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ABSTRACT 

Randomised controlled trials (RCTs) play a fundamental role in the development and 

marketing activities of pharmaceutical companies. They are the primary means of 

evaluating the tolerability, safety and efficacy of a drug, and for providing information 

relevant for pricing and reimbursement decisions and clinical decision - making. RCTs 

require a substantial investment by pharmaceutical companies and the financial 

consequences of poorly or sub - optimally designed trials are potentially substantial. 

Revenue does not materialise unless a licence to market a product is granted and sales 

may be restricted if a trial fails to provide evidence of sufficient strength or relevance for 

those involved in product adoption decisions. From a pharmaceutical company's 

perspective, the value of RCTs can therefore be judged on the contribution they make to 

the performance of a drug in the market and hence on their contribution to the 

performance of the firm. Consequently, the design choices made in the planning of RCTs 

are effectively investment appraisal decisions. However, the application of investment 

appraisal techniques to RCT design has not previously been proposed. 

The purpose of this thesis is to consider how private sector investment appraisal methods 

might be applied to RCT design decision-making and to explore aspects of the 

practicalities of application. A general investment appraisal model is presented and its 

application to determine profit maximising RCT designs is illustrated. Considering the 

cost side of the investment appraisal equation, it is shown how decision-makers' 

requirements for cost-effectiveness evidence derived from trials could have a significant 

i 



impact on the major determinants of cost (sample size and study duration) depending on 

their specific preferences for evidence defined over key components of RCT design. 

Considering the revenue side of the investment appraisal equation, it is shown how 

discrete choice analysis could be used to incorporate decision-makers' preferences for 

RCT designs into the planning of studies. Specifically, it is shown how the predicted 

pr-obabilities derived from the application of this technique could be used within an 

investment appraisal framework. Directions for future research into the application of 

investment appraisal to RCT design are proposed. 
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CHAPTER 1: INTRODUCTION 

MBACKGROUND 

1.1.1 The importance of randomised controlled trials in drug development and 

marketing 

Randomised controlled trials (RCTs) play a fundamental role in the development and 

marketing activities of pharmaceutical companies. 1-5 The evidence generated by 

RCTs figures prominently in the product adoption decisions taken by regulatory 

agencies, pricing and reimbursement authorities, health technology appraisal bodies 

and individual physicians. Regulatory agencies, such as the US Food and Drug 

Administration (FDA) 6 and the European Medicines Evaluation Agency (EMEA)7 are 

responsible for granting licences to companies enabling them to market their products. 

The regulatory process requires that companies perform RCTs to demonstrate a 

product's tolerability, safety and clinical efficacy. If the latter are demonstrated to the 

satisfaction of the regulatory agencies, the manufacturer is granted a licence to market 

the product. 

Clearly, the granting of a licence to market a product is a necessary condition for a 

company to obtain a return on its investment, but it is by no means sufficient. In most 

ma or markets, a manufacturer must ne otiate with national agencies (or large groups i9 

of purchasers) responsible for setting the price, reimbursement and formulary status of 

a drug. 8; 9 A company submits information dossiers according to local guidelines. 9 

Typically, they all include some requirement for evidence pertaining to unmet 

therapeutic need, clinical effectiveness, budget impact and in some jurisdictions, cost- 

effectiveness analyses. 10-13 Of particular relevance here is that the RCT evidence 
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used in the marketing approval submission is often re-appraised in the course of 

product adoption negotiations. However, the RCT evidence produced for regulatory 

purposes may not be sufficient to answer the questions of primary interest to pricing 

and reimbursement authorities or health technology assessment bodies such as the 

National Institute for Health and Clinical Excellence (NICE). 14 Most of the major 

challenges to achieving a positive pricing and reimbursement outcome are directed at 

the strength and relevance of the clinical evidence base, as illustrated by 

recommendations made by NICE' 5 and commentaries in medical journals. 16; 17 

RCTs require a substantial investment by pharmaceutical companies. It has been 

estimated that the cost of discovering and developing a new drug introduction exceeds 

US $300 millions at 1995 prices. 18-20 Most of the cost relates to the conduct of RCTs, 

in particular the major regulatory studies (known as Phase III trials). Therefore the 

financial consequences of conducting RCTs that do not meet the evidence needs of 

regulatory bodies, pricing and reimbursement authorities and other health care 

decision-makers are potentially significant since a return on the development 

investment may not materialise or be severely restricted until adequate evidence is 

generated. 

1.1.2 Economic analysis and randomised controlled trials 

The literature relating to economic analysis and RCTs consists of two broad 

components. The first component is concerned with using trials as vehicles for 

economic evaluation of health care technologies. Economic evaluation is the term 

given to a set of techniques for appraising the economic value of health programmes 

or treatments from a health care funding body or societal perspective. Many 
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references include good overviews of the techniqueS21 ý22 and their application . 
23 24-30 

It has been pointed out3l that an economic evaluation can be wholly deterministic 

(utilizing decision-analytic techniques 32-35), wholly stochastic (based on data sampled 

from studies such as trials 36-38) or a combination of the two . 
39 Since RCTs are the 

main scientific method for collecting patient level data for evaluating the clinical 

benefits of an intervention. 40, they have attracted research attention from economists 

exploring how they can be used for collecting data necessary for performing an 

economic evaluation. There is an extensive literature concerning the use of RCTs as 

vehicles for collecting and analyzing data for the purpose of economic evaluation (see 

for examp le23; 3 1; 36-38; 41-68,68-129 ). 

The second (and much smaller) component of the literature relating to economic 

analysis and RCTs focuses on the economic analysis of research project selection and 

trial design. A number of researchers have examined how economic considerations 

might be used to optimise the design of RCTs. 130-142; 142-151 However, there are two 

prominent contributions in this area, each of which will be summarised briefly below. 

The first contribution is the work by Detsky, conducted in the 1980s, which considers 

how economic analysis might be used to assist government agencies with their 

decisions about awarding research grants for clinical trials. 152-154 His work was 

motivated by a concern that funds allocated to trials might not be used optimally due 

to the often arbitrary way in which key study design parameters are chosen. In 

particular, he noted that trial sample sizes are often inadequate to determine whether a 

new treatment is effective or not and that they are often calculated based on arbitrarily 

chosen clinical differences thought to be worth detecting. Using a number of 

examples based on life-saving treatments, Detsky illustrates how the cost- 
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effectiveness of trials can be evaluated in the planning stages and how the results can 

be used to decide whether a particular trial should be funded or not and if so how 

large the trial should be. To this end, cost-effectiveness ratios are calculated for trials 

of different sample sizes. In his model, costs are a straightforward function of sample 

size which in turn is driven by the choice of the clinically important difference a study 

aims to detect. Clearly, there is a positive relationship between the cost of conducting 

a trial and its sample size. In the model, the expected effectiveness of a trial is 

measured in terms of lives saved. It is calculated as the product of the size of the 

population who would benefit from the new treatment if adopted, the power of the 

study, the prior distribution of the true reduction in the relative risk of death and a 

proportionate implementation factor. The latter can be thought of as a crude demand 

function. In Detsky's model, the proportionate implementation factor takes on values 

which are such that a new treatment is completely adopted where a trial shows a 

statistically significant effect and is not adopted if it fails to show statistical 

significance. 

The second and more recent contribution is from Claxton, whose work was 

developing in parallel with this thesis. 155-162 He proposes the use of value of 

information analysis in order to set research priorities, determine whether further 

research is required to inform treatment adoption decisions and, if so, what the 

optimal design of that research should be. The approach is developed for a 

jurisdiction in which treatment adoption decisions are based on the results of cost- 

effectiveness analysis. Consequently, the proposed method for determining the 

optimal design of trials is also based on cost-effectiveness analysis in order to ensure 

that the criteria used for decisions about future research are consistent with those used 
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for treatment selection. The approach proposed by Claxton involves a number of 

elements, which are summarised briefly in non-technical terms below. 

The analysis starts from the position that if an estimate of the cost-effectiveness of a 

new treatment is acceptable to the decision-maker then it should be adopted regardless 

of whether the result is statistically significant or not. It is argued that the traditional 

paradigm of hypothesis testing is irrelevant and that it should be replaced by a method 

that minimises the societal cost of a wrong decision. Any estimate of cost- 

effectiveness will be uncertain and consequently a decision based upon it could be 

incorrect. An incorrect decision will incur costs (known as opportunity loss) and the 

approach centres on quantifying the societal cost of the uncertainty surrounding a 

decision. The costs of uncertainty can be interpreted as the expected value of perfect 

information (EVPI) because perfect information would eliminate the possibility of a 

wrong decision. So if the EVPI exceeds the cost of any future research aimed at 

acquiring additional information then further research is worthwhile i. e. it is 

potentially cost-effective. Once it is deemed that further research is potentially 

beneficial, the optimal scale (sample size) of the research needs to be determined. 

Within Claxton's approach, the optimal sample size for a trial is that which gives rise 

to an expected net benefit of sampling information (ENBS) that is positive and at its 

maximum. ENBS is the difference between the expected value of sampling 

information (EVSI) and the cost of conducting a trial at any given sample size. EVSI 

is measured as the reduction in opportunity loss which results from a trial of given 

size. 

The above works are relevant to this thesis in that they recognise the importance of 

optimising clinical trial designs and propose possible methods for doing so. 
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The methods proposed adopt a societal perspective based around the use of cost- 

effectiveness analysis. However, the approaches are not generally applicable because 

most major pharmaceutical markets do not currently base their technology adoption 

decisions on cost-effectiveness analysis. The works of both Detsky and Claxton 

utilise very simplistic demand functions whereby a new product is effectively 

assumed to be adopted immediately and completely if a given level of cost- 

effectiveness is achieved. The relationship between product diff-usion and cost- 

effectiveness is poorly understood and, more generally, there is an absence of research 

that explicitly explores the relationship between the adoption of a technology and the 

design of clinical trials. Whilst Claxton rejects traditional hypothesis testing as 

irrelevant, the fact is that the demonstration of statistically significant benefits of new 

products remains a key determinant of drug regulatory decisions and cannot therefore 

be ignored. This fact is recognised by Detsky whose work not only inspired the topic 

of this thesis but also provided a basis for computing the expected outcomes of 

clinical trials that will be seen in later chapters. 

In summary therefore, a notable feature of the current literature that focuses on the 

economic analysis of trial design is that none of the approaches to optimizing trial 

design adopt a private sector (pharmaceutical company) perspective. Equally notable 

is the fact that the pharmaceutical research and development project appraisal 

literature ignores the potential importance of RCT design and results on the uptake of 

a product post-approval. 163-165 
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1.2 FOCUS AND STRUCTURE OF THE THESIS 

Given the importance of RCT evidence for influencing the nature and extent of 

product adoption and the substantial cost of performing clinical trials, it seems logical 

that a privately owned pharmaceutical company should seek to optimise RCT designs 

based on economic (in particular profit) criteria. Yet a review of the literature 

pertaining to economic analysis and clinical trials reveals that a private sector 

investment appraisal approach to RCT design has not hitherto been explored. 

Therefore this thesis attempts to fill a significant gap in the literature by setting out 

how methods of investment appraisal might be applied to RCT design decision- 

making and by exploring aspects surrounding the practicalities of application. To this 

end the remainder of the thesis is made-up of four chapters (summarised below) of 

which Chapters 2-4 are presented as 'standalone' (but loosely interrelated) manuscript 

format pieces. 

Chapter 2 sets out a general investment appraisal model which shows how 

pharmaceutical companies could take profit considerations into account when making 

decisions about the design of randomised controlled trials. A general model is 

presented based on the net present value (NPV) method of investment appraisal. The 

application of investment appraisal requires an evaluation of both the costs and 

expected revenues associated with a given RCT design. Therefore a description of the 

major determinants of costs and revenues and how they might be estimated is 

presented. The importance of being able to estimate the demand for a product 

contingent upon RCT design and expected trial outcomes is emphasized. The 

approach is illustrated with a hypothetical example showing how optimal (net present 

value maximising) designs can be determined based on choices about key 
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RCT design parameters. Directions for further research are suggested and these set 

the scene for the themes that are explored in the following two chapters. 

Chapter 3 focuses on issues associated with the cost side of the investment appraisal 

equation. It takes as the starting point the special situation where it is assumed that 

decision-makers a) make product adoption decisions based on cost-effectiveness 

analyses, and b) require that those analyses be based on sampled data derived from 

RCTs (so called wholly stochastic cost-effectiveness analysis). The primary purpose 

of this chapter is to illustrate how the specific nature of decision-makers' preferences 

relating to wholly stochastic cost-effectiveness evidence could have a significant 

impact on the major determinants of RCT costs, namely sample size and trial 

duration. Data collected in a clinical evaluation are used to calculate sample sizes to 

test cost-effectiveness hypotheses for hypothetical study designs. These are compared 

with the sample sizes required to test hypotheses based only on clinical endpoints. It 

is shown that circumstances can be such that a wholly stochastic cost-effectiveness 

analysis might not be a practical proposition even though its clinical counterpart is. 

The importance of prior specification of decision-makers' preferences for different 

components of RCT study design is cmphasised. 

Chapter 4 focuses primarily on issues associated with estimating the revenue side of 

the investment appraisal equation. It considers a general situation where decision- 

makers involved with product adoption decisions will have preferences for the types 

of RCT evidence they want to see. The extent to which these preferences are satisfied 

will influence the nature and extent of a treatment's use. The primary purpose of this 

chapter is to illustrate how the technique of discrete choice analysis (DCA) could be 

used by companies to consider decision- makers' preferences for RCT designs 
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when planning their studies. The approach is illustrated using the design of trials of 

a uvant isp sp nates in t management o patients wi primary operable breast 

cancer as a case study. A stated preference survey is conducted to elicit clinicians' 

preferences for evidence and to model the predicted probabilities of prescribing a 

product. It is shown how the predicted probabilities of product adoption can be used 

by a company within an investment appraisal framework to identify a profit 

maximizing RCT design. Issues for consideration in future research into the 

application of DCA in this context are discussed. 

Chapter 5 presents the main conclusions and contributions of the thesis. It includes a 

brief summary of directions for future research into the application of investment 

appraisal to RCT design. 
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CHAPTER 2: AN INVESTMENT APPRAISAL APPROACH TO 

CLINICAL TRIAL DESIGN 

SUMMARY 

In this chapter, a general investment appraisal model is presented which shows how 

pharmaceutical companies could take profit considerations into account when making 

decisions about the design of randomised controlled trials. A general model is 

presented based on the net present value method of investment appraisal. The 

approach is illustrated with a hypothetical example which shows how optimal (net 

present value maximising) designs can be determined based on choices about sample 

size and endpoint measurement. The method could be extended to accommodate 

considerations about other trial design features, and could be used to determine a 

portfolio of studies which maximises the expected return on a given development or 

trial budget. Furthen-nore, the approach could be used by pharmaceutical companies 

to evaluate the incremental costs and benefits of incorporating non-clinical objectives 

into trials, such as quality of life research and economic evaluation studies. A number 

of practical difficulties would need to be overcome to utilise the approach. Directions 

for further research are therefore highlighted centred on the key components of the 

model: a trial cost function, a product demand function, innovation diffusion 

processes and Bayesian approaches to trial design. 
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2.1 INTRODUCTION 

Randomised controlled trials (RCTs) play a fundamental role in the development and 

marketing activities of pharmaceutical companies. They are the primary instruments 

for evaluating the tolerability of a drug, for demonstrating its efficacy, and for 

providing information relevant for clinical decision - making. 1-5 RCTs require a 

substantial investment by pharmaceutical companies in terms of the human and 

financial resources allocated to their design, execution, analysis and reporting. It has 

been estimated that the cost of discovering and developing a new drug introduction 

exceeds US $300 millions at 1995 prices. 18; 19 A significant proportion of that cost 

relates to Phase III trials which are conducted to produce evidence about a product's 

safety and efficacy to a level which at least satisfies the regulatory authorities 

responsible for granting product licences. Once approval to market has been granted, 

companies often conduct Phase IV trials designed to address the information needs of 

decision-makers involved in product utilisation decisions. The fmancial 

consequences of poorly or sub - optimally designed Phase III or Phase IV trials are 

potentially substantial: revenue is lost if a new drug fails to gain access to its intended 

market or if a trial fails to provide evidence of sufficient strength or relevance to 

secure or enhance a product's use. 

From a pharmaceutical company's perspective, the value of RCTs can therefore be 

judged on the contribution they make to the performance of a drug in the market and 

hence on their contribution to the performance of the firm. Consequently, the design 

choices made in the planning of RCTs, such as which comparators to use, which 

endpoints to evaluate and which sample size to adopt, are effectively investment 

appraisal decisions. The nature and scale of a trial will drive the size of the 
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investment. The return on the investment will depend upon the sensitivity of decision 

- makers to the different types, strengths, relevance and quality of the evidence 

provided by it. 

Although some applications of decision - analytic techniques to clinical trial design 

decisions have previously been reported, none has adopted a private sector investment 

appraisal perspective. 143; 149; 152; 154; 155 Therefore the purpose of this chapter is to 

illustrate the potential role for investment appraisal in assisting with RCT design 

decisions taken by pharmaceutical companies. The remainder of the chapter is 

divided into three sections. Firstly, the components of an investment appraisal model 

are set out in general form based on the net present value method of investment 

decision-making. Secondly, the application of the approach is illustrated with 

simulations using a hypothetical Phase IV trial design scenario facing a 

pharmaceutical company. Finally, the discussion section addresses issues 

surrounding further research that would be required to develop the approach for 

practical application. 

2.2 INVESTMENT APPRAISAL APPROACH TO TRIAL DESIGN: A 

GENERAL MODEL 

Investment appraisal is the term given to a general framework used by firms to assist 

with project investment decisions. Whilst a number of possible approaches are 

discussed in the literature, the superiority of investment decisions based on the net 

present value (NPV) discounting method is well documented. 166-168 The investment 

appraisal approach to trial design is therefore illustrated using the NPV method. With 

this method, choices about trial design would involve consideration of the differences 
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between the discounted revenue a trial is expected to yield and the expected 

discounted cost of conducting it i. e. trial design decisions would incorporate expected 

NPV (profit) considerations. The key components of this approach are set out below 

in general forn-L 

2.2.1 Cost function 

A pharmaceutical company will be faced with a clinical trial cost function of the 

following general form: 

C (n) = C, (Q, (n)) + C, (n) i (1) 

where C, (n) is the cost in period t associated with conducting a trial of a particular 

design and sample size, n. Any additional manufacturing and marketing costs 

incurred as a direct consequence of conducting a trial are denoted by C, (Q, (n)), 

where Q, (n) is the number of units of the product sold in time t. CT (n) is the cost in 

period t of designing and conducting a trial, and will partly depend upon the chosen 

sample size. Note that the term design refers to a trial defined over all relevant 

characteristics, such as whether it is of a parallel groups or cross - over form, study 

population, comparators, endpoints and duration of subject follow - up. 

The total cost of conducting a trial, TC(n), is given by: 

p 
H 

TC (n) C, (n) (C, (Q, (n)) + CT(n)) 
t=O t=O 

(2) 

where the costs of the investment are evaluated over the period adopted for the 

appraisal beginning at time t=0 and ending at time t=H. Costs will be 
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incurred in different time periods. For example, trial subjects may be enrolled in 

different years and the costs associated with data analysis and reporting will take 

place once data collection and processing are complete. With the NPV method of 

investment appraisal, the time distribution of costs and the risk associated with the 

project are taken into account by discounting costs to their present value: 

PTC(,, ) Cp (Q, (n)) + CT(n) 

t=O + 
(3) 

where PTC(n) is the present value of the total cost of conducting the trial and r is 

the project's risk adjusted opportunity cost of capital (see section 2.4 below). 

2.2.2 Demand function 

A demand function for a good or service specifies the relationship between the 

quantity demanded and the factors that influence it. Similarly, a prescribing 

clinicians' demand function for a drug states the relationship between the quantity of 

treatments demanded and its determinants. Demand functions therefore figure 

prominently in the estimation of revenue resulting from the conduct of a trial since 

they describe, inter - alia, the likely responsiveness of clinicians to the evidence about 

a drug's attributes provided by it. A prescribers' demand function for a drug under 

investigation will take the following general form: 

Qto = Qt* (AX, AP) (4) 

where Q is the desired demand for a treatment under investigation, say drug A. 

is expressed in terms of the number of units of A given demonstrated statistically 

significant incremental changes in the vector of product characteristics, AX, 
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compared with alternative treatments, say B. Note that the vector X represents 

potential trial endpoints which might include non - clinical parameters, such as non - 

drug treatment costs and quality of life measures. Since drug price considerations are 

becoming an increasingly important consideration in prescribing decisions, 

differential drug treatment costs are highlighted in the demand function and are 

denoted by AP. 

It is unrealistic to assume that the desired level of demand, Q, ., will be realised 

immediately the results of a trial become known. For example, factors such as the 

perceived quality of the evidence, delays in the dissemination of the information and 

the learning process associated with the adoption of a new treatment mean that it will 

take time for prescribers to switch from existing practices to drug A, and the desired 

level of use may never be realised. Further, the prescribing practices of clinicians 

might be influenced by other factors, such as the policies proposed by formulary 

committees and the promotional activities of pharmaceutical companies. Thus, the 

actual demand for drug A in any specific time period will be determined through a 

diffusion process in which the growth of actual demand, Q1, towards Q, * will be 

determined by experience gained through past consumption, Qj . and the rate of 

adoPtion, k: 

Q, (Q, * (AX, AP), Q, 
-,, 

k) (5) 

Since the results of a trial are uncertain, a decision analytic approach is required to 

estimate the expected demand for the product resulting from the conduct of a trial. 

This requires the firm to estimate the expected outcomes with respect to potential trial 

endpoints, AX, which need to be established by empirical demand research 
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to be important. Making use of the approach illustrated by Detsky, 152; 154 if only 

discrete values of AX are possible, the expected effect sizes for the product attributes, 

E,, (A. X), likely to be demonstrated by a trial of sample size n, is given by the 

following formula: 

OD 

E. (AX)= lPr(D�0=AXIAX). Pr(AV). AK 
AX=--co 

(6) 

where Pr(D. 0 = AXIAX) is the conditional probability that a difference of AX will be 

established in a trial with significance level ý if that difference is in fact there, and 

where Pr(AX) is the prior probability of a true difference of AX. The expression 

Pr(D,, O = AXJAY) is otherwise known as the power of a trial. 169; 170 In the case where 

AX are continuous variables, the expected trial outcome is given by: 

Co 
E. (AX) =f Pr(D�0 = AXIAV). Pr(AX). M dAX 

Ax. --00 

(7) 

where the definitions given for equation (6) apply. For convenience, the discrete case 

is used in the equations and hypothetical analyses which follow. 

By substituting the expression for E. (AX) from equation (6) for AX in the dynamic 

demand function of equation (5) we derive the following general expression for 

expected demand in time period t, Q, (n), resulting from a trial of given design, 

sample size and significance level: 

(n) Q, 
(Q, ( j Pr(D, 0 = AXläV) Pr(AXýAX, k) (8) 2: 

- QI-l 9 AX=--m AP), 
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2.2.3 Revenue function 

The expected revenue accruing to a company from the use of drug A in each time 

period, R, (n), is determined by multiplying the expected number of units of the 

product demanded in that time period, Q, (n), by the price per unit. Let P, denote the 

exogenously determined selling price for drug A. By calculating the product 

P,. Q, (n), the following expression for the expected revenue accruing to the firm in 

time period t is derived: 

R, (n)=P,. Q, (n)=P,. Q, 
(Q, 

--(Y, Pr(D. O=A. XIAX). Pr(AX). AX, A Q,, k) P) (9) 

The total revenue accruing to the firm as a result of conducting the trial, TR(n), is 

therefore given by: 

HH 

TR(n) = 1: P,. Q, (n) = 1: P,. Q, 1: Pr(D. 0 = AXIAX). Pr(AX). AX 

1=0 t=O 

(Q 
AX= 

, 

ýo 
AP), Q, 

-., 
k) Q 0) 

Since the expected revenues occur in different time periods and are subject to 

uncertainty they must, like costs, be discounted to their present values using the 

project's risk adjusted opportunity cost of capital (see section 2.4 below): 

P'. Q, 
(Q,. 

Pr(DO, =, 6XIAX). Pr(AX). AX, AP), Hn 

PTR(n) 
AX=-. oo 

1=0 + r)' 

where PTR(n) is the present value of the total revenue resulting from the conduct of a 

trial. 
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2.2.4 Investment appraisal decision rules 

The final component of the investment appraisal approach is the calculation of the 

expected profit accruing to the firm as a consequence of conducting a trial of given 

design and sample size. With the NPV method, this is simply the difference between 

the discounted value of a trial's expected total revenue, PTR(n), and the discounted 

value of expected total cost, PTC(n): 

NPV(n) = PTR(n) - PTC(n) (12) 

where NPV(n) denotes the expected net present value resulting from a trial of given 

design, sample size and significance level. Substituting for PTR(n) and PTC(n) 

from equations (11) and (3) respectively, and substituting the expression for Q, (n) 

given in equation (8) into equation (3), we derive the following general expression for 

NPV(n): 

2: Pr(D AXIAX). Pr(A. X) 1, p AXI 
Ht- 

Q(Qt 
Ax=ý 

AP) I Ql- 
NPV(n) = I: - 

1=0 + r)' 

H 
CIP 

(Qt (Q, 
'( Z Pr(D,, O = AXIAX). Pr(AX). AX, AP) I Qt-j I, k)) + CT(n) 

Ax=-ýo 
-I- - 

1=0 + r)t 

(13) 

it should be noted that the superiority of the NPV method over alternative methods of 

making investment decisions stems primarily from the choice of H and from the use 

of discounting. 166-168 With the NPV method, H is the useful life of the 
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project (in this case the useful life of the information provided by a trial) rather than 

some arbitrarily chosen time horizon. Discounting is undertaken to allow for both the 

timing of costs and revenues and the risk associated with the project. A project's risk 

a ust iscount rate can e determined using the capital asset pricing model 

(CAPM), which states that: 167 

r= rf + vl(r. - rf 
) (14) 

where r is the risk-adjusted discount rate, rf is the rate of return on risk free 

investments (e. g. Treasury Bills), r. is the rate of return on investments of similar 

risk to the project being appraised (e. g. other pharmaceutical company stock), and 

is a measure of the risk of the project relative to other similar investments. Examples 

of the application of this approach can be found in an article in which costs of capital 

are estimated for a number of pharmaceutical companies and for projects at different 

stages of development. 171 

NPV criteria can be used to assist with a number of trial planning decisions based on 

the following decision rules: 

a) A trial of given design is worth conducting if it yields a positive expected net 

present value: NPV(n) = PTR(n) - PTC(n) > 0; 

b) The optimal choice of trial design, in terms of factors such as sample size and 

primary endpoints, is that which maximises the (positive) expected net present 

19 



value: Max. NPV(n) = PTR(n) - PTC(n) > 0; 

c) When allocating funds to different studies competing for a limited trial budget, the 

funds should be allocated across potential trial designs so as to maximise the 

expected net present value of the overall investment. 

It should be noted that the trial design problem facing the fwm might be one of 

constrained optimisation in which the unconstrained profit maxhnising solutions 

become unattainable. For example, decision - makers within the firm may impose 

budget, sample size, study duration or other constraints on themselves. Also, the 

company might face externally imposed constraints. For example, factors such as 

regulatory requirements, ethical considerations and insufficient patient numbers could 

restrict the choice of comparators or the duration of follow - up. Such constraints do 

not invalidate the approach, although they will, if binding, inhibit the achievement of 

the unconstrained NPV maximising solution. 

The use of the NPV method of investment appraisal to determine whether an RCT is 

worth conducting and to determine the optimal strategy based on choices about 

sample size and endpoint measurement is illustrated below with a simple hypothetical 

example. 

