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Abstract 

Abstract 

This research concerns weldments in P91 steel and their creep behaviour. Its scope 

covers three main topics: the microstructure and creep response of the (i) weld 

metal, (ii) parent metal, and (iii) the effect of extended thermal exposure and creep 

on the weldments. 

Microstructural examination of the weld metal revealed an inhomogeneous structure, 

with each bead consisting of a columnar region, a coarse-grained region and a fine­

grained region (the latter two regions resulting from heat-treatment of the weld bead 

by deposition of subsequent beads). The columnar regions exhibited high hardness 

whereas the coarse and fine grained regions exhibited lower hardnesses. SEM 

imaging revealed that the precipitate distribution throughout the weld was somewhat 

inhomogeneous, due to inadequate mixing in the weld pool during welding, leading to 

segregation and Iiquation effects. Examination by TEM revealed a fine martensitic 

structure with a distribution of chromium carbides, in addition to Mn-rich inclusions. 

Anisotropy of microstructure was assessed by metallographic examination on planes 

with normals parallel to and perpendicular to the welding direction. Creep tests on 

this material were performed, with the stress axis both parallel and perpendicular to 

the welding direction. Anisotropic creep behaviour was observed and correlated with 

the microstructural anisotropy. Failure life is significantly longer when uniaxial creep 

stress is parallel to the welding direction. The columnar regions of the weld were 

observed to be creep-strong with a low strain to failure whereas the coarse and fine 

grained regions were observed to be creep-weak with a higher strain to failure. 

Microstructural variations within weldments as a function of time and temperature 

have also been investigated. Specimens were aged at five temperatures between 

760°C and 650°C for up to 12000 hours. 

At all exposure temperatures, the parent metal showed little change in terms of fine 

(subgrain) microstructure and hardness. Significant degradation of the weld metal 

microstructure was observed. This consisted of recrystallisation, emanating from the 

weld bead boundaries; in some cases, the recrystallised areas made up 

approximately 40 % of the metallographic section. The hardness of the recrystallised 

regions was typically 170 kgf mm-2
, whereas that of the non-recrystallised areas was 

v 



Abstract 

240 kgf mm-2
. TEM examination of the weld metal showed significant change, in the 

form of transformation of fine martensitic lath structure to larger, more equi-axed 

subgrains. Creep tests of aged crossweld samples showed accelerated minimum 

strain rates and reduced failure lives. 

It was also observed in crossweld specimens creep-tested at three stress levels 

between 70 MPa and 93 MPa that the failure location moved from the fine-grained 

HAZ to the parent at the highest test stress. The HAl failures exhibited extensive 

cavitation restricted to the HAZ, and low failure ductility. The high stress parent metal 

failure, on the other hand, showed high ductility and extensive voiding and grain 

deformation within the parent metal microstructure. 

An assessment of the effect of strain on microstructural evolution has been made. 

This is deemed significant, and strain is believed to accelerate precipitate coarsening 

and martensite recovery processes. 
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Introduction 

Chapter I 

Introduction 

Fast economic growth and technological advancements following the post-war period 

led to a need within industry for the provision of sufficient electrical power to meet the 

growing demand. This saw the construction of a number of power generation facilities 

within the UK. In the mid 20th century, emphasis was placed on developments aimed 

at improving efficiency and reducing costs, but primarily to enable increased capability 

to meet the then accelerating demand for electricity. 

However, since then, the socio-economic climate has changed and places new 

demands on technological advancement to economise limited resources by focusing 

on 'renewable' and 'sustainable' energy sources, as well as managing their 

environmental impact. However, it has yet to be demonstrated that coal and oil-fired 

power generation can be completely and effectively replaced in favour of other 

sources. Therefore, it is crucial that alongside research into novel power generation 

methods, existing power plants must undergo continued development in order to 

address these issues. 

From the point of view of power plant steels, there are a number of key areas within 

which development would be beneficial. These include thermal efficiency, which 

would help achieve reduced emission of greenhouse gasses. Areas for development 

must also include activities which would facilitate more efficient management of 

salvage and repair operations in service, such as welding and joining operations. 

Furthermore, in order to keep existing plants in operation, development should 

address those factors which concern the longevity of the power plants. To facilitate life 

extension, expected design life of plants must be continually improved on. Materials 

development has a crucial role to play in this endeavour. 

There are a number of obvious advantages of continued development which focuses 

on the current power plant ferritic steels, such as the 2~Cr1 Mo, }2CrMoV and P91. 

}2CrMoV and 2~Cr1 Mo, for instance, have been employed for pipe work in coal-fired 

power plants in the UK since the 1960's and have an impressive service life record. 
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As a result, there are large databases of materials and mechanical properties data 

related to creep and corrosion resistance as well as weldablilty. 

Nevertheless these alloys have shown susceptibility to a number of cracking 

phenomena, particularly in the case of welds (Brett, 2003), which invariably have the 

potential to reduce efficiency and/or shorten service life. Welding forms an essential 

part of the fabrication of most large scale components, power plant boilers included, 

and can have a profound impact on structural integrity issues. 

For this reason, ongoing efforts in research and development of power plant steels 

include the development of new alloys. Much of this development work is based on a 

mature understanding of the microstructural facets of creep resistance related to 

existing alloys. This has been possible because of pioneering research within the 

areas of microstructural modelling and life prediction by workers including Hayhurst, 

Dyson, Bhadeshia, Abe, Hald and others. The changes or additions in alloying 

compositions enhance creep resistance, primarily through augmenting the stability of 

strengthening precipitates under service conditions. 

In recent years, a number of international research consortia have been addressing 

the development of power plant steels. These programmes of materials and alloy 

development aim to improve creep and corrosion resistance, and increase thermal 

efficiency. Ongoing research includes that carried out under the auspices of the 

National Research Institute for Metals (NRIM), Japan, by Abe and co-workers. It is 

intended to develop materials which can operate efficiently at 650°C and 350 

atmospheres in a new generation of ultra-supercritical boilers, thus enabling plants to 

operate at -43% efficiency (Abe et al., 2000, Abe et al., 2002). This work includes 

tungsten-strengthened and modified 9-11 Cr steels. This work also investigates novel 

strengthening methods, such as regard the incorporation of Ir, Pd and Ta. 

In Europe, the COST 501-2/ ECSC programme looks at a number of 9-12% Cr steels, 

particularly, E911. Data have been obtained pertaining to microstructural modelling, 

heat-treatments, fabrication and welding and stress corrosion cracking. 

It is with these issues in mind that this work presented in this thesis has been carried 

out, under the EPSRC ESR21 programme, and supported by PowerGen, Innogy, 
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British Energy and Metrode Products Ltd. This work, which began at Nottingham 

University in 2000/2001, not only addresses the sensitivity of microstructural 

parameters during creep exposure, but in its interdisciplinary approach to 

understanding structural integrity issues around power plant pipe welds, also 

incorporates life prediction studies through continuum damage mechanics modelling. 

Focusing on the modified 9Cr ferritic steel P91, this thesis examines both parent and 

weld metals, and how their creep strength and structural integrity are affected by 

processing heat-treatments and service exposure, from the perspective of 

microstructural development. Because P91 is still a relatively new material in this 

application, there is limited availability of service exposed material which can be 

investigated. From this point of view, service ageing will be simulated, based on what 

is already known about how microstructure evolves during service, and by applying a 

number of simplified assumptions. 

3 
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2.1 POWER PLANT STEELS: INTRODUCTION 

Chapter II 
Literature Review 

The 9-12 wt% chromium ferritic steels possess excellent creep resistant properties 

and are ideal for high temperature components used in the coal-fired power 

generation plants. They are preferred to the austenitic stainless steels for a number of 

reasons, including their much lower and therefore more suitable thermal expansion 

characteristics, as well as the possibility of in-situ inspections using ultrasonic 

techniques. In order to produce the optimum combination of strength and toughness 

required, a careful balance is kept between alloying elements. 

However, increasing economic pressures faced by the fired power plant industry, 

coupled with the thermal efficiency requirements driven by recent environmental 

concerns, provide grounds for the need for further development of these alloys. 

Consequently, developments in high temperature power plant component materials 

within the past three or so decades have included solid solution and precipitation 

strengthening, achieved by incorporating alloying elements such as niobium, 

vanadium and nitrogen to the 9Cr-1 Mo steel, creating the ASTM P91 steel. This alloy 

was modified further to create the P92 steel, which has a reduced amount of Mo (0.5 

wt%) and an addition of (-1.8 wt%) tungsten. However, there are reports that these 

modifications have some drawbacks, such as a greater tendency for the formation of 

detrimental intermetallic precipitates with exposure, as well as reduced dislocation 

hardening (Ennis and Czyrska-Filemonowicz, 2002). Figure 2.1 shows the relative 

creep strengths of these alloys. 

Welding of these alloys is a requirement that to date has not been superseded by any 

other joining methods. However, welding, by its very nature, alters the microstructural 

characteristics of parent material in such a way that has a substantial impact on creep 

life of the welded part as a whole. Despite heat-treatment processes applied prior and 

subsequent to welding, it is difficult to achieve failure life values comparable to those 

of the base metal. For example, the creep strength of the material near the weld 

region can be reduced by about 20-25% (Cerjak and Letofsky, 1998a
). Many creep 

failures are reported to have occurred within this region. 
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The service conditions experienced by power plant materials and their welds place 

high demands on their design and structural integrity. For example, the design life of 

steam pipes requires service for more than 250 000 hours at 568°C, 180 bar and up 

to 5000 starts (Wilson et a/., 2000). Because of the complexity and sensitivity of these 

high temperature alloys and their welds, there is the need for utmost clarity and 

understanding of their creep behaviour and its dependence on the microstructural 

state of the material, which itself may change with time. Despite the fact that steels 

such as P91 have remarkable creep resistant properties and are already in use in 

power plants, the development of their microstructures with time, particularly in the 

case of welded parts, is still not fully characterised or understood. 

A number of different approaches have been employed to understanding creep 

mechanisms in steels and high temperature alloys, although information concerning 

the welds of these materials is still scarce. Rheological models, empirical methods 

involving the determination of time-temperature parameters, and more recently, finite 

element analyses have been extremely useful in predicting the service life of steel 

components which operate at elevated temperatures (Reed-Hill, 1994; Nutting, 1974). 

Over the years, however, it has become apparent that the mechanisms underlying 

creep deformation are complex and are inextricably associated with microstructural 

characteristics, such as dislocation mobility, chemical composition and precipitation 

behaviour, grain coarsening and so on. In particular, mechanisms for creep of 

martensite are not well understood. Therefore, the need for life-prediction based on 

laboratory work is very important, especially for the relatively new alloys with which we 

are concerned. For these materials, it has become apparent that short term tests (less 

than 3000 hours) are inadequate (Ennis and Czyrska-Filemonowicz, 2002), due to 

differences in recovery mechanism at high stresses (Kimura et a/., 2000a
; Suzuki et 

a/., 2000). A novel approach involving continuum damage modelling, which accounts 

for the microstructural mechanisms which drive creep damage is now becoming an 

invaluable tool for predictions (Dyson, 2000, Dyson and McLean, 1998). 

In this chapter, these and other recent developments and findings which concern 

parameters of microstructural stability during creep exposure will be reviewed. 

5 
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As indicated previously, the term P91 refers to the 9Cr-1 Mo steel modified to include 

niobium, vanadium, and a controlled nitrogen content. In terms of chemical 

composition, the ASTM/ASME steel P91 (pipe)/T91 (tube) (USA) is defined by details 

given in Table 2.1. (ASTM A213, ASME SA 213, ASTM A 335 and ASME SA 335). 

Grade 91 steels have been designated the codes NF A 49-213 or TU Z 10CDVNb 09-

01 in France, and X1 OCrMoVNb9-1 in Germany and Europe. 

C Si Mn P max S Cr 

0.08-0.12 0.20-0.50 0.30-0.60 0.020 0.010 8.0-9.5 

Mo Ni (max) Nb V AI (max) N 

0.85-1.05 0.40 0.06-0.10 0.18-0.25 0.040 0.030-0.070 

Table 2.1. Chemical composition of Grade 91 steel (wt%). 

2.2.1 Weld metal compositions 

Although similar, weld metal compositions typically differ from those of parent metal 

materials. This is illustrated in Table 2.2, showing typical compositions of a range of 

P91 filler materials. Higher levels of Ni and Mn are often found in the weld. 

Process C Si Mn Cr Mo Ni Nb V N 

GTAW welding 0.10 0.20 0.50 9.0 1.0 0.8 0.05 0.20 0.04 

rods 

Coated stick 0.09 0.20 0.65 9.0 1.10 0.8 0.05 0.20 0.04 

electrodes 

Submerged arc welding 

Wire 0.11 0.30 0.50 9.0 1.0 0.8 0.06 0.20 0.04 

Weld metal 0.11 0.30 0.50 8.5 0.95 0.75 0.05 0.20 0.04 

Table 2.2. Typical chemical composition of Grade 91 weld metal materials (wt%), from 

The T91/P91 Book, V&M Tubes, 1999. 
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Role of alloying elements 

Chromium 

Chapter II 
Literature Review 

It can be seen from Table 2.1 that chromium, the principal alloying element in P91 

steel, is incorporated at levels around 8-9 wt%. As shown later in this chapter, the 

contribution of chromium to alloy creep strength is through the precipitation of Cr-rich 

carbides from solid solution. In P91, the stable chromium carbide in the precipitation 

sequence is M23C6• The creep resistant properties of P91 are attributable to the 

pinning of dislocations and grain boundaries by these secondary phase precipitates. 

2.2.2.2 MolW 

Molybdenum and tungsten are added to such steels for solid solution strengthening. 

About 1 wt% Mo is the norm for the 9Cr-1 MoVNb (P91) type (see Table 2.1), whereas 

the tungsten-modified version usually contains about 0.5 wt% Mo and 1.8 wt% W. The 

Mo and W atoms cause local strains within the matrix lattice and impede the motion of 

free dislocations. There is much evidence of the strengthening effect of MolW on 9-

12% Cr steels, usually demonstrated by an increase in hardness values and creep 

rupture strength (Foldyna et al., 2001; Purmensky et al., 2000; Iwanga et al., 2000). 

For example, the rupture strength of 9Cr steel at 873K was observed to increase from 

20 MPa to 120 MPa for molybdenum concentrations ranging from 0 wt% to 2.7 wt% 

(Foldyna et al., 2001). 

Muraki et al. (2000) have proposed that the addition of Mo extends the transient 

(primary) creep stage. The addition of Mo also has a positive influence on the 

precipitation strengthening mechanism. This is thought to be due to its stabilising 

effect on precipitates (retardation of coarsening), particularly, the M23C6-type. 

The solid solution strengthening effect of MolW can be expected to diminish 

dramatically during creep exposure due to the precipitation of Laves phase (Foldyna 

et al., 2001). However, this cannot be compensated for by increasing the amount of 

MolW in solid solution in the as-received material. This is because the limit of solid 

solubility of Mo in P91 is thought to be about 1 wt% at 600°C (Foldyna et aI, 1991; 

Foldyna et al., 2001). 
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In addition to the above, W-containing steels are said to have slower lath recovery 

rates (i.e. a reduced drive for subgrains to become more equi-axed) (Sawada et al., 

1999; Abe, 2000). It has been suggested by the former authors, that a tungsten­

containing steel (TAF650) possessed a finer lath structure, in addition to a higher 

dislocation density, when compared to the modified 9Cr-1 Mo (P91) steel. It has been 

suggested that lath growth, which has been described as the un-knitting of stacks of 

dislocations on lath boundaries, is impeded by the W in solid solution. 

2.2.2.3 V, Nb, N and AI 

As discussed in a later section, MX precipitates have a crucial role in the 

strengthening of 9-12% Cr steels. Fine vanadium nitride precipitates and niobium 

carbides are formed during initial processing and more are encouraged to precipitate 

by creep conditions (Polcik et al., 1999). In Section 2.3.1, the morphologies and 

properties of these precipitates within the context of P91 microstructure are discussed 

in further detail. This section will address issues around alloy concentrations, etc. In 

recent years, these have become very important from the point of view of the 

formation of aluminium nitride and its effects on creep resistance. 

The concentration of nitrogen in the alloy is believed to be critical in terms of the 

overall creep resistance of the alloy, primarily in the formation of VN. It has been 

observed that AI and Nb nitrides can form in preference to VN, depending on the 

nitrogen/aluminium concentrations (Foldyna et al., 1991; Naoi et al., 1997; Kubon and 

Foldyna, 1995). The morphology of VN is more favourable. Thermodynamic 

calculations by Foldyna et al. (2001) concur that when the weight percent of nitrogen 

is below a certain amount (0.08 wt% in 9CrMoV), its creep rupture strength will 

decrease, if there is a more than 0.05 wt% aluminium and 0.05 wt% niobium present 

in the alloy. This is because AI and Nb form nitrides, using up the nitrogen needed for 

the continuous precipitation of VN particles. 

By varying levels of aluminium (0.003 - 0.094 wt%) and nitrogen (0.041-0.05 wt%), at 

three temperatures, Naoi et al. (1997) have demonstrated that creep rupture life 

decreases with increase in aluminium content. This effect is amplified by increasing 

creep test temperature. The reduction in rupture life as a function of AI-content is also 

more prominent in the low stress (long term) creep condition. 

8 
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Aluminium nitride does, however, have an important role as a grain-refining agent in 

ordinary low carbon steels (Eldridge and Cochrane, 1998). Its grain-refining effect is 

believed to be optimised when the ratio of AI to N is greater than 2: 1. However, this 

same grain-refining effect (of former austenite grain size) is thought to be detrimental 

in 9-12% Cr Steels, as in doing so, it precipitates on the boundaries concerned and 

could cause intergranular failure (Naoi et at., 1997). It is also interesting to note from 

their work that at certain AI-concentrations, NbN and M23C6 nucleate on pre-existing 

AIN precipitates. This is believed to have a coarsening effect, and could be another 

reason for the drop in creep strength associated with high aluminium concentrations. 

2.2.2.4 Boron 

Hattestrand and Andren (1999) have suggested that the presence of boron in the 9-

12% Cr steels is beneficial, as it stabilises the morphology of M23C6 precipitates. It is 

reported that boron-containing steels show lower coarsening rates. The reason for this 

effect remains unclear; however, it is thought to be related to its low solubility in the 

matrix (the boron tends to be concentrated mainly within the M23C6 precipitates, 

enriched near the surface of the particle at its interface with the matrix (Schwind et at.; 

1998)), thus inhibiting diffusion. 

2.2.2.5 Copper 

There is very little documentation on the influence of copper on the microstructure of 

P91 (which can contain up to 0.1 wt% Cu). Hattestrand et at. (1998) have commented 

on its ability to suppress the formation of 8-ferrite in the 10-12% Cr P122-type steel. 

The effect of copper on the microstructure of another 9Cr steel has been investigated 

by Tsuchiyama et at. (2000). The Cu-content was varied from 0 - 4 wt% and the 

presence of copper was shown to be beneficial in that E-CU particles were observed to 

pin dislocations both within and on the lath boundaries. Its retardation effect on 

subgrain recovery was confirmed by creep curves and hardness data. An increase in 

the time to rupture was achieved as the copper content was increased. For example, 

rupture life increased from 10 to 50 ks when 1 wt% Cu was added to the base 

material. The creep strain rate also reduced as Cu-content increased. However, strain 

rate was observed to accelerate at the point at which the applied stress exceeded the 
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pinning force of the E-CU particles. This pinning force reduced as a result of 

coarsening which took place as creep progressed. 

2.2.2.6 Nickel 

The impact of nickel content on a 12Cr steel has been studied by Vodarek and Strang 

(1998). In specimens containing the highest amounts of Ni, the dissolution of M2X 

occurred during creep exposure at 550°C, as did the precipitation of a phase identified 

as M6(C,N). The driving force for its precipitation was said to increase with increase in 

nickel content. M6X is also an unwanted phase due to its relatively high coarsening 

rate and its tendency to precipitate in preference to the more stable M23C6 phase. 

2.2.3 Summary 

It has been shown that the design of the 9-12% chromium steels involves a careful 

balance of alloying elements in order to achieve the optimum creep resistant 

properties under operating conditions. This includes elements which form carbides or 

nitrides during tempering/heat-treatment, as well as solid solution-strengthening 

elements. The concentrations of alloying elements are critical, in order to offset 

undesirable effects, such as Laves phase or aluminium nitride precipitation. For 

example, it has been proposed that the ratio for vanadium to free nitrogen should be 

kept as near the stoichiometric ratio as possible (i.e. 1: 1). 

2.3 MICROSTRUCTURAL FEATURES OF P91 AND 9-12% 

CHROMIUM STEELS 

P91, like other 9-12% Cr steels, possesses a martensitic structure, achieved by 

normalising, quenching and tempering at an intermediate temperature (Honeycombe 

and Bhadeshia, 1995). This process helps to achieve the optimum combination of 

strength and toughness required for the demanding operating conditions. The as­

received material is heated up well into the austenite region (see Figure 2.2), (typically 

around 1040°C). This is then quenched, resulting in a highly supersaturated solution 

of carbon in a-iron. In thin, rapidly quenched plain carbon steel sections, the carbon 

atoms are located at the (001i) type sites, causing a tetragonal distortion to the lattice. 

However, this is hardly achieved in reality, especially in forged thick sections. In this 
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latter case, a hexagonal distortion is more likely to be encountered. Martensite start 

(Ms) and finish (Mf) temperatures for P91 are 400°C and 100°C respectively, (see 

GGT diagram, Figure 2.3). Hardness values after normalising and quenching seldom 

exceed 450 kgf mm-2 (The T91/P91 Book, 1999). The final stage of heat treatment 

involves tempering the alloy. This is carried out at about 750°C for a couple of hours. 

This results initially in the precipitation of Cr-rich M3C particles at lath boundaries. As 

tempering proceeds, this precipitate is replaced by the more stable trigonal M7C3, 

which is eventually succeeded by the complex cubic structure M23C6. These structures 

are explained in more detail in later sections. This precipitation sequence can be 

illustrated as follows: 

Characteristically, tempering reduces hardness to a maximum of about 250 kgf mm-2. 

In the as-tempered condition, as would be expected in low carbon alloy steels, 

martensite exists as laths, about 50 nm wide, arranged with low angle boundaries 

within the former austenite grains, and having a common orientation for the lath axis. 

The martensitic microstructure gives P91 (and other 9-12% Cr steels) a high 

dislocation density. Free planar dislocations are found within the laths, and dense 

three-dimensional networks of dislocations form what is essentially the subgrain 

structure. This gives the advantage of high yield strength and dislocation 

strengthening (Pickering, 1978). 

The microstructure of P91 also consists of a large volume fraction of secondary 

precipitates of carbide or nitride, which vary in size, density and are non-uniformly 

distributed throughout the microstructure (see Figure 2.4). Fine precipitate dispersions 

are found within the subgrain matrix, and larger particles are located along the lath or 

subgrain boundaries as well as former austenite boundaries (Strang and Vodarek, 

1998; Spigarelli et al., 1998). The crystal structure and morphology of these different 

precipitate phases have been identified by the help of electron diffraction analyses 

(Strang and Vodarek, 1998; Spigarelli et al., 1998; Klotz et al., 1999; Cerjak et al., 

2000). In the as-tempered condition, M23C6, M6X and MX are commonly encountered 

thermodynamically stable phases in 9-12% Cr steels. The chemical make-up of these 

particles is also of significance, particularly as it is changed under creep conditions, 

and in turn alters the morphology and stability of the particles concerned. For 
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example, the level of enrichment of Wand Mo in Laves phase can give an indication 

of how much solid-solution strengthening has occurred and therefore an idea of how 

far creep damage has progressed. The chemical compositions of particles are 

sometimes investigated using atomic probe field-ion microscopy (APFIM) (Hattestrand 

et al., 1998; Thomson, 2000; Schwind et al., 1998), and more recently energy filtering 

transmission electron microscopy (EFTEM) Warbichler et al., 1997, Hattestrand and 

Andren, 2001, Korcakova et al., 2001, Hald and Korcakova, 2003). 

2.3.1 Structure and morphology of precipitates 

2.3.1.1 

This carbide is the principal precipitate found in 9-12% Cr steels (Hald, 1996, Vodarek 

and Strang, 2000). M23C6 appears in the early stages of the tempering process, and is 

usually chromium rich (Cr23C6) in P91. Ni, Mo and Fe can also form this carbide 

structure, but Cr carbide is more commonly encountered due to its stability and the 

relative abundance of chromium in the matrix of the steels concerned. Cr23C6 has a 

face centred cubic structure with a lattice parameter about three times that of 

austenite. It grows with a cube-to-cube orientation with the ferritic matrix, and usually 

nucleates at subgrain boundaries and former austenite grain boundaries during 

tempering (Strang and Vodarek, 1998; Sourmail, 2001), but has been known to 

occasionally nucleate at intragranular sites as well (Ennis and Czyrska-Filemonowicz, 

2002). These particles often possess a distinctive geometric appearance when viewed 

by bright field electron transmission (Moitra et al., 2002). Elongated M23C6 particles 

are often observed decorating subgrain and former austenite grain boundaries. M23C6 

particles contribute to the creep strength of P91 by impeding the movement of 

subgrain boundaries under stress, thus counteracting the large driving force for 

martensite recovery under these conditions. They also have good thermal stability, 

which means that their deformation-resistant properties are not impaired at high 

operating temperatures. The presence of M23C6 precipitates along grain boundaries 

delays the onset of tertiary creep (Igarashi et al., 2001). 

2.3.1.2 MX 

Precipitates with the MX stoichiometry (M = metal; X = carbon or nitrogen) are also a 

main feature of the microstructure of tempered martensitic chromium steels. They 
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occur in the presence of strong carbide formers, such as niobium and vanadium. In 

9CrMoV steels, the MX phases tend to be vanadium rich nitrides (VN) and/or niobium 

rich carbonitrides Nb(C,N). MX precipitates are face-centred cubic particles and occur 

as a fine intragranular dispersion about 15 nm in size in the pre-exposure condition, 

but can be as small as 5 nm (Lundin et al., 2000, Miyata et al., 2000) and as large as 

80 nm (Miyata et al., 2000). They form principally on dislocations, stacking faults and 

at times, grain boundaries. MX precipitates also contribute to creep strength by 

pinning free dislocations within the subgrain matrix. For this reason, creep resistant 

alloy design involves using solution heat treatment to dissolve as much MX as 

possible. MX then precipitates as creep (long term high temperature exposure akin to 

tempering) progresses (Hald, 1996), thus impeding further dislocation motion 

(Sourmail, 2001). This phenomenon has been given the term 'latent creep resistance'. 

At this point in the discussion, it is important to mention that there are thought to be a 

number of distinct morphologies of MX. Firstly, the so-called primary or Type I NbX 

phase is relatively coarse, when compared to other MX morphologies, and it remains 

undissolved during normalising treatments (Anderson et al., 2003). There are also fine 

platelets/ discs or rods (VX) and fine spherical particles (NbX), which are believed to 

precipitate during tempering. These are also sometimes referred to as Type II MX 

(tertiary carbonitrides). Finally, another MX morphology has been described as VX 

'wings' which nucleate on the existing spheroidal NbX particles (Type I) during 

tempering (Ennis and Czyrska-Filemonowicz, 2002) and creep tests (Gocmen et al., 

1998; Maruyama et al., 2001). Owing to their differences in morphology and 

thermodynamic stability, differences in creep response (e.g. coarsening rates) can 

also be expected from these different MX structures (Taneike et al., 2001). Homolova 

et al. (2003) have also identified two species of MX precipitate (Nb-rich and V-rich), 

and have suggested that their precipitation behaviour differs. 

Experiments have shown that MX is stable at austenising temperatures (-1050°C), 

and that a substantial amount remains undissolved during normalising (Hald, 1996; 

Jones et al., 1991). It is believed that MX is insoluble within the temperature range of 

600°C to 1240°C (Gocmen et al. (1998), although the authors do not specify the type 

of MX precipitate to which this applies. Anderson et al. (2003) have suggested, based 

on EDX analysis of replicas after heat-treatment, that it is the coarse Nb-rich (NbX) 

species that is insoluble at austenising temperatures. The presence of these 

undissolved MX particles after normalising is able to limit the growth of austenite 

grains and ensure that recovery of martensitic laths during tempering does not result 
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in a massive loss in creep strength. Instead, these precipitates encourage a positive 

contribution to creep strength by tempering. The suggestion by Gocmen et al. (1998) 

that MX is soluble below 600°C would appear to be in conflict with equilibrium phase 

predictions (Hald, 1996) and if true, could be a disadvantage, in view of the fact that 

the operating temperature for P91 is about 568°C. (It would imply that MX 

precipitates, which are crucial for creep strengthening, are not present at the 

operating temperature of the steel). This is worthy of further discussion and will be 

addressed in a subsequent section. 

Anderson et al. (2003) have also commented that it is the fine VX particles in 

particular which bring about the latent creep strengthening mechanism observed in 

these steels. These fine VX precipitates were observed to increase in number after 

creep exposure at 650°C and 90 MPa. Yamada et al. (2001) have stated that in 

relation to other MX types, the VX species is the most stable in terms of size (low rate 

of coarsening). They have also noted that the formation of VX-wings brings about a 

depletion in the fine, stable VX particles and thus reduces the overall amount of MX 

and in doing so, increases the inter-particle spacing. This could be thought of as a 

crude form of coarsening, a process which leads to a reduction in creep resistance. 

Coarsening is discussed in detail in a subsequent section. 

2.3.1.3 Other precipitates 

In the 9-12% Cr steels, other equilibrium precipitates encountered in the as-tempered 

condition include M2X. This precipitate has not been found in tempered P91, but has 

been found in the W-containing E911 steel after isothermal exposure at 650°C (Hald, 

1996). M2X is believed to be an undesirable phase due to its relatively low stability at 

high temperatures. 

Another phase unique to the 12% Cr steels is M6X. This is an f.c.c. carbide. Its 

composition typically follows the Mo-rich stoichiometry (FeCrh1 M03C6 or the Nb-rich 

Fe3Nb3C. 

In both 9% and 12% chromium steels, the precipitation of intermetallic phases during 

creep exposure has been documented. Common to both steel types are Laves phase 

and the Z-phase. The occurrence of Laves is discussed in detail elsewhere in this 

review. Another intermetallic precipitate apparently unique to the 12% Cr steels is the 
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x-phase. x-phase is a body centred cubic phase, with the composition Fe36Cr12MolO, 

which forms on grain boundaries and intragranular dislocations (Sourmail, 2001). 

Apart from findings on the German 12% Cr grade (X22) (Eggeler, 1989), the 

occurrence of X-phase has been reported only in studies of the austenitic stainless 

steels 321 and 316. 

