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ABSTRACT 

Many problems in electrical engineering are associated 

with the way in which electric and magnetic fields propagate and 

distribute themselves in various media. Maxwell's equations 

provide a concise description for the interaction of fields with 

themselves and with the various boundaries of a problem. There- 

fore, a numerical procedure for the solution of these equations 

is an important consideration. This thesis shows how a general 

three-dimensional medium may be represented by an interconnection 

of continuous ideal two-wire transmission-lines made up of 

generalised two-dimensional nodes which are introduced in the 

earlier chapters. It is then shown how this model may be used for 

the numerical solution of the electric and magnetic vector fields 

within the medium. This is the TLM method of numerical analysis. 

A universal three-dimensional computer program based on the 

method is also introduced. This program has been written in only. 

110 lines of FORTRAN including the subroutines. The ease of 

application, versatility and accuracy of the TLM method is demonstrated 

by analysing a wide variety of microwave resonators using this program. 

The surface mode phenomenon of microstrip is also investigated. 
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CHAPTER 1 

THE SOLUTION OF HOMOGENEOUS 

WAVEGUIDES WITH LOSSY DIELECTRICS 
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1.1 INTRODUCTION 

The transmission-line matrix (TLM) method of numerical 

analysis provides a time domain, transient solution for the 

two-dimensional space wave equation, 

v2E ="" us 
at 2e 

Previous descriptions of the use of this methodl. 1-1.3 have 

considered u and e to be real numbers. The modifications to the 

TLM method required for e to be complex (lossy dielectrics) is 

described in the following chapter. 

In the TLN method, a homogeneous propagation space is 

represented by a rectangular mesh of transmission-lines with 

shunt connections at each crossing point or node, as shown in 

Fig. 1.. 1. The matrix is excited at chosen source points, with 

delta function pulses which then travel along the lines until 

they meet the next junctions. The computer program is now 

required to calculate the way in which these pulses are scattered 

into the four lines at a junction. The appropriate scattering matrix 

is derived in reference 1.1 and is 

-1 1 1 1 

1 1 -1 1 1 
2 1 1 -1 1 

1 1 1 -1 

The technique is illustrated in Fig. 1.1 by showing the 

first two iterations for a loss-free dielectric with a point 

source. This iteration process is repeated a sufficient number 

of times to give the accuracy of solution required (see 

reference 1.2). An output impulse function is obtained from a 

4 
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a chosen output point by recording the amplitudes of the pulses 

at that point as time progresses. The Fourier transform of 

this function is then found, by a simple multiply-and-add 

procedure, and this gives the spectral response of the system. 

The close relationship between the TLM method and the 

physics of propagation 1.4 allows the method to be extended to 

account for boundary (see Chapter 3) and dielectric losses. 

Losses in a medium may be simulated by introducing losses into 

the component transmission-lines of the TLS model. This means 

that impulses travelling from one node to the next experience 

a reduction in amplitude. Restricted to homogeneous wave- 

guides, the method is particularly useful because this reduction 

in amplitude of the pulses may be achieved by merely modifying 

the impulse function obtained under loss-free conditions. The 

main iteration process of the TLS method is then the same as 

for the loss-free case. Different loss conditions only require 

different weighting functions for the amplitude and time of 

pulses in the impulse function before the Fourier transform is 

taken. 

1.2 THE RELATIONSHIP BETWEEN LINE AND SPACE PARAMETERS 

A lossy dielectric may be simulated by introducing losses 

into the component lines of the transmission-line matrix. In 

order to show the equivalence between line parameters and space 

parameters, a junction in the matrix is represented by its 

lumped parameters. In the numerical calculation, however, the 

lines will be taken to be distributed parameter transmission- 

lines. 
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If the inductance, capacitance and conductance per unit 

length for an individual line are L. C and G respectively, then 

the junction between a pair of lines at a mesh node point can be 

represented by the basic model of Fig. 1.2. The approximate 

line equations are 

a- 
_a 

Iz 
3z -ý at 

avy aI 
ax = -L at 

(1.1) 

aIZ 8Ix G aV 

aZ + ax = -2(c + jwd at 
Now the appropriate expansion of Maxwell's equations 

for äy 
=0 is 

aE 3H 
x 

az -u at 

aE 3H 

_u 
Z (1.2) 

ax = at 

a Hx a HZ DE 

where a is the conductivity of the propagation medium. Here 

the equivalence between line and field parameters can be seen 

and in particular a conductance of G per unit length of line 

corresponds to a conductivity of a= 2G in the medium represented. 

It is often convenient to imagine line geometries such that the 

L/C is 1 ohm, and in this case a= 2G/q and E= 2C/q, impedance 
/L/C" 

where q is numerically equal to the value of in ohms. 

It is necessary to estimate the frequency range for 

which the discrete transmission-line model represents continuous 

space and as usual this is most conveniently done by considering 
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the propagation of TEIl waves over the matrix. The propagation 

constant y for waves on the individual lines is given by 

Y2 = W2LC(1 + jWC 
(1.3) 

while for TEM waves of propagation constant yn in the medium 

Y2n ° w2ic(1 + j' 
) (1.4) 

Equations 1.1 to 1.4 show that 

Yn =�2Y (1.5) 

An exact analysis is needed to find the way in which 

the accuracy of equation 1.5 deteriorates with rising frequency. 

The procedure is given in detail in reference 1.1 and a 

generalisation is required in this version simply to include 

Y as a complex number. In reference 1.1 it is assumed that 

TEII waves are travelling in the positive z- direction and are 

therefore invarient in the x- and y- directions. Hence, it 

follows that a wave travelling in the medium can be represented 

by the passage of a wave down a transmission-line with open- 

circuited stubs of length ii/2 and spaced at At. Now, if, the 

propagation constants of the lines is given by Y= a+ ß 

and the waves on the periodic structure have a propagation 

constant Yn = an + jßn, then assuming a and an« 19 the 

following relationships may be obtained 

n (A, ) 
ß/ßn 

sin '1 [2 Ir( 
Xý 

a/an 

[cos 21r(A )] 

fcos 
Tr( 

Aý' 

(1.6) 

where 
27r 
a 
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The attenuation constant ratio a/an is plotted in 

Fig. 1.3 and the phase constant ratio ß/$n (which is the same 

as that derived in reference 1.1) is reproduced for convenience 

in Fig. 1.4. These curves show that for frequencies well 

below the network cut off frequency, i. e. 

(4) _1 sin-1 (ý (1.7) 

cut-off 

the propagation constant is given by equation 1.5. It can 

also be seen that for a given frequency range the errors in an 

will be worse than the errors in ßn. It should be noted that 

for a given frequency, the error in an and ßn vary with the angle 

of travel of waves over the matrix and that the curves of Fig. 1.3 

and Fig. 1.4 give the worst case. Thus, these curves may be 

used to give a bound on errors in an and $n at a particular 

frequency (see reference 1.2) 

1.3 THE PROCEDURE FOR A LOSSY DIELECTRIC 

The procedure for a lossy dielectric is precisely the 

same as the procedure for loss-free dielectrics except for two 

modifications. The first of these involves a reduction in the 

amplitudes of the pulses between iterations to account for the 

attenuation due to losses, and the second involves altering the 

time interval between pulses to account for the slower 

propagation of waves due to losses. 

These modifications are derived from the attenuation and 

phase constants for the individual lines on the matrix. From 

equation 1.3, these may be written as, 

a=wZ -1+ 1+(G )2 (1.8) 
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W 
2ý 

1+ 
X+(-)21 

ý (1.9) 

Now, impulses generated at a node in the network have to 

travel a distance of At before reaching the neighbouring nodes. 

In travelling this distance they suffer a loss in amplitude 

corresponding to (1 - e-aMM) of their value. Therefore, for a 

lossy dielectric, the TLM model simply requires the impulses on 

the individual lines to be replaced by e-aAl of their value each 

time the iteration process is repeated. Thus, for homogeneous 

waveguides, the output impulse response value for fields E or H 

in a lossy dielectric at the k-th interval of time, kI', are 

directly related to kI for a non-lossy dielectric by 

L' = kI uk (1.10) 

where 

u e-aAZ 

and from equation 1.8 

aAß = �2 n 
ýý' r1+1+ 

(tang)Z, 
] 

(1.11} 

and tan 6= G/wC is the loss factor. 

Therefore, the losses can be accounted for by adjusting 

the amplitudes of impulses in the output function according to 

equation 1.10. Hence, no modification of the main iteration 

process in the non-lossy dielectric program is necessary and one 

iteration process can cover any number of different loss factors. 

In taking the Fourier transform of the output-impulse 

function at a node, it must be noted from equation 1.9 that 

the phase constant, ß9 has increased by a factor of 
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I' _1+ 
1+(tan5)2 

2 
(1.12) 

from that of a non-lossy line. Hence, the impulses on the 

function are separated by a longer time period of t=. 

Since the function is a series of impulses, the Fourier transform 

integral may be replaced by a summation, and the real and 

imaginary parts of the output spectrum are given by 

N 

Re 
[F( &. ) ]_k cos (r 2A 

A (1.13) 
k=1 N 

L luk sin (r 21rkAk 
Im [F( )] k 

k=1 
where F(ý) is the frequency response and N is the total number 

of time intervals for which calculation is made (i. e. the number 

of iterations). 

1.4 NUMERICAL EXAMPLES 

1.4.1 Rectangular Waveguide 

Numerical calculations for the Hmo family of modes were 

carried out on a 26 xc6"rectangular matrix with boundaries at 

x=0.5 and x=6.5. By making one of the boundaries (say 

x. 6.5) an open-circuit, a waveguide of twice the width, as 

shown in Fig. 1.5, was simulated. The system was excited at all 

points along the lines z=1 with impulses corresponding to Ey. 

The impulse function of the output was taken from the point 

(x = 6, z= 6) which is 20.5 mesh points away from a discontinuity 

to an open-circuit at z= 26.5. 
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A comparison between numerical and theoretical results 

for normalised values of the wave impedance Z= Ey/Hx for 

frequencies below and above the first cut-off (ARA = 0.04167/) 

are shown in Table 1.1, for 750 iterations of the matrix. Results 

are quoted for a waveguide filled with a dielectric of relative 

permittivity er = 2.0. The effect of the dielectric losses are 

most easily seen in the results for the argument of the impedance. 

In loss-free open-circuit waveguides the impedance, in theory, 

is wholly imaginary and the numerical results in this case are 

approximately ±w/2. In lossy waveguide there is always a real 

component in the impedance. 

In impedance calculations of this type, errors occur in 

the numerical method for two reasons, both of which arise because 

the impulse function must be terminated prematurely. The first 

is associated with the mathematical effect of taking the Fourier 

transform of a truncated function. The true impulse functions 

for the E and H fields are multiplied by an aperture in the 

time domain and this means that the true frequency spectra are 

convolved by a sinx/x type curve. Thus, if N iterations of the 

matrix are performed, the magnitude of the convolution function 

is given in reference 1.2 asp 

N 
Al sin(wNU/a) 
c itNAR/X 

The convolution process causes a smoothing of sharp 

corners in the spectra and results that are not changing rapidly 

with frequency are little affected, but where rapid changes occur, 

errors also occur. Where necessary, this type of error can be 

taken into account as shown in the resonance problems of reference-1.2 
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TABLE 1 .1 

Waveguide with dielectric losses (Cr = 2(1+jO. 05)) 

IZI 
.. , 

ARG(Z) 

U/A 
Numerical 

Method Theoretical 
Error 

% 
Numerical 

Method Theoretical 
Error 

% 

0.005 0.1221 0.1218 0.24 1.5730 1.5701 0.18 

0.009 0.2266 0.2269 0.13 1.5610 1.5682 0.46 

0.013 0.3471 0.3477 0.17 1.5514 1.5647 0.85 

0.017 0.4988 0.4996 0.16 1.5411 1.5583 1.11 

0.021 0.7183 0.7188 0.06 1.5254 1.5448 1.27 

0.025 1.1386 1.1364 0.19 1.4837 1.5045 1.40 

0.029 3.1460 3.104? 1.33 0.8251 0.8750 6.04 

0.033 2.9114 2.8760 1.21 0.8920 0.9231 3.48 

0.037 0.8773 0.8815 0.47 -0.9774 -0.9508 2.72 

0.041 0.5950 0.5948 0.03 1.0004 1.0260- 2.55 

0.045 3.3809 3.3749 0.17 0.2931 0.3213 9.62 

0.049 0.7838 0.7846 0.10 -1.0197 -0.9963 2.29 

0.053 0.2901 0.2833 2.30 0.5384 0.5491 1.98 
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The second cause of error is more practical and results 

from the mismatch in the waveguide to the left of the source and 

solution points in Fig. 1.5. A boundary must be placed behind 

the source and ideally this would absorb all the reflected energy. 

However, since the wave impedance in waveguide changes with 

frequency, there is no simple matrix reflection coefficient 

which will present a perfect match at all frequencies. Some 

work has been done in an effort to gradually absorb power, thus 

simulating a practical wideband waveguide matched load and while 

this met with some success, it is far simpler to use a matrix 

reflection coefficient of zero. This means that there is a 

sudden transition to an impedance of 
r2 times the intrinsic 

medium within the guide (see reference 1.1). In the numerical 

method, therefore, the reflected impulsive wave from the 

termination at z= 26.5 is also partially reflected at z=0.5 

(even though the matrix reflection coefficient is zero at this' 

point). Strictly, the steady-state solution is reached after 

an infinite amount of time when all the reflections have died 

away. By taking less than an infinite amount of time, the result 

only tends to the steady-state solution. 

Another form of error occurs in the TLII method. This 

is the velocity error 
1.2, 

which is well defined and for the 

values of AI/ X quoted here is negligible. 

1.4.2 Two-Dimensional Rectangular Cavities 

The method was also used to calculate the power decay 

due to losses in the dielectric medium (er = 2.0) of a two- 

dimensional rectangular cavity, with a loss factor of 0.01. A 

comparison between the numerical and theoretical results for the 



TABLE 1.2 

Cavity with dielectric losses 

(er = 2(1+jO. 01), Ay. = 0.3 cm) 

Number of Number of 
Mesh points Mesh points 

in the in the 
x direction z direction 

Time taken for the power 
in the cavity to fall 

to 1/e of its original value 

Numerical Error 
Method Theoretical % 

ns ns 

5 5 1.594 1.591 0.18 

5 10 2.016 2.013 0.14 

5 20 2.187 2.183 0.18 

5 30 2.223 2.220 0.13 

10 30 4.277 4.270 0.16 

20 30 7.497 7.491 0.08 
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time taken for the power in the cavity to fall to 1/e of its 

original value is shown in Table 1.2. These results provide a 

direct measure for the Q of the cavity. They also serve to 

illustrate a calculation technique which is particularly suitable 

for the TLS method because the method takes place in the time 

domain and is transient in nature. Decay time calculations are 

very simple and quick on the computer because the somewhat tedious 

multiply-and-add routine which converts the time-domain results 

into the frequency domain are avoided. Also there are no errors 

due to truncation in the time domain. Thus, by operating in the 

time domain one of the main sources of error in the TLM method 

is eliminated and the numerical results are very accurate as 

can be seen from Table 1.2. 

