (0, 0) have the same limiting direction towards (0, 0) and the

fixed point point (1, 0) is a saddle point because there are two incoming trajectories

and two out going trajectories and all the other trajectories in the neighborhood of the

critical point (1, 0) bypass (1, 0) . Similarly Figure 4.2 shows the phase plane sketch

of the trajectories of equation (4.4.11) when v < vc. We observe that when v < vc the

fixed point (0, 0) is a stable spiral because all the trajectories from (1, 0) to (0, 0) spiral

around the point (0, 0).
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Figure 4.3: Phase plane trajectories of
equation (4.4.11) for different values of v ≥
vc. The other parameter values are same as
in Figure 4.1. Colored lines represents the
different values of speed v e.g. ♠ v = 1, ♠
v = 1.5, ♠ v = 2, ♠ v = 2.5 and ♠ v = 3.
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Figures 4.3 and 4.4 show the phase plane sketch of trajectories of equation (4.4.11) for

various wave speeds v ≥ vc and v < vc respectively. We observe from the Figure 4.3

that when v ≥ vc all the trajectories in the phase plane (Φ, Φ′ = Ψ) from (1, 0) to (0, 0)

remain entirely in the quadrant where Φ ≥ 0 and Φ′ ≤ 0, with 0 ≤ Φ ≤ 1 for all wave

speeds v ≥ vc. Similarly from the Figure 4.4 we see that for all wave speeds v < vc the

phase trajectories from (1, 0) to (0, 0) spiral around the fixed point (0, 0). In this case Φ

oscillates in the vicinity of the origin giving Φ negative which is unphysical.

4.4.3 Selection of initial condition

A very important question at this stage is what kind of initial condition N(x, 0) will

evolve into the travelling wave solution and if the travelling wave solution exists what

is its wave speed v? Fisher (1937) found that equation (4.3.3) has an infinite number of

travelling wave solutions for which 0 ≤ N(x, 0) ≤ 1 for all wave speeds v ≥ vc. Kol-
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mogorov et al. (1937) proved that equation (4.3.3) has a travelling wavefront solution

and the wave speed is v ≥ vc, if N(x, 0) has compact support. A function N(x, 0) is

said to have a compact support if

N(x, 0) = Ninit(x) ≥ 0, (4.4.22)

where

Ninit(x) =

{

F(x) if x1 ≤ x ≤ x2

0 if x1 ≥ x ≥ x2

where x1 < x2 and N(x, 0) = Ninit(x) is continuous in (x1, x2). If the initial condition

is other than (4.4.22) then solution depends on the behaviour of N(x, 0).

If D(Φ) = 1 then equation (4.4.4) reduces to

δΦ′′ + vΦ′ + χΦ(1 − Φ) = 0 (4.4.23)

A travelling wave solution of equation (4.4.23) in explicit form for δ = χ = 1 was found

by Ablowitz and Zeppetella (1979) for special wave speed v = 5/
√

6 ≈ 2.041,

Φ(ξ) =
1

[1 + exp(ξ/
√

6)]2
. (4.4.24)

But if D(Φ) is not a constant then it is not possible to find the exact solution of equa-

tion (4.4.4). Solution of such non-linear problem can be approximated by perturbation

theory or numerical investigation.

4.5 Numerical solution

Numerically we solve the modified Fisher equation (4.3.3) by using the commercial fi-

nite element solver COMSOL. We subdivide the domain −1 ≤ x ≤ 1 into a suitable

number of mesh elements (intervals) of length △x. The end points of each interval are

called node points and the elements do not have to have the same length. But in this

case the length △x of each element is same. To obtain meaningful results care is re-

quired in the definition of a suitable number of mesh elements, finite element approxi-

mation and model parameters. Convergence can be achieved by successively refining

the mesh elements. The refined mesh contains 30721 mesh vertices and 30720 mesh

elements. The dependent variable N is approximated by a quadratic shape function

and solved for 61441 degrees of freedom. We assume that at time t = 0 the cell density
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is Ninit and after the time t = tnew the cell density is Nnew. We start with initial cell

density Ninit and after each time tnew we replace Ninit by Nnew and solve the equation

(4.3.3) again for updated cell density. The time from t = 0 to t = tnew is subdivided

as t = 0 : △t : tnew, where △t is the time step size from t = 0 to t = tnew and tnew

is the time when we update the cell density. The cell density N at each mesh point x

is obtained for different times. To estimate the wave speed vc numerically we look for

the point x after each time t where the cell density is half of its maximum value i.e.

N = 1/2 (maximum cell density). When cell density is half of its maximum value at

time t = t1, then x = x1 and at time t = t2, x = x2. So we can estimate the total distance

△x = x2 − x1 traveled by the wave in the time interval △t = t2 − t1. Hence

wave speed =
total distance

total time
=

△x

△t
. (4.5.1)

Results are plotted for different values of dimensionless parameters χ and δ in Sections

4.5.2 to 4.5.5. In the next Section we discuss the parameter values used in the model.

4.5.1 Parameter values

The Fisher equation with non-linear diffusion (4.3.3) includes a number of parameters.

Some parameters depend on the cell type and some parameters depend on scaffold

geometry. Table 4.1 shows the values of the parameters used in the simulation. We

assume that the length 2L∗ of the scaffold is 0.02m. Some quantities such as cell growth

rate depend on the cell type cultured in the bioreactor. The above proposed model

is a generic model and can be applied to any cell type. To compare the model with

the experimental data the cells used in the simulations are Murine immortalized rat

cell C2C12. The maximum cell growth rate χ∗ for C2C12 cells is 1.52 × 10−5 (Coletti

et al., 2006). Since cell growth is a slow process we can choose that speed of growth

front v∗ is very small e.g. (10 or 1 or 0.1)mm/day. The value of dimensionless

parameter χ can be obtained by using the values of dimensional parameters χ∗, L∗ and

v∗. The values of parameters γ and δ are not available in the literature. To estimate

the value of these parameters we use the expression for dimensionless wave speed

i.e. vc = 2
√

χδ exp(−γ). We choose that the theoretical wave speed vc = 1. In the

expression for vc there are two unknowns δ and γ. In order to find the value of δ and

γ we fix one of the parameters δ or γ in the expression for vc. If we fix the parameter

γ then using the expression for vc we can find the value of parameter δ. We observe

that the value of dimensionless parameter δ depends on the value of parameter γ. If

the value of parameter γ is high then value of δ is also high. This means that cells will
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diffuse more quickly for high values of parameter γ. Table 4.1 shows the values of the

dimensional parameters used in the model.

Table 4.1: Model parameters used in this work

Parameter Description Value unit

L∗ Scaffold length 0.01 m

N∗
max Maximum carrying capacity 4 × 1017 cells/m3

χ∗ Maximum cell growth rate 1.52 × 10−5 1/sec

v∗ Speed of growth front 10 1 0.1 mm/day

χ 1.3217 13.2173 132.1739

We know that the initial cell density N(x, 0) = Ninit(x). The form of Ninit(x) can be

determined from seeding strategy. We can use any form of Ninit(x). Let us assume that

Ninit(x) = N0H(r2 − x2), where N0 and r are constants and H(.) is the Heaviside step

function.

In the following Section we consider various cases in which we fix the value of dimen-

sionless parameter χ and vary the values of dimensionless parameter δ and parameter

γ in such a way that the theoretical wave speed vc remains 1.

4.5.2 Case I : χ = 1.3217

In this case we fix the value of dimensionless parameter χ = 1.3217 and find the values

of parameter δ and γ such that theoretical speed of growth front vc is 1. Table 4.2 shows

the values of dimensionless parameter δ for corresponding values of parameter γ.

γ 0 1 2 3 4

δ 0.1891 0.5141 1.39760 3.7990 10.3269

Table 4.2: Values of γ and δ for χ = 1.3217
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(a) γ = 1, δ = 0.5141, χ = 1.3217. (b) γ = 2, δ = 1.3976, χ = 1.3217.

Figure 4.5: Numerical results of profile of cell density N at different times and for different
values of γ and δ when χ = 1.3217. Initial cell density is Ninit(x) = N0H(r2 − x2), where
N0 = 0.25, and r2 = 0.1. The time step size △t = 0.001 and cell update time tnew = 0.01.
The Figure shows the cell distribution after each time tnew and final time is t = 0.3.

Figure 4.5 shows the numerical solution of modified Fisher equation (4.3.3) for the pa-

rameter values given in the Table 4.2. We observe from Figure 4.5 that solution does

not evolve to the travelling wave solution. Cell density N drops down because diffu-

sion is bigger than the growth term, which means that the dimensionless parameter δ

is bigger than the dimensionless parameter χ. Diffusion dominates in this simulation

so we need to look at the case where diffusion is smaller and cell growth is larger, to

find a travelling wave. Numerical results are plotted for γ = 1 and γ = 2 in Figure 4.5.

In the bigger domain and longer time of integration the system will eventually evolve

to travelling wave but we are interested in the finite domain.

4.5.3 Case II : χ = 13.2173

We consider the case when the dimensionless parameter χ = 13.2173 and find the value

of parameter δ and γ such that theoretical speed of growth front vc is 1. Table 4.3 shows

the values of dimensionless parameter δ for the corresponding values of parameter γ.

γ 0 1 2 3 4

δ 0.01891 0.05141 0.139760 0.37990 1.03269

Table 4.3: Values of γ and δ for χ = 13.2173
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Numerical results of modified Fisher equation (4.3.3) are plotted in Figure 4.6 for pa-

rameter values given in Table 4.3. It is clear from the Figure 4.6 that in this case the

solution evolves into travelling wave fronts. So in this case the growth term is bigger

than the diffusion term. But the diffusion term is not too small because the cells also

diffuse very quickly. This feature is evident from the Figure 4.6 because at the edges

the front are smooth.

(a) γ = 1, δ = 0.05141, χ = 13.2173. (b) γ = 2, δ = 0.13976, χ = 13.2173.

Figure 4.6: Numerical results of profile of cell density N at different times and for different
values of γ and δ when χ = 13.2173. Ninit, △t and tnew are same as in Figure 4.5. In this
case the final time is t = 0.6.

4.5.4 Case III : χ = 132.1739

Consider the case when the value of dimensionless parameter χ is very high i.e. χ =

132.1739 and we find the values of parameters δ and γ such that theoretical speed

of growth front vc is 1. Table 4.4 shows the values of dimensionless parameter δ for

corresponding values of parameter γ.

γ 0 1 2 3 4 5

δ 1.891 × 10−3 5.1414 × 10−3 0.013976 0.037990 0.103269 0.2807

Table 4.4: Values of γ and δ for χ = 132.1739

In the modified Fisher equation (4.3.3), growth and diffusion are taking place simul-

taneously. But if the diffusion is very small compared to growth, then first cells will
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(a) γ = 1, δ = 0.005141, χ = 132.1739. (b) γ = 2, δ = 0.013976, χ = 132.1739.

Figure 4.7: Numerical results of profile of cell density N at different times and for different
values of γ and δ when χ = 132.1739. Ninit, △t and tnew are same as in Figure 4.5.

grow quickly and when they reach maximum carrying capacity growth stops and they

spread in the domain via diffusion. In the present case the growth term is very big as

compared to the diffusion term.

Figure 4.7 shows the numerical solution of the modified Fisher’s equation (4.3.3) for

χ = 132.1739 and values of parameters γ and δ given in Table 4.4. The wave front

takes some time to settle down to a travelling wave, which moves at a constant speed.

When the number of cells reaches its maximum limit the proliferation stops and then

the cells spread via diffusion in the entire domain. In this case diffusion term is much

smaller than the growth term, and due to this reason the shape of the front is very

sharp. It is evident from the Figure 4.7 that when the front settles down then it moves

with constant speed and shape.

4.5.5 Case IV : χ = 0

If χ = 0 then it represents the case when there is no growth of cells. The number of cells

will not increase because of the absence of growth term. In that case for every value

of δ the solution will not evolve to travelling wave. Figure 4.8 shows the cell density

in the pure diffusion case i.e. Fisher equation without the growth term for the same

times and parameter values used in Figure 4.6 except in this case χ = 0. The behaviour

of the solution is different from the Fisher equation with the growth term. Clearly the

solution does not grow due to the absence of growth term and the behaviour of the

solution is not wave-like.
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(a) γ = 1, δ = 0.05141, χ = 0. (b) γ = 2, δ = 0.139760, χ = 0.

Figure 4.8: Numerical results of profile of cell density N at different time without growth
term. Ninit, △t and tnew are same as in Figure 4.5.

4.6 Numerical minimum wave speed

From the phase plane analysis it is clear that a travelling wave front solution exists for a

range of wave speeds v ≥ vc. We choose the values of parameters γ and δ such that the

theoretically wave speed vc = 1. If diffusion is linear in the modified Fisher equation

(4.3.3) then travelling wave move with the minimum wave speed v = vc (Murray,

1989). In this model γ = 0 corresponds to linear diffusion. But when the value of γ > 0

then diffusion is no longer linear. We observe that when diffusion is non-linear then

minimum speed of wave front does not always agree with the theoretical wave speed

vc. In Table 4.5 the numerical values of the minimum wave speed vmin are given for

different values of χ and γ. It is evident from the Table 4.5 that minimum wave speed

vmin is not 1 for the non-linear diffusion. The difference between theoretical wave speed

vc and minimum numerical wave speed vmin is not very large for γ = 0, 1, 2 but this

difference is significant when γ = 3, 4, 5. vmin is significantly greater than vc if γ ≥ 3.

χ = 13.2173 χ = 132.1739

γ vmin vmin

0 0.9999 0.9914

1 1.0005 1.0006

2 1.0069 1.0175

3 1.1497 1.1544

4 1.4205 1.4894

5 1.8540 1.8818

Table 4.5: Numerical minimum wave speed vmin
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Figure 4.9: Phase plane trajectories of
equation (4.4.14) for different values of v ≥
vc. The other parameter values are χ =
132.1739, γ = 3 and δ = 0.037990. Co-
lored lines represents the different values
of speed v e.g. ♠ v = 1.15, ♠ v = 1.2, ♠
v = 1.3, and ♠ v = 1.5.
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Figure 4.10: Phase plane trajectories of
equation (4.4.14) for different values of v <

vc. The other parameter values are χ =
132.1739, γ = 3 and δ = 0.037990. Co-
lored lines represents the different values
of speed v e.g. ♠ v = 1, ♠ v = 1.02, ♠
v = 1.05 and ♠ v = 1.09 .

Figures 4.9 and 4.10 shows the phase plane sketch of the trajectories of equation (4.3.8)

for v ≥ vc and v < vc respectively. We observe from the Table 4.5 that when χ =

132.1739 and γ = 3 the numerical value of the minimum wave speed vmin = 1.1544.

We see that from Figure 4.9 that when v ≥ 1.15 then all trajectories from (1, 0) to (0, 0)

remain entirely in the region where Φ ≥ 0 and Φ′ ≤ 0 for all wave speed v ≥ 1.15.

Similarly from Figure 4.10 we observe that when wave speed v < 1.15 then for all the

trajectories from (1, 0) to (0, 0), Φ becomes negative, which is unphysical. (0, 0) is still

a stable node. We observe that method of finding vc by looking at the eigenvalues gives

wrong answer. It is beyond the scope of this work to find the analytical formula for the

minimum wave speed vmin, because the solution depends on the whole trajectory, but

we have a very good agreement between numerical results and phase plane analysis.

Figure 4.11 shows the shape of growth front at time t = 0.3 for fixed value of χ but

different values of γ and δ. It is evident from Figure 4.11 that the speed of the growth

front is not the same for all values of parameter γ. The speed of the growth front

depends on the value of γ and increases as value of γ increases.
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Figure 4.11: Shape of growth front at time t = 0.3 for fixed χ = 132.1739 and value of δ for
corresponding value of γ are given in Table 4.4. Ninit, △t and tnew are same as in Figure
4.5.

4.7 Accuracy of numerical method

To check the convergence of our numerical method we calculate vmin and Ntotal for

different mesh size, internal time step △t and time of update tnew. Table 4.6 shows the

values of vmin and Ntotal at time t = 6 for (a) different mesh size but fixed △t and tnew,

(b) different △t but fixed mesh size and tnew (c) different tnew but fixed mesh size and

△t. We can see that vmin and Ntotal are converging to a stable value for all cases which

shows that our numerical method is accurate.

(a) △t = 0.001, tnew = 0.01.

Mesh size vmin Ntotal

30721 1.0203 1.8206

1921 1.0204 1.8211

(b) Mesh size= 1921, tnew = 0.01.

△t vmin Ntotal

0.0001 1.0183 1.8189

0.001 1.0204 1.8211

(c) Mesh size=1921, △t =
0.001.

tnew vmin Ntotal

0.01 1.0204 1.8211

0.02 1.0513 1.8667

Table 4.6: Table shows numerical results of vmin and Ntotal as a function of time. Ninit, △t
and tnew are same as in Figure 4.5. The other parameter values are γ = 2, δ = 0.013976,
χ = 132.173. Table shows vmin and Ntotal at t = 0.6 for fixed (a) △t = 0.001 and tnew = 0.01
and different mesh size (b) mesh size and tnew = 0.01 and different △t (c) mesh size and
△t = 0.001 and different tnew.
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Figure 4.12 shows the total cell density Ntotal as a function of time tnew for (a) different

mesh size but fixed △t and tnew, (b) different △t but fixed mesh size and tnew (c) dif-

ferent tnew but fixed mesh size and △t. We observe from the Figure 4.12(a), (b) and (c)

that our numerical method is convergent for different mesh size and internal time step

△t, and tupdate.
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(b) Mesh size= 1921, tnew = 0.01.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

T
ot

al
 c

el
l n

um
be

r

 

 

t
new

 t = 0.01

t
new

 = 0.02

(c) Mesh size=1921, △t = 0.001.

Figure 4.12: Numerical results of total cell density N as a function of time for fixed (a)
△t = 0.001 and tnew = 0.01 and different mesh size (b) mesh size and tnew = 0.01 and
different △t (c) mesh size and △t = 0.001 and different tnew. Here γ = 2, δ = 0.013976,
χ = 132.173 and Ninit, △t and tnew are same as in Figure 4.5.

4.8 Two dimensional Fisher equation with density dependent

diffusion

Let us consider a porous scaffold of length 2L∗ in (x∗, y∗) and width 2L∗ in cartesian

co-ordinate system. Initially cells are seeded onto the scaffold. Let us suppose that

cell density N∗ depends on two spatial variables x∗ and y∗ and time t∗, i.e. N∗ =

N∗(x∗, y∗, t∗). The Fisher equation with non-linear diffusion coefficient D∗(N∗) in two

dimensions can be written as

∂N∗

∂t∗
= ∇∗. [D∗(N∗)∇∗N∗] + χ∗N∗

(

1 − N∗

N∗
max

)

, (4.8.1)

where D∗(N∗) is density dependent diffusion and is given by equation (4.2.2), χ∗ is

growth rate and N∗
max is maximum carrying capacity. We apply zero flux boundary

conditions at all boundaries of the scaffold, in other words we can say that the cells

cannot leave the domain. Initial cell density is N∗
init. Mathematically we write,

n̂.∇∗N∗ = 0, at x∗ = ±L∗, and y∗ = ±L∗, (4.8.2a)

N∗(x∗, y∗, 0) = N∗
init(x∗, y∗), . (4.8.2b)
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where n̂ is unit outward normal vector.

To reduce the parameters we use the same nondimensionalization as we did for the

one dimensional model. In dimensionless form equation (4.8.1) can be written as

∂N

∂t
= δ∇. (D(N)∇N) + χN (1 − N) , (4.8.3)

where D(N) = exp(γ(N − 1)) and γ = γ∗N∗
max. The parameters χ and δ are the

dimensionless parameters which are given by equation (4.3.5). Boundary and initial

conditions (4.8.2) in dimensionless form becomes

n̂.∇N = 0, at x = ±1, and y = ±1, (4.8.4a)

N(x, y, 0) = Ninit(x, y). (4.8.4b)

Equation (4.8.3) can also be written as

∂N

∂t
= δ

∂D(N)

∂N

[

(

∂N

∂x

)2

+

(

∂N

∂y

)2
]

+ δD(N)

[

∂2N

∂x2
+

∂2N

∂y2

]

+ χN(1 − N). (4.8.5)

We assume that the front is moving along the x-direction. In general the speed vx of

wave may be different from the speed v of plane wave. If a travelling wave solution

of equation (4.8.5) exists then N(x, y, t) = Φ(ξ = x − vt, y), and N(ξ, y) satisfies the

equation

δD(Φ)

(

∂2Φ

∂ξ2
+

∂2Φ

∂y2

)

+ δ
dD(Φ)

dΦ

[

(

∂Φ

∂ξ

)2

+

(

∂Φ

∂y

)2
]

+ vx
∂Φ

∂ξ
+ χΦ(1 − Φ) = 0 (4.8.6)

If Φ does not depend on y then equation (4.8.6) is a trivial generalization of the one-

dimensional equation (4.4.4) with wave speed vx = v. Finding the exact solutions of

non-linear models is a challenging task. Several analytical methods have been deve-

loped to find the wave solution of one dimensional pure dispersive non-linear system

e.g. the inverse scattering transform (Novikov, 1984), Lamb’s ansatz (Lamb Jr, 1971),

the Herota method (Hirota, 1972). Some of these methods may be extended to two

dimensional non-linear systems. The solution of the systems including the dissipative

losses becomes more complex. Even for the one dimensional case most of the above
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mentioned methods do not work. These type of systems can be treated by perturbation

theory or numerical investigation.