In comparison to Laves phase, not much is known about the Z-phase. Its crystal 

structure consists of a tetragonal lattice with the stoichiometry Cr2Nb2N2; it occurs in 

steels with relatively high nitrogen content (Sourmail, 2001). Suzuki et al. (2000) have 

reported the precipitation of the Z-phase during the creep of 9Cr-1 Mo-V-Nb steels 

which ruptured after 10000 hours. The complex carbonitride is reported to have a 

faster coarsening rate than MX, and is thought to contribute to preferential recovery at 

former austenite grain boundaries. 

2.3.2 Summary 

In general, M23C6 particles are the most commonly encountered precipitates in 9-12% 

chromium steels and make up most of the particles identified during microstructural 

analysis in P91 (Hald, 1996). MX is less frequently encountered in TEM analyses, due 

to its relatively small size and therefore insufficient diffraction contrast within the 

ferritic matrix. However, of those identified, VX (thought to be vanadium nitride) 

particles usually make up about 70% of all MX particles (Sawada et al., 2001, Sawada 

et al., 2003). 

2.4 MICROSTRUCTURAL PROPERTIES OF P91 WELDED 

STRUCTURES 

It has been demonstrated so far that the microstructural behaviour of the 9-12% 

chromium steels is well understood. It has also been shown that creep strengthening 

phenomena, such as precipitation and solid solution strengthening playa major role 

and are principal considerations in the design of these alloys. As well as the demands 

placed on microstructure by creep conditions, there is the additional problem of 

welding, which is an essential fabrication process required for these power plant 

structures. However, welding alters the microstructural characteristics and adversely 

affects creep life of the welded structure (Eggeler et al., 1994; Cerjak and Letofsky, 
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19988
). Although measures are taken to counteract these effects (e.g. residual 

stresses), in the form of post-weld heat-treatment, the weak microstructures 

introduced by the welding process (e.g. the fine-grained heat-affected zone) exhibit 

creep properties many times inferior to those of the base metal under stress levels 

similar those experienced in service. These weak microstructures remain the location 

for many creep failures of welded components. 

2.4.1 The nature of welds 

Fusion welding, by its very nature, introduces inhomogeneity into the structure of the 

weldment, as it alters the structure of the base or parent metal in direct contact with 

the hot, molten weld deposit. The heat generated by the welding arc is transferred into 

the parent metal. With the exception of the weld pool itself, the region of the parent 

material in closest contact with the weld experiences the highest peak temperatures, 

well above the a - y transformation temperature AC3, completely re-austenising the 

microstructure. (According to The T91/P91 Book 1999, AC3 for P91 is in the range 

890-940°C). This region also experiences the most rapid cooling rate from the peak 

temperature, resulting in a coarse (former-austenite) grain structure, and showing a 

relatively low amount of grain boundary precipitation, again, owing to the rapid cooling 

and also because the temperatures experienced are high enough to re-dissolve 

previously existing particles. 

As the distance from the hot weld deposit increases, there is a gradual reduction in 

the former-austenite grain size, as the lower peak temperatures (around the AC3 mark) 

experienced in these regions allow recrystallisation to take place. A region exhibiting 

distinctly fine former-austenite grain structure is created. Temperatures reached, 

although high, are not sufficient to re-dissolve any previously existing precipitates. In 

fact, the thermal conditions are akin to tempering and indeed favour the nucleation of 

new particles and the coarsening of these and the undissolved precipitates. Adjacent 

to this region, peak temperatures experienced during the welding cycle are even 

lower, just above the eutectoid AC1 temperature, as the distance from the weld pool 

increases. (AC1 temperature for P91 has been determined to be between 800-830°C 

on average, although it could be as low as 785°C (The T91 Book, 1999)). Here, a 

mixture of fine, recrystallised grains and the unchanged, coarser grain structure of the 

base/parent metal exist. This is also referred to as the inter-critical HAZ (ICHAZ). 
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2.4.2 Microstructures within the zones of a welded structure 

The welded structure consists of three main microstructural parts, namely the weld 

metal (WM), the heat-affected zone (HAZ) and the parent metal (PM). The previous 

sections of this review have addressed microstructural features common to all three 

zones in general, but specific to the parent metal. Therefore, this section will address 

the unique features of the WM and HAZ. 

2.4.2.1 Weld metal (WM) 

Due to the nature of multipass welding, the as-solidified weld metal structure is usually 

made up of a number of distinct microstructures, brought about by the effect each 

pass has on the previous deposit. The initial run solidifies rapidly, due to the 

temperature gradient between the weld and the substrate, this creates a directional, 

columnar former-austenite grain structure. The columnar grains emanate from the 

base of the weld deposit outwards. A subsequent deposit of weld metal then re­

normalises the region of the previous deposit in contact with it. As the distance 

increases away from the molten material, some recrystallisation is possible, creating 

finer former-austenite grains. These heat-affected structures within the weld metal are 

in effect analogous to the heat-affected zones created between the weld metal and 

the unaffected parent metal. The latter structures are discussed in more detail in the 

following section. A schematic illustration is given in Figure 2. 5. In effect, the weld 

metal becomes a complex structure and within it different responses to creep loading 

can be expected. 

The significance of filler metal composition has been highlighted by recent work (e.g. 

Sireesha et al., 2001 a
). Due to the nature of the thermal exposure to which the filler 

metal is subjected, its as-welded creep strength is often much higher than the base 

metal if their chemical compositions are the same. Furthermore, the weld metal 

structure, unlike the parent metal, is essentially untempered martensite, in the as­

welded condition. This results in a mismatch in creep strength and ductility which can 

result in lower creep life of the crossweld structure. To address the need for this 

careful balance, much work has been carried out to optimise the strength of the whole 

welded structure even if this requires trade-offs in terms of weld metal strength. 
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Generally, non-metallic inclusions often occur in steel welds and serve as nucleation 

sites for acicular ferrite, which can optimise the solidified weld structure. Their 

effectiveness in this role is dependent on size, distribution and the former austenite 

grain size achieved by heat treatment conditions (Easterling, 1992; Honeycombe and 

Bhadeshia, 1995; Sanchez Osio et al., 1996). This is not thought to be applicable to 

P91, as it is a martensitic steel. Nevertheless, the presence of such inclusions in P91 

weld metal structures has been observed (Ennis and Wachter, 1998). There is 

however some evidence that they may also act as cavity nucleation sites and thus 

accelerate tertiary creep. 

t5-ferrite in welds 

Another problem posed by the welding process is the likelihood of retention of 8-ferrite 

during welding. Although its presence is not thought to have an adverse effect on the 

subsequent precipitation sequence (Janovec et al., 1998), large amounts of 8-ferrite 

may have undesirable consequences on mechanical properties. A number of forms of 

8-ferrite have been identified (Faulkner et al. 2003). These include a blocky form, 

located at former austenite grain boundaries, as well as another type detected in 

intragranular sites. The presence of large amounts of 8-ferrite may be detrimental to 

creep strength as it reduces ductility. A link between the retention of 8-ferrite and 

composition is well established. It has been suggested that Chromium Equivalent 

(Creq ) and Kaltenhauser ferrite factors (KFF) values equal to or greater than 10 and 8 

respectively, are likely to amount to the retention of some 8-ferrite during solidification 

(Sireesha et al., 2001 b). The Chromium Equivalent, Creq of an alloy can be determined 

from its composition as follows: 

Creq = %Cr + 2°/oSi + 1.5%Mo +5% V+ 5.5%AI + 1.75%Nb + 1.5% Ti + 0.75%W (wt%) 

[2.1] 

Similarly, the Kaltenhauser ferrite factor (KFF) can be estimated from the empirical 

expression: 

KFF = %Cr + 6%Si + 4°/oMo +8% Ti + 2%AI + 4%Nb - 2°/oMn -4%Ni - 40%C (wt°/o) 

[2.2] 
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The dependence of 8-ferrite formation on composition is also clearly demonstrated by 

the Schaeffler diagram (see Figure 2.6), which is essentially a plot of the Nickel 

equivalent, Nieq against Creq . Ayala et al. (1998) demonstrated that the P91 

composition considered in their studies lies within the martensite stability field, but 

very close to the austenite + martensite + ferrite field. This is thought to be indicative 

of a high potential for 8-ferrite formation, very sensitive to slight compositional 

variations reflected in Creq and Nieq values. The authors have also discussed that, 

based on P91 phase diagram derived using thermodynamic calculations (Figure 2.2), 

the formation of 8-ferrite is very sensitive to heat input (i.e. peak temperatures during 

welding). Heat input, in turn, affects cooling rates, and could result in the retention of 

untransformed ferrite, as the P91 CCT curves suggest (Figure 2.3). 

2.4.2.2 Heat-affected (HAZ) structures 

Detailed microstructural analyses of the intricate structures within real heat-affected 

zones of 9-12Cr steels are very limited in the literature, due to the practical difficulty in 

obtaining precise sampling locations. 

In order to get around this, bulk samples are often produced which replicate the 

microstructures of the various regions within the HAZ. This is done using controlled 

heat-treatments based on the known thermal histories of the different zones and 

simulation by transient heating systems such as the Gleeble technique. This approach 

to the study of HAl microstructures is limited by a number of factors, including the 

lack of insight on the interaction between the different HAl microstructures. 

Notwithstanding these drawbacks, valuable information can be obtained. 

Examples have been published by Matsui et al. (2001). According to their findings on 

the simulated near-AC1 (1123 K) and near-AC3 (1193K) HAl structures of tungsten 

containing 9Cr steel, the low temperature HAl contained the highest dislocation 

density, in comparison to the unaffected base metal. The results also show that 

subgrain recovery following creep at 923 K / 60 MPa was more substantial and more 

heterogeneous in the FGHAl in the base metal. The FGHAl (near-AC3) HAZ was 

found to exhibit the largest M23C6 precipitates. However MX sizes were more or less 

the same in all zones. Hasegawa et al. (1998) have also observed coarse 

precipitation within the (simulated) FGHAl region. The authors believe that these 
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result from precipitates which do not re-dissolve completely during the heat cycle, but 

have suggested that in fact, re-precipitation occurs on these undissolved particles. 

Ennis and Wachter (1998) have concurred that in the as-welded condition, the soft 

(fine-grained) HAZ of a 9% chromium steel exhibits what has been referred to as a 

'weakly tempered martensite structure'. TEM examination of thin foils showed a lack 

of definition in the existing lath structure, as well as an uneven distribution of M23C6 

particles. In comparison to the weld metal, subgrains were larger. 

The Orowan stresses for the coarse- and fine-grained regions of a P92 weldment 

have been estimated by Hasegawa et al. (1998), using their differences in mean inter­

particle distances. (An explanation of Orowan stress is given in section 2.6.1.) For the 

coarse-grained region, this has been estimated to be 13.1 MPa, whilst that of the fine­

grained region is 9.7 MPa. This means that the stress required for dislocations to 

negotiate particles in the coarse-grained region is higher than in the fine-grained 

region, and would explain the accumulation of high strains within the FGHAZ, which 

eventually results in a shorter failure life occurring within the FGHAZ. 

Another theory widely subscribed to in the literature for the tendency for creep failures 

to occur within the weak FGHAZ concerns grain size. Because of the fine grain size in 

this microstructural zone, it has comparatively more grain boundary area. Further, 

because grain boundaries are indeed points of weakness, as well as sites for cavity 

nucleation, it is said that this makes the fine-grained region more susceptible to 

tertiary creep damage. 

Singh (2002) has also characterised simulated HAZ structures for 9% Cr steel and 

stated that the microstructure of the coarse-grained HAZ (heat-treatment 1200-

1300°C) possesses a finer martensitic structure and a higher dislocation density than 

the inter-critical HAZ. The same author also comments that SEM investigations have 

shown that the CGHAZ is relatively denuded in precipitates. This suggestion of 

denudation in precipitates within the CGHAZ would appear to contradict the Orowan 

stress calculations by Hasegawa et al. (1998). This might also suggest that the higher 

'creep strength' of the CGHAZ is attributable mainly to its fine martensitic 

microstructure, and not its precipitate distribution. 

Letofsky et al. (2001) have investigated creep mechanisms within the 'soft' FGHAZ of 

a GX12 steel using primarily EFTEM imaging. Although their weld metal and 
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unaffected parent microstructures looked similar, the GX12 HAZ exhibited subgrains 

larger than those found in the parent metal. In comparison to the weld metal, EFTEM 

images revealed that the HAZ had fewer, but coarser M23C6 and MX precipitates in 

the as-received condition. After creep (600°C, 90 MPa), the number of M23C6 

precipitates was found to decrease within the HAZ, but not in the weld metal. This 

would imply a greater tendency for coarsening within the HAZ. 

These findings agree with investigation on other alloys, e.g. Peddle and Pickles' work 

on a 2.25Cr-1 Mo Steel, (2001). The authors found extensive growth and coalescence 

of carbides in the (fine-grained) HAZ, relative to the parent, and commented that this 

was related to the relatively low toughness in the HAZ. 

Few authors make a clear distinction between the intercritical HAZ (ICHAZ) and the 

fine-grained HAZ (FGHAZ), especially when it comes to identifying failure location. 

This is understandable, as the structures altered by creep exposure can be difficult to 

interpret, particularly by optical microscopy techniques. Moitra et al. (2002) have 

published work involving the simulation of 9Cr-1 Mo HAZ structures which include the 

intercritical microstructures, based on peak temperatures reached during welding 

cycles. This is helpful as it creates a template for the characterisation of the ICHAZ 

region within real weldments. Their work, which includes two near-Ac1 ICHAZ 

structures (lCR1 - 840°C and ICR2 - 870°C) has shown that in contrast to the base 

metal, the ICHAZ did not possess prominent martensite lath structures. In fact, ICR2 

was reported to show a complete replacement of laths by a more equi-axed subgrain 

structure, in addition to exhibiting fresh nucleation of precipitate-free a-ferrite grains. 

In addition, the authors report that although precipitate size was more or less 

unchanged across all HAZ regions, this was not the case for precipitate shape. 

Particles within the ICHAZ had the least angular and the most spheroidal particle 

morphologies. It has been suggested that this is the reason for the highest fracture 

toughness values and ductilities shown by the ICHAZ structures. The CGHAZ 

(1250°C), which exhibited fine martensite laths and dense dislocation structures (from 

their micrographs) showed lowest toughness, whilst the unaffected parent metal and 

FGHAZ (950°C) exhibited intermediate values. It is thought that spheroidal particle 

morphologies, in addition to loss of martensite lath structure (i.e. where the subgrains 

become more equi-axed) enhance ductility and toughness. 

Simulated HAZs, which also clearly distinguish between the HAZ structures, have 

been studied by Tabuchi et al. (2000). In their study of a W-strengthened 11 Cr steel, 
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but in contrast with the work of Moitra et al. (2002), these authors showed that 

although the low temperature AC1 (820°C) HAZ exhibited the lowest hardness, it was 

the fine-grained region (AC3 - 950°C) which showed the poorest definition in terms of 

martensite lath/subgrain structure and incidentally the lowest creep strengths. In fact, 

the FGHAZ possessed a sixth of the base metal creep strength at 650°C for all 

stresses tested, whilst the near-Ac1 structure was similar to the base metal at the 

lowest stress tested (100 MPa) and possessed failure life about half that of the base 

metal in the high stress condition (140 MPa). 

In addition, Cerjak and Letofsky (1998b
) noted from Gleeble simulated HAZ 

structures, that the fine-grained HAl (-900-950°C) had significantly larger and more 

equi-axed subgrains in comparison to the high temperature (1300°C) coarse-grained 

HAl. This would explain why the FGHAZ is more 'creep weak', as creep strength is 

inversely proportional to subgrain size in general terms. Moreover, the fine-grained 

microstructure exhibited relatively limited re-precipitation and coarsening during post­

weld heat-treatment. 

2.4.3 Summary 

It has been demonstrated that the multipass weld metal is a complex structure, itself 

exhibiting a range of different heat-affected structures. The composition of weld metal 

filler, as well as welding parameters, e.g. heat input control resultant solidification 

microstructures and consequently, its properties. 

The welding process also transforms the base metal in contact with it, leading to the 

creation of a range of heat-affected microstructures. 

A general study of literature on the HAls of 9-12% Cr steels, both of simulated and 

real HAls, has shown that there are key microstructural differences as the heat­

affected zone is traversed. These have been looked at in terms of subgrain 

morphology, dislocation density and precipitate distribution. In the sections on creep 

which follow, the manner in which the different zones respond to creep loading will be 

discussed, as well as how the differences may affect creep response of the composite 

welded structure. 
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In broad terms, creep can be described as time-dependent deformation behaviour, 

characterised by increasing strain under constant load. Creep is a thermally activated 

process. Because crystalline materials deform by temperature-sensitive mechanisms 

such as slip and climb of dislocations, as well as grain boundary and bulk diffusion, 

creep rate is particularly sensitive to temperature, as the strain rate escalates with 

increase in temperature. Thus creep obeys the Arrhenius law, and can be expressed 

as follows. 

[2.3] 

where i is the strain rate, A is material-dependent constant, Qc is the activation 

energy for creep, and is constant for a given creep mechanism, R is the universal gas 

constant, and T is the temperature in Kelvin. 

There are three typical stages that occur during creep. This is illustrated schematically 

in Figure 2.7. They are primary creep, secondary (or steady-state) creep and tertiary 

(or unstable) creep. The primary or transient stage, as its name suggests, is relatively 

short-lived, and is characterised by an initially rapid but then reducing strain rate. 

During this stage, the dislocation density increases rapidly, forming subgrains and 

strengthening the material. The effective strain is a combination of both elastic and 

plastic deformation. This is followed by the steady-state stage, where the rate of 

change of strain with time is apparently constant. This is because in theory, the rate at 

which the strain induced creates new dislocations is offset by the rate at which 

dislocations are annihilated due to recovery and other processes. Strain rate reaches 

a minimum during this phase. During steady-state creep in the martensitic 9-12% Cr 

steels, diffusion-controlled structural changes also occur, such as the coarsening of 

secondary phase particles which provide structural stability to the martensitic (sub-) 

grain structure. This damage accumulates as creep progresses, weakening the 

material. Finally, the tertiary stage is characterised by a steep rise in strain rate, and in 

terms of microstructure, is characterised by further coarsening, voiding, cavitation and 

reduction in cross-sectional area (necking). The coalescence of voids leads to the 
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formation of cracks. These changes in the material, in turn, bring about an increase in 

the true stress, eventually leading to rupture. 

The measurement of creep properties usually involves the determination of the failure 

life or time to rupture tr as a function of creep test temperature T and stress (J'. Plots of 

test variables or materials properties (e.g. hardness or dislocation density) can be 

made against time-temperature parameters, thus enabling the extrapolation of creep 

behaviour and life creep prediction. An example is given in Figure 2.8 (Kimura et al., 

1998), where creep test stress is plotted against the Larson-Miller parameter (a term 

for combining the test temperature and the time to rupture of the specimen) for a 

range of ferritic creep resistant steels. 

Each stage of creep is controlled by a number of different mechanisms that occur in 

succession. (The mechanisms themselves are discussed in detail in the following 

section.) These, of course, depend on the material composition and microstructure as 

well as the creep conditions, namely stress and temperature. In broad terms, these 

mechanisms are controlled by two main phenomena, namely diffusional flow and 

dislocation creep. 

Diffusional creep is characterised by the stress-controlled, time-dependent movement 

of vacancies from grain boundaries under tension to those under compression. 

(Vacancies are more easily accommodated near grain boundaries under compressive 

strain, as opposed to those under tensile strain.) This movement of vacancies along 

grain boundaries is referred to as Coble creep, and results in the deformation of the 

grain as depicted in Figure 2.9, and consequently, macroscopic strain in the material. 

This stress-driven flow of vacancies also occurs within grains, termed Nabarro-Herring 

(NH) creep. Coble creep is favoured by low stress, whereas high temperatures and 

low stress are ideal conditions for the NH mechanism. Both mechanisms usually 

occur at the same time: 

. .. 
t: diffusion = t: NH + t: Coble [2.4] 
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Grain size is a controlling factor in both Coble and NH creep mechanisms, but has 

more significance in the case of Coble creep: 

Coble: 

Nabarro-Herring: 

where d is the grain size. 

[2.5] 

[2.6] 

Creep is also typified by the time-dependent movement of dislocations through or 

around obstacles (e.g. precipitates), as well as grain boundary sliding (the latter 

occurs during tertiary creep). As expected, diffusional creep can occur at low stresses, 

provided the temperatures are high enough. However, the movement of dislocations 

does require high stress, and can occur at relatively lower temperatures. Under 

stress, dislocations move onto different lattice planes on encountering secondary 

phase particles, which is referred to as climb. In order for this to occur, 

atoms/vacancies within the crystal lattice concerned must re-arrange themselves (see 

Figure 2.10). This, in turn, involves diffusion and thus dislocation climb is sensitive to 

temperature. Dislocation creep does not involve grain boundaries in the way coble 

creep does; thus, grain size is not deemed an important rate-controlling factor. 

itotal = i diffusion + i .1.. glide / climb [2.7] 

For all creep processes, the Dorn expression applies: 

[2.8] 

where D is the diffusion coefficient, d is the grain size, b is the Burgers vector, k is 

Boltzmann's constant, T is the temperature in Kelvin, G is the shear modulus, n is the 

stress exponent, A is a dimensionless material-dependent constant and p is an 

inverse grain-size exponent. 

Of the three phases observed during creep, the steady-state stage is usually regarded 

as the most important. Because of its stable rate of change of creep strain with time 
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and because it goes on the longest, it is most useful in characterising the creep life of 

a material. The well-known Monkman-Grant relationship states: 

iss x t f = constant [2.9] 

where iss is the steady-state creep rate or minimum strain rate and t, is the time to 

rupture. By plotting iss against t" failure life can be extrapolated. 

Steady-state creep rate has been shown to be dependent on stress and expressed by 

Norton's law as follows: 

£ ex (In [2.10] 

The stress exponent n can be used to describe the steady-state creep behaviour of a 

material, and is derived from gradient of a plot of log steady-state strain rate against 

log cr, thus enabling the derivation of the power law expression from Equation [2.10] 

as follows: 

& = AlT" exp-(;~ J [2.11 ] 

This expression is often referred to as the power-law. At high temperatures, the value 

of Qc has been shown to be very close to the activation energy for self-diffusion QSD in 

many metals (Evans and Wilshire, 1993). However, measured values of Qc have 

indicated that this is not the case in temperature regimes between 0.4 to 0.6 Tm. 

During Coble creep and NH creep, minimum creep rate varies linearly with stress, i.e. 

n -1. n -2 for grain boundary creep, and can be between 3-5 in the case of 

dislocation creep. 

The stress dependency of strain rate in the steady-state phase of creep in a P91 steel 

is clearly depicted in Figure 2.11 from the work of Kloc et al. (1998). The change in 

slope as stress levels exceed 100 MPa is indicative of a transition in mechanism from 
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the viscous creep regime to the power-law creep regime. (The viscous regime 

features primarily Nabarro-Herring/Coble and dislocation creep, where n - 1). 

As expected, the minimum creep strain rate also shows temperature dependence, 

due to the influence of temperature on the diffusion and dislocation controlled creep 

mechanisms described above. These processes are accelerated as temperature is 

increased, leading to an increase in the minimum strain rate. 

2.5.2 Summary 

Creep deformation is a concern for materials for engineering applications which 

require performance under stress and high temperature conditions. These, of course, 

include the power plant steels needed for boiler tubes and pipes. The design of these 

steels, therefore, has to incorporate mechanisms to hinder or counteract the effects of 

creep damage. In the design of creep resistant steels, strengthening measures 

include heat treatment and alloying techniques which introduce obstacles to 

dislocation motion in the form of precipitates or solid solution strengthening. These 

strengthening mechanisms provide resistance to creep deformation in the all 

important primary and steady-state creep regimes. These are addressed in 

subsequent sections. 

Although tertiary creep mechanisms are important, especially in industry, as they form 

a basis of the determination and quantification of creep damage of in-service 

components on a macroscopic scale, this phase of creep is not deemed important 

from the point of view of this thesis. Instead, the focus is largely on the mechanisms 

that characterise steady-state creep. Nevertheless, a brief discussion on the 

microstructural aspects of tertiary creep follows these in Section 2.7. 

2.6 MICROSTRUCTURAL MECHANISMS AND EVOLUTION OF CREEP 

IN P91 AND 9-12% CHROMIUM STEELS 

There are a number of microstructural changes which can be expected in a material 

as a result of creep exposure (in other words, elevated temperature coupled with 

stress). The precipitation of secondary phase particles, precipitate coarsening and the 

redistribution of alloying elements may occur by a number of diffusional mechanisms 
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which are set in motion by creep temperatures and strain conditions. Furthermore, 

recovery processes occur, which lead to reduction in dislocation density. As a result of 

these recovery processes, martensite laths (subgrains) grow and become more equi­

axed. These mechanisms are believed to be enhanced by strain. These phenomena 

will now be examined in more detail. 

Gladman (1998) has discussed the theoretical aspects of the microstructural stability 

of creep resistant alloys from a number of perspectives. A fine dispersion of 

secondary phase particles within the structure reduces dislocation creep rates. The 

ability of dislocations to by-pass these precipitates depends on dislocation climb 

brought about by the creep conditions. However, grain boundary precipitates may act 

as nucleation sites for cavities. 

2.6.1 Precipitate strengthening and precipitate coarsening 

The mechanism of creep strengthening by secondary phase particles, known as 

precipitate strengthening was reviewed by Pickering (1978). In order for mobile 

dislocations to negotiate non-deformable precipitates within the matrix, the applied 

stress must be sufficient to force the dislocations to cut the precipitates or 'loop' 

between them. This critical stress for the latter process is known as the Orowan 

stress, and is inversely proportional to the inter-particle spacing. In other words, the 

higher the number of precipitates, the larger the (Orowan) stress needed to achieve 

dislocation motion around these precipitates. The following relationship illustrates this: 

r = kb * In-.C 
L b 

[2.12] 

where r is the critical resolved shear stress, L is the inter-particle spacing, r is the 

average radius of intersection between particle and slip plane, and b is the Burgers 

vector. 

Precipitates within alloys like the 9-12% chromium steels such as the face centred 

cubic MX structure are often coherent with the matrix after tempering, with low 

interfacial energies around 0.05 J m-2 (Gladman, 1998). The interfacial energy 

between a coherent particle and the matrix within which it is embedded is low. 

(Coherency with the matrix also has the added benefit of high precipitate pinning 
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force. This is because in order for the grain boundary concerned to move, the 

particles must rotate, dissolve or re-precipitate; otherwise their coherency will be lost.) 

An increase in the interfacial energies can occur as a result of loss of coherency 

brought about by precipitate coarsening. (From a thermodynamic perspective, the 

driving force for the coarsening of MX precipitates should be comparatively low as 

coarsening actually increases interfacial energy.) On the other hand, the loss of 

coherency during precipitate growth leads to a reduction in the Orowan stress, since 

coarsening increases inter-particle spacing, thereby allowing dislocations to loop with 

greater ease. 

Increase in mean particle size as a result of creep/thermal exposure (strain and/or 

time at temperature) in these steels is well documented. The coarsening process that 

occurs during creep can be attributed to the 'Ostwald ripening' mechanism. This is a 

thermally induced, time dependent, diffusional process and has been described by 

Nutting (1998) and Gladman (1998) as follows. Ostwald ripening is characterised by 

an increase in mean particle diameter, mean inter-particle spacing and a reduction in 

the number of particles, although the volume fraction remains unchanged. Within the 

microstructure of a material such as the tempered martensitic steel P91, secondary 

phase precipitates over a distribution of particle sizes exist, primarily along grain 

boundaries but also within the subgrains. After sufficiently long exposure at high 

enough temperatures, larger particles grow at the expense of smaller particles, which 

go into solution. Atoms from smaller particles migrate by bulk diffusion through the 

matrix and deposit on larger particles. The driving force for this process is a reduction 

in the total interfacial energy. 

The coarsening process is also time-dependent, as can be seen from the Ostwald 

ripening law: 

where 

d is the mean particle size after creep, 

do is the particle size at t = 0, and 

k is the particle growth rate. 

[2.13] 
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A concentration gradient exists in the matrix, between the elements of the particle that 

are dissolving and the precipitates. Consequently, the solute will diffuse along this 

gradient from small particles to larger particles. This relationship is expressed in the 

Gibbs-Thomson equation 

In(~J = 2rV 
S RT 

where 

Sr is the solute content in equilibrium with a particle of radius r, 

S is the equilibrium solubility, 

y is the interfacial energy, and 

V is the molar volume. 

[2.14] 

Gladman (1998) has gone on to explain that in microalloyed steels, where the volume 

fraction of secondary phase particles is low and randomly distributed, volume diffusion 

of alloy solutes will be much slower than interstitial solutes. Hence, extending the 

Ostwald ripening law (equation 2.13), the rate at which particle size (radius) changes 

with time and temperature i.e. coarsening rate (as derived by Wagner) can now be 

given by 

r3 _ r. 3 = 8 DrVst 
o 9RT 

where 

r is the mean particle radius at time t, 

ro is the initial mean particle radius, 

o is the diffusion coefficient of the rate of limiting species 

s is the equilibrium solute content of limiting species 

y is the interfacial energy, and 

[2.15] 

V is the molar volume (of carbide/nitride per mole of the rate limiting species). 

This solution is limited in cases where volume fraction values for precipitates are low. 

This has led to the introduction of a proportionality constant km, which has the value of 

unity at very low values of V. The rate equation can now be expressed as 

r3 _,.3 = 8K DrVst 
o m 9RT 

[2.16] 
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It is clear that from the above equations that the Ostwald ripening process, expressed 

in terms of increase in particle radius, i.e. r - r03, can be correlated with thermal 

exposure. The time-dependence of the value r - r03 is evident, as it increases as with 

increase in (ageing) time t. 

It can also be seen that the rate of Ostwald ripening is controlled by a number of 

parameters, including interfacial energies of precipitate species (y) as well as 

diffusivities of the solute atoms concerned (0). The value r - r03 will increase if y 

and/or 0 increase. Coarsening is believed to be more rapid and more significant at 

grain boundaries. This is because grain boundaries provide easy diffusion paths, 

allowing the solute atoms to be transported from small precipitates to large ones more 

rapidly. In fact, the activation energy for diffusion along grain boundaries in f.c.c. 

metals is about half that of bulk diffusion (Gladman, 1998). 

Furthermore, the transportation of solute atoms along the core of dislocations (pipe 

diffusion) is exacerbated by the application of strain, as strain implies dislocation 

motion. 