2.3 INVESTMENT APPRAISAL APPROACH To TRIAL DESIGN: A 

HYPOTHETICAL EXAMPLE 

The investment appraisal approach is illustrated with respect to the design of a 

hypothetical Phase IV trial. It is assumed that a pharmaceutical company has 
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developed a new product, drug A, for an acute condition for which there is currently 

only one other treatment available, drug B. Drug A has been approved for marketing 

on the basis of placebo controlled trials and the national pricing authority has granted 

the company a selling price PA, = $200. Whilst prescribers of the product would be 

fully reimbursed if they were to use it, local hospital formulary committees have 

excluded drug A from their formularies on the grounds that no comparative trials have 

been conducted against druja B. It is therefore assumed that all patients needing 

treatment are currently prescribed drug B, which has been shown to produce a success 

rate of 25% on endpoint X, and 75% on endpoint X2 after 6 months of follow - up. 

It is known that the incidence of the condition will remain stable, with approximately 

200,000 patients presenting for treatment each year. No other treatment alternatives 

are expected during the next 5 years. 

The clinical development department within the company has proposed a trial of 

parallel groups design to compare drug A with drug B. It has been designed to yield 

90% power of detecting, at the 5% significance level, an arbitrarily chosen absolute 

difference of 30% based on endpoint X,. Using the sample size formula for 

comparing two binomial proportions without correction for continuity and assuming 

equal allocation, 125 patients per treatment arm are required. 169 Withdrawals from 

the trial are not anticipated. The development department has proposed not to 

evaluate endpoint X2 on the grounds that it would significantly increase the costs of 

the study. In this example, X2 might be thought of as an outcome which requires for 

its measurement a complex and costly diagnostic procedure. However, the marketing 

department is uneasy with this proposal because market research has highlighted the 

importance of endpoint X2 as a factor influencing product use. It has therefore 
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been decided to investigate the problem in more detail in order to determine an 

optimal trial strategy. 

Within an investment appraisal framework, the determination of an optimal strategy 

would involve choosing between possible trial designs so as to maximise 

expected NPV(n). In order to illustrate how this is achieved, it is necessary to impose 

specific functional forms for C, (n), Q, - and Q,. It is therefore assumed that the 

company has determined the following cost function for the trial under consideration: 

+fT+VT C, (n) = Vl'. Q, (n) 
, . n, 

where C, (n) is a linear cost function with fixed and variable components. The 

variable marketing costs per unit of the product sold, vP, will include any incremental 

costs of manufacturing, distributing and promoting the product as a direct 

consequence of conducting the trial. The trial fixed cost variables, f, ', will include 

the costs of researching, designing and planning the experiment, plus the costs of data 

analysis and reporting. Costs which vary with sample size, vT, will include 

components such as expenditures on trial monitors, payments made to investigators 

for data collection and payments made to centres for the treatments given to patients 

during the trial. 

Clearly, there may be uncertainties surrounding the estimation of some of the cost 

variables. For example, if company practice is to pay for the treatments given to 

patients during the trial as they occur, rather than as a fixed per patient payment set by 

contract in advance, it will be necessary to estimate the expected value of the payment 

per subject enrolled. This would be achieved by estimating a weighted 
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average cost per patient enrolled based on probabilities of different treatments 

occurring and their associated costs. Systems are available to assist companies in the 

production of such estimates. 172 However, the methods of estimation of the cost 

function variables are beyond the scope of this chapter. It is sufficient for the purpose 

of illustrating the approach to assume that the cost variables are either known with 

certainty, or alternatively represent expected values. 

It is assumed that company market research has been conducted which has determined 

the following desired demand function: 

Ql* =a+, 8AX + rAP (16) 

where 6'denotes the row vector of demand function coefficients (PI3, A) for the 

potential endpoint variables (AX,, A. X2) in the vector AX. The sign and the size of 

estimated coefficient vectors, a, 8' and y, will determine the direction and 

magnitude of the change in Q, resulting from changes in the demand function 

variables. It is further assumed that the company has determined that the expected 

diffusion process is best approximated by the following equation, which is an 

adaptation of the stock adjustment principle: 173 

k. Q, - (AX, AP) + (I - k)Q, 
-, 

(17) 

where Q, is the actual demand for drug A in time period t, and k is the coefficient of 

market adoption which takes on a value between 0 and 1. The achievement of the 

desired level of demand in the market is therefore expected to be gradual. The time 

taken to reach Q, depends upon the size of k, which in practice will be detemiined 
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by complex relationships amongst the various factors which influence prescribing 

decisions. Some of these factors will be within the control of a company and others 

will not. Substituting for Q, from equation (16) into equation (17) yields: 

k. a +, 81AX + vAP) + (I - k)Q, 
$-l -1 

which is the assumed hypothetical dynamic demand function for drug A. 

Substituting the above functional forms for C, (n) and Q, into equation (13) gives the 

following specific formulation of the general model that is used to simulate the 

approach: 

fo I+ 
yA. P) + (I - k)Q, 

-, 
00' 

H 
PA, k. a+, 6'f 

12: 
Pr(D. 0 =AXIAX)Pr(AX)AX 

AX--100*/o 
NPV(n 

)= Z 

t=O + r)' 

H 
vp 

(k. 
a+ ß'l 

lf 
Pr(Do, = AXIAK) Pr(AX)AXI + yAP) + (1 - k)Qt-, + f, ' + v,. n, 

AX-1W/0 
t=O (1 + r)' 

(19) 

The hypothetical parameter values and assumptions for the model are summarised in 

Table 2.1 and the results are given in Table 2.2. The results are also presented 

graphically in Figures 2.1 and 2.2. All sample size results are taken to the nearest 25 

subjects per treatment arm. 
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Table 2.1 
Parameter Values and Assumptions 

Parameter values Assumptions 

Costfunction: C, (n)=vlp. Ql(n)+ftT+vtT. n, 

v, p =$ 40.00 Incremental costs of manufacturing, distributing 
and promoting the product as a direct 
consequence of conducting the trial. Assumed to 
be 20% of the selling price for product A. 

Q, (n) =variable 

f, T 
=s1,000,000 

TT $ 1,500 or vt $ 1,875 

Expected demand for product A in period t. It 
varies with trial sample size and endpoints 
measured, and is calculated by the model. 

Fixed costs of planning the trial ($ 750,000 
incurred in year t= 0) and data analysis and 
reporting ($ 250,000 incurred in year t= 1). 

Cost per patient $ 1,500 if only endpoint X, is 

evaluated and $ 1,875 if only endpoint X2 or 
both endpoints are evaluated. This cost includes 
trial monitors, payments to investigators, and the 
costs of treatment given to patients during the 
trial. The year in which costs are incurred 
depends upon the timing of subject enrolment, 
n' . 

Demand function: Q, = k. (a + AAxi + fl2, &x2 + yAP) + (I - k)Ql-l 

Qt = variable Expected demand for product A in period t. The 
form of the demand function needs to be 
determined by empirical research. 

k=0.30 

a 

1000 and fl2 = 4995 

Aý XIA - XIB and AX2 ý X2A - X2B 

The coefficient of market adoption which is 
assumed to have been determined by empirical 
product diffusion research. 

The assumed value implies that drug A will not 
be used in the absence of comparative evidence 
of the product's benefits in relation to product B. 

The assumed values imply that X, is a less 
important determinant of demand than X2 . 
Coefficient values were chosen to yield 100% 
market share for product A if complete success 
was demonstrated for both endpoints. 

The expected demonstrated differences, EJAX), 
are calculated variables which depend upon the 
trial sample sizes and prior expectations. XIB is 
assumed to have a baseline value of 25% and 
X2B is assumed to have a baseline value of 
75%. 
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Table 2.1 (continued) 
Parameter values 

Demandfunction (continued) 

-550.00 

Ap ý PAI - PBI 

Discounting 

0.15 

to -t4 

Prior distributions, power and sample size 

Pr(AXI) =0.14(11%); (0.09)12%; 0.10(13%); 0.08(14%); 
0.11(15%); 0.05(16%); 0.04(17%); 0.13(18%); 
0.12(19%); 0.14(20%). 

Pr("' )=0.14(1%); 0.1l(2%); 0. O5(3%); 0.1l(4%); ýa" 2 
0.1l(5%); 0.05(6%); 0.05(7%); 0.10(8%); 
0.14(9%); 0.14(10%)]. 

P4D! = AXIAX) 

n, = variable 

Assumptions 

The assumed value implies that treatment drug 
prices have a negative impact on the quantity of 
product A demanded. 

PAt = $200 is assumed to have been 

exogenously determined by a central pricing 
authority setting prices at parity with product B. 

PAt is assumed to be constant over the 

evaluation period. 

The projects risk adjusted discount rate assumed 
to bave been determined using the capital asset 
pricing model. 

The time horizon for the investment appraisal is 

assumed to be 5 years. 

The hypothetical prior distributions for AXI and 
AX2 were produced by using Lotus Excel to 

generate 100 random numbers with a uniform 
distribution of successful outcomes for XIA in 

the range 35% - 45% and for AX2A in the range 
75%-85%. 

All sample size and power calculations were 
performed using the computer programme SAS 

assuming a two - tailed test with significance 
level 0= 5% and power = 90% as appropriate. 
The formula for comparing two binomial 

proportions without continuity correction and 
assuming equal allocation was used throughout. 

Sample size is varied for the simulations. The 
trial is assumed to take two years to design and 
complete, with subjects enrolled in equal 
proportions in years t=0 and t=I- 
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2.3.1 Is the proposed trial worth conducting? 

Whether or not the hypothetical trial proposed by the clinical development department 

is worth conducting with regard to profit criteria is considered graphically in Figure 

2.1. Figure 2.1 shows how the cost, revenue and profit functions behave with respect 

to changes in sample size per treatment arm, given the assumed parameter values of 

the model. As sample size increases, PTC(n) increases at a constant rate reflecting 

the linear form of the hypothetical cost function. PTR(n) also increases, but at a 

diminishing rate. This reflects the fact that the expected additional difference in AX, 

between products A and B (and hence, through the demand function, the expected 

incremental market share and expected incremental revenue) gets smaller and smaller 

as the trial sample size is increased. It can be seen that PTR(n) is less than PTC(n) 

for sample sizes below 50 and greater than 675 subjects per arm. Conversely, 

NPV(n) is positive for any trial evaluating only endpoint X, within that sample size 

range. This profitable range is determined by the two points at which the parabolic 

NPV(n) curve intersects the sample size axis. 

In the case of the proposed trial with a sample size of 125 per arm, the present value 

of expected total revenue exceeds the present value of the total cost of conducting the 

trial, so the trial is worth conducting (NPV(n) >0). it can be seen from Table 2.2 

that a profit of $892,524 is to be expected (see Appendix 2.1 for an example 

calculation). However, the chosen sample size is sub - optimal since NPV(n) 

continues to increase as sample size increases beyond 125 subjects per arm. The 

optimal sample size is that which yields the maximum NPV(n). This can be 

determined graphically by identifying the point at which the marginal change in 
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NPV(n) for a given change in sample size is declining and equals zero 

(i. e. MNPV(n)= 0). In this example, this occurs where the trial enrols 225 subjects 

per arm and yields an expected NPV(n) of $1,093,016. A trial with this sample size 

would have 90% power to detect an absolute difference of 12% with a two-sided 

significance test conducted at the 5% level. 

2.3.2 What is the optimal trial strategy? 

Suppose that the hypothetical firm can conduct only one trial, and that, if both X, 

and X2 are evaluated, the same sample size must be used. The problem now is to 

determine the optimal trial design in terms of endpoint measurement and sample size. 

The optimal trial strategy will depend on whether or not the firm faces constraints 

imposed by factors such as the available budget or the number of potential trial 

subjects. 

If there are no constraints, there are three options available: measure only X,, only 

X2 or both endpoints simultaneously. The determination of the optimal strategy is 

shown graphically in Figure 2.2 If only X, were to be evaluated, the optimal sample 

size is 225 subjects per arm, as indicated above. However, it would be preferable to 

evaluate only X2 since this yields a maximum expected NPV(n) of $1,248,345 at the 

optimal (NPV(n) maximising ) sample size of 400 subjects per arm. Note that a 

single endpoint trial evaluating only X, is superior to a trial which measures only Xý 

for sample sizes between 50 and 250 subjects per treatment arm. Conversely, a trial 

to evaluate only X2 is preferred for sample sizes between 250 and 1000 subjects per 

treatment arnL 
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Figure 2.2 shows clearly that no single endpoint trial would be preferable to a trial 

which simultaneously evaluates both endpoints since the latter always yields an 

NPV(n) greater than the former. Such trials would produce a positive expected 

NPV(n) for sample sizes in the range 25 to 1975 subjects per arm. However, the 

optimal sample size is 425 subjects per arm, which yields an expected profit of 

$4,140,813. The firm should therefore conduct a trial which evaluates both X, and 

X2 at a sample size of 425 subjects per arm. It would have 90% power to detect a 

difference of 9% on both endpoints X, and X2 with two-sided significance tests 

conducted at the 5% level. 

2.3.3 Constrained optimisation. 

In practice, the firm might face budget or other constraints that prevent the 

achievement of the optimal trial design solution identified above. For example, 

suppose that the hypothetical trial is constrained by the availability of patients for 

enrollment and that a maximum of 300 subjects can be recruited. The optimal 

solution can be derived graphically by identifying the trial which gives the 

highestNPV(n) curve for that sample size. In this case, a trial to evaluate both X, 

and X2would be the preferred strategy and would yield an NPV(n) of $3,953,880 as 

shown in Table 2.2. 

In addition, at a macro level, a company will usually be faced with a capital rationing 

problem in which a limited investment budget needs to be allocated across competing 

trials involving different products. In this case, projects should first be ranked based 

on their profitability indices (NPV(n)IPTC(n)) and then selected for funding in 
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descending order of the index until the available budget is exhausted. Complex 

capital rationing problems can be solved using integer programming models (when 

fractional trial projects are not feasible) or linear programming models (where trial 

projects are divisible). 167 

2.4. DISCUSSION AND CONCLUSION 

The model presented in this chapter shows how a pharmaceutical company could use 

an investment appraisal framework to assist with decisions taken in the design of 

randomised controlled trials. A hypothetical scenario facing a pharmaceutical 

company has been used to illustrate how profit criteria n-fight be applied to decide 

whether a particular RCT is worth conducting, to determine an optimal (NPV 

maximising) design, and to rank RCTs in terms of their expected NPVs so as to select 

a portfolio of studies which maximises the return on a given development or trial 

budget. VVhilst the simulations conducted illustrate decisions based on choices about 

sample size and endpoint measurements, the framework could be applied to choices 

concerning other trial design parameters, such as which comparators to include, the 

duration of patient follow-up and what power to use. A number of practical 

difficulties would need to be overcome in order to utilise the approach. These are 

highlighted below, together with some directions for future research. 

Firstly, the investment appraisal approach to trial design has been illustrated using the 

NPV method of investment appraisal due to its recognised superiority over rival 

methods which can lead to incorrect SolUtionS. 166-168 Irrespective of the method used, 

the approach requires individual RCTs to be viewed as appropriate units to be 

subjected to investment appraisal. Whilst the impact of a single trial, or small 
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collection of trials, on the use of a product might be open to question, it is 

nevertheless appropriate for a firm to evaluate their likely impact at the margin of 

available evidence. This poses a number of practical difficulties including the choice 

of time horizon, the determination of a trial's opportunity cost of capital, and how to 

assign capital, production, distribution, marketing and sales costs to individual trials. 

Clearly, these issues will depend upon a company's corporate goals, attitudes towards 

risk, accounting conventions and the specific market circumstances surrounding the 

development of a product. 

Secondly, whilst the investment appraisal approach has been illustrated based on 

choices relating to the design of a hypothetical Phase IV trial, its potential value is by 

no means limited to that application. Pharmaceutical companies make their new 

product investment decisions at key milestones culminating in a decision whether or 

not to commit significant resources to the full development of a product. If full 

development proceeds, it involves deciding upon a programme of Phase III 

registration trials. These trials must demonstrate safety and efficacy only to a level 

that satisfies the regulatory authorities responsible for granting companies licences to 

market their products. However, as the debate surrounding the introduction of new 

drugs for the treatment of Alzheimer's disease highlighted, Phase III trials may fail to 

provide evidence of sufficient strength or relevance to persuade prescribing clinicians 

of the benefits of a product's use. 174-178 Thus, if only the minimum information 

required by regulatory authorities is provided at the time a product is introduced, a 

slow initial rate of diffusion (and hence low initial sales) might ensue until decision - 

makers' information needs have adequately been met by additional Phase IV (post 

marketing approval) trials. 
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The investment appraisal approach could therefore be used to evaluate the cost - 

revenue trade-offs associated with alternative late phase development strategies and to 

identify an NPV maximising portfolio of Phase III and Phase IV trial designs. Such 

an approach offers a potential improvement to the ex ante measurement of 

commercial "success" as used in a number of methods for assessing the value of 

pharmaceutical company research and development projects. 163; 164 Clearly, an 

important area for future research is the extent to which Phase III trial designs are 

constrained by the requirements of regulatory authorities. 

Thirdly, a potentially useful application for a company would be to use the approach 

to evaluate the incremental costs and benefits of incorporating non-clinical objectives 

into trials, such as quality of life research and economic evaluation studies. Such 

activities usually require significant additional resources to design and conduct. 

Within an investment appraisal framework, that additional effort can only be justified 

if the extra cost is more than offset by the incremental gain in sales revenue. A 

related important line of future research would be to compare private investment 

appraisal approaches with those which adopt a societal perspective. 143; 149; 152; 154; 155 Of 

primary interest would be to identify the conditions under which societal and industry 

objectives and perspectives produce similar recommendations. This will hinge on the 

relative importance of cost-effectiveness considerations in drug prescribing decision- 

making about which little is currently known. Within an investment appraisal 

framework, the latter would be determined through empirical demand analysis which 

is a central component of the investment appraisal approach. 

Fourthly, whilst a dynamic form of demand function as illustrated in this chapter is 

undoubtedly more realistic than those implied in the models which have 
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adopted a societal perspective, 143; 149; 152; 154 in practice significant empirical research 

would be required to define thoroughly the properties of a product's demand function 

and the associated diffusion process. This would need to be conducted within the 

context of specific projects, and would need to address questions such as: What is the 

role of clinicians versus other decision-makers in the product adoption process? What 

is the relative importance of different types of product differentiation data to different 

decision - makers? What is the nature of the relationship between differences in 

product characteristics and prescriber take - up? What factors influencing product 

diffusion are within the control of a company and which are not? Such research 

would probably highlight the heterogeneity of decision - making criteria and 

influences, different attitudes towards risk, the role of price and other treatment cost 

parameters in the demand function, and the lack of independence of some of the 

explanatory variables. 

Conjoint analysis offers a promising way forward for investigating the properties of 

demand functions for use within an investment appraisal framework. 179; 1 80 This 

technique is often used by pharmaceutical companies, although usually for the 

purposes of product pricing and positioning once Phase III trial results are known. 

Conjoint analysis could however be applied before RCT designs are finalised in order 

to assess the relative importance of study design attributes. The results of such 

research would need to be linked to product diffusion models to produce sales 

forecasts contingent upon the evidence expected to be provided by different trial 

designs. Whilst the literature on models concerning the diffusion of innovations is 

substantial, 181-183 their application to health care technologies has been limited to 

date. 184-188 This would be a valuable area for future research. 
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Fifthly, one of the fundamental components of the investment appraisal model as 

illustrated here is the use of elements of a Bayesian approach to the planning of 

RCTs. 189 Specifically, the investment appraisal approach necessitates the derivation 

and use of prior distributions for estimating the expected endpoint outcomes. The 

results of an investment appraisal analysis will be very sensitive to the choice and 

reliability of the prior distributions, hence the importance of carefully choosing the 

method used in their derivation. A good review article describes the different possible 

approaches, their strengths and limitations, and the sources of evidence for clinical 

priors. 189 In practice, one would probably adopt a number of approaches to derive a 

so - called "community of priors", '89 and test the implications for the results of an 

investment appraisal using sensitivity analysis. 

A promising area for further research is to explore how applied demand analysis 

might be used to further advance the Bayesian approaches to trial design. For 

example, conjoint analysis could be used not only for evaluating the absolute and 

relative importance of the attributes entering a product's demand function, but also for 

eliciting the prior distributions for each of the attributes. Furthermore, such an 

approach could provide a formal framework for defining "meaningfur' effect sizes 

based on decision - maker preferences for different types and strengths of evidence 

provided by a trial. Within an investment appraisal framework, a meaningful effect 

size might be defined as the minimum size of effect required to yield a positive NPV: 

the commercially significant effect size. The extent of pharmaceutical company use 

of Bayesian approaches is not known, although there is increasing recognition by 

regulatory authorities and the scientific community of the merits of the approach. 190 

Finally, and notwithstanding the simplifications and limitations of the 
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illustrative model presented here, a strength of the investment appraisal framework 

lies in the fact that it provides a rational, transparent and health care decision - maker 

focused basis for planning and designing RCTs. The framework views trials as an 

investment in information which will contribute to the nature and extent of product 

adoption through the strength and relevance of the information they produce. Within 

this context, the efficiency of a trial or programme of trials is viewed broadly in terms 

of market adoption and profit. This contrasts with alternative, narrowly focused goals 

such as the provision of the minimum amount of information necessary to secure 

marketing approval for a product within the shortest possible time frame. Clearly, the 

approach could only be utilised effectively if there was agreement between functions 

within a company to an explicit process for generating the necessary information, 

conducting the analyses required and acting upon the results. In some companies this 

might require a fundamental shift in culture away from a largely regulatory (product 

approval) driven organisation towards an integrated managerial economics approach 

to drug development decision - making. 
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APPENDIX 2.1 

Example Calculation: NPV for Trial of Endpoint X, and Sample Size of 125 per arm 

Present value of trial cost 

PTcn=125 = $750,000 + (125 x $1500) $250,000 + (125 x $1500) 

(1+0.15)0 (1 + 0.15)' 

= $1,317,934.78 

Expected trial outcome 

En=125 (AXI) = (. 4714 x. 14 x IM) + (3367 x. 09 x 120/o) + (. 6007 x. 10 x M) + (. 6618 x . 08 x N%) + 
(. 7188 x. 11 x 15%)+(. 7706 x. 05 x 1611/o)+(. 8165 x. 04 x 17%)+(. 8562 x. 13 x 18%)+ 
(. 8896 x. 12 x M) + (. 9171 x. 14 x 200/o) 

= 11.7851% 

Expected demand (% market share) 

0 QAt = 1000 x 11.785% = 11785 (5.893%) 

QA2 ý 0.30 x 11785 + (1- 0.30) x0= 3535 (1.769%) 

QA3 ý 0.30 x 11785 + (1- 0.30) x 3535 = 6010 (3.006%) 

QA4 ý 0.30x 11785 +(1-0.30)x 6010=7743 (3.873%) 

present value of expected total revenue 

PTR, 125 =($2OOx3535)/(1+0.15)2 
* ($200 x 6010) / (I + 0.15) 3 
* ($200 x 7743) / (I + 0.15 )4 

= $2,210,335* 

Expected net present value 

NPvn=125 ý PTRn=125 - PTCn=125 = $2,210,335 - $1,317,934.78 = $892,400* 

* There is a small discrepancy with the result reported in Table 2.2 due to rounding. 
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CHAPTER 3: USE OF RANDOMISED CONTROLLED TRIALS 

FOR PRODUCING COST EFFECTIVENESS EVIDENCE: 

POTENTIAL IMPACT OF DESIGN CHOICES ON SAMPLE SIZE 

AND STUDY DURATION 

SUMMARY 

A number of approaches to conducting economic evaluations could be adopted. 

However, some decision-makers have a preference for wholly stochastic cost- 

effectiveness analyses, particularly if the sampled data are derived from randomised 

controlled trials (RCTs). Formal requirements for cost-effectiveness evidence have 

heightened concerns in the pharmaceutical industry that development costs and times 

might be increased if formal requirements increase the number, duration or costs of 

RCTs- Whether this proves to be the case or not will depend upon the timing, nature 

and extent of the cost-effectiveness evidence required. The purpose of this chapter is 

to illustrate how different requirements for wholly stochastic cost-effectiveness 

evidence could have a significant impact on two of the major determinants of new 

drug development costs and times, namely RCT sample size and study duration. 

Using data collected prospectively in a clinical evaluation, sample sizes were 

calculated for a number of hypothetical cost-effectiveness study design scenarios and 

the results compared with a baseline clinical trial design. The sample sizes required 

for the cost-effectiveness study scenarios were mostly larger than those for the clinical 

baseline. Circumstances can be such that a wholly stochastic cost-effectiveness 

analysis might not be a practical proposition even though its clinical counterpart is. In 

such situations, alternative research methodologies would be required. For 
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wholly stochastic cost-effectiveness analyses, the importance of prior specification of 

the different components of study design is emphasised. However, it is doubtful 

whether all the infonnation necessary for doing this will typically be available when 

product registration trials are being designed. 

41 



3.1 INTRODUCTION 

During the last decade or so, economic evaluation has become an increasingly 

important part of the process of developing and marketing pharmaceutical products. 

This reflects the emergence, in a number of jurisdictions, of formal requirements for 

evidence about the cost-effectiveness of a new medicine. 10 The most recent policy 

move in this area is in the UK, where the National Institute for Clinical Excellence 

(NICE) has, inter-alia, been established to appraise the clinical- and cost- 

effectiveness of selected health interventions. 191 As 013rien et al (1994) have pointed 

out, cost-effectiveness analyses can be wholly deterministic, wholly stochastic or a 

combination of the two. 31 Whilst economists accept each of these as valid approaches 

to performing economic evaluations, 39 some decision-makers may regard a wholly 

stochastic analysis as the preferred approach particularly if the sampled data are 

derived prospectively from appropriately designed randomised controlled trials 

(RCTs). For example, NICE previously indicated a preference for an RCT approach 

to producing cost-effectiveness evidence, and pointed out that pharmaceutical 

companies may therefore need to modify registration trials for this purpose. 191 More 

recent guidance from NICE still states a preference for RCTs as the means of 

generating effectiveness evidence for economic evaluation. 14 However, the current 

guidance no longer states a preference as to the source of resource use and cost data, 

probably due to the challenges faced in performing RCTs solely for cost-effectiveness 

analysis. Recent review papers and guidance to researchers highlight both the 

challenges involved as well as continued interest in using RCTs as vehicles for 

economic evaluation. 192-194 

Formal requirements fo r cost- effectiveness evidence at the time a new 
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product is introduced have heightened concerns in the pharmaceutical industry that 

development costs and times might be increased if these requirements increase the 

number, duration or cost of RCTs. However, whether this proves to be the case or not 

will depend upon the precise nature and extent of the cost-effectiveness evidence 

required from RCTs. Specifically, it will depend upon decision-makers' preferences 

for cost-effectiveness evidence defined in terms of the choices which need to be made 

about key RCT design attributes: comparators, population, setting, endpoints, effect 

sizes worth detecting, duration of observation and acceptable probabilities of Type I 

(a) and Type 11 (, 6) errors. Clearly, choices relating to these attributes have to be 

made at the planning stages of an RCT. Indeed, prior specification of the objectives, 

design characteristics and statistical properties are essential characteristics of a well 
1-5-170 

conducted experiment. ,, The purpose of this chapter is to illustrate how different 

requirements for wholly stochastic cost-effectiveness evidence, defined in tenns of 

different choices about RCT design, could have a significant impact on two of the 

major determinants of new drug development costs and times, namely RCT sample 

size and study duration. 

In the next section, the choices which need to be made when designing an RCT are 

summarised together with an assessment of the potential impact which formal 

requirements for cost-effectiveness evidence generated in this way could have on 

study sample size and duration of observation. This is followed in section 3.3 by a 

description of the methods used to calculate sample sizes for a number of hypothetical 

cost-effectiveness analysis design scenarios. The illustrative scenarios were 

constructed using a dataset from a clinical evaluation which included the prospective 

collection of medical care resource utilisation data. The results of the sample size 
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calculations are presented in section 3.4. They illustrate how different formal 

requirements for cost - effectiveness evidence, expressed in the form of alternative 

research design choices, have the potential to increase the size and duration of RCTs 

significantly compared with those required for a baseline 'clinical' RCT. This in turn 

means that such requirements have the potential to increase the costs and timelines 

associated with new product development. In the final section, the implications of the 

results are discussed. 