Finding the exact solution of equation (4.8.5) is a difficult task. There are only few exact

solution of (4.8.5) and those solutions are obtained for very simple cases, e.g. Petrovs-

kii and Shigesada (2001) considered the early stage of biological invasion based on the

Fisher equation. For radially symmetric problems they constructed a self similar solu-

tion which is applicable to 1-D, 2-D and 3-D cases. They also assumed that diffusion

is homogeneous i.e. the diffusion coefficient D is independent of space coordinates,

in other words D is constant. They found that solution describes a travelling wave

propagation and speed of front is 2
√

χD. This wave speed agrees with our model if

D(N) = constant.

Let us transform equation (4.8.5) into polar coordinates by the transformations

x = r cos(θ), y = r sin(θ) (4.8.7)

where

r =
√

x2 + y2, θ = tan−1
(y

x

)

. (4.8.8)

We assume that the cell density N depends only on the distance from the origin, then

in polar coordinates equation (4.8.5) can be written as

∂N

∂t
= δ

∂D

∂N

(

∂N

∂r

)2

+ δD(N)

[

∂2N

∂r2
+

1

r

∂N

∂r

]

+ χN(1 − N). (4.8.9)

Equation (4.8.9) differs from the 1-D Fisher-Kolmogorov equation 4.3.3 analysed in Sec-

tions 4.4 and 4.5 by a new term 1
r

∂N
∂r . Equation (4.8.9) does not possess a travelling

wave solution, in which the wave spreads out with constant speed v, because of this

1/r term. We assume that we are given N(r, 0). N will grow due to the N(1 − N) term

since N < 1. At the same time N will disperse like a wave due to the diffusion term.

On the wave ∂N/∂r < 0 so effectively it reduces the value of source term on right hand

side of equation (4.8.9). This effect reduces the speed of an outgoing wave. For large

r the term (1/r)(∂N/∂r) becomes negligible so the solution will approach asymptoti-

cally to the travelling wave front solution moving with speed v = 2
√

χδ exp(−γ) as in

the one-dimensional case.

To find the exact solution of non-linear Fisher equation with non-linear diffusion is

very difficult. So we can approximate the solution by numerical investigation. To find
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the numerical solution we use commercial software COMSOL, which is based on the

finite element solver. The numerical solution gives the cell density N(x, t) at each mesh

point after each time unit. To find the speed of the growth front in x and y-direction

we take a cross section at y = 0 and x = 0, respectively, and use the same technique

as we did in 1−D case. Table 4.7 shows the speed vx and vy of the growth front in the

x-direction and y-direction respectively. It is clear from Table 4.7 that the speed of the

growth front is approximately same in both directions. The slight difference in wave

speeds may be due to numerical calculations, because meshing is not regular in both

directions. The wave speed in the 2-D case approximately agrees with the wave speed

in the 1-D case.

(a) Initial cell density N (b) Cell density N at t= 0.2

(c) Cell density N at t=0.4 (d) Cell density N at t=0.6

Figure 4.13: Numerical solution of modified 2-D Fisher equation (4.8.5). Color represents
the cell density N at different spatial locations for different time. Initial cell density is
Ninit(x, y) = N0H(r2 − x2 − y2), where N0 = 0.25 and r2 = 0.05. The values of the pa-
rameter used in the simulation are γ = 1, χ = 13.2173, δ = 0.05141, △t = 0.001 and
tnew = 0.01.

Figure 4.13 shows the cell density N at different spatial locations for different time
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χ γ δ Speed in x direction Speed in y direction
vx vy

13.2173 2 0.13976 1.0065 1.0176

132.1739 2 0.013976 1.0160 1.0186

Table 4.7: Numerical results of minimum wave speed vmin of modified two dimensional
Fisher equation (4.8.5). The initial conditions and parameters values used in the simulation
are same as in Figure 4.13.

units. It is clear from the Figure that cell density N is increasing with time and sprea-

ding in the whole domain.

Figure 4.14: Cross section plot y = 0 of cell density N for same times and parameter values
used in Figure 4.13.

Figure 4.14 shows the cross section plot of cell density N at y = 0 for several time

units. It is clear from the Figure that cell density N increases with time, when the cell

density reaches its maximum limit the proliferation stops and the cells start to spread

in the whole domain via diffusion. It is clear from the Figure 4.14 that when wave front

settles down it is a travelling wave front. i.e. speed and shape of wave front remains
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constant for all times.

4.9 Summary and Conclusions

In this Chapter we have modelled the growth of cells in 1-D and 2-D domain subject

to uniform availability of nutrients. The growth of cells in the scaffold is governed by

a Fisher equation with non-linear diffusion. The diffusion coefficient is modelled as

an exponential function of cell density. The Fisher equation captures two features si-

multaneously, cell growth and diffusion. We have assumed cell growth and diffusion

take place simultaneously in such a way that while cells grow in numbers the diffusion

is very small and when they reach maximum carrying capacity, cell growth stops and

they spread in the whole domain by diffusion. We assume that no cells enter or leave

the domain. We apply an initial condition which has compact support. Thus the so-

lution of Fisher equation is travelling wave-like. The main aim of this chapter was to

improve the modelling of cell growth in a perfusion bioreactor by including the non-

linear cell diffusion. Results of the model give the velocity scale for growing front of

cells.

The equation (4.4.4) is highly non-linear so finding the exact solution is a difficult and

challenging task. To find a numerical solution for the Fisher equation (4.4.4) we use a fi-

nite element solver COMSOL. The cell density N(x, t) can be found at each mesh point.

We found that the Fisher equation exhibits a travelling wave like solution. To find the

theoretical minimum speed vc of the growth front in 1-D case we use phase plane ana-

lysis. We use eigenvalues analysis to find the speed of growth front. The theoretical

speed of the growth front in the 1-D case is vc = 2
√

χδ exp(−γ). The front in this case

is called a pulled front. The values of parameters γ and δ are chosen in such a way

that the theoretical wave speed vc = 1. The wave speed found by numerical method

differs from the one found by phase plane analysis for various values of parameter γ

(see Section 4.6). The front in this case is called a pushed front. Theoretical wave speed

vc agrees with the numerical results for γ = 0, 1, 2 but it does not agree for γ > 2. Thus

we will use γ = 2 in our future modelling. We have verified the approximate mini-

mum wave speed vc by the phase plane analysis but we do not have a relation to find

the minimum wave speed vmin analytically when diffusion is non-linear. In general this

does not require diffusion to be non-linear, it can happen with linear diffusion and a

more complicated growth term (Rothe, 1981, Van Saarloos, 2003).

From numerical results we observe that cells first increase in numbers by cell proli-
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feration and reach to maximum carrying capacity. When the cell density reaches its

maximum carrying capacity then growth stops and they start to diffuse in the whole

domain. The behaviour of the solution is travelling wave like when growth term is big-

ger than the diffusion term. Initially the shape and speed of the front was not constant

but after some time it settles down and moves with constant speed and the shape of

the front remains constant.

We have extended the results of the 1-D Fisher equation to 2-D. In 2-D we use a nume-

rical technique to find the cell density N(x, y, t) at each mesh point. We take the cross

section of the solution at x = 0 or y = 0 and find the minimum wave speed in x and y-

directions. The minimum wave speed of the growth front in x and y-directions agrees

well with the wave speed in the 1-D case. We found that initially the wave moves with

high speed and after some time it settles down to a travelling wave and moves without

change in shape and speed.
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CHAPTER 5

2-D coupled model of fluid flow,

nutrient transport and cell growth in

a perfusion bioreactor

5.1 Introduction

Each and every tissue or organ is an important part of the human body. Every tissue

plays a specific role in the human body in order to run the functions of the body. If a

tissue is damaged or lost it can affect the whole body. Certain organs or tissues cannot

heal by themselves and they require treatments to restore their functions. In some cases

none of the currently available treatments can restore the function of damaged or lost

tissue e.g. articular cartilage. Tissue engineering offers an alternative and new strategy

for the patients requiring the replacement of such tissues. It is a cell based therapy

which utilizes the patient’s own cells. The cells isolated from the patient are grown

in the laboratory so that they multiply in numbers. Then these cells are placed in a

biodegradable scaffold that has the mechanical and chemical properties appropriate

to the tissue it is replacing. The cell-seeded scaffold is then placed in the bioreactor.

The bioreactor provides the correct environment for the growth of cells and to produce

the extracellular matrix. The main challenge to grow the tissue in the laboratory is

the size of the tissue. To date it has only been possible to grow a functional tissue in

the laboratory with a thickness of only a few hundred micrometers. This is due to the

constraint of nutrient supply in the inner layers of the scaffold. Mathematical models of

nutrient transport and cell growth are a very powerful tool to study the tissue growth

outcomes in a bioreactor.
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In this Chapter we will describe a coupled mathematical model of nutrient transport

and cell growth in a bioreactor. Cell-seeded scaffold is placed in a bioreactor and fluid

delivers the nutrients to the cells. When the cells grow and they occupy the empty

spaces of the scaffold then the porosity of the scaffold decreases, which means that

cell growth affects the quantities such as porosity, permeability and hence flow veloci-

ties. We know that the porosity of the material is the fraction of empty spaces in the

porous material. So mathematically we define the porosity of the scaffold to be a func-

tion of cell density and permeability of scaffold as a function of porosity. The effect of

fluid shear stress on nutrient consumption and cell growth rates is also included in the

model. The fluid velocity is calculated from Darcy’s law for porous media. Once the

fluid velocity is known, the distribution of shear stress, nutrient concentration and cell

density can be found at each spatial point.

The main aims of this Chapter are

1. To describe the comprehensive mathematical model of nutrient transport and cell

growth in a perfusion bioreactor.

2. To include the time dependent porosity changes due to cell growth.

3. To include the effect of fluid shear stress on nutrient uptake and cell growth rates.

In this Chapter we update the model presented in Chapter 3 by including more compli-

cated terms such as the non-linear diffusion, effect of fluid shear stress on cell growth

and nutrient consumption rates and a fixed flow rate. We also define the porosity as a

function of cell density and represent the permeability as function of porosity. Darcy’s

law remains same as discussed in Chapter 3.

This Chapter is organized as follows: in Section 5.2 we define the model geometry,

in Section 5.3, the dimensional model equations are outlined, in Section 5.3.5 nutrient

consumption and cell growth rates are discussed, dimensionless model is outlined in

the Section 5.5 and in Section 5.6 parameter values used in the model are discussed.

5.2 Geometry and model constraints

5.2.1 Model geometry

We consider a Cartesian co-ordinate system (x∗, y∗) aligned with the porous scaffold of

length 2L∗ and width 2L∗. The scaffold extends from −L∗ ≤ x∗ ≤ L∗ and −L∗ ≤ y∗ ≤
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Figure 5.1: Schematic diagram of perfusion bioreactor system. A porous scaffold of length
2L∗ and width 2L∗ is placed within the bioreactor. Fresh fluid is drawn from the reservoir
B by the actions of the pump. The fluid is then pumped into the porous scaffold. After
exiting from the scaffold it returns to the medium reservoir A. Reservoir B is continuously
filled with the fresh medium.

L∗. We model the scaffold as a porous material (Bear, 1988), so it is characterized by

the usual properties of a porous material (porosity, permeability, tortuosity and pore

diameter). We assume that the initial porosity of the scaffold is φ0(x∗, y∗) and average

pore diameter is ǫ∗(m). Initially cells are seeded onto the scaffold, which is placed in a

perfusion bioreactor.

A simple perfusion bioreactor system is shown in the Figure 5.1. The perfusion bio-

reactor consist of a porous scaffold, a pump and two reservoirs A and B. Fresh fluid

from reservoir B is pumped through the scaffold and is accumulated in reservoir A.

We assume that a viscous, incompressible and Newtonian fluid of viscosity µ∗(Pa.sec)

enters in the bioreactor through a pipe from reservoir B. In front of the pipe a pump
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is attached to push the fluid through the scaffold. The fluid is pumped into the po-

rous scaffold at the boundary y∗ = L∗ and flows out of the scaffold at the boundary

y∗ = −L∗. After exiting from the scaffold the fluid returns in the reservoir A. We

will also set up the model so that the pump maintains a constant volumetric flow rate

through the scaffold.

5.2.2 Model assumptions

We are modelling the growth of cells and transport of nutrients in a bioreactor. Model-

ling the cell growth in a bioreactor is a complex system. The complete model should

include the cell metabolism, growth and death mechanism. The model presented in

this Chapter is subject to the following assumptions.

1. Fluid is viscous, incompressible and Newtonian,

2. Cells are immobilized (cells are not moving),

3. Constant total flow rate is maintained through the scaffold (we adjust the pres-

sure drop to keep the flow rate constant),

4. Nutrient diffusion, single cell volume and pore diameter are constant,

5. Gravitational forces acting on the flow are neglected.

6. Heat phenomenon due to metabolic reactions is neglected, because the scaffold

is placed in a bioreactor which maintains constant temperature.

7. Cell death due to lack of nutrients and high shear stress is neglected.

5.3 Model equations

We are modelling a coupled system of fluid flow, nutrient transport and cell growth

in a perfusion bioreactor. The model consist of three partial differential equations, the

first representing flow of fluid through the porous medium, with the velocity deno-

ted by u∗(m/sec) and pressure denoted by p∗(kg/m.sec2), the second representing

convection and diffusion of nutrients, with the concentration of nutrient denoted by

S∗(moles/m3), and the third representing the cell proliferation, in terms of the cell den-

sity N∗(cells/m3). Nutrients are assumed to move due to convection and diffusion,

with a constant diffusion rate D∗
s (m2/s) and to be consumed by the cells at the rate
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G∗
s (moles/m3.sec). Cells are assumed to diffuse with a density dependent diffusion

rate D∗(N∗) and they grow in number at a rate Q∗
n(cells/m3.sec).

The shear stress σ∗(kg/m.sec2) induced by the fluid also has a significant influence

on the cell migration and cell differentiation (The process by which a cell becomes

specialized in order to perform a specific function is called cell differentiation). Some

cells are very sensitive to fluid shear stress. For viable growth some shear stress is

necessary but cells may be damaged by the higher levels of shear stress (Whittaker

et al., 2009). Therefore it is necessary to calculate the shear stress associated with the

flow field. We describe the influence of fluid shear stress on nutrient consumption and

the cell growth by the functions Fs(σ∗) and Fn(σ∗) respectively. These functions are

defined later.

5.3.1 Cell feedback equation

We know that porosity is defined as the fraction of open spaces in the porous material.

We assume that the cells are seeded onto a porous scaffold of porosity φ0(x∗, y∗). As

cells, that are initially seeded onto the porous scaffold proliferate (over the time interval

△t∗ small enough that cell density changes only by a small amount), they occupy the

void spaces in the scaffold so that the scaffold initial porosity φ0(x∗, y∗) decreases as

cell density increases. Porosity of porous material can be defined by a linear function

by using a space filling argument (Coletti et al., 2006). The form of this function is given

by

φ(x∗, y∗, N∗) = φ0(x∗, y∗) − V∗
cellN

∗, (5.3.1)

where φ∗
0(x∗, y∗) is initial porosity of the scaffold without cells and V∗

cell(m3/cell) is the

single cell volume. From equation (5.3.1) porosity can be negative for high values of

cell density N∗, which is un-physical. Hence to avoid this problem we define porosity

of the scaffold by an exponential function of position and cell density N∗ i.e. φ =

φ(x∗, y∗, N∗). The functional form used to described the porosity is given by,

φ(x∗, y∗, N∗) = φ0(x∗, y∗) exp

(

− V∗
cellN

∗

φ0(x∗, y∗)

)

, (5.3.2)

Here we assume that the single cell volume is constant. The reason for choosing the

porosity as an exponential function of cell density N∗ is that the exponential function

ensures that porosity will always remain positive. The porosity defined by equation

(5.3.2) has linear behaviour for small values of cell density N∗, which agrees with the
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function defined by equation (5.3.1).

It is clear from the equation (5.3.2) that in the absence of cells i.e. when N∗ = 0 the

porosity of the scaffold is φ0(x∗, y∗) and as the cells increase in number then porosity

decreases and it is minimum when cell density reaches its maximum carrying capacity

N∗
max. The porosity of the scaffold varies in the range

φ0(x∗, y∗) exp

(

− V∗
cellN

∗
max

φ0(x∗, y∗)

)

≤ φ(x∗, y∗, N∗) ≤ φ0(x∗, y∗). (5.3.3)

We know that the permeability is a measure of the ability of porous material to transmit

fluids. Simple dimensional analysis suggest that permeability of the porous material is

of the form k∗(x∗, y∗, N∗) = k∗0 f (φ), where f (φ) is a dimensionless function of porosity

φ(x∗, y∗, N∗) and k∗0 is a constant. Darcy’s law, can easily be derived within the simple

capillary theory by Kozeny, in which the porous medium is imagined as a layer of

solid material with straight parallel tubes of a fixed cross-sectional shape intersecting

the sample. Within this model, the functional form of Koponen (Koponen et al., 1996)

is used for the permeability k∗(x∗, y∗, N∗).

k∗(x∗, y∗, N∗) = k∗0φ3(x∗, y∗, N∗), (5.3.4)

where k∗0 is a constant and has dimensions of permeability.

5.3.2 Flow field

Flow of fluid through the porous material is governed by Darcy’s law (see Section 2.2)

The variations in cell density N∗ is a very slow process, and as a result the variations

in permeability k∗(x∗, y∗, N∗) will also be slow. The slow variations of permeability

k∗(x∗, y∗, N∗) can be captured by a quasi-static approximation, in which Darcy’s law

instantaneously reaches steady state in response to changes in the cell density. Fluid

velocities are assumed to be sufficiently small that inertia can be neglected and also

gravitational effects are neglected, so there is no body force term. Therefore we have

u∗ = − k∗(x∗, y∗, N∗)
µ∗ ∇∗p∗. (5.3.5)

The continuity equation is

∇∗.u∗ = 0. (5.3.6)
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We assume that no fluid flows through the side walls of the scaffold i.e. no fluid flux

through the boundaries at x∗ = ±L∗ and constant pressure conditions are prescribed

at the top and bottom boundaries of the scaffold. Mathematically we write

u∗.n̂ = 0 at x∗ = ±L∗, −L∗ ≤ y∗ ≤ L∗, (5.3.7a)

p∗ = p∗0 at y∗ = L∗, −L∗ ≤ x∗ ≤ L∗, (5.3.7b)

p∗ = p∗1 at y∗ = −L∗, −L∗ ≤ x∗ ≤ L∗, (5.3.7c)

where n̂ is the outward unit normal vector to the boundary, p∗0 is the prescribed pres-

sure at top boundary y∗ = L∗ and p∗1 is the prescribed pressure at bottom boundary

y∗ = −L∗, and we assume that p∗0 > p∗1 .

5.3.2.1 Fixed flow rate

In experiments fluid is pumped into the scaffold with a constant flow rate. We do

not know the pressure drop between top and bottom boundary of the scaffold. The

constant flow rate fixes the pressure drop between top and bottom boundaries. Howe-

ver we notice that the problem is linear in the pressure drop. We can use the constant

pressure drop and rescale answer to get the prescribed flow rate. The flow rate u∗
d,

across the surface at y∗ = d∗, where −L∗ ≤ d∗ ≤ L∗, is given by

u∗
d =

1

2L∗

∫ L∗

−L∗

k∗(x∗, d∗, N∗)
µ∗

∂P∗

∂y∗
dx∗. (5.3.8)

When the cells grow and occupy the scaffold voids then permeability of scaffold de-

creases, and as a result total fluid flux through the porous material decreases for a fixed

pressure drop. The fluid flux continuously decreases with the increase in cell density.

Since we have already assumed that nutrients are delivered to the cells by convection

and diffusion, if we take Darcy’s velocity as the convective velocity for nutrient trans-

port then the convective velocity decreases with decrease in fluid flux. Hence the deli-

very of nutrients to the cells decrease with the increase in cell density, which influences

the cell growth. The growth of cells is proportional to available nutrient concentration.

The cell growth will decrease with the decrease in nutrient concentration. To overcome

this problem we need to keep the flow rate constant through the scaffold, so to maintain

advection of nutrients to the cells.

To keep the flow rate constant we rescale the velocity obtained from Darcy’s law. We

divide the Darcy’s velocity by a constant that ensures that the total flux across every
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line of constant y∗ is the externally prescribed flux. Let u∗
r be the rescaled velocity then

u∗
r = u∗ U∗

c

u∗
d

,

where u∗ is the velocity obtained from the Darcy’s law solved with fixed pressure drop

and u∗
d is the mean velocity at y∗ = d∗ and U∗

c is the velocity with which fluid is pum-

ped into the scaffold, which is specified externally i.e. it is a model parameter.