One reason why particle coarsening is detrimental to creep resistance is because it 

diminishes the limiting effect grain boundary particles have on subgrain growth. This is 

because grain boundary pinning is only effective below a critical particle size 

(Honeycombe and Bhadeshia, 1995 pp202). This is demonstrated in the Gladman 

equation: 

r . = 6rof (~_~J-l 
cnt 7r 2 Z 

where 

rerit is the critical particle radius, 

ro is the initial particle radius, 

f is the volume fraction of the particles in the matrix, and 

[2.17] 

Z = RlRo which is the ratio of the radius of the grain in question R to the radius of the 

matrix grains Ro· 
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As discussed earlier, in order for the size of secondary phase particles to increase 

during exposure, the dissolution of smaller particles of the same species occurs in a 

competitive process. As the diffusion of solute atoms to growing particles proceeds, 

the particles increase in size, but reduce in number, and volume fraction remains 

constant (Ostwald ripening). Therefore, in parallel with increase in particle size, an 

increase in inter-particle spacing occurs. This is believed to be the key mechanism for 

the reduction in creep strength during coarsening (e.g. Foldyna et al. (2001 )). This is 

because, by reducing the number of particles, and thus increasing the mean inter­

particle spacing, this effectively undermines the retardation effect the particles have 

on processes such as lath recovery. Furthermore, the mobility of free dislocations and 

their ability to loop between particles (Orowan stress) is enhanced. At the same time, 

the small particles that have now gone into solution have led to the mobilisation of 

formerly pinned dislocations. Consequently, under creep conditions, strain rate is 

accelerated, thus shortening creep life. 

From this perspective, the evaluation of creep resistance or creep damage involves 

the quantification of the mean inter-particle spacing of a distribution of precipitates and 

is usually quantified using the following expression, provided the same species of 

precipitate can be distinguished qualitatively, e.g. with the help of thin foil TEM and/or 

electrolytic extraction techniques (Foldyna et al., 1991; Bianchi et al., 1998; Strang 

and Vodarek, 1998). 

The mean inter-particle spacing of a distribution is given by 

where 

Ii is the mean inter-particle spacing, 

Nd is the number of particles per unit volume, and 

d is the mean particle diameter, as before. 

[2.18] 

There is agreement in the literature that an increase in the mean inter-particle 

distance in a given microstructure will result in a diminishing of creep rupture strength. 

However, there is evidence to suggest that an excessive amount of precipitation could 

also hinder effective creep resistance as well (Tamura et al., 2003). The authors 
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believe that the grain boundaries can be relatively weak in comparison to the interior 

matrix structure if there is an excessive amount of particles present. This conclusion 

was reached whilst comparing low carbon steels consisting of different amounts of 

precipitates. The steel with the highest number of precipitates was found to exhibit the 

longest rupture lives in short term, high stress creep tests. However, this trend was 

reversed at very low stresses. Consequently, creep strength can be impaired. 

Therefore, in the design of creep resistant microstructure, it may be more important to 

optimise, rather than minimise the inter-particle spacing. 

2.6.2 Effects of creep (strain and time at temperature) and thermal (time 

at temperature) exposure on microstructural development 

Foldyna and Jakobova (1984) have determined from empirical data that for M(Crh3C6 

precipitates, the activation energy for coarsening Qc under stress-free conditions (Le. 

isothermal ageing), as expressed by the theory of diffusion controlled coarsening 

Qc 
kd =ko exp-­

RT 
[2.19] 

is 350 kJ mor1. They noted that this is slightly higher than the activation energy for 

diffusion of chromium (343 kJ mor1). The authors believe that under creep 

deformation conditions, Qc is reduced by 20 to 40%. Creep conditions are therefore 

thought to accelerate the coarsening of M23C6. 

In addition to the effects of creep conditions (strain at time and temperature), the 

above authors have identified that coarsening rate is influenced by the volume fraction 

of the dispersed phase. The coarsening rate of M23C6 particles in 12% Cr steel was 

found to be higher than in 9% Cr steel. 

As a rule, MX is believed to have a significantly lower coarsening rate than M23C6 (Oi 

Gianfrancesco et al., 2001; Sawada et al., 2003) although the coarsening of MX is 

also sensitive to and accelerated by strain (Taneike et al., 2001). (The authors 

reported more coarsening in gauge portions of creep test specimens when compared 

to the stress-free grip ends). 

33 



Chapter II 
Literature Review 

Di Gianfrancesco et al. (2001) reported a more rapid coarsening rate in M23C6 

particles within P91, in comparison with MX. Mean M23C6 precipitate size was 

observed to increase from 200 - 400 nm after 10000 hours exposure at 650°C. 

Taneike et al. (2001) have hypothesised that although coarsening occurs in both 

stress-free thermal exposure and creep (strain) tests, the factors which influence the 

coarsening process differ. Firstly, under high stresses, Orowan stress effects 

dominate, whereas in the case of low or no stresses, dislocation climb is the main 

mechanism. 

Sawada et al. (2003) have demonstrated that an increase in pipe diffusion routes 

when strain is applied increases the rate of coarsening. This has a knock-on effect on 

creep resistance. The principal secondary particles present in P91 (namely M23C6 and 

MX) precipitate with a specific crystallographic orientation with the ferritic matrix. As 

mentioned previously, M23C6 has a cube-to-cube orientation with a-Fe as follows 

(Sourmail, 2001): 

{100}a-Fe II {100} M23C6 

(010) a-Fe (010) M23C6 

The coherent VX precipitate also has the following orientation relationship with the 

matrix (Miyata et al., 2000): 

{100}a-Fe II {100}MX 

( 011) a-Fe (010) MX 

An illustration of this relationship is given in Figure 2.12 (after Sawada et al., 2003). 

This means that the effect of an applied strain (up to a certain level) will be to increase 

resistance to dislocation mobility and by this, increase creep resistance. 

It can be seen that any phenomenon which causes a change in this coherency is 

likely to alter strain response. One such change is coarsening. After pre-service heat­

treatments, VX particles are usually of the order of 20 nm or so (Lundin et al., 2000, 

Sawada et al., 2001). The lattice misfit in this condition has been estimated to be 

around 0.55%. Reports suggest that VX grows to about 40 nm or more as a result of 

exposure (Hattestrand and Andren, 2001, Miyata et al., 2000). This is thought to 

increase the lattice misfit and therefore reduce the coherency strain. Similarly, Cr23C6 

has a lattice parameter of 10.6599A (Joint Committee on Powder Diffraction 
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Standards (JCPDS) 35-783), which is about twice that of VN (a = 4.13916 A, JCPDS 

ref. 35-768) and three times that of the ferritic matrix (a = 2.8664A, JCPDS ref. 6-696). 

It can be seen from their lattice parameters that the effect of coarsening on coherency 

will be much greater in the case of M23C6 . As discussed earlier in this review, the 

coarsening rate of M23C6 is much greater than MX. This fact has led to the suggestion 

that the creep strength of these steels is governed principally by MX precipitates 

acting as dislocation motion inhibitors (Miyata et al., 2000). 

Eggeler et al. (1989), having noticed differences in strain and failure mechanism 

between specimens creep tested at different stresses (175 MPa and 80 MPa), have 

suggested that during creep (as opposed to isothermal ageing, where no mechanical 

stress is applied), there is a higher density of (mobile) dislocations in the subgrains, 

and concluded that this results in more effective pipe diffusion routes, which, in turn, 

accelerate precipitate coarsening. 

Hattestrand and Andren (2001) were able to conclude, whilst comparing the 

microstructures of P92 specimens aged with an applied stress and without applied 

stress, that coarsening of M23C6 particles is accelerated by strain, as is the 

precipitation of the intermetallic Laves phase. It is interesting to note, however, that 

the MX particles were seemingly unaffected by the applied stress, but remained 

stable. The authors suggested that the accelerated coarsening of M23C6 was due to a 

solute drag effect whereby migrating dislocations (as a result of the applied stress), 

increase the mobility of the solid solution strengthening molybdenum atoms. Rapid 

particle coarsening under stress is also documented by Orlova et al. (1998
a

). 

The solute drag effect has also been used to explain similar findings by Cui et al. 

(2001). During the short term ageing of a tungsten-containing 10% Cr steel at 873 K 

and 923 K, they observed that the precipitation of Laves phase, Fe2W, was facilitated 

by applied stress (80 MPa). Here, the increased mobility of W as a result of the 

dragging effect of dislocations (described in the previous paragraph) is not being used 

to explain coarsening, but rather is thought to facilitate another diffusion dependent 

process, that is the formation of Fe2W (Laves phase). 

In addition, Taneike et al. (2001) have observed that (MX) precipitates coarsened 

more rapidly and significantly within the (strained) gauge sections of creep test 

specimens in comparison to the grip where stress-free exposure is experienced (see 

Figure 2.13). It can be observed from their work that although coarsening is 
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accelerated within the gauge in the very early stages of creep exposure, the 

coarsening rate in both regions after a small fraction of the total exposure time 

becomes more or less the same. This could be indicative of the fact that during 

constant load creep tests, pipe diffusion reaches a sort of equilibrium, in this case, 

within 500 hours at 650°C/80 MPa, regardless of increasing exposure time (and 

therefore by implication, increasing strain). Based on their findings, Taneike et al. 

(2001) have modified the well-known Ostwald ripening equation to incorporate strain 

effects. This was achieved by incorporating both lattice diffusion and dislocation 

diffusion (pipe diffusion) effects into an 'effective' diffusion coefficient. 

In addition to the coarsening of precipitates by Ostwald ripening, other changes in 

precipitates have been documented in the literature, including the dynamic re­

precipitation of MX during creep (Hald, 1996; Hald and Korcakova, 2002; Hattestrand 

et al., 1998). A clear example is given by Polcik et al. (1999), see Figure 2.14. It is 

clear from their data on P91 material that this process is strongly influenced by stress, 

although re-precipitation also occurs in specimens subjected to stress-free annealing. 

It is also apparent from their work that re-precipitation is a function of exposure time in 

both stressed and unstressed material, and although it occurs throughout the duration 

of exposure, it can be seen to accelerate rapidly after a length of time (in this case, 

8000 h at 600°C). The onset of the accelerated re-precipitation also appears to be 

brought forward by increase in stress. 

It has been suggested that conventional creep testing produces microstructures which 

are not representative of service ageing. The effect of strain (in addition to high 

temperature) on microstructural stability has been studied. Due to these reasons, it is 

now thought that, for the purpose of obtaining data worthy of extrapolation and useful 

for creep life predictions, the benefits of stress-free thermal ageing outweigh those of 

creep tests. With the exception of very low stress creep tests, the microstructures 

created by stress-free ageing give a better picture of microstructural evolution due to 

service exposure (Swindeman et al., 1998; Swindeman et aI, 2000). The changes that 

occur during creep such as coarsening and recovery are diffusion-controlled and 

therefore can be simulated with thermal exposure alone. It is obvious that the added 

effects of high strains, such as added pipe diffusion routes and loss of precipitate 

coherency with the matrix can amplify or alter ageing mechanisms. 
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In addition to the changes which occur in secondary phase particle morphology and 

distributions, changes in martensite lath/subgrain structure during thermal ageing and 

creep are well documented (e.g. Polcik et al., 1999). 

Grain boundaries, by definition, are the interfaces between crystals whose 

crystallographic orientation, lattice dimensions or composition differ. The driving force 

for recovery is the inclination of laths to reduce the free energy of their crystals, 

reverting to subgrains. This process, as expected, is encouraged under ageing 

conditions, where diffusion occurs. The term subgrain refers to martensite laths within 

former austenite grains found in these ferritic steels, which have undergone an 

amount of recovery. 

As well as the diffusion processes which cause the migration of lath boundaries, in a 

quest to reduce their energies, the process of grain growth in alloys, such as P91 is 

very much dependent on the pinning force of secondary phase precipitates. Table 2.3 

describes the driving and pinning forces which control grain growth. 

Driving Pinning 

Zener -2r/R 3fr/2r 

Gladman 2r/R -3r/2Ro 3fr/2r 

Senogles 2r/R -3r/2Ro I 3fr/ 2lj 

Doherty 2r/R-3r/2Ro frRo/2r2 

Table 2.3. Forces controlling grain growth of a grain With radiUS R In a matrix of grains 

of radius Ro (Gladman, 1998). 

According to Gocmen et al. (1998), a high grain coarsening resistance is provided by 

a high volume fraction of secondary phase particles, as is demonstrated by the Zener 

relationship: 

4r 
D oc-

z 3/:, [2.20] 

where Dz is the limiting grain size, r is the radius of the secondary phase particles and 

fv their volume fraction. 
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In the case of martensite laths/subgrains, changes in morphology do not only concern 

size, but also shape. There is a tendency for the fine needle-shaped lath structure to 

approach a more equi-axed morphology; this is driven by a reduction in the high 

amount of stored energy which characterises the unstable, non-equilibrium (lath) 

structure. This is often described by the subgrain shape factor dminldmax; the subgrain 

shape factor depicts the aspect ratio of the martensite laths and approaches unity as 

martensite recovery progresses. 

Orlova et al. (1998a
, b) have investigated the microstructural evolution during the 

ageing of P91 at three different stress levels and commented that subgrain size and 

shape is sensitive to the applied stress level. Indeed the subgrain size d reached 

during creep testing was found by the authors to be characteristic of the applied 

stress, as expressed in the empirically deduced equation put forward by Raj and 

Pharr (1986): 

[2.21 ] 

where k is a dimensionless constant, b is the Burgers vector, G is shear modulus, a 

is the applied stress and m is an exponent related to k. (0)m>2 and k=23 when m =1.) 

Orlova et al. (1998 a, b) also noted that the subgrain size observed was related to time 

at exposure, in other words, the largest subgrains were observed in the specimens 

with the longest exposure times. 

Kimura et al. (1998) have investigated microstructures of 9% Cr and 12% Cr steel in 

terms of the effect of creep stress (and therefore creep exposure time) on 

lath/subgrain morphology. The authors do not tell us the strains at the exact TEM 

sampling positions. Nevertheless, assuming that these are comparable, the 

microstructures of ruptured specimens tested at different stresses and therefore 

different times are markedly different. The fine martensite lath structure is gradually 

lost and replaced by significantly larger, equi-axed subgrains and more coarse 

precipitates as test stress is reduced (from 320 MPa to 60 MPa) along with a 

simultaneous increase in test temperature (from 500°C to 650°C). It is interesting to 

note from their results, that the largest subgrain structure is produced by the specimen 
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tested at the lowest stress (and highest temperature) and consequently the longest 

exposure. 

Kimura et al. (1998) compared the behaviour of 9% Cr and 12% Cr steels, and 

observed that the recovery of subgrains and precipitate coarsening proceed more 

rapidly in the latter. It is interesting to note from their TEM thin foil images, that 120/0 

Cr steel initially possesses the finer (and therefore creep strong) martensitic structure. 

It would therefore appear that this initially creep strong material has a more unstable 

microstructure than the 9°1o Cr steel. Similar observations can be made from work by 

Ennis et al. (1998). The hypothesis put forward by Kimura et al. (1998) on this centres 

on the difference in carbon and chromium contents (higher in the 12% Cr steel) and 

different heat treatments. These explanations are plausible for the initially finer, more 

thermodynamically unstable structure possessed by the 12% Cr steel, which in turn 

gives it its higher driving force for recovery. 

The relationship between lath morphology and creep strain of T91 and P92 has been 

quantified by Sawada et al. (2000). The authors observed, in agreement with Orlova 

et al. (1998 a, b), that the initial lath width do increased steadily during creep until it 

reached a stationary value ds , at which point it ceased to increase with increasing 

stress. The normalised change in lath width, LJ.dlLJ.ds, was found to increase 

approximately linearly with increasing strain, as illustrated in Figure 2.15 (a). The rate 

at which do tended towards ds is said to be dependent on creep stress and 

temperature. In other words, lath recovery is accelerated by temperature and stress. 

They have explained that the dislocations, which form the martensitic substructure, 

are untangled and become more mobile when stress is applied; and this effect is 

amplified when the applied stress is increased. 

An empirical expression has been quoted by Hald and Korcakova (2002) which 

depicts the relationship between subgrain size and creep strain (also incorporating 

dislocation density) as follows: 

logx = logx~ + IOg(xo/xJexi - _s_J l k\OgX 

[2.22] 

x represents either subgrain size CD or the spacing between free dislocations within the 

subgrains P fo.5 , and Xo is the initial value of x before creep exposure. 
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In accordance with Orlova et al., (1998b
) and Sawada et al., (2000), (j) and pjo.s are 

said to approach 'steady-state' values with increasing strain, which are functions of 

the applied stress: 

and 

OJ = 10 Gb 
OCJ 

-0.5 _ 3 9 Gb 
PI - . 

(J" 

[2.23] 

[2.24] 

Sawada et al. (2000) have also observed a linear relationship between hardness and 

lath width (1/d), see Figure 2.15 (b). This could be explained by the fact that an 

increase in d is related to the untangling of dense dislocation networks which 

essentially form the subgrain boundaries, and in so doing reduce dislocation 

hardening effects. 

Cerjak et al. (2000) concur with these findings and also report a more significant 

amount of subgrain recovery in samples which have been aged-only (600°C) (time at 

temperature) than in creep-exposed (strain and time at temperature) 12Cr material 

(110 MPa). 

Similar results have been published by Kimura et al. (2000a). In addition, the authors 

have commented on a distinct difference in recovery mechanism of T91 steel when 

comparing high stress (short-term) creep with low stress (more long-term) creep. Lath 

recovery was said to progress homogenously under short-term, high stress creep 

conditions and heterogeneously under low stress (long-term) conditions. In other 

words, recovery was observed to occur preferentially at the former austenite grain 

boundaries. On the other hand, at high stress, lath recovery occurs homogeneously 

throughout the microstructure. This is in agreement with work by Suzuki et al. (2000). 

The differences between long-term and short-term ageing appear to exist because of 

the impact strain has on the microstructure (which, in turn, affects creep rupture 

properties ). 
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Another observation has been made by Kimura et al. (2000b
) regarding a martensitic 

0.5Cr-0.5Mo steel. It is thought that the effect of initial microstructure of this alloy is 

minimal when it comes to long term, low stress creep testing conditions (which are 

more representative of operating conditions than short-term, high stress tests). 

Tempering leads to a drop in hardness and longer creep lives when tested at 176 

MPa. However, after 80000 hours creep exposure at 59 MPa (at 565°C), structures 

which received a tempering treatment prior to creep testing look similar to those of as­

quenched martensite in terms of subgrain/precipitate size and exhibit similar hardness 

values. There is also good agreement with creep data which suggest that minimum 

creep rates and rupture lives obtained at 59 MPa are similar regardless of prior heat­

treatments. 

It is immediately apparent that these observations pose potential problems regarding 

the extrapolation of short-term creep data, and probably explains the tendency for 

extrapolated data to over-estimate rupture life. In order to address this and to validate 

such assessments, a simUlation model has been given by Polcik et al. (1998) which 

incorporates the strain-dependence of microstructural evolution as fracture is 

approached. This takes into account the impact of strain on dislocation structure and 

dislocation-particle interactions, and by that method accounts for the heterogeneous 

nature of long-term creep evolution. 

The model is based on the deformation under total strain (elastic and inelastic) of a 

composite material consisting of a hard phase with a high dislocation density and a 

soft phase with a low dislocation density. Microstructural parameters include subgrain 

size, mean spacing of free dislocations, particle size distribution and volume fraction. 

Figure 2.16 demonstrates the effect of strain (E) on subgrain size (w). Although the 

calculations are based on particle and dislocation hardening effects, and do not 

incorporate solid solution effects, the authors have shown good correlation with 

experimental data. This has been attributed to the fact that in the low stress (Iong­

term) creep condition, precipitation and dislocation strengthening are the dominant 

parameters. 

The rate controlling process in the recovery kinetics in 9Cr-1 Mo weld metal is thought 

to be the interstitial diffusion of carbon atoms in a-ferrite (Vijayalakshmi et al., 2000). 

This was deduced from an Arrhenius plot of recovery rate (defined here as the rate of 

change of Vickers hardness with time) against 11T, which showed that the activation 
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energy for recovery was about 0.63 eV, similar to that of carbon diffusion in a-ferrite 

(0.8 eV or 80 kJ mor1
). 

2.6.4 Recrystallisation of ferrite 

In martensitic steels, recrystallisation can occur after extended exposure at time and 

temperature (Honeycome and Bhadeshia, 1995). Recrystallisation, which usually 

follows recovery, is characterised by the loss of martensite subgrain boundaries and 

replacement by equi-axed ferrite grains. As with recovery, the driving force is a 

reduction in stored energy. This is seldom observed in the power plant ferritic steels, 

particularly in parent metals. However, there are a number of interesting reports 

regarding weld metals. Cai et al. (1998) have reported the transformation from 

martensite to a coarse, polygonite ferrite structure of 5% Cr ferritic weld metal 

material, following tempering heat-treatments at temperatures ranging between 400°C 

and 750°C for 4 hours. The location of ferrite recrystallisation was believed to be 

related to the weld bead deposits. This may be indicative of the effects of 

compositional variations brought about by the migration of elements in zones which 

experience certain peak temperatures. 

In addition, a study of the fusion zones of dissimilar welds involving a 9Cr steel, 

performed by Sireesha et al. (2001 b) revealed ferrite formation at the fusion 

boundaries The presence of ferrite was attributed to compositional differences 

(particularly chromium and carbon) at the weld joints. 

2.6.5 Redistribution of alloying elements 

It is well understood that the nature of creep exposure conditions brings about local 

changes in chemical composition in the microstructure, regarding secondary phase 

particles as well as the matrix itself. This often results in one or more of the following. 

2.6.5.1 Enrichment of precipitates 

Various analyses have shown that the chemical composition of M23C6 particles is 

altered by creep exposure. Vodarek and Strang (2003) have shown that the 

stoichiometric amount of Cr in 12CrMoVNb increases with creep exposure, which 

occurs as the amount of Fe within the precipitates decreases simultaneously. A plot of 
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the equilibrium weight percent Cr, Mo and Fe, determined from EDX analysis, against 

the Larson-Miller Parameter was derived (see Figure 2.17). 

This trend was also observed by Hattestrand et al. (1998) who recorded an increase 

in Cr-content within the M23C6 precipitates from 50 to 57% after 10000 hours of ageing 

of P92 material, in addition to an enrichment of Mo. This occurred simultaneously with 

depletion of Cr and Mo from the matrix. 

MX, on the other hand, exhibits good chemical stability (Vodarek and Strang, 2000, 

2003). The authors showed that in 12CrMoVNb, the composition of NbX (Nb, Cr and 

V), for example, remained stable in the face of long term creep exposure at 550°C 

and 600°C. 

2.6.5.2 Depletion in solid solution elements in the matrix 

Enrichment of alloying elements which occurs during exposure is usually 

accompanied by a simultaneous depletion in these elements from the matrix 

(Hattestrand et al., 1998). 

2.6.5.3 Precipitation of (intermetallic compounds) Laves phase 

This feature of exposure occurs simultaneously/goes hand in hand with the 

redistribution of solid solution elements discussed above. 

No documentation of the presence of the intermetallic Laves phase in the pre-service 

or pre-exposure condition of P91 or other 9-12% chromium steels are known of. All 

the available evidence points to its presence in these steels being linked to 

thermal/creep exposure. The precipitation of Laves phase during the creep exposure 

of these steels has been reported (Hald and Korcakova, 2002; Korcakova et al., 2001; 

Vodarek and Strang, 2000; Strang and Vodarek, 1998; Spigarelli et al., 1998; 

Sourmail, 2001; Orlova et al., 1998 a, b; Bianchi et al., 1998, Swindeman et al., 1998). 

Laves phase nucleates with an orientation relationship with the matrix, has a 

hexagonal close-packed crystal structure (JCPDS ref: 6-662), with the stoichiometry 

(Fe,CrhMo in aged P91 steels. It nucleates at intragranular sites (Miyata et al., 2000), 

the interface between M23C6 and the matrix, and generally in the vicinity of other 

coarse precipitates (Lundin et al., 2000; Ennis and Wachter, 1998). Laves particles 
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have also been linked with highly faulted structures (stacking faults) (Lundin et al., 

2000, Ennis and Czyrska-Filemonowicz, 2002). 

At what stage during ageing Laves phase actually begins to nucleate is still unclear. It 

has been argued by workers who have studied precipitation behaviour through 

interrupted creep tests, that nucleation does not occur until well into the final stage of 

creep. Strang and Vodarek (1998) reported the formation of Laves phase in 

12CrMoVNb steel only after 18000 hours of ageing at 550°C. 

Thermodynamic predictions of the precipitation behaviour of Laves in P91 show that 

Laves phase can nucleate during thermal exposure between 400-500°C (Hald, 1996), 

see Figure 2.18. Work published by Bianchi et al (1998) calls the accuracy of the 

thermodynamic predictions into question by its evidence of the presence of Laves in 

P91 materials, which have been aged at 600°C and above. Okamura et al. (1999) 

have also reported the occurrence of Laves phase in 9Cr-1 Mo steel after stress-free 

thermal ageing for 3000 hours at 600°C and for 10000 hours at 650°C. 

Moreover, recent work has shown that the kinetics of Laves formation is influenced 

not only by exposure temperature, but primarily by composition. The presence and 

concentration of molybdenum and tungsten are key to this effect (Robson and 

Bhadeshia, 1998). It has been estimated that steels with a molybdenum equivalent (% 

Mo+0.5% W) greater than 1 % will readily form Laves phase. In addition to these 

alloying elements, the concentration of silicon and phosphorus (Bianchi et al., 1998) 

and nickel (Strang and Vodarek, 1998) among others, are also thought to be crucial. 

There is still some disagreement in the literature regarding the effect of Laves phase 

on creep resistance. Its precipitation results in depletion of W or Mo from solid solution 

(Robson and Bhadeshia, 1998). In fact, Miyata et al. (2000) reported that after a 3 

year service exposure of a 12% Cr steel, the Fe2(Mo,W)-type Laves phase particles 

which had precipitated contained 70% of the total wt% MolW present in the material 

composition, implying a 70% decrease in solid solution strengthening material from 

the matrix. It is thought that as well as diminishing the solid solution strengthening 

effect of Mo (and W), this can facilitate the precipitation of MX-type carbides, which 

reduce the mobility of free dislocations, although the mechanism by which this occurs 

has not been proposed. 
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This suggests that the detrimental effect of Laves particles on creep strength could be 

attributed to a number of mechanisms occurring simultaneously, namely: Mo or W 

depletion, resulting in a reduced solid solution strengthening effect; the inefficiency of 

Laves particles in pinning free dislocations or retard subgrain growth, due to their 

coarse nature, as well as their provision of nucleation sites for microcavities during 

tertiary creep. 

In contrast to these hypotheses, some authors have argued that Laves precipitates 

can make a beneficial contribution to creep strength. Hald (1996) concluded from 

calculated time-temperature curves and precipitation diagrams, using thermodynamic 

calculations alongside creep tests, that Laves phase precipitation increases creep 

strength at least in the short term, although the exact mechanism by which it does so 

was not pinpointed. It was also observed from short-term creep test results on two 

alloys containing 1.6 and 0.6 wt% W in solid solution respectively, that creep life 

remains virtually the same. This implies that the solid solution strengthening effect of 

Mo and W could be somewhat less than sometimes reported. 

Furthermore, Abe (2000) reported that the precipitation of fine Fe2W (Laves) 

precipitates produces a strengthening effect during the steady-state creep stage, but 

due to their high coarsening rate, the Fe2W precipitates accelerated creep damage in 

the tertiary region. The author discussed in his report that the net effect of the Fe2W­

type Laves precipitates was not devastating, and was found to be very much 

dependent on temperature and W-content. 

Another argument in favour of Laves phase has been put forward by Schwind et al. 

(1998). This suggests that Laves phase (which has been found to contain high 

amounts of phosphorus and silicon during chemical analyses (Sourmail, 2001; 

Hattestrand et al., 1999) removes phosphorus from carbide/matrix interfaces during 

ageing, therefore reducing the segregation effects, which would otherwise lead to 

embrittlement. 

It would appear that the controversy surrounding Laves is one of different perceptions 

of the 'net' effect on creep response. The relatively rapid coarsening rate of Laves 

phase, in comparison with MX and M23C6 is well documented (e.g. Hattestrand and 

Andren, 2001, see Figure 2.19). Therefore, even if a strengthening effect is realised, 

this will be short-lived, due to coarsening, and could lead to a reduction in creep 

strength in the long term. It is well established in the literature that among the other 
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secondary phases found in these steels MX is most effective in terms of creep 

strengthening due to its low coarsening rate and stability in terms of size and chemical 

composition during creep exposure. In view of this fact, modifications which stabilise 

Laves phase could be beneficial. It has been recommended that alloying elements 

such as boron, which will retard the coarsening of the (Laves) precipitates, should be 

incorporated (Hald, 1996; Hattestrand and Andren, 1999). 

2.6.6 Softening 

In recent years, hardness testing has become accepted as a means of measuring 

creep damage. The strain dependence of hardness in elastic-plastic solids means that 

resistance to deformation under constant load can be correlated with creep 

resistance. Indentation techniques have been used to evaluate creep strength 

(Nutting, 1974; Orlova et al., 1998b
; Bianchi et al., 1998; Cerjak et al., 2000). 

Microhardness measurements have been taken in-situ to evaluate creep damage of 

components in service (Allen and Brett, 1999). 

It is well understood that hardness is a function of the yield strength of material. The 

yield strength of these steels can be correlated with microstructural parameters such 

as dislocation hardening, (sub)grain size and secondary phase particles. These 

parameters are also associated with creep strength. 

Townsend et al. (1998) have depicted this relationship during creep based on the well 

known Dorn expression which defines creep strain rate: 

[2.25] 

where A is a temperature dependent term, and the effective stress (Jeff is the 

difference between the applied stress a and a threshold term ao associated with 

particle-dislocation interaction. ao is inversely proportional to the inter-particle spacing 

A as follows. 

a'J.1b 
(J =-­

o A 

where a' is a constant, f-L is the shear modulus and b the Burgers vector. 
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The authors have considered coarsening, a phenomenon which changes inter-particle 

spacing (discussed in Section 2.6.1), described by the equation 

where 

d is the mean particle size after creep, 

do is the particle size at t = 0, and 

k is the particle growth rate. 

For constant volume, 

d=GA 

where G is a geometrical constant. Taking account of this, now gives 

[2.27] 

[2.28] 

[2.29] 

Therefore the following expression can be derived for instantaneous creep strain rate: 

i = A(T) CY _ a'J.1b [ I
n 

(A~ + k(T)t r [2.30] 

This equation clearly illustrates how creep strain rate is dependent on inter-particle 

spacing. The threshold stress is associated with hardness in this way: 

[2.31] 

where K defines the relationship between hardness and tensile strength, a' is a 

geometric term, H is hardness and Hss is the contribution to hardness due to solid 

solution strengthening. 

Thus, incorporating primary creep and strain softening, Townsend et al. (1998) have 

derived the following expression: 

. . [CY - Ka'(H - HsJ]n m 
£=£ £ 

o KH [2.32] 
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Because of the correlation between hardness and creep strength, plots of hardness 

against creep life assessment parameters, e.g. Larson-Miller (as in Bianchi et al., 

1998) are useful tools in prediction/extrapolation of creep behaviour. 