1.5 DISCUSSION 

A simple and intuitive modification to the output impulse 

function of the TLM method has allowed losses in dielectrics to 

be accounted for. Strictly, however, the method is only 

formulated for homogeneous problems. The reason for this may be 

seen from equations 1.8 and 1.9, which give the real and imaginary 

parts of the complex propagation constant, '-Y, for waves on the 

individual lines in the matrix. Difficulty arises, because the 

intrinsic impedance of the lossy medium then contains an imaginary 

component. This means that impulses incident on the boundary; 

between two media are not reflected as ideal impulses but have 

their shape distorted and cannot be handled by the TLM method. 

However, it is possible to ignore the imaginary component 

assuming low losses in order to deal with mixed lossy dielectric 

cases. In fact, tests on inhomogeneous structures with small 
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dielectric losses have yielded results very close to those 

obtained by an alternative method explained in the next 

chapter. In particular, for comparison, the structure in 

example of section 2.4.3 was tried using the loss method in 

this chapter, and results showed a maximum error of less than 

1% in worst cases. Therefore, it can be concluded that for most 

inhomogeneous practical engineering problems (for which losses 

will be generally small), this method provides useful results. 
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CHAPTER 2 

THE SOLUTION OF INHOIOGENEOUS 

WAVEGUIDES WITH LOSSY DIELECTRICS 
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2.1 INTRODUCTION 

Waveguides with dielectric boundaries which do not extend 

across either of the waveguide transverse dimensions find 

applications in many components. In the general case, there 

is no analytical solution available and a numerical approach has 

to be used. The transmission-line matrix (TLM) method of 

numerical analysis provides a two dimensional time domain, 

transient solution of such problems. There are a number of other 

numerical techniques for the solution of inhomogeneous wave- 

guide structures. Most of these techniques are listed in a 

recent paper by Fook Lay Ng2.1. 

In this chapter a further modification to the TLM method 

to include solutions for waveguides with inhomogeneous lossy 

dielectrics is described. The modification used here forms the 

basis for the dielectric losses considered in the three-dimensinal 

analysis of the TLM method (see chapter 5). The variation- 

iteration procedure2'2 is one of the very few other general 

numerical methods which have been applied to structures containing 

inhomogeneous lossy dielectrics. But, unlike the TLII method, it 

does not include the wall losses. 

2.2 BRIEF DESCRIPTION OF THE LOSS-FREE TLM NUMERICAL 

METHOD FOR INHOMOGENEOUS WAVEGUIDES 

Fig. 2.1 shows the transmission-line network model for 

solving inhomogeneous wave problems (note that in the Figures 

single lines will be used to represent a pair of wires). The 

normal rectangular mesh of transmission-lines2.3,2.4 of unity 

characteristic admittance has additional open-circuit stubs 
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of length 2 
and characteristic admittance Yoe connected in shunt 

at each node (see Fig. 2.2(a) and (b)). The value required for 

Yo for these stubs (referred to as permittivity-stubs from here 

onwards) determines the permittivity of the space being simulated. 

Waves may propagate in the two component directions on such a 

model and thus be propagated at any angle. A direct analogy between 

the model and the space it represents, will result in relationships 

between voltages and currents on the component lines of the model 

and electric and magnetic fields in the space2.4. 

The model may be excited by launching a voltage-impulse 

delta function on the lines joining a particular node to 

neighbouring nodes and also on its respective stub. The impulse 

function will travel along the lines and on arrival at a node it 

will spread out along the five lines forming the discontinuity. 

These new impulses, in turn, will be transmitted and 

reflected on their arrival at neighbouring nodes and hence will 

form yet other impulses. The process will go on with time 

progressing and impulses will fill the model after enough 

repetition of the process. Arrival of each impulse at a node at 

a certain instant of time is ensured by the equi-length of line, 

Ate that each impulse will have to travel between two neighbouring 

nodes. By the careful choice of length 
2Z for the stubs and 

also placing the reflecting bounds half-way between the nodes, 

the synchronization mechanism of iteration process is followed 

by both former and latter. 

The network described is of slow wave nature, i. e. at low 

frequencies waves propagating in the component directions and stubs 

are slowed down to 1/ (1 + Yo/4) of the free space velocity (see 
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(a) 
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(b) 
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L/Yo, 
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FIG. 2.2 A node of TLM model, (a) without stubs, 
(b) with permittivity-stub, (c) with 
permittivity- and loss-stubs 
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reference 2.5), where Yo is the variable characteristic 

admittance of the stubs relative to the unity characteristic 

admittance assumed for the main matrix of transmissiön lines. 

If kVn(z, x) is unit voltage-impulse reflected from 

the node at (z, x) into the nth co-ordinate direction at time 

kL, the iteration process at the node (z, x) is summarised 

by, 

. V1 (Z, x) 

V2(z, x) 

V3(z, x) 

V4(z, x) 

V5(z, x) 

k+1 

ý= S. 

V3(z, x-1) 

V4(z-1 , x) 

V1(z, x+1) 

v2(z+1 , x) 

V5(z, x) 

k 

where scattering matrix 

S=? 
Y 

1 1 1 1 Y 
o 

1 1 1 1 Y 
o 

1 1 1 1 Y 
o 

1 1 1 1 Y 
o 

1 1 1 1 Y 
o 

(2.1) 

-I (2.2) 

and Y=4+ Yo (2.3) 

and I is the unit matrix, c is the velocity of light. The 

co-ordinate directions 1,2,3 and 4 correspond to -x, -z, +x 

and +z respectively and 5 refers to the stub. 
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2.3 DEVELOPMENT OF THE NUMERICAL METHOD'FOR THE LOSSY 

DIELECTRICS 

In the new matrix intended for lossy dielectrics, an 

additional length of line of variable characteristic admittance, 

Go, relative to the unity characteristic admittance assumed for 

the main lines of transmission-line matrix, is connected in 

parallel at each node. The new stub (loss-stub) is of infinite 

length or otherwise terminated in its own characteristic impedance 

so that the incident voltage pulses on this stub are not reflected 

back on to the node. Hence, at each node, incorporating both 

permittivity and loss-stubs, there are five incident voltage 

pulses. Therefore, in the computer program analysis of the TLM 

method we still have to store the current values of voltage pulses 

on the four main lines (U11 v2, V3 and U4) and that of the 

dielectric-stub (U5). Pulse analysis for each node including the 

loss-stub gives the new version of equation 2.1 as before with 

Y=4+Y+G (2.4) 
aa 

At low frequencies the effect of the loss-stub is to add 
G 

to each matrix node a lumped shunt conductance of Z° per unit length, 
0 

where Zo is the characteristic impedance of free space. The 

matrix as a whole represents a lossy space of conductivity a 

Hence, Go in terms of a of space is given by 

G=Q. z0 At (2.5) 
0 

Thus the losses on the matrix are now made variable simply by 

altering the value of the constant Go. 

As the frequency increases, the fact that the loss- 

stub is a distributed conductance and not lumped becomes important. 

As before (section 1.2) an exact analysis is needed to establish 
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the range of frequencies over which the equation 5 is reasonably 

accurate. Again, the procedure is straight forward and is 

explained in reference 2.5. The following transmission equations 

connect the input voltages and currents (vi and Ii) with the 

output voltages and currents (Vi+1 and Ii+1) of one cell of the 

periodic structure involved (Fig. 2.2(c)). For propagation in 

the direction of one of the matrix co-ordinates the equation is 

vi coso jsin6 

Ii jsin9 cosg 

cose jsinG 

jsino cos8 

= 7r 
At 

where 6=ß At 
0 

(2.7) 

If the waves on the periodic structure have a propagation 

constant of Yn = an+ ßn , then we also have 

vi 

_ 
BYn 

at 
0 i+1 

- (2. B) 
Ii 0 eynA2 Ii+1 

Solutions of equations 2.6 and 2.8, assuming anAt «1, gives 

an 
e 

sin-1[ 2(1ý +Yo/4) sine] 
(2.9) 

[1-2(1+Yo/4)sin2o]i 
a 
an 2(1+Yo)cosG 

where 
Go 

a= 8AR 1+Y04 

10 

Gö j(2+Y0)tane 1 

ýi+1 
(2.6) 

" 

IIi+1 

(2.10) 
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Results of equation 2.9 are presented graphically in Fig. 2.3 

and Fig. 2.4. It can be seen that for frequencies well below 

the network cut-off frequency, 

WI 
a 

)cut 
off =n sin- 

2(1+Yo/4) 
(2.11) 

the propagation constants an and ßn of the network are fairly 

constant, so that equation 2.9 reduces to 

Yn = 2(1+Yo/4) Y (2.12) 

where y=a ±'ß. ß and a are given by equations 2.7 and 2.10 

respectively. 

2.4 NUMERICAL EXAMPLES 

2.4.1 Lossy Homogeneously Filled Waveguide 

The first problem checked on a matrix of transmission- 

lines simulated on a digital computer corresponded to a two- 

dimensional magnetic type field, H 
mo 

family of modes. Fig. 2.5 

shows the geometry of a guide 6 cm wide and 13 cm long filled 

with a dielectric of relative permittivity er=4.9 and 

conductivity a=0.05 S/m terminated in an open-circuit dis- 

continuity. This geometry was simulated on a matrix of 12 nodes 

across and 26 nodes along. The matrix was excited at all points 

along the line z=1 with impulses corresponding to Ey. The 

impulse function of the output was taken from the point 

(x = 6. z= 6) as shown in Fig. 2.5. 

A comparison between-numerical and theoretical results 

for normalised values of the wave impedance Z= 
EX 

for frequencies 
x 

below and above the first cut-off are shown in Table 2.1 for 750 

iterations of matrix network. As it can be seen from the table, 



x=12.5 

x=6 

x=0.5 
z=1 z=6 z=26.5 

FIG. 2.5 Waveguide geometry 

short circuit boundary 

... open circuit boundary 

excitation point 
o output point 



TABLE 2.1 

Waveguide with dielectric losses 

(e 
r=4.9,0= 

0.055/m) 

Iz I 
ARG(Z) 

UA Error Error 
TLM Theoretical % TLM Theoretical ,% 

0.003 0.0725 0.0729 0.55 1.5573 1.5575 0.01 

0.006 0.1511 0.1518 0.46 1.5414 1.5420 0.04 

0.009 0.2446 0.2453 0.28 1.5195 1.5205 0.07 

0.012 0.3706 0.3712 0.16 1.4824 1.4840 0.11 

0.015 0.5803 0.5792 0.19 1.3945 1.3977 0.23 

0.018 1.0000 0.9979 0.21 0.9930 1.0065 1.34 

0.021 1.1735 1.1676 0.51 0.4991 0.5121 2.53 

0.024 0.5032 0.5093 1.19 -0.2046 -0.2141 3.21 

0.027 0.6766 0.6609 2.37 0.6780 0.6853 1.06 

0.030 0.8733 0.8921 2.11 -0.4185 -0.4185 4.31 
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the agreement between numerical and theoretical results is good 

both below and above the first cut-off which occurs at = 0.0188. 

2.4.2 Two-Dimensional Rectangular Cavity 

Next the method was used to check the power decay due 

to losses in the dielectric medium (Cr = 6.0) of a two-dimensional 

rectangular cavity with a loss factor of 0.2. This problem was 

set up on a number of variable sizes of matrix networks. H101 

mode was isolated by choosing the position and relative magnitude 

of the excitation points to correspond approximately to the field 

values of the mode. 

The analysis was carried out at the resonant frequency of 

H101 mode. Table 2.2 shows the results of' decay time for 

various sizes of cross section of cavity (a x b). It is noticed 

that the accuracy of the numerical results is independent of the 

size of the cavity and in all cases considered the error is less 

than 1%. 

2.4.3 A General Inhomogeneous Bifurcated Waveguide 

Finally, to demonstrate the flexibility and easiness with 

which the losses in general can be introduced and be taken care 

of by the described procedures, configuration of Fig. 2.6(a) is 

considered. The guide with its walls 4 cm apart is assumed to 

possess losses in the walls (aw = 0.278 x 103 S/m ), bifurcation 

(ab = 1.111 x 103 S/m) and also in the dielectric slab (tanö = 0.05). 

En is equivalent to the relative permittivity of the basic matrix 

network and is equal to 2. Fig. 2.6(a) and Fig. 2.6(b) show 

frequency runs for the wave impedance in magnitude and phase 

looking into the dielectric slab. 



TABLE 2.2 

Cavity with dielectric losses 

(e 
r=6.0, 

tans = 0.02, At = 0.2 cm) 

b 

Time taken for the power 
cavity to fall to 1/e of 

original value 

in the 
its 

TLN Theoretical Error 
ns ns % 

1 3 0.246 0.246 0.0 

6 9 0.305 1.297 0.62 

6 15 1.457 1.44? 0.69 

9 15 2.014 2.005 0.45 

15 20 3.128 3.118 0.32 

20 30 4.337* 4.325 0.28 

I 
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2.5 Discussion 

The variation-iteration procedure is one of the very few 

other general numerical methods which have been applied to 

structures containing lossy dielectrics2.2. The technique does 

not include wall losses and is a steady-state procedure requiring 

the solution of a complex eigenvalue matrix equation. Results 

are given in terms of dispersion curves assuming a continuous 

waveguide in the third space dimension. This type of formulation 

is impossible in the TLM method as described here, because it 

operates only in two space dimensions. A different model is 

needed for problems involving three space dimensions as described 

in Chapter S. TL1 results for the cut-off frequency for such 

guides with losses give a damped resonant curve corresponding to 

the indefinite cut-off conditions shown by La Loux et a12.2. 

Because the TLM method operates in the time domain, it 

does not require the laborious solution of simultaneous equations 

and this tends to make programming easier (see Chapter 4) than in 

steady-state procedures. Also, for a given mesh coarseness, the 

accuracy of the TLM method is often better than steady-state 

results as discussed in references 2.4,2.5 and 2.6. 
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CHAPTER 3 

THE SOLUTION OF WAVEGUIDES 

WITH LOSSY WALLS 
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3.1 INTRODUCTION 

In a perfect conductor, the conductivity is assumed to be 

infinite and any electromagnetic radiation is perfectly reflected 

from the surface of a perfect conductor. In this case, for the 

mode representations in the TLS method, loss-free boundary walls 

are represented by short- and open-circuits on the matrix3.1. 