3.2 RANDOMISED CONTROLLED TRIAL DESIGN ATTRIBUTES AND 

SAMPLE SIZE CALCULATION 

An RCT, whether conducted for the purposes of perfortning a clinical evaluation, an 

economic evaluation or both, cannot be designed adequately without explicit choices 

being made about a number of key study design attributes. The principal attributes 

requiring prior specification are summarised in the first column of Table 3.1. Choices 

made in relation to each of these attributes will have implications for both the size and 

duration of a trial. The second column of Table 3.1 shows some of the potential 

modifications to clinical trials which health care decision-makers might like to see for 

the purpose of conducting a cost-effectiveness study. The potential impact which 

such requirements might have on study sample size and duration of observation, and 

hence on development costs and timelines, are also shown in the third column of 

Table 3.1. 

The prunary concem in this chapter is to illustrate how different requirements for 

cost-effectiveness evidence might impact the size and duration of an RCT compared 

with the size and duration of a study conducted solely for the purpose of perfomiing a 
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clinical evaluation. Given this objective, approaches to sample size determination for 

both clinical and economic evaluations are considered briefly in turn below. 

3.2.1 Sample size calculation for clinical evaluation 

in the design of a clinical RCT, it is usual to select one 'primary' endpoint which is 

used as the principal criterion for comparing the relative merits of the alternative 

treatments under evaluation. The primary endpoint usually serves as the basis for all 

subsequent sample size calculations. In order to calculate the required sample size, 

researchers must choose both the magnitude of the endpoint difference which is 

deemed to be worth detecting and the acceptable probabilities of Type I (a) and Type 

11 (, B) errors. The magnitude of endpoint difference worth detecting requires a 

decision to be taken about what constitutes a 'clinically meaningful' treatment effect. 

Typically, the significance level a is set by convention at 5% i. e. a clinical trial is 

usually designed such that there is a small probability of concluding that there is a 

difference between the treatments being compared when in fact there is no difference. 

Sin-fflarly, a clinical trial is usually designed with 8 (the probability of wrongly 

concluding that there is a difference between treatments) set by convention at either 

10%or20%. The latter is equivalent to setting the statistical power (1-, 8) of the test 

of a trial at 90% or 80% respectively. The precise sample size formula which is 

appropriate for a given RCT will depend primarily on how the endpoints of interest 

are to be measured and the methods of statistical inference which are relevant for the 

data. There is an extensive literature relating to sample size calculations for clinical 

experiments. Formulae are available for a wide variety of clinical trial designs, types 

of data and methods of statistical analysis. 
170,195; 196 
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Table 3.1 
Trial Design Attributes: Potential Impact on Sample Size, Study Duration and 

Costs of Modifications for Economic Evaluation 

Trial Design Attributes* Example Modifications to Potential Implications for 
RCTs for Cost- Study Sample Size, 
effectiveness Analysis Duration and Cost 

1. Comparators 
Can be chosen from one or more 0 Replacing a placebo 0 Sample sizes will be larger 
broad types, including: comparator with standard hence costs will increase 
i) Placebo 
ii) Most commonly used 

practice 
9 Adding a standard practice 0 Adding a third treatment arm 

iii) Most effective arm as well as placebo to a trial would increase total 
iv) Least cost sample size, hence costs will 
V) Most cost-effective. 

increase 
0 In both cases, enrolment 

Specification usually involves the times might be extended 
choice of specific product depending upon the 
formulations and modes of availability of trial subjects 
administration. hence development timelines 
Most studies compare two will be longer 
treatments although more are 
possible. 
2. Population 
Specification usually involves Relaxing trial entry criteria 0 Sample sizes will be larger 
choices about: to generate a more typical hence costs will increase 
i) Age group study population e. g. 0 The trial could be more 
ii) Sex allowing entry to patients complex to manage hence 
iii) Ethnic origin with co-morbidities costs will increase 
iv) Disease stage 0 Enrolment times might be 
V) Co-morbidities extended depending upon the 
vi) Previous treatments availability of trial subjects 
vii) Concomitant treatments hence development timelines 
viii) De novo or refractory will be longer 

patients. 
ix) Sub-group comparisons 
3. Setting 
Specification usually involves Single setting, centre or Enrolment times might be 
choices about: country data required extended depending upon the 
i) Single country, single availability of trial subjects 

centre 
hence timelines are longer 

ii) Single country, multi- 
centre 

iii) Multinational, single 
centre 

iv) Multinational, multi- 
centre 

V) Inpatient 
vi) Outpatient 
vii) Specialist centre 
viii) Routine practice centre 

46 



Table 3.1 (continued) 

4. Endpoints 
Specification usually involves 
choices about: 
i) Efficacy 
ii) Effectiveness 
iii) Side effects 
iv) Adverse events 
V) Quality of life 
vi) Direct costs (NB 

includes product prices) 
vii) Indirect costs 
viii) Resource use 

Adding endpoints for 
economic analysis 

Increases the amount of data 
to be collected and analysed 
which increases costs for a 
trial of a given sample size 

5. Effect sizes 
Specification usually involves 
choices about: 

Clinical significance 
Statistical significance 
Primary endpoints 

6. Duration of 
observation 
Specification usually involves 
choices about: 

Fixed period of 
observation 
Variable (e. g. in 
sequential designs). 

Choices are linked closely to the 
choice of endpoints and the 
statistical properties of the study. 

7. Acceptable error rates: 
a and 0 
Choices are linked closely to the 
choice of endpoints and the 
duration of follow-up. 
Often chosen according to 
convention and based on the 
primary endpoint(s) i. e. a= 5%, 
P= 10% 

Do not have to be the same for 
each endpoint (and usually 
arenI). 
Used in conjunction with the 
statistical properties of endpoints, 
the desired effect sizes and 
withdrawal rates to determine 
sample size. 

Testing cost-effectiveness 
hypotheses based on 
predefined levels of 
willingness to pay for a unit 
increase in effectiveness 

Longer periods of follow-up 
required to evaluate final 
economic outcomes 

Conventional probabilities of 
Type I and Type II error 
applied to additional 
(economic) parameters 

Increasing the number of 
endpoints for hypothesis 
testing increases sample sizes 
and hence costs 

Sample sizes will be larger to 
ensure sufficient patients 
complete the study hence 
costs will increase 
Increases the amount of data 
to be collected and analysed 
which increases costs for a 
trial of any sample size 
Period of evaluation is longer 
hence development timelines 
will be lonRer 

Increasing the number of 
endpoints for hypothesis 
testing increases sample sizes 
and hence costs 
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Table 3.1 (continued) 

8. Statistical methods 
Specification usually involves 
choices relating to: 

Objectives of the trial 
Nature of other trial 
parameters, most 
notablY the disease area 
and endpoints (type of 
data) 
Method of 
randomisation. 

Hypothesis tests to be 
performed on all variables 
and sub-groups of interest at 
conventional levels of 
statistical significance 

Sample sizes will be larger 
hence costs will increase 
Enrolment times might be 
extended depending upon the 
availability of trial subjects 
hence timelines will be 
longer 

* Decisions pertaining to these attributes are made by those designing the trial 
although the choices may be constrained by factors such as regulatory requirements, 
ethical considerations, patient availability and budget. 
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3.2.2 Sample size calculation for economic evaluation 

In contrast to the design of an RCT conducted for the purpose of perfonning clinical 

evaluations, the primary endpoint of interest in an economic evaluation is a ratio. 

Specifically, economists are interested in estimating the incremental cost- 

effectiveness ratio (ICER), which is given by: 

ICERAB ý- 

CA 
- 

CB 

- 
ACAB 

EA-EB AEAB (1) 

where AC,,, and AEAB denote, respectively, the differences in the average cost 

(CA-C,, ) and the average effectiveness (EA- EB) between two treatments, A and 

B. The economic evaluation analogue to a clinically meaningful difference is a 

critical threshold value of the ICER (denoted Rc) below which a treatment is deemed 

to be cost-cffective. In other words, treatment A is cost-effective compared against 

treatment B and should therefore be implemented if. 

ICERAB < Rc , for AEAB ýý'O or ICERAB > Rc , for AE,,, <0 (2) 

Whereas the literature pertaining to sample size calculations for clinical experiments 

is substantial, it is only relatively recently that methods for determining the sample 

sizes required fo r performing cost-effectiveness analyses have been 

propoSed. 49; 54; 65; 68.70 Al et al (1998) have used a simulation approachO , Briggs and 

Gray (1998) present a parametric formula which ignores covariance", and the work of 

Laska et al (1999) includes formulae based on non-parametric teStS. 49 The method 

used to perforni the illustrative sample size calculations reported in this chapter is a 

parametric approach developed independently by Briggs and Tambour 
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(1998,2001,2002) 70; 197; 198 Laska et al (1999)49 and Gardiner et al (2000) 54 (see 

formula in the methods section below). Essentially, these authors base their approach 

on the net benefit (NB) formulation of the cost-effectiveness decision rule set out in 

equation (2) above due to the advantageous properties of the NB statistic for the 

66; 199 
analysis of sampled cost-effectiveness data. Specifically, the NB approach states 

that a new treatment is cost-effective and should be implemented if- 

NBCAB= Rc 
(AEAB)-ACAB 

ýý' 

or, equivalently, 

NBEAB AEAB 
- 

Rc 
ACAB >0 (4) 

where NBCAB and NBEAB are the net benefits associated with treatment A expressed 

in units of money and effectiveness respectively. Using the NB approach, Briggs and 

Tambour (1998,2001,2002), Laska et al. (1999) and Gardiner et al (2000) develop a 

sample size formula for detecting whether the NB associated with an intervention is 

positive given acceptable probabilities of Type I (a) and Type 11 ('8) 

errors. 49; 54; 70; 197; 198 It should be noted at this juncture that, unlike clinical evaluations, 

there is currently no consensus amongst economists about the levels of acceptable 

errors for use in cost-effectiveness analysis. For the purpose of the analysis presented 

here, it is assumed that the conventions for clinical RCTs apply. 

3.3 METHODS 

The primary concern in this chapter is with how different requirements for cost- 

effectiveness evidence might impact the size and duration of an RCT compared 
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with the size and duration of a study conducted solely for the purposes of a clinical 

evaluation. To illustrate these differences, the methods used to calculate sample sizes 

for a number of hypothetical cost-effectiveness analysis design scenarios are 

described in this section. 

3.3.1 Sources of data 

The dataset used for the illustrative analyses presented in this chapter comes from a 

clinical evaluation which included the Prospective collection of medical care resource 

utilisation data. This dataset has previously been used in other economic evaluation 

methodology researCh. 
69; 86; 91; 94 The data come from a study which compared the 

effectiveness of a new drug against placebo for the treatment of a cbronic condition 

for which there is currently no known cure. The primary endpoint was survival, and 

subjects were followed for four years ie. long-term survival and medical care 

resource utilisation histories are available. The medical care resource utilisation 

variables for which data were collected include: number of days spent in hospital, 

number of outpatient consultations and number of attendances at a day hospital. For 

the purpose of this illustrative analysis, the resource use variables have been valued 

using unit cost data taken from the UK NHS Management Executive database. 200 The 

actual cost values used are shown in the footnotes to the tables which follow. In 

addition, data were collected on a clinical variable which is now used as the primary 

basis for classifying patients in terms of the severity of their disease at diagnosis. The 

salient descriptive statistics pertaining to the clinical evaluation dataset are presented 

in Table 3.2. These are presented to highlight the fact that the nature of the dataset 

permits alternative hypothetical cost-effectiveness study scenarios to be constructed 

based on the RCT design attributes summarised in Table 3.1. The 
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construction of the scenarios is discussed below. 

3.3.2 RCT design scenarios 

To date, researchers investigating the methods for the analysis of sampled economic 

data and the methods for determining sample sizes for cost-effectiveness studies have 

ignored the potential importance of a number of key attributes pertaining to the design 

of an RCT. In order to emphasise the importance of this omission, equation (3) can 

be re-written as follows: 

H (HE 
'Lý'ASI-EBst 

Pi XUSt 
- 

PixiBSt 

NBCABs, = Rc. ýý (5) 
" 

('+rE)t 
t=l i=l + rc), 

where NBCABs, is the net-benefit, expressed in monetary terms, of treatment A 

compared with treatment B in population S evaluated over a time-period of t years. 

In the illustrative calculations presented in this chapter, the effectiveness of the 

alternative treatments being compared (EAs, Eqs, ) is measured in terms of the average 

years of survival. The cost part of the net-benefit equation has been broken into its 

two principal components, namely the average quantities of different types of medical 

resources (denoted by X, ) and their associated unit costs (denoted by P, ). The 

subscripts E, C on the discount rate r indicate the fact that the effectiveness and cost 

outcomes can be discounted at different rates. However, whilst differential 

discounting of costs and effects appears to be favoured in the UK, 191 use of the same 

rate QE = rc) seems to be the most commonly recommended approach. 201 
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Table 3.2 
Key Features of the Clinical Evaluation Dataset 

Variable All Subject A. Advanced Disease B. Early isease 
A B A B A B 
n= 81 n= 67 n=52 n=46 n= 29 n=21 

Costs (L) 
Year 1 16,557 17,288 16,494 19,298 16,671 12,887 

(14,725) 1 (13,763) (13,693) (14,454) (16,671) (11,197) 
Year 2 24,035 20,654 24,754 22,316 22,746 17,012 

___ý16,049) 
(15,170) (16,109) (16,298) (16,141) (11,895 

Year 3 27,398 21,182 27,525 22,586 27,170 18,105 
(18,297) (15,192) (19,427) (16,110) (16,402) (12,776) 

Lifetime 27,640 21,252 27,583 22,667 27,741 18,152 
(18,318) (15,186) (19,41ý1 (16,085) (1 6,495) (12,813) 

Survival (Year ) _ _ 
Year 1 0.95 0.72 0.94 0.71 0.97 0.74 

(0.17) (0.34) (0.20) (0.34) (0.10) 0.33 
Year 2 1.58 1.06 1.52 1.01 1.70 1.16 

(0-50) (0.71) (0.52) (0.69) (0.47) (0.76) 
Year 3 1.91 1.27 1.76 1.21 2.18 1.41 

(0.85) (1.03) (0.82) (1.01) (0.85) (1.09) 
Year 4 1.98 1.34 1.80 1.26 2.29 1.51 

(0.94) (1.15) (0.88) (1.11) (0.97) (1.24) 
Inpatient days 

Year 1 86.60 96.85 85.87 108.35 87.93 71.67 
(85.30) (77.85) (79.55) (81.64) (96.21) (63.53) 

Year 2 123.69 115.36 127.60 125.15 116.69 93.90 
(89.03)_ (85.15) (86.42) (91.47) (94.68) (66.34) 

Year 3 140.88 118.10 142.10 126.59 138.69 99.52 
(100.31) (85.15) (104.45) (90.47) (94.18) (70.61) 

Year 4 141.98 118.39 142.31 127.00 141.38 99.52 
(100-06) (85.10) (104.41) (90.35) (93.52) (70.61) 

Day patient 
attendances 

Year 1 1.44 0.30 1.54 0.22 1.28 0.48 
(3.17) (1.02) (3.29) (0.87) (2.99) (1.29) 

Year 2 3.60 0.45 3.71 0.30 3.41 0.76 
(9.33) (1.50) (10.45) (1.03) (7.04) (2.21) 

Year 3 4.12 0.48 4.00 0.30 4.34 0.86 
(10.31) (1.68) (10.80) (1.03) (9.54) (2.59) 

Year 4 4.22 0.49 4.02 0.30 4.59 0.90 
(10.55) (1.68) (10.81) (1.03) (10.25) (2.59) 

Outpatient 
attendances 

Year 1 11.19 2.51 11.92 2.50 9.86 2.52 
(11.07) (3.70) (11.59) (3.40) (10.11) (4.38) 

Year 2 16.78 3.61 17.17 3.11 16.07 4.71 
(15.16) (5.83) (15.52) (4.37) (14.73) (8.21) 

Year 3 19.02 4.15 18.63 3.35 19.72 5.90 

- 
17.11 6.75 (17.05) (4.42) (17.50) 

-(10.08) Year 4 19.22 9 4.39 18.73 3.46 20.10 6.43 

- 
17.42 7.50 (17.18) (4.49) 18.12) (11.57) 

Values are sample means with standard deviations shown in parentheses. Mean cost figures are 
derived using the following unit costs: drug cost = E250 per annum; Inpatient = E176.07 per day, 
Outpatient = E73.06 per consultation; Day case = E176.07 per attendance. 
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It should be noted that although the calculations which follow are based on the 

arithmetic means of effectiveness and costs for each of the time periods for which 

analyses are performed, the sample averages are not necessarily the appropriate 

estimators to use in the presence of censored data. 48; 76; 86; 87 However, the use of 

arithmetic means does not invalidate the main arguments or conclusions in this 

chapter. 

It can be seen from equation (5) that the net benefit demonstrated for a given 

intervention depends upon the choices made about the various study design attributes 

summarised in Table 3.1. Consequently, the sample size detemlined by applying any 

formula based on the net benefit statistic will also be a function of the choices about 

RCT design attributes. Despite the existence of a large number of methodological 

guidelines, these tend to be at a general level. 10 Consequently, there is currently 

considerable discretion in the choice of design parameters, although arguably the 

choices would reflect the preferences of the ultimate consumers of the information. 

In order to illustrate the impact which different design preferences can have on study 

sample size and duration, hypothetical RCT design scenarios were constructed based 

on different assumed choices regarding the following components of equation (5): 

- duration of observation, t years 

- medical care resource components measured in the RCT, X, 

- medical care resource unit costs, P, 

- discount rates applied to costs (rc) and effectiveness (r, ) 
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- study population based on sub-groups of patients with different disease 

severity at diagnosis, S. 

The sample sizes for each of the design scenarios defined on the above variables are 

compared against the sample size calculated for a hypothetical baseline clinical study 

of I year duration (see below). The impact on sample size of different design choices 

is evaluated across a range of critical threshold values of the ICER (Rc). 

3.3.3 Sample size formulae 

The parametric method of sample size determination set out by Briggs & Tambour 

(1998,2001,2002)70; 
197; 198 

, Laska et al (1999)49 and Gardiner et al (2000)54 was used 

to calculate the sample sizes required for the different RCT design scenarios that were 

created in the manner described above. Based on the decision rule that a treatment 

should be implemented if NB is significantly positive, the above authors report 

formulae for testing the statistical hypothesis that 

HO: NBCAB :: ý 0 

versus the altemative hypothesis 

HI: NBCAB > 0* 

Following the notation used by Briggs & Tambour (1998,2001,2002), it can be shown 

that the sample size required to test the above hypothesis is given by: 

(Za [R2 (aE2A 
+ CE2B 

) 
+(a 2+ 

Cr 
2 )- 2RCPV(car2 2B 2 2; )] 

+Zc+ aE (aTCA + (ac 

n> 
CA 

_ 
CB 

(6) (RCAEAB 
- "-ýCAB 
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where n is the number of subjects required per arm of the triaL Za and Z. denote the 

critical values from the standard normal distribution corresponding to the required 

22 
significance level and power respectively, C; -EAIUEB'aCAICFCB are the variances of 

effects (E) and costs (C) for treatments A and B, and p is the correlation between 

ACAB and AEAB. Note that equation (6) could be rewritten using the notation 

introduced in equation (5) in order to emphasise the point that sample size is a 

function of various RCT design attributes. However, this has not been done here in 

order to simplify the presentation. The formula for estimating p from the pilot data 

(which has unequal sample sizes) is given by: 

PCEA -CCA'aEA + 
PCEB'CCB 

nA nB 

f22 
CA CB ! ICL 

+ ý 
2+ CE2 

X 
aEA B 

n A 
nB nA nB 

(7) 

where pcFA and pcEB are the correlation coefficients between costs and effects for 

treatment groups A and B respectively, and nA and nBare, the corresponding sample 

sizes. Readers interested in seeing a detailed derivation of the sample size formula 

should see Briggs & Tambour (1998,2001,2002), Laska et al (1999) or Gardiner et al 

(2000). 49; 54; 70; 197; 198 A particularly useful aspect of the paper by Gardiner et al (2000) 

is that they present a formula for determining the ratio of the sample size requirements 

for tests of hypotheses on the ICER to the requirements for testing differences in 

effectiveness. 
54 

To calculate the sample size required for the baseline clinical study of I year duration, 

the formula for a two sample test of the equality of means given by Rosner (2000) 
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was used 
196: 

2 +a 2 /rXz. 
/2 +Z 

(OrEA 
EB '0 

y 

nA =. 
EA 

-EB 
and nB = rnA (8) 

where r=1 for a trial with equal allocation to each arm This formula yields the same 

results as that cited in Gardiner et al (2000). 54 

No allowance is made for withdrawals in any of the sample size calculations although 

it is common practice to make adjustments for this eventuality. 195 This does not affect 

the conclusions of the analysis, although it does mean that all sample sizes are 

probably lower than would be used in practice. All calculations utilise levels of 

acceptable errors typically used in RCTs, namely a= 5%,, 6 = 10%. 

3.4 RESULTS 

In order to illustrate how different requirements for wholly stochastic cost- 

effectiveness evidence might impact the size and duration of an RCT, it is necessary 

to choose a baseline RCT design where the sample size has been determined based on 

a 'clinical' primary endpoint. Clearly, any statements about incremental sample sizes 

and development times attributable to requirements for cost-effectiveness analysis 

will depend upon the choice of baseline design. For this analysis, the data from the 

original clinical evaluation are viewed as pilot data assumed to be available for 

designing an RCT. These were used to calculate the sample size required to compare 

the two treatments in terms of average survival times after I year of follow up for a 

trial in a population of subjects with mixed disease severity. Using the formula given 

in equation (8) and assuming equal allocation, 29 subjects per arm would be required 
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making no allowance for withdrawals from the study. 196 The formula presented by 

Gardiner et al (2000) yields the same sample size. 54 Thus, a total of 58 subjects and a 

trial of I year duration is used as the baseline design for the comparisons which 

follow. The sample sizes required for a similar trial of 2,3 or 4 years duration would 

be 60,92 and 114 subjects respectively. Using the formulae presented in equations (6) 

and (7), sample size calculations were performed for the cost-effectiveness RCT 

design scenarios described above. The results of these calculations are presented in 

Tables 3.3 to 3.7, which shows the total sample sizes compared with the clinical 

baseline. The results are presented in terms of each of the design attributes and are 

discussed in tum below. 
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3.4.1 Choice of duration of observation 

Rows numbered 2 to 4 of Table 3.3 show the sample size implications of testing 

economic hypotheses based on different periods of follow-up (I to 3 years) and for 

different assumed critical values of the ICER (F. 5,000, E10,000J15,000, F. 20,000 and 

E25,000). These calculations are based on the study population which includes a mix 

of patients with both advanced and early disease i. e the same population as for the 

baseline clinical design. It can be seen that for each economic analysis scenario (1,2 

and 3- years follow-up), sample sizes are higher than those which would be required 

for the clinical baseline design (row 1). For the critical ICER values used in Table 

3.3, the sample sizes required for economic analysis are a decreasing function of the 

critical value of the ICEF, and the ICER (and hence net benefit) is an increasing 

function of the duration of subject follow-up. For example, based on an analysis at 1 

year and a critical ICER of ; E10,000 a trial which enrolled a total of 760 subjects 

(compared with 58 for the baseline clinical analysis) would be required to test the 

hypothesis that net benefits are statistically significantly positive. In contrast, a 3-year 

study would require a sample size of 344,229 subjects to test the hypothesis that net 

benefits are statistically significantly positive. 
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Table 3.3 
Sample Sizes for an RCT when different economic follow-up periods are used 

RCT Design Attribute lCW Total Sample Size for Critical ICER of : ed 

Pa L5,000 L10,000 L15,000 L20,000 L25,000 

1. Clinical baseline - E3,193 58 58 58 58 58 
2. Economic: I year 0.104 - E3,193 1958 760 410 262 188 
3. Economic: 2 years 0.077 E6,447 2634 522 248 160 
4. Economic: 3 years 0.087 L9,711 344229 1322 462 276 

ap= the correlation between the difference in costs and effects of treatments A and B 
b Incremental cost-effectiveness ratio calculated from the data. "Ihese values are the hypothesised ICERs for 

the sample size calculations. 
c Probablities of Type I error = 0.05 and Type II error = 0.10 throughout. All sample size calculations take 

into account the correlation between cost and effectiveness differences using the formula cited in the text. 
d All calculations are based on undiscounted costs and effects 

Denotes the fact that the sponsor of a technology under investigation would probably not conduct a study 
to test economic hypotheses if the postulated ICER was greater than the critical value. 
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The impact on sample size of choosing alternative periods of observation and 

alternative critical values of the ICER for the purposes of evaluating cost- 

effectiveness is also illustrated graphically in Figure 3.1. Figure 3.1 shows sample 

sizes (logarithmic scale) plotted against different critical values of the ICER (EO to 

E30000) for the clinical baseline RCT design, and for trial designs which evaluate 

economic outcomes after 1,2 and 3 years of observation. The results presented in 

Figure 3.1 show clearly that sample sizes are larger for each possible economic design 

scenario (combination of duration and critical values of the ICER) compared with the 

clinical baseline design, although they converge as the critical value of the ICER 

increases. 

Figure 3.1 shows clearly that study designs which bring the hypothesised ICER and 

the critical value into close proximity with one another will render a standard 

frequentist stochastic cost-effectiveness analysis unattainable although in the 

examples shown here, a standard clinical evaluation would still be a practical 

proposition. From the pilot data, the hypothesised values for the studies of 2 and 3 

years duration are E6,447 and E9,711 respectively. In these cases, the sample sizes 

required for the cost-effectiveness analyses can be seen to tend to infinity as the 

critical value of the ICER approaches the hypothesised value. 
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3.4.2 Choice of medical care resource use endpoints 

Table 3.4 shows the impact on sample size of performing an economic analysis which 

includes the measurement of different components of resource use in an RCT. 

Specifically, the sample sizes required for evaluating cost-effectiveness based only on 

measuring days spent in hospital as an inpatient (rows numbered 2-4), only outpatient 

consultations (rows numbered 5-7) or only daypatient attendances (rows numbered 8- 

10) are shown for different periods of observation and for different critical values of 

the ICER. Rows 11-13 show the sample size requirements if inpatient resource use is 

excluded from the analysis. 

It can be seen that, in instances where only inpatient or outpatient resource use is 

measured, the required sample sizes are mostly larger than for the baseline clinical 

analysis although they are very close for the higher critical values of the ICER. 

Economic evaluations which measured only daypatient attendances or which excluded 

inpatient stays would require larger sample sizes irrespective of the duration of 

observation or the critical values of the ICER. 

3.4.3 Choice of medical care resource use unit costs 

The results presented in Table 3.5 show that the sample sizes required for trials 

performed to test hypotheses about the cost-effectiveness of an intervention are 

influenced not only by which components of medical care resource use are measured, 

but also by how they are valued. The results shown in rows numbered 2 to 4 of Table 

3.3 are based on the assumption that the price of the medication under study equates 

to a cost of E250 per patient per year. 
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Table 3.4 
Sample Sizes for an RCT when different medical care resources are evaluated 

RCT Design Attribute ICERb Total Sample Size for Critical ICER of : ', d 

Pa L5,000 00,000 U5,000 E20,000 L25,000 
1. Clinical baseline E3,193 58 58 58 58 58 
2. Inpatient only* I year 0.094 E1,919 128 72 60 56 54 
3. Inpatient only. 2 years 0.128 fl, 815 122 70 60 56 54 
4. Inpatient only* 3 years 0.143 fl, 750 176 108 94 88 86 
5. Outpatient only* I year 0.226 0,807 820 116 80 68 62 
6. Outpatient only. 2 years 0.327 E2,589 182 82 66 60 58 
7. Outpatient only. 3 years 0.349 E2,445 256 122 102 94 90 
8. Daypatient only. I year 0.093 L6,844 956 476 290 200 150 
9. Daypatient only- 2 years 0.057 E3,553 14238 786 290 168 120 
10. Daypatient onl)r 3 years 0.067 L7,010 3158 574 290 200 
11. Excluding inpatient costs: I year 0.102 L4,074 1600 670 374 244 176 
12. Excluding inpatient costs: 2 years 0.072 L5,387 1516 404 210 142 
13. Excluding inpatient costs: 3 years 0.082 L8,708 16794 918 378 242 

ap= the correlation between the difference in costs and effects of treatments A and B 
b Incremental cost-effectiveness ratio calculated from the data. These values are the hypothesised ICERs for 

the sample size calculations. 
c Probablities of Type I error = 0.05 and Type II error = 0.10 throughout. All sample size calculations take 

into account the correlation between cost and effectiveness differences using the formula cited in the text. 
d All calculations are based on undiscounted costs and effects 

Denotes the fact that the sponsor of a technology under investigation would probably not conduct a study 
to test economic hypotheses if the postulated ICER was greater than the critical value. 
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Rows numbered 2 to 4 of Table 3.5 show the impact on sample size of doubling the 

assumed price of the treatment under investigation and rows numbered 5 to 7 show 

the impact of quadrupling the price. It can be seen that in this case study sample sizes 

are generally an increasing function of the price of the product under investigation. 