5.3.2.2 Fluid shear stress

The shear stress experienced by the cells within the individual scaffold pores can be

estimated from the rescaled Darcy’s velocity u∗
r . This estimate depends on the poro-

sity, average pore diameter and tortuosity. At the level of this estimate we assume that

changes in porosity are made at constant pore diameter and tortuosity. The mean ma-

gnitude of the interstitial velocity can be estimated by the typical pore velocity (Whit-

taker et al., 2009). Let u∗
r be the mean velocity in the porous material (including pore

network and solid material) and U∗
p is the typical velocity in the individual pore then

|u∗
r | =

φ(x∗, y∗, N∗)
τ

U∗
p, (5.3.9)

where φ(x∗, y∗, N∗) is porosity of the porous material. It is clear from the equation

(5.3.9) that for constant tortuosity if porosity is small then velocity in the pore has to

be fast. For constant porosity if the scaffold is more tortuous then interstitial flow has

to be faster to travel the greater distance in the same time. Hence from equation (5.3.9)

we can write

U∗
p =

τ

φ(x∗, y∗, N∗)
|u∗

r |, (5.3.10)

If the pore Reynolds number is small then the local flow in each pore of the scaffold is

modelled by Poiseuille flow which is given by

v∗
p(r∗) = A

[

1 −
(

2r∗

ǫ∗

)2
]

, (5.3.11)

where v∗
p(r∗) is velocity in individual pore, A is constant, ǫ∗ is pore diameter and r∗ is

the radial coordinate. To find the values of constant A we assume that U∗
p is the mean
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velocity in the individual pore. Then we have

1

π(ǫ∗/2)2

∫ ǫ∗/2

0
v∗

p(r∗)2πr∗ dr∗ = U∗
p. (5.3.12)

Solution of equation (5.3.12) gives A = 2U∗
p. Substituting the value of A into equation

(5.3.11) we get

v∗
p(r∗) = 2U∗

p

[

1 −
(

2r∗

ǫ∗

)2
]

, (5.3.13)

By Newton’s law of viscosity the shear stress σ∗ is proportional to velocity gradient

σ∗ = µ∗
∣

∣

∣

∣

∂v∗
p

∂r∗

∣

∣

∣

∣

. (5.3.14)

Substituting the value of velocity v∗
p from equation (5.3.13) into (5.3.14) we get

σ∗ =
8µ∗U∗

p

ǫ∗
. (5.3.15)

Substituting the value of U∗
p from equation (5.3.10) into (5.3.15) we get

σ∗ =
8µ∗τ

ǫ∗
|u∗

r |
φ(x∗, y∗, N∗)

. (5.3.16)

Equation (5.3.16) represents a relation between the fluid shear stress, Darcy’s velocity

and porosity of porous material.

5.3.3 Nutrient Transport

Transport of nutrient to the cells is due to convection and diffusion so the dynamics of

nutrient concentration is modelled by the convection diffusion equation. Cells require

several nutrients to perform their functions. These essential nutrients are delivered to

the cells via a fluid usually known as the culture medium. We assume that the cell

membranes are completely permeable to this culture medium. Let the total rate of

nutrient consumption be G∗
s . The equation governing the transport and consumption

of nutrients is given by the continuity equation

∂S∗

∂t∗
+ u∗

r .∇∗S∗ = D∗
s ∇∗2S∗ − G∗

s . (5.3.17)
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We assume that there is no flux of nutrients through the side boundaries at x∗ = ±L∗.

If the diffusion coefficient D∗
s is very small then in that case the downstream boundary

condition becomes unimportant because it only influences a small boundary layer near

y∗ = −L∗. For numerical convenience we apply an ‘advection dominated’ boundary

condition at the bottom boundary y∗ = −L∗. We assume that advective flux dominates

over the diffusive flux at the bottom boundary y∗ = −L∗, or in other words the flow of

nutrients is due to advection not by diffusion. Hence diffusive flux of nutrients through

the boundary at y∗ = −L∗ is zero. This type of boundary condition has also been used

by Coletti et al. (2006). At the inlet boundary y∗ = L∗ we have a bath of nutrients so

at the boundary y∗ = L∗ we consider nutrient concentration is S∗
0 . Mathematically we

write,

n̂.∇∗S∗ = 0 at x∗ = ±L∗, −L∗ ≤ y∗ ≤ L∗, (5.3.18a)

S∗ = S∗
0 at y∗ = L∗, −L∗ ≤ x∗ ≤ L∗, (5.3.18b)

n̂.∇∗S∗ = 0 at y∗ = −L∗, −L∗ ≤ x∗ ≤ L∗. (5.3.18c)

The form of boundary conditions (5.3.18a) and (5.3.18c) look similar but physically they

have different meanings. For fluid flow through the porous scaffold we have already

considered the boundary conditions (5.3.7a), which says that no fluid flows through

the side walls of the scaffold. Physically boundary condition (5.3.18a) states that there

is neither advection nor diffusion through the side walls of the scaffold and boundary

condition (5.3.18c) states that at the bottom boundary y∗ = −L∗ diffusion of nutrients

is zero but advection of nutrients is not zero.

5.3.4 Cell Growth

We want to model a system in which change in cell density is due cell proliferation and

when the cell density reaches its maximum carrying capacity then proliferation stops

and cells start to spread via diffusion in the entire domain. This suggests that we need

to consider a logistic growth model in which the cell population spreads via diffusion,

so we have a coupled system of reaction kinetics and diffusion. These two features

are captured in Fisher’s equation. The Fisher’s equation with non-linear diffusion is

discussed in detail in Chapter 4. We have already shown in Chapter 4 that a non-

linear diffusion term combined with logistic growth can mimic cell proliferation on a

continuum level. The model parameters can be calculated by the growth rate. Hence
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the growth of cells is governed by the non-linear Fisher’s equation.

∂N∗

∂t∗
−∇∗.(D∗(N∗)∇∗N∗) = Q∗

n, (5.3.19)

where D∗(N∗) represents the non-linear cell diffusion. The cell diffusion is a function

of cell density, specifically we assume that

D∗(N∗) = D∗
n exp(γ∗(N∗ − N∗

max)), (5.3.20)

where D∗
n is constant, γ∗ represents how rapidly the cell diffusion takes place with

change in cell density. Equation (5.3.19) is a modified form of the general Fisher equa-

tion (Fisher, 1937). In this case we have introduced the diffusion as function of cell

density and we have also included the influence of fluid shear stress on growth rate.

We assume that individual cells cannot leave the domain which means zero flux boun-

dary conditions at all the boundaries. Mathematically we write

n̂.∇∗N∗ = 0 at x∗ = ±L∗ and y∗ = ±L∗, (5.3.21)

We suppose that at time t = 0 the initial cell density is N∗
init(x∗, y∗),

N∗ = N∗
init(x∗, y∗) at t = 0, (5.3.22)

where the form of N∗
init(x∗, y∗) depends on the seeding strategy. We will use different

choices of N∗
init(x∗, y∗) in our simulations.

5.3.5 Nutrient consumption and cell proliferation rates

An important part of modelling is the prescription of the nutrient consumption and

net cell growth rate G∗
s and Q∗

n respectively. Let λ∗ be the cell proliferation rate per

cell. We suppose that the rate of proliferation of cells is a function of nutrient concen-

tration S∗ and fluid shear stress σ∗ i.e. λ∗(S∗, σ∗) and the rate of nutrient consumption

per cell is α∗λ∗(S∗, σ∗), where α∗ is a constant. We assume that the proliferation rate

λ∗(S∗, σ∗) is a separable function of fluid shear stress and nutrient concentration i.e.

λ∗(S∗, σ∗) = Fn(σ∗)E(S∗). The functions Fn(σ∗) and E(S∗) represent the effect of fluid

shear stress and nutrient concentration on cell growth rate respectively. We neglect

cell death as the growth rate is assumed to be much higher than the death. We as-

sume that the cells proliferate according to the logistic law. Thus the net cell growth
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rate Q∗
n = λ∗(S∗, σ∗)N∗(1 − N∗/N∗

max), where N∗
max is the maximum carrying capacity.

There is significant discussion about the form of the proliferation rate λ∗(S∗, σ∗) in the

literature. In most of the cell growth models the proliferation rate λ∗ is a function of

nutrient concentration S∗ only but only a few models have accounted the effect of fluid

shear stress on the cell growth e.g. McElwain and Ponzo (1977) used a piecewise li-

near behaviour, whereas Galban and Locke (1999) used more complex functions such

as modified Contois, Moser and nth order heterogeneous models. Coletti et al. (2006)

have also used a Contois function to describe the cell growth. Landman and Cai (2007)

considered a Heaviside step functional form H(S∗ − S∗
h), where S∗

h is the hypoxic thre-

shold for the nutrient concentration. This type of proliferation rate was also used by

Lewis et al. (2005). They used an approximation λ∗(S∗) = H(S∗) i.e. S∗
h = 0. Malda

et al. (2004a) have used Michaelis-Menton type behaviour. Many of these forms reduce

to simple linear behaviour for small values of concentration. The most commonly used

functional forms for E(S∗) are linear and Michaelis-Menton functional forms which

can be chosen here to describe E(S∗). For simplicity we consider the simple linear

behaviour used by Jones et al. (2000) and Lewis et al. (2005), i.e. we take E(S∗) = β∗S∗.

There is not much discussion about the form of Fn(σ∗) in the literature. O’Dea et al.

(2010) studied the effect of shear stress induced by the flow field on the cell growth.

They assumed that at an intermediate level of shear stress, the rates of cell proliferation

is increased, for low values of fluid shear stress, the cell proliferation is reduced, and

for excessively high shear stresses the cells become damaged (Cartmell et al., 2003). We

use the functional form used by O’Dea et al. (2010) to describe the influence of fluid

shear stress on the cell growth, which is given by

Fn(σ∗) = 1 +

(

k1 − 1

2

)

(tanh [g∗ (σ∗ − σ∗
c1)] + 1)

− k1

2
(tanh [g∗ (σ∗ − σ∗

c2)] + 1) , (5.3.23)

which approximates the step function behaviour (see Figure 5.2). Here σ∗
c1 and σ∗

c2

denotes the threshold values where the cell proliferation is heightened and the zero

proliferation phase is entered respectively, the parameter g∗ determines the closeness

of approximation to the step function behaviour and k1 is a dimensionless constant

that determines the amount of heightened proliferation in the heightened region of

stress. Figure 5.2 shows the graphical representation of the function defined by equa-

tion (5.3.23). It is clear from Figure 5.2 how the cells progress from the quiescence phase

to the proliferative phase and then to the necrotic phase in response to fluid induced

shear stress. If the value of parameter g∗ is large then the behaviour of the function
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1
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F n
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∗ )

σ∗

Figure 5.2: Schematic diagram of the progression of cells from quiescence phase to prolife-
rative phase and then to zero proliferation phase.

Fn(σ∗) is very close to a step function. We choose this function to describe the effect of

fluid shear stress on the cell proliferation.

To consider the influence of fluid shear stress on nutrient consumption rate we assume

that up to σ∗
c2 the nutrient consumption is proportional to cell growth rate. Beyond

σ∗
c2 we assume that cells consume nutrients but they do not grow. Thus we use the

functional form of O’Dea et al. (2010) to describe the influence of fluid shear stress on

nutrient consumption in the high stress region. Here we assume that for high values of

the fluid shear stress the nutrient consumption rate returns to its base line value.

Fs(σ∗) = 1 +

(

k1 − 1

2

)

(tanh [g∗ (σ∗ − σ∗
c1)] + 1)

−
(

k1 − 1

2

)

(tanh [g∗ (σ∗ − σ∗
c2)] + 1) , (5.3.24)

Figure 5.3 shows the graphical representation of the function defined by equation

(5.3.24). It is clear from the Figure 5.3 that for intermediate values of fluid shear stress

the nutrient consumption is heightened. So we choose the cell growth rate λ∗(S∗, σ∗) =

β∗Fn(σ∗)S∗, where β∗(m3/mole.sec) is constant. Thus Q∗
n = β∗Fn(σ∗)S∗N∗(1− N∗/N∗

max).

We assume that the dominant mechanism for cell nutrient consumption is entirely de-

pendent on the cellular growth. We have that Q∗
n ∝ G∗

s for N∗ ≪ N∗
max and σ∗ < σ∗

c2.

Hence the nutrient consumption rate G∗
s = −α∗S∗Fs(σ∗)N∗, where α∗(m3/cells.sec) is

a constant. However outside these limits the proportionality no longer holds. When

N∗ ∼ N∗
max the cell growth slows down but nutrient consumption is high and when

σ∗ > σ∗
c2 cell growth stops but nutrient consumption still continues. We did not use the
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1
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F s
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σ∗

Figure 5.3: Schematic diagram of the progression of nutrient consumption from quiescence
phase to proliferative phase and then to zero proliferation phase.

logistic term for nutrient concentration S∗ in the expression for nutrient consumption

rate G∗
s . The reason is that the logistic term would limit the nutrient concentration S∗

and nutrient concentration will not go beyond a limiting value. With the increase in cell

density the nutrient consumption increases. Even when cell density reaches its maxi-

mum carrying capacity N∗
max the cell growth stops but cells would continue to consume

nutrients to live.

The summary of dimensional model equations, the boundary and initial conditions is

shown in Table 5.1.
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Table 5.1: Summary of dimensional model equations, boundary and initial conditions

Equations Boundary conditions Initial conditions

φ(x∗, y∗, N∗) = φ0(x∗, y∗) exp
(

− V∗
cellN

∗

φ0(x∗,y∗)

)

,

k∗(x∗, y∗, N∗) = k∗0φ3(x∗, y∗, N∗).

Darcy’s law u∗.n̂ = 0 at x∗ = ±L∗, −L∗ ≤ y∗ ≤ L∗,

u∗ = − k∗(x∗,y∗,N∗)
µ∗ ∇∗p∗, p∗ = p∗0 at y∗ = L∗, −L∗ ≤ x∗ ≤ L∗,

∇∗.u∗ = 0. p∗ = p∗1 at y∗ = −L∗, −L∗ ≤ x∗ ≤ L∗.

u∗
d = 1

2L∗
∫ L∗

−L∗
k∗(x∗,d∗,N∗)

µ∗
∂P∗
∂y∗ dx∗, for −L∗ ≤ d∗ ≤ L∗,

u∗
r = u∗ Uc

∗
u∗

d
,

σ∗ = 8µ∗τ
ǫ∗

|u∗
r |

φ(x∗,y∗,N∗) .

Nutrient Transport n̂.∇∗S∗ = 0 at x∗ = ±L∗, −L∗ ≤ y∗ ≤ L∗,
∂S∗
∂t∗ + u∗

r .∇∗S∗ = D∗
s ∇∗2S∗ − α∗S∗Fs(σ∗)N∗, S∗ = S∗

0 at y∗ = L∗, −L∗ ≤ x∗ ≤ L∗,

where Fs(σ∗) is given by equation (5.3.25). n̂.∇∗S∗ = 0 at y∗ = −L∗, −L∗ ≤ x∗ ≤ L∗.

Cell growth
∂N∗
∂t∗ −∇∗.(D∗(N∗)∇∗N∗) = β∗Fn(σ∗)S∗N∗(1 − N∗

N∗
max

), n̂.∇∗N∗ = 0, at x∗ = ±L∗, y∗ = ±L∗. N∗ = N∗
init(x∗, y∗),

where D∗(N∗) = D∗
n exp(γ∗(N∗ − N∗

max)) at t∗ = 0.
and Fn(σ∗) is given by equation (5.3.26).

Fs(σ∗) = 1 +

(

k1 − 1

2

)

(tanh [g∗ (σ∗ − σ∗
c1)] + 1) −

(

k1 − 1

2

)

(tanh [g∗ (σ∗ − σ∗
c2)] + 1) , (5.3.25)

Fn(σ∗) = 1 +

(

k1 − 1

2

)

(tanh [g∗ (σ∗ − σ∗
c1)] + 1) − k1

2
(tanh [g∗ (σ∗ − σ∗

c2)] + 1) . (5.3.26)
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5.4 Nondimensionalization

We nondimensionalize all lengths with scaffold length L∗ and the permeability with

respect to an initial permeability k∗0, so that

x∗ = L∗x, y∗ = L∗y, ∇∗ =
1

L∗∇.

k∗(x∗, y∗, N∗) = k∗0k(x, y, N).

We nondimensionalize all velocities by the pump velocity U∗
c and pressure by the pres-

sure difference between top and bottom boundaries of scaffold,

u∗ = U∗
c u, u∗

r = U∗
c ur, u∗

d = U∗
c ud p∗ = (p∗0 − p∗1)p + p∗1 ,

where (p∗0 − p∗1) is the pressure difference between the top and bottom boundaries, and

U∗
c is the pump velocity or characteristic velocity scale specified externally.

U∗
c =

(p∗0 − p∗1)k∗0
µ∗L∗ ⇒ p∗0 − p∗1 =

U∗
c L∗µ∗

k∗0
. (5.4.1)

We nondimensionalize fluid shear stress σ∗, threshold stresses σ∗
c1 and σ∗

c2 as follows

σ∗ =
8τµ∗U∗

c

ǫ∗
σ, σ∗

c1 =
8τµ∗U∗

c

ǫ∗
σc1, σ∗

c2 =
8τµ∗U∗

c

ǫ∗
σc2. (5.4.2)

We nondimensionalize cell density N∗ and initial cell density N∗
init(x∗, y∗) by the maxi-

mum carrying capacity N∗
max and nutrient concentration S∗ by the initial concentration

S∗
0 respectively,

N∗ = N∗
maxN, N∗

init(x∗, y∗) = N∗
maxNinit(x, y), S∗ = S∗

0S. (5.4.3)

Finally, we nondimensionalize time t∗ by velocity of propagation v∗ of front (see Chap-

ter 4)

t∗ =
L∗

v∗
t, (5.4.4)

where v∗ = 2
√

β∗S∗
0 D∗

n exp(−γ∗N∗
max).
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5.5 Dimensionless equations and boundary conditions

5.5.1 Cell feedback

The variation of porosity defined by equation (5.3.2) can be written in dimensionless

form as,

φ̃(x, y, N) = φ̃0(x, y) exp

(

− ρN

φ̃0(x, y)

)

, (5.5.1)

where ρ = V∗
cellN

∗
max is a dimensionless parameter which describes how rapidly the

porosity is changing. φ̃(x, y, N) = φ(x∗, y∗, N∗) and φ̃0(x, y) = φ0(x∗, y∗) represents

the porosity in dimensionless variables.

Equation (5.3.4) which represents the relation between porosity and permeability can

be written in dimensionless form as,

k(x, y, N) = φ̃3(x, y, N). (5.5.2)

5.5.2 Flow field

Darcy’s law (5.3.5) and the continuity equation (5.3.6) can then be written in dimen-

sionless form as

u = −k(x, y, N)∇p, (5.5.3)

∇.u = 0. (5.5.4)

By combining equation (5.5.3) and (5.5.4) we get,

∇.(k(x, y, N)∇p) = 0. (5.5.5)

The boundary conditions (5.3.7) in dimensionless form become,

n̂.∇p = 0 at x = ±1, −1 ≤ y ≤ 1, (5.5.6a)

p = 1 at y = 1, −1 ≤ x ≤ 1, (5.5.6b)

p = 0 at y = −1, −1 ≤ x ≤ 1. (5.5.6c)
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5.5.2.1 Fixed flow rate

The nondimensional form of flow rate u∗
d defined by equation (5.3.8) is given by

ud =
1

2

∫ 1

−1
k(x, d, N)

∂P

∂y
dx, (5.5.7)

and rescaled velocity u∗
r defined by equation (5.3.9) in dimensionless form becomes

ur =
u

ud
. (5.5.8)

5.5.2.2 Fluid shear stress

The fluid shear stress defined by equation (5.3.16) in dimensionless form becomes

σ =
|ur|

φ̃(x, y, N)
, (5.5.9)

Equations (5.3.24) and (5.3.23), which represent the influence of fluid shear stress on

nutrient consumption and cell growth respectively, in dimensionless form becomes

Fs(σ) = 1 +
k1 − 1

2
(tanh [g (σ − σc1)] + 1)

− k1 − 1

2
(tanh [g (σ − σc2)] + 1) , (5.5.10)

Fn(σ) = 1 +
k1 − 1

2
(tanh [g (σ − σc1)] + 1)

− k1

2
(tanh [g (σ − σc2)] + 1) , (5.5.11)

where g = g∗8τµ∗U∗
c /ǫ∗ is a dimensionless constant.

5.5.3 Nutrient transport equation

The nutrient transport equation (5.3.17) and boundary conditions (5.3.18) can be writ-

ten in the dimensionless form as,

v∗

U∗
c

∂S

∂t
+ ur.∇S = Ds∇2S − RsFs(σ)NS, (5.5.12)

135



5.5 DIMENSIONLESS EQUATIONS AND BOUNDARY CONDITIONS

n̂.∇S = 0 at x = ±1, −1 ≤ y ≤ 1, (5.5.13a)

S = 1 at y = 1, −1 ≤ x ≤ 1, (5.5.13b)

n̂.∇S = 0 at y = −1, −1 ≤ x ≤ 1 (5.5.13c)

where

Ds =
D∗

s

U∗
c L∗ , and Rs =

α∗L∗N∗
max

U∗
c

, (5.5.14)

are dimensionless numbers. The parameter Ds is the inverse of the Peclet number and

represents the ratio of nutrient diffusion to advection. We assume that the diffusion

of nutrients is slow compared to the advective velocity so that the parameter Ds will

be small which implies that the Peclet number is high. The parameter Rs represents

the rate of nutrient consumption relative to advection. If the characteristic advective

velocity U∗
c is high compared to the rate of nutrient consumption then the parameter

Rs is small which implies that cells are eating nutrients slowly.

The velocity of the growth front v∗ is very small compared to the velocity of the pump

U∗
c . So the ratio v∗/U∗

c is a very small number which can be neglected. Hence the quasi-

steady approximation of equation (5.5.12) is used i.e. the time derivative is neglected.