However, in many practical microwave engineering problems, the 

finite conductivity of a conductor cannot be neglected and must 

be taken into account. Hence, the TLII method is further modified 

to take account of boundary losses as well as dielectric losses 

described in previous chapters. 

In the TLM method, as described in the following section, 

boundary losses may be simulated by introducing suitable reflection 

coefficients where component lines meet the boundaries. 

3.2 CONDUCTING BOUNDARIES OF FINITE CONDUCTIVITY 

Short-circuit walls of finite conductivity, such as lossy 

waveguide walls, bifurcation or diaphragm, can be accounted for by 

replacing the perfect short-circuit boundary with an impedance wall 

whose surface impedance3.2 is given by 

Zý = 2Q 
(1 + J) (3.1) 

where 11 and a are the permeability and conductivity values for the 

specific conducting boundary. 

The conducting boundaries on the matrix are perpendicular 

to the transmission-lines which intersect them, and the voltage 

reflection coefficient for impulses on these lines is given by 

z-z 

Zc+Z0 
(3.2) 

P 
c0 
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Z0 is the characteristic impedance of waves on the transmission- 

lines in the matrix, i. e. 

z0 = Eo (3.3) 
L 

0 

where uo and ea are permeability and permittivity of free space. 

For small losses, Zc is small compared to Z0 and the 

imaginary part of p can be neglected. Thus, if u= uo, p is given 

approximately by, 

p= (3.4) -1 +2 
2OvW 

Since P depends on the frequency w, the iterations of the 

numerical method must be repeated for each value of MI; /A used. 

For other lossy boundaries such as a resistive strip of 

zero thickness inside a waveguide parallel to the electric field, 

procedure is as before with Zc replaced by the resistance R of the 

resistive strip. Hence, the reflection coefficient of impulses 

reaching the strip is given as 

2p 
R/Z 

0)+1 

(3.5) 

In this case, p as can be seen from equation 3.5, is not dependent 

on the frequency W, and hence the iterations of the numerical method 

will not have to be repeated for each value of AL/A used. 

3.3 NUMERICAL EXAMPLES 

3.3.1 Rectangular Waveguides 

(a) Waveguide with lossy walls - Numerical calculations 

for the Hmo family of modes were carried out on a 61 x8 rectangular 

matrix with boundaries at x=0.5 and x=8.5 as shown in Fig. 3.1. 

By making one of the boundaries (say x=8.5) an open circuit, a 

waveguide of twice the width is simulated. The system was excited 
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TABLE 3.1 

Waveguide with loss-free walls (£r = 2.0) 

1 ZI .1 ARG(Z) 

AL/A 
Numerical 

Method Theoretical 
Numerical 

Method Theoretical 

0.023 6.2296 482.0395 -0.9263 -1.5708 

0.025 2.2531 2.6599 1.8694 1.5708 

0.027 0.2550 0.2527 -1.5309 -1.5708 

0.029 6.8085 6.6448 1.5923 1.5708 

0.031 0.2706 0.2826 -1.5582 -1.5708 

0.033 1.8526 1.8320 1.5787 1.5708 

0.035 0.8573 0.8521 -1.5569 -1.5708 

0.037 0.4875 0.4796 1.5548 1.5708 

0.039 5.9766 6.0828 -1.5633 -1.5708 

0.041 0.2076 0.2118 -1.5488 -1.5708 



0,111* 

ALA 

0.023 

0.025 

0.027 

0.029 

0.031 

0.033 

0.035 

0.037 

0.039 

0.041 

TABLE 3.2 

Waveguide with wall losses 

(Er = 2.0, a=0.278 x 103 mho/m) 

IZI 

Numerical 
Method 

ARG(z) 

Numerical 
Theoretical Method Theoretical 

4.1981 6.1272 -0.2806 -0.0106 

2.3822 2.4898 1.2546 1.0610 

0.3281 0.3252 -0.7952 -0.8554 

5.2724 5.1637 0.8459 0.8678 

0.2963 0.3039 -1.1340 -1.1610 

1.8117 1.8038 1.3408 1.3384 

0.8505 0.8529 -1.3820 -1.4025 

0.4912 0.4838 1.3914 1.3932 

5.3772 5.4883 -1.1022 -1.1155 

0.2115 0.2179 -1.2795 -1.3174 



- 28 - 

at all the points along the line z=1 with impulses corresponding 

to Ey. The impulse function of the output was taken from the 

point (x = 7, z= 6) which is 55.5 mesh points away from a dis- 

continuity to an open-circuit at z= 61.5. 

A comparison between numerical and theoretical results for 

normalised values of the wave impedance Z= Ey/Hx for frequencies 

above cut-off are shown in Table 3.1 for a loss-free waveguide. 

Table 3.2 shows the results when the walls of the waveguide are 

taken to be 6 cm apart and are given a conductivity of 

a=0.278 x 103 mho/m. The discrepancy between theoretical and 

numerical results near cut-off is due to the truncation error3.2 

caused by the 550 iterations of the matrix used for these calculations. 

The effect of truncating the iteration process is to cause the 

field values, expressed as a function of frequency, to be convolved 

with a sin f/f type curve. This causes smoothing out of high, 

narrow peaks of the output function. 

(b) Waveguide with lossy bifurcation - The method is also 

demonstrated by applying it to a waveguide of width 4 cm, with a 

lossy centre bifurcation of finite conductivity ab = 00278 x 103 S/m 

as shown in Fig. 3.2. Results for the impedance at the output 

point are presented graphically in Fig. 3.2. 

(c) Waveguide with centre resistive card - Fig. 3.3 shows 

an example of lossy waveguide where equation 2.5 is used. The 

structure shown is a waveguide with a resistive card at the centre 

position (R = 100 Zo).. Results are shown in Table 3.3 for the 

impedance at the output point, in the frequency range containing 

the dominant mode and are compared with the results obtained from 

reference 3.3. 
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TABLE 3.3 

Waveguide with resistive strip (Er = 2.0, R= 100 Z0) 

Iz i ARG(Z) 

ALA 
Numerical 

Method Ilarcuvitz 
Numerical 

Method Marcuvitz 

0.020 0.6769 0.6539 1.5579 1.5680 

0.024 1.0447 0.9963 1.5599 1.5653 

0.028 2.6096 2.3107 1.5539 1.5439 

0.032 1.4742 1.5332 1.4059 1.5220 

0.036 1.6712 1.7049 -1.4810 -1.5212 

0.040 0.2246 0.2287 1.3923 1.4891 

0.044 2.7814 2.7651 1.4585 1.5209 

0.048 1.2555 1.2581 -1.5058 -1.5363 

0.052 0.0482 0.0444 -0.9579 -1.2818 

0.056 0.9235 0.8916 1.5091 1.5440 
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3.3.2 TWO-DIMENSIONAL RECTANGULAR CAVITIES 

The method was also used to calculate the power decay due 

to losses in the walls of a two-dimensional rectangular cavity. 

A comparison between the numerical and theoretical results for the 

time taken for the power in the cavity to fall to 1/e of its 

original value is shown in Table 3.4. In the numerical method, 

the H101 mode was isolated by choosing the position and relative 

magnitude of the excitation points to correspond approximately to 

the field values of the mode. Also, the analysis was carried out 

at the resonant frequency of the H101 mode. 



TABLE 3.4 

Cavity with wall losses 

(er = 2.09 a". = 0.278 x 103 S/m, At = 0.3 cm) 

No. of mesh No. of mesh 

points in the points in the 

x-direction z-direction 

5 

5 

10 

20 

5 

10 

30 

20 

Time 

in the 

of 

Numerical 

Method 
ns 

0.40 

taken for the power 

cavity to fall to 1/e 

its original value 

Theoretical 
ns 

0.40 

0.50 0.49 

1.39 1.39 

3.11 3.16 

20 1 30 1 3.79 3.82 
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CHAPTER 4 

TLM COMPUTER PROGRAMMING 

TECHNIQUE 
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4.1 INTRODUCTION 

Programming forms a significant part of any numerical 

method. With a proper technique, the programmer will save both 

computer time and storage. This saving could prove to be of great 

importance when limited time or storage, especially the latter, 

is available on the computer. It is perhaps equally important 

that a new user of the program should be able to adapt to it in a 

short while and also be able to feed into the computer the general 

data on a problem. With regard to these points, a general two- 

dimensional program was developed in which any number of boundaries 

(conducting or dielectric, with or without losses) are read in as 

data. The program will then exit with required information, 

tabulated against the frequency. 

In this chapter, the basis of a simple version of a TLM 

computer program incorporating dielectric losses as discussed in 

Chapter 1 and also wall losses (Chapter 3) is fully analysed. It 

is hoped that it will give an insight into the programming side of 

the TLM method, which forms an important part of it. A feature of 

particular interest in this program is the technique used for nodal 

calculations in order to halve the storage requirements (see program 

listing - Appendix A). It was subsequently used in the final 

general two-dimensional program which includes dielectric- and 

loss-stubs. 

The FORTRAN program implementing the TLM method requires 

the user to insert, 

(a) the limits of the matrix in the x- and y- co-ordinate 

directions, 

(b) position of boundaries together with their appropriate 

boundary code and reflection coefficient, 
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(c) excitation points or lines together with their 

appropriate excitation code and initial value, 

(d) the output point, 

(e) the output code, 

(f) number of iterations required (NI), 

(g) loss factor (tanS), 

(h) frequency range (At 

The program then exits with values of EHMOD, the output 

magnitude tabulated against frequency ýý. 

If the following equivalences apply between fields E and H 

in the medium and voltages and currents V and I on the matrix (see 

reference 4.1), 

(i) E. = Vand H= 1 

then-for output code L=1,2,3, EH(IOD = 
IHyI, IHxI, IEZI 

respectively 

(ii) H=U and E=I 

then for output code L=1,2,3, EHMOD = (Eyl, JExi, JHZI 

respectively. 

4.2 PROGRAM DESCRIPTION 

The program consists of main program TAM, which calls sub- 

routine OUTPUT 

(a) Language: FORTRAN IV 

(b) Number of variables: 

scalars (integer or real): 25 in TLM 

16 in OUTPUT 

arrays: 6 in TLM 

1 in OUTPUT 



- 34 - 

(c) The program is written for single precision 

arithmetic 

(d) Number of statements: 55 in TLM 

26 in OUTPUT 

4.3 INPUT DATA 

The program consists of two subroutines. The main sub- 

routine is TLM, which calls the auxiliary subroutine OUTPUT. 

The calling sequence is: 

CALL OUTPUT (NI) 

where NI is input parameter to the OUTPUT subroutine. 

4.3.1 The Input-Parameter Definitions: 

(i) TLM 

NX: x-direction range limit 

NY: y-direction range limit 

IB(KO, M): boundary parameter 

M=1,8 

KB internal counter(for number of 

boundaries) 

t* M --j x-low 

11=2 x-high 

1=3 y-low 

* 1=4 y-high 

M=5,8 boundary coda (see later) 

R(KB): boundary reflection coefficient 

IE(KE, 1I): excitation parameter 
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P1=1,7 

KE internal counter (for number of 

excitation points or lines) 

§ 11=1 x-low 

f1=2 x-high 

f=3 y-low 

M=4 y-high 

M=5,7 excitation code (see later) 

VA(KE): excitat ion amplitude 

10: x-value of output node 

JO: y-value of output node 

L: output choice code (see output sheet) 

NI: number of iterations required 

(ý Boundaries should f, 

the x-direction and 

A value of zero for 

boundary data. 

A value of zero for 

excitation data. ) 

all within the range limits (1, NX) in 

(1, NY) in the y-direction. 

x-low declares the end for input 

x-low declares the end for input 

t 

§ 

(ii) OUTPUT 

D1: frequency-low (A 
, matrix mesh size 

to free space wavelength) 

D2: frequency-high 

DS: frequency-increment 

T: loss factor of the dielectric (tan6) 
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4.3.2 The Input Codes 

(a) Boundary codes 

a. 1 Horizontal boundary 

code: 1310 

a. 2 Vertical boundary 

code: 2401 

(b) Excitation codes 

b. 1 Impulses on top and bottom lines 

code: 123 

b. 2 Impulses on left and right lines 

code: 224 

b. 3 Impulses on top, bottom, left and right lines 

code: 114 
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4.3.3 The Input-Parameter Format 

(i) TLM 

Col. 1-5" 6-10 11-15 16-20 21-25 26-35 

NX NY 

IB(1,1) Iß(1,2) Iß(1,3) Iß(1,4) I o(1, M) R(1) M 598 

IB(KB91) IB(K8,2) IB(KB93) IB(K894) 
IB(KB, 8) R(KB) 

0 

IE(1,1) IE(1,2) IE(1,3) IE(1,4) IE(19M) VA(1) 
M 517 

IE(KE, 1) IE(KE, 2) IE(KE, 3) IE(KE, 4) IE(KE, M) 
. VA(KE) 

0 

10 30 L NI 

(ii) OUTPUT 

Col. 1-10 11-20 21-30 

T 

01 D2 DS 
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4.4 OUTPUT DATA 

The output-impulse function EH(IC) (in time domain) 

processed in the main subroutine TLM is turned over to the 

auxiliary subroutine OUTPUT. This routine performs the Fourier 

transformation on the impulse function taking note of loss 

factor T. The program then exits with values of EHMOD, the 

output magnitude, tabulated against frequency ýý. 

If the following equivalences apply between fields E and 

H in the medium and voltages and currents V and I on the matrix 

(see reference 4.2). 

(i) EV and H= I 

then for output code L=1,2,3, EHIIOD = 
IHyI, lHxI, IEZI 

respectively. 

(ii) H= V and EI 

then for output code L=1,2,3, EHIOD = 
IEyi, ! ExI, IHZI 

respectively. 
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4.5 FLOW DIAGRAM CHARTS 

4.5.1 TLM 

BEGIN 

Input-parameters 

NX, NY, (IB(KB, r1), M=1,8), 

R(KB), (IE(KE, ri), r=1,7), 

UA(KE), 109 J0, L, NI 

For definition and format 

see input-data sheet 

Initialisation of matrix - 

set all the matrix within the 

range NX and NY to zero 

Excitation of matrix - 

set the elements (IE(KE, M), 

P9=1,4) of the matrix, according 

to excitation code (IE(KE, M), 

M=5,7), to prescribed initial 

value VA(KE) 

NX=NX-1 

NY=NY -I 

.p 
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A 

Iteration process 

IC = 19NI 

Boundary conditions - 

perform boundary reflections 

on the elements (IB(KB, M), 11=1,4) 

according to boundary code 
(IB(KB, M), 11=5,8) and reflection 

coefficient R(KB) 

Perform nodal calculations 

within the range NX and NY 

Store the required information 

EH(IC) after each iteration 

process at the output node (IO, JO) 

according to the output choice L 

C> N>-- NO 

YES 

Call Fourier transform routine 
(OUTPUT) 

FINISH 
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4.5.2 OUTPUT 

BEGIN 

Input-parameters 

NI (called in through subroutine 

call), T, D1, D2, DS. 