An identical pattem is observed when the unit costs for inpatient, daypatient and 

outpatient attendances are simultaneously increased by 50 per cent (rows numbered 8- 

10) or 100 per cent (rows numbered 11-13) compared with the baseline unit costs 

assumed for the other calculations. Large increases in sample size requirements are 

observed in the instances where changing the unit costs brings the hypothesised ICER 

into very close proximity to the highlighted critical values. For example, when the 

critical ICER is assumed to be E10,000, the total sample size required for a2 year 

cost-effectiveness study increases from 2634 (row number 3 of Table 3.3) to 140408 

when unit costs are increased by 50% (row 9 of Table 3.5). Conversely, large sample 

size reductions are observed when the hypothesised ICER diverges from the critical 

value as a result of changes in unit costs. 

The sensitivity of sample size requirements to the choice of unit costs used to value 

medical care resource utilisation data is illustrated graphically in Figure 3.2. Figure 

3.2 shows sample sizes (logarithmic scale) as a function of critical values of the ICER 

for the clinical baseline RCT design scenario, and for cost-effectiveness studies 

performed over a1 -year period using different assumptions about drug price (100% 

increase) and other resource use (100% increase). 
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Table 3.5 
Sample Sizes for an RCT when different medical care resource costs are used 

RCT Design Attribute 
Pa 

1. Clinical baseline 
2. Drug price x 2: 1 year 0.105 
3. Drug price x 2: 2 years 0.080 
4. Drug price x 2: 3 years 0.092 
5. Drug price x 4: 1 year 0.107 
6. Drug price x 4: 2 years 0.086 
7. Drug price x 4: 3 years 0.101 
8. Resource prices x 1.5: 1 year 0.104 
9. Resource prices x 1.5: 2 years 0.076 
10. Resource prices x 1.5: 3 year 0.085 
11. Resource prices x 2: 1 year 0.104 
12. Resource prices x 2: 2 years 0.075 
13. Resource prices x 2: 3 years 0.084 

ICERý Total Sample Size for Critical ICER of : "d 

; E5,000 L10,000 E15,000 L20,000 L25,000 

- E3,193 58 58 58 58 58 

- E2,155 2566 896 460 288 202 
E7,202 4242 628 278 174 

E10,458 1786 534 304 

- E80 5092 1302 596 350 236 
L8,712 19962 962 356 206 

El 1,951 3942 746 374 

- L5,308 2786 1262 722 472 336 
E9,292 140408 2298 714 370 

E14,193 99512 2262 782 

- L7,423 3416 1732 1046 704 508 
L12,138 15468 2154 858 
E18,674 65676 3248 

ap= the correlation between the difference in costs and effects of treatments A and B 
b Incremental cost-effectiveness ratio calculated from the data. These values are the hypothesised ICERs for 

the sample size calculations. 
c Probablities of Type I error = 0.05 and Type II error = 0.10 throughout. All sample size calculations take 

into account the correlation between cost and effectiveness differences using the formula cited in the text. 
d All calculations are based on undiscounted costs and effects 

Denotes the fact that the sponsor of a technology under investigation would probably not conduct a study 
to test economic hypotheses if the postulated ICER was greater than the critical value. 
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3.4.4 Choice of discount rate 

It is common practice in economic evaluation to discount both cost and effectiveness 

outcomes to reflect social time preferences and social opportunity costs of resources. 

Whilst there is consensus about the need to perform discounting, there is no consensus 

regarding the rates that should be used . 
20 1 The results presented in Table 3.6 show 

that the choice of discount rate and whether it is applied to both costs and effects or 

not will have an impact on the sample sizes required to perform hypothesis tests about 

cost-effectiveness. For the range of scenarios presented here, sample size 

requirements are a decreasing function of the discount rate. Whilst most reductions in 

sample size are relatively small (compared with rows 3 and 4 of Table 3.3 as 

appropriate) a substantial impact can be seen when the hypothesised ICER is in close 

proximity to the assumed critical value. This can be seen, for example, in the case of 

the scenario in which a 3-year study is planned around a critical ICER of E10,000. 

Sample size requirements reduce from 344,106 subjects (0% discount rate, row 4 of 

Table 3.3) to 58,596 when both costs and effectiveness are discounted at 6% (row 3 of 

Table 3.6) and to 31,670 when a 10% discount rate is used (row 5 of Table 3.6). 
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Table 3.6 
Sample Sizes for an RCT when different discount rates are used 

RCT Design Attribute ICERý Total Sample Size for Critical ICER of: cýd 
Pa L5,000 00,000 U5,000 L20,000 L25,000 

1. Clinical baseline - E3,193 58 58 58 58 58 
2. Discount rate: 6% 2 years 0.070 E6,201 2394 510 246 160 
3. Discount rate: 6% 3 years 0.075 L9,287 58596 1156 430 260 
4. Discount rate: 10% 2 years 0.066 L6,044 2262 504 246 160 
5. Discount rate: 10% 3 years 0.068 E9,020 31670 1070 412 252 
6. Discount costs only. 6% 2 years 0.065 E6,003 2052 468 232 154 
7. Discount costs only: 6% 3 years 0.068 E8,860 21614 970 392 248 

ap= the correlation between the difference in costs and effects of treatments A and B 
b Incremental cost-effectiveness ratio calculated from the data. These values are the hypothesised ICERS for 

the sample size calculations. 
c Probablities of Type I error = 0.05 and Type II error = 0.10 throughout. All sample size calculations take 

into account the correlation between cost and effectiveness differences using the formula cited in the text. 
d All calculations are based on discounted costs and effects using the rates shown in column 1. 

Denotes the fact that the sponsor of a technology under investigation would probably not conduct a study 
to test economic hypotheses if the postulated ICER was greater than the critical value. 
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3.4.5 Choice of study population 

The results presented so far pertain to a study population which contains patients with 

different levels of disease severity at diagnosis. However, it is likely that the cost- 

effectiveness of an intervention will vary amongst sub-groups within a population of 

people with a disease. Therefore a diagnostic variable was used to partition the 

dataset into two groups of patients. For illustrative purposes, these are referred to as 

sub-group A (advanced disease at diagnosis) and sub-group B (early disease at 

diagnosis). Table 3.7 shows the sample size requirements for performing separate 

trials to test the hypothesis that the net benefit of the intervention is statistically 

significantly positive for sub-groups A and B. In both cases, the sample sizes 

required are much larger than those necessary for the baseline clinical trial design 

involving a mix of patients (row 1). Whilst the sample sizes for sub-group A (rows 2- 

4 of Table 3.7) are mostly lower than the corresponding requirements for an economic 

study involving a mix of patient types (rows 2-4 of Table 3.3), the sample size 

requirements for sub-group B are predominantly larger (rows 5-7 of Table 3.7). Once 

again, the largest changes in sample sizes occur when the hypothesised ICER is in 

close proximity to the assumed critical value. 

The sensitivity of sample size requirements to the choice of study population is 

illustrated graphically in Figure 3.3. Figure 3.3 shows sample sizes (logarithmic 

scale) as a function of critical values of the ICER for the clinical baseline RCT design 

scenario, and for cost-effectiveness studies performed over a1 -year period using the 

three different study populations. 
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Table 3.7 
Sample Sizes for an RCT when different study populations are used 

RCT Design Attribute ICW 
Pa 

1. Clinical baseline -0,193 
2. Sub - group A: I year 0.134 - L12,429 
3. Sub - group A: 2 years 0.092 E4,800 
4. Sub - group A: 3 years 0.060 L8,893 
5. Sub - group B: I year 0.052 L16,390 
6. Sub - group B: 2 years 0.115 f. 10,710 
7. Sub - group B: 3 years 0.208 E 11,827 

Total Sample Size for Critical ICER of:,, d 
E5,000 00,000 115,000 L20,000 L25,000 

58 58 58 58 58 
432 262 180 134 106 

875920 1384 408 216 146 
34794 1430 556 342 

10764 1994 
1690 444 234 
1974 416 222 

ap= the correlation between the difference in costs and effects of treatments A and B 
b Incremental cost-effectiveness ratio calculated from the data. These values are the hypothesised ICERs for 

the sample size calculations. 
c Probablities of Type I error = 0.05 and Type II error = 0.10 throughout. All sample size calculations take 

into account the correlation between cost and effectiveness differences using the formula cited in the text. 
d All calculations are based on discounted costs and effects using the rates shown in column 1. 

Denotes the fact that the sponsor of a technology under investigation would probably not conduct a study 
to test economic hypotheses if the postulated ICER was greater than the critical value. 

A Sub-group A= advanced disease at diagnosis. 
B Sub-group B= early disease at diagnosis. 
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3.5 DISCUSSION AND CONCLUSION 

The results presented in this chapter illustrate how the modification of a clinical trial 

design to accommodate an appraisal of the cost-effectiveness of an intervention could 

have a significant impact on two of the major deten-ninants of drug development times 

and costs, namely the size and duration of an RCT. Specifically, the results show that 

sample size is sensitive to different requirements for cost-effectiveness evidence 

defined by the choices made in relation to key study design attributes. Different 

preferences for cost-effectiveness study designs affect sample sizes through their 

impact on the parameters of equations (6) and (7). The preferred duration of 

evaluation will clearly have a direct impact on development times. In addition, larger 

sample sizes could lead to longer development times if the period required to enrol 

subjects is extended. 

The sample sizes required for the majority of the hypothetical cost-effectiveness 

analysis scenarios considered in this chapter were larger than those for the baseline 

clinical evaluation around which they were constructed. This finding is consistent 

with the conclusions of other researchers who have suggested that the sample sizes 

required for economic analysis are likely to be larger than those required for the 

underlying clinical evaluation. 54; 65; 69 However, the ratio of the economic and clinical 

sample sizes will not always exceed unity as demonstrated by the presence of ratios 

less than unity in the results. 

The results presented in this chapter show that sample sizes tend to infinity as changes 

to any of the study design parameters bring the hypothesised. ICER into close 

proximity to the critical value (from above or below). In such circumstances, the 
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required sample sizes would likely prohibit a conventional frequentist stochastic 

approach to cost-effectiveness analysis e. g. one can envisage extreme situations where 

the epidemiology of a disease is such that it could take hundreds of years to enrol a 

sufficient number of patients into a trial. Therefore one of the practical implications 

of this finding is that alternative approaches to the evaluation of the cost-effectiveness 

of an intervention will be necessary in such situations. Moreover, during the planning 

stages of an RCT, researchers would be unable to identify the potential for such a 

situation unless, at that time, the critical value of the ICER was known and unless 

pilot data were available to formulate a hypothesis about the cost-effectiveness of a 

new treatment. Typically, such data are unavailable to the sponsor of a new 

technology prior to its introduction to the market. This has led some researchers to 

question the practical value of being able to perform sample size calculations for an 

cconon-dc evaluation even though methods for doing so are available. 65 

This chapter illustrates the potential impact of a requirement to produce wholly 

stochastic cost-effectiveness evidence within the framework of an RCT in which the 

statistical hypothesis tested is that the net-benefit associated with an intervention is 

positive at conventional probabilities of Type I (a) and Type 11 (, 8) errors. Clearly, 

this is not to suggest that this is the only research approach which could be adopted 

for producing cost-effectiveness evidence. Rather the goal of the chapter is to shed 

some light on the potential implications if such an approach were to be implemented 

in practice. Indeed, alternative modelling approaches (deterministic analysis) are 

frequently app lied, 3 1 and some researchers have argued that modelling may be a 

39; 12 necessary complement to RCT based evidence (partially stochastic analysis). 

From a practical standpoint, the need for such alternative research approaches seems 
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inevitable for the extreme situations referred to above. 

Another way of avoiding the potential sample size problems of stochastic cost- 

effectiveness analysis would be to accept the probabilities of Type I and Type Il 

errors resulting from the sample sizes required for the clinical evaluation, rather than 

insisting that the conventions used in medical research be applied to economic 

evaluation. Emphasis would then be placed on reporting confidence intervals or cost- 

effectiveness acceptability curves rather than on fonnal hypothesis testing. With this 

approach, any additional costs associated with a requirement for RCT based cost- 

effectiveness evidence would then be driven by the administrative consequences of 

collecting additional data and by any requirement to extend the duration of a trial. 

Alternatively, it has recently been argued that decisions about cost-effectiveness based 

on statistical inference are irrelevant and that a Bayesian decision theoretic approach 

to the stochastic evaluation of health care technologies should be used. 157 Whether 

this alternative approach will have more or less of an impact on pharmaceutical 

company development costs and timelines is unknown. This will depend upon a 

number of factors, such as whether and how the costs borne by the sponsor of the 

technology are incorporated into the analysis. 

The results of this study highlight that the sample size requirements for cost- 

effectiveness analyses can be sensitive to the choices made about a number of RCT 

design attributes. The degree of uncertainty surrounding the results of any Cost- 

effectiveness analysis will also be sensitive to these choices. One of the practical 

implications of this study, therefore, is that it is difficult to see how sponsors of 

technologies could conduct adequately designed trials without a clear prior 

specification of the key RCT design attributes referred to in this chapter, 
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namely: comparators, study population, endpoint measurements, unit costs, duration 

of observation, discount rates, critical value of the ICEP, and acceptable probabilities 

of Type I and Type Il errors. Failure to be explicit about each of these factors prior to 

the conduct of an RCT would be tantamount to bad scientific practice. Moreover, 

being clear on these design issues is a necessary condition for evaluating the 

practicality and feasibility of conducting a wholly stochastic cost-effectiveness 

analysis, as referred to above. 

A primary concern amongst companies developing new health care technologies is 

how a requirement to produce evidence of cost-effectiveness based on RCTs will 

impact development costs and development times. Clearly, the direction and 

magnitude of the impact will depend upon the precise nature and extent of the cost- 

effectiveness evidence required by decision-makers. With respect to development 

times, the impact of cost-effectiveness evidence requirements will depend upon the 

desired duration of the evaluation of cost and effectiveness outcomes compared with 

the period of follow-up required purely for the purpose of conducting a clinical 

evaluation. For example, a requirement to follow subjects for 3 years as opposed to 

I -year will extend product development times by at least 2 years. Development times 

can be extended indirectly if larger sample sizes affect enrolment rates. Sponsors of 

technologies will also be concerned about the revenue implications of extended 

development times. Studies of longer duration will erode the effective patent life of a 

product and could therefore have a negative effect on cumulative revenue. On the 

other hand, stronger cost-effectiveness evidence might lead to wider diffilsion once 

the product is introduced Le. the gains in revenue associated with a delayed 

introduction with stronger evidence might exceed the losses incurred as a result of that 
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delay. 202 The potential gains and losses associated with different strategies for 

producing cost-effectiveness evidence would be a worthwhile area for future research. 

The impact of cost-effectiveness evidence requirements on the scale of investment 

required for product development will depend primarily upon the relationship 

between trial sample size and the cost of conducting an RCT. This relationship will 

be known by a company, who will be able to convert the sample size calculations into 

cost functions. 172 It for example, the total cost of conducting a trial was simply a 

function of sample size based on a fixed cost per subject enrolled, then Figures 3.1 to 

3.3 could be interpreted as cost functions with an appropriate adjustment made to the 

sample size scale representing the fixed cost per subject. The figures would currently 

equate to a cost function where the cost per subject enrolled is fl. 00. A cost per 

subject enrolled of E1,000 would require the sample sizes in Figures 3.1 to 3.3 to be 

multiplied by 1,000 in order to transform the figures into cost functions. Little is 

published about the behaviour of RCT cost functions. This would be a necessary area 

for future research if the economic consequences of alternative requirements for cost- 

effectiveness evidence are to be assessed. Clearly, the cost implications will be 

sensitive to choices made about study design attributes in the same way as sample 

sizes are. Sponsors of technologies will therefore have to decide whether the 

investment in the production of wholly stochastic cost-effectiveness evidence is worth 

making. This will require companies to compare the costs of alternative requirements 

with the expected revenue associated with meeting them. An approach for doing this 

203 has previously been proposed . 

In conclusion, formal requirements for wholly stochastic cost-effectiveness evidence 

based on the standard frequentist paradigm have the potential to increase 
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the size, duration and number of RCTs significantly and hence the costs and timelines 

associated with new product development. Moreover, it is possible to envisage 

situations where such an approach would be impossible to adopt. Clearly, further 

research is required into the issue of how to appraise the economic consequences of 

alternative economic evaluation research strategies. Ultimately, the results of such 

research could be used to inform the development of economic evaluation guidelines, 

specifically relating to the choice of research method appropriate to different product 

circumstances. In situations where wholly stochastic cost-effectiveness evidence is 

required from RCTs, the importance of prior specification of the key economic 

evaluation design attributes should not be underestimated. 
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CHAPTER 4: THE USE OF DISCRETE CHOICE ANALYSIS IN 

THE DESIGN OF RANDOMISED CONTROLLED TRIALS 

SUMMARY 

Randomised controlled trials (RCTs) are the primary means by which pharmaceutical 

companies evaluate the therapeutic benefits of their products. The strength and 

relevance of the evidence provided from RCTs will determine whether a product can 

be marketed or not and the subsequent extent of its use. In order to gain access to a 

market, pharmaceutical companies must perform RCTs to produce safety and efficacy 

evidence to a level which satisfies the regulatory bodies responsible for granting 

product licences. However, the safety and efficacy evidence produced for that 

purpose may not be sufficient to ensure that a product is reimbursed and actually used 

in clinical practice. Health technology assessment and appraisal bodies, such as the 

National Institute for Clinical Excellence (NICE) and Hospital Drugs and Therapeutic 

Committees, critically appraise the nature and relevance of RCT evidence in order to 

make recommendations about the extent to which a product should be used. 

individual clinicians will make treatment decisions based on their own assessment of 

the evidence, as well as taking into account the reviews performed by advisory bodies. 

Thus, those involved with product adoption decisions will have preferences for the 

types of evidence they want to see and, consequently, the extent to which these 

preferences are satisfied will influence the nature and extent of a treatment's use. It is 

therefore important for sponsors of drugs to consider decision-makers' preferences for 

RCT designs when planning their studies. The primary objective of this chapter is to 

illustrate how discrete choice analysis (DCA) could be used for that purpose. The 
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approach is illustrated using, as a case study, the design of trials to evaluate adjuvant 

bisphosphonates in the management of patients with primary operable breast cancer. 

Clinicians' preferences for evidence are determined and then used to identify a trial 

design likely to lead to the highest probability of prescribing the product (market 

share). However, evidence generation has a cost attached to it. Therefore the chapter 

goes on to look at how physician preferences for evidence and the resulting predicted 

impact on product use can be combined with trial design costs in an overall 

investment appraisal framework. Within such a framework, it is shown how a 

company producing a technology could identify the profit maximising RCT strategy. 

Finally, a number of issues for consideration in future research are briefly discussed, 

including the circumstances under which private and public sector perspectives are 

likely to be aligned. 
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4.1 EVrRODUCTION 

Discrete choice analysis (DCA) is the name given to a set of multivariate data analysis 

techniques which can be used to predict decision-makers' choices between alternative 

products or services. 204-206 The techniques have been widely applied to assist with 

product design and marketing decisions in a number of industries. 1K207; 208 In the 

commercial context, the primary interest has been to use DCA to estimate the 

probability that a decision-maker will choose a given product or service from the set 

of available alternatives. Since the probability of choosing a given product is 

assumed to depend upon the utility derived from its attributes compared with that of 

its alternatives, it is possible to use DCA to estimate the demand for both new and 

existing products given different defining characteristics. 

In contrast to the commercial applications of DCA, where the primary interest is in 

modelling product demand, health economists have recently begun to use the 

technique for estimating the value of treatment processes and outcomes in preference, 

utility or monetary terms. The literature on health applications of DCA is now 

extensive. 209-228; 228-260 But, to date, DCA has not been applied to assist with the 

design of randomised controlled trials (RCTs). However, the purpose of RCTs is 

such that DCA is likely to be of value in the RCT planning and design context 

because there is a relationship between the decision to adopt a health care intervention 

(demand for the intervention) and the design characteristics of the RCTs used to 

evaluate its benefits. 

Randon-ýised controlled trials (RCTs) are the primary means by which pharmaceutical 

companies evaluate the therapeutic benefits of their products. 1-5 The strength and 
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relevance of the evidence provided from RCTs will determine whether a product can 

be marketed or not and the subsequent extent of its use. In order to gain access to a 

market, pharmaceutical companies must perform RCTs to produce safety and efficacy 

evidence to a level which satisfies the regulatory bodies responsible for granting 

product licences. However, the safety and efficacy evidence produced for that 

purpose may not be sufficient to ensure that a product is reimbursed and actually used 

in clinical practice. Health technology assessment and appraisal bodies, such as the 

National Institute for Clinical Excellence (NICE) and Hospital Drugs and Therapeutic 

Committees, critically appraise the nature and relevance of RCT evidence in order to 

make recommendations about the extent to which a product should be used. 191 

individual clinicians will make treatment decisions based on their own assessment of 

the evidence, as well as taking into account the reviews performed by advisory bodies. 

Thus, those involved with product adoption decisions will have preferences for the 

types of evidence they want to see and, consequently, the extent to which these 

preferences are satisfied will influence the nature and extent of a treatment's use. It is 

therefore important for sponsors of drugs to consider decision-makers' preferences for 

RCT designs when planning their studies. The primary objective of this chapter is to 

illustrate how discrete choice analysis (DCA) could be used for that purpose. The 

approach is illustrated using a discrete choice stated preference (SP) survey concerned 

with the design of trials to evaluate adjuvant bisphosphonates in the management of 

patients with primary operable breast cancer. 

The remainder of the chapter is divided into seven sections. In the following section, 

a discrete choice modelling approach to drug prescribing behaviour is set out in 

general form. This is followed in section 4.3 by an overview of the key components 
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of a discrete choice SP survey. In section 4.4, the design of the adjuvant 

bisphosphonates case-study survey is presented. The results for the non-choice 

question components of the survey are presented in section 4.5. The results pertaining 

to the estimation of the parameters of a binary discrete choice model are presented in 

section 4.6 where consideration is given to the qualitative and quantitative effects. 

Section 4.7 focuses on using the discrete choice model results for the design of RCTs. 

Specifically, the use of the results to determine designs which optimise the probability 

of product adoption and to operationalise an investment appraisal approach to RCT 

design are illustrated. The final section includes a discussion of the results and the 

implications for future research. 

4.2 A DISCRETE CHOICE MODEL OF DRUG DEMAND 

In this section, a discrete choice model of drug demand is set out in general form. A 

specific binary choice formulation of this model is used in the applied example which 

follows later in the chapter. 

4.2.1 Random utility theory of drug choice behaviour 

Discrete choice models derive from random utility theory of choice behaviour. 204; 206 

Under this theory, the probability that a clinician will choose drug i from the set of 

alternative treatments available, J, is given by: 

Pr(iii)=Pr(ui>ui) VjEj, j;, i (1) 

where U, and U, denote the utility which a clinician derives from using the different 

products, iand j. A clinician is assumed to choose the treatment option which 
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maximises his or her utility. Assuming that the clinician is behaving as a perfect 

agent, this should also be the choice which maximises the utility of the patient 

receiving the treatment. Since the utility of a treatment is assumed to be derived from 

the characteristics that define it, equation (1) can be re-written as: 

Pr(iii)=Pr(u, (z, )>u, (z, )) vjc=i, j: p, -i (2) 

where Z, and Zj denote vectors of characteristics the levels of which define the 

treatment alternatives, iand j. Note that the vectors of attributes can include 

characteristics of the clinician e. g. the preferences of primary care physicians might 

differ from those of hospital specialists. 

If a clinician's utility function was known and if all the relevant characteristics were 

observed, then pcrfcct predictions could be made about a clinician's choice of 

treatment. Since this is not the case in practice, a discrete choice model of behaviour 

can be constructed based on the following identity. 

Pr(ilj)=Pr(Ui(Zi)>Uj(Zj))=Pr(Vi(Xi)+c, >Vj(Xj)+ej) VjEJ, j#i (3) 

where V, and Vj denote the observable components of utility, X, and X, are vectors 

of observable treatment characteristics and r, and e. are the unobserved random 

components of utility for products i and i respectively. The latter takes into account 

the difference between the true, U, and observed, V, utility. The right hand side of 

equation (3) can be re-arranged to give the following general (multinomial) 

expression for a random utility model of drug prescribing behaviour: 
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Pr(jjj)=Pr(C, -C, <Vj(Xj)-Vj(Xj)) VjEJ, j#i (4) 

4.2.2 Discrete choice model formulations 

In order to operationalise the above model, it is necessary to specify functional forms 

for both the observable and unobservable components of utility. For the deterministic 

component of utility, it is common practice in discrete choice models to specify V as 

a function which is linear in the vector of unknown parameters, 8', such that: 

vi = fl'xi = Axi, . ........... +, 8, Xli 

Vj = j6'Xj = Axii . ........... 
+j6lXU VjEJ, j#i 

where A ........ 01 are the coefficients to be estimated for each of the I attributes 

included in the model. In practice it has been observed that the linear additive model 

of equation (5) works well in most applied situations204 and is a fonnulation that has 

been used frequently in recent health economics applications. This functional form 

for the observable component of utility will therefore be used in the analyses which 

follow. 

For the unobservable component of utility, the disturbances ( el, ej ) are assumed to be 

distributed randomly (hence the name random utility model). A number of alternative 

distributions can be assumed which give rise to different discrete choice model 
2K205 

formulations. The most frequently used approaches are the logit and probit 

models. It has been noted that in practice there is little difference between the results 

derived from those two approaches. 205 Since the probit model is used in the case- 

study which follows, it is described in more detail here. In the case of probit 
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models, the unobserved components of utility are assumed to be distributed jointly 

normal. Using the probit discrete choice model formulation, the probability that a 

prescribing clinician will choose drug i from the set of alternative treatments 

available, J, is given by: 

co e, +V-Ve+V-V c +V-V 
P, 

(i I J) 
fIIf2....... .f 'O(C)de, 

... de2dede,, 
ei=-"o Aý-"o -2-'*o Cj---. OD 

(6) 

where (D(. ) denotes the standardised. cumulative normal distribution, e is a vector 

composed of each disturbance e, for all i in J and there are j alternatives in J. The 

probit model is estimated using maximum likelihood techniques. This gives rise to 

estimates for 8, ........ fl, and consequently, through equation (6), the probabilities of 

choosing alternative products can be derived. 

4.3 DISCRETE CHOICE STATED PREFERENCE SURVEYS 

The parameters of a discrete choice modeL such as that set out in equation (6), can be 

estimated using data pertaining to observed choice behaviour (revealed preference 

data), simulated choice behaviour (stated preference data) or a combination of the 

tWO. 201ý206 Regardless of the source of data, the dataset needs to contain, for each 

alternative in the choice set, an indicator of the choice made together with the defining 

characteristics of the alternatives (the Xs in the above equations). 