The equation (5.5.12) can be written as

ur.∇S = Ds∇2S − RsFs(σ)NS. (5.5.15)

5.5.4 Cell growth equation

The cell growth equation (5.3.19) in dimensionless form becomes

∂N

∂t
− δ∇.(D(N)∇N) = βFn(σ)SN(1 − N), (5.5.16)

where D(N) = exp(γ(N − 1)) is non-linear cell diffusion, δ = D∗
n/L∗v∗ is a dimension-

less number which represents the ratio of the cell diffusion to the speed of the growth

front and β = β∗L∗S∗
0/v∗ is a dimensionless number which represents the ratio of the

cellular proliferation to the speed of growth front. Boundary conditions (5.3.21) and
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initial condition (5.3.22) in dimensionless form can be written as,

n̂.∇N = 0, at all the four boundaries x = ±1, y = ±1,

N = Ninit(x, y) at t = 0. (5.5.17)

Dimensionless parameters

The dimensionless parameters in the model are,

Ds = D∗
s

U∗
c L∗ , Rs =

α∗L∗N∗
max

U∗
c

,

β =
β∗L∗S∗

0
v∗ , δ =

D∗
n

v∗L∗ ,

ρ = V∗
cell N

∗
max, γ = γ∗N∗

max.

The summary of dimensionless model equations, boundary and initial equations are

shown in Table 5.2
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Table 5.2: Summary of dimensionless model equations, boundary and initial conditions

Equations Boundary conditions Initial conditions

Porosity distribution

φ̃(x, y, N) = φ̃0(x, y) exp
(

− ρN

φ̃0(x,y)

)

,

k(x, y, N) = φ̃3(x, y, N).

Darcy’s law n̂.∇p = 0, at x = ±1, −1 ≤ y ≤ 1,
u = −k(x, y, N)∇p, p = 1, at y = 1, −1 ≤ x ≤ 1,

∇.u = 0. p = 0, at y = −1, −1 ≤ x ≤ 1.

ud = 1
2

∫ 1
−1

k(x, d, N) ∂p
∂y dx, for −1 ≤ d ≤ 1

ur = u
ud

,

σ = |ur|
φ̃(x,y,N)

.

Nutrient Transport n̂.∇S = 0, at x = ±1, −1 ≤ y ≤ 1,
ur.∇S = Ds∇2S − RsFs(σ)NS, S = 1, at y = 1, −1 ≤ x ≤ 1,

where Fs(σ) is given by equation (5.5.18). n̂.∇S = 0, at y = −1, −1 ≤ x ≤ 1.

Cell growth
∂N
∂t − δ∇.(D(N)∇N) = βFn(σ)SN(1 − N), n̂.∇N = 0, at x = ±1, y = ±1. N = Ninit(x, y),

where D(N) = exp(γ(N − 1)) and at t = 0.

Fn(σ) is given by equation (5.5.19).

Fs(σ) = 1 +

(

k1 − 1

2

)

(tanh [g (σ − σc1)] + 1) −
(

k1 − 1

2

)

(tanh [g (σ − σc2)] + 1) , (5.5.18)

Fn(σ) = 1 +

(

k1 − 1

2

)

(tanh [g (σ − σc1)] + 1) − k1

2
(tanh [g (σ − σc2)] + 1) . (5.5.19)
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5.6 Parameter values

The model proposed in the previous section includes a number of parameters. Some

parameters depend on the cell type and nutrient type and some depend on the bioreac-

tor. Table 5.3 shows the values of the parameters used in the simulations.

5.6.1 Geometric parameters

The values of the geometric parameters such as scaffold length L∗ and cell free scaf-

fold characteristics are chosen with reference to experimental system used by Profes-

sor David Grant in experiments at the University of Nottingham. The initial porosity

φ0 = 0.85, perfusion velocity U∗
c = 1.5× 10−4m/sec and scaffold length L∗ = 0.01m are

used in these experiments (David Grant, personal communication). The experimen-

tal data for initial porosity of scaffold (cell free), tortuosity and permeability are also

available from Rose et al. (2004).

5.6.2 Cell parameters

Some quantities such as cell size, density and nutrient uptake rate depend on the cell

type cultured in the bioreactor. Our model is a very generalized model and can be

applied to any cell type. To compare the model with the experimental data the cells

used in the simulations are Murine immortalized rat cell C2C12.

For their survival cells require several different nutrients that include glucose, oxygen,

glutamine, carbon dioxide, ascorbic acid (vitamin C), amino acids, foetal calf serum etc.

(Sengers et al., 2005). For simplicity we assume that the cell growth is limited by the

supply of oxygen only (Malda et al., 2004a). The initial oxygen concentration S∗
0 is cho-

sen as 0.2moles/m3 , which is much higher than the minimum nutrient concentration

required for cell viability.

The single cell volume V∗
cell and maximum cell growth rate is taken from Coletti et al.

(2006). For C2C12 the maximum oxygen uptake rate α∗S∗
0 is presently available neither

experimentally nor in the literature. Therefore this value is approximated by using the

value for the chondrocyte as used in the literature (Obradovic et al., 2000).

Since cell growth is a very slow process so we assume that the velocity of the growth

front v∗ is 1mm/day. The values of parameters γ∗ and D∗
n are not available in the

literature. We have discussed in detail in Chapter 4 how we choose the values of these

parameters.
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Table 5.3: Model parameters and values used in the simulation

Parameter Description Value unit

L∗ Scaffold length 0.01 m

U∗
c Perfusion velocity 2.5 × 10−2 m/sec

D∗
s Oxygen diffusion coefficient 1.5 × 10−9 m2/sec

V∗
cell Single cell volume 2.5 × 10−18 m3/cell

N∗
max Maximum carrying capacity 4 × 1017 cells/m3

S∗
0 Initial oxygen concentration 0.2 moles/m3

α∗S∗
0 Maximum oxygen consumption rate 1.86 × 10−18 moles/cell.sec

α∗ - 9.3 × 10−18 m3/cell.sec

β∗S∗
0 Maximum cell growth rate 1.52 × 10−5 1/sec

β∗ - 7.6 × 10−5 m3/mole.sec

v∗ Velocity of growth front 1.15 × 10−8 m/sec

γ∗ - 5 × 10−18 m3/cell

D∗
n - 1.6 × 10−11 m2/sec

The values of the threshold shear stresses σc1 and σc2 are not available in literature so

we choose the dimensionless values of these parameters directly to be within the range

typically found in our computations (see in our calculation in Chapter 6). The parame-

ter g determines the sharpness of stress functions. For high values of parameter g the

behaviour stress functions Fs(σ) and Fn(σ) is like a step function, so are independent

of the value of parameter g. Thus we choose reasonably high value of g̃ = 60 such that

shape of the stress functions Fs(σ) and Fn(σ) is very close to a step function. Parameter

k1 represents the amount of heightened proliferation in the proliferative region. Again

we choose a feasible value for k1 i.e. k1 = 5.
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Table 5.4: Values of dimensionless parameters

Parameter Formula Value Description

Ds
D∗

s
U∗

c L∗ 6 × 10−6 Inverse Peclet number

Rs
α∗L∗N∗

max
U∗

c
1.488 Ratio of nutrient consumption relative to advection

β
β∗L∗S∗

0
v∗ 13.21 Ratio of cellular proliferation to speed of growth front

δ D∗
n

v∗L∗ 0.139 Ratio of cellular diffusion to speed of growth front

γ γ∗N∗
max 2 Constant in non-linear diffusion

ρ V∗
cellN

∗
max 1 Constant in porosity function

σc1 3 Threshold shear stress for proliferation phase.

σc2 15 Threshold shear stress for necrotic phase.

k1 5 amount of heightened proliferation

g 60 Parameter controlling the sharpness of stress functions
Fs(σ) and Fn(σ).
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CHAPTER 6

Effect of initial seeding and

channeling on cell growth

6.1 Introduction

In this Chapter we discuss the results of the model developed in Chapter 5. First we

describe how the model is solved by using the commercial software COMSOL and then

we discuss the convergence of numerical method in detail. Since in the model the initial

cell density Ninit(x, y) and initial porosity φ0(x, y) depend on the spatial coordinates,

we can consider various forms of initial seeding and scaffold design (depending on the

initial porosity). We analyze the cell density, nutrient concentration and shear stress at

initial time, intermediate time and time close to steady state for various initial seeding

strategies and scaffold design. We also consider the effect of perfusion rate on cell

density in the final construct.

The model presented in Chapter 5 consists of a coupled system of three partial dif-

ferential equations, namely Darcy’s law, the advection-diffusion equation and a cell

growth equation. Darcy’s law governs the fluid flow through the porous material. The

advection-diffusion equation governs the delivery of nutrients to the cells and the third

equation governs the cell growth in the scaffold. A pre-seeded scaffold is placed in the

bioreactor and fluid is pumped through the scaffold. We calculate the porosity and

permeability of the scaffold for initial cell density. As cells grow with time, the poro-

sity and permeability of the cell-seeded scaffold decreases from its initial value. First

we solve Darcy’s law (with permeability corresponding to initial cell density) to obtain

the fluid velocity. In the model we maintain a constant volumetric flow rate through

the scaffold so we divide the Darcy’s velocity by a constant that ensures that the total
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flux across every line of constant y is the externally prescribed flux. We also calculate

the effect of fluid shear stress on nutrient consumption and cell growth rates. We as-

sume that for low and high values of fluid shear stress there is no change in nutrient

consumption rate but for intermediate values of shear stress the nutrient consumption

rate becomes large. Additionally we assume that low values of fluid shear stress have

no effect on cell growth rate, for intermediate values of shear stress cell growth is en-

hanced and cell growth stops for high values of fluid shear stress (for more details see

Sections 1.2 and 5.3.5). We substitute the rescaled velocity as the advective velocity in

the advection-diffusion equation to find the nutrient concentration. Then this nutrient

concentration is substituted into the cell growth equation to obtain the cell density. We

update the effect of cell density on the porosity equation and solve the entire system

for the updated cell density. Figure 6.1 shows a schematic diagram of the coupled

model equations, showing the three main equations, Darcy’s law, advection-diffusion

equation and cell growth equation. The corresponding boundary conditions for each

equation are given below.

For the flow equation we assume that no fluid flows through the side walls of the

scaffold and pressure at inlet and outlet walls of scaffold is constant. Mathematically

we write

n̂.∇p = 0 at x = ±1, −1 ≤ y ≤ 1, (6.1.1a)

p = 1 at y = 1, −1 ≤ x ≤ 1, (6.1.1b)

p = 0 at y = −1, −1 ≤ x ≤ 1. (6.1.1c)

For the nutrient transport equation we apply no flux (advective and diffusive) condi-

tions at the side walls of the scaffold, constant nutrient concentration at the inlet wall

of scaffold and no diffusive flux at the outlet wall of scaffold. Mathematically these

conditions can be written as

n̂.∇S = 0 at x = ±1, −1 ≤ y ≤ 1, (6.1.2a)

S = 1 at y = 1, −1 ≤ x ≤ 1, (6.1.2b)

n̂.∇S = 0 at y = −1, −1 ≤ x ≤ 1. (6.1.2c)

Finally for the cell growth equation we assume that individual cells cannot leave the

domain. Mathematically we write these boundary conditions as

n̂.∇N = 0, at all the four boundaries x = ±1, y = ±1. (6.1.3)
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Effect of shear stress on Effect of shear stress on
cell growth

Nutrient transport Cell growth

Permeability distribution Porosity distribution

nutrient consumption

Flow Field
u = −k(x, y, N)∇p ur.∇S = Ds∇2S − RsFs(σ)NS ∂N

∂t − δ∇.(D(N)∇N) = Qn

ur = u
ud

σ = |ur|
φ(x,y,N)

k(x, y, N) = φ̃3(x, y, N)

Fs(σ) Fn(σ)

φ̃(x, y, N) = φ̃0(x, y) exp
(

−ρN
φ̃0(x,y)

)

Figure 6.1: Schematic diagram of model equations and solution. All the notations are described in 5 and appendix A

.

ud =
1

2

∫ 1

−1
k(x, d, N)

∂p

∂y
dx, Qn = βFn(σ)SN(1 − N), D(N) = exp(γ(N − 1)), (6.1.4)

Fs(σ) = 1 +

(

k1 − 1

2

)

(tanh [g (σ − σc1)] + 1) −
(

k1 − 1

2

)

(tanh [g (σ − σc2)] + 1) , (6.1.5)

Fn(σ) = 1 +

(

k1 − 1

2

)

(tanh [g (σ − σc1)] + 1) − k1

2
(tanh [g (σ − σc2)] + 1) . (6.1.6)
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6.2 Solution method

The model consist of three coupled partial differential equations (representing the fluid

flow, nutrient transport and cell growth) and an algebraic equation representing the po-

rosity of the porous scaffold. It is a very complicated system which cannot be solved

analytically. To solve this coupled system of partial differential equations we use nu-

merical techniques. To solve the model numerically we use the commercially available

software COMSOL which is based on the finite element method (for a summary of the

basic concepts of the finite element method see appendix C). Solving a coupled system

of partial differential equations by COMSOL multiphysics means setting up the un-

derlying equations, material properties and boundary conditions for a given problem

using the graphical user interface (GUI) (see appendix B for details of how the model

is implemented by using the GUI).

To solve the model numerically the first step is to divide the domain into small ele-

ments. Since our geometry is 2-D we divide the domain into small units of simple

triangular mesh elements. Since we do not see any sharp gradient in the solution,

this encourages us to use a uniform mesh throughout the domain. Thus the mesh is

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.2: Example of a coarse mesh. In this figure there are 851 mesh points, 1600 mesh
elements out of which 100 are boundary elements and the system is solved for 9903 degrees
of freedom.
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uniform in the entire domain and can be refined successively until we get the requi-

red convergent results. The refined mesh, that is used for all the calculations, consist

of 13001 mesh points and 25600 triangular elements out of which 400 are the boun-

dary elements. The dependent variables are approximated by quadratic shape func-

tions. Since we have three dependent scalar variables, pressure p (velocity is derived

from pressure), nutrient concentration S and cell density N, the system is solved for

154803 degrees of freedom, 51601 for each dependent variable. Figure 6.2 illustrates an

example of a coarse mesh.

Darcy’s law and the advection-diffusion equations are quasi-static equations while the

cell growth equation is a time-dependent equation (see Sections 5.3.2, 5.3.3 and 5.3.4).

In the model only one equation is time-dependent i.e. the cell growth equation. We

solve the cell growth equation with step size △tcell and keep the flow velocity u and

nutrient concentration S fixed till time reaches tupdate. After time tupdate we update

the cell density in the porosity equation and solve flow and nutrient concentration

equations for updated cell density. Thus we can say that the cell growth equation is

solved for time t = 0 : △tcell : tupdate, where △tcell is the step size for the cell growth

equation and tupdate is the time when we update the effect of cell density on the porosity

and solve the entire system again. This process continues until the system approaches

the steady state. We choose the backward Euler’s method for the transient cell growth

equation and direct solver (UMFPACK) to solve the linear system of equations.

The success of any numerical method depends on the convergence. To check how rea-

sonable the numerical solution to a given coupled system of partial differential equa-

tions is on a given mesh points, a common strategy is to increase the number of mesh

points (or decrease the mesh spacing) successively, compute the solution on the finer

mesh, and compare the solutions on different number of mesh points. If the solution

approaches a stable answer by increasing the number of mesh points or (by decreasing

the mesh spacing) then our numerical method is convergent. We check the conver-

gence of our numerical method for various number of mesh points, time step size (for

the cell growth equation), and cell update time. We do not know the exact solution of

the system but we have discussed the comparison of numerical and analytic solution

for constant permeability and uniform initial cell density in Chapter 3.
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6.3 Convergence

A numerical method or technique is said to be convergent if it approaches a stable defi-

nite value as mesh spacing and time step sizes approache zero. In the present problem

to check that our numerical method is convergent we need to choose a suitable number

of mesh points, the type of finite element approximation and the time step size for the

cell growth equation. The domain of interest is divided into triangular elements. The

dependent variables (pressure p, nutrient concentration S and cell density N) can be

approximated by linear, quadratic or cubic shape functions. Higher degrees of shape

functions give higher degrees of freedom and larger systems of linear equations which

need more time for simulation. In this model we choose quadratic shape functions for

reasonably smooth solution and shorter simulation time. The mesh is uniform throu-

ghout the domain. To show that convergence is achieved we run a series of compu-

tations in which the number of mesh points, the step size △tcell and time tupdate are

varied. This means that convergence depends on three factors number of mesh points,

step size, and the time when we update the effect of cell density on porosity. We can

fix two factors and vary the third factor to check that the solution approaches a stable

value.

6.3.1 Fixed △tcell and tupdate and different number of mesh points.

In the first case we keep the step size △tcell (for the cell equation) and time tupdate (when

we update the effect of cell density on porosity) fixed and calculate the cell density for

different number of mesh points. To calculate the total cell number in the scaffold we

integrate the cell density N over the entire domain.

Ntotal =
∫ 1

−1

∫ 1

−1
N(x, y)dxdy. (6.3.1)

Figure 6.3 shows the total cell number as a function of time for different mesh sizes but

fixed step size △tcell and time tupdate. We can see from the Figure that total cell number

converges to a stable value by increasing the number of mesh points. Figure 6.4 shows

the difference between the total cell number for different number of mesh points as a

function of time. It is clear that the difference between the total cell numbers for dif-

ferent number of mesh points is approaching to zero which confirms the convergence

of numerical method. This suggests that our numerical method converges to a stable

value by increasing the number of mesh points.
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Figure 6.3: Total cell number for different
number of mesh points but fixed step sizes
△tcell and time tupdate. The initial cell den-

sity is Ninit(x, y) = 0.344H(0.0365 − x2 −
y2). The values of parameters used are ρ =
1, Ds = 6 × 10−6, Rs = 1.488, δ = 0.13976,
β = 13.2173, γ = 2, σc1 = 3 and σc2 = 15,
g = 60 and k1 = 5.

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

time

D
iff

e
re

n
ce

 in
 t
o

ta
l c

e
ll 

n
u

m
b

e
r

∆ t
cell

 =0.01, t
update

=0.1

 

 

N851−N3301

N3301−N13001

Figure 6.4: Difference between total cell
number for different number of mesh
points but fixed step size △tcell and time
tupdate. The green line is the difference bet-
ween total cell number for mesh points
3301 and 851. The red line is the difference
between total cell number for mesh points
13001 and 3301.

At time t = 3 which is fairly close to steady state we calculate the difference between

the average cell densities for different number of mesh points. If this difference ap-

proaches to zero then this will confirm the convergence of numerical method. Let N
j
i

represents the cell density at ith mesh point of the domain at time t = 3 for mesh size j

when both △tcell = 0.01 and tupdate = 0.1 are fixed then

∑
j
i=1 N

j
i

j
= 0.6943 when j = 851

∑
j
i=1 N

j
i

j
= 0.6966 when j = 3301

∑
j
i=1 N

j
i

j
= 0.6977 when j = 13001

∑
j
i=1 N

j
i

j
= 0.6980 when j = 51601.
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hence

abs

(

∑
851
i=1 N851

i

851
− ∑

3301
i=1 N3301

i

3301

)

= 0.0023

abs

(

∑
3301
i=1 N3301

i

3301
− ∑

13001
i=1 N13001

i

13001

)

= 0.0011

abs

(

∑
13001
i=1 N13001

i

13001
− ∑

51601
i=1 N51601

i

51601

)

= 0.0003

Since these numbers are getting smaller, this suggests convergence of the numerical

method.

6.3.2 Fixed number of mesh points and tupdate and different △tcell .

In this case we fix the number of mesh points and time tupdate (when we update the

effect of cell density on porosity) and calculate total cell number for different time step

sizes △tcell (for the cell growth equation). Figure 6.5 shows the total cell number when

the number of mesh points and tupdate time are fixed but step sizes △tcell is varied. It is

evident from Figure 6.5 that by decreasing the step size △tcell total cell number has a

stable value, which confirms the convergence of the numerical method with respect to

changes in △tcell .

At time t = 3 which is fairly close to steady state we again calculate the difference in

cell densities. Let Ni represents the cell density at ith mesh point of the domain at time

t = 3, when both, number of mesh points= 3301 and tupdate = 0.1 are fixed then

∑
3301
i=1 Ni

3301
= 0.6966 when △tcell = 0.05

The average cell density has same value for both △tcell = 0.01 or △tcell = 0.02 within

9 significant figures. Since the difference between the average cell densities at time

t = 3 for different step size △tcell but fixed number of mesh points and time tupdate

is approaching zero so we conclude that numerical method converge to a stable value

irrespective of length of step size △tcell.
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Figure 6.5: Total cell number for different step sizes △tcell but fixed mesh size and time
tupdate. The initial cell density and parameter values are the same as in Figure 6.3

.

6.3.3 Fixed number of mesh points and △tcell and different tupdate .

In this case we fix the number of mesh points and step size △tcell and calculate the cell

number for different times tupdate. Figure 6.6 shows the total cell number for various

tupdate when the number of mesh points and step size △tcell both are fixed. From the

Figure 6.6 we see that in order to get the accurate solution tupdate must be of the order

of △tcell.