For the definition and format 

see input-data sheet 

Evaluation of the line's propagation constants 

RA(=a) and RB(=ß) according to 

the loss factor T 

D=Dl 

A 
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A 

Perform the Fourier transform 

by weighting and adding technique 

Calculate the output EH[OD 

For definition see the output sheet 

Write out table of output 

EHMOD against frequency (Aß/a) 

D=D+DS 

D> 02 NO 

YES 

RETURN 
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4.6 USAGE DEMONSTRATION 

4.6.1 Numerical Example 

As a demonstration, a numerical example of the TLM method 

has been carried out on a multi-ridged waveguide with a short- 

circuit plane of symmetry half-way across the cross section. 

Fig. 4.1 shows the geometry for the calculation. The problem was 

simulated on a matrix of size 12 x 11 for NL = 200 iterations. 

Hz was excited along a line through the node x= 10. The output 

impulse function Ey was calculated at the output node (2,8) and 

then the frequency spectrum of the impulse function was obtained 

at intervals of &R/X = 0.0005 up to 0.025. Fig. 4.2 shows the 

frequency spectrum containing the dominant mode 

[(Ak/, X) 
cut off = 0.0125 = S/2]. 

The errors involved4.1 are: 

(i) Truncation error 

AS 3 

. SN2ir2 

Error 1.2% 

(ii) Velocity error - negligible. 

(iii) Field description error - estimated to be less 

than 1%. 

4.6.2 Performance Guide 

(a) Computer used: ICL 1906A of the Cripps Computing 

Centre of the University of Nottingham. 

(b) Maximum core size used: 6000 bytes. 

(c) Time to calculate main program (200 iterations) 

and output routine (50 frequency values for 

Fig. 4.1 - see Appendix A): 20 S 



FIG. 4.1 Half-cross-section geometry of the multi- 
ridge waveguide 

--- short circuit boundary 

ý. -- open circuit boundary 
X source point 
p output point 
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CHAPTER 5 

THE COMPLETE SOLUTION OF 

MAXWELL'S EQUATIONS IN 

THREE SPACE DIMENSIONS AND TIME 
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5.1 INTRODUCTION 

Many problems in electrical engineering are associated 

with the way in which electric and magnetic fields propagate and 

distribute themselves in various media. Maxwell's equations 

provide a concise description for the interaction of these fields 

with themselves and with the various boundaries of a problem, and 

therefore a numerical procedure for the complete solution of these 

equations is an important consideration. In this chapter, the 

extension of the TLS method to three space dimensions for the 

complete solution of Maxwell's equations is described5.1. It will 

be shown how a general three dimensional medium may be represented 

by an interconnection of continuous ideal two-wire transmission- 

lines and how this model may be used for the numerical solution 

of the electric and magnetic vector fields within the medium. 

The three-dimensional model is basically made up of shunt 

nodes already used in the construction of the two-dimensional 

model and also series nodes which will be discussed in the next 

section. Media represented by the model may be inhomogeneous with 

any value of permeability, u, or permittivity, e, and lossy with 

conductivity, a, taking any value from zero (loss-free medium) 

to infinity (ideal conductor). 

5.2 GENERAL TWO-DIMENSIONAL TRANSMISSION-LINE ELEMENTS 

As was described in the previous chapters, the two- 

dimensional TLS method is based on a network of transmission- 

lines consisting of the interconnection of elements of shunt 

connected parallel open wires. A general shunt connected node of 

the network, for convenience, is shown in Fig. 5.1. Now, if 

the voltage on the transmission-lines represents the E-field 
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in the propagation medium, the set of Maxwell's equations described 

in the x-z plane (for example) are, 

aHX aHZ 

az - ax 

aE 

aZ 

aE 
EI -Y at 

aH 
x 

= '' at 
(5.1) 

3E 
ya 

Hz 

ax = 'u at 

where e' is the complex permittivity. 

The time-domain impulse function of the two-dimensional 

array of scattering elements describing a problem is obtained by 

iteration of the voltage impulse scattering matrix for a single 

element. This is given by equation 2.2. 

Now consider the basic scattering element of Fig. 5.2. 

It consists of a four terminal series connected junction of ideal 

transmission-lines with a fifth line in the form of a short- 

circuited stub of variable characteristic impedance, Z0. If the 

voltage on the lines of the series element represents the E-field. 

in the propagation medium, the set of Maxwell's equations described 

in the x-z plane are, 

aEX aEZ ally 
aZ ax 

°3t 

aHy aEx 

-3Z-C at 
(5.2) 

3H 
y 

aEz 

ax -E at 



3 x 

Z 

2 

t.? 12 
n 

4 

FIG. 5.2 The general series connected node with 
permeability-stub 

4 short circuit 
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A direct comparison between equation 5.2 and the 

transmission-lipe equations of the series element will show that, 

11 E 2(1 + Zo/4) (5.3) 

Hence, it can be seen that, the variable impedance stub, Z0, 

describes the permeability of the medium. Therefore it will be 

referred to as permeability-stub. 

The voltage impulse scattering matrix for the series 

element is 

1 
Z+4. 

0 

(z0+2) 22 -2 -2 

2 (zo+2) -2 22 

2 -2 (Zö z) 22 

-2 22 (z0+2) -2 

-2Z 2Z0 2Z -2Z -(zo 4) 
0 0 0 

(5.4) 

Thus, if voltages on the two-dimensional matrix elements 

always represent E-fields in the medium, the shunt connected 

matrix provides a solution for two-dimensional H modes in the 
mo 

x-z plane (Hz, Hx and Ey fields) and the series connected matrix 

provides a solution for E 
mo modes in the x-z plane (Ez, Ex and 

Hy fields). Therefore, these two separate matrices will solve 

the two separate sets of three equations (5.1 and 5.2) given by 

the expansion of Maxwell's equations in two dimensions. Note 

also that losses are not included in the series matrix because 

there is no corresponding loss term in Maxwell's equations. 

The slow wave properties of the series matrix are similar 

to the shunt matrix. In particular, if a one dimensional (TEIl) 

wave propagates in the z-direction on the matrix shown in 
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Fig. 5.3 , then any current pulse travelling from 8 to A (say) is 

met by a similar current pulse travelling from A to B. (Note 

that for simplicity the permeability-stub at the nodes are omitted 

in Fig. 5.3). Hence, a one-dimensional wave travelling over the 

matrix in the z-direction may be represented by the passage of a 

wave down a transmission-line having short-circuited stubs of 

length i/2y as shown in Fig. 5.3(b). This is the exact dual of 

the parallel case5.2 and the transmission equation, taking the 

permeability-stub into account, becomes 

V. cos e/2 jsin e/2 1 j(2+Z0)tane/2 

Ii jslne/2 cose/2 
'01 

cose/2 jsine/2 Vi+l (5.5) 

jsine/2 cose/2 Ii+1 

where 

0= WAZ =2 ,t (5.6) 

The velocity characteristic for the two-dimensional 

series matrix then becomes " 

WAI sin (ß2 ý) 
= 2(1+Zo/4) sin( 2c 

) (5.7) 

where ßn represents the propagation constant of the network 

(medium). 

Equation 5.? shows that, say for Zo = 0, for low frequencies 

(AR/A < about 0.1) the velocity of waves on the matrix is 1//2 of 

the free-space velocity. This corresponds to the fact that the 

stubs have doubled the inductance per unit length, the capacitance 
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per unit length remaining unchanged. In the parallel case, the 

capacitance was doubled and the inductance was unchanged. A one- 

dimensional wave travelling diagonally across the series matrix 

sees matched conditions as inthe parallel case, but because the 

distance around the transmission-lines is 
' 

times the diagonal 

distance, the effective velocity along the diagonal can be 

shown5.2 is �Z times the value for waves propagating in the direction 

of the co-ordinates. Thus, the effective velocities of the waves 

travelling in the two directions are the same. 

5.3 THE THREE-DIMENSIONAL MATRIX USING TWO-DIMENSIONAL 

NODES 

Among other properties, the three-dimensional matrix must 

be able to support both E-modes and H-modes in any plane. Equations 

5.1 and 5.2 indicate therefore that there must be a parallel matrix 

and a series matrix in each plane. A three-dimensional model may 

be built by stacking two-dimensional matrices on top of each other 

and an obvious way to do this is by having alternate parallel and 

series matrices spaced from each other by A£/2. Since the model 

must appear the same when viewed along any of the three co- 

ordinate axes, the method of interconnecting the matrices can be 

visualised. 

For the purpose of analysis, the three-dimensional model is 

first made up for the non-lossy homogeneous field problems. Then 

in the next section, properties of the model for inhomogeneous 

media are studied and are further extended to also include the 

lossy cases. 
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Consider now a parallel connection in the x-z plane 

connected to a series connection in the y-z plane and a series 

connection in the x-y plane as shown in Fig. 5.4. At the parallel 

connected point, the voltage is common to both lines and therefore 

the following equation applies, 

ZH 3H aE 
xzy 

3z ax -e at (5.8) 

Also, the current is common in the series matrix and so for the 

y-z plane, 

aE aE aH 
ZY 

_u 
x (5.9) 

ay - aZ - at 

Similarly for the series connection in the x-y plane, 

aý a Ex HZ 
(5.10) 

ax - ay ° 'u at 

Equations 5.8,5.9 and 5.10 make up half of Maxwell's 

equations. The remaining half of the equation may be obtained 

from the series connection in the x-z plane connected to the 

parallel connection in the y-z and x-y planes shown in Fig. 5.5. 

Thus, the equations describing the circuit of Fig. 5.5 are, 

a Ex 
- 

a Ez 

- 
3 Hy 

(5.11) -u 3z ax at 

a Hz 
- 

DH 
y 

= 
BE 

x (5.12) s ay az at 

aH 
- 

aH 

ay = 

aE 

E at 
(5.13) 
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If the circuit of Fig. 5.4 is connected to the circuit 

of Fig. 5.5, a complete description of 1axwell's equations is 

given. The configuration is shown in Fig. 5.6 and this may be 

used to produce a three-dimensional network model as shown in 

Fig. 5.7. (Note that in Fig. 5.7 single lines are used to represent 

a pair of wires. ) The model produced in this way has alternate 

series and parallel planes in any of the co-ordinate directions 

as originally envisaged at the beginning of this section. 

5.4 PROPERTIES OF THE THREE-DIMENSIONAL MATRIX 

Like the two-dimensional matrix, the three-dimensional 

matrix of Fig. 5.7 is also a slow-wave structure, and its, slow 

wave properties may be understood by considering the propagation 

of plane waves. For example, consider the propagation of a one- 

dimensional plane wave along one of the co-ordinate axes, say 

z-axis. This can be represented by propagation along a one- 

dimensional line with short-circuited series stubs and open- 

circuited shunt stubs as shown in Fig. 5.8. This line may be 

examined by following a similar procedure used for the two-dimensional 

matrices. 

If e= WAR = 21r , and 

fcos e/4 jsing/4 
T= (5.14) 

jsing/4 cose/4 

then the voltage and current propagation, taking permittivity- 

and permeability-stubs (not shown in Fig. 5.8) into account, is 

described by, 



FIG. 5.7 Three-dimensional network model 

shunt node 

series node 
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Vi 1 j(2+Z0)tan8/2 

=T"T. 
01 

i 

T" 
j(2+Y0)tan8/2 

0 Vi+1 

"T" 1 Ii+1 
(5.15) 

If the waves on the periodic structure have a propagation 

constant y= an+jßn then, 
n 

Y At Vi 
e0 

Vi+1 n9 
(5.16) 

0 
*nAX Ii+1 

Solution of equations 5.15 and 5.16 gives 

Cosh ynAt =1- 8(1+Yo/4)(1+Z0 /4)sin2e/2 kI (5.17) 

which for the low frequency pass-band reduces to 

sin(ßn 
2R) 

_ 

Equation 5.18 

action" wave on the 

the velocity of the 

with the low freque 

(5.18) 2 (1+Yo/4)(1+Zo/4), sin( 
ZcZ) II 

indicates that for low frequencies the "mass 

matrix travels at 1/2 (1+Yo/4)(1+Z0/4) times 

individual pulses. This result is consistent 

icy lumped approximation that the shunt stubs 

increase the capacitance (C) per unit length of the line by 

(2+Y0/2) times and the series stubs increase the inductance (L) 

per unit length by (2+Za/2) times. Thus, if the free space 

velocity, c, is given by 

1 (5.19) 
c= ýLc 
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then the low frequency velocity of waves on the matrix vn is 

given by, 

V_1=c 
n 

(2+Z0 /2)L. (2+Y0/2)C 2v/(1+Y 
0 
/4 ) (. l +Z 0 

/4 j 
(5.2Q) 

In the same way, it can be shown that the low frequency 

velocity of the wave propagationalong any other direction other 

than the co-ordinate directions is still c/2 �( 1+Y0/4)(1+Zo/4). 

Graphical representation of equation 5.18 for the case 

Z0 =0 is shown in Fig. 5.9. This figure clearly shows that the 

waves on the matrix along the co-ordinate axes cut off at some 
At 

frequency, X. The cut-off frequency is determined by the values 

of Yo and Z0 and from equation 5.18. This is given by 

A. I -1 7ý 
scut 

off - sin 
1 

L2 (1+Y0/4)(1+Z0/4) 
(5.21) 

5.5 DIELECTRIC LOSSES IN THREE-DIMENSIONS 

The dielectric losses in the three-dimensional method 

are treated in a similar way to that explained for the two- 

dimensional method (section 2.3). To account for any dielectric 

losses present in a medium, the three-dimensional node of Fig. 5.52 

further to permittivity- and permeability-stubs (not shown) is 

equipped with stubs of infinite length and characteristic 

admittance Go (relative to the unity for that of the main lines) 

at shunt nodes (Fig. 5.10). At low frequencies, the effect of the 

loss-stub is to increase the conductance per unit length of the 
G 

main lines by Zo, where Z0 is the characteristic impedance 
0 

of the free space. Bearing in mind that any pulse reflected on 



c 

FIG. 5.10 Schematic diagram of a three-dimensional node 
including the permittivity, permeability- and 
loss-stubs-(two-dimensional node separation and 
stub length = At/2) 

series node 

short circuited stub (permeability -stub) 
open circuited stub (perm; ttivity- stub) 

--- infinitley long stub ( loss-stub) 

shunt node 

ý}- 
series nod 
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the loss-stub will not return to the node, the three-dimensional 

model network will then represent a lossy space of conductivity 

G 
Q (5.22) 

Zo AZ 

Thus, the losses on the matrix may be made variable simply by 

altering the value of the constant Go. The voltage scattering 

matrix for a shunt node, including the loss-stub, is as given in 

equations 2.2 and 2.4. 