The observation of softening as a function of creep is well documented in the literature 

and is an invaluable indicator of creep damage, particularly within the heat-affected 

zone of weldments (Strang and Vodarek, 1998; Orlova et al., 1998b
; Bianchi et al., 

1998, Cerjak et al., 2000). In addition to a general drop in hardness as a result of 

creep, Orlova et al. (1998b
) have reported a difference in hardness values between 

materials undergoing creep and failed creep specimens. In the former type of test 

specimen, hardness values were seen to fluctuate about a mean value along the 

gauge length of the creep specimen, whereas the latter showed a more or less 

constant hardness value along the entire gauge length, in addition to increase in local 

strain. 

The softening of these steels during creep has been attributed to particle coarsening, 

grain growth and cavity formation (Polcik et al., 1998), in agreement with the model 

given in the work by Townsend et al. (1998). An additional reason for softening during 

creep exposure is related to changes in the dislocation networks and subgrain 

structure, in other words, the recovery of the martensitic lath structure with strain 

(Sawada et al., 2000). 

Furthermore, nano-indentation techniques have been used to demonstrate that the 

reduction in hardness is linked with the depletion of solid-solution strengthening 

elements Mo and/or W during creep (Komazaki et al., 2000). 

In contrast to these theories, there is some documentation in the literature of increase 

in hardness as a function of creep. This has been attributed to the possible 

precipitation hardening effect of Laves and other intermetallics that appear during the 

ageing process. Foldyna et al. (2001) have reported an increase in hardness at the 

start of Laves phase precipitation, which drops as creep progresses. They have 

offered the very plausible explanation that the initial increase in hardness by any 

precipitation hardening process is quickly cancelled out and taken over by the 

softening effect caused by the rapid coarsening rate of Laves phase. Hardening 
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during creep could also be attributable to secondary re-precipitation of MX, although 

hardening achieved in this way might be short-lived, as it is expected that this effect is 

soon cancelled out by other progressing creep damage mechanisms like coarsening. 

So far, the relationship between hardness and creep strain has been examined. 

However, it is also well documented that softening accompanies stress-free ageing. 

Thermal exposure, because it permits diffusion controlled processes like coarsening, 

also causes change in inter-particle spacing in a way similar to that observed under 

creep (strain) conditions. 

2.6.7 Thermal exposure and creep response of welded structures 

Creep behaviour is made more complex by the variety of microstructures introduced 

by multipass welding. For example, aspects of microstructure which determine creep 

strength such as grain size, morphology and precipitate size and distribution vary 

across heat-affected zones. In effect, a welded structure behaves as a composite 

material, as its constituent microstructural regions exhibit different creep responses. 

A number of approaches are commonly taken in order to understand the behaviour of 

the different microstructures created by welding. One is to isolate the different 

structures (usually by producing microstructures based on 'simulated' thermal 

histories) and subjecting them to creep testing. Examples of this kind of approach 

have been discussed in the preceding section. Another approach is to subject 

crossweld specimens to creep tests under different stress and temperature conditions. 

Impression creep tests also provide invaluable information on the responses of these 

materials to loads and exposes fundamental differences in their steady-state 

behaviour. The drawback of the former method is its inability to account for 'interaction 

effects' between the different zones. 

The occurrence of the so-called Type IV failure in chromium steels is well documented 

(e.g. Brett, 2003). Although there is general agreement that these failures occur in the 

low temperature HAZ, there appears to be a degree of confusion between Type IV 

and inter-critical HAZ failures, as these zones are not often distinguished in the 

literature. As discussed in Section 2.4.2, there are clear microstructural differences 

between these zones. Factors controlling failure location could include applied stress 

levels, as well as the sizes of the zones. 
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The Type IV failure has been attributed to high levels of local strains concentrated 

within the highly ductile fine-grained region (Hasegawa et al., 1998; Parker and 

Stratford, 1996). The latter authors recorded local strains within this region of between 

20-30% in failed 1.25Cr-0.5Mo/0.5CrO.5Mo steel weldments tested between 45-162 

MPa at temperatures ranging from 580-670°C. 

2.6.7.1 Hardness 

Many authors have reported that hardness profiles across crossweld joints reach a 

minimum value within the HAZ (Cerjak and Letofsky, 1998a, b; Hahn et al., 2003). 

Figure 2.20 depicts one such hardness profile across a tungsten strengthened 9Cr 

steel weldment joint (Matsui et al., 2001). This shows a hardness minimum within the 

heat-affected zone. The low hardness within the fine-grained HAl could be 

attributable to its greater degree of precipitate coarsening and low dislocation density. 

Hasegawa et al. (1998) have concurred with other authors on the subject that this dip 

in hardness, which occurs in the fine-grained part of the HAZ, is lower than the 

unaffected parent metal hardness. However, it is interesting to note from their work 

that this difference in hardness between the parent metal and FGHAZ did not increase 

with increase in exposure temperature, but in fact decreased. In fact, the dip observed 

in the FGHAZ disappeared after exposure at 600°C. 

Due to the chemical and microstructural inhomogeneities found in the weld metal part 

of welded structures, it can be expected that thermal exposure and creep could 

enhance any pre-existing segregation effects, perhaps leading to diffusion of carbon 

and other alloying elements to a much greater extent than would be seen in the parent 

metal. There is very little on this in the literature. Work by You et al. (2001) 

demonstrates the effects of chemical differences on structures brought about by 

thermal exposure. However, in this case, the chemical differences were those 

introduced by dissimilar welds. The growth of pre-existing soft ferritic zones at the 

fusion boundaries of dissimilar weldments (9Cr-1 Mo + other alloys), after heat 

treatment at 720°C for up to 72 hours was observed. The soft ferrite microstructure 

was thought to be denuded in carbon and its growth was encouraged by localised 

depletion in chromium. 
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Shiue et al. (2000) have reported the precipitation of ferrite at the grain boundaries of 

9Cr-1 Mo weld metal following tempering at 750°C for 1 hour. The precipitation of pro­

eutectoid a-ferrite within 9Cr-1 Mo steel after 500 hours exposure at 950°C has also 

been observed by Vijayalakshmi et al. (2000). However, it is not clear if these authors 

refer to the type of soft-ferrite discussed in the previous paragraph. The implications of 

this soft ferrite on mechanical/creep properties of the weldment could include localised 

increases in ductility, leading to further mismatches in strain accumulation during 

creep exposure. 

There is ample evidence in the literature that the parent (base metal) structure of 9Cr 

alloys and similar steels maintains its microstructural stability in spite of extended 

exposures at high temperatures. Vijayalakshmi et al. (2000) comment on parent metal 

stability relating to lath/subgrain structure and precipitate morphology after 250 hours 

at 550°C, whilst supporting evidence (Okamura et al., 1999) pertains to Vickers 

hardness measurements after up to 10000 hours at 600 and 650°C. Although the 

weld metal part of the welded structure is characteristically harder than the parent and 

HAZ in the pre-exposure condition (Vijayalakshmi et al., 2000; Cerjak and Letofsky, 

19988
, b), weld metal hardness data points often show a larger degree of scatter, as 

well as a more significant drop in response to thermal exposure and creep (Okamura 

et al., 1999). 

Vijayalakshmi et al. (2000) have also observed that the hardness variation across 

weldments was sensitive to exposure temperature, and that as exposure temperature 

was increased from 550°C to 750°C, the differences in hardness between the 

microstructural zones became less significant. 

2.6.8 Microstructural aspects of tertiary creep 

This progresses far more rapidly than the two preceding phases, and is characterised 

by increasing strain rate, necking, voiding and fracture. 

2.6.8.1 Nucleation, growth and propagation of cavities 

At operating temperatures, cavitation encouraged by diffusion processes is thought to 

be the mechanism which brings about rupture. It is thought that high temperature 

alone, because of its effect on the diffusion processes, is sufficient to bring about 
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growth of cavities, in the absence of strain. Eggeler et al. (1989) carried out 

interrupted creep studies and found cavities to be present at strains as low as 1 %. 

Nevertheless, there is ample evidence of the added effect of strain on creep failure. 

As creep progresses, a proportional relationship can be observed between cavity 

population and strain (see Figure 2.21). 

Eggeler (1989) noted that optical microscopy was inadequate in revealing tertiary 

creep damage. However, SEM micrographs showed evidence of microcracking and 

severe cavitation in the aged and crept specimens, mostly on former austenite grain 

boundaries perpendicular to the stress axis. It was also noted that the additional 

intermetallic Laves phase formed as a result of long-term creep. 

2.6.8.2 Occurrence of cavities and failure causing defects 

Rigid inclusions can provide nucleation sites for cavities. Evidence for this can be 

found from fracture surface studies (Eggeler et al., 1989; Hull, 1999; Long et al., 1999) 

where, alloys like P91 for instance, show plastically formed hollows (or dimples) in 

which small spherical particles, often exogenous inclusions in the case of welds, can 

be found to sit. 

It has been suggested that the much debated intermetallic Laves phase, is detrimental 

to creep strength for a number of reasons, one being its ability to act as a site for the 

nucleation and subsequent growth of cavities (Komazaki et al. (2000). This is 

surprising as in most 9Cr steels containing modest amounts of Mo or W, Laves 

particles are seldom found on former austenite or subgrain boundaries (where cavities 

occur), but are most often located in the matrix, within the (sub-)grains (Abe, 2000; 

Miyata et al., 2000, Sourmail, 2001). 

This would suggest then, that other secondary precipitates, in particular M23C6, are 

capable of the same effect. There is no direct evidence in the literature to support this 

possibility. However, there is ample evidence that cavitation occurs at former 

austenite grain boundaries, particularly those normal to the axis of applied stress 

(Hull, 1999; Cans et al., 1994). Eggeler (1989) has discussed that during creep, there 

is a diffusion-controlled movement of matrix atoms from regions of high 

chemical/thermodynamic/mechanical potential (i.e. grain boundaries parallel to the 

axis of applied stress) to areas of low potential (grain boundaries perpendicular to the 

stress axis). This results in the depletion of secondary particles from the grain 

52 



Chapter II 
Literature Review 

boundaries parallel to the stress axis, and the accelerated coarsening of particles at 

the boundaries perpendicular to the axis of creep stress. 

The suggestion that secondary precipitates act as nucleation sites is of particular 

concern in alloys like P91 , which derive their impressive creep strength characteristics 

from their heterogeneous microstructure, made up of a range of secondary 

precipitates. It is the coarsening of these precipitates, as a result of ageing and creep 

processes, which is detrimental to creep strength, as it results in a reduction of the 

number of particles thus increasing inter-particle spacing. This damage takes effect in 

the primary stage and secondary stages of creep. As discussed earlier, creep strength 

is derived from the immobilising effect on dislocation motion by secondary phase 

particles. It follows then that these changes in the morphology adversely affect creep 

resistance. 

In order for cavities to grow, the surrounding matrix must be undergoing creep 

processes at the same time, referred to as 'constrained cavity growth' (Eggeler, 

1989). The manner in which creep cracks grow is related to the microstructure of the 

material concerned (Cans et al., 1994; Yokobori et al., 2000). It is often not a 

straightforward case of steady crack growth as failure is approached. 

2.6.9 Summary 

Following a review of the basics of creep deformation in Section 2.5, this review has 

addressed those microstructural phenomena which typify exposure (time and strain at 

temperature). These included precipitate coarsening, a diffusion-controlled process 

which leads to an increase in inter-particle spacing, thus diminishing the inhibition 

effect of secondary phase-particles on dislocation creep. The recovery of martensite 

was also discussed, and its effect on lath structure and the annihilation of dislocations. 

These changes were shown to be related to softening often observed as a result of 

time at temperature. Finally, the accumulation of these microstructural changes leads 

to macroscopic creep damage during tertiary creep and final failure. 
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Figure 2.1. Stress rupture strengths of the currently used and newly developed power plant 

steels, after Ennis and Czyrska-Filemonowicz, 2002. 
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Figure 2.2. P91 Phase diagram (Ayala et aI., 1998). C1 and C2 represent M23C6 and MX 

precipitates respectively. 
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Figure 2.3 Continuous cooling temperature (CCT) diagram for T/P91 (Hahn et a/., 

2003). 
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Figure 2.4. Schematic representation of non-uniform precipitation states in tempered 

9-12% Cr steels, after Gocmen et a/., 1998. 
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Figure 2.5 (a). Schematic diagram of the various sub zones within a single run (i) and multi­

pass weld (ii) deposit, Coleman, 1979. 
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Figure 2.7. Schematic illustration of a typical 'creep curve', indicating the three phases. 
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Figure 2.9. Schematic representation of diffusional creep processes, showing the 

stress-controlled flow of vacancies from regions of tension to compression. 
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Figure 2.11. Stress dependency of strain rate in the steady-state phase of creep, Kloc 

et al. (1998) . 
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Figure 2.12. Schematic diagram illustrating the crystallographic orientation relationship 

between VN and a-Fe, from Sawada et aI., 2003. 
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exposure. 
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In this chapter, the various experimental ideas and methodologies are discussed. 

Brief descriptions of laboratory procedures and techniques employed are also given. 

3.1 MATERIALS 

As mentioned in the previous sections, the material investigated in this work is the 

modified 9CrMoVNb steel, also known as P91. The cast of P91 (BAR 257) was 

provided by Innogy, Swindon, UK. Welded structures were prepared using matching 

P91 filler, supplied by Metrode Products Ltd., Chertsey, UK. Compositions are given 

in Table 3.1. 

C Mn Si N Cr Mo Ni Cu V AI Nb S P 

P91 parent 0.12 0.47 0.25 0.03 8.18 0.96 0.17 ? 0.19 .027 .08 .008 .007 

Chromet 9MV .087 1.04 0.28 0.04 8.6 1.02 0.24 0.03 0.22 ? .08 .009 .013 

Weld 

consumable 

Table 3.1. Chemical compositions of parent and weld filler materials / wt%. 

3.2 WELD PAD AND WELDMENT PREPARATION 

3.2.1 The initial weld pad 

In order to understand the properties of the weld metal in isolation from the welded 

structures, thus obtaining information on creep strength etc, an initial multi-pass weld 

pad was produced by Metrode Products Ltd. (Chertsey, UK) using the manual metal 

arc (MMA) method. Specimens for creep testing were removed from two orientations: 

transverse and longitudinal with respect to the welding direction, see Figure 3.1 
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Two trapezoidal grooves 32 mm wide and 22 mm deep were made within a disc 

(diameter 257 mm, thickness 50 mm) of normalised, quenched and tempered grade 

91 steel (see Figure 3.2), supplied by Innogy, Swindon, UK. These grooves were then 

filled with a matching 9CrMoNbV weld metal (Chromet 9MV, Metrode Products Ltd, 

Chertsey, UK) consisting of a low carbon steel core and a flux coating containing the 

alloying elements. A multi-pass weld was produced by a manual metal arc (MMA) 

technique. Following the deposition of the weld metal (WM), the structure was post­

weld heat-treated (PWHT) at 760°C for 3 hours. A photograph of the weldment is 

given in Figure 3.3. 

3.2.3 Strain-free ageing heat-treatments 

Small rectangular sections of crossweld (6.6 x 6.7 x 35 mm with the long axis 

perpendicular to the weld-parent boundary and the WM making up approximately half 

of the sample, see Figure 3.4) were then removed and sealed in evacuated silica 

ampoules in order to minimise any oxidation. The specimens were then subjected to 

ageing heat-treatments at a range of times and temperatures as shown in Table 3.2. 

Equivalent times for ageing at different temperatures were determined based on the 

self-diffusion characteristics of a-Fe (Honeycombe and Bhadeshia, 1995). Details are 

provided in the following sub-section. The heat-treatments were carried out in air in 

muffle furnaces. 

3.3 DESIGN OF ACCELERATED THERMAL AGEING EXPERIMENTS­

METHODOLOGY 

Because P91 is still a relatively new alloy, there is a shortage of sufficient service­

aged P91 available for the metallurgical studies required to validate structural integrity 

assessments. This means that the creation and characterisation of pseudo-aged P91 

is necessary. Therefore this project aims to assess the effectiveness of the pseudo­

ageing process in replicating real service-aged microstructural and creep 

characteristics. Microstructures developed during stress-free thermal ageing are 

thought to be more representative of microstructural development during service 

exposure than those developed during laboratory creep testing (Swindeman et a/., 
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1998; Swindeman et al., 2000) as the latter results in very rapid strain-induced 

diffusion and growth processes. 

To achieve this, small rectangular sections of crossweld (6.6 x 6.7 x 35 mm with the 

long axis perpendicular to the weld-parent boundary and the WM making up 

approximately half of the sample) were removed from the welded structure described 

in the previous section (see illustration in Figure 3.4) and sealed under low pressure in 

silica ampoules in order to minimise any oxidation or decarburisation during ageing. 

The specimens were then subjected to ageing at a range of times and temperatures 

ranging between the service operating and pseudo-ageing temperatures used in this 

programme. The pseudo-ageing matrix was deduced as follows. 

Fick's 2nd law of diffusion can be stated simply as 

[3.1] 

where 0 is the diffusion coefficient and t is the time it takes a specie to diffuse to a 

distance x. Assuming that the diffusion distance, x, is constant (for equivalent 

processes) , 

then 

=> 

o can be expressed as 

D - D -Q/RT - oe 

[3.2] 

[3.3] 

[3.4] 

where Do is a constant, Q is the activation energy and R is the universal gas constant. 

Then equation [3.3] can be re-written as 
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[3.5] 

[3.6] 

[3.7] 

During creep of alloys, migration of the various alloying elements can be expected to 

occur. However, the diffusion of vacancies is believed to be the rate-controlling 

process (Honeycombe & Bhadeshia, 1995). In steels, the activation energy for 

vacancy diffusion is close to that of self-diffusion of a-Fe. Hence, in this work, self­

diffusion of a-Fe (-250 kJ/mol) is assumed to be the rate-controlling process. See 

Table 3.2. These calculations are limited in that they do not take into account of the 

diffusivities of the other alloying elements in P91 alloys. 
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Element Q 1 Jmor1 

C BOOOO 

N 76000 

Fe 240000 

Cr 343000 

W 293000 

Mo 240000 

V 240000 

vacancies 

(-self diff.) 250000 

t650 (h) (Q for 

self diff. a-Fe 

approx.) t675 1 h 

0 0 

200 85 

500 212 

1000 424 

3000 1271 

7000 2966 

12000 5085 

Pseudo ageing times 

T650/t675 t650/t700 

1.32E+00 1.71E+00 

1.30E+00 1.66E+00 

2.2BE+00 4.99E+00 

3.25E+00 9.94E+00 

2.74E+00 7.11E+00 

2.2BE+00 4.99E+00 

2.2BE+00 4.99E+00 

2.36E+00 5.33E+OO 

t7001 h t7251 h 

0 0 

38 17 

94 43 

188 86 

563 259 

1313 603 

2251 1034 
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t650/t725 T 650/t760 

2.19E+00 3.03E+00 

2.10E+00 2.B7E+00 

1.05E+01 2.79E+01 

2.BBE+01 1.17E+02 

1.76E+01 5.B3E+01 

1.05E+01 2.79E+01 

1.05E+01 2.79E+01 

1.16E+01 3.21 E+01 

t7601 h 

0 

6 

16 

31 

93 

218 

374 

Table 3.2. Pseudo-ageing matrix and stress-free ageing plan 

3.4 CREEP TESTING AND TENSILE TESTING 

Equipment, sample preparation and procedure: 

The creep testing setup is such that changes in the specimen gauge length (strain) 

are monitored at regular small time intervals until failure occurs. From this, 

instantaneous strain, time to failure, strain at failure are obtained. These data enable 

the derivation of 'creep curves' and the determination of minimum strain rates. 
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Creep tests were performed in air at 650°C (± 1°C), using five ton Denison (T45A3) 

constant load creep test machines, situated in a temperature-controlled laboratory. 

Specimen temperature was monitored by thermocouples, attached to the specimens 

at mid-thickness. For the uniaxial creep tests, the creep deformation was measured 

using a set of high temperature extensometers. 

A constant loading equivalent to 70 MPa stress (or stress otherwise stated) was 

applied. Specimens were machined to the geometries shown in Fig. 3.5. 

In the case of crossweld specimens (i.e. creep specimens consisting of weld metal 

parent metal and heat-affected zone), creep samples were machined out of the weld 

pad in such a way that the heat-affected zone was located at the centre of the gauge. 

This was done by etching the specimens prior to machining by swabbing with acidic 

ferric chloride. This procedure revealed the width of the HAZ optically. The uniaxial 

specimens, on the other hand always consisted of either weld metal only or parent 

metal only. Cross-head displacement and applied load were recorded by a data 

logger. 

Tensile testing was carried out on the MAYES Universal 250 kN testing machine 

using specimens with the same geometry as uniaxial creep test specimens. Both 

room temperature (20°C) and high temperature (650°C) tests were performed at a 

deformation speed of 0.05 mms-1 (constant strain rate of 0.001 S-1). 

3.5 CHARACTERISATION METHODS 

3.5.1 Optical Microscopy 

Optical microscopy was performed using a Nikon FX-35 with an attached Microflex 

UFX-II camera. 

Sample Preparation 

(i) Crossweld, parent metal and weld metal specimens 

Following thermal ageing, optical microscopy was employed to examine coarse 

changes in microstructure. Specimens were ground and finally polished on a 1 /-lm 
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diamond cloth to obtain a scratch-free mirror-like finish. Their microstructures were 

revealed by etching in a dilute solution of acidic ferric chloride. 

(ii) Creep tested specimens 

Following creep testing, optical microscopy was employed to obtain information, such 

as location of failure, identify any coarse ferrite, as well as coarse information on the 

distribution of cavities within the heterogeneous microstructures of the welds. The 

creep tested specimens were sectioned longitudinally at mid-section and mounted in a 

conductive medium. As before, the specimens were then ground on a range of silicon 

carbide paper and then finally fine polished on a 11-lm diamond cloth. Again, 

microstructures were revealed by etching in acidic ferric chloride. The polishing and 

etching process was repeated systematically in order to identify cavities. 

3.5.2 Scanning Electron Microscopy (SEM) 

3.5.2.1 Sample preparation 

(i) Fracture surfaces 

Due to the nature of creep testing, i.e. high temperature conditions, fracture surfaces 

of P91 specimens were often oxidised and as such could not be realistically examined 

in the SEM. To overcome this, the fracture surfaces of the specimens concerned were 

initially de-scaled in a solution of 1 part malic acid (C4H60 5 ) to 3 parts ammonium 

citrate at 90°C for 2 hours. The revealed fracture surfaces were then characterised by 

secondary electron SEM, using a JEOL 6400 SEM, with a tungsten filament at 30 kV 

emission. 

(ii) Crossweld test blocks and sectioned creep-tested specimens 

In much the same way that specimens were prepared for optical microscopy, these 

were mounted in a conductive medium, ground and fine-polished to obtain a mirror 

finish. In order to observe cavity distributions, creep tested specimens were usually 

examined in the SEM firstly in the as-polished condition. In order to reveal precipitates 

and grain boundary structure, all specimens were etched using acidic ferric chloride 

and examined with a JEOL 6400 microscope utilising secondary electron imaging 

(SEI) at 20 kV. 
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In order to quantify the degree of precipitate coarsening within the creep-exposed 

steels, secondary electron images of lightly etched specimens at 1000X were 

analysed using Scion Images software, taking advantage of the contrast between the 

precipitates and the matrix, and using black and white thresholding to obtain 

information on precipitate count and sizes for each image analysed. 

3.5.3 Transmission Electron Microscopy (TEM) 

Selected area electron diffraction patterns (SADP) are an invaluable tool when it 

comes to the identification of precipitate species. The wavelength (-1) of the electron 

source is known from the expression below, 

A=~ [3.8] 
mv 

where h = Planck's constant and m and v are the mass and velocity of the electron 

particle. 

Bragg's law states that when an electron beam is passed through a thin layer of 

crystalline material, only the planes parallel to the beam will contribute the resulting 

diffraction pattern; and is expressed simply as follows. 

A = 2d sinB [3.9] 

where d is the spacing of the crystallographic planes and e IS the angle of the 

diffracted beam. 

r 
- = tan 2B and tan 2B ~ 2B [3.10] 
L 

Thus, the Bragg equation can be rearranged as 
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[3.11 ] 

When the incident beam is diffracted by a specimen, forming diffraction spots r 

distance apart, the d spacing d can therefore be determined as follows: 

d = LA 
r 

[3.12] 

where L is the camera length and A is the wavelength of the incident electron. 

Characteristic diffraction spots from the various particle lattice structures can be used 

in their categorical identification. In this work, the camera constant LA = 25.08 nm A. 

3.5.3.1 Sample preparation 

(i) Standard thin foils 

Because the beam of electrons interacts very strongly with the specimen, it must be 

sufficiently (transparent) thin. This simplifies the images/diffraction spots formed, so 

that they can be interpreted. With this in mind, thin foils of the alloy to be examined 

were prepared according to the following protocol. A 3 mm diameter disc of material 

was removed from the area of interest. This was then secured in a polishing block and 

ground on various grades of SiC paper until a thickness of about 50-70 pm was 

obtained. The discs were then thinned using dual jet electropolishing at - -10°C in an 

electrolyte made up of 10% perchloric acid and 90% ethanol. Examination was 

performed with a JEOL 2000FX microscope at 200 kV. The resolution of the 

microscope is 3 A. 

(ii) Heat-affected zone characterisation 

The heat-affected zone of a welded structure is often the location of creep failure of 

grade 91 steel weldments, and as is discussed in a subsequent chapter, detailed 

characterisation of this region provides invaluable information. The main difficulty 

involved in the TEM characterisation of HAZs (1-3 mm wide) is one of sample 

preparation. Due to the small size, it is difficult in practice to section and prepare 

specimens to study the various regions within the HAZ. 
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However, it has been possible to prepare a thin film from the HAZ of the as-PWHT 

welded structure studied in this work, with thin area in excess of 600 !J.m. Thus it has 

been possible to obtain low magnification bright field images from different regions 

within the HAZ, up to 800 !J.m from the fusion boundary. 

A thin sliver of crossweld test block was mechanically ground, polished and etched to 

reveal the microstructure. Once the fusion boundary was located, a ~ 3 mm disc was 

then removed from the HAZ using EDM (electro discharge machining). The disc was 

then mechanically polished using a tripod polisher until a thickness of about 10 !J.m 

was reached. The disc was then subjected to ion-beam milling for further thinning, as 

well as the removal surface contamination from the polishing process. Again, 

examination was performed with a JEOL 2000FX microscope at 200kV. 

Compositional differences between the weld metal and parent metal were used to 

identify the fusion boundary, once the specimen was in the TEM. 

(iii) Carbon extraction replicas 

Carbon extraction replicas have a number of advantages over thin foils. 

Electropolishing, for one, often has the draw back of causing precipitate drop-out, due 

to preferential attack at the interfaces between secondary particles and the matrix, 

particularly in the case of samples which contain relatively coarse precipitates. For 

example, P91 weld metal contains non-metallic inclusions up to 2 !J.m in size. The vast 

majority of these in a thin foil are likely to fall out during electropolishing. For this 

region, carbon extraction replicas are preferable to thin foils in cases where 

information on precipitate size distributions is sought. 

Preparation of replicas was carried out as follows. Specimens of interest were initially 

polished down to 1 !J.m, in order to provide a suitable surface for etching. Prior to 

depositing carbon, the specimens were electrochemically etched in a solution 

consisting of 10% hydrochloric acid in methanol, using a potential of 3 V dc. A layer of 

carbon approximately 10 nm thick was then deposited on the surface of the etched 

specimens in a vacuum chamber. The precipitates revealed by the etching, now 

embedded in the carbon layer, were then removed in small segments by repeating the 

etching process described above, and placed on ~ 3 mm copper grids suitable for 

76 



Chapter 1/1 
Experimental Details 

TEM sample holders. Examination was performed with a JEOL 2000FX microscope at 

200 kV. 

3.5.3.2 GIF analyses 

Although bright field TEM images provide useful contextual information, such as 

dislocations, preferred orientations, etc, the energy filtering (EFTEM) method has the 

advantage of chemical mapping, allowing the precipitates to be visualised in terms of 

their main chemical components. In this work, this technique was utilised for further 

characterisation of small precipitates within thin foils. A creep tested specimen was 

selected, as it is believed that the coarsest particles would be found within the gauge, 

due to strain effects on coarsening rate. A JEOL 4000FX microscope was employed, 

with an installed Gatan imaging filter used for mapping chemical elements at near 

atomic resolution «10 A). Using the GIF in EELS mode (electron energy-loss 

spectroscopy), which accesses spectroscopic signatures of elements, the local 

chemical compositions were determined. 

3.5.3.3 Diffraction pattern indexing 

By measuring the angles and distances between diffraction spots, d-spacings of 

crystals were determined and indexing was performed using the software CRYSTAL 

and known lattice parameters of crystals until each diffraction pattern was correctly 

matched. Verification was carried out using the software CARINE3. Known space 

groups and zone axes enabled simulations of the diffraction spots to be obtained. 

3.5.4 Microhardness Measurements 

Microhardness measurements were obtained using a Leco M-400 microhardness 

tester, using a Vickers diamond indenter. This has a 136 0 angle between opposite 

faces. The indenter is forced into the specimen under load and then released. The 

plastically deformed area resulting from the indentation takes the form of the diamond 

pyramid. The lengths of the diagonals of the diamond shape are measured and 

converted to Vickers Hardness readings as follows. 

. B) (2Fsln-
2 

HD = -, D-
[3.13] 
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where F is the load, 8=136°, and 0 is the mean diagonal length in mm. 

Vickers hardness indentations were made across each welded structure using a load 

of 0.5 kgf (unless otherwise stated), and an indentation time of 15 seconds. 
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transverse 

Figure 3.1. Schematic diagram of the initial multipass weld pad showing the 

orientation of creep specimens removed, with respect to welding direction. 

(a) 
(b) 

(c) 

Cross-section 

32 

I'" 

Cross-section 

~I 

Figure 3.2 Schematic representation of trapezoidal grooves within Bar 257 disc, filled 

with matching 9CrMoVNb weld metal (a) disc with double grooved welds (b) weld 

dimensions in mm (c) etched macrosection 
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Figure 3.3 (a) plan view and (b) side view photographs of P91 (BAR 257) weldment 

following post-weld heat-treatment. 
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Figure 3.4 Schematic illustration of small crossweld bars removed from Bar 257 

weldment for microstructural characterisation following post-weld heat-treatment. 
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(b) 

Figure 3.5 Schematic diagrams showing (a) uniaxial and (b) crossweld creep test 

specimen geometries (mm). The position of the HAZ is shaded yellow. 
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This chapter is divided into four sections. The first part centres on identifying the basic 

characteristics of as-received P91 'parent' metal using optical microscopy, scanning 

electron microscopy, microhardness and creep rupture data. The next section looks at 

the filler weld metal characteristics in much the same way. The third part of the 

chapter is split into a further four sections, looking at the whole welded structure (the 

weldment) consisting of weld metal and heat-affected zone. The response of the 

welded structure to exposure (thermal ageing and creep) has also been 

characterised. A metallurgical examination of crossweld creep failures looks at the 

effect of creep stress on the location and nature of failure. Furthermore, the as-post­

weld heat-treated heat-affected zone has been characterised in detail by transmission 

electron microscopy, and discussed in terms of effects of subgrain structure and 

precipitate distribution. The effects of strain on microstructural evolution are studied by 

looking at creep and tensile tested parent metal, and fine precipitates are identified 

using energy filtering TEM. 
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4.1 CHARACTERISATION OF P91 PARENT METAL 

4.1.1 Effect of normalising, quenching and tempering on microstructure and 

hardness 

The starting parent material studied in this program is the Bar 257-type P91, supplied 

by National Power. Preliminary tests were performed on Bar 257 in a number of heat­

treated conditions, which are briefly described in Table 4.1. 