To date, the approach typically adopted by health economists has been to use 

simulated choice data obtained from discrete choice stated preference surveys (often 

referred to as conjoint analysis). 179; 250 Since the required data on actual drug choice 

behaviour would be difficult to obtain and, by definition, is not available for 
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new products in development, the approach adopted in this chapter is to use data 

generated from a discrete choice stated preference (SP) survey. The design stages of 

such surveys have been enumerated in detail elsewhere, 179; 206 but generally they 

include the following components: 

1) Determination of attributes, levels and scenarios 

2) Elicitation of preferences 

3) Data analysis and interpretation 

These stages are discussed briefly in tum below. 

4.3.1 Determination of attributes, levels and scenarios 

When designing an SP survey, the attributes (characteristics) of interest need to be 

defined and levels (values) need to be assigned to them. A number of approaches to 

doing this have been identified, including the use of literature reviews, interviews and 

selection based on a specific research question. 179; 206 The various approaches are not 

mutually exclusive and, in practice, a combination of them is often used. At a general 

level, it is postulated here that the probability of choosing a given health care 

intervention is a function not only of the demonstrated benefits, but also of the 

'design' characteristics of the RCTs from which the evidence of product benefit is 

derived. Consequently, the design problem in the current context involves selecting 

attributes and levels from the set of RCT design characteristics enumerated in Table 

4.1. In order to ensure that an SP survey is realistic, the literature suggests that 

attribute levels should be plausible and capable of being traded. 179 

Once the attributes and their levels have been determined, they are combined into 
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scenarios or profiles to present to survey participants for evaluation. A scenario is a 

combination of attributes and levels that characterize the choice object of interest in 

the study, in this case RCTs. The number of possible scenarios (the full factorial 

design) defined by the chosen number of attributes and levels can be very large and is 

given by-. 

S=flL 

where S denotes all possible combinations of attribute levels and A, denotes the 

number of attributes possessing the number of levels L,. An SP survey with a very 

large number of scenarios would be impractical due to the cognitive burden which the 

presentation of a large number of scenarios would place on survey participants. 

Therefore a practical problem to overcome is how to reduce the number of scenarios 

whilst ensuring that the parameters of the model can be reliably estimated. A 

common approach to reducing the number of scenarios is to identify an orthogonal 

fraction using experimental design catalogues such as those available in computer 

programmes like SPEED. 261 Orthogonal arrays of scenarios are such that each 

attribute level appears an equal number of times and the attributes are uncorrelated. 206 
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Table 4.1 
Trial Design Attributes 

1. Comparators 
Can be chosen from one or more broad types, including: 

i) Placebo 
ii) Most commonly used 
iii) Most effective 
iv) Least cost 
V) Most cost-effective. 

Specification usually involves the choice of specific product formulations and modes of administration. 

Most studies compare two treatments although more are possible. 
2. Population 
Specification usually involves choices about: 
i) Age group 
ii) Sex 
iii) Ethnic origin 
iv) Disease stage 
V) Co-morbidities 
vi) Previous treatments 
vii) Concomitant treatments 
viii) De novo or refractory patients. 
ix) Sub-group comparisons 
3. Setting 
Specification usually involves choices about: 

Single country, single centre 
Single country, multi-centre 

iii) Multinational, single centre 
iv) Multinational, multi-centre 
V) Inpatient 
vi) Outpatient 
vii) Specialist centre 
viii) Routine practice centre 

4. Endpoints 
Specification usually involves choices about: 

i) Efficacy 
ii) Effectiveness 
iii) Side effects 
iv) Adverse events 
V) Quality of life 
vi) Direct costs (NB includes product prices) 
vii) Indirect costs 
viii) Resource use 
ix) Surrogate endpoints 
5. Effect sizes 
Specification usually involves choices about: 

i) Clinical significance 
ii) Statistical significance 
iii) Primary endpoints 
iv) Secondary endpoints 
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Table 4.1 (continued) 

6. Duration of observation 
Specification usually involves choices about: 
i) Fixed period of observation 
ii) Variable (e. g. in sequential designs). 
Choices are linked closely to the choice of endpoints and the statistical properties of the study. 
7. Acceptable error rates: cL and P 
Choices are linked closely to the choice of endpoints and the duration of follow-up. 

Often chosen according to convention and based on the primary endpoint(s) i. e. a= 5%, 10% 

Do not have to be the same for each endpoint (and usually aren't). 
Used in conjunction with the statistical properties of endpoints, the desired effect sizes and withdrawal 
rates to determine sample size. 
8. Statistical methods 
Specification usually involves choices relating to: 
i) Objectives of the trial 
ii) Nature of other trial parameters, most notably the disease area and endpoints (type of data) 
iii) Method of randomisation. 
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4.3.2 Elicitation of preferences 

Preferences are elicited by presenting the scenarios to respondents who are asked to 

rank or rate each of them, or to indicate their preference (choice) from sets of two or 

more profiles presented alongside each other (the discrete choice format). The 

preference elicitation approach preferred by health economists to date has been the 

discrete choice format since it reflects the random utility theory of choice behaviour 

(see above). 179; 204; 206 Further, health economists have tended to elicit preferences 

using binary (pairwise) choice tasks in which respondents select their preferred 

scenario from each of a number of pairs (the choice set). Typically, choice sets have 

been generated by randomly pairing (without replacement) the scenarios in the 

orthogonal array, although alternative approaches could be employed. 

The choice sets usually incorporate some pairwise comparisons that form the basis of 

tests to identify inconsistent respondents. Inconsistent respondents are traditionally 

defined as those who do not make the choices one would expect them to make given 

the researcher's prior expectations about a positive or negative relationship between 

the attribute values and utility. Thus, to test for inconsistency defined in this way, the 

design needs to contain some pairwise combinations of scenarios for which the 

preferred scenario might be predicted a priori. These can fall naturally from the 

random generation of the choice sets or be generated manually. Using such tests, 

inconsistent respondents can then be identified at the analysis stage and dropped from 

the analysis along with non-trading subjects (see below). 

As far as the author is aware, there is no formula for estimating the sample sizes 

required for binary choice SP surveys. Consequently, there is no firm statistical basis 
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for the sample sizes used in previously reported studies. However, a notable feature 

of discrete choice surveys is that each respondent can provide as many as n 

observations to the dataset, where n is the number of choice sets included in the 

survey. Thus, a relatively small number of respondents can provide a sufficiently 

large number of observations for valid statistical analyses to be performed. Finally, 

preference elicitation surveys have been administered to respondents in a variety of 

ways including the use of mail, phone, web and interactive computer elicitation 

techniques with adequate responses having been reported for each. 179 

4.3.3 Data analysis and interpretation 

The statistical method used to analyse SP data depends upon the approach used to 

elicit preferences. For the discrete choice approach, which is of primary interest here, 

probit regression has been widely used by health economists for estimating the 

parameters of discrete choice models. A number of probit estimators are available in 

262 
statistics programmes such as Stata Version 7.0 (Stata). However, in previously 

published studies, researchers have tended not to specify the statistics progranunes or 

the precise estimation commands they have used. 

A standard probit estimator relies on the assumption that the explanatory variables 

and the error term are independently and identically distributed and that they are 

uncorrelated. These assumptions are likely to be inappropriate in the case of discrete 

choice data obtained from SP surveys since multiple observations are obtained from 

each respondent. Stata provides two alternative probit estimation commands which 

are appropriate for such repeated measurement panel data: probit (cluster) and 

xtprobit (pa, robust) . 
262 Both estimators, which are essentially equivalent, take into 
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account the potential for a respondent's responses to be correlated. Both approaches 

also generate robust standard errors. 

An estimation issue which arises in the literature is whether or not discrete choice 

regression models should be specified with a constant term. Examples of both 

approaches can be found. The answer to this issue appears to lie in the way in which 

the choice exercise is framed. For example, in a study which looked at preferences 

for miscarriage management, the scenarios presented to respondents were labeled 

, 9245 66surgical treatment" and "medical treatment . Since these labels convey 

information which might be used by respondents to decide which option was 

preferred, the authors estimated a model with a constant term. The authors interpreted 

the negative constant as indicating a general preference for surgical over medical 

management when all the attributes for the two interventions are the same. 

In contrast, models have been estimated without constants where the labeling of the 

choices conveys no properties of the alternatives. For example, in a study looking at 

preferences for in vitro fertilization services, the choice alternatives were labeled 

f6clinic N' and "clinic B" and the authors estimated a model without a constant 

term. 263 Thus, contemporary practice is to omit constants when the choice task 

involves generically labeled alternatives and vice-versa. 

A linear additive form of the utility function has typically been assumed by health 

economists on the grounds that research has shown that alternative models seldom 

result in a better fit than the linear additive model. 264 It has recently been pointed out 

that a simple regression error specification test (RESET) could be applied to 

determine whether there are problems associated with the linear functional form of 
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discrete choice models. 265 However, in health economics applications, only one study 

could be found that reports a test for model mis-specification. 238 

In the health economics literature, it has become common practice to estimate models 

based only on a subset of respondents who are deemed to be consistent traders. 

Inconsistent respondents (as defined above) and non-trading respondents are typically 

dropped from the analysis and the results obtained from the full sample are not 

usually reported. A non-trading respondent is defined as one who always selects a 

choice scenario with a higher level of a particular (don-ýinant) attribute irrespective of 

the levels of the remaining attributes. Such respondents are identified at the analysis 

stage by looking for choice patterns consistent with this behaviour. However, it has 

been noted that whether or not analyses should be performed on the full sample or 

only on consistent traders depends upon the objectives of the study. 210 In this study, 

analyses are reported for both the full sample as well as subsets of consistent traders. 

Finally, health economics researchers have primarily been interested in using the 

regression coefficients for deriving utility scores and, where a cost attribute is 

included, estimates of willingness-to-pay (WTp). 179 This has enabled, for example, 

alternative service configurations to be ranked in terms of their utility scores. To date, 

health economists applying discrete choice stated preference surveys have not derived 

predicted choice probabilities from their models, although these are the primary 

interest here. 
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4.4 CASE STUDY OF ADJUVANT BISPHOSPHONATES 

4.4.1 Adjuvant bisphosphonates in the management of breast cancer 

Breast cancer is the most common form of female cancer in England and Wales 

where, in 1998, there were 34,822 newly diagnosed cases representing an incidence 

rate of 130.83 per 100,000 females. The incidence of breast cancer increases sharply 

with age and, overall, has been rising since the early 1970s. During the same period, 

mortality from breast cancer has fallen. Currently, the survival rate at 5 years post- 

diagnosis is 75.9%. In 2000, there were 11,340 deaths from breast cancer in England 

and Wales. 266 

National guidance exists for the management of patients with breast cancer. 266 

Management is centred on multidisciplinary teams composed of breast surgeons, 

oncologists (clinical and medical), radiologists, pathologists and breast care nurses. 

The precise nature of initial treatment depends upon the clinical staging of the disease 

at diagnosis, but typically involves a combination of surgery, chemotherapy, 

radiotherapy and hormone replacement therapy. After completion of initial treatment, 

patients are monitored on an ongoing basis to ensure early detection of disease 

recurrence (relapse). In patients who relapse, most have metastatic (distant) disease 

which often affects both organs (visceral metastases) and bone (osseous metastases). 

The prognosis for patients with metastatic disease is poor, with the aim of treatment 

being palliative rather than curative. 

The case study presented here is concerned with the preventive use of a class of drugs 

known as bisphosphonates which inhibit bone resorption (destruction). Clinical 

research has shown that bisphosphonates reduce the incidence of hypercalcaemia 
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and pathological bone fractures in patients with established bone metastases from 

breast cancer. Moreover, bisphosphonates have been shown to reduce the risk of bone 

metastases in patients with relapsed breast cancer without obvious bone involvement. 

In view of these proven benefits, the National Institute for Clinical Excellence in 

England and Wales (NICE) has recently reconunended that bisphosphonates be used 

in the management of patients with bone metastases. 266 It has been estimated that 

currently about one third of patients with bone metastases receive bisphosphonate 

treatment at an approximate annual cost in England and Wales of; C3.9 million. The 

annual cost could rise to as much as E25.6 million per annum if there is adherence to 

the recent guidance. The annual cost per patient for one of the more researched oral 

bisphosphonates (sodium clodronate) is about E2,200 and, once initiated, is 

recommended to be continued as long as skeletal disease remains an important 

problem 
267 

Whilst bisphosphonates have been recommended by NICE as a treatment for patients 

with bone metastaseS266, the benefits of adjuvant bisphosphonates as a therapeutic 

strategy for the prevention of metastatic bone disease in patients with primary 

operable breast cancer has yet to be definitively established. A trial performed by 

Diel et al (1998) showed that, after 2 years treatment and 3 years of follow-up, the 

incidence of both osseous and visceral metastases was significantly lower for patients 

treated with the oral bisphosphonate clodronate compared with the control group. 268 

Moreover, a statistically significant reduction in all cause mortality was observed. 

More recently, a larger and more representative prevention trial has demonstrated 

similar benefits. 269 Specifically, patients treated with clodronate experienced a 

statistically significantly lower rate of bone metastases compared with the placebo 
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controls during a2 year treatment period. This trend was observed at the end of a 5.5 

years follow-up period although the difference was not statistically significant. A 

significant reduction in all cause mortality was observed at the end of the long-term 

follow-up period. Whilst the evidence is suggestive of benefits associated with early 

bisphosphonate use, the indication remains under investigation and a further large trial 

of adjuvant clodronate is currently being conducted. 270 

Given that the early (preventive) use of bisphosphonates is a new indication, it was 

felt that it would make a practical case study for assessing the potential use of discrete 

choice analysis in the design of RCTs. This is primarily because it permits the use of 

a binary choice model formulation (see below). Consequently, a stated preference 

experiment has been designed to generate choice data taking the potential preventive 

use of adjuvant bisphosphonate therapy in primary operable breast cancer as an 

applied case study. However, it is important to note that the analyses which follow 

are exploratory and illustrative i. e. they are not intended as a definitive application of 

the method in this disease area. 

4.4.2 Binary choice model formulation 

in the case study which follows, a clinician is assumed to be faced with a binary 

choice situation in which he or she has to decide between two alternative 

bisphosphonate prevention regimens, i or j. Such binary choice behaviour is a 

special case of the multinomial choice situation described above since decision 

makers are assumed to be faced with exactly two alternative courses of action: 

i= ji, j). Thus, for the binary choice probit model, equation (6) becomes: 
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Pr(i 1 j) = O(V, - Vj) = (Dý'(X, - Xj) (7) 

which is estimated using maximum Uelihood techniques. 

Thus, in this case study we are interested in predicting the probability of product 

adoption given different product benefit and trial design characteristics, X, , Xj 

associated with the use of adjuvant bisphosphonates. The approach uses stated 

preference data generated from a discrete choice experiment the key design 

components of which are described below. 

4.4.3 Determination of attributes and attribute levels 

The design problem involves selecting, from the generic RCT design characteristics 

previously enumerated in Table 4.1, attributes and levels of specific relevance to the 

bisphosphonates case-study. These were determined by reviewing adjuvant 

bisphosphonate RCT publicationS268-270 and discussing a preliminary (pilot) survey 

design with physicians with specialist knowledge of breast cancer management. The 

specific attributes and levels chosen for the analysis and how they rclate to the generic 

characteristics in Table 4.1 are discussed in turn below and are summarised in Table 

4.2. 
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Table 4.2 
Attributes and Levels for the Stated Preference Survey 

ATTRIBUTES X, 

Endpoint 
The primary measure of 

effectiveness used in the trial 

Effectiveness 
Difference in % of patients achieving 

primary endpoint at the end of the 
trial: (bisphosphonate minus current 

practice) 

Uncertainty 
Width of 95% confidence interval 

for the effectiveness outcome 

Duration 
The duration of observation of 

patients enrolled in the trial 

Population 
Disease stage at diagnosis for 
patients enrolled in the trial 

Cost 
Additional cost of using adjuvant 

bisphosphonate prevention 
(compared with current practice) per 

100 patients treated 

Notes. 
1. Binary variable coded 0 for analysis. 
2. Binary variable coded I for analysis. 

LEVELS 

Patients without metastatic bone disease' 
Patients alive without disease recurrence? 

99 

1% 
10% 
25% 
40% 

Level I: ±0.01 x% Effectiveness 
Level 2: ±0.25 x% Effectiveness 
Level 3: ±0.75 x% Effectiveness 
Level 4: ± 0.99 x% Effectiveness 

2 years 
4 years 
8 years 
10 years 

Stage III only' 
Stages I, II and 1112 

£0 
£450,000 
£900,000 

£19800,000 



Endpoint. A large number of outcome measurements (endpoints) are usually made in 

RCTs. However, it is usual practice to select one outcome measure (the primary 

endpoint) which is used as the primary basis for discriminating between treatments 

under investigation and for determining the sample sizes required for the study. In 

order to explore the impact of the choice of primary endpoint on the decision to use 

adi vant bisphosphonates, a categorical attribute with two levels was used. The first 
ju 

level, 'patients without metastatic bone disease', was chosen to reflect a primary 

hypothesis relating to adjuvant bisphosphonates, namely that the incidence of bone 

metastases is reduced as a result of their use. 268; 269 The second level, 'patients alive 

without disease recurrence' was chosen to reflect the fact that disease free survival is 

arguably a more relevant primary endpoint, as reflected in the protocol of a recently 

designed and ongoing trial. 270 The first level was coded '0' for analYSis and the 

second level was coded 'I' for analysis. 

Effectivenes& A challenge in designing this survey was to choose levels for the 
I- 

effectiveness attribute that would be plausible when combined with the levels of the 

endpoint, study population and duration attributes. It was also necessary to ensure 

that trading would take place (by not choosing attribute levels too close together) and 

that predictions of product adoption could encompass possible improved effectiveness 

of future treatments (by not restricting the levels to previously observed ranges). The 

effectiveness attribute was included as a continuous variable representing the absolute 

difference in the percentage of patients achieving the primary endpoint at the end of 

the trial (% effectiveness for bisphosphonate minus % effectiveness for current 

treatment practice). Four positive levels were chosen (1%, 10%, 25% and 40%) 

which means that only statistically significant improvements in effectiveness in 
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favour of bisphosphonate prevention are considered in the analysis. 

Allowing for the considerations mentioned above, the choice of attribute levels was 

informed by interpolating, for different annual time points, effectiveness outcomes 

from results reported for two recent triaIS2W269 (see Appendix 4.1). From this 

interpolation, the smallest statistically significant difference observed was 2% (95% 

confidence interval: 0.33% to 3.67%) and the largest was 18% (95% confidence 

interval: 11.75% to 24.25%). The highest upper limit of the 95% confidence interval 

was 27.05% and the smallest was 0.23%. In order to facilitate respondents' 

interpretation, the effectiveness attribute values were also presented as 'number 

needed to treat' (NNT). 

Uncertainty. A continuous variable attribute was included to assess the impact, on 

the adoption decision, of the degree of precision surrounding the point estimate of 

effectiveness for the primary endpoint. This was achieved by presenting 95% 

confidence intervals for the effectiveness outcomes which were calculated using the 

fonnula: 

95% CI =±P (Effectiveness 

where P, which denotes 'proportion', took on four values: 0.01,0.25,0.75 and 0.99. 

These levels of precision were the values used for the uncertainty variable at the 

analysis stage. The upper value was chosen to ensure that a high degree of 

uncertainty could be accommodated in the design without violating the assumption 

about the statistical significance of the results (see below). In otherwords, the 

constraint that P could not exceed unity ensured that the 95% confidence intervals 

did not straddle zero. The lower limit was chosen to accommodate a very low 
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degree of uncertainty. The selection of the intermediate values was arbitrary, being 

equidistant from the upper and lower values. In addition to presenting respondents 

with the 95% confidence intervals expressed as percentages, they were also presented 

in terms of NNT for the reasons stated for the effectiveness attribute above. 

Duration. In order to assess the impact of duration of subject follow-up on the 

decision to use adjuvant bisphosphonates, duration of observation was included in the 

design as a continuous variable attribute with four levels: 2,4,8 and 10 years. These 

values were chosen to ensure that the range encompassed the periods of observation in 

two reported trials. Diel et al reported a median period of follow-up of 3 years, 

although some subjects were observed for as long as 7 years. 268 In the Powles et al 

trial, the median period of follow-up was 5 years with a maximum of 9.5 years. 269 

The lowest level was chosen because it represents the duration of bisphosphonate 

prevention medication given in both trials. 

Population. Patients with primary operable breast cancer can be classified into three 

stages of disease at diagnosis (Stages 1, Il and III) which reflect how advanced the 

disease is at presentation. Recent studies permitted the enrolment of patients from 

each of these three stages, although one study enrolled only subjects who were 

deemed to be at high risk of developing bone metastases. 268 In order to explore the 

impact of choice of study population on the decision to use adjuvant bisphosphonates, 

a categorical attribute with two levels was included in the survey design. The first 

level represented contemporary trial design practice of enrolling any patient with 

primary operable breast cancer i. e. with Stages 1,11 or III disease at diagnosis. The 

second level was chosen to depict an arguably less representative trial in which only 

patients with Stage III disease at diagnosis were enrolled. Since this 
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population has more advanced disease, such a trial would depict a desire on the part of 

a study sponsor to demonstrate a therapeutic benefit in a shorter period of time. A 

priori, one would expect respondents to prefer a trial which is more representative of 

the actual population being treated hence the first level was coded 'I' for analysis and 

the second level was coded '0'. 

Cost. In order to assess the impact of the cost of using bisphosphonates on the 

decision to use them, cost was included in the design as a continuous variable 

attribute with four levels: EO, E450,000, E900,000 and E1,800,000. For consistency 

with the measurement of effectiveness, the levels were defined as the additional cost 

of using adjuvant bisphosphonate prevention (compared with current practice) per 100 

patients treated. Moreover, in the introduction to the discrete choice task, it was 

pointed out that the cost related to the period of the trial and that the value could 

reflect different product formulations and durations of medication. The level 

E450,000 reflects the approximate UK price for the oral clodronate dosing regimen 

used in the Powles et al trial. 267; 269 The other levels were chosen to provide a wide 

range of cost possibilities which could reflect, for example, different pricing policies, 

dosing regimens or duration of bisphosphonate prevention medication. 

Other RCT design attribute consideration& Not all the RCT design characteristics 

presented in Table 4.1 appeared explicitly as attributes in the case-study survey design 

although all but study setting were covered in the survey questionnaire in some way. 

Those that were not included as attributes are considered briefly in turn below. 

Comparator& The choice of Comparator is an important aspect of RCT design. Since 

adjuvant bisphosphonate prevention is not currently standard practice, the issue of 
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comparing explicitly against an alternative prevention regimen does not arise. The 

choice of comparator was not therefore included as an attribute in the discrete choice 

survey. Instead, in the introduction to the discrete choice tasks, respondents were 

asked to assume that the evidence presented came from trials where standard practice 

was permitted in both arms of the trial, including the use of bisphosphonates, as 

appropriate, in the event of relapse (see questionnaire in Appendix 4.2). These 

assumptions reflect the practice actually adopted in recent trials. Thus, the 

comparators were assumed to be standard practice plus placebo versus standard 

practice plus bisphosphonate prevention. 

Statistical propertie& The survey did not include any attributes pertaining to the 

statistical properties of the hypothetical RCT designs, such as sample sizes, 

probabilities of type I and type II errors or the statistical methods used to analyse the 

data. However, in the introduction to the discrete choice tasks, respondents were 

asked to assume that the results presented to them were statistically significant at the 

conventional 5% level and, more generally, that the trials were well conducted (see 

survey questionnaire in Appendix 4.2). 

Setting. No reference was made to the setting of the study, such as whether the trial 

was conducted in a number of centres or in a number of countries. Since the 

respondents are likely to be fan-ffliar with RCTs conducted in this context, it is 

reasonable to suppose that they would expect such studies to be multinational, 

multicentre trials. 

Thus, the final design was based on the six attributes as decribed above. These were 

used to produce hypothetical RCT design scenarios using the method described 
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below. 

4.4.4 Generation of the discrete choice RCT design scenarios 

The number of RCT design scenarios which can be defined given the attributes and 
2 levels shown in Table 4.2 is 44 x2= 1024 (the full factorial). In order to construct a 

cognitively manageable number of binary choice questions, an orthogonal fraction 

was obtained using SPEED experimental design software. "' This resulted in a set of 

16 RCT profiles as shown in Table 4.3. A key property of this fraction of profiles is 

that the attributes are not correlated, and that the levels appear the same number of 

times. 

In order to generate the binary choice questions to present to respondents, a method 

described by Louviere, Hensher and Swait (2000) was used. 206 This involves pairing 

each of the 16 RCT profiles shown in Table 4.3 with a different RCT profile 

randomly selected from a duplicate set. This process resulted in 16 choice sets. The 

differences between the attribute levels for each choice set are shown in Table 4.4. In 

order to minimise the problem of multicollinearity, the differences in attribute levels 

must not be significantly correlated. The absence of statistically significant 

correlations at conventional levels confmns that the resulting experimental design is 

reasonably orthogonal. 
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Figure 4.1 

Example Binary Choice Question 

Trial Design Characteristics Bisphosphonate 
Prevention A 

Primary endpoint Patients alive without 
disease recurrence 

Difference in % of patients achieving primary 10% 
endpoint at the end of the trial 
(bisphosphonate minus placebo) NNT = 10 

95% confidence interval on the primary 2.50% to 17.50% 
endpoint 

NNT = 5.71 to 40.00 

Duration of observation 10 years 

Disease stage at diagnosis for patients Stage III only 
enrolled in the trial 

Additional cost of using adjuvant E 1,800,000 
bisphosphonates Per 100 Patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

1% 

NNT = 100 

0.75% to 1.25% 

NNT = 80.00 to 133.331 

8 years 

Stages 1,11 and III 

E 1,800,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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In the study questionnaire presented to respondents, the choice sets were formed into 

16 binary choice questions. Respondents were asked to consider each choice and then 

indicate which alternative they would prefer based on the profile descriptions 

presented. Figure 4.1 provides an example of one of the choice questions presented to 

physicians in the stated preference survey. The study questionnaire is presented in 

full in Appendix 4.2. 

4.4.5 Formulation of non-choice questions 

A number of additional (non-choice) questions were included in the survey 

instrument. These covered a number of factors including: 

i) Characteristics of the respondent: specialty, grade and budget 

responsibilities 

ii) Patient caseload by stage of disease at diagnosis 

iii) Respondent views on the relative importance of different decision- 

makers in the product adoption decision (to assess the extent to which 

the sample covered the important decision-makers) 

iv) The importance of different trial design characteristics (to assess 

whether or not important attnibutes were omitted from the design) 

V) The importance of different endpoints (to assess whether or not 

important endpoints were omitted from the design) 

vi) The difficulty of completing the questionnaire and the time taken by 

both the respondent and interviewer (to assess the practicality of the 
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survey). 

In addition to the above, respondents were invited to make comments on any aspect of 

the survey. The format of the non-choice questions can be seen in the full survey 

instrument which is presented as Appendix 4.2. 

4.4.6 Sample selection and survey administration 

A pfio? i, a number of decision-makers and other influences can be hypothesized to 

affect the product adoption decision. One issue is whether to sample individuals or a 

collective decision-making unit. In this study, it was decided to focus on a sample of 

senior physicians selected primarily from the specialties which, a priori, are the most 

actively involved in the management of patients with this condition and, 

consequently, the choice of adopting the new treatment regimen or not. 

The population from which the sample was selected was identified from a proprietary 

database containing details of UK physicians including their specialty and contact 

detailS27 1A search of the database was performed in order to identify clinicians 

involved in the management of breast cancer. The results of the search are 

summarised in Table 4.5. 
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Table 4.5 
Stated Preference Survey Sample 

Specialty' Population 2 Invited to Agreed to Completed the 
participate participate questionnaire 

Medical 32 21 18 14 
oncologist (85.71%) (66.67%) 

Clinical 284 58 18 16 
oncologist (31.03%) (27.59%) 

Surgical 28 22 19 17 
oncologist (86.36%) (77.27%) 

Radiologist 33 9 5 2 
(55.56%) (22.22%) 

Other 17 15 10 5 
(66.67%) (33.33%) 

Total 394 125 70 54 
(56.00%) (43.20%) 

Notes. 