5.6 BOUNDARIES 

Having established a model for describing the space in 

three dimensions, it is now necessary to define a way of 

representing the boundaries of a problem. For this purpose, the 

conducting boundary planes of a problem are represented by short- 

circuit planes on the matrix. The open-circuit walls of 

symmetry are represented by open-circuit planes on the matrix. 

The symmetry wall in the matrix must be positioned so it will not 

disturb the periodicity of the matrix model. For example, an 

open-circuit boundary cutting through a line half-way between a 

series and a shunt node in Fig. 5.6 is not acceptable since the 

periodicity of the matrix will be disturbed. This is because 

one would expect a mirror image of series (or shunt) node on 

either side of the symmetry wall. Therefore, we are restricted 

to having walls of symmetry which actually cut through the nodes. 

Of course, this would satisfy the above condition; however, we 

are at liberty to position a conducting (short-circuit) boundary 

in any desired plane, whether half-way on the lines or indeed 

through the nodes. 
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With due regard to the above positioning alternatives 

for a boundary, one must try to search for the best choice to 

obtain a simple and easy numerical procedure. With this aim in 

mind, let us further examine the possibilities of boundary planes 

through the nodes. Referring to Fig. 5.6, we see that if a 

short-circuit boundary passes through shunt nodes in planes at 

right angles to it, then all the lines joining at these nodes 

will automatically be short-circuited. The opposite will be 

true for an open-circuit boundary. But if the particular nodes 

at a boundary lie in the plane of the boundary, the matter will 

be complicated due to change in impedance of the lines (and 

hence scattering matrix of the nodes) lying on the boundary. 

Therefore, all the above possibilities were considered in much 

detail and after much programming and observing the results, 

the best choice emerged as follows. 

Referring to Fig. 5.7, a conducting plane in the x-y plane 

is represented by short-circuiting the shunt nodes At C and 3 or 

E, G and L, and in the x-z plane by short-circuiting the nodes 3, 

K, L and M and finally in the y-z plane by short-circuiting the 

nodes At G and M. The open-circuit boundaries are set through 

series nodes that lie in planes at right angles to the boundaries. 

In this way, as already explained, the symmetry of the matrix on 

either side of the open-circuit boundary is preserved. 

Having defined our boundaries as such, we can now represent 

exactly a rectangular cavity in three dimensions. The cavity 

could also be of a more complicated configuration with right angle 

corners. Cavities with curved boundaries and non-right angular 

corners can be approximated by using finer meshes. 
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Now let us examine the dielectric boundaries due to 

inhomogeneities inside a cavity. In the TLM model, auxiliary 

stubs (permittivity, permeability and losses) on a main line, 

control the properties of the represented medium in the line 

direction. The influence of the stub extends AL/2 on the line 

either side of the stub. For example, in Fig. 5.7, the permittivity- 

stubs (not shown) on the shunt nodes K1, L1, M, and J1 describe 

the permittivity of the medium in the positive y-direction, as 

far as a plane through the shunt nodes Al, C11E, and G1. 

Therefore, the boundary of a dielectric discontinuity, say in the 

y-direction, always falls on a plane through the shunt nodes An, 

Cn, En and Gn. All permittivity stubs below this plane will 

have a value of, say, Yo and a value of Yo' above the plane. 

Now a question arises - do we assume dielectric stub values 

of Yo or Yo' for the shunt nodes lying on the boundary plane? 

Or, indeed, should we assume an average value (Yo + Yo')/2, 

which seems to be most ideal? Careful examination of the 

alternatives showed that the latter, although best suited, would 

be undesirable from the computing point of view. This is because 

the computer program will have to deal with more than one value 

of permittivity within a 3-D node which would increase the 

storage requirements considerably. However, it was found that 

the error in taking a value of Yo or Yo' for the stubs on the 

boundary is comparatively small and perfectly acceptable in 

all cases considered. An example of this is shown in the next 

chapter (Fig. 6.1). 
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Conducting strips inside a cavity are treated and 

positioned in the same way as the conducting boundaries. 

However, it is required to define straight edges for the strip 

with no corrugation since the strips do not necessarily extend 

across any dimensions bf the cavity. For this requirement to 

be possible, the strip in a plane must have its edges coincide 

with a row of shunt nodes in that plane. This would satisfy 

the above condition since all these shunt nodes will be short- 

circuited and no voltage impulse will be able to penetrate the 

strip edges. 

From these discussions we realise that a conducting boundary 

such as a strip, and a dielectric discontinuity boundary, may not 

lie on the same plane in the model. This means that, say, for a 

strip laid on a dielectric we would have some dielectric overflow 

over the sides of the strip. The dielectric overflow has been 

found to be acceptable through numerous examples of microstrip 

cavities performed. The effect is especially negligible if the 

dielectric thickness is defined with no less than two or three 

3-D nodes. In fact, as shown in Fig. 6.8, the results for a 

microstrip cavity with the dielectric thickness defined with only 

one 3-D node has proved highly successful. 

5.7 NUMERICAL PROCEDURE 

Any of the six electromagnetic field components may be 

excited by introducing impulses at various points in the network. 

These impulses travel along the ideal TEM lines and are scattered 

at the individual two-dimensional nodes according to equations 2.2 

and 5.4. In this way, the time domain propagation of all six 
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field components is obtained simultaneously. Dielectric losses 

are accounted for by the procedure described in section 5.5. 

The boundaries may be made lossy by using imperfect reflection 

coefficients as described in chapter 3 or by introducing losses 

at the nodes on the boundary. 

A solution for any (or all) of the field components is 

available anywhere within the geometry of the problem. The 

output consists of a stream of impulse amplitudes corresponding 

to the output impulse function for the particular field component 

under consideration. For analysis purposes, it is usual to take 

the Fourier transform of this function to yield the response to 

an excitation varying sinusoidally with time. 

5.8 THREE-DIMENSIONAL COMPUTER PROGRAM 

A general three-dimensional program has been written on 

the preceding analysis. The final form of this program, as listed 

in Fig. 5.11, is highly efficient and versatile. Considerable 

effort was put. into minimising the storage requirements of the 

method. One real memory store is used to store the value of the 

pulse on a main line that joins a shunt node to a series node. 

For this to be possible, pulses throughout the model must converge 

on the similar nodes (shunt or series) at any instant of time. 

This, in turn calls for a purely E-field (or H-field) initial 

excitation, -i. e. the pulses on the model at the start of the first 

iteration process need to be incident on shunt nodes (or series 

nodes). 



RASTER TL11 

DIMENSION V(26,0, B. 27)IS(51.6). IE(51,7) 
DIMENSION EU(S1), SX(S1). SY(51)SZ(51), VA(S1), LS(51), IEC(5,31 
COI770N/c0N3/CN(B00) 
DATA IEC, NX, NY, NS, KS, KE/1.2.3.4.13.5,6.7,8.14,9,10.11.12,15,5*0/ 

C READ IN BLOCKS or MEDIA ANO BOUNOARIES 
23 KS-c5+1 

READS, 200)(IS(KS, R), R. 1,6), EU(K5), SX(KS), SY(KS). SZ(KS), LS(K5) 

If(NZ. LT. IS(K5.6)) N4I5(KS, 6) 
Ir(NY. LT. IS(KS, 4)) N"Y. IS(K5,4) 
IF(NX. LT. IS(K5,2)) NX. IS(KS. 2) 

IF(IS(KS, 1))24,24,23 
24 XS. K5-I 

C REND IN EXCITATION VALUES 
33 KE. KEN 

READ(5,100)(IC(KE, R), 11-1.7). VA(KE) 

Ir(IE(KC. 1)) 44.44.33 

44 KE-kC-1 

C READ IN REQUESTED OUTPUT POINT, COMPONENT FIELD AND NO. or 
ITERATIONS 
RCAO(S, 100)I0.70, KO, L, NI 

100 rORRAT(7IS, r10.6) 
200 rORnAr(6ls. ýno. 6. I1) 

C CLEAR THE MATRIX 
NZZ. NZV1 
NYY. NY+1 
NXX. NXN 
00 1 K. 1, NZZ 
00 1 }1, NYY 
00 1 I. 1, NXX 
00 1 M11,26 

C SET INITIAL VALUES 
DO 7 NS-1, K5 
LX+4'LS(NS) 
DO 7 k-IS(NS. 5). IS(NS, 6) 
00 7 }IS(NS. 3). IS(NS, 4) 
00 7 I-IS(NS, I). IS(NS, 2) 
v(16+LX. I, 1. K). 4. '(EU(NS)-i. ) 

v(17N. X, I. 3, K). 2. /(4. +V(16+LX, I, 1, K)+SX(NS)) 
If(Sx(NS). E0.999. ) v(1? +LX, r, 7. x)-o. 0 

v(16elx, I. 7. X). 2. /(*. +V(16+1X, I, 3, K)+SY(NS)) 
If(ST(NS). E0.999. ) v(18+1X, I, 1, K)-0.0 

v(19+Lx, I. 3. K). 2. /(4. +v(16+1X, I, 7, K)"ºSZ(NS)) 
IF(SZ(NS). E0.999. ) V(19sLX, I, 3, K)a0.0 

SUBROUTINE V(V1. V2, V3. V4. V59YO, Y) 

C SHUNT MODAL CALCULATIONS 
A. Y. (vIW2. V3. VNY0 V5) 
V1.4-W, 
V2. A-V2 
v3. A-V3 
VvA-v4 
VS. A-YS 

RETURN 
ENO 

SUBROUTINE S(V1. V2. V3. W. YS. ZO. Z) 

C SERIES NODAL CALCULATIONS 
A. Z*(- M+v2+V3-v4-vS) 
vl. vw, A 
V2. V2-A 
V3. v3-A 
W. V"A 
V5-VS-A*20 

RETURN 
ENO 

00 2 NE. 1, KC 
00 2 K. IC(NE. S), IE(NE. 6) 
DO 2 .. 1C(NE. 3). IE(NE. 4) 
00 2 I. 1E(NE, 1), IE(NE, 2) 
DO 2 N. 1.5 

2 V(IEC'(N, IC(NE, 7)). I, 3, K). vA(NC) 

C START THE ITERATION PROCESS 
00 6 IC-1, %I 
00 5 K. 1, Nz 
DO 5 . 1, NY 
00 5 I. 1. NX 
CALL S(V(11. I, 3, K). V(7, I, J, K) V(9, I. 3N. K) 

x V(2A. I, J, A)"V(2O, I, 3, K;. V(2i, 1,3, K)J 
CALL 6(Y(tO, I, J. K). Y(1. I. J, K), V(12,1v7, J. K), r(2"I, J, KýI), 

X r(2s. i. J. K) v(zo. I, J. K). v(2z. t. J. K)) 5 CALL S(V(3"IrJrK)rV(erI. 7. KJ, Y(1. Irbt. K), v(6.1,1r7, K)r 
V(Z6. L7. K), V(20rI, J, K)rV(2]rI, J"K)) 

00 4 K. 1, NZ2 
DO 4 J. 1. Nrr 
DO 4 I. t. Nxx 
CALL P(V(1"Irl. l(JrY(2.1,3, K). Y(3"I"3. A). Y(ý"i"J. K)"Y(13. LJ, K)" 

x 
CALL P(V(S"I, 3, KJ. V(6rI. 7rKJ"V(7rI. 7"K), Y(8, i, 3, Ký, V(11"I, 3. *), 

x Y(1a. t, ý. K ). 9(te. I. ý. K)) 
4 CALL P(Y(9. I. J. It I. r(1D. I. J. 1() Y(11. I. ý. K). Y(12. I. ý. K). r(1SrI. 3. N) 

X V(16,1, J, K), Y(19, i, J, K)) 

C EVALUATE AND STORE REQUESTED OUTPUT I? ULSE 'UNCTION 
GO TO (66.77.88). I. 

66 K. 2. O (V(1. IO, JO, KO). V(2, IO, JO. KO). V(3, I0, ]O. KO). V(4, IO, JO, KO)ý 
x V(16, I0.30, KO) v(13, I0,70, KO))/(4. O+V(16. IO, 30, K0)) 

CO TO 6 
77 x. 2.0*(V(S. IO, 30, K0)iv(6, IO. 3O. KO)+V(7, I0,70, KO)+V(S. I0.30, K0)a 

x v(16, IO, JO, KO)w(16. IO, JO. KO))/(ý. WV(16, IO, JO. KO)) 
GO TO 6 

86 X. 2. D'(V(9, IO, JO. KO). v(10,10, JO. KO). V(11, IO, JO, KO). V(12, t0, J0, KO)" 
X V(16,10, J0, KO)ýV(15, IO, JO, KO)/(ý. WY(16, IO, JO, KO)) 

6 CN(IC). X 

C CALL fOURIER TRANSfDRH KDUTINC 
CALL OUTPUT(NI) 

STOP 
END 

SUBROUTINE OUTPUT(NI) 

C FOURIER TRANSFORM ROUTINE 
COMON/CON3/EH(800) 

REAO(5.1000)01. D2. DS 
1000 FORRRT(3F10.5) 

D. 01 
111 CMRCaO. 0 

CHIR. 0.0 
00 1 IC-1,41 
rc-6. za31BA. rLOAT(I040 
ENRC. EHRE. (N(Ic)-cos(rc) 

I ENlNCNIFl-CN(! c)"IN(rc) 
ARP. SQRT(CHRC. EHRE+E"[ wtNIM) 
YRITE(6.1o00)0. ARP 
Ir(D. GC. 02) RETURN 
0. GOs 
CO t0 111 

RCTURN 
ENO 

FIG. 5.11 The general three-dimensional TLM computer program 
listing 



- 60 - 

A computer program on the proposed method basically requires 

12 real memory stores per 3-D node (a 3-D node is comprised of 6 

two-dimensional elementary nodes). However, a maximum of 23 

memory stores is needed if a 3-D node was to be completely equipped 

with all three kinds of stubs to describe varying permittivity, 

permeability and also losses in a medium. An additional 3 memory 

stores will provide for use of planes of symmetry in any one of 

the three co-ordinate directions. One-fold, two-fold or three- 

fold symmetry of a problem will help to reduce the storage require- 

ments by about 1/2,1/4 or 1/8 respectively. 

The general program of Fig. 5.11 has been used to obtain 

all the variety of the results presented in the next chapter. 