Description Thermal history 

A As received from As received from supplier 

supplier 

B PWHT only From the as-received condition, soaked at 760°C for 3h [Heated at 

1 OO°C/hr above 400°C; cooled at 50°C/hr to 400°C] 

C Aged only Pseudo-aged from as-received condition by soaking at 760°C for 30h 

[Heated at 1 OO°C/hr above 400°C; cooled at 50°C/hr to 400°C] 

D Normalised only Soaked at 1060°C for 1 h [Heated at 1 OO°C/hr above 400°C; cooled in 

still air] 

E Normalised and Normalised as described above, followed by soaking at 760°C for 1 h 

tempered [Heated at 1 OO°C/hr above 400°C; cooled at 50°C/hr to 400°C] 

F Normalised, Normalised as in 0, then tempered and aged by soaking at 760°C for 

tempered and 30h, [Heated at 1 OO°C/hr above 400°C; cooled at 50°C/hr to 400°C] 

aged 

Table 4.1 Descriptions of thermal histories for P91 heat-treatments 

SEM secondary electron images of the etched material in the heat-treated conditions 

described in Table 4.1 are shown in Figures 4.1.1 to 4.1.6. These reveal the former 

austenite grain and precipitate structures. Laths (martensite) can be seen arranged 

within the larger former austenite grains. Specimens B (PWHT only) and C (aged 

only) have been heat-treated at the same temperature. However, C has had a longer 

heat-treatment (30 hours, as opposed to 3 hours), and shows coarser precipitates. In 

relation to the as-received condition (specimen A), Band C exhibit more coarse 

precipitates. The former-austenite grain size, however, appears unchanged. 

84 



Other Mean Vickers 

description Hardness I kgf 

mm -2 

A KA1100/3/1 213 

B KA1100/2/1 -

C KA1100/1/1 202 

D KA1100/3/3 420 

E KA1100/3/4 262 

F KA1100/4/1 203 

Etl% tf I h 

- -

>35 121.43 

>25 60.55 

- -

>30 153.43 

-25 63.95 

. -1 
Bruin I h 

0.0504 

0.1206 

0.0386 

0.1097 

LMP= 
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Tcreep(20 + log tr) 

20384 

20105 

20478 

20127 

Table 4.2. Vickers hardness and creep properties (creep test conditions: 650°C, 

93 MPa) of P91 heat-treatments 

The 'normalised only' structure (Figure 4.1.4, specimen D) consists of austenite grains 

ranging from 10 to 20 I-lm in size. These are not vastly dissimilar to those in the as­

received condition. However, within the matrix, a fine dispersion of particles of the 

order of a few tens of nanometres is only just discernible. A highly fine martensitic 

structure is also noticeable. This is reflected by the high value of Vickers hardness of 

420 kgf mm-2 (Table 4.2). No grain boundary precipitates are obvious, as the M23C6-

type precipitates are soluble at normalising temperatures (Hattestrand, 2000). 

Moreover, the cooling rate employed prohibits its precipitation. 

The effect of tempering of the normalised structure (specimen E) can clearly be seen 

in Figure 4.1.5. There appears to be an increase in the number of fine particles 

observed in the normalised only material. (Tempering P91 above 700°C results in the 

precipitation of more MX particles.) In addition, precipitation of particles believed to be 

M
23

C6 along the former austenite grain boundaries and lath boundaries has taken 

place. This is in agreement with observations reported in the literature (Jakobova et 

al., 1998; Sourmail, 2001; Vyrostkova et al., 1998). Moreover, a clear decrease in 

former austenite grain size can be seen; such grain refinement during tempering is 

unusual. Tempering is also accompanied by a significant drop in hardness (see Table 

4.2). However, the total effect of normalising and tempering produces a structure 

stronger than the as-received condition, through refinement of former-austenite grain 

size and grain boundary carbide precipitation, and this is reflected by the increase in 

hardness from 213 to 262 kgf mm-2
. 

The next structure (specimen F) shows the effect of ageing following normalising and 

tempering (Figure 4.1.6). The former austenite grains appear unchanged (in terms of 
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size). On the other hand, coarsening of grain boundary precipitates, thought to be of 

the M23C6 -type has clearly taken place. Precipitate coarsening during ageing is a well 

understood phenomenon (Orlova et al., 1998 a, b; Bianchi et al., 1998; Dyson and 

McLean, 1998). In addition to these, it is interesting to notice the precipitation of large 

particles within the subgrains. The largest of these particles is about 1 J.lm in size. A 

number of different particle morphologies can be seen. The characterisation of these 

structures is beyond the scope of SEM due to their small size. 

4.1.2 Uniaxial creep properties 

In addition to hardness values, Table 4.2 also shows a summary of creep properties 

of the P91 steel in all of the heat treated conditions described above derived from the 

uniaxial creep tests at 650°C with an applied stress of 93 MPa. These are further 

illustrated by creep curves in Figure 4.1.7a. Specimen C (aged only, for 30 hours at 

760°C) possessed the shortest failure life and the highest minimum strain rate. As 

expected, specimen E (normalised and tempered) gives the lowest minimum strain 

rate (MSR) and the longest failure life. It is closely followed by specimen B, which has 

not been normalised, but received a tempering heat-treatment from the as-received 

condition (3 hours at 760°C). It is interesting to note that specimen F, which was 

normalised, tempered, and aged for 30 hours at 760°C, exhibits a slightly lower 

minimum strain rate and a longer rupture life than specimen C, which was aged for 

the same 30 hours at 760°C, but without the prior normalising and tempering heat­

treatments. The difference in failure lives is only 5%, and therefore may be within 

experimental error. The creep data recorded obey the Monkman-Grant relationship 

(Figure 4.1. 7b): 

[4.1 ] 

where t. is the MSR tf is the rupture life and C is a constant (the Monkman-Grant 
mm ' 

parameter). Figure 4.1. 7c also shows that the specimens with lowest hardness values 

give the lowest failure lives, although the function or curvature of the plot cannot be 

determined due to the relatively few data points. 
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A description of parent metal in its as received condition is given in the previous 

section. In this section, the parent metal part of a weldment is characterised. It is 

different from the as-received parent metal in that it has received a post-weld heat­

treatment (760°C, 3 hours), and is analogous to specimen B described in section 

4.1.1 (as specimen B has received an identical heat-treatment). 

The as-PWHT structure exhibits a hardness of about 203 kgf mm-2 (0.5 kg). Figure 

4.1.8 shows the optical microstructure of the material in the post-weld heat-treated 

condition. This, as expected, reveals a fully martensitic structure, with former­

austenite grains around 100 IJm in size. Grain boundary precipitates are not 

discernible at this magnification. The SEM secondary electron image of the etched 

microstructure in Figure 4.1.9, however shows precipitation clearly. These can be 

seen decorating the former-austenite and lath boundaries. A number of smaller 

secondary-phase particles can also be seen within the subgrains. 

4.1.4 TEM Characterisation of the morphology and structure of P91 parent 

metal. 

TEM bright field images of thin foils show the microstructure of P91 parent metal to be 

heterogeneous in nature. Regions of oriented martensite lath structure can be seen 

(Figure 4.1.10). These are between 200-400 nm in width. Other regions show a more 

equi-axed structure (Figure 4.1.11). A selected area diffraction pattern and a centre 

dark field image corresponding to the diffraction spot indicated, arise from two strongly 

diffracting grains. These have been indexed as bcc ferrite with a lattice parameter of 

2.8664 A with a [-1-11] zone axis. The grain indicated by the arrow labelled A in 

(Figure 4.1.11 a), shows a high density of dislocations. It is not uncommon, however, 

to observe subgrains devoid of dislocations. An example is indicated by the arrow 

labelled B in Figure 4.1.11 a. 

Several precipitates, both within and on lath boundaries, as well as within the grains 

themselves can also be seen. Based on electron diffraction analysis, these 

precipitates have been identified. Most predominant are face-centred cubic M23C6 

precipitates with a lattice parameter of 10.6599 A (chromium carbide). The M23C6 

precipitates often possess an elongated sausage-shape, and although they occur 

over a size distribution, precipitate size can be up to 100 nm in length (see Figure 
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4.1.13). They are located most often on lath and former-austenite grain boundaries. 

Figures 4.1.12 and 4.1.13 show examples of these precipitates. These precipitates 

are also observed at triple points between former-austenite grains, and sometimes 

appear rounded. This may be an end-on orientation, although the spheroidisation 

(change in aspect ratio) of these particles on tempering is documented in the literature 

(Moitra et al., 2002). An example is presented in Figure 4.1.12. Here the precipitate is 

strongly diffracting with a [-2-11] zone axis. Another example of an M23C6 precipitate 

with this appearance can be seen in Figure 4.1.14. In addition to this and two other 

M23C6 precipitates, a number of edge dislocations can be seen. 

Besides the M23C6 precipitates, a number of significantly smaller (finer) particles 

(between 10 and 20 nm in size) are discernible in bright field images (Figures 4.1.15). 

A number of these have been identified by selected area electron diffraction as 

possessing the face-centred cubic MX structure (vanadium nitride, a = 4.13916 A). 

The usual context for MX precipitates is within subgrains, as opposed to on grain 

boundaries. However, some MX particles sit on free dislocations which are not 

associated with the grain boundaries (more examples are presented in subsequent 

sections). MX particles were less frequently encountered than M23C6 . This may be due 

to their relatively smaller size. This may also be accountable for the relative difficulty 

in characterising MX particles using selected area diffraction patterns. It is therefore 

worth mentioning that more MX morphologies are expected in the material 

microstructure in addition to the above mentioned type. 

The effect on precipitate and lath morphology following an extended post-weld heat­

treatment after normalising and tempering is now presenteda
. Figure 4.1.16 shows 

martensite laths which have become more equi-axed (when compared with those in 

Figure 4.1.10). Figure 4.1.17a is a bright field showing a coarsened M23C6 precipitate, 

captured in what may be an end-on perspective, in addition to two smaller 

precipitates, located on a grain boundary. Figures 4.1.17b and c are selected area 

diffraction pattern and a centred dark field image corresponding to the diffraction spot 

indicated. This precipitate is about 200 nm in size. 

a This refers to Specimen F in Table 1. The relevance of studying this heat-treatment in 
particular is discussed in Chapter V. 
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In order to characterise the weld metal in isolation in terms of creep properties and 

microstructure, an initial weld pad was produced from 9CrMoNbV weld metal filler 

(Chromet 9MV) by Metrode Products Ltd., using the manual metal arc (MMA) method. 

See Section 3.1 and 3.2 of Chapter III for the materials and weld preparation details. 

Following welding and post-weld heat-treatment (760°C, 3 hours), the microstructure 

as revealed by optical microscopy, consists of a number of microstructural zones, 

namely columnar and more equi-axed (fine and coarse) grains (see Figure 4.2.1 a). As 

indicated in Figure 4.2.1 a, these regions differ in terms of hardness, the columnar 

regions being typically the hardest with values of about 255 kgf mm-2
. The regions 

showing smaller, more equi-axed grains have hardness values around the 225 kgf 

mm-2 mark. Lightly etched bands and patches of ferrite which exhibit hardness values 

around 200 kgf mm-2 are also visible at the ends of weld beads and in other parts of 

the microstructure (Figure 4.2.1 b). 

TEM bright field images presented in Figures 4.2.2a and 4.2.2b show the substructure 

within the as-PWHT weld metal. Laths are fine with widths of the order of 200 nm. 

Large rounded inclusions unique to the weld metal are observable. Qualitative EDX 

analysis indicates that these are enriched in manganese and contain relatively high 

amounts of silicon and molybdenum (Figures 4.2.2 c and d). Mn-rich sulphide 

inclusions can be common place within such weld deposits; however, these inclusions 

may also be metallic complexes. 

ESEM EDX characterisation of the various regions of the inhomogeneous 

microstructure has been performed in order to obtain information on the chemical 

variations and to see how these chemical variations might result in the microstructural 

heterogeneity observed. 

Firstly, Figure 4.2.3 shows EDX analysis obtained from microstructure consisting of 

average looking former-austenite grains. This shows that the main chemical 

component is iron, followed closely by chromium, as well as silicon, manganese and 

vanadium. An L-peak for molybdenum is also discernible. The composition here is not 

significantly dissimilar to the known overall weld metal composition. 
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SE images show that there are two main types of ferrite patches. One type shows 

depletion in precipitation (Figure 4.2.4). The other is usually precipitate-rich (Figure 

4.2.5a and b). When analysed, the precipitate-rich ferrite patches show an 

uncharacteristically high amount of molybdenum (-12%) (Figure 4.2.5c). (There is 

0.98 wt% molybdenum in the entire composition.) The other type of ferrite patch 

shows relative depletion in molybdenum «0.5%), and its general composition is very 

similar to the normal, martensitic regions (Figures 4.2.3a and 4.2.3b). 

In order to understand the reasons for the heterogeneous microstructure and 

composition, the weld metal electrode has been examined using SEI and EDX in the 

SEM. The flux surrounding the steel core consists of a mixture of metallic powders, 

including Cr, Si, Ti, etc (see Figures 4.2.6 and 4.2.7). The 'bright' areas in Figure 

4.2.6a showed a high concentration of chromium (83%) during spot analysis (Figure 

4.2.6b and c). On the other hand, area analysis from the region shown in Figure 

4.2.7a did not show any chromium at all (Figure 4.2.7b), indicating inhomogeneity in 

the flux material. 

4.2.2 Anisotropic creep properties 

Following preparation and post-weld heat-treatment, uniaxial creep specimens were 

removed from the weld pad described in section 3.2.1 of Chapter III, in two 

orientations: transverse and parallel to the welding direction. Figure 4.2.8 gives a 

schematic description of the orientations from which the specimens were removed. 

Uniaxial creep data were obtained from tests performed at 650°C at stress levels of 

stress / Sampling £,/ % tf / h s· / h-1 LMP-
nun 

MPa orientation *10-5 Tcreep(20 + log tr) 

A 93 transverse -1.95 693.48 1.838 21082 

B 93 longitudinal -3.6 1662.00 1.077 21433 

C 100 transverse -2.1 323.82 4.128 20777 

0 100 longitudinal -4.8 776.82 2.594 21128 

93 MPa and 100 MPa. 

Table 4.3. Uniaxial creep properties of the weld pad at 650°C. 

Uniaxial creep curves for the tests in the transverse and longitudinal direction are 

shown in Figure 4.2.9a. These show the characteristic three stages expected. Primary 
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creep is relatively short, existing for no longer than 50 hours in all cases. This is 

followed by a steady-state stage, during which the creep rate is relatively constant. 

Finally, the creep rate accelerates until failure occurs. It can be seen that at both 

stress levels, the transverse specimens exhibit relatively short failure lives and strains 

(approximately 2%). The longitudinal specimens, on the other hand, exhibit 

significantly longer secondary and tertiary creep stages, as well as lower steady-state 

creep rates. This is reflected by their longer rupture lives. Failure strains in the 

longitudinal specimens were around 4%. 

In both orientations, the effect of stress can be observed. Increasing the stress from 

93 to 100 MPa has resulted in much higher steady-state creep rates and shorter 

rupture lives. 

As shown in Figure 4.2.9b, the creep behaviour of specimens from both orientations 

and at both stress levels fit the Monkman-Grant relationship. It appears from Figure 

4.2.9b, that C shows a slight stress dependency. In other words, the lower stress tests 

fall below the (mean) trend line, and vice versa. 

Following creep rupture, the two specimens tested at 100 MPa were sectioned at mid­

thickness and parallel to the stress axis, in order to gain a microstructural perspective 

for the significant difference in creep properties in the transverse and longitudinal 

specimens. These sections were examined in both the as-polished and etched 

conditions (Figures 4.2.10 - 4.2.11). The etched sections reveal highly heterogeneous 

microstructures in both orientations (Figures 4.2.1 Db and 4.2.11 b). Areas of columnar 

grains can be seen, as well as more equi-axed grains in a range of grain sizes. As 

mentioned in the previous section, the columnar regions exhibit hardness values of 

about 255 kgf mm-2 (0.5kg), whereas the other regions exhibit hardness values 

around the 225 kgf mm-2 mark. 

When the two sampling orientations are studied, a clear distinction can be observed. 

From Figure 4.2.1 ~b, it can be seen that the microstructural zones in the longitudinal 

specimen exist in horizontal bands, parallel to the stress axis. A schematic illustration 

of this feature is given in Figure 4.2.12. Extensive damage in the form of cavities and 

intergranular cracks can be seen which are not restricted to the vicinity of the fracture, 

but exist along the entire length of the specimen. However this damage is confined to 

the columnar regions, and has generally not propagated across the other 

microstructural zones (fine/coarse-grained regions). Although some damage can be 
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found in the columnar regions along the fracture plane, final failure is brought about by 

shear through the fine-grained regions, as a result of the greatly increased loading. 

The transverse specimen, on the other hand, shows a very different structure, in 

terms of the distribution of the microstructural zones (Figure 4.2.11 b). This is also 

illustrated schematically in Figure 4.2.12. The distribution of creep voids and cracks 

also appears different (Figure 4.2.11 a). In this case, damage appears more localised 

and less extensive than in the longitudinal specimen. Most of the damage exists at the 

ends of the columnar regions. However, the microstructure in the vicinity of the final 

failure crack does not appear to be columnar, but associated with fine/coarse-grained 

microstructure. 

92 



4.3 CHARACTERISATION OF WELDED STRUCTURES OR 

WELDMENTS 

Chapter IV 
Results 

Following a post-weld heat-treatment of the weldment at 760°C for 3 hours, the 

macrostructure and a Vickers hardness trace from the parent metal across the HAl 

into the weld metal have been obtained. These are presented in Figure 4.3.1. 

The parent metal microstructure far away from the weld appears fairly homogeneous. 

The weld metal, on the other hand, shows very distinctive structures relating to the 

deposition of weld beads. Even at this low magnification, the coarse, columnar former 

austenite grains are discernible. The overlapping weld beads are about 3-4 mm deep 

and up to 10 mm wide. In addition, a heat-affected zone can be seen at the 

boundaries between the weld metal and the parent. The optically discerned HAl 

varies in width around the weld, and is about 2 mm at the most. However, the Vickers 

hardness trace across from the centre of the weld through to the unaffected parent 

indicates that the extent of the HAZ may up to 3 mm wide (Figure 4.3.1 b). 

The weld metal exhibits the highest hardness values (about 253 kgf mm-2). The 

hardness of the unaffected parent metal, on the other hand, is approximately 205 kgf 

mm-
2

. However, the lowest hardness values (less than 190 kgf mm-2) occur within the 

HAZ. 

4.3.1 Effect of stress-free thermal ageing on microstructure and hardness of 

the weldment 

The thermal ageing schedules for all specimens are summarised in Table 4.4 below. 

Ageing Ageing times I h 

temperature I DC t1 t2 t3 t4 ts t6 

T1 650 200 500 1000 3000 7000 12000 

T2 675 85 212 424 1271 2966 5085 

T3 700 38 94 188 567 1313 2251 

T4 725 17 45 87 259 603 1034 

T5 760 6 16 48 93 218 374 

Table 4.4. 
.. 

Thermal exposure/heat-treatment conditions. 
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In the optical micrographs of crosswelds showing the weld metal and HAl, examples 

of microstructural changes during ageing can be seen (Figure 4.3.2a to i). The first 

image shows the as-PWHT condition, and the subsequent images show the effect of 

stress-free thermal ageing at a range of temperatures between 650°C and 760°C. In 

the as-PWHT condition, heterogeneous microstructures consisting of columnar, 

coarse and finer former austenite grains are discernible. In addition, a number of 

virtually precipitate-free coarse ferrite grains can be seen. These appear at the inter­

bead boundaries. 

A number of microstructural changes are noticeable following heat-treatment. At all 

ageing temperatures, and times, the ferrite regions/grains appear to increase. 

Furthermore, it can be seen that for each ageing temperature shown, the amount of 

soft ferrite grains within the weld metal increases as ageing time is increased. After 

374h at 760°C, the amount of soft ferrite had increased significantly. In fact, a majority 

of the weld microstructure appears to have transformed to coarse ferrite after ageing 

at 760°C for 374 hours and massive grain growth has occurred. At the lower ageing 

temperatures, this transformation is also observed. Growth of soft ferrite is noticeable 

after 5085 hours at 675°C, although not as extensive as at its estimated parametric 

equivalent ageing time at 760°C. In contrast, the parent metal and HAl 

microstructures do not appear to change significantly as ageing time and temperature 

are increased when observed optically at this magnification. 

Figures 4.3.3a-g show TEM thin foil bright field images of both the weld and parent 

metal in the as-PWHT condition and following ageing. These relatively low 

magnification images give a feel for the amount of recovery that has taken place. It 

can be seen that, after 374 hours at 760°C, the parent metal has not changed 

significantly in terms of subgrain size or shape as a result of the thermal exposure 

(Figure 4.3.3b). A noticeable difference however is the coarsening of the grain 

boundary precipitates. The weld metal, on the other hand, has undergone very 

significant changes after the same exposure. The fine martensite structure has been 

replaced entirely by a very much more equi-axed 'subgrain' structure. Moreover, grain 

growth is apparent (Figure 4.3.3f). 

Again, the parent metal microstructure has not been altered significantly after 12000 

h at 650°C (Figure 4.3.3c); however, the weld metal microstructure is distinctly 
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different from the as-PWHT (Figure 4.3.3d and e) after exposure at 650°C for 12000 h 

(Figure 4.3.3g). It is evident that subgrains have become more equi-axed; subgrain 

size after this heat-treatment is similar to that observed after exposure for 374 h at 

760°C. However, exposure at 650°C has not resulted in much annihilation of 

dislocations. 

Figures 4.3.4a-h show SEM secondary electron images of the parent metal and the 

fine-grained HAZ in the as-PWHT condition and following ageing. In order to reveal 

the precipitates within the structures, the specimens were lightly etched prior to 

examination. In the as-PWHT state (Figure 4.3.4a), the lath morphology of the PM 

microstructure can be observed with primarily M23C6 precipitates (as identified by 

bright field TEM) decorating the grain and lath boundaries. Former austenite grains 

within which the laths exist are also visible. In the FGHAZ (Figure 4.3.4b), the former­

austenite grain structure is clearly much finer and more equi-axed. Within both 

regions, there was a SUbstantial growth in the precipitate size on ageing at the longer 

times and higher temperatures (Figures 4.3.4c-h). Moreover, the differences between 

the PM and the FGHAZ in terms of precipitate sizes and distributions are not easily 

observed. 

Further evidence regarding the effect of exposure on precipitate morphology has been 

sought using carbon extraction replicas viewed in the TEM. Figures 4.3.5a-f show 

precipitates in the as-PWHT condition and after longest exposures time at 650°C and 

760°C. These exposures appear to have a clear effect on precipitate size and 

distribution. After 12000 hours at 650°C, precipitate sizes in both the weld and parent 

metal do not appear to have increased significantly. However, some agglomeration is 

evident. However, after 374 hours at 760°C, a marked difference in precipitate size is 

noticeable in both parent and weld. A reduction in number of precipitates can also be 

observed. From previous analyses, the majority of these precipitates are believed to 

be the Cr-rich M23C6-type. The effect of exposure on the MX type of precipitate can 

also be seen in Figures 4.3.6a-d. These show small, overlapping MX precipitates 

within the weld metal, after 374 hours exposure at 760°C. These have been 

characterised by electron diffraction as indicated in Figure 4.3.6d, and match the 

crystallography of the f.c.c. MX structure vanadium nitride. These are around 30-40 

nm in size. 
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Figures 4.3.7a-e show how the hardness of the welded P91 structure responds to 

thermal ageing. In the as-PWHT condition (Figure 4.3.7a), the weld metal is 

characteristically harder than the parent metal, although showing a larger degree of 

scatter. However, the HAZ presents the softest region within the welded structure. 

This is in agreement with the literature (Cerjak and Letofsky, 19988
, b). A number of 

changes are noticeable following ageing. After ageing at 650°C (Figure 4.3.7a), a 

systematic drop in the WM, PM and HAl hardness accompanies increase in exposure 

time. The weld metal appears more sensitive to ageing, as it shows a more 

pronounced reduction than the parent metal of HAl following ageing. Furthermore, 

the scatter of hardness values remains large even after ageing. At the longer 

exposure times, some very large and isolated drops in hardness are observed; these 

hardness values correspond to regions of coarse ferrite. 

A similar trend is noticeable after ageing for a range of times at all the other ageing 

temperatures tested (Figure 4.3.7b-e). Again, the weld metal exhibits a larger scatter 

in hardness values as the welded structure is traversed. When all the Vickers 

hardness traces are compared, it is apparent that increasing the ageing temperature 

causes more pronounced reductions in hardness values. 

Average hardness values for the parent and weld metal following ageing over the 

range of temperatures and times investigated are presented in Figure 4.3.8. Here, 

they are plotted as a function of the Hollomon-Jaffe tempering parameter (HJP) (Irvine 

and Pickering, 1960). The HJP is given by: 

HJP = T(20 + logt) [4.2] 

where T is the tempering or exposure temperature in Kelvin and t is the exposure time 

in hours. 

At this point, it is worthwhile mentioning that the very low hardness values 

corresponding to the recrystallised soft ferrite regions are not disregarded in the 

calculation of the mean weld metal values. In the parent metal (Figure 4.3.8a), the 

data for the various temperatures fall over a relatively narrow spread. Up to HJP 
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values around 21700, hardness values are more or less constant around the 205 kgf 

mm-2 mark. After an HJP of 21700, hardness values begin to decrease gradually 

down to 179 kgf mm-2. The trend shown by the weld metal, on the other hand, is very 

different (Figure 4.3.8b). Vickers hardness appears very sensitive to increase in HJP. 

From HJP values as low as 20580 up to 23300, hardness drops systematically from 

-265 to 177 kgf mm-2. Despite this significant drop in hardness within the weld with 

increase in HJP, the average hardness of the weld remains greater than that of the 

parent for HJP values up to 23000. 

Parametric equivalents 

In order to investigate the accuracy or effectiveness of the pseudo-ageing matrix in 

accelerating the ageing by increasing temperature, a number of the designed 

parametric equivalents are presented in Figures 4.3.9a-f. First of all, it can be 

observed from these, that there is reasonably good agreement in both the parent and 

weld metal hardness at the shorter ageing times t1, t2 and h for all the ageing 

temperatures, except 760°C, where the hardness in both the parent and weld metal 

are significantly lower than that of their counterparts. 

However, as the parametrically equivalent ageing times increase to t4 , t5 and t6 , there 

is increasingly greater deviation between hardness values, within the weld metal 

especially. As before, the data at 760°C remain significantly lower than the cluster of 

data points, indicating that ageing is greatly accelerated at this temperature. 

4.3.1.3 Uniaxial Creep 

In order to understand the effect of ageing not only upon the microstructure but also 

on creep behaviour, uniaxial creep tests have been performed on parent metal 

following ageing at a small selection of ageing conditions (see Table 4.5). Creep 

curves are presented in Figure 4.3.10. At the lower ageing temperature of 650°C 

(Figure 4.3.1 Oa), there is little difference in the steady-state creep rate (compared to 

the as-PWHT condition) following ageing for 3000 hours. In fact, the rupture life of the 

aged sample is longer than that of the as-PWHT sample, but within the normal spread 

of the experimental data this is not seen as significant. However, following ageing for 

5808 hours, the steady-state creep rate (and consequently the minimum strain rate) 

increased substantially over that of the as-PWHT sample. 
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Ageing at the higher temperature of 760°C (Figure 4.3.1 0b) has a more dramatic 

effect upon the creep properties of the steel. The steady-state creep rate increased 

with increased ageing time, with a consequent shortening of the ruptu re life . Again, 

rupture life versus minimum strain rate have been plotted for the aged and creep 

tested uniaxial specimens (Figure 4.3.11). The exposure details and creep data (tf 

and i mit1 ) are shown in Table 4.5. 

10 Ageing Ageing Total exp Test type Failure 0' I tf I h i . Ih-1 
mm 

T I °C time I h tlh location MPa 

1 as-pwht 0 3 uniaxial - 70 1010.4 .000045 

2 650 3000 3003 uniaxial - 70 1087.1 .000041 

3 650 5808 5811 uniaxial - 70 776 .00007 

4 760 93 96 uniaxial - 70 556.7 .000104 

5 760 218 221 uniaxial - 70 317 .000231 

6 as-pwht 0 3 crossweld FGHAZ 70 535.1 -

7 760 30 33 crossweld FGHAZ 70 424.42 -

8 760 93 126 crossweld FGHAZ 70 362.55 -

9 as-pwht 0 3 crossweld FGHAZ 82 250 -

10 as-pwht 0 3 crossweld PM 93 112.3 -

Table 4.5. Effect of ageing and stress on uniaxial and crossweld creep properties, for 

creep at 650°C. 

4.3.1.4 Crossweld creep 

The effect of ageing on the creep behaviour of a cross-weld sample can be seen in 

Figure 4.3.12a. As before, the specimens were tested in air at a loading of 70 MPa 

and at 650°C. (Since these samples are inhomogeneous in the gauge, then 

elongation rather than strain is recorded .) Once again , ageing is seen to increase the 

deformation rate and reduce the rupture life. In this case, ageing exposure for 93 

hours after welding and PWHT has lead to a reduction in failure life of 62 hours (when 

compared to specimen 7, which has had a similar thermal history up unti l the PWHT). 

Furthermore, ageing the parent metal prior to welding has a marked effect on 

deformation rate and rupture life. It is interesting to notice that the crosswelds give 

significantly lower failure lives than the uniaxial parent metal specimens (see Table 

4.5). The failure position of both aged and unaged crossweld specimens was within 

the fine-grained/intercritical Type IV structure. An image showing the failure location is 

presented in Figure 4.3.12b. 
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The effect of stress on failure life and failure location has also been investigated. It 

can be seen from the data presented in Table 4.5 (specimens 6, 9 and 10). The 

specimen tested at the highest stress (93 MPa) gave the shortest failure life, as well 

as fracture face located within the parent metal. The two lower stress tests produced 

longer rupture lives as well as failures located towards the edge of the fine-grained 

heat-affected zone. This is illustrated in Figure 4.3.13a-c. Figure 4.3.13d depicts 

failure lives of these specimens, indicated by displacement versus run-time plots. It is 

also noticeable that the test conducted at high stress (PM failure) resulted in a 

markedly higher displacement to failure than the two specimens where HAZ failure 

occurred. 