1. Specialists were senior registrar grade or higher and actively involved in breast 
cancer management. 

2. Identified from The Medical Directory, FT Business Ltd, 1999.271 

3. Percentages are the response rates relative to the number invited to participate. 
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In this survey, the questionnaire was administered using a telephone-mail-telephone 

technique which involved the following three steps: 

i) Calling potential respondents to enlist involvement and, if willing to 

participate, to arrange a telephone follow-up interview 

ii) Mailing the questionnaire to participants to review the materials and 

complete the responses, and 

iii) Follow-up telephone interviews to record responses on paper. 

A professional market research agency was commissioned to implement the survey, 

although they were not involved with the design of the questionnaire, the processing 

of the data, the statistical analysis or the interpretation of the results. All completed 

questionnaires were mailed to the author who processed and analysed the data. 

Prior to the implementation of the full survey, simulations based on pilot data (4 

completed questionnaires) were used to assess the results with different sample sizes. 

In this way, a sample in excess of 25 respondents was deemed necessary although a 

target of 100 was set within the data collection budget available. Afmalsampleof54 

was achieved (see Table 4.5 and the results section below). 
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4.4.7 Model specification and estimation 

In order to estimate a binary choice probit model of the demand for bisphosphonates 

as postulated in equation (7) above, the following linear additive utility function was 

assumed: 

AV=AAENDPOINT +, 62 AEFFECTIVENESS + P3AUNCERTAINTY + 

, 
84 AD URA TION + fls APOP ULA TION +, 86 A COST +c 

(8) 

where AVis the difference in utility between the two bisphosphonate prevention 

regimens, AEATDPOINT is the difference in the primary endpoint, 

AEFFECTIVENESS is the difference in the effect size demonstrated, 

AUNCERTAIN7T is the difference in the degree of uncertainty surrounding the 

demonstrated effectiveness, ADURATIONis the difference in the duration of 

observation, APOPULATION is the difference in study population and ACOST is 

the difference between the incremental cost associated with bisphosphonate use. 

, 
91 - fl6 are the parameters to be estimated, and c is the unobservable error term for 

the model which reflects the unobservable factors in the utility function. Given that 

the choice alternatives presented to respondents are couched in 'generic' terms (i. e. 

Prevention A and Prevention B), models were estimated without a constant. 

The explanatory variables are measured as the differences between the levels of the 

attributes appearing in the 16 choice questions (prevention A minus prevention B) as 

shown in Table 4.4. AV is measured as a binary variable which takes on the value 

11, if prevention A is chosen (the left hand side of the choice sets) and '0' if 

prevention B is chosen (the right hand side choice). 
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Models were estimated using the probit (cluster) command in Stata version 7 

(Stata). 262 A regression error specification test (RESET) was applied to each model in 

order to determine whether there were problems associated with the functional form 

of the model. 265 Any model failing the RESET test at conventional levels of 

significance (p < 0.05) would be regarded as being inis-specified. 

Models were estimated for the full sample of respondents and for two sub-groups of 

'consistent traders' identified using the definitions of inconsistent and non-trading 

respondents given below. 

Consistent traders sub-group A. In this survey, a test for consistency fell naturally 

from the random pairing of the choice scenarios since two choice sets contained the 

same profiles (see choice sets 10 and 12 in Table 4.4 and Appendix 4.2). One would 

expect a respondent who is consistent with their answers to select the same scenario 

for both of these choices. An advantage of this definition over the conventional 

approach described below is that it is not necessary to have prior expectations about 

the qualitative effects to perform this test. In this study it is therefore regarded as the 

primary test of consistency. Respondents who failed to choose the same scenario for 

choice sets 10 and 12 were dropped for this sub-group analysis together with non- 

trading respondents. Non-trading respondents were identified at the analysis stage by 

examining those individuals who exhibited any one of the choice patterns shown in 

Table 4.6. 

Consistent traders sub-group AA sub-group analysis was also performed based on 

a conventional test of consistency. Table 4.4 shows four choice sets for which the 

preferred scenarios might be predicted given the expected signs of the coefficients. 
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Respondents who failed to make choices in line with those that might be expected for 

choice sets 8,9,13 or 14 were dropped for this sub-group analysis together with non- 

trading respondents who were identified in the same way as for sub-group A above. 

No other sub-group analyses were performed (e. g. separate analyses by specialty) due 

to the relatively small sample sizes to which such analyses would give rise. 
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Table 4.6 

Choice patterns used to define non-trading respondents 

Choice set Endpoint Effectiveness Uncertainty Duration Population 
1 1 1 1 1 0 
2 0 0 0 0 
3 1 0 0 
4 0 1 1 0 
5 1 1 
6 0 0 1 
7 1 0 0 
8 0 1 0 
9 1 0 
10 0 0 
11 0 1 1 0 
12 1 1 0 
13 0 1 0 0 
14 1 0 1 
15 0 0 1 
16 1 0 1 1 1 

Cost 

I 
0 

0 
0 

0 
1 

1. Non-trading respondents were deemed to be those who exhibited the choice 
patterns specified in the columns of Table 4.6. A '1' in a column indicates that 
bisphosphonate prevention option A was chosen and '0' indicates the choice of option 
B. 
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4.5 RESULTS: NON-CHOICE QUESTIONS 

In this section, the results of the non-choice question components of the stated 

preference survey are presented. Many of the results tables referred to in this section 

can be found in Appendix 4.3. Such tables are denoted Table A4.3.1, A4.3.2 etc. 

4.5.1 Study population and sample 

The survey response rate, by specialty, is shown in Table 4.5. A total of 394 

specialists were identified of which 125 (31.73%) were invited to participate in the 

survey. Of those invited to participate, 55 (44.00%) refused and 70 (56%) accepted. 

Of those agreeing to participate, questionnaires were obtained from 54 providing an 

overall response rate of 43.20%. Therefore a sample of 54 questionnaires was 

obtained within the budget constraint and the completion rate for those who 

responded was 100%. 

4.5.2 Respondent characteristics 

The composition of the 54 respondents in terms of their specialty and title are shown 

in Table A4.3.1. The sample included 17 surgical oncologists (31.48%), 14 medical 

oncologists (25.93%) and 16 clinical oncologists (29.63%). Forty respondents 

(74.07%) were senior registrar grade or higher. At the time the survey was conducted, 

only one of the respondents was not involved in the day-to-day management of 

patients with breast cancer. The annual number of new cases of breast cancer seen by 

the respondents is summarised, by specialty, in Table A4.3.2. For the sample as a 

whole, the average number of new cases seen each year is 176.37 (SD = 142.42). The 

estimated distribution of new cases by stage of disease at diagnosis is shown in Table 
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A4.3.3. Only 14 respondents (25.93%) indicated having any involvement with the 

management of budgets related to the treatment of patients with breast cancer (Table 

A4.3.4). The nature of that responsibility, exactly as articulated by the respondents, 

can be found in Table A4.3.15. 

4.5.3 Survey completion 

Apart from the optional open-ended questions, there were no missing responses. It 

can be seen from Table A4.3.5 that only 2 respondents found the questionnaire "very 

difficult" to complete. 22 respondents (40.74%) found the questionnaire "moderately 

difficult" to complete, 18 (33.33%) found it "slightly difficult" to complete and 12 

(22.22%) found it "not difficult" to complete. Respondents spent an average of 26.76 

minutes (SD = 13.11) reviewing the materials and preparing their responses for the 

telephone interview (Table A4.3-6). The telephone interviews lasted an average of 

11.41 minutes (SD = 4.56). Therefore in total respondents spent an average of 38.17 

minutes (SD = 13.32 ) participating in this survey. 

Of the 54 respondents, 48 (88.89%) indicated a willingness to participate in future 

research. This required their personal details to be disclosed (Table A4.3.7). The 

same number indicated that they would like to see the results of the study (Table 

A4.3.8). Finally, 30 respondents (55.56%) provided comments on the questionnaire 

(Table A4.3.9). The comments, exactly as articulated by the respondents, can be 

found in Table A4.3-16. 

4.5.4 Influences on the decision to use adjuvant bisphosphonates 

Respondents were asked to rate the importance of a predetermined list of specialties 
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on a3 point ordinal scale: 

i) High degree of influence on the decision to adopt bisphosphonates 

(coded I for analysis) 

Some influence on the decision to adopt bisphosphonates (coded 2 for 

analysis) 

No influence on the decision to adopt bisphosphonates (coded 3 for 

analysis). 

The results of the analysis of the responses to this question using the above coding are 

shown in Table A4.3.10. Medical oncologists (mean rating 1.15, SD = 0.41), 

radiotherapists (1.35, SD = 0.55) and surgical oncologists (1.80, SD = 0.59) were 

viewed as the specialties with the highest degree of influence on the decision to use 

bisphosphonates. 

36 respondents (66.67%) indicated that important influences on the decision to use 

bisphosphonates were missing from the list of specialties provided (Table A4.3.1 1). 

These are shown, exactly as articulated by the respondents, in Table A4.3.17. The 

missing influences cited were other specialties (16 citations, 33.33% of all citations), 

nurses (14,29.17%), patients / relatives / patient support groups (11,22.92%), 

managers / policy makers (6,12.50%) and the media (1,2.08%). 

4.5.5 Importance of adjuvant bisphosphonate trial design characteristics 

Respondents were asked to rate the importance of a predetermined list of trial design 

characteristics on a4 point ordinal scale: 
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i) Very important characteristic (coded I for analysis) 

ii) Quite important characteristic (coded 2 for analysis) 

iii) Characteristic of little importance (coded 3 for analysis) 

iv) Characteristic not important (coded 4 for analYSis). 

The results of responses to this question using the above coding are shown in Table 

A4.3.12. The results confim the importance of the six trial design characteristics 

included in the discrete choice exercise. Four of these characteristics (primary 

endpoint, statistical significance, effect size and study population) had a mean rating 

close to I (very important) and two (duration of observation and comparators) had a 

mean rating between 1 (very important) and 2 (quite important). The other 

characteristics included in this question (lead investigators, countries in which the trial 

is conducted and organisation sponsoring the trial) had mean ratings tending towards 

3 (of little importance). The choice of primary endpoint (mean rating 1.15, SD = 

0.49), statistical significance (1.22, SD = 0.46) and effect size (1.26, SD = 0.44) were 

the three most important design characteristics. 

4.5.6 Importance of bisphosphonate trial endpoints 

Respondents were asked to rank a predetermined list of bisphosphonate trial primary 

endpoints in order of importance with I being the most important endpoint and 8 

being the least important. The results of responses to this question using the above 

coding are shown in Table A4.3.13. The two endpoints used in the discrete choice 

exercise, percentage of patients alive without disease recurrence and percentage of 

patients without metastatic bone disease, were ranked as the most important and 
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third most important endpoints respectively. The former had a mean ranking of 2.43 

(SD = 1.80) and the latter 3.91 (SD = 1.94). The additional cost associated with the 

use of adjuvant bisphosphonates was ranked as the least important endpoint (mean 

6.81, SD = 1.59). 

Six respondents (12.97%) indicated that important endpoints were missing from the 

list provided (Table A4.3.14). These are shown, exactly as articulated by the 

respondents, in Table A4.3.18. It can be seen that 5 of the II ornissions cited could 

be referred to as 'clinical' endpoints (e. g. serum calcium levels) and the remainder as 

6economic' endpoints (e. g. cost per QALY). 

4.6 RESULTS: DISCRETE CHOICE MODEL ESTIMATION 

In this section, the results of the discrete choice model probit regression analysis are 

presented in terms of the qualitative and quantitative effects. 

4.6.1 Qualitative effects 

For each of the three models estimated, the signs on the attribute coefficients suggest 

identical qualitative effects (see Table 4.7). These are surnmarised below. 

1) Choice ofprimary endpoint The coefficient for this attribute (Endpoint) 

has a positive sign which implies a preference for disease free survival 

over the incidence of metastatic bone disease as the primary endpoint in 

adjuvant bisphosphonate trials. Consequently, this suggests that a product 

is more likely to be chosen if a trial demonstrates an improvement in the 

proportion of patients alive without disease recuff ence compared with one 
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that shows an improvement in the incidence of metastatic bone disease. 

2) Effectiveness. For the effectiveness attribute (Effectiveness), the 

coefficient has a positive sign suggesting that the probability of adopting a 

product is an increasing function of the level of effectiveness 

demonstrated, regardless of the choice of primary endpoint. 

3) Degree of uncertainty surrounding the point estimate of effectiveness. 

The sign on the coefficient of the uncertainty variable (Uncertainty) is 

negative which indicates that the preference for a product decreases as the 

degree of uncertainty surrounding the point estimate of effectiveness 

increases. 

4) Duration of observation. The positive sign on the coefficient for this 

attribute (Duration) suggests a preference for trials of longer durations. In 

other words, the probability of adopting a product is an increasing function 

of the duration of evaluation of its benefits. 

5) Study population. A product whose benefits are demonstrated in a trial 

which enrolls patients with all stages of primary operable breast cancer is 

more likely to be chosen than one whose enrohnent is restricted to subjects 

with Stage III disease at diagnosis. This is indicated by the positive sign 

on the study population coefficient (Population). 

6) Incremental cost of adjuvant hisphosphonate use. The negative 

coefficient for the cost attribute (Cost) suggests that the lower the 

incremental cost of using a bisphosphonate prevention strategy the more 
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likely it is to be chosen. 

To summarise the above findings, the qualitative effects (signs for the attribute 

coefficients) are in line with the author's prior expectations which provides evidence 

of the theoretical validity (internal consistency) of the estimated models. 

4.6.2 Quantitative effects 

Table 4.7 shows the primary results of this analysis. A Ramsey regression error 

specification test (RESET) suggests there is no problem with the functional form of 

any of the three models. The null hypothesis that all of the coefficients are 

simultaneously zero can be rejected on the basis of the Wald test (p < 0.01 in each 

case). Independently, attnibutes are statistically significantly different from zero at the 

5% level or better with the exception of the duration variable which is borderline 

significant in both the 'full sample model' and the 'consistent traders sub-group A' 

model (p = 0.06 in both cases). These results indicate that each of the RCT design 

attributes included in the analysis is important in the decision to adopt adjuvant 

bisphosphonate treatments and that most respondents were willing to trade off 

different RCT design characteristics. 
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Table 4.7 
Probit Regression Results' 2 

(1) (2) (3) 
RCT Design Attributes Full Sample Consistent Consistent 

Traders: Sub- Traders: Sub- 
group A3 group B4 

Endpoint 0.2787*** 0.2700*** 0.3185*** 
[0.0522] [0.0630] [0.0625] 

Effectiveness 0.0457*** 0.0390*** 0.0464*** 
[0.0061] [0.0068] [0.0068] 

Uncertainty -0.6210*** -0.6653*** -0.7844*** 
[0.0746] [0.09871 [0.0725) 

Duration 0.0255* 0.0301 * 0.0482*** 
[0.0134] (0.0159] [0.0136] 

Population 0.2419*** 0.2675*** 0.3292*** 
[0.0563] [0.06511 [0.0704] 

Cost -5.43e-07*** -5.86e-07*** -5.95e-07*** 
[5.97e-08] [7.36e-08] [6.97e-08] 

Observations 864 608 656 
Respondents 54 38 41 
Log likelihood -399.35 -285.18 -290.39 
Wald chi2 (6) 238.95 163.01 241.27 
Prob > chi2 0.0000*** 0.0000*** 0.0000*** 
Ramsey chi2(l) 0.30 0.10 0.01 
Prob > chi2 0.5861 0.7485 0.9060 
Correct predictions 79.28% 79.93% 81.10% 

Notes. 

1. Models were estimated using the probit (cluster) option available in Stata 
Version 7 . 0.262 This estimator takes into account the potential non-independence 
of the observations and generates robust standard errors (shown in brackets). 

2. Significance levels are denoted as follows: * significant at 10%; ** significant at 
5%; *** significant at 1% 

3. Inconsistent respondents were defined as those who did not choose the same 
scenario for choices 10 and 12 (n=10). Non-trading respondents were defined as 
those who exhibited dominant preferences for any attribute (n--7). Dropping 
these respondents left a sample of 38 consistent traders (one respondent was both 
inconsistent and a non-trader). 

4. Inconsistent respondents were defined as those who did not choose the options 
expected for choices 8,9,13 or 14 (n=6). Non-trading respondents were defined 
as those who exhibited dominant preferences for any attribute (n=7). Dropping 
these respondents left a sample of 41 consistent traders. 
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The primary interest in this analysis is with using the regression results to compare the 

predicted probabilities of product adoption contingent upon alternative RCT designs. 

These can be computed using the regression results from Table 4.7 and Equations (7) 

and (8). Therefore sponsors of RCTs could use the regression results from product- 

specific stated preference surveys in a number of ways, including to: 

1) Evaluate the impact of different RCT designs on the probability of product 

adoption; 

2) Determine a technically feasible design which maximises the expected 

predicted probability of product adoption, and 

3) Operationalise an investment appraisal approach to RCT design. 203 

Each of these uses is illustrated briefly in section 4.7 below. 

4.7 USING DISCRETE CHOICE MODEL RESULTS IN RCT DESIGN 

A number of potential uses of discrete choice modelling results in the context of RCT 

design are considered below. It must be emphasised that although this analysis is 

based around a case study of adjuvant bisphosphonate trials, the material presented 

below is purely illustrative. The main body of the text focuses on the results. The 

forinulae, working assumptions and example calculations are presented in Appendix 

4.4. 

4.7.1 Impact of RCT designs on the probability of product adoption 

One potential use of DCM results is to compare and rank alternative RCT designs in 

terms of the predicted probabilities of product adoption to which they give rise. 
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Specifically, given a set of candidate designs, sponsors of RCTs could use the results 

to select the design which gives the highest predicted probability of product adoption, 

Pr(A I J). This is equivalent to choosing the design with the highest decision-maker 

preference or utility score, A VAB - 

Table 4.8 and Figure 4.2 illustrate this application of the results by comparing the 

predicted probabilities of each of seven hypothetical candidate designs against a 

hypothetical baseline (existing) treatment. The differences in utility, AVAB , are 

calculated by substituting the regression coefficients from the full sample model 

(Table 4.7) and the differences in the values of the RCT design attributes into 

Equation (8). The predicted probabilities are calculated by substituting the resulting 

utility values into Equation (7). An example calculation is provided in Appendix 4.4. 

in Table 4.8, designs I to 6 differ from the baseline design only in terms of the level 

(value) of one RCT design attribute. This is done in order to illustrate how the impact 

on Pr(A I J) of changing the value of only one RCT design characteristic can be 

evaluated. For example, Design I differs from the baseline in ten-ns of the choice of 

primary endpoint. This gives rise to a predicted probability of adoption of 

approximately 0.61. With a design identical to the baseline, the predicted probability 

would be 0.50. In contrast, hypothetical RCT Design 7 is defined as having the "best" 

attribute values shown in Table 4.2. This means that this design has "bettee' design 

characteristics than the baseline for all attributes except study population (which is the 

same). Consequently, Design 7 has the highest predicted probability amongst the 

RCT designs compared in Table 4.8. The ranking of the designs in descending order 

of their predicted probabilities is shown in the last row of Table 4.8. 
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Whilst it is informative to compare selected candidate RCT designs in this way, this 

approach does not identify an optimal (predicted probability maximising) design 

because all possible combinations of attribute values are not considered. Moreover, 

the calculations do not allow for the fact that the 'Effectiveness' and 'Uncertainty' 

attribute values are, prior to the conduct of a trial, uncertain. Thus, of more practical 

value is to identify a trial design which maximises the expected predicted probability 

of product adoption. How this can be done is illustrated in section 4.7.2 below. 

4.7.2 Identifying a design that maximises the expected probability of product 

adoption 

At the planning stages of an RCT, the predicted probability of product adoption given 

by Equation (7) is uncertain since the results of a trial are unknown. Specifically, for 

the case study presented in this chapter, the uncertainty surrounding the predicted 

probabilities stems from the uncertainty surrounding the results of trials with respect 

to the 'Effectiveness' and 'Uncertainty' attributes. Since it is desirable to consider 

alternative RCT designs in a way which allows for this uncertainty (i. e. in terms of 

expected predicted probabilities), it is necessary to calculate the expected values for 

the 'Effectiveness' and 'Uncertainty' outcomes for any trial design under 

consideration. The expected values are then used for the calculation of predicted 

probabilities using Equation (7). 

Making use of an approach previously described by Backhouse (1998)203 and Detsky 

(1985; 1 990), 152; 154 expected 'Effectiveness' and 'Uncertainty' outcomes have been 

calculated to produce the illustrative results presented in Figure 4.3 (see Appendix 4.4 

for formulae, working assumptions and example calculations). Figure 4.3 shows 
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expected predicted probabilities, over a range of trial sample sizes, for six 

hypothetical RCT designs when compared against the baseline treatment presented in 

Table 4.8. In order to simplify the exposition, the six designs differ from the baseline 

only in terms of i) the choice of primary endpoint (patients without metastatic bone 

disease (MBD)) or patients alive without disease recurrence (DFS)) and / or ii) the 

duration of the trial (2,5 or 8 years). It can be seen that, upto a total sample size of 

approximately 440 subjects (220 per arm), a trial of 2 years duration with MBD as the 

primary endpoint gives rise to the highest expected predicted probability. Thereafter, 

a trial with 8 years of follow-up and DFS as the primary cndpoint has the highest 

expected predicted probability of adoption. This is the design which maximises the 

expected predicted probabilities given the working assumptions. It should be 

emphasised that these results are purely illustrative and are sensitive to the 

assumptions made in their derivation, particularly the distributions of the prior 

expected outcomes (see Appendix 4.4). 

A problem with this approach to RCT design is that, whilst an expected predicted 

probability maximising design can be identified, it may not be optimal from a 

commercial (profit maximising) perspective. This is because it does not take account 

of costs and time to market and hence the timing of revenues. It is therefore necessary 

to extend this analysis to consider the cost and revenue implications of alternative 

RCT designs. 
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4.7.3 Using DCM results within an investment appraisal framework 

Backhouse (1998) has shown how pharmaceutical companies could take profit 

considerations into account when making decisions about the design of their RCTs. 203 

In this section, the hypothetical trial designs considered in section 4.7.2 above are 

used, together with the same assumptions, as a basis for illustrating how a 

commercially optimal (expected net present value maximising) design can be 

identified. In order to do this, a number of additional simplifying assumptions are 

made about the costs of perfonrdng the bisphosphonate trials, market size, product 

uptake and the time horizon for the commercial appraisal. The assumptions made can 

be found in Appendix 4.4 together with the formulae used and example calculations. 

Figure 4.4 shows the expected net present values (NPV), as a function of sample size, 

for each of the six hypothetical RCT designs considered in section 4.7.2 above. For 

each individual trial, the optimal sample size is that for which the expected NPV 

curve is at its maximum. It can be seen that, for all sample sizes up to at least 5000 

subjects in total, a trial of 2 years duration with MBD as the primary endpoint gives 

rise to the highest expected NPV. The expected NPV maximising design occurs at a 

total sample size of approximately 3200 subjects (1600 per arm) and has an NPV of 

about El 15 millions. A notable feature of this finding is that it serves to illustrate that 

a design which maximises expected NPV is not necessarily the design which 

maximises the expected predicted probability of product adoption. 

once again, it is important to emphasise that the calculations presented in this chapter 

are for illustrative purposes only and that the findings are sensitive to the various 

assumptions that need to be made for this type of analysis. 
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4.8 DISCUSSION AND CONCLUSION 

The results from this exploratory study suggest that the application of discrete choice 

modelling to stated preference data provides a promising method for incorporating the 

preferences of decision-makers into the design of RCTs. Specifically, this chapter 

illustrates how such empirical analyses of decision-makers' preferences for RCT 

design characteristics can be used to estimate the probabilities of product adoption 

contingent upon different designs. It has been shown how the probabilities can be 

used to determine preference maximising and profit maximising RCTs. The findings 

also suggest that the approach is both practical and theoretically valid in this context. 

Few respondents had difficulty understanding and completing the questionnaire, there 

was no missing data and the total time respondents spent on the survey was less than 

one hour. All but six participants expressed both a willingness to participate in any 

further stages of the research and an interest in seeing the results. The qualitative 

effects for the RCT design attributes included in the analysis are in line with prior 

expectations, each was found to be a statistically significant determinant of the 

decision to adopt a new product and most respondents were prepared to make trade- 

offs between them 

Despite the promising results, a number of issues need to be considered in future 

research and practical applications. Firstly, this analysis utilised preferences elicited 

from clinicians from different specialties involved in the management of patients with 
I 

breast cancer. This implies that other decision-makers are not involved in the product 

adoption decision and that each specialty represented in the sample carries equal 

weight. If these assumptions do not hold, then the predicted probabilities of product 

adoption will be unreliable. Respondents in this survey confirmed 
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the importance to the product adoption decision of the specialties that made-up most 

of the sample. But they also indicated that the influence of other parties should be 

considered, notably patients and other specialties involved in the management of 

breast cancer. If the preferences of physicians and patients are aligned, then the 

results which focus on the former will be robust. There would be practical challenges 

in applying this type of survey to patients because they may not be familiar with the 

tenninology and practices of RCT design. This would be a valuable area for future 

researclL 

It is notable that very few respondents indicated that the influence of decision-making 

and advisory bodies such as formulary committees and NICE were important. 

Nevertheless, how such groups formulate their decisions and the preferences 

underlying them is both a fundamental and topical issue . 
272X3 Therefore the potential 

for applying discrete choice analysis to members of such bodies would be a 

worthwhile line of future investigation since it offers a feasible means of explicitly 

quantifying the preferences of key stakeholder groups. 

Secondly, the example application chosen for this study lent itself readily to the use of 

a simple binary choice model of drug prescribing. This is because adjuvant 

bisphosphonates are not currently established as a therapeutic strategy for the 

prevention of metastatic bone disease and so the choice problem could be simplified 

to the decision to use them or not contingent upon the RCT designs and results. 

Clearly, many treatment choice situations will be less straightforward as physicians 

are often presented with more than two possible courses of action. In such situations, 

it may be necessary to construct more complex multinomial modeW04 of drug 

prescribing behaviour which would in turn require more complex stated 
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preference choice surveys for their application. 206 Moreover, the results from a 

survey conducted for one product indication will not be generalisable to another 

which could, for example, lead to a large number of studies required for a sponsor of 

multiple technologies. So the number, size and complexity of stated preference 

surveys would necessitate consideration being given to the potential benefits and costs 

associated with the research effort. 

Thirdly, the stated preference survey presented respondents with a series of binary 

choices for which they were required to indicate a preference for one of the two 

adjuvant bisphosphonate prevention options. Respondents were not given the 

opportunity to indicate that they would prefer an alternative other than the two 

presented in any given choice set. In other words, they were not given the 

opportunity to 'opt-out'. A review of applications of discrete choice experiments to 

health care programmes confirms that this approach is consistent with previous 

practice. 274 However, it has recently been pointed out that the inclusion of an opt-out 

option may better mimic the circumstances under which actual choices are made and 

may therefore give rise to more reliable estimates of product or service adoption. 275 

But there are also disadvantages of including opt-out alternatives. Subjects may 

choose the opt-out alternative simply to avoid making difficult trade-offs and it may 

not be possible to derive the attribute levels (characteristics) of the opt-out option. 275 

Both of these factors could significantly reduce the number of observations available 

for analysis. Furthermore, research conducted outside the health field suggests that 

estimates of attribute weights and demand can be sensitive to the format of the opt-out 

alternative presented to respondentS. 276 Clearly, further research is required into the 

issue of obtaining reliable predictions of actual choice behaviour from discrete choice 
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stated preference surveys. In this respect whether and how to include an opt-out 

alternative is one of a number of aspects to address. 