Let Ni represents the cell density at the ith mesh point of the domain at time t = 3,

when both mesh size= 3301 and △tcell = 0.01 are fixed, then
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Figure 6.6: Total cell number for different tupdate but fixed mesh size and step size △tcell.
The initial cell density and parameter values are the same as in Figure 6.3.

∑
3301
i=1 Ni

3301
= 0.6787 when tupdate = 0.05

∑
3301
i=1 Ni

3301
= 0.6835 when tupdate = 0.06

∑
3301
i=1 Ni

3301
= 0.6966 when tupdate = 0.1

∑
3301
i=1 Ni

3301
= 0.7287 when tupdate = 0.2

∑
3301
i=1 Ni

3301
= 0.7799 when tupdate = 0.3

∑
3301
i=1 Ni

3301
= 0.8174 when tupdate = 0.5
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hence

abs

(

∑
3301
i=1

3301

[

N
tupdate=0.3

i − N
tupdate=0.5

i

]

)

= 0.0375

abs

(

∑
3301
i=1

3301

[

N
tupdate=0.1

i − N
tupdate=0.2

i

]

)

= 0.0321

abs

(

∑
3301
i=1

3301

[

N
tupdate=0.05

i − N
tupdate=0.06

i

]

)

= 0.0048

On the basis of convergence test now we can say that to get convergent results and

short simulation time we need to choose the reasonable number of mesh points, time

step size △tcell and frequently update the effect of cells on porosity i.e. small tupdate. So

we use 13001 number of mesh points, step size △tcell = 0.005, and tupdate = 0.01 in all

the subsequent calculations.

Results and discussion

The growth of murine immortalized rat cells C2C12 was simulated using the model pro-

posed in Chapter 5. The evaluation of velocities, cell densities, nutrient concentrations

and shear stress was calculated. In the model we can consider different forms of the

initial porosity φ0(x, y), initial seeding strategy Ninit(x, y) and effect of flow rate. In

Section 6.4 we will present the results of various initial seeding strategies and compare

the total cell yield in the final construct. In Sections 6.5 and 6.6 we will discuss the

effect of channeling and flow rate on the cell growth. We will propose several scaffold

designs depending on the porosity distribution to improve the supply of nutrients to

the deeper sections of the scaffold.

6.4 Initial seeding strategy

The fabrication of tissue in the laboratory starts with the attachment of isolated cells to

the polymer scaffold. This stage is commonly known as cell seeding. Desired features

of cell seeding include a high ratio of attached cells to seeded cells, fast attachment of

cells to the scaffold, high cell survival and a uniform spatial distribution in the final

construct.

The initial seeding strategy plays an important role in maximizing the total cell number

in the final construct. It is believed that a uniform initial distribution of attached cells
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to the scaffold lays the foundation for uniform cell growth (Bueno et al., 2007) and non-

uniform seeding results in enhanced tissue growth at the periphery of scaffold (Freed

et al., 1998). Later we will show that our model contradicts this. We take uniform initial

porosity of the scaffold i.e. φ0(x, y) = 0.85, a mesh size of 13001, step size △tcell = 0.005

(for the cell growth equation) and we update the cells in the porosity equation after a

time 0.01 i.e. tupdate = 0.01. We will test different forms of the initial seeding strategies

when the initial porosity of scaffold is uniform and the values of all the parameters are

fixed. Our aim is to identify the seeding strategy that gives both rapid cell growth and

the maximum number of uniformly distributed cells in the final construct.

6.4.1 Uniform initial cell density

Let us consider the case where the initial cell density is uniform everywhere in the

entire scaffold. Initially the cell density at each mesh point is 0.01 i.e. Ninit = 0.01. Since

the scaffold extends from −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 the total cell number in the

entire scaffold is 0.04.

The model was run using the values of dimensionless parameters given in the Table

5.4. Figure 6.7 shows snapshots of the cell density N , nutrient concentration S, the

flow field and the shear stress σ at time t = 0.5 (first row), t = 1.5 (second row) and

t = 2.5 (third row).

These times corresponds to an early point of a transient solution, a later point in the

transient solution and fairly close to the steady state solution respectively. Nutrients

are supplied constantly to the cells at the top boundary y = 1. The scale for cell density

N and nutrient concentration S is [0...1] in Figure 6.7 and will remain the same in all

the subsequent figures, but the scale for shear stress may change.

Initially, nutrients penetrate into the entire depth of the scaffold; however, its concen-

tration remains high near the inlet wall. The concentration of nutrients falls off lower

down the scaffold as time passes. Initially, cells are uniformly distributed throughout

the entire scaffold. As cells grow and occupy the empty spaces in the scaffold pores

they consume more nutrients and this depletes the supply of nutrients in the lower re-

gion. The cells near the nutrient source have access to more nutrients and grow quickly.

Since most of the nutrients are consumed by the cells near the nutrient source however

the amount of nutrients available to the cells in the deeper sections of the scaffold is

very low and the growth of cells in this region is also slow. After some time the cell dis-

tribution becomes non-uniform, giving more cells near the nutrient source and fewer

cells away from the nutrient source. With the increase in cell density all the nutrients
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(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.7: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when initial cell density is uniform. The parameter
values used in the simulation are given in Table 5.4.

are consumed by cells near the nutrient source and cells in the deeper sections of the

scaffold become hypoxic. Due to lack of nutrients the cell growth stops in this region.

We observe that the solution of the system is independent of x. To justify this we consi-

der all the three equations. Firstly, consider the flow equation. We know that initially

cells are distributed uniformly in the entire depth of the scaffold and there is no fluid
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flux through the side walls of the scaffold so solution of flow equation is independent

of x. Likewise the solution of nutrient concentration and cell growth equations is also

independent of x. This feature is also evident from the Figure 6.7.

We know that shear stress is directly proportional to velocity and inversely proportio-

nal to the porosity of scaffold. The porosity of the scaffold is initially uniform so the

flow of fluid through the scaffold is uniform. As more cells grow near the nutrient

source the porosity of the scaffold decreases in this region and shear stress increases in

this region due to decrease in porosity. This fact is also evident from the Figures 6.7(c),

6.7(f) and 6.7(i).

6.4.2 Central blob

Let there initially be a blob of cells placed at the centre of the scaffold. We expect that

cells at the edges of the blob will grow outward and spread into the whole domain.

Figure 6.8 shows that initially a blob of cells is placed at the centre of the scaffold.

Mathematically we represent the initial cell density by

Ninit = 0.346 × H(0.0365 − x2 − y2),

Figure 6.8: Form of initial cell distribution when a blob of cells is placed at the centre of the
scaffold. Mathematically Ninit = 0.346× H(0.0365− x2 − y2).

155



6.4 INITIAL SEEDING STRATEGY

where H(.) is the Heaviside step function. The total cell number in the entire scaffold

is again 0.04.

Figure 6.9 shows the same plots as in Figure 6.7 but in this case initially a blob of cells

is placed at the centre of the scaffold. Initially the concentration of nutrients is uniform

around the edges of the blob. We observe that the cells at the edges of the blob consume

nutrients and grow.

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.9: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when initially a blob of cells placed at the centre
of scaffold. The parameter values are same as in Figure 6.7.
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The cells spread towards the boundaries of the domain. The left and right edges of

blob move towards their respective boundaries of the scaffold with equal speed due

to symmetry of the problem along x = 0. The cells at the top edge of blob (which is

near to the nutrient source) grow quickly because cells in this region have a constant

supply of nutrients from the top boundary of the scaffold. The cells at the bottom edge

of the blob (which is far from the nutrient source) grow very slowly and ultimately

stop growing because most of the nutrients are consumed before they reach this edge

of the blob. When the cells at the left and right edges of the blob spread and touch

their respective boundaries of the scaffold then nutrients will not have an easy path

around the cells. There will be no cells in the deeper sections of the scaffold especially

in the last quarter of the scaffold. The cells at the far end of the scaffold, away from

the nutrient source will be hypoxic and there will be no cell growth in this region. This

fact is evident from Figure 6.9. We observe that from Figure 6.9(a) that when the blob

of cells is at the centre of the scaffold it forces the fluid to go around the edges of the

blob. So fluid will flow with high velocity around the edges of the blob. We observe

that the shear stress is high in the regions where the advective velocity is high. The

advective velocity is high in the regions where the cell density is low and vice versa.

On the other hand when the blob of cells touches the boundaries of the scaffold then in

that case fluid must go through the cells. The shear stress is high in the regions where

the porosity is low and velocity is uniform. The porosity of the scaffold is low in the

regions where the cell density is high.

6.4.3 Off-Centre blob

If we put a blob of cells at the centre of the scaffold then the edge of the blob facing

away from the nutrient source grows slowly due to lack of nutrients source and there

are few cells in the deeper sections of the scaffold. If we put a blob of cells away from

the nutrient source then the cells will spread more uniformly into all the sections of the

scaffold. Let us consider the case when a blob of cells is placed on the centre line but

away from the nutrient source. Figure 6.10 shows that initially a blob of cells is placed

away from the nutrient source. Mathematically we represent the initial distribution of

cells by

Ninit = 0.346 × H(0.0365 − x2 − (y + 0.5)2).

As before the total cell number in the entire scaffold is 0.04.
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Figure 6.10: Form of initial cell distribution when a blob of cells is placed away from the
nutrient source. Mathematically Ninit = 0.346× H(0.0365− x2 − (y + 0.5)2).

Figure 6.11 shows the same plots as in Figure 6.7 but in this case initially a blob of

cells is placed away from the nutrient source. We observe that the blob of cells grows

towards the nutrient source. After some time the cells spread into the entire domain

and are more uniformly distributed compared to the central blob case. Clearly the cell

density is high in the upper half of the scaffold and cell density is slightly lower in the

lower half of the scaffold. Most of the nutrients are eaten up near the scaffold inlet wall

and the nutrient concentration becomes low in deeper sections of the scaffold which

results in a lower cell density away from the nutrient source. The width of the region

of lower cell density is thinner for this initial seeding than for the centrally placed blob.

It is also evident from the Figure that before touching the boundaries of the scaffold the

blob of cells forces the fluid to go around the edges of the scaffold. The velocity of fluid

is high around the edges of the blob hence shear stress is high in this region. When the

blob of cells touches the boundaries of the scaffold the fluid must go through the cells

so shear stress is high in the regions where more cells are present or, in other words,

we can say that shear stress is high in the regions where porosity is low.
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(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.11: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when initially a blob of cells placed away from the
nutrient source. The parameter values are the same as in Figure 6.7.

6.4.4 Layer of cells opposite to nutrient source

From the results of the central and off-central blobs we conclude that if we put a layer

of cells at the scaffold outlet wall, away from the nutrient source then we can get a

more uniform cell distribution in the final construct. Consider the case when initially

a layer of cells is placed away from the nutrient source. Figure 6.12 shows the initial
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Figure 6.12: Form of initial cell distribution when a layer of cells is placed away from the
nutrient source. Mathematically Ninit = 0.2 × H(−0.9 − y).

cell density when layer of cells is placed near the scaffold outlet wall away from the

nutrient source. Mathematically we represent the layer of cells by

Ninit = 0.2 × H(−0.9 − y).

The total initial cell number in the entire scaffold is again 0.04.

Figure 6.13 shows the same plots as in Figure 6.7 when initially a layer of cells is placed

away from the nutrient source. It is evident from the Figure that the cells grow towards

the nutrient source and after some time cells have spread uniformly into the entire do-

main. When cells spread in the entire domain then the nutrient concentration becomes

zero in the deeper section of the scaffold. It is also evident that, since the cell density is

uniform everywhere the shear stress is also uniform in the entire domain.
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(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.13: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when initially a layer of cells is placed away from
the nutrient source. The parameter values are same as in Figure 6.7.

6.4.5 Layer of cells on all the boundaries of the scaffold

It is not possible for tissue engineers to initially place the cells in the internal region

of the scaffold. To be more realistic we initially place the cells on all the boundaries of

the scaffold. Figure 6.14 shows the initial distribution of cells on the periphery of the

scaffold. Mathematically we represent this type of initial cell distribution by a series of
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Figure 6.14: Form of initial cell distribution when cells are placed on
all the boundaries of the scaffold. Mathematically Ninit = 0.05276 ×
min (1, H(−y − 0.9) + H(−x − 0.9) + H(x − 0.9) + H(y − 0.9)).

Heaviside functions as

Ninit = 0.05276 × min (1, H(−y − 0.9) + H(−x − 0.9) + H(x − 0.9) + H(y − 0.9)) .

The total initial cell number in the entire scaffold is again 0.04.

Figure 6.15 shows the snapshots of cell density N at an early point of transient solution

t = 0.5, an intermediate point of transient solution t = 1.5 and close to steady state at

time t = 2.5. Initially cells are seeded at the periphery of the scaffold. The cells on the

inlet boundary of the scaffold consume nutrients and grow quickly. Cells on the other

boundaries have less access to available nutrients so their growth is slow. We observe

that the cells grow and move towards the centre of the scaffold. As more cells grow

near the inlet wall they block the scaffold pores as a results delivery of nutrients to the

internal regions of the scaffold decreases to zero. We also observe that there is no cell

growth in the centre of the scaffold due to lack of nutrients. These features are evident

from the Figure 6.15.
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(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Cell density N and fluid velo-
city ur at t = 1.5.

(c) Cell density N and fluid velo-
city ur at t = 2.5.

Figure 6.15: Snapshots of the cell density N and fluid velocity ur at time t = 0.5, 1.5, 2.5
when initially layer of cells is placed on the periphery of the scaffold. The parameter values
are same as in Figure 6.7.

6.4.6 Layer of cells on three boundaries of scaffold

From the results of initial distribution of cells on the periphery of the scaffold we found

that the cells on the inlet walls consume most of the nutrients and grow quickly. As the

cell density increases the nutrient consumption increases which causes the depletion

Figure 6.16: Form of initial cell distribution when cells are placed on all the boun-
daries of the scaffold except the inlet boundary. Mathematically Ninit = 0.069216 ×
min (1, H(−y − 0.9) + H(−x − 0.9) + H(x − 0.9)).
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of nutrients in the central sections of the scaffold. To overcome this problem let us

consider the case when initially we place the cells on the scaffold boundaries except

the inlet boundary. Figure 6.16 shows the initial distribution of cells. Mathematically

we represent the initial cell distribution by

Ninit = 0.069216 × min (1, H(−y − 0.9) + H(−x − 0.9) + H(x − 0.9)) .

The total initial cell number in the entire scaffold is again 0.04.

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Cell density N and fluid velo-
city ur at t = 1.5.

(c) Cell density N and fluid velo-
city ur at t = 2.5.

Figure 6.17: Snapshots of the cell density N and fluid velocity ur at time t = 0.5, 1.5, 2.5
when initially cells are seeded on all the boundaries of the scaffold except inlet boundary.
The parameter values are same as in Figure 6.7.

Figure 6.17 shows the same plots as in Figure 6.15. Initially cells are seeded at the three

boundaries of the scaffold and there are no cells on the inlet wall of the scaffold. In this

case cells from all the boundaries of the scaffold grow and move towards the centre of

the scaffold. When the cells from the side walls of the scaffold reach the centre of the

scaffold and block the scaffold pores then the delivery of the nutrients in the internal

regions of the scaffold decreases rapidly. Due to decrease in the nutrient concentration

in the internal regions of the scaffold, the growth of cells also slows down in these

regions. We can observe from the Figure 6.17 that cell density is low in the middle

portion of the scaffold.

6.4.7 Layer of cells at side walls of the scaffold

Let us consider the case when initially cells are seeded on the side walls of the scaffold.

Figure 6.18 shows the form of initial cell distribution. Mathematically we represent this

type of initial cell distribution by

Ninit = 0.1 × (H(−x − 0.9) + H(x − 0.9)) .

164



6.4 INITIAL SEEDING STRATEGY

Figure 6.18: Form of initial cell distribution when layers of cells are placed on the side
walls of the scaffold. Mathematically Ninit = 0.1 × (H(−x − 0.9) + H(x − 0.9)).

The total initial cell number in the entire scaffold is again 0.04.

Figure 6.19 shows the same plots as in Figure 6.15. We observe that the cells grow

towards the centre of the scaffold. When the cells from both the boundaries reach the

centre of the scaffold they block the scaffold pores. The growth of cells near the nutrient

source is rapid which causes a decrease in nutrient concentration in the deeper sections

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Cell density N and fluid velo-
city ur at t = 1.5.

(c) Cell density N and fluid velo-
city ur at t = 2.5.

Figure 6.19: Snapshots of the cell density N and fluid velocity ur at time t = 0.5, 1.5, 2.5
when initially layer of cells is placed on the side walls of the scaffold. The parameter values
are same as in Figure 6.7.
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of the scaffold. The cells away from the nutrient source becomes hypoxic and stop

growing.

6.4.8 Comparison of results of initial cell seeding strategy

Figure 6.20 shows the time evolution of the total cell number for various initial seeding

strategies suggested in this section when the values of threshold shear stresses are σc1 =

3 and σc2 = 15. It is evident from Figure 6.20 that initially the total cell number in all

the seeding strategies is the same in each case i.e. Ninit = 0.04. At fairly close to steady

state the total cell number in the scaffold is highest when initially we put a layer of cells

away from the nutrient source and lowest when initially we place a layer of cells at all

the boundaries of the scaffold.

In the case of the central or off-centre blob initially it is surrounded by a uniform

amount of the nutrients. The cells at the edges of the blob grow and spread outwards.

The top edge of the blob near the nutrient source grows quickly. The edge of the blob

away from the nutrient source grows initially but it stops growing after some time.

Since concentration of nutrients near the bottom edge of the blob decreases rapidly so

the cells on the bottom edge of the blob grow at slower rate and eventually stop alto-

gether. When the left and right edges of the blob touch the boundaries of the scaffold

and block the pores then nutrients cannot reach the cells in the deeper sections of the

scaffold. So there is no cell growth in the second half of the scaffold.

When initially we place the cells on the periphery of the scaffold then in that case cells

on the inlet wall grow very quickly and block the scaffold pores. The cells in the deeper

sections of the scaffold becomes hypoxic and stop growing. To overcome this problem

when we remove the cells from the inlet wall then the total cell number in the final

construct increases due to the increase in the concentration of nutrients in the internal

sections of the scaffold. On the other hand if we put a layer of cells away from the

nutrient source then this layer will grow and move towards the nutrient source giving

highest cell density in the final construct. The cells are more uniformly distributed in

all sections of the scaffold when we put a layer of cells away from the nutrient source.

From the results we conclude that if we delay the cell growth near the nutrient source

and increase the cell growth away from the nutrient source then we get largest cell yield

uniformly distributed in the entire depth of the scaffold. This is because if the cells

grow quickly near the inlet wall and consume more nutrients and cells in the deeper

sections of the scaffold are depleted. In the case of a central blob when it interacts the

side walls of the scaffold then the cells in the deeper sections of the scaffold become
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Figure 6.20: Comparison of the time evolution of total cell number for various initial see-
ding strategies.

hypoxic and do not grow. When we place the cells on all the boundaries of the scaffold

then the cells on the inlet boundary grow quickly and do not allow the nutrients to

reach into the internal regions of the scaffold but if we remove the cells from the inlet

wall then this will improve the nutrient concentration in the internal regions of the

scaffold and the total cell yield increases. In the case of a cell layer placed away from

the nutrient source, cells grow in the deeper sections of the scaffold and move towards

the nutrient source and spread in the entire domain uniformly. These results show

that the system is sensitive to initial seeding technique and initial cell density plays an

important role in cell distribution and total cell yield in the final tissue construct.

We observe that the growth rate of cells is fastest when cells are distributed uniformly

in the entire domain and they reach the quasi-steady state very quickly. Initially the

cells and nutrients are uniformly distributed, so cells grow quickly in all sections of the

scaffold because of the large surface area of contact between cells and nutrients. Howe-

ver, after a relatively short time the growth of cells decreases in the deeper sections of

the scaffold and eventually stops altogether. When more cells grow near the inlet wall,

they consume most of the nutrients fed from the inlet wall and block up the pores. The

cells in the deeper sections of the scaffold becomes hypoxic and do not grow. We can

notice that after time t = 0.5 the cell growth becomes extremely slow because cells at
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the top are saturated at maximum cell density and cells in the deeper sections are nu-

trient depleted. The initial growth rate of the off-centre and centre blob is the slowest

because of the low surface area. The centre and off-centre blobs have the same ini-

tial growth profile because neither blob initially interacts with the scaffold boundaries.

However, when at t = 0.75 the blob in both the cases touches the boundaries of the

scaffold and has cells in the most parts of the scaffold then the growth rate increases a

little bit due to increase in surface area. The width of the hypoxic region in the case of

centre blob is bigger compared to that of the off-centre blob. In the case of the centre

blob, when it grows and touches the boundaries of the scaffold and blocks the pores,

the cells in the lower half of the scaffold become hypoxic and give a wide hypoxic layer.

But when we put the blob of cells further down, away from the nutrient source, then

in that case when it touches the boundaries of the scaffold and blocks the pores the

width of hypoxic region will be smaller and upward growth is still possible. The ini-

tial growth rate is rapid when we seed the cells on the periphery of the scaffold but it

drops down very quickly because the cells on the inlet wall reach maximum carrying

capacity and block scaffold pores. The concentration of nutrients in the deeper sections

of the scaffold reduces which causes the growth rate to slow down . When initially we

seed the cells on the boundaries except the inlet wall we get a reasonably fast growth

rate and high cell yield. The growth rate is linear when we put a layer of cells away

from the nutrient source because supply of nutrients and surface area of growth front

are both constant.