4.3.3 Effect of strain on the evolution of microstructure during uniaxial creep 

In order to investigate the effect of strain on microstructural evolution during creep, as 

well as compare strain-aged material with material thermally exposed under stress­

free conditions, the microstructures within and outside the gauge of two creep tested 

specimens were examined. One of these specimens received a pre-creep stress-free 

exposure for 3000 hours at 650°C. A schematic diagram illustrates the specimens and 

sampling positions (Figure 4.3.14). 

Raw hardness data taken across longitudinally sectioned uniaxial creep specimens 

from the grip end towards the fracture tip are given in Figure 4.3.15. Although the 

material within the grip sections (where () - 0) of both creep specimens show some 

slight softening in comparison to the as-PWHT parent metal, this is not significant. 

However, measurements taken just outside the gauge threads (a1) show significant 

softening. Hardness in a1 is much lower than in () - O. Furthermore, hardness within 

the gauge itself (a2) is less than in a1. Within a2, hardness drops sharply as the 

fracture tip is approached. There is no significant hardening in the vicinity of the 

fracture. There is little difference in the hardness of the two creep specimens, despite 

their different thermal histories, i.e. exposure times. 
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In order to isolate strain effects from thermally induced degradation processes, tensile 

tests have been performed on uniaxial creep parent metal specimens with the same 

geometry as those described above, at very high deformation rates (50 mm per 

1000s) at 650°C and room temperature. Failures occurred after 5 minutes and 4 

minutes respectively. Like the creep failures described above, these tensile test 

specimens have also been sectioned and the material within the gauge parts have 

been characterised in terms of hardness and microstructure (as revealed by SEM). 

For comparison, hardness data have been plotted alongside that of the creep failures 

in Figure 4.3.15. It is evident that the most significant softening occurs within the 

gauges of the creep tested specimens (strain and time (up to 4087 hours) at 

temperature (650°C). The highest mean hardness values are shown by the room­

temperature tested tensile specimen, followed by the tensile specimen tested at high 

temperature. Within the gauges of these samples, there is a considerable difference in 

hardness of about 30 kgf mm-2
. Both tensile specimens exhibited significant strain 

hardening near the fracture tip. 

Fig. 4.3.16 shows average microhardness values of parent metal specimens following 

stress-free thermal ageing over temperatures ranging from 650°C to 760°C plotted as 

a function of the Hollomon-Jaffe tempering parameter (HJP) as in Figure 4.3.8, except 

that in this case, a trend line replaces the data points of the stress-free thermally aged 

specimens. In addition, a number of data points representing the hardness of uniaxial 

creep tested parent metal specimens are given. Hardness values from the grip ends 

of creep specimens (where a - 0) are within the range of the stress-free aged 

specimens. However, hardness values from the strained parts of the creep tested 

specimens fall sharply away from the trend. 

SEM SEI microstructures corresponding to the indented areas indicated on the 

hardness data in Figure 4.3.15 are given in Figure 4.3.17 and 4.3.18. Figure 4.3.17 

are images from a specimen creep tested in the as-received condition, and Figure 

4.3.18 are images from a specimen which received 3000 hours of prior thermal ageing 

at 650°C. When compared, it can be seen that the specimen which was subjected to 

prior thermal ageing lacks an obvious subgrain structure (i.e. grain boundaries are not 

discernible), even in the grip end, where a - O. Both creep specimens show 

precipitate coarsening and increase in inter-particle spacing as strain increases. 
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These results are also presented in terms of particle size distribution in Figure 4.3.19. 

This clearly illustrates the effect of strain on coarsening. For instance, it can be seen 

that in the grip end of one specimen, only about 10% of the precipitates are above 0.1 

\-1m in size. However as you move into the gauge part of the specimen, at least 20% of 

all precipitates within a sampling area of the same size are above 0.1 \-1m. Similarly, in 

the grip end, about 2% of the precipitates within the sampling area are above 0.2 \-1m, 

whereas near the fracture tip, about 12% of the precipitates are above 0.2 \-1 m. 

Creep data for both specimens have been discussed in an earlier section (Figure 

4.3.10). It is interesting to note that 3000 hours prior ageing at 650°C has very little 

effect on steady-state creep rate, despite the lower hardness always exhibited 

following this treatment, even following creep (Figure 4.3.16). 

In order to investigate further the effect of strain on microstructural development, thin 

foils have been removed from a number of locations within and outside the gauge of 

specimens, for TEM examination. Figure 4.3.20a-c are bright field images from 

various zones of the creep specimen which did not receive prior exposure. It can be 

seen that in the stress-free region (Figure 4.3.20a), the material possesses a fine 

martensite structure, with laths about 1 \-1m wide, despite the extended exposure at 

650°C for duration of the creep test (i.e. 1010 hours). The gauge section (Figure 

4.3.20c), on the other hand (18 mm from fracture tip) possesses an equi-axed grain 

structure in excess of 2 \-1m in size. A similar trend is noticeable with the specimen 

which received 3000 hours thermal exposure prior to creep (Figure 4.3.21a and b). In 

this case, the stress-free region exhibits a finer lath structure than previous, as well as 

smaller equi-axed grains. This could be a result of local variations within the 

microstructure. 

In Figure 4.3.22, the interaction of dislocations with secondary phase particles during 

creep testing can be seen. In order to characterise some of these fine precipitates, the 

EFTEM technique has been employed, due to its advantages over conventional TEM 

parallel or convergent beam diffraction. Figure 4.3.23 consists of a number of GIF 

images at different energies, showing the transition in energies from 0 to 600 eV of a 

cluster of three precipitates less than 30 nm in size. At 30 eV, the precipitates appear 

'darker' than the surrounding material. However a change is noticeable at 40 eV. At 

this energy, the two smallest particles labelled A and B have become brighter than the 
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matrix. The ionisation of these two particles peaks at 50 eV, but by 60 eV, the contrast 

between the particles and the matrix is lost. 

Similarly, 570 eV and 590 eV appear to indicate pre- and post- ionisation respectively 

of the particle labelled C, which is at its most brightness at 580 eV, when compared to 

the matrix and the other two particles labelled A and B. 

It is apparent from these series of images, that B, C and 0 are similar in chemical 

composition, but fundamentally different from A. When correlated with EELS maps, it 

becomes clear that the particles labelled B,C and 0 are vanadium-rich, whilst the 

particle labelled A is chromium-rich. 

4.3.4. TEM Characterisation of the HAZ of as-PWHT P91 

4.3.4.1 Background 

The heat-affected zone is often the location of creep failure of grade 91 martensitic 

steel weldments (Brett, 2001; Middleton et al., 2001; Letofsky et al., 2001; Brear et aI, 

2000). This highlights the need for research in characterising this microstructure and 

its influence on failure, if the creep strength of these welded structures is to be 

improved. As mentioned previously, the main difficulty involved in the microstructural 

characterisation of HAZs is essentially one of sample preparation, due to the small 

size of HAZs (1-3 mm in width). This presents difficulty in studying the various regions 

within the HAZ. A number of authors have overcome this difficulty by producing bulk 

samples which have microstructures simulating the individual microstructural regions 

within the HAZ based on their thermal histories (e.g. Matsui et al., 2001; Singh et al., 

2002). The main drawback of this method is the lack of information on the effect of the 

interaction between the different microstructural zones on the response of the HAZ to 

ageing and creep. 

However, in this work, it has been possible to prepare a thin foil from the HAZ of 

KA 1200 as-PWHT, with thin area in excess of 800 IJm long. Bright field images have 

been collated in a montage style spanning from the weld fusion boundary across into 

the HAZ. Further details are given in Chapter III. In addition to the procedures 

described in Chapter III, the TEM sample was investigated using the ESEM, which 

helped identify the fusion boundary, based on compositional differences between the 
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weld and parent metal, this being primarily the Mn-rich spherical inclusions easily 

identifiable using both secondary electron and back-scattered imaging. Based on 

these analyses, as well as optical examination, the sample was characterised as 

follows. 

4.3.4.2 TEM characterisation 

Figure 4.3.24a is a low magnification bright field image, showing the entire thin foil, 

consisting of three main 'holes' - 1, 2 and 3. These holes are surrounded by thin area, 

from which low magnification TEM bright field montages were obtained, i.e., between 

points a-b, c-d and e-f, as shown schematically in Figure 4.3.24b. The approximate 

distances of these regions from the fusion boundary are indicated. A number of 

distinct microstructures are identifiable. 

Figure 4.3.25 is a low magnification montage of bright field images which covers the 

distance a to b as shown in Figure 4.3.24. The representative areas indicated in 

Figure 4.3.25 are shown in Figure 4.3.26. On the weld metal side of the fusion 

boundary, there are a number of large holes (Figure 4.3.26a), which are thought to be 

as a result of particle fall-out (Mn-rich inclusions; these are only associated with the 

weld metal and have been identified/characterised elsewhere). Also noticeable are 

very fine arrays of martensitic laths, about 200-300 nm in width. Fine precipitates can 

be seen decorating the lath boundaries. As we move to the right, a structure change is 

perceivable (see Figure 4.3.26b). The very fine martensite lath structure, although still 

present, appears slightly coarser (300-600 nm). Regions lacking lath structure are 

also noticeable. This region is thought to be the fusion boundary. Incidentally, no more 

large Mn-rich inclusions are found in this area. This montage is at -45 0 to the fusion 

boundary normal (see Figure 4.3.24b). 

The area around hole 2 (c to d) shows an altogether different microstructure (Figure 

4.3.27). This area, which is approximately 350 !-1m from the fusion boundary (Figure 

4.3.24b), shows a much more equi-axed subgrain structure, with grain size up to 1 

!-1m. One noticeable difference between this region and the microstructure around hole 

1 (a to b) is that this region appears to possess fewer but coarser precipitates, 

especially at former-austenite grain boundary triple points. Again, the representative 

areas indicated in Figure 4.3.27 are shown in clear detail in Figure 4.3.28. In 

comparison to the previous region, subgrain boundaries are more clearly defined (see 

Figure 4.3.28a). The whole montage is believed to be approximately parallel to the 
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fusion boundary; hence it is difficult to discern major differences across most of the 

montage. However, towards the end of the montage (Figure 4.3.28b), a number of 

larger subgrains can be seen. Precipitates in this region also appear coarser. This is 

probably indicative of another transition, perhaps that between the coarse and fine­

grained regions of the HAZ. 

The microstructure around hole 3 (montage e to f) reveals yet another markedly 

different microstructural region (see Figure 4.3.29, 4.3.30a and 4.3.30b). Subgrain 

sizes appear largely bimodal, and equi-axed, the largest being of the order of about 

1.5-2 JJm in size. Again, this change is indicative, perhaps of a different region within 

the HAZ. Logically, this would be the fine-grained HAl, as it is approximately 750 JJm 

from the fusion boundary. Furthermore, microstructural features present here are 

indicative of a more creep-weak structure than previously observed (creep strength 

has been shown to be inversely proportional to lath width, Sawada et a/., 2000). This 

is because it exhibits the largest subgrain sizes and the fewest, coarsest precipitates. 

Again, the microstructure of this region appears relatively unchanged across the 

montage, since the montage is again approximately parallel to the fusion boundary. 
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Results 

In this chapter, the results of experimental work aimed at understanding 

microstructural evolution during creep-testing and thermal (strain-free) exposure of 

P91 welded structures have been presented. Key observations include: 

I. precipitate coarsening and changes in martensite lath morphology during 

ageing, 

II. anisotropic creep behaviour within deposited weld metal, with respect to 

welding direction, 

iii. high sensitivity of weld metal hardness to thermal ageing, 

iv. recrystallisation and growth of ferrite within the weld metal during ageing, 

v. the relative stability of parent metal hardness and microstructural 

characteristics following ageing, 

vi. accelerated microstructural damage (deterioration of martensite lath 

structure resulting in more equi-axed subgrains, the growth of these 

subgrains, as well as precipitate coarsening) during creep tests, and 

vii. variation in microstructural features (as viewed by TEM) within the weld 

heat-affected zone. 
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Figure 4.1.3. A 

KA 1100/311 (as received 

from supplier). 

Figure 4.1.2. B 

KA 1100/211 (PWHT only) . 

From as-received condition , 

soaked at 760°C for 3h 

[Heated at100°C/hr above 

400°C; cooled at 50°C/hr to 

400°C] 

Figure 4.1.1. C 

KA1100/1/1 (aged only) . 

Pseudo-aged from original 

condition by soaking at 760°C 

for 30h [Heated at100°C/hr 

above 400°C; cooled at 50°C/hr 

to 400°C] 

Figures 4.1.1 - 4.1.3 SEM secondary electron images of P91 (Bar 257) Heat 

treatments 
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Figure 4.1.4. 0 
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KA 1100/3/3 (normalised only) . 

Soaked at 1 060°C for 1 h [Heated 

at1 OO°C/hr above 400°C; cooled 

in still air] 

Figure 4.1.5. E 

KA 11 00/3/4 (normalised and 

tempered). Normalised as 

described above, followed by 

soaking at 760°C for 1 h [Heated 

at1 OO°C/hr above 400°C; cooled 

at 50°C/hr to 400°C] 

Figure 4.1.6. F 

KA 1100/4/1 (normalised 

tempered and aged). 

Normalised and tempered 

as described for 

KA 1100/3/4, followed by 

soaking at 760°C for 30h, 

[Heated at1 OO°C/hr above 

400°C; cooled at 50°C/hr 

to 400°Cl 

Figures 4.1.4 - 4.1 .6. SEM secondary electron images of Bar 257 Heat treatments 
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Figure 4.1.7. Creep properties of P91 heat-treatments A, 0, E and F at 650°C, 93 

MPa (a) Uniaxial creep curves, (b) Monkman-Grant relationship, (c) Relationship 

between Vickers hardness and LMP. 
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Vickers Hardness (O.Skg) = 203 (mean 
over S readings, st dev. = 2.61) 

250 Jlffi 

Figure 4.1.8. Optical micrograph of as-PWHT P91 parent metal. 

f----- Former-austenite 
grain boundary 

Lath boundary 

Figure 4.1 .9. Etched SEM secondary electron image of as-PWHT P91 parent 
metal. 
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Figure 4.1.10. TEM bright field image (thin foil) showing martensitic lath 

(subgrain) morphology in the as-PWHT P91 parent metal. 

Strongly diffracting ferrite 

grains (as-received P91) 

b.c.c., zone axis = [-1-11] 

a = 2.8664 A 
JCPDS ref. 6-696 
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Figure 4.1.11. TEM images of P91 parent metal. (a) Brightfield image showing 

subgrain morphology, (b) SADP and centred dark field image (inset) showing strongly 

diffracting ferrite grain. The diffraction spot from which CDF image was obtained is 

indicated. 
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M23C6 particle (SP10 Grip) 

f.c.c., zone axis = [-2,-1,1] 

a = 10.6599 A 

JCPDS ref. 35-783 
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Figure 4.1.12. An end-on perspective of an M23C6 particle (SP10 Grip) Zone axis = [-2-11] 

a = 10.6599 A 

M23C6 particle (KA038/3) 

f.c.c., zone axis = [3,0,1] 

a = 10.6599 A 

JCPDS ref. 35-783 

Figure 4.1 .13. TEM bright field image (thin foil) : Longitudinal perspective on coarse, 

'sausage' shaped M23C6 precipitates along a subgrain boundary 
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slocations 

Figure 4.1.14 M23Ca precipitates 
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Figure 4.1.15 MX precipitates (a) TEM Bright field image showing fine precipitates within 

P91 matrix. (b) SADP corresponding to the particles in (a). 
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Figure 4.1.16. TEM Bright field images showing the effect of normalising, tempering 

and ageing for 30 h at 760°C (a) equiaxed subgrains (b) fine precipitates. 

M23C6 particle (KA 1100/4/1) 

f.c.c., zone axis = [-100] 

a = 10.6599 A 

JCPDS ref. 35-783 

Figure 4.1.17. (a) TEM bright field image of a coarsened M23C6 precipitate after 

normalising, quenching and tempering at 760°C for 30 h. (b) Corresponding centre 

dark field image and (c) selected area diffraction pattern. 
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Figure 4.2.1 (a) Low magnification optical microstructure of as-PWHT P91 weld 

metal. 

Figure 4.2.1 (b). Optical micrograph of etched weld metal indicating hardness of 

light-etching coarse (ferrite) grains, relative to surrounding martensite. The 

different indent sizes indicate different hardness values, as they were made at 

the same load. 
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Figure 4.2.2 (a) and (b). TEM thin foil bright field images of as-PWHT P91 weld 

metal showing rounded inclusions; (c) and (d) EDX spectra from rounded particles. 
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Figure 4.2.3. ESEM analysis of weld metal inhomogeneity. (a) Secondary electron image 

of region within weld metal of 'normal' appearance (b) Corresponding EDX area analysis. 

(b) 

Cr 

Fe 

Mo 

lJ s' i ..Jl 1... 2... 3... _... 5... ,... 7... B... 9 .. ' 
Figure 4.2.4. ESEM analysis of weld metal inhomogeneity. (a) Secondary electron image 

of large precipitate-free ferrite grains (indicated) (b) Corresponding EDX area analysis. 

(c) 

1.40 
Ni Nb 

B... 1.... 12... 1_ .. ' 1'... 1 .. 

Figure 4 .2.5. ESEM analysis of weld metal inhomogeneity. (a) SE image of precipitate-rich 

grain. (b) Low magnification SEI of same region (c) Corresponding EDX area analysis . 
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(c) 

2.__ 3.2_ _.__ _... 5.6. 6._. 7.2. 

Figure 4.2.6. ESEM analysis of the weld rod flux. (a) Low magnification SE image 

showing large flux particles. (b) Chromium rich region (c) EDX corresponding to b. 
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(b) 

(d) 

C, 

1.71 1._1 2.1' 2." 3.51 _.Z' _.,. 5." 6.3' 7 

Figure 4.2.7. (a) and (c) SEM SE image of other regions; (b) and (d) are the 

corresponding EDX spectra. 
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Figure 4.2.8. Schematic diagram showing the orientation of specimens from the weld 
pad, in relation to the welding direction 
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Figure 4.2.9. Creep behaviour of weld metal (a) uniaxial creep curves of longitudinal 

and transverse creep specimens at 650°C and two stress levels: 93 MPa and 100 

MPa. (b) Corresponding Monkman-Grant Plot. 

120 



(a) 

( 

(b) 

~ I 

,) 

cr -direction 
( ) 

I 
(' , 

I~ 
'I 

Chapter IV 
Results 

-columnar 

equiaxed 

Figure 4.2.10. Micrographs of 9CrMoVNb weld metal after creep testing at 100 MPa, 650°C 

in the longitudinal direction (a) as-polished (b) etched. 
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Figure 4.2.11. Micrographs of 9CrMoVNb weld metal after creep testing at 100 MPa, 650°C, 

in the transverse direction: (a) as-polished (b) etched. 
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Figure 4.2.12. Schematic illustrating the distribution of and interaction between 

microstructural zones in transverse and longitudinal sample orientations. 
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Figure 4.3.1. P91 welded structure following PWHT 

a. Optical etched macrosection 

b. Microhardness profile across weld (0.5 kg indentation load for coarse trace, 0.2 kg 

indentation load for fine trace) 
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grains 

grains 

Figure 4.3.2. Optical micrograph montages of crossweld specimens. Weld metal 

microstructure following stress-free thermal exposure (a) in the as-pwht condition (top) (b) at 

650°C for 7000 h, arrows indicate ferrite (middle) (c) at 650°C for 12000 h (bottom) . 
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igure 4.3.2 continued. Weld metal microstructure following stress-free thermal exposure at 

d} 675°C for 424 h (top) (e) 675°C for 5085 h (bottom). 
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Figure 4.3.2 continued . Weld metal microstructure following stress-free thermal exposure at 

(f) 725°C for 87 h (top) (g) 725°C for 1034 h (bottom). 
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Figure 4.3.2 continued. Weld metal microstructure following stress-free thermal 

exposure at (h) 760°C for 48 h (top) (i) 760°C for 374 h (bottom). 
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Figure 4.3.3. TEM bright field images of thin foils showing the effect of thermal 

exposure at 760°C and 650°C on the subgrain structure of as-past-weld heat-treated 

(PWHT) P91 parent (PM) and weld metal (WM). (d) and (e) show regions within the 

weld which differ in microstructure (lath width) and therefore differ in creep strength. 
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10IJm 

Figure 4.3.4. SEM SEI showing changes in precipitate size within the parent metal (PM) 

and fine-grained HAl (FGHAl) after exposure at 760
0 e and 650°C. 
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Figure 4.3.5. TEM bright field images of carbon extraction replica showing the effect of 

ageing on precipitate size/distribution. 
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200 nm 

MX (vanadium nitride) particles 

Cubic, zone axis = [-100] 

a=4.13916A 

JCPDS ref. 35-768 
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Figure 4.3.6. Carbon extraction replica showing MX precipitates within the weld 

metal following exposure at 760°C for 374 hours. (a) Bright field image of small 

rounded particles (b) bright field image of cluster of precipitates. (c) centred dark 

field image from diffraction spot indicated in the selected area diffraction pattern 

(d). 
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Figures 4.3.7 a-c. Vickers hardness traces (O.5kg) across crossweld specimens following 

ageing at 650o e , 675°e and 700 0 e respectively 
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Figures 4.3.7d-e. Vickers hardness traces (O.Skg) across crossweld specimens following 

ageing at 725°C and 760°C respectively. 
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Figures 4.3.8. Mean Vickers hardness (O.5kg) plotted against the Hollomon-Jaffe 

Parameter (HJP) of (a) parent metal (b) weld metal. HJP = T(20 + log t) 
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Figures 4.3.9 a-c. Vickers Hardness traces (0.5 kg) across crossweld specimens for 

parametrically equivalent ageing conditions. Ageing times increase from (a) to (f) . 
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Figures 4 .3.9d-f. Vickers Hardness traces (0.5 kg) across crossweld specimens for 

parametrically equivalent ageing conditions. Ageing times increase from (a) to (t) . 
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Figures 4.3.10. Uniaxial creep of P91 Parent metal: effect of thermal exposure at (a) 

650°C, (b) 760°C. Creep test conditions: 650°C/70MPa. '0 hours' refers to the as-PWHT 

condition. 
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Figures 4.3.11. Uniaxial creep of aged P91 parent material : Monkman Grant relationship. 
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Figures 4.3.12. Effect of prior thermal exposure on the crossweld creep of P91 welded 

structure. Creep test conditions: 650°C/70MPa (a) displacemenUtime curve (b) 

macrograph showing failure location 
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Figures 4.3.13. Etched optical micrographs showing the effect of creep stress level on 

failure location. (a) 70 MPa (b) 82 MPa (c) 93 MPa. 
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Figure 4.3.13 (d) . Effect of stress on crossweld creep deformation and failure 

location at 650°C. 

141 



(a) 25 

I~ 15 t 50 

~I 

Chapter IV 
Results 

010 ~ 

- . . -.- .- .- . y--.-.-. --qJ--. ·-·----rr---·-·-·----IJ.l-·-·-· ----l--------1: 
I~ 130 ~I 

(b) 1-- GRIP (IT = 0) 

--I---·- · -·~ ·--]--~ 

TEM specimens 

Figures 4.3.14. (a) Geometry of uniaxial creep specimens (mm) (b) sampling positions for 

TEM thin foils after creep failure. 01 == 58 MPa, 02 == 70 MPa. 

300.---------------------------------------------------------------~ 

-.- as-PWHT 

280 - --- 1010 h stress-free exposure 

N -0- 4087 h stress-free exposure 
'E 
E 260 --+- 1010 h creep exposure 

rn -Ir- 4087 h stress-free and creep exposure 
~ 

........ ---- Tensile test at RT (20°C) 
C/) 240 -
~ -0-- Tensile test at 650°C 
c 

"'C ---- .... 
ro 220 - ,,'- ...... 

I I 0"=0 \ 

~200 :\~.A) 
~ V-~ , 
u ... .-> '------ -------------------------------~ 

0"2 

1 

180 - 1 <------------------->1 
0"1 ~ 

160 ~------~------~--------~--~--~~~--~--------------------~ 

o 5 10 15 X / mm 20 25 30 35 

Figures 4 .3.15. Microhardness (0.5kg) across uniaxial creep tested specimens (creep 

tested at 650°C), showing the effect of prior thermal ageing and/or strain . 

142 



~ 
E 
E -en 
.::6! 
-. 
(/) 
(/) 
Q) 
c 
u 
"-co 
I 
(/) 
"-
Q) 

.::6! 
() 

:> 

220 

210 

200 

190 -

180 

170 • 
160 

20000 21000 

• 
22000 23000 
HJP 

• Grip (0 = 0) 
• Gauge (0 == 58 MPa) 

• Gauge (0 == 70 MPa) 

Chapter IV 
Results 

- trend for stress-free data 

24000 

Figure 4.3.16. Mean Vickers hardness (O.5kg) plotted against the Hollomon-Jaffe 

Parameter (HJP) of parent metal after thermal exposure and creep testing at 650°C. 

143 



a 

a=O (GRIP of 
specimen) 

, -. . • , 

..... 

.. 

~, ,.. -, 

• I • ". 
, 

.". 

• ..... , 
- J .. 

{ • , '\, 

~ 
• • 

• v' . ' 
• - #' • 

, , 

• d I 1 

• 
..... 

• 
. ~. " . 

-rI • 

( 

,. 

.. , 
.. 

- ~. 

1 . .-
, I I I 

• .a, , 

• 

• 

" 
.,J 

• 

, 
~ 

; 

• 

Chapter IV 
Results 

• 
~' , 

• 
, .. 

" 
t' , 

• , 
.. . 

4,-\ .. , 
~ 

• 
• F' oj -10':' 

, 
,I , • 

" 
, • 

• ...> 

. --. • 
" . ) # ~ 

.. •• 
• 

~ 
• ,. ~' • .A. -. 

. , • • • s: 
'.~ , "J • .-. -

.,,~ 

~ 
6 

• , 
•• j .~ 

• 
. ~ 

,~~1'11 III' 

• .' ~ t 1'1 ~ I ._' r(t fll , ',d, __ I 4 

• • • 

.,. 

• 
':'-J , 

.. 
,# , . 

\ 9' 

~ , , 
:l. 

... . ~, 
• , .. ' . .. 

/' " .. \ . • ." r 
• , , -..... • 

• II 
,; 

':;jI' 

T-
f- ~ t --' f II 

1 c-f ' -. 
.' ,·1 '.J rfl I" _I ". --. , • 

" • .. 

;;# • ~ JI • 
J • "Ii .: 

" • ... 
.61.,. . 
~, ' 

• . 
'I-

• , ~ 

• 
\,.-j 

, ~ . J # . ,- , 
oj ~ ~ , • , , .. -. 

,~ 
• 

• \ .. .. 
" 

• 111 • • •• l 
, 

4- - ~ I , ... - - -. V. 
( , .. ,. . .,-

~ -~- ... ----T~-- • __ 1_~~ ~.' r~1 
~'.CI III rll 1 r.; 1- I). .. ' , : 2: " '.1 ~ '.J r-

--..... 
~ 

fill • 'r .... 

Figure 4.3.17. SEM secondary electron images showing changes in precipitate size, distribution and grain structure due to thermal exposure 
and creep strain at 650°C. No thermal exposure prior to creep testing. (Note: (J1 ::::: 58 MPa; (J2::::: 70 MPa.) 
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Figure 4.3.21. TEM thin foil bright field images showing changes martensite lath/subgrain 

morphology due to thermal exposure and creep strain: exposed for 3000 h at 650°C prior 

to creep testing (a) within Grip section, 0 = 0 (b) within gauge section, £ - 19%, 02 ::::: 70 

MPa. 
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Figure 4.3.22. TEM bright field images (thin foil) showing particle­

dislocation interaction (a) within grip (stress free section) and (b) gauge of 

specimen creep tested at 650°C without prior thermal exposure. 
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Figure 4.3.24. TEM/GIF images showing ionisation of vanadium-rich particles at 50 eV (B, C and D) and an M23C6 particle (A) at 

580 eV. 

149 



..... 

.... .... 

8 

..... .... ..... 

. ... 

. ... 

..... .... 
. ... 

...... .... 

.... .... 

....... 

. ... 

.... 

Chapter IV 
Results 

·1····················· ..... .......... . 

. ... 
...... 

- 775 !lm 

. ... 

igure 4.3.24. TEM of the HAZ of an as-PWHT P91 crossweld specimen: bright field positive (A) 

nd negative (8) images showing entire thin foil and extent of thin area, as well as schematic 

ndicating positions imaged. 

150 



Figure 
4.3.268. 

( ) 
-100 11m 

Figure 4.3.25. TEM bright field montage around hole 1 (a-b) (see Figure 4.3.24). 

151 

Figure 
4.3. 26b. 



Figures 4.3.26a and b. TEM Brightfield montages of the areas indicated in Figure 

4.3.25. 
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Figure 4.3.27. TEM Brightfield montage around hole 2 (c-d) (see Figure 4.3.24). 
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Figures 4.3.28a and b. TEM Brightfield montages of the areas indicated in 

Figure 4.3.27. 
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Figure 4.3.29. TEM Brightfield montage around hole 3 (e-f) (see Figure 4.3.24). 
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Figures 4.3.30a and b. TEM Brightfield montages of the areas indicated in Figure 

4.3.29. 
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Chapter V 
Discussion 

This chapter comprises four main themes of discussion: (i) the microstructure and 

properties of the parent metal, (ii) the microstructure and properties of the weld metal, 

(iii) the microstructure and properties of a weldment, and (iv) the sensitivity of welded 

structures (crosswelds) to thermal ageing and creep exposure. 

(i) The first section (5.1) introduces the features of the parent metal microstructure 

characterised in section 4.1. In addition to identifying in general terms the 

microstructural features of as-received P91 prior to any testing, it was also necessary 

to ascertain the effect of pre-service heat-treatments, namely normalising, quenching 

and tempering. These are discussed, in addition to how these preliminary heat­

treatments affect creep properties. This preliminary discussion will form a basis for 

microstructural comparison following experimentation in the succeeding sections. 

(ii) As mentioned previously, welds are an essential part of power plant steel 

structures. For this reason, their impact on strength and plant life must be understood. 

However, in order to achieve a good understanding of how the 'composite' welded 

structure (consisting of unaffected parent, heat-affected zone, in addition to the 

deposited weld metal itself), responds to creep loading, it is helpful to characterise the 

weld metal in isolation. Thus the second section (5.2) examines the microstructure of 

the post-weld heat-treated weld deposit. In order to shed light on inhomogeneous 

features, the flux coating on the weld rods is also analysed. Finally, the anisotropic 

creep behaviour of the weld pad is discussed. 

(iii) In the third section (5.3), the microstructure of the weldment is explored. The 

interaction between the various zones during creep testing is also discussed, as well 

as the factors affecting failure life and location within the weldments. 