Fourthly, the model parameters were estimated using discrete choice stated preference 

survey data which is currently the most common approach used in health economics 

applications. An alternative would be to use revealed preference dat2 73 i. e. data 

pertaining to actual rather than simulated choices. However, it may not be practical to 

obtain or construct a dataset containing the necessary RCT and product adoption 

variables and such data will clearly not be available for new products. It should also 

be noted that it may not be practical to conduct stated preference surveys amongst 

some decision-makers e. g. NICE appraisal committee members. 

Finally, although aspects of this chapter have illustrated the potential use of DCA 

within a private sector investment appraisal framework, this should not detract from 

the potential value, in other contexts, of modelling product adoption decisions as a 

function of RCT design. For example, a useful line of future research would be to 

explore the conditions under which the private sector perspective on optimal RCT 

designs would be aligned with the societal perspective adopted by NICE. NICE 

considers both clinical effectiveness and cost in formulating its advice and its 

preferred measure for gauging value is the cost per quality adjusted life-year (QALY) 

(the incremental cost-cffectiveness ratio). 272 Approaches to producing optimal trial 

designs from the societal perspective using cost-effectiveness criteria have been 

proposed. 155; 159 The extent to which the private and societal perspectives will yield 

equivalent optimal designs will depend upon the importance of the cost-effectiveness 

ratio in product adoption decisions. Little is known about this relationship and 

although a recent paper used discrete choice modelling to produce insights 
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from recommendations made by NICE, the extent of the impact of the 

273 
recommendations on actual product usage was not explored . In this study, 

measures of both clinical effectiveness and cost were considered as separate variables 

but the cost per quality adjusted life year gained was not explicitly evaluated by 

respondents. However, in considering whether important endpoints were missing 

from the analysis, only two respondents mentioned the absence of cost per QALY 

information which raises questions about the alignment of physician and NICE 

decision-making criteria. Further research into how cost per QALY data could be 

presented in stated preference surveys would be a beneficial area for further research 

because it is not a measure that is widely understood amongst many stakeholders. 

In conclusion, more sophisticated survey designs and statistical analysis methods may 

be required in future applications in order to correctly model the treatment decision- 

making situation of interest. Nevertheless, the results from this analysis suggest that 

DCA offers a practical and valid method by which sponsors of RCTs could take the 

preferences of decision-makers into account when planning their studies. Therefore 

further research into the application of the technique in this context would seem to be 

worthwhile. 
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Appendix 4.1 
Effectiveness Outcomes Interpolated From Clinical Trials 

Clodronatel Placebo' Difference 2 Lower Upper 
95%CI3 95%CI3 

% Patients without 
metastatic bone disease 

From Powles et al (2002) 
Year 1 99.00 97.00 2.00 0.33 3.67 
Year 2 96.20 93.30 2.90 0.23 5.57 
Year 3 94.00 89.00 5.00 1.67 8.33 
Year 4 91.00 87.50 3.50 -0.21 7.21 
Year 5 89.00 84.50 4.50 0.45 8.55 
Year 6 86.00 83.50 2.50 -1.81 6.81 
Year 7 84.50 82.00 2.50 -1.97 6.97 
Year 8 83.00 80.00 3.00 -1.65 7.65 
From Diel et al (1998) 
Year 1 100.00 92.00 8.00 3.58 12.42 
Year 2 98.00 88.00 10.00 4.28 15.72 
Year 3 97.00 82.00 15.00 8.20 21.80 
Year 4 92.00 78.00 14.00 6.03 21.97 
Year 5 88.00 75.00 13.00 4.31 21.69 
Year 6 78.00 75.00 3.00 -6.57 12.57 
Year 7 78.00 75.00 3.00 -6.57 12.57 

Patients alive 

From Powles et al (2002) 
Year 1 98.00 98.00 0.00 -1.68 1.68 
Year 2 92.70 92.40 0.30 -2.85 3.45 
Year 3 90.00 87.00 3.00 -0.82 6.82 
Year 4 86.50 84.00 2.50 -1.75 6.75 
Year 5 82.90 79.30 3.60 -1.09 8.29 
Year 6 81.00 76.50 4.50 -0.40 9.40 
Year 7 78.50 73.00 5.50 0.37 10.63 
Year 8 78.00 72.00 6.00 0.82 11.18 
Year 9 74.00 65.50 8.50 3.02 13.98 
Year 10 74.00 60.00 14.00 8.43 19.57 
From Diel et al (1998) 
Year 1 100.00 82.00 18.00 11.75 24.25 
Year 2 95.00 78.00 17.00 9.44 24.56 
Year 3 90.00 72.00 18.00 9.31 26.69 
Year 4 80.00 65.00 15.00 5.03 24-97 
Year 5 80.00 63.00 17.00 6.95 27.05 
Year 6 75.00 60.00 15.00 4.54 25.46 
Year 7 75.00 60.00 15.00 4.54 25.46 

1. Data points were interpolated from the survival curves reported in Powles et al (2002)269 and Diel et al (1998 ). 269 

2. Clodronate % minus placebo %. 

3. Confidence intervals for the differences in % effectiveness were calculated using the formula provided by Armitage & 
Berry (1995) pp 128-130.170 
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APPENDIX 4.2 

THE STATED PREFERENCE SURVEY QUESTIONNAIRE 
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Our reference 

Your retercm c 

Direct linc c-nmil 

--A. - 
VI 

AN 

Nottingham University 
Business School 

8 March 2002 

Dear [Doctor] 

The Use of Conjoint Analysis in the Design of Clinical Trials 

Thank you very much for agreeing to take part in this research. 

jubilce Caillpus 
Wollaton Road 
Nottinghain 
NG8 IBB 
Tel: +44 (0) 115 846 6602 

Fax: +4-4 (0) 115 8-10 6667 

I am a part-time PhD student at the University of Nottingham. As part of 
my research I am conducting a survey to assess how a technique known 
as conjoint analysis might be used to take into account the views of 
health care professionals when designing clinical trials. The work is not 
being conducted on behalf of any sponsoring organisation or company. 

The research will include interviews with specialists like you and I have 
asked Accent Marketing and Research to conduct these interviews on my 
behalf 

I should be gratetbl if you would assist rne with this research by 

spending about 10 minutes reading the enclosed material. Then on the 
(insert date), one of Accent's researchers will telephone you to collect 
your responses to each of the questions. Hence, this material does not 
need to be returned to me. 

The questionnaire does not require you to provide any personal or patient 
information. Furthermore, Accent will not pass on the narnes of those 
who participate in this research to me unless you give your consent for 
this to happen. 

A copy of the results of this survey will be available for all those who 
have taken part in this research. 

if you have any questions relating to the enclosed, please do not hesitate 
to contact me. 

Thank you in advance for your help with this research. 

Yours sincerely. 

Martin E Backhouse 

Enc. 
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INTRODUCTION 

Clinical research has shown that bisphosphonates reduce the incidence of 
hypercalcaernia and pathological bone fractures in patients with established bone 
metastases from breast cancer. Moreover, bisphosphonates have been shown to 
reduce the risk of bone metastases in patients with relapsed breast cancer without 
obvious bone involvement. However, the effectiveness of adjuvant bisphosphonates 
as a preventive therapeutic strategy for patients with primary operable breast cancer 
has yet to be definitively established. 

In the choices which follow, you are asked to imagine that you alone are deciding 
which adjuvant bisphosphonate therapy to use based on the trial evidence which is 
presented. For each choice, you will be asked to compare two alternatives (labelled 
Bisphosphonate Prevention A'andBisphosphonate Prevention B), which differ only 
in terms of the following trial design characteristics and results: 

Primary endpoint: the main measure chosen to compare the effectiveness of 
adjuvant bisphosphonate therapy against no such therapy (placebo) in patients 
with primary operable breast cancer. 

Difference in % of patients achieving the primary endpoint: the effectiveness 
of adjuvant bisphosphonate therapy measured as the difference between the % of 
patients experiencing the primary endpoint in the 'bisphosphonate' and 'no 
bisphosphonate' arms of the trial i. e. adjuvant bisphosphonate % minus no 
adjuvant bisphosphonate %. The results are also shown in the form of the number 
of patients that would need to be treated with bisphosphonates in order for one 
patient to benefit from treatment i. e. number needed to treat (NNT). 

95% confldence interval on the primary endpoint: a measure of the uncertainty 
surrounding the point estimate of the primary endpoint outcome. A range of % 
difference values is presented within which there is a 95% chance that the true 
difference will lie. The 95% confidence interval is also shown in the form of the 
number of patients that would need to be treated with bisphosphonates in order for 
one patient to benefit from treatment i. e. number needed to treat (NNT). 

Duration of observation: the duration of the trial in years (not the duration of 
adjuvant bisphosphonate therapy). It is assumed that all subjects are followed for 
this period of time. The primary endpoint results are those observed at the end of 
this follow-up period. 

Disease stage at diagnosis: the eligible study population defined in terms of the 
stage of primary operable breast cancer at diagnosis (Stages I to III). 

Additional cost of using adjuvant bisphosphonates: the additional cost of using 
adjuvant bisphosphonates compared with not using them i. e. adjuvant 
bisphosphonate cost minus no adjuvant bisphosphonate cost. The cost figure 
presented is the difference per 100 patients for the period of the trial. In the 
choices which follow, no information is provided about the duration of adjuvant 
bisphosphonate therapy i. e. the cost information can reflect different agents and 
different durations of bisphosphonate treatment. 

In making your choices you should assume that: 
1) The efficacy results presented are statistically significant at the 5% level. 
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2) The evidence comes from well-designed, randomised, double-blind 
placebo controlled trials in patients with primary operable breast cancer. 

3) The evidence is the only evidence that is available to make your decision. 

4) The alternatives differ only in terms of the characteristics which are 
presented. 

5) Subjects in both arms of the trial received surgery, chemotherapy, 
hormonal therapy and radiotherapy as required. 

6) In the event of relapse, appropriate local or systemic therapies (including, 
bisphosphonates) were administered as required to subjects in both arrns of' 
the trial. 

7) The adjuvant bisphosphonates were well tolerated i. e. no significant side 
effects were observed. 

PART A 

In this part of the questionnaire you are presented with 16 choices. In each case, 
you are asked to choose only one of the two adjuvant bisphosphonate treatment 
strategies for patients with primary operable breast cancer. Please indicate your 
choice by marking a v"in the appropriate box as shown in the following example: 

Example: 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

10% 

NNT = 10 

2.50% to 17.50% 

NNT = 5.71 to 40.00 

10 years 

Stage III only 

E 1,800,000 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

1% 

NNT = 100 

0,75% to 1.25% 

NNT = 80.00 to 133.331 

8 years 

Stages 1,11 and III 

F 1,800,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

Now please complete the following choice questions making sure that you choose one 
option for each of the 16 choices. 
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CHOICE 1 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
b1sphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

10% 

NNT = 10 

2.50% to 17.50% 

NNT = 5.71 to 40.00 

10 years 

Stage III only 

E 1,800,000 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

1% 

NNT = 100 

0.75% to 1.25% 

NNT = 80.00 to 133.33 

8 years 

Stages 1,11 and III 

f 1,800,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Pre ention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

1 

CHOICE 2 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates, Per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients without 
metastatic bone 

disease 

10% 

NNT = 10 

9.90% to 10.10% 

NNT = 9.90 to 10.10 1 

8 years 

Stage III only 

f 900,000 

Bisphosphonate 
Prevention B 

Patients alive without 
disease recurrence 

25% 

NNT = 41 

6.25% to 43.75% 

NNT = 2.29 to 16.00 1 

8 years 

Stages 1,11 and III 

E0 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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CHOICE 3 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

10% 

NNT = 10 

7.50% to 12.50% 

NNT = 8.00 to 13.33 

4 years 

Stages 1,11 and III 

E 450,000 

Bisphosphonate 
Prevention B 

Patients alive without 
disease recurrence 

1% 

NNT = 100 

0.01 % to 1.99% 

NNT = 50.25 to 
10000.00) 

10 years 

Stages 1,11 and III 

f: 900,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

CHOICE 4 

Trial Design Characteristics Bisphosphonate Bisphosphonate 
Prevention A Prevention B 

Primary endpoint Patients without Patients alive without 
metastatic bone disease recurrence 

disease 

Difference in % of patients achieving primary 10% 1% 
endpoint at the end of the trial 
(bisphosphonate minus placebo) NNT = 10) NNT = 100 

95% confidence interval on the primary 0.10% to 19.90% 0.99% to 1.01% 
endpoint 

NNT = 5.03 to 1000.00 NNT = 99.01 to 10 1.01 

Duration of observation 2 years 4 years 

Disease stage at diagnosis for patients Stages 1,11 and III Stage III only 
enrolled in the trial 

Additional cost of using adjuvant E0 f: 0 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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CHOICE 5 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate_m/nus PlacebOL_ 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

25% 

ININT = 41 

6.25% to 43.75% 

I NNT = 2.29 to 16.00 

8 years 

Stages 1,11 and III 

E0 

Bisphosphonate 
Prevention B 

Patients alive without 
disease recurrence 

25% 

NINIT = 41 

18.75% to 31.25% 

NINIT = 3.20 to 5.331 

2 years 

Stage III only 

E 900,000 

Which adjuvant bisphosphonate prevention re er Prevention A re r Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

CHOICE 6 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients without 
metastatic bone 

disease 

25% 

NNT =4 

24.75% to 25.25% 

NNT = 3.96 to 4.04 

10 years 

Stages 1,11 and III 

f 450,000 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

40% 

NNT = 2.51 

10.00% to 70.00% 

NNT = 1.43 to 10.00 

4 years 

Stages 1,11 and III 

E 900,000 

Which adjuvant bisphosphonate prevention Prefer Prevention Ar Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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CHOICE 7 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates; per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

25% 

NNT = 41 

18.75% to 31.25% 

NNT = 3.20 to 5.33 

2 years 

Stage III only 

E 900,000 

Bisphosphonate 
Prevention B 

Patients alive without 
disease recurrence 

10% 

[NNT= 10] 

2.50% to 17.50% 

NNT = 5.71 to 40.00 

10 years 

Stage III only 

E 1,800,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

CHOICE 8 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients without 
metastatic bone 

disease 

25% 

NNT = 41 

0.25% to 49.75% 

NNT = 2.01 to 400.00 

4 years 

Stage III only 

E 1,800,000 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

40% 

NNT = 2.51 

30.00% to 50.00% 

NNT = 2.00 to 3.33 

10 years 

Stage III only 

f: 0 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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CHOICE 9 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients without 
metastatic bone 

disease 

40% 

NNT = 2.5 

10.00% to 70.00% 

[ NNT = 1.43 to 10.00 1 

4 years 

Stages 1,11 and III 

E 900,000 

Bisphosp onate 
Prevention B 

Patients without 
metastatic bone 

disease 

25% 

NNT = 41 

0.25% to 49.75% 

NNT = 2.01 to 400.00 

4 years 

Stage III only 

f: 1,800,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage I 11)? 

CHOICE 10 

Trial Design Characteristics 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

40% 

NNT = 2.51 

39.60% to 40.40% 

NNT = 2.48 to 2.53 

2 years 

Stages 1,11 and III 

E 1,800,000 

Bisphosphonate 
Prevention 8 

Patients alive without 
disease recurrence 

40% 

NNT = 2.51 

0.40% to 79.60% 

NNT = 1.26 to 250.00 

8 years 

Stage III only 

E 450,000 

Which adjuvant bisphosphonate prevention Prefer Prevention Ar Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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CHOICE 11 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients without 
metastatic bone 

disease 

40% 

NNT = 2.51 

30.00% to 50.00% 

NNT = ZOO to 3-33 

10 years 

Stage III only 

E0 

Bisphosp onate 
Prevention B 

Patients alive without 
disease recurrence 

10% 

NNT = 10 1 

7.50% to 12.50% 

NNT = 8.00 to 13.33 

4 years 

Stages 1,11 and III 

E 450,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

CHOICE 12 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

40% 

NNT = 2.51 

0.40% to 79.60% 

NNT = 1.26 to 250.001 

8 years 

Stage III only 

f 450,000 

Bisphosphonate 
Prevention B 

Patients alive without 
disease recurrence 

40% 

NNT = 2.5 

39.60% to 40.40% 

NNT = 2.48 to 2.53 1 

2 years 

Stages 1,11 and III 

f 1,800,000 

Which adjuvant bisphosphonate preventio Pref r Prevention Ar Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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CHOICE 13 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates Per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients without 
metastatic bone 

disease 

1% 

NNT = 100 

0.25% to 1.75% 

NNT = 57.14 to 400.00 

2 years 

Stage III only 

E 450,000 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

25% 

NNT = 41 

24.75% to 25.25% 

NNT = 3.96 to 4.041 

10 years 

Stages 1,11 and III 

E 450,000 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Prevention IS 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

CHOICE 14 

Trial Design Characteristics Bisphosphonate Bis-phosphonate 
Prevention A Prevention B 

Primary endpoint Patients alive without Patients without 
disease recurrence metastatic bone 

disease 

Difference in % of patients achieving primary 1% 1% 
endpoint at the end of the trial 
(bisphosphonate minus placebo) NNT = 100 NNT = 100 

95% confidence interval on the primary 0.99% to 1.01 % 0.25% to 1.75% 
endpoint 

NNT = 99.01 to 101.01 NNT = 57.14 to 400.00 

Duration of observation 4 years 2 years 

Disease stage at diagnosis for patients Stage III only Stage III only 
enrolled in the trial 

Additional cost of using adjuvant E0 E 450,000 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prevention B Pr-- 

option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

151 



CHOICE 15 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisphosphonate minus placebo) 

Bisphosphonate 
Prevention A 

Patients without 
metastatic bone 

disease 

1% 

NNT = 100 

0.75% to 1.25% 

NNT = 80.00 to 133.33 

8 years 

Stages 1,11 and III 

C 1,800,000 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

10% 

NNT = 10 1 

0.10 % to 19.90% 

NNT = 5.03 to 1000.00 

2 years 

Stages 1,11 and III 

f: 0 

Which adjuvant bisphosphonate prevention Prefer Prevention A Prefer Pro ention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 

CHOICE 16 

Trial Design Characteristics 

Primary endpoint 

Difference in % of patients achieving primary 
endpoint at the end of the trial 
(bisphosphonate minus placebo) 

95% confidence interval on the primary 
endpoint 

Duration of observation 

Disease stage at diagnosis for patients 
enrolled in the trial 

Additional cost of using adjuvant 
bisphosphonates per 100 patients treated 
(bisph phonate minus plac bo 

Bisphosphonate 
Prevention A 

Patients alive without 
disease recurrence 

1% 

NNT = 100 1 

0.0 1% to 1.99% 

NNT = 50.25 to 
10000.001 

10 years 

Stages 1,11 and III 

f 900,000 

Bisphosphonate 
Prevention B 

Patients without 
metastatic bone 

disease 

10% 

I NNT = 10 1 

9.90% to 10.10% 

NNT = 9.90 to 10.10 

8 years 

Stage III only 

C 900,000 

Which adjuvant bisphosphonate prevention Prefer Prevention Ar Prevention B 
option would you prefer for patients 
presenting with primary operable breast 
cancer (Stage I to Stage 111)? 
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PART B 

1. What is your area ot'spccialisation (please tick one of the following): 

Medical Oncologist Radiologist El 
Surgical Oncologist Radiotherapist El 

General Practitioner F-I Pharmacist El 
Other F-I Please specify: ............................ 

2. Approximately hmv many new cases of breast cancer do you see each year? 

Of the neii cases of breast cancer that you see each year, approximately what 
pcrccnta&, c have the following stages of disease at diagnosis: 

Per cent of ncý, v cases with Stage I disease at diagnosis = 1: 11: 1ý% 

Per cent of new cases with Stage 11 disease at diagnosis = DEIF] % 

Per cent of new cases with Stage III disease at diagnosis = 0[: ][: ]% 

Per cent of new cases with Stage IV disease at diagnosis = 1: 10171% 

Please check that the total adds to 100% = EIFIF% 

4. In deciding whcther to start using adjuvant bisphosphonates in patients with 
primary operable breast cancer, please indicate with a I/ the degree of influence 
that you think each of the following specialties would have on the decision: 

Specialty High degree of 
influence 

Some influence No influence 

Radiologist 

Medical Oncologist 

Radiotherapist 

Surgical Oncologist 

Pharmacist 

General Practitioner 
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5. Are there awy important decision-makers or influences missing from the list 
provided in Question 4'. ' (please tick Yes or No) 

Yes 

N, 
If Yes. please specify: ................................................................... 
............................................................................................... 

6. When considering the evidence trorn a clinical trial relating to the use of adjuvant 
bisphosphonates in patients with primary operable breast cancer, please indicate 
with aV the importance to you of the following trial design characteristics: 

Trial NI cry Quite Of little Not important 
characteristic important important importance 

Primary 
endpoint 
Comparator 

Study 
population 
Duration of 

-follow-UP SiZe of effect 
demonstrated 

- - I ist ica ýtat 

significance of 
results 
Organisation 
sponsoring the 

_tnal Countries in 
which the trial 
is conducted 

- ead E 
investiýators 
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7. If you were designing a clinical trial to inform you whether to use adjuvant 
bisphosphonates in patients with primary operable breast cancer, please rank the 
following endpoints in order of importance from 1 (the most important cndpoint to 
you) to 8 (the least important endpoint to you): 

Side cffects 0 

% patients alive without disease recurrence n 
Quality of life experienced by patients m 

patients alive 0 

Cost of patient management with bisphosphonates; 

% patients without metastatic bone disease 

% patients without non-skeletal metastases 

% patients not experiencing skeletal morbidity El 

8. Are there any important endpoints missing from the list provided in Question 7? 
(please tick Yes or No) : 

Yes 

No 

If Yes, please specify: ................................................................... 
............................................................................................... 
............................................................................................... 
............................................................................................... 
............................................................................................... 

9. Do you have any responsibility for managing budgcts rclated to the trcatmcnt of 
patients with breast cancer? (please tick Yes or No): 

Yes 

No El 

If Yes, please provide a brief description of your responsibilities: 
............................................................................................... 
............................................................................................... 
............................................................................................... 
............................................................................................... 
............................................................................................... 
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10. Did you find this questionnaire: 

Very difficult to complete El 
Moderately difficult to complete F] 

Slightly difficult to complete F1 

Not difficult to complete F1 

11. Please provide any comments you would like to make about this questionnaire 
below: 

................................................................................................... 

................................................................................................... 

................................................................................................... 

................................................................................................... 

................................................................................................... 

................................................................................................... 

................................................................................................... 

................................................................................................... 

................................................................................................... 

12. How long has it taken you to complete this questionnaire? E][][] minutes 

Please check that you have answered all the questions and then return this 
questionnaire in the envelope provided. 

Thank you for completing this questionnaire. 
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APPENDIX 4.3 
RESULTS OF THE NON-CHOICE COMPONENTS OF THE STATED 

PREFERENCE SURVEY 
(QUESTIONNAIRE PART B) 
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Table A4.3.1 

Question 1: What is your area of specialisation? 

Specialty Title 
Professor Consultant Senior 

Registrar 
Registrar Other TotaF 

Medical 
oncologist 

1 5 3 3 2 14 

Surgical 
oncologist 

1 15 0 1 0 17 

Clinical 
oncologist 

0 11 0 4 1 16 

Other 0 4 0 0 3 7 
Total 21 35 1 TI 81 61 54 1 

Table A4.3.2 

Question 2: Approximately how many new cases of breast cancer do you see 
each year? 

Specialty S mmary of new cases 
Mean Standard 

deviation 
Frequency 

Medical 
oncologist 

156.86 112.25 14 

Surgical 
oncologist 

144.29 65.36 17 

Clinical 
oncologist 

224.38 188.82 16 

Other 183.57 203.32 7 
Total 176.37 

. 
142.42 54 

Table A4.3.3 

Question 3: Approximately what percentage of new cases have the following 
stages of disease at diagnosis? 

Stage Observations Mean Standard 
deviation 

Min Max 

% Stage 1 54 38.24 22.63 0 90 
% Stage Il 54 30.19 15.42 0 60 
% Stage 111 54 15.83 11.89 0 50 
% Stage IV 54 12.04 14.84 0 80 
Stage 1 54 69.66 65.54 0 360 
Stage 11 54 55.04 44.59 0 213 
_ Stage 111 54 30.24 50.02 0 340 : Stage IV 54 21.43 29.12 0 1 *7 -; l 
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Table A4.3.4 

Question 9: Do you have any responsibility for managing budgets related to the 
treatment of patients with breast cancer? 

Specialty udget responsibi ty? 
Yes No Total 

Medical 
oncologist 

5 9 14 

Surgical 
oncologist 

5 12 17 

Clinical 
oncologist 

4 12 16 

Other 0 7 7 
Total 14 40 54 

Table A4.3.5 

Question 10: How difficult was this questionnaire to complete? 

Specialty ifficulty of que tionnaire t complete 
Very 

difficult 
Moderately 

difficult 
Slightly 
difficult 

Not at all 
difficult 

Total 

Medical 
oncologist 

0 4 6 4 14 

Surgical 
oncologist 

1 6 9 1 17 

Clinical 
oncologist 

0 7 3 6 16 

Other 1 5 0 1 7 
Total 2 22 18 12 -5-41 

Table A4.3.6 

Question 12: How long have you spent on this questionnaire? * 

Variable Observations Mean Standard 
deviation 

Min Max 

Reviewing 
time 

54 26.76 13.11 60 

Interview time 54 11.41 4.56 -0" 2632 
Total time F- 54 38.17 1 13.32 1 191 801 

* Times are in minutes. 
1. The minfinum of zero was caused by one respondent reporting no preparation prior to interview. 
2. Ile minimum of zero was caused by one respondent mailing responses but not participating in the 
interview. 
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Table A4.3.7 

Are you happy to have your personal details disclosed? 

Specialty Disclosure of persona details 
Yes No Total 

Medical 
oncologist 

12 2 14 

Surgical 
oncologist 

15 2 17 

Clinical 
oncologist 

14 2 16 

Other 7 0 7 
Total 48 6 54 

Table A4.3.8 

Would you like to be sent a copy of the results of this survey? 

Specialty Receive copv of the s rvey? 
Yes No Total 

Medical 
oncologist 

9 5 14 

Surgical 
oncologist 

17 0 17 

Clinical 
oncologist 

15 1 16 

Other 7 0 7 
Total 48 6 54 

Table A4.3.9 

Question 11: Do you have any comments on the questionnaire? 

Specialty Comments on questio naire? 
Yes No Total 

Medical 
oncologist 

5 9 14 

Surgical 
oncologist 

13 4 17 

Clinical 
oncologist 

8 8 16 

Other 4 3 7 
Total 30 24 54 
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Table A4.3.10 

Question 4: Degree of influence of different specialties on the decision to use 
adjuvant bisphosphonates? 

Specialty Observations Mean Standard 
deviation 

Min Max 

Medical 
oncologist 

54 1.15 0.41 1 3 

Radiotherapist 54 1.35, 0.55 1 3 
Surgical 
oncologist 

54 1.80 0.59 1 3 

Pharmacist 54 2.57 0.57 1 3 
Radiologist 54 2.63 0.56 1 3 
GP 0.52 1 3 

Table A4.3.11 

Question 5: Are there any important decision makers or influences missing from 
the list in Question 4? 

Specialty Missing influences? 
Yes No Total 

Medical 
oncologist 

7 7 14 

Surgical 
oncologist 

11 6 17 

Clinical 
oncologist 

11 5 16 

Other 7 0 7 
Total 36 18 54 
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Table A4.3.12 

Question 6: Importance to you of the following design characteristics of an 
adjuvant bisphosphonates trial 

Variable Observations Mean Standard 
deviation 

Min Max 

Primary 
endpoint 

54 1.15 0.49 1 4 

Statistical 
significance 

54 1.22 0.46 1 3 

Effect size 54 1.26 0.44 1 2 
Study 
populatim 

54 1.44 0.57 1 3 

Duration 54 1.50 0.50 1 2 
Comparator 54 1.57 0.57 1 3 
Lead 
investigator 

54 2.57 0.69 1 4 

Countries 54 2.59 0.69 1 4 
Sponsor 54 2.80 0.68 1 4 

Table A4.3.13 

Question 7: Ranking of importance of adjuvant bisphosphonate trial endpoints 

Variable Observations Mean Standard 
deviation 

Min Max 

Disease free 
survival 

54 2.43 1.80 1 8 

Alive 54 3.78 2.45 1 8 
No metastatic 
bone disease 

54 3.91 1.94 1 7 

Quality of life 54 4.11 2.09 1 8 
Side effects 54 4.63 1.88 1 8 
No skeletal 
morbidity 

54 4.98 2.05 1 8 

No other 
metastases 

54 5.35 1.82 2 8 

Cost 54 6.81 1.59 3 
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Table A4.3.14 

Question 8: Are there any important endpoints missing from the list in Question 
7? 