It uses a total of 26 real memory stores per 3-D node. (Note 

that this general program was used for all examples so that it 

could be constantly debugged and its efficiency improved in the 

course of extensive programming). This program has been written 

in about 110 lines of FORTRAN, including the subroutines. In the 

program a Fourier transform subroutine similar to the one described 

in chapter 4 is included. This subroutine provides for the time- 

to-frequency spectrum transformation of time impulse function 

obtained in the main program. A different short subroutine is 

used to calculate the time decay in a lossy wall or lossy dielectric 

cavity. 



- 61 - 

5.9 DISCUSSION 

The three-dimensional version of the TLM method described 

in this chapter is an extension of the two-dimensional method 

and embodies tha advantages and experiences gained in the two- 

dimensions. For example, in the two-dimensions, the conducting 

boundaries were set half-way between the nodes. This meant that 

in the computer program, boundary conditions had to be imposed on 

the neighbouring nodes before each iteration of the matrix, but in 

the three-dimensional method as explained in section 5.6, the 

boundaries lie on the nodes. This way, the boundary conditions 

will automatically be dealt with by simply short-circuiting the 

permittivity-stubs on the shunt nodes or open-circuiting the 

permeability-stubs on the series nodes lying on the boundary. 

A simple and short program an the three-dimensional method 

was developed based on the same principles and techniques used 

in the two-dimensional program described in chapter 4. This 

program has been used to check the accuracy of the method for a 

wide range of propagation problems. In. particular, some completely 

and also partially filled cavities with or without conducting 

strips have been studied. In all cases, results compared with 

other known methods in the literature have shown good agreement. 

Results for resonant frequencies and power decay time of some 

completely and partially filled lossy dielectric cavities are 

given in chapter 6. Also in chapter 6, the dispersion characteristics 

of a wide class of microstrip line cavities are presented. These 

include cavities with the strip conductor laid on a dielectric or 
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magnetic substrate, the abrupt change in width of a microstrip 

line and also some coupled lines results. In all cases where 

comparisons can be made, there has been excellent agreement. 
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CHAPTER 6 

NUMERICAL COMPUTATIONS FOR A WIDE 

VARIETY OF THREE-DIMENSIONAL RESONATORS 

USING THE GENERAL TLM COMPUTER PROGRAM 
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6.1 INTRODUCTION 

In this chapter, the general and unique three-dimensional 

TLS program of Fig. 5.11 is used to analyse a wide variety of 

three-dimensional microwave cavity structures. The results 

presented here include the resonant frequency of some empty, 

completely and also partially filled cavities. The. power decay 

time of some lossy dielectric cavities are also given. In 

particular, the cavities containing microstrip lines have been 

studied and the resonant frequency of cavities of various length 

are used to plot frequency (GHZ) versus dispersive phase constant (ß) 

curves. The microstrip solutions include cavities with strip laid 

on a magnetic substrate, change in strip width discontinuity and 

also coupled microstrip lines' cavities. In all cases, whenever 

possible, the TLF9 results have been compared with those of analytical 

or other methods. 

With a slight modification to the general program, it is 

possible to obtain the field distribution for the six components 

of the electromagnetic field in any desired plane through a cavity. 

To demonstrate this, the electric and magnetic field distribution 

of a typical microstrip cavity for different cross-sectional planes 

are also shown in this chapter. 

6.2 COMPLETELY FILLED CAVITIES 

6.2.1 Empty Rectangular Cavity 

The method is first applied to the simplest form of a three- 

dimensional problem, i. e. an empty rectangular cavity. Table 6.1 



TABLE 6.1 

Empty rectangular cavity (dimensions axbxc) 

b/a = 2/3, c/a = 1/2 

Mode, Resonant Frequency kca 
True 

a/AR Resonant Albani & Error This Error 
Frequency Bernardi % Method % 

TM110' TE110 6 5.5877 1.34 

kca=5.6636 12 5.5439 2.11 5.6405 0.41 

TE101 6 6.8471 2.53 

ka=7.0249 12 6.7560 3.83 6.9743 0.72 
c 

TM210' TE011 6" 7.6916 2.07 

kýa = 7.6540 12 7.5558 3.80 7.7942 0.76 
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shows the resonant frequencies of the first few modes in such a 

cavity. TLM results shown in this table are compared with the 

analytical results. They are also compared with results given 

in reference 6.1 by Albani and Bernardi. Albani and Bernardi 

obtain the solution of six-component electromagnetic fields by 

direct discretisation of Maxwell's equations in the integral form. 

The other purpose of Table 6.1 is also to draw a direct comparison 

between the two numerical methods. In the TLM method, it has 

been shown that a high degree of accuracy is obtained with only 

a very few number of nodes, unlike the method adopted by Albani 

and Bernardi. 

6.2.2 Homogeneous Cube Cavity 

The method has also been used to calculate the dominant 

mode resonant frequency of a cube cavity for various combinations 

of permittivity, erI and permeability, pr' values. Results for the 

homogeneous cube cavity in Table 6.2 show that the TLM method is 

accurate for permeability-stubs and also for a combination of 

permeability- and permittivity-stubs.. 

6.3 PARTIALLY FILLED CAVITIES 

Fig. 6.1 shows 

with dielectric. The 

equation of which has 

was chosen to test th 

er = 1.0 and then Yo' 

the structure of 

dominant mods is 

been derived by 

e two cases where 

= 11.28 for e= 

a cavity partially filled 

LSM (Hy 0), the dispersion 

narcuvitz6.2. This structure 

values of Y =000 for 
0 

3.82 are used on the nodes 



TABLE 6.2 

Cube cavity (dimension a, a/ At= 7) 

I 

Resonant Frequency 
kca of Dominant 

State of Mode Error 
Cavity (true kca=2.7768) % 

ur = 1.0 
2.7568 0.66 

e=2.56 
r 

ur = 2.56 
2.7586 0.66 

e=1.0 
r 

2� . 56 
2.7595 0.62 

e 2� . 56 
r 
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actually at the dielectric boundary (see section 5.6). Results 

for /eeff 
versus frequency, 2a/A, are shown in Fig. 6.1. From 

Fig. 6.1, it can be seen that for values of Yo equal to zero, 

results are an upperbound curve, and for values of Yo' equal to 

11.28 results are a lower bound curve compared with the theoretical 

results. Upperbound and lowerbound behaviour of the numerical 

curves are due to the slight change in ratio of air-to-dielectric 

thickness in favour of one or the other. 

6.3.1 Dominant LSM Mode Cavity 

The accuracy of the method for partially filled cavities 

is illustrated by calculating the resonant frequencies of the 

rectangular cavity of Fig. 6.2 for varying values of length, b. 

The cavity is excited with a'single line of the field Ey in order 

to enhance the Hmot type of modes, of which the H101 type of mode 

is the dominant. Of course, the dielectric perturbs the mode 

from the true Hmot rectangular mode to yield fields varying in 

the three co-ordinate directions, and in this case, the result. 

is the LSM mode for which analytical answers are available6.2. 

The asymptotic behaviour of the ß-frequency curve for this mode 

makes it realistic to compare numerical and analytical results 

for 2a/X in some cases, and 0 in others. These results are 

shown in Table 6.3. 

6.3.2 Cavity with Dielectric Discontinuity in One, Two and 

Three Directions 

Some examples of inhomogeneous rectangular cavities given 

by Albani and Bernardi6.3 were tried for the purpose of comparison 



FIG. 6.2 Rectangular cavity loaded with a 
dielectric slab (Er = 2.45, 
2a 

= 79, b 
= 394,526,798,9910) 



TABLE 6.3 

Cavity of Fig. 6.2. Dominant LSM mode. 

ß_ ac 2a wa 
wx arc 

b 

error error 
TLM theoretical % TLM theoretical % 

3 1.3959 1.3483 3.40 0.8358 

4 1.2626 1.2470 1.24 0.6930 

5 1.1494 1.1493 0.01 0.6090 

6 1.0495 0.5558 0.5506 0.93 

7 0.9626 0.5208 0.5132 1.45 

8 0.8853 0.4942 0.4868 1.49 

9 0.8194 0.4746 0.4683 1.32 

10 0.7599 0.4606 0.4541 1.41 
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of the results. Figs. 6.3,6.4 and 6.5 show the structure of 

three examples with Fig. 6.3 having dielectric discontinuity 

in one direction only, Fig. 6.4 in two directions and Fig. 6.5 

in all three directions. Table 6.4 shows the results for 

dominant resonant frequency of these structures by the TLM method 

in comparison with the results obtained by Albani and Bernardi. 6.3 

Theoretical result for Fig. 6.3 is available and is given in 

Table 6.4. From this table, it is noticed that for the same 

mesh coarseness (a/pa = 20) the TLS result for Fig. 6.3 is much 

more accurate than the result given by reference 6.3. In 

reference 6.3, Albani and Bernardi predict an 8% error for the 

results of Fig. 6.4 and Fig. 6.5. Estimated error of the TLS 

results for these figures is less than 1%. 
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TABLE 6.4 

Cavities in Figs. 6.3,6.4,6.5. Dominant Mode 

Resonant Frequency k a 
c 

Cavity Albani & Error This Error 
a/At = 20 Theoretical Bernardi % Method % 

Fig. 6.3 2.5829 2.4292 5.95 2.5761 0.26 
(TE101 Mode) 

Fig. 6.4 3.447 8.0* 3.5387 <1.0* 

Fig. 6.5 4.907 8.0* 1 5.5920 <1.0* 

* estimated 
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6.4 EXAMPLE OF AN OPEN BOUNDARY STRUCTURE 

To demonstrate the flexibility of the method, the open 

boundary structure of Fig. 6.6 is considered next. Fig. 6.6 shows 

an infinitely wide conducting plane with a thin dielectric coating. 

It can be shown that one of the particular properties of this 

structure is the exponentially dying field in the space away 

from the dielectric-air interface6.4'6.5. In this case, the TLM 

method has to cater for an imaginary boundary at infinity in 

space as well as an infinite width of the structure in the 

x-direction. The latter is simply overcome by placing two open- 

circuit boundary planes in the x-direction. However, as for. the 

imaginary boundary at infinity we can think of a lossy boundary 

nearer to the dielectric-air interface. This is possible because 

of the field decay in the space. How far we can bring in this 

lossy boundary depends mainly on the frequency. To analyse 

Fig. 6.6, in the TLM method a non-reflective boundary was used 

at only a few number of nodes away from the dielectric surface. 

The dispersion diagram for the dominant TM mode of the structure 

has been shown in the same figure. 

6.5 LOSSY DIELECTRIC CAVITIES 

Consider the lossy dielectric cavities shown in Fig. 6.7. 

Keeping the air loss-free requires Go (normalised characteristic 

admittance of loss-stub) to have a value of zero on all the shunt 

nodes'inside the air region. The value of G0 inside the dielectric 

medium on the shunt nodes is given by equation 5.22 as Go =Q tL Z. 
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(a) 

(b) 

FIG. 6.7 Rectangular cavity loaded with a lossy- 
dielectric slab (e = 2.45,2a = 7, 
At = 0.3 cm) r pR 

2a --t` 
i 



TABLE 6.5 

Cavity of Fig. 6.7 

Time taken for the power 
(-) for resonance of in the cavity to fall to 

State of domin ant mode (a = 0.0) 1/e of its original 

the cavity value (a = 0.0885 S/m) 

TLM theoretical error TLM theoretical error 
% ns ns % 

empty 0.0503 0.0505 0.39 CO CO 

structure of 
7(b) 6 i 

0.0440 1.560 
. g. F 

structure of 
7(a) 6 Fi 

0.0371 0.0369 0.53 0.724 
. g. 

completely filled 0.0321 0.0322 0.31 0.493 0.490 0.61 
with dielectric 
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The time taken for the total power in each of the cavities 

of Fig. 6.7 to decay to 1/e of its original value is shown in 

Table 6.7. A conductivity of a=0.0885 S/m and node separation 

At = 0.3 cm is assumed. In all cases, the initial field excitation 

consisted of equal amplitudes of Ey at each of the nodes, and 

hence the decay time is not to be associated with any one particular 

mode. If the decay time for a particular mode is required, then 

the field configuration for that mode must be found by normal loss- 

free TLM procedures and then the losses introduced after the field 

is established. Table 6.7 also shows the dominant frequency cut- 

offs of Fig. 6.7 cavities for a conductivity of a= 090 S/m (non- 

lossy dielectric). 

6.6 MICROSTRIP CAVITIES 

The general TLS program has also been used to find the 

resonant frequencies of three-dimensional cavities containing 

microstrip. The first microstrip cavity checked on the computer 

corresponded to the structure of Fig. 6.8. In the TLM method, the 

resonant frequency of various lengths, L. of the cavity is used to 

plot the frequency, GHz, versus phase constant, ß, curve shown in 

Fig. 6.8. The result is compared with Mittra and Itoh6.6 and 

Hornsby and Gopinath6.7 in the same figure. The quasi-TEM solution 

for open microstrip line based on Wheeler's curves6.8 is also shown 

for comparison. The frequency versus phase constant curve for the 

quasi-TEM analysis shows no dispersion. This is due to the fact 

that the propagation effect is neglected in such an analysis. 
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The curves of Fig. 6.8 demonstrate the high accuracy of 

the results obtained by this method, even though a very few number 

of nodes (see the figure) have been used to describe the geometry. 

As already pointed out in section 5.6, the dielectric overflow 

over the edges of the strip (due to the boundary difficulties in 

the model) seem to have a very little effect on the outcome. 

Longitudinal field components effect a phase velocity 

decrease with increasing frequency. Therefore, the phase constant, 

ß, and hence the effective permittivity, ceff, increase with 

increasing frequency. ß/ßo = s� 
eff 

describes the frequency 

dependent behaviour of the effective permittivity. Fig. 6.9 shows 

the frequency dependence of eeff for a microstrip cavity shown in 

the same figure. In this figure, the effective permittivity versus 

frequency curve obtained by the TLM method for the various lengths 

of cavity, L, are compared with that given by Itoh and Mittra6.9. 

A full description of the method used in reference 6.9 has been 

given in reference 6.10. Note that the method used in reference 

6.10 by the author, Itoh, differs from that given in reference 6.6 

by Mittra and Itoh. 