(iv) In the final discussion section (5.4), the effects of stress-free thermal exposure (in 

the form of laboratory ageing heat-treatments) on the microstructure and hardness of 

weld structures are explored. This microstructural information is then compared to 

those generated by creep tests. Further, a combination of heat-treatments and creep 

tests applied to P91 material is compared and contrasted with the above experiments. 
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In brief, there are three main microstructural changes which have been observed 

following thermal exposure at temperatures ranging from 650°C to 760°C for up to 

12000 hours, details of these exposures are given in Table 4 of Chapter IV. Details of 

findings are also given in Section 4.3 of Chapter IV. 
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5.1 DISCUSSION I: MICROSTRUCTURE AND PROPERTIES OF P91 

PARENT METAL 

5.1.1 Normalised, quenched and tempered microstructure 

The 9% Chromium power plant steel P91 is a martensitic steel, usually normalised 

and then tempered in order to achieve the best possible compromise between creep 

rupture strength, and toughness (The P91 Book, 1999). The effects achieved by 

various heat-treatments are evident from section 4.1 and Figures 4.1.1 to 4.1.6. 

Following a normalising heat-treatment from the original, as-cast condition, the 

austenite grain size remains relatively unchanged, around 10 to 20l-lm. However, a 

fine lath structure is evident, in addition to complete dissolution of the large M23C6 

precipitates. This is not unexpected, as the grain boundary stabilising M23C6 

precipitates are soluble at normalising temperatures (Hald, 1996, Jones et al., 1991). 

However, a fine intragranular dispersion can be seen, and these may be MX particles, 

as they are stable up to 1200°C; for example, the so-called Type I MX (NbX) specie 

is thought to remain undissolved during normalising (Anderson et al., 2003). This is 

also evident from the equilibrium phase diagram of P91 in Figure 2.2 of Chapter 2 

(Ayala et al., 1998). The normalised-only structure (prior to tempering) also 

possesses relatively high hardness values (420 kgf mm-2
). This is attributable to its 

highly martensitic structure, brought about by its relatively high hardenability and 

relatively fast cooling from austenising temperatures. 

A number of distinctive changes brought about by tempering at 760°C for 1 hour can 

be clearly observed in Figure 4.1.5. Firstly, the increase in the number of fine, 

intragranular (MX) particles on further tempering is a commonly observed 

phenomenon, although most documentation in the literature regard much longer 

exposure times (e.g. Polcik et al., 1999). Moreover, its continued precipitation during 

thermal exposure is believed to be a key feature contributing to the creep strength of 

these alloys. These impede the mobility of dislocations and grain boundaries, thereby 

slowing down recovery processes. It can also be seen from Figure 4.1.5 that further 

precipitation at the grain boundaries (M23C6 ) has occurred. Equilibrium predictions 

(Hald, 1996) indicate that the mass fraction of M23C6 within P91 is sustained when 

tempered at temperatures below 800°C (see Figure 2.18). As expected, these 

changes are accompanied by a drop in hardness to 262 kgf mm-2 Tempering after 
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normalising has been observed to lead to a drop in hardness from 408 to 270 kgf 

mm-2 in a 0.5Cr-0.5Mo steel (Kimura et al., 2000b
). 

In the as-PWHT condition (tempered for 3 hours at 760°C from the 'original' 

microstructure, analogous to specimen B, Table 4.1), the microstructure is typical for 

the P91-type steel (Figure 4.1.8, 4.1.9). The latter figure shows both former-austenite 

and lath boundaries, decorated by sausage-shaped (M23C6) carbides; this 

morphology has been reported by a number of other workers (Gocmen et al., 1998, 

Strang and Vodarek, 1998; Sourmail, 2001). The martensitic laths are evident from 

TEM thin foils (Figure 4.1.10). Although the lath widths ranging between 200-400 nm, 

are not unusual in the unexposed condition, finer, less equi-axed lath morphologies 

might be expected of typical P91 materials (e.g. Kimura et al., 1998; Sawada et al., 

2000). The P91 cast studied in this work (Innogy Bar 257) is believed to be weaker 

than average P91 material; this is reflected in its hardness value. P91 hardness after 

tempering is usually around 250 HB at most (The P91 Book, 1999). Other regions 

within the structure do not exhibit lath microstructure at all (Figure 4.1.11). This is not 

unexpected (Orlova et al., 1998 a), and may be a result of heterogeneous recovery 

during tempering. Precipitates vary in size and distribution. The precipitates present 

are primarily the M23C6 (Hald, 1996, Vodarek and Strang, 2000). A fine dispersion of 

MX particles also exists within the microstructure (Figure 4.1.15), although more 

difficult to discern due to their size (15-40 nm). 

An extended exposure (30 hours at 760°C), as seen in specimen F, Table 4.1, leads 

to further softening and brought about a marked difference in precipitate size (Figure 

4.1.6 and 4.1.17). Time at temperature is well understood to result in precipitate 

coarsening (Foldyna and Jakobova, 1984), and can also lead to spheroidisation of 

the precipitates (Moitra et al., 2002). 

5.1.2 Summary 

The heat-treatment of the 9-12% chromium steels is a crucial process, because it 

helps to achieve creep resistant properties, such as a good distribution of M23C6 and 

fine MX particles which precipitate during tempering. In addition, the tempering 

process stabilises the martensite structure after normalising, by annihilating some 

dislocations. As will be demonstrated later in this chapter, although very fine 

martensite laths are very strong in creep, they are more thermodynamically unstable 

and tend to recover rapidly when exposed to creep or thermal ageing conditions. 
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5.2. DISCUSSION II: MICROSTRUCTURE AND PROPERTIES OF P91 

WELD METAL 

5.2.1 As-welded & PWHT Microstructure 

The nature of the multipass MMA welding process gives rise to a number of 

microstructural complexities resulting in complex creep responses and mechanical 

properties. Discussion in the literature regarding these implications is limited 

(Savage, 1979; Coleman, 1979; Francois and Burdekin, 1998; Honeycombe & 

Bhadeshia, 1995; Yamazaki et al., 1999). Moreover, apart from previous work (Hyde 

et al., 2002), these implications of multipass welding on the integrity of P91 

microstructure in particular have not been reported in the literature. 

In the first instance, the as-PWHT weld pad exhibits a number of microstructural 

zones, namely columnar, equiaxed-coarse and equiaxed-fine grained regions (see 

Figure 4.2.1 a). These microstructures were observed to differ in terms of hardness 

and therefore creep strength. In addition, a light-etching soft ferrite phase was also 

detected. This appears to have a relationship with the location of the bead 

boundaries. 

The columnar grains, emanating from the vicinity of the bead boundaries, owe their 

columnar morphology to the rapid cooling experienced as the molten weld is 

deposited, combined with the directional solidification caused by the vast thermal 

gradient between the base of the deposit and the outermost part of the weld. A single 

weld bead would exist entirely of a columnar structure. However, a subsequent 

deposit of hot, molten material on the existing weld metal reheats the material in 

direct contact with it, taking it back into the austenitic region (see Figure 2.5). Some 

distance below this re-austenised material, the structure is reheated, leading to a 

'tempering' effect. This tempering is what creates the equiaxed, but softer and 

relatively creep-weak zones. Tempering is known to result in a region with coarser 

precipitates and a reduced density of dislocations (Taneike et al., 2001; Orlova et al., 

1998 a, b). These microstructural changes inevitably create an inhomogeneous 

structure which varies in terms of creep properties. As a result, the structure 

produced by a multipass weld is highly sensitive to parameters such as bead size 

and overlap, as well as peak temperatures (Easterling, 1992), as these determine the 

size/properties of the local microstructural zones. 
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5.2.2 Creep response 

It is evident from the results presented in section 4.2.2, that the sampling orientation 

of test specimens (with respect to the welding direction) impacts uniaxial creep 

response. As indicated schematically in Figure 4.2.8, uniaxial specimens were 

removed in the 'longitudinal' and 'transverse' orientations, with respect to the welding 

direction. These showed a significant difference in failure strain and rupture life, 

irrespective of stress level (Figure 4.2.9). The transverse specimen produced the 

shortest creep life as well as the shortest failure strain (-2%). In contrast, the 

longitudinal specimen exhibits a failure ductility of around 4%. 

From the etched micro-montages in Figure 4.2.10b, it can be seen that in the 

longitudinal specimen, the microstructural zones (columnar, fine-grained and coarse­

grained) appear in horizontal bands. The distribution of these microstructures is 

entirely different in the transverse specimen. A schematic diagram (Figure 4.2.12) 

depicts this. Similarly, the distribution of macroscopic creep damage, namely 

cavitation and microcracks is different in the two orientations (Figures 4.2.10 and 

4.2.11 ). 

It is apparent that the difference in failure lives is due to the difference in distribution 

of and interaction between the various microstructural zones, which in turn results in 

a different failure mechanism. Due to their different thermal histories, the different 

microstructural regions differ in terms of microstructure and hardness, as would be 

found in the heat-affected zones of a weldment (Ennis and Wachter, 1998; 

Hasegawa et al., 1998). Therefore the ductility, fracture toughness and load bearing 

abilities of these local zones are thought to be different. It believed that the columnar 

regions are the most creep-strong but least ductile, when compared to the more 

equiaxed coarse and fine-grained regions. 

In the longitudinal specimen, the horizontal bands of columnar grains, because of 

their relatively high creep strength, carry the stress during creep. However, due to the 

limited ductility in this region, the loading will be eventually transferred onto the more 

ductile, but weaker fine- and coarse-grained regions. Failure then occurs by plastic 

shear across the ductile but creep-weak equiaxed microstructure. 

In contrast, as the schematic figure indicates, the distribution of microstructural zones 

in the transverse specimen is such that a continuous, near-vertical band of fine-
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grained material exists perpendicular to the stress axis. This is the most detrimental 

orientation for creep damage, and leads to the concentration of creep damage and 

eventual failure in this region, leaving the creep-strong columnar material pretty much 

undamaged. Because damage is confined to the creep-weak fine-grained region, 

failure occurs much sooner in the transverse specimen. A few columnar regions 

showing voiding can be seen in the as-polished specimen (Figure 4.2.11), however, 

these are at a significant distance away from the failure. In these regions, the 

damage present is concentrated where the columnar microstructure ends and 

therefore where the strain mismatch is greatest (Figure 4.2.11 b). Similarly, creep 

damage along the actual failure plane crosses a columnar region close to its centre 

and is concentrated at the interface between the columnar and equiaxed regions. 

A useful analogy can be drawn between the microstructural zones created within the 

weld metal itself by the multipass welding process, and the heat-affected 

microstructural zones created in the parent material of weldments, since both involve 

similar thermal cycles which transform the adjacent material in some way. There 

have been a number of studies relating to the microstructural characteristics and 

creep strengths of the various zones within the HAl of the parent metal. These show 

that weldment HAls differ in hardness and creep strength, and a number of creep 

failures within the fine-grained or intercritical HAl (Type IV) have been documented 

(Cerjak and Letofsky, 1998a
). Type IV failures have been attributed to high levels of 

local strains concentrated within the highly ductile fine grain region (Hasegawa et al., 

1998; Parker and Stratford, 1996). The latter authors recorded local strains of 

between 20-30% in the fine-grained region of failed 1.25C-0.5Mo steel weldments 

tested between 45-162 MPa at temperatures ranging from 580-670°C. The 

intercritical (ICHAl) marks the end of the soft fine-grained HAl and the stronger, 

unaffected parent metal. It can be seen that this region experiences a strain 

mismatch during creep, and as such is likely to be the location of any final shearing 

preceding fracture. 

5.2.3 Other aspects of weld microstructure 

In addition to the heterogeneity which arises from the thermal welding cycles and 

solidification, the weld metal microstructure showed a degree of chemical 

inhomogeneity. As mentioned earlier, light-etching soft ferrite phases were observed 

optically. From SEM EDX investigations, a couple of varieties of ferrite patches were 
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identified. Some showed denudation in precipitates, whilst others showed a 

concentration of Molybdenum-rich particles. 

The presence of 8-ferrite in P91 has been documented (Chandravathi et al., 2001; 

Sireesha et al., 2001 a
; Sireesha et al., 2001 b

; Ennis and Wachter, 1998). In P91, 8-

ferrite can be expected if temperature exceeds 1200°C during welding, as is 

suggested by the phase diagram in Figure 2.2. This is in agreement with work by 

Ayala et al. (1998), who have demonstrated that the 8-ferrite content in P91 

increases with increase in heat input during welding. Furthermore, the composition of 

P91 makes it susceptible to 8-ferrite formation, when its chromium/nickel contents 

are taken into consideration (see the Schaeffler diagram, Figure 2.6). 

The light-etching ferrite phase encountered in this work is not thought to be retained 

8-ferrite, as this usually has a blocky morphology, is enriched in certain alloying 

elements and is also found at former austenite grain boundaries (Barnes, 2000; 

Faulkner et al., 2003), and is believed to reduce ductility of weld metal, although 

there is some confusion in the literature regarding this. Instead, the phase present 

here is thought to be the softer a-ferrite phase, formed due to local 

variation/depletion in carbon as well as a localised slow cooling rate, which 

suppresses martensite transformation. The kinetics of this process are also believed 

to be dependent on composition of ferrite stabilisers in particular. It has been stated 

that alloys with a Creq value greater than 10 and Kaltenhauser Ferrite Factor greater 

than 8 will tend to contain untransformed ferrite (Sireesha et al., 2001 b). Based on 

the nominal composition of the welding rods employed in this study, these would be 

9.31 and 8.08 respectively. These figures would indicate that this P91 composition 

does not readily retain untransformed ferrite. 

This compositional inhomogeneity within the weld metal microstructure has been 

attributed to the process by which alloying elements are incorporated into the molten 

weld metal mixture. The alloying elements have been shown to be contained in a flux 

material which coats a basic steel rod. During welding, therefore, insufficient mixing 

of the elements from the molten flux and core can result in a microstructure with 

chemical variations, as has been shown in section 4.2. An analysis of the flux 

material showed regions of high chromium content, greatly disproportional to the 

overall chromium weight percent in the alloy. 
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Sireesha et al. (2001 b) have concurred that the segregation effects due to poor 

mixing of alloying elements in the weld pool could be responsible for the 

untransformed ferrite phases. These are said to be rich in chromium and 

molybdenum as a result of partitioning. The Cr-/Mo-rich ferrite phases produced are 

thought to be brittle. Furthermore, the presence of the ferrite may lead to an 

enrichment of carbon in the surrounding austenite as a result of further partitioning, 

leading to the formation of a harder and more brittle martensitic microstructure as the 

austenite transforms. It could be expected that these compositional differences could 

further complicate the response of the weld pad to creep strain. 

5.2.4 Summary 

The results obtained from creep testing revealed macroscopic anisotropic creep 

properties within the weld metal. This was found to be related to the heterogeneous 

structures which results from multipass MMA welding. The distribution of these 

structures relative to the stress axis was found to be critical as far as creep life was 

concerned. 

The anisotropic nature of the creep response of MMA P91 welds must be taken into 

account during modelling or life prediction. From a design/safety perspective, it might 

be sensible to model creep life on the basis of creep behaviour in the transverse 

orientation (with respect to the welding direction), as this yields the shortest failure 

life. This way, over-estimation of creep life can be avoided. Further studies are 

required to examine the property differences. 

Additional chemical and microstructural inhomogeneity is believed to be introduced 

by insufficient mixing of the flux coating within the weld pool. Chemical variations 

may lead to the precipitation or formation of phases which may have unfavourable 

effects on the creep response of the weld metal. 
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5.3 DISCUSSION III: MICROSTRUCTURE AND PROPERTIES OF P91 

WELDED STRUCTURES OR WELDMENTS 

5.3.1 TEM microstructure of the HAZ in the as-PWHT condition 

In Section 4.3.4 of Chapter IV, results of TEM bright field thin foil images of the heat­

affected zone of the as-PWHT P91 weldment were presented. This provided unique 

insight into real HAZs. As mentioned in Chapter II, there is limited TEM information in 

the literature on the HAZ sub-microstructure of the 9-12% Cr martensitic steels. This 

is in part due to the difficulty in accurately discerning the boundaries between the 

heat-affected zones, as we" as difficulties in obtaining precise sample locations due to 

size limitations. 

In this work, a clear demarcation of the fusion boundary was made based on the 

known unique weld metal characteristics. This made it possible to compare the as­

PWHT weld metal with the heat-affected parent microstructures. In contrast to the 

HAls, the weld metal possessed a fine lath structure (-200 nm), indicating its 

superior creep strength. (The relationship between subgrain shape/size and creep 

strain is we" understood; e.g. Sawada et al., 2000; Hald and Korcakova, 2002). Based 

on the findings, the fusion boundary/CGHAl is believed to possess a more creep 

resistant microstructure than the low temperature HAl. This is because, even though 

the laths within this region are wider (300-600 nm) than within the weld metal (-200 

nm), a 'lath' morphology is still present, as opposed to the next heat-affected region 

where the martensite subgrains have become more equi-axed (see Figure 4.3.25 and 

4.2.26). Based on the observation of microhardness plots across weldments, the 

microstructure in the immediate vicinity of the fusion boundary is expected to be 

'creep strong' (i.e. fine lath structure, fine, distributed precipitates, dense dislocation 

networks), in comparison with the rest of the HAl zones. These hardness scans show 

a region within the HAl where hardness is lower than the weld metal, but significantly 

higher than the parent metal. 

It was observed from the second series of bright field images from around hole 2 (c-d), 

Figures 4.3.27 and 4.3.28, approximately 350-450 !-1 m from the fusion boundary, that 

the microstructure was quite different. This consisted of relatively few, coarser 

precipitates and larger, more equi-axed subgrains, up to 1!-1m in size. This region is 

thought to be part of the high temperature HAl. 
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The next series of micrographs (about 750-800 IJm from the fusion boundary) also 

exhibit a different microstructural features (Figure 4.3.29 and 4.3.30). Logically, this 

region is believed to be the fine-grained (low temperature HAl), by virtue of its 

distance from the fusion boundary, as well as its microstructural features. Here, the 

subgrain sizes are significantly larger. This region also exhibits the coarsest 

precipitates. This is further evidence to suggest that it is the fine-grained region 

(Hasegawa et al., 1998; Ennis and Wachter, 1998; Singh, 2002). It was interesting to 

observe from Chapter IV that although this region showed the largest subgrains, the 

subgrain sizes were not uniform. On the contrary, a number of small subgrains existed 

alongside significantly larger ones. A heterogeneous sub-structure within the FGHAZ 

such as was observed in this work, is not documented; however, it has been 

suggested that the creep response of the fine-grained region is more heterogeneous 

than the other HAl zones (Matsui et al., 2001). 

Because region 2 possesses more creep-strong microstructural characteristics than 

region 3, it is believed that region 2 is the high temperature (coarse-grained) region. 

Orowan stress estimations made by Hasegawa et al. (1998) agree with this 

suggestion. The Orowan stresses of the coarse- and fine-grained regions of a P92 

HAl were estimated to be 13.1 and 9.7 MPa respectively. 

5.3.2 Creep response of weldments 

As described in Chapters 3 and 4, creep tests of crossweld specimens were 

performed at 650°C under constant loads. First, the creep response, in general of 

crosswelds will be discussed, by looking at a crossweld specimen tested under a 

constant load of 70 MPa. This will then be followed by a look at how stress affects 

failure location, by examining the effect of increasing this constant load to 82 MPa and 

93 MPa. 

The first difference noticeable when crossweld creep and uniaxial creep of parent 

metal are compared is that the failure lives of crosswelds are considerably shorter 

(see Figures 4.3.11 and 4.3.12). It is well known in the field that welding can reduce 

the service life of a power plant steel component (Cerjak and Letofsky, 1998 a). At a 

constant load of 70 MPa, a crossweld specimen failed after 535 hours. On the other 

hand, a uniaxial parent metal specimen, when tested at the same load, ruptured after 

1010 hours, nearly twice as long as the weldment. 
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There is a straightforward reason why welding shortens creep failure life. As 

discussed in Chapter II, the introduction of a weld alters the microstructure of the 

parent in contact with it, thereby creating a heat-affected zone. The HAl itself displays 

a number of distinct microstructures (e.g. grain size, precipitate size and number) and 

thus different mechanical properties, e.g. ductility. Consequently, the HAl exhibits a 

variation in creep properties. Furthermore, the weld deposit itself, often shows 

microstructures characteristically different (very fine martensite, therefore, more creep 

strong/brittle) from the unaffected parent metal and HAl. This is certainly the case in 

the material examined in this thesis. On a macroscopic scale, this area of 

inhomogeneous microstructures exhibits a complex creep response characterised by 

strain mismatch, due to the accumulation of strain within the more ductile HAl zones. 

Under the creep conditions seen here, the effect of the weld on failure life is significant. 

However, as will be demonstrated in section 5.4 of this chapter, strain (and therefore 

indirectly the load) greatly affects the mechanisms and rate of creep damage. In 

comparison with that experienced under operating conditions, the loads and strains 

here are exaggerated. It is anticipated that under lower, more realistic loads, the 

presence of a weld could have more serious consequences. This is looked at in more 

detail in the following section. 

5.3.3 Effect of stress on failure location within crosswelds 

Thus far in this chapter, creep tests discussed have been performed under a constant 

load of 70 MPa. In this section, however, the effect of test stress on the location of 

creep fracture of crosswelds following PWHT is addressed. In order to examine this 

effect, additional creep tests were performed under constant loads of 82 MPa and 93 

MPa. 

It can be seen in Figure 4.3.13 8 to d, that these three creep fractures exhibit a 

number of differences. In all three specimens (Figure 4.3.43 8 to C), there is little or no 

evidence of necking of the weld metal part. However, in the HAl (and in the case of 

Figure 4.3.13 c, the parent metal as well) shows some reduction in surface area as 

the fracture surface is approached. In the two lower stress tests (8 and b), failure 

occurred at the edge of the HAl. These figures also show some secondary de­

cohesion at the fusion boundaries. However, when load was increased to 93 MPa (c), 

fracture occurred within the parent metal, at a considerable distance away from the 
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heat-affected zone. A similar finding has been reported by Cerjak and Letofsky 

(1998a) on SMAW welded E911 steel. 

From Figure 4.3.13 d, it can also be observed that creep failure life decreases quite 

significantly with increase in test load/stress. 
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5.4 DISCUSSION IV: SENSITIVITY OF P91 WELDMENTS TO THERMAL 

EXPOSURE & CREEP 

5.4.1 Microstructural changes 

5.4.1.1 Recrystallisation and growth of ferrite within the weld metal 

The existence of large, soft ferrite grains in the as-PWHT weld metal has been 

demonstrated in previous chapters. The fraction of these ferrite grains was observed 

to increase in response to ageing. This is believed to be due to a transformation of the 

martensitic microstructure to a-ferrite by recovery and recrystallisation brought about 

by the thermal exposure, as well as the growth of these and pre-existing ferrite grains. 

The amount of recrystallisation and growth was most Significant after exposure at 

760°C for 374 hours, although it occurred at all the exposure temperatures tested. 

The weld metal microstructure showed a massive increase in the amount of soft ferrite 

first observed in the as-PWHT condition (see Figure 4.3.2a). The recrystallisation, 

which appeared to emanate from curved bands related to the position of the weld 

bead boundaries, appeared to account for the majority of the total microstructural area 

of about 80 mm2 observed using optical microscopy after 374 hours at 760°C. 

Such extensive recrystallisation in P91 or 9-12% chromium weld metals as was 

observed in this work has not been reported elsewhere in the literature. Nevertheless, 

there is evidence in the form of micrographs from a publication by Oas et al. (2002), 

that this occurrence of ferrite in modified 9Cr-1 Mo weld metal is not unique to the 

material studied in this thesis (see Figure 5.4.1). This optical micrograph was obtained 

from a weld prepared by shielded metal arc welding (SMAW), after a PWHT at 760°C 

for 3 hours. The authors reported that a significant amount of this ferrite was observed 

after PWHT. They suggested that this was 8-ferrite, and have attributed its presence 

to a high concentration of ferrite-stabilising elements. Although the existence of 8-

ferrite in this material is a possibility (some other microstructural features likely to be 

8-ferrite are identified by yellow arrows), the suggestion that the feature under 

discussion is 8-ferrite is debatable, as 8-ferrite is a grain boundary phase (Faulkner et 

al. 2003). Furthermore, this structure greatly resembles the microstructures observed 

in this thesis, as well as those published by Cai et al. (1998) (see Figure 5.4.2) 
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Cai et al. (1998) noted a similar occurrence whilst subjecting a 5% Cr ferritic weld 

metal to tempering at temperatures ranging between 400°C and 750°C for 4 hours. It 

is interesting to note that the microstructure of the material had transformed almost 

entirely from its post-tempered structure of lath martensite, some bainite and irregular 

ferrite, to coarse polygonite ferrite grains after exposure at 750°C. According to their 

findings, this change from martensite to coarse ferrite, although sUbstantiated by TEM 

work at 500°C, was not noticeable by optical microscopy until after exposure at 600°C. 

Another parallel that can be drawn with this thesis from the work of Cai et al. (1998) is 

the existence of these ferrite grains in curved bands related to the weld bead deposits. 

This may be indicative of the effects of compositional variations brought about by the 

migration of elements in zones which experience certain peak temperatures. 

Apart from the above work published by Cai et al. (1998), the formation of ferrite at the 

fusion zone of dissimilar welds involving 9Cr steel has been reported by Sireesha et al. 

(2001 b). Here, the occurrence of ferrite is attributed to compositional differences 

(particularly chromium and carbon) at the weld joints. However, the effect of thermal 

exposure on the materials containing pre-existing ferrite grains is not published. 

The mechanisms of recovery and recrystallisation of martensite as a result of thermal 

exposure (tempering) are well understood. Honeycombe and Bhadeshia (1995) have 

discussed that for low carbon martensitic steels, the process of dislocation recovery, 

which precedes recrystallisation, begins around 350°C, although martensite lath grain 

morphology is retained until about 600°C. Up to this temperature, the high density of 

dislocations and high angle boundaries which give the martensite its lath structure are 

gradually lost and replaced by more equiaxed subgrains. Recrystallisation is thought 

to begin above this temperature (up to say 700°C), characterised by the migration and 

coalescence of ferrite grain boundaries forming more equi-axed ferrite grains. 

To begin with, a clear distinction between recovery and recrystallisation phenomena 

and mechanisms is important from the perspective of this thesis, as both occur in 

different contexts. A clear distinction between these two phenomena can be gained 

from a definition given by Cotterill and Mould (1976). Recovery usually precedes 

recrystallisation. In the case of recovery, the changes in microstructure occur because 

of a re-arrangement of defects and annihilation of dislocations; however, the crystal 

retains its original identity. In this case, for example, the original martensite lath 

boundaries remain although the dislocation density has decreased. In recrystallisation, 

however, the re-arrangement of defects/dislocations/interstitial atoms results in an 
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alteration of the crystal structure; so for instance, in this case, martensite (a') 

transforms to bcc a (ferrite). New a-ferrite grains can nucleate and the growth of these 

occurs as the grain boundaries migrate. 

It is apparent that this transformation will be accompanied by a reduction in hardness 

and an increase in ductility. It is also clear that, although 8-ferrite can be retained 

during the solidification of the weld as it is cooled from the 8-region, soft ferrite grains 

which have formed/increased after thermal exposure at temperatures only up to 

760°C cannot be 8-ferrite, as this transformation cannot take place during isothermal 

exposure at these low temperatures. 

Both recovery and recrystallisation are time dependent transformations, as illustrated 

by the schematic representation in Figure 5.4.3, and are driven by the tendency for 

crystals to reduce their internal energy. According to Easterling (1992), the kinetics of 

recrystallisation depend on the temperature, amount of prior deformation and the 

purity of the metal (in this case, the presence of secondary phase particles). The rate 

of nucleation and growth of new grains is said to depend on the temperature, as 

expressed by the Arrhenius-type equation 

Rate = Aexp-(;~ ) [5.1 ] 

where Or is the activation energy for recrystallisation and R is the gas constant. 

It can be seen from this expression that the rate of recrystallisation will tend to 

increase if temperature is increased. Because recrystallisation is characterised by 

both nucleation and growth, Or can be distinguished for these two processes. This is 

because Or is related to the driving force, which in turn, depends on the difference in 

free energies between the initial and final states. Indeed, it can be seen from the 

schematic diagram illustrating the time-dependence of recrystallisation that the rate at 

which occurs is not constant, but varies sigmoidally with time. 

As mentioned previously, recrystallisation can occur during extended thermal ageing 

between 650°C and 750°C. However, the question still remains as to why this 

transformation is unique to the weld metal (not in the parent metal or HAl), and 
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occurs on such a large scale. To address this, a number of plausible theories are 

considered below. These are: (i) effects due to inhomogeneity of precipitate 

distribution within the weld metal, and (ii) effects due to the presence of large 

inclusions and precipitates within the weld metal. Reasons for the apparent greater 

recovery within the weld metal are also sought at the same time. 

(i) Effects due to inhomogeneity of precipitate distribution within the weld metal 

First and foremost, it has been demonstrated in Chapter II that these creep resistant 

alloys owe much of their creep strength to precipitate strengthening (Pickering, 1978; 

Gladman, 1998; Foldyna et al., 2001, etc). Secondary phase particles, including 

M23C6 and MX, which precipitate during normalising and tempering, pin dislocations 

and grain boundaries, making the material fairly stable in the face of thermal exposure 

and strain. Although martensite (subgrain) recovery has been observed in this project 

and has been reported by many authors (Polcik et al., 1999; Orlova et al., 1998 a, b; 

Sawada et al., 2000; Cerjak et al., 2000), the occurrence of recrystallisation on this 

scale within the parent metal of P91 and similar alloys is virtually unheard of. This 

could be attributed to the fact that these alloys owe their good thermal stability and 

integrity to strengthening mechanisms linked with secondary phase particles which pin 

dislocations and grain boundaries within the microstructure. In contrast, the weld 

metal could be particularly susceptible to recrystallisation due to the inhomogeneity of 

its structure and precipitate distribution brought about by multi-pass welding (as 

demonstrated in Chapter IV, Section 4.2.2). In comparison, the parent metal 

microstructure is fairly uniform and homogeneous. Furthermore, segregational effects 

seen in the weld metal microstructure due to poor flux mixing create microstructures 

rich or denuded in certain alloying elements (see Figures 4.2.6-4.2.7), also Sireesha 

et al., 2001 b). It can be recalled from the observations documented in Chapter IV that 

ferrite grains observed after post-weld heat-treatment appeared considerably denuded 

in (M
23

C
6 

and MX) precipitates. In view of the role these particles play in retarding 

recovery and recrystallisation (Cotterill and Mould, 1976), this could explain the 

relative speed by which these ferrite grains grow in the weld metal. A useful illustration 

of the effect of precipitate density (or inter-particle spacing) on recrystallisation can be 

found in the work of Humphreys and Hatherly (1995) (See Figure 5.4.4). It can be 

seen from this figure that the time for 50% recrystallisation is significantly reduced 

when inter-particle spacing is increased. 
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(ii) Effects due to the presence of large inclusions and precipitates within the weld 

metal 

Inclusions and coarse precipitates are believed to often act as nucleation sites for 

recrystallised ferrite, particularly if particle diameter is greater than the subgrain 

diameter (Cotterill and Mould, 1976). This is the case in the weld metal studied in this 

thesis. In Chapter IV, the weld metal was shown to contain a heterogeneous 

distribution of rounded, manganese-rich, non-metallic inclusions in the as-PWHT 

condition. Although they varied in size, particles up to 2 IJm in size were observed. 