Figure 6.21 shows the comparison of total cell number for various initial seeding stra-

tegies when the threshold shear stresses are σc1 = 3, σc2 = 15 and σc1 = 2.5, σc2 = 4.5.

The line color represents the initial seeding technique. We know that when the shear

stress reaches σc1 then the cell growth rate increases and when shear stress reaches σc2

then cell growth stops but they still consume nutrients to live. We observe that by

decreasing the width of the heightened proliferative region the total cell number also

decreases. We can see a quite small change in the total cell number for all seeding

strategies. The change is largest in the case of uniform initial cell density.

6.5 Effect of porosity

In the previous Section we have found that the initial seeding strategy plays an im-

portant role in the distribution of cells in the final construct. Also nutrient delivery is

important to determine the final cell density. In this Section we will discuss the effect of
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Figure 6.21: Comparison of the time evolution of the total cell number for four different
initial seeding strategies. Color represents the different seeding strategies. Solid and dotted
lines represent the total cell number when threshold shear stresses are σc1 = 3, σc2 = 15
and σc1 = 2.5, σc2 = 4.5 respectively.

the initial porosity on the cell distribution and suggest a scaffold design for the initial

porosity distribution which improves the delivery of nutrients to the deeper sections of

the scaffold. Let us assume that the initial cell density is uniform i.e. Ninit(x, y) = 0.01

and initial porosity φ0(x, y) is not uniform. We consider different choices of the ini-

tial porosity φ0(x, y) and scaffold design to compare the cell density N in the final

construct.

6.5.1 Adjacent scaffolds of different porosities

Let us consider a scaffold which is less porous in one half and highly porous in the

other half. Let the initial porosity φ0(x, y) of the left and right half of the scaffold be

0.60 and 0.90, respectively. Figure 6.22 shows a scaffold having different porosities in

two halves. Mathematically we can represent the porosity of such a scaffold by the

Heaviside step function

φ0(x, y) = 0.60 + 0.30 × H(x).
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Figure 6.22: Scaffold having different porosity in different regions. Initial porosity of scaf-
fold φ0 = 0.60 in one half and φ0 = 0.90 in the other half.

Figure 6.23 shows the same plots as Figure 6.7 when the porosity of the scaffold is dif-

ferent in two halves. We can observe the difference in cell densities in both halves. The

cell density is high in the right half where the porosity of the scaffold is high whereas

the cell density is low in the left half where the porosity of the scaffold is low. It is

evident from the Figure that the concentration of nutrients becomes zero very quickly

in the left half due to the low porosity and cells in the deeper sections of the scaffold

become hypoxic. On the other hand nutrients can penetrate a further distance from the

inlet wall in the right half of scaffold where porosity of scaffold is high. So we conclude

that the porosity of the scaffold should be high to deliver nutrients to the deeper sec-

tions of the scaffold. The flow is focused in the regions with lowest resistance i.e. the

high porosity region. The fluid will flow with a high velocity in this region which re-

sults in high nutrient concentrations but also high shear stress in this region. So shear

stress will be high in the right half of the scaffold where fluid velocity is high.
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6.5 EFFECT OF POROSITY

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.23: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when the initial cell density is uniform and initial
porosity of the scaffold is high in one half and low in the other half. The parameter values
are the same as in Figure 6.7.

6.5.2 High porosity vertical tubes

To increase the delivery of nutrients to the deeper sections of the scaffold we put three

high porosity tubes in the scaffold. The porosity of scaffold is 0.70 and the porosity of

the tubes is 0.95. Figure 6.28 shows a scaffold with three high porosity tubes. Mathe-
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Figure 6.24: Scaffold with three high porosity vertical tubes. Initial porosity of tubes is 0.95
and initial porosity of other sections is 0.70.

matically the porosity of such a scaffold is given by

φ0(x, y) = 0.70 + 0.25 × ((H(x + 0.6) − H(x + 0.5)) + (H(x + 0.05) − H(x − 0.05))

+ (H(x − 0.5) − H(x − 0.6))).

Figure 6.25 shows the same plots as Figure 6.7 when three high porosity, vertical, pa-

rallel tubes are inserted into the scaffold. Since the porosity of tubes is high the flow

of fluid through these tubes is high which improves the delivery of nutrients in the

deeper sections of the scaffold. Nutrients flows through the tubes and diffuse into the

low porosity regions to reach in the deeper sections of the scaffold. Due to the delivery

of nutrients in the deeper sections of the scaffold, the growth of cells increases in these

sections. The initial cell density is uniform in the scaffold. We observe that the growth

of cells is still higher near the scaffold inlet wall compared to the other sections of the

scaffold due to presence of high nutrient concentration. Due to the high fluid velocity

in the parallel tubes the shear stress is very high in the tubes. The cell density still

remains lowest in the two lower corners of the scaffold.
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6.5 EFFECT OF POROSITY

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.25: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when the initial cell density is uniform and three
high porosity vertical parallel tubes are inserted in the scaffold. The parameter values are
the same as in Figure 6.7.

6.5.3 High porosity vertical tubes along side walls

In the case of high porosity parallel tubes we observe that the cell growth is slow in

the bottom corners of the scaffold. To overcome this problem we slightly modify the

design of scaffold and put the two high porosity parallel tubes adjacent to side walls of
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Figure 6.26: Scaffold with three high porosity vertical tubes along side walls. Initial poro-
sity of tubes is 0.95 and initial porosity of other sections of scaffold is 0.70.

the scaffold and one in the middle of the scaffold. Again the porosity of scaffold is 0.70

and the porosity of the tubes is 0.95.

Figure 6.26 shows a scaffold with three high porosity tubes. Mathematically the poro-

sity of such a scaffold is given by

φ0(x, y) = 0.70 + 0.25 × ((H(x + 1) − H(x + 0.9)) + (H(x + 0.05) − H(x − 0.05))

+ (H(x − 0.9) − H(x − 1))).

Figure 6.27 shows the same plots as Figure 6.15 when three high porosity (two adjacent

to side walls and one in middle) vertical tubes are inserted into the scaffold. Since the

porosity of tubes is high the flow of fluid through these tubes is high which improves

the delivery of nutrients in the deeper sections of the scaffold. Since the tubes are adja-

cent to the side walls, they will deliver the nutrients to deeper sections of the scaffold

from only one side. Thus this design does not improve the delivery of nutrients to the

deeper sections of the scaffold as a consequence the total cell yield in the final construct

does not improve.
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6.5 EFFECT OF POROSITY

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Cell density N and fluid velo-
city ur at t = 1.5.

(c) Cell density N and fluid velo-
city ur at t = 2.5.

Figure 6.27: Snapshots of the cell density N and fluid velocity ur at time t = 0.5, 1.5, 2.5
when the initial cell density is uniform and three high porosity vertical tubes are inserted
in the scaffold. The parameter values are the same as in Figure 6.7.

6.5.4 High porosity diagonal tubes

To improve the delivery of nutrients in the deeper sections of the scaffold, particularly

lower corners, let us consider a scaffold with high porosity diagonal tubes inserted in

it. Figure 6.28 shows a scaffold with two high porosity diagonal tubes. Mathematically

we represent the porosity of such scaffold by a series of step functions.
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Figure 6.28: Scaffold with high porosity diagonal tubes. Initial porosity of tubes is 0.95 and
initial porosity of other sections of scaffold is 0.70.
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6.5 EFFECT OF POROSITY

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.29: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when the initial cell density is uniform and two
high porosity diagonal tubes are inserted in the scaffold. The parameter values are the
same as in Figure 6.7.

We define the initial porosity of scaffold by

φ0(x, y) = 0.70 + 0.25 × min(1, (H(y − x + 0.05) − H(y − x − 0.05))

+(H(y + x + 0.05) − H(y + x − 0.05))).
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6.5 EFFECT OF POROSITY

Figure 6.29 shows the the same plots as Figure 6.7 when high porosity diagonal tubes

are inserted in the scaffold. We observe that the flow velocity is high in the diagonal

tubes but nutrients are not delivered to the deeper sections of the scaffold. Cell growth

is high near the scaffold inlet wall due to the high nutrient concentration and the cell

growth is low in the deeper sections of the scaffold due to the low nutrient concentra-

tion. We observe that this technique is not very efficient for the delivery of nutrients to

the deeper sections of the scaffold. Also the shear stress is high in the diagonal tubes

due to the high flow velocity.

6.5.5 High porosity diagonal and vertical tubes

Consider the case when two diagonal and a vertical tube are inserted in order to im-

prove the delivery of nutrients to the deeper sections of the scaffold. Figure 6.30 shows

the scaffold with two diagonal and one vertical high porosity tubes. Mathematically

the initial porosity of such a scaffold can be represented by a series of heaviside step
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Figure 6.30: Scaffold with high porosity diagonal and vertical tubes. Initial porosity of
tubes is 0.95 and initial porosity of other sections of scaffold is 0.70.
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6.5 EFFECT OF POROSITY

functions. We define the initial porosity of the scaffold by

φ0(x, y) = 0.70 + 0.25 × min(1, (H(y − x + 0.05) − H(y − x − 0.05))

+ (H(y + x + 0.05) − H(y + x − 0.05)) + (H(x + 0.05) − H(x − 0.05))).

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.31: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when the initial cell density is uniform and two
high porosity diagonal and one vertical tubes are inserted in the scaffold. The parameter
values are the same as in Figure 6.7.
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6.5 EFFECT OF POROSITY

Figure 6.31 shows the same plots as Figure 6.7 when two high porosity diagonal tubes

and one vertical tube are inserted into the scaffold. We observe that the transport of

nutrients increases into the deeper sections of the scaffold due to the vertical tube while

delivery of nutrients is not improved due to diagonal tubes. Due to improved delivery

of nutrients the cell growth has increased in the deeper sections of the scaffold around

the vertical tube. The cell growth is still very low in both left and right corners of the

scaffold due to lack of delivery of nutrients. Again the shear stress is very high in the

tubes due to the high flow velocity.

6.5.6 Comparison of results of porosity distribution

Figure 6.32 shows a comparison of the time evolution of the total cell number in the do-

main for uniform initial cell density and five different initial porosities of the scaffold.

We can see that the total cell number in the scaffold is largest when three high porosity

tubes are inserted in the scaffold. We conclude that when we insert the three high poro-

sity tubes not along the edges in the scaffold the delivery of nutrients improves in the

deeper sections of the scaffold. Note that all of the modified scaffolds improve the total
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Figure 6.32: Comparison of the time evolution of total cell number for various initial poro-
sities of scaffold. The initial cell density is uniform throughout the scaffold. Dashed curves
are our previous results, from Section 6.4.8 included for comparison.
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6.5 EFFECT OF POROSITY

yield. In Figure 6.32 we have also included the data when the initial porosity of the

scaffold is uniform but initially a layer of cells is placed away from the nutrient source.

From the results of different initial porosity distributions we conclude that to get the

highest cell number in the scaffold, initially seeded with uniform cell distribution, we

should insert three vertical high porosity tubes not along the side walls in the scaffold.

From the Figure 6.32 we observe that to get the fastest growth rate and a high total

number of cells we should choose a scaffold with uniform initial cell distribution and

three high porosity vertical tubes inserted into it. But if we are not concerned about the

growth rate and we want highest number of cells in the scaffold then we should choose

a scaffold having uniform initial porosity and initially a layer of cells is placed away

from the nutrient source.

6.5.7 Combined effects of initial seeding and initial porosity

In Section 6.4 we have discussed various initial seeding strategies for uniform initial

porosity of the scaffold. In each case we chose initial porosity of scaffold to be φ0 =

0.85. We found that to get the largest cell yield initially we should put the cells on

the boundary opposite to the nutrient source (see Figure 6.20). In Section 6.5 we have

discussed the various initial porosity distributions when initial cell density is uniform

in the scaffold. In each case the average porosity of the scaffold is between 0.70 and

0.75. Since average porosity in Section 6.4 and 6.5 is not the same, results for the total

cell yield are not comparable directly.

Now in this Section we study combined effects of initial seeding and initial porosity.

We consider a scaffold with three high porosity vertical tubes not along the side walls

and initially we put a layer of cells on the bottom boundary. Figure 6.33 shows the

comparison of optimal cases for initial seeding, initial porosity distribution and combi-

ned effects of initial seeding and initial porosity. The scaffold with three vertical tubes

has initial average porosity 0.85. We observe that the total cell yield is approximately

the same when initially we put the cells on the bottom boundary and keep the porosity

of the scaffold either uniform or insert the three high porosity tubes in it. We conclude

that if initially we put the layer of cells at the bottom boundary then by inserting the

high porosity tubes do not increase the total cell yield but if the initial cell density is

uniform then the high porosity tubes help to improve the total cell yield.
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Figure 6.33: Comparison of the time evolution of total cell number for optimal case of
initial cell density, initial porosity distribution and combined effects of initial seeding and
initial porosity.

6.6 Effect of flow rate on cell growth

The basic model developed in Chapter 5 is a generic model and can be easily mani-

pulated to consider different geometric configurations, cell types, nutrient types and

different combination of parameter values. In this Section we will study the effect of

flow rate on the cell growth. All the results in Sections 6.4 and 6.5 are calculated for

the flow rate U∗
c = 2.5 × 10−2m/sec. Now in this Section we will increase and decrease

the flow rate and observe the effect on cell growth. By changing the characteristic flow

rate the dimensionless threshold shear stresses σc1 and σc2 will be affected. Clearly by

increasing the flow rate the shear stress will increase and vice versa. Thus by increasing

or decreasing the flow rate the threshold shear stresses will be reached earlier and later

respectively. Thus we must keep the dimensional threshold shear stresses fixed and

recalculate the dimensionless values. We start by computing the dimensional values.

We know from equation (5.4.2) that

σ∗ =
8τµ∗U∗

c

ǫ∗
σ, (6.6.1)
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Similarly dimensional threshold shear stresses σ∗
c1 and σ∗

c2 are given by

σ∗
c1 =

8τµ∗U∗
c

ǫ∗
σc1, (6.6.2)

σ∗
c2 =

8τµ∗U∗
c

ǫ∗
σc2. (6.6.3)

Table 6.1: Parameter values

Parameter Description Value unit

µ∗ Fluid viscosity 8.4 × 10−4 kg/m.sec

ǫ∗ Pore diameter 6.8 × 10−4 m

τ Scaffold tortuosity 2.05 -

U∗
c Perfusion rate 1.25 × 10−2 2.5 × 10−2 5 × 10−2 m/sec

σc1 6 3 1.5 -

σc2 30 15 7.5 -

Ds 1.25 × 10−5 6 × 10−6 3 × 10−6 -

Rs 2.976 1.488 0.744 -

We fix the dimensionless threshold shear stresses σc1 and σc2 and calculate the dimen-

sional threshold shear stresses σ∗
c1 and σ∗

c1 from equations (6.6.2) and (6.6.3) for the

values of flow rate and dimensionless threshold shear stresses used in Sections 6.4 and

6.5 i.e. U∗
c = 2.5 × 10−2m/sec, σc1 = 3 and σc2 = 15. The values of other parameters are

given in Table 6.1.

Thus σ∗
c1 = 1.5194 and σ∗

c2 = 7.5971. When we change the flow rate we calculate the

dimensionless threshold shear stresses σc1 and σc2 from equations (6.6.2) and (6.6.3) for

fixed values of dimensional threshold shear stresses σ∗
c1 = 1.5194 and σ∗

c2 = 7.5971. The

flow rate U∗
c also appears in the dimensionless parameters Ds and Rs. From equation

5.5.14 we observe that parameters Ds and Rs are inversely proportional to flow rate

U∗
c . Thus by increasing the flow rate the values of parameters Ds and Rs will decrease

and vice versa. The initial cell distribution and initial porosity of the scaffold both are

uniform.
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6.6.1 High flow rate

Let us consider the case when the flow is U∗
c = 5 × 10−2m/sec which is twice the

flow rate used in Sections 6.4 and 6.5. With this flow rate we calculate the values of

parameters Ds and Rs and dimensionless threshold shear stresses σc1 and σc2. Thus

(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.34: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when the initial cell density is uniform and flow
rate U∗

c = 0.05m/sec, Ds = 3 × 10−6 and Rs = 0.744. The other parameter values are the
same as in Figure 6.7.
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Ds = 3 × 10−6, Rs = 0.744, σc1 = 1.5 and σc2 = 7.5. The values of other parameters are

given in Table 5.4.

Figure 6.34 shows the same plots as in Figure 6.7. By increasing the flow rate the nu-

trients penetrate into the internal sections of scaffold which increases the cell growth

in these sections. We also observe from the equations 6.6.2 and 6.6.3 the dimensionless

threshold shear stresses σc1 and σc2 are inversely proportional to flow rate U∗
c . Hence by

increasing the flow rate the values of dimensionless threshold shear stresses σc1 and σc2

will decrease. Also by increasing the flow rate the parameter Rs decreases which means

that nutrient consumption reduces. Thus with the reduction in nutrient consumption

near the scaffold inlet wall allows the nutrients to penetrate in the deeper sections of

the scaffold. We observe that the cell density increases with the increase in flow rate.

6.6.2 Reduced flow rate

Let us consider the case when the flow rate U∗
c = 1.25 × 10−2m/sec which is half the

flow rate used in the Sections 6.4 and 6.5. With the decrease in flow rate the values of

parameters Ds and Rs and dimensionless threshold shear stresses σc1 and σc2 increase.

Thus Ds = 1.2 × 10−5, Rs = 2.976 σc1 = 6 and σc2 = 30. The values of other parameters

are given in Table 5.4.

Figure 6.35 shows the same plots as in Figure 6.7 for reduced flow rate. By reducing

the flow rate the value of the parameter Rs increases which means that most of the

nutrients are consumed near the scaffold inlet wall. We observe that the cell density

decreases by decreasing the flow rate.

Figure 6.36 shows the comparison of total cell number for various perfusion rates. We

observe that when the perfusion rate is high it helps the nutrients to reach a farther

distance from the inlet wall. This improves the total cell yield in the final construct.

However by reducing the perfusion rate most of the nutrients are consumed near the

scaffold inlet wall and cells in the deeper sections of the scaffold becomes hypoxic.

This reduces the total cell yield in the final construct. We conclude that by increasing

the perfusion rate total cell number in the final construct increases. But we observe

from the Figure that when U∗
c = 1.25 × 10−2m/sec the initial growth rate is slow when

compared to the initial growth rate when flow rate U∗
c = 2.5 × 10−2m/sec but earlier

perfusion rate gives a high cell yield in the final construct. The origin of this unusual

behaviour is not clear. Also a very high perfusion rate will exceed the second threshold

shear stress σc2 and will produce no cell growth.
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(a) Cell density N and fluid velo-
city ur at t = 0.5.

(b) Nutrient concentration S and
fluid velocity ur at t = 0.5.

(c) Shear stress σ at t = 0.5.

(d) Cell density N and fluid velo-
city ur at t = 1.5.

(e) Nutrient concentration S and
fluid velocity ur at t = 1.5.

(f) Shear stress σ at t = 1.5.

(g) Cell density N and fluid velo-
city ur at t = 2.5.

(h) Nutrient concentration S and
fluid velocity ur at t = 2.5.

(i) Shear stress σ at t = 2.5.

Figure 6.35: Snapshots of the cell density N, nutrient concentration S, fluid velocity ur and
the shear stress σ at time t = 0.5, 1.5, 2.5 when the initial cell density is uniform and flow
rate U∗

c = 0.0125m/sec, Ds = 1.2 × 10−5 and Rs = 2.976. The other parameter values are
the same as in Figure 6.7.

6.7 Summary and conclusions

In this Chapter we have presented the results of the model developed in Chapter 5. We

studied the effect of various initial seeding strategies, initial porosities and perfusion

rates on the cell growth and nutrient transport in a perfusion bioreactor. We found that
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Figure 6.36: Comparison of the time evolution of total cell number for different perfusion
velocities. The initial cell density is uniform throughout the scaffold.

the initial cell growth is rapid when initial cell density is uniform and initial cell growth

is slowest when initially we place a blob of cells at centre or off-centre of the scaffold.

We get a maximum cell yield in the final construct when initially we place a cell layer

away from the nutrient source and minimum cell yield when initially we place cells at

all walls of the scaffold. The cell growth depends on the surface area of contact between

the cells and nutrients. The cell yield depends on the cell growth rate at the entrance

compared to the cell growth rate at the exit. To improve the delivery of nutrients in the

deeper sections of the scaffold we put high porosity tubes in the various locations of

the scaffold. We found that three high porosity vertical tubes not along scaffold edges

improve the delivery of nutrients in the deeper sections of the scaffold and hence gives

the largest cell number in the final construct. The perfusion velocity also enhances

the cell number in the final construct. If the perfusion velocity is high it improves the

delivery of nutrients in the deeper sections of the scaffold which enhances the total cell

yield in the final construct. A flow rate that is too high will exceed the threshold shear

stress σc2 that inhibits the cell growth.
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CHAPTER 7

Summary and conclusions

7.1 Summary

In this project we have developed a mathematical model of convective and diffusive

transport of nutrients and cell growth in a perfusion bioreactor. The model includes the

coupled processes affecting the cell growth in a bioreactor, such as fluid flow through

the material, nutrient delivery, cell growth and variation of porosity with cell growth.

In Chapter 2 we modeled the flow of fluid through a porous material, by Darcy’s law.