Special! y Missing endpoln ? 
Yes No Total 

Medical 
oncologist 

1 13 14 

Surgical 
oncologist 

1 16 17" 

Clinical 
oncologist 

4 12 16 

Other 1 6 7 
Total 7 47 54 
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Table A4.3.15 

Budget responsibility as articulated by respondents 

Respondent Comment 
13 For the surgical side of things but not for the drugs. 
14 As lead clinician I have some input into where our significant 

expenditure should be. 
15 1 start the treatment and see the patient through to when they die. 
16 Not directly but we all have some influence. We have the North Trent 

Breast Care Group which we all have input in and decisions taken 
through this. 

19 I'm the lead clinician for cancer. Separately responsible for prioritising 
money for the cancer agenda trust. 

20 I'm Director of Surgery with a budget of fl5n-ffllions. Also I'm the 
lead Cancer Clinician for the hospital. The hospitals overall budget is 
El 15millions. 

27 Indirectly in an advisory capacity re drugs and radiation therapy. 
31 1 sit on the Network Committee and we make decisions about where 

the money will go. 
35 1 was Head of Department and made some decisions regarding drugs 

to be used. Otherwise decisions are joint with other consultants. 
36 I'm Clinical Director of Royal Free University College. I Chair the 

Breast Tumour Board for North London Network. 
40 Answered no but made the comment: "Only priority setting at 

consultant meetings. " 
42 1 sit on the Joint Hospital Board. Decide which drugs we will use. 
43 Formulary sub-committee. Chairman of Cancer Network Systems, 

Network Therapeutics Group: dealing with all new cancer drugs. 
44 Answered no but made the comment: "but on consultants' committee. " 
46 Answered no but made the comment: "but we have to prescribe 

responsibly within evidence based guidelines. " 
50 I'm involved in the Hospital Pharmacy Committee and the High Cost 

Drug Committee. 
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Table A4.3.16 

Comments on the questionnaire as articulated by respondents 

Respondent Comment 
I Interesting. 
3 Only that I'm curious to see what endpoint. For me it's been a useful 

introduction to conjoint analysis from a leaming point of view. 
4 Certain of them not comparing like with like. 
5 Didn't ask how often the patient needed treatment or the type i. e. 

whether it was tablet or iv. If iv then how often. The interval between 
treatments by this method is very important to the patient. 

9 1 found it more difficult to do Showcard, 1 because there was no 
information on the number of patients in the trials. 

10 The questionnaire could have been clearer in certain aspects. Each 
showcard has too much information in order to come up with a choice. 

11 1 was interested in some of the things being compared in that they 
don't seem really comparable. 

13 It's a concept I hadn't actually appreciated. 
16 First lot of questions not that easy- too much information to take in- 

surgeons are a bit thick! However, it was good -I think it's very 
important trying to get across what's important in clinical trials. 

17 You seem to have covered everything. 
19 No - it was quite interesting. I'm interested in bisphosphonates. 
21 1 found it a bit difficult with some of the choices reconciling them in 

my mind. 
23 No but 10 minutes is unrealistic. 
24 There were two problems for me: 

1) We were asked to decide prevention strategy for all stages yet a 
lot of the data was only for Stage 3. 

2) 1 wouldn't make a decision on a single set of data given like 
this. 

It was a very false way of looking at scientific data and I was very 
unhappy with it. 
I would be very happy for him to contact me to discuss this further. 

27 The analysis of the data - it's the first time I've come across this type 
of vehicle at Showcard 1.1 found it quite a useful exercise. 

28 Only that on Showcard 2 we don't use this terminology (Stage I etc) - 
it's American but it didn't bother me unduly. 

30 1. There is one important factor in the decision to use bisphosphonates 
which is not featured anywhere: the need for the stafflng and 
infrastructure to give the treatments, especially if it is being done 
intravenously. 
2. The way Showcard I was devised, I feel sure I have contradicted 
myself at times. 

31 Some of the options in Showcards 1-16 don't look very feasible. 
Some of the scenarios are a bit difficult to understand how a trial can 
be designed this way. I can't get my head round why they've been 
written this way. 
Willing to participate in the next phase. 
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Table A4.3.16 (continued) 

Respondent Comment 
32 1 was ýTtrigued by the format. I understand the research was about 

conjoint analysis but it seemed to be about the use of bisphosphonates 
which is a pretty controversial subject at the moment. 

35 1 didn't know what conjoint analysis was-I looked it up on the web. 
I found assigning values to the different characteristics listed was 
difficult. 

36 Quite an interesting one. 
37 1 thought it was very well designed. 
38 Some of the cost differences are very large-some had zero! 

It was fully comprehensive but the issue of patients alive without 
disease recurrence and patients without metastatic bone disease made 
it difficult to way up when you've got different endpoints. 

40 1 just found it difficult on the 1- 16 choices, to make sure I'd noted the 
differences on each one. It was the number of choices. 

41 It's a lot of fun. Quite challenging. Half the choice questions were 
very easy and half I didn't feel either option was acceptable but came 
down on one for the purpose of this exercise. 
1) You know what % of stage III patients will be alive at a particular 
time point and that will naturally affect the way you look at it but 
you're told not to have any other information. 
2) How desirable is the outcome? How Rely is the outcome? Do you 
think your intervention is going to count on the outcome? 

42 I've not done anything like this before. I found it very interesting. 
44 It is not easy really. I have to think about the formulation of the 

questions and I can't come up with any bright ideas. 
45 It took longer than 20 minutes. I was told it would take 10 minutes. 
46 Good questionnaire. Have done this before. 
50 Respondent wished to point out that 90% of breast cancer patients are 

treated by clinical oncologists and if they are called radiotherapists it 
could upset a lot of people. The situation is politically very sensitive. 
The economic analysis needs to be good. 

Table A4.3.17 

Missing decision makers or influences as articulated by respondents 

Respondent Comment 
I Pathologists. 
2 Nurse specialist and the patient. 
3 Nurse specialists or research nurses. 
5 Patient. 
6 Medical endocrinologist. 
7 1. Clinical nurse specialists. 2. Pathologists. 
8 Pathologist. 
9 Breast nurse. 
10 Breast care nurses. 
11 Clinical nurse specialist - has some influence. 
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Table A4.3.17 (continued) 

13 Breast care nurse. 
17 Trust manager. 
19 The respondent had originally indicated NICE but then deleted and 

changed the answer to no important decision-makers missing. 
20 Palliative care people. 
21 Orthopaedic surgeon. 
23 Breast reconstruction surgeon. 
24 Policy makers = managers. 
25 Patient and relatives. 
26 Breast care nurse. 
27 The patient. 
31 Pathologist. 
34 1. Palliative medicine consultant. 2. Hospice consultant. 
36 1. Patient support groups (some influence). 

2. NICE (high degree of influence). 
38 1. Plastic surgeon. 2. Palliative care consultants. 

3. Breast care nurses/MacMillan nurses. 
39 1. Breast care nurse. 2. Palliative care team i. e. MacMillan nurse. 

3. Orthopaedic surgeon. 
40 Patients. 
41 1. The patient. 2. The media. 3. Specialist nurse. 
42 Breast care sister. 
43 NICE. 
44 Breast care nurses. 
46 Primary care Trusts as they have to fund increased costs. 
47 The patient. 
48 1. The patient. 2. The patient's relatives. 3. The breast care nurses. 
49 1. Clinical chemist. 2. Rheumatologist 
50 Answered no but made the comment: "You need to reframe 

radiotherapist as a clinical oncologist. " 

Table A4.3.18 

Missing endpoints as articulated by respondents 

_Respondent 
Conunent 

8 I. Serum calcium levels. 
2. Number of pathological bone fractures. 

31 1. Quality adjusted life-years 
2. Cost per QALY 

41 1. % of patients with spinal cord compression - this can go undetected. 
2. Nothing about disability or time spent in hospital. 

48 1. Health economics assessment. 
2. Bone density assessment. 

49 Cost of patient management without bisphosphonates. 
50 1. Some management can reduce costs. 

2. Endpoint 5 (cost): "Is this overall management cost? It's unclear. " 
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APPENDIX 4.4 

TECHNICAL APPENDIX 

The purpose of this Technical Appendix is to set out the assumptions, equations and 

sources of data used for the illustrative analyses and results reported in section 4.7, 

"Using discrete choice model results in RCT desigif'. Example calculations are 

provided. Although the examples draw on published data pertaining to a recently 

reported bisphosphonate tria F69, the calculations are illustrative and do not purport to 

solve an oPtimisation problem in this context. 

1. Interpolation of effectiveness outcomes 

In order to perforra the illustrative calculations presented in this paper, effectiveness 

and uncertainty outcomes were interpolated, for three time points, from the survival 

curves reported in Powles et al (2002) . 
269 These are presented in Table A4.4.1 below. 

Table A4.4.1 

Clodronatel P lacebo' Difference 2 Lower Upper Prlor4 
95% C13 95% C13 

% Patients without 
metastatic bone disease 

Year 2 96.20 93.30 2.90 0.23 5.57 1-6 
Year 5 89.00 84.50 4.50 0.45 8.55 1-9 
Year 8 83.00 80.00 3.00 -1.65 7.65 1-8 

% Patients alive5 
Year 2 92.70 92.40 0.30 -2.85 3.45 1-4 
Year 5 82.90 79.30 3.60 -1.09 8.29 1-8 
Year 8 78.00 72.00 6.00 0.82 11.18 1-11 

1. Data points were interpolated from the survival curves reported in Powles d &1 (2002). 266 
2. Clodronate % minus placebo %. 
3. Confidence intervals for the differences in % effectiveness were calculated using the formula provided by Armitage & 

Berry (1995) pp 128-130.170 
4. The prior expectations for each outcome were assumed to be given by a uniform distribution in the range 1% to the 

upper limit of the 93% confidence interval (rounded up or down to the nearest whole number). Therefore, in the 
calculations, each value within the range is assumed to have an equal chance of representing the true difference in 
effectiveness. 

5. Powles et al (2002) did not report disease free survival rates. '" I lowevcr. for the illustrative analyses performed in 
this chapter, the overall survival rates reported were used as if they were the disease free survival rates. 
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2. Choice of baseline design 

It is important to note that the values of the predicted probabilities calculated for 

different trial designs depend upon the baseline values against which a new design is 

compared. Thus, such calculations require a 'baseline design' to be chosen. The 

calculations used to generate the results presented in Table 4.8 and Figures 4.2 to 4.4 

are based on the following baseline design: 

Table A4.4.2 

Attribute Baseline product evidence Justification 

Endpoint Patients without metastatic bone The primary endpoint in th 
disease Powles et al 

- 
(2002) trial269 

Effectiveness 2.90% 'Ibc statistically significant 
difference observed in the 

Powles et al (2002) study at the 
end of the treatment period (2 

years). 269 

Uncertainty 0.23% to 5.57% The confidence interval was 
[0.92] computed using the formula 

provided by Am itage & Be" 
(1995) pp 128-130 170 

Duration 2 years The period (medication period) 
over which the statistically 
significant difference in the 

above measure of effectiveness 
was observed. 

Population Patients with Stages I to III The Powles et al (2002) trial 
disease at diagnosis enrolled patients with primary 

operable breast cancer 
regardless of the stage of 
disease at diagnosis. 269 

Cost L450,000 Ibis level reflects the 
approximate cost of treating 

patients with oral clodronate for 
a2 year period as allowed for in 

the Powles et al (200? ) trial 
dosing regimen. 2*7 

This is the baseline design presented in column (1) Table 4.8. It is important to note 

that, despite being based on the Powles et al (2002) trial, the choice of this baseline is 

purely illustrative. 
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3. Example calculation of predicted probabilities of product adoption presented 

in Section 4.7.1, Table 4.8 and Figure 4.2 

Consider the comparison between the baseline design and "New product RCT Design 

7" shown respectively in columns (1) and (8) of Table 4.8. By substituting the 

regression coefficients from the full sample model (Table 4.7) and the differences in 

the values of the two RCT design attributes into Equation (8) we derive: 

A VAB = 
[(0.2787 *1)+ (0.0457 * 37.10)+ (-0.6210 * -0.91)+ .=2.9876 

. (0.0255 * 8)+ (0.2419 * 0)+ (-5.43e 
-07 * -450000)_ 

Substituting the above utility value into Equation (7) gives the predicted probability of 

preferring RCT Design 7 (A) to the baseline design (B): 

Pr(A I J) = (D (A VAB) 
= (D(2.9876) = 0.9986, and 

Pr(B I J) =I- (D(AVAB) =I-0.9986 = 0.0014. 

All the results presented in Table 4.8 and Figure 4.2 were calculated in this way. 

4. Example calculation of expected predicted probabilities of product adoption 

presented in Section 4.7.2, Figure 4.3 

For the illustrative calculations used to produce Figure 4.3, it is assumed that trial 

sponsors would only consider studies of 2,5 or 8 years duration and that they would 

only accept a study population which included subjects with all stages of primary 

operable breast cancer at diagnosis. It is further assumed that the new bisphosphonatc 

treatment would be priced at parity with the existing treatment (equivalcnt to 

E450,000 per 100 patients treated) and that a total sample size above 5000 subjects 

would not be contemplated. These assumptions are made in order to limit the 

computational effort involved. 
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As an example calculation, consider the comparison between a design which differs 

from the above baseline only in terms of the period of follow-up (5 years instead of 2 

years). The calculations are illustrated for a hypothetical trial which enrols a total of 

1500 subjects (750 per arm). The calculation involves the following steps: 

4.1. Calculation of expected effectiveness 

For each sample size, n, we first need to calculate the expected values for the 

effectiveness attribute. Utilising an approach previously described by Backhouse 

(1998) 203 
and Detsky (1985,1990) 152; 154 

, the expected effectiveness, E. (A X) likely 

to be demonstrated by a trial of sample size n, is given by the following formula: 

ÖD 

where Pr(DO = AXIAX) is the conditional probability that a difference of AX will be 

established in a trial with significance level ý if that difference is in fact there (the 

power of a trial), and where Pr(AX) is the prior probability of a true difference of 

Ax. 

For this illustrative calculation, E.. 1500 
(A X) = 

(0.0781 0.1111 (85.5%-84.5%) + 
(0.1948 0.1111 (86.5%-84.5%) + 
(0.3874 0.1111 (87.5%-84.5%) + 
(0.6207 0.1111 (88.5%-84.5%) + 
(0.8216 0.1111 (89.5%-84.5%) + 
(0.9406 0.1111 (90.5%-84.5%) + 
(0.9869 0.1111 (91.5%-84.5%) + 
(0.9982 0.1111 (92.5%-84.5%) + 
(0-9999 0.1111 (93.5%-84.5%) = 4.19530/o. 

In the above calculation, the first number in each row is the power of the trial which is 

calculated using the formula described in Machin et al (1997) p19.195 A two tailed 

test with significance level ý= 5% was assumed for all calculations. The second 
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number in each row is the prior probability of the difference in effectiveness shown as 

the last number in each row. Thus, from Table MA 1, the assumed prior expectation 

of difference in effectiveness is 1% to 9% with each value in that range assumed to 

have an equal prior probability: 1/9 = 0.1111. 

4. Z Calculation of expected uncertainty 

To calculate the expected uncertainty, 95% confidence intervals for the expected 

effectiveness outcome were computed using the formula provided by Armitage & 

Berry (1995) pp 128-130 referred to in the footnote to Table A4.4.2 above. 170 Based 

on this formula, the expected 95% confidence interval is: 0.7537% to 7.6369% 

(4.1953% ± 3.4416%). The expected uncertainty attribute value for this particular 

trial is therefore given by: 

E1500 = [(7.6369 
- 0.7537)/4.1953]/ 2=0.8203. 

This is the uncertainty value which enters the calculation below. 

4.3. Calculation of expectedpredictedprobability 

By substituting the regression coefficients from the full sample model and the 

differences in the values of the two RCT design attributes into Equation (8) we derive: 

(0 2787 * 0) + (0.0457 1.2953) + (- 0.6210 * -0.0997) + 
Euoo (A VAg 

[(Oo* 1=0.1976 

. 0255 * 3) + (0.2419 0) + (- 5.43e - 07 * -0) 

Substituting the above utility value into Equation (7) gives the expected predicted 

probability of preferring the RCT design as described above (A) to the baseline design 

(B): 

E1500 Pr(A I J) = (D(E, 500 
(A VAg)) = (D(O. 1976) = 0.5783. 
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This value was used to plot, in Figure 4.3, the expected predicted probability for a 

trial of 5 years duration with total sample size of 1500 and the percentage of patients 

without metastatic bone disease as the primary endpoint. Similar calculations were 

repeated across a large range of sample sizes and designs to produce Figure 4.3. 

5. Example calculation of expected net present values presented in Section 4.7.3, 

Figure 4.4 

Backhouse (1998) has shown how the net present value (NPV) for a trial can be 

203 
calculated and used to determine optimal (NPV maximising) designs. This is the 

approach adopted here. The example below builds on the example presented above. 

5.1 Calculation of cost 

In order to estimate the discounted cost of performing the trials PTC., the following 

simple cost function was assumed: 

H F, + Vn + FU,. n, PTC" = E. 
-- tttt 

t=O (1 + r) 

where F, denotes the fixed cost of perforniing the trial, V, denotes the variable cost 

per subject enrolled, FU, denotes the follow-up cost per patient per year, n, denotes 

the total trial sample size and t denotes the year in which the costs are incurred. In all 

calculations, the following assumptions are made: 

F= E1,000,000, incurred in the first year Q= 0) I 
V, = E3,000, incurred in the first year (t = 0) 

FUI = E1,000 incurred for each year of follow-up (t =I to 5) 

H= IS years, the time horizon for the NPV calculations 
r=0.15, the discount rate. 

Based on the above assumptions, the cost calculation for the 5- year trial illustrated 

in section 4 above is shown below in Table A4.4.3. 
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Table A4.4.3 

Year t n F, Vt. n, FUt. n, TC, PTC, 
1 0 1500 ; C1,000,000 E4,500,000 ; E5,500,000 E5,500,006-- 
2 1 1500 E1,500,000 EI, 500,000 fl, 304,348 
3 2 1500 E1,500,000 _ E1,500,000 f: 1,134,216 
4 3 1500 E1,500,000 fl, 500,000 E 986,274 
5 4 1500 E1,500,000 E1,500,000 E 857,630 
6 5 1500 fl, 500,000 E1,500,000 E 745,765 

Total PTC.. 1500 
I ; E10,528,233 

It should be emphasised that the assumed values used here are purely illustrative. 

They do not necessarily reflect the actual costs of perforniing such a trial. 

5.2 Calculation of revenue 

In order to estimate the discounted revenue associated with performing the trials, the 

following simple demand function was assumed: 

E. Prt (A I J) Mt 

where M, denotes the annual number of newly diagnosed cases of breast cancer 

assumed to be currently treated with the baseline product. The discounted revenue 

associated with a trial of given design and sample size, PTR, , is given by: 

H (A I J) M,. P, 
PTR. 

E,, Pr, 

t=O 
(I+rf 

where P, denotes the cost per year per patient treated and all other variables are as 

described above. 

In all calculations, the following variable values were assumed: 

Mt = 15,000, assumed to be constant for the time horizon of this illustrative 
calculation and represents the number of patients assumed to be currently 
treated with the baseline product. 
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P= E2 250 per patient per year for a two year course of treatment (treatment t 
cost= E4,500 per patient). 

H= 15 years, the time horizon for the NPV calculations 
0.15, the discount rate. 

Based on the above assumptions, the expected revenue calculations for the 5- year 

trial illustrated in section 4 above is shown in Table A4.4.4 below. 

S. 3 Calculation of expected NP V 

Finally, the expected net present value of a trial of given design and sample size, 

NPV., is given by: 

NP V,, = PTRn - 
PTCn 

which in this case equals E68,392,368 - E10,528,233 = E57,864,135. This value was 

used to plot, in Figure 4.4, the expected NPV for a trial of 5 years duration with total 

sample size of 1500 and the percentage of patients without metastatic bone disease as 

the primary endpoint. Similar calculations were repeated across a large range of 

sample sizes and designs to produce Figure 4.4. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

Randomised controlled trials (RCTs) play a fundamental role in the development and 

marketing activities of pharmaceutical companies. They are costly to perform and 

their design and results are a major determinant of the sales of a product. The 

contribution of RCTs to the performance of pharmaceutical companies emphasizes 

the importance of considering the application of techniques by which the value of 

trials may be assessed. Yet a review of the literature pertaining to economic analysis 

and clinical trials performed in the course of this research revealed that a private 

sector investment appraisal approach to RCT design has not hitherto been proposed 

nor has its potential application previously been explored. Therefore the purpose of 

this thesis has been to begin to fill that gap by setting out how methods of investment 

appraisal might be applied to RCT design decision-making and by exploring aspects 

surrounding the practicalities of application. Each individual chapter presents 

conclusions and directions for future research so they will not be repeated in detail 

here. Rather the purpose of this chapter is to briefly surnmarise the A-ey conclusions 

and contributions of this thesis and to present an agenda of research topics that could 

be pursued to further develop the application of investment appraisal approaches to 

trial design. 

5.1 SUMMARY OF CONCLUSIONS AND CONTRIBUTIONS 

In the field of economic analysis and RCTs, this thesis makes original contributions of 

both a conceptual and applied nature. The main conclusions and contributions of this 

thesis are summarised below. 

177 



The main contributions based on Chapter 2 are two fold. Firstly, a potential role for 

private sector investment appraisal techniques in the design of RCTs was identified 

and proposed for the first time. Secondly, a general model was described setting out 

the key components of the approach. An illustration of the application of the NPV 

method of investment appraisal was presented using a hypothetical trial design 

problem facing a pharmaceutical company. It was shown how profit criteria could be 

applied to decide whether a particular RCT is worth conducting, to determine an 

optimal (NPV maximising) design, and to rank RCTs in terms of their expected 

NPVs. The latter would enable a company to select a portfolio of studies which 

maximises the return on a given development or trial budget. 

One of the strengths of this technique lies in the fact that it requires a health care 

decision maker focused approach to the planning and design of RCTs. It explicitly 

recognizes that the nature and extent of product adoption (and ultimately profit) is 

linked to the strength and relevance of the evidence that trials produce for decision 

makers. This has not been built in to the methods previously proposed for use by 

companies to assess the value of research and development projects. Therefore the 

importance of being able to estimate the demand for a product contingent upon RCT 

design and expected trial outcomes was highlighted and the potential use of discrete 

choice analysis for that purpose was proposed for the first time. 

The work in Chapter 3 was conducted at a time when the pharmaceutical industry 

started to express its concerns about the potential impact, on development times and 

costs, of decision makers' requiring cost-effectiveness evidence generated by RCTs. 

The work set out to explore how such a requirement might impact the major 

deten-ninants of RCT costs, namely sample size and study duration. The 
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applied investigation utilized data from a previously conducted clinical evaluation and 

published formulae to calculate sample sizes for testing cost-effectiveness hypotheses 

for a number of hypothetical study designs. The designs were chosen to portray 

different preferences for cost-effectiveness evidence characterized by various design 

components of an RCT. 

The main contributions based on Chapter 3 are two fold. Firstly, the analyses 

conducted demonstrate, for the first time, that the impact on RCT costs depends upon 

the speciji'c nature of the cost-effectiveness evidence requirements. In so doing, the 

work draws attention to one of the practical implications of the findings: such studies 

cannot be adequately designed without detailed prior information about decision- 

makers' preferences for evidence defined in terms of RCT design attributes. 

Secondly, the analyses conducted also demonstrate that circumstances can be such 

that a requirement to produce evidence of cost-effectiveness based wholly on RCTs 

can significantly increase product development costs and times above that which 

would be required to test hypotheses only on clinical endpoints. The direction and 

magnitude of any impact will always depend upon the specific requirements and 

circumstances surrounding a product. 

Empirical demand analysis is a key component of an investment appraisal approach to 

RCT design. Specifically, the technique cannot be operationalised, without estimating 

the demand for a product contingent on the design and results of RCTs. Therefore 

Chapter 4 focused on this critical component of the investment appraisal approach. 

The purpose of the work presented in Chapter 4 was to explore how DCA could be 

used as a means of incorporating decision makers' preferences into the design of 

RCTs. Specifically, a primary goal was to explore the use of DCA as a method 
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for estimating the probabilities of product adoption contingent upon different RCT 

designs and expected results in order to operationalise the investment appraisal 

approach to trial design. 

In Chapter 4, a discrete choice model of drug demand was presented in general form. 

This was followed by an overview of the key elements to be considered in the design 

of a stated preference survey to estimate the parameters of a discrete choice model. 

The approach was then illustrated through the design and application of a stated 

preference survey to elicit clinician preferences for RCT evidence pertaining to the 

use of bisphosphonates in the management of patients with primary operable breast 

cancer. The data collected in the survey were used to estimate the parameters of a 

discrete choice model. It was shown how those results could be used to derive 

predicted probabilities of product adoption which, in turn, can be used to detennine 

optimal RCT designs within an investment appraisal framework. 

The main contributions of the work presented in Chapter 4 are as follows. Firstly, the 

use of DCA as a method for incorporating decision-maker preferences for evidence 

into the design of RCTs has not hitherto been proposed. In Chapter 4, the potential 

use of DCA for that purpose has been identified and described. Secondly, the first 

application of DCA to RCT design was presented. The empirical case-study provides 

evidence that the method is practical and theoretically valid in that context. Finally, 

and in contrast to other health economics applications of DCA, the research has 

focused on the use of the predicted choice probabilities that can be derived from 

discrete choice models. Specifically, the research has shown for the first time how 

these can be used to determine preference maximizing or profit maximizing trial 
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designs. 

5.2 AN AGENDA FOR FURTHER RESEARCH 

This thesis has begun to explore how pharmaceutical companies might apply 

investment appraisal techniques to assist with RCT design decision-making. In this 

section, some major directions for further research into the application of investment 

appraisal techniques to RCT design are briefly highlighted. 

The application of investment appraisal to RCT design was illustrated using the NPV 

method of investment appraisal. This was chosen because of its known superiority 

over rival orthodox methods and because of its widespread use by pharmaceutical 

companies to appraise project investment decisions. However, future research should 

consider how the conclusions reached through the NPV method compare with those 

reached by alternatives such as decision-analytic methods and value of information 

analysiS277; 
278 

and the real options approach to investment decisions . 
279; 280 

Further research should also be directed at gaining experience with the application of 

investment appraisal methods to various investment decisions involving the design of 

RCTs. Specifically, it would be worthwhile focusing on applying investment 

appraisal techniques to determine an optimal programme of trials to meet the evidence 

needs of both the regulatory agencies and pricing and reimbursement authorities. Any 

application will require a company to be able to estimate both the costs and the 

revenues contingent upon different RCT designs and results. It is the estimation of 

the product adoption and revenues that will pose the greatest challenge to successful 

application of the approach 

181 



Empirical work presented in this thesis has shown that discrete choice analysis is a 

potentially promising technique for incorporating decision-makers preferences for 

evidence into the design of trials generally and for operationalising an investment 

appraisal approach to RCT design in particular. Further research into the application 

of DCA will need to address how the technique can be successfully applied to 

decision-makers other than clinicians and to more complex treatment choice situations 

than those illustrated here. Furthennore, future research will need to address how 

product diffusion can reliably be modeled based on the findings of stated preference 

surveys204 or other techniques. 281 
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