When this is compared to the average as-PWHT martensite lath width within the weld 

metal microstructure which is approximately 300 nm at most (Figure 4.3.3d and e), it 

can be seen that these particles could instigate the nucleation of ferrite grains. After 

exposure at 760°C for 374 hours, a number of these inclusions are visible, within 

ferrite grains, as opposed to triple points where they tended to be in the as-PWHT 

condition. In Figure 4.3.3f, the appearance of a newly nucleated grain can be seen at 

the inclusion labelled A. This is enlarged in Figure 5.4.5. 

Although the parent metal, like the weld metal, exhibits precipitate coarsening 

following exposure, M23C6 particles seldom reach 400 nm (see Figure 4.3.5/Chapter 

IV). The inclusions large enough to bring about recrystallisation are unique to the weld 

metal and this too may explain the greater tendency for recrystallisation within the 

weld metal. 

It is well understood that the softening (of steel) during tempering can be correlated 

with the occurrence of recrystallisation and vice versa (Cotterill and Mould, 1976). 

Furthermore, it is anticipated that strain will affect the amount or rate of 

recrystallisation. If this is indeed the case, then the occurrence of ferrite is worthy of 

further investigation, in view of its potential implications on creep performance of 

ferritic steel welds. 

5.4.1.2 Sensitivity of martensite sub-structure to exposure 

It is very interesting to observe from TEM bright field images Chapter IV, (Section 

4.3.3, Figure IV), that the amount of recovery, measured in terms of subgrain size and 

equi-axing, appeared more significant after 374 hours at 760°C than after the lengthy 

exposure of 12000 hours at the lower temperature, i.e. 650°C. This is the case in both 

parent and weld metal. In fact, although in comparison to the as-PWHT condition, 
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significant recovery is evident after 12000 hours at 650°C in the weld metal, there is 

nevertheless a relatively high density of dislocations within the structure. 

It is also interesting to note that the parent metal microstructure, despite its initially 

weaker microstructure when compared to that of the weld metal, is relatively stable 

after exposure at all the temperatures examined. Although some recovery has 

occurred in the PM (evidenced by slight increase in subgrain size), this is not 

significant. A similar observation has been reported by Oi Gianfrancesco et al. (2001) 

following exposure of P91 (parent metal) for up to 10000 hours at 650°C. The authors 

attributed this remarkable creep stability to the pinning effect of secondary phase 

particles. However, this does not explain why the weld metal is more sensitive to 

ageing. 

When compared to the microstructure of as-PWHT parent metal, the as-PWHT weld 

metal possessed finer martensite lath structure and a higher dislocation density (see 

Figure 4.3.3 a, d and e). This makes it more thermodynamically unstable so that 

recovery and recrystallisation can be expected to proceed more rapidly. The energy 

stored E is related to the dislocation density p as follows (from Easterling, 1992). 

Eocp [5.2] 

To illustrate this point further, a helpful analogy can be drawn from microstructural 

comparisons between the creep behaviour of a 9 and 12% Cr steel given by a Kimura 

et al. (1998) and a comparison between the PM and WM studied in this project as 

follows. The authors found that although the 12% Cr steel possessed a finer (and 

therefore more creep-strong) initial microstructure than the 9% Cr steel, on creep 

exposure, martensite recovery and precipitate coarsening were found to proceed 

more rapidly in the 12% Cr steel. Again, the reasons given the previous chapter 

regarding recrystallisation and growth of ferrite are most likely applicable here. 

5.4.1.3 Effect of thermal exposure (time at temperature) on precipitate 

morphologies 

After exposure at all the temperatures investigated, a significant increase in 

precipitate size was observed in the parent and weld metals (see Figure 4.3.5), as 

well as the HAZ (Figure 4.3.4). The precipitates observed here are believed to be 
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primarily M23C6 particles, as these are thought to make up the majority of particles 

after tempering (Hald, 1996, Vodarek and Strang, 2000). The magnifications viewed 

here, though sufficiently low in order to give a broad perspective of precipitate 

distributions, are not high enough to reveal the smaller MX particles. 

Figure 4.3.5 shows that after 12000 hours at 650°C, both the weld metal and parent 

metal show significant coalescence of particles. The lath boundaries, which are 

discernible in the as-PWHT condition (the precipitates tend to decorate these), are not 

apparent after this amount of exposure. It is also interesting to observe that although 

some coarsening/coalescence has occurred, the volume fraction of precipitates 

appears to have increased. This would be inconsistent with the mechanism of 

Ostwald ripening where a constant volume fraction is expected (Nutting, 1998; 

Gladman, 1998). Therefore, it suggests that additional precipitation of particles during 

exposure at this temperature has taken place. Re-precipitation (of MX) during 

tempering is well documented (e.g. Polcik et al., (1999), see Chapter II, Figure 2.14). 

The images obtained after exposure at 760°C for 374 hours (Figure 4.3.5) show even 

larger precipitate sizes. This time however, the number of precipitates appears 

relatively fewer, indicative of Ostwald ripening. This also implies that these particular 

exposure conditions do not favour re-precipitation of (MX) secondary phase particles. 

Figure 4.3.6, shows a number of fine disc-shaped particles within the weld metal after 

exposure at 760°C for 374 hours. A number of these particles have been identified as 

MX (VN) particles. It can be seen from Figure 4.3.6 a and b that these particles are 

about 50 nm in size. This indicates that the amount of coarsening of this species of 

MX is not significant, despite the length of exposure time at temperature. This is in 

agreement with Di Gianfrancesco et al. (2001). In the same specimen, however, 

significant coarsening of M23C6 is evident (see Figure 4.3.5d). Foldyna and Jakobova 

(1984) have suggested that the volume fraction of the dispersed phase affects 

coarsening rate. In other words, the relative abundance of chromium in the matrix (in 

relation to vanadium/nitrogen) may be partly responsible for the difference in stability 

observed. 
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5.4.1.4 Softening as an effect of thermal exposure 

The sensitivity of the weld metal is again reflected in the microhardness data reported 

in Chapter IV, (Figure 4.3.7). A number of observations have been made. (i) The weld 

metal hardness data show a large degree of scatter, whereas the parent metal 

hardness data do not fluctuate as much about the mean point. (ii) At all exposure 

temperatures, the weld metal shows higher average hardness values consistently 

despite the large fluctuations from the mean. (iii) The weld metal shows a larger 

overall drop in hardness than the parent metal and HAl as exposure time is increased 

over all the exposure temperatures. The parent metal and HAl show reduction in 

hardness as a function of time at temperature, however, this is not as significant. 

The large degree of scatter observed in the weld metal can be attributed firstly to the 

heterogeneity of the weld metal microstructure (this has been discussed at length in 

Section 2). Secondly, the presence of soft recrystallised ferrite within the 

microstructure accounts for many of the troughs in hardness that occur as the weld 

metal is traversed. 

In general, the reductions in hardness observed are believed to be related to the 

recovery of dislocations, increase in subgrain size (Sawada et a/., 2000) and the 

recrystallisation and growth of ferrite discussed above. However, in view of the fact 

that these changes listed here did not occur significantly in the parent metal and HAl, 

it can be assumed that the systematic reductions in hardness observed in the parent 

metal and HAl are attributable principally to the significant amount of precipitate 

coarsening observed (see Figures 4.3.4 and 4.3.5). Indeed, precipitate coarsening 

itself is understood to be a key microstructural feature of loss of creep strength due to 

ageing (Korcakova et a/., 2001 etc); and results in softening (Polcik et a/., 1998). 

Because reductions in hardness have become a method of gauging creep damage 

levels (e.g. Allen and Brett, 1999), it is helpful to plot hardness against the Hollomon­

Jaffe tempering parameter (HJP), see Figure 4.3.8. This gives an indication of how 

creep strength (hardness) deteriorates with time at a given exposure temperature. It 

can be recalled from Chapter II that hardness is related to creep strain rate, and 

therefore can be a measure of creep strength (Equation 2.26, Chapter II). We see 

here again, that the parent metal appears relatively insensitive to increase in HJP up 

to a value of about 21580. This stability in creep strength is due to a creep 

strengthening mechanism brought about by the dynamic re-precipitation of MX 
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particles (Hald and Korcakova, 2002; Hald, 1996; Polcik et al., 1999). This re­

precipitation counterbalances other creep damage mechanisms that are occurring 

during this stage of tempering. This latent creep strengthening could also account for 

the retention of the dense dislocation networks within both weld metal and parent 

metal despite the lengthy exposure (12000 hours) at 650°C. It has been discussed in 

Chapter II that MX morphologies are the most effective creep strengthening 

precipitates due to their low coarsening rate in relation to other precipitates like M23C6 

and Fe2Mo (Di Gianfrancesco et al., 2001; Sawada et al., 2003, etc). This is 

substantiated by TEM micrographs (Figure 4.3.6). These show that MX particles 

within the weld metal exposed for 374 hours at 760°C are no larger than about 50 nm, 

indicative of their stability. It is interesting to note from replicas of this same specimen, 

that a significant amount of coarsening has occurred in general. This implies that the 

coarsening observed primarily relates to the M23C6 (and possibly Fe2Mo) precipitates. 

In contrast to the parent metal, the hardness of the weld metal is very sensitive to HJP 

right from the start. Although the weld metal must also experience the latent creep 

strengthening mechanisms described above, it can only be assumed that in this case, 

the re-precipitation of MX particles is not enough to offset the softening due to rapid 

martensite recovery and the recrystallisation and growth of ferrite. 

Similarly, at HJP values higher than 21580, the parent metal begins to exhibit a slow 

decrease in hardness. It is thought that this corresponds to the point at which the 

accumulated creep damage dominates. (Note: 21580 HJP corresponds to 8 hours at 

760°C, 2400 hours at 650°C and 52,400 hours at 600°C. At P91 's operating 

temperature, i.e. 568°C, this point within the parent metal at which hardness begins to 

decrease systematically corresponds to 457,000 hours or approximately 52 years.) 

Despite its higher sensitivity to HJP, the weld metal remains notably harder than the 

parent metal up to HJP values of about 23000, which corresponds to about 

22,300,000 hours exposure at the service operating temperature of P91 (568°C) or 

2,000,000 hours at 600°C. As such, these are not of concern to plant operators. 
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5.4.1.5 Changes in subgrain and precipitate morphology within the fine-

grained heat-affected zone (FGHAZ) and parent metal (PM) 

In Chapter IV, SEM secondary images of lightly etched fine-grained HAl after 

exposure were presented alongside micrographs of the parent metal subjected to the 

same conditions, for comparison. 

First, it must be mentioned that etching of microstructures presents some difficulties 

when comparing different samples. If the specimens to be examined differ in terms of 

dislocation densities and/or precipitate distributions, the rate at which the etchant will 

attack the specimens will also differ, leading to enhanced contrast in some samples. 

Further, there is the added problem of precipitate fall-out due to preferential etching at 

precipitate/matrix interfaces. As a result, although these images give invaluable 

qualitative information, quantitative data obtained in this way should be treated with 

caution in view of these limitations. Hence, this discussion will focus on the qualitative 

changes that occur and some general comments on precipitate size and distribution 

will be made. 

In the as-PWHT condition, the fine-grained region, which is the part of the heat­

affected parent microstructure reheated to near AC3, (-950°C) exhibited an equi-axed 

and much finer former-austenite grain size when compared to the unaffected parent 

metal microstructure, as expected. With regards to precipitate size, it was difficult to 

discern major differences between the FGHAZ and the PM. Both microstructures 

contained a mixture of coarse and fine precipitates, heterogeneously distributed and 

primarily at grain boundaries. However, one difference between the PM and FGHAZ is 

the noticeable martensite lath morphology in the former, indicated by the arrows 

(Figure 4.3.4). An explanation for this might be sought from the discussion in the 

previous section, where it was suggested that the fine lath martensite morphology is 

absent in the fine-grained region, but instead there are more equi-axed and larger 

subgrains due to recovery. This hypothesis is in agreement with the literature 

(Letofsky et al., 2001; Ennis and Wachter, 1998). 

Following exposure at 650°C for 7000 hours, clear changes in structure are noticeable 

in both PM and FGHAZ microstructures. Both structures have been altered 

significantly by the heat-treatment. It can be seen that the FGHAZ possessed fewer 

precipitates, although precipitate sizes are not obviously dissimilar. When both PM 

and FGHAZ structures were examined after a further 5000 hours at 650°C (i.e. 12000 
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hours in total), precipitate density has increased, unexpectedly. This may be a facet of 

over- or under-etching. However, it is interesting to note that these micrographs 

appear similar to precipitate distributions revealed by extraction replicas after the 

same exposure conditions (see Figure 4.3.5). 

After exposure at 760°C for 374 hours, precipitates appear even coarser but 

significantly fewer than after the previous exposure conditions. The FGHAZ 

substructure is not obvious at all, indicative of massive dislocation recovery. Thus, the 

FGHAZ consistently showed a weaker microstructure, in relation to the unaffected PM. 

Although information has not been found in the literature on stress-free thermal 

exposure on the FGHAZ, some work on the effect of creep exposure on simulated 

HAZ structures, including the FGHAZ (near-Ac3) exist. For example, Matsui et al. 

(2001) found that subgrain recovery was more substantial and more heterogeneous 

within the FGHAZ in comparison to the unaffected parent. The authors also 

commented that the FGHAZ possessed coarser precipitates. 

5.4.2 Parametric equivalents 

In order to assess the effectiveness of the pseudo-ageing experimental programme 

designed in Chapter III to accelerate (creep) damage using exposure at higher 

temperatures, the parametric equivalents of the microhardness results have been 

compared (Figures 4.3.9a-f). This revealed that, with the exception of the tests carried 

out at 760°C, the shorter ageing times t1, t2 and h showed reasonable agreement in 

both parent and weld metal hardness data. However, the longer ageing times t4 , t5 

and t6 tended not to agree. 

As mentioned previously, the rate controlling process during creep is believed to be 

the diffusion of vacancies (Honeycombe & Bhadeshia, 1995), very close to self­

diffusion (in this case, of a-Fe) (Honeycombe & Bhadeshia, 1995). One assumption 

made in the determination of these ageing times at temperature, was that the 

activation energy for self-diffusion remained the same at all the temperatures used. 

This assumption is clearly inadequate, as the temperature-dependence of the 

activation energies/diffusivities is well understood (Evans and Wilshire, 1993). 

Furthermore, because self-diffusion was assumed to be the controlling factor, the 

diffusivities of other atoms were not considered. These calculations were based on a 

simplistic model of microstructural changes at temperature. However, the tendency for 
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the data points from ageing tests carried out at 760°C to deviate from the others 

highlights the fact that this model does not sufficiently account for the range of 

diffusion-controlled mechanisms which could occur under these conditions , 

particularly involving solute atoms. 

5.4.3 Creep response 

5.4.3.1 Effect of thermal exposure on parent metal creep response 

It has been demonstrated so far that thermal exposure brings about a number of 

microstructural changes. It has also been shown in Chapter II that these same 

microstructural changes accompany creep damage. However, microstructures 

generated by creep accelerated test conditions inevitably incorporate high strain 

effects (Sawada et al., 2001; Hattestrand and Andren, 2001), and as a result do not 

effectively replicate the microstructural evolution which occurs in service (Swindeman 

et al., 2000). From this point of view, uniaxial creep tests have been performed on 

specimens subjected to stress-free thermal exposure in order to quantify the effect of 

this prior exposure on creep response. 

All creep tests were performed under a constant load of 70 MPa and at 650°C. Firstly, 

the effect of prior thermal exposure at 650°C was investigated. Exposure at this 

temperature for 3000 hours resulted in little change in minimum strain rate of the 

parent metal (in comparison to the minimum strain rate of the as-PWHT PM) (see 

Figure 4.3.1 Oa). As a matter of fact, a slight increase in failure life occurred. Although 

this behaviour would fall within the normal range of scatter expected from such creep 

tests, nevertheless microstructural evidence of latent creep strengthening given in the 

previous sections may be worth considering as a plausible cause for this apparent 

increase in creep strength which accompanied thermal exposure. 

Despite this, a further 2808 hours exposure at 650°C (totalling 5808 hours) lead to a 

marked acceleration in minimum creep rate and a significantly earlier onset of tertiary 

creep. 

At 760°C however, the effect of ageing of the parent metal on creep response is more 

clear. It can be seen from Figure 4.3.10b that exposure for 93 hours at this 

temperature resulted in failure life almost half that of the as-PWHT specimen from 

1087 to 556 hours. As expected, a longer exposure for 218 hours at this same 
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temperature resulted in a further reduction of failure life (316 hours). This is not 

unexpected in view of the discussion on the microstructural changes which occur after 

exposure at this temperature, even in the parent metal. 

Due to unavailability of specimens, it has not been possible to examine the weld metal 

in the same way. It would be interesting to investigate how the weld metal would 

respond to creep testing after exposure, and also the effect of its anisotropic creep 

behaviour and ferrite recrystallisation would have on the location of fracture. 

5.4.3.2 Effect of thermal exposure on creep response of welded structures 

(crosswelds) 

Results obtained from the creep testing of crosswelds which had received thermal 

exposure prior to creep testing are presented in Figure 4.3.12. In all cases, as 

expected, failure occurred within the soft, low temperature HAZ, as has often been 

reported (Eggeler et a/., 1994, etc; Cerjak and Letofsky, 1998a
, b). It can be recalled 

from the previous section, that a significant reduction in failure life was realised when 

parent P91 was aged (stress-free) at 760°C prior to creep testing. It has been shown 

earlier that stress-free thermal exposure at this temperature results in significant 

microstructural changes associated with reduced creep resistance. These changes 

included precipitate coarsening and martensite recovery. It has also been discussed 

that in comparison with the weld metal, the parent metal microstructure was more 

stable, even after 374 hours at 760°C. Nevertheless the parent metal creep life saw a 

significant reduction after exposure at 760°C. Therefore it is not surprising that the 

crossweld specimens also show deterioration in creep life after prior exposure at this 

temperature (from 534 hours in the as-PWHT condition to 362 hours after exposure 

for 126 hours). The sensitivity of the weld metal to exposure, particularly at this 

temperature has been discussed elsewhere. However, final failure occurred within the 

HAZ, which, despite its relative microstructural stability, consistently exhibited the 

lowest microhardness values. 

5.4.4 Strain effects (creep testing) versus stress-free thermal exposure 

As has been discussed earlier, it is believed that the microstructures developed in the 

9-12% Cr steels after laboratory creep testing do not represent that brought about by 

real service exposure. It is thought that the high rate of strain in a laboratory creep test 

accelerates creep damage and results in changed mechanisms. 

182 



· Chapter V 
Microstructure & properties of P91 weldments 

In order to investigate this hypothesis, a number of creep tested specimens have 

been characterised in terms of microstructure and hardness. A comparison of the 

microstructures within the grip ends or heads of the specimen (where the material 

experiences time at temperature, but no strain) with the microstructures within the 

gauge, where the material experiences time and strain at temperature, give a good 

indication of the effect of strain on microstructural development during exposure. 

It was found from this work that both softening and precipitate coarsening were most 

significant within the gauge of the creep test specimens (see Figures 4.3.17 to 4.3.19). 

In Figure 4.3.19, it can be seen that within the grip end of the creep specimens, 

where strain is zero, only 10% of the precipitates counted were above 0.1 IJm in size, 

whereas the other three locations sampled (from just outside the gauge to the fracture 

tip), between 20-30% of the precipitates counted are larger than 0.1 IJm. This finding 

agrees with Bianchi et al. (1998). The authors observed a similar trend from creep 

tests of P91 performed at stresses ranging between 60 and 190 MPa (See Figure 

5.4.6). It is believed that strain aids the diffusion of species, due to added pipe 

diffusion routes. Precipitate coarsening comes about primarily through bulk diffusion 

and diffusion along grain boundaries of solute atoms. However, in the presence of 

strain, dislocations are forced to move, and in doing so provide an added route for the 

transportation of solute atoms, that is, along the core of dislocations (pipe diffusion). 

In addition to these effects, the effect of strain at temperature on the evolution of the 

martensite substructure was considerable. It can be seen from Figures 4.3.20 and 

4.3.21 that, in addition to subgrain equi-axing within the gauge (the structure within 

the grip ends retained the lath martensite structure), subgrain growth is significant 

within the gauge of the specimens. Again, this is similar to findings reported by Orlova 

et al. (1998 a, b), see Figure 5.4.7. As discussed previously, the recovery of martensite 

laths, manifest by subgrain equi-axing and growth, is controlled by a number of factors, 

including precipitate coarsening. Because coarsening results in a reduction in the 

number of precipitates, formerly pinned dislocations become mobilised, thereby 

encouraging subgrain growth. Therefore, it is to be expected that the significant 

amount of coarsening observed with at high strain rates is coupled with subgrain equi-

axing and growth. 
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In order to facilitate further discussion around this subject, tensile tests both at room 

and elevated temperatures were performed on specimens with the same geometry as 

the creep test specimens, and microhardness measured. 

It is evident from the findings that strain, temperature and time at temperature all have 

pronounced effects on microstructure. As expected, deformation at low temperature 

(where diffusion is minimal) resulted in strain hardening (Figure 5.4.8 - line c). 

However, at the low strain rates and extended exposure times experienced by creep 

specimens, significant softening was observed (evidenced by the steep drops in 

hardness witnessed within the gauges, see Figure 5.4.8). However, under high strain 

rates and thus short exposure times at temperature as experienced in tensile testing 

(where the effects of precipitate coarsening are minimised but recovery may take 

place), hardness values are similar to the as-PWHT values. This indicates that work 

hardening was being offset by dislocation recovery. 

In effect, exposure time appears to be the most influential parameter. There are a 

number of implications. Firstly, high stress, short term creep testing, although 

necessary for quick assessments of materials properties, is too rapid and promotes 

different mechanisms to operate than those which are observed normal under 

operating conditions. Furthermore, strain rates are uncharacteristically high, thus 

bringing about some work hardening and therefore microstructures which are 

uncharacteristic of service- (creep-) exposed material. 

Time Temperature I °C Strain rate Hardness I kgf mm-2 

a o mins (as-PWHT) - 0 - 207 

b 1010 hours 650 0 - 203 

c 5 mins 20 Very high >240 

d 4 mins 650 Very high - 210 
I 

e 1010 hours 650 Low - 165 
i 

Low - 165 I f 4087 hours 650 
I 

Table 5.4.1. 

It is apparent that strain has a substantial influence on microstructural development 

(see Figure 4.3.24). The influence of strain on microstructural development is clearly 
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visualised in the schematic diagram in Figure 5.4.8, and can be summarised as 

follows: 

I. Time alone (specimen b) does not bring about a significant amount of softening, 

in comparison with the as-PWHT condition (specimen a). 

II. Strain alone (specimen c) results in work-hardening; here, hardness is higher 

than the as-PWHT, and increases as the fracture tip is approached. 

III. Slow strain rates and temperature (specimen e and f) is the combination which 

brings about the most significant microstructural damage (i.e. hardness 

reduction). The much longer exposure time under these conditions encourages 

diffusion-assisted processes to operate, thus accelerating the softening process. 

The greater the strain, the greater the softening. Again, this may be due to 

increased coarsening rates as a result of increased diffusion routes. 

IV. High strain rates at temperature (specimen d) does not result in a significant 

amount of hardening; work-hardening is offset by the annihilation of dislocations, 

a process which itself is aided by high temperature. 

It is interesting to note that considerable softening occurs even in part of the creep 

tested specimens under much lower strain rates (outside gauge). The reduction in 

hardness observed must be attributable primarily to the strain, not voiding, because 

even at low strains, i.e. outside the gauge, a1, a considerable amount of softening 

occurs. In other words, the reduction in hardness is not limited to the regions where 

voiding occurs. 

In conclusion, diffusionally-assisted processes must be primarily responsible for the 

softening observed in the creep specimen (strain + time condition). Since dislocation 

recovery occurs under all four conditions investigated, we can conclude that the 

softening here must be due mainly to precipitate coarsening. It has been 

demonstrated in this thesis that precipitate coarsening results in creep damage, 

manifested by softening. 

Therefore, it is crucial that models which are intended to predict or extrapolate creep 

behaviour, if they are to represent accurately what occurs under creep conditions, 

incorporate precipitate coarsening parameters. This is because precipitate coarsening 

is the key microstructural feature related to the evolution of creep damage. 
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5.4.5 Summary 

In section 5.4, the effect of thermal exposure and creep on the whole welded structure 

has been looked at. A number of interesting observations have been discussed. 

These are listed below: 

1. The principal microstructural changes due to strain-free thermal exposure are: 

(a) Large scale recrystallisation and growth of soft a-ferrite within the weld metal. This 

is believed to be due to a number of reasons, including the presence of large non­

metallic inclusions. Because they are considerably larger than the average lath 

width, they act as nucleation sites for new ferrite grains. Another reason 

suggested is the inhomogeneity of precipitate distribution within the weld metal, 

e.g. islands of Mo-rich hexagonal particles, as well as precipitate-denuded grains, 

due to segregational effects associated with the MMA welding process. 

(b) Martensite recovery. It was found that the martensite substructure of the weld 

metal (Iaths/subgrains) showed high sensitivity to thermal exposure. It is thought 

that this is due to its relatively very fine initial martensite lath structure in 

comparison with the parent metal, thus making it more thermodynamically 

unstable. 

(c) Coarsening of precipitates 

(d) Softening. This occurred as a consequence of the microstructural changes given 

above. 

2. Thermal exposure prior to creep testing was observed to reduce creep failure life 

of parent metal and crossweld specimens 

3. Strain was also observed to accelerate creep damage. It is believed that this is 

due to its enhancing effect on diffusion controlled microstructural mechanisms, 

thus invalidating creep life prediction based on accelerated creep testing. 
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Figure 5.4.1 Possible soft ferrite (red arrows) and 8-ferrite (yellow arrows) within a 9Cr 

weld metal, from Das et al., 2002. 

Figure 5.4.2. Optical micrographs of 5% Cr weld metal , showing complete 

transformation to coarse, polygonite ferrite after tempering at 750°C for 4 hours. (a) 

as-welded; (b) 600°C tempered; (c) 700°C tempered; (d) 750°C tempered . From Cai 

et al., 1998. 
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Figure 5.4.3 Time dependence of recrystallisation, Cotterill and Mould, 1976. 
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Figure 5.4.4. Effect of inter-particle spacing on recrystallisation rate of a single-phase 

alloy, from Humphreys and Hatherly, 1995. 

188 



WM, 760°C, 374 h 

Chapter V 
Discussion 

Figure 5.4.5. New ferrite grain within weld metal after stress-free exposure at 760°C for 

374 hours. 
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Figure 5.4.6. Microstructure within (a) head (b) gauge sections of creep 

ruptured P91 specimen, Bianchi et al., 1998. 

Figure 5.4.7. Microstructures of P91 after (a) stress-free ageing for 6472 

h (b) creep testing (125 MPa, 0.7tf) . Orlova et al., 1998 
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Strain only, 
no softening , 
work­
hardening 
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offset by 
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Figure 5.4.8. Schematic diagram showing the effects of strain, time and 

temperature on Vickers hardness values of P91 parent material. 
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6.1 KEY CONCLUSIONS 

Chapter VI 

Conclusions 

In Chapter II, up-to-date literature by other workers on the microstructural features of 

9-12% chromium steels was reviewed. This review has addressed those 

microstructural phenomena and parameters which typify creep exposure (time and 

strain at temperature). These included precipitate coarsening, a diffusion-controlled 

process which leads to an increase in inter-particle spacing, thus diminishing the 

inhibition effect of secondary phase-particles (M23C6 and MX, primarily) on creep. The 

recovery of martensite has been also discussed, and its effect on lath structure and 

the annihilation of dislocations. Recovery and coarsening have been shown to be 

related to softening often observed as a result of time at temperature. Finally, the 

accumulation of these microstructural changes leads to macroscopic creep damage 

during tertiary creep and final failure. 

However, there is little information in the literature regarding weld metal material 

specifically, and its own response to creep. This is one area in which this thesis has 

made a substantial contribution. Through this work, it has become apparent that weld 

creep response is anisotropic. This anisotropy has been correlated with 

heterogeneous weld microstructures, brought about by multipass welding. 

It has also been demonstrated that the microstructure and creep properties of P91 

MMA welds is profoundly affected by thermal (strain-free) exposure, to a much greater 

extent than the parent metal and heat-affected zone material. Microhardness data, in 

particular, clearly illustrate this. The hardness of the parent metal is reduced following 

ageing with a Holloman Jaffe Parameter (HJP) of greater than -21700 due primarily 

to precipitate coarsening. The hardness of the weld metal is reduced following ageing 

with HJP values as low as 20500, due to coarse recrystallisation and development of 

a more equi-axed subgrain structure. This approach suggests a method of assessing 

the stability of the various P91 structures within the weldment and of defining regimes 

where marked hardness differences could occur for the specific materials considered. 
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Because the weld metal exhibits essentially an as-cast structure, due to its different 

thermal history, it possesses a relatively unstable fine martensite structure in its initial 

state which undergoes significant recovery during exposure. This is manifested by the 

replacement of the initially fine martensite lath structure by larger, more equi-axed 

subgrains. Macroscopically, the weld metal structure is also observed to undergo 

massive transformation to soft a-ferrite. It has been proven that this observation is not 

unique to this work, and has been attributed to certain aspects weld microstructure 

heterogeneity (including inhomogeneous distribution of precipitates, segregation 

effects due inadequate weld pool mixing, the presence of coarse exogenous particles, 

as well as its initial unstable fine martensite lath structure. 

The parent metal, on the other hand, is relatively stable, although it exhibits precipitate 

coarsening and dislocation recovery. 

Laboratory creep tests result in accelerated microstructural development. 

Nevertheless, it can be seen from the creep behaviour of both parent metal and 

crossweld structures that prior thermal exposure brings about significant increases in 

the minimum strain rates and reduction in rupture lives. 

Another key contribution relates to the investigation of the effect of strain on 

microstructural evolution. Strain significantly accelerates creep damage, as it 

enhances diffusionally-assisted creep damage mechanisms, primarily coarsening. 

This bears particular relevance with regards to life prediction through creep testing, as 

it may invalidate life prediction based on creep testing under high loads. The levels of 

strain experienced during creep testing can be several orders of magnitude higher 

than in service. 

It is also thought that the sensitivity of the weld metal to thermal ageing could be 

further exacerbated in real creep conditions, where there will be strain effects in 

addition to thermal ageing effects. This could have detrimental consequences in low 

stress long-term creep conditions. 
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