In references 6.9 and 6.10 some numerical and experimental 

results have been compared by the authors. From the study of these 

results, it has become apparent that the experimental curve say in 

Fig. 6.9 would lie slightly below the curve given by Itoh and 

Mittra. This will probably mean a higher accuracy for the results 

of this method, since the experimental curve might fall nearer to 

the TLM curve. 
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6.7 INVESTIGATION OF THE LOW-LOSS MICROSTRIP MODE 

It is well known that the dominant mode of propagation in 

the inhomogeneous structures is basically the quasi-TEM mode with 

a d. c. cut-off frequency. However, in reference 6.11 using the 

finite element method of numerical analysis6.12 the author, 

P. Daly, has predicted the existence of a second type of mode also 

with a d. c. cut-off frequency. The particular mode has been 

referred to as "surface wave" due to the heavy concentration of 

all field components near the air-dielectric interface. The 

longitudinal fields for this mode decay rapidly away from the 

interface as in the surface waveguides6.4,6.5. Daly argues that 

due to the smallness of the electric field at the conductor, for 

a given surface resistivity the losses in the surface wave would 

be very much smaller than for the quasi-TEM waves. The same general 

argument would also hold if the dielectric were lossy. 

Dispersion in the surface mode has been shown to be negligible 

compared to that for the TEM mode. This has been correctly argued 

to be due to an almost symmetrical value of longitudinal fields 6.11 

about the interface over a wide range of frequency. These 

symmetrical values in turn will account for a substantially constant 

ratio of the stored average energy in the dielectric to that in the 

air region at sr, over the same frequency range. Consequently, the 

phase velocity will remain practically unaltered at its d. c. value 
(e +1) 
r 

cý 2" 

The importance of the surface or low-loss mode, if it exists, 

is readily apparent from the above discussions. Therefore, with 

this in mind, the possible existence of the low-loss mode was 
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investigated using the present method. For this purpose, the 

exact structure of the example used by Daly6.11 was simulated in 

the computer. This was done in order to directly compare Daly's 

results with the TLM results, since at no time during the extensive 

process of computation for other microstrip structures did we 

come across such a mode. The geometry of the structure is shown 

in Fig. 6.10. For the purpose of representation, in Fig. 6.10 

results are compared for frequency versus phase constant rather 

than frequency versus effective permittivity6.11. Considerable 

care was taken to try to excite the surface mode as suggested by 

Daly6.11. We also deliberately excited the cavities with Daly's 

field values as given in reference 6.11, but as can be seen in 

Fig. 6.10 there has been no resonant frequency corresponding to 

this mode, even though higher order waveguide modes are readily 

detected. (Note that in section 6.4, the same microstrip structure, 

but without the strip, was used to obtain the highly accurate 

surface waveguide mode results. ) 

Fig. 6.11 and Fig. 6.12 show a typical EY -field amplitude 

versus normalised frequency, U/A, for the cavity of Fig. 6.10 

with L=3.75 mm. (The effect of truncating the iteration process 

is to cause the field values, expressed as a function of frequency, 

to be convolved with a sinf/f type curve as shown in these figures. 

This causes smoothing out of high narrow peaks of the output 

function. ) Fig. 6.11 clearly shows the resonant peaks corresponding 

to the quasi-TEN, the first and the second higher order waveguide 

modes. Any resonant frequency corresponding to the surface mode 

would have appeared between the quasi-TEM and the first waveguide 



701 

601 

501 

N ti0 Z 
t7 

C 
N 
c 30 
a, 
LL 

20 

10 

0 

AIR FILLED wave uide mode 

DALY'S SURFACE 
" MODE 

% 
L(rrrn)= QUASI TEM MODE 

" 01.75 L(mm)= 
/ 1.25 

" DIELECTRIC 

2.25 
/ FILLED 

0 

2.75 "/. 

3.25 �"75 

3.75 " 

5-25 4.25 

6.75 
'2.25 b 

® %2 75 

. 3.25 
3-75 

/4-25 
2 -.. l 

/5'25 a =2.0mm 
" 6.75 w=1.0 mm 

"/ H= 1. Omm x 
"b =2.0mm 

z 

0.5 1-0 1.5 
p (mm ll 

2.0 . 
2.5 

FIG. 6.10 Dispersion diagram of enclosed microstrip line 
(a/Aa = 8) 

o This, method (TLM) 
Daly 



O 
C") 
O 
6 

N c 
O co c ö 

U) 
O L+ (1) 

N 
(4 G) ". -I OL 4- 

4-2 a 
cn ai 

N c rnt 
0 ac 41 U) -4 

HO£ If 

LW 
a) CO F. - 

.C1 + Iý .iN Q to cc 
O c0 7 

Lf) m O" 

O 
1 

7U 
C a) 0 N 41 z 10 

+) O 
OEO E 
0) E+W 
O. O7 
CO L[) O' 

NC ". 1 

n 13 On 
CD c (13 S 

"" iH0 
" a co O 1J V) 

W- C) 
(4 10 

. -I O G+ C 
cU r0 0 
U"U U 

". 1 %O QI 
O. N N 

LI) " -l 
O 4) C Co Cl) 

O "14 m L 
a L" C 3. 4i 

O 

O 
rOO0O C) OOOp 

xow431114 31 



Lr) 
r- O 
6 

- ä 
O m ca 

O 3 C) 
m (0 O 

. 13 3 
ä m 

cl) i lß 
O tr nC 
C L4 co 
CU -4 4) 

4 
} 1 

94 -H 

v mN 
O tzN 

-1 -a 
cu 

C4 13 . -i 
OC 13 

4- R1 ". i 
U) 

.7N 
"WO 

NIT a 

rncot M co +1 

L" 3 Q 4- 
4- O O 
O CD U 

tC C 
C+' U c0 
O L+ c 

". 1 4- Co O 
a-1 0 a) U) 
U (n 0) 
0) or) P 
CL -Y 

C 
0) (0 ". 1 m 
CO) 
", +CL m 0 E 
La +) O 
0) CE O) 

O ÖC 
N c0 

r- . -1 0V 4- 
O v rn ". + ti 

a ý Q C3, U) 
N 

10 

OU 

0 

"°w 11c9I/I'A31 

p a) cv uJ R' ;tC; ) (4 r- 
r- 6OOOOOpOO 



- 74 - 

mode resonant frequencies (see Fig. 6.10). Fig. 6.12 shows a 

close-up of this region, but still no sign of a resonance 

corresponding to the surface or low-loss mode. Therefore, we 

have concluded that such a mode is most possibly non-existent. 

The result obtained by Daly6.11 for surface modes might have been 

due to a possible error in the finite element computer program 

routine. 

6.8 MICROSTRIP LINE ON MAGNETIC SUBSTRATES 

In this section, the use of stubs at series nodes (permeability- 

stubs) is demonstrated. It should be noted that the reflection 

coefficients at the boundaries used in two dimensions6.13 are not 

required. This is because the permeability-stubs provide the 

correct properties for a permeable medium as do the stubs at shunt 

nodes (permittivity-stubs) for dielectrics. The results for the 

homogeneous cube cavity in Table 6.2 showed that the TLS method is 

accurate for permeability-stubs and also for a combination of 

permeability-permittivity stubs. 

The method is used to calculate the dispersion relationship 

for a microstrip line on an isotropic magnetic substrate. The 

example is given for a relative permeability of Pr = 0.8 which is 

within a practical range of permeabilities for substrates biased 

along the direction of propagation6"14. The results are shown in 

Fig. 6.13 and are compared with the result obtained by Pucel and 

Masse6.14 assuming TEM propagation. As expected, the results 

agree for low frequencies and the discrepancy between the TEM 

assumption and the true dispersive result obtained by the TLM 

method only becomes important at high frequencies. 
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TABLE 6.6 

Variation of effective permeability 

and effective permittivity with frequency 

Frequency 

(GHz) 

Eeff ueff 

(C r' . 25) (11 r0'8) 
e 

eff. 
u 

eff 

6.57 1.1518 0.9301 1.0713 

7.34 1.1522 0.9431 1.0866 

9.56 1.1601 0.9488 1.1007 

11.30 1.1672 0.9590 1.1193 

13.71 1.1774 0.9680 1.1397 

17.54 1.1891 0,9745 1.1588 
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Pucel and Masse have derived a duality relationship between 

magnetic and dielectric substrates, again assuming TEM propagation. 

This relationship allows calculation of the effective permeability 

ueff in terms of effective permittivity Ceff by the formula6.14, 

1 
ueff(W/Hgu) = eeff(W/Hýu 

Table 6.6 shows how the product ueff. ceff varies with 

frequency for substrates with ur = 0. B(cr = 1) and er = 1.25(ur = 1). 

From the result of Table 6.6 it can be seen that at low frequencies 

the TEM approximation applies since the product is near unity. At 

high frequencies ueff tends to unity and the product then assymtotes 

to eeff" The near linear variation of eeff with frequency suggests 

that the approximate method for calculating ueff used by Pucel and 

Ilasse6.15 yields good results. 

6.9 MICROSTRIP DISCONTINUITIES 

The versatility of both the TLM method and the TLM program 

is further illustrated here by calculating the resonant frequencies 

of cavities containing microstrip with an abrupt change in width. 

Such discontinuities constitute a true three-dimensional problem. 

Only limited amounts of theoretical6.10,6.16,6.17 or experimental6.18 

data on discontinuities in microstrip have been reported, although 

there is extensive data on (homogeneous) balanced strip transmission- 

line6"i9 and coaxial-line6.20 discontinuities. For example, in 

reference 6.16 Farrar and Adams use a matrix method to reduce the 

defining integral equation to an approximate matrix equation in 
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order to obtain the solution of a wide range of microstrip 

discontinuity problems. However, the method is based on the 

quasi-static approximations which assume a TEM mode of propagation. 

The TLM method may be used to analyse microstrip discontinuities 

inside a cavity without making any propagation assumptions. 

Fig. 6.14 shows the geometry of a dielectric loaded cavity 

with a microstrip line. The width of the centre line is non- 

uniform with an abrupt change. Some representative numerical 

results of this geometry are shown in Fig. 6.15. The TLM results 

are compared with a curve calculated by TEM analysis with a 

capacitive discontinuity given by Farrar and Adams6.16. From 

Fig. 6.15, it is apparent that the relative values of frequency 

for short lengths, 2L, of the cavity are considerably loner than 

those computed by the quasi-static approximations. This is partly 

a result of employing the TEM analysis rather than a dispersive 

analysis to calculate the results. The error between the dis- 

continuity curves of Fig. 6.15 is also due to the fact that'in 

reference 6.16 there is no equivalent lumped capacitance to account 

for the fringing field effects between the discontinuity edges and 

the front conducting plane of the cavity (Fig. 6.14). For short 

lengths of L in Fig. 6.14, the fringing capacitance will have a 

comparable effect with that of the discontinuity. Therefore, 

larger discrepancies between the TLM method and reference 6.16 

occur at higher frequencies. 

In Table 6.7, discontinuity results of Fig. 6.15 are numerically 

compared with those obtained by the TLM method for uniform lengths 

of lines. Two extreme cases of uniform line with W=W=0.75 mm 
0 
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TABLE 6.7 

Cavity of Fig. 6.14 

Dominant Resonant Frequency 

Length 
of 

Cavity 
(2L) 

mm 

Farrar & 
Adams * 

2W =1.5mm 
2W =3.5mm 0 

GHz 

3.0 

5.0 

8.0 

10.0 

13.0 

18,060 

11.040 

6,960 

5.580 

4.466 

This 
Method 

2W =1.5mm 
2W =3.5mm 

GHz 

15.480 

10.320 

6.768 

5.556 

4.464 

This 
Method 

2W =1.5mm 
2W =1.5mm 0 

GHz 

16.920 

10.774 

6.996 

5.605 

4.466 

This 
Method 

2W =3.5mm 
2W =3.5mm 0 

GHz 

16.800 

10.704 

6.972 

5.604 

4.466 

* quasi-TEM, open structure 
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and also W= Wo = 1.75 mm for structure of Fig. 6.14 have been 

considered. From this table, it is apparent that the dispersion 

due to the change in line width given by Farrar and Adams is 

virtually negligible up to about 7 GHz (2L > 8.0 mm). Nevertheless, 

it is greater than those of the uniform lines. However, it is 

noticed that at higher frequencies this dispersion is comparatively 

much smaller than the dispersive effect of the lines with no 

discontinuity. Therefore, we conclude that the dispersion due to 

the line itself is far more important than the dispersion due to 

the discontinuity. Hence, a solution based on the quasi-TEM 

analysis of the line would be misleading. 

6.10 COUPLED MICROSTRIP LINE CAVITIES 

Coupled microstrip lines are generally used in microwave 

integrated circuits for making control devices such as direction 

couplers and filters. Hence, for design purposes, accurate 

information on coupled lines in necessary. 

As in the case of microstrip transmission lines, the lowest 

order mode for wave propagation along parallel microstrip lines in 

a homogeneous medium is a TEM mode. When inhomogeneities in the 

dielectric medium are present, the wave propagation is no longer 

TEM due to the different phase velocities in the different media, 

but is of quasi-TEM nature. For sufficiently low frequencies 

the quasi-TEM theory can be employed to obtain the characteristics 

of coupled lines of microstrip (references 6.21-6.23 for example). 

However, at higher frequencies, when the wavelength in microstrip 

line becomes comparable to the transverse dimensions of the line, 

the deviation from quasi-TEM behaviour becomes significant and 
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higher order modes of propagation become possible (see references 

6.24-6.27 for example). The TLM method of 'numerical analysis as 

described in this thesis, falls in the latter category of 

references where it can be used to obtain the dispersive results 

of coupled lines enclosed in a cavity. 

The physical construction of an enclosed coupled pair of 

microstrip lines is shown in Fig. 6.16. Some representative 

results for the structure of Fig. 6.16 are shown in Fig. 6.17. 

The TLM results are compared with Corr and Davies6"24. Corr and 

Davies have used the finite difference methods to obtain the 

dispersion curves. The quasi-TEM solution for open coupled 

microstrip lines based on the design theory given by Akhtarzad et 

a16.23 is also shown in Fig. 6.1? for-comparison. Results of 

Fig. 6.17 indicate a very good agreement between the TLM and 

Finite difference curves for all frequencies shown. 
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6.11 SIX-COMPONENT ELECTROMAGNETIC FIELD DISTRIBUTIONS 

With a slight modification to the general TLM program, 

values of the six components of electromagnetic fields at any 

frequency are readily available at all the nodes inside a cavity. 

This is considered to be important not only for the value of seeing 

the field distribution, but also for the following reason. In 

section 6.5, the results for the power decay times of a number 

of partially filled lossy dielectric cavities were shown. However, 

in all cases the initial field excitation consisted of equal 

amplitudes of Ey at each of the nodes and hence the decay time was 

not to be associated with any one particular mode, but using the 

field distribution information, it is possible to find the decay 

time for a particular mode as explained in section 6.5. 