We have studied Darcy’s law for different permeability distributions and discussed

the effect of permeability on flow. We found that the velocity of fluid is high where

the permeability of the porous material is high and vice versa. We solved Darcy’s

law numerically and presented analytic solutions for special cases of permeability. We

found that analytic and numerical results agree well.

In Chapter 3 we have developed a simple mathematical model of nutrient transport

and cell growth in a perfusion bioreactor. The mathematical model consists of three

coupled partial differential equations. Darcy’s law governs the fluid flow through the

porous material, the advection diffusion equation governs the transport of nutrients to

the cells and a reaction diffusion equation governs the cell growth. As cells grow and

occupy the empty spaces of the scaffold the permeability of the scaffold decreases, and

we describe the variation in permeability by an exponential function of cell density.

The cell’s nutrient consumption and growth rates are modelled by a linear function of

nutrient concentration. The growth of cells is controlled by the logistic law. We sol-

ved the model for 2-D geometry by using a commercially available solver COMSOL

which employs the finite element method. The model presented in Chapter 3 is very

complicated and cannot be solved analytically. To verify the coupling in our numeri-
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cal method we employed some simplifying assumptions in order to solve the model

analytically. The analytical and numerical results agree well which confirms that the

numerical coupling works as expected.

In Chapter 4 we studied the Fisher equation with non-linear cell diffusion, in detail.

The diffusion coefficient in this case is non-linear, depending on the density. The form

of non-linear diffusion is such that it produces similar behaviour to cell proliferation.

This leads us to choose the non-linear diffusion to be an exponential function of cell

density. We found a travelling wave solution of the Fisher equation and found the

theoretical minimum wave speed of growth front by using an eigenvalue analysis of

stationary points. But when we calculate the minimum wave speed numerically we

observe that, for highly non-linear diffusion, numerical speed of wave front is greater

than the minimum speed growth front found by using the eigenvalue analysis. This

shows that the front is a "pushed front" in which the wave speed is determined by non-

linear effects. This comparison enables us to choose a form of the non-linear diffusion

in which we can predict the cell growth speed.

In Chapter 5 we presented a comprehensive mathematical model of cell growth in a

perfusion bioreactor which includes the flow, advective and diffusive transport of nu-

trients, non-linear cell diffusion and variation of porosity with cell growth. We also

include a constant volumetric flow rate constraint and the effect of shear stress on nu-

trient consumption and cell growth rates in our model. We assume that if the shear

stress is very low or very high nutrient consumption is not affected and for interme-

diate values of shear stress nutrient consumption is enhanced. Similarly for very low

values of the shear stress cell growth is not affected and for intermediate values of

shear stress cell growth is heightened and for high values of shear stress cell growth

becomes zero. The model consists of three coupled partial differential equations. Cell

growth is a slow process as compared to transient flow and nutrient fields, so in the

model the cell growth equation is transient while Darcy’s law and the advection diffu-

sion equation are quasi-static with respect to changes in the cell density. To solve the

model initially the scaffold is seeded with cells and placed in the bioreactor. First we

calculate the porosity of the scaffold from the porosity equation and then we calculate

the permeability (which is a function of porosity) of the scaffold. We use this permea-

bility in Darcy’s law to give the fluid velocity. In experiments the total volumetric flow

rate is constant. To keep this flow rate constant in the simulations we divide Darcy’s

law by a constant which ensures the constant volumetric flow rate. We call this constant

flow rate the rescaled velocity. We substitute this rescaled velocity as advective velocity

in the advection diffusion equation and solve this equation to give the concentration
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of nutrients. By substituting the nutrient concentration into the cell growth equation

we can calculate cell density. We update the cell density in the porosity equation and

solve the entire system again. This process continues until the system gets close to

steady state. This coupled system of three partial differential equations and an alge-

braic equation is solved by the finite element solver COMSOL.

In Chapter 6 we have presented the results of model developed in Chapter 5. We found

that system is sensitive to initial seeding and initial porosity. The results are presented

for various initial seeding strategies, scaffold designs and perfusion rates. We found

that we get a reasonably fast growth rate and largest cell yield when initially we place

a cell layer away from the nutrient source. However, on the other hand depending on

the scaffold design the total cell yield is largest when we insert the three high porosity

vertical tubes in the scaffold away from the scaffold edges. The conclusions of these

results are discussed below.

7.2 Conclusions

The main challenges that tissue engineering is facing at present are how to produce a

proper nutrient supply to the internal regions of the tissue, uniform cell distribution in

the final construct, a large cell yield and rapid growth. From the analysis of the model

we observe that these factors are sensitive to the initial cell seeding strategy and initial

porosity distribution of the scaffold. The results of the model show that the total cell

number in the final construct depends on the initial cell distribution in the scaffold and

that the proper supply of the nutrients to the internal regions of the construct depends

on the initial porosity distribution of the scaffold.

To understand the mechanism leading to largest cell yield and rapid growth we have

tested various initial seeding techniques, including a uniform initial cell distribution,

centre and off centre blobs of cells and layers of cells at the walls of the scaffold. Here

we keep the initial porosity of the scaffold uniform. From the results of the simulations

we observe two important features. Firstly, we observe that if cells have large surface

area of contact with the nutrients then their growth is rapid and if the surface area is

small the cell growth will be slow. For example when initially cells are distributed uni-

formly then they have large surface area of contact with the nutrients so they initially

grow very quickly giving highest cell growth. On the other hand the initial growth of

centre and off centre blobs is slowest due to small area of contact with the nutrients.

The initial growth of both the blobs is same because they have the same surface area of
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contact with the nutrients before they interact with the boundaries of the scaffold. The

initial growth rate of cells will be linear if they have constant supply of nutrients and

constant area of contact with the nutrients.

Secondly, we observe that if initially we place the cells away from the nutrient source

we get the highest cell yield in the final construct. In other words if we delay the cell

growth near the nutrient source and enhance the cell growth away from the nutrient

source we get a higher cell number in the final construct. If the initial cell growth is

high near the nutrient source then the cells grow quickly due to the constant supply of

nutrients. When more cells grow near the inlet wall they consume more nutrients and

the cells in the deeper sections of the scaffold become hypoxic and stop growing. To

counter this problem initially we should put the cells away from the nutrient source.

For example when we move the blob of cells from centre of the scaffold to further down,

the total cell number in the final construct increases because in that case the cells grow

in the deeper sections of the scaffold and move towards the nutrient source. We get a

lowest cell yield when we place the cells layer at all the boundaries of the scaffold. For

reasonably fast growth rate and high cell yield we should place the cells on the three

walls of the scaffold (no cells on the inlet wall). Tissue engineers like to seed the cells on

the periphery of the scaffold so to be more realistic we recommend that if we seed the

cells on the three walls of the scaffold then we get the larger cell yield and reasonably

fast growth rate.

A common problem tissue engineering is facing is the rapid growth of cells near the

nutrient source while the cells in the inner region becomes hypoxic (Rose et al., 2004).

This is thought to be due to the limited supply of nutrients in the internal regions of

the scaffold. One way of addressing this problem is to incorporate channels in the scaf-

fold to improve the nutrient delivery and hence cell growth in the centre and lower

regions of the scaffold. In this thesis to study the delivery of nutrients to the deeper

sections of the scaffold we have considered several scaffold designs having different

initial porosities. For uniform initial cell seeding and porosity the results of the simula-

tion indicate that the cells in the deeper sections of the scaffold becomes hypoxic very

quickly so they do not grow in the deeper sections of the scaffold. The growth of cells

can be enhanced in the deeper sections of the scaffold by improving the nutrient deli-

very. For that we have designed the scaffold in several ways by inserting high porosity

tubes into it. These designs include a scaffold with different porosities in two halves, a

scaffold with three vertical high porosity tubes, a scaffold with high porosity diagonal

tubes and a scaffold with the combination of high porosity diagonal and vertical tubes.

We found that we get the largest cell yield when we use a scaffold with three vertical
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high porosity tubes away from the scaffold edges. When we put the tubes in the scaf-

fold they improve the delivery of nutrients to the deeper sections of the scaffold. We

observe that high porosity vertical tubes, which are also parallel to flow direction, im-

prove the delivery of nutrients to the deeper sections of the scaffold giving the largest

cell yield. Tubes at angle to the flow direction are considerably less effective. When we

compare the results of the modified scaffold with the results of scaffold having uniform

porosity we observe that the modified scaffolds improve the cell yield. e.g. for uniform

initial cell distribution we consider two scaffolds, one with uniform initial porosity and

other with three high porosity tubes inserted into it. The results show that cell number

improves in the later case.

There is one major concern in fabricating the scaffolds with aligned channels is that the

scaffolds loses its mechanical strength where the part of the main scaffold is removed.

But Rose et al. (2004) demonstrated that 13 channels within scaffold (432 µm in diame-

ter) enhanced the mechanical strength of the scaffold, to almost double when compared

to the scaffold with no channels. In this study we have inserted 3 channels in the scaf-

fold thus from the results of Rose et al. (2004) we expect that inserting more channels

in the scaffold would increase the nutrient supply to the internal regions of the scaf-

fold and hence cell growth without losing the mechanical strength. Several authors

studied the effect of aligned channels in various areas of tissue engineering. Lin et al.

(2003) used aligned channels in bone tissue engineering. They used steel rods coated

with poly (L-lactide-co-DL-lactide). They generated a porous polymer scaffold with

channels measuring 100µm in diameter when they removed the rods. They found a

large amount of viable cells on the periphery of the scaffold but also found some viable

cells in the internal regions of the scaffold. Schugens et al. (1996) used such channels in

nerve regeneration to provide spatial guidance and increased surface area for neuron

growth. Our study shows a positive influence of channels within tissue engineering

scaffold on cell growth. This is due to enhanced delivery of nutrients to the centre of

the scaffold.

Another feature which is also evident from the results is that the threshold shear stresses

also affect the total cell yield in the final construct. The total cell yield depends on the

amount of shear stress cells are experiencing and the width of the enhanced prolifera-

tion region. We neglect cell death due to high shear stress and assume that for high

shear stress the cell growth stops but they do not die. When cells are placed in one

region of the scaffold then it forces the fluid to go around the cells so the velocity will

be high around the edges and as a result the shear stress will also be high in that re-

gion. Once cells spread in the whole domain then the fluid has to pass through the cells
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which results in a high shear stress in that region.

We have also studied the effect of perfusion rate on the cell growth. We found that

by increasing the perfusion rate the total cell yield in the final construct also increases.

However very high flow rates will inhibit the cell growth due to high shear stress.

Several authors studied the effect of perfusion on the cell growth. Glowacki et al. (1998)

analyzed the effect of perfusion culture through stromal cell-seeded 90% porous type I

collagen sponge. They found that the perfusion construct yields more cells especially

in the centre of the construct compared to non perfusive constructs.

7.3 Future work

The model presented in this thesis is very complex because it couples many different

phenomena. We have therefore employed some simplifying assumptions e.g. we have

neglected cell death due to lack of nutrients and high shear stress and we did not ac-

count for the removal of waste products from the construct. A complete model should

include these effects. The general model framework presented in this work is compre-

hensive and lends itself to a number of expansions and modifications.

Firstly, we can include cell death mechanism in our model. The cell equation could be

modified to include cell death term by changing the linear term to (S − Sc)N, where Sc

is the threshold value of nutrient concentration, so that the linear growth is negative if

S is less than the threshold value Sc.

Secondly, we know that the strong shear stress can cause the cell necrosis (Cartmell

et al., 2003). Although we have not included cell death due to high shear stress in the

model, with slight modification in function Fn we can include cell death phenomena

due to high shear stress in our model.

Finally, for the removal of waste products from the construct we need to add an extra

advection-diffusion equation in the model with zero flux condition at the top boundary

and similarly at the lower boundary. If flow is much larger than to production rate of

waste products then the concentration of waste products will be very low.

In the present model we have considered simple 2-D square geometry but we can consi-

der more complicated geometries like cylindrical (axi-symmetric) and more realistic 3-

D geometries. For axi-symmetric geometry we need to re-write the model equations in

cylindrical coordinates which is again a 2-D model in axi-symmetric coordinates and

can be solved by the methods used in Chapter 6. Solving the model in a full 3-D geo-
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metry will be a more realistic situation. In principle there should not be any problem to

extend the model in 3-D. The 3-D model might be numerically expensive but we have

proved that 2-D model converges for quite coarse meshes which encourages us to solve

the model in 3-D.

The comparison of the model results with the experimental data would be very inter-

esting. The experiment run by David Grant at the University of Nottingham are still at

an early stage, it is difficult to make direct comparison at this stage. The model can be

further improved by calibration against relevant experimental measurements. A sim-

pler way to increase the realism of the model developed in Chapter 5 is to work more

closely with the biologists to obtain the better estimates of the parameters and more ac-

curate functional forms such as permeability, porosity, non-linear diffusion and mecha-

notransduction. A well calibrated model will help experimentalists to design scaffolds

and understand their results. The mathematical model can provide data of cell density,

nutrient concentration and shear stress at each spatial location, to the biologists, which

can help them to understand the model and their experiments. We have all relevant

coupling in the model, meaning that changes suggested by experimentalists will easily

fit into our model framework.

In the model we did not consider the degradation rate of scaffold. In future we can

incorporate the scaffold degradation in the model by keeping in mind that the rate of

scaffold degradation must coincide with the rate of tissue formation.

193



Appendices

194



APPENDIX A

Notation guide

Symbol Description Units

α∗ Nutrient consumption constant m3/cell.sec

β∗ Cell growth rate constant m3/mole.sec

β Ratio of cell growth to front velocity when -

nutrient concentration is not constant

χ∗ Maximum cell growth rate 1/sec

χ Ratio of cell growth to front velocity when -

nutrient concentration is constant -

γ∗ Parameter in non-linear diffusion m3/cell

γ Dimensionless parameter in non-linear diffusion -

Γ Ratio of cell diffusion to cell growth -

Λ Dimensionless parameter in stress function -

ρ Dimensionless parameter in porosity equation -

η∗ Blocking parameter in permeability equation m3/cell

η Dimensionless parameter in permeability equation -

ξ Travelling wave variable m

σ∗ Shear stress kg/m.sec2

σ Dimensionless shear stress -

σ∗
c1 Threshold shear stress for proliferation phase kg/m.sec2

σc1 Dimensionless threshold shear stress for proliferation phase -

σ∗
c2 Threshold shear stress for necrotic phase kg/m.sec2

σc2 Dimensionless threshold shear stress for necrotic phase -

δ Ratio of cell diffusion to front velocity -

φ(x∗, y∗) Porosity in dimensional coordinates -

φ̃(x, y) Porosity in dimensionless coordinates -
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φ0(x∗, y∗) Initial porosity in dimensional coordinates -

φ̃0(x, y) Initial porosity in dimensionless coordinates -

Φ Phase plane coordinate -

Ψ Phase plane coordinate -

τ Tortuosity of porous material -

ǫ∗ Pore diameter m

µ∗ Fluid viscosity kg/m.sec

µ̄∗ Effective viscosity kg/m.sec

λ∗ Cell growth rate 1/sec

λn Eigenvalues -

D∗(N∗) Non-linear diffusion function m2/sec

D∗
s Nutrient diffusion coefficient m2/sec

D∗
n Non-linear cell diffusion coefficient m2/sec

Ds Ratio of nutrient diffusion to advection -

f ∗(x∗) Inlet velocity m/sec

f (x) Dimensionless inlet velocity -

f ∗max Maximum value of prescribed inlet velocity m/sec

G∗
s Net nutrient consumption rate moles/sec.m3

g∗(x∗) Outlet velocity m/sec

g(x) Dimensionless outlet velocity -

g∗ Constant in stress functions m.sec2/kg

g Dimensionless constant in stress functions -

H Heaviside Step function -

k1 Constant in stress functions -

k∗(x∗, y∗) Permeability m2

k(x, y) Dimensionless permeability -

k∗0(x∗, y∗) Initial permeability m2

k0(x, y) Dimensionless initial permeability -

k∗c Typical permeability m2

L∗ Dimensional length m

L Dimensionless length -

N∗(x∗, y∗) Cell density cells/m3

N(x, y) Dimensionless cell density -

N∗
max Maximum carrying capacity cells/m3

N∗
init(x∗, y∗) Initial cell density cells/m3

Ninit(x, y) Dimensionless Initial cell density -
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n̂ Outward unit normal vector -

p∗ Fluid pressure kg/m.sec2

p Dimensionless fluid pressure -

p∗0 Pressure at top boundary kg/m.sec2

p∗1 Pressure at bottom boundary kg/m.sec2

Q∗
n Net cell growth rate cells/m3.sec

r∗ radial coordinate m

Rs Ratio of nutrient consumption to advection -

S∗ Nutrient concentration moles/m3

S Dimensionless nutrient concentration -

S∗
0 Initial nutrient concentration moles/m3

t∗ Dimensional time sec

T∗ Typical time scale sec

t Dimensionless time -

tupdate Update time for cell density on porosity -

△t Time step size for cell equation -

u∗ Darcy’s velocity m/sec

u Dimensionless Darcy’s velocity -

u∗
r Rescaled velocity m/sec

ur Dimensionless rescaled velocity -

U∗
c Pump velocity m/sec

U∗
p Mean pore velocity m/sec

v∗
p Pore velocity m/sec

u∗
d Flow rate at surface y∗ = d∗ m/sec

ud Dimensionless flow rate at surface y = d -

v∗ Velocity of growth front m/sec

V∗
cell Single cell volume m3/cell

x∗ Dimensional spatial coordinate m

y∗ Dimensional spatial coordinate m

x Dimensionless spatial coordinate -

y Dimensionless spatial coordinate -
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APPENDIX B

COMSOL modelling guide

B.1 Introduction

Mathematical modelling of tissue engineering, an important and new area of research

which aims to replace the damaged or diseased body parts due to trauma, accident or

age related degeneration. Certain tissues or organs cannot heal satisfactorily by them

selves and require treatments to reinstate their functions. In some of the cases non of

the available treatments can restore the functions of affected tissue or organ. Tissue

engineering can be considered as alternative to organ transplantation. In the present

study we have developed a mathematical model that includes the key features of tis-

sue engineering, where cells are grown outside the body in the laboratory. The model

includes the growth of cells and transport of nutrients through the porous material.

Cells are seeded in a porous scaffold and fluid delivers the nutrients to the cells for

their growth. The efficiency of cell growth can be determined by delicate interplay of

scaffold design, fluid flow, nutrient convection and cell growth dynamics. The mo-

del consist of three coupled equations describing fluid flow, nutrient transport and cell

growth in a porous scaffold. This model investigates the fluid velocity through the po-

rous material, concentration of nutrients and cell density at the different spatial points.

In the following section we will describe how the COMSOL Multiphysics is implemen-

ted on the model using the Graphical User Interface(GUI).

B.2 Modelling using graphical user interface (GUI)

B.2.1 Model Navigator

1. Start COMSOL Multiphysics.
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B.2 MODELLING USING GRAPHICAL USER INTERFACE (GUI)

2. In the Model Navigator, select 2D in the Space Dimension list.

3. Select COMSOL Multiphysics > PDE Modes > Classical PDEs > Poisson’s

Equation in the list of application modes.

4. Enter P in the Dependent variables edit field.

5. Select Multiphysics and then click Add button.

6. Select COMSOL Multiphysics > Convection and Diffusion > Convection and

Diffusion > Steady-state analysis in the list of application modes.

7. Enter S in the Dependent variables edit field and click Add button.

8. Select COMSOL Multiphysics > PDE Modes > Classical PDEs > Heat equa-

tion in the list of application modes.

9. Enter N in the Dependent variables edit field and click Add button.

10. Click OK.

B.2.2 Options and Settings

Constants

1. From the Option menu, choose Constants.

2. Enter the following constant table and click OK.

Name ρ Ds Rs β γ δ g σc1 σc2 k1

Expression 1 6 × 10−6 1.488 13.2173 2 0.1397 60 3 15 5

Expressions

1. From the Option menu, point to Expressions and click Scalar Expressions.

2. Enter the following list of expressions and click OK.
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Name Expression

φ0 Depending on initial porosity

φ φ0 exp(−ρN
φ0

)

k φ3

σ

√

k2(Px
2+Py

2)

ud

Fs 1 + k1−1
2 (1 + tanh(g(σ − σc1))) − k1−1

2 (1 + tanh(g(σ − σc2)))

Fn 1 + k1−1
2 (1 + tanh(g(σ − σc1))) − k1

2 (1 + tanh(g(σ − σc2)))

D exp(γ(N − 1))

Ninit Depending on initial seeding

Axis setting

1. From the Option menu, select Axis/Grid setting.

2. On the Axis page deselect Axis equal.

3. Enter limits for x and y axis i.e xmin = −1, xmax = 1, ymin = −1, ymax = 1 and

click OK.

B.2.3 Geometry Modelling

1. Click corner aligned rectangle button at the top of draw toolbar.

2. To describe the rectangle’s corners, click the left mouse button and drag the cursor

from (-1,-1) to (1,1).

B.2.4 Coupling variables

We are modelling a coupled system of fluid flow, nutrient concentration and cell growth.