Figs. 6.18-6.20 show the distribution of the six electric 

and magnetic field components across various planes of microstrip 

cavity in Fig. 6.10. The field values are for a frequency of 

35.59 GH2 corresponding to the dominant mode (quasi-TEN) frequency 

resonance of this cavity with L=2.25 mm. Cross-sections in the 

z co-ordinate direction have been chosen at various distances 

z=t from the front s/c plane of the cavity so that the particular 

fiold components in that plane will exhibit maximum values. The 

general characteristics of the fields are much as would be 

expected, i. e. the fields are mostly concentrated in the dielectric 

and the normal electric fields and tangential magnetic fields at 

or near the strip and the surrounding conductors reach a maximum. 

ýý 
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6.12 DISCUSSION 

This chapter has demonstrated the application of the TLM 

method of numerical analysis to three-dimensional microwave 

cavities. The main advantages of the TLM method are its ease 

or application, its versatility and accuracy. 

The ease of application arises because of the close 

connection between the numerical routine and the actual physics 

of wave propagation6.28. For example, provided the capacitance 

of the lines in the TLM method are increased somehow (by using 

stubs in this thesis) then, because all six components of the 

field are accounted for, the dielectric boundary will also be 

properly accounted for. Thus, there is no need to introduce 

special numerical routines to take account of the boundary. The 

some argument applies to lossy materials (from zero conductivity 

to infinite conductivity) and hence for metallic boundaries also. 

The versatility arises for similar reasons. The properties 

of a medium are described at each node by the two stubs - the 

permittivity and permeability-stub at shunt and series nodes and 

the loss-stub at shunt nodes. The TLM program consists, there- 

fore, of setting the properties of the medium at each node in 

the first instance, and then performing the iteration process to 

find the way in which the fields propagate. Thus, the complication 

of the geometry, in terms of e, u and a is limited only to the 

mesh coarseness and does not affect the program listing. 

The accuracy of the method is mainly dependent on the 

number of nodes used to describe the geometry of a problem and 

also the number of iterations performed. Therefore, the errors 

can bo minimized by using enough number of nodes and iterations6"29. 
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While it is not possible to present formulae for the 

general case, it is hoped that the following figures demonstrate 

that the running time and storage of the TLM method are at least 

comparable with other methods. The first case is for the geometry 

of Fig. 6.8 for L=2.5 mm using 5x9x6= 270 three-dimensional 

nodes (no symmetry properties used) and 200 iterations of the 

matrix. In this problem the running time was 2.16 minutes and 

the total storage was 20 k words. The second example is for 

Fig. 6.14 for 2L = 5.0 cm using 8x8x 11 = 704 three-dimensional 

nodes (symmetry property used) and 400 iterations. Here the time 

was 11.26 minutes using 46 k words. These results are quoted for 

the ICL 1906A computer. 
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7.1 CONCLUSIONS 

The TLM method of numerical analysis in two dimensions, as 

described in chapters 1-3, has proved to be a useful general tool for 

the analysis of waveguide cross-sections and scattering problems. 

The introduction of the loss component described in these chapters 

makes the method very general indeed. The general TLFI program used 

in two dimensions is similar to that described in chapter 4 and is 

applicable to a very wide range of problems simply by using different 

input data. 

The extension of the TLN method to three space dimensions is 

obviously a desirable step and in chapter 5, by introducing the 

series node, the foundation for that extension is provided. Also in 

chapter 5, it is shown how the shunt nodes are used in conjunction 

with the series nodes to form a basic three-dimensional node to 

represent a true three-dimensional space. All six components of the 

electromagnetic field are properly accounted for by the three- 

dimensional model made up of many such basic 3-D nodes. The loss 

component in three dimensions may be introduced into the model in 

a similar manner as in the two dimensions. 

Programming forms a significant part of any numerical method. 

With a proper technique, the programmer will save both computer time 

and storage. This saving could prove to be of great importance when 

limited time or storage, especially the latter, is available on the 

computer. It is perhaps equally important that a new user of the 

program should be able to adopt to it in a short while and also be 

able to feed into the computer the general data on a problem. With 

this in mind, a general purpose computer program based on the analysis 

of chapter 5 has been presented in the same chapter. The merits of 
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this program lies in its versatility and ease of application to 

general three-dimensional cavities. All the information relating to 

a three-dimensional cavity, such as conducting boundaries, strip 

patterns, permeability and permittivity at different points and also 

losses are simply fed into the computer as data. The three-dimensional 

program is an extension of the two-dimensional TLM program introduced 

in chapter 4 and has been written in only 110 lines of FORTRAN 

including three short subroutine programs. 

In chapter 6, a wide range of microwave cavities have been 

analysed using the general three-dimensional TLM computer program. 

The results presented include the resonant frequencies of some empty, 

completely and partially filled cavities, the disper3ion characteristic 

for an open-bounded surface waveguide and the power decay time of some 

lossy dielectric cavities. Also given, are some results for the 

dispersion characteristics of single microstrip line on dielectric 

and magnetic substrates, coupled microstrip lines on dielectric 

substrates and an example of a microstrip discontinuity, namely an 

abrupt change in line width. In all cases where comparisons could be 

made there has been excellent agreement. These results serve to 

demonstrate the ease of application and versatility of both the TLM 

method and the program. They also demonstrate the high accuracy of 

the method. By quoting some actual figures for run time and storage 

requirements of some examples in section 6.12, it is hopedthat these 

figures will demonstrate that the running time and storage of the TLS 

method are at least comparable with other methods. 

The accuracy of the TLII method is due to the sophistication 

of the internodal field function which is used when the Fourier 

transform is taken. In effect, the act of taking the Fourier transform 

puts a section of a sinusoidal function between each node. For 
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example, in a homogeneous rectangular cavity the field functions are 

not solved approximately but exactly. It is for this reason that 

field description errors in the TLM method tend to be less than for 

many other methods. 

The other sources of error in the TLM method are truncation and 

velocity errors (see section 1.4.1). Truncation error is predictable. 

It is associated with mathematical effect of taking the Fourier 

transform of a truncated function. The velocity error is also well 

defined and is dependent on the number of mesh nodes describing the 

geometry of a problem. These errors are minimal for enough number 

of nodes and iterations. A full description of the errors in the 

TLS method has been presented in reference 1.2. 

The surface mode phenomenon of microstrip has been investigated 

also in this thesis (see chapter 6). Although considerable care was 

taken to try to excite the surface mode, there was no resonant 

frequency corresponding to this mode even though higher order wave- 

guide modes are readily detected in this method. Therefore, it was 

concluded that such a mode most likely does not exist. 

Finally, although the TLM method has been applied essentially 

to electromagnetic field problems, it may be adapted to form an 

analysis of other problems such as diffusion. The state-of-the-art 

of the method as explained in this thesis has shown to possess a 

remarkable degree of versatility and affords not only the user with 

a powerful numerical technique, but also the potential researcher 

to develop the method and ideas raised thoughout this project. 
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APPENDIX A 

COMPUTER PROGRAM LISTING 
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MASTER TLM - SINA 

DIMENSION V(4,12,11), IB(11,8), IE(11,7), R(11), VA(11) 
COMMON EH(200) 

C READ IN - LIMITS OF MATRIX 
READ(5,100)NX, NY 

100 FORMAT(4I5, I2,3I1, F10.6) 

C READ IN BOUNDARIES -X MIN, X MAX, Y MIN, Y MAX, 
C BOUNDARY CODE AND REFLECTION COEFFICIENT. 

KB=O 
11 KB=KB+1 

READ(5,100)(IB(KB, M), M=1,8), R(KB) 
IF(IB(K8,1))22,22,11 

22 KB=KB-1 

C READ IN EXCITATION POINTS OR LINES-X MIN, X MAX, Y MIN, Y MAX. 
C EXCITATION CODE AND INITIAL EXCITATION VALUE 

KE=O 
33 KE=KE+1 

READ(5,200)(IE(KE, M), M=197), VA(KE) 
200 FORMAT(4I5, I3,2I1, F10.6) 

IF(IE(KE, 1))44,44,33 
44 KE=KE-1 

C OUTPUT POINT (IO, JO), OUTPUT CHOICE (L) AND 
C NUMBER OF ITERATIONS (NI). 

READ(5,100)IO, JO, L, NI 

C CLEAR THE MATRIX. 
DO 1 J=1, NY 
DO 1 I=1, NX 
00 1 M=1,4 

1 V(M, I, J)=0.0 

C SET MATRIX TO PRESCRIBED INITIAL VALUES. 
DO 2 NE=1, KE 
DO 2 J=IE(NE, 3), IE(NE, 4) 
DO 2 I=IE(NE, 1), IE(NE, 2) 
DO 2 I1=IE(NE, 5), IE(NE, 7), IE(NE, 6) 

2 V(11, I, J)=VA(NE) 

C SET LIMITS OF MATRIX FOR ITERATION PURPOSE. 
NX=NX-1 
NY=NY-1 

C START THE ITERATION PROCESS 
DO 5 IC=19NI 
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C PERFORM BOUNDARY REFLECTIONS ACCORDING TO BOUNDARY CODE AND 
C REFLECTION COEFFICIENT. 

DO 3 NB=19KB 
DO 3 J=IB(NB, 3), IB(N6,4) 
DO 3 I=IB(NB, 1), IB(NB, 2) 
VXY=V(IB(NB, 6), I, J) 
V(IB(NB, 6), I, J)=R(NB)*V(IB(PJB, 5), I+IB(NB, 8), J+IB(N8,7)) 

3 V(IB(NB, 5), I+IB(NB, B), J+IB(NB, 7))=R(NB)*VXY 

C PERFORM NODAL CALCULATIONS. 
DO 4 J=1, NY 
DO 4 I=1, NX 
A=0.5*(V(1, I, J+1)+V(1, I, J)+V(2, I, J)+V(2, I+1, J)) 
V(1, I, J)=A-V(1, I, J) 
V(2, I, J)=A-V(2, I, 3) 
VY=A-V(1, I, J+1) 
VX=A-V(2, I+113) 
V(2, I+1, J)=V(4, I, J) 
V(1, I, J+1)=V(3, I, J) 
V(3, I, J)=VY 

4 V(4, I, J)=VX 

C EVALUATE AND STORE THE REQUIRED INFORMATION (ACCORDING TO 
C IO, JO AND L) FOR OUTPUT IMPULSE FUNCTION. 

GO TO(77,66,55), L 
55 EH(IC)=0.5*(V(1, IO, JO)+V(2, IO, JO)+V(3, IO, JO)+V(4, IO, JO)) 

GO TO 5 
66 EH(IC)=V(3, IO, JO)-V(1, IO, JO) 

GO TO 5 
77 EH(IC)=V(4, IO, JO)-V(2, IO, JO) 

C REPEAT THE ITERATION PROCESS FOR NI NO. OF ITERATIONS. 
5 CONTINUE 

C CALL FOURIER TRANSFORM ROUTINE (OUTPUT). 
CALL OUTPUT(NI) 

STOP 
END 
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SUBROUTINE OUTPUT(NI) 

COMMON EH(200) 

C READ IN- LOSS FACTOR (T). 
READ(59100)T 

100 FORMAT(3F10.6) 

C READ IN FREQUENCY- (AS A RATIO OF MATRIX MESH SIZE TO FREE- 
C SPACE WAVELENGTH) FOR INITIAL VALUE OF Dl UP TO D2, INSTEPS 
C OF DS. 

READ(59100)D1, D29DS 

WRITE(6,1000) 
1000 FORIIAT(///, 19H D EHMOD, //) 

C EVALUATE COMPONENT LINE'S PROPAGATION CONSTANTS USING T. 
R=0.5*SQRT(1. O+T*T) 
RA=O. 0 
IF(T. NE. O. O) RA=6.283184*SQRT(-0.5+R) 
R6=6.283184*SQRT(+0.5+R) 

C PERFORM THE FOURIER TRANSFORMATION. 
0=01 

11 EHRE=0.0 
EHI11=0.0 
UK=EXP(-D*RA) 
U=UK 

DO 1 IC=19NI 
CS=IC*RB*D 
EHRE=EHRE+EH(IC)*COS(CS)*UK 
EHIFI=EHIM-EH(IC)*SIN(CS)*UK 

1 UK=UK*U 

C CALCULATE THE OUTPUT MAGNITUDE (EHMOD). 
EHMOD=SQRT(EHRE*EHRE+EHIM*EHIM) 

C WRITE OUT THE TABLE OF EHMOD VERSUS D. 
WRITE(6,100)D, EHMOD 

C FREQUENCY RANGE EXHAUSTED? 
D=D+DS 
IF(D. LE. D2) GO TO 11 

RETURN 
END 
FINISH 

1 
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PGM TLM - SINA 
DATA 

12 11 
2 3 6 6 1310 1.000000 
3 3 6 6 2401 1.000000 
4 5 5 5 1310 1.000000 
5 5 4 5 2401 1.000000 
6 6 3 3 1310 1.000000 
6 6 2 3 2401 1.000000 
7 11 1 1 1310 1.000000 

11 11 2 10 2401 1.000000 
2 11 10 10 1310 1.000000 
1 1 7 10 2401 -1.000000 
0 0 0 0 0000 0.000000 

10 10 2 10 114 1.000000 
0 0 0 0 000 0.000000 
2 8 1 200 

0.000000 
0.000000 0.025500 0.000500 
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0 EHI00 

0.000000 19.024551 
0.000500 18.138422 
0.001000 15.551606 
0.001500 11.474605 
0.002000 6.249257 
0.002500 0.798801 
0.003000 6.040162 
0.003500 11.929740 
0.004000 17.007356 
0.004500 20.772529 
0.005000 22.811141 
0.005500 22.816568 
0.006000 20.611113 
0.006500 16.160127 
0.007000 9.580175 
0.007500 1.322959 
0.008000 8.956182 
0.008500 19.959823 
0.009000 31.457548 
0.009500 42.850323 
0.010000 53.546449 
0.010500 62.990975 
0.011000 70.698626 
0.011500 76.282550 
0.012000 79.476504 
0.012500 80.149032 
0.013000 78.308840 
0.013500 74.101189 
0.014000 67.795772 
0.014500 59.767082 
0.015000 50.468774 
0.015500 40.403917 
0.016000 30.093294 
0.016500 20.044317 
0.017000 10.725369 
0.017500 2.611763 
0.018000 4.421728 
0.018500 9.571468 
0.019000 13.052634 
0.019500 14.855618 
0.020000 15.094843 
0.020500 13.973539 
0.021000 11.762973 
0.021500 8.781036 
0.022000 5.374936 
0.022500 1.974957 
0.023000 1.853519 
0.023500 4.600752 
0.024000 6.813235 
0.024500 8.257057 
0.025000 8.861718 

NUMBER OF TRANSFERS 100 
TOTAL MILL TIME USED 20 SECS 
MAXIMUM CORE USED 6 THOUSAND 
COMPUTING UNITS USED 2.5 