Nutrients are delivered to the cells by advection and diffusion. So with the increase in

cell density the porosity and permeability of the porous material decreases as a re-

sult fluid velocity through the porous material decreases, which affects the delivery of

nutrients to the cells hence cell growth is affected. So to keep the flow rate constant

through the porous material we rescale the fluid velocity with the increase in cell den-

sity. We calculate the mean velocity ud at the surface y = d and divide the Darcy’s

velocity u obtained from the flow equation by the mean velocity ud. So we calculate

the mean velocity ud at y = d.
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B.2 MODELLING USING GRAPHICAL USER INTERFACE (GUI)

1. On the Option menu, point to Integration Coupling Variable and then click

Boundary Variables.

2. Select Boundary 3 and enter the variable name ud and expression kPy.

3. Deselect Global Destination.

4. Click Destination tab.

5. On Destination page, select geom1 in the list of Geometry and subdomain in the

list of level.

6. Select subdomain 1.

7. Select Use selected subdomain as destination and click OK.

B.2.5 Poisson’s Equation

Subdomain setting

1. From Multiphysic menu choose Poisson’s Equation(Poeq).

2. From Physics menu point to Subdomain setting.

3. On the Subdomain page select the menu Coefficients and enter k and 0 in c and

f edit field respectively.

4. The init tab should retain the value zero.

Boundary conditions

1. From the Physics menu, choose Boundary settings.

2. Specify the boundary conditions according to following table.

Boundary 1,4 2 3

Type Neumann condition Dirichlet condition Dirichlet condition

Equation n.(c∇p) + q.P = g h.P = r h.P = r

q 0 - -

g 0 - -

h - 1 1

r - 0 1
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B.2.6 Convection and Diffusion

Subdomain setting

1. From the Multiphysics menu, choose Convection and Diffusion(cd).

2. From the Physics menu, choose Subdomain settings.

3. On the Subdomain page select the menu Coefficients and enter the following

coefficient values,

Coefficient Value

D udDs

R udRsFsSN

u −kPx

v −kPy

4. The init tab should retain the value zero.

Boundary conditions

1. From the Physics menu, choose Boundary settings.

2. Specify the boundary conditions according to following table.

Boundary 1,4 2 3

Type Flux Convective Flux Concentration

Equation n.(D∇S − Su) = N0 n.D∇S = 0 S = S0

S0 - - 1

N0 0 - -

B.2.7 Heat Equation(hteq)

Subdomain setting

1. From the Multiphysics menu, choose Heat Equation(hteq).

2. From the Physics menu, choose Subdomain settings.

202



B.2 MODELLING USING GRAPHICAL USER INTERFACE (GUI)

3. On the Subdomain page select the menu Coefficients and enter the following

coefficient values,

Coefficient Value/Expression

dq 1

c D

f βFnSN(1 − N)

4. click init tab.

5. Enter initial value Ninit in the edit field for N(t0).

6. Click OK.

Boundary conditions

1. From the Physics menu, choose Boundary settings.

2. Press Ctrl + A to select all the boundaries.

3. Select Neumann boundary condition and enter q = 0 and g = 0 in the edit field.

B.2.8 Mesh Generation

1. From the Mesh menu, choose Initialize Mesh.

2. To refine mesh again from the Mesh menu, choose Refine Mesh.

B.2.9 Computing the solution

1. From the Solve menu, choose Solver Parameters button.

2. On Solver Parameters page click General tab, then select Solver: Time dependent,

Times: 0 : 0.000001 : 0.00001 and Linear system solver, Direct(UMFPACK).

3. Click OK.

4. From the Solve menu, choose Solver Manager button.

5. Go to Initial Value tab.

6. On the Initial value page, select Initial value expression and use setting from

initial value frame.
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7. Go to Solve for tab and highlight Heat equation and click Solve.

This would give you the initial cell density N.

8. To calculate the total initial cell density in the entire domain on the Postpro-

cessing menu click Subdomain integration button. On Subdomain integration

page select subdomain 1 and predefined quantities N. This would give the total

initial cell density in the whole domain.

9. On the Solver Parameters page select Solver: Stationary non-linear and click

OK.

10. On the Solver Manager page go to Initial Value tab.

11. On the Initial value page, select Current solution and use setting from initial

value frame.

12. Go to Solve for tab and highlight Poisson’s Equation and click Solve.

13. Go to Script tab and click Add Current Solver Settings.

14. Again click Solve for tab and highlight Convection and Diffusion and click

Solve.

15. On the Script page click Add Current Solver Settings.

16. On the Solver Parameters page click General tab and select Times: 0 : 0.001 : 0.01

and click OK.

17. On the Solver manager page click Solve for and highlight Heat equation and

click Solve.

18. Go to Script tab and click Add Current Solver Settings.

19. On the script page place For i=1:10 at the beginning of the solver command and

end at its end.

20. Select Solve using a script check box.

B.2.10 Post processing and visualization

1. Click Plot parameters button and select the Surface tab.

2. On the Surface tab, Select N(hteq) from the Predefined quantities list and click

OK.
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B.2 MODELLING USING GRAPHICAL USER INTERFACE (GUI)

3. Click Plot parameters button and select the Contour tab.

4. On the Contour tab, select Concentration, S(cd) from the Predefined quantities

and enter 10 in the levels edit field and click OK.

5. Click Plot parameters button and select the Arrow tab.

6. On the Arrow tab, enter kPx and kPy in the x-component and y-component edit

field and click OK.

B.2.11 Exporting data to COMSOL script or MATLAB

• Select the menu item File > Save.

• On the Save As page, choose file name and Save in folder then choose file type

M-file(*.m) from list of file types.

• To access MATLAB code start COMSOL Multiphysics with MATLAB and open

M-file(*.m).

• From MATLAB command line, use functions Postinterp to compute the numeri-

cal values for any expression e.g if we want to find cell density N at each mesh

point (x, y) after each time step we use Celldensity = postinterp( f em0,′ N′, [x; y]);

B.2.12 Data Extraction in MATLAB

1. To find the coordinate data of mesh points use command Points=fem.mesh.p.

2. To find the x and y coordinates of data points use command x=Points(1,:) and

x=Points(2,:) respectively.

3. To find the values of various variables e.g P, S, N, Px,Py etc at each mesh point

use Postinterp command. For example to find the value of pressure at each mesh

point we use Pressure=postinterp(fem,’P’,[x,y]).

4. To save the data after each time unit define a variable temp= zeros(length(x),

t1), where t1 is the length of loop. If we want to save pressure P after each time

step we use command temp(:,i)=Pressure. We can repeat this process for each

variable.
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5. For time dependent variable each time t is subdivided in internal time stepping.

To find the data of such variable in the internal time stepping we use the com-

mand

[t,temp1]=postinterp(fem,’t’,’N’,[x,y],’solnum’,1:length(fem.sol.tlist)).
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APPENDIX C

Finite element method(FEM)

C.1 Basic concepts

The finite element method is a tool to solve boundary or initial value problems and

integral equations. The solution of some ordinary and partial differential equations

varies rapidly in some regions and less rapidly in others. In such cases finite difference

methods become more cumbersome and inaccurate if the mesh size is not constant.

The Finite element method is a good choice for solving the partial differential equations

when mesh size is not constant or when solution lacks smoothness.

The approximate solution of a partial differential equation by using finite element pro-

blem can be found in four steps.

1. The idea of finite element method is based on the dividing the complicated object

into small pieces. First step in the finite element method is to divide the domain

of interest into large number of discrete elements. The elements may be 1-D, 2-D

(triangular or quadrilateral) or 3-D (tetrahedral, hexahedral). The elements do

not have to have the same size. The vertices of the elements are called nodes. The

nodes are called the boundary nodes if they lie on the boundary of the domain

and interior node otherwise. An element is a boundary element if it possesses

two or more boundary nodes and interior element otherwise. The nodes can be

numbered locally 1, 2 and 3 it is conventional to use these numbers anticlockwise.

Every node can be given a global number and also each element can be assign a

number.

2. The next step is to approximate the unknown function (say) P(x, y) by some pie-

cewise polynomial function of order m, which has a continuous derivative of or-

der (m − 1) at each mesh element, that are in general not equal sized. Let β j(x, y)
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represents a polynomial of order m. The unknown function P(x, y) can be repre-

sented by the linear combination of β j(x, y).

P(x, y) =
n

∑
j=0

ajβ j(x, y).

The function β j(x, y) has various names in the finite element literature including

interpolation functions, shape functions or basis functions. Each base function

has a property that it is 1 at one node and zero at all the other nodes i.e

β j(xi, yi) =

{

1, i = j

0, i 6= j,

from which it follows that aj = Pj; this means that the coefficient aj has exactly

the value of P(x, y) at the nodal point (xi, yi), so

P(x, y) =
n

∑
j=0

Pjβ j(x, y)

3. The next task is to find a variational form for the given problem. Let us consider

a general elliptic partial differential equation of the form

−∇.(a∇P) + bP = f (x, y) in R, (C.1.1)

where R is the region in a plane. a, b, f and unknown solution P may be functions

of x and y throughout the domain R. The boundary conditions may be Neumann

or Dirichlet

~n.a∇P + m(x, y)P = h(x, y), (C.1.2)

where~n is outward unit normal. m(x, y) and h(x, y) are the functions defined on

the boundary ∂R.

Multiplying equation (C.1.1) by P(x, y) and integrating over the entire domain R

we get

∫

R

[

−∇.(a∇P)P + bP2
]

dxdy =
∫

R
f (x, y)Pdxdy
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C.2 WORKED EXAMPLE

Integrate by parts (i.e use Green’s formula) to obtain

∫

R

[

(a∇P).∇P + bP2
]

dxdy −
∫

∂R
[~n.(a∇P)] Pds =

∫

R
f (x, y)Pdxdy.

The boundary integral can be replaced by the boundary condition

∫

R

[

a(∇P)2 + bP2
]

dxdy −
∫

∂R
[{h(x, y) − m(x, y)P}P] ds

=
∫

R
f (x, y)Pdxdy (C.1.3)

Equation (C.1.3) is called the variational or weak form of the differential equation.

The solution of the differential equation is also the solution of variational form.

Let us suppose that

J(P) =
∫

R

[

a(∇P)2 + bP2 − f (x, y)P
]

dxdy

−
∫

∂R
[{h(x, y) − m(x, y)P}P] ds (C.1.4)

4. In the step four the contribution from each element is assembled to give a large

system of equations for the solution. Finally J(P) is minimized with respect to

unknown P at all internal and boundary nodes gives a large system of equations

which can be solved by any iterative method.

To take a practical approach we implement the four steps of the finite element method

on the following example.

C.2 Worked Example

Solve Laplace equation ∇2P = 0 in a square region R, given by −1 ≤ x ≤ 1 and

−1 ≤ y ≤ 1. Boundary conditions are

∂P

∂x
= 0 at x = ±1, −1 ≤ y ≤ 1,

∂P

∂y
= 1 at y = 1, −1 ≤ x ≤ 1,

∂P

∂y
= 1 at y = −1, −1 ≤ x ≤ 1.

209



C.2 WORKED EXAMPLE

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

1

8 7

6

5

4

2

3

1

2

3

4

6

8

9

1

2 3

1
3
2

11
3

2

1

2

3

1

3 2 3 2
1

3

2

1
32

5

7

Figure C.1: Discretization of finite element domain

Step 1

Figure (C.1) represents a square region R, −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. The first

step in FEM is to divide the region R into small triangular or rectangular elements. In

this case the region R is divided into 8 triangular elements. The local and global node

numbers are represented by green and red colors respectively. The element number is

represented by blue color.

Step 2

For the present problem we define P over the triangular element in terms of P values at

three nodes. Hence a linear form for P will have correct number of degrees of freedom.

P(x, y) = α1 + α2x + α3y

=
[

1 x y
]









α1

α2

α3
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We can calculate the three constants by solving the set of three simultaneous equations

at each node of the element.

P1 = α1 + α2x1 + α3y1

P2 = α1 + α2x2 + α3y2

P3 = α1 + α2x3 + α3y3

The solution of these equations gives the values of α1, α2 and α3 in terms of nodal values

P1, P2 and P3. So we get

P(x, y) =
1

2△ [(a1 + b1x + c1y)P1 + (a2 + b2x + c2y)P2 + (a3 + b3x + c3y)P3]

=
3

∑
j=1

Pjβ j(x, y)

where

β j =
(aj + bjx + cjy)

2△ , (C.2.1)

where

a1 = x2y3 − x3y2, b1 = y2 − y3, c1 = x3 − x2

a2 = x3y1 − x1y3, b2 = y3 − y1, c2 = x1 − x3 (C.2.2)

a3 = x1y2 − x2y1, b3 = y1 − y2, c3 = x2 − x1

and △ is area of triangle given by

△ = 1
2

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

x1 x2 x3

y1 y2 y3

∣

∣

∣

∣

∣

∣

∣

∣

The function β j defined by equation (C.2.1) is a linear function and its value is 1 at the

node j and zero otherwise.
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Step 3

For the present problem a = 1, b = 0, f = 0 and m = 0 then variational form (C.1.4)

reduces to

J(P) =
∫

R
(∇P)2dxdy −

∫

∂R
h(x, y)Pds (C.2.3)

For the ith element the variational form (C.2.3) can then be written as

J(i)(P) =
∫

R(i)
(∇P(i))2dxdy −

∫

∂R(i)
P(i)h(x, y)ds, (C.2.4)

where

P(i)(x, y) =
k

∑
j=1

P
(i)
j β j(x, y) (C.2.5)

∂P(i)(x, y)

∂x
=

k

∑
j=1

P
(i)
j

∂β j(x, y)

∂x
(C.2.6)

∂P(i)(x, y)

∂y
=

k

∑
j=1

P
(i)
j

∂β j(x, y)

∂y
(C.2.7)

Equation (C.2.6) can be written in matrix form as

∂P(i)

∂x
=

[

P
(i)
1 P

(i)
2 . . . P

(i)
j

]















∂β1

∂x
∂β2

∂x
...

∂β j

∂x















=
[

∂β1

∂x
∂β2

∂x . . .
∂β j

∂x

]















P
(i)
1

P
(i)
2
...

P
(i)
j















(C.2.8)

(

∂P(i)

∂x

)2

= (P(i))T M
(i)
jk P(i) (C.2.9)

where

P(i) =
[

P
(i)
1 P

(i)
2 . . . P

(i)
j

]T
(C.2.10)

M
(i)
jk =

∂β j

∂x

∂βk

∂x
. (C.2.11)
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Similarly

(

∂P(i)

∂y

)2

= (P(i))T N
(i)
jk P(i) (C.2.12)

where

N
(i)
jk =

∂β j

∂y

∂βk

∂y
. (C.2.13)

Substituting values from equation (C.2.9), (C.2.12) and (C.2.10) into equation (C.2.4) we

get

J(i) =
∫

R(i)
(P(i))T[M(i) + N(i)]P(i)dxdy −

∫

∂R
h(x, y)P

(i)
j β j(x, y)

= (P(i))TK(i)P(i) − (P(i))TQ(i) (C.2.14)

where

K(i) =
∫

R(i)
[M(i) + N(i)]dxdy

=
∫

R(i)

[

∂β j

∂x

∂βk

∂x
+

∂β j

∂y

∂βk

∂y

]

dxdy (C.2.15)

Q(i) =
∫

∂R
h(x, y)β j(x, y)ds. (C.2.16)

K(i) is called element stiffness matrix, P(i) is called element generalized coordinate vec-

tor and Q(i) is called generalized force vector. The element stiffness matrix has two

important properties

1. The stiffness matrix is symmetric, i.e K
(i)
jk = K

(i)
kj ,

2. The stiffness matrix is positive definite i.e (P(i))TK(i)P(i) > 0 for any non zero

vector P(i).

Substituting the values of basis function from equation (C.2.6) into equation (C.2.15)

we get

∂β j

∂x
=

bj

2△ ,
∂β j

∂y
=

cj

2△ . (C.2.17)
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where j, k = 1, 2, 3. The stiffness matrix (C.2.15) is then written as

K(i) =
1

4△









b2
1 + c2

1 b1b2 + c1c2 b1b3 + c1c3

b2b1 + c2c1 b2
2 + c2

2 b2b3 + c2c3

b3b1 + c3c1 b3b2 + c3c2 b2
3 + c2

3,









(C.2.18)

From Figure (C.1) substitute the coordinates of nodes of element 1 in equation (C.2.2)

to find a’s and b’s

a1 = 0, b1 = 0, c1 = −1

a2 = 1, b2 = 1, c2 = 0

a3 = 0, b3 = −1, c3 = 1 and △ = 0.5

Hence stiffness matrix (C.2.18) becomes

K(1) =
1

2









1 0 −1

0 1 −1

−1 −1 2









=









k11 k15 k12

k51 k55 k52

k53 k52 k22









(C.2.19)

Similarly stiffness matrix for element 2 is

K(2) =
1

2









1 −1 0

−1 2 −1

0 −1 1









=









k33 k32 k35

k23 k22 k25

k53 k52 k55









(C.2.20)
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The elements 3,6,7 are congruent to element 2 and elements 1,4,5,8 are congruent to

mirror reflection of element 2. So

K(1) =
1

2











































1 −1 0 0 0 0 0 0 0

−1 2 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0











































(C.2.21)

In the same way we can calculate the stiffness matrix for each element. Next we need

to evaluate the force vector for each element.

Q(1) =
∫ 0

−1
h(x, y)β j(x, y)dy = 0, h(x, y) = 0 (C.2.22)

Q(2) = Q(5) = Q(6) = 0 (C.2.23)

Similarly

Q(3) =
∫ 0

−1
h(x, y)β j(x, y)dx =

∫ 0

−1
(aj + bjx + cj)dx (C.2.24)

Q
(3)
j = aj −

1

2
bj + cj (C.2.25)

Q
(3)
1 = 0, Q

(3)
2 =

1

2
, Q

(3)
3 =

1

2
, (C.2.26)

In the same way we can calculate the force vectors for remaining elements.

Step 4

Next step is to assemble the contribution from each element to produce a large system

of equations.

J =
9

∑
i=1

J(i)

=
9

∑
i=1

[(P(i))TK(i)P(i) − (P(i))TQ(i)]
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So

K = K(1) + K(2) + K(3) + K(4) + K(5) + K(6) + K(7) + K(8) + K(9)

=
1

2











































2 −1 0 −1 0 0 0 0 0
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(C.2.27)

Similarly force vector Q is given by

Q =
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(C.2.28)

Once the stiffness matrix J and force vector Q have been assembled, the remaining

problem is to find the minimum of the function

J = PTKP − PTQ (C.2.29)

In some cases equation (C.2.29) is minimized directly using a suitable optimization

technique, but it is convenient to equate the partial derivatives of J with respect to

generalized coordinate to zero which is also the analytic condition for minimum. By

using the later technique we get a system of equations

KP = Q (C.2.30)
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C.2 WORKED EXAMPLE

This system of equations can be solved by any iterative technique or by using MATLAB

software. So the value of unknown function P at each grid point is given by

P =









−1 −1 −1

0 0 0

1 1 1









(C.2.31)

Hence we can calculate the velocity at each grid point by using u = −∇P,

u =









0 0 0

0 0 0

0 0 0









, (C.2.32)

and

v =









−1 −1 −1

−1 −1 −1

−1 −1 −1









(C.2.33)

In Figure (C.2) arrow represent the velocity and solid lines represent the pressure contours.

It is evident from the Figure (C.2) that pressure is a linear function of y only and the

velocity u is uniform every where.
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Figure C.2: Finite element solution of flow field and pressure contours
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APPENDIX D

Specific rate equations for microbial

growth

Several models have been proposed for predicting the microbial growth as a function

of the concentration of single rate limiting substrate. The most widely used models are

Monod, Teissier, Moser, Contois and Michaelis Menton. Each model have been used

successfully for certain organisms under certain conditions.

D.1 Michaelis-Menton model

The Michaelis-Menton model relates the rate of substrate conversion to the concentra-

tion of substrate. It is relevant to situations where very simple kinetics can be assumed,

i.e there is no contact inhibition.

λ =
λmaxCm

Ks + Cm
,

where

λ = Growth rate,

λmax = Maximum growth rate,

Cm = Substrate concentration,

Km = Michaelis-Menton constant or half saturation constant and have same units as Cm.

More complex models exist for the cases where the assumptions of Michaelis-Menton

kinetics are no longer appropriate.
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D.5 CONTOIS MODEL

D.2 Moser’s Model

Moser’s model relates the specific growth rate to the concentration of limiting sub-

strate. Mathematically

λ =
λmaxCm

n

Ks + Cm
n ,

where n ≥ 1, n is the Moser parameter and it represents the ability of cell to absorb the

substrate either for metabolic processes or storage and

λ = Specific growth rate,

λmax = Maximum growth rate,

Cm = Substrate concentration,

Ks = Monod’s constant or half saturation constant.

It is an empirical equation and has no mechanistic basis. The equation is only valid for

exponential growth.

D.3 Monod’s Model

Monod’s model is the special form of the Moser’s model for n = 1

λ =
λmaxCm

Ks + Cm
,

D.4 Tiesser’s Model

λ = λmax(1 − exp(−Cm/Ks)

D.5 Contois Model

In this growth kinetics rate of growth is dependent not only limiting substrate but also

the amount of cells. This type of growth represents the contact inhibition due to over
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D.5 CONTOIS MODEL

population of the system. Contois growth kinetics is given as

λ =
λmaxCm

KcNVcell Nc + Cm
,

where

λ = Specific Growth rate,

λmax = Maximum growth rate,

Cm = Substrate concentration,

Ks = Contois parameter,

N = Cell density,

Nc = Single cell density,

Vcell = Single cell volume.